François, Marianne M.
2015-05-28
A review of recent advances made in numerical methods and algorithms within the volume tracking framework is presented. The volume tracking method, also known as the volume-of-fluid method has become an established numerical approach to model and simulate interfacial flows. Its advantage is its strict mass conservation. However, because the interface is not explicitly tracked but captured via the material volume fraction on a fixed mesh, accurate estimation of the interface position, its geometric properties and modeling of interfacial physics in the volume tracking framework remain difficult. Several improvements have been made over the last decade to address these challenges.more » In this study, the multimaterial interface reconstruction method via power diagram, curvature estimation via heights and mean values and the balanced-force algorithm for surface tension are highlighted.« less
NASA Astrophysics Data System (ADS)
Jieh Haur, Chen; Kuo, Lin Sheng; Fu, Chen Ping; Li Hsu, Yeh; Da Heng, Chen
2018-01-01
Construction surplus soil tracking management has been the key management issue in Taiwan since 1991. This is mainly due to the construction surplus soils were often regarded as disposable waste and were disposed openly without any supervision, leading to environmental pollution. Even though the surplus soils were gradually being viewed as reusable resources, some unscrupulous enterprises still dump them freely for their own convenience. In order to dispose these surplus soils, site offices are required to confirm with the soil treatment plant regarding the approximate soil volume for hauling vehicle dispatch. However, the excavated soil volume will transform from bank volume to loose volume upon excavation, which may differ by a certain speculative coefficient (1.3), depending on the excavation site and geological condition. For managing and tracking the construction surplus soils, local government authorities frequently performed on-site spot check, but the lack of rapid assessment tools for soil volume estimation increased the evaluation difficulty for on-site inspectors. This study adopted unmanned aerial vehicle (UAV) in construction surplus soil tracking and rapidly acquired site photography and point cloud data, the excavated soil volume can be determined promptly after post-processing and interpretation, providing references to future surplus soil tracking management.
Feature tracking for automated volume of interest stabilization on 4D-OCT images
NASA Astrophysics Data System (ADS)
Laves, Max-Heinrich; Schoob, Andreas; Kahrs, Lüder A.; Pfeiffer, Tom; Huber, Robert; Ortmaier, Tobias
2017-03-01
A common representation of volumetric medical image data is the triplanar view (TV), in which the surgeon manually selects slices showing the anatomical structure of interest. In addition to common medical imaging such as MRI or computed tomography, recent advances in the field of optical coherence tomography (OCT) have enabled live processing and volumetric rendering of four-dimensional images of the human body. Due to the region of interest undergoing motion, it is challenging for the surgeon to simultaneously keep track of an object by continuously adjusting the TV to desired slices. To select these slices in subsequent frames automatically, it is necessary to track movements of the volume of interest (VOI). This has not been addressed with respect to 4DOCT images yet. Therefore, this paper evaluates motion tracking by applying state-of-the-art tracking schemes on maximum intensity projections (MIP) of 4D-OCT images. Estimated VOI location is used to conveniently show corresponding slices and to improve the MIPs by calculating thin-slab MIPs. Tracking performances are evaluated on an in-vivo sequence of human skin, captured at 26 volumes per second. Among investigated tracking schemes, our recently presented tracking scheme for soft tissue motion provides highest accuracy with an error of under 2.2 voxels for the first 80 volumes. Object tracking on 4D-OCT images enables its use for sub-epithelial tracking of microvessels for image-guidance.
SU-E-J-188: Theoretical Estimation of Margin Necessary for Markerless Motion Tracking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patel, R; Block, A; Harkenrider, M
2015-06-15
Purpose: To estimate the margin necessary to adequately cover the target using markerless motion tracking (MMT) of lung lesions given the uncertainty in tracking and the size of the target. Methods: Simulations were developed in Matlab to determine the effect of tumor size and tracking uncertainty on the margin necessary to achieve adequate coverage of the target. For simplicity, the lung tumor was approximated by a circle on a 2D radiograph. The tumor was varied in size from a diameter of 0.1 − 30 mm in increments of 0.1 mm. From our previous studies using dual energy markerless motion tracking,more » we estimated tracking uncertainties in x and y to have a standard deviation of 2 mm. A Gaussian was used to simulate the deviation between the tracked location and true target location. For each size tumor, 100,000 deviations were randomly generated, the margin necessary to achieve at least 95% coverage 95% of the time was recorded. Additional simulations were run for varying uncertainties to demonstrate the effect of the tracking accuracy on the margin size. Results: The simulations showed an inverse relationship between tumor size and margin necessary to achieve 95% coverage 95% of the time using the MMT technique. The margin decreased exponentially with target size. An increase in tracking accuracy expectedly showed a decrease in margin size as well. Conclusion: In our clinic a 5 mm expansion of the internal target volume (ITV) is used to define the planning target volume (PTV). These simulations show that for tracking accuracies in x and y better than 2 mm, the margin required is less than 5 mm. This simple simulation can provide physicians with a guideline estimation for the margin necessary for use of MMT clinically based on the accuracy of their tracking and the size of the tumor.« less
3D ocular ultrasound using gaze tracking on the contralateral eye: a feasibility study.
Afsham, Narges; Najafi, Mohammad; Abolmaesumi, Purang; Rohling, Robert
2011-01-01
A gaze-deviated examination of the eye with a 2D ultrasound transducer is a common and informative ophthalmic test; however, the complex task of the pose estimation of the ultrasound images relative to the eye affects 3D interpretation. To tackle this challenge, a novel system for 3D image reconstruction based on gaze tracking of the contralateral eye has been proposed. The gaze fixates on several target points and, for each fixation, the pose of the examined eye is inferred from the gaze tracking. A single camera system has been developed for pose estimation combined with subject-specific parameter identification. The ultrasound images are then transformed to the coordinate system of the examined eye to create a 3D volume. Accuracy of the proposed gaze tracking system and the pose estimation of the eye have been validated in a set of experiments. Overall system error, including pose estimation and calibration, are 3.12 mm and 4.68 degrees.
Tillery, Anne C.; Darr, Michael J.; Cannon, Susan H.; Michael, John A.
2011-01-01
In June 2011, the Track Fire burned 113 square kilometers in Colfax County, northeastern New Mexico, and Las Animas County, southeastern Colorado, including the upper watersheds of Chicorica and Raton Creeks. The burned landscape is now at risk of damage from postwildfire erosion, such as that caused by debris flows and flash floods. This report presents a preliminary hazard assessment of the debris-flow potential from basins burned by the Track Fire. A pair of empirical hazard-assessment models developed using data from recently burned basins throughout the intermountain western United States were used to estimate the probability of debris-flow occurrence and volume of debris flows at the outlets of selected drainage basins within the burned area. The models incorporate measures of burn severity, topography, soils, and storm rainfall to estimate the probability and volume of post-fire debris flows following the fire. In response to a design storm of 38 millimeters of rain in 30 minutes (10-year recurrence-interval), the probability of debris flow estimated for basins burned by the Track fire ranged between 2 and 97 percent, with probabilities greater than 80 percent identified for the majority of the tributary basins to Raton Creek in Railroad Canyon; six basins that flow into Lake Maloya, including the Segerstrom Creek and Swachheim Creek basins; two tributary basins to Sugarite Canyon, and an unnamed basin on the eastern flank of the burned area. Estimated debris-flow volumes ranged from 30 cubic meters to greater than 100,000 cubic meters. The largest volumes (greater than 100,000 cubic meters) were estimated for Segerstrom Creek and Swachheim Creek basins, which drain into Lake Maloya. The Combined Relative Debris-Flow Hazard Ranking identifies the Segerstrom Creek and Swachheim Creek basins as having the highest probability of producing the largest debris flows. This finding indicates the greatest post-fire debris-flow impacts may be expected to Lake Maloya. In addition, Interstate Highway 25, Raton Creek and the rail line in Railroad Canyon, County road A-27, and State Highway 526 in Sugarite Canyon may also be affected where they cross drainages downstream from recently burned basins. Although this assessment indicates that a rather large debris flow (approximately 42,000 cubic meters) may be generated from the basin above the City of Raton (basin 9) in response to the design storm, the probability of such an event is relatively low (approximately 10 percent). Additional assessment is necessary to determine if the estimated volume of material is sufficient to travel into the City of Raton. In addition, even small debris flows may affect structures at or downstream from basin outlets and increase the threat of flooding downstream by damaging or blocking flood mitigation structures. The maps presented here may be used to prioritize areas where erosion mitigation or other protective measures may be necessary within a 2- to 3-year window of vulnerability following the Track Fire.
NASA Astrophysics Data System (ADS)
Xu, Robert S.; Michailovich, Oleg V.; Solovey, Igor; Salama, Magdy M. A.
2010-03-01
Prostate specific antigen density is an established parameter for indicating the likelihood of prostate cancer. To this end, the size and volume of the gland have become pivotal quantities used by clinicians during the standard cancer screening process. As an alternative to manual palpation, an increasing number of volume estimation methods are based on the imagery data of the prostate. The necessity to process large volumes of such data requires automatic segmentation algorithms, which can accurately and reliably identify the true prostate region. In particular, transrectal ultrasound (TRUS) imaging has become a standard means of assessing the prostate due to its safe nature and high benefit-to-cost ratio. Unfortunately, modern TRUS images are still plagued by many ultrasound imaging artifacts such as speckle noise and shadowing, which results in relatively low contrast and reduced SNR of the acquired images. Consequently, many modern segmentation methods incorporate prior knowledge about the prostate geometry to enhance traditional segmentation techniques. In this paper, a novel approach to the problem of TRUS segmentation, particularly the definition of the prostate shape prior, is presented. The proposed approach is based on the concept of distribution tracking, which provides a unified framework for tracking both photometric and morphological features of the prostate. In particular, the tracking of morphological features defines a novel type of "weak" shape priors. The latter acts as a regularization force, which minimally bias the segmentation procedure, while rendering the final estimate stable and robust. The value of the proposed methodology is demonstrated in a series of experiments.
A deep learning approach for pose estimation from volumetric OCT data.
Gessert, Nils; Schlüter, Matthias; Schlaefer, Alexander
2018-05-01
Tracking the pose of instruments is a central problem in image-guided surgery. For microscopic scenarios, optical coherence tomography (OCT) is increasingly used as an imaging modality. OCT is suitable for accurate pose estimation due to its micrometer range resolution and volumetric field of view. However, OCT image processing is challenging due to speckle noise and reflection artifacts in addition to the images' 3D nature. We address pose estimation from OCT volume data with a new deep learning-based tracking framework. For this purpose, we design a new 3D convolutional neural network (CNN) architecture to directly predict the 6D pose of a small marker geometry from OCT volumes. We use a hexapod robot to automatically acquire labeled data points which we use to train 3D CNN architectures for multi-output regression. We use this setup to provide an in-depth analysis on deep learning-based pose estimation from volumes. Specifically, we demonstrate that exploiting volume information for pose estimation yields higher accuracy than relying on 2D representations with depth information. Supporting this observation, we provide quantitative and qualitative results that 3D CNNs effectively exploit the depth structure of marker objects. Regarding the deep learning aspect, we present efficient design principles for 3D CNNs, making use of insights from the 2D deep learning community. In particular, we present Inception3D as a new architecture which performs best for our application. We show that our deep learning approach reaches errors at our ground-truth label's resolution. We achieve a mean average error of 14.89 ± 9.3 µm and 0.096 ± 0.072° for position and orientation learning, respectively. Copyright © 2018 Elsevier B.V. All rights reserved.
Statistical and sampling issues when using multiple particle tracking
NASA Astrophysics Data System (ADS)
Savin, Thierry; Doyle, Patrick S.
2007-08-01
Video microscopy can be used to simultaneously track several microparticles embedded in a complex material. The trajectories are used to extract a sample of displacements at random locations in the material. From this sample, averaged quantities characterizing the dynamics of the probes are calculated to evaluate structural and/or mechanical properties of the assessed material. However, the sampling of measured displacements in heterogeneous systems is singular because the volume of observation with video microscopy is finite. By carefully characterizing the sampling design in the experimental output of the multiple particle tracking technique, we derive estimators for the mean and variance of the probes’ dynamics that are independent of the peculiar statistical characteristics. We expose stringent tests of these estimators using simulated and experimental complex systems with a known heterogeneous structure. Up to a certain fundamental limitation, which we characterize through a material degree of sampling by the embedded probe tracking, these estimators can be applied to quantify the heterogeneity of a material, providing an original and intelligible kind of information on complex fluid properties. More generally, we show that the precise assessment of the statistics in the multiple particle tracking output sample of observations is essential in order to provide accurate unbiased measurements.
Peng, Bo; Wang, Yuqi; Hall, Timothy J; Jiang, Jingfeng
2017-04-01
Our primary objective of this paper was to extend a previously published 2-D coupled subsample tracking algorithm for 3-D speckle tracking in the framework of ultrasound breast strain elastography. In order to overcome heavy computational cost, we investigated the use of a graphic processing unit (GPU) to accelerate the 3-D coupled subsample speckle tracking method. The performance of the proposed GPU implementation was tested using a tissue-mimicking phantom and in vivo breast ultrasound data. The performance of this 3-D subsample tracking algorithm was compared with the conventional 3-D quadratic subsample estimation algorithm. On the basis of these evaluations, we concluded that the GPU implementation of this 3-D subsample estimation algorithm can provide high-quality strain data (i.e., high correlation between the predeformation and the motion-compensated postdeformation radio frequency echo data and high contrast-to-noise ratio strain images), as compared with the conventional 3-D quadratic subsample algorithm. Using the GPU implementation of the 3-D speckle tracking algorithm, volumetric strain data can be achieved relatively fast (approximately 20 s per volume [2.5 cm ×2.5 cm ×2.5 cm]).
Fast human pose estimation using 3D Zernike descriptors
NASA Astrophysics Data System (ADS)
Berjón, Daniel; Morán, Francisco
2012-03-01
Markerless video-based human pose estimation algorithms face a high-dimensional problem that is frequently broken down into several lower-dimensional ones by estimating the pose of each limb separately. However, in order to do so they need to reliably locate the torso, for which they typically rely on time coherence and tracking algorithms. Their losing track usually results in catastrophic failure of the process, requiring human intervention and thus precluding their usage in real-time applications. We propose a very fast rough pose estimation scheme based on global shape descriptors built on 3D Zernike moments. Using an articulated model that we configure in many poses, a large database of descriptor/pose pairs can be computed off-line. Thus, the only steps that must be done on-line are the extraction of the descriptors for each input volume and a search against the database to get the most likely poses. While the result of such process is not a fine pose estimation, it can be useful to help more sophisticated algorithms to regain track or make more educated guesses when creating new particles in particle-filter-based tracking schemes. We have achieved a performance of about ten fps on a single computer using a database of about one million entries.
Ghost hunting—an assessment of ghost particle detection and removal methods for tomographic-PIV
NASA Astrophysics Data System (ADS)
Elsinga, G. E.; Tokgoz, S.
2014-08-01
This paper discusses and compares several methods, which aim to remove spurious peaks, i.e. ghost particles, from the volume intensity reconstruction in tomographic-PIV. The assessment is based on numerical simulations of time-resolved tomographic-PIV experiments in linear shear flows. Within the reconstructed volumes, intensity peaks are detected and tracked over time. These peaks are associated with particles (either ghosts or actual particles) and are characterized by their peak intensity, size and track length. Peak intensity and track length are found to be effective in discriminating between most ghosts and the actual particles, although not all ghosts can be detected using only a single threshold. The size of the reconstructed particles does not reveal an important difference between ghosts and actual particles. The joint distribution of peak intensity and track length however does, under certain conditions, allow a complete separation of ghosts and actual particles. The ghosts can have either a high intensity or a long track length, but not both combined, like all the actual particles. Removing the detected ghosts from the reconstructed volume and performing additional MART iterations can decrease the particle position error at low to moderate seeding densities, but increases the position error, velocity error and tracking errors at higher densities. The observed trends in the joint distribution of peak intensity and track length are confirmed by results from a real experiment in laminar Taylor-Couette flow. This diagnostic plot allows an estimate of the number of ghosts that are indistinguishable from the actual particles.
Proton tracking in a high-granularity Digital Tracking Calorimeter for proton CT purposes
NASA Astrophysics Data System (ADS)
Pettersen, H. E. S.; Alme, J.; Biegun, A.; van den Brink, A.; Chaar, M.; Fehlker, D.; Meric, I.; Odland, O. H.; Peitzmann, T.; Rocco, E.; Ullaland, K.; Wang, H.; Yang, S.; Zhang, C.; Röhrich, D.
2017-07-01
Radiation therapy with protons as of today utilizes information from x-ray CT in order to estimate the proton stopping power of the traversed tissue in a patient. The conversion from x-ray attenuation to proton stopping power in tissue introduces range uncertainties of the order of 2-3% of the range, uncertainties that are contributing to an increase of the necessary planning margins added to the target volume in a patient. Imaging methods and modalities, such as Dual Energy CT and proton CT, have come into consideration in the pursuit of obtaining an as good as possible estimate of the proton stopping power. In this study, a Digital Tracking Calorimeter is benchmarked for proof-of-concept for proton CT purposes. The Digital Tracking Calorimeter was originally designed for the reconstruction of high-energy electromagnetic showers for the ALICE-FoCal project. The presented prototype forms the basis for a proton CT system using a single technology for tracking and calorimetry. This advantage simplifies the setup and reduces the cost of a proton CT system assembly, and it is a unique feature of the Digital Tracking Calorimeter concept. Data from the AGORFIRM beamline at KVI-CART in Groningen in the Netherlands and Monte Carlo simulation results are used to in order to develop a tracking algorithm for the estimation of the residual ranges of a high number of concurrent proton tracks. High energy protons traversing the detector leave a track through the sensor layers. These tracks are spread out through charge diffusion processes. A charge diffusion model is applied for acquisition of estimates of the deposited energy of the protons in each sensor layer by using the size of the charge diffused area. A model fit of the Bragg Curve is applied to each reconstructed track and through this, estimating the residual range of each proton. The range of the individual protons can at present be estimated with a resolution of 4%. The readout system for this prototype is able to handle an effective proton frequency of 1 MHz by using 500 concurrent proton tracks in each readout frame, which is at the high end range of present similar prototypes. A future further optimized prototype will enable a high-speed and more accurate determination of the ranges of individual protons in a therapeutic beam.
Damon, Bruce M.; Heemskerk, Anneriet M.; Ding, Zhaohua
2012-01-01
Fiber curvature is a functionally significant muscle structural property, but its estimation from diffusion-tensor MRI fiber tracking data may be confounded by noise. The purpose of this study was to investigate the use of polynomial fitting of fiber tracts for improving the accuracy and precision of fiber curvature (κ) measurements. Simulated image datasets were created in order to provide data with known values for κ and pennation angle (θ). Simulations were designed to test the effects of increasing inherent fiber curvature (3.8, 7.9, 11.8, and 15.3 m−1), signal-to-noise ratio (50, 75, 100, and 150), and voxel geometry (13.8 and 27.0 mm3 voxel volume with isotropic resolution; 13.5 mm3 volume with an aspect ratio of 4.0) on κ and θ measurements. In the originally reconstructed tracts, θ was estimated accurately under most curvature and all imaging conditions studied; however, the estimates of κ were imprecise and inaccurate. Fitting the tracts to 2nd order polynomial functions provided accurate and precise estimates of κ for all conditions except very high curvature (κ=15.3 m−1), while preserving the accuracy of the θ estimates. Similarly, polynomial fitting of in vivo fiber tracking data reduced the κ values of fitted tracts from those of unfitted tracts and did not change the θ values. Polynomial fitting of fiber tracts allows accurate estimation of physiologically reasonable values of κ, while preserving the accuracy of θ estimation. PMID:22503094
Peng, Bo; Wang, Yuqi; Hall, Timothy J; Jiang, Jingfeng
2017-01-01
Our primary objective of this work was to extend a previously published 2D coupled sub-sample tracking algorithm for 3D speckle tracking in the framework of ultrasound breast strain elastography. In order to overcome heavy computational cost, we investigated the use of a graphic processing unit (GPU) to accelerate the 3D coupled sub-sample speckle tracking method. The performance of the proposed GPU implementation was tested using a tissue-mimicking (TM) phantom and in vivo breast ultrasound data. The performance of this 3D sub-sample tracking algorithm was compared with the conventional 3D quadratic sub-sample estimation algorithm. On the basis of these evaluations, we concluded that the GPU implementation of this 3D sub-sample estimation algorithm can provide high-quality strain data (i.e. high correlation between the pre- and the motion-compensated post-deformation RF echo data and high contrast-to-noise ratio strain images), as compared to the conventional 3D quadratic sub-sample algorithm. Using the GPU implementation of the 3D speckle tracking algorithm, volumetric strain data can be achieved relatively fast (approximately 20 seconds per volume [2.5 cm × 2.5 cm × 2.5 cm]). PMID:28166493
NASA Astrophysics Data System (ADS)
O'Shea, Tuathan P.; Garcia, Leo J.; Rosser, Karen E.; Harris, Emma J.; Evans, Philip M.; Bamber, Jeffrey C.
2014-04-01
This study investigates the use of a mechanically-swept 3D ultrasound (3D-US) probe for soft-tissue displacement monitoring during prostate irradiation, with emphasis on quantifying the accuracy relative to CyberKnife® x-ray fiducial tracking. An US phantom, implanted with x-ray fiducial markers was placed on a motion platform and translated in 3D using five real prostate motion traces acquired using the Calypso system. Motion traces were representative of all types of motion as classified by studying Calypso data for 22 patients. The phantom was imaged using a 3D swept linear-array probe (to mimic trans-perineal imaging) and, subsequently, the kV x-ray imaging system on CyberKnife. A 3D cross-correlation block-matching algorithm was used to track speckle in the ultrasound data. Fiducial and US data were each compared with known phantom displacement. Trans-perineal 3D-US imaging could track superior-inferior (SI) and anterior-posterior (AP) motion to ≤0.81 mm root-mean-square error (RMSE) at a 1.7 Hz volume rate. The maximum kV x-ray tracking RMSE was 0.74 mm, however the prostate motion was sampled at a significantly lower imaging rate (mean: 0.04 Hz). Initial elevational (right-left RL) US displacement estimates showed reduced accuracy but could be improved (RMSE <2.0 mm) using a correlation threshold in the ultrasound tracking code to remove erroneous inter-volume displacement estimates. Mechanically-swept 3D-US can track the major components of intra-fraction prostate motion accurately but exhibits some limitations. The largest US RMSE was for elevational (RL) motion. For the AP and SI axes, accuracy was sub-millimetre. It may be feasible to track prostate motion in 2D only. 3D-US also has the potential to improve high tracking accuracy for all motion types. It would be advisable to use US in conjunction with a small (˜2.0 mm) centre-of-mass displacement threshold in which case it would be possible to take full advantage of the accuracy and high imaging rate capability.
Automatic Intra-Operative Stitching of Non-Overlapping Cone-Beam CT Acquisitions
Fotouhi, Javad; Fuerst, Bernhard; Unberath, Mathias; Reichenstein, Stefan; Lee, Sing Chun; Johnson, Alex A.; Osgood, Greg M.; Armand, Mehran; Navab, Nassir
2018-01-01
Purpose Cone-Beam Computed Tomography (CBCT) is one of the primary imaging modalities in radiation therapy, dentistry, and orthopedic interventions. While CBCT provides crucial intraoperative information, it is bounded by a limited imaging volume, resulting in reduced effectiveness. This paper introduces an approach allowing real-time intraoperative stitching of overlapping and non-overlapping CBCT volumes to enable 3D measurements on large anatomical structures. Methods A CBCT-capable mobile C-arm is augmented with a Red-Green-Blue-Depth (RGBD) camera. An off-line co-calibration of the two imaging modalities results in co-registered video, infrared, and X-ray views of the surgical scene. Then, automatic stitching of multiple small, non-overlapping CBCT volumes is possible by recovering the relative motion of the C-arm with respect to the patient based on the camera observations. We propose three methods to recover the relative pose: RGB-based tracking of visual markers that are placed near the surgical site, RGBD-based simultaneous localization and mapping (SLAM) of the surgical scene which incorporates both color and depth information for pose estimation, and surface tracking of the patient using only depth data provided by the RGBD sensor. Results On an animal cadaver, we show stitching errors as low as 0.33 mm, 0.91 mm, and 1.72mm when the visual marker, RGBD SLAM, and surface data are used for tracking, respectively. Conclusions The proposed method overcomes one of the major limitations of CBCT C-arm systems by integrating vision-based tracking and expanding the imaging volume without any intraoperative use of calibration grids or external tracking systems. We believe this solution to be most appropriate for 3D intraoperative verification of several orthopedic procedures. PMID:29569728
Tracking fuzzy borders using geodesic curves with application to liver segmentation on planning CT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuan, Yading, E-mail: yading.yuan@mssm.edu; Chao, Ming; Sheu, Ren-Dih
Purpose: This work aims to develop a robust and efficient method to track the fuzzy borders between liver and the abutted organs where automatic liver segmentation usually suffers, and to investigate its applications in automatic liver segmentation on noncontrast-enhanced planning computed tomography (CT) images. Methods: In order to track the fuzzy liver–chestwall and liver–heart borders where oversegmentation is often found, a starting point and an ending point were first identified on the coronal view images; the fuzzy border was then determined as a geodesic curve constructed by minimizing the gradient-weighted path length between these two points near the fuzzy border.more » The minimization of path length was numerically solved by fast-marching method. The resultant fuzzy borders were incorporated into the authors’ automatic segmentation scheme, in which the liver was initially estimated by a patient-specific adaptive thresholding and then refined by a geodesic active contour model. By using planning CT images of 15 liver patients treated with stereotactic body radiation therapy, the liver contours extracted by the proposed computerized scheme were compared with those manually delineated by a radiation oncologist. Results: The proposed automatic liver segmentation method yielded an average Dice similarity coefficient of 0.930 ± 0.015, whereas it was 0.912 ± 0.020 if the fuzzy border tracking was not used. The application of fuzzy border tracking was found to significantly improve the segmentation performance. The mean liver volume obtained by the proposed method was 1727 cm{sup 3}, whereas it was 1719 cm{sup 3} for manual-outlined volumes. The computer-generated liver volumes achieved excellent agreement with manual-outlined volumes with correlation coefficient of 0.98. Conclusions: The proposed method was shown to provide accurate segmentation for liver in the planning CT images where contrast agent is not applied. The authors’ results also clearly demonstrated that the application of tracking the fuzzy borders could significantly reduce contour leakage during active contour evolution.« less
Passive Markers for Tracking Surgical Instruments in Real-Time 3-D Ultrasound Imaging
Stoll, Jeffrey; Ren, Hongliang; Dupont, Pierre E.
2013-01-01
A family of passive echogenic markers is presented by which the position and orientation of a surgical instrument can be determined in a 3-D ultrasound volume, using simple image processing. Markers are attached near the distal end of the instrument so that they appear in the ultrasound volume along with the instrument tip. They are detected and measured within the ultrasound image, thus requiring no external tracking device. This approach facilitates imaging instruments and tissue simultaneously in ultrasound-guided interventions. Marker-based estimates of instrument pose can be used in augmented reality displays or for image-based servoing. Design principles for marker shapes are presented that ensure imaging system and measurement uniqueness constraints are met. An error analysis is included that can be used to guide marker design and which also establishes a lower bound on measurement uncertainty. Finally, examples of marker measurement and tracking algorithms are presented along with experimental validation of the concepts. PMID:22042148
NASA Astrophysics Data System (ADS)
El Kanawati, W.; Létang, J. M.; Dauvergne, D.; Pinto, M.; Sarrut, D.; Testa, É.; Freud, N.
2015-10-01
A Monte Carlo (MC) variance reduction technique is developed for prompt-γ emitters calculations in proton therapy. Prompt-γ emitted through nuclear fragmentation reactions and exiting the patient during proton therapy could play an important role to help monitoring the treatment. However, the estimation of the number and the energy of emitted prompt-γ per primary proton with MC simulations is a slow process. In order to estimate the local distribution of prompt-γ emission in a volume of interest for a given proton beam of the treatment plan, a MC variance reduction technique based on a specific track length estimator (TLE) has been developed. First an elemental database of prompt-γ emission spectra is established in the clinical energy range of incident protons for all elements in the composition of human tissues. This database of the prompt-γ spectra is built offline with high statistics. Regarding the implementation of the prompt-γ TLE MC tally, each proton deposits along its track the expectation of the prompt-γ spectra from the database according to the proton kinetic energy and the local material composition. A detailed statistical study shows that the relative efficiency mainly depends on the geometrical distribution of the track length. Benchmarking of the proposed prompt-γ TLE MC technique with respect to an analogous MC technique is carried out. A large relative efficiency gain is reported, ca. 105.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Myhra, S., E-mail: sverre.myhra@materials.ox.ac.uk; Chakalova, R.; Falzone, N.
A method for detection and characterization of single MeV α-particle and recoil tracks in PMMA photoresist by atomic force microscopy (AFM) analysis has been demonstrated. The energy deposition along the track is shown to lead to a latent pattern in the resist due to contrast reversal. It has been shown that the pattern, consisting of conical spikes, can be developed by conventional processing as a result of the dissolution rate of poly(methyl methacrylate) (PMMA) being greater than that for the modified material in the cylindrical volume of the track core. The spikes can be imaged and counted by routine AFMmore » analysis. Investigations by angular-resolved near-grazing incidence reveal additional tracks that correspond to recoil tracks. The observations have been correlated with modelling, and shown to be in qualitative agreement with prevailing descriptions of collision cascades. The results may be relevant to technologies that are based on detection and characterization of single energetic ions. In particular, the direct visualization of the collision cascade may allow more accurate estimates of the actual interaction volume, which in turn will permit more precise assessment of dose distribution of α-emitting radionuclides used for targeted radiotherapy. The results could also be relevant to other diagnostic or process technologies based on interaction of energetic ions with matter.« less
NASA Technical Reports Server (NTRS)
Chin, M. M.; Goad, C. C.; Martin, T. V.
1972-01-01
A computer program for the estimation of orbit and geodetic parameters is presented. The areas in which the program is operational are defined. The specific uses of the program are given as: (1) determination of definitive orbits, (2) tracking instrument calibration, (3) satellite operational predictions, and (4) geodetic parameter estimation. The relationship between the various elements in the solution of the orbit and geodetic parameter estimation problem is analyzed. The solution of the problems corresponds to the orbit generation mode in the first case and to the data reduction mode in the second case.
GEODYN programmers guide, volume 2, part 1
NASA Technical Reports Server (NTRS)
Mullins, N. E.; Goad, C. C.; Dao, N. C.; Martin, T. V.; Boulware, N. L.; Chin, M. M.
1972-01-01
A guide to the GEODYN Program is presented. The program estimates orbit and geodetic parameters. It possesses the capability to estimate that set of orbital elements, station positions, measurement biases, and a set of force model parameters such that the orbital tracking data from multiple arcs of multiple satellites best fit the entire set of estimated parameters. GEODYN consists of 113 different program segments, including the main program, subroutines, functions, and block data routines. All are in G or H level FORTRAN and are currently operational on GSFC's IBM 360/95 and IBM 360/91.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woelfelschneider, J; Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, DE; Seregni, M
2015-06-15
Purpose: Tumor tracking is an advanced technique to treat intra-fractionally moving tumors. The aim of this study is to validate a surrogate-driven model based on four-dimensional computed tomography (4DCT) that is able to predict CT volumes corresponding to arbitrary respiratory states. Further, the comparison of three different driving surrogates is evaluated. Methods: This study is based on multiple 4DCTs of two patients treated for bronchial carcinoma and metastasis. Analyses for 18 additional patients are currently ongoing. The motion model was estimated from the planning 4DCT through deformable image registration. To predict a certain phase of a follow-up 4DCT, the modelmore » considers for inter-fractional variations (baseline correction) and intra-fractional respiratory parameters (amplitude and phase) derived from surrogates. In this evaluation, three different approaches were used to extract the motion surrogate: for each 4DCT phase, the 3D thoraco-abdominal surface motion, the body volume and the anterior-posterior motion of a virtual single external marker defined on the sternum were investigated. The estimated volumes resulting from the model were compared to the ground-truth clinical 4DCTs using absolute HU differences in the lung volume and landmarks localized using the Scale Invariant Feature Transform (SIFT). Results: The results show absolute HU differences between estimated and ground-truth images with median values limited to 55 HU and inter-quartile ranges (IQR) lower than 100 HU. Median 3D distances between about 1500 matching landmarks are below 2 mm for 3D surface motion and body volume methods. The single marker surrogates Result in increased median distances up to 0.6 mm. Analyses for the extended database incl. 20 patients are currently in progress. Conclusion: The results depend mainly on the image quality of the initial 4DCTs and the deformable image registration. All investigated surrogates can be used to estimate follow-up 4DCT phases, however uncertainties decrease for three-dimensional approaches. This work was funded in parts by the German Research Council (DFG) - KFO 214/2.« less
3D motion and strain estimation of the heart: initial clinical findings
NASA Astrophysics Data System (ADS)
Barbosa, Daniel; Hristova, Krassimira; Loeckx, Dirk; Rademakers, Frank; Claus, Piet; D'hooge, Jan
2010-03-01
The quantitative assessment of regional myocardial function remains an important goal in clinical cardiology. As such, tissue Doppler imaging and speckle tracking based methods have been introduced to estimate local myocardial strain. Recently, volumetric ultrasound has become more readily available, allowing therefore the 3D estimation of motion and myocardial deformation. Our lab has previously presented a method based on spatio-temporal elastic registration of ultrasound volumes to estimate myocardial motion and deformation in 3D, overcoming the spatial limitations of the existing methods. This method was optimized on simulated data sets in previous work and is currently tested in a clinical setting. In this manuscript, 10 healthy volunteers, 10 patient with myocardial infarction and 10 patients with arterial hypertension were included. The cardiac strain values extracted with the proposed method were compared with the ones estimated with 1D tissue Doppler imaging and 2D speckle tracking in all patient groups. Although the absolute values of the 3D strain components assessed by this new methodology were not identical to the reference methods, the relationship between the different patient groups was similar.
Real-Time 3D Tracking and Reconstruction on Mobile Phones.
Prisacariu, Victor Adrian; Kähler, Olaf; Murray, David W; Reid, Ian D
2015-05-01
We present a novel framework for jointly tracking a camera in 3D and reconstructing the 3D model of an observed object. Due to the region based approach, our formulation can handle untextured objects, partial occlusions, motion blur, dynamic backgrounds and imperfect lighting. Our formulation also allows for a very efficient implementation which achieves real-time performance on a mobile phone, by running the pose estimation and the shape optimisation in parallel. We use a level set based pose estimation but completely avoid the, typically required, explicit computation of a global distance. This leads to tracking rates of more than 100 Hz on a desktop PC and 30 Hz on a mobile phone. Further, we incorporate additional orientation information from the phone's inertial sensor which helps us resolve the tracking ambiguities inherent to region based formulations. The reconstruction step first probabilistically integrates 2D image statistics from selected keyframes into a 3D volume, and then imposes coherency and compactness using a total variational regularisation term. The global optimum of the overall energy function is found using a continuous max-flow algorithm and we show that, similar to tracking, the integration of per voxel posteriors instead of likelihoods improves the precision and accuracy of the reconstruction.
A Concept for a High-Energy Gamma-ray Polarimeter
NASA Technical Reports Server (NTRS)
Bloser, P. F.; Hunter, S. D.; Depaola, G. O.; Longo, F.
2003-01-01
We present a concept for an imaging gamma-ray polarimeter operating from approx. 50 MeV to approx. 1 GeV. Such an instrument would be valuable for the study of high-energy pulsars, active galactic nuclei, supernova remnants, and gamma-ray bursts. The concept makes use of pixelized gas micro-well detectors, under development at Goddard Space Flight Center, to record the electron-positron tracks from pair-production events in a large gas volume. Pixelized micro-well detectors have the potential to form large-volume 3-D track imagers with approx. 100 micron (rms) position resolution at moderate cost. The combination of high spatial resolution and a continuous low-density gas medium permits many thousands of measurements per radiation length, allowing the particle tracks to be imaged accurately before multiple scattering masks their original directions. The polarization of the incoming radiation may then be determined from the azimuthal distribution of the electron-positron pairs. We have performed Geant4 simulations of these processes to estimate the polarization sensitivity as a function of instrument parameters and event selection criteria.
NASA Astrophysics Data System (ADS)
Linte, Cristian A.; Rettmann, Maryam E.; Dilger, Ben; Gunawan, Mia S.; Arunachalam, Shivaram P.; Holmes, David R., III; Packer, Douglas L.; Robb, Richard A.
2012-02-01
The novel prototype system for advanced visualization for image-guided left atrial ablation therapy developed in our laboratory permits ready integration of multiple imaging modalities, surgical instrument tracking, interventional devices and electro-physiologic data. This technology allows subject-specific procedure planning and guidance using 3D dynamic, patient-specific models of the patient's heart, augmented with real-time intracardiac echocardiography (ICE). In order for the 2D ICE images to provide intuitive visualization for accurate catheter to surgical target navigation, the transducer must be tracked, so that the acquired images can be appropriately presented with respect to the patient-specific anatomy. Here we present the implementation of a previously developed ultrasound calibration technique for a magnetically tracked ICE transducer, along with a series of evaluation methods to ensure accurate imaging and faithful representation of the imaged structures. Using an engineering-designed phantom, target localization accuracy is assessed by comparing known target locations with their transformed locations inferred from the tracked US images. In addition, the 3D volume reconstruction accuracy is also estimated by comparing a truth volume to that reconstructed from sequential 2D US images. Clinically emulating validation studies are conducted using a patient-specific left atrial phantom. Target localization error of clinically-relevant surgical targets represented by nylon fiducials implanted within the endocardial wall of the phantom was assessed. Our studies have demonstrated 2.4 +/- 0.8 mm target localization error in the engineering-designed evaluation phantoms, 94.8 +/- 4.6 % volume reconstruction accuracy, and 3.1 +/- 1.2 mm target localization error in the left atrial-mimicking phantom. These results are consistent with those disseminated in the literature and also with the accuracy constraints imposed by the employed technology and the clinical application.
NASA Technical Reports Server (NTRS)
Keitz, J. F.
1982-01-01
The impact of more timely and accurate weather data on airline flight planning with the emphasis on fuel savings is studied. This volume of the report discusses the results of Task 1 of the four major tasks included in the study. Task 1 compares flight plans based on forecasts with plans based on the verifying analysis from 33 days during the summer and fall of 1979. The comparisons show that: (1) potential fuel savings conservatively estimated to be between 1.2 and 2.5 percent could result from using more timely and accurate weather data in flight planning and route selection; (2) the Suitland forecast generally underestimates wind speeds; and (3) the track selection methodology of many airlines operating on the North Atlantic may not be optimum resulting in their selecting other than the optimum North Atlantic Organized Track about 50 percent of the time.
Nested Dissection Interface Reconstruction in Pececillo
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jibben, Zechariah Joel
A nested dissection method for interface reconstruction in a volume tracking framework has been implemented in Pececillo. This method provides a significant improvement over the traditional onion-skin method, which does not appropriately handle T-shaped multimaterial intersections and dynamic contact lines present in additive manufacturing simulations. The resulting implementation lays the groundwork for further re- search in numerical contact angle estimates.
Fast left ventricle tracking in CMR images using localized anatomical affine optical flow
NASA Astrophysics Data System (ADS)
Queirós, Sandro; Vilaça, João. L.; Morais, Pedro; Fonseca, Jaime C.; D'hooge, Jan; Barbosa, Daniel
2015-03-01
In daily cardiology practice, assessment of left ventricular (LV) global function using non-invasive imaging remains central for the diagnosis and follow-up of patients with cardiovascular diseases. Despite the different methodologies currently accessible for LV segmentation in cardiac magnetic resonance (CMR) images, a fast and complete LV delineation is still limitedly available for routine use. In this study, a localized anatomically constrained affine optical flow method is proposed for fast and automatic LV tracking throughout the full cardiac cycle in short-axis CMR images. Starting from an automatically delineated LV in the end-diastolic frame, the endocardial and epicardial boundaries are propagated by estimating the motion between adjacent cardiac phases using optical flow. In order to reduce the computational burden, the motion is only estimated in an anatomical region of interest around the tracked boundaries and subsequently integrated into a local affine motion model. Such localized estimation enables to capture complex motion patterns, while still being spatially consistent. The method was validated on 45 CMR datasets taken from the 2009 MICCAI LV segmentation challenge. The proposed approach proved to be robust and efficient, with an average distance error of 2.1 mm and a correlation with reference ejection fraction of 0.98 (1.9 +/- 4.5%). Moreover, it showed to be fast, taking 5 seconds for the tracking of a full 4D dataset (30 ms per image). Overall, a novel fast, robust and accurate LV tracking methodology was proposed, enabling accurate assessment of relevant global function cardiac indices, such as volumes and ejection fraction
Accuracy of lesion boundary tracking in navigated breast tumor excision
NASA Astrophysics Data System (ADS)
Heffernan, Emily; Ungi, Tamas; Vaughan, Thomas; Pezeshki, Padina; Lasso, Andras; Gauvin, Gabrielle; Rudan, John; Engel, C. Jay; Morin, Evelyn; Fichtinger, Gabor
2016-03-01
PURPOSE: An electromagnetic navigation system for tumor excision in breast conserving surgery has recently been developed. Preoperatively, a hooked needle is positioned in the tumor and the tumor boundaries are defined in the needle coordinate system. The needle is tracked electromagnetically throughout the procedure to localize the tumor. However, the needle may move and the tissue may deform, leading to errors in maintaining a correct excision boundary. It is imperative to quantify these errors so the surgeon can choose an appropriate resection margin. METHODS: A commercial breast biopsy phantom with several inclusions was used. Location and shape of a lesion before and after mechanical deformation were determined using 3D ultrasound volumes. Tumor location and shape were estimated from initial contours and tracking data. The difference in estimated and actual location and shape of the lesion after deformation was quantified using the Hausdorff distance. Data collection and analysis were done using our 3D Slicer software application and PLUS toolkit. RESULTS: The deformation of the breast resulted in 3.72 mm (STD 0.67 mm) average boundary displacement for an isoelastic lesion and 3.88 mm (STD 0.43 mm) for a hyperelastic lesion. The difference between the actual and estimated tracked tumor boundary was 0.88 mm (STD 0.20 mm) for the isoelastic and 1.78 mm (STD 0.18 mm) for the hyperelastic lesion. CONCLUSION: The average lesion boundary tracking error was below 2mm, which is clinically acceptable. We suspect that stiffness of the phantom tissue affected the error measurements. Results will be validated in patient studies.
van Stralen, Marijn; Bosch, Johan G; Voormolen, Marco M; van Burken, Gerard; Krenning, Boudewijn J; van Geuns, Robert-Jan M; Lancée, Charles T; de Jong, Nico; Reiber, Johan H C
2005-10-01
We propose a semiautomatic endocardial border detection method for three-dimensional (3D) time series of cardiac ultrasound (US) data based on pattern matching and dynamic programming, operating on two-dimensional (2D) slices of the 3D plus time data, for the estimation of full cycle left ventricular volume, with minimal user interaction. The presented method is generally applicable to 3D US data and evaluated on data acquired with the Fast Rotating Ultrasound (FRU-) Transducer, developed by Erasmus Medical Center (Rotterdam, the Netherlands), a conventional phased-array transducer, rotating at very high speed around its image axis. The detection is based on endocardial edge pattern matching using dynamic programming, which is constrained by a 3D plus time shape model. It is applied to an automatically selected subset of 2D images of the original data set, for typically 10 equidistant rotation angles and 16 cardiac phases (160 images). Initialization requires the drawing of four contours per patient manually. We evaluated this method on 14 patients against MRI end-diastole and end-systole volumes. Initialization requires the drawing of four contours per patient manually. We evaluated this method on 14 patients against MRI end-diastolic (ED) and end-systolic (ES) volumes. The semiautomatic border detection approach shows good correlations with MRI ED/ES volumes (r = 0.938) and low interobserver variability (y = 1.005x - 16.7, r = 0.943) over full-cycle volume estimations. It shows a high consistency in tracking the user-defined initial borders over space and time. We show that the ease of the acquisition using the FRU-transducer and the semiautomatic endocardial border detection method together can provide a way to quickly estimate the left ventricular volume over the full cardiac cycle using little user interaction.
Autoradiography imaging in targeted alpha therapy with Timepix detector.
A L Darwish, Ruqaya; Staudacher, Alexander Hugo; Bezak, Eva; Brown, Michael Paul
2015-01-01
There is a lack of data related to activity uptake and particle track distribution in targeted alpha therapy. These data are required to estimate the absorbed dose on a cellular level as alpha particles have a limited range and traverse only a few cells. Tracking of individual alpha particles is possible using the Timepix semiconductor radiation detector. We investigated the feasibility of imaging alpha particle emissions in tumour sections from mice treated with Thorium-227 (using APOMAB), with and without prior chemotherapy and Timepix detector. Additionally, the sensitivity of the Timepix detector to monitor variations in tumour uptake based on the necrotic tissue volume was also studied. Compartmental analysis model was used, based on the obtained imaging data, to assess the Th-227 uptake. Results show that alpha particle, photon, electron, and muon tracks were detected and resolved by Timepix detector. The current study demonstrated that individual alpha particle emissions, resulting from targeted alpha therapy, can be visualised and quantified using Timepix detector. Furthermore, the variations in the uptake based on the tumour necrotic volume have been observed with four times higher uptake for tumours pretreated with chemotherapy than for those without chemotherapy.
Autoradiography Imaging in Targeted Alpha Therapy with Timepix Detector
AL Darwish, Ruqaya; Staudacher, Alexander Hugo; Bezak, Eva; Brown, Michael Paul
2015-01-01
There is a lack of data related to activity uptake and particle track distribution in targeted alpha therapy. These data are required to estimate the absorbed dose on a cellular level as alpha particles have a limited range and traverse only a few cells. Tracking of individual alpha particles is possible using the Timepix semiconductor radiation detector. We investigated the feasibility of imaging alpha particle emissions in tumour sections from mice treated with Thorium-227 (using APOMAB), with and without prior chemotherapy and Timepix detector. Additionally, the sensitivity of the Timepix detector to monitor variations in tumour uptake based on the necrotic tissue volume was also studied. Compartmental analysis model was used, based on the obtained imaging data, to assess the Th-227 uptake. Results show that alpha particle, photon, electron, and muon tracks were detected and resolved by Timepix detector. The current study demonstrated that individual alpha particle emissions, resulting from targeted alpha therapy, can be visualised and quantified using Timepix detector. Furthermore, the variations in the uptake based on the tumour necrotic volume have been observed with four times higher uptake for tumours pretreated with chemotherapy than for those without chemotherapy. PMID:25688285
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1978-05-01
The Transient Reactor Analysis Code (TRAC) is being developed at the Los Alamos Scientific Laboratory (LASL) to provide an advanced ''best estimate'' predictive capability for the analysis of postulated accidents in light water reactors (LWRs). TRAC-Pl provides this analysis capability for pressurized water reactors (PWRs) and for a wide variety of thermal-hydraulic experimental facilities. It features a three-dimensional treatment of the pressure vessel and associated internals; two-phase nonequilibrium hydrodynamics models; flow-regime-dependent constitutive equation treatment; reflood tracking capability for both bottom flood and falling film quench fronts; and consistent treatment of entire accident sequences including the generation of consistent initial conditions.more » The TRAC-Pl User's Manual is composed of two separate volumes. Volume I gives a description of the thermal-hydraulic models and numerical solution methods used in the code. Detailed programming and user information is also provided. Volume II presents the results of the developmental verification calculations.« less
NASA Astrophysics Data System (ADS)
Maish, A. B.; Rios, M., Jr.; Togami, H.
A stand-alone 430 W/sub p/ photovoltaic (PV) concentrating system for low power, non grid-connected applications has been designed, fabricated, and tested at Sandia National Laboratories. The array consists of four passively cooled Fresnel lens concentrating modules on a newly developed polar axis tracking structure. Two axis tracking is provided using a self powered clock drive unit mounted on a single post foundation. Test results of tracking accuracy, array output power, parasitic power, performance in winds and array reliability are discussed. using a range of estimated production costs for small production volumes, the life-cycle energy costs have been calculated and compared to the equivalent energy costs of a 3 kW diesel electric generator set and of an equivalent flat panel PV system.
Comparative Dosimetric Estimates of a 25 keV Electron Micro-beam with three Monte Carlo Codes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mainardi, Enrico; Donahue, Richard J.; Blakely, Eleanor A.
2002-09-11
The calculations presented compare the different performances of the three Monte Carlo codes PENELOPE-1999, MCNP-4C and PITS, for the evaluation of Dose profiles from a 25 keV electron micro-beam traversing individual cells. The overall model of a cell is a water cylinder equivalent for the three codes but with a different internal scoring geometry: hollow cylinders for PENELOPE and MCNP, whereas spheres are used for the PITS code. A cylindrical cell geometry with scoring volumes with the shape of hollow cylinders was initially selected for PENELOPE and MCNP because of its superior simulation of the actual shape and dimensions ofmore » a cell and for its improved computer-time efficiency if compared to spherical internal volumes. Some of the transfer points and energy transfer that constitute a radiation track may actually fall in the space between spheres, that would be outside the spherical scoring volume. This internal geometry, along with the PENELOPE algorithm, drastically reduced the computer time when using this code if comparing with event-by-event Monte Carlo codes like PITS. This preliminary work has been important to address dosimetric estimates at low electron energies. It demonstrates that codes like PENELOPE can be used for Dose evaluation, even with such small geometries and energies involved, which are far below the normal use for which the code was created. Further work (initiated in Summer 2002) is still needed however, to create a user-code for PENELOPE that allows uniform comparison of exact cell geometries, integral volumes and also microdosimetric scoring quantities, a field where track-structure codes like PITS, written for this purpose, are believed to be superior.« less
Registration of clinical volumes to beams-eye-view images for real-time tracking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bryant, Jonathan H.; Rottmann, Joerg; Lewis, John H.
2014-12-15
Purpose: The authors combine the registration of 2D beam’s eye view (BEV) images and 3D planning computed tomography (CT) images, with relative, markerless tumor tracking to provide automatic absolute tracking of physician defined volumes such as the gross tumor volume (GTV). Methods: During treatment of lung SBRT cases, BEV images were continuously acquired with an electronic portal imaging device (EPID) operating in cine mode. For absolute registration of physician-defined volumes, an intensity based 2D/3D registration to the planning CT was performed using the end-of-exhale (EoE) phase of the four dimensional computed tomography (4DCT). The volume was converted from Hounsfield unitsmore » into electron density by a calibration curve and digitally reconstructed radiographs (DRRs) were generated for each beam geometry. Using normalized cross correlation between the DRR and an EoE BEV image, the best in-plane rigid transformation was found. The transformation was applied to physician-defined contours in the planning CT, mapping them into the EPID image domain. A robust multiregion method of relative markerless lung tumor tracking quantified deviations from the EoE position. Results: The success of 2D/3D registration was demonstrated at the EoE breathing phase. By registering at this phase and then employing a separate technique for relative tracking, the authors are able to successfully track target volumes in the BEV images throughout the entire treatment delivery. Conclusions: Through the combination of EPID/4DCT registration and relative tracking, a necessary step toward the clinical implementation of BEV tracking has been completed. The knowledge of tumor volumes relative to the treatment field is important for future applications like real-time motion management, adaptive radiotherapy, and delivered dose calculations.« less
Glacier Volume Change Estimation Using Time Series of Improved Aster Dems
NASA Astrophysics Data System (ADS)
Girod, Luc; Nuth, Christopher; Kääb, Andreas
2016-06-01
Volume change data is critical to the understanding of glacier response to climate change. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) system embarked on the Terra (EOS AM-1) satellite has been a unique source of systematic stereoscopic images covering the whole globe at 15m resolution and at a consistent quality for over 15 years. While satellite stereo sensors with significantly improved radiometric and spatial resolution are available to date, the potential of ASTER data lies in its long consistent time series that is unrivaled, though not fully exploited for change analysis due to lack of data accuracy and precision. Here, we developed an improved method for ASTER DEM generation and implemented it in the open source photogrammetric library and software suite MicMac. The method relies on the computation of a rational polynomial coefficients (RPC) model and the detection and correction of cross-track sensor jitter in order to compute DEMs. ASTER data are strongly affected by attitude jitter, mainly of approximately 4 km and 30 km wavelength, and improving the generation of ASTER DEMs requires removal of this effect. Our sensor modeling does not require ground control points and allows thus potentially for the automatic processing of large data volumes. As a proof of concept, we chose a set of glaciers with reference DEMs available to assess the quality of our measurements. We use time series of ASTER scenes from which we extracted DEMs with a ground sampling distance of 15m. Our method directly measures and accounts for the cross-track component of jitter so that the resulting DEMs are not contaminated by this process. Since the along-track component of jitter has the same direction as the stereo parallaxes, the two cannot be separated and the elevations extracted are thus contaminated by along-track jitter. Initial tests reveal no clear relation between the cross-track and along-track components so that the latter seems not to be easily modeled analytically from the first one. We thus remove the remaining along-track jitter effects in the DEMs statistically through temporal DEM stacks to finally compute the glacier volume changes over time. Our method yields cleaner and spatially more complete elevation data, which also proved to be more in accordance to reference DEMs, compared to NASA's AST14DMO DEM standard products. The quality of the demonstrated measurements promises to further unlock the underused potential of ASTER DEMs for glacier volume change time series on a global scale. The data produced by our method will help to better understand the response of glaciers to climate change and their influence on runoff and sea level.
Body density and diving gas volume of the northern bottlenose whale (Hyperoodon ampullatus).
Miller, Patrick; Narazaki, Tomoko; Isojunno, Saana; Aoki, Kagari; Smout, Sophie; Sato, Katsufumi
2016-08-15
Diving lung volume and tissue density, reflecting lipid store volume, are important physiological parameters that have only been estimated for a few breath-hold diving species. We fitted 12 northern bottlenose whales with data loggers that recorded depth, 3-axis acceleration and speed either with a fly-wheel or from change of depth corrected by pitch angle. We fitted measured values of the change in speed during 5 s descent and ascent glides to a hydrodynamic model of drag and buoyancy forces using a Bayesian estimation framework. The resulting estimate of diving gas volume was 27.4±4.2 (95% credible interval, CI) ml kg(-1), closely matching the measured lung capacity of the species. Dive-by-dive variation in gas volume did not correlate with dive depth or duration. Estimated body densities of individuals ranged from 1028.4 to 1033.9 kg m(-3) at the sea surface, indicating overall negative tissue buoyancy of this species in seawater. Body density estimates were highly precise with ±95% CI ranging from 0.1 to 0.4 kg m(-3), which would equate to a precision of <0.5% of lipid content based upon extrapolation from the elephant seal. Six whales tagged near Jan Mayen (Norway, 71°N) had lower body density and were closer to neutral buoyancy than six whales tagged in the Gully (Nova Scotia, Canada, 44°N), a difference that was consistent with the amount of gliding observed during ascent versus descent phases in these animals. Implementation of this approach using longer-duration tags could be used to track longitudinal changes in body density and lipid store body condition of free-ranging cetaceans. © 2016. Published by The Company of Biologists Ltd.
Body density and diving gas volume of the northern bottlenose whale (Hyperoodon ampullatus)
Miller, Patrick; Narazaki, Tomoko; Isojunno, Saana; Aoki, Kagari; Smout, Sophie; Sato, Katsufumi
2016-01-01
ABSTRACT Diving lung volume and tissue density, reflecting lipid store volume, are important physiological parameters that have only been estimated for a few breath-hold diving species. We fitted 12 northern bottlenose whales with data loggers that recorded depth, 3-axis acceleration and speed either with a fly-wheel or from change of depth corrected by pitch angle. We fitted measured values of the change in speed during 5 s descent and ascent glides to a hydrodynamic model of drag and buoyancy forces using a Bayesian estimation framework. The resulting estimate of diving gas volume was 27.4±4.2 (95% credible interval, CI) ml kg−1, closely matching the measured lung capacity of the species. Dive-by-dive variation in gas volume did not correlate with dive depth or duration. Estimated body densities of individuals ranged from 1028.4 to 1033.9 kg m−3 at the sea surface, indicating overall negative tissue buoyancy of this species in seawater. Body density estimates were highly precise with ±95% CI ranging from 0.1 to 0.4 kg m−3, which would equate to a precision of <0.5% of lipid content based upon extrapolation from the elephant seal. Six whales tagged near Jan Mayen (Norway, 71°N) had lower body density and were closer to neutral buoyancy than six whales tagged in the Gully (Nova Scotia, Canada, 44°N), a difference that was consistent with the amount of gliding observed during ascent versus descent phases in these animals. Implementation of this approach using longer-duration tags could be used to track longitudinal changes in body density and lipid store body condition of free-ranging cetaceans. PMID:27296044
Lava discharge during Etna's January 2011 fire fountain tracked using MSG-SEVIRI
NASA Astrophysics Data System (ADS)
Gouhier, Mathieu; Harris, Andrew; Calvari, Sonia; Labazuy, Philippe; Guéhenneux, Yannick; Donnadieu, Franck; Valade, Sébastien
2012-05-01
Etna's January 2011 eruption provided an excellent opportunity to test the ability of Meteosat Second Generation satellite's Spinning Enhanced Visible and InfraRed Imager (SEVIRI) sensor to track a short-lived effusive event. The presence of lava fountaining, the rapid expansion of lava flows, and the complexity of the resulting flow field make such events difficult to track from the ground. During the Etna's January 2011 eruption, we were able to use thermal data collected by SEVIRI every 15 min to generate a time series of the syn-eruptive heat flux. Lava discharge waxed over a ~1-h period to reach a peak that was first masked from the satellite view by a cold tephra plume and then was of sufficient intensity to saturate the 3.9-μm channel. Both problems made it impossible to estimate time-averaged lava discharge rates using the syn-eruptive heat flux curve. Therefore, through integration of data obtained by ground-based Doppler radar and thermal cameras, as well as ancillary satellite data (from Moderate Resolution Imaging Spectrometer and Advanced Very High Resolution Radiometer), we developed a method that allowed us to identify the point at which effusion stagnated, to allow definition of a lava cooling curve. This allowed retrieval of a lava volume of ~1.2 × 106 m3, which, if emitted for 5 h, was erupted at a mean output rate of ~70 m3 s-1. The lava volume estimated using the cooling curve method is found to be similar to the values inferred from field measurements.
Shunt flow evaluation in congenital heart disease based on two-dimensional speckle tracking.
Fadnes, Solveig; Nyrnes, Siri Ann; Torp, Hans; Lovstakken, Lasse
2014-10-01
High-frame-rate ultrasound speckle tracking was used for quantification of peak velocity in shunt flows resulting from septal defects in congenital heart disease. In a duplex acquisition scheme implemented on a research scanner, unfocused transmit beams and full parallel receive beamforming were used to achieve a frame rate of 107 frames/s for full field-of-view flow images with high accuracy, while also ensuring high-quality focused B-mode tissue imaging. The setup was evaluated in vivo for neonates with atrial and ventricular septal defects. The shunt position was automatically tracked in B-mode images and further used in blood speckle tracking to obtain calibrated shunt flow velocities throughout the cardiac cycle. Validation toward color flow imaging and pulsed wave Doppler with manual angle correction indicated that blood speckle tracking could provide accurate estimates of shunt flow velocities. The approach was less biased by clutter filtering compared with color flow imaging and was able to provide velocity estimates beyond the Nyquist range. Possible placements of sample volumes (and angle corrections) for conventional Doppler resulted in a peak shunt velocity variations of 0.49-0.56 m/s for the ventricular septal defect of patient 1 and 0.38-0.58 m/s for the atrial septal defect of patient 2. In comparison, the peak velocities found from speckle tracking were 0.77 and 0.33 m/s for patients 1 and 2, respectively. Results indicated that complex intraventricular flow velocity patterns could be quantified using high-frame-rate speckle tracking of both blood and tissue movement. This could potentially help increase diagnostic accuracy and decrease inter-observer variability when measuring peak velocity in shunt flows. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Budget estimates: Fiscal year 1994. Volume 3: Research and program management
NASA Technical Reports Server (NTRS)
1994-01-01
The research and program management (R&PM) appropriation provides the salaries, other personnel and related costs, and travel support for NASA's civil service workforce. This FY 1994 budget funds costs associated with 23,623 full-time equivalent (FTE) work years. Budget estimates are provided for all NASA centers by categories such as space station and new technology investments, space flight programs, space science, life and microgravity sciences, advanced concepts and technology, center management and operations support, launch services, mission to planet earth, tracking and data programs, aeronautical research and technology, and safety, reliability, and quality assurance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hashim, Marina; Abidin, Diana Atiqah Zainal; Das, Simon K.
The present study was conducted to investigate the food consumption pattern and gastric emptying time using x-radiography technique in scats fish, Scatophagus argus feeding to satiation in laboratory conditions. Prior to feeding experiment, fish of various sizes were examined their stomach volume, using freshly prepared stomachs ligatured at the tips of the burret, where the maximum amount of distilled water collected in the stomach were measured (ml). Stomach volume is correlated with maximum food intake (S{sub max}) and it can estimate the maximum stomach distension by allometric model i.e volume=0.0000089W{sup 2.93}. Gastric emptying time was estimated using a qualitative X-radiographymore » technique, where the fish of various sizes were fed to satiation at different time since feeding. All the experimental fish was feed into satiation using radio-opaque barium sulphate (BaSO{sub 4}) paste injected in the wet shrimp in proportion to the body weight. The BaSO{sub 4} was found suitable to track the movement of feed/prey in the stomach over time and gastric emptying time of scats fish can be estimated. The results of qualitative X-Radiography observation of gastric motility, showed the fish (200 gm) that fed to maximum satiation meal (circa 11 gm) completely emptied their stomach within 30 - 36 hrs. The results of the present study will provide the first baseline information on the stomach volume, gastric emptying of scats fish in captivity.« less
NASA Astrophysics Data System (ADS)
Hashim, Marina; Abidin, Diana Atiqah Zainal; Das, Simon K.; Ghaffar, Mazlan Abd.
2014-09-01
The present study was conducted to investigate the food consumption pattern and gastric emptying time using x-radiography technique in scats fish, Scatophagus argus feeding to satiation in laboratory conditions. Prior to feeding experiment, fish of various sizes were examined their stomach volume, using freshly prepared stomachs ligatured at the tips of the burret, where the maximum amount of distilled water collected in the stomach were measured (ml). Stomach volume is correlated with maximum food intake (Smax) and it can estimate the maximum stomach distension by allometric model i.e volume=0.0000089W2.93. Gastric emptying time was estimated using a qualitative X-radiography technique, where the fish of various sizes were fed to satiation at different time since feeding. All the experimental fish was feed into satiation using radio-opaque barium sulphate (BaSO4) paste injected in the wet shrimp in proportion to the body weight. The BaSO4 was found suitable to track the movement of feed/prey in the stomach over time and gastric emptying time of scats fish can be estimated. The results of qualitative X-Radiography observation of gastric motility, showed the fish (200 gm) that fed to maximum satiation meal (circa 11 gm) completely emptied their stomach within 30 - 36 hrs. The results of the present study will provide the first baseline information on the stomach volume, gastric emptying of scats fish in captivity.
Bellows, Spencer; Smith, Jordan; Mcguire, Peter; Smith, Andrew
2014-01-01
Accurate resuscitation of the critically-ill patient using intravenous fluids and blood products is a challenging, time sensitive task. Ultrasound of the inferior vena cava (IVC) is a non-invasive technique currently used to guide fluid administration, though multiple factors such as variable image quality, time, and operator skill challenge mainstream acceptance. This study represents a first attempt to develop and validate an algorithm capable of automatically tracking and measuring the IVC compared to human operators across a diverse range of image quality. Minimal tracking failures and high levels of agreement between manual and algorithm measurements were demonstrated on good quality videos. Addressing problems such as gaps in the vessel wall and intra-lumen speckle should result in improved performance in average and poor quality videos. Semi-automated measurement of the IVC for the purposes of non-invasive estimation of circulating blood volume poses challenges however is feasible.
Curvature computation in volume-of-fluid method based on point-cloud sampling
NASA Astrophysics Data System (ADS)
Kassar, Bruno B. M.; Carneiro, João N. E.; Nieckele, Angela O.
2018-01-01
This work proposes a novel approach to compute interface curvature in multiphase flow simulation based on Volume of Fluid (VOF) method. It is well documented in the literature that curvature and normal vector computation in VOF may lack accuracy mainly due to abrupt changes in the volume fraction field across the interfaces. This may cause deterioration on the interface tension forces estimates, often resulting in inaccurate results for interface tension dominated flows. Many techniques have been presented over the last years in order to enhance accuracy in normal vectors and curvature estimates including height functions, parabolic fitting of the volume fraction, reconstructing distance functions, coupling Level Set method with VOF, convolving the volume fraction field with smoothing kernels among others. We propose a novel technique based on a representation of the interface by a cloud of points. The curvatures and the interface normal vectors are computed geometrically at each point of the cloud and projected onto the Eulerian grid in a Front-Tracking manner. Results are compared to benchmark data and significant reduction on spurious currents as well as improvement in the pressure jump are observed. The method was developed in the open source suite OpenFOAM® extending its standard VOF implementation, the interFoam solver.
NASA Technical Reports Server (NTRS)
Bishop, Phillip A.
1989-01-01
Previous research has established that bioelectrical characteristics of the human body reflect fluid status to some extent. It has been previously assumed that changes in electrical resistance (R) and reactance (X) are associated with changes in total body water (TBW). The purpose of the present pilot investigation was to assess the correspondence between body R and X and changes in estimated TBW and plasma volume during a period of bedrest (simulated weightlessness). R and X were measured pre-, during, and post- a 13 day bedrest status. Although a clear relationship was not elucidated, evidence was found suggesting that R and X reflect plasma volume rather than TBW. Indirect evidence provided by previous studies which investigated other aspects of the electrical/fluid relationship, also suggests the independence of TBW and electrical properties. With further research, a bioelectrical technique for noninvasively tracking fluid changes consequent to space flight may be developed.
Hand Pose Estimation by Fusion of Inertial and Magnetic Sensing Aided by a Permanent Magnet.
Kortier, Henk G; Antonsson, Jacob; Schepers, H Martin; Gustafsson, Fredrik; Veltink, Peter H
2015-09-01
Tracking human body motions using inertial sensors has become a well-accepted method in ambulatory applications since the subject is not confined to a lab-bounded volume. However, a major drawback is the inability to estimate relative body positions over time because inertial sensor information only allows position tracking through strapdown integration, but does not provide any information about relative positions. In addition, strapdown integration inherently results in drift of the estimated position over time. We propose a novel method in which a permanent magnet combined with 3-D magnetometers and 3-D inertial sensors are used to estimate the global trunk orientation and relative pose of the hand with respect to the trunk. An Extended Kalman Filter is presented to fuse estimates obtained from inertial sensors with magnetic updates such that the position and orientation between the human hand and trunk as well as the global trunk orientation can be estimated robustly. This has been demonstrated in multiple experiments in which various hand tasks were performed. The most complex task in which simultaneous movements of both trunk and hand were performed resulted in an average rms position difference with an optical reference system of 19.7±2.2 mm whereas the relative trunk-hand and global trunk orientation error was 2.3±0.9 and 8.6±8.7 deg respectively.
The Flex Track: Flexible Partitioning between Low- and High-Acuity Areas of an Emergency Department
Laker, Lauren F.; Froehle, Craig M.; Lindsell, Christopher J.; Ward, Michael J.
2014-01-01
Study Objective EDs with both low- and high-acuity treatment areas often have fixed allocation of resources, regardless of demand. We demonstrate the utility of discrete-event simulation to evaluate flexible partitioning between low- and high-acuity ED areas to identify the best operational strategy for subsequent implementation. Methods A discrete-event simulation was used to model patient flow through a 50-bed, urban, teaching ED that handles 85,000 patient visits annually. The ED has historically allocated ten beds to a Fast Track for low-acuity patients. We estimated the effect of a Flex Track policy, which involved switching up to five of these Fast Track beds to serving both low- and high-acuity patients, on patient waiting times. When the high-acuity beds were not at capacity, low-acuity patients were given priority access to flexible beds. Otherwise, high-acuity patients were given priority access to flexible beds. Wait times were estimated for patients by disposition and emergency severity index (ESI) score. Results A Flex Track policy using three flexible beds produced the lowest mean patient waiting of 30.9 (95% CI 30.6–31.2) minutes. The typical Fast Track approach of rigidly separating high- and low–acuity beds produced a mean patient wait time of 40.6 (95% CI 40.2–50.0) minutes, 31% higher than the three-bed Flex Track. A completely flexible ED, where all beds can accommodate any patient, produced mean wait times of 35.1 (95% CI 34.8–35.4) minutes. The results from the three-bed Flex Track scenario were robust, performing well across a range of scenarios involving higher and lower patient volumes and care durations. Conclusion Using discrete-event simulation, we have shown that adding some flexibility into bed allocation between low- and high-acuity can provide substantial reductions in overall patient waiting and a more efficient ED. PMID:24954578
MRI-assisted PET motion correction for neurologic studies in an integrated MR-PET scanner.
Catana, Ciprian; Benner, Thomas; van der Kouwe, Andre; Byars, Larry; Hamm, Michael; Chonde, Daniel B; Michel, Christian J; El Fakhri, Georges; Schmand, Matthias; Sorensen, A Gregory
2011-01-01
Head motion is difficult to avoid in long PET studies, degrading the image quality and offsetting the benefit of using a high-resolution scanner. As a potential solution in an integrated MR-PET scanner, the simultaneously acquired MRI data can be used for motion tracking. In this work, a novel algorithm for data processing and rigid-body motion correction (MC) for the MRI-compatible BrainPET prototype scanner is described, and proof-of-principle phantom and human studies are presented. To account for motion, the PET prompt and random coincidences and sensitivity data for postnormalization were processed in the line-of-response (LOR) space according to the MRI-derived motion estimates. The processing time on the standard BrainPET workstation is approximately 16 s for each motion estimate. After rebinning in the sinogram space, the motion corrected data were summed, and the PET volume was reconstructed using the attenuation and scatter sinograms in the reference position. The accuracy of the MC algorithm was first tested using a Hoffman phantom. Next, human volunteer studies were performed, and motion estimates were obtained using 2 high-temporal-resolution MRI-based motion-tracking techniques. After accounting for the misalignment between the 2 scanners, perfectly coregistered MRI and PET volumes were reproducibly obtained. The MRI output gates inserted into the PET list-mode allow the temporal correlation of the 2 datasets within 0.2 ms. The Hoffman phantom volume reconstructed by processing the PET data in the LOR space was similar to the one obtained by processing the data using the standard methods and applying the MC in the image space, demonstrating the quantitative accuracy of the procedure. In human volunteer studies, motion estimates were obtained from echo planar imaging and cloverleaf navigator sequences every 3 s and 20 ms, respectively. Motion-deblurred PET images, with excellent delineation of specific brain structures, were obtained using these 2 MRI-based estimates. An MRI-based MC algorithm was implemented for an integrated MR-PET scanner. High-temporal-resolution MRI-derived motion estimates (obtained while simultaneously acquiring anatomic or functional MRI data) can be used for PET MC. An MRI-based MC method has the potential to improve PET image quality, increasing its reliability, reproducibility, and quantitative accuracy, and to benefit many neurologic applications.
NASA Astrophysics Data System (ADS)
Khambampati, A. K.; Rashid, A.; Kim, B. S.; Liu, Dong; Kim, S.; Kim, K. Y.
2010-04-01
EIT has been used for the dynamic estimation of organ boundaries. One specific application in this context is the estimation of lung boundaries during pulmonary circulation. This would help track the size and shape of lungs of the patients suffering from diseases like pulmonary edema and acute respiratory failure (ARF). The dynamic boundary estimation of the lungs can also be utilized to set and control the air volume and pressure delivered to the patients during artificial ventilation. In this paper, the expectation-maximization (EM) algorithm is used as an inverse algorithm to estimate the non-stationary lung boundary. The uncertainties caused in Kalman-type filters due to inaccurate selection of model parameters are overcome using EM algorithm. Numerical experiments using chest shaped geometry are carried out with proposed method and the performance is compared with extended Kalman filter (EKF). Results show superior performance of EM in estimation of the lung boundary.
NASA Astrophysics Data System (ADS)
Chen, Shimon; Bekhor, Shlomo; Yuval; Broday, David M.
2016-10-01
Most air quality models use traffic-related variables as an input. Previous studies estimated nearby vehicular activity through sporadic traffic counts or via traffic assignment models. Both methods have previously produced poor or no data for nights, weekends and holidays. Emerging technologies allow the estimation of traffic through passive monitoring of location-aware devices. Examples of such devices are GPS transceivers installed in vehicles. In this work, we studied traffic volumes that were derived from such data. Additionally, we used these data for estimating ambient nitrogen dioxide concentrations, using a non-linear optimisation model that includes basic dispersion properties. The GPS-derived data show great potential for use as a proxy for pollutant emissions from motor-vehicles.
Registration-free laparoscope augmentation for intra-operative liver resection planning
NASA Astrophysics Data System (ADS)
Feuerstein, Marco; Mussack, Thomas; Heining, Sandro M.; Navab, Nassir
2007-03-01
In recent years, an increasing number of liver tumor indications were treated by minimally invasive laparoscopic resection. Besides the restricted view, a major issue in laparoscopic liver resection is the enhanced visualization of (hidden) vessels, which supply the tumorous liver segment and thus need to be divided prior to the resection. To navigate the surgeon to these vessels, pre-operative abdominal imaging data can hardly be used due to intraoperative organ deformations mainly caused by appliance of carbon dioxide pneumoperitoneum and respiratory motion. While regular respiratory motion can be gated and synchronized intra-operatively, motion caused by pneumoperitoneum is individual for every patient and difficult to estimate. Therefore, we propose to use an optically tracked mobile C-arm providing cone-beam CT imaging capability intraoperatively. The C-arm is able to visualize soft tissue by means of its new flat panel detector and is calibrated offline to relate its current position and orientation to the coordinate system of a reconstructed volume. Also the laparoscope is optically tracked and calibrated offline, so both laparoscope and C-arm are registered in the same tracking coordinate system. Intra-operatively, after patient positioning, port placement, and carbon dioxide insufflation, the liver vessels are contrasted and scanned during patient exhalation. Immediately, a three-dimensional volume is reconstructed. Without any further need for patient registration, the volume can be directly augmented on the live laparoscope video, visualizing the contrasted vessels. This augmentation provides the surgeon with advanced visual aid for the localization of veins, arteries, and bile ducts to be divided or sealed.
Nested Dissection Interface Reconstruction in Pececillo
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jibben, Zechariah Joel; Carlson, Neil N.; Francois, Marianne M.
A nested dissection method for interface reconstruction in a volume tracking framework has been implemented in Pececillo, a mini-app for Truchas, which is the ASC code for casting and additive manufacturing. This method provides a significant improvement over the traditional onion-skin method, which does not appropriately handle T-shaped multimaterial intersections and dynamic contact lines present in additive manufacturing simulations. The resulting implementation lays the groundwork for further research in contact angle estimates and surface tension calculations.
NASA Astrophysics Data System (ADS)
Nafis, Christopher; Jensen, Vern; von Jako, Ron
2008-03-01
Electromagnetic (EM) tracking systems have been successfully used for Surgical Navigation in ENT, cranial, and spine applications for several years. Catheter sized micro EM sensors have also been used in tightly controlled cardiac mapping and pulmonary applications. EM systems have the benefit over optical navigation systems of not requiring a line-of-sight between devices. Ferrous metals or conductive materials that are transient within the EM working volume may impact tracking performance. Effective methods for detecting and reporting EM field distortions are generally well known. Distortion compensation can be achieved for objects that have a static spatial relationship to a tracking sensor. New commercially available micro EM tracking systems offer opportunities for expanded image-guided navigation procedures. It is important to know and understand how well these systems perform with different surgical tables and ancillary equipment. By their design and intended use, micro EM sensors will be located at the distal tip of tracked devices and therefore be in closer proximity to the tables. Our goal was to define a simple and portable process that could be used to estimate the EM tracker accuracy, and to vet a large number of popular general surgery and imaging tables that are used in the United States and abroad.
Hughson, Richard L; Peterson, Sean D; Yee, Nicholas J; Greaves, Danielle K
2017-11-01
Pulse contour analysis of the noninvasive finger arterial pressure waveform provides a convenient means to estimate cardiac output (Q̇). The method has been compared with standard methods under a range of conditions but never before during spaceflight. We compared pulse contour analysis with the Modelflow algorithm to estimates of Q̇ obtained by rebreathing during preflight baseline testing and during the final month of long-duration spaceflight in nine healthy male astronauts. By Modelflow analysis, stroke volume was greater in supine baseline than seated baseline or inflight. Heart rate was reduced in supine baseline so that there were no differences in Q̇ by Modelflow estimate between the supine (7.02 ± 1.31 l/min, means ± SD), seated (6.60 ± 1.95 l/min), or inflight (5.91 ± 1.15 l/min) conditions. In contrast, rebreathing estimates of Q̇ increased from seated baseline (4.76 ± 0.67 l/min) to inflight (7.00 ± 1.39 l/min, significant interaction effect of method and spaceflight, P < 0.001). Pulse contour analysis utilizes a three-element Windkessel model that incorporates parameters dependent on aortic pressure-area relationships that are assumed to represent the entire circulation. We propose that a large increase in vascular compliance in the splanchnic circulation invalidates the model under conditions of spaceflight. Future spaceflight research measuring cardiac function needs to consider this important limitation for assessing absolute values of Q̇ and stroke volume. NEW & NOTEWORTHY Noninvasive assessment of cardiac function during human spaceflight is an important tool to monitor astronaut health. This study demonstrated that pulse contour analysis of finger arterial blood pressure to estimate cardiac output failed to track the 46% increase measured by a rebreathing method. These results strongly suggest that alternative methods not dependent on pulse contour analysis are required to track cardiac function in spaceflight. Copyright © 2017 the American Physiological Society.
NASA Astrophysics Data System (ADS)
Abratenko, P.; Acciarri, R.; Adams, C.; An, R.; Anthony, J.; Asaadi, J.; Auger, M.; Bagby, L.; Balasubramanian, S.; Baller, B.; Barnes, C.; Barr, G.; Bass, M.; Bay, F.; Bishai, M.; Blake, A.; Bolton, T.; Bugel, L.; Camilleri, L.; Caratelli, D.; Carls, B.; Castillo Fernandez, R.; Cavanna, F.; Chen, H.; Church, E.; Cianci, D.; Cohen, E.; Collin, G. H.; Conrad, J. M.; Convery, M.; Crespo-Anadón, J. I.; Del Tutto, M.; Devitt, D.; Dytman, S.; Eberly, B.; Ereditato, A.; Escudero Sanchez, L.; Esquivel, J.; Fleming, B. T.; Foreman, W.; Furmanski, A. P.; Garcia-Gamez, D.; Garvey, G. T.; Genty, V.; Goeldi, D.; Gollapinni, S.; Graf, N.; Gramellini, E.; Greenlee, H.; Grosso, R.; Guenette, R.; Hackenburg, A.; Hamilton, P.; Hen, O.; Hewes, J.; Hill, C.; Ho, J.; Horton-Smith, G.; Huang, E.-C.; James, C.; de Vries, J. Jan; Jen, C.-M.; Jiang, L.; Johnson, R. A.; Joshi, J.; Jostlein, H.; Kaleko, D.; Kalousis, L. N.; Karagiorgi, G.; Ketchum, W.; Kirby, B.; Kirby, M.; Kobilarcik, T.; Kreslo, I.; Laube, A.; Li, Y.; Lister, A.; Littlejohn, B. R.; Lockwitz, S.; Lorca, D.; Louis, W. C.; Luethi, M.; Lundberg, B.; Luo, X.; Marchionni, A.; Mariani, C.; Marshall, J.; Martinez Caicedo, D. A.; Meddage, V.; Miceli, T.; Mills, G. B.; Moon, J.; Mooney, M.; Moore, C. D.; Mousseau, J.; Murrells, R.; Naples, D.; Nienaber, P.; Nowak, J.; Palamara, O.; Paolone, V.; Papavassiliou, V.; Pate, S. F.; Pavlovic, Z.; Piasetzky, E.; Porzio, D.; Pulliam, G.; Qian, X.; Raaf, J. L.; Rafique, A.; Rochester, L.; von Rohr, C. Rudolf; Russell, B.; Schmitz, D. W.; Schukraft, A.; Seligman, W.; Shaevitz, M. H.; Sinclair, J.; Snider, E. L.; Soderberg, M.; Söldner-Rembold, S.; Soleti, S. R.; Spentzouris, P.; Spitz, J.; St. John, J.; Strauss, T.; Szelc, A. M.; Tagg, N.; Terao, K.; Thomson, M.; Toups, M.; Tsai, Y.-T.; Tufanli, S.; Usher, T.; Van de Water, R. G.; Viren, B.; Weber, M.; Wickremasinghe, D. A.; Wolbers, S.; Wongjirad, T.; Woodruff, K.; Yang, T.; Yates, L.; Zeller, G. P.; Zennamo, J.; Zhang, C.
2017-10-01
We discuss a technique for measuring a charged particle's momentum by means of multiple Coulomb scattering (MCS) in the MicroBooNE liquid argon time projection chamber (LArTPC). This method does not require the full particle ionization track to be contained inside of the detector volume as other track momentum reconstruction methods do (range-based momentum reconstruction and calorimetric momentum reconstruction). We motivate use of this technique, describe a tuning of the underlying phenomenological formula, quantify its performance on fully contained beam-neutrino-induced muon tracks both in simulation and in data, and quantify its performance on exiting muon tracks in simulation. Using simulation, we have shown that the standard Highland formula should be re-tuned specifically for scattering in liquid argon, which significantly improves the bias and resolution of the momentum measurement. With the tuned formula, we find agreement between data and simulation for contained tracks, with a small bias in the momentum reconstruction and with resolutions that vary as a function of track length, improving from about 10% for the shortest (one meter long) tracks to 5% for longer (several meter) tracks. For simulated exiting muons with at least one meter of track contained, we find a similarly small bias, and a resolution which is less than 15% for muons with momentum below 2 GeV/c. Above 2 GeV/c, results are given as a first estimate of the MCS momentum measurement capabilities of MicroBooNE for high momentum exiting tracks.
Abratenko, P.
2017-10-18
Here, we discuss a technique for measuring a charged particle's momentum by means of multiple Coulomb scattering (MCS) in the MicroBooNE liquid argon time projection chamber (LArTPC). This method does not require the full particle ionization track to be contained inside of the detector volume as other track momentum reconstruction methods do (range-based momentum reconstruction and calorimetric momentum reconstruction). We motivate use of this technique, describe a tuning of the underlying phenomenological formula, quantify its performance on fully contained beam-neutrino-induced muon tracks both in simulation and in data, and quantify its performance on exiting muon tracks in simulation. Using simulation,more » we have shown that the standard Highland formula should be re-tuned specifically for scattering in liquid argon, which significantly improves the bias and resolution of the momentum measurement. With the tuned formula, we find agreement between data and simulation for contained tracks, with a small bias in the momentum reconstruction and with resolutions that vary as a function of track length, improving from about 10% for the shortest (one meter long) tracks to 5% for longer (several meter) tracks. For simulated exiting muons with at least one meter of track contained, we find a similarly small bias, and a resolution which is less than 15% for muons with momentum below 2 GeV/c. Above 2 GeV/c, results are given as a first estimate of the MCS momentum measurement capabilities of MicroBooNE for high momentum exiting tracks.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abratenko, P.
Here, we discuss a technique for measuring a charged particle's momentum by means of multiple Coulomb scattering (MCS) in the MicroBooNE liquid argon time projection chamber (LArTPC). This method does not require the full particle ionization track to be contained inside of the detector volume as other track momentum reconstruction methods do (range-based momentum reconstruction and calorimetric momentum reconstruction). We motivate use of this technique, describe a tuning of the underlying phenomenological formula, quantify its performance on fully contained beam-neutrino-induced muon tracks both in simulation and in data, and quantify its performance on exiting muon tracks in simulation. Using simulation,more » we have shown that the standard Highland formula should be re-tuned specifically for scattering in liquid argon, which significantly improves the bias and resolution of the momentum measurement. With the tuned formula, we find agreement between data and simulation for contained tracks, with a small bias in the momentum reconstruction and with resolutions that vary as a function of track length, improving from about 10% for the shortest (one meter long) tracks to 5% for longer (several meter) tracks. For simulated exiting muons with at least one meter of track contained, we find a similarly small bias, and a resolution which is less than 15% for muons with momentum below 2 GeV/c. Above 2 GeV/c, results are given as a first estimate of the MCS momentum measurement capabilities of MicroBooNE for high momentum exiting tracks.« less
The effect of concurrent hand movement on estimated time to contact in a prediction motion task.
Zheng, Ran; Maraj, Brian K V
2018-04-27
In many activities, we need to predict the arrival of an occluded object. This action is called prediction motion or motion extrapolation. Previous researchers have found that both eye tracking and the internal clocking model are involved in the prediction motion task. Additionally, it is reported that concurrent hand movement facilitates the eye tracking of an externally generated target in a tracking task, even if the target is occluded. The present study examined the effect of concurrent hand movement on the estimated time to contact in a prediction motion task. We found different (accurate/inaccurate) concurrent hand movements had the opposite effect on the eye tracking accuracy and estimated TTC in the prediction motion task. That is, the accurate concurrent hand tracking enhanced eye tracking accuracy and had the trend to increase the precision of estimated TTC, but the inaccurate concurrent hand tracking decreased eye tracking accuracy and disrupted estimated TTC. However, eye tracking accuracy does not determine the precision of estimated TTC.
2011-01-01
Background Orthopaedic research projects focusing on small displacements in a small measurement volume require a radiation free, three dimensional motion analysis system. A stereophotogrammetrical motion analysis system can track wireless, small, light-weight markers attached to the objects. Thereby the disturbance of the measured objects through the marker tracking can be kept at minimum. The purpose of this study was to develop and evaluate a non-position fixed compact motion analysis system configured for a small measurement volume and able to zoom while tracking small round flat markers in respect to a fiducial marker which was used for the camera pose estimation. Methods The system consisted of two web cameras and the fiducial marker placed in front of them. The markers to track were black circles on a white background. The algorithm to detect a centre of the projected circle on the image plane was described and applied. In order to evaluate the accuracy (mean measurement error) and precision (standard deviation of the measurement error) of the optical measurement system, two experiments were performed: 1) inter-marker distance measurement and 2) marker displacement measurement. Results The first experiment of the 10 mm distances measurement showed a total accuracy of 0.0086 mm and precision of ± 0.1002 mm. In the second experiment, translations from 0.5 mm to 5 mm were measured with total accuracy of 0.0038 mm and precision of ± 0.0461 mm. The rotations of 2.25° amount were measured with the entire accuracy of 0.058° and the precision was of ± 0.172°. Conclusions The description of the non-proprietary measurement device with very good levels of accuracy and precision may provide opportunities for new, cost effective applications of stereophotogrammetrical analysis in musculoskeletal research projects, focusing on kinematics of small displacements in a small measurement volume. PMID:21284867
Luo, Xiongbiao; Mori, Kensaku
2014-06-01
Endoscope 3-D motion tracking, which seeks to synchronize pre- and intra-operative images in endoscopic interventions, is usually performed as video-volume registration that optimizes the similarity between endoscopic video and pre-operative images. The tracking performance, in turn, depends significantly on whether a similarity measure can successfully characterize the difference between video sequences and volume rendering images driven by pre-operative images. The paper proposes a discriminative structural similarity measure, which uses the degradation of structural information and takes image correlation or structure, luminance, and contrast into consideration, to boost video-volume registration. By applying the proposed similarity measure to endoscope tracking, it was demonstrated to be more accurate and robust than several available similarity measures, e.g., local normalized cross correlation, normalized mutual information, modified mean square error, or normalized sum squared difference. Based on clinical data evaluation, the tracking error was reduced significantly from at least 14.6 mm to 4.5 mm. The processing time was accelerated more than 30 frames per second using graphics processing unit.
1993-04-01
are so close together, there is a great deal of mistagged metric data from the SPACETRACK sensors on these objects. The resulting orbital element sets ...including an attempt to combine U.S. Space Command element sets for each Lageos-2 related object in orbit with DSN angle data to determine the actual...Predict error at next observation -Maintain track to minimize reacquistion load -Estimate orbital element sets -Update time for next observation
NASA Technical Reports Server (NTRS)
Zwally, H. Jay; Brenner, Anita C.; Major, Judith A.; Martin, Thomas V.; Bindschadler, Robert A.
1990-01-01
The data-processing methods and ice data products derived from Seasat radar altimeter measurements over the Greenland ice sheet and surrounding sea ice are documented. The corrections derived and applied to the Seasat radar altimeter data over ice are described in detail, including the editing and retracking algorithm to correct for height errors caused by lags in the automatic range tracking circuit. The methods for radial adjustment of the orbits and estimation of the slope-induced errors are given.
SU-E-J-136: Evaluation of a Non-Invasive Method on Lung Tumor Tracking.
Zhao, T; White, B; Low, D
2012-06-01
to develop a non-invasive method to track lung motion in free-breathing patients. A free-breathing breathing model has been developed to use tidal volume and air flow rate as surrogates for lung trajectories. In this study, 4D CT data sets were acquired during simulation and were reconstructed into 10 phases. Total lung capacities were calculated from the reconstructed images. Continuous signals from the abdominal pneumatic belt were correlated to the volumes and were therefore converted into a curve of tidal volumes. Air flow rate were calculated as the first order derivative of the tidal volume curve. Lung trajectories in the 10 reconstructed images were obtained using B-Spline registration. Parameters of the free-breathing lung motion model were fit from the tidal volumes, airflow rates and lung trajectories using the simulation data. Patients were rescanned every week during the treatment. Prediction of lung trajectories from the model were given and compared to the actual positions in BEV. Trajectories of lung were predicted with residual error of 1.49mm at 95th percentile of all tracked points. Tracking was stable and reproducible over two weeks. Non-invasive tumor tracking based on a free-breathing lung motion model is feasible and stable over weeks. © 2012 American Association of Physicists in Medicine.
MR-assisted PET Motion Correction for eurological Studies in an Integrated MR-PET Scanner
Catana, Ciprian; Benner, Thomas; van der Kouwe, Andre; Byars, Larry; Hamm, Michael; Chonde, Daniel B.; Michel, Christian J.; El Fakhri, Georges; Schmand, Matthias; Sorensen, A. Gregory
2011-01-01
Head motion is difficult to avoid in long PET studies, degrading the image quality and offsetting the benefit of using a high-resolution scanner. As a potential solution in an integrated MR-PET scanner, the simultaneously acquired MR data can be used for motion tracking. In this work, a novel data processing and rigid-body motion correction (MC) algorithm for the MR-compatible BrainPET prototype scanner is described and proof-of-principle phantom and human studies are presented. Methods To account for motion, the PET prompts and randoms coincidences as well as the sensitivity data are processed in the line or response (LOR) space according to the MR-derived motion estimates. After sinogram space rebinning, the corrected data are summed and the motion corrected PET volume is reconstructed from these sinograms and the attenuation and scatter sinograms in the reference position. The accuracy of the MC algorithm was first tested using a Hoffman phantom. Next, human volunteer studies were performed and motion estimates were obtained using two high temporal resolution MR-based motion tracking techniques. Results After accounting for the physical mismatch between the two scanners, perfectly co-registered MR and PET volumes are reproducibly obtained. The MR output gates inserted in to the PET list-mode allow the temporal correlation of the two data sets within 0.2 s. The Hoffman phantom volume reconstructed processing the PET data in the LOR space was similar to the one obtained processing the data using the standard methods and applying the MC in the image space, demonstrating the quantitative accuracy of the novel MC algorithm. In human volunteer studies, motion estimates were obtained from echo planar imaging and cloverleaf navigator sequences every 3 seconds and 20 ms, respectively. Substantially improved PET images with excellent delineation of specific brain structures were obtained after applying the MC using these MR-based estimates. Conclusion A novel MR-based MC algorithm was developed for the integrated MR-PET scanner. High temporal resolution MR-derived motion estimates (obtained while simultaneously acquiring anatomical or functional MR data) can be used for PET MC. An MR-based MC has the potential to improve PET as a quantitative method, increasing its reliability and reproducibility which could benefit a large number of neurological applications. PMID:21189415
An object-based approach for areal rainfall estimation and validation of atmospheric models
NASA Astrophysics Data System (ADS)
Troemel, Silke; Simmer, Clemens
2010-05-01
An object-based approach for areal rainfall estimation is applied to pseudo-radar data simulated of a weatherforecast model as well as to real radar volume data. The method aims at an as fully as possible exploitation of three-dimensional radar signals produced by precipitation generating systems during their lifetime to enhance areal rainfall estimation. Therefore tracking of radar-detected precipitation-centroids is performed and rain events are investigated using so-called Integral Radar Volume Descriptors (IRVD) containing relevant information of the underlying precipitation process. Some investigated descriptors are statistical quantities from the radar reflectivities within the boundary of a tracked rain cell like the area mean reflectivity or the compactness of a cell; others evaluate the mean vertical structure during the tracking period at the near surface reflectivity-weighted center of the cell like the mean effective efficiency or the mean echo top height. The stage of evolution of a system is given by the trend in the brightband fraction or related quantities. Furthermore, two descriptors not directly derived from radar data are considered: the mean wind shear and an orographic rainfall amplifier. While in case of pseudo-radar data a model based on a small set of IRVDs alone provides rainfall estimates of high accuracy, the application of such a model to the real world remains within the accuracies achievable with a constant Z-R-relationship. However, a combined model based on single IRVDs and the Marshall-Palmer Z-R-estimator already provides considerable enhancements even though the resolution of the data base used has room for improvement. The mean echo top height, the mean effective efficiency, the empirical standard deviation and the Marshall-Palmer estimator are detected for the final rainfall estimator. High correlations between storm height and rain rates, a shift of the probability distribution to higher values with increasing effective efficiency, and the possibility to classify continental and maritime systems using the effective efficiency confirm the informative value of the qualified descriptors. The IRVDs especially correct for the underestimation in case of intense rain events, and the information content of descriptors is most likely higher than demonstrated so far. We used quite sparse information about meteorological variables needed for the calculation of some IRVDs from single radiosoundings, and several descriptors suffered from the range-dependent vertical resolution of the reflectivity profile. Inclusion of neighbouring radars and assimilation runs of weather forecasting models will further enhance the accuracy of rainfall estimates. Finally, the clear difference between the IRVD selection from the pseudo-radar data and from the real world data hint to a new object-based avenue for the validation of higher resolution atmospheric models and for evaluating their potential to digest radar observations in data assimilation schemes.
Statistical Representations of Track Geometry : Volume I, Text.
DOT National Transportation Integrated Search
1980-03-31
Mathematical representations of railroad track geometry variations are derived from time series analyses of track measurements. Since the majority of track is free of anomalies (turnouts, crossings, bridges, etc.), representation of anomaly-free trac...
NASA Technical Reports Server (NTRS)
Wunsch, Carl; Stammer, Detlef
1995-01-01
Two years of altimetric data from the TOPEX/POSEIDON spacecraft have been used to produce preliminary estimates of the space and time spectra of global variability for both sea surface height and slope. The results are expressed in terms of both degree variances from spherical harmonic expansions and in along-track wavenumbers. Simple analytic approximations both in terms of piece-wise power laws and Pade fractions are provided for comparison with independent measurements and for easy use of the results. A number of uses of such spectra exist, including the possibility of combining the altimetric data with other observations, predictions of spatial coherences, and the estimation of the accuracy of apparent secular trends in sea level.
The Effect of Compartmental Asymmetry on the Monitoring of Pulmonary Mechanics and Lung Volumes.
Keenan, Joseph C; Cortes-Puentes, Gustavo A; Adams, Alexander B; Dries, David J; Marini, John J
2016-11-01
Esophageal pressure measurement for computation of transpulmonary pressure (P tp ) has begun to be incorporated into clinical use for evaluating forces across the lungs. Gaps exist in our understanding of how esophageal pressure (and therefore P tp ), a value measured at a single site, responds when respiratory system compartments are asymmetrically affected by whole-lung atelectasis or unilateral injury as well as changes in chest wall compliance. We reasoned that P tp would track with aerated volume changes as estimated by functional residual capacity (FRC) and tidal volume. We examined this hypothesis in the setting of asymmetric lungs and changes in intra-abdominal pressure. This study was conducted in the animal laboratory of a university-affiliated hospital. Models of unilateral atelectasis and unilateral and bilateral lung injury exposed to intra-abdominal hypertension (IAH) in 10 deeply sedated mechanically ventilated swine. Atelectasis was created by balloon occlusion of the left main bronchus. Unilateral lung injury was induced by saline lavage of isolated right lung. Diffuse lung injury was induced by saline lavage of both lungs. The peritoneum was insufflated with air to create a model of pressure-regulated IAH. We measured esophageal pressures, airway pressures, FRC by gas dilution, and oxygenation. FRC was reduced by IAH in normal lungs (P < .001) and both asymmetric lung pathologies (P < .001). P tp at end-expiration was decreased by IAH in bilateral (P = .001) and unilateral lung injury (P = .003) as well as unilateral atelectasis (P = .019). In the setting of both lung injury models, end-expiratory P tp showed a moderate correlation in tracking with FRC. P tp tracks with aerated lung volume in the setting of thoracic asymmetry and changes in intra-abdominal pressure. However, used alone, it cannot distinguish the relative contributions of air-space distention and recruitment of lung units. Copyright © 2016 by Daedalus Enterprises.
Karava, Konstantina; Ehrbar, Stefanie; Riesterer, Oliver; Roesch, Johannes; Glatz, Stefan; Klöck, Stephan; Guckenberger, Matthias; Tanadini-Lang, Stephanie
2017-11-09
Radiotherapy for pancreatic cancer has two major challenges: (I) the tumor is adjacent to several critical organs and, (II) the mobility of both, the tumor and its surrounding organs at risk (OARs). A treatment planning study simulating stereotactic body radiation therapy (SBRT) for pancreatic tumors with both the internal target volume (ITV) concept and the tumor tracking approach was performed. The two respiratory motion-management techniques were compared in terms of doses to the target volume and organs at risk. Two volumetric-modulated arc therapy (VMAT) treatment plans (5 × 5 Gy) were created for each of the 12 previously treated pancreatic cancer patients, one using the ITV concept and one the tumor tracking approach. To better evaluate the overall dose delivered to the moving tumor volume, 4D dose calculations were performed on four-dimensional computed tomography (4DCT) scans. The resulting planning target volume (PTV) size for each technique was analyzed. Target and OAR dose parameters were reported and analyzed for both 3D and 4D dose calculation. Tumor motion ranged from 1.3 to 11.2 mm. Tracking led to a reduction of PTV size (max. 39.2%) accompanied with significant better tumor coverage (p<0.05, paired Wilcoxon signed rank test) both in 3D and 4D dose calculations and improved organ at risk sparing. Especially for duodenum, stomach and liver, the mean dose was significantly reduced (p<0.05) with tracking for 3D and 4D dose calculations. By using an adaptive tumor tracking approach for respiratory-induced pancreatic motion management, a significant reduction in PTV size can be achieved, which subsequently facilitates treatment planning, and improves organ dose sparing. The dosimetric benefit of tumor tracking is organ and patient-specific.
Carles, Montserrat; Fechter, Tobias; Nemer, Ursula; Nanko, Norbert; Mix, Michael; Nestle, Ursula; Schaefer, Andrea
2015-12-21
PET/CT plays an important role in radiotherapy planning for lung tumors. Several segmentation algorithms have been proposed for PET tumor segmentation. However, most of them do not take into account respiratory motion and are not well validated. The aim of this work was to evaluate a semi-automated contrast-oriented algorithm (COA) for PET tumor segmentation adapted to retrospectively gated (4D) images. The evaluation involved a wide set of 4D-PET/CT acquisitions of dynamic experimental phantoms and lung cancer patients. In addition, segmentation accuracy of 4D-COA was compared with four other state-of-the-art algorithms. In phantom evaluation, the physical properties of the objects defined the gold standard. In clinical evaluation, the ground truth was estimated by the STAPLE (Simultaneous Truth and Performance Level Estimation) consensus of three manual PET contours by experts. Algorithm evaluation with phantoms resulted in: (i) no statistically significant diameter differences for different targets and movements (Δφ = 0.3 ± 1.6 mm); (ii) reproducibility for heterogeneous and irregular targets independent of user initial interaction and (iii) good segmentation agreement for irregular targets compared to manual CT delineation in terms of Dice Similarity Coefficient (DSC = 0.66 ± 0.04), Positive Predictive Value (PPV = 0.81 ± 0.06) and Sensitivity (Sen. = 0.49 ± 0.05). In clinical evaluation, the segmented volume was in reasonable agreement with the consensus volume (difference in volume (%Vol) = 40 ± 30, DSC = 0.71 ± 0.07 and PPV = 0.90 ± 0.13). High accuracy in target tracking position (ΔME) was obtained for experimental and clinical data (ΔME(exp) = 0 ± 3 mm; ΔME(clin) 0.3 ± 1.4 mm). In the comparison with other lung segmentation methods, 4D-COA has shown the highest volume accuracy in both experimental and clinical data. In conclusion, the accuracy in volume delineation, position tracking and its robustness on highly irregular target movements, make this algorithm a useful tool for 4D-PET based volume definition for radiotherapy planning of lung cancer and may help to improve the reproducibility in PET quantification for therapy response assessment and prognosis.
NASA Astrophysics Data System (ADS)
Carles, Montserrat; Fechter, Tobias; Nemer, Ursula; Nanko, Norbert; Mix, Michael; Nestle, Ursula; Schaefer, Andrea
2015-12-01
PET/CT plays an important role in radiotherapy planning for lung tumors. Several segmentation algorithms have been proposed for PET tumor segmentation. However, most of them do not take into account respiratory motion and are not well validated. The aim of this work was to evaluate a semi-automated contrast-oriented algorithm (COA) for PET tumor segmentation adapted to retrospectively gated (4D) images. The evaluation involved a wide set of 4D-PET/CT acquisitions of dynamic experimental phantoms and lung cancer patients. In addition, segmentation accuracy of 4D-COA was compared with four other state-of-the-art algorithms. In phantom evaluation, the physical properties of the objects defined the gold standard. In clinical evaluation, the ground truth was estimated by the STAPLE (Simultaneous Truth and Performance Level Estimation) consensus of three manual PET contours by experts. Algorithm evaluation with phantoms resulted in: (i) no statistically significant diameter differences for different targets and movements (Δ φ =0.3+/- 1.6 mm); (ii) reproducibility for heterogeneous and irregular targets independent of user initial interaction and (iii) good segmentation agreement for irregular targets compared to manual CT delineation in terms of Dice Similarity Coefficient (DSC = 0.66+/- 0.04 ), Positive Predictive Value (PPV = 0.81+/- 0.06 ) and Sensitivity (Sen. = 0.49+/- 0.05 ). In clinical evaluation, the segmented volume was in reasonable agreement with the consensus volume (difference in volume (%Vol) = 40+/- 30 , DSC = 0.71+/- 0.07 and PPV = 0.90+/- 0.13 ). High accuracy in target tracking position (Δ ME) was obtained for experimental and clinical data (Δ ME{{}\\text{exp}}=0+/- 3 mm; Δ ME{{}\\text{clin}}=0.3+/- 1.4 mm). In the comparison with other lung segmentation methods, 4D-COA has shown the highest volume accuracy in both experimental and clinical data. In conclusion, the accuracy in volume delineation, position tracking and its robustness on highly irregular target movements, make this algorithm a useful tool for 4D-PET based volume definition for radiotherapy planning of lung cancer and may help to improve the reproducibility in PET quantification for therapy response assessment and prognosis.
The flex track: flexible partitioning between low- and high-acuity areas of an emergency department.
Laker, Lauren F; Froehle, Craig M; Lindsell, Christopher J; Ward, Michael J
2014-12-01
Emergency departments (EDs) with both low- and high-acuity treatment areas often have fixed allocation of resources, regardless of demand. We demonstrate the utility of discrete-event simulation to evaluate flexible partitioning between low- and high-acuity ED areas to identify the best operational strategy for subsequent implementation. A discrete-event simulation was used to model patient flow through a 50-bed, urban, teaching ED that handles 85,000 patient visits annually. The ED has historically allocated 10 beds to a fast track for low-acuity patients. We estimated the effect of a flex track policy, which involved switching up to 5 of these fast track beds to serving both low- and high-acuity patients, on patient waiting times. When the high-acuity beds were not at capacity, low-acuity patients were given priority access to flexible beds. Otherwise, high-acuity patients were given priority access to flexible beds. Wait times were estimated for patients by disposition and Emergency Severity Index score. A flex track policy using 3 flexible beds produced the lowest mean patient waiting time of 30.9 minutes (95% confidence interval [CI] 30.6 to 31.2 minutes). The typical fast track approach of rigidly separating high- and low-acuity beds produced a mean patient wait time of 40.6 minutes (95% CI 40.2 to 50.0 minutes), 31% higher than that of the 3-bed flex track. A completely flexible ED, in which all beds can accommodate any patient, produced mean wait times of 35.1 minutes (95% CI 34.8 to 35.4 minutes). The results from the 3-bed flex track scenario were robust, performing well across a range of scenarios involving higher and lower patient volumes and care durations. Using discrete-event simulation, we have shown that adding some flexibility into bed allocation between low and high acuity can provide substantial reductions in overall patient waiting and a more efficient ED. Copyright © 2014 American College of Emergency Physicians. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Huhn, F.; Schanz, D.; Manovski, P.; Gesemann, S.; Schröder, A.
2018-05-01
Time-resolved volumetric pressure fields are reconstructed from Lagrangian particle tracking with high seeding concentration using the Shake-The-Box algorithm in a perpendicular impinging jet flow with exit velocity U=4 m/s (Re˜ 36,000) and nozzle-plate spacing H/D=5. Helium-filled soap bubbles are used as tracer particles which are illuminated with pulsed LED arrays. A large measurement volume has been covered (cloud of tracked particles in a volume of 54 L, ˜ 180,000 particles). The reconstructed pressure field has been validated against microphone recordings at the wall with high correlation coefficients up to 0.88. In a reduced measurement volume (13 L), dense Lagrangian particle tracking is shown to be feasable up to the maximal possible jet velocity of U=16 m/s.
An adaptive front tracking technique for three-dimensional transient flows
NASA Astrophysics Data System (ADS)
Galaktionov, O. S.; Anderson, P. D.; Peters, G. W. M.; van de Vosse, F. N.
2000-01-01
An adaptive technique, based on both surface stretching and surface curvature analysis for tracking strongly deforming fluid volumes in three-dimensional flows is presented. The efficiency and accuracy of the technique are demonstrated for two- and three-dimensional flow simulations. For the two-dimensional test example, the results are compared with results obtained using a different tracking approach based on the advection of a passive scalar. Although for both techniques roughly the same structures are found, the resolution for the front tracking technique is much higher. In the three-dimensional test example, a spherical blob is tracked in a chaotic mixing flow. For this problem, the accuracy of the adaptive tracking is demonstrated by the volume conservation for the advected blob. Adaptive front tracking is suitable for simulation of the initial stages of fluid mixing, where the interfacial area can grow exponentially with time. The efficiency of the algorithm significantly benefits from parallelization of the code. Copyright
Tracking Servobridge Detector. Volume 1
1976-12-15
34 _ - b[ Section 1 ABSTRACT 1.0 General This report is in three volumes - Volume I describes technically the Tracking Servo Bridge Detector in final...28 4.1.9.2 Typical Pulse Generator ....... ............... ... 29 4.1.10 Unlock Alarm .......... ..................... .... 30 4.1.11.1 DC...46 4.3.8.4 RF Oucput Harmonic Distortion vs. Frequency Plot . . .. 48 4.3.8.5 Generator Input Level Limits vs. Frequency Plot. . . .. 49 4.3.8.6 RF
Weak and Dynamic GNSS Signal Tracking Strategies for Flight Missions in the Space Service Volume
Jing, Shuai; Zhan, Xingqun; Liu, Baoyu; Chen, Maolin
2016-01-01
Weak-signal and high-dynamics are of two primary concerns of space navigation using GNSS (Global Navigation Satellite System) in the space service volume (SSV). The paper firstly defines a reference assumption third-order phase-locked loop (PLL) as the baseline of an onboard GNSS receiver, and proves the incompetence of this conventional architecture. Then an adaptive four-state Kalman filter (KF)-based algorithm is introduced to realize the optimization of loop noise bandwidth, which can adaptively regulate its filter gain according to the received signal power and line-of-sight (LOS) dynamics. To overcome the matter of losing lock in weak-signal and high-dynamic environments, an open loop tracking strategy aided by an inertial navigation system (INS) is recommended, and the traditional maximum likelihood estimation (MLE) method is modified in a non-coherent way by reconstructing the likelihood cost function. Furthermore, a typical mission with combined orbital maneuvering and non-maneuvering arcs is taken as a destination object to test the two proposed strategies. Finally, the experiment based on computer simulation identifies the effectiveness of an adaptive four-state KF-based strategy under non-maneuvering conditions and the virtue of INS-assisted methods under maneuvering conditions. PMID:27598164
Weak and Dynamic GNSS Signal Tracking Strategies for Flight Missions in the Space Service Volume.
Jing, Shuai; Zhan, Xingqun; Liu, Baoyu; Chen, Maolin
2016-09-02
Weak-signal and high-dynamics are of two primary concerns of space navigation using GNSS (Global Navigation Satellite System) in the space service volume (SSV). The paper firstly defines a reference assumption third-order phase-locked loop (PLL) as the baseline of an onboard GNSS receiver, and proves the incompetence of this conventional architecture. Then an adaptive four-state Kalman filter (KF)-based algorithm is introduced to realize the optimization of loop noise bandwidth, which can adaptively regulate its filter gain according to the received signal power and line-of-sight (LOS) dynamics. To overcome the matter of losing lock in weak-signal and high-dynamic environments, an open loop tracking strategy aided by an inertial navigation system (INS) is recommended, and the traditional maximum likelihood estimation (MLE) method is modified in a non-coherent way by reconstructing the likelihood cost function. Furthermore, a typical mission with combined orbital maneuvering and non-maneuvering arcs is taken as a destination object to test the two proposed strategies. Finally, the experiment based on computer simulation identifies the effectiveness of an adaptive four-state KF-based strategy under non-maneuvering conditions and the virtue of INS-assisted methods under maneuvering conditions.
Chen, Pin; Toubal, Malika; Carlier, Julien; Harmand, Souad; Nongaillard, Bertrand; Bigerelle, Maxence
2016-09-27
Evaporation of droplets of three pure liquids (water, 1-butanol, and ethanol) and four binary solutions (5 wt % 1-butanol-water-based solution and 5, 25, and 50 wt % ethanol-water-based solutions) deposited on hydrophobic silicon was investigated. A drop shape analyzer was used to measure the contact angle, diameter, and volume of the droplets. An infrared camera was used for infrared thermal mapping of the droplet's surface. An acoustic high-frequency echography technique was, for the first time, applied to track the alcohol concentration in a binary-solution droplet. Evaporation of pure alcohol droplets was executed at different values of relative humidity (RH), among which the behavior of pure ethanol evaporation was notably influenced by the ambient humidity as a result of high hygrometry. Evaporation of droplets of water and binary solutions was performed at a temperature of 22 °C and a mean humidity of approximately 50%. The exhaustion times of alcohol in the droplets estimated by the acoustic method and the visual method were similar for the water-1-butanol mixture; however, the time estimated by the acoustic method was longer when compared with that estimated by the visual method for the water-ethanol mixture due to the residual ethanol at the bottom of the droplet.
Tracking composite material damage evolution using Bayesian filtering and flash thermography data
NASA Astrophysics Data System (ADS)
Gregory, Elizabeth D.; Holland, Steve D.
2016-05-01
We propose a method for tracking the condition of a composite part using Bayesian filtering of ash thermography data over the lifetime of the part. In this demonstration, composite panels were fabricated; impacted to induce subsurface delaminations; and loaded in compression over multiple time steps, causing the delaminations to grow in size. Flash thermography data was collected between each damage event to serve as a time history of the part. The ash thermography indicated some areas of damage but provided little additional information as to the exact nature or depth of the damage. Computed tomography (CT) data was also collected after each damage event and provided a high resolution volume model of damage that acted as truth. After each cycle, the condition estimate, from the ash thermography data and the Bayesian filter, was compared to 'ground truth'. The Bayesian process builds on the lifetime history of ash thermography scans and can give better estimates of material condition as compared to the most recent scan alone, which is common practice in the aerospace industry. Bayesian inference provides probabilistic estimates of damage condition that are updated as each new set of data becomes available. The method was tested on simulated data and then on an experimental data set.
The first clinical implementation of electromagnetic transponder-guided MLC tracking.
Keall, Paul J; Colvill, Emma; O'Brien, Ricky; Ng, Jin Aun; Poulsen, Per Rugaard; Eade, Thomas; Kneebone, Andrew; Booth, Jeremy T
2014-02-01
We report on the clinical process, quality assurance, and geometric and dosimetric results of the first clinical implementation of electromagnetic transponder-guided MLC tracking which occurred on 28 November 2013 at the Northern Sydney Cancer Centre. An electromagnetic transponder-based positioning system (Calypso) was modified to send the target position output to in-house-developed MLC tracking code, which adjusts the leaf positions to optimally align the treatment beam with the real-time target position. Clinical process and quality assurance procedures were developed and performed. The first clinical implementation of electromagnetic transponder-guided MLC tracking was for a prostate cancer patient being treated with dual-arc VMAT (RapidArc). For the first fraction of the first patient treatment of electromagnetic transponder-guided MLC tracking we recorded the in-room time and transponder positions, and performed dose reconstruction to estimate the delivered dose and also the dose received had MLC tracking not been used. The total in-room time was 21 min with 2 min of beam delivery. No additional time was needed for MLC tracking and there were no beam holds. The average prostate position from the initial setup was 1.2 mm, mostly an anterior shift. Dose reconstruction analysis of the delivered dose with MLC tracking showed similar isodose and target dose volume histograms to the planned treatment and a 4.6% increase in the fractional rectal V60. Dose reconstruction without motion compensation showed a 30% increase in the fractional rectal V60 from that planned, even for the small motion. The real-time beam-target correction method, electromagnetic transponder-guided MLC tracking, has been translated to the clinic. This achievement represents a milestone in improving geometric and dosimetric accuracy, and by inference treatment outcomes, in cancer radiotherapy.
The first clinical implementation of electromagnetic transponder-guided MLC tracking
Keall, Paul J.; Colvill, Emma; O’Brien, Ricky; Ng, Jin Aun; Poulsen, Per Rugaard; Eade, Thomas; Kneebone, Andrew; Booth, Jeremy T.
2014-01-01
Purpose: We report on the clinical process, quality assurance, and geometric and dosimetric results of the first clinical implementation of electromagnetic transponder-guided MLC tracking which occurred on 28 November 2013 at the Northern Sydney Cancer Centre. Methods: An electromagnetic transponder-based positioning system (Calypso) was modified to send the target position output to in-house-developed MLC tracking code, which adjusts the leaf positions to optimally align the treatment beam with the real-time target position. Clinical process and quality assurance procedures were developed and performed. The first clinical implementation of electromagnetic transponder-guided MLC tracking was for a prostate cancer patient being treated with dual-arc VMAT (RapidArc). For the first fraction of the first patient treatment of electromagnetic transponder-guided MLC tracking we recorded the in-room time and transponder positions, and performed dose reconstruction to estimate the delivered dose and also the dose received had MLC tracking not been used. Results: The total in-room time was 21 min with 2 min of beam delivery. No additional time was needed for MLC tracking and there were no beam holds. The average prostate position from the initial setup was 1.2 mm, mostly an anterior shift. Dose reconstruction analysis of the delivered dose with MLC tracking showed similar isodose and target dose volume histograms to the planned treatment and a 4.6% increase in the fractional rectal V60. Dose reconstruction without motion compensation showed a 30% increase in the fractional rectal V60 from that planned, even for the small motion. Conclusions: The real-time beam-target correction method, electromagnetic transponder-guided MLC tracking, has been translated to the clinic. This achievement represents a milestone in improving geometric and dosimetric accuracy, and by inference treatment outcomes, in cancer radiotherapy. PMID:24506591
Wu, Hang; Wu, Shixiang; Qiu, Nansheng; Chang, Jian; Bao, Rima; Zhang, Xin; Liu, Nian; Liu, Shuai
2018-01-01
Apatite fission-track (AFT) analysis, a widely used low-temperature thermochronology method, can provide details of the hydrocarbon generation history of source rocks for use in hydrocarbon exploration. The AFT method is based on the annealing behavior of fission tracks generated by 238 U fission in apatite particles during geological history. Due to the cumbersome experimental steps and high expense, it is imperative to find an efficient and inexpensive technique to determinate the annealing degree of AFT. In this study, on the basis of the ellipsoid configuration of tracks, the track volume fraction model (TVFM) is established and the fission-track volume index is proposed. Furthermore, terahertz time domain spectroscopy (THz-TDS) is used for the first time to identify the variation of the AFT annealing degree of Durango apatite particles heated at 20, 275, 300, 325, 450, and 500 ℃ for 10 h. The THz absorbance of the sample increases with the degree of annealing. In addition, the THz absorption index is exponentially related to annealing temperature and can be used to characterize the fission-track volume index. Terahertz time domain spectroscopy can be an ancillary technique for AFT thermochronological research. More work is urgently needed to extrapolate experimental data to geological conditions.
Weizman, Lior; Sira, Liat Ben; Joskowicz, Leo; Rubin, Daniel L.; Yeom, Kristen W.; Constantini, Shlomi; Shofty, Ben; Bashat, Dafna Ben
2014-01-01
Purpose: Tracking the progression of low grade tumors (LGTs) is a challenging task, due to their slow growth rate and associated complex internal tumor components, such as heterogeneous enhancement, hemorrhage, and cysts. In this paper, the authors show a semiautomatic method to reliably track the volume of LGTs and the evolution of their internal components in longitudinal MRI scans. Methods: The authors' method utilizes a spatiotemporal evolution modeling of the tumor and its internal components. Tumor components gray level parameters are estimated from the follow-up scan itself, obviating temporal normalization of gray levels. The tumor delineation procedure effectively incorporates internal classification of the baseline scan in the time-series as prior data to segment and classify a series of follow-up scans. The authors applied their method to 40 MRI scans of ten patients, acquired at two different institutions. Two types of LGTs were included: Optic pathway gliomas and thalamic astrocytomas. For each scan, a “gold standard” was obtained manually by experienced radiologists. The method is evaluated versus the gold standard with three measures: gross total volume error, total surface distance, and reliability of tracking tumor components evolution. Results: Compared to the gold standard the authors' method exhibits a mean Dice similarity volumetric measure of 86.58% and a mean surface distance error of 0.25 mm. In terms of its reliability in tracking the evolution of the internal components, the method exhibits strong positive correlation with the gold standard. Conclusions: The authors' method provides accurate and repeatable delineation of the tumor and its internal components, which is essential for therapy assessment of LGTs. Reliable tracking of internal tumor components over time is novel and potentially will be useful to streamline and improve follow-up of brain tumors, with indolent growth and behavior. PMID:24784396
Sade, Leyla Elif; Kozan, Hatice; Eroglu, Serpil; Pirat, Bahar; Aydinalp, Alp; Sezgin, Atilla; Muderrisoglu, Haldun
2017-02-01
Residual pulmonary hypertension challenges the right ventricular function and worsens the prognosis in heart transplant recipients. The complex geometry of the right ventricle complicates estimation of its function with conventional transthoracic echocardiography. We evaluated right ventricular function in heart transplant recipients with the use of 3-dimensional echocardiography in relation to systolic pulmonary artery pressure. We performed 32 studies in 26 heart transplant patients, with 6 patients having 2 studies at different time points with different pressures and thus included. Right atrial volume, tricuspid annular plane systolic excursion, peak systolic annular velocity, fractional area change, and 2-dimensional speckle tracking longitudinal strain were obtained by 2-dimensional and tissue Doppler imaging. Three-dimensional right ventricular volumes, ejection fraction, and 3-dimensional right ventricular strain were obtained from the 3-dimensional data set by echocardiographers. Systolic pulmonary artery pressure was obtained during right heart catheterization. Overall mean systolic pulmonary artery pressure was 26 ± 7 mm Hg (range, 14-44 mmHg). Three-dimensional end-diastolic (r = 0.75; P < .001) and end-systolic volumes (r = 0.55; P = .001)correlated well with systolic pulmonary artery pressure. Right ventricular ejection fraction and right atrium volume also significantly correlated with systolic pulmonary artery pressure (r = 0.49 and P = .01 for both). However, right ventricular 2- and 3-dimensional strain, tricuspid annular plane systolic excursion, and tricuspid annular velocity did not. The effects of pulmonary hemodynamic burden on right ventricular function are better estimated by a 3-dimensional volume evaluation than with 3-dimensional longitudinal strain and other 2-dimensional and tissue Doppler measurements. These results suggest that the peculiar anatomy of the right ventricle necessitates 3-dimensional volume quantification in heart transplant recipients in relation to residual pulmonary hypertension.
4D Optimization of Scanned Ion Beam Tracking Therapy for Moving Tumors
Eley, John Gordon; Newhauser, Wayne David; Lüchtenborg, Robert; Graeff, Christian; Bert, Christoph
2014-01-01
Motion mitigation strategies are needed to fully realize the theoretical advantages of scanned ion beam therapy for patients with moving tumors. The purpose of this study was to determine whether a new four-dimensional (4D) optimization approach for scanned-ion-beam tracking could reduce dose to avoidance volumes near a moving target while maintaining target dose coverage, compared to an existing 3D-optimized beam tracking approach. We tested these approaches computationally using a simple 4D geometrical phantom and a complex anatomic phantom, that is, a 4D computed tomogram of the thorax of a lung cancer patient. We also validated our findings using measurements of carbon-ion beams with a motorized film phantom. Relative to 3D-optimized beam tracking, 4D-optimized beam tracking reduced the maximum predicted dose to avoidance volumes by 53% in the simple phantom and by 13% in the thorax phantom. 4D-optimized beam tracking provided similar target dose homogeneity in the simple phantom (standard deviation of target dose was 0.4% versus 0.3%) and dramatically superior homogeneity in the thorax phantom (D5-D95 was 1.9% versus 38.7%). Measurements demonstrated that delivery of 4D-optimized beam tracking was technically feasible and confirmed a 42% decrease in maximum film exposure in the avoidance region compared with 3D-optimized beam tracking. In conclusion, we found that 4D-optimized beam tracking can reduce the maximum dose to avoidance volumes near a moving target while maintaining target dose coverage, compared with 3D-optimized beam tracking. PMID:24889215
4D optimization of scanned ion beam tracking therapy for moving tumors
NASA Astrophysics Data System (ADS)
Eley, John Gordon; Newhauser, Wayne David; Lüchtenborg, Robert; Graeff, Christian; Bert, Christoph
2014-07-01
Motion mitigation strategies are needed to fully realize the theoretical advantages of scanned ion beam therapy for patients with moving tumors. The purpose of this study was to determine whether a new four-dimensional (4D) optimization approach for scanned-ion-beam tracking could reduce dose to avoidance volumes near a moving target while maintaining target dose coverage, compared to an existing 3D-optimized beam tracking approach. We tested these approaches computationally using a simple 4D geometrical phantom and a complex anatomic phantom, that is, a 4D computed tomogram of the thorax of a lung cancer patient. We also validated our findings using measurements of carbon-ion beams with a motorized film phantom. Relative to 3D-optimized beam tracking, 4D-optimized beam tracking reduced the maximum predicted dose to avoidance volumes by 53% in the simple phantom and by 13% in the thorax phantom. 4D-optimized beam tracking provided similar target dose homogeneity in the simple phantom (standard deviation of target dose was 0.4% versus 0.3%) and dramatically superior homogeneity in the thorax phantom (D5-D95 was 1.9% versus 38.7%). Measurements demonstrated that delivery of 4D-optimized beam tracking was technically feasible and confirmed a 42% decrease in maximum film exposure in the avoidance region compared with 3D-optimized beam tracking. In conclusion, we found that 4D-optimized beam tracking can reduce the maximum dose to avoidance volumes near a moving target while maintaining target dose coverage, compared with 3D-optimized beam tracking.
J-Adaptive estimation with estimated noise statistics. [for orbit determination
NASA Technical Reports Server (NTRS)
Jazwinski, A. H.; Hipkins, C.
1975-01-01
The J-Adaptive estimator described by Jazwinski and Hipkins (1972) is extended to include the simultaneous estimation of the statistics of the unmodeled system accelerations. With the aid of simulations it is demonstrated that the J-Adaptive estimator with estimated noise statistics can automatically estimate satellite orbits to an accuracy comparable with the data noise levels, when excellent, continuous tracking coverage is available. Such tracking coverage will be available from satellite-to-satellite tracking.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colvill, Emma; Northern Sydney Cancer Centre, Royal North Shore Hospital, St. Leonards, NSW; Booth, Jeremy T.
2015-08-01
Purpose: To test the hypothesis that multileaf collimator (MLC) tracking improves the consistency between the planned and delivered dose compared with the dose without MLC tracking, in the setting of a prostate cancer volumetric modulated arc therapy trial. Methods and Materials: Multileaf collimator tracking was implemented for 15 patients in a prostate cancer radiation therapy trial; in total, 513 treatment fractions were delivered. During each treatment fraction, the prostate trajectory and treatment MLC positions were collected. These data were used as input for dose reconstruction (multiple isocenter shift method) to calculate the treated dose (with MLC tracking) and the dose thatmore » would have been delivered had MLC tracking not been applied (without MLC tracking). The percentage difference from planned for target and normal tissue dose-volume points were calculated. The hypothesis was tested for each dose-volume value via analysis of variance using the F test. Results: Of the 513 fractions delivered, 475 (93%) were suitable for analysis. The mean difference and standard deviation between the planned and treated MLC tracking doses and the planned and without-MLC tracking doses for all 475 fractions were, respectively, PTV D{sub 99%} −0.8% ± 1.1% versus −2.1% ± 2.7%; CTV D{sub 99%} −0.6% ± 0.8% versus −0.6% ± 1.1%; rectum V{sub 65%} 1.6% ± 7.9% versus −1.2% ± 18%; and bladder V{sub 65%} 0.5% ± 4.4% versus −0.0% ± 9.2% (P<.001 for all dose-volume results). Conclusion: This study shows that MLC tracking improves the consistency between the planned and delivered doses compared with the modeled doses without MLC tracking. The implications of this finding are potentially improved patient outcomes, as well as more reliable dose-volume data for radiobiological parameter determination.« less
Belchansky, G.I.; Douglas, David C.; Platonov, Nikita G.
2008-01-01
Sea ice thickness (SIT) is a key parameter of scientific interest because understanding the natural spatiotemporal variability of ice thickness is critical for improving global climate models. In this paper, changes in Arctic SIT during 1982-2003 are examined using a neural network (NN) algorithm trained with in situ submarine ice draft and surface drilling data. For each month of the study period, the NN individually estimated SIT of each ice-covered pixel (25-km resolution) based on seven geophysical parameters (four shortwave and longwave radiative fluxes, surface air temperature, ice drift velocity, and ice divergence/convergence) that were cumulatively summed at each monthly position along the pixel's previous 3-yr drift track (or less if the ice was <3 yr old). Average January SIT increased during 1982-88 in most regions of the Arctic (+7.6 ?? 0.9 cm yr-1), decreased through 1996 Arctic-wide (-6.1 ?? 1.2 cm yr-1), then modestly increased through 2003 mostly in the central Arctic (+2.1 ?? 0.6 cm yr-1). Net ice volume change in the Arctic Ocean from 1982 to 2003 was negligible, indicating that cumulative ice growth had largely replaced the estimated 45 000 km3 of ice lost by cumulative export. Above 65??N, total annual ice volume and interannual volume changes were correlated with the Arctic Oscillation (AO) at decadal and annual time scales, respectively. Late-summer ice thickness and total volume varied proportionally until the mid-1990s, but volume did not increase commensurate with the thickening during 1996-2002. The authors speculate that decoupling of the ice thickness-volume relationship resulted from two opposing mechanisms with different latitudinal expressions: a recent quasi-decadal shift in atmospheric circulation patterns associated with the AO's neutral state facilitated ice thickening at high latitudes while anomalously warm thermal forcing thinned and melted the ice cap at its periphery. ?? 2008 American Meteorological Society.
Real-Time Radar-Based Tracking and State Estimation of Multiple Non-Conformant Aircraft
NASA Technical Reports Server (NTRS)
Cook, Brandon; Arnett, Timothy; Macmann, Owen; Kumar, Manish
2017-01-01
In this study, a novel solution for automated tracking of multiple unknown aircraft is proposed. Many current methods use transponders to self-report state information and augment track identification. While conformant aircraft typically report transponder information to alert surrounding aircraft of its state, vehicles may exist in the airspace that are non-compliant and need to be accurately tracked using alternative methods. In this study, a multi-agent tracking solution is presented that solely utilizes primary surveillance radar data to estimate aircraft state information. Main research challenges include state estimation, track management, data association, and establishing persistent track validity. In an effort to realize these challenges, techniques such as Maximum a Posteriori estimation, Kalman filtering, degree of membership data association, and Nearest Neighbor Spanning Tree clustering are implemented for this application.
NASA Astrophysics Data System (ADS)
Adam, W.; Bergauer, T.; Brondolin, E.; Dragicevic, M.; Friedl, M.; Frühwirth, R.; Hoch, M.; Hrubec, J.; König, A.; Steininger, H.; Treberspurg, W.; Waltenberger, W.; Alderweireldt, S.; Beaumont, W.; Janssen, X.; Lauwers, J.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Beghin, D.; Brun, H.; Clerbaux, B.; De Lentdecker, G.; Delannoy, H.; Fasanella, G.; Favart, L.; Goldouzian, R.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Léonard, A.; Luetic, J.; Maerschalk, T.; Marinov, A.; Postiau, N.; Randle-Conde, A.; Seva, T.; Vanlaer, P.; Vannerom, D.; Yonamine, R.; Wang, Q.; Yang, Y.; Zenoni, F.; Zhang, F.; Abu Zeid, S.; Blekman, F.; De Bruyn, I.; De Clercq, J.; D'Hondt, J.; Deroover, K.; Lowette, S.; Moortgat, S.; Moreels, L.; Python, Q.; Skovpen, K.; Van Mulders, P.; Van Parijs, I.; Bakhshiansohi, H.; Bondu, O.; Brochet, S.; Bruno, G.; Caudron, A.; Delaere, C.; Delcourt, M.; De Visscher, S.; Francois, B.; Giammanco, A.; Jafari, A.; Cabrera Jamoulle, J.; De Favereau De Jeneret, J.; Komm, M.; Krintiras, G.; Lemaitre, V.; Magitteri, A.; Mertens, A.; Michotte, D.; Musich, M.; Piotrzkowski, K.; Quertenmont, L.; Szilasi, N.; Vidal Marono, M.; Wertz, S.; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.; Härkönen, J.; Lampén, T.; Luukka, P.; Peltola, T.; Tuominen, E.; Tuovinen, E.; Eerola, P.; Baulieu, G.; Boudoul, G.; Caponetto, L.; Combaret, C.; Contardo, D.; Dupasquier, T.; Gallbit, G.; Lumb, N.; Mirabito, L.; Perries, S.; Vander Donckt, M.; Viret, S.; Agram, J.-L.; Andrea, J.; Bloch, D.; Bonnin, C.; Brom, J.-M.; Chabert, E.; Chanon, N.; Charles, L.; Conte, E.; Fontaine, J.-Ch.; Gross, L.; Hosselet, J.; Jansova, M.; Tromson, D.; Autermann, C.; Feld, L.; Karpinski, W.; Kiesel, K. M.; Klein, K.; Lipinski, M.; Ostapchuk, A.; Pierschel, G.; Preuten, M.; Rauch, M.; Schael, S.; Schomakers, C.; Schulz, J.; Schwering, G.; Wlochal, M.; Zhukov, V.; Pistone, C.; Fluegge, G.; Kuensken, A.; Pooth, O.; Stahl, A.; Aldaya, M.; Asawatangtrakuldee, C.; Beernaert, K.; Bertsche, D.; Contreras-Campana, C.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Gallo, E.; Garay Garcia, J.; Hansen, K.; Haranko, M.; Harb, A.; Hauk, J.; Keaveney, J.; Kalogeropoulos, A.; Kleinwort, C.; Lohmann, W.; Mankel, R.; Maser, H.; Mittag, G.; Muhl, C.; Mussgiller, A.; Pitzl, D.; Reichelt, O.; Savitskyi, M.; Schuetze, P.; Walsh, R.; Zuber, A.; Biskop, H.; Buhmann, P.; Centis-Vignali, M.; Garutti, E.; Haller, J.; Hoffmann, M.; Klanner, R.; Matysek, M.; Perieanu, A.; Scharf, Ch.; Schleper, P.; Schmidt, A.; Schwandt, J.; Sonneveld, J.; Steinbrück, G.; Vormwald, B.; Wellhausen, J.; Abbas, M.; Amstutz, C.; Barvich, T.; Barth, Ch.; Boegelspacher, F.; De Boer, W.; Butz, E.; Casele, M.; Colombo, F.; Dierlamm, A.; Freund, B.; Hartmann, F.; Heindl, S.; Husemann, U.; Kornmeyer, A.; Kudella, S.; Muller, Th.; Printz, M.; Simonis, H. J.; Steck, P.; Weber, M.; Weiler, Th.; Anagnostou, G.; Asenov, P.; Assiouras, P.; Daskalakis, G.; Kyriakis, A.; Loukas, D.; Paspalaki, L.; Siklér, F.; Veszprémi, V.; Bhardwaj, A.; Dalal, R.; Jain, G.; Ranjan, K.; Dutta, S.; Chowdhury, S. Roy; Bakhshiansohl, H.; Behnamian, H.; Khakzad, M.; Naseri, M.; Cariola, P.; Creanza, D.; De Palma, M.; De Robertis, G.; Fiore, L.; Franco, M.; Loddo, F.; Sala, G.; Silvestris, L.; Maggi, G.; My, S.; Selvaggi, G.; Albergo, S.; Costa, S.; Di Mattia, A.; Giordano, F.; Potenza, R.; Saizu, M. A.; Tricomi, A.; Tuve, C.; Barbagli, G.; Brianzi, M.; Ciaranfi, R.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Latino, G.; Lenzi, P.; Meschini, M.; Paoletti, S.; Russo, L.; Scarlini, E.; Sguazzoni, G.; Strom, D.; Viliani, L.; Ferro, F.; Lo Vetere, M.; Robutti, E.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Malvezzi, S.; Manzoni, R. A.; Menasce, D.; Moroni, L.; Pedrini, D.; Azzi, P.; Bacchetta, N.; Bisello, D.; Dall'Osso, M.; Pozzobon, N.; Tosi, M.; De Canio, F.; Gaioni, L.; Manghisoni, M.; Nodari, B.; Riceputi, E.; Re, V.; Traversi, G.; Comotti, D.; Ratti, L.; Alunni Solestizi, L.; Biasini, M.; Bilei, G. M.; Cecchi, C.; Checcucci, B.; Ciangottini, D.; Fanò, L.; Gentsos, C.; Ionica, M.; Leonardi, R.; Manoni, E.; Mantovani, G.; Marconi, S.; Mariani, V.; Menichelli, M.; Modak, A.; Morozzi, A.; Moscatelli, F.; Passeri, D.; Placidi, P.; Postolache, V.; Rossi, A.; Saha, A.; Santocchia, A.; Storchi, L.; Spiga, D.; Androsov, K.; Azzurri, P.; Arezzini, S.; Bagliesi, G.; Basti, A.; Boccali, T.; Borrello, L.; Bosi, F.; Castaldi, R.; Ciampa, A.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fedi, G.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Magazzu, G.; Martini, L.; Mazzoni, E.; Messineo, A.; Moggi, A.; Morsani, F.; Palla, F.; Palmonari, F.; Raffaelli, F.; Rizzi, A.; Savoy-Navarro, A.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Bellan, R.; Costa, M.; Covarelli, R.; Da Rocha Rolo, M.; Demaria, N.; Rivetti, A.; Dellacasa, G.; Mazza, G.; Migliore, E.; Monteil, E.; Pacher, L.; Ravera, F.; Solano, A.; Fernandez, M.; Gomez, G.; Jaramillo Echeverria, R.; Moya, D.; Gonzalez Sanchez, F. J.; Vila, I.; Virto, A. L.; Abbaneo, D.; Ahmed, I.; Albert, E.; Auzinger, G.; Berruti, G.; Bianchi, G.; Blanchot, G.; Bonnaud, J.; Caratelli, A.; Ceresa, D.; Christiansen, J.; Cichy, K.; Daguin, J.; D'Auria, A.; Detraz, S.; Deyrail, D.; Dondelewski, O.; Faccio, F.; Frank, N.; Gadek, T.; Gill, K.; Honma, A.; Hugo, G.; Jara Casas, L. M.; Kaplon, J.; Kornmayer, A.; Kottelat, L.; Kovacs, M.; Krammer, M.; Lenoir, P.; Mannelli, M.; Marchioro, A.; Marconi, S.; Mersi, S.; Martina, S.; Michelis, S.; Moll, M.; Onnela, A.; Orfanelli, S.; Pavis, S.; Peisert, A.; Pernot, J.-F.; Petagna, P.; Petrucciani, G.; Postema, H.; Rose, P.; Tropea, P.; Troska, J.; Tsirou, A.; Vasey, F.; Vichoudis, P.; Verlaat, B.; Zwalinski, L.; Bachmair, F.; Becker, R.; di Calafiori, D.; Casal, B.; Berger, P.; Djambazov, L.; Donega, M.; Grab, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lustermann, W.; Mangano, B.; Marionneau, M.; Martinez Ruiz del Arbol, P.; Masciovecchio, M.; Meinhard, M.; Perozzi, L.; Roeser, U.; Starodumov, A.; Tavolaro, V.; Wallny, R.; Zhu, D.; Amsler, C.; Bösiger, K.; Caminada, L.; Canelli, F.; Chiochia, V.; de Cosa, A.; Galloni, C.; Hreus, T.; Kilminster, B.; Lange, C.; Maier, R.; Ngadiuba, J.; Pinna, D.; Robmann, P.; Taroni, S.; Yang, Y.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Kaestli, H.-C.; Kotlinski, D.; Langenegger, U.; Meier, B.; Rohe, T.; Streuli, S.; Chen, P.-H.; Dietz, C.; Grundler, U.; Hou, W.-S.; Lu, R.-S.; Moya, M.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Jacob, J.; Seif El Nasr-Storey, S.; Cole, J.; Hoad, C.; Hobson, P.; Morton, A.; Reid, I. D.; Auzinger, G.; Bainbridge, R.; Dauncey, P.; Fulcher, J.; Hall, G.; James, T.; Magnan, A.-M.; Pesaresi, M.; Raymond, D. M.; Uchida, K.; Braga, D.; Coughlan, J. A.; Harder, K.; Jones, L.; Ilic, J.; Murray, P.; Prydderch, M.; Tomalin, I. R.; Garabedian, A.; Heintz, U.; Narain, M.; Nelson, J.; Sagir, S.; Speer, T.; Swanson, J.; Tersegno, D.; Watson-Daniels, J.; Chertok, M.; Conway, J.; Conway, R.; Flores, C.; Lander, R.; Pellett, D.; Ricci-Tam, F.; Squires, M.; Thomson, J.; Yohay, R.; Burt, K.; Ellison, J.; Hanson, G.; Olmedo, M.; Si, W.; Yates, B. R.; Gerosa, R.; Sharma, V.; Vartak, A.; Yagil, A.; Zevi Della Porta, G.; Dutta, V.; Gouskos, L.; Incandela, J.; Kyre, S.; Mullin, S.; Qu, H.; White, D.; Dominguez, A.; Bartek, R.; Cumalat, J. P.; Ford, W. T.; Jensen, F.; Johnson, A.; Krohn, M.; Leontsinis, S.; Mulholland, T.; Stenson, K.; Wagner, S. R.; Apresyan, A.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chramowicz, J.; Christian, D.; Cooper, W. E.; Deptuch, G.; Derylo, G.; Gingu, C.; Grünendahl, S.; Hasegawa, S.; Hoff, J.; Howell, J.; Hrycyk, M.; Jindariani, S.; Johnson, M.; Kahlid, F.; Lei, C. M.; Lipton, R.; Lopes De Sá, R.; Liu, T.; Los, S.; Matulik, M.; Merkel, P.; Nahn, S.; Prosser, A.; Rivera, R.; Schneider, B.; Sellberg, G.; Shenai, A.; Spiegel, L.; Tran, N.; Uplegger, L.; Voirin, E.; Berry, D. R.; Chen, X.; Ennesser, L.; Evdokimov, A.; Evdokimov, O.; Gerber, C. E.; Hofman, D. J.; Makauda, S.; Mills, C.; Sandoval Gonzalez, I. D.; Alimena, J.; Antonelli, L. J.; Francis, B.; Hart, A.; Hill, C. S.; Parashar, N.; Stupak, J.; Bortoletto, D.; Bubna, M.; Hinton, N.; Jones, M.; Miller, D. H.; Shi, X.; Tan, P.; Baringer, P.; Bean, A.; Khalil, S.; Kropivnitskaya, A.; Majumder, D.; Wilson, G.; Ivanov, A.; Mendis, R.; Mitchell, T.; Skhirtladze, N.; Taylor, R.; Anderson, I.; Fehling, D.; Gritsan, A.; Maksimovic, P.; Martin, C.; Nash, K.; Osherson, M.; Swartz, M.; Xiao, M.; Acosta, J. G.; Cremaldi, L. M.; Oliveros, S.; Perera, L.; Summers, D.; Bloom, K.; Claes, D. R.; Fangmeier, C.; Gonzalez Suarez, R.; Monroy, J.; Siado, J.; Hahn, K.; Sevova, S.; Sung, K.; Trovato, M.; Bartz, E.; Gershtein, Y.; Halkiadakis, E.; Kyriacou, S.; Lath, A.; Nash, K.; Osherson, M.; Schnetzer, S.; Stone, R.; Walker, M.; Malik, S.; Norberg, S.; Ramirez Vargas, J. E.; Alyari, M.; Dolen, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Kharchilava, A.; Nguyen, D.; Parker, A.; Rappoccio, S.; Roozbahani, B.; Alexander, J.; Chaves, J.; Chu, J.; Dittmer, S.; McDermott, K.; Mirman, N.; Rinkevicius, A.; Ryd, A.; Salvati, E.; Skinnari, L.; Soffi, L.; Tao, Z.; Thom, J.; Tucker, J.; Zientek, M.; Akgün, B.; Ecklund, K. M.; Kilpatrick, M.; Nussbaum, T.; Zabel, J.; Betchart, B.; Covarelli, R.; Demina, R.; Hindrichs, O.; Petrillo, G.; Eusebi, R.; Patel, R.; Perloff, A.; Ulmer, K. A.; Delannoy, A. G.; D'Angelo, P.; Johns, W.
2018-03-01
A new CMS Tracker is under development for operation at the High Luminosity LHC from 2026 onwards. It includes an outer tracker based on dedicated modules that will reconstruct short track segments, called stubs, using spatially coincident clusters in two closely spaced silicon sensor layers. These modules allow the rejection of low transverse momentum track hits and reduce the data volume before transmission to the first level trigger. The inclusion of tracking information in the trigger decision is essential to limit the first level trigger accept rate. A customized front-end readout chip, the CMS Binary Chip (CBC), containing stub finding logic has been designed for this purpose. A prototype module, equipped with the CBC chip, has been constructed and operated for the first time in a 4 GeemVem/emc positron beam at DESY. The behaviour of the stub finding was studied for different angles of beam incidence on a module, which allows an estimate of the sensitivity to transverse momentum within the future CMS detector. A sharp transverse momentum threshold around 2 emVem/emc was demonstrated, which meets the requirement to reject a large fraction of low momentum tracks present in the LHC environment on-detector. This is the first realistic demonstration of a silicon tracking module that is able to select data, based on the particle's transverse momentum, for use in a first level trigger at the LHC . The results from this test are described here.
Low cost sensing of vegetation volume and structure with a Microsoft Kinect sensor
NASA Astrophysics Data System (ADS)
Azzari, G.; Goulden, M.
2011-12-01
The market for videogames and digital entertainment has decreased the cost of advanced technology to affordable levels. The Microsoft Kinect sensor for Xbox 360 is an infrared time of flight camera designed to track body position and movement at a single-articulation level. Using open source drivers and libraries, we acquired point clouds of vegetation directly from the Kinect sensor. The data were filtered for outliers, co-registered, and cropped to isolate the plant of interest from the surroundings and soil. The volume of single plants was then estimated with several techniques, including fitting with solid shapes (cylinders, spheres, boxes), voxel counts, and 3D convex/concave hulls. Preliminary results are presented here. The volume of a series of wild artichoke plants was measured from nadir using a Kinect on a 3m-tall tower. The calculated volumes were compared with harvested biomass; comparisons and derived allometric relations will be presented, along with examples of the acquired point clouds. This Kinect sensor shows promise for ground-based, automated, biomass measurement systems, and possibly for comparison/validation of remotely sensed LIDAR.
Model-based adaptive 3D sonar reconstruction in reverberating environments.
Saucan, Augustin-Alexandru; Sintes, Christophe; Chonavel, Thierry; Caillec, Jean-Marc Le
2015-10-01
In this paper, we propose a novel model-based approach for 3D underwater scene reconstruction, i.e., bathymetry, for side scan sonar arrays in complex and highly reverberating environments like shallow water areas. The presence of multipath echoes and volume reverberation generates false depth estimates. To improve the resulting bathymetry, this paper proposes and develops an adaptive filter, based on several original geometrical models. This multimodel approach makes it possible to track and separate the direction of arrival trajectories of multiple echoes impinging the array. Echo tracking is perceived as a model-based processing stage, incorporating prior information on the temporal evolution of echoes in order to reject cluttered observations generated by interfering echoes. The results of the proposed filter on simulated and real sonar data showcase the clutter-free and regularized bathymetric reconstruction. Model validation is carried out with goodness of fit tests, and demonstrates the importance of model-based processing for bathymetry reconstruction.
Henningsson, Per; Michaelis, Dirk; Nakata, Toshiyuki; Schanz, Daniel; Geisler, Reinhard; Schröder, Andreas; Bomphrey, Richard J.
2015-01-01
Particle image velocimetry has been the preferred experimental technique with which to study the aerodynamics of animal flight for over a decade. In that time, hardware has become more accessible and the software has progressed from the acquisition of planes through the flow field to the reconstruction of small volumetric measurements. Until now, it has not been possible to capture large volumes that incorporate the full wavelength of the aerodynamic track left behind during a complete wingbeat cycle. Here, we use a unique apparatus to acquire the first instantaneous wake volume of a flying animal's entire wingbeat. We confirm the presence of wake deformation behind desert locusts and quantify the effect of that deformation on estimates of aerodynamic force and the efficiency of lift generation. We present previously undescribed vortex wake phenomena, including entrainment around the wing-tip vortices of a set of secondary vortices borne of Kelvin–Helmholtz instability in the shear layer behind the flapping wings. PMID:26040598
Cassidy, Jessica M; Carey, James R; Lu, Chiahao; Krach, Linda E; Feyma, Tim; Durfee, William K; Gillick, Bernadette T
2015-12-01
This study analyzed the relationship between electrophysiological responses to transcranial magnetic stimulation (TMS), finger tracking accuracy, and volume of neural substrate in children with congenital hemiparesis. Nineteen participants demonstrating an ipsilesional motor-evoked potential (MEP) were compared with eleven participants showing an absent ipsilesional MEP response. Comparisons of finger tracking accuracy from the affected and less affected hands and ipsilesional/contralesional (I/C) volume ratio for the primary motor cortex (M1) and posterior limb of internal capsule (PLIC) were done using two-sample t-tests. Participants showing an ipsilesional MEP response demonstrated superior tracking performance from the less affected hand (p=0.016) and significantly higher I/C volume ratios for M1 (p=0.028) and PLIC (p=0.005) compared to participants without an ipsilesional MEP response. Group differences in finger tracking accuracy from the affected hand were not significant. These results highlight differentiating factors amongst children with congenital hemiparesis showing contrasting MEP responses: less affected hand performance and preserved M1 and PLIC volume. Along with MEP status, these factors pose important clinical implications in pediatric stroke rehabilitation. These findings may also reflect competitive developmental processes associated with the preservation of affected hand function at the expense of some function in the less affected hand. Copyright © 2015 Elsevier Ltd. All rights reserved.
Bekarian, Nyree; Payne-Sturges, Devon; Edmondson, Stuart; Chism, Bill; Woodruff, Tracey J
2006-05-25
Residential-use pesticides have been shown to be a major source of pesticide exposure to people in the United States. However, little is understood about the exposures to household pesticides and the resultant health effects. One reason that little is known about home-use pesticide exposure is the lack of comprehensive data on exposures to pesticides in the home. One method to help ascertain the amount of pesticides present in the home is use of point-of-sale data collected from marketing companies that track product sales to obtain the volume of pesticides sold for home-use. This provides a measure of volume of home-use pesticide. We have constructed a searchable database containing sales data for home-use permethrin-containing pesticides sold by retail stores in the United States from January 1997 through December 2002 in an attempt to develop a tracking method for pesticide. This pilot project was conducted to determine if point-of-sale data would be effective in helping track the purchase of home-use permethrin containing pesticides and if it would stand as a good model for tracking sales of other home-use pesticides. There are several limitations associated with this tracking method, including the availability of sales data, market coverage, and geographic resolution. As a result, a fraction of sales data potentially available for reporting is represented in this database. However, the database is sensitive to the number and type of merchants reporting permethrin sales. Further, analysis of the sale of individual products included in the database indicates that year to year variability has a greater impact on reported permethrin sales than the amount sold by each type of merchant. We conclude that, while nothing could completely replace a detailed exposure assessment to estimate exposures to home-use pesticides, a point-of-sale database is a useful tool in tracking the purchase of these types of pesticides to 1) detect anomalous trends in regional and seasonal pesticide sales warranting further investigation into the potential causes of the trends; 2) determine the most commonly purchased application types; and 3) compare relative trends in sales between indoor and outdoor use products as well as compare trends in sales between different active ingredients.
Multiple template-based fluoroscopic tracking of lung tumor mass without implanted fiducial markers
NASA Astrophysics Data System (ADS)
Cui, Ying; Dy, Jennifer G.; Sharp, Gregory C.; Alexander, Brian; Jiang, Steve B.
2007-10-01
Precise lung tumor localization in real time is particularly important for some motion management techniques, such as respiratory gating or beam tracking with a dynamic multi-leaf collimator, due to the reduced clinical tumor volume (CTV) to planning target volume (PTV) margin and/or the escalated dose. There might be large uncertainties in deriving tumor position from external respiratory surrogates. While tracking implanted fiducial markers has sufficient accuracy, this procedure may not be widely accepted due to the risk of pneumothorax. Previously, we have developed a technique to generate gating signals from fluoroscopic images without implanted fiducial markers using a template matching method (Berbeco et al 2005 Phys. Med. Biol. 50 4481-90, Cui et al 2007 Phys. Med. Biol. 52 741-55). In this paper, we present an extension of this method to multiple-template matching for directly tracking the lung tumor mass in fluoroscopy video. The basic idea is as follows: (i) during the patient setup session, a pair of orthogonal fluoroscopic image sequences are taken and processed off-line to generate a set of reference templates that correspond to different breathing phases and tumor positions; (ii) during treatment delivery, fluoroscopic images are continuously acquired and processed; (iii) the similarity between each reference template and the processed incoming image is calculated; (iv) the tumor position in the incoming image is then estimated by combining the tumor centroid coordinates in reference templates with proper weights based on the measured similarities. With different handling of image processing and similarity calculation, two such multiple-template tracking techniques have been developed: one based on motion-enhanced templates and Pearson's correlation score while the other based on eigen templates and mean-squared error. The developed techniques have been tested on six sequences of fluoroscopic images from six lung cancer patients against the reference tumor positions manually determined by a radiation oncologist. The tumor centroid coordinates automatically detected using both methods agree well with the manually marked reference locations. The eigenspace tracking method performs slightly better than the motion-enhanced method, with average localization errors less than 2 pixels (1 mm) and the error at a 95% confidence level of about 2-4 pixels (1-2 mm). This work demonstrates the feasibility of direct tracking of a lung tumor mass in fluoroscopic images without implanted fiducial markers using multiple reference templates.
Use of point-of-sale data to track usage patterns of residential pesticides: methodology development
Bekarian, Nyree; Payne-Sturges, Devon; Edmondson, Stuart; Chism, Bill; Woodruff, Tracey J
2006-01-01
Background Residential-use pesticides have been shown to be a major source of pesticide exposure to people in the United States. However, little is understood about the exposures to household pesticides and the resultant health effects. One reason that little is known about home-use pesticide exposure is the lack of comprehensive data on exposures to pesticides in the home. One method to help ascertain the amount of pesticides present in the home is use of point-of-sale data collected from marketing companies that track product sales to obtain the volume of pesticides sold for home-use. This provides a measure of volume of home-use pesticide. Methods We have constructed a searchable database containing sales data for home-use permethrin-containing pesticides sold by retail stores in the United States from January 1997 through December 2002 in an attempt to develop a tracking method for pesticide. This pilot project was conducted to determine if point-of-sale data would be effective in helping track the purchase of home-use permethrin containing pesticides and if it would stand as a good model for tracking sales of other home-use pesticides. Results There are several limitations associated with this tracking method, including the availability of sales data, market coverage, and geographic resolution. As a result, a fraction of sales data potentially available for reporting is represented in this database. However, the database is sensitive to the number and type of merchants reporting permethrin sales. Further, analysis of the sale of individual products included in the database indicates that year to year variability has a greater impact on reported permethrin sales than the amount sold by each type of merchant. Conclusion We conclude that, while nothing could completely replace a detailed exposure assessment to estimate exposures to home-use pesticides, a point-of-sale database is a useful tool in tracking the purchase of these types of pesticides to 1) detect anomalous trends in regional and seasonal pesticide sales warranting further investigation into the potential causes of the trends; 2) determine the most commonly purchased application types; and 3) compare relative trends in sales between indoor and outdoor use products as well as compare trends in sales between different active ingredients. PMID:16725037
RESTORATION OF ATMOSPHERICALLY DEGRADED IMAGES. VOLUME 3.
AERIAL CAMERAS, LASERS, ILLUMINATION, TRACKING CAMERAS, DIFFRACTION, PHOTOGRAPHIC GRAIN, DENSITY, DENSITOMETERS, MATHEMATICAL ANALYSIS, OPTICAL SCANNING, SYSTEMS ENGINEERING, TURBULENCE, OPTICAL PROPERTIES, SATELLITE TRACKING SYSTEMS.
Volumetric analysis of cerebellum in short-track speed skating players.
Park, In Sung; Lee, Nam Joon; Kim, Tae-Young; Park, Jin-Hoon; Won, Yu-Mi; Jung, Yong-Ju; Yoon, Jin-Hwan; Rhyu, Im Joo
2012-12-01
The cerebellum is associated with balance control and coordination, which might be important for gliding on smooth ice at high speeds. A number of case studies have shown that cerebellar damage induces impaired balance and coordination. As a positive model, therefore, we investigated whether plastic changes in the volumes of cerebellar subregions occur in short-track speed skating players who must have extraordinary abilities of balance and coordination, using three-dimensional magnetic resonance imaging volumetry. The manual tracing was performed and the volumes of cerebellar hemisphere and vermian lobules were compared between short-track speed skating players (n=16) and matched healthy controls (n=18). We found larger right cerebellar hemisphere volume and vermian lobules VI-VII (declive, folium, and tuber) in short-track speed skating players in comparison with the matched controls. The finding suggests that the specialized abilities of balance and coordination are associated with structural plasticity of the right hemisphere of cerebellum and vermian VI-VII and these regions play an essential role in balance and coordination.
Chelly, Mohamed Souhaiel; Hermassi, Souhail; Shephard, Roy J
2015-08-01
We studied the effect of supplementing normal in-season training by a 10-week lower limb plyometric training program (hurdle and depth jumping), examining measures of competitive potential (peak power output [PP], sprint running velocity, squat jump [SJ], countermovement jump [CMJ], drop jump [DJ], and lower limb muscle volume). The subjects (27 male track athletes, aged 11.9 ± 1.0 years; body mass: 39.1 ± 6.1 kg; height: 1.56 ± 0.02 m; body fat: 12.8 ± 4.4%) were randomly assigned between a control (normal training) group (C; n = 13) and an experimental group (E; n = 14) who also performed plyometric training 3 times per week. A force-velocity ergometer test determined PP and SJ, and an Optojump apparatus evaluated CMJ height and DJ (height and power). A multiple-5-bound test assessed horizontal jumping, and video-camera analyses over a 40-m sprint yielded velocities for the first step (VS), the first 5 m (V5m), and between 35 and 40 m (Vmax). Leg muscle volume was estimated anthropometrically. Experimental group showed gains relative to C in SJ height (p < 0.001); CMJ height (p < 0.01); DJ height and power relative to body mass (p < 0.01 for both); and all sprint velocities (p < 0.01 for VS and V(5m, p) ≤ 0.05 for Vmax). There was also a significant increase (p < 0.01) in thigh muscle volume, but leg muscle volume, thigh cross-sectional area, and PP remained unchanged. We conclude that adding plyometric training improved important components of athletic performance relative to standard in-season training in young runners.
Southern Alaska Glaciers: Spatial and Temporal Variations in Ice Volume
NASA Astrophysics Data System (ADS)
Sauber, J.; Molnia, B. F.; Luthcke, S.; Rowlands, D.; Harding, D.; Carabajal, C.; Hurtado, J. M.; Spada, G.
2004-12-01
Although temperate mountain glaciers comprise less than 1% of the glacier-covered area on Earth, they are important because they appear to be melting rapidly under present climatic conditions and, therefore, make significant contributions to rising sea level. In this study, we use ICESat observations made in the last 1.5 years of southern Alaska glaciers to estimate ice elevation profiles, ice surface slopes and roughness, and bi-annual and/or annual ice elevation changes. We report initial results from the near coastal region between Yakutat Bay and Cape Suckling that includes the Malaspina and Bering Glaciers. We show and interpret ice elevations changes across the lower reaches of the Bagley Ice Valley for the period between October 2003 and May 2004. In addition, we use off-nadir pointing observations to reference tracks over the Bering and Malaspina Glaciers in order to estimate annual ice elevation change. Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and Shuttle Radar Topography Mission (SRTM) derived DEMs are used to estimate across track regional slopes between ICESat data acquisitions. Although the distribution and quantity of ICESat elevation profiles with multiple, exact repeat data is currently limited in Alaska, individual ICESat data tracks, provide an accurate reference surface for comparison to other elevation data (e.g. ASTER and SRTM X- and C-band derived DEMs). Specifically we report the elevation change over the Malaspina Glacier's piedmont lobe between a DEM derived from SRTM C-band data acquired in Feb. 2000 and ICESat Laser #2b data from Feb.-March 2004. We also report use of ICESat elevation data to enhance ASTER derived absolute DEMs. Mountain glaciers generally have rougher surfaces and steeper regional slopes than the ice sheets for which the ICESat design was optimized. Therefore, rather than averaging ICESat observations over large regions or relying on crossovers, we are working with well-located ICESat footprint returns to estimate glacier ice elevations and surface characteristics. To obtain the optimal ICESat results, we are reprocessing the ICESat data from Alaska to provide a well-calibrated regional ICESat solution. We anticipate that our ICESat results combined with earlier data will provide new constraints on the temporal and spatial variations in ice volume of individual Alaskan mountain ranges. These results allow us to address how recent melting of the southern Alaska glaciers contribute to short-term sea-level rise. Our results will also enable us to quantify crustal stress changes due to ice mass fluctuations and to assess the influence of ice mass changes on the seismically active southern Alaskan plate boundary zone.
Conmy, Robyn N; Coble, Paula G; Farr, James; Wood, A Michelle; Lee, Kenneth; Pegau, W Scott; Walsh, Ian D; Koch, Corey R; Abercrombie, Mary I; Miles, M Scott; Lewis, Marlon R; Ryan, Scott A; Robinson, Brian J; King, Thomas L; Kelble, Christopher R; Lacoste, Jordanna
2014-01-01
In situ fluorometers were deployed during the Deepwater Horizon (DWH) Gulf of Mexico oil spill to track the subsea oil plume. Uncertainties regarding instrument specifications and capabilities necessitated performance testing of sensors exposed to simulated, dispersed oil plumes. Dynamic ranges of the Chelsea Technologies Group AQUAtracka, Turner Designs Cyclops, Satlantic SUNA and WET Labs, Inc. ECO, exposed to fresh and artificially weathered crude oil, were determined. Sensors were standardized against known oil volumes and total petroleum hydrocarbons and benzene-toluene-ethylbenzene-xylene measurements-both collected during spills, providing oil estimates during wave tank dilution experiments. All sensors estimated oil concentrations down to 300 ppb oil, refuting previous reports. Sensor performance results assist interpretation of DWH oil spill data and formulating future protocols.
U.S. Transit Track Restraining Rail. Volume II : Guidelines.
DOT National Transportation Integrated Search
1981-12-01
This report covers a study of restraining rails in transit track, which is part of the current research program of UMTA and was initiated: (1) to assist in the analysis, design, and maintenance and operation of transit track; (2) to compile guideline...
NASA Technical Reports Server (NTRS)
Czabaj, M. W.; Riccio, M. L.; Whitacre, W. W.
2014-01-01
A combined experimental and computational study aimed at high-resolution 3D imaging, visualization, and numerical reconstruction of fiber-reinforced polymer microstructures at the fiber length scale is presented. To this end, a sample of graphite/epoxy composite was imaged at sub-micron resolution using a 3D X-ray computed tomography microscope. Next, a novel segmentation algorithm was developed, based on concepts adopted from computer vision and multi-target tracking, to detect and estimate, with high accuracy, the position of individual fibers in a volume of the imaged composite. In the current implementation, the segmentation algorithm was based on Global Nearest Neighbor data-association architecture, a Kalman filter estimator, and several novel algorithms for virtualfiber stitching, smoothing, and overlap removal. The segmentation algorithm was used on a sub-volume of the imaged composite, detecting 508 individual fibers. The segmentation data were qualitatively compared to the tomographic data, demonstrating high accuracy of the numerical reconstruction. Moreover, the data were used to quantify a) the relative distribution of individual-fiber cross sections within the imaged sub-volume, and b) the local fiber misorientation relative to the global fiber axis. Finally, the segmentation data were converted using commercially available finite element (FE) software to generate a detailed FE mesh of the composite volume. The methodology described herein demonstrates the feasibility of realizing an FE-based, virtual-testing framework for graphite/fiber composites at the constituent level.
Kamoi, Shun; Pretty, Christopher; Balmer, Joel; Davidson, Shaun; Pironet, Antoine; Desaive, Thomas; Shaw, Geoffrey M; Chase, J Geoffrey
2017-04-24
Pressure contour analysis is commonly used to estimate cardiac performance for patients suffering from cardiovascular dysfunction in the intensive care unit. However, the existing techniques for continuous estimation of stroke volume (SV) from pressure measurement can be unreliable during hemodynamic instability, which is inevitable for patients requiring significant treatment. For this reason, pressure contour methods must be improved to capture changes in vascular properties and thus provide accurate conversion from pressure to flow. This paper presents a novel pressure contour method utilizing pulse wave velocity (PWV) measurement to capture vascular properties. A three-element Windkessel model combined with the reservoir-wave concept are used to decompose the pressure contour into components related to storage and flow. The model parameters are identified beat-to-beat from the water-hammer equation using measured PWV, wave component of the pressure, and an estimate of subject-specific aortic dimension. SV is then calculated by converting pressure to flow using identified model parameters. The accuracy of this novel method is investigated using data from porcine experiments (N = 4 Pietrain pigs, 20-24.5 kg), where hemodynamic properties were significantly altered using dobutamine, fluid administration, and mechanical ventilation. In the experiment, left ventricular volume was measured using admittance catheter, and aortic pressure waveforms were measured at two locations, the aortic arch and abdominal aorta. Bland-Altman analysis comparing gold-standard SV measured by the admittance catheter and estimated SV from the novel method showed average limits of agreement of ±26% across significant hemodynamic alterations. This result shows the method is capable of estimating clinically acceptable absolute SV values according to Critchely and Critchely. The novel pressure contour method presented can accurately estimate and track SV even when hemodynamic properties are significantly altered. Integrating PWV measurements into pressure contour analysis improves identification of beat-to-beat changes in Windkessel model parameters, and thus, provides accurate estimate of blood flow from measured pressure contour. The method has great potential for overcoming weaknesses associated with current pressure contour methods for estimating SV.
A Technique for Generating Volumetric Cine-Magnetic Resonance Imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harris, Wendy; Ren, Lei, E-mail: lei.ren@duke.edu; Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
Purpose: The purpose of this study was to develop a techique to generate on-board volumetric cine-magnetic resonance imaging (VC-MRI) using patient prior images, motion modeling, and on-board 2-dimensional cine MRI. Methods and Materials: One phase of a 4-dimensional MRI acquired during patient simulation is used as patient prior images. Three major respiratory deformation patterns of the patient are extracted from 4-dimensional MRI based on principal-component analysis. The on-board VC-MRI at any instant is considered as a deformation of the prior MRI. The deformation field is represented as a linear combination of the 3 major deformation patterns. The coefficients of themore » deformation patterns are solved by the data fidelity constraint using the acquired on-board single 2-dimensional cine MRI. The method was evaluated using both digital extended-cardiac torso (XCAT) simulation of lung cancer patients and MRI data from 4 real liver cancer patients. The accuracy of the estimated VC-MRI was quantitatively evaluated using volume-percent-difference (VPD), center-of-mass-shift (COMS), and target tracking errors. Effects of acquisition orientation, region-of-interest (ROI) selection, patient breathing pattern change, and noise on the estimation accuracy were also evaluated. Results: Image subtraction of ground-truth with estimated on-board VC-MRI shows fewer differences than image subtraction of ground-truth with prior image. Agreement between normalized profiles in the estimated and ground-truth VC-MRI was achieved with less than 6% error for both XCAT and patient data. Among all XCAT scenarios, the VPD between ground-truth and estimated lesion volumes was, on average, 8.43 ± 1.52% and the COMS was, on average, 0.93 ± 0.58 mm across all time steps for estimation based on the ROI region in the sagittal cine images. Matching to ROI in the sagittal view achieved better accuracy when there was substantial breathing pattern change. The technique was robust against noise levels up to SNR = 20. For patient data, average tracking errors were less than 2 mm in all directions for all patients. Conclusions: Preliminary studies demonstrated the feasibility of generating real-time VC-MRI for on-board localization of moving targets in radiation therapy.« less
Southern Alaska Glaciers: Spatial and Temporal Variations in Ice Volume
NASA Technical Reports Server (NTRS)
Sauber, J.; Molnia, B. F.; Lutchke, S.; Rowlands, D.; Harding, D.; Carabajal, C.; Hurtado, J. M.; Spade, G.
2004-01-01
Although temperate mountain glaciers comprise less than 1% of the glacier-covered area on Earth, they are important because they appear to be melting rapidly under present climatic conditions and, therefore, make significant contributions to rising sea level. In this study, we use ICESat observations made in the last 1.5 years of southern Alaska glaciers to estimate ice elevation profiles, ice surface slopes and roughness, and bi-annual and/or annual ice elevation changes. We report initial results from the near coastal region between Yakutat Bay and Cape Suckling that includes the Malaspina and Bering Glaciers. We show and interpret ice elevations changes across the lower reaches of the Bagley Ice Valley for the period between October 2003 and May 2004. In addition, we use off-nadir pointing observations to reference tracks over the Bering and Malaspina Glaciers in order to estimate annual ice elevation change. Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and Shuttle Radar Topography Mission (SRTM) derived DEMs are used to estimate across track regional slopes between ICESat data acquisitions. Although the distribution and quantity of ICESat elevation profiles with multiple, exact repeat data is currently limited in Alaska, individual ICESat data tracks, provide an accurate reference surface for comparison to other elevation data (e.g. ASTER and SRTM X- and C-band derived DEMs). Specifically we report the elevation change over the Malaspina Glacier's piedmont lobe between a DEM derived from SRTM C-band data acquired in Feb. 2000 and ICESat Laser #2b data from Feb.-March 2004. We also report use of ICESat elevation data to enhance ASTER derived absolute DEMs. Mountain glaciers generally have rougher surfaces and steeper regional slopes than the ice sheets for which the ICESat design was optimized. Therefore, rather than averaging ICESat observations over large regions or relying on crossovers, we are working with well-located ICESat footprint returns to estimate glacier ice elevations and surface characteristics. Additional information is included in the original extended abstract.
Front tracking based modeling of the solid grain growth on the adaptive control volume grid
NASA Astrophysics Data System (ADS)
Seredyński, Mirosław; Łapka, Piotr
2017-07-01
The paper presents the micro-scale model of unconstrained solidification of the grain immersed in under-cooled liquid, based on the front tracking approach. For this length scale, the interface tracked through the domain is meant as the solid-liquid boundary. To prevent generation of huge meshes the energy transport equation is discretized on the adaptive control volume (c.v.) mesh. The coupling of dynamically changing mesh and moving front position is addressed. Preliminary results of simulation of a test case, the growth of single grain, are presented and discussed.
NASA Technical Reports Server (NTRS)
Long, W. C.
1988-01-01
The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed and analysis of the Communication and Tracking hardware, generating draft failure modes and potential critical items. The IOA results were then compared to the NASA FMEA/CIL baseline. A resolution of each discrepancy from the comparison is provided through additional analysis as required. This report documents the results of that comparison for the Orbiter Communication and Tracking hardware. Volume 2 continues the presentation of IOA worksheets.
Ambiguous data association and entangled attribute estimation
NASA Astrophysics Data System (ADS)
Trawick, David J.; Du Toit, Philip C.; Paffenroth, Randy C.; Norgard, Gregory J.
2012-05-01
This paper presents an approach to attribute estimation incorporating data association ambiguity. In modern tracking systems, time pressures often leave all but the most likely data association alternatives unexplored, possibly producing track inaccuracies. Numerica's Bayesian Network Tracking Database, a key part of its Tracker Adjunct Processor, captures and manages the data association ambiguity for further analysis and possible ambiguity reduction/resolution using subsequent data. Attributes are non-kinematic discrete sample space sensor data. They may be as distinctive as aircraft ID, or as broad as friend or foe. Attribute data may provide improvements to data association by a process known as Attribute Aided Tracking (AAT). Indeed, certain uniquely identifying attributes (e.g. aircraft ID), when continually reported, can be used to define data association (tracks are the collections of observations with the same ID). However, attribute data arriving infrequently, combined with erroneous choices from ambiguous data associations, can produce incorrect attribute and kinematic state estimation. Ambiguous data associations define the tracks that are entangled with each other. Attribute data observed on an entangled track then modify the attribute estimates on all tracks entangled with it. For example, if a red track and a blue track pass through a region of data association ambiguity, these tracks become entangled. Later red observations on one entangled track make the other track more blue, and reduce the data association ambiguity. Methods for this analysis have been derived and implemented for efficient forward filtering and forensic analysis.
Target motion tracking in MRI-guided transrectal robotic prostate biopsy.
Tadayyon, Hadi; Lasso, Andras; Kaushal, Aradhana; Guion, Peter; Fichtinger, Gabor
2011-11-01
MRI-guided prostate needle biopsy requires compensation for organ motion between target planning and needle placement. Two questions are studied and answered in this paper: 1) is rigid registration sufficient in tracking the targets with an error smaller than the clinically significant size of prostate cancer and 2) what is the effect of the number of intraoperative slices on registration accuracy and speed? we propose multislice-to-volume registration algorithms for tracking the biopsy targets within the prostate. Three orthogonal plus additional transverse intraoperative slices are acquired in the approximate center of the prostate and registered with a high-resolution target planning volume. Both rigid and deformable scenarios were implemented. Both simulated and clinical MRI-guided robotic prostate biopsy data were used to assess tracking accuracy. average registration errors in clinical patient data were 2.6 mm for the rigid algorithm and 2.1 mm for the deformable algorithm. rigid tracking appears to be promising. Three tracking slices yield significantly high registration speed with an affordable error.
NASA Astrophysics Data System (ADS)
Rabenstein, L.; Krumpen, T.; Hendricks, S.; Koeberle, C.; Haas, C.; Hoelemann, J. A.
2013-06-01
A combined interpretation of synthetic aperture radar (SAR) satellite images and helicopter electromagnetic (HEM) sea-ice thickness data has provided an estimate of sea-ice volume formed in Laptev Sea polynyas during the winter of 2007/08. The evolution of the surveyed sea-ice areas, which were formed between late December 2007 and middle April 2008, was tracked using a series of SAR images with a sampling interval of 2-3 days. Approximately 160 km of HEM data recorded in April 2008 provided sea-ice thicknesses along profiles that transected sea ice varying in age from 1 to 116 days. For the volume estimates, thickness information along the HEM profiles was extrapolated to zones of the same age. The error of areal mean thickness information was estimated to be between 0.2 m for younger ice and up to 1.55 m for older ice, with the primary error source being the spatially limited HEM coverage. Our results have demonstrated that the modal thicknesses and mean thicknesses of level ice correlated with the sea-ice age, but that varying dynamic and thermodynamic sea-ice growth conditions resulted in a rather heterogeneous sea-ice thickness distribution on scales of tens of kilometers. Taking all uncertainties into account, total sea-ice area and volume produced within the entire surveyed area were 52 650 km2 and 93.6 ± 26.6 km3. The surveyed polynya contributed 2.0 ± 0.5% of the sea-ice produced throughout the Arctic during the 2007/08 winter. The SAR-HEM volume estimate compares well with the 112 km3 ice production calculated with a~high-resolution ocean sea-ice model. Measured modal and mean-level ice thicknesses correlate with calculated freezing-degree-day thicknesses with a factor of 0.87-0.89, which was too low to justify the assumption of homogeneous thermodynamic growth conditions in the area, or indicates a strong dynamic thickening of level ice by rafting of even thicker ice.
NASA Astrophysics Data System (ADS)
Rabenstein, L.; Krumpen, T.; Hendricks, S.; Koeberle, C.; Haas, C.; Hoelemann, J. A.
2013-02-01
A combined interpretation of synthetic aperture radar (SAR) satellite images and helicopter electromagnetic (HEM) sea-ice thickness data has provided an estimate of sea-ice volume formed in Laptev Sea polynyas during the winter of 2007/08. The evolution of the surveyed sea-ice areas, which were formed between late December 2007 and middle April 2008, was tracked using a series of SAR images with a sampling interval of 2-3 days. Approximately 160 km of HEM data recorded in April 2008 provided sea-ice thicknesses along profiles that transected sea-ice varying in age from 1-116 days. For the volume estimates, thickness information along the HEM profiles was extrapolated to zones of the same age. The error of areal mean thickness information was estimated to be between 0.2 m for younger ice and up to 1.55 m for older ice, with the primary error source being the spatially limited HEM coverage. Our results have demonstrated that the modal thicknesses and mean thicknesses of level ice correlated with the sea-ice age, but that varying dynamic and thermodynamic sea-ice growth conditions resulted in a rather heterogeneous sea-ice thickness distribution on scales of tens of kilometers. Taking all uncertainties into account, total sea-ice area and volume produced within the entire surveyed area were 52 650 km2 and 93.6 ± 26.6 km3. The surveyed polynya contributed 2.0 ± 0.5% of the sea-ice produced throughout the Arctic during the 2007/08 winter. The SAR-HEM volume estimate compares well with the 112 km3 ice production calculated with a high resolution ocean sea-ice model. Measured modal and mean-level ice thicknesses correlate with calculated freezing-degree-day thicknesses with a factor of 0.87-0.89, which was too low to justify the assumption of homogeneous thermodynamic growth conditions in the area, or indicates a strong dynamic thickening of level ice by rafting of even thicker ice.
NASA Astrophysics Data System (ADS)
van den Akker, Mary Evelyn
Radon is considered the second-leading cause of lung cancer after smoking. Epidemiological studies have been conducted in miner cohorts as well as general populations to estimate the risks associated with high and low dose exposures. There are problems with extrapolating risk estimates to low dose exposures, mainly that the dose-response curve at low doses is not well understood. Calculated dosimetric quantities give average energy depositions in an organ or a whole body, but morphological features of an individual can affect these values. As opposed to human phantom models, Computed Tomography (CT) scans provide unique, patient-specific geometries that are valuable in modeling the radiological effects of the short-lived radon progeny sources. Monte Carlo particle transport code Geant4 was used with the CT scan data to model radon inhalation in the main bronchial bifurcation. The equivalent dose rates are near the lower bounds of estimates found in the literature, depending on source volume. To complement the macroscopic study, simulations were run in a small tissue volume in Geant4-DNA toolkit. As an expansion of Geant4 meant to simulate direct physical interactions at the cellular level, the particle track structure of the radon progeny alphas can be analyzed to estimate the damage that can occur in sensitive cellular structures like the DNA molecule. These estimates of DNA double strand breaks are lower than those found in Geant4-DNA studies. Further refinements of the microscopic model are at the cutting edge of nanodosimetry research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makedonska, Nataliia; Painter, Scott L.; Bui, Quan M.
The discrete fracture network (DFN) model is a method to mimic discrete pathways for fluid flow through a fractured low-permeable rock mass, and may be combined with particle tracking simulations to address solute transport. However, experience has shown that it is challenging to obtain accurate transport results in three-dimensional DFNs because of the high computational burden and difficulty in constructing a high-quality unstructured computational mesh on simulated fractures. We present a new particle tracking capability, which is adapted to control volume (Voronoi polygons) flow solutions on unstructured grids (Delaunay triangulations) on three-dimensional DFNs. The locally mass-conserving finite-volume approach eliminates massmore » balance-related problems during particle tracking. The scalar fluxes calculated for each control volume face by the flow solver are used to reconstruct a Darcy velocity at each control volume centroid. The groundwater velocities can then be continuously interpolated to any point in the domain of interest. The control volumes at fracture intersections are split into four pieces, and the velocity is reconstructed independently on each piece, which results in multiple groundwater velocities at the intersection, one for each fracture on each side of the intersection line. This technique enables detailed particle transport representation through a complex DFN structure. Verified for small DFNs, the new simulation capability enables numerical experiments on advective transport in large DFNs to be performed. As a result, we demonstrate this particle transport approach on a DFN model using parameters similar to those of crystalline rock at a proposed geologic repository for spent nuclear fuel in Forsmark, Sweden.« less
Makedonska, Nataliia; Painter, Scott L.; Bui, Quan M.; ...
2015-09-16
The discrete fracture network (DFN) model is a method to mimic discrete pathways for fluid flow through a fractured low-permeable rock mass, and may be combined with particle tracking simulations to address solute transport. However, experience has shown that it is challenging to obtain accurate transport results in three-dimensional DFNs because of the high computational burden and difficulty in constructing a high-quality unstructured computational mesh on simulated fractures. We present a new particle tracking capability, which is adapted to control volume (Voronoi polygons) flow solutions on unstructured grids (Delaunay triangulations) on three-dimensional DFNs. The locally mass-conserving finite-volume approach eliminates massmore » balance-related problems during particle tracking. The scalar fluxes calculated for each control volume face by the flow solver are used to reconstruct a Darcy velocity at each control volume centroid. The groundwater velocities can then be continuously interpolated to any point in the domain of interest. The control volumes at fracture intersections are split into four pieces, and the velocity is reconstructed independently on each piece, which results in multiple groundwater velocities at the intersection, one for each fracture on each side of the intersection line. This technique enables detailed particle transport representation through a complex DFN structure. Verified for small DFNs, the new simulation capability enables numerical experiments on advective transport in large DFNs to be performed. As a result, we demonstrate this particle transport approach on a DFN model using parameters similar to those of crystalline rock at a proposed geologic repository for spent nuclear fuel in Forsmark, Sweden.« less
USA Track & Field Coaching Manual. USA Track & Field.
ERIC Educational Resources Information Center
USA Track and Field, Inc., Indianapolis, IN.
This book presents comprehensive, ready-to-apply information from 33 world-class coaches and experts about major track and field events for high school and college coaches. The volume features proven predictive testing procedures; detailed event-specific technique instruction; carefully crafted training programs; and preparation and performance…
U.S. Transit Track Restraining Rail. Volume I : Study of Requirements and Practices
DOT National Transportation Integrated Search
1981-12-01
This report covers a study of restraining rails in transit track, which is part of the current research program of UMTA and was initiated: (1) to assist in the analysis, design, and maintenance and operation of transit track; (2) to compile guideline...
Accuracy of the NDI Wave Speech Research System
ERIC Educational Resources Information Center
Berry, Jeffrey J.
2011-01-01
Purpose: This work provides a quantitative assessment of the positional tracking accuracy of the NDI Wave Speech Research System. Method: Three experiments were completed: (a) static rigid-body tracking across different locations in the electromagnetic field volume, (b) dynamic rigid-body tracking across different locations within the…
NASA Astrophysics Data System (ADS)
Bektešević, Dino; Vinković, Dejan; Rasmussen, Andrew; Ivezić, Željko
2018-03-01
Given the current limited knowledge of meteor plasma micro-physics and its interaction with the surrounding atmosphere and ionosphere, meteors are a highly interesting observational target for high-resolution wide-field astronomical surveys. Such surveys are capable of resolving the physical size of meteor plasma heads, but they produce large volumes of images that need to be automatically inspected for possible existence of long linear features produced by meteors. Here, we show how big aperture sky survey telescopes detect meteors as defocused tracks with a central brightness depression. We derive an analytic expression for a defocused point source meteor track and use it to calculate brightness profiles of meteors modelled as uniform brightness discs. We apply our modelling to meteor images as seen by the Sloan Digital Sky Survey and Large Synoptic Survey Telescope telescopes. The expression is validated by Monte Carlo ray-tracing simulations of photons travelling through the atmosphere and the Large Synoptic Survey Telescope telescope optics. We show that estimates of the meteor distance and size can be extracted from the measured full width at half-maximum and the strength of the central dip in the observed brightness profile. However, this extraction becomes difficult when the defocused meteor track is distorted by the atmospheric seeing or contaminated by a long-lasting glowing meteor trail. The full width at half-maximum of satellite tracks is distinctly narrower than meteor values, which enables removal of a possible confusion between satellites and meteors.
Improved and Robust Detection of Cell Nuclei from Four Dimensional Fluorescence Images
Bashar, Md. Khayrul; Yamagata, Kazuo; Kobayashi, Tetsuya J.
2014-01-01
Segmentation-free direct methods are quite efficient for automated nuclei extraction from high dimensional images. A few such methods do exist but most of them do not ensure algorithmic robustness to parameter and noise variations. In this research, we propose a method based on multiscale adaptive filtering for efficient and robust detection of nuclei centroids from four dimensional (4D) fluorescence images. A temporal feedback mechanism is employed between the enhancement and the initial detection steps of a typical direct method. We estimate the minimum and maximum nuclei diameters from the previous frame and feed back them as filter lengths for multiscale enhancement of the current frame. A radial intensity-gradient function is optimized at positions of initial centroids to estimate all nuclei diameters. This procedure continues for processing subsequent images in the sequence. Above mechanism thus ensures proper enhancement by automated estimation of major parameters. This brings robustness and safeguards the system against additive noises and effects from wrong parameters. Later, the method and its single-scale variant are simplified for further reduction of parameters. The proposed method is then extended for nuclei volume segmentation. The same optimization technique is applied to final centroid positions of the enhanced image and the estimated diameters are projected onto the binary candidate regions to segment nuclei volumes.Our method is finally integrated with a simple sequential tracking approach to establish nuclear trajectories in the 4D space. Experimental evaluations with five image-sequences (each having 271 3D sequential images) corresponding to five different mouse embryos show promising performances of our methods in terms of nuclear detection, segmentation, and tracking. A detail analysis with a sub-sequence of 101 3D images from an embryo reveals that the proposed method can improve the nuclei detection accuracy by 9 over the previous methods, which used inappropriate large valued parameters. Results also confirm that the proposed method and its variants achieve high detection accuracies ( 98 mean F-measure) irrespective of the large variations of filter parameters and noise levels. PMID:25020042
Vegetation associated with different walking track types in the Kosciuszko alpine area, Australia.
Hill, Wendy; Pickering, Catherine Marina
2006-01-01
Tourism infrastructure such as walking tracks can have negative effects on vegetation including in mountain regions. In the alpine area around continental Australia's highest mountain, Mt Kosciuszko (2228 m), there is a range of walking tracks (paved, gravel and raised steel mesh surfaces) in addition to an extensive network of informal/non-hardened tracks. Vegetation characteristics were compared between track types on/under tracks, on the track verge, and in the adjacent native vegetation. For a raised steel mesh walkway there was no difference in vegetation under the walkway, on the verge, and 3m away. In contrast, for a non-hardened track there was 35% bare ground on the track surface but no other detectable impacts. Gravel and paved tracks had distinct verges largely comprising bare ground and exotic species. For non-hardened tracks there was an estimated 270 m2 of disturbance per km of track. For wide gravel tracks the combined area of bare ground, exotic plants and gravel was estimated as 4290 m2 per km, while for narrow gravel tracks it was estimated as 2940 m2 per km. For paved tracks there was around 2680 m2 per km of damage. In contrast, there was no detectable effect of raised steel mesh walkway on vegetation highlighting some of the benefits of this surface over other track types.
Long-term comparison of Kuparuk Watershed active layer maps, northern Alaska, USA
NASA Astrophysics Data System (ADS)
Nyland, K. E.; Queen, C.; Nelson, F. E.; Shiklomanov, N. I.; Streletskiy, D. A.; Klene, A. E.
2017-12-01
The active layer, or the uppermost soil horizon that thaws seasonally, is among the most dynamic components of the permafrost system. Evaluation of the thickness and spatial variation of the active layer is critical to many components of Arctic research, including climatology, ecology, environmental monitoring, and engineering. In this study we mapped active-layer thickness (ALT) across the 22,278 sq. km Kuparuk River basin on Alaska's North Slope throughout the summer of 2016. The Kuparuk River extends from the Brooks Range through the Arctic Foothills and across the Arctic Coastal Plain physiographic provinces, and drains into the Beaufort Sea. Methodology followed procedures used to produce an ALT map of the basin in 1995 accounting for the effects of topography, vegetation, topoclimate, and soils, using the same spatial sampling scheme for direct ALT and temperature measurement at representative locations and relating these parameters to vegetation-soil associations. A simple semi-empirical engineering solution was used to estimate thaw rates for the different associations. An improved lapse-rate formulation and a higher-resolution DEM were used to relate temperature to elevation. Three ALT maps were generated for the 2016 summer, combining measured thaw depth, temperature records, the 25 m ArcticDEM, high resolution remote sensed data, empirical laps rates, and a topoclimatic index through the thaw solution. These maps were used to track the spatial progression of thaw through the 2016 summer season and estimate a total volume of thawed soil. Maps produced in this study were compared to the 1995 map to track areas of significant geographic changes in patterns of ALT and total volume of thawed soil.
Adaptation of reference volumes for correlation-based digital holographic particle tracking
NASA Astrophysics Data System (ADS)
Hesseling, Christina; Peinke, Joachim; Gülker, Gerd
2018-04-01
Numerically reconstructed reference volumes tailored to particle images are used for particle position detection by means of three-dimensional correlation. After a first tracking of these positions, the experimentally recorded particle images are retrieved as a posteriori knowledge about the particle images in the system. This knowledge is used for a further refinement of the detected positions. A transparent description of the individual algorithm steps including the results retrieved with experimental data complete the paper. The work employs extraordinarily small particles, smaller than the pixel pitch of the camera sensor. It is the first approach known to the authors that combines numerical knowledge about particle images and particle images retrieved from the experimental system to an iterative particle tracking approach for digital holographic particle tracking velocimetry.
Fusion-based multi-target tracking and localization for intelligent surveillance systems
NASA Astrophysics Data System (ADS)
Rababaah, Haroun; Shirkhodaie, Amir
2008-04-01
In this paper, we have presented two approaches addressing visual target tracking and localization in complex urban environment. The two techniques presented in this paper are: fusion-based multi-target visual tracking, and multi-target localization via camera calibration. For multi-target tracking, the data fusion concepts of hypothesis generation/evaluation/selection, target-to-target registration, and association are employed. An association matrix is implemented using RGB histograms for associated tracking of multi-targets of interests. Motion segmentation of targets of interest (TOI) from the background was achieved by a Gaussian Mixture Model. Foreground segmentation, on other hand, was achieved by the Connected Components Analysis (CCA) technique. The tracking of individual targets was estimated by fusing two sources of information, the centroid with the spatial gating, and the RGB histogram association matrix. The localization problem is addressed through an effective camera calibration technique using edge modeling for grid mapping (EMGM). A two-stage image pixel to world coordinates mapping technique is introduced that performs coarse and fine location estimation of moving TOIs. In coarse estimation, an approximate neighborhood of the target position is estimated based on nearest 4-neighbor method, and in fine estimation, we use Euclidean interpolation to localize the position within the estimated four neighbors. Both techniques were tested and shown reliable results for tracking and localization of Targets of interests in complex urban environment.
NASA Astrophysics Data System (ADS)
Wilcox, C.; Ford, J.
2016-12-01
Crimes involving fishers impose significant costs on fisheries, managers and national governments. These crimes also lead to unsustainable harvesting practices, as they undermine both knowledge of the status of fisheries stocks and limits on their harvesting. One of the greatest contributors to fisheries crimes globally is transfer of fish catch among vessels, otherwise known as transshipment. While legal transshipment provides economic advantages to vessels by increasing their efficiency, illegal transshipment can allow them to avoid regulations, catch prohibited species, and fish with impunity in prohibited locations such as waters of foreign countries. Despite the presence of a number of monitoring technologies for tracking fishing vessels, transshipment is frequently done clandestinely. Here we present a statistical model for transshipment in a Southeast Asian tuna fishery. We utilize both spatial and temporal information on vessel movement patterns in a statistical model to infer unobserved transshipment events among vessels. We provide a risk analysis framework for forecasting likely transshipment events, based on our analysis of vessel movement patterns. The tools we present are widely applicable to a variety of fisheries and types of tracking data, allowing managers to more effectively screen the large volume of data tracking systems create and quickly identify suspicious behavior.
Kranstauber, Bart; Kays, Roland; Lapoint, Scott D; Wikelski, Martin; Safi, Kamran
2012-07-01
1. The recently developed Brownian bridge movement model (BBMM) has advantages over traditional methods because it quantifies the utilization distribution of an animal based on its movement path rather than individual points and accounts for temporal autocorrelation and high data volumes. However, the BBMM assumes unrealistic homogeneous movement behaviour across all data. 2. Accurate quantification of the utilization distribution is important for identifying the way animals use the landscape. 3. We improve the BBMM by allowing for changes in behaviour, using likelihood statistics to determine change points along the animal's movement path. 4. This novel extension, outperforms the current BBMM as indicated by simulations and examples of a territorial mammal and a migratory bird. The unique ability of our model to work with tracks that are not sampled regularly is especially important for GPS tags that have frequent failed fixes or dynamic sampling schedules. Moreover, our model extension provides a useful one-dimensional measure of behavioural change along animal tracks. 5. This new method provides a more accurate utilization distribution that better describes the space use of realistic, behaviourally heterogeneous tracks. © 2012 The Authors. Journal of Animal Ecology © 2012 British Ecological Society.
NASA Technical Reports Server (NTRS)
Ohkubo, K.; Han, C. C.; Albernaz, J.; Janky, J. M.; Lusignan, B. B.
1972-01-01
The antenna characteristics are analyzed of a low cost mass-producible ground station to be used in broadcast satellite systems. It is found that a prime focus antenna is sufficient for a low-cost but not a low noise system. For the antenna feed waveguide systems are the best choice for the 12 GHz band, while printed-element systems are recommended for the 2.6 GHz band. Zoned reflectors are analyzed and appear to be attractive from the standpoint of cost. However, these reflectors suffer a gain reduction of about one db and a possible increase in sidelobe levels. The off-axis gain of a non-auto-tracking station can be optimized by establishing a special illumination function at the reflector aperture. A step-feed tracking system is proposed to provide automatic procedures for searching for peak signal from a geostationary satellite. This system uses integrated circuitry and therefore results in cost saving under mass production. It is estimated that a complete step-track system would cost only $512 for a production quantity of 1000 units per year.
Centralized Multi-Sensor Square Root Cubature Joint Probabilistic Data Association
Liu, Jun; Li, Gang; Qi, Lin; Li, Yaowen; He, You
2017-01-01
This paper focuses on the tracking problem of multiple targets with multiple sensors in a nonlinear cluttered environment. To avoid Jacobian matrix computation and scaling parameter adjustment, improve numerical stability, and acquire more accurate estimated results for centralized nonlinear tracking, a novel centralized multi-sensor square root cubature joint probabilistic data association algorithm (CMSCJPDA) is proposed. Firstly, the multi-sensor tracking problem is decomposed into several single-sensor multi-target tracking problems, which are sequentially processed during the estimation. Then, in each sensor, the assignment of its measurements to target tracks is accomplished on the basis of joint probabilistic data association (JPDA), and a weighted probability fusion method with square root version of a cubature Kalman filter (SRCKF) is utilized to estimate the targets’ state. With the measurements in all sensors processed CMSCJPDA is derived and the global estimated state is achieved. Experimental results show that CMSCJPDA is superior to the state-of-the-art algorithms in the aspects of tracking accuracy, numerical stability, and computational cost, which provides a new idea to solve multi-sensor tracking problems. PMID:29113085
Centralized Multi-Sensor Square Root Cubature Joint Probabilistic Data Association.
Liu, Yu; Liu, Jun; Li, Gang; Qi, Lin; Li, Yaowen; He, You
2017-11-05
This paper focuses on the tracking problem of multiple targets with multiple sensors in a nonlinear cluttered environment. To avoid Jacobian matrix computation and scaling parameter adjustment, improve numerical stability, and acquire more accurate estimated results for centralized nonlinear tracking, a novel centralized multi-sensor square root cubature joint probabilistic data association algorithm (CMSCJPDA) is proposed. Firstly, the multi-sensor tracking problem is decomposed into several single-sensor multi-target tracking problems, which are sequentially processed during the estimation. Then, in each sensor, the assignment of its measurements to target tracks is accomplished on the basis of joint probabilistic data association (JPDA), and a weighted probability fusion method with square root version of a cubature Kalman filter (SRCKF) is utilized to estimate the targets' state. With the measurements in all sensors processed CMSCJPDA is derived and the global estimated state is achieved. Experimental results show that CMSCJPDA is superior to the state-of-the-art algorithms in the aspects of tracking accuracy, numerical stability, and computational cost, which provides a new idea to solve multi-sensor tracking problems.
Applications of Gas Imaging Micro-Well Detectors to an Advanced Compton Telescope
NASA Technical Reports Server (NTRS)
Bloser, P. F.; Hunter, S. D.; Ryan, J. M.; McConnell, M. L.; Miller, R. S.; Jackson, T. N.; Bai, B.; Jung, S.
2003-01-01
We present a concept for an Advanced Compton Telescope (ACT) based on the use of pixelized gas micro-well detectors to form a three-dimensional electron track imager. A micro-well detector consists of an array of individual micro-patterned proportional counters opposite a planar drift electrode. When combined with thin film transistor array readouts, large gas volumes may be imaged with very good spatial and energy resolution at reasonable cost. The third dimension is determined by timing the drift of the ionization electrons. The primary advantage of this approach is the excellent tracking of the Compton recoil electron that is possible in a gas volume. Such good electron tracking allows us to reduce the point spread function of a single incident photon dramatically, greatly improving the imaging capability and sensitivity. The polarization sensitivity, which relies on events with large Compton scattering angles, is particularly enhanced. We describe a possible ACT implementation of this technique, in which the gas tracking volume is surrounded by a CsI calorimeter, and present our plans to build and test a small prototype over the next three years.
Iwata, Hiromitsu; Inoue, Mitsuhiro; Shiomi, Hiroya; Murai, Taro; Tatewaki, Koshi; Ohta, Seiji; Okawa, Kohei; Yokota, Naoki; Shibamoto, Yuta
2016-02-01
We investigated the dose uncertainty caused by errors in real-time tracking intensity-modulated radiation therapy (IMRT) using the CyberKnife Synchrony Respiratory Tracking System (SRTS). Twenty lung tumors that had been treated with non-IMRT real-time tracking using CyberKnife SRTS were used for this study. After validating the tracking error in each case, we did 40 IMRT planning using 8 different collimator sizes for the 20 patients. The collimator size was determined for each planning target volume (PTV); smaller ones were one-half, and larger ones three-quarters, of the PTV diameter. The planned dose was 45 Gy in 4 fractions prescribed at 95% volume border of the PTV. Thereafter, the tracking error in each case was substituted into calculation software developed in house and randomly added in the setting of each beam. The IMRT planning incorporating tracking errors was simulated 1000 times, and various dose data on the clinical target volume (CTV) were compared with the original data. The same simulation was carried out by changing the fraction number from 1 to 6 in each IMRT plan. Finally, a total of 240 000 plans were analyzed. With 4 fractions, the change in the CTV maximum and minimum doses was within 3.0% (median) for each collimator. The change in D99 and D95 was within 2.0%. With decreases in the fraction number, the CTV coverage rate and the minimum dose decreased and varied greatly. The accuracy of real-time tracking IMRT delivered in 4 fractions using CyberKnife SRTS was considered to be clinically acceptable. © The Author(s) 2014.
Sensor Management for Fighter Applications
2006-06-01
has consistently shown that by directly estimating the prob- ability density of a target state using a track - before - detect scheme, weak and densely... track - before - detect nonlinear filter was constructed to estimate the joint density of all state variables. A simulation that emulates estimator...targets in clutter and noise from sensed kinematic and identity data. Among the most capable is track - before - detect (TBD), which delivers
Impact of a scholarly track on quality of residency program applicants.
Celebi, Julie M; Nguyen, Cathina T; Sattler, Amelia L; Stevens, Michael B; Lin, Steven Y
2016-11-01
It is generally believed that residency programs offering scholarly tracks attract higher quality applicants, although there is little evidence of this in the literature. We explored the impact of a clinician-educator track on the quality of applicants to our residency program by comparing the volume and characteristics of applicants before (2008-2011) and after (2012-2015) the track was introduced. The total number of applications received was compared between the pre-track and post-track years. Among interviewees, data on United States Medical Licensing Examination (USMLE) Step 1 scores, Step 2 Clinical Knowledge (CK) scores, Medical Student Performance Evaluation (MSPE) scores, and proportion of candidates with an advanced degree (e.g. MPH, PhD) were compared. An online survey was administered to all interviewees in 2014-2015 to measure interest in the track. The total number of applications to the residency program increased significantly from the pre-track to the post-track years. Compared to the pre-track years, interviewees during the post-track years had statistically higher USMLE Step 1 and Step 2 CK scores, better MSPE scores, and were more likely to have an advanced degree. Two-thirds of survey respondents reported that the track increased their interest in the residency program. A residency clinician-educator track may be associated with increased overall interest from applicants, higher application volume, and better measures of applicant quality based on USMLE scores, MSPE scores, and proportion of candidates with an advanced degree. Residency programs may consider a potential increase in the quality of their applicants as an added benefit of offering a scholarly track.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, C; Yin, F; Harris, W
Purpose: To develop a technique generating ultrafast on-board VC-MRI using prior 4D-MRI and on-board phase-skipped encoding k-space acquisition for real-time 3D target tracking of liver and lung radiotherapy. Methods: The end-of-expiration (EOE) volume in 4D-MRI acquired during the simulation was selected as the prior volume. 3 major respiratory deformation patterns were extracted through the principal component analysis of the deformation field maps (DFMs) generated between EOE and all other phases. The on-board VC-MRI at each instant was considered as a deformation of the prior volume, and the deformation was modeled as a linear combination of the extracted 3 major deformationmore » patterns. To solve the weighting coefficients of the 3 major patterns, a 2D slice was extracted from VC-MRI volume to match with the 2D on-board sampling data, which was generated by 8-fold phase skipped-encoding k-space acquisition (i.e., sample 1 phase-encoding line out of every 8 lines) to achieve an ultrafast 16–24 volumes/s frame rate. The method was evaluated using XCAT digital phantom to simulate lung cancer patients. The 3D volume of end-ofinhalation (EOI) phase at the treatment day was used as ground-truth onboard VC-MRI with simulated changes in 1) breathing amplitude and 2) breathing amplitude/phase change from the simulation day. A liver cancer patient case was evaluated for in-vivo feasibility demonstration. Results: The comparison between ground truth and estimated on-board VC-MRI shows good agreements. In XCAT study with changed breathing amplitude, the volume-percent-difference(VPD) between ground-truth and estimated tumor volumes at EOI was 6.28% and the Center-of-Mass-Shift(COMS) was 0.82mm; with changed breathing amplitude and phase, the VPD was 8.50% and the COMS was 0.54mm. The study of liver patient case also demonstrated a promising in vivo feasibility of the proposed method Conclusion: Preliminary results suggest the feasibility to estimate ultrafast VC-MRI for on-board target localization with phase skipped-encoding k-space acquisition. Research grant from NIH R01-184173.« less
Ureter tracking and segmentation in CT urography (CTU) using COMPASS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hadjiiski, Lubomir, E-mail: lhadjisk@umich.edu; Zick, David; Chan, Heang-Ping
2014-12-15
Purpose: The authors are developing a computerized system for automated segmentation of ureters in CTU, referred to as combined model-guided path-finding analysis and segmentation system (COMPASS). Ureter segmentation is a critical component for computer-aided diagnosis of ureter cancer. Methods: COMPASS consists of three stages: (1) rule-based adaptive thresholding and region growing, (2) path-finding and propagation, and (3) edge profile extraction and feature analysis. With institutional review board approval, 79 CTU scans performed with intravenous (IV) contrast material enhancement were collected retrospectively from 79 patient files. One hundred twenty-four ureters were selected from the 79 CTU volumes. On average, the uretersmore » spanned 283 computed tomography slices (range: 116–399, median: 301). More than half of the ureters contained malignant or benign lesions and some had ureter wall thickening due to malignancy. A starting point for each of the 124 ureters was identified manually to initialize the tracking by COMPASS. In addition, the centerline of each ureter was manually marked and used as reference standard for evaluation of tracking performance. The performance of COMPASS was quantitatively assessed by estimating the percentage of the length that was successfully tracked and segmented for each ureter and by estimating the average distance and the average maximum distance between the computer and the manually tracked centerlines. Results: Of the 124 ureters, 120 (97%) were segmented completely (100%), 121 (98%) were segmented through at least 70%, and 123 (99%) were segmented through at least 50% of its length. In comparison, using our previous method, 85 (69%) ureters were segmented completely (100%), 100 (81%) were segmented through at least 70%, and 107 (86%) were segmented at least 50% of its length. With COMPASS, the average distance between the computer and the manually generated centerlines is 0.54 mm, and the average maximum distance is 2.02 mm. With our previous method, the average distance between the centerlines was 0.80 mm, and the average maximum distance was 3.38 mm. The improvements in the ureteral tracking length and both distance measures were statistically significant (p < 0.0001). Conclusions: COMPASS improved significantly the ureter tracking, including regions across ureter lesions, wall thickening, and the narrowing of the lumen.« less
Chow, Ian; Alghoul, Mohammed S; Khavanin, Nima; Hanwright, Philip J; Mayer, Kristen E; Hume, Keith M; Murphy, Robert X; Gutowski, Karol A; Kim, John Y S
2015-09-01
No concrete data exist to support a specific volume at which liposuction becomes unsafe; surgeons rely on their own estimates, professional organization advisories, or institutional or government-imposed restrictions. This study represents the first attempt to quantify the comprehensive risk associated with varying liposuction volumes and its interaction with body mass index. Suction-assisted lipectomies were identified from the Tracking Operations and Outcomes for Plastic Surgeons database. Multivariate regression models incorporating the interaction between liposuction volume and body mass index were used to assess the influence of liposuction volume on complications and to develop a tool that returns a single adjusted odds ratio for any combination of body mass index and liposuction volume. Recursive partitioning was used to determine whether exceeding a threshold in liposuction volume per body mass index unit significantly increased complications. Sixty-nine of 4534 patients (1.5 percent) meeting inclusion criteria experienced a postoperative complication. Liposuction volume and body mass index were significant independent risk factors for complications. With progressively higher volumes, increasing body mass index reduced risk (OR, 0.99; 95 percent CI, 0.98 to 0.99; p = 0.007). Liposuction volumes in excess of 100 ml per unit of body mass index were an independent predictor of complications (OR, 4.58; 95 percent CI, 2.60 to 8.05; p < 0.001). Liposuction by board-certified plastic surgeons is safe, with a low risk of life-threatening complications. Traditional liposuction volume thresholds do not accurately convey individualized risk. The authors' risk assessment model demonstrates that volumes in excess of 100 ml per unit of body mass index confer an increased risk of complications. Therapeutic, III.
Youth Attitude Tracking Study. Volume 1. Spring 1980.
1980-08-01
JobICharacteristics 11 Active Duty Positive Propensity Respondents Target Market Profile 13 Advertising Awareness 14 ’LIAttitudes Toward Enlistment Incentives...service advertising awareness. The fact that target market men value job characteristics that pertain to improving oneself suggests that this change in copy...W,0-R143 ii4 YOUTH ATTITUDE TRACKING STUDY VOLUME i SPRING i988(U) 1/3 MARKET FACTS INC CHICAGO IL PUBLIC SECTOR RESEARCH CORP J T HEISLER AUG 80
Estimating Aircraft Heading Based on Laserscanner Derived Point Clouds
NASA Astrophysics Data System (ADS)
Koppanyi, Z.; Toth, C., K.
2015-03-01
Using LiDAR sensors for tracking and monitoring an operating aircraft is a new application. In this paper, we present data processing methods to estimate the heading of a taxiing aircraft using laser point clouds. During the data acquisition, a Velodyne HDL-32E laser scanner tracked a moving Cessna 172 airplane. The point clouds captured at different times were used for heading estimation. After addressing the problem and specifying the equation of motion to reconstruct the aircraft point cloud from the consecutive scans, three methods are investigated here. The first requires a reference model to estimate the relative angle from the captured data by fitting different cross-sections (horizontal profiles). In the second approach, iterative closest point (ICP) method is used between the consecutive point clouds to determine the horizontal translation of the captured aircraft body. Regarding the ICP, three different versions were compared, namely, the ordinary 3D, 3-DoF 3D and 2-DoF 3D ICP. It was found that 2-DoF 3D ICP provides the best performance. Finally, the last algorithm searches for the unknown heading and velocity parameters by minimizing the volume of the reconstructed plane. The three methods were compared using three test datatypes which are distinguished by object-sensor distance, heading and velocity. We found that the ICP algorithm fails at long distances and when the aircraft motion direction perpendicular to the scan plane, but the first and the third methods give robust and accurate results at 40m object distance and at ~12 knots for a small Cessna airplane.
Sliding mode output feedback control based on tracking error observer with disturbance estimator.
Xiao, Lingfei; Zhu, Yue
2014-07-01
For a class of systems who suffers from disturbances, an original output feedback sliding mode control method is presented based on a novel tracking error observer with disturbance estimator. The mathematical models of the systems are not required to be with high accuracy, and the disturbances can be vanishing or nonvanishing, while the bounds of disturbances are unknown. By constructing a differential sliding surface and employing reaching law approach, a sliding mode controller is obtained. On the basis of an extended disturbance estimator, a creative tracking error observer is produced. By using the observation of tracking error and the estimation of disturbance, the sliding mode controller is implementable. It is proved that the disturbance estimation error and tracking observation error are bounded, the sliding surface is reachable and the closed-loop system is robustly stable. The simulations on a servomotor positioning system and a five-degree-of-freedom active magnetic bearings system verify the effect of the proposed method. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Shinn, J. L.; Cucinotta, F. A.; Badhwar, G. D.; ONeill, P. M.; Badavi, F. F.
1995-01-01
Recent improvements in the radiation transport code HZETRN/BRYNTRN and galactic cosmic ray environmental model have provided an opportunity to investigate the effects of target fragmentation on estimates of single event upset (SEU) rates for spacecraft memory devices. Since target fragments are mostly of very low energy, an SEU prediction model has been derived in terms of particle energy rather than linear energy transfer (LET) to account for nonlinear relationship between range and energy. Predictions are made for SEU rates observed on two Shuttle flights, each at low and high inclination orbit. Corrections due to track structure effects are made for both high energy ions with track structure larger than device sensitive volume and for low energy ions with dense track where charge recombination is important. Results indicate contributions from target fragments are relatively important at large shield depths (or any thick structure material) and at low inclination orbit. Consequently, a more consistent set of predictions for upset rates observed in these two flights is reached when compared to an earlier analysis with CREME model. It is also observed that the errors produced by assuming linear relationship in range and energy in the earlier analysis have fortuitously canceled out the errors for not considering target fragmentation and track structure effects.
A mathematical model for computer image tracking.
Legters, G R; Young, T Y
1982-06-01
A mathematical model using an operator formulation for a moving object in a sequence of images is presented. Time-varying translation and rotation operators are derived to describe the motion. A variational estimation algorithm is developed to track the dynamic parameters of the operators. The occlusion problem is alleviated by using a predictive Kalman filter to keep the tracking on course during severe occlusion. The tracking algorithm (variational estimation in conjunction with Kalman filter) is implemented to track moving objects with occasional occlusion in computer-simulated binary images.
Estimation of contour motion and deformation for nonrigid object tracking
NASA Astrophysics Data System (ADS)
Shao, Jie; Porikli, Fatih; Chellappa, Rama
2007-08-01
We present an algorithm for nonrigid contour tracking in heavily cluttered background scenes. Based on the properties of nonrigid contour movements, a sequential framework for estimating contour motion and deformation is proposed. We solve the nonrigid contour tracking problem by decomposing it into three subproblems: motion estimation, deformation estimation, and shape regulation. First, we employ a particle filter to estimate the global motion parameters of the affine transform between successive frames. Then we generate a probabilistic deformation map to deform the contour. To improve robustness, multiple cues are used for deformation probability estimation. Finally, we use a shape prior model to constrain the deformed contour. This enables us to retrieve the occluded parts of the contours and accurately track them while allowing shape changes specific to the given object types. Our experiments show that the proposed algorithm significantly improves the tracker performance.
Combining four Monte Carlo estimators for radiation momentum deposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Urbatsch, Todd J; Hykes, Joshua M
2010-11-18
Using four distinct Monte Carlo estimators for momentum deposition - analog, absorption, collision, and track-length estimators - we compute a combined estimator. In the wide range of problems tested, the combined estimator always has a figure of merit (FOM) equal to or better than the other estimators. In some instances the gain in FOM is only a few percent higher than the FOM of the best solo estimator, the track-length estimator, while in one instance it is better by a factor of 2.5. Over the majority of configurations, the combined estimator's FOM is 10-20% greater than any of the solomore » estimators FOM. In addition, the numerical results show that the track-length estimator is the most important term in computing the combined estimator, followed far behind by the analog estimator. The absorption and collision estimators make negligible contributions.« less
Sun, Lihua; Wang, Ying; Dong, Yu; Song, Shengda; Luo, Runlan; Li, Guangsen
2018-02-26
To assess right atrium (RA) function of patients with systemic lupus erythematosus (SLE) and pulmonary artery hypertension (PAH) by 2-dimensional speckle-tracking echocardiography. Thirty matched healthy adults were selected as group A. Then, 102 patients with SLE were divided into 3 groups according to the severity of PAH. Group B included 37 patients without PAH (pulmonary artery [PA] systolic pressure ≤ 30 mm Hg); group C included 34 patients with PAH (PA systolic pressure of 30-50 mm Hg); and group D included 31 patients with PAH (PA systolic pressure ≥ 50 mm Hg). Parameters evaluated included RA maximum volume, minimum volume, preatrial contraction volume, passive ejection fraction (EF), and active EF. The global peak longitudinal systolic strain rate and early and late diastolic strain rates of the RA were obtained by 2-dimensional speckle-tracking echocardiography. No significant differences were found in all parameters between groups B and A (P > .05). The RA maximum volume, minimum volume, preatrial contraction volume, active EF, and late diastolic strain rate in groups C and D were significantly increased compared with those in groups A and B, and the parameters in group D were significantly higher than those in group C (P < .05). Although the RA passive EF, early diastolic strain rate, and systolic strain rate in groups C and D were significantly decreased compared with those in groups A and B, those in group D were significantly lower than those in group C (P < .05). Two-dimensional speckle-tracking echocardiography could effectively assess RA function in patients with SLE who have different severities of PAH. © 2018 by the American Institute of Ultrasound in Medicine.
An open source framework for tracking and state estimation ('Stone Soup')
NASA Astrophysics Data System (ADS)
Thomas, Paul A.; Barr, Jordi; Balaji, Bhashyam; White, Kruger
2017-05-01
The ability to detect and unambiguously follow all moving entities in a state-space is important in multiple domains both in defence (e.g. air surveillance, maritime situational awareness, ground moving target indication) and the civil sphere (e.g. astronomy, biology, epidemiology, dispersion modelling). However, tracking and state estimation researchers and practitioners have difficulties recreating state-of-the-art algorithms in order to benchmark their own work. Furthermore, system developers need to assess which algorithms meet operational requirements objectively and exhaustively rather than intuitively or driven by personal favourites. We have therefore commenced the development of a collaborative initiative to create an open source framework for production, demonstration and evaluation of Tracking and State Estimation algorithms. The initiative will develop a (MIT-licensed) software platform for researchers and practitioners to test, verify and benchmark a variety of multi-sensor and multi-object state estimation algorithms. The initiative is supported by four defence laboratories, who will contribute to the development effort for the framework. The tracking and state estimation community will derive significant benefits from this work, including: access to repositories of verified and validated tracking and state estimation algorithms, a framework for the evaluation of multiple algorithms, standardisation of interfaces and access to challenging data sets. Keywords: Tracking,
Designing a system for measuring the flow of material transported on belts using ultrasonic sensors
NASA Astrophysics Data System (ADS)
Mihuţ, N. M.
2015-11-01
Excavation tailings (scraping) and extracting the useful (lignite) in surface mine pits in Mining Basin Oltenia is achieved with technological lines of excavation - transport - dump of high productivity. A correlation of working capacity of the main components of technological lines (motor rotor, high capacity transport, car dumps) is necessary for economic reasons on electricity consumption. To achieve experience in the process was chosen excavator SRS 1400 from South Jilt career in the CET Turceni. The question of coal excavated volume has a great importance in the mine pits. At the excavation is desired a density estimate for each machine production tracking, cost estimation and tracking product unit profitability of each band on various sections zones. Permanent display size excavated volume snapshots in the excavator's cabin permits to track tape loading, eliminating unproductive times and information management to determine profitability. Another important requirement is closing the loop of the machine drive system of an excavator for a uniform deposition of carbon on the strip, thus achieving automatic control of the loading belt. Such equipment is important for the system dispatching in surface mine pits. Through a system of three ultrasound transducers to determine the smart instant of coal excavated section which, coupled with the tape speed, integrated over time will determine the amount of excavated coal. The basis of the system developed is a device for determining the volume and quantity of coal excavated acting on the march and optimize the system speed excavator working order. The device is designed primarily following the careers of lignite production: rotor excavators, rubber conveyor belts and dump facilities. Newly developed system aims to achieve the following determines: the optimum energy excavation depending on the nature of excavated material - lignite, shale, clay, etc., economic times to use the excavator bucket teeth rotor, energy optical regime to rubber belt conveyors, eliminate damage to the plant by conveyor belt breakage detection or tread and eliminating time and energy losses by limiting reproductive idle, monitoring the amount of coal excavated, control power consumption. Systems in general and particularly automated systems cannot be designed without taking into account their degree of effectiveness, compliance with minimum consumption of time, energy and materials, insofar as they are requested and used all the resources it has, at minimum cost production, etc. For this reason any matter of calculation, design, analysis and operation of transport systems continuously subordinate requirements optimality.
An Enhanced Non-Coherent Pre-Filter Design for Tracking Error Estimation in GNSS Receivers.
Luo, Zhibin; Ding, Jicheng; Zhao, Lin; Wu, Mouyan
2017-11-18
Tracking error estimation is of great importance in global navigation satellite system (GNSS) receivers. Any inaccurate estimation for tracking error will decrease the signal tracking ability of signal tracking loops and the accuracies of position fixing, velocity determination, and timing. Tracking error estimation can be done by traditional discriminator, or Kalman filter-based pre-filter. The pre-filter can be divided into two categories: coherent and non-coherent. This paper focuses on the performance improvements of non-coherent pre-filter. Firstly, the signal characteristics of coherent and non-coherent integration-which are the basis of tracking error estimation-are analyzed in detail. After that, the probability distribution of estimation noise of four-quadrant arctangent (ATAN2) discriminator is derived according to the mathematical model of coherent integration. Secondly, the statistical property of observation noise of non-coherent pre-filter is studied through Monte Carlo simulation to set the observation noise variance matrix correctly. Thirdly, a simple fault detection and exclusion (FDE) structure is introduced to the non-coherent pre-filter design, and thus its effective working range for carrier phase error estimation extends from (-0.25 cycle, 0.25 cycle) to (-0.5 cycle, 0.5 cycle). Finally, the estimation accuracies of discriminator, coherent pre-filter, and the enhanced non-coherent pre-filter are evaluated comprehensively through the carefully designed experiment scenario. The pre-filter outperforms traditional discriminator in estimation accuracy. In a highly dynamic scenario, the enhanced non-coherent pre-filter provides accuracy improvements of 41.6%, 46.4%, and 50.36% for carrier phase error, carrier frequency error, and code phase error estimation, respectively, when compared with coherent pre-filter. The enhanced non-coherent pre-filter outperforms the coherent pre-filter in code phase error estimation when carrier-to-noise density ratio is less than 28.8 dB-Hz, in carrier frequency error estimation when carrier-to-noise density ratio is less than 20 dB-Hz, and in carrier phase error estimation when carrier-to-noise density belongs to (15, 23) dB-Hz ∪ (26, 50) dB-Hz.
DOT National Transportation Integrated Search
1974-04-30
The report presents the results of a critical review of the technical factors which govern the design and performance of at-grade tie-ballast track for urban rail systems. The assessment of current design practice is based on a review of the literatu...
DOT National Transportation Integrated Search
1974-04-01
This report presents the results of a critical review of the technical factors which govern the design and performance of at-grade slab track for urban rail systems. The assessment of current design practices is based on a review of the literature an...
Special Issue: Non-Tenure-Track Faculty in Higher Education--Theories and Tensions
ERIC Educational Resources Information Center
Kezar, Adrianna; Sam, Cecile
2010-01-01
This monograph complements volume 36, issue number 4 of ASHE Higher Education Report: "Understanding the New Majority of Non-Tenure-Track Faculty," and focuses on theories applied to study non-tenure-track faculty and philosophical and practical tensions represented in the literature. The chapter "Theories Used to Study and Understand…
Model implementation for dynamic computation of system cost
NASA Astrophysics Data System (ADS)
Levri, J.; Vaccari, D.
The Advanced Life Support (ALS) Program metric is the ratio of the equivalent system mass (ESM) of a mission based on International Space Station (ISS) technology to the ESM of that same mission based on ALS technology. ESM is a mission cost analog that converts the volume, power, cooling and crewtime requirements of a mission into mass units to compute an estimate of the life support system emplacement cost. Traditionally, ESM has been computed statically, using nominal values for system sizing. However, computation of ESM with static, nominal sizing estimates cannot capture the peak sizing requirements driven by system dynamics. In this paper, a dynamic model for a near-term Mars mission is described. The model is implemented in Matlab/Simulink' for the purpose of dynamically computing ESM. This paper provides a general overview of the crew, food, biomass, waste, water and air blocks in the Simulink' model. Dynamic simulations of the life support system track mass flow, volume and crewtime needs, as well as power and cooling requirement profiles. The mission's ESM is computed, based upon simulation responses. Ultimately, computed ESM values for various system architectures will feed into an optimization search (non-derivative) algorithm to predict parameter combinations that result in reduced objective function values.
NASA Technical Reports Server (NTRS)
Keitz, J. F.
1982-01-01
The impact of more timely and accurate weather data on airline flight planning with the emphasis on fuel savings is studied. This volume of the report discusses the results of Task 2 of the four major tasks included in the study. Task 2 compares various catagories of flight plans and flight tracking data produced by a simulation system developed for the Federal Aviation Administrations by SRI International. (Flight tracking data simulate actual flight tracks of all aircraft operating at a given time and provide for rerouting of flights as necessary to resolve traffic conflicts.) The comparisons of flight plans on the forecast to flight plans on the verifying analysis confirm Task 1 findings that wind speeds are generally underestimated. Comparisons involving flight tracking data indicate that actual fuel burn is always higher than planned, in either direction, and even when the same weather data set is used. Since the flight tracking model output results in more diversions than is known to be the case, it was concluded that there is an error in the flight tracking algorithm.
Geometric calibration of a coordinate measuring machine using a laser tracking system
NASA Astrophysics Data System (ADS)
Umetsu, Kenta; Furutnani, Ryosyu; Osawa, Sonko; Takatsuji, Toshiyuki; Kurosawa, Tomizo
2005-12-01
This paper proposes a calibration method for a coordinate measuring machine (CMM) using a laser tracking system. The laser tracking system can measure three-dimensional coordinates based on the principle of trilateration with high accuracy and is easy to set up. The accuracy of length measurement of a single laser tracking interferometer (laser tracker) is about 0.3 µm over a length of 600 mm. In this study, we first measured 3D coordinates using the laser tracking system. Secondly, 21 geometric errors, namely, parametric errors of the CMM, were estimated by the comparison of the coordinates obtained by the laser tracking system and those obtained by the CMM. As a result, the estimated parametric errors agreed with those estimated by a ball plate measurement, which demonstrates the validity of the proposed calibration system.
NASA Astrophysics Data System (ADS)
Ma, Kevin C.; Forsyth, Sydney; Amezcua, Lilyana; Liu, Brent J.
2017-03-01
We have designed and developed a multiple sclerosis eFolder system for patient data storage, image viewing, and automatic lesion quantification results to allow patient tracking. The web-based system aims to be integrated in DICOM-compliant clinical and research environments to aid clinicians in patient treatments and data analysis. The system quantifies lesion volumes, identify and register lesion locations to track shifts in volume and quantity of lesions in a longitudinal study. We aim to evaluate the two most important features of the system, data mining and longitudinal lesion tracking, to demonstrate the MS eFolder's capability in improving clinical workflow efficiency and outcome analysis for research. In order to evaluate data mining capabilities, we have collected radiological and neurological data from 72 patients, 36 Caucasian and 36 Hispanic matched by gender, disease duration, and age. Data analysis on those patients based on ethnicity is performed, and analysis results are displayed by the system's web-based user interface. The data mining module is able to successfully separate Hispanic and Caucasian patients and compare their disease profiles. For longitudinal lesion tracking, we have collected 4 longitudinal cases and simulated different lesion growths over the next year. As a result, the eFolder is able to detect changes in lesion volume and identifying lesions with the most changes. Data mining and lesion tracking evaluation results show high potential of eFolder's usefulness in patientcare and informatics research for multiple sclerosis.
Towards designing an optical-flow based colonoscopy tracking algorithm: a comparative study
NASA Astrophysics Data System (ADS)
Liu, Jianfei; Subramanian, Kalpathi R.; Yoo, Terry S.
2013-03-01
Automatic co-alignment of optical and virtual colonoscopy images can supplement traditional endoscopic procedures, by providing more complete information of clinical value to the gastroenterologist. In this work, we present a comparative analysis of our optical flow based technique for colonoscopy tracking, in relation to current state of the art methods, in terms of tracking accuracy, system stability, and computational efficiency. Our optical-flow based colonoscopy tracking algorithm starts with computing multi-scale dense and sparse optical flow fields to measure image displacements. Camera motion parameters are then determined from optical flow fields by employing a Focus of Expansion (FOE) constrained egomotion estimation scheme. We analyze the design choices involved in the three major components of our algorithm: dense optical flow, sparse optical flow, and egomotion estimation. Brox's optical flow method,1 due to its high accuracy, was used to compare and evaluate our multi-scale dense optical flow scheme. SIFT6 and Harris-affine features7 were used to assess the accuracy of the multi-scale sparse optical flow, because of their wide use in tracking applications; the FOE-constrained egomotion estimation was compared with collinear,2 image deformation10 and image derivative4 based egomotion estimation methods, to understand the stability of our tracking system. Two virtual colonoscopy (VC) image sequences were used in the study, since the exact camera parameters(for each frame) were known; dense optical flow results indicated that Brox's method was superior to multi-scale dense optical flow in estimating camera rotational velocities, but the final tracking errors were comparable, viz., 6mm vs. 8mm after the VC camera traveled 110mm. Our approach was computationally more efficient, averaging 7.2 sec. vs. 38 sec. per frame. SIFT and Harris affine features resulted in tracking errors of up to 70mm, while our sparse optical flow error was 6mm. The comparison among egomotion estimation algorithms showed that our FOE-constrained egomotion estimation method achieved the optimal balance between tracking accuracy and robustness. The comparative study demonstrated that our optical-flow based colonoscopy tracking algorithm maintains good accuracy and stability for routine use in clinical practice.
Evaluation of lung tumor motion management in radiation therapy with dynamic MRI
NASA Astrophysics Data System (ADS)
Park, Seyoun; Farah, Rana; Shea, Steven M.; Tryggestad, Erik; Hales, Russell; Lee, Junghoon
2017-03-01
Surrogate-based tumor motion estimation and tracing methods are commonly used in radiotherapy despite the lack of continuous real time 3D tumor and surrogate data. In this study, we propose a method to simultaneously track the tumor and external surrogates with dynamic MRI, which allows us to evaluate their reproducible correlation. Four MRIcompatible fiducials are placed on the patient's chest and upper abdomen, and multi-slice 2D cine MRIs are acquired to capture the lung and whole tumor, followed by two-slice 2D cine MRIs to simultaneously track the tumor and fiducials, all in sagittal orientation. A phase-binned 4D-MRI is first reconstructed from multi-slice MR images using body area as a respiratory surrogate and group-wise registration. The 4D-MRI provides 3D template volumes for different breathing phases. 3D tumor position is calculated by 3D-2D template matching in which 3D tumor templates in 4D-MRI reconstruction and the 2D cine MRIs from the two-slice tracking dataset are registered. 3D trajectories of the external surrogates are derived via matching a 3D geometrical model to the fiducial segmentations on the 2D cine MRIs. We tested our method on five lung cancer patients. Internal target volume from 4D-CT showed average sensitivity of 86.5% compared to the actual tumor motion for 5 min. 3D tumor motion correlated with the external surrogate signal, but showed a noticeable phase mismatch. The 3D tumor trajectory showed significant cycle-to-cycle variation, while the external surrogate was not sensitive enough to capture such variations. Additionally, there was significant phase mismatch between surrogate signals obtained from fiducials at different locations.
Bernard, Yvette; Morel, Mathilde; Descotes-Genon, Vincent; Jehl, Jerome; Meneveau, Nicolas; Schiele, Francois
2014-04-01
Right ventricular (RV) function is a major prognostic factor in patients (pts) with operated tetralogy of Fallot (TOF). We compared the results of RV speckle tracking (two-dimensional [2D] strain) with those of magnetic resonance imaging (MRI) in this setting. At transthoracic echocardiogram (echo), RV fractional area change (RVFAC), tricuspid annular plane systolic excursion (TAPSE), velocity of S-wave at tricuspid annulus with tissue Doppler, and 2D strain (longitudinal maximal systolic strain) were recorded. Their results were compared to RV indexed end-diastolic volume (EDV), indexed end-systolic volume (ESV), and RV ejection fraction (EF) at MRI. Twenty-two pts (16 M) aged 11-62 years (mean 23.2 ± 10.8) were included. Parameters of RV systolic function were as follows: RVFAC = 40 ± 10%, TAPSE = 18 ± 4 mm, S-wave = 10 ± 0.2 cm/sec, and RV EF at MRI = 43 ± 11%. Global RV systolic strain was -15.5 ± 4.2%, free wall strain was -15.1 ± 6.3%, and septal strain was -15.8 ± 3.8% on average for the whole group. Echo indexed RV end-diastolic area correlated with EDV at MRI (r = 0.73), as well as echo indexed RV end-systolic area and ESV at MRI (r = 0.71). Global RV 2D strain correlated well with RV EF at MRI: r = 0.68; P < 0.05, and with ESV at MRI: r = 0.63. Feasibility, intra- and inter-observer reproducibility of 2D strain were adequate. Speckle tracking is a promising method to estimate RV systolic function in pts operated on for TOF. © 2013, Wiley Periodicals, Inc.
Zhu, Mingyao; Bharat, Shyam; Michalski, Jeff M; Gay, Hiram A; Hou, Wei-Hsien; Parikh, Parag J
2013-03-15
Using real-time electromagnetic (EM) transponder tracking data recorded by the Calypso 4D Localization System, we report inter- and intrafractional target motion of the prostate bed, describe a strategy to evaluate treatment adequacy in postprostatectomy patients receiving intensity modulated radiation therapy (IMRT), and propose an adaptive workflow. Tracking data recorded by Calypso EM transponders was analyzed for postprostatectomy patients that underwent step-and-shoot IMRT. Rigid target motion parameters during beam delivery were calculated from recorded transponder positions in 16 patients with rigid transponder geometry. The delivered doses to the clinical target volume (CTV) were estimated from the planned dose matrix and the target motion for the first 3, 5, 10, and all fractions. Treatment adequacy was determined by comparing the delivered minimum dose (Dmin) with the planned Dmin to the CTV. Treatments were considered adequate if the delivered CTV Dmin is at least 95% of the planned CTV Dmin. Translational target motion was minimal for all 16 patients (mean: 0.02 cm; range: -0.12 cm to 0.07 cm). Rotational motion was patient-specific, and maximum pitch, yaw, and roll were 12.2, 4.1, and 10.5°, respectively. We observed inadequate treatments in 5 patients. In these treatments, we observed greater target rotations along with large distances between the CTV centroid and transponder centroid. The treatment adequacy from the initial 10 fractions successfully predicted the overall adequacy in 4 of 5 inadequate treatments and 10 of 11 adequate treatments. Target rotational motion could cause underdosage to partial volume of the postprostatectomy targets. Our adaptive treatment strategy is applicable to post-prostatectomy patients receiving IMRT to evaluate and improve radiation therapy delivery. Copyright © 2013 Elsevier Inc. All rights reserved.
Numerical simulation of magnetic nanoparticles targeting in a bifurcation vessel
NASA Astrophysics Data System (ADS)
Larimi, M. M.; Ramiar, A.; Ranjbar, A. A.
2014-08-01
Guiding magnetic iron oxide nanoparticles with the help of an external magnetic field to its target is the principle behind the development of super paramagnetic iron oxide nanoparticles (SPIONs) as novel drug delivery vehicles. The present paper is devoted to study on MDT (Magnetic Drug Targeting) technique by particle tracking in the presence of magnetic field in a bifurcation vessel. The blood flow in bifurcation is considered incompressible, unsteady and Newtonian. The flow analysis applies the time dependent, two dimensional, incompressible Navier-Stokes equations for Newtonian fluids. The Lagrangian particle tracking is performed to estimate particle behavior under influence of imposed magnetic field gradients along the bifurcation. According to the results, the magnetic field increased the volume fraction of particle in target region, but in vessels with high Reynolds number, the efficiency of MDT technique is very low. Also the results showed that in the bifurcation vessels with lower angles, wall shear stress is higher and consequently the risk of the vessel wall rupture increases.
Nanodosimetric track structure in homogeneous extended beams.
Conte, V; Moro, D; Colautti, P; Grosswendt, B
2015-09-01
Physical aspects of particle track structure are important in determining the induction of clustered damage in relevant subcellular structures like the DNA and higher-order genomic structures. The direct measurement of track-structure properties of ionising radiation is feasible today by counting the number of ionisations produced inside a small gas volume. In particular, the so-called track-nanodosimeter, installed at the TANDEM-ALPI accelerator complex of LNL, measures ionisation cluster-size distributions in a simulated subcellular structure of dimensions 20 nm, corresponding approximately to the diameter of the chromatin fibre. The target volume is irradiated by pencil beams of primary particles passing at specified impact parameter. To directly relate these measured track-structure data to radiobiological measurements performed in broad homogeneous particle beams, these data can be integrated over the impact parameter. This procedure was successfully applied to 240 MeV carbon ions and compared with Monte Carlo simulations for extended fields. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
On the internal target model in a tracking task
NASA Technical Reports Server (NTRS)
Caglayan, A. K.; Baron, S.
1981-01-01
An optimal control model for predicting operator's dynamic responses and errors in target tracking ability is summarized. The model, which predicts asymmetry in the tracking data, is dependent on target maneuvers and trajectories. Gunners perception, decision making, control, and estimate of target positions and velocity related to crossover intervals are discussed. The model provides estimates for means, standard deviations, and variances for variables investigated and for operator estimates of future target positions and velocities.
NASA Astrophysics Data System (ADS)
Kim, Jongwook; Nam, Myung Jin; Matsuoka, Toshifumi
2013-10-01
In order to monitor injected carbon dioxide (CO2), simultaneous measurements of seismic velocity and electrical resistivity are employed during the drainage (CO2 injection) and imbibition (water injection) processes of a Berea sandstone. Supercritical CO2 (10 MPa at 40 ºC) was injected into a water-saturated Berea sandstone in the drainage stage and monitored via simultaneous measurements. After the injection of supercritical CO2, fresh distilled water was injected into the CO2-injected sandstone during the imbibition stage. Electrical resistivity and P-wave velocity measurements acquired during the drainage and imbibition stages were employed to evaluate CO2 saturations (SCO2) based on the resistivity index and the Gassmann fluid-substitution equations, respectively. Comparing estimated values for SCO2 saturation against those from volume-derived SCO2, based on analysis on injected and drained fluid volumes in the drainage process, we conclude that Gassmann-Brie and resistivity index are suitable for the evaluation based on P-wave velocity and electrical resistivity, respectively. R
Proceedings of the 2011 AFMS Medical Research Symposium. Volume 4. Healthcare Informatics Track
2011-08-02
pretest and posttest , a survey of 10 five-point Likert scale questions on managing critical children before and after, and 2 videotaped pediatric...critical care simulations with debriefings after each scenario. Results: Fund of knowledge improved from a pretest score of 60% to a posttest score of...02--2012 Proceedings 02-08-2011 to 04-08-2011 Proceedings of the 2011 AFMS Medical Research Symposium. Volume 4. Healthcare Informatics Track Major
An Enhanced Non-Coherent Pre-Filter Design for Tracking Error Estimation in GNSS Receivers
Luo, Zhibin; Ding, Jicheng; Zhao, Lin; Wu, Mouyan
2017-01-01
Tracking error estimation is of great importance in global navigation satellite system (GNSS) receivers. Any inaccurate estimation for tracking error will decrease the signal tracking ability of signal tracking loops and the accuracies of position fixing, velocity determination, and timing. Tracking error estimation can be done by traditional discriminator, or Kalman filter-based pre-filter. The pre-filter can be divided into two categories: coherent and non-coherent. This paper focuses on the performance improvements of non-coherent pre-filter. Firstly, the signal characteristics of coherent and non-coherent integration—which are the basis of tracking error estimation—are analyzed in detail. After that, the probability distribution of estimation noise of four-quadrant arctangent (ATAN2) discriminator is derived according to the mathematical model of coherent integration. Secondly, the statistical property of observation noise of non-coherent pre-filter is studied through Monte Carlo simulation to set the observation noise variance matrix correctly. Thirdly, a simple fault detection and exclusion (FDE) structure is introduced to the non-coherent pre-filter design, and thus its effective working range for carrier phase error estimation extends from (−0.25 cycle, 0.25 cycle) to (−0.5 cycle, 0.5 cycle). Finally, the estimation accuracies of discriminator, coherent pre-filter, and the enhanced non-coherent pre-filter are evaluated comprehensively through the carefully designed experiment scenario. The pre-filter outperforms traditional discriminator in estimation accuracy. In a highly dynamic scenario, the enhanced non-coherent pre-filter provides accuracy improvements of 41.6%, 46.4%, and 50.36% for carrier phase error, carrier frequency error, and code phase error estimation, respectively, when compared with coherent pre-filter. The enhanced non-coherent pre-filter outperforms the coherent pre-filter in code phase error estimation when carrier-to-noise density ratio is less than 28.8 dB-Hz, in carrier frequency error estimation when carrier-to-noise density ratio is less than 20 dB-Hz, and in carrier phase error estimation when carrier-to-noise density belongs to (15, 23) dB-Hz ∪ (26, 50) dB-Hz. PMID:29156581
NASA Technical Reports Server (NTRS)
Long, W. C.
1988-01-01
The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed and analysis of the Communication and Tracking hardware, generating draft failure modes and potential critical items. The IOA results were then compared to the NASA FMEA/CIL baseline. A resolution of each discrepancy from the comparison is provided through additional analysis as required. This report documents the results of that comparison for the Orbiter Communication and Tracking hardware. Volume 3 continues the presentation of IOA worksheets and contains the potential critical items list, detailed analysis, and the NASA FMEA to IOA worksheet cross reference and recommendations.
Vehicle/Track Interaction Assessment Techniques. Volume 1, Part 1.
DOT National Transportation Integrated Search
1984-03-01
This report describes Vehicle/Track Interaction Assessment Techniques (IAT) which are developed to provide standardized procedures and tools in order to: Investigate the dynamic performance of railroad vehicles, and systematically identify and cure d...
Vehicle/Track Interaction Assessment Techniques. Volume 2, Part 2.
DOT National Transportation Integrated Search
1984-03-01
This report describes Vehicle/Track Interaction Assessment Techniques (IAT) which are developed to provide standardized procedures and tools in order to: Investigate the dynamic performance of railroad vehicles, and systematically identify and cure d...
Vehicle/Track Interaction Assessment Techniques. Volume 3, Part 2.
DOT National Transportation Integrated Search
1984-03-01
This report describes Vehicle/Track Interaction Assessment Techniques (IAT) which are developed to provide standardized procedures and tools in order to: Investigate the dynamic performance of railroad vehicles, and systematically identify and cure d...
Statistical Representations of Track Geometry : Volume II, Appendices.
DOT National Transportation Integrated Search
1980-03-31
This volume contains some of the more detailed data and analyses to support the results and conclusions reached in Volume I of this report. It is divided into appendixes lettered A through J. Appendix A defines a procedure for evaluating the statisti...
Adaptive particle filter for robust visual tracking
NASA Astrophysics Data System (ADS)
Dai, Jianghua; Yu, Shengsheng; Sun, Weiping; Chen, Xiaoping; Xiang, Jinhai
2009-10-01
Object tracking plays a key role in the field of computer vision. Particle filter has been widely used for visual tracking under nonlinear and/or non-Gaussian circumstances. In particle filter, the state transition model for predicting the next location of tracked object assumes the object motion is invariable, which cannot well approximate the varying dynamics of the motion changes. In addition, the state estimate calculated by the mean of all the weighted particles is coarse or inaccurate due to various noise disturbances. Both these two factors may degrade tracking performance greatly. In this work, an adaptive particle filter (APF) with a velocity-updating based transition model (VTM) and an adaptive state estimate approach (ASEA) is proposed to improve object tracking. In APF, the motion velocity embedded into the state transition model is updated continuously by a recursive equation, and the state estimate is obtained adaptively according to the state posterior distribution. The experiment results show that the APF can increase the tracking accuracy and efficiency in complex environments.
NASA Astrophysics Data System (ADS)
Koybasi, Ozhan; Mishra, Pankaj; St. James, Sara; Lewis, John H.; Seco, Joao
2014-02-01
For the radiation treatment of lung cancer patients, four-dimensional computed tomography (4D-CT) is a common practice used clinically to image tumor motion and subsequently determine the internal target volume (ITV) from the maximum intensity projection (MIP) images. ITV, which is derived from short pre-treatment 4D-CT scan (<6 s per couch position), may not adequately cover the extent of tumor motion during the treatment, particularly for patients that exhibit a large respiratory variability. Inaccurate tumor localization may result in under-dosage of the tumor or over-dosage of the surrounding tissues. The purpose of this study is therefore to assess the degree of tumor under-dosage in case of regular and irregular breathing for proton radiotherapy using ITV-based treatment planning. We place a spherical lesion into a modified XCAT phantom that is also capable of producing 4D images based on irregular breathing, and move the tumor according to real tumor motion data, which is acquired over multiple days by tracking gold fiducial markers implanted into the lung tumors of patients. We derive ITVs by taking the union of all tumor positions during 6 s of tumor motion in the phantom using the first day patient tumor tracking data. This is equivalent to ITVs generated clinically from cine-mode 4D-CT MIP images. The treatment plans created for different ITVs are then implemented on dynamic phantoms with tumor motion governed by real tumor tracking data from consecutive days. By comparing gross tumor volume dose distribution on days of ‘treatment’ with the ITV dose distribution, we evaluate the deviation of the actually delivered dose from the predicted dose. Our results have shown that the proton treatment planning on ITV derived from pre-treatment cine-mode 4D-CT can result in under-dosage (dose covering 95% of volume) of the tumor by up to 25.7% over 3 min of treatment for the patient with irregular respiratory motion. Tumor under-dosage is less significant for the patient with relatively regular breathing. We have demonstrated that proton therapy using the pre-treatment 4D-CT based ITV method can lead to significant under-dosage of the tumor, highlighting the need for daily customization to generate a target volume that represents tumor positions during the treatment more accurately.
NASA Technical Reports Server (NTRS)
Hill, T. E.
1972-01-01
The configuration of the user transponder on the Tracking and Data Relay satellite is described. The subjects discussed are: (1) transponder concepts and trades, (2) ground station design, (3) antenna configurations for ground equipment, (4) telemetry facilities, (5) signal categories, and (6) satellite tracking.
Trache, Tudor; Stöbe, Stephan; Tarr, Adrienn; Pfeiffer, Dietrich; Hagendorff, Andreas
2014-12-01
Comparison of 3D and 2D speckle tracking performed on standard 2D and triplane 2D datasets of normal and pathological left ventricular (LV) wall-motion patterns with a focus on the effect that 3D volume rate (3DVR), image quality and tracking artifacts have on the agreement between 2D and 3D speckle tracking. 37 patients with normal LV function and 18 patients with ischaemic wall-motion abnormalities underwent 2D and 3D echocardiography, followed by offline speckle tracking measurements. The values of 3D global, regional and segmental strain were compared with the standard 2D and triplane 2D strain values. Correlation analysis with the LV ejection fraction (LVEF) was also performed. The 3D and 2D global strain values correlated good in both normally and abnormally contracting hearts, though systematic differences between the two methods were observed. Of the 3D strain parameters, the area strain showed the best correlation with the LVEF. The numerical agreement of 3D and 2D analyses varied significantly with the volume rate and image quality of the 3D datasets. The highest correlation between 2D and 3D peak systolic strain values was found between 3D area and standard 2D longitudinal strain. Regional wall-motion abnormalities were similarly detected by 2D and 3D speckle tracking. 2DST of triplane datasets showed similar results to those of conventional 2D datasets. 2D and 3D speckle tracking similarly detect normal and pathological wall-motion patterns. Limited image quality has a significant impact on the agreement between 3D and 2D numerical strain values.
Katz, Trixie A; Weinberg, Danielle D; Fishman, Claire E; Nadkarni, Vinay; Tremoulet, Patrice; Te Pas, Arjan B; Sarcevic, Aleksandra; Foglia, Elizabeth E
2018-06-14
A respiratory function monitor (RFM) may improve positive pressure ventilation (PPV) technique, but many providers do not use RFM data appropriately during delivery room resuscitation. We sought to use eye-tracking technology to identify RFM parameters that neonatal providers view most commonly during simulated PPV. Mixed methods study. Neonatal providers performed RFM-guided PPV on a neonatal manikin while wearing eye-tracking glasses to quantify visual attention on displayed RFM parameters (ie, exhaled tidal volume, flow, leak). Participants subsequently provided qualitative feedback on the eye-tracking glasses. Level 3 academic neonatal intensive care unit. Twenty neonatal resuscitation providers. Visual attention: overall gaze sample percentage; total gaze duration, visit count and average visit duration for each displayed RFM parameter. Qualitative feedback: willingness to wear eye-tracking glasses during clinical resuscitation. Twenty providers participated in this study. The mean gaze sample captured wa s 93% (SD 4%). Exhaled tidal volume waveform was the RFM parameter with the highest total gaze duration (median 23%, IQR 13-51%), highest visit count (median 5.17 per 10 s, IQR 2.82-6.16) and longest visit duration (median 0.48 s, IQR 0.38-0.81 s). All participants were willing to wear the glasses during clinical resuscitation. Wearable eye-tracking technology is feasible to identify gaze fixation on the RFM display and is well accepted by providers. Neonatal providers look at exhaled tidal volume more than any other RFM parameter. Future applications of eye-tracking technology include use during clinical resuscitation. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
SKYWARD: the next generation airborne infrared search and track
NASA Astrophysics Data System (ADS)
Fortunato, L.; Colombi, G.; Ondini, A.; Quaranta, C.; Giunti, C.; Sozzi, B.; Balzarotti, G.
2016-05-01
Infrared Search and Track systems are an essential element of the modern and future combat aircrafts. Passive automatic search, detection and tracking functions, are key points for silent operations or jammed tactical scenarios. SKYWARD represents the latest evolution of IRST technology in which high quality electro-optical components, advanced algorithms, efficient hardware and software solutions are harmonically integrated to provide high-end affordable performances. Additionally, the reduction of critical opto-mechanical elements optimises weight and volume and increases the overall reliability. Multiple operative modes dedicated to different situations are available; many options can be selected among multiple or single target tracking, for surveillance or engagement, and imaging, for landing or navigation aid, assuring the maximum system flexibility. The high quality 2D-IR sensor is exploited by multiple parallel processing chains, based on linear and non-linear techniques, to extract the possible targets from background, in different conditions, with false alarm rate control. A widely tested track processor manages a large amount of candidate targets simultaneously and allows discriminating real targets from noise whilst operating with low target to background contrasts. The capability of providing reliable passive range estimation is an additional qualifying element of the system. Particular care has been dedicated to the detector non-uniformities, a possible limiting factor for distant targets detection, as well as to the design of the electro-optics for a harsh airborne environment. The system can be configured for LWIR or MWIR waveband according to the customer operational requirements. An embedded data recorder saves all the necessary images and data for mission debriefing, particularly useful during inflight system integration and tuning.
Famulari, Gabriel; Pater, Piotr; Enger, Shirin A
2017-07-07
The aim of this study was to calculate microdosimetric distributions for low energy electrons simulated using the Monte Carlo track structure code Geant4-DNA. Tracks for monoenergetic electrons with kinetic energies ranging from 100 eV to 1 MeV were simulated in an infinite spherical water phantom using the Geant4-DNA extension included in Geant4 toolkit version 10.2 (patch 02). The microdosimetric distributions were obtained through random sampling of transfer points and overlaying scoring volumes within the associated volume of the tracks. Relative frequency distributions of energy deposition f(>E)/f(>0) and dose mean lineal energy ([Formula: see text]) values were calculated in nanometer-sized spherical and cylindrical targets. The effects of scoring volume and scoring techniques were examined. The results were compared with published data generated using MOCA8B and KURBUC. Geant4-DNA produces a lower frequency of higher energy deposits than MOCA8B. The [Formula: see text] values calculated with Geant4-DNA are smaller than those calculated using MOCA8B and KURBUC. The differences are mainly due to the lower ionization and excitation cross sections of Geant4-DNA for low energy electrons. To a lesser extent, discrepancies can also be attributed to the implementation in this study of a new and fast scoring technique that differs from that used in previous studies. For the same mean chord length ([Formula: see text]), the [Formula: see text] calculated in cylindrical volumes are larger than those calculated in spherical volumes. The discrepancies due to cross sections and scoring geometries increase with decreasing scoring site dimensions. A new set of [Formula: see text] values has been presented for monoenergetic electrons using a fast track sampling algorithm and the most recent physics models implemented in Geant4-DNA. This dataset can be combined with primary electron spectra to predict the radiation quality of photon and electron beams.
NASA Astrophysics Data System (ADS)
Williamson, Andrew; Arnold, Neil; Banwell, Alison; Willis, Ian
2017-04-01
Supraglacial lakes (SGLs) on the Greenland Ice Sheet (GrIS) influence ice dynamics if draining rapidly by hydrofracture, which can occur in under 24 hours. MODerate-resolution Imaging Spectroradiometer (MODIS) data are often used to investigate SGLs, including calculating SGL area changes through time, but no existing work presents a method that tracks changes in individual (and total) SGL volume in MODIS imagery over a melt season. Here, we present such a method. First, we tested three automated approaches to derive SGL areas from MODIS imagery by comparing calculated areas for the Paakitsoq and Store Glacier regions in West Greenland with areas derived from Landsat-8 (LS8) images. Second, we applied a physically-based depth-calculation algorithm to the pixels within the SGL boundaries from the best performing method, and validated the resultant depths with those calculated using the same method applied to LS8 imagery. Our results indicated that SGL areas are most accurately generated using dynamic thresholding of MODIS band 1 (red) with a 0.640 threshold value. Calculated SGL area, depth and volume values from MODIS were closely comparable to those derived from LS8. The best performing area- and depth-detection methods were then incorporated into a Fully Automated SGL Tracking ("FAST") algorithm that tracks individual SGLs between successive MODIS images. It identified 43 (Paakitsoq) and 19 (Store Glacier) rapidly draining SGLs during 2014, representing 21% and 15% of the respective total SGL populations, including some clusters of rapidly draining SGLs. We found no relationship between the water volumes contained within these rapidly draining SGLs and the ice thicknesses beneath them, indicating that a critical water volume linearly related to ice thickness cannot explain the incidence of rapid drainage. The FAST algorithm, which we believe to be the most comprehensive SGL tracking algorithm developed to date, has the potential to investigate statistical relationships between SGL areas, volumes and drainage events over wide areas of the GrIS, and over multiple seasons. It could also allow further insights into factors that may trigger rapid SGL drainage.
Anthropogenic seismicity rates and operational parameters at the Salton Sea Geothermal Field.
Brodsky, Emily E; Lajoie, Lia J
2013-08-02
Geothermal power is a growing energy source; however, efforts to increase production are tempered by concern over induced earthquakes. Although increased seismicity commonly accompanies geothermal production, induced earthquake rate cannot currently be forecast on the basis of fluid injection volumes or any other operational parameters. We show that at the Salton Sea Geothermal Field, the total volume of fluid extracted or injected tracks the long-term evolution of seismicity. After correcting for the aftershock rate, the net fluid volume (extracted-injected) provides the best correlation with seismicity in recent years. We model the background earthquake rate with a linear combination of injection and net production rates that allows us to track the secular development of the field as the number of earthquakes per fluid volume injected decreases over time.
Evaluation of potential internal target volume of liver tumors using cine-MRI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akino, Yuichi, E-mail: akino@radonc.med.osaka-u.ac.jp; Oh, Ryoong-Jin; Masai, Norihisa
2014-11-01
Purpose: Four-dimensional computed tomography (4DCT) is widely used for evaluating moving tumors, including lung and liver cancers. For patients with unstable respiration, however, the 4DCT may not visualize tumor motion properly. High-speed magnetic resonance imaging (MRI) sequences (cine-MRI) permit direct visualization of respiratory motion of liver tumors without considering radiation dose exposure to patients. Here, the authors demonstrated a technique for evaluating internal target volume (ITV) with consideration of respiratory variation using cine-MRI. Methods: The authors retrospectively evaluated six patients who received stereotactic body radiotherapy (SBRT) to hepatocellular carcinoma. Before acquiring planning CT, sagittal and coronal cine-MRI images were acquiredmore » for 30 s with a frame rate of 2 frames/s. The patient immobilization was conducted under the same condition as SBRT. Planning CT images were then acquired within 15 min from cine-MRI image acquisitions, followed by a 4DCT scan. To calculate tumor motion, the motion vectors between two continuous frames of cine-MRI images were calculated for each frame using the pyramidal Lucas–Kanade method. The target contour was delineated on one frame, and each vertex of the contour was shifted and copied onto the following frame using neighboring motion vectors. 3D trajectory data were generated with the centroid of the contours on sagittal and coronal images. To evaluate the accuracy of the tracking method, the motion of clearly visible blood vessel was analyzed with the motion tracking and manual detection techniques. The target volume delineated on the 50% (end-exhale) phase of 4DCT was translated with the trajectory data, and the distribution of the occupancy probability of target volume was calculated as potential ITV (ITV {sub Potential}). The concordance between ITV {sub Potential} and ITV estimated with 4DCT (ITV {sub 4DCT}) was evaluated using the Dice’s similarity coefficient (DSC). Results: The distance between blood vessel positions determined with motion tracking and manual detection was analyzed. The mean and SD of the distance were less than 0.80 and 0.52 mm, respectively. The maximum ranges of tumor motion on cine-MRI were 2.4 ± 1.4 mm (range, 1.0–5.0 mm), 4.4 ± 3.3 mm (range, 0.8–9.4 mm), and 14.7 ± 5.9 mm (range, 7.4–23.4 mm) in lateral, anterior–posterior, and superior–inferior directions, respectively. The ranges in the superior–inferior direction were larger than those estimated with 4DCT images for all patients. The volume of ITV {sub Potential} was 160.3% ± 13.5% (range, 142.0%–179.2%) of the ITV {sub 4DCT}. The maximum DSC values were observed when the cutoff value of 24.7% ± 4.0% (range, 20%–29%) was applied. Conclusions: The authors demonstrated a novel method of calculating 3D motion and ITV {sub Potential} of liver cancer using orthogonal cine-MRI. Their method achieved accurate calculation of the respiratory motion of moving structures. Individual evaluation of the ITV {sub Potential} will aid in improving respiration management and treatment planning.« less
An estimation of distribution method for infrared target detection based on Copulas
NASA Astrophysics Data System (ADS)
Wang, Shuo; Zhang, Yiqun
2015-10-01
Track-before-detect (TBD) based target detection involves a hypothesis test of merit functions which measure each track as a possible target track. Its accuracy depends on the precision of the distribution of merit functions, which determines the threshold for a test. Generally, merit functions are regarded Gaussian, and on this basis the distribution is estimated, which is true for most methods such as the multiple hypothesis tracking (MHT). However, merit functions for some other methods such as the dynamic programming algorithm (DPA) are non-Guassian and cross-correlated. Since existing methods cannot reasonably measure the correlation, the exact distribution can hardly be estimated. If merit functions are assumed Guassian and independent, the error between an actual distribution and its approximation may occasionally over 30 percent, and is divergent by propagation. Hence, in this paper, we propose a novel estimation of distribution method based on Copulas, by which the distribution can be estimated precisely, where the error is less than 1 percent without propagation. Moreover, the estimation merely depends on the form of merit functions and the structure of a tracking algorithm, and is invariant to measurements. Thus, the distribution can be estimated in advance, greatly reducing the demand for real-time calculation of distribution functions.
NASA Astrophysics Data System (ADS)
Bouaynaya, N.; Schonfeld, Dan
2005-03-01
Many real world applications in computer and multimedia such as augmented reality and environmental imaging require an elastic accurate contour around a tracked object. In the first part of the paper we introduce a novel tracking algorithm that combines a motion estimation technique with the Bayesian Importance Sampling framework. We use Adaptive Block Matching (ABM) as the motion estimation technique. We construct the proposal density from the estimated motion vector. The resulting algorithm requires a small number of particles for efficient tracking. The tracking is adaptive to different categories of motion even with a poor a priori knowledge of the system dynamics. Particulary off-line learning is not needed. A parametric representation of the object is used for tracking purposes. In the second part of the paper, we refine the tracking output from a parametric sample to an elastic contour around the object. We use a 1D active contour model based on a dynamic programming scheme to refine the output of the tracker. To improve the convergence of the active contour, we perform the optimization over a set of randomly perturbed initial conditions. Our experiments are applied to head tracking. We report promising tracking results in complex environments.
Adaptive vehicle motion estimation and prediction
NASA Astrophysics Data System (ADS)
Zhao, Liang; Thorpe, Chuck E.
1999-01-01
Accurate motion estimation and reliable maneuver prediction enable an automated car to react quickly and correctly to the rapid maneuvers of the other vehicles, and so allow safe and efficient navigation. In this paper, we present a car tracking system which provides motion estimation, maneuver prediction and detection of the tracked car. The three strategies employed - adaptive motion modeling, adaptive data sampling, and adaptive model switching probabilities - result in an adaptive interacting multiple model algorithm (AIMM). The experimental results on simulated and real data demonstrate that our tracking system is reliable, flexible, and robust. The adaptive tracking makes the system intelligent and useful in various autonomous driving tasks.
In-motion, non-contact rail temperature measurement sensor.
DOT National Transportation Integrated Search
2012-12-01
Preventing track buckling incidents (Figure 1) is important to the railroad industry. Track materials, rail steel, for example, experience thermal expansion, which refers to the increase in a materials volume as its temperature rises. Thermal expa...
Vibration Method for Tracking the Resonant Mode and Impedance of a Microwave Cavity
NASA Technical Reports Server (NTRS)
Barmatz, M.; Iny, O.; Yiin, T.; Khan, I.
1995-01-01
A vibration technique his been developed to continuously maintain mode resonance and impedance much between a constant frequency magnetron source and resonant cavity. This method uses a vibrating metal rod to modulate the volume of the cavity in a manner equivalent to modulating an adjustable plunger. A similar vibrating metal rod attached to a stub tuner modulates the waveguide volume between the source and cavity. A phase sensitive detection scheme determines the optimum position of the adjustable plunger and stub turner during processing. The improved power transfer during the heating of a 99.8% pure alumina rod was demonstrated using this new technique. Temperature-time and reflected power-time heating curves are presented for the cases of no tracking, impedance tracker only, mode tracker only and simultaneous impedance and mode tracking. Controlled internal melting of an alumina rod near 2000 C using both tracking units was also demonstrated.
1983-05-01
by block number) FIELD GROUP SUB-GROUP Military/Manpower/Reserve Force/Recruiting Market/ 05 09 Research / Non -prior service/Prior Service/Male/Female...7 RD-R149 32 RESERVE COMPONENT ATTITUDE STUDY WAVE V 1982 TRACKING L/~STUDY VOLUME ± MAJO..(U) AS OCIATES FOR RESEARCH INBEHAVIOR INC PHILADELPHIA PA... RESEARCH IN BEHAVIOR, INC.) PHILADELPHIA, PENNSYLVANIA .2A~* -ION4 STA~EMEwzw AK Apploved fat public telecoo, DiatiLi]tion Unlimited -- .- .. ..i- -- k
Target Information Processing: A Joint Decision and Estimation Approach
2012-03-29
ground targets ( track - before - detect ) using computer cluster and graphics processing unit. Estimation and filtering theory is one of the most important...targets ( track - before - detect ) using computer cluster and graphics processing unit. Estimation and filtering theory is one of the most important
The effect of tracking network configuration on GPS baseline estimates for the CASA Uno experiment
NASA Technical Reports Server (NTRS)
Wolf, S. Kornreich; Dixon, T. H.; Freymueller, J. T.
1990-01-01
The effect of the tracking network on long (greater than 100 km) GPS baseline estimates was estimated using various subsets of the global tracking network initiated by the first Central and South America (CASA Uno) experiment. It was found that best results could be obtained with a global tacking network consisting of three U.S. stations, two sites in the southwestern Pacific, and two sites in Europe. In comparison with smaller subsets, this global network improved the baseline repeatability, the resolution of carrier phase cycle ambiguities, and formal errors of the orbit estimates.
Dual linear structured support vector machine tracking method via scale correlation filter
NASA Astrophysics Data System (ADS)
Li, Weisheng; Chen, Yanquan; Xiao, Bin; Feng, Chen
2018-01-01
Adaptive tracking-by-detection methods based on structured support vector machine (SVM) performed well on recent visual tracking benchmarks. However, these methods did not adopt an effective strategy of object scale estimation, which limits the overall tracking performance. We present a tracking method based on a dual linear structured support vector machine (DLSSVM) with a discriminative scale correlation filter. The collaborative tracker comprised of a DLSSVM model and a scale correlation filter obtains good results in tracking target position and scale estimation. The fast Fourier transform is applied for detection. Extensive experiments show that our tracking approach outperforms many popular top-ranking trackers. On a benchmark including 100 challenging video sequences, the average precision of the proposed method is 82.8%.
Tracking data in the office environment.
Erickson, Ty B
2010-09-01
Data tracking in the office setting focuses on a narrow spectrum of the entire patient safety arena; however, when properly executed, data tracking increases staff members' awareness of the importance of patient safety. Data tracking is also a high-volume event and thereby continues to loop back on the consciousness of providers in all aspects of their practice. Improvement in date tracking will improve the collateral areas of patient safety such as proper medication usage, legibility of written communication, effective delegation of patient safety initiatives, and a collegial effort at developing teams for safety design processes.
NASA Astrophysics Data System (ADS)
Rosenfeld, D.; Hu, J.; Zhang, P.; Snyder, J.; Orville, R. E.; Ryzhkov, A.; Zrnic, D.; Williams, E.; Zhang, R.
2017-12-01
A methodology to track the evolution of the hydrometeors and electrification of convective cells is presented and applied to various convective clouds from warm showers to super-cells. The input radar data are obtained from the polarimetric NEXRAD weather radars, The information on cloud electrification is obtained from Lightning Mapping Arrays (LMA). The development time and height of the hydrometeors and electrification requires tracking the evolution and lifecycle of convective cells. A new methodology for Multi-Cell Identification and Tracking (MCIT) is presented in this study. This new algorithm is applied to time series of radar volume scans. A cell is defined as a local maximum in the Vertical Integrated Liquid (VIL), and the echo area is divided between cells using a watershed algorithm. The tracking of the cells between radar volume scans is done by identifying the two cells in consecutive radar scans that have maximum common VIL. The vertical profile of the polarimetric radar properties are used for constructing the time-height cross section of the cell properties around the peak reflectivity as a function of height. The LMA sources that occur within the cell area are integrated as a function of height as well for each time step, as determined by the radar volume scans. The result of the tracking can provide insights to the evolution of storms, hydrometer types, precipitation initiation and cloud electrification under different thermodynamic, aerosol and geographic conditions. The details of the MCIT algorithm, its products and their performance for different types of storm are described in this poster.
Oceanic Area System Improvement Study (OASIS). Volume IX. Flight Cost Model Description.
1981-09-01
FUEL COST T.O.WT LAND.1%T .’n 8 SEA LGW 3105 3947 10.53 346249 24594 839249 493000 ND LK NXhD 6ND HI5 RHB HLI 6IT LVLTM Tj X61’ TEMP 471 -%050 578 2061...4000 101. Divert 60 nj (2 tracks) - 4000 102. Divert 90 ali (3 tracks) - 4000 103. Divert 120 nmi (4 tracks) - 4000 104 . Divert 150 nzi (5 tracks) - 4000
Development of the Code RITRACKS
NASA Technical Reports Server (NTRS)
Plante, Ianik; Cucinotta, Francis A.
2013-01-01
A document discusses the code RITRACKS (Relativistic Ion Tracks), which was developed to simulate heavy ion track structure at the microscopic and nanoscopic scales. It is a Monte-Carlo code that simulates the production of radiolytic species in water, event-by-event, and which may be used to simulate tracks and also to calculate dose in targets and voxels of different sizes. The dose deposited by the radiation can be calculated in nanovolumes (voxels). RITRACKS allows simulation of radiation tracks without the need of extensive knowledge of computer programming or Monte-Carlo simulations. It is installed as a regular application on Windows systems. The main input parameters entered by the user are the type and energy of the ion, the length and size of the irradiated volume, the number of ions impacting the volume, and the number of histories. The simulation can be started after the input parameters are entered in the GUI. The number of each kind of interactions for each track is shown in the result details window. The tracks can be visualized in 3D after the simulation is complete. It is also possible to see the time evolution of the tracks and zoom on specific parts of the tracks. The software RITRACKS can be very useful for radiation scientists to investigate various problems in the fields of radiation physics, radiation chemistry, and radiation biology. For example, it can be used to simulate electron ejection experiments (radiation physics).
NASA Astrophysics Data System (ADS)
Jung, C.; Salamon, J.; Hofmann, M.; Kaul, M. G.; Adam, G.; Ittrich, H.; Knopp, T.
2016-03-01
Purpose: The goal of this study was to achieve a real time 3D visualisation of the murine cardiovascular system by intravenously injected superparamagnetic nanoparticles using Magnetic particle imaging (MPI). Material and Methods: MPI scans of FVB mice were performed using a 3D imaging sequence (1T/m gradient strength, 10mT drive-field strength). A dynamic scan with a temporal resolution of 21.5ms per 3D volume acquisition was performed. 50μl ferucarbotran (Resovist®, Bayer Healthcare AG) were injected into the tail vein after baseline MPI measurements. As MPI delivers no anatomic information, MRI scans at a 7T ClinScan (Bruker) were performed using a T2-weighted 2D TSE sequence. The reconstruction of the MPI data was performed on the MPI console (ParaVision 6.0/MPI, Bruker). Image fusion was done using additional image processing software (Imalytics, Philips). The dynamic information was extracted using custom software developed in the Julia programming environment. Results: The combined MRI-MPI measurements were carried out successfully. MPI data clearly demonstrated the passage of the SPIO tracer through the inferior vena cava, the heart and finally the liver. By co-registration with MRI the anatomical regions were identified. Due to the volume frame rate of about 46 volumes per second a signal modulation with the frequency of the heart beat was detectable and a heart beat of 520 beats per minute (bpm) has been assumed. Moreover, the blood flow velocity of approximately 5cm/s in the vena cava has been estimated. Conclusions: The high temporal resolution of MPI allows real-time imaging and bolus tracking of intravenous injected nanoparticles and offers a real time tool to assess blood flow velocity.
Frandsen, Michael W.; Wessol, Daniel E.; Wheeler, Floyd J.
2001-01-16
Methods and computer executable instructions are disclosed for ultimately developing a dosimetry plan for a treatment volume targeted for irradiation during cancer therapy. The dosimetry plan is available in "real-time" which especially enhances clinical use for in vivo applications. The real-time is achieved because of the novel geometric model constructed for the planned treatment volume which, in turn, allows for rapid calculations to be performed for simulated movements of particles along particle tracks there through. The particles are exemplary representations of neutrons emanating from a neutron source during BNCT. In a preferred embodiment, a medical image having a plurality of pixels of information representative of a treatment volume is obtained. The pixels are: (i) converted into a plurality of substantially uniform volume elements having substantially the same shape and volume of the pixels; and (ii) arranged into a geometric model of the treatment volume. An anatomical material associated with each uniform volume element is defined and stored. Thereafter, a movement of a particle along a particle track is defined through the geometric model along a primary direction of movement that begins in a starting element of the uniform volume elements and traverses to a next element of the uniform volume elements. The particle movement along the particle track is effectuated in integer based increments along the primary direction of movement until a position of intersection occurs that represents a condition where the anatomical material of the next element is substantially different from the anatomical material of the starting element. This position of intersection is then useful for indicating whether a neutron has been captured, scattered or exited from the geometric model. From this intersection, a distribution of radiation doses can be computed for use in the cancer therapy. The foregoing represents an advance in computational times by multiple factors of time magnitudes.
Minitrack tracking function description, volume 2
NASA Technical Reports Server (NTRS)
Englar, T. S.; Mango, S. A.; Roettcher, C. A.; Watters, D. L.
1973-01-01
The minitrack tracking function is described and specific operations are identified. The subjects discussed are: (1) preprocessor listing, (2) minitrack hardware, (3) system calibration, (4) quadratic listing, and (5) quadratic flow diagram. Detailed information is provided on the construction of the tracking system and its operation. The calibration procedures are supported by mathematical models to show the application of the computer programs.
Shchory, Tal; Schifter, Dan; Lichtman, Rinat; Neustadter, David; Corn, Benjamin W
2010-11-15
In radiation therapy there is a need to accurately know the location of the target in real time. A novel radioactive tracking technology has been developed to answer this need. The technology consists of a radioactive implanted fiducial marker designed to minimize migration and a linac mounted tracking device. This study measured the static and dynamic accuracy of the new tracking technology in a clinical radiation therapy environment. The tracking device was installed on the linac gantry. The radioactive marker was located in a tissue equivalent phantom. Marker location was measured simultaneously by the radioactive tracking system and by a Microscribe G2 coordinate measuring machine (certified spatial accuracy of 0.38 mm). Localization consistency throughout a volume and absolute accuracy in the Fixed coordinate system were measured at multiple gantry angles over volumes of at least 10 cm in diameter centered at isocenter. Dynamic accuracy was measured with the marker located inside a breathing phantom. The mean consistency for the static source was 0.58 mm throughout the tested region at all measured gantry angles. The mean absolute position error in the Fixed coordinate system for all gantry angles was 0.97 mm. The mean real-time tracking error for the dynamic source within the breathing phantom was less than 1 mm. This novel radioactive tracking technology has the potential to be useful in accurate target localization and real-time monitoring for radiation therapy. Copyright © 2010 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Harris, Wendy; Yin, Fang-Fang; Wang, Chunhao; Zhang, You; Cai, Jing; Ren, Lei
2018-01-01
Purpose. To accelerate volumetric cine MRI (VC-MRI) using undersampled 2D-cine MRI to provide real-time 3D guidance for gating/target tracking in radiotherapy. Methods. 4D-MRI is acquired during patient simulation. One phase of the prior 4D-MRI is selected as the prior images, designated as MRIprior. The on-board VC-MRI at each time-step is considered a deformation of the MRIprior. The deformation field map is represented as a linear combination of the motion components extracted by principal component analysis from the prior 4D-MRI. The weighting coefficients of the motion components are solved by matching the corresponding 2D-slice of the VC-MRI with the on-board undersampled 2D-cine MRI acquired. Undersampled Cartesian and radial k-space acquisition strategies were investigated. The effects of k-space sampling percentage (SP) and distribution, tumor sizes and noise on the VC-MRI estimation were studied. The VC-MRI estimation was evaluated using XCAT simulation of lung cancer patients and data from liver cancer patients. Volume percent difference (VPD) and Center of Mass Shift (COMS) of the tumor volumes and tumor tracking errors were calculated. Results. For XCAT, VPD/COMS were 11.93 ± 2.37%/0.90 ± 0.27 mm and 11.53 ± 1.47%/0.85 ± 0.20 mm among all scenarios with Cartesian sampling (SP = 10%) and radial sampling (21 spokes, SP = 5.2%), respectively. When tumor size decreased, higher sampling rate achieved more accurate VC-MRI than lower sampling rate. VC-MRI was robust against noise levels up to SNR = 20. For patient data, the tumor tracking errors in superior-inferior, anterior-posterior and lateral (LAT) directions were 0.46 ± 0.20 mm, 0.56 ± 0.17 mm and 0.23 ± 0.16 mm, respectively, for Cartesian-based sampling with SP = 20% and 0.60 ± 0.19 mm, 0.56 ± 0.22 mm and 0.42 ± 0.15 mm, respectively, for radial-based sampling with SP = 8% (32 spokes). Conclusions. It is feasible to estimate VC-MRI from a single undersampled on-board 2D cine MRI. Phantom and patient studies showed that the temporal resolution of VC-MRI can potentially be improved by 5-10 times using a 2D cine image acquired with 10-20% k-space sampling.
Abo-Elmagd, M; Sadek, A M
2014-12-01
Can and Bare method is a widely used passive method for measuring the equilibrium factor F through the determination of the track density ratio between bare (D) and filtered (Do) detectors. The dimensions of the used diffusion chamber are altering the deposition ratios of Po-isotopes on the chamber walls as well as the ratios of the existing alpha emitters in air. Then the measured filtered track density and therefore the resultant equilibrium factor is changed according to the diffusion chamber dimensions. For this reason, high uncertainty was expected in the measured F using different diffusion chambers. In the present work, F is derived as a function of both track density ratio (D/Do) and the dimensions of the used diffusion chambers (its volume to the total internal surface area; V/A). The accuracy of the derived formula was verified using the black-box modeling technique via the MATLAB System identification toolbox. The results show that the uncertainty of the calculated F by using the derived formula of F (D/Do, V/A) is only 5%. The obtained uncertainty ensures the quality of the derived function to calculate F using diffusion chambers with wide range of dimensions. Copyright © 2014 Elsevier Ltd. All rights reserved.
The shape of ion tracks in natural apatite
NASA Astrophysics Data System (ADS)
Schauries, D.; Afra, B.; Bierschenk, T.; Lang, M.; Rodriguez, M. D.; Trautmann, C.; Li, W.; Ewing, R. C.; Kluth, P.
2014-05-01
Small angle X-ray scattering measurements were performed on natural apatite of different thickness irradiated with 2.2 GeV Au swift heavy ions. The evolution of the track radius along the full ion track length was estimated by considering the electronic energy loss and the velocity of the ions. The shape of the track is nearly cylindrical, slightly widening with a maximum diameter approximately 30 μm before the ions come to rest, followed by a rapid narrowing towards the end within a cigar-like contour. Measurements of average ion track radii in samples of different thicknesses, i.e. containing different sections of the tracks are in good agreement with the shape estimate.
Multisensor fusion for 3D target tracking using track-before-detect particle filter
NASA Astrophysics Data System (ADS)
Moshtagh, Nima; Romberg, Paul M.; Chan, Moses W.
2015-05-01
This work presents a novel fusion mechanism for estimating the three-dimensional trajectory of a moving target using images collected by multiple imaging sensors. The proposed projective particle filter avoids the explicit target detection prior to fusion. In projective particle filter, particles that represent the posterior density (of target state in a high-dimensional space) are projected onto the lower-dimensional observation space. Measurements are generated directly in the observation space (image plane) and a marginal (sensor) likelihood is computed. The particles states and their weights are updated using the joint likelihood computed from all the sensors. The 3D state estimate of target (system track) is then generated from the states of the particles. This approach is similar to track-before-detect particle filters that are known to perform well in tracking dim and stealthy targets in image collections. Our approach extends the track-before-detect approach to 3D tracking using the projective particle filter. The performance of this measurement-level fusion method is compared with that of a track-level fusion algorithm using the projective particle filter. In the track-level fusion algorithm, the 2D sensor tracks are generated separately and transmitted to a fusion center, where they are treated as measurements to the state estimator. The 2D sensor tracks are then fused to reconstruct the system track. A realistic synthetic scenario with a boosting target was generated, and used to study the performance of the fusion mechanisms.
NASA Astrophysics Data System (ADS)
Kuchynka, Petr; Folkner, William M.; Konopliv, Alex S.; Parker, Timothy J.; Park, Ryan S.; Le Maistre, Sebastien; Dehant, Veronique
2014-02-01
The Opportunity Mars Exploration Rover remained stationary between January and May 2012 in order to conserve solar energy for running its survival heaters during martian winter. While stationary, extra Doppler tracking was performed in order to allow an improved estimate of the martian precession rate. In this study, we determine Mars rotation by combining the new Opportunity tracking data with historic tracking data from the Viking and Pathfinder landers and tracking data from Mars orbiters (Mars Global Surveyor, Mars Odyssey and Mars Reconnaissance Orbiter). The estimated rotation parameters are stable in cross-validation tests and compare well with previously published values. In particular, the Mars precession rate is estimated to be -7606.1 ± 3.5 mas/yr. A representation of Mars rotation as a series expansion based on the determined rotation parameters is provided.
Bilateral step length estimation using a single inertial measurement unit attached to the pelvis
2012-01-01
Background The estimation of the spatio-temporal gait parameters is of primary importance in both physical activity monitoring and clinical contexts. A method for estimating step length bilaterally, during level walking, using a single inertial measurement unit (IMU) attached to the pelvis is proposed. In contrast to previous studies, based either on a simplified representation of the human gait mechanics or on a general linear regressive model, the proposed method estimates the step length directly from the integration of the acceleration along the direction of progression. Methods The IMU was placed at pelvis level fixed to the subject's belt on the right side. The method was validated using measurements from a stereo-photogrammetric system as a gold standard on nine subjects walking ten laps along a closed loop track of about 25 m, varying their speed. For each loop, only the IMU data recorded in a 4 m long portion of the track included in the calibrated volume of the SP system, were used for the analysis. The method takes advantage of the cyclic nature of gait and it requires an accurate determination of the foot contact instances. A combination of a Kalman filter and of an optimally filtered direct and reverse integration applied to the IMU signals formed a single novel method (Kalman and Optimally filtered Step length Estimation - KOSE method). A correction of the IMU displacement due to the pelvic rotation occurring in gait was implemented to estimate the step length and the traversed distance. Results The step length was estimated for all subjects with less than 3% error. Traversed distance was assessed with less than 2% error. Conclusions The proposed method provided estimates of step length and traversed distance more accurate than any other method applied to measurements obtained from a single IMU that can be found in the literature. In healthy subjects, it is reasonable to expect that, errors in traversed distance estimation during daily monitoring activity would be of the same order of magnitude of those presented. PMID:22316235
Motion reconstruction of animal groups: From schooling fish to swarming mosquitoes
NASA Astrophysics Data System (ADS)
Butail, Sachit
The long-term goal of this research is to provide kinematic data for the design and validation of spatial models of collective behavior in animal groups. The specific research objective of this dissertation is to apply methods from nonlinear estimation and computer vision to construct multi-target tracking systems that process multi-view calibrated video to reconstruct the three-dimensional movement of animals in a group. We adapt the tracking systems for the study of two animal species: Danio aequipinnatus, a common species of schooling fish, and Anopheles gambiae, the most important vector of malaria in sub-Saharan Africa. Together these tracking systems span variability in target size on image, density, and movement. For tracking fish, we automatically initialize, predict, and reconstruct shape trajectories of multiple fish through occlusions. For mosquitoes, which appear as faded streaks on in-field footage, we provide methods to extract velocity information from the streaks, adaptively seek missing measurements, and resolve occlusions within a multi-hypothesis framework. In each case the research has yielded an unprecedented volume of trajectory data for subsequent analysis. We present kinematic data of fast-start response in fish schools and first-ever trajectories of wild mosquito swarming and mating events. The broader impact of this work is to advance the understanding of animal groups for the design of bio-inspired robotic systems, where, similar to the animal groups we study, the collective is able to perform tasks far beyond the capabilities of a single inexpensive robot.
Tracking of Ball and Players in Beach Volleyball Videos
Gomez, Gabriel; Herrera López, Patricia; Link, Daniel; Eskofier, Bjoern
2014-01-01
This paper presents methods for the determination of players' positions and contact time points by tracking the players and the ball in beach volleyball videos. Two player tracking methods are compared, a classical particle filter and a rigid grid integral histogram tracker. Due to mutual occlusion of the players and the camera perspective, results are best for the front players, with 74,6% and 82,6% of correctly tracked frames for the particle method and the integral histogram method, respectively. Results suggest an improved robustness against player confusion between different particle sets when tracking with a rigid grid approach. Faster processing and less player confusions make this method superior to the classical particle filter. Two different ball tracking methods are used that detect ball candidates from movement difference images using a background subtraction algorithm. Ball trajectories are estimated and interpolated from parabolic flight equations. The tracking accuracy of the ball is 54,2% for the trajectory growth method and 42,1% for the Hough line detection method. Tracking results of over 90% from the literature could not be confirmed. Ball contact frames were estimated from parabolic trajectory intersection, resulting in 48,9% of correctly estimated ball contact points. PMID:25426936
The National Teaching & Learning Forum, Volume 1, 1991-92.
ERIC Educational Resources Information Center
Rhem, James, Ed.
1992-01-01
Volume One of this 12 page newsletter includes six issues. Typical features include: a lead article; Research Watch; ERIC Tracks; Case Studies; Case Study Responses; Curriculum; Teaching Assistants (TA) Forum; and Profile (personal and Programmatic). Major articles included in volume one are: "Faculty and Students: Different Ways of…
A Simulation Tool for Dynamic Contrast Enhanced MRI
Mauconduit, Franck; Christen, Thomas; Barbier, Emmanuel Luc
2013-01-01
The quantification of bolus-tracking MRI techniques remains challenging. The acquisition usually relies on one contrast and the analysis on a simplified model of the various phenomena that arise within a voxel, leading to inaccurate perfusion estimates. To evaluate how simplifications in the interstitial model impact perfusion estimates, we propose a numerical tool to simulate the MR signal provided by a dynamic contrast enhanced (DCE) MRI experiment. Our model encompasses the intrinsic and relaxations, the magnetic field perturbations induced by susceptibility interfaces (vessels and cells), the diffusion of the water protons, the blood flow, the permeability of the vessel wall to the the contrast agent (CA) and the constrained diffusion of the CA within the voxel. The blood compartment is modeled as a uniform compartment. The different blocks of the simulation are validated and compared to classical models. The impact of the CA diffusivity on the permeability and blood volume estimates is evaluated. Simulations demonstrate that the CA diffusivity slightly impacts the permeability estimates ( for classical blood flow and CA diffusion). The effect of long echo times is investigated. Simulations show that DCE-MRI performed with an echo time may already lead to significant underestimation of the blood volume (up to 30% lower for brain tumor permeability values). The potential and the versatility of the proposed implementation are evaluated by running the simulation with realistic vascular geometry obtained from two photons microscopy and with impermeable cells in the extravascular environment. In conclusion, the proposed simulation tool describes DCE-MRI experiments and may be used to evaluate and optimize acquisition and processing strategies. PMID:23516414
Estimation of Lung Ventilation
NASA Astrophysics Data System (ADS)
Ding, Kai; Cao, Kunlin; Du, Kaifang; Amelon, Ryan; Christensen, Gary E.; Raghavan, Madhavan; Reinhardt, Joseph M.
Since the primary function of the lung is gas exchange, ventilation can be interpreted as an index of lung function in addition to perfusion. Injury and disease processes can alter lung function on a global and/or a local level. MDCT can be used to acquire multiple static breath-hold CT images of the lung taken at different lung volumes, or with proper respiratory control, 4DCT images of the lung reconstructed at different respiratory phases. Image registration can be applied to this data to estimate a deformation field that transforms the lung from one volume configuration to the other. This deformation field can be analyzed to estimate local lung tissue expansion, calculate voxel-by-voxel intensity change, and make biomechanical measurements. The physiologic significance of the registration-based measures of respiratory function can be established by comparing to more conventional measurements, such as nuclear medicine or contrast wash-in/wash-out studies with CT or MR. An important emerging application of these methods is the detection of pulmonary function change in subjects undergoing radiation therapy (RT) for lung cancer. During RT, treatment is commonly limited to sub-therapeutic doses due to unintended toxicity to normal lung tissue. Measurement of pulmonary function may be useful as a planning tool during RT planning, may be useful for tracking the progression of toxicity to nearby normal tissue during RT, and can be used to evaluate the effectiveness of a treatment post-therapy. This chapter reviews the basic measures to estimate regional ventilation from image registration of CT images, the comparison of them to the existing golden standard and the application in radiation therapy.
2005 8th Annual Systems Engineering Conference Volume 3 - Wednesday presentations
2005-10-24
phasi s on s ystem s eng ineeri ng Imple menta tion o f SE P lans Requires PEO chief engineer Conduct of technical reviews SE Policy Addendum Signed by...in a Performance Based Logistics Environment, Denise Duncan, LMI Track 5 - Best Practices & Standardization: CMMI for Services, Mr. Juan Ceva...CMMI for Services Mr. Juan Ceva, Raytheon RIS TRACK 5 Logistics Session 3C5 TRACK 4 Net Centric Operations Session 3C4 TRACK 6 Modeling & Simulation
Accommodating Sensor Bias in MRAC for State Tracking
NASA Technical Reports Server (NTRS)
Patre, Parag; Joshi, Suresh M.
2011-01-01
The problem of accommodating unknown sensor bias is considered in a direct model reference adaptive control (MRAC) setting for state tracking using state feedback. Sensor faults can occur during operation, and if the biased state measurements are directly used with a standard MRAC control law, neither closed-loop signal boundedness, nor asymptotic tracking can be guaranteed and the resulting tracking errors may be unbounded or unacceptably large. A modified MRAC law is proposed, which combines a bias estimator with control gain adaptation, and it is shown that signal boundedness can be accomplished, although the tracking error may not go to zero. Further, for the case wherein an asymptotically stable sensor bias estimator is available, an MRAC control law is proposed to accomplish asymptotic tracking and signal boundedness. Such a sensor bias estimator can be designed if additional sensor measurements are available, as illustrated for the case wherein bias is present in the rate gyro and airspeed measurements. Numerical example results are presented to illustrate each of the schemes.
Robust Target Tracking with Multi-Static Sensors under Insufficient TDOA Information.
Shin, Hyunhak; Ku, Bonhwa; Nelson, Jill K; Ko, Hanseok
2018-05-08
This paper focuses on underwater target tracking based on a multi-static sonar network composed of passive sonobuoys and an active ping. In the multi-static sonar network, the location of the target can be estimated using TDOA (Time Difference of Arrival) measurements. However, since the sensor network may obtain insufficient and inaccurate TDOA measurements due to ambient noise and other harsh underwater conditions, target tracking performance can be significantly degraded. We propose a robust target tracking algorithm designed to operate in such a scenario. First, track management with track splitting is applied to reduce performance degradation caused by insufficient measurements. Second, a target location is estimated by a fusion of multiple TDOA measurements using a Gaussian Mixture Model (GMM). In addition, the target trajectory is refined by conducting a stack-based data association method based on multiple-frames measurements in order to more accurately estimate target trajectory. The effectiveness of the proposed method is verified through simulations.
Bhattacharya, Indranil; Manukyan, Zorayr; Chan, Phylinda; Heatherington, Anne; Harnisch, Lutz
2017-10-12
Domagrozumab, a monoclonal antibody that binds to myostatin, is being developed for Duchenne muscular dystrophy (DMD) boys following a first-in-human study in healthy adults. Literature reporting pharmacokinetic parameters of monoclonal antibodies suggested that body-weight- and body-surface-area-adjusted clearance and volume of distribution estimates between adults and children are similar for subjects older than 6 years. Population modeling identified a Michaelis-Menten binding kinetics model to optimally characterize the target mediated drug disposition profile of domagrozumab and identified body mass index on the volume of distribution as the only significant covariate. Model parameters were predicted with high-precision pharmacokinetics (clearance 1.01 × 10 -4 L/[h·kg]; central volume of distribution 457 × 10 -4 L/kg; maximum elimination rate 17.5 × 10 -4 nmol/[h·kg], Km 10.6 nmol/L) and pharmacodynamics (myostatin turnover rate 457 × 10 -4 h -1 ; complex removal rate 90 × 10 -4 h -1 ; half-saturation constant 4.32 nmol/L) and were used to predict target coverage for dosage selection in the DMD population. Additionally, allometric approaches (estimated scaling exponents (standard error) for clearance and volume were 0.81 [0.01] and 0.98 [0.02], respectively) in conjunction with a separate analysis to obtain the population mean weight and standard deviation suggested that if dosed per body weight, an only 11% difference in clearance is expected between the heaviest and lightest patient, thus preventing the need for dose adjustment. In summary, quantitative approaches were instrumental in bridging and derisking the fast-track development of domagrozumab in DMD. © 2017, The American College of Clinical Pharmacology.
NASA Technical Reports Server (NTRS)
Feir, J. B.
1974-01-01
Travel markets which would be served by high speed commercial transport aircraft and the ability of the airlines to schedule and route the aircraft in a way that would achieve good daily utilization and productivity are examined. The following areas are considered: (1) identification of the major long-haul city pairs that would most likely demand nonstop service; (2) selection of flight tracks observing alternative sonic boom restrictions; (3) estimation of flight times for all city pairs for the various sonic boom constraints; (4) impact of airport curfews on possible departure and arrival schedules; (5) projection of passenger traffic volumes on the selected city pairs; and (6) potential daily utilization and aircraft productivity.
NASA Technical Reports Server (NTRS)
Cable, D. A.; Derocher, W. L., Jr.; Cathcart, J. A.; Keeley, M. G.; Madayev, L.; Nguyen, T. K.; Preese, J. R.
1986-01-01
A number of areas of research and laboratory experiments were identified which could lead to development of a cost efficient remote, disable satellite recovery system. Estimates were planned of disabled satellite motion. A concept is defined as a Tumbling Satellite Recovery kit which includes a modular system, composed of a number of subsystem mechanisms that can be readily integrated into varying combinations. This would enable the user to quickly configure a tailored remote, disabled satellite recovery kit to meet a broad spectrum of potential scenarios. The capability was determined of U.S. Earth based satellite tracking facilities to adequately determine the orientation and motion rates of disabled satellites.
Evolution of New miRNAs and Cerebro-Cortical Development.
Kosik, Kenneth S; Nowakowski, Tomasz
2018-04-04
The noncoding portion of the genome, including microRNAs, has been fertile evolutionary soil for cortical development in primates. A major contribution to cortical expansion in primates is the generation of novel precursor cell populations. Because miRNA expression profiles track closely with cell identity, it is likely that numerous novel microRNAs have contributed to cellular diversity in the brain. The tools to determine the genomic context within which novel microRNAs emerge and how they become integrated into molecular circuitry are now in hand. Expected final online publication date for the Annual Review of Neuroscience Volume 41 is July 8, 2018. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ali, Elsayed; Nyiri, Balazs
Purpose: The HexaPOD™ six degree of freedom couchtop is equipped with an optical tracking system, consisting of a stereoscopic camera and a reference frame (RF) carrying infrared reflective markers. The manufacturer recommends placing the RF within 50 cm from linac isocenter (ISO), which is a serious limitation since the RF does not fit around the shoulders of most brain patients. This study quantifies the impact of extended RF distances from ISO on positional accuracy. Methods: An in-house tool with an estimated resolution of 0.3 mm and 0.1° was used. It is a large cube and a mathematical model of HexaPODmore » motion to determine the intersection of room lasers with the ruled cube edges. Combinations of translations (±1 and ±3 cm) and rotations (±2.5°) were executed on two HexaPOD couchtops for multiple RF distances from ISO (35 to 77 cm). For each combination, ten laser readings were fed into a least squares algorithm to determine the executed translations and rotations while minimizing operator reading errors. Results: The usable tracking volume is up to an RF distance of 82 cm from ISO. Positional accuracy of the HexaPOD/iGuide system is 0.6 mm and 0.1° (95% confidence). Positional accuracy variations versus RF distance from ISO are statistically insignificant (p = 0.05). Our results generally confirm recent internal estimates by the manufacturer (for future release). Conclusions: RF distances up to 77 cm from ISO are clinically acceptable, provided performing a patient safety study with a verification scan.« less
Geometric reconstruction using tracked ultrasound strain imaging
NASA Astrophysics Data System (ADS)
Pheiffer, Thomas S.; Simpson, Amber L.; Ondrake, Janet E.; Miga, Michael I.
2013-03-01
The accurate identification of tumor margins during neurosurgery is a primary concern for the surgeon in order to maximize resection of malignant tissue while preserving normal function. The use of preoperative imaging for guidance is standard of care, but tumor margins are not always clear even when contrast agents are used, and so margins are often determined intraoperatively by visual and tactile feedback. Ultrasound strain imaging creates a quantitative representation of tissue stiffness which can be used in real-time. The information offered by strain imaging can be placed within a conventional image-guidance workflow by tracking the ultrasound probe and calibrating the image plane, which facilitates interpretation of the data by placing it within a common coordinate space with preoperative imaging. Tumor geometry in strain imaging is then directly comparable to the geometry in preoperative imaging. This paper presents a tracked ultrasound strain imaging system capable of co-registering with preoperative tomograms and also of reconstructing a 3D surface using the border of the strain lesion. In a preliminary study using four phantoms with subsurface tumors, tracked strain imaging was registered to preoperative image volumes and then tumor surfaces were reconstructed using contours extracted from strain image slices. The volumes of the phantom tumors reconstructed from tracked strain imaging were approximately between 1.5 to 2.4 cm3, which was similar to the CT volumes of 1.0 to 2.3 cm3. Future work will be done to robustly characterize the reconstruction accuracy of the system.
The Extended-Image Tracking Technique Based on the Maximum Likelihood Estimation
NASA Technical Reports Server (NTRS)
Tsou, Haiping; Yan, Tsun-Yee
2000-01-01
This paper describes an extended-image tracking technique based on the maximum likelihood estimation. The target image is assume to have a known profile covering more than one element of a focal plane detector array. It is assumed that the relative position between the imager and the target is changing with time and the received target image has each of its pixels disturbed by an independent additive white Gaussian noise. When a rotation-invariant movement between imager and target is considered, the maximum likelihood based image tracking technique described in this paper is a closed-loop structure capable of providing iterative update of the movement estimate by calculating the loop feedback signals from a weighted correlation between the currently received target image and the previously estimated reference image in the transform domain. The movement estimate is then used to direct the imager to closely follow the moving target. This image tracking technique has many potential applications, including free-space optical communications and astronomy where accurate and stabilized optical pointing is essential.
Adaptive Parameter Estimation of Person Recognition Model in a Stochastic Human Tracking Process
NASA Astrophysics Data System (ADS)
Nakanishi, W.; Fuse, T.; Ishikawa, T.
2015-05-01
This paper aims at an estimation of parameters of person recognition models using a sequential Bayesian filtering method. In many human tracking method, any parameters of models used for recognize the same person in successive frames are usually set in advance of human tracking process. In real situation these parameters may change according to situation of observation and difficulty level of human position prediction. Thus in this paper we formulate an adaptive parameter estimation using general state space model. Firstly we explain the way to formulate human tracking in general state space model with their components. Then referring to previous researches, we use Bhattacharyya coefficient to formulate observation model of general state space model, which is corresponding to person recognition model. The observation model in this paper is a function of Bhattacharyya coefficient with one unknown parameter. At last we sequentially estimate this parameter in real dataset with some settings. Results showed that sequential parameter estimation was succeeded and were consistent with observation situations such as occlusions.
A game theory approach to target tracking in sensor networks.
Gu, Dongbing
2011-02-01
In this paper, we investigate a moving-target tracking problem with sensor networks. Each sensor node has a sensor to observe the target and a processor to estimate the target position. It also has wireless communication capability but with limited range and can only communicate with neighbors. The moving target is assumed to be an intelligent agent, which is "smart" enough to escape from the detection by maximizing the estimation error. This adversary behavior makes the target tracking problem more difficult. We formulate this target estimation problem as a zero-sum game in this paper and use a minimax filter to estimate the target position. The minimax filter is a robust filter that minimizes the estimation error by considering the worst case noise. Furthermore, we develop a distributed version of the minimax filter for multiple sensor nodes. The distributed computation is implemented via modeling the information received from neighbors as measurements in the minimax filter. The simulation results show that the target tracking algorithm proposed in this paper provides a satisfactory result.
Pulsed Acoustic Vortex Sensing System : Volume 1. Hardware Design
DOT National Transportation Integrated Search
1977-06-01
Avco Corporation's Systems Division designed and developed an engineered Pulsed Acoustic Vortex Sensing System (PAVSS). This system is capable of real-time detection, tracking, recording, and graphic display of aircraft trailing vortices. This volume...
An extended Kalman filter for mouse tracking.
Choi, Hongjun; Kim, Mingi; Lee, Onseok
2018-05-19
Animal tracking is an important tool for observing behavior, which is useful in various research areas. Animal specimens can be tracked using dynamic models and observation models that require several types of data. Tracking mouse has several barriers due to the physical characteristics of the mouse, their unpredictable movement, and cluttered environments. Therefore, we propose a reliable method that uses a detection stage and a tracking stage to successfully track mouse. The detection stage detects the surface area of the mouse skin, and the tracking stage implements an extended Kalman filter to estimate the state variables of a nonlinear model. The changes in the overall shape of the mouse are tracked using an oval-shaped tracking model to estimate the parameters for the ellipse. An experiment is conducted to demonstrate the performance of the proposed tracking algorithm using six video images showing various types of movement, and the ground truth values for synthetic images are compared to the values generated by the tracking algorithm. A conventional manual tracking method is also applied to compare across eight experimenters. Furthermore, the effectiveness of the proposed tracking method is also demonstrated by applying the tracking algorithm with actual images of mouse. Graphical abstract.
Marine mammal tracks from two-hydrophone acoustic recordings made with a glider
NASA Astrophysics Data System (ADS)
Küsel, Elizabeth T.; Munoz, Tessa; Siderius, Martin; Mellinger, David K.; Heimlich, Sara
2017-04-01
A multinational oceanographic and acoustic sea experiment was carried out in the summer of 2014 off the western coast of the island of Sardinia, Mediterranean Sea. During this experiment, an underwater glider fitted with two hydrophones was evaluated as a potential tool for marine mammal population density estimation studies. An acoustic recording system was also tested, comprising an inexpensive, off-the-shelf digital recorder installed inside the glider. Detection and classification of sounds produced by whales and dolphins, and sometimes tracking and localization, are inherent components of population density estimation from passive acoustics recordings. In this work we discuss the equipment used as well as analysis of the data obtained, including detection and estimation of bearing angles. A human analyst identified the presence of sperm whale (Physeter macrocephalus) regular clicks as well as dolphin clicks and whistles. Cross-correlating clicks recorded on both data channels allowed for the estimation of the direction (bearing) of clicks, and realization of animal tracks. Insights from this bearing tracking analysis can aid in population density estimation studies by providing further information (bearings), which can improve estimates.
Design and Performance Evaluation on Ultra-Wideband Time-Of-Arrival 3D Tracking System
NASA Technical Reports Server (NTRS)
Ni, Jianjun; Arndt, Dickey; Ngo, Phong; Dusl, John
2012-01-01
A three-dimensional (3D) Ultra-Wideband (UWB) Time--of-Arrival (TOA) tracking system has been studied at NASA Johnson Space Center (JSC) to provide the tracking capability inside the International Space Station (ISS) modules for various applications. One of applications is to locate and report the location where crew experienced possible high level of carbon-dioxide and felt upset. In order to accurately locate those places in a multipath intensive environment like ISS modules, it requires a robust real-time location system (RTLS) which can provide the required accuracy and update rate. A 3D UWB TOA tracking system with two-way ranging has been proposed and studied. The designed system will be tested in the Wireless Habitat Testbed which simulates the ISS module environment. In this presentation, we discuss the 3D TOA tracking algorithm and the performance evaluation based on different tracking baseline configurations. The simulation results show that two configurations of the tracking baseline are feasible. With 100 picoseconds standard deviation (STD) of TOA estimates, the average tracking error 0.2392 feet (about 7 centimeters) can be achieved for configuration Twisted Rectangle while the average tracking error 0.9183 feet (about 28 centimeters) can be achieved for configuration Slightly-Twisted Top Rectangle . The tracking accuracy can be further improved with the improvement of the STD of TOA estimates. With 10 picoseconds STD of TOA estimates, the average tracking error 0.0239 feet (less than 1 centimeter) can be achieved for configuration "Twisted Rectangle".
Multi-object tracking of human spermatozoa
NASA Astrophysics Data System (ADS)
Sørensen, Lauge; Østergaard, Jakob; Johansen, Peter; de Bruijne, Marleen
2008-03-01
We propose a system for tracking of human spermatozoa in phase-contrast microscopy image sequences. One of the main aims of a computer-aided sperm analysis (CASA) system is to automatically assess sperm quality based on spermatozoa motility variables. In our case, the problem of assessing sperm quality is cast as a multi-object tracking problem, where the objects being tracked are the spermatozoa. The system combines a particle filter and Kalman filters for robust motion estimation of the spermatozoa tracks. Further, the combinatorial aspect of assigning observations to labels in the particle filter is formulated as a linear assignment problem solved using the Hungarian algorithm on a rectangular cost matrix, making the algorithm capable of handling missing or spurious observations. The costs are calculated using hidden Markov models that express the plausibility of an observation being the next position in the track history of the particle labels. Observations are extracted using a scale-space blob detector utilizing the fact that the spermatozoa appear as bright blobs in a phase-contrast microscope. The output of the system is the complete motion track of each of the spermatozoa. Based on these tracks, different CASA motility variables can be computed, for example curvilinear velocity or straight-line velocity. The performance of the system is tested on three different phase-contrast image sequences of varying complexity, both by visual inspection of the estimated spermatozoa tracks and by measuring the mean squared error (MSE) between the estimated spermatozoa tracks and manually annotated tracks, showing good agreement.
NASA Technical Reports Server (NTRS)
Hunter, Stanley; deNolfo, G. A.; Barbier, L. M.; Link, J. T.; Son, S.; Floyd, S. R.; Guardala, N.; Skopec, M.; Stark, B.
2008-01-01
The Neutron Imaging Camera (NIC) is based on the Three-dimensional Track Imager (3DTI) technology developed at GSFC for gamma-ray astrophysics applications. The 3-DTI, a large volume time-projection chamber, provides accurate, approximately 0.4 mm resolution, 3-D tracking of charged particles. The incident direction of fast neutrons, En > 0.5 MeV, are reconstructed from the momenta and energies of the proton and triton fragments resulting from (sup 3)He(n,p) (sup 3)H interactions in the 3-DTI volume. The performance of the NIC from laboratory and accelerator tests is presented.
Survey of Motion Tracking Methods Based on Inertial Sensors: A Focus on Upper Limb Human Motion
Filippeschi, Alessandro; Schmitz, Norbert; Miezal, Markus; Bleser, Gabriele; Ruffaldi, Emanuele; Stricker, Didier
2017-01-01
Motion tracking based on commercial inertial measurements units (IMUs) has been widely studied in the latter years as it is a cost-effective enabling technology for those applications in which motion tracking based on optical technologies is unsuitable. This measurement method has a high impact in human performance assessment and human-robot interaction. IMU motion tracking systems are indeed self-contained and wearable, allowing for long-lasting tracking of the user motion in situated environments. After a survey on IMU-based human tracking, five techniques for motion reconstruction were selected and compared to reconstruct a human arm motion. IMU based estimation was matched against motion tracking based on the Vicon marker-based motion tracking system considered as ground truth. Results show that all but one of the selected models perform similarly (about 35 mm average position estimation error). PMID:28587178
Object Tracking Vision System for Mapping the UCN τ Apparatus Volume
NASA Astrophysics Data System (ADS)
Lumb, Rowan; UCNtau Collaboration
2016-09-01
The UCN τ collaboration has an immediate goal to measure the lifetime of the free neutron to within 0.1%, i.e. about 1 s. The UCN τ apparatus is a magneto-gravitational ``bottle'' system. This system holds low energy, or ultracold, neutrons in the apparatus with the constraint of gravity, and keeps these low energy neutrons from interacting with the bottle via a strong 1 T surface magnetic field created by a bowl-shaped array of permanent magnets. The apparatus is wrapped with energized coils to supply a magnetic field throughout the ''bottle'' volume to prevent depolarization of the neutrons. An object-tracking stereo-vision system will be presented that precisely tracks a Hall probe and allows a mapping of the magnetic field throughout the volume of the UCN τ bottle. The stereo-vision system utilizes two cameras and open source openCV software to track an object's 3-d position in space in real time. The desired resolution is +/-1 mm resolution along each axis. The vision system is being used as part of an even larger system to map the magnetic field of the UCN τ apparatus and expose any possible systematic effects due to field cancellation or low field points which could allow neutrons to depolarize and possibly escape from the apparatus undetected. Tennessee Technological University.
Demitri, Nevine; Zoubir, Abdelhak M
2017-01-01
Glucometers present an important self-monitoring tool for diabetes patients and, therefore, must exhibit high accuracy as well as good usability features. Based on an invasive photometric measurement principle that drastically reduces the volume of the blood sample needed from the patient, we present a framework that is capable of dealing with small blood samples, while maintaining the required accuracy. The framework consists of two major parts: 1) image segmentation; and 2) convergence detection. Step 1 is based on iterative mode-seeking methods to estimate the intensity value of the region of interest. We present several variations of these methods and give theoretical proofs of their convergence. Our approach is able to deal with changes in the number and position of clusters without any prior knowledge. Furthermore, we propose a method based on sparse approximation to decrease the computational load, while maintaining accuracy. Step 2 is achieved by employing temporal tracking and prediction, herewith decreasing the measurement time, and, thus, improving usability. Our framework is tested on several real datasets with different characteristics. We show that we are able to estimate the underlying glucose concentration from much smaller blood samples than is currently state of the art with sufficient accuracy according to the most recent ISO standards and reduce measurement time significantly compared to state-of-the-art methods.
Multiple Target Laser Designator (MTLD)
2007-03-01
Optimized Liquid Crystal Scanning Element Optimize the Nonimaging Predictive Algorithm for Target Ranging, Tracking, and Position Estimation...commercial potential. 3.0 PROGRESS THIS QUARTER 3.1 Optimization of Nonimaging Holographic Antenna for Target Tracking and Position Estimation (Task 6) In
A Bayesian approach to tracking patients having changing pharmacokinetic parameters
NASA Technical Reports Server (NTRS)
Bayard, David S.; Jelliffe, Roger W.
2004-01-01
This paper considers the updating of Bayesian posterior densities for pharmacokinetic models associated with patients having changing parameter values. For estimation purposes it is proposed to use the Interacting Multiple Model (IMM) estimation algorithm, which is currently a popular algorithm in the aerospace community for tracking maneuvering targets. The IMM algorithm is described, and compared to the multiple model (MM) and Maximum A-Posteriori (MAP) Bayesian estimation methods, which are presently used for posterior updating when pharmacokinetic parameters do not change. Both the MM and MAP Bayesian estimation methods are used in their sequential forms, to facilitate tracking of changing parameters. Results indicate that the IMM algorithm is well suited for tracking time-varying pharmacokinetic parameters in acutely ill and unstable patients, incurring only about half of the integrated error compared to the sequential MM and MAP methods on the same example.
NASA Astrophysics Data System (ADS)
Gao, Haibo; Chen, Chao; Ding, Liang; Li, Weihua; Yu, Haitao; Xia, Kerui; Liu, Zhen
2017-11-01
Wheeled mobile robots (WMRs) often suffer from the longitudinal slipping when moving on the loose soil of the surface of the moon during exploration. Longitudinal slip is the main cause of WMRs' delay in trajectory tracking. In this paper, a nonlinear extended state observer (NESO) is introduced to estimate the longitudinal velocity in order to estimate the slip ratio and the derivative of the loss of velocity which are used in modelled disturbance compensation. Owing to the uncertainty and disturbance caused by estimation errors, a multi-objective controller using the mixed H2/H∞ method is employed to ensure the robust stability and performance of the WMR system. The final inputs of the trajectory tracking consist of the feedforward compensation, compensation for the modelled disturbances and designed multi-objective control inputs. Finally, the simulation results demonstrate the effectiveness of the controller, which exhibits a satisfactory tracking performance.
Haptic control with environment force estimation for telesurgery.
Bhattacharjee, Tapomayukh; Son, Hyoung Il; Lee, Doo Yong
2008-01-01
Success of telesurgical operations depends on better position tracking ability of the slave device. Improved position tracking of the slave device can lead to safer and less strenuous telesurgical operations. The two-channel force-position control architecture is widely used for better position tracking ability. This architecture requires force sensors for direct force feedback. Force sensors may not be a good choice in the telesurgical environment because of the inherent noise, and limitation in the deployable place and space. Hence, environment force estimation is developed using the concept of the robot function parameter matrix and a recursive least squares method. Simulation results show efficacy of the proposed method. The slave device successfully tracks the position of the master device, and the estimation error quickly becomes negligible.
Tracking of electrochemical impedance of batteries
NASA Astrophysics Data System (ADS)
Piret, H.; Granjon, P.; Guillet, N.; Cattin, V.
2016-04-01
This paper presents an evolutionary battery impedance estimation method, which can be easily embedded in vehicles or nomad devices. The proposed method not only allows an accurate frequency impedance estimation, but also a tracking of its temporal evolution contrary to classical electrochemical impedance spectroscopy methods. Taking into account constraints of cost and complexity, we propose to use the existing electronics of current control to perform a frequency evolutionary estimation of the electrochemical impedance. The developed method uses a simple wideband input signal, and relies on a recursive local average of Fourier transforms. The averaging is controlled by a single parameter, managing a trade-off between tracking and estimation performance. This normalized parameter allows to correctly adapt the behavior of the proposed estimator to the variations of the impedance. The advantage of the proposed method is twofold: the method is easy to embed into a simple electronic circuit, and the battery impedance estimator is evolutionary. The ability of the method to monitor the impedance over time is demonstrated on a simulator, and on a real Lithium ion battery, on which a repeatability study is carried out. The experiments reveal good tracking results, and estimation performance as accurate as the usual laboratory approaches.
Dynamic Shape Capture of Free-Swimming Aquatic Life using Multi-view Stereo
NASA Astrophysics Data System (ADS)
Daily, David
2017-11-01
The reconstruction and tracking of swimming fish in the past has either been restricted to flumes, small volumes, or sparse point tracking in large tanks. The purpose of this research is to use an array of cameras to automatically track 50-100 points on the surface of a fish using the multi-view stereo computer vision technique. The method is non-invasive thus allowing the fish to swim freely in a large volume and to perform more advanced maneuvers such as rolling, darting, stopping, and reversing which have not been studied. The techniques for obtaining and processing the 3D kinematics and maneuvers of tuna, sharks, stingrays, and other species will be presented and compared. The National Aquarium and the Naval Undersea Warfare Center and.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shchory, Tal; Schifter, Dan; Lichtman, Rinat
Purpose: In radiation therapy there is a need to accurately know the location of the target in real time. A novel radioactive tracking technology has been developed to answer this need. The technology consists of a radioactive implanted fiducial marker designed to minimize migration and a linac mounted tracking device. This study measured the static and dynamic accuracy of the new tracking technology in a clinical radiation therapy environment. Methods and Materials: The tracking device was installed on the linac gantry. The radioactive marker was located in a tissue equivalent phantom. Marker location was measured simultaneously by the radioactive trackingmore » system and by a Microscribe G2 coordinate measuring machine (certified spatial accuracy of 0.38 mm). Localization consistency throughout a volume and absolute accuracy in the Fixed coordinate system were measured at multiple gantry angles over volumes of at least 10 cm in diameter centered at isocenter. Dynamic accuracy was measured with the marker located inside a breathing phantom. Results: The mean consistency for the static source was 0.58 mm throughout the tested region at all measured gantry angles. The mean absolute position error in the Fixed coordinate system for all gantry angles was 0.97 mm. The mean real-time tracking error for the dynamic source within the breathing phantom was less than 1 mm. Conclusions: This novel radioactive tracking technology has the potential to be useful in accurate target localization and real-time monitoring for radiation therapy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rao, Nageswara S.; Liu, Qiang
We consider tracking of a target with elliptical nonlinear constraints on its motion dynamics. The state estimates are generated by sensors and sent over long-haul links to a remote fusion center for fusion. We show that the constraints can be projected onto the known ellipse and hence incorporated into the estimation and fusion process. In particular, two methods based on (i) direct connection to the center, and (ii) shortest distance to the ellipse are discussed. A tracking example is used to illustrate the tracking performance using projection-based methods with various fusers in the lossy long-haul tracking environment.
High throughput on-chip analysis of high-energy charged particle tracks using lensfree imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Wei; Shabbir, Faizan; Gong, Chao
2015-04-13
We demonstrate a high-throughput charged particle analysis platform, which is based on lensfree on-chip microscopy for rapid ion track analysis using allyl diglycol carbonate, i.e., CR-39 plastic polymer as the sensing medium. By adopting a wide-area opto-electronic image sensor together with a source-shifting based pixel super-resolution technique, a large CR-39 sample volume (i.e., 4 cm × 4 cm × 0.1 cm) can be imaged in less than 1 min using a compact lensfree on-chip microscope, which detects partially coherent in-line holograms of the ion tracks recorded within the CR-39 detector. After the image capture, using highly parallelized reconstruction and ion track analysis algorithms running on graphics processingmore » units, we reconstruct and analyze the entire volume of a CR-39 detector within ∼1.5 min. This significant reduction in the entire imaging and ion track analysis time not only increases our throughput but also allows us to perform time-resolved analysis of the etching process to monitor and optimize the growth of ion tracks during etching. This computational lensfree imaging platform can provide a much higher throughput and more cost-effective alternative to traditional lens-based scanning optical microscopes for ion track analysis using CR-39 and other passive high energy particle detectors.« less
PyFLOWGO: An open-source platform for simulation of channelized lava thermo-rheological properties
NASA Astrophysics Data System (ADS)
Chevrel, Magdalena Oryaëlle; Labroquère, Jérémie; Harris, Andrew J. L.; Rowland, Scott K.
2018-02-01
Lava flow advance can be modeled through tracking the evolution of the thermo-rheological properties of a control volume of lava as it cools and crystallizes. An example of such a model was conceived by Harris and Rowland (2001) who developed a 1-D model, FLOWGO, in which the velocity of a control volume flowing down a channel depends on rheological properties computed following the thermal path estimated via a heat balance box model. We provide here an updated version of FLOWGO written in Python that is an open-source, modern and flexible language. Our software, named PyFLOWGO, allows selection of heat fluxes and rheological models of the user's choice to simulate the thermo-rheological evolution of the lava control volume. We describe its architecture which offers more flexibility while reducing the risk of making error when changing models in comparison to the previous FLOWGO version. Three cases are tested using actual data from channel-fed lava flow systems and results are discussed in terms of model validation and convergence. PyFLOWGO is open-source and packaged in a Python library to be imported and reused in any Python program (https://github.com/pyflowgo/pyflowgo)
Joint US/UK Vortex Tracking Program at Heathrow International Airport Volume II: Data Analysis
DOT National Transportation Integrated Search
1977-11-01
From May 1974 through June 1975, the approach region to runway 28R at Heathrow International Airport was equipped with aircraft wake vortex tracking equipment. The vortices from approximately 13,000 aircraft were monitored along with the attendant me...
NASA Technical Reports Server (NTRS)
Orr, R. S.
1984-01-01
Tracking and data acquisition system (TDAS) requirements, TDAS architectural goals, enhanced TDAS subsystems, constellation and networking options, TDAS spacecraft options, crosslink implementation, baseline TDAS space segment architecture, and treat model development/security analysis are addressed.
Joint US/UK Vortex Tracking Program at Heathrow International Airport Volume: I Executive Summary
DOT National Transportation Integrated Search
1976-03-01
From May 1974 through June 1975 the approach region to Runway 28R at Heathrow International Airport was equipped with aircraft wake vortex tracking equipment. The vortices from approximately 13,000 aircraft were monitored along with the attendant met...
NASA Astrophysics Data System (ADS)
Miyajo, Akira; Hasegawa, Hideyuki
2018-07-01
At present, the speckle tracking method is widely used as a two- or three-dimensional (2D or 3D) motion estimator for the measurement of cardiovascular dynamics. However, this method requires high-level interpolation of a function, which evaluates the similarity between ultrasonic echo signals in two frames, to estimate a subsample small displacement in high-frame-rate ultrasound, which results in a high computational cost. To overcome this problem, a 2D motion estimator using the 2D Fourier transform, which does not require any interpolation process, was proposed by our group. In this study, we compared the accuracies of the speckle tracking method and our method using a 2D motion estimator, and applied the proposed method to the measurement of motion of a human carotid arterial wall. The bias error and standard deviation in the lateral velocity estimates obtained by the proposed method were 0.048 and 0.282 mm/s, respectively, which were significantly better than those (‑0.366 and 1.169 mm/s) obtained by the speckle tracking method. The calculation time of the proposed phase-sensitive method was 97% shorter than the speckle tracking method. Furthermore, the in vivo experimental results showed that a characteristic change in velocity around the carotid bifurcation could be detected by the proposed method.
Geometric estimation of intestinal contraction for motion tracking of video capsule endoscope
NASA Astrophysics Data System (ADS)
Mi, Liang; Bao, Guanqun; Pahlavan, Kaveh
2014-03-01
Wireless video capsule endoscope (VCE) provides a noninvasive method to examine the entire gastrointestinal (GI) tract, especially small intestine, where other endoscopic instruments can barely reach. VCE is able to continuously provide clear pictures in short fixed intervals, and as such researchers have attempted to use image processing methods to track the video capsule in order to locate the abnormalities inside the GI tract. To correctly estimate the speed of the motion of the endoscope capsule, the radius of the intestinal track must be known a priori. Physiological factors such as intestinal contraction, however, dynamically change the radius of the small intestine, which could bring large errors in speed estimation. In this paper, we are aiming to estimate the radius of the contracted intestinal track. First a geometric model is presented for estimating the radius of small intestine based on the black hole on endoscopic images. To validate our proposed model, a 3-dimentional virtual testbed that emulates the intestinal contraction is then introduced in details. After measuring the size of the black holes on the test images, we used our model to esimate the radius of the contracted intestinal track. Comparision between analytical results and the emulation model parameters has verified that our proposed method could preciously estimate the radius of the contracted small intestine based on endoscopic images.
NASA Technical Reports Server (NTRS)
Elrod, B. D.; Jacobsen, A.; Cook, R. A.; Singh, R. N. P.
1983-01-01
One-way range and Doppler methods for providing user orbit and time determination are examined. Forward link beacon tracking, with on-board processing of independent navigation signals broadcast continuously by TDAS spacecraft; forward link scheduled tracking; with on-board processing of navigation data received during scheduled TDAS forward link service intervals; and return link scheduled tracking; with ground-based processing of user generated navigation data during scheduled TDAS return link service intervals are discussed. A system level definition and requirements assessment for each alternative, an evaluation of potential navigation performance and comparison with TDAS mission model requirements is included. TDAS satellite tracking is also addressed for two alternatives: BRTS and VLBI tracking.
NASA Astrophysics Data System (ADS)
Smekens, F.; Létang, J. M.; Noblet, C.; Chiavassa, S.; Delpon, G.; Freud, N.; Rit, S.; Sarrut, D.
2014-12-01
We propose the split exponential track length estimator (seTLE), a new kerma-based method combining the exponential variant of the TLE and a splitting strategy to speed up Monte Carlo (MC) dose computation for low energy photon beams. The splitting strategy is applied to both the primary and the secondary emitted photons, triggered by either the MC events generator for primaries or the photon interactions generator for secondaries. Split photons are replaced by virtual particles for fast dose calculation using the exponential TLE. Virtual particles are propagated by ray-tracing in voxelized volumes and by conventional MC navigation elsewhere. Hence, the contribution of volumes such as collimators, treatment couch and holding devices can be taken into account in the dose calculation. We evaluated and analysed the seTLE method for two realistic small animal radiotherapy treatment plans. The effect of the kerma approximation, i.e. the complete deactivation of electron transport, was investigated. The efficiency of seTLE against splitting multiplicities was also studied. A benchmark with analog MC and TLE was carried out in terms of dose convergence and efficiency. The results showed that the deactivation of electrons impacts the dose at the water/bone interface in high dose regions. The maximum and mean dose differences normalized to the dose at the isocenter were, respectively of 14% and 2% . Optimal splitting multiplicities were found to be around 300. In all situations, discrepancies in integral dose were below 0.5% and 99.8% of the voxels fulfilled a 1%/0.3 mm gamma index criterion. Efficiency gains of seTLE varied from 3.2 × 105 to 7.7 × 105 compared to analog MC and from 13 to 15 compared to conventional TLE. In conclusion, seTLE provides results similar to the TLE while increasing the efficiency by a factor between 13 and 15, which makes it particularly well-suited to typical small animal radiation therapy applications.
Estimating Track Capacity Based on Rail Stresses and Metal Fatigue.
DOT National Transportation Integrated Search
2011-09-21
This paper describes a framework to evaluate the structural capacity of railroad track to train-induced loads. The framework is applied to estimate structural performance in terms of allowable limits for crosstie spacing. Evaluation of the load-carry...
Analysis of alternative means of transporting heavy tracked vehicles at Fort Hood, Texas
DOT National Transportation Integrated Search
1987-08-01
The problem addressed in this report is a transportation problem--Given that a volume of heavy tracked vehicles must be moved from storage and maintenance locations to field training and other locations, what is the best way to move them? The options...
NASA Technical Reports Server (NTRS)
Balas, Mark J.; Thapa Magar, Kaman S.; Frost, Susan A.
2013-01-01
A theory called Adaptive Disturbance Tracking Control (ADTC) is introduced and used to track the Tip Speed Ratio (TSR) of 5 MW Horizontal Axis Wind Turbine (HAWT). Since ADTC theory requires wind speed information, a wind disturbance generator model is combined with lower order plant model to estimate the wind speed as well as partial states of the wind turbine. In this paper, we present a proof of stability and convergence of ADTC theory with lower order estimator and show that the state feedback can be adaptive.
Pulsed acoustic vortex sensing system volume III: PAVSS operation and software documentation
DOT National Transportation Integrated Search
1977-06-01
Avco Corporation's Systems Division designed and developed an engineered Pulsed Acoustic Vortex Sensing System (PAVSS). This system is capable of real-time detection, tracking, recording, and graphic display of aircraft trailing vortices. This volume...
Pulsed Acoustic Vortex Sensing System : Volume 2, Studies of Improved PAVSS Processing Techniques
DOT National Transportation Integrated Search
1977-06-01
Avco Corporation's Systems Division designed and developed an engineered Pulsed Acoustic Vortex Sensing System (PAVSS). This system is capable of real-time detection, tracking, recording, and graphic display of aircraft trailing vortices. This volume...
Image-based tracking: a new emerging standard
NASA Astrophysics Data System (ADS)
Antonisse, Jim; Randall, Scott
2012-06-01
Automated moving object detection and tracking are increasingly viewed as solutions to the enormous data volumes resulting from emerging wide-area persistent surveillance systems. In a previous paper we described a Motion Imagery Standards Board (MISB) initiative to help address this problem: the specification of a micro-architecture for the automatic extraction of motion indicators and tracks. This paper reports on the development of an extended specification of the plug-and-play tracking micro-architecture, on its status as an emerging standard across DoD, the Intelligence Community, and NATO.
NASA Astrophysics Data System (ADS)
Zhu, Jing; Wang, Xingshu; Wang, Jun; Dai, Dongkai; Xiong, Hao
2016-10-01
Former studies have proved that the attitude error in a single-axis rotation INS/GPS integrated system tracks the high frequency component of the deflections of the vertical (DOV) with a fixed delay and tracking error. This paper analyses the influence of the nominal process noise covariance matrix Q on the tracking error as well as the response delay, and proposed a Q-adjusting technique to obtain the attitude error which can track the DOV better. Simulation results show that different settings of Q lead to different response delay and tracking error; there exists optimal Q which leads to a minimum tracking error and a comparatively short response delay; for systems with different accuracy, different Q-adjusting strategy should be adopted. In this way, the DOV estimation accuracy of using the attitude error as the observation can be improved. According to the simulation results, the DOV estimation accuracy after using the Q-adjusting technique is improved by approximate 23% and 33% respectively compared to that of the Earth Model EGM2008 and the direct attitude difference method.
3-D rigid body tracking using vision and depth sensors.
Gedik, O Serdar; Alatan, A Aydn
2013-10-01
In robotics and augmented reality applications, model-based 3-D tracking of rigid objects is generally required. With the help of accurate pose estimates, it is required to increase reliability and decrease jitter in total. Among many solutions of pose estimation in the literature, pure vision-based 3-D trackers require either manual initializations or offline training stages. On the other hand, trackers relying on pure depth sensors are not suitable for AR applications. An automated 3-D tracking algorithm, which is based on fusion of vision and depth sensors via extended Kalman filter, is proposed in this paper. A novel measurement-tracking scheme, which is based on estimation of optical flow using intensity and shape index map data of 3-D point cloud, increases 2-D, as well as 3-D, tracking performance significantly. The proposed method requires neither manual initialization of pose nor offline training, while enabling highly accurate 3-D tracking. The accuracy of the proposed method is tested against a number of conventional techniques, and a superior performance is clearly observed in terms of both objectively via error metrics and subjectively for the rendered scenes.
Vehicle tracking using fuzzy-based vehicle detection window with adaptive parameters
NASA Astrophysics Data System (ADS)
Chitsobhuk, Orachat; Kasemsiri, Watjanapong; Glomglome, Sorayut; Lapamonpinyo, Pipatphon
2018-04-01
In this paper, fuzzy-based vehicle tracking system is proposed. The proposed system consists of two main processes: vehicle detection and vehicle tracking. In the first process, the Gradient-based Adaptive Threshold Estimation (GATE) algorithm is adopted to provide the suitable threshold value for the sobel edge detection. The estimated threshold can be adapted to the changes of diverse illumination conditions throughout the day. This leads to greater vehicle detection performance compared to a fixed user's defined threshold. In the second process, this paper proposes the novel vehicle tracking algorithms namely Fuzzy-based Vehicle Analysis (FBA) in order to reduce the false estimation of the vehicle tracking caused by uneven edges of the large vehicles and vehicle changing lanes. The proposed FBA algorithm employs the average edge density and the Horizontal Moving Edge Detection (HMED) algorithm to alleviate those problems by adopting fuzzy rule-based algorithms to rectify the vehicle tracking. The experimental results demonstrate that the proposed system provides the high accuracy of vehicle detection about 98.22%. In addition, it also offers the low false detection rates about 3.92%.
Potential benefits of dosimetric VMAT tracking verified with 3D film measurements.
Crijns, Wouter; Defraene, Gilles; Van Herck, Hans; Depuydt, Tom; Haustermans, Karin; Maes, Frederik; Van den Heuvel, Frank
2016-05-01
To evaluate three different plan adaptation strategies using 3D film-stack dose measurements of both focal boost and hypofractionated prostate VMAT treatments. The adaptation strategies (a couch shift, geometric tracking, and dosimetric tracking) were applied for three realistic intrafraction prostate motions. A focal boost (35 × 2.2 and 35 × 2.7 Gy) and a hypofractionated (5 × 7.25 Gy) prostate VMAT plan were created for a heterogeneous phantom that allows for internal prostate motion. For these plans geometric tracking and dosimetric tracking were evaluated by ionization chamber (IC) point dose measurements (zero-D) and measurements using a stack of EBT3 films (3D). The geometric tracking applied translations, rotations, and scaling of the MLC aperture in response to realistic prostate motions. The dosimetric tracking additionally corrected the monitor units to resolve variations due to difference in depth, tissue heterogeneity, and MLC-aperture. The tracking was based on the positions of four fiducial points only. The film measurements were compared to the gold standard (i.e., IC measurements) and the planned dose distribution. Additionally, the 3D measurements were converted to dose volume histograms, tumor control probability, and normal tissue complication probability parameters (DVH/TCP/NTCP) as a direct estimate of clinical relevance of the proposed tracking. Compared to the planned dose distribution, measurements without prostate motion and tracking showed already a reduced homogeneity of the dose distribution. Adding prostate motion further blurs the DVHs for all treatment approaches. The clinical practice (no tracking) delivered the dose distribution inside the PTV but off target (CTV), resulting in boost dose errors up to 10%. The geometric and dosimetric tracking corrected the dose distribution's position. Moreover, the dosimetric tracking could achieve the planned boost DVH, but not the DVH of the more homogeneously irradiated prostate. A drawback of both the geometric and dosimetric tracking was a reduced MLC blocking caused by the rotational component of the MLC aperture corrections. Because of the used CTV to PTV margins and the high doses in the considered fractionation schemes, the TCP differed less than 0.02 from the planned value for all targets and all correction methods. The rectal NTCP constraints, however, could not be realized using any of these methods. The geometric and dosimetric tracking use only a limited input, but they deposit the dose distribution with higher geometric accuracy than the clinical practice. The latter case has boost dose errors up to 10%. The increased accuracy has a modest impact [Δ(NT)CP < 0.02] because of the applied margins and the high dose levels used. To allow further margin reduction tracking methods are vital. The proposed methodology could further be improved by implementing a rotational correction using collimator rotations.
A Track Initiation Method for the Underwater Target Tracking Environment
NASA Astrophysics Data System (ADS)
Li, Dong-dong; Lin, Yang; Zhang, Yao
2018-04-01
A novel efficient track initiation method is proposed for the harsh underwater target tracking environment (heavy clutter and large measurement errors): track splitting, evaluating, pruning and merging method (TSEPM). Track initiation demands that the method should determine the existence and initial state of a target quickly and correctly. Heavy clutter and large measurement errors certainly pose additional difficulties and challenges, which deteriorate and complicate the track initiation in the harsh underwater target tracking environment. There are three primary shortcomings for the current track initiation methods to initialize a target: (a) they cannot eliminate the turbulences of clutter effectively; (b) there may be a high false alarm probability and low detection probability of a track; (c) they cannot estimate the initial state for a new confirmed track correctly. Based on the multiple hypotheses tracking principle and modified logic-based track initiation method, in order to increase the detection probability of a track, track splitting creates a large number of tracks which include the true track originated from the target. And in order to decrease the false alarm probability, based on the evaluation mechanism, track pruning and track merging are proposed to reduce the false tracks. TSEPM method can deal with the track initiation problems derived from heavy clutter and large measurement errors, determine the target's existence and estimate its initial state with the least squares method. What's more, our method is fully automatic and does not require any kind manual input for initializing and tuning any parameter. Simulation results indicate that our new method improves significantly the performance of the track initiation in the harsh underwater target tracking environment.
Brunelle, Jean-François; Blais-Coutu, Sébastien; Gouadec, Kenan; Bédard, Éric; Fait, Philippe
2015-01-01
Introduction In preparation for a short track speed skating season, eight men and seven women were given yoga sessions during an 8-week high volume training cycle. The sessions were planned according to the postural aspects specific to short track speed skating technical requirements. Three specific goals were selected for the intervention: 1) to observe whether the practice of yoga as postural training could improve the efficiency and the athlete’s repertoire along the muscular synergies solicited in the short track speed skating specific technique; 2) to enhance and diversify the motor time-on-task of athletes without changing the prescription of other training stimulus; and 3) to lower the risk of injury during periods with high volumes of training. Methods A total of 36 sessions of yoga were given. Three postural tests were administered before and after the intervention with 14 angles analyzed. Non-parametric Wilcoxon test was used to compare angles’ variations. Results The 36 yoga sessions totalized 986 minutes of motor time-on-task, registering a proportion of 30% of the global motor time-on-task of the training cycle. Improvements were found in eleven of the 14 angles measured when comparing pre- and post-postural tests (P-value from 0.01 to 0.005). During the 8 weeks, excepting traumatic injuries due to short track speed skating accidents, no skaters suffered injuries linked to the high volume of training. Following the intervention, coaches noticed, following their on-ice feedbacks, an adjustment in the efficiency of the skating technique, in particular regarding hip dissociation. Conclusion These results suggest that yoga could be inserted into out-of-season training cycles, even in a high volume training cycle. Planned with the decision training tools, it allows athletes to diversify their motor time-on-task by integrating a new functional range of generic movements with the solicitation of neuromuscular synergies related to the specificity of their sport. PMID:25709511
NASA Technical Reports Server (NTRS)
Mudgway, D. J.; Traxler, M. R.
1977-01-01
The tracking and data acquisition support for the 1975 Viking Missions to Mars is described. The history of the effort from its inception in late 1968 through the launches of Vikings 1 and 2 from Cape Kennedy in August and September 1975 is given. The Viking mission requirements for tracking and data acquisition support in both the near earth and deep space phases involved multiple radar tracking and telemetry stations, and communications networks together with the global network of tracking stations, communications, and control center. The planning, implementation, testing and management of the program are presented.
Langdon, Jonathan H; Elegbe, Etana; McAleavey, Stephen A
2015-01-01
Single Tracking Location (STL) Shear wave Elasticity Imaging (SWEI) is a method for detecting elastic differences between tissues. It has the advantage of intrinsic speckle bias suppression compared to Multiple Tracking Location (MTL) variants of SWEI. However, the assumption of a linear model leads to an overestimation of the shear modulus in viscoelastic media. A new reconstruction technique denoted Single Tracking Location Viscosity Estimation (STL-VE) is introduced to correct for this overestimation. This technique utilizes the same raw data generated in STL-SWEI imaging. Here, the STL-VE technique is developed by way of a Maximum Likelihood Estimation (MLE) for general viscoelastic materials. The method is then implemented for the particular case of the Kelvin-Voigt Model. Using simulation data, the STL-VE technique is demonstrated and the performance of the estimator is characterized. Finally, the STL-VE method is used to estimate the viscoelastic parameters of ex-vivo bovine liver. We find good agreement between the STL-VE results and the simulation parameters as well as between the liver shear wave data and the modeled data fit. PMID:26168170
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beaulieu, L.; Racine, E.; Boutaleb, S.
In modern brachytherapy, application of large doses of ionizing radiation in a limited number of fractions is frequent. Furthermore, as with any surgical procedures, brachytherapy is subject to learning curve effects. In this context, there could be advantages of integrating real-time tracking of needles/catheters to existing protocols given the recent prominent advances in tracking technologies. In this work, we review the use of an electromagnetic tracking system (EMTS) based on the second generation Aurora® Planar Field Generator (Northern Digital Inc) and custom design needles (Philips Healthcare) for brachytherapy applications. The position and orientation information is obtained from 5 degrees ofmore » freedom sensors. Basic system performance characterization is performed in well-controlled conditions to establish accuracy and reproducibility as well as potential interference from standard brachytherapy equipment. The results show that sensor locations can be tracked to within 0.04mm (la) when located within 26cm of the generator. Orientation accuracy of the needle remained within ±1° in the same region, but rose quickly at larger distances. The errors on position and orientation strongly dependent the sensor position in the characterization volume (500×500×500mm{sup 3}). The presence of an ultrasound probe was shown to have negligible effects on tracking accuracy. The use of EMTS for automatic catheter/applicator reconstruction was also explored. Reconstruction time was less than 10 sec/channel and tips identification was within 0.69±0.29mm of the reference values. Finally, we demonstrate that hollow needle designs with special EM adaptation also allow for real-time seed drop position estimation. In phantom experiments showed that drop positions were on average within 1.6±0.9mm of the reference position measured from μCT. Altogether, EMTS offer promising benefits in a wide range of brachytherapy applications.« less
Surrogate-driven deformable motion model for organ motion tracking in particle radiation therapy
NASA Astrophysics Data System (ADS)
Fassi, Aurora; Seregni, Matteo; Riboldi, Marco; Cerveri, Pietro; Sarrut, David; Battista Ivaldi, Giovanni; Tabarelli de Fatis, Paola; Liotta, Marco; Baroni, Guido
2015-02-01
The aim of this study is the development and experimental testing of a tumor tracking method for particle radiation therapy, providing the daily respiratory dynamics of the patient’s thoraco-abdominal anatomy as a function of an external surface surrogate combined with an a priori motion model. The proposed tracking approach is based on a patient-specific breathing motion model, estimated from the four-dimensional (4D) planning computed tomography (CT) through deformable image registration. The model is adapted to the interfraction baseline variations in the patient’s anatomical configuration. The driving amplitude and phase parameters are obtained intrafractionally from a respiratory surrogate signal derived from the external surface displacement. The developed technique was assessed on a dataset of seven lung cancer patients, who underwent two repeated 4D CT scans. The first 4D CT was used to build the respiratory motion model, which was tested on the second scan. The geometric accuracy in localizing lung lesions, mediated over all breathing phases, ranged between 0.6 and 1.7 mm across all patients. Errors in tracking the surrounding organs at risk, such as lungs, trachea and esophagus, were lower than 1.3 mm on average. The median absolute variation in water equivalent path length (WEL) within the target volume did not exceed 1.9 mm-WEL for simulated particle beams. A significant improvement was achieved compared with error compensation based on standard rigid alignment. The present work can be regarded as a feasibility study for the potential extension of tumor tracking techniques in particle treatments. Differently from current tracking methods applied in conventional radiotherapy, the proposed approach allows for the dynamic localization of all anatomical structures scanned in the planning CT, thus providing complete information on density and WEL variations required for particle beam range adaptation.
Uranium distribution and 'excessive' U-He ages in iron meteoritic troilite
NASA Technical Reports Server (NTRS)
Fisher, D. E.
1985-01-01
Fission tracking techniques were used to measure the uranium distribution in meteoritic troilite and graphite. The obtained fission tracking data showed a heterogeneous distribution of tracks with a significant portion of track density present in the form of uranium clusters at least 10 microns in size. The matrix containing the clusters was also heterogeneous in composition with U concentrations of about 0.2-4.7 ppb. U/He ages could not be estimated on the basis of the heterogeneous U distributions, so previously reported estimates of U/He ages in the presolar range are probably invalid.
NASA Technical Reports Server (NTRS)
Martin, C. F.; Oh, I. H.
1979-01-01
Range rate tracking of GEOS 3 through the ATS 6 satellite was used, along with ground tracking of GEOS 3, to estimate the geocentric gravitational constant (GM). Using multiple half day arcs, a GM of 398600.52 + or - 0.12 cu km/sq sec was estimated using the GEM 10 gravity model, based on speed of light of 299792.458 km/sec. Tracking station coordinates were simultaneously adjusted, leaving geopotential model error as the dominant error source. Baselines between the adjusted NASA laser sites show better than 15 cm agreement with multiple short arc GEOS 3 solutions.
Estimating Lion Abundance using N-mixture Models for Social Species
Belant, Jerrold L.; Bled, Florent; Wilton, Clay M.; Fyumagwa, Robert; Mwampeta, Stanslaus B.; Beyer, Dean E.
2016-01-01
Declining populations of large carnivores worldwide, and the complexities of managing human-carnivore conflicts, require accurate population estimates of large carnivores to promote their long-term persistence through well-informed management We used N-mixture models to estimate lion (Panthera leo) abundance from call-in and track surveys in southeastern Serengeti National Park, Tanzania. Because of potential habituation to broadcasted calls and social behavior, we developed a hierarchical observation process within the N-mixture model conditioning lion detectability on their group response to call-ins and individual detection probabilities. We estimated 270 lions (95% credible interval = 170–551) using call-ins but were unable to estimate lion abundance from track data. We found a weak negative relationship between predicted track density and predicted lion abundance from the call-in surveys. Luminosity was negatively correlated with individual detection probability during call-in surveys. Lion abundance and track density were influenced by landcover, but direction of the corresponding effects were undetermined. N-mixture models allowed us to incorporate multiple parameters (e.g., landcover, luminosity, observer effect) influencing lion abundance and probability of detection directly into abundance estimates. We suggest that N-mixture models employing a hierarchical observation process can be used to estimate abundance of other social, herding, and grouping species. PMID:27786283
Estimating Lion Abundance using N-mixture Models for Social Species.
Belant, Jerrold L; Bled, Florent; Wilton, Clay M; Fyumagwa, Robert; Mwampeta, Stanslaus B; Beyer, Dean E
2016-10-27
Declining populations of large carnivores worldwide, and the complexities of managing human-carnivore conflicts, require accurate population estimates of large carnivores to promote their long-term persistence through well-informed management We used N-mixture models to estimate lion (Panthera leo) abundance from call-in and track surveys in southeastern Serengeti National Park, Tanzania. Because of potential habituation to broadcasted calls and social behavior, we developed a hierarchical observation process within the N-mixture model conditioning lion detectability on their group response to call-ins and individual detection probabilities. We estimated 270 lions (95% credible interval = 170-551) using call-ins but were unable to estimate lion abundance from track data. We found a weak negative relationship between predicted track density and predicted lion abundance from the call-in surveys. Luminosity was negatively correlated with individual detection probability during call-in surveys. Lion abundance and track density were influenced by landcover, but direction of the corresponding effects were undetermined. N-mixture models allowed us to incorporate multiple parameters (e.g., landcover, luminosity, observer effect) influencing lion abundance and probability of detection directly into abundance estimates. We suggest that N-mixture models employing a hierarchical observation process can be used to estimate abundance of other social, herding, and grouping species.
An image-based model of brain volume biomarker changes in Huntington's disease.
Wijeratne, Peter A; Young, Alexandra L; Oxtoby, Neil P; Marinescu, Razvan V; Firth, Nicholas C; Johnson, Eileanoir B; Mohan, Amrita; Sampaio, Cristina; Scahill, Rachael I; Tabrizi, Sarah J; Alexander, Daniel C
2018-05-01
Determining the sequence in which Huntington's disease biomarkers become abnormal can provide important insights into the disease progression and a quantitative tool for patient stratification. Here, we construct and present a uniquely fine-grained model of temporal progression of Huntington's disease from premanifest through to manifest stages. We employ a probabilistic event-based model to determine the sequence of appearance of atrophy in brain volumes, learned from structural MRI in the Track-HD study, as well as to estimate the uncertainty in the ordering. We use longitudinal and phenotypic data to demonstrate the utility of the patient staging system that the resulting model provides. The model recovers the following order of detectable changes in brain region volumes: putamen, caudate, pallidum, insula white matter, nonventricular cerebrospinal fluid, amygdala, optic chiasm, third ventricle, posterior insula, and basal forebrain. This ordering is mostly preserved even under cross-validation of the uncertainty in the event sequence. Longitudinal analysis performed using 6 years of follow-up data from baseline confirms efficacy of the model, as subjects consistently move to later stages with time, and significant correlations are observed between the estimated stages and nonimaging phenotypic markers. We used a data-driven method to provide new insight into Huntington's disease progression as well as new power to stage and predict conversion. Our results highlight the potential of disease progression models, such as the event-based model, to provide new insight into Huntington's disease progression and to support fine-grained patient stratification for future precision medicine in Huntington's disease.
Direct volume estimation without segmentation
NASA Astrophysics Data System (ADS)
Zhen, X.; Wang, Z.; Islam, A.; Bhaduri, M.; Chan, I.; Li, S.
2015-03-01
Volume estimation plays an important role in clinical diagnosis. For example, cardiac ventricular volumes including left ventricle (LV) and right ventricle (RV) are important clinical indicators of cardiac functions. Accurate and automatic estimation of the ventricular volumes is essential to the assessment of cardiac functions and diagnosis of heart diseases. Conventional methods are dependent on an intermediate segmentation step which is obtained either manually or automatically. However, manual segmentation is extremely time-consuming, subjective and highly non-reproducible; automatic segmentation is still challenging, computationally expensive, and completely unsolved for the RV. Towards accurate and efficient direct volume estimation, our group has been researching on learning based methods without segmentation by leveraging state-of-the-art machine learning techniques. Our direct estimation methods remove the accessional step of segmentation and can naturally deal with various volume estimation tasks. Moreover, they are extremely flexible to be used for volume estimation of either joint bi-ventricles (LV and RV) or individual LV/RV. We comparatively study the performance of direct methods on cardiac ventricular volume estimation by comparing with segmentation based methods. Experimental results show that direct estimation methods provide more accurate estimation of cardiac ventricular volumes than segmentation based methods. This indicates that direct estimation methods not only provide a convenient and mature clinical tool for cardiac volume estimation but also enables diagnosis of cardiac diseases to be conducted in a more efficient and reliable way.
Fast Markerless Tracking for Augmented Reality in Planar Environment
NASA Astrophysics Data System (ADS)
Basori, Ahmad Hoirul; Afif, Fadhil Noer; Almazyad, Abdulaziz S.; AbuJabal, Hamza Ali S.; Rehman, Amjad; Alkawaz, Mohammed Hazim
2015-12-01
Markerless tracking for augmented reality should not only be accurate but also fast enough to provide a seamless synchronization between real and virtual beings. Current reported methods showed that a vision-based tracking is accurate but requires high computational power. This paper proposes a real-time hybrid-based method for tracking unknown environments in markerless augmented reality. The proposed method provides collaboration of vision-based approach with accelerometers and gyroscopes sensors as camera pose predictor. To align the augmentation relative to camera motion, the tracking method is done by substituting feature-based camera estimation with combination of inertial sensors with complementary filter to provide more dynamic response. The proposed method managed to track unknown environment with faster processing time compared to available feature-based approaches. Moreover, the proposed method can sustain its estimation in a situation where feature-based tracking loses its track. The collaboration of sensor tracking managed to perform the task for about 22.97 FPS, up to five times faster than feature-based tracking method used as comparison. Therefore, the proposed method can be used to track unknown environments without depending on amount of features on scene, while requiring lower computational cost.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Candy, J. V.
Chirp signals have evolved primarily from radar/sonar signal processing applications specifically attempting to estimate the location of a target in surveillance/tracking volume. The chirp, which is essentially a sinusoidal signal whose phase changes instantaneously at each time sample, has an interesting property in that its correlation approximates an impulse function. It is well-known that a matched-filter detector in radar/sonar estimates the target range by cross-correlating a replicant of the transmitted chirp with the measurement data reflected from the target back to the radar/sonar receiver yielding a maximum peak corresponding to the echo time and therefore enabling the desired range estimate.more » In this application, we perform the same operation as a radar or sonar system, that is, we transmit a “chirp-like pulse” into the target medium and attempt to first detect its presence and second estimate its location or range. Our problem is complicated by the presence of disturbance signals from surrounding broadcast stations as well as extraneous sources of interference in our frequency bands and of course the ever present random noise from instrumentation. First, we discuss the chirp signal itself and illustrate its inherent properties and then develop a model-based processing scheme enabling both the detection and estimation of the signal from noisy measurement data.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bektešević, Dino; Vinković, Dejan; Rasmussen, Andrew
Given the current limited knowledge of meteor plasma micro-physics and its interaction with the surrounding atmosphere and ionosphere, meteors are a highly interesting observational target for high-resolution wide-field astronomical surveys. Such surveys are capable of resolving the physical size of meteor plasma heads, but they produce large volumes of images that need to be automatically inspected for possible existence of long linear features produced by meteors. Here in this paper, we show how big aperture sky survey telescopes detect meteors as defocused tracks with a central brightness depression. We derive an analytic expression for a defocused point source meteor trackmore » and use it to calculate brightness profiles of meteors modelled as uniform brightness discs. We apply our modelling to meteor images as seen by the Sloan Digital Sky Survey and Large Synoptic Survey Telescope telescopes. The expression is validated by Monte Carlo ray-tracing simulations of photons travelling through the atmosphere and the Large Synoptic Survey Telescope telescope optics. We show that estimates of the meteor distance and size can be extracted from the measured full width at half-maximum and the strength of the central dip in the observed brightness profile. However, this extraction becomes difficult when the defocused meteor track is distorted by the atmospheric seeing or contaminated by a long-lasting glowing meteor trail. The full width at half-maximum of satellite tracks is distinctly narrower than meteor values, which enables removal of a possible confusion between satellites and meteors.« less
Baumann, Michael; Mozer, Pierre; Daanen, Vincent; Troccaz, Jocelyne
2007-01-01
The emergence of real-time 3D ultrasound (US) makes it possible to consider image-based tracking of subcutaneous soft tissue targets for computer guided diagnosis and therapy. We propose a 3D transrectal US based tracking system for precise prostate biopsy sample localisation. The aim is to improve sample distribution, to enable targeting of unsampled regions for repeated biopsies, and to make post-interventional quality controls possible. Since the patient is not immobilized, since the prostate is mobile and due to the fact that probe movements are only constrained by the rectum during biopsy acquisition, the tracking system must be able to estimate rigid transformations that are beyond the capture range of common image similarity measures. We propose a fast and robust multi-resolution attribute-vector registration approach that combines global and local optimization methods to solve this problem. Global optimization is performed on a probe movement model that reduces the dimensionality of the search space and thus renders optimization efficient. The method was tested on 237 prostate volumes acquired from 14 different patients for 3D to 3D and 3D to orthogonal 2D slices registration. The 3D-3D version of the algorithm converged correctly in 96.7% of all cases in 6.5s with an accuracy of 1.41mm (r.m.s.) and 3.84mm (max). The 3D to slices method yielded a success rate of 88.9% in 2.3s with an accuracy of 1.37mm (r.m.s.) and 4.3mm (max).
Bektešević, Dino; Vinković, Dejan; Rasmussen, Andrew; ...
2017-12-05
Given the current limited knowledge of meteor plasma micro-physics and its interaction with the surrounding atmosphere and ionosphere, meteors are a highly interesting observational target for high-resolution wide-field astronomical surveys. Such surveys are capable of resolving the physical size of meteor plasma heads, but they produce large volumes of images that need to be automatically inspected for possible existence of long linear features produced by meteors. Here in this paper, we show how big aperture sky survey telescopes detect meteors as defocused tracks with a central brightness depression. We derive an analytic expression for a defocused point source meteor trackmore » and use it to calculate brightness profiles of meteors modelled as uniform brightness discs. We apply our modelling to meteor images as seen by the Sloan Digital Sky Survey and Large Synoptic Survey Telescope telescopes. The expression is validated by Monte Carlo ray-tracing simulations of photons travelling through the atmosphere and the Large Synoptic Survey Telescope telescope optics. We show that estimates of the meteor distance and size can be extracted from the measured full width at half-maximum and the strength of the central dip in the observed brightness profile. However, this extraction becomes difficult when the defocused meteor track is distorted by the atmospheric seeing or contaminated by a long-lasting glowing meteor trail. The full width at half-maximum of satellite tracks is distinctly narrower than meteor values, which enables removal of a possible confusion between satellites and meteors.« less
NASA Astrophysics Data System (ADS)
Barrera, M. T.; Barros, H.; Pino, F.; Dávila, J.; Sajo-Bohus, L.
2015-07-01
LINAC VARIAN 2100 is where energetic electrons produce Bremsstrahlung radiation, with energies above the nucleon binding energy (E≈5.5MeV). This radiation induce (γ,n) and (e,e'n) reactions mainly in the natural tungsten target material (its total photoneutron cross section is about 4000 mb in a energy range from 9-17 MeV). These reactions may occur also in other components of the system (e.g. multi leaf collimator). During radiation treatment the human body may receive an additional dose inside and outside the treated volume produced by the mentioned nuclear reactions. We measured the neutron density at the treatment table using nuclear track detectors (PADC-NTD). These covered by a boron-converter are employed, including a cadmium filter, to determine the ratio between two groups of neutron energy, i.e. thermal and epithermal. The PADC-NTD detectors were exposed to the radiation field at the iso-center during regular operation of the accelerator. Neutron are determined indirectly by the converting reaction 10B(n,α)7Li the emerging charged particle leave their kinetic energy in the PADC forming a latent nuclear track, enlarged by chemical etching (6N, NaOH, 70°C). Track density provides information on the neutron density through calibration coefficient (˜1.6 104 neutrons /track) obtained by a californium source. We report the estimation of the thermal and epithermal neutron field and its gradient for photoneutrons produced in radiotherapy treatments with 18 MV linear accelerators. It was obsered that photoneutron production have higher rate at the iso-center.
NASA Astrophysics Data System (ADS)
Ma, Kevin; Liu, Joseph; Zhang, Xuejun; Lerner, Alex; Shiroishi, Mark; Amezcua, Lilyana; Liu, Brent
2016-03-01
We have designed and developed a multiple sclerosis eFolder system for patient data storage, image viewing, and automatic lesion quantification results stored in DICOM-SR format. The web-based system aims to be integrated in DICOM-compliant clinical and research environments to aid clinicians in patient treatments and data analysis. The system needs to quantify lesion volumes, identify and register lesion locations to track shifts in volume and quantity of lesions in a longitudinal study. In order to perform lesion registration, we have developed a brain warping and normalizing methodology using Statistical Parametric Mapping (SPM) MATLAB toolkit for brain MRI. Patients' brain MR images are processed via SPM's normalization processes, and the brain images are analyzed and warped according to the tissue probability map. Lesion identification and contouring are completed by neuroradiologists, and lesion volume quantification is completed by the eFolder's CAD program. Lesion comparison results in longitudinal studies show key growth and active regions. The results display successful lesion registration and tracking over a longitudinal study. Lesion change results are graphically represented in the web-based user interface, and users are able to correlate patient progress and changes in the MRI images. The completed lesion and disease tracking tool would enable the eFolder to provide complete patient profiles, improve the efficiency of patient care, and perform comprehensive data analysis through an integrated imaging informatics system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crijns, Wouter, E-mail: wouter.crijns@uzleuven.be; Depuydt, Tom; Haustermans, Karin
Purpose: To evaluate three different plan adaptation strategies using 3D film-stack dose measurements of both focal boost and hypofractionated prostate VMAT treatments. The adaptation strategies (a couch shift, geometric tracking, and dosimetric tracking) were applied for three realistic intrafraction prostate motions. Methods: A focal boost (35 × 2.2 and 35 × 2.7 Gy) and a hypofractionated (5 × 7.25 Gy) prostate VMAT plan were created for a heterogeneous phantom that allows for internal prostate motion. For these plans geometric tracking and dosimetric tracking were evaluated by ionization chamber (IC) point dose measurements (zero-D) and measurements using a stack of EBT3more » films (3D). The geometric tracking applied translations, rotations, and scaling of the MLC aperture in response to realistic prostate motions. The dosimetric tracking additionally corrected the monitor units to resolve variations due to difference in depth, tissue heterogeneity, and MLC-aperture. The tracking was based on the positions of four fiducial points only. The film measurements were compared to the gold standard (i.e., IC measurements) and the planned dose distribution. Additionally, the 3D measurements were converted to dose volume histograms, tumor control probability, and normal tissue complication probability parameters (DVH/TCP/NTCP) as a direct estimate of clinical relevance of the proposed tracking. Results: Compared to the planned dose distribution, measurements without prostate motion and tracking showed already a reduced homogeneity of the dose distribution. Adding prostate motion further blurs the DVHs for all treatment approaches. The clinical practice (no tracking) delivered the dose distribution inside the PTV but off target (CTV), resulting in boost dose errors up to 10%. The geometric and dosimetric tracking corrected the dose distribution’s position. Moreover, the dosimetric tracking could achieve the planned boost DVH, but not the DVH of the more homogeneously irradiated prostate. A drawback of both the geometric and dosimetric tracking was a reduced MLC blocking caused by the rotational component of the MLC aperture corrections. Because of the used CTV to PTV margins and the high doses in the considered fractionation schemes, the TCP differed less than 0.02 from the planned value for all targets and all correction methods. The rectal NTCP constraints, however, could not be realized using any of these methods. Conclusions: The geometric and dosimetric tracking use only a limited input, but they deposit the dose distribution with higher geometric accuracy than the clinical practice. The latter case has boost dose errors up to 10%. The increased accuracy has a modest impact [Δ(NT)CP < 0.02] because of the applied margins and the high dose levels used. To allow further margin reduction tracking methods are vital. The proposed methodology could further be improved by implementing a rotational correction using collimator rotations.« less
Kalal, Zdenek; Mikolajczyk, Krystian; Matas, Jiri
2012-07-01
This paper investigates long-term tracking of unknown objects in a video stream. The object is defined by its location and extent in a single frame. In every frame that follows, the task is to determine the object's location and extent or indicate that the object is not present. We propose a novel tracking framework (TLD) that explicitly decomposes the long-term tracking task into tracking, learning, and detection. The tracker follows the object from frame to frame. The detector localizes all appearances that have been observed so far and corrects the tracker if necessary. The learning estimates the detector's errors and updates it to avoid these errors in the future. We study how to identify the detector's errors and learn from them. We develop a novel learning method (P-N learning) which estimates the errors by a pair of "experts": (1) P-expert estimates missed detections, and (2) N-expert estimates false alarms. The learning process is modeled as a discrete dynamical system and the conditions under which the learning guarantees improvement are found. We describe our real-time implementation of the TLD framework and the P-N learning. We carry out an extensive quantitative evaluation which shows a significant improvement over state-of-the-art approaches.
Parabolic Trough Collector Cost Update for the System Advisor Model (SAM)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurup, Parthiv; Turchi, Craig S.
2015-11-01
This report updates the baseline cost for parabolic trough solar fields in the United States within NREL's System Advisor Model (SAM). SAM, available at no cost at https://sam.nrel.gov/, is a performance and financial model designed to facilitate decision making for people involved in the renewable energy industry. SAM is the primary tool used by NREL and the U.S. Department of Energy (DOE) for estimating the performance and cost of concentrating solar power (CSP) technologies and projects. The study performed a bottom-up build and cost estimate for two state-of-the-art parabolic trough designs -- the SkyTrough and the Ultimate Trough. The SkyTroughmore » analysis estimated the potential installed cost for a solar field of 1500 SCAs as $170/m 2 +/- $6/m 2. The investigation found that SkyTrough installed costs were sensitive to factors such as raw aluminum alloy cost and production volume. For example, in the case of the SkyTrough, the installed cost would rise to nearly $210/m 2 if the aluminum alloy cost was $1.70/lb instead of $1.03/lb. Accordingly, one must be aware of fluctuations in the relevant commodities markets to track system cost over time. The estimated installed cost for the Ultimate Trough was only slightly higher at $178/m 2, which includes an assembly facility of $11.6 million amortized over the required production volume. Considering the size and overall cost of a 700 SCA Ultimate Trough solar field, two parallel production lines in a fully covered assembly facility, each with the specific torque box, module and mirror jigs, would be justified for a full CSP plant.« less
Back to the future: estimating pre-injury brain volume in patients with traumatic brain injury.
Ross, David E; Ochs, Alfred L; D Zannoni, Megan; Seabaugh, Jan M
2014-11-15
A recent meta-analysis by Hedman et al. allows for accurate estimation of brain volume changes throughout the life span. Additionally, Tate et al. showed that intracranial volume at a later point in life can be used to estimate reliably brain volume at an earlier point in life. These advancements were combined to create a model which allowed the estimation of brain volume just prior to injury in a group of patients with mild or moderate traumatic brain injury (TBI). This volume estimation model was used in combination with actual measurements of brain volume to test hypotheses about progressive brain volume changes in the patients. Twenty six patients with mild or moderate TBI were compared to 20 normal control subjects. NeuroQuant® was used to measure brain MRI volume. Brain volume after the injury (from MRI scans performed at t1 and t2) was compared to brain volume just before the injury (volume estimation at t0) using longitudinal designs. Groups were compared with respect to volume changes in whole brain parenchyma (WBP) and its 3 major subdivisions: cortical gray matter (GM), cerebral white matter (CWM) and subcortical nuclei+infratentorial regions (SCN+IFT). Using the normal control data, the volume estimation model was tested by comparing measured brain volume to estimated brain volume; reliability ranged from good to excellent. During the initial phase after injury (t0-t1), the TBI patients had abnormally rapid atrophy of WBP and CWM, and abnormally rapid enlargement of SCN+IFT. Rates of volume change during t0-t1 correlated with cross-sectional measures of volume change at t1, supporting the internal reliability of the volume estimation model. A logistic regression analysis using the volume change data produced a function which perfectly predicted group membership (TBI patients vs. normal control subjects). During the first few months after injury, patients with mild or moderate TBI have rapid atrophy of WBP and CWM, and rapid enlargement of SCN+IFT. The magnitude and pattern of the changes in volume may allow for the eventual development of diagnostic tools based on the volume estimation approach. Copyright © 2014 Elsevier Inc. All rights reserved.
A versatile pitch tracking algorithm: from human speech to killer whale vocalizations.
Shapiro, Ari Daniel; Wang, Chao
2009-07-01
In this article, a pitch tracking algorithm [named discrete logarithmic Fourier transformation-pitch detection algorithm (DLFT-PDA)], originally designed for human telephone speech, was modified for killer whale vocalizations. The multiple frequency components of some of these vocalizations demand a spectral (rather than temporal) approach to pitch tracking. The DLFT-PDA algorithm derives reliable estimations of pitch and the temporal change of pitch from the harmonic structure of the vocal signal. Scores from both estimations are combined in a dynamic programming search to find a smooth pitch track. The algorithm is capable of tracking killer whale calls that contain simultaneous low and high frequency components and compares favorably across most signal to noise ratio ranges to the peak-picking and sidewinder algorithms that have been used for tracking killer whale vocalizations previously.
Bias estimation for moving optical sensor measurements with targets of opportunity
NASA Astrophysics Data System (ADS)
Belfadel, Djedjiga; Osborne, Richard W.; Bar-Shalom, Yaakov
2014-06-01
Integration of space based sensors into a Ballistic Missile Defense System (BMDS) allows for detection and tracking of threats over a larger area than ground based sensors [1]. This paper examines the effect of sensor bias error on the tracking quality of a Space Tracking and Surveillance System (STSS) for the highly non-linear problem of tracking a ballistic missile. The STSS constellation consists of two or more satellites (on known trajectories) for tracking ballistic targets. Each satellite is equipped with an IR sensor that provides azimuth and elevation to the target. The tracking problem is made more difficult due to a constant or slowly varying bias error present in each sensor's line of sight measurements. It is important to correct for these bias errors so that the multiple sensor measurements and/or tracks can be referenced as accurately as possible to a common tracking coordinate system. The measurements provided by these sensors are assumed time-coincident (synchronous) and perfectly associated. The line of sight (LOS) measurements from the sensors can be fused into measurements which are the Cartesian target position, i.e., linear in the target state. We evaluate the Cramér-Rao Lower Bound (CRLB) on the covariance of the bias estimates, which serves as a quantification of the available information about the biases. Statistical tests on the results of simulations show that this method is statistically efficient, even for small sample sizes (as few as two sensors and six points on the (unknown) trajectory of a single target of opportunity). We also show that the RMS position error is significantly improved with bias estimation compared with the target position estimation using the original biased measurements.
Chang, W-K; McClave, S-A; Chao, Y-C
2004-02-01
Traditional use of gastric residual volumes (GRVs) is insensitive and cannot distinguish retained enteral formula from the large volume of endogenous secretions. We designed this prospective study to determine whether refractometry and Brix value (BV) measurements could be used to monitor gastric emptying and tolerance in patients receiving continuous enteral feeding. Thirty-six patients on continuous nasogastric tube feeding were divided into two groups; patients with lower GRVs (<75 ml) in Group 1, patients with higher GRVs (>75 ml) in Group 2. Upon entry, all gastric contents were aspirated, the volume was recorded (Asp GRV), BV measurements were made by refractometry, and then the contents were reinstilled but diluted with 30 ml additional water. Finally, a small amount was reaspirated and repeat BV measurements were made. Three hours later, the entire procedure was repeated a second time. The BV ratio, calculated (Cal) GRV, and volume of formula remaining were calculated by derived equations. Mean BV ratios were significantly higher for those patients in Group 2 compared to those in Group 1. All but one of the 22 patients (95%) in Group 1 had a volume of formula remaining in the stomach estimated on both measurements to be less than the hourly infusion rate (all these patients had BV ratios <70%). In contrast, six of the 14 patients in Group 2 (43%) on both measurements were estimated to have volumes of formula remaining that were greater than the hourly infusion rate (all these patients had BV ratios >70%). Three of the Group 2 patients (21%) whose initial measurement showed evidence for retention of formula, improved on repeat follow-up measurement assuring adequate gastric emptying. The remaining five patients from Group 2 (35%) had a volume of formula remaining that was less than the hourly infusion rate on both measurements. The pattern of Asp GRVs and serial pre- and post-dilution BVs failed to differentiate these patients in Group 2 with potential emptying problems from those with sufficient gastric emptying. Refractometry and measurement of the BV may improve the clinical utilization of GRVs, by its ability to identify the component of formula within gastric contents and track changes in that component related to gastric emptying.
2011-03-15
management, toxicology/health risks (e.g., particulates nanomaterials, radiation, etc.), monitoring disease trends , other areas of preventive medicine...will include hematocrit, hemoglobin, mean corpuscle volume, iron, total iron binding capacity, Ferritin , and soluble transferring receptor. The
Computer-aided target tracking in motion analysis studies
NASA Astrophysics Data System (ADS)
Burdick, Dominic C.; Marcuse, M. L.; Mislan, J. D.
1990-08-01
Motion analysis studies require the precise tracking of reference objects in sequential scenes. In a typical situation, events of interest are captured at high frame rates using special cameras, and selected objects or targets are tracked on a frame by frame basis to provide necessary data for motion reconstruction. Tracking is usually done using manual methods which are slow and prone to error. A computer based image analysis system has been developed that performs tracking automatically. The objective of this work was to eliminate the bottleneck due to manual methods in high volume tracking applications such as the analysis of crash test films for the automotive industry. The system has proven to be successful in tracking standard fiducial targets and other objects in crash test scenes. Over 95 percent of target positions which could be located using manual methods can be tracked by the system, with a significant improvement in throughput over manual methods. Future work will focus on the tracking of clusters of targets and on tracking deformable objects such as airbags.
NASA Astrophysics Data System (ADS)
Huang, Xiaokun; Zhang, You; Wang, Jing
2017-03-01
Four-dimensional (4D) cone-beam computed tomography (CBCT) enables motion tracking of anatomical structures and removes artifacts introduced by motion. However, the imaging time/dose of 4D-CBCT is substantially longer/higher than traditional 3D-CBCT. We previously developed a simultaneous motion estimation and image reconstruction (SMEIR) algorithm, to reconstruct high-quality 4D-CBCT from limited number of projections to reduce the imaging time/dose. However, the accuracy of SMEIR is limited in reconstructing low-contrast regions with fine structure details. In this study, we incorporate biomechanical modeling into the SMEIR algorithm (SMEIR-Bio), to improve the reconstruction accuracy at low-contrast regions with fine details. The efficacy of SMEIR-Bio is evaluated using 11 lung patient cases and compared to that of the original SMEIR algorithm. Qualitative and quantitative comparisons showed that SMEIR-Bio greatly enhances the accuracy of reconstructed 4D-CBCT volume in low-contrast regions, which can potentially benefit multiple clinical applications including the treatment outcome analysis.
Tracking a convoy of multiple targets using acoustic sensor data
NASA Astrophysics Data System (ADS)
Damarla, T. R.
2003-08-01
In this paper we present an algorithm to track a convoy of several targets in a scene using acoustic sensor array data. The tracking algorithm is based on template of the direction of arrival (DOA) angles for the leading target. Often the first target is the closest target to the sensor array and hence the loudest with good signal to noise ratio. Several steps were used to generate a template of the DOA angle for the leading target, namely, (a) the angle at the present instant should be close to the angle at the previous instant and (b) the angle at the present instant should be within error bounds of the predicted value based on the previous values. Once the template of the DOA angles of the leading target is developed, it is used to predict the DOA angle tracks of the remaining targets. In order to generate the tracks for the remaining targets, a track is established if the angles correspond to the initial track values of the first target. Second the time delay between the first track and the remaining tracks are estimated at the highest correlation points between the first track and the remaining tracks. As the vehicles move at different speeds the tracks either compress or expand depending on whether a target is moving fast or slow compared to the first target. The expansion and compression ratios are estimated and used to estimate the predicted DOA angle values of the remaining targets. Based on these predicted DOA angles of the remaining targets the DOA angles obtained from the MVDR or Incoherent MUSIC will be appropriately assigned to proper tracks. Several other rules were developed to avoid mixing the tracks. The algorithm is tested on data collected at Aberdeen Proving Ground with a convoy of 3, 4 and 5 vehicles. Some of the vehicles are tracked and some are wheeled vehicles. The tracking algorithm results are found to be good. The results will be presented at the conference and in the paper.
Neural network fusion capabilities for efficient implementation of tracking algorithms
NASA Astrophysics Data System (ADS)
Sundareshan, Malur K.; Amoozegar, Farid
1996-05-01
The ability to efficiently fuse information of different forms for facilitating intelligent decision-making is one of the major capabilities of trained multilayer neural networks that is being recognized int eh recent times. While development of innovative adaptive control algorithms for nonlinear dynamical plants which attempt to exploit these capabilities seems to be more popular, a corresponding development of nonlinear estimation algorithms using these approaches, particularly for application in target surveillance and guidance operations, has not received similar attention. In this paper we describe the capabilities and functionality of neural network algorithms for data fusion and implementation of nonlinear tracking filters. For a discussion of details and for serving as a vehicle for quantitative performance evaluations, the illustrative case of estimating the position and velocity of surveillance targets is considered. Efficient target tracking algorithms that can utilize data from a host of sensing modalities and are capable of reliably tracking even uncooperative targets executing fast and complex maneuvers are of interest in a number of applications. The primary motivation for employing neural networks in these applications comes form the efficiency with which more features extracted from different sensor measurements can be utilized as inputs for estimating target maneuvers. Such an approach results in an overall nonlinear tracking filter which has several advantages over the popular efforts at designing nonlinear estimation algorithms for tracking applications, the principle one being the reduction of mathematical and computational complexities. A system architecture that efficiently integrates the processing capabilities of a trained multilayer neural net with the tracking performance of a Kalman filter is described in this paper.
Tracking a Head-Mounted Display in a Room-Sized Environment with Head-Mounted Cameras
1990-04-01
poor resolution and a very limited working volume [Wan90]. 4 OPTOTRAK [Nor88] uses one camera with two dual-axis CCD infrared position sensors. Each...Nor88] Northern Digital. Trade literature on Optotrak - Northern Digital’s Three Dimensional Optical Motion Tracking and Analysis System. Northern Digital
NASA Technical Reports Server (NTRS)
Hill, T. E.
1972-01-01
The design and development of the Tracking and Data Relay satellite are discussed. The subjects covered are: (1) spacecraft mechanical and structural design, (2) attitude stabilization and control subsystem, (3) propulsion system, (4) electrical power subsystem, (5) thermal control, and (6) reliability engineering.
A Bayesian Framework for Human Body Pose Tracking from Depth Image Sequences
Zhu, Youding; Fujimura, Kikuo
2010-01-01
This paper addresses the problem of accurate and robust tracking of 3D human body pose from depth image sequences. Recovering the large number of degrees of freedom in human body movements from a depth image sequence is challenging due to the need to resolve the depth ambiguity caused by self-occlusions and the difficulty to recover from tracking failure. Human body poses could be estimated through model fitting using dense correspondences between depth data and an articulated human model (local optimization method). Although it usually achieves a high accuracy due to dense correspondences, it may fail to recover from tracking failure. Alternately, human pose may be reconstructed by detecting and tracking human body anatomical landmarks (key-points) based on low-level depth image analysis. While this method (key-point based method) is robust and recovers from tracking failure, its pose estimation accuracy depends solely on image-based localization accuracy of key-points. To address these limitations, we present a flexible Bayesian framework for integrating pose estimation results obtained by methods based on key-points and local optimization. Experimental results are shown and performance comparison is presented to demonstrate the effectiveness of the proposed approach. PMID:22399933
3-D in vitro estimation of temperature using the change in backscattered ultrasonic energy.
Arthur, R Martin; Basu, Debomita; Guo, Yuzheng; Trobaugh, Jason W; Moros, Eduardo G
2010-08-01
Temperature imaging with a non-invasive modality to monitor the heating of tumors during hyperthermia treatment is an attractive alternative to sparse invasive measurement. Previously, we predicted monotonic changes in backscattered energy (CBE) of ultrasound with temperature for certain sub-wavelength scatterers. We also measured CBE values similar to our predictions in bovine liver, turkey breast muscle, and pork rib muscle in 2-D in vitro studies and in nude mice during 2-D in vivo studies. To extend these studies to three dimensions, we compensated for motion and measured CBE in turkey breast muscle. 3-D data sets were assembled from images formed by a phased-array imager with a 7.5-MHz linear probe moved in 0.6-mm steps in elevation during uniform heating from 37 to 45 degrees C in 0.5 degrees C increments. We used cross-correlation as a similarity measure in RF signals to automatically track feature displacement as a function of temperature. Feature displacement was non-rigid. Envelopes of image regions, compensated for non-rigid motion, were found with the Hilbert transform then smoothed with a 3 x 3 running average filter before forming the backscattered energy at each pixel. CBE in 3-D motion-compensated images was nearly linear with an average sensitivity of 0.30 dB/ degrees C. 3-D estimation of temperature in separate tissue regions had errors with a maximum standard deviation of about 0.5 degrees C over 1-cm(3) volumes. Success of CBE temperature estimation based on 3-D non-rigid tracking and compensation for real and apparent motion of image features could serve as the foundation for the eventual generation of 3-D temperature maps in soft tissue in a non-invasive, convenient, and low-cost way in clinical hyperthermia.
Deformation data modeling through numerical models: an efficient method for tracking magma transport
NASA Astrophysics Data System (ADS)
Charco, M.; Gonzalez, P. J.; Galán del Sastre, P.
2017-12-01
Nowadays, multivariate collected data and robust physical models at volcano observatories are becoming crucial for providing effective volcano monitoring. Nevertheless, the forecast of volcanic eruption is notoriously difficult. Wthin this frame one of the most promising methods to evaluate the volcano hazard is the use of surface ground deformation and in the last decades many developments in the field of deformation modeling has been achieved. In particular, numerical modeling allows realistic media features such as topography and crustal heterogeneities to be included, although it is still very time cosuming to solve the inverse problem for near-real time interpretations. Here, we present a method that can be efficiently used to estimate the location and evolution of magmatic sources base on real-time surface deformation data and Finite Element (FE) models. Generally, the search for the best-fitting magmatic (point) source(s) is conducted for an array of 3-D locations extending below a predefined volume region and the Green functions for all the array components have to be precomputed. We propose a FE model for the pre-computation of Green functions in a mechanically heterogeneous domain which eventually will lead to a better description of the status of the volcanic area. The number of Green functions is reduced here to the number of observational points by using their reciprocity relationship. We present and test this methodology with an optimization method base on a Genetic Algorithm. Following synthetic and sensitivity test to estimate the uncertainty of the model parameters, we apply the tool for magma tracking during 2007 Kilauea volcano intrusion and eruption. We show how data inversion with numerical models can speed up the source parameters estimations for a given volcano showing signs of unrest.
NASA Technical Reports Server (NTRS)
Vos, Gordon A.; Fink, Patrick; Ngo, Phong H.; Morency, Richard; Simon, Cory; Williams, Robert E.; Perez, Lance C.
2017-01-01
Space Human Factors and Habitability (SHFH) Element within the Human Research Program (HRP) and the Behavioral Health and Performance (BHP) Element are conducting research regarding Net Habitable Volume (NHV), the internal volume within a spacecraft or habitat that is available to crew for required activities, as well as layout and accommodations within the volume. NASA needs methods to unobtrusively collect NHV data without impacting crew time. Data required includes metrics such as location and orientation of crew, volume used to complete tasks, internal translation paths, flow of work, and task completion times. In less constrained environments methods exist yet many are obtrusive and require significant post-processing. ?Examplesused in terrestrial settings include infrared (IR) retro-reflective marker based motion capture, GPS sensor tracking, inertial tracking, and multi-camera methods ?Due to constraints of space operations many such methods are infeasible. Inertial tracking systems typically rely upon a gravity vector to normalize sensor readings,and traditional IR systems are large and require extensive calibration. ?However, multiple technologies have not been applied to space operations for these purposes. Two of these include: 3D Radio Frequency Identification Real-Time Localization Systems (3D RFID-RTLS) ?Depth imaging systems which allow for 3D motion capture and volumetric scanning (such as those using IR-depth cameras like the Microsoft Kinect or Light Detection and Ranging / Light-Radar systems, referred to as LIDAR)
Use of Digital Volume Correlation to Measure Deformation of Shale Using Natural Markers
NASA Astrophysics Data System (ADS)
Dewers, T. A.; Quintana, E.; Ingraham, M. D.; Jacques, C. L.
2016-12-01
We apply digital volume correlation (DVC) to interpreting deformation as influenced by shale heterogeneity. An extension of digital image correlation, DVC uses 3D images (CT Scans) of a sample before, during and after loading to determine deformation in terms of a 3D strain map. The technology tracks the deformation of high and low density regions within the sample to determine full field 3D strains within the sample. High pyrite shales (Woodford and Marcellus in this study) are being used as the high density pyrite serves as an excellent point to track in the volume correlation. Preliminary results indicate that this technology is promising for measuring true volume strains, strain localization, and strain portioning by microlithofacies within specimens during testing. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Misdaq, M A; Aitnouh, F; Khajmi, H; Ezzahery, H; Berrazzouk, S
2001-08-01
A Monte Carlo computer code for determining detection efficiencies of the CR-39 and LR-115 II solid-state nuclear track detectors (SSNTD) for alpha-particles emitted by the uranium and thorium series inside different natural material samples was developed. The influence of the alpha-particle initial energy on the SSNTD detection efficiencies was investigated. Radon (222Rn) and thoron (220Rn) alpha-activities per unit volume were evaluated inside and outside the natural material samples by exploiting data obtained for the detection efficiencies of the SSNTD utilized for the emitted alpha-particles, and measuring the resulting track densities. Results obtained were compared to those obtained by other methods. Radon emanation coefficients have been determined for some of the considered material samples.
A novel method for blood volume estimation using trivalent chromium in rabbit models.
Baby, Prathap Moothamadathil; Kumar, Pramod; Kumar, Rajesh; Jacob, Sanu S; Rawat, Dinesh; Binu, V S; Karun, Kalesh M
2014-05-01
Blood volume measurement though important in management of critically ill-patients is not routinely estimated in clinical practice owing to labour intensive, intricate and time consuming nature of existing methods. The aim was to compare blood volume estimations using trivalent chromium [(51)Cr(III)] and standard Evans blue dye (EBD) method in New Zealand white rabbit models and establish correction-factor (CF). Blood volume estimation in 33 rabbits was carried out using EBD method and concentration determined using spectrophotometric assay followed by blood volume estimation using direct injection of (51)Cr(III). Twenty out of 33 rabbits were used to find CF by dividing blood volume estimation using EBD with blood volume estimation using (51)Cr(III). CF is validated in 13 rabbits by multiplying it with blood volume estimation values obtained using (51)Cr(III). The mean circulating blood volume of 33 rabbits using EBD was 142.02 ± 22.77 ml or 65.76 ± 9.31 ml/kg and using (51)Cr(III) was estimated to be 195.66 ± 47.30 ml or 89.81 ± 17.88 ml/kg. The CF was found to be 0.77. The mean blood volume of 13 rabbits measured using EBD was 139.54 ± 27.19 ml or 66.33 ± 8.26 ml/kg and using (51)Cr(III) with CF was 152.73 ± 46.25 ml or 71.87 ± 13.81 ml/kg (P = 0.11). The estimation of blood volume using (51)Cr(III) was comparable to standard EBD method using CF. With further research in this direction, we envisage human blood volume estimation using (51)Cr(III) to find its application in acute clinical settings.
Exploration and extension of an improved Riemann track fitting algorithm
NASA Astrophysics Data System (ADS)
Strandlie, A.; Frühwirth, R.
2017-09-01
Recently, a new Riemann track fit which operates on translated and scaled measurements has been proposed. This study shows that the new Riemann fit is virtually as precise as popular approaches such as the Kalman filter or an iterative non-linear track fitting procedure, and significantly more precise than other, non-iterative circular track fitting approaches over a large range of measurement uncertainties. The fit is then extended in two directions: first, the measurements are allowed to lie on plane sensors of arbitrary orientation; second, the full error propagation from the measurements to the estimated circle parameters is computed. The covariance matrix of the estimated track parameters can therefore be computed without recourse to asymptotic properties, and is consequently valid for any number of observation. It does, however, assume normally distributed measurement errors. The calculations are validated on a simulated track sample and show excellent agreement with the theoretical expectations.
Low-Cost 3-D Flow Estimation of Blood With Clutter.
Wei, Siyuan; Yang, Ming; Zhou, Jian; Sampson, Richard; Kripfgans, Oliver D; Fowlkes, J Brian; Wenisch, Thomas F; Chakrabarti, Chaitali
2017-05-01
Volumetric flow rate estimation is an important ultrasound medical imaging modality that is used for diagnosing cardiovascular diseases. Flow rates are obtained by integrating velocity estimates over a cross-sectional plane. Speckle tracking is a promising approach that overcomes the angle dependency of traditional Doppler methods, but suffers from poor lateral resolution. Recent work improves lateral velocity estimation accuracy by reconstructing a synthetic lateral phase (SLP) signal. However, the estimation accuracy of such approaches is compromised by the presence of clutter. Eigen-based clutter filtering has been shown to be effective in removing the clutter signal; but it is computationally expensive, precluding its use at high volume rates. In this paper, we propose low-complexity schemes for both velocity estimation and clutter filtering. We use a two-tiered motion estimation scheme to combine the low complexity sum-of-absolute-difference and SLP methods to achieve subpixel lateral accuracy. We reduce the complexity of eigen-based clutter filtering by processing in subgroups and replacing singular value decomposition with less compute-intensive power iteration and subspace iteration methods. Finally, to improve flow rate estimation accuracy, we use kernel power weighting when integrating the velocity estimates. We evaluate our method for fast- and slow-moving clutter for beam-to-flow angles of 90° and 60° using Field II simulations, demonstrating high estimation accuracy across scenarios. For instance, for a beam-to-flow angle of 90° and fast-moving clutter, our estimation method provides a bias of -8.8% and standard deviation of 3.1% relative to the actual flow rate.
Sensor Fusion of Gaussian Mixtures for Ballistic Target Tracking in the Re-Entry Phase
Lu, Kelin; Zhou, Rui
2016-01-01
A sensor fusion methodology for the Gaussian mixtures model is proposed for ballistic target tracking with unknown ballistic coefficients. To improve the estimation accuracy, a track-to-track fusion architecture is proposed to fuse tracks provided by the local interacting multiple model filters. During the fusion process, the duplicate information is removed by considering the first order redundant information between the local tracks. With extensive simulations, we show that the proposed algorithm improves the tracking accuracy in ballistic target tracking in the re-entry phase applications. PMID:27537883
Sensor Fusion of Gaussian Mixtures for Ballistic Target Tracking in the Re-Entry Phase.
Lu, Kelin; Zhou, Rui
2016-08-15
A sensor fusion methodology for the Gaussian mixtures model is proposed for ballistic target tracking with unknown ballistic coefficients. To improve the estimation accuracy, a track-to-track fusion architecture is proposed to fuse tracks provided by the local interacting multiple model filters. During the fusion process, the duplicate information is removed by considering the first order redundant information between the local tracks. With extensive simulations, we show that the proposed algorithm improves the tracking accuracy in ballistic target tracking in the re-entry phase applications.
Calculation of the Frequency Distribution of the Energy Deposition in DNA Volumes by Heavy Ions
NASA Technical Reports Server (NTRS)
Plante, Ianik; Cicinotta, Francis A.
2012-01-01
Radiation quality effects are largely determined by energy deposition in small volumes of characteristic sizes less than 10 nm representative of short-segments of DNA, the DNA nucleosome, or molecules initiating oxidative stress in the nucleus, mitochondria, or extra-cellular matrix. On this scale, qualitatively distinct types of molecular damage are possible for high linear energy transfer (LET) radiation such as heavy ions compared to low LET radiation. Unique types of DNA lesions or oxidative damages are the likely outcome of the energy deposition. The frequency distribution for energy imparted to 1-20 nm targets per unit dose or particle fluence is a useful descriptor and can be evaluated as a function of impact parameter from an ions track. In this work, the simulation of 1-Gy irradiation of a cubic volume of 5 micron by: 1) 450 (1)H(+) ions, 300 MeV; 2) 10 (12)C(6+) ions, 290 MeV/amu and 3) (56)Fe(26+) ions, 1000 MeV/amu was done with the Monte-Carlo simulation code RITRACKS. Cylindrical targets are generated in the irradiated volume, with random orientation. The frequency distribution curves of the energy deposited in the targets is obtained. For small targets (i.e. <25 nm size), the probability of an ion to hit a target is very small; therefore a large number of tracks and targets as well as a large number of histories are necessary to obtain statistically significant results. This simulation is very time-consuming and is difficult to perform by using the original version of RITRACKS. Consequently, the code RITRACKS was adapted to use multiple CPU on a workstation or on a computer cluster. To validate the simulation results, similar calculations were performed using targets with fixed position and orientation, for which experimental data are available [5]. Since the probability of single- and double-strand breaks in DNA as function of energy deposited is well know, the results that were obtained can be used to estimate the yield of DSB, and can be extended to include other targeted or non-target effects.
NASA Astrophysics Data System (ADS)
Simonsen, Sebastian B.; Sandberg Sørensen, Louise; Nilsson, Johan; Helm, Veit; Langley, Kirsty A.; Forsberg, Rene; Hvidegaard, Sine M.; Skourup, Henriette
2015-04-01
The ESA CryoSat-2 satellite, launched in late 2010, carries a new type of radar altimeter especially designed for monitoring changes of sea and land ice. The radar signal might penetrate into the snow pack and the depth of the radar reflecting surface depends on the ratio between the surface and the volume backscatter, which is a function of several different properties such as snow density, crystal structure and surface roughness. In case of large volume scatter, the radar waveforms become broad and the determination of the range (surface elevation) becomes more difficult. Different algorithms (retrackers) are used for the range determination, and estimated surface penetration is highly dependent on the applied retracker. As part of the ESA-CryoVEx/CryoVal-Land Ice projects, DTU Space has gathered accurate airborne laser scanner elevation measurements. Sites on the Greenland ice sheet, Austfonna and Devon ice caps, has been surveyed repeatedly, aligned with Cryosat-2 ground tracks and surface experiments. Here, we utilize elevation estimates from available Cryosat-2 retrackers (ESA level-2 retracker, DTU retracker, etc.) and validate the elevation measurements against ESA-CryoVEx campaigns. A difference between laser and radar elevations is expected due to radar penetration issues, however an inter-comparison between retrackers will shed light on individual performances and biases. Additionally, the geo-location of the radar return will also be a determining factor for the precision. Ultimately, the use of multiple retrackers can provide information about subsurface conditions and utilize more of the waveform information than presently used in radar altimetry.
Model-Based Localization and Tracking Using Bluetooth Low-Energy Beacons
Cemgil, Ali Taylan
2017-01-01
We introduce a high precision localization and tracking method that makes use of cheap Bluetooth low-energy (BLE) beacons only. We track the position of a moving sensor by integrating highly unreliable and noisy BLE observations streaming from multiple locations. A novel aspect of our approach is the development of an observation model, specifically tailored for received signal strength indicator (RSSI) fingerprints: a combination based on the optimal transport model of Wasserstein distance. The tracking results of the entire system are compared with alternative baseline estimation methods, such as nearest neighboring fingerprints and an artificial neural network. Our results show that highly accurate estimation from noisy Bluetooth data is practically feasible with an observation model based on Wasserstein distance interpolation combined with the sequential Monte Carlo (SMC) method for tracking. PMID:29109375
Model-Based Localization and Tracking Using Bluetooth Low-Energy Beacons.
Daniş, F Serhan; Cemgil, Ali Taylan
2017-10-29
We introduce a high precision localization and tracking method that makes use of cheap Bluetooth low-energy (BLE) beacons only. We track the position of a moving sensor by integrating highly unreliable and noisy BLE observations streaming from multiple locations. A novel aspect of our approach is the development of an observation model, specifically tailored for received signal strength indicator (RSSI) fingerprints: a combination based on the optimal transport model of Wasserstein distance. The tracking results of the entire system are compared with alternative baseline estimation methods, such as nearest neighboring fingerprints and an artificial neural network. Our results show that highly accurate estimation from noisy Bluetooth data is practically feasible with an observation model based on Wasserstein distance interpolation combined with the sequential Monte Carlo (SMC) method for tracking.
Robust adaptive uniform exact tracking control for uncertain Euler-Lagrange system
NASA Astrophysics Data System (ADS)
Yang, Yana; Hua, Changchun; Li, Junpeng; Guan, Xinping
2017-12-01
This paper offers a solution to the robust adaptive uniform exact tracking control for uncertain nonlinear Euler-Lagrange (EL) system. An adaptive finite-time tracking control algorithm is designed by proposing a novel nonsingular integral terminal sliding-mode surface. Moreover, a new adaptive parameter tuning law is also developed by making good use of the system tracking errors and the adaptive parameter estimation errors. Thus, both the trajectory tracking and the parameter estimation can be achieved in a guaranteed time adjusted arbitrarily based on practical demands, simultaneously. Additionally, the control result for the EL system proposed in this paper can be extended to high-order nonlinear systems easily. Finally, a test-bed 2-DOF robot arm is set-up to demonstrate the performance of the new control algorithm.
Determination of time zero from a charged particle detector
Green, Jesse Andrew [Los Alamos, NM
2011-03-15
A method, system and computer program is used to determine a linear track having a good fit to a most likely or expected path of charged particle passing through a charged particle detector having a plurality of drift cells. Hit signals from the charged particle detector are associated with a particular charged particle track. An initial estimate of time zero is made from these hit signals and linear tracks are then fit to drift radii for each particular time-zero estimate. The linear track having the best fit is then searched and selected and errors in fit and tracking parameters computed. The use of large and expensive fast detectors needed to time zero in the charged particle detectors can be avoided by adopting this method and system.
Ding, Yu; Li, Chunqiang
2016-01-01
Nanoscale particle tracking in three dimensions is crucial to directly observe dynamics of molecules and nanoparticles in living cells. Here we present a three-dimensional particle tracking method based on temporally focused two-photon excitation. Multiple particles are imaged at 30 frames/s in volume up to 180 × 180 × 100 µm3. The spatial localization precision can reach 50 nm. We demonstrate its capability of tracking fast swimming microbes at speed of ~200 µm/s. Two-photon dual-color tracking is achieved by simultaneously exciting two kinds of fluorescent beads at 800 nm to demonstrate its potential in molecular interaction studies. Our method provides a simple wide-field fluorescence imaging approach for deep multiple-particle tracking. PMID:27867724
Fuzzy Neural Network-Based Interacting Multiple Model for Multi-Node Target Tracking Algorithm
Sun, Baoliang; Jiang, Chunlan; Li, Ming
2016-01-01
An interacting multiple model for multi-node target tracking algorithm was proposed based on a fuzzy neural network (FNN) to solve the multi-node target tracking problem of wireless sensor networks (WSNs). Measured error variance was adaptively adjusted during the multiple model interacting output stage using the difference between the theoretical and estimated values of the measured error covariance matrix. The FNN fusion system was established during multi-node fusion to integrate with the target state estimated data from different nodes and consequently obtain network target state estimation. The feasibility of the algorithm was verified based on a network of nine detection nodes. Experimental results indicated that the proposed algorithm could trace the maneuvering target effectively under sensor failure and unknown system measurement errors. The proposed algorithm exhibited great practicability in the multi-node target tracking of WSNs. PMID:27809271
Hybrid Orientation Based Human Limbs Motion Tracking Method
Glonek, Grzegorz; Wojciechowski, Adam
2017-01-01
One of the key technologies that lays behind the human–machine interaction and human motion diagnosis is the limbs motion tracking. To make the limbs tracking efficient, it must be able to estimate a precise and unambiguous position of each tracked human joint and resulting body part pose. In recent years, body pose estimation became very popular and broadly available for home users because of easy access to cheap tracking devices. Their robustness can be improved by different tracking modes data fusion. The paper defines the novel approach—orientation based data fusion—instead of dominating in literature position based approach, for two classes of tracking devices: depth sensors (i.e., Microsoft Kinect) and inertial measurement units (IMU). The detailed analysis of their working characteristics allowed to elaborate a new method that let fuse more precisely limbs orientation data from both devices and compensates their imprecisions. The paper presents the series of performed experiments that verified the method’s accuracy. This novel approach allowed to outperform the precision of position-based joints tracking, the methods dominating in the literature, of up to 18%. PMID:29232832
Compact 3D Camera for Shake-the-Box Particle Tracking
NASA Astrophysics Data System (ADS)
Hesseling, Christina; Michaelis, Dirk; Schneiders, Jan
2017-11-01
Time-resolved 3D-particle tracking usually requires the time-consuming optical setup and calibration of 3 to 4 cameras. Here, a compact four-camera housing has been developed. The performance of the system using Shake-the-Box processing (Schanz et al. 2016) is characterized. It is shown that the stereo-base is large enough for sensible 3D velocity measurements. Results from successful experiments in water flows using LED illumination are presented. For large-scale wind tunnel measurements, an even more compact version of the system is mounted on a robotic arm. Once calibrated for a specific measurement volume, the necessity for recalibration is eliminated even when the system moves around. Co-axial illumination is provided through an optical fiber in the middle of the housing, illuminating the full measurement volume from one viewing direction. Helium-filled soap bubbles are used to ensure sufficient particle image intensity. This way, the measurement probe can be moved around complex 3D-objects. By automatic scanning and stitching of recorded particle tracks, the detailed time-averaged flow field of a full volume of cubic meters in size is recorded and processed. Results from an experiment at TU-Delft of the flow field around a cyclist are shown.
NASA Astrophysics Data System (ADS)
Rodrigues, Pedro L.; Rodrigues, Nuno F.; Fonseca, Jaime C.; Vilaça, João. L.
2015-03-01
An accurate percutaneous puncture is essential for disintegration and removal of renal stones. Although this procedure has proven to be safe, some organs surrounding the renal target might be accidentally perforated. This work describes a new intraoperative framework where tracked surgical tools are superimposed within 4D ultrasound imaging for security assessment of the percutaneous puncture trajectory (PPT). A PPT is first generated from the skin puncture site towards an anatomical target, using the information retrieved by electromagnetic motion tracking sensors coupled to surgical tools. Then, 2D ultrasound images acquired with a tracked probe are used to reconstruct a 4D ultrasound around the PPT under GPU processing. Volume hole-filling was performed in different processing time intervals by a tri-linear interpolation method. At spaced time intervals, the volume of the anatomical structures was segmented to ascertain if any vital structure is in between PPT and might compromise the surgical success. To enhance the volume visualization of the reconstructed structures, different render transfer functions were used. Results: Real-time US volume reconstruction and rendering with more than 25 frames/s was only possible when rendering only three orthogonal slice views. When using the whole reconstructed volume one achieved 8-15 frames/s. 3 frames/s were reached when one introduce the segmentation and detection if some structure intersected the PPT. The proposed framework creates a virtual and intuitive platform that can be used to identify and validate a PPT to safely and accurately perform the puncture in percutaneous nephrolithotomy.
Determining the bias and variance of a deterministic finger-tracking algorithm.
Morash, Valerie S; van der Velden, Bas H M
2016-06-01
Finger tracking has the potential to expand haptic research and applications, as eye tracking has done in vision research. In research applications, it is desirable to know the bias and variance associated with a finger-tracking method. However, assessing the bias and variance of a deterministic method is not straightforward. Multiple measurements of the same finger position data will not produce different results, implying zero variance. Here, we present a method of assessing deterministic finger-tracking variance and bias through comparison to a non-deterministic measure. A proof-of-concept is presented using a video-based finger-tracking algorithm developed for the specific purpose of tracking participant fingers during a psychological research study. The algorithm uses ridge detection on videos of the participant's hand, and estimates the location of the right index fingertip. The algorithm was evaluated using data from four participants, who explored tactile maps using only their right index finger and all right-hand fingers. The algorithm identified the index fingertip in 99.78 % of one-finger video frames and 97.55 % of five-finger video frames. Although the algorithm produced slightly biased and more dispersed estimates relative to a human coder, these differences (x=0.08 cm, y=0.04 cm) and standard deviations (σ x =0.16 cm, σ y =0.21 cm) were small compared to the size of a fingertip (1.5-2.0 cm). Some example finger-tracking results are provided where corrections are made using the bias and variance estimates.
Decentralized cooperative TOA/AOA target tracking for hierarchical wireless sensor networks.
Chen, Ying-Chih; Wen, Chih-Yu
2012-11-08
This paper proposes a distributed method for cooperative target tracking in hierarchical wireless sensor networks. The concept of leader-based information processing is conducted to achieve object positioning, considering a cluster-based network topology. Random timers and local information are applied to adaptively select a sub-cluster for the localization task. The proposed energy-efficient tracking algorithm allows each sub-cluster member to locally estimate the target position with a Bayesian filtering framework and a neural networking model, and further performs estimation fusion in the leader node with the covariance intersection algorithm. This paper evaluates the merits and trade-offs of the protocol design towards developing more efficient and practical algorithms for object position estimation.
Tracking reliability for space cabin-borne equipment in development by Crow model.
Chen, J D; Jiao, S J; Sun, H L
2001-12-01
Objective. To study and track the reliability growth of manned spaceflight cabin-borne equipment in the course of its development. Method. A new technique of reliability growth estimation and prediction, which is composed of the Crow model and test data conversion (TDC) method was used. Result. The estimation and prediction value of the reliability growth conformed to its expectations. Conclusion. The method could dynamically estimate and predict the reliability of the equipment by making full use of various test information in the course of its development. It offered not only a possibility of tracking the equipment reliability growth, but also the reference for quality control in manned spaceflight cabin-borne equipment design and development process.
Mathematics and Sports. Mathematical World. Volume 3.
ERIC Educational Resources Information Center
Sadovskii, L. E.; Sadovskii, A. L.
This volume contains some examples of mathematical applications in sports. Sports discussed include tennis, figure skating, gymnastics, track and field, soccer, skiing, hockey, and swimming. Problems and situations are posed and answers with thorough explanations are provided. Chapters include: (1) Mathematics and Sports; (2) What Is Applied…
Cardiac remodeling in preterm infants with prolonged exposure to a patent ductus arteriosus.
de Waal, Koert; Phad, Nilkant; Collins, Nick; Boyle, Andrew
2017-05-01
Sustained volume load due to a patent ductus arteriosus (PDA) leads to cardiac remodeling. Remodeling changes can become pathological and are associated with cardiovascular disease progression. Data on remodeling changes in preterm infants is not available. Clinical and echocardiography data were collected in preterm infants <30 weeks gestation on postnatal day 3 and then every 7-14 days until closure of the ductus arteriosus. Images were analyzed using conventional techniques and speckle tracking. Remodeling changes of infants with prolonged (>14 days) exposure to a PDA were compared to control infants without a PDA. Thirty out of 189 infants had prolonged exposure to a PDA. The left heart remodeled to a larger and more spherical shape and thus significantly increased in volume. Most changes occurred in the first 4 weeks, plateaued, and then returned to control values. Systolic function and estimates of filling pressure increased and effective arterial elastance reduced with a PDA, however contractility was unchanged. Wall thickness increased after 4 weeks of increased volume exposure. The preterm PDA induces early and significant remodeling of the left heart. A compensated cardiac physiology was seen with preserved systolic function, suggesting adaptive rather than pathological remodeling changes with prolonged exposure to a PDA. © 2017 Wiley Periodicals, Inc.
Boka, Vasiliki-Ioanna; Argyropoulou, Aikaterini; Gikas, Evangelos; Angelis, Apostolis; Aligiannis, Nektarios; Skaltsounis, Alexios-Leandros
2015-11-01
A high-performance thin-layer chromatographic methodology was developed and validated for the isolation and quantitative determination of oleuropein in two extracts of Olea europaea leaves. OLE_A was a crude acetone extract, while OLE_AA was its defatted residue. Initially, high-performance thin-layer chromatography was employed for the purification process of oleuropein with fast centrifugal partition chromatography, replacing high-performance liquid-chromatography, in the stage of the determination of the distribution coefficient and the retention volume. A densitometric method was developed for the determination of the distribution coefficients, KC = CS/CM. The total concentrations of the target compound in the stationary phase (CS) and in the mobile phase (CM) were calculated by the area measured in the high-performance thin-layer chromatogram. The estimated Kc was also used for the calculation of the retention volume, VR, with a chromatographic retention equation. The obtained data were successfully applied for the purification of oleuropein and the experimental results confirmed the theoretical predictions, indicating that high-performance thin-layer chromatography could be an important counterpart in the phytochemical study of natural products. The isolated oleuropein (purity > 95%) was subsequently used for the estimation of its content in each extract with a simple, sensitive and accurate high-performance thin-layer chromatography method. The best fit calibration curve from 1.0 µg/track to 6.0 µg/track of oleuropein was polynomial and the quantification was achieved by UV detection at λ 240 nm. The method was validated giving rise to an efficient and high-throughput procedure, with the relative standard deviation % of repeatability and intermediate precision not exceeding 4.9% and accuracy between 92% and 98% (recovery rates). Moreover, the method was validated for robustness, limit of quantitation, and limit of detection. The amount of oleuropein for OLE_A, OLE_AA, and an aqueous extract of olive leaves was estimated to be 35.5% ± 2.7, 51.5% ± 1.4, and 12.5% ± 0.12, respectively. Statistical analysis proved that the method is repeatable and selective, and can be effectively applied for the estimation of oleuropein in olive leaves' extracts, and could potentially replace high-performance liquid chromatography methodologies developed so far. Thus, the phytochemical investigation of oleuropein could be based on high-performance thin-layer chromatography coupled with separation processes, such as fast centrifugal partition chromatography, showing efficacy and credibility. Georg Thieme Verlag KG Stuttgart · New York.
Mishra, Arabinda; Anderson, Adam W; Wu, Xi; Gore, John C; Ding, Zhaohua
2010-08-01
The purpose of this work is to design a neuronal fiber tracking algorithm, which will be more suitable for reconstruction of fibers associated with functionally important regions in the human brain. The functional activations in the brain normally occur in the gray matter regions. Hence the fibers bordering these regions are weakly myelinated, resulting in poor performance of conventional tractography methods to trace the fiber links between them. A lower fractional anisotropy in this region makes it even difficult to track the fibers in the presence of noise. In this work, the authors focused on a stochastic approach to reconstruct these fiber pathways based on a Bayesian regularization framework. To estimate the true fiber direction (propagation vector), the a priori and conditional probability density functions are calculated in advance and are modeled as multivariate normal. The variance of the estimated tensor element vector is associated with the uncertainty due to noise and partial volume averaging (PVA). An adaptive and multiple sampling of the estimated tensor element vector, which is a function of the pre-estimated variance, overcomes the effect of noise and PVA in this work. The algorithm has been rigorously tested using a variety of synthetic data sets. The quantitative comparison of the results to standard algorithms motivated the authors to implement it for in vivo DTI data analysis. The algorithm has been implemented to delineate fibers in two major language pathways (Broca's to SMA and Broca's to Wernicke's) across 12 healthy subjects. Though the mean of standard deviation was marginally bigger than conventional (Euler's) approach [P. J. Basser et al., "In vivo fiber tractography using DT-MRI data," Magn. Reson. Med. 44(4), 625-632 (2000)], the number of extracted fibers in this approach was significantly higher. The authors also compared the performance of the proposed method to Lu's method [Y. Lu et al., "Improved fiber tractography with Bayesian tensor regularization," Neuroimage 31(3), 1061-1074 (2006)] and Friman's stochastic approach [O. Friman et al., "A Bayesian approach for stochastic white matter tractography," IEEE Trans. Med. Imaging 25(8), 965-978 (2006)]. Overall performance of the approach is found to be superior to above two methods, particularly when the signal-to-noise ratio was low. The authors observed that an adaptive sampling of the tensor element vectors, estimated as a function of the variance in a Bayesian framework, can effectively delineate neuronal fibers to analyze the structure-function relationship in human brain. The simulated and in vivo results are in good agreement with the theoretical aspects of the algorithm.
Guidelines for estimating volume, biomass, and smoke production for piled slash.
Colin C. Hardy
1998-01-01
Guidelines in the form of a six-step approach are provided for estimating volumes, oven-dry mass, consumption, and particulate matter emissions for piled logging debris. Seven stylized pile shapes and their associated geometric volume formulae are used to estimate gross pile volumes. The gross volumes are then reduced to net wood volume by applying an appropriate wood-...
Hanks, John B; Ashley, Stanley W; Mahvi, David M; Meredith, Wayne J; Stain, Steven C; Biester, Thomas W; Borman, Karen R
2011-09-01
Nearly 80% of general surgery residents (GSR) pursue Fellowship training. We hypothesized that fellowships coexisting with general surgery residencies do not negatively impact GSR case volumes and that fellowship-bound residents (FBR) preferentially seek out cases in their chosen specialty ("early tracking"). To test our hypotheses, we analyzed the Accreditation Council for Graduate Medical Education Surgical Operative Log data from 2009 American Board of Surgery qualifying examination applicants (N = 976). General surgery programs coexisted with 35 colorectal (CR), 97 vascular (Vasc), 80 minimally invasive (MIS), and 12 Endocrine (Endo) fellowships. We analyzed (1) operative cases for general surgery residency programs with and without coexisting Fellowships, comparing caseloads for FBR and all GSR and (2) operative cases of FBR in their chosen specialties compared to all other GSR. Group means were compared using ANOVA with significance set at P < 0.01. Coexisting fellowships had minimal impact on GSR caseloads. Endocrine fellowships actually enhanced case volumes for all residents. CR impact was neutral while MIS and vascular fellowships resulted in small declines. Endo, CR, and Vasc but not MIS FBR performed significantly more cases in their future specialties than their GSR counterparts, consistent with self-directed, prefellowship tracking. Tracking seems to be additive and FBR do not sacrifice other GSR cases. Our data establish that the impact of Fellowships on GSR caseloads is minimal. Our data confirm that FBR seek out cases in their future specialties ("early tracking").
TH-AB-202-04: Auto-Adaptive Margin Generation for MLC-Tracked Radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glitzner, M; Lagendijk, J; Raaymakers, B
Purpose: To develop an auto-adaptive margin generator for MLC tracking. The generator is able to estimate errors arising in image guided radiotherapy, particularly on an MR-Linac, which depend on the latencies of machine and image processing, as well as on patient motion characteristics. From the estimated error distribution, a segment margin is generated, able to compensate errors up to a user-defined confidence. Method: In every tracking control cycle (TCC, 40ms), the desired aperture D(t) is compared to the actual aperture A(t), a delayed and imperfect representation of D(t). Thus an error e(t)=A(T)-D(T) is measured every TCC. Applying kernel-density-estimation (KDE), themore » cumulative distribution (CDF) of e(t) is estimated. With CDF-confidence limits, upper and lower error limits are extracted for motion axes along and perpendicular leaf-travel direction and applied as margins. To test the dosimetric impact, two representative motion traces were extracted from fast liver-MRI (10Hz). The traces were applied onto a 4D-motion platform and continuously tracked by an Elekta Agility 160 MLC using an artificially imposed tracking delay. Gafchromic film was used to detect dose exposition for static, tracked, and error-compensated tracking cases. The margin generator was parameterized to cover 90% of all tracking errors. Dosimetric impact was rated by calculating the ratio between underexposed points (>5% underdosage) to the total number of points inside FWHM of static exposure. Results: Without imposing adaptive margins, tracking experiments showed a ratio of underexposed points of 17.5% and 14.3% for two motion cases with imaging delays of 200ms and 300ms, respectively. Activating the margin generated yielded total suppression (<1%) of underdosed points. Conclusion: We showed that auto-adaptive error compensation using machine error statistics is possible for MLC tracking. The error compensation margins are calculated on-line, without the need of assuming motion or machine models. Further strategies to reduce consequential overdosages are currently under investigation. This work was funded by the SoRTS consortium, which includes the industry partners Elekta, Philips and Technolution.« less
Predictive control and estimation algorithms for the NASA/JPL 70-meter antennas
NASA Technical Reports Server (NTRS)
Gawronski, W.
1991-01-01
A modified output prediction procedure and a new controller design is presented based on the predictive control law. Also, a new predictive estimator is developed to complement the controller and to enhance system performance. The predictive controller is designed and applied to the tracking control of the Deep Space Network 70 m antennas. Simulation results show significant improvement in tracking performance over the linear quadratic controller and estimator presently in use.
LAGEOS geodetic analysis-SL7.1
NASA Technical Reports Server (NTRS)
Smith, D. E.; Kolenkiewicz, R.; Dunn, P. J.; Klosko, S. M.; Robbins, J. W.; Torrence, M. H.; Williamson, R. G.; Pavlis, E. C.; Douglas, N. B.; Fricke, S. K.
1991-01-01
Laser ranging measurements to the LAGEOS satellite from 1976 through 1989 are related via geodetic and orbital theories to a variety of geodetic and geodynamic parameters. The SL7.1 analyses are explained of this data set including the estimation process for geodetic parameters such as Earth's gravitational constant (GM), those describing the Earth's elasticity properties (Love numbers), and the temporally varying geodetic parameters such as Earth's orientation (polar motion and Delta UT1) and tracking site horizontal tectonic motions. Descriptions of the reference systems, tectonic models, and adopted geodetic constants are provided; these are the framework within which the SL7.1 solution takes place. Estimates of temporal variations in non-conservative force parameters are included in these SL7.1 analyses as well as parameters describing the orbital states at monthly epochs. This information is useful in further refining models used to describe close-Earth satellite behavior. Estimates of intersite motions and individual tracking site motions computed through the network adjustment scheme are given. Tabulations of tracking site eccentricities, data summaries, estimated monthly orbital and force model parameters, polar motion, Earth rotation, and tracking station coordinate results are also provided.
Adaptive early detection ML/PDA estimator for LO targets with EO sensors
NASA Astrophysics Data System (ADS)
Chummun, Muhammad R.; Kirubarajan, Thiagalingam; Bar-Shalom, Yaakov
2000-07-01
The batch Maximum Likelihood Estimator, combined with Probabilistic Data (ML-PDA), has been shown to be effective in acquiring low observable (LO) - low SNR - non-maneuvering targets in the presence of heavy clutter. The use of signal strength or amplitude information (AI) in the ML-PDA estimator with AI in a sliding-window fashion, to detect high- speed targets in heavy clutter using electro-optical (EO) sensors. The initial time and the length of the sliding-window are adjusted adaptively according to the information content of the received measurements. A track validation scheme via hypothesis testing is developed to confirm the estimated track, that is, the presence of a target, in each window. The sliding-window ML-PDA approach, together with track validation, enables early detection by rejecting noninformative scans, target reacquisition in case of temporary target disappearance and the handling of targets with speeds evolving over time. The proposed algorithm is shown to detect the target, which is hidden in as many as 600 false alarms per scan, 10 frames earlier than the Multiple Hypothesis Tracking (MHT) algorithm.
Extended Kalman Doppler tracking and model determination for multi-sensor short-range radar
NASA Astrophysics Data System (ADS)
Mittermaier, Thomas J.; Siart, Uwe; Eibert, Thomas F.; Bonerz, Stefan
2016-09-01
A tracking solution for collision avoidance in industrial machine tools based on short-range millimeter-wave radar Doppler observations is presented. At the core of the tracking algorithm there is an Extended Kalman Filter (EKF) that provides dynamic estimation and localization in real-time. The underlying sensor platform consists of several homodyne continuous wave (CW) radar modules. Based on In-phase-Quadrature (IQ) processing and down-conversion, they provide only Doppler shift information about the observed target. Localization with Doppler shift estimates is a nonlinear problem that needs to be linearized before the linear KF can be applied. The accuracy of state estimation depends highly on the introduced linearization errors, the initialization and the models that represent the true physics as well as the stochastic properties. The important issue of filter consistency is addressed and an initialization procedure based on data fitting and maximum likelihood estimation is suggested. Models for both, measurement and process noise are developed. Tracking results from typical three-dimensional courses of movement at short distances in front of a multi-sensor radar platform are presented.
NASA Astrophysics Data System (ADS)
Moin, Paymann; Ma, Kevin; Amezcua, Lilyana; Gertych, Arkadiusz; Liu, Brent
2009-02-01
Multiple sclerosis (MS) is a demyelinating disease of the central nervous system that affects approximately 2.5 million people worldwide. Magnetic resonance imaging (MRI) is an established tool for the assessment of disease activity, progression and response to treatment. The progression of the disease is variable and requires routine follow-up imaging studies. Currently, MRI quantification of multiple sclerosis requires a manual approach to lesion measurement and yields an estimate of lesion volume and interval change. In the setting of several prior studies and a long treatment history, trends related to treatment change quickly become difficult to extrapolate. Our efforts seek to develop an imaging informatics based MS lesion computer aided detection (CAD) package to quantify and track MS lesions including lesion load, volume, and location. Together, with select clinical parameters, this data will be incorporated into an MS specific e- Folder to provide decision support to evaluate and assess treatment options for MS in a manner tailored specifically to an individual based on trends in MS presentation and progression.
NASA Technical Reports Server (NTRS)
1971-01-01
Nimbus 4 satellite data for the period September 1 through October 31 1970 are presented. Data are also given on interrogation recording and location system balloon tracking from launch through March 27, 1971.
The Antiaircraft Journal. Volume 94, Number 5, September-October 1951
1951-10-01
used in direct support of advancing infantry. The mo- bility of the track and half-track vehicles permits them to move with the dough - boys and the...battery in action-to the coffee and cookies which were served during the county fair display which ended the first night’s session, the initial class
ERIC Educational Resources Information Center
Tucker, Jamie, Ed.
This conference program includes explanatory material and reprints 15 of the 43 papers presented in conference sessions. In addition to Rheta De Vries' keynote address--"Can Research Help Teachers Teach?"--research reports are published from four interest session tracks. Papers from the health/handicap track include Patricia Hutinger's…
Sampling Analysis of Aerosol Retrievals by Single-track Spaceborne Instrument for Climate Research
NASA Astrophysics Data System (ADS)
Geogdzhayev, I. V.; Cairns, B.; Alexandrov, M. D.; Mishchenko, M. I.
2012-12-01
We examine to what extent the reduced sampling of along-track instruments such as Cloud-Aerosol LIdar with Orthogonal Polarisation (CALIOP) and Aerosol Polarimetry Sensor (APS) affects the statistical accuracy of a satellite climatology of retrieved aerosol optical thickness (AOT) by sub-sampling the retrievals from a wide-swath imaging instrument (MODerate resolution Imaging Spectroradiometer (MODIS)). Owing to its global coverage, longevity, and extensive characterization versus ground based data, the MODIS level-2 aerosol product is an instructive testbed for assessing sampling effects on climatic means derived from along-track instrument data. The advantage of using daily pixel-level aerosol retrievals from MODIS is that limitations caused by the presence of clouds are implicit in the sample, so that their seasonal and regional variations are captured coherently. However, imager data can exhibit cross-track variability of monthly global mean AOTs caused by a scattering-angle dependence. We found that single along-track values can deviate from the imager mean by 15% over land and by more than 20% over ocean. This makes it difficult to separate natural variability from viewing-geometry artifacts complicating direct comparisons of an along-track sub-sample with the full imager data. To work around this problem, we introduce "flipped-track" sampling which, by design, is statistically equivalent to along-track sampling and while closely approximating the imager in terms of angular artifacts. We show that the flipped-track variability of global monthly mean AOT is much smaller than the cross-track one for the 7-year period considered. Over the ocean flipped-track standard error is 85% less than the cross-track one (absolute values 0.0012 versus 0.0079), and over land it is about one third of the cross-track value (0.0054 versus 0.0188) on average. This allows us to attribute the difference between the two errors to the viewing-geometry artifacts and obtain an upper limit on AOT errors caused by along-track sampling. Our results show that using along-track subsets of MODIS aerosol data directly to analyze the sampling adequacy of single-track instruments can lead to false conclusions owing to the apparent enhancement of natural aerosol variability by the track-to-track artifacts. The analysis based on the statistics of the flipped-track means yields better estimates because it allows for better separation of the viewing-geometry artifacts and true natural variability. Published assessments estimate that a global AOT change of 0.01 would yield a climatically important flux change of 0.25 W/m2. Since the standard error estimates that we have obtained are comfortably below 0.01, we conclude that along-track instruments flown on a sun-synchronous orbiting platform have sufficient spatial sampling for estimating aerosol effects on climate. Since AOT is believed to be the most variable characteristic of tropospheric aerosols, our results imply that pixel-wide along-track coverage also provides adequate statistical representation of the global distribution of aerosol microphysical parameters.
Neural network fusion capabilities for efficient implementation of tracking algorithms
NASA Astrophysics Data System (ADS)
Sundareshan, Malur K.; Amoozegar, Farid
1997-03-01
The ability to efficiently fuse information of different forms to facilitate intelligent decision making is one of the major capabilities of trained multilayer neural networks that is now being recognized. While development of innovative adaptive control algorithms for nonlinear dynamical plants that attempt to exploit these capabilities seems to be more popular, a corresponding development of nonlinear estimation algorithms using these approaches, particularly for application in target surveillance and guidance operations, has not received similar attention. We describe the capabilities and functionality of neural network algorithms for data fusion and implementation of tracking filters. To discuss details and to serve as a vehicle for quantitative performance evaluations, the illustrative case of estimating the position and velocity of surveillance targets is considered. Efficient target- tracking algorithms that can utilize data from a host of sensing modalities and are capable of reliably tracking even uncooperative targets executing fast and complex maneuvers are of interest in a number of applications. The primary motivation for employing neural networks in these applications comes from the efficiency with which more features extracted from different sensor measurements can be utilized as inputs for estimating target maneuvers. A system architecture that efficiently integrates the fusion capabilities of a trained multilayer neural net with the tracking performance of a Kalman filter is described. The innovation lies in the way the fusion of multisensor data is accomplished to facilitate improved estimation without increasing the computational complexity of the dynamical state estimator itself.
On the Efficiency Costs of De-Tracking Secondary Schools in Europe
ERIC Educational Resources Information Center
Brunello, Giorgio; Rocco, Lorenzo; Ariga, Kenn; Iwahashi, Roki
2012-01-01
Many European countries have delayed the time when school tracking starts in order to pursue equality of opportunity. What are the efficiency costs of de-tracking secondary schools? This paper builds a stylized model of the optimal time of tracking, estimates the relevant parameters using micro data for 11 European countries and computes the…
Larsson, Matilda; Heyde, Brecht; Kremer, Florence; Brodin, Lars-Åke; D'hooge, Jan
2015-02-01
Ultrasound speckle tracking for carotid strain assessment has in the past decade gained interest in studies of arterial stiffness and cardiovascular diseases. The aim of this study was to validate and directly contrast carotid strain assessment by speckle tracking applied on clinical and high-frequency ultrasound images in vitro. Four polyvinyl alcohol phantoms mimicking the carotid artery were constructed with different mechanical properties and connected to a pump generating carotid flow profiles. Gray-scale ultrasound long- and short-axis images of the phantoms were obtained using a standard clinical ultrasound system, Vivid 7 (GE Healthcare, Horten, Norway) and a high-frequency ultrasound system, Vevo 2100 (FUJIFILM, VisualSonics, Toronto, Canada) with linear-array transducers (12L/MS250). Radial, longitudinal and circumferential strains were estimated using an in-house speckle tracking algorithm and compared with reference strain acquired by sonomicrometry. Overall, the estimated strain corresponded well with the reference strain. The correlation between estimated peak strain in clinical ultrasound images and reference strain was 0.91 (p<0.001) for radial strain, 0.73 (p<0.001) for longitudinal strain and 0.90 (p<0.001) for circumferential strain and for high-frequency ultrasound images 0.95 (p<0.001) for radial strain, 0.93 (p<0.001) for longitudinal strain and 0.90 (p<0.001) for circumferential strain. A significant larger bias and root mean square error was found for circumferential strain estimation on clinical ultrasound images compared to high frequency ultrasound images, but no significant difference in bias and root mean square error was found for radial and longitudinal strain when comparing estimation on clinical and high-frequency ultrasound images. The agreement between sonomicrometry and speckle tracking demonstrates that carotid strain assessment by ultrasound speckle tracking is feasible. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Mudgway, D. J.; Traxler, M. R.
1977-01-01
Problems inherent in the deployment and management of a worldwide tracking and data acquisition network to support the two Viking Orbiters and two Viking Landers simultaneously over 320 million kilometers (200 million miles) of deep space are discussed. Activities described include tracking coverage of the launch phase, the deep space operations during the long cruise phase that occupied approximately 11 months, and the implementation of the a vast worldwide network of tracking sttions and global communications systems. The performance of the personnel, hardware, and software involved in this vast undertaking are evaluated.
2013-01-01
Background Cardiovascular magnetic resonance (CMR) steady state free precession (SSFP) cine sequences with high temporal resolution and improved post-processing can accurately measure RA dimensions. We used this technique to define ranges for normal RA volumes and dimensions normalized, when necessary, to the influence of gender, body surface area (BSA) and age, and also to define the best 2D images-derived predictors of RA enlargement. Methods For definition of normal ranges of RA volume we studied 120 healthy subjects (60 men, 60 women; 20 subjects per age decile from 20 to 80 years), after careful exclusion of cardiovascular abnormality. We also studied 120 patients (60 men, 60 women; age range 20 to 80 years) with a clinical indication for CMR in order to define the best 1D and 2D predictors of RA enlargement. Data were generated from SSFP cine CMR, with 3-dimensional modeling, including tracking of the atrioventricular ring motion and time-volume curves analysis. Results In the group of healthy individuals, age influenced RA 2-chamber area and transverse diameter. Gender influenced most absolute RA dimensions and volume. Interestingly, right atrial volumes did not change with age and gender when indexed to body surface area. New CMR normal ranges for RA dimensions were modeled and displayed for clinical use with normalization for BSA and gender and display of parameter variation with age. Finally, the best 2D images-derived independent predictors of RA enlargement were indexed area and indexed longitudinal diameter in the 2-chamber view. Conclusion Reference RA dimensions and predictors of RA enlargement are provided using state-of-the-art CMR techniques. PMID:23566426
An Extended Kalman Filter-Based Attitude Tracking Algorithm for Star Sensors
Li, Jian; Wei, Xinguo; Zhang, Guangjun
2017-01-01
Efficiency and reliability are key issues when a star sensor operates in tracking mode. In the case of high attitude dynamics, the performance of existing attitude tracking algorithms degenerates rapidly. In this paper an extended Kalman filtering-based attitude tracking algorithm is presented. The star sensor is modeled as a nonlinear stochastic system with the state estimate providing the three degree-of-freedom attitude quaternion and angular velocity. The star positions in the star image are predicted and measured to estimate the optimal attitude. Furthermore, all the cataloged stars observed in the sensor field-of-view according the predicted image motion are accessed using a catalog partition table to speed up the tracking, called star mapping. Software simulation and night-sky experiment are performed to validate the efficiency and reliability of the proposed method. PMID:28825684
An Extended Kalman Filter-Based Attitude Tracking Algorithm for Star Sensors.
Li, Jian; Wei, Xinguo; Zhang, Guangjun
2017-08-21
Efficiency and reliability are key issues when a star sensor operates in tracking mode. In the case of high attitude dynamics, the performance of existing attitude tracking algorithms degenerates rapidly. In this paper an extended Kalman filtering-based attitude tracking algorithm is presented. The star sensor is modeled as a nonlinear stochastic system with the state estimate providing the three degree-of-freedom attitude quaternion and angular velocity. The star positions in the star image are predicted and measured to estimate the optimal attitude. Furthermore, all the cataloged stars observed in the sensor field-of-view according the predicted image motion are accessed using a catalog partition table to speed up the tracking, called star mapping. Software simulation and night-sky experiment are performed to validate the efficiency and reliability of the proposed method.
Visual object tracking by correlation filters and online learning
NASA Astrophysics Data System (ADS)
Zhang, Xin; Xia, Gui-Song; Lu, Qikai; Shen, Weiming; Zhang, Liangpei
2018-06-01
Due to the complexity of background scenarios and the variation of target appearance, it is difficult to achieve high accuracy and fast speed for object tracking. Currently, correlation filters based trackers (CFTs) show promising performance in object tracking. The CFTs estimate the target's position by correlation filters with different kinds of features. However, most of CFTs can hardly re-detect the target in the case of long-term tracking drifts. In this paper, a feature integration object tracker named correlation filters and online learning (CFOL) is proposed. CFOL estimates the target's position and its corresponding correlation score using the same discriminative correlation filter with multi-features. To reduce tracking drifts, a new sampling and updating strategy for online learning is proposed. Experiments conducted on 51 image sequences demonstrate that the proposed algorithm is superior to the state-of-the-art approaches.
Yaghoobi Ershadi, Nastaran
2017-01-01
Traffic surveillance systems are interesting to many researchers to improve the traffic control and reduce the risk caused by accidents. In this area, many published works are only concerned about vehicle detection in normal conditions. The camera may vibrate due to wind or bridge movement. Detection and tracking of vehicles is a very difficult task when we have bad weather conditions in winter (snowy, rainy, windy, etc.), dusty weather in arid and semi-arid regions, at night, etc. Also, it is very important to consider speed of vehicles in the complicated weather condition. In this paper, we improved our method to track and count vehicles in dusty weather with vibrating camera. For this purpose, we used a background subtraction based strategy mixed with an extra processing to segment vehicles. In this paper, the extra processing included the analysis of the headlight size, location, and area. In our work, tracking was done between consecutive frames via a generalized particle filter to detect the vehicle and pair the headlights using the connected component analysis. So, vehicle counting was performed based on the pairing result, with Centroid of each blob we calculated distance between two frames by simple formula and hence dividing it by the time between two frames obtained from the video. Our proposed method was tested on several video surveillance records in different conditions such as dusty or foggy weather, vibrating camera, and in roads with medium-level traffic volumes. The results showed that the new proposed method performed better than our previously published method and other methods, including the Kalman filter or Gaussian model, in different traffic conditions. PMID:29261719
Yaghoobi Ershadi, Nastaran
2017-01-01
Traffic surveillance systems are interesting to many researchers to improve the traffic control and reduce the risk caused by accidents. In this area, many published works are only concerned about vehicle detection in normal conditions. The camera may vibrate due to wind or bridge movement. Detection and tracking of vehicles is a very difficult task when we have bad weather conditions in winter (snowy, rainy, windy, etc.), dusty weather in arid and semi-arid regions, at night, etc. Also, it is very important to consider speed of vehicles in the complicated weather condition. In this paper, we improved our method to track and count vehicles in dusty weather with vibrating camera. For this purpose, we used a background subtraction based strategy mixed with an extra processing to segment vehicles. In this paper, the extra processing included the analysis of the headlight size, location, and area. In our work, tracking was done between consecutive frames via a generalized particle filter to detect the vehicle and pair the headlights using the connected component analysis. So, vehicle counting was performed based on the pairing result, with Centroid of each blob we calculated distance between two frames by simple formula and hence dividing it by the time between two frames obtained from the video. Our proposed method was tested on several video surveillance records in different conditions such as dusty or foggy weather, vibrating camera, and in roads with medium-level traffic volumes. The results showed that the new proposed method performed better than our previously published method and other methods, including the Kalman filter or Gaussian model, in different traffic conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barrera, M. T., E-mail: mariate9590@gmail.com; Barros, H.; Pino, F.
2015-07-23
LINAC VARIAN 2100 is where energetic electrons produce Bremsstrahlung radiation, with energies above the nucleon binding energy (E≈5.5MeV). This radiation induce (γ,n) and (e,e’n) reactions mainly in the natural tungsten target material (its total photoneutron cross section is about 4000 mb in a energy range from 9-17 MeV). These reactions may occur also in other components of the system (e.g. multi leaf collimator). During radiation treatment the human body may receive an additional dose inside and outside the treated volume produced by the mentioned nuclear reactions. We measured the neutron density at the treatment table using nuclear track detectors (PADC-NTD). Thesemore » covered by a boron-converter are employed, including a cadmium filter, to determine the ratio between two groups of neutron energy, i.e. thermal and epithermal. The PADC-NTD detectors were exposed to the radiation field at the iso-center during regular operation of the accelerator. Neutron are determined indirectly by the converting reaction {sup 10}B(n,α){sup 7}Li the emerging charged particle leave their kinetic energy in the PADC forming a latent nuclear track, enlarged by chemical etching (6N, NaOH, 70°C). Track density provides information on the neutron density through calibration coefficient (∼1.6 10{sup 4} neutrons /track) obtained by a californium source. We report the estimation of the thermal and epithermal neutron field and its gradient for photoneutrons produced in radiotherapy treatments with 18 MV linear accelerators. It was obsered that photoneutron production have higher rate at the iso-center.« less
Using GIS to Estimate Lake Volume from Limited Data
Estimates of lake volume are necessary for estimating residence time or modeling pollutants. Modern GIS methods for calculating lake volume improve upon more dated technologies (e.g. planimeters) and do not require potentially inaccurate assumptions (e.g. volume of a frustum of ...
Information management in the emergency department.
Taylor, Todd B
2004-02-01
Information system planning for the ED is complex and new to emergency medicine, despite being used in other industries for many years. It has been estimated that less than 15% of EDs have comprehensive EDIS currently in place. The manner in which administration is approached in large part determines the success in obtaining appropriate institutional support for an EDIS. Active physician and nurse involvement is essential in the process if the new system is to be accepted at the user level. In the ED, large volumes of information are collected, collated,interpreted, and acted on immediately. Effective information management therefore is key to the successful operation of any ED. Although computerized information systems have tremendous potential for improving information management, such systems are often underused or implemented in such a way that they increase the workload on caregivers and staff. This is counter productive and should be avoided. In developing and implementing EDIS one should be careful not to automate poorly designed manual processes. Examples are ED tracking systems that require staff to manually relocate patients in the system. This task probably is completed only when the ED volume is low and "worked around" when the department is busy. Information from such a system is, therefore, flawed; at best useless and at worst counter productive. Alternatively, systems are available that can track patients automatically through the ED by way of infrared sensors similar to those used in baggage-tracking systems that have been in place in airports for years. In the automated (computerized) ED, we must have zero-fault-tolerant,enterprise-wide, hospital information networked systems that prevent unnecessary duplication of tasks, assist in tracking and entering data, and ultimately help analyze the information on a minute-to-minute basis. Such systems only reach their potential when they are fully integrated, including legacy systems, rather than stand alone proprietary EDIS. Further,a modular approach in which individual components are connected to a flexible computer backbone is ideal.Finally, good clinical content is key to virtually every aspect of the EDIS. Much of this content is yet to be developed and what is available still needs to be adapted to the EDIS environment. Daunting as it may be, an EDIS implementation properly accomplished results in better patient care, improved staff productivity, and a satisfying work environment (Box 3).
NASA Technical Reports Server (NTRS)
Rumerman, Judy A.
2000-01-01
This sixth volume of the NASA Historical Data Book is a continuation of those earlier efforts. This fundamental reference tool presents information, much of it statistical, documenting the development of several critical areas of NASA responsibility for the period between 1979 and 1988. This volume includes detailed information on the space applications effort, the development and operation of aeronautics and space research and technology programs, tracking and data acquisition/space operations, commercial programs, facilities and installations, personnel, and finances and procurement during this era. Special thanks are owed to the student research assistants who gathered and input much of the tabular material-a particularly tedious undertaking. There are numerous people at NASA associated with historical study, technical information, and the mechanics of publishing who helped in myriad ways in the preparation of this historical data book.
IUS/TUG orbital operations and mission support study. Volume 2: Interim upper stage operations
NASA Technical Reports Server (NTRS)
1975-01-01
Background data and study results are presented for the interim upper stage (IUS) operations phase of the IUS/tug orbital operations study. The study was conducted to develop IUS operational concepts and an IUS baseline operations plan, and to provide cost estimates for IUS operations. The approach used was to compile and evaluate baseline concepts, definitions, and system, and to use that data as a basis for the IUS operations phase definition, analysis, and costing analysis. Both expendable and reusable IUS configurations were analyzed and two autonomy levels were specified for each configuration. Topics discussed include on-orbit operations and interfaces with the orbiter, the tracking and data relay satellites and ground station support capability analysis, and flight control center sizing to support the IUS operations.
Photogrammetry and Laser Imagery Tests for Tank Waste Volume Estimates: Summary Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Field, Jim G.
2013-03-27
Feasibility tests were conducted using photogrammetry and laser technologies to estimate the volume of waste in a tank. These technologies were compared with video Camera/CAD Modeling System (CCMS) estimates; the current method used for post-retrieval waste volume estimates. This report summarizes test results and presents recommendations for further development and deployment of technologies to provide more accurate and faster waste volume estimates in support of tank retrieval and closure.
James, Pam; Bebee, Patty; Beekman, Linda; Browning, David; Innes, Mathew; Kain, Jeannie; Royce-Westcott, Theresa; Waldinger, Marcy
2011-11-01
Quantifying data management and regulatory workload for clinical research is a difficult task that would benefit from a robust tool to assess and allocate effort. As in most clinical research environments, The University of Michigan Comprehensive Cancer Center (UMCCC) Clinical Trials Office (CTO) struggled to effectively allocate data management and regulatory time with frequently inaccurate estimates of how much time was required to complete the specific tasks performed by each role. In a dynamic clinical research environment in which volume and intensity of work ebbs and flows, determining requisite effort to meet study objectives was challenging. In addition, a data-driven understanding of how much staff time was required to complete a clinical trial was desired to ensure accurate trial budget development and effective cost recovery. Accordingly, the UMCCC CTO developed and implemented a Web-based effort-tracking application with the goal of determining the true costs of data management and regulatory staff effort in clinical trials. This tool was developed, implemented, and refined over a 3-year period. This article describes the process improvement and subsequent leveling of workload within data management and regulatory that enhanced the efficiency of UMCCC's clinical trials operation.
Mapping Error in Southern Ocean Transport Computed from Satellite Altimetry and Argo
NASA Astrophysics Data System (ADS)
Kosempa, M.; Chambers, D. P.
2016-02-01
Argo profiling floats afford basin-scale coverage of the Southern Ocean since 2005. When density estimates from Argo are combined with surface geostrophic currents derived from satellite altimetry, one can estimate integrated geostrophic transport above 2000 dbar [e.g., Kosempa and Chambers, JGR, 2014]. However, the interpolation techniques relied upon to generate mapped data from Argo and altimetry will impart a mapping error. We quantify this mapping error by sampling the high-resolution Southern Ocean State Estimate (SOSE) at the locations of Argo floats and Jason-1, and -2 altimeter ground tracks, then create gridded products using the same optimal interpolation algorithms used for the Argo/altimetry gridded products. We combine these surface and subsurface grids to compare the sampled-then-interpolated transport grids to those from the original SOSE data in an effort to quantify the uncertainty in volume transport integrated across the Antarctic Circumpolar Current (ACC). This uncertainty is then used to answer two fundamental questions: 1) What is the minimum linear trend that can be observed in ACC transport given the present length of the instrument record? 2) How long must the instrument record be to observe a trend with an accuracy of 0.1 Sv/year?
Ultra-Wideband Time-Difference-of-Arrival High Resolution 3D Proximity Tracking System
NASA Technical Reports Server (NTRS)
Ni, Jianjun; Arndt, Dickey; Ngo, Phong; Phan, Chau; Dekome, Kent; Dusl, John
2010-01-01
This paper describes a research and development effort for a prototype ultra-wideband (UWB) tracking system that is currently under development at NASA Johnson Space Center (JSC). The system is being studied for use in tracking of lunar./Mars rovers and astronauts during early exploration missions when satellite navigation systems are not available. U IATB impulse radio (UWB-IR) technology is exploited in the design and implementation of the prototype location and tracking system. A three-dimensional (3D) proximity tracking prototype design using commercially available UWB products is proposed to implement the Time-Difference- Of-Arrival (TDOA) tracking methodology in this research effort. The TDOA tracking algorithm is utilized for location estimation in the prototype system, not only to exploit the precise time resolution possible with UWB signals, but also to eliminate the need for synchronization between the transmitter and the receiver. Simulations show that the TDOA algorithm can achieve the fine tracking resolution with low noise TDOA estimates for close-in tracking. Field tests demonstrated that this prototype UWB TDOA High Resolution 3D Proximity Tracking System is feasible for providing positioning-awareness information in a 3D space to a robotic control system. This 3D tracking system is developed for a robotic control system in a facility called "Moonyard" at Honeywell Defense & System in Arizona under a Space Act Agreement.
R.B. Ferguson; V. Clark Baldwin
1995-01-01
Estimating tree and stand volume in mature plantations is time consuming, involving much manpower and equipment; however, several sampling and volume-prediction techniques are available. This study showed that a well-constructed, volume-equation method yields estimates comparable to those of the often more time-consuming, height-accumulation method, even though the...
A Spatio-Temporally Explicit Random Encounter Model for Large-Scale Population Surveys
Jousimo, Jussi; Ovaskainen, Otso
2016-01-01
Random encounter models can be used to estimate population abundance from indirect data collected by non-invasive sampling methods, such as track counts or camera-trap data. The classical Formozov–Malyshev–Pereleshin (FMP) estimator converts track counts into an estimate of mean population density, assuming that data on the daily movement distances of the animals are available. We utilize generalized linear models with spatio-temporal error structures to extend the FMP estimator into a flexible Bayesian modelling approach that estimates not only total population size, but also spatio-temporal variation in population density. We also introduce a weighting scheme to estimate density on habitats that are not covered by survey transects, assuming that movement data on a subset of individuals is available. We test the performance of spatio-temporal and temporal approaches by a simulation study mimicking the Finnish winter track count survey. The results illustrate how the spatio-temporal modelling approach is able to borrow information from observations made on neighboring locations and times when estimating population density, and that spatio-temporal and temporal smoothing models can provide improved estimates of total population size compared to the FMP method. PMID:27611683
NASA Astrophysics Data System (ADS)
Meng, Deyuan; Tao, Guoliang; Liu, Hao; Zhu, Xiaocong
2014-07-01
Friction compensation is particularly important for motion trajectory tracking control of pneumatic cylinders at low speed movement. However, most of the existing model-based friction compensation schemes use simple classical models, which are not enough to address applications with high-accuracy position requirements. Furthermore, the friction force in the cylinder is time-varying, and there exist rather severe unmodelled dynamics and unknown disturbances in the pneumatic system. To deal with these problems effectively, an adaptive robust controller with LuGre model-based dynamic friction compensation is constructed. The proposed controller employs on-line recursive least squares estimation (RLSE) to reduce the extent of parametric uncertainties, and utilizes the sliding mode control method to attenuate the effects of parameter estimation errors, unmodelled dynamics and disturbances. In addition, in order to realize LuGre model-based friction compensation, the modified dual-observer structure for estimating immeasurable friction internal state is developed. Therefore, a prescribed motion tracking transient performance and final tracking accuracy can be guaranteed. Since the system model uncertainties are unmatched, the recursive backstepping design technology is applied. In order to solve the conflicts between the sliding mode control design and the adaptive control design, the projection mapping is used to condition the RLSE algorithm so that the parameter estimates are kept within a known bounded convex set. Finally, the proposed controller is tested for tracking sinusoidal trajectories and smooth square trajectory under different loads and sudden disturbance. The testing results demonstrate that the achievable performance of the proposed controller is excellent and is much better than most other studies in literature. Especially when a 0.5 Hz sinusoidal trajectory is tracked, the maximum tracking error is 0.96 mm and the average tracking error is 0.45 mm. This paper constructs an adaptive robust controller which can compensate the friction force in the cylinder.
Preoperative TRAM free flap volume estimation for breast reconstruction in lean patients.
Minn, Kyung Won; Hong, Ki Yong; Lee, Sang Woo
2010-04-01
To obtain pleasing symmetry in breast reconstruction with transverse rectus abdominis myocutaneous (TRAM) free flap, a large amount of abdominal flap is elevated and remnant tissue is trimmed in most cases. However, elevation of abundant abdominal flap can cause excessive tension in donor site closure and increase the possibility of hypertrophic scarring especially in lean patients. The TRAM flap was divided into 4 zones in routine manner; the depth and dimension of the 4 zones were obtained using ultrasound and AutoCAD (Autodesk Inc., San Rafael, CA), respectively. The acquired numbers were then multiplied to obtain an estimate of volume of each zone and the each zone volume was added. To confirm the relation between the estimated volume and the actual volume, authors compared intraoperative actual TRAM flap volumes with preoperative estimated volumes in 30 consecutive TRAM free flap breast reconstructions. The estimated volumes and the actual elevated volumes of flap were found to be correlated by regression analysis (r = 0.9258, P < 0.01). According to this result, we could confirm the reliability of the preoperative volume estimation using our method. Afterward, the authors applied this method to 7 lean patients by estimation and revision of the design and obtained symmetric results with minimal donor site morbidity. Preoperative estimation of TRAM flap volume with ultrasound and AutoCAD (Autodesk Inc.) allow the authors to attain the precise volume desired for elevation. This method provides advantages in terms of minimal flap trimming, easier closure of donor sites, reduced scar widening and symmetry, especially in lean patients.
3D Imaging and Automated Ice Bottom Tracking of Canadian Arctic Archipelago Ice Sounding Data
NASA Astrophysics Data System (ADS)
Paden, J. D.; Xu, M.; Sprick, J.; Athinarapu, S.; Crandall, D.; Burgess, D. O.; Sharp, M. J.; Fox, G. C.; Leuschen, C.; Stumpf, T. M.
2016-12-01
The basal topography of the Canadian Arctic Archipelago ice caps is unknown for a number of the glaciers which drain the ice caps. The basal topography is needed for calculating present sea level contribution using the surface mass balance and discharge method and to understand future sea level contributions using ice flow model studies. During the NASA Operation IceBridge 2014 arctic campaign, the Multichannel Coherent Radar Depth Sounder (MCoRDS) used a three transmit beam setting (left beam, nadir beam, right beam) to illuminate a wide swath across the ice glacier in a single pass during three flights over the archipelago. In post processing we have used a combination of 3D imaging methods to produce images for each of the three beams which are then merged to produce a single digitally formed wide swath beam. Because of the high volume of data produced by 3D imaging, manual tracking of the ice bottom is impractical on a large scale. To solve this problem, we propose an automated technique for extracting ice bottom surfaces by viewing the task as an inference problem on a probabilistic graphical model. We first estimate layer boundaries to generate a seed surface, and then incorporate additional sources of evidence, such as ice masks, surface digital elevation models, and feedback from human users, to refine the surface in a discrete energy minimization formulation. We investigate the performance of the imaging and tracking algorithms using flight crossovers since crossing lines should produce consistent maps of the terrain beneath the ice surface and compare manually tracked "ground truth" to the automated tracking algorithms. We found the swath width at the nominal flight altitude of 1000 m to be approximately 3 km. Since many of the glaciers in the archipelago are narrower than this, the radar imaging, in these instances, was able to measure the full glacier cavity in a single pass.
Simultaneous tumor and surrogate motion tracking with dynamic MRI for radiation therapy planning
NASA Astrophysics Data System (ADS)
Park, Seyoun; Farah, Rana; Shea, Steven M.; Tryggestad, Erik; Hales, Russell; Lee, Junghoon
2018-01-01
Respiration-induced tumor motion is a major obstacle for achieving high-precision radiotherapy of cancers in the thoracic and abdominal regions. Surrogate-based estimation and tracking methods are commonly used in radiotherapy, but with limited understanding of quantified correlation to tumor motion. In this study, we propose a method to simultaneously track the lung tumor and external surrogates to evaluate their spatial correlation in a quantitative way using dynamic MRI, which allows real-time acquisition without ionizing radiation exposure. To capture the lung and whole tumor, four MRI-compatible fiducials are placed on the patient’s chest and upper abdomen. Two different types of acquisitions are performed in the sagittal orientation including multi-slice 2D cine MRIs to reconstruct 4D-MRI and two-slice 2D cine MRIs to simultaneously track the tumor and fiducials. A phase-binned 4D-MRI is first reconstructed from multi-slice MR images using body area as a respiratory surrogate and groupwise registration. The 4D-MRI provides 3D template volumes for different breathing phases. 3D tumor position is calculated by 3D-2D template matching in which 3D tumor templates in the 4D-MRI reconstruction and the 2D cine MRIs from the two-slice tracking dataset are registered. 3D trajectories of the external surrogates are derived via matching a 3D geometrical model of the fiducials to their segmentations on the 2D cine MRIs. We tested our method on ten lung cancer patients. Using a correlation analysis, the 3D tumor trajectory demonstrates a noticeable phase mismatch and significant cycle-to-cycle motion variation, while the external surrogate was not sensitive enough to capture such variations. Additionally, there was significant phase mismatch between surrogate signals obtained from the fiducials at different locations.
Ma, Chi; Varghese, Tomy
2012-04-01
Accurate cardiac deformation analysis for cardiac displacement and strain imaging over time requires Lagrangian description of deformation of myocardial tissue structures. Failure to couple the estimated displacement and strain information with the correct myocardial tissue structures will lead to erroneous result in the displacement and strain distribution over time. Lagrangian based tracking in this paper divides the tissue structure into a fixed number of pixels whose deformation is tracked over the cardiac cycle. An algorithm that utilizes a polar-grid generated between the estimated endocardial and epicardial contours for cardiac short axis images is proposed to ensure Lagrangian description of the pixels. Displacement estimates from consecutive radiofrequency frames were then mapped onto the polar grid to obtain a distribution of the actual displacement that is mapped to the polar grid over time. A finite element based canine heart model coupled with an ultrasound simulation program was used to verify this approach. Segmental analysis of the accumulated displacement and strain over a cardiac cycle demonstrate excellent agreement between the ideal result obtained directly from the finite element model and our Lagrangian approach to strain estimation. Traditional Eulerian based estimation results, on the other hand, show significant deviation from the ideal result. An in vivo comparison of the displacement and strain estimated using parasternal short axis views is also presented. Lagrangian displacement tracking using a polar grid provides accurate tracking of myocardial deformation demonstrated using both finite element and in vivo radiofrequency data acquired on a volunteer. In addition to the cardiac application, this approach can also be utilized for transverse scans of arteries, where a polar grid can be generated between the contours delineating the outer and inner wall of the vessels from the blood flowing though the vessel.
Feghali, Rosario; Mitiche, Amar
2004-11-01
The purpose of this study is to investigate a method of tracking moving objects with a moving camera. This method estimates simultaneously the motion induced by camera movement. The problem is formulated as a Bayesian motion-based partitioning problem in the spatiotemporal domain of the image quence. An energy functional is derived from the Bayesian formulation. The Euler-Lagrange descent equations determine imultaneously an estimate of the image motion field induced by camera motion and an estimate of the spatiotemporal motion undary surface. The Euler-Lagrange equation corresponding to the surface is expressed as a level-set partial differential equation for topology independence and numerically stable implementation. The method can be initialized simply and can track multiple objects with nonsimultaneous motions. Velocities on motion boundaries can be estimated from geometrical properties of the motion boundary. Several examples of experimental verification are given using synthetic and real-image sequences.
NASA Technical Reports Server (NTRS)
Vos, Gordon A.; Fink, Patrick; Ngo, Phong H.; Morency, Richard; Simon, Cory; Williams, Robert E.; Perez, Lance C.
2015-01-01
Space Human Factors and Habitability (SHFH) Element within the Human Research Program (HRP), in collaboration with the Behavioral Health and Performance (BHP) Element, is conducting research regarding Net Habitable Volume (NHV), the internal volume within a spacecraft or habitat that is available to crew for required activities, as well as layout and accommodations within that volume. NASA is looking for innovative methods to unobtrusively collect NHV data without impacting crew time. Data required includes metrics such as location and orientation of crew, volume used to complete tasks, internal translation paths, flow of work, and task completion times. In less constrained environments methods for collecting such data exist yet many are obtrusive and require significant post-processing. Example technologies used in terrestrial settings include infrared (IR) retro-reflective marker based motion capture, GPS sensor tracking, inertial tracking, and multiple camera filmography. However due to constraints of space operations many such methods are infeasible, such as inertial tracking systems which typically rely upon a gravity vector to normalize sensor readings, and traditional IR systems which are large and require extensive calibration. However multiple technologies have not yet been applied to space operations for these explicit purposes. Two of these include 3-Dimensional Radio Frequency Identification Real-Time Localization Systems (3D RFID-RTLS) and depth imaging systems which allow for 3D motion capture and volumetric scanning (such as those using IR-depth cameras like the Microsoft Kinect or Light Detection and Ranging / Light-Radar systems, referred to as LIDAR).
Analysis of a spatial tracking subsystem for optical communications
NASA Technical Reports Server (NTRS)
Win, Moe Z.; Chen, CHIEN-C.
1992-01-01
Spatial tracking plays a very critical role in designing optical communication systems because of the small angular beamwidth associated with the optical signal. One possible solution for spatial tracking is to use a nutating mirror which dithers the incoming beam at a rate much higher than the mechanical disturbances. A power detector then senses the change in detected power as the signal is reflected off the nutating mirror. This signal is then correlated with the nutator driver signals to obtain estimates of the azimuth and elevation tracking signals to control the fast scanning mirrors. A theoretical analysis is performed for a spatial tracking system using a nutator disturbed by shot noise and mechanical vibrations. Contributions of shot noise and mechanical vibrations to the total tracking error variance are derived. Given the vibration spectrum and the expected signal power, there exists an optimal amplitude for the nutation which optimizes the receiver performance. The expected performance of a nutator based system is estimated based on the choice of nutation amplitude.
NASA Technical Reports Server (NTRS)
Cucinotta, F. A.; Nikjoo, H.; Goodhead, D. T.; Wilson, J. W. (Principal Investigator)
1998-01-01
It is a common practice to estimate the number of particle-track traversals per cell or cell nucleus as the product of the ion's linear energy transfer (LET) and cell area. This practice ignores the effects of track width due to the lateral extension of delta rays. We make estimates of the number of particle-track traversals per cell, which includes the effects of delta rays using radial cutoffs in the ionization density about an ion's track of 1 mGy and 1 cGy. Calculations for laboratory and space radiation exposures are discussed, and show that the LET approximation provides a large underestimate of the actual number of particle-track traversals per cell from high-charge and energy (HZE) ions. In light of the current interest in the mechanisms of radiation action, including signal transduction and cytoplasmic damage, these results should be of interest for radiobiology studies with HZE ions.
Long-Term Tracking of a Specific Vehicle Using Airborne Optical Camera Systems
NASA Astrophysics Data System (ADS)
Kurz, F.; Rosenbaum, D.; Runge, H.; Cerra, D.; Mattyus, G.; Reinartz, P.
2016-06-01
In this paper we present two low cost, airborne sensor systems capable of long-term vehicle tracking. Based on the properties of the sensors, a method for automatic real-time, long-term tracking of individual vehicles is presented. This combines the detection and tracking of the vehicle in low frame rate image sequences and applies the lagged Cell Transmission Model (CTM) to handle longer tracking outages occurring in complex traffic situations, e.g. tunnels. The CTM model uses the traffic conditions in the proximities of the target vehicle and estimates its motion to predict the position where it reappears. The method is validated on an airborne image sequence acquired from a helicopter. Several reference vehicles are tracked within a range of 500m in a complex urban traffic situation. An artificial tracking outage of 240m is simulated, which is handled by the CTM. For this, all the vehicles in the close proximity are automatically detected and tracked to estimate the basic density-flow relations of the CTM model. Finally, the real and simulated trajectories of the reference vehicles in the outage are compared showing good correspondence also in congested traffic situations.
NASA Astrophysics Data System (ADS)
van Gent, P. L.; Schrijer, F. F. J.; van Oudheusden, B. W.
2018-04-01
Pseudo-tracking refers to the construction of imaginary particle paths from PIV velocity fields and the subsequent estimation of the particle (material) acceleration. In view of the variety of existing and possible alternative ways to perform the pseudo-tracking method, it is not straightforward to select a suitable combination of numerical procedures for its implementation. To address this situation, this paper extends the theoretical framework for the approach. The developed theory is verified by applying various implementations of pseudo-tracking to a simulated PIV experiment. The findings of the investigations allow us to formulate the following insights and practical recommendations: (1) the velocity errors along the imaginary particle track are primarily a function of velocity measurement errors and spatial velocity gradients; (2) the particle path may best be calculated with second-order accurate numerical procedures while ensuring that the CFL condition is met; (3) least-square fitting of a first-order polynomial is a suitable method to estimate the material acceleration from the track; and (4) a suitable track length may be selected on the basis of the variation in material acceleration with track length.
Gamma-Ray Imaging for Explosives Detection
NASA Technical Reports Server (NTRS)
deNolfo, G. A.; Hunter, S. D.; Barbier, L. M.; Link, J. T.; Son, S.; Floyd, S. R.; Guardala, N.; Skopec, M.; Stark, B.
2008-01-01
We describe a gamma-ray imaging camera (GIC) for active interrogation of explosives being developed by NASA/GSFC and NSWCICarderock. The GIC is based on the Three-dimensional Track Imager (3-DTI) technology developed at GSFC for gamma-ray astrophysics. The 3-DTI, a large volume time-projection chamber, provides accurate, approx.0.4 mm resolution, 3-D tracking of charged particles. The incident direction of gamma rays, E, > 6 MeV, are reconstructed from the momenta and energies of the electron-positron pair resulting from interactions in the 3-DTI volume. The optimization of the 3-DTI technology for this specific application and the performance of the GIC from laboratory tests is presented.
Evolution of Mobil`s methods to evaluate exploration and producing opportunities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaynor, C.B.; Cook, D.M. Jr.
1996-08-01
Over the past decade, Mobil has changed significantly in size, structure and focus to improve profitability. Concurrently, work processes and methodologies have been modified to improve resource utilization and opportunity selection. The key imperative has been recognition of the full range of hydrocarbon volume uncertainty, its risk and value. Exploration has focussed on increasing success through improved geotechnical estimates and demonstrating value addition. For Producing, the important tasks: (1) A centralized Exploration and Producing team was formed to help ensure an integrated, consistent worldwide approach to prospect and field assessments. Monte Carlo simulation was instituted to recognize probability-weighted ranges ofmore » possible outcomes for prospects and fields, and hydrocarbon volume category definitions were standardized. (2) Exploration instituted a global Prospect Inventory, tracking wildcat predictions vs. results. Performance analyses led to initiatives to improve the quality and consistency of assessments. Process improvement efforts included the use of multidisciplinary teams and peer reviews. Continued overestimates of hydrocarbon volumes prompted methodology changes such as the use of {open_quotes}reality checks{close_quotes} and log-normal distributions. The communication of value predictions and additions became paramount. (3) Producing now recognizes the need for Exploration`s commercial discoveries and new Producing ventures, notwithstanding the associated risk. Multi-disciplinary teams of engineers and geoscientists work on post-discovery assessments to optimize field development and maximize the value of opportunities. Mobil now integrates volume and risk assessment with correlative future capital investment programs to make proactive strategic choices to maximize shareholder value.« less
Accurate State Estimation and Tracking of a Non-Cooperative Target Vehicle
NASA Technical Reports Server (NTRS)
Thienel, Julie K.; Sanner, Robert M.
2006-01-01
Autonomous space rendezvous scenarios require knowledge of the target vehicle state in order to safely dock with the chaser vehicle. Ideally, the target vehicle state information is derived from telemetered data, or with the use of known tracking points on the target vehicle. However, if the target vehicle is non-cooperative and does not have the ability to maintain attitude control, or transmit attitude knowledge, the docking becomes more challenging. This work presents a nonlinear approach for estimating the body rates of a non-cooperative target vehicle, and coupling this estimation to a tracking control scheme. The approach is tested with the robotic servicing mission concept for the Hubble Space Telescope (HST). Such a mission would not only require estimates of the HST attitude and rates, but also precision control to achieve the desired rate and maintain the orientation to successfully dock with HST.
NASA Technical Reports Server (NTRS)
Ray, Richard D.; Byrne, Deidre A.
2010-01-01
Seafloor pressure records, collected at 11 stations aligned along a single ground track of the Topex/Poseidon and Jason satellites, are analyzed for their tidal content. With very low background noise levels and approximately 27 months of high-quality records, tidal constituents can be estimated with unusually high precision. This includes many high-frequency lines up through the seventh-diurnal band. The station deployment provides a unique opportunity to compare with tides estimated from satellite altimetry, point by point along the satellite track, in a region of moderately high mesoscale variability. That variability can significantly corrupt altimeter-based tide estimates, even with 17 years of data. A method to improve the along-track altimeter estimates by correcting the data for nontidal variability is found to yield much better agreement with the bottom-pressure data. The technique should prove useful in certain demanding applications, such as altimetric studies of internal tides.
Maneuver Algorithm for Bearings-Only Target Tracking with Acceleration and Field of View Constraints
NASA Astrophysics Data System (ADS)
Roh, Heekun; Shim, Sang-Wook; Tahk, Min-Jea
2018-05-01
This paper proposes a maneuver algorithm for the agent performing target tracking with bearing angle information only. The goal of the agent is to estimate the target position and velocity based only on the bearing angle data. The methods of bearings-only target state estimation are outlined. The nature of bearings-only target tracking problem is then addressed. Based on the insight from above-mentioned properties, the maneuver algorithm for the agent is suggested. The proposed algorithm is composed of a nonlinear, hysteresis guidance law and the estimation accuracy assessment criteria based on the theory of Cramer-Rao bound. The proposed guidance law generates lateral acceleration command based on current field of view angle. The accuracy criteria supply the expected estimation variance, which acts as a terminal criterion for the proposed algorithm. The aforementioned algorithm is verified with a two-dimensional simulation.
A Novel Passive Tracking Scheme Exploiting Geometric and Intercept Theorems
Zhou, Biao; Sun, Chao; Ahn, Deockhyeon; Kim, Youngok
2018-01-01
Passive tracking aims to track targets without assistant devices, that is, device-free targets. Passive tracking based on Radio Frequency (RF) Tomography in wireless sensor networks has recently been addressed as an emerging field. The passive tracking scheme using geometric theorems (GTs) is one of the most popular RF Tomography schemes, because the GT-based method can effectively mitigate the demand for a high density of wireless nodes. In the GT-based tracking scheme, the tracking scenario is considered as a two-dimensional geometric topology and then geometric theorems are applied to estimate crossing points (CPs) of the device-free target on line-of-sight links (LOSLs), which reveal the target’s trajectory information in a discrete form. In this paper, we review existing GT-based tracking schemes, and then propose a novel passive tracking scheme by exploiting the Intercept Theorem (IT). To create an IT-based CP estimation scheme available in the noisy non-parallel LOSL situation, we develop the equal-ratio traverse (ERT) method. Finally, we analyze properties of three GT-based tracking algorithms and the performance of these schemes is evaluated experimentally under various trajectories, node densities, and noisy topologies. Analysis of experimental results shows that tracking schemes exploiting geometric theorems can achieve remarkable positioning accuracy even under rather a low density of wireless nodes. Moreover, the proposed IT scheme can provide generally finer tracking accuracy under even lower node density and noisier topologies, in comparison to other schemes. PMID:29562621
Tuck, L.K.; Pearson, Daniel K.; Cannon, M.R.; Dutton, DeAnn M.
2013-01-01
The Tongue River Member of the Tertiary Fort Union Formation is the primary source of groundwater in the Northern Cheyenne Indian Reservation in southeastern Montana. Coal beds within this formation generally contain the most laterally extensive aquifers in much of the reservation. The U.S. Geological Survey, in cooperation with the Northern Cheyenne Tribe, conducted a study to estimate the volume of water in five coal aquifers. This report presents estimates of the volume of water in five coal aquifers in the eastern and southern parts of the Northern Cheyenne Indian Reservation: the Canyon, Wall, Pawnee, Knobloch, and Flowers-Goodale coal beds in the Tongue River Member of the Tertiary Fort Union Formation. Only conservative estimates of the volume of water in these coal aquifers are presented. The volume of water in the Canyon coal was estimated to range from about 10,400 acre-feet (75 percent saturated) to 3,450 acre-feet (25 percent saturated). The volume of water in the Wall coal was estimated to range from about 14,200 acre-feet (100 percent saturated) to 3,560 acre-feet (25 percent saturated). The volume of water in the Pawnee coal was estimated to range from about 9,440 acre-feet (100 percent saturated) to 2,360 acre-feet (25 percent saturated). The volume of water in the Knobloch coal was estimated to range from about 38,700 acre-feet (100 percent saturated) to 9,680 acre-feet (25 percent saturated). The volume of water in the Flowers-Goodale coal was estimated to be about 35,800 acre-feet (100 percent saturated). Sufficient data are needed to accurately characterize coal-bed horizontal and vertical variability, which is highly complex both locally and regionally. Where data points are widely spaced, the reliability of estimates of the volume of coal beds is decreased. Additionally, reliable estimates of the volume of water in coal aquifers depend heavily on data about water levels and data about coal-aquifer characteristics. Because the data needed to define the volume of water were sparse, only conservative estimates of the volume of water in the five coal aquifers are presented in this report. These estimates need to be used with caution and mindfulness of the uncertainty associated with them.
Youth Attitude Tracking Study. Volume 2. Fall 1976.
1976-01-01
Advertising Copy Identification.......... . .......... ..... 15 Target Market Profile of :Reserve Components....... i5 Target Market Profile of Active...in the Tracking Areas to test such factors as -promotional materials, recruiting practices, and advertising strategy . A special feature included in the...8217 .. :~ . .’..;- .":, ,:,,.", . ’ .. €,. . . - .. " . " :" . . ". " . . .." ,"- .-- :-,, ". . ’ . -.-- . .: ’.-. :. -I MARKET FACTS " I age 15
20th Annual Systems Engineering Conference. Volume 1, Monday-Tuesday
2017-10-26
Environment will follow Mr. Thompson’s presentation with a presentation focusing on how ESOH Risk Management is an integral part of the RIO Management...office successes and failures in implementing the DoDI 5000.02 acquisition ESOH policy. HUMAN SYSTEMS INTEGRATION (HSI) Track Chair: Matthew...practices, process improvements, applications and approaches to program integration . INTEROPERABILITY/NET - CENTRIC OPERATIONS Track Chairs
Wittlich, F; Kohno, K; Mies, G; Norris, D G; Hoehn-Berlage, M
1995-01-01
NMR bolus track measurements were correlated with autoradiographically determined regional cerebral blood flow (rCBF). The NMR method is based on bolus infusion of the contrast agent gadolinium diethylenetriaminepentaacetate and high-speed T*2-sensitive NMR imaging. The first pass of the contrast agent through the image plane causes a transient decrease of the signal intensity. This time course of the signal intensity is transformed into relative concentrations of the contrast agent in each pixel. The mean transit time and relative blood flow and volume are calculated from such indicator dilution curves. We investigated whether this NMR technique correctly expresses the relative rCBF. The relative blood flow data, calculated from NMR bolus track experiments, and the absolute values of iodo[14C]antipyrine autoradiography were compared. A linear relationship was observed, indicating the proportionality of the transient NMR signal change with CBF. Excellent interindividual reproducibility of calibration constants is observed (r = 0.963). For a given NMR protocol, bolus track measurements calibrated with autoradiography after the experiment allow determination of absolute values for rCBF and regional blood volume. Images Fig. 2 Fig. 3 PMID:7892189
NASA Technical Reports Server (NTRS)
Long, W. C.
1988-01-01
The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed and analysis of the Communication and Tracking hardware, generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to the NASA FMEA/CIL baseline. A resolution of each discrepancy from the comparison is provided through additional analysis as required. This report documents the results of that comparison for the Orbiter Communication and Tracking hardware. The IOA product for the Communication and Tracking consisted of 1,108 failure mode worksheets that resulted in 298 critical items being identified. Comparison was made to the NASA baseline which consists of 697 FMEAs and 239 CIL items. The comparison determined if there were any results which had been found by IOA but were not in the NASA baseline. This comparison produced agreement on all but 407 FMEAs which caused differences in 294 CIL items. Volume 1 contains the subsystem description, assessment results, ground rules and assumptions, and some of the IOA worksheets.
A novel in vivo method for lung segment movement tracking
NASA Astrophysics Data System (ADS)
Leira, H. O.; Tangen, G. A.; Hofstad, E. F.; Langø, T.; Amundsen, T.
2012-02-01
Knowledge about lung movement in health and disease is sparse. Current evaluation methods, such as CT, MRI and external view have significant limitations. To study respiratory movement for image guided tumour diagnostics and respiratory physiology, we needed a method that overcomes these limitations. We fitted balloon catheters with electromagnetic sensors, and placed them in lung lobes of ventilated pigs. The sensors sensed their position at 40 Hz in an electromagnetic tracking field with a precision of ∼0.5 mm. The method was evaluated by recording sensor movement in different body positions and at different tidal volumes. No ‘gold standard’ exists for lung segment tracking, so our results were compared to ‘common knowledge’. The sensors were easily placed, showed no clinically relevant position drift and yielded sub-millimetre accuracy. Our measurements fit ‘common knowledge’, as increased ventilation volume increased respiratory movement, and the right lung moved significantly less in the right than the left lateral position. The novel method for tracking lung segment movements during respiration was easy to implement and yielded high spatial and temporal resolution, and the equipment parts are reusable. It is easy to implement as a research tool for lung physiology, navigated bronchoscopy and radiation therapy.
Estimation of feline renal volume using computed tomography and ultrasound.
Tyson, Reid; Logsdon, Stacy A; Werre, Stephen R; Daniel, Gregory B
2013-01-01
Renal volume estimation is an important parameter for clinical evaluation of kidneys and research applications. A time efficient, repeatable, and accurate method for volume estimation is required. The purpose of this study was to describe the accuracy of ultrasound and computed tomography (CT) for estimating feline renal volume. Standardized ultrasound and CT scans were acquired for kidneys of 12 cadaver cats, in situ. Ultrasound and CT multiplanar reconstructions were used to record renal length measurements that were then used to calculate volume using the prolate ellipsoid formula for volume estimation. In addition, CT studies were reconstructed at 1 mm, 5 mm, and 1 cm, and transferred to a workstation where the renal volume was calculated using the voxel count method (hand drawn regions of interest). The reference standard kidney volume was then determined ex vivo using water displacement with the Archimedes' principle. Ultrasound measurement of renal length accounted for approximately 87% of the variability in renal volume for the study population. The prolate ellipsoid formula exhibited proportional bias and underestimated renal volume by a median of 18.9%. Computed tomography volume estimates using the voxel count method with hand-traced regions of interest provided the most accurate results, with increasing accuracy for smaller voxel sizes in grossly normal kidneys (-10.1 to 0.6%). Findings from this study supported the use of CT and the voxel count method for estimating feline renal volume in future clinical and research studies. © 2012 Veterinary Radiology & Ultrasound.
Vicente J. Monleon
2009-01-01
Currently, Forest Inventory and Analysis estimation procedures use Smalian's formula to compute coarse woody debris (CWD) volume and assume that logs lie horizontally on the ground. In this paper, the impact of those assumptions on volume and biomass estimates is assessed using 7 years of Oregon's Phase 2 data. Estimates of log volume computed using Smalian...
Fröberg, Åsa; Mårtensson, Mattias; Larsson, Matilda; Janerot-Sjöberg, Birgitta; D'Hooge, Jan; Arndt, Anton
2016-10-01
Ultrasound speckle tracking offers a non-invasive way of studying strain in the free Achilles tendon where no anatomical landmarks are available for tracking. This provides new possibilities for studying injury mechanisms during sport activity and the effects of shoes, orthotic devices, and rehabilitation protocols on tendon biomechanics. To investigate the feasibility of using a commercial ultrasound speckle tracking algorithm for assessing strain in tendon tissue. A polyvinyl alcohol (PVA) phantom, three porcine tendons, and a human Achilles tendon were mounted in a materials testing machine and loaded to 4% peak strain. Ultrasound long-axis cine-loops of the samples were recorded. Speckle tracking analysis of axial strain was performed using a commercial speckle tracking software. Estimated strain was then compared to reference strain known from the materials testing machine. Two frame rates and two region of interest (ROI) sizes were evaluated. Best agreement between estimated strain and reference strain was found in the PVA phantom (absolute error in peak strain: 0.21 ± 0.08%). The absolute error in peak strain varied between 0.72 ± 0.65% and 10.64 ± 3.40% in the different tendon samples. Strain determined with a frame rate of 39.4 Hz had lower errors than 78.6 Hz as was the case with a 22 mm compared to an 11 mm ROI. Errors in peak strain estimation showed high variability between tendon samples and were large in relation to strain levels previously described in the Achilles tendon. © The Foundation Acta Radiologica 2016.
Local gravity disturbance estimation from multiple-high-single-low satellite-to-satellite tracking
NASA Technical Reports Server (NTRS)
Jekeli, Christopher
1989-01-01
The idea of satellite-to-satellite tracking in the high-low mode has received renewed attention in light of the uncertain future of NASA's proposed low-low mission, Geopotential Research Mission (GRM). The principal disadvantage with a high-low system is the increased time interval required to obtain global coverage since the intersatellite visibility is often obscured by Earth. The U.S. Air Force has begun to investigate high-low satellite-to-satellite tracking between the Global Positioning System (GPS) of satellites (high component) and NASA's Space Transportation System (STS), the shuttle (low component). Because the GPS satellites form, or will form, a constellation enabling continuous three-dimensional tracking of a low-altitude orbiter, there will be no data gaps due to lack of intervisibility. Furthermore, all three components of the gravitation vector are estimable at altitude, a given grid of which gives a stronger estimate of gravity on Earth's surface than a similar grid of line-of-sight gravitation components. The proposed Air Force mission is STAGE (Shuttle-GPS Tracking for Anomalous Gravitation Estimation) and is designed for local gravity field determinations since the shuttle will likely not achieve polar orbits. The motivation for STAGE was the feasibility to obtain reasonable accuracies with absolutely minimal cost. Instead of simulating drag-free orbits, STAGE uses direct measurements of the nongravitational forces obtained by an inertial package onboard the shuttle. The sort of accuracies that would be achievable from STAGE vis-a-vis other satellite tracking missions such as GRM and European Space Agency's POPSAT-GRM are analyzed.
NASA Astrophysics Data System (ADS)
Diefenbach, A. K.; Crider, J. G.; Schilling, S. P.; Dzurisin, D.
2007-12-01
We describe a low-cost application of digital photogrammetry using commercial grade software, an off-the-shelf digital camera, a laptop computer and oblique photographs to reconstruct volcanic dome morphology during the on-going eruption at Mount St. Helens, Washington. Renewed activity at Mount St. Helens provides a rare opportunity to devise and test new methods for better understanding and predicting volcanic events, because the new method can be validated against other observations on this well-instrumented volcano. Uncalibrated, oblique aerial photographs (snap shots) taken from a helicopter are the raw data. Twelve sets of overlapping digital images of the dome taken during 2004-2007 were used to produce digital elevation models (DEMs) from which dome height, eruption volume and extrusion rate can be derived. Analyses of the digital images were carried out using PhotoModeler software, which produces three dimensional coordinates of points identified in multiple photos. The steps involved include: (1) calibrating the digital camera using this software package, (2) establishing control points derived from existing DEMs, (3) identifying tie points located in each photo of any given model date, and (4) identifying points in pairs of photos to build a three dimensional model of the evolving dome at each photo date. Text files of three-dimensional points encompassing the dome at each date were imported into ArcGIS and three-dimensional models (triangulated irregular network or TINs) were generated. TINs were then converted to 2 m raster DEMs. The evolving morphology of the growing dome was modeled by comparison of successive DEMs. The volume of extruded lava visible in each DEM was calculated using the 1986 pre-eruption crater floor topography as a basal surface. Results were validated by comparing volume measurements derived from traditional aerophotogrammetric surveys run by the USGS Cascades Volcano Observatory. Our new "quick and cheap" technique yields estimates of eruptive volume consistently within 5% of the volumes estimated with traditional surveys. The end result of this project is a new technique that provides an inexpensive, rapid assessment tool for tracking lava dome growth or other topographic changes at restless volcanoes.
Worker, Amanda; Dima, Danai; Combes, Anna; Crum, William R; Streffer, Johannes; Einstein, Steven; Mehta, Mitul A; Barker, Gareth J; C R Williams, Steve; O'daly, Owen
2018-04-01
The hippocampal formation is a complex brain structure that is important in cognitive processes such as memory, mood, reward processing and other executive functions. Histological and neuroimaging studies have implicated the hippocampal region in neuropsychiatric disorders as well as in neurodegenerative diseases. This highly plastic limbic region is made up of several subregions that are believed to have different functional roles. Therefore, there is a growing interest in imaging the subregions of the hippocampal formation rather than modelling the hippocampus as a homogenous structure, driving the development of new automated analysis tools. Consequently, there is a pressing need to understand the stability of the measures derived from these new techniques. In this study, an automated hippocampal subregion segmentation pipeline, released as a developmental version of Freesurfer (v6.0), was applied to T1-weighted magnetic resonance imaging (MRI) scans of 22 healthy older participants, scanned on 3 separate occasions and a separate longitudinal dataset of 40 Alzheimer's disease (AD) patients. Test-retest reliability of hippocampal subregion volumes was assessed using the intra-class correlation coefficient (ICC), percentage volume difference and percentage volume overlap (Dice). Sensitivity of the regional estimates to longitudinal change was estimated using linear mixed effects (LME) modelling. The results show that out of the 24 hippocampal subregions, 20 had ICC scores of 0.9 or higher in both samples; these regions include the molecular layer, granule cell layer of the dentate gyrus, CA1, CA3 and the subiculum (ICC > 0.9), whilst the hippocampal fissure and fimbria had lower ICC scores (0.73-0.88). Furthermore, LME analysis of the independent AD dataset demonstrated sensitivity to group and individual differences in the rate of volume change over time in several hippocampal subregions (CA1, molecular layer, CA3, hippocampal tail, fissure and presubiculum). These results indicate that this automated segmentation method provides a robust method with which to measure hippocampal subregions, and may be useful in tracking disease progression and measuring the effects of pharmacological intervention. © 2018 Wiley Periodicals, Inc.
Analysis of railway track vibration
NASA Astrophysics Data System (ADS)
Ono, K.; Yamada, M.
1989-04-01
Analytical formulae are developed for estimating the amplitudes of the vibrations generated in railway tracks by wheels and rail discontinuities or by unevennesses on their surfaces. Rails are assumed to be supported elastically on concrete sleepers by resilient rail-pads inserted between them. The elasticities and the masses of track materials and those of the roadbed are also taken into consideration. It is shown that after an impulse is applied to the track, not only is a vibration with a comparatively low natural frequency generated, but also traveling waves with higher frequencies, and the latter propagate lengthwise along the track or downwards into the roadbed. With the assumption that the power spectral density of the unevennesses on the rail surface is in proportion to the third power of the wavelength, or to (wavenumber) -3, the amplitudes of the vibrations in railway tracks supported by rail-pads and roadbeds with various magnitudes of elastic constants are analyzed and the values for each one-third octave band are estimated. The velocity of the vibration takes on a maximum value for the band with a center frequency of 63 Hz, which corresponds to the resonant frequency of the system composed of the wheel and the track. As the frequency increases beyond this value, the velocity of the vibration takes on a second maximum value at a frequency of about 1000 Hz. These estimates are compared with the data obtained from field measurements and reasonably good correlations are found between them.
Kasabova, Boryana E; Holliday, Trenton W
2015-04-01
A new model for estimating human body surface area and body volume/mass from standard skeletal metrics is presented. This model is then tested against both 1) "independently estimated" body surface areas and "independently estimated" body volume/mass (both derived from anthropometric data) and 2) the cylindrical model of Ruff. The model is found to be more accurate in estimating both body surface area and body volume/mass than the cylindrical model, but it is more accurate in estimating body surface area than it is for estimating body volume/mass (as reflected by the standard error of the estimate when "independently estimated" surface area or volume/mass is regressed on estimates derived from the present model). Two practical applications of the model are tested. In the first test, the relative contribution of the limbs versus the trunk to the body's volume and surface area is compared between "heat-adapted" and "cold-adapted" populations. As expected, the "cold-adapted" group has significantly more of its body surface area and volume in its trunk than does the "heat-adapted" group. In the second test, we evaluate the effect of variation in bi-iliac breadth, elongated or foreshortened limbs, and differences in crural index on the body's surface area to volume ratio (SA:V). Results indicate that the effects of bi-iliac breadth on SA:V are substantial, while those of limb lengths and (especially) the crural index are minor, which suggests that factors other than surface area relative to volume are driving morphological variation and ecogeographical patterning in limb prorportions. © 2014 Wiley Periodicals, Inc.
Sequential bearings-only-tracking initiation with particle filtering method.
Liu, Bin; Hao, Chengpeng
2013-01-01
The tracking initiation problem is examined in the context of autonomous bearings-only-tracking (BOT) of a single appearing/disappearing target in the presence of clutter measurements. In general, this problem suffers from a combinatorial explosion in the number of potential tracks resulted from the uncertainty in the linkage between the target and the measurement (a.k.a the data association problem). In addition, the nonlinear measurements lead to a non-Gaussian posterior probability density function (pdf) in the optimal Bayesian sequential estimation framework. The consequence of this nonlinear/non-Gaussian context is the absence of a closed-form solution. This paper models the linkage uncertainty and the nonlinear/non-Gaussian estimation problem jointly with solid Bayesian formalism. A particle filtering (PF) algorithm is derived for estimating the model's parameters in a sequential manner. Numerical results show that the proposed solution provides a significant benefit over the most commonly used methods, IPDA and IMMPDA. The posterior Cramér-Rao bounds are also involved for performance evaluation.
Target Tracking Using SePDAF under Ambiguous Angles for Distributed Array Radar.
Long, Teng; Zhang, Honggang; Zeng, Tao; Chen, Xinliang; Liu, Quanhua; Zheng, Le
2016-09-09
Distributed array radar can improve radar detection capability and measurement accuracy. However, it will suffer cyclic ambiguity in its angle estimates according to the spatial Nyquist sampling theorem since the large sparse array is undersampling. Consequently, the state estimation accuracy and track validity probability degrades when the ambiguous angles are directly used for target tracking. This paper proposes a second probability data association filter (SePDAF)-based tracking method for distributed array radar. Firstly, the target motion model and radar measurement model is built. Secondly, the fusion result of each radar's estimation is employed to the extended Kalman filter (EKF) to finish the first filtering. Thirdly, taking this result as prior knowledge, and associating with the array-processed ambiguous angles, the SePDAF is applied to accomplish the second filtering, and then achieving a high accuracy and stable trajectory with relatively low computational complexity. Moreover, the azimuth filtering accuracy will be promoted dramatically and the position filtering accuracy will also improve. Finally, simulations illustrate the effectiveness of the proposed method.
Numerical simulation of a bubble rising in an environment consisting of Xanthan gum
NASA Astrophysics Data System (ADS)
Aguirre, Víctor A.; Castillo, Byron A.; Narvaez, Christian P.
2017-09-01
An improved numerical algorithm for front tracking method is developed to simulate a bubble rising in viscous liquid. In the new numerical algorithm, volume correction is introduced to conserve the bubble volume while tracking the bubble's rising and deforming. Volume flux conservation is adopted to solve the Navier-Stokes equation for fluid flow using finite volume method. Non-Newtonian fluids are widely used in industry such as feed and energy industries. In this research we used Xanthan gum which is a microbiological polysaccharide. In order to obtain the properties of the Xanthan gum, such as viscosity, storage and loss modulus, shear rate, etc., it was necessary to do an amplitude sweep and steady flow test in a rheometer with a concentric cylinder as geometry. Based on the data given and using a numerical regression, the coefficients required by Giesekus model are obtained. With these coefficients, it is possible to simulate the comportment of the fluid by the use of the developed algorithm. Once the data given by OpenFOAM is acquired, it is compared with the experimental data.
NASA Technical Reports Server (NTRS)
Eby, P. B.; Morgan, S. H.; Parnell, T. A.
1978-01-01
Energy deposition due to secondary electrons is calculated as a function of distance from the axis of the track of a heavy ion. The calculation incorporates the empirical formulas of Kobetich and Katz (1968) for delta-ray energy dissipation. Both the Mott and Born-approximation expressions for the delta-ray energy distributions are used, and the results are compared. The energy deposition projected along a line perpendicular to the track is also calculated. These results are used to estimate the effect that the use of the Mott cross section would have in the interpretation of photometric measurements on emulsion tracks of trans-iron cosmic-ray particles. It is shown that the use of 50 keV as a characteristic track-formation electron energy to estimate the effect of the Mott cross section systematically overestimates charge as derived from emulsions for Z greater than 20.
Colonoscope navigation system using colonoscope tracking method based on line registration
NASA Astrophysics Data System (ADS)
Oda, Masahiro; Kondo, Hiroaki; Kitasaka, Takayuki; Furukawa, Kazuhiro; Miyahara, Ryoji; Hirooka, Yoshiki; Goto, Hidemi; Navab, Nassir; Mori, Kensaku
2014-03-01
This paper presents a new colonoscope navigation system. CT colonography is utilized for colon diagnosis based on CT images. If polyps are found while CT colonography, colonoscopic polypectomy can be performed to remove them. While performing a colonoscopic examination, a physician controls colonoscope based on his/her experience. Inexperienced physicians may occur complications such as colon perforation while colonoscopic examinations. To reduce complications, a navigation system of colonoscope while performing the colonoscopic examinations is necessary. We propose a colonoscope navigation system. This system has a new colonoscope tracking method. This method obtains a colon centerline from a CT volume of a patient. A curved line (colonoscope line) representing the shape of colonoscope inserted to the colon is obtained by using electromagnetic sensors. A coordinate system registration process that employs the ICP algorithm is performed to register the CT and sensor coordinate systems. The colon centerline and colonoscope line are registered by using a line registration method. The position of the colonoscope tip in the colon is obtained from the line registration result. Our colonoscope navigation system displays virtual colonoscopic views generated from the CT volumes. A viewpoint of the virtual colonoscopic view is a point on the centerline that corresponds to the colonoscope tip. Experimental results using a colon phantom showed that the proposed colonoscope tracking method can track the colonoscope tip with small tracking errors.
2014-01-01
Locomotion over deformable substrates is a common occurrence in nature. Footprints represent sedimentary distortions that provide anatomical, functional, and behavioral insights into trackmaker biology. The interpretation of such evidence can be challenging, however, particularly for fossil tracks recovered at bedding planes below the originally exposed surface. Even in living animals, the complex dynamics that give rise to footprint morphology are obscured by both foot and sediment opacity, which conceals animal–substrate and substrate–substrate interactions. We used X-ray reconstruction of moving morphology (XROMM) to image and animate the hind limb skeleton of a chicken-like bird traversing a dry, granular material. Foot movement differed significantly from walking on solid ground; the longest toe penetrated to a depth of ∼5 cm, reaching an angle of 30° below horizontal before slipping backward on withdrawal. The 3D kinematic data were integrated into a validated substrate simulation using the discrete element method (DEM) to create a quantitative model of limb-induced substrate deformation. Simulation revealed that despite sediment collapse yielding poor quality tracks at the air–substrate interface, subsurface displacements maintain a high level of organization owing to grain–grain support. Splitting the substrate volume along “virtual bedding planes” exposed prints that more closely resembled the foot and could easily be mistaken for shallow tracks. DEM data elucidate how highly localized deformations associated with foot entry and exit generate specific features in the final tracks, a temporal sequence that we term “track ontogeny.” This combination of methodologies fosters a synthesis between the surface/layer-based perspective prevalent in paleontology and the particle/volume-based perspective essential for a mechanistic understanding of sediment redistribution during track formation. PMID:25489092
Tracking Object Existence From an Autonomous Patrol Vehicle
NASA Technical Reports Server (NTRS)
Wolf, Michael; Scharenbroich, Lucas
2011-01-01
An autonomous vehicle patrols a large region, during which an algorithm receives measurements of detected potential objects within its sensor range. The goal of the algorithm is to track all objects in the region over time. This problem differs from traditional multi-target tracking scenarios because the region of interest is much larger than the sensor range and relies on the movement of the sensor through this region for coverage. The goal is to know whether anything has changed between visits to the same location. In particular, two kinds of alert conditions must be detected: (1) a previously detected object has disappeared and (2) a new object has appeared in a location already checked. For the time an object is within sensor range, the object can be assumed to remain stationary, changing position only between visits. The problem is difficult because the upstream object detection processing is likely to make many errors, resulting in heavy clutter (false positives) and missed detections (false negatives), and because only noisy, bearings-only measurements are available. This work has three main goals: (1) Associate incoming measurements with known objects or mark them as new objects or false positives, as appropriate. For this, a multiple hypothesis tracker was adapted to this scenario. (2) Localize the objects using multiple bearings-only measurements to provide estimates of global position (e.g., latitude and longitude). A nonlinear Kalman filter extension provides these 2D position estimates using the 1D measurements. (3) Calculate the probability that a suspected object truly exists (in the estimated position), and determine whether alert conditions have been triggered (for new objects or disappeared objects). The concept of a probability of existence was created, and a new Bayesian method for updating this probability at each time step was developed. A probabilistic multiple hypothesis approach is chosen because of its superiority in handling the uncertainty arising from errors in sensors and upstream processes. However, traditional target tracking methods typically assume a stationary detection volume of interest, whereas in this case, one must make adjustments for being able to see only a small portion of the region of interest and understand when an alert situation has occurred. To track object existence inside and outside the vehicle's sensor range, a probability of existence was defined for each hypothesized object, and this value was updated at every time step in a Bayesian manner based on expected characteristics of the sensor and object and whether that object has been detected in the most recent time step. Then, this value feeds into a sequential probability ratio test (SPRT) to determine the status of the object (suspected, confirmed, or deleted). Alerts are sent upon selected status transitions. Additionally, in order to track objects that move in and out of sensor range and update the probability of existence appropriately a variable probability detection has been defined and the hypothesis probability equations have been re-derived to accommodate this change. Unsupervised object tracking is a pervasive issue in automated perception systems. This work could apply to any mobile platform (ground vehicle, sea vessel, air vehicle, or orbiter) that intermittently revisits regions of interest and needs to determine whether anything interesting has changed.
Space-based IR tracking bias removal using background star observations
NASA Astrophysics Data System (ADS)
Clemons, T. M., III; Chang, K. C.
2009-05-01
This paper provides the results of a proposed methodology for removing sensor bias from a space-based infrared (IR) tracking system through the use of stars detected in the background field of the tracking sensor. The tracking system consists of two satellites flying in a lead-follower formation tracking a ballistic target. Each satellite is equipped with a narrow-view IR sensor that provides azimuth and elevation to the target. The tracking problem is made more difficult due to a constant, non-varying or slowly varying bias error present in each sensor's line of sight measurements. As known stars are detected during the target tracking process, the instantaneous sensor pointing error can be calculated as the difference between star detection reading and the known position of the star. The system then utilizes a separate bias filter to estimate the bias value based on these detections and correct the target line of sight measurements to improve the target state vector. The target state vector is estimated through a Linearized Kalman Filter (LKF) for the highly non-linear problem of tracking a ballistic missile. Scenarios are created using Satellite Toolkit(C) for trajectories with associated sensor observations. Mean Square Error results are given for tracking during the period when the target is in view of the satellite IR sensors. The results of this research provide a potential solution to bias correction while simultaneously tracking a target.
Angular resolution of the gaseous micro-pixel detector Gossip
NASA Astrophysics Data System (ADS)
Bilevych, Y.; Blanco Carballo, V.; van Dijk, M.; Fransen, M.; van der Graaf, H.; Hartjes, F.; Hessey, N.; Koppert, W.; Nauta, S.; Rogers, M.; Romaniouk, A.; Veenhof, R.
2011-06-01
Gossip is a gaseous micro-pixel detector with a very thin drift gap intended for a high rate environment like at the pixel layers of ATLAS at the sLHC. The detector outputs not only the crossing point of a traversing MIP, but also the angle of the track, thus greatly simplifying track reconstruction. In this paper we describe a testbeam experiment to examine the angular resolution of the reconstructed track segments in Gossip. We used here the low diffusion gas mixture DME/CO 2 50/50. An angular resolution of 20 mrad for perpendicular tracks could be obtained from a 1.5 mm thin drift volume. However, for the prototype detector used at the testbeam experiment, the resolution of slanting tracks was worsened by poor time resolution of the pixel chip used.
Shear wave arrival time estimates correlate with local speckle pattern.
Mcaleavey, Stephen A; Osapoetra, Laurentius O; Langdon, Jonathan
2015-12-01
We present simulation and phantom studies demonstrating a strong correlation between errors in shear wave arrival time estimates and the lateral position of the local speckle pattern in targets with fully developed speckle. We hypothesize that the observed arrival time variations are largely due to the underlying speckle pattern, and call the effect speckle bias. Arrival time estimation is a key step in quantitative shear wave elastography, performed by tracking tissue motion via cross-correlation of RF ultrasound echoes or similar methods. Variations in scatterer strength and interference of echoes from scatterers within the tracking beam result in an echo that does not necessarily describe the average motion within the beam, but one favoring areas of constructive interference and strong scattering. A swept-receive image, formed by fixing the transmit beam and sweeping the receive aperture over the region of interest, is used to estimate the local speckle pattern. Metrics for the lateral position of the speckle are found to correlate strongly (r > 0.7) with the estimated shear wave arrival times both in simulations and in phantoms. Lateral weighting of the swept-receive pattern improved the correlation between arrival time estimates and speckle position. The simulations indicate that high RF echo correlation does not equate to an accurate shear wave arrival time estimate-a high correlation coefficient indicates that motion is being tracked with high precision, but the location tracked is uncertain within the tracking beam width. The presence of a strong on-axis speckle is seen to imply high RF correlation and low bias. The converse does not appear to be true-highly correlated RF echoes can still produce biased arrival time estimates. The shear wave arrival time bias is relatively stable with variations in shear wave amplitude and sign (-20 μm to 20 μm simulated) compared with the variation with different speckle realizations obtained along a given tracking vector. We show that the arrival time bias is weakly dependent on shear wave amplitude compared with the variation with axial position/ local speckle pattern. Apertures of f/3 to f/8 on transmit and f/2 and f/4 on receive were simulated. Arrival time error and correlation with speckle pattern are most strongly determined by the receive aperture.
Shear Wave Arrival Time Estimates Correlate with Local Speckle Pattern
McAleavey, Stephen A.; Osapoetra, Laurentius O.; Langdon, Jonathan
2016-01-01
We present simulation and phantom studies demonstrating a strong correlation between errors in shear wave arrival time estimates and the lateral position of the local speckle pattern in targets with fully developed speckle. We hypothesize that the observed arrival time variations are largely due to the underlying speckle pattern, and call the effect speckle bias. Arrival time estimation is a key step in quantitative shear wave elastography, performed by tracking tissue motion via cross correlation of RF ultrasound echoes or similar methods. Variations in scatterer strength and interference of echoes from scatterers within the tracking beam result in an echo that does not necessarily describe the average motion within the beam, but one favoring areas of constructive interference and strong scattering. A swept-receive image, formed by fixing the transmit beam and sweeping the receive aperture over the region of interest, is used to estimate the local speckle pattern. Metrics for the lateral position of the speckle are found to correlate strongly (r>0.7) with the estimated shear wave arrival times both in simulations and in phantoms. Lateral weighting of the swept-receive pattern improved the correlation between arrival time estimates and speckle position. The simulations indicate that high RF echo correlation does not equate to an accurate shear wave arrival time estimate – a high correlation coefficient indicates that motion is being tracked with high precision, but the location tracked is uncertain within the tracking beam width. The presence of a strong on-axis speckle is seen to imply high RF correlation and low bias. The converse does not appear to be true – highly correlated RF echoes can still produce biased arrival time estimates. The shear wave arrival time bias is relatively stable with variations in shear wave amplitude and sign (−20 μm to 20 μm simulated) compared to the variation with different speckle realizations obtained along a given tracking vector. We show that the arrival time bias is weakly dependent on shear wave amplitude compared to the variation with axial position/local speckle pattern. Apertures of f/3 to f/8 on transmit and f/2 and f/4 on receive were simulated. Arrival time error and correlation with speckle pattern are most strongly determined by the receive aperture. PMID:26670847
NASA Astrophysics Data System (ADS)
Rotenberg, David J.
Artifacts caused by head motion are a substantial source of error in fMRI that limits its use in neuroscience research and clinical settings. Real-time scan-plane correction by optical tracking has been shown to correct slice misalignment and non-linear spin-history artifacts, however residual artifacts due to dynamic magnetic field non-uniformity may remain in the data. A recently developed correction technique, PLACE, can correct for absolute geometric distortion using the complex image data from two EPI images, with slightly shifted k-space trajectories. We present a correction approach that integrates PLACE into a real-time scan-plane update system by optical tracking, applied to a tissue-equivalent phantom undergoing complex motion and an fMRI finger tapping experiment with overt head motion to induce dynamic field non-uniformity. Experiments suggest that including volume by volume geometric distortion correction by PLACE can suppress dynamic geometric distortion artifacts in a phantom and in vivo and provide more robust activation maps.
Estimation of U content in coffee samples by fission-track counting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, P.K.; Lal, N.; Nagpaul, K.K.
1985-06-01
Because coffee is consumed in large quantities by humans, the authors undertook the study of the uranium content of coffee as a continuation of earlier work to estimate the U content of foodstuffs. Since literature on this subject is scarce, they decided to use the well-established fission-track-counting technique to determine the U content of coffee.
Acoustic Source Elevation Angle Estimates Using Two Microphones
2014-06-01
elevated. Elevation angles are successfully estimated, under certain conditions, for a loudspeaker broadcasting band limited white noise. 15. SUBJECT...INTENTIONALLY LEFT BLANK. 1 1. Introduction The U.S. Army uses acoustic arrays to track and locate various sources including...ground and airborne vehicles, small arms, mortars, and rockets. The tracking and locating algorithms often used with these acoustic arrays perform
Estimating site occupancy and abundance using indirect detection indices
Stanley, T.R.; Royle, J. Andrew
2005-01-01
Knowledge of factors influencing animal distribution and abundance is essential in many areas of ecological research, management, and policy-making. Because common methods for modeling and estimating abundance (e.g., capture-recapture, distance sampling) are sometimes not practical for large areas or elusive species, indices are sometimes used as surrogate measures of abundance. We present an extension of the Royle and Nichols (2003) generalization of the MacKenzie et al. (2002) site-occupancy model that incorporates length of the sampling interval into the, model for detection probability. As a result, we obtain a modeling framework that shows how useful information can be extracted from a class of index methods we call indirect detection indices (IDIs). Examples of IDIs include scent station, tracking tube, snow track, tracking plate, and hair snare surveys. Our model is maximum likelihood, and it can be used to estimate site occupancy and model factors influencing patterns of occupancy and abundance in space. Under certain circumstances, it can also be used to estimate abundance. We evaluated model properties using Monte Carlo simulations and illustrate the method with tracking tube and scent station data. We believe this model will be a useful tool for determining factors that influence animal distribution and abundance.
Improved estimates of partial volume coefficients from noisy brain MRI using spatial context.
Manjón, José V; Tohka, Jussi; Robles, Montserrat
2010-11-01
This paper addresses the problem of accurate voxel-level estimation of tissue proportions in the human brain magnetic resonance imaging (MRI). Due to the finite resolution of acquisition systems, MRI voxels can contain contributions from more than a single tissue type. The voxel-level estimation of this fractional content is known as partial volume coefficient estimation. In the present work, two new methods to calculate the partial volume coefficients under noisy conditions are introduced and compared with current similar methods. Concretely, a novel Markov Random Field model allowing sharp transitions between partial volume coefficients of neighbouring voxels and an advanced non-local means filtering technique are proposed to reduce the errors due to random noise in the partial volume coefficient estimation. In addition, a comparison was made to find out how the different methodologies affect the measurement of the brain tissue type volumes. Based on the obtained results, the main conclusions are that (1) both Markov Random Field modelling and non-local means filtering improved the partial volume coefficient estimation results, and (2) non-local means filtering was the better of the two strategies for partial volume coefficient estimation. Copyright 2010 Elsevier Inc. All rights reserved.
The validity of ultrasound estimation of muscle volumes.
Infantolino, Benjamin W; Gales, Daniel J; Winter, Samantha L; Challis, John H
2007-08-01
The purpose of this study was to validate ultrasound muscle volume estimation in vivo. To examine validity, vastus lateralis ultrasound images were collected from cadavers before muscle dissection; after dissection, the volumes were determined by hydrostatic weighing. Seven thighs from cadaver specimens were scanned using a 7.5-MHz ultrasound probe (SSD-1000, Aloka, Japan). The perimeter of the vastus lateralis was identified in the ultrasound images and manually digitized. Volumes were then estimated using the Cavalieri principle, by measuring the image areas of sets of parallel two-dimensional slices through the muscles. The muscles were then dissected from the cadavers, and muscle volume was determined via hydrostatic weighing. There was no statistically significant difference between the ultrasound estimation of muscle volume and that estimated using hydrostatic weighing (p > 0.05). The mean percentage error between the two volume estimates was 0.4% +/- 6.9. Three operators all performed four digitizations of all images from one randomly selected muscle; there was no statistical difference between operators or trials and the intraclass correlation was high (>0.8). The results of this study indicate that ultrasound is an accurate method for estimating muscle volumes in vivo.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, H; Chen, Z; Nath, R
Purpose: kV fluoroscopic imaging combined with MV treatment beam imaging has been investigated for intrafractional motion monitoring and correction. It is, however, subject to additional kV imaging dose to normal tissue. To balance tracking accuracy and imaging dose, we previously proposed an adaptive imaging strategy to dynamically decide future imaging type and moments based on motion tracking uncertainty. kV imaging may be used continuously for maximal accuracy or only when the position uncertainty (probability of out of threshold) is high if a preset imaging dose limit is considered. In this work, we propose more accurate methods to estimate tracking uncertaintymore » through analyzing acquired data in real-time. Methods: We simulated motion tracking process based on a previously developed imaging framework (MV + initial seconds of kV imaging) using real-time breathing data from 42 patients. Motion tracking errors for each time point were collected together with the time point’s corresponding features, such as tumor motion speed and 2D tracking error of previous time points, etc. We tested three methods for error uncertainty estimation based on the features: conditional probability distribution, logistic regression modeling, and support vector machine (SVM) classification to detect errors exceeding a threshold. Results: For conditional probability distribution, polynomial regressions on three features (previous tracking error, prediction quality, and cosine of the angle between the trajectory and the treatment beam) showed strong correlation with the variation (uncertainty) of the mean 3D tracking error and its standard deviation: R-square = 0.94 and 0.90, respectively. The logistic regression and SVM classification successfully identified about 95% of tracking errors exceeding 2.5mm threshold. Conclusion: The proposed methods can reliably estimate the motion tracking uncertainty in real-time, which can be used to guide adaptive additional imaging to confirm the tumor is within the margin or initialize motion compensation if it is out of the margin.« less
Nonstationary EO/IR Clutter Suppression and Dim Object Tracking
2010-01-01
Brown, A., and Brown, J., Enhanced Algorithms for EO /IR Electronic Stabilization, Clutter Suppression, and Track - Before - Detect for Multiple Low...estimation-suppression and nonlinear filtering-based multiple-object track - before - detect . These algorithms are suitable for integration into...In such cases, it is imperative to develop efficient real or near-real time tracking before detection methods. This paper continues the work started
Simulation of radiation effects on three-dimensional computer optical memories
NASA Technical Reports Server (NTRS)
Moscovitch, M.; Emfietzoglou, D.
1997-01-01
A model was developed to simulate the effects of heavy charged-particle (HCP) radiation on the information stored in three-dimensional computer optical memories. The model is based on (i) the HCP track radial dose distribution, (ii) the spatial and temporal distribution of temperature in the track, (iii) the matrix-specific radiation-induced changes that will affect the response, and (iv) the kinetics of transition of photochromic molecules from the colored to the colorless isomeric form (bit flip). It is shown that information stored in a volume of several nanometers radius around the particle's track axis may be lost. The magnitude of the effect is dependent on the particle's track structure.
Winston, Richard B.; Konikow, Leonard F.; Hornberger, George Z.
2018-02-16
In the traditional method of characteristics for groundwater solute-transport models, advective transport is represented by moving particles that track concentration. This approach can lead to global mass-balance problems because in models of aquifers having complex boundary conditions and heterogeneous properties, particles can originate in cells having different pore volumes and (or) be introduced (or removed) at cells representing fluid sources (or sinks) of varying strengths. Use of volume-weighted particles means that each particle tracks solute mass. In source or sink cells, the changes in particle weights will match the volume of water added or removed through external fluxes. This enables the new method to conserve mass in source or sink cells as well as globally. This approach also leads to potential efficiencies by allowing the number of particles per cell to vary spatially—using more particles where concentration gradients are high and fewer where gradients are low. The approach also eliminates the need for the model user to have to distinguish between “weak” and “strong” fluid source (or sink) cells. The new model determines whether solute mass added by fluid sources in a cell should be represented by (1) new particles having weights representing appropriate fractions of the volume of water added by the source, or (2) distributing the solute mass added over all particles already in the source cell. The first option is more appropriate for the condition of a strong source; the latter option is more appropriate for a weak source. At sinks, decisions whether or not to remove a particle are replaced by a reduction in particle weight in proportion to the volume of water removed. A number of test cases demonstrate that the new method works well and conserves mass. The method is incorporated into a new version of the U.S. Geological Survey’s MODFLOW–GWT solute-transport model.
NASA Astrophysics Data System (ADS)
Hilgers, G.; Bug, M. U.; Rabus, H.
2017-10-01
Ionization cluster size distributions produced in the sensitive volume of an ion-counting wall-less nanodosimeter by monoenergetic carbon ions with energies between 45 MeV and 150 MeV were measured at the TANDEM-ALPI ion accelerator facility complex of the LNL-INFN in Legnaro. Those produced by monoenergetic helium ions with energies between 2 MeV and 20 MeV were measured at the accelerator facilities of PTB and with a 241Am alpha particle source. C3H8 was used as the target gas. The ionization cluster size distributions were measured in narrow beam geometry with the primary beam passing the target volume at specified distances from its centre, and in broad beam geometry with a fan-like primary beam. By applying a suitable drift time window, the effective size of the target volume was adjusted to match the size of a DNA segment. The measured data were compared with the results of simulations obtained with the PTB Monte Carlo code PTra. Before the comparison, the simulated cluster size distributions were corrected with respect to the background of additional ionizations produced in the transport system of the ionized target gas molecules. Measured and simulated characteristics of the particle track structure are in good agreement for both types of primary particles and for both types of the irradiation geometry. As the range in tissue of the ions investigated is within the typical extension of a spread-out Bragg peak, these data are useful for benchmarking not only ‘general purpose’ track structure simulation codes, but also treatment planning codes used in hadron therapy. Additionally, these data sets may serve as a data base for codes modelling the induction of radiation damages at the DNA-level as they almost completely characterize the ionization component of the nanometric track structure.
Pannopnut, Papinwit; Kitporntheranunt, Maethaphan; Paritakul, Panwara; Kongsomboon, Kittipong
2015-01-01
To investigate the correlation between ultrasound measured placental volume and collected umbilical cord blood (UCB) volume in term pregnancy. An observational cross-sectional study of term singleton pregnant women in the labor ward at Maha Chakri Sirindhorn Medical Center was conducted. Placental thickness, height, and width were measured using two-dimensional (2D) ultrasound and calculated for placental volume using the volumetric mathematic model. After the delivery of the baby, UCB was collected and measured for its volume immediately. Then, birth weight, placental weight, and the actual placental volume were analyzed. The Pearson's correlation was used to determine the correlation between each two variables. A total of 35 pregnant women were eligible for the study. The mean and standard deviation of estimated placental volume and actual placental volume were 534±180 mL and 575±118 mL, respectively. The median UCB volume was 140 mL (range 98-220 mL). The UCB volume did not have a statistically significant correlation with the estimated placental volume (correlation coefficient 0.15; p=0.37). However, the UCB volume was significantly correlated with the actual placental volume (correlation coefficient 0.62; p<0.001) and birth weight (correlation coefficient 0.38; p=0.02). The estimated placental volume by 2D ultrasound was not significantly correlated with the UCB volume. Further studies to establish the correlation between the UCB volume and the estimated placental volume using other types of placental imaging may be needed.
Quantitative CT: technique dependence of volume estimation on pulmonary nodules
NASA Astrophysics Data System (ADS)
Chen, Baiyu; Barnhart, Huiman; Richard, Samuel; Colsher, James; Amurao, Maxwell; Samei, Ehsan
2012-03-01
Current estimation of lung nodule size typically relies on uni- or bi-dimensional techniques. While new three-dimensional volume estimation techniques using MDCT have improved size estimation of nodules with irregular shapes, the effect of acquisition and reconstruction parameters on accuracy (bias) and precision (variance) of the new techniques has not been fully investigated. To characterize the volume estimation performance dependence on these parameters, an anthropomorphic chest phantom containing synthetic nodules was scanned and reconstructed with protocols across various acquisition and reconstruction parameters. Nodule volumes were estimated by a clinical lung analysis software package, LungVCAR. Precision and accuracy of the volume assessment were calculated across the nodules and compared between protocols via a generalized estimating equation analysis. Results showed that the precision and accuracy of nodule volume quantifications were dependent on slice thickness, with different dependences for different nodule characteristics. Other parameters including kVp, pitch, and reconstruction kernel had lower impact. Determining these technique dependences enables better volume quantification via protocol optimization and highlights the importance of consistent imaging parameters in sequential examinations.
Surface refractivity measurements at NASA spacecraft tracking sites
NASA Technical Reports Server (NTRS)
Schmid, P. E.
1972-01-01
High-accuracy spacecraft tracking requires tropospheric modeling which is generally scaled by either estimated or measured values of surface refractivity. This report summarizes the results of a worldwide surface-refractivity test conducted in 1968 in support of the Apollo program. The results are directly applicable to all NASA radio-tracking systems.
Estimating sugar maple bark thickness and volume.
Charles L. Stayton; Michael Hoffman
1970-01-01
Sugar maple bark thickness and volume were estimated using first a published method, then equations developed by the authors. Both methods gave estimates that compared closely with measured values. Information is also presented on variation in bark thickness and on weight and volume of bark as a percentage of total merchantable stem weight and volume.
NASA Astrophysics Data System (ADS)
Wang, Yao; Vijaya Kumar, B. V. K.
2017-05-01
The increased track density in bit patterned media recording (BPMR) causes increased inter-track interference (ITI), which degrades the bit error rate (BER) performance. In order to mitigate the effect of the ITI, signals from multiple tracks can be equalized by a 2D equalizer with 1D target. Usually, the 2D fixed equalizer coefficients are obtained by using a pseudo-random bit sequence (PRBS) for training. In this study, a 2D variable equalizer is proposed, where various sets of 2D equalizer coefficients are predetermined and stored for different ITI patterns besides the usual PRBS training. For data detection, as the ITI patterns are unknown in the first global iteration, the main and adjacent tracks are equalized with the conventional 2D fixed equalizer, detected with Bahl-Cocke-Jelinek-Raviv (BCJR) detector and decoded with low-density parity-check (LDPC) decoder. Then using the estimated bit information from main and adjacent tracks, the ITI pattern for each island of the main track can be estimated and the corresponding 2D variable equalizers are used to better equalize the bits on the main track. This process is executed iteratively by feeding back the main track information. Simulation results indicate that for both single-track and two-track detection, the proposed 2D variable equalizer can achieve better BER and frame error rate (FER) compared to that with the 2D fixed equalizer.
NASA Astrophysics Data System (ADS)
Ahmed, Mousumi
Designing the control technique for nonlinear dynamic systems is a significant challenge. Approaches to designing a nonlinear controller are studied and an extensive study on backstepping based technique is performed in this research with the purpose of tracking a moving target autonomously. Our main motivation is to explore the controller for cooperative and coordinating unmanned vehicles in a target tracking application. To start with, a general theoretical framework for target tracking is studied and a controller in three dimensional environment for a single UAV is designed. This research is primarily focused on finding a generalized method which can be applied to track almost any reference trajectory. The backstepping technique is employed to derive the controller for a simplified UAV kinematic model. This controller can compute three autopilot modes i.e. velocity, ground heading (or course angle), and flight path angle for tracking the unmanned vehicle. Numerical implementation is performed in MATLAB with the assumption of having perfect and full state information of the target to investigate the accuracy of the proposed controller. This controller is then frozen for the multi-vehicle problem. Distributed or decentralized cooperative control is discussed in the context of multi-agent systems. A consensus based cooperative control is studied; such consensus based control problem can be viewed from the algebraic graph theory concepts. The communication structure between the UAVs is represented by the dynamic graph where UAVs are represented by the nodes and the communication links are represented by the edges. The previously designed controller is augmented to account for the group to obtain consensus based on their communication. A theoretical development of the controller for the cooperative group of UAVs is presented and the simulation results for different communication topologies are shown. This research also investigates the cases where the communication topology switches to a different topology over particular time instants. Lyapunov analysis is performed to show stability in all cases. Another important aspect of this dissertation research is to implement the controller for the case, where perfect or full state information is not available. This necessitates the design of an estimator to estimate the system state. A nonlinear estimator, Extended Kalman Filter (EKF) is first developed for target tracking with a single UAV. The uncertainties involved with the measurement model and dynamics model are considered as zero mean Gaussian noises with some known covariances. The measurements of the full state of the target are not available and only the range, elevation, and azimuth angle are available from an onboard seeker sensor. A separate EKF is designed to estimate the UAV's own state where the state measurement is available through on-board sensors. The controller computes the three control commands based on the estimated states of target and its own states. Estimation based control laws is also implemented for colored noise measurement uncertainties, and the controller performance is shown with the simulation results. The estimation based control approach is then extended for the cooperative target tracking case. The target information is available to the network and a separate estimator is used to estimate target states. All of the UAVs in the network apply the same control law and the only difference is that each UAV updates the commands according to their connection. The simulation is performed for both cases of fixed and time varying communication topology. Monte Carlo simulation is also performed with different sample noises to investigate the performance of the estimator. The proposed technique is shown to be simple and robust to noisy environments.
Comparison of volume estimation methods for pancreatic islet cells
NASA Astrophysics Data System (ADS)
Dvořák, JiřÃ.; Å vihlík, Jan; Habart, David; Kybic, Jan
2016-03-01
In this contribution we study different methods of automatic volume estimation for pancreatic islets which can be used in the quality control step prior to the islet transplantation. The total islet volume is an important criterion in the quality control. Also, the individual islet volume distribution is interesting -- it has been indicated that smaller islets can be more effective. A 2D image of a microscopy slice containing the islets is acquired. The input of the volume estimation methods are segmented images of individual islets. The segmentation step is not discussed here. We consider simple methods of volume estimation assuming that the islets have spherical or ellipsoidal shape. We also consider a local stereological method, namely the nucleator. The nucleator does not rely on any shape assumptions and provides unbiased estimates if isotropic sections through the islets are observed. We present a simulation study comparing the performance of the volume estimation methods in different scenarios and an experimental study comparing the methods on a real dataset.
Christopher M. Oswalt; Adam M. Saunders
2009-01-01
Sound estimation procedures are desideratum for generating credible population estimates to evaluate the status and trends in resource conditions. As such, volume estimation is an integral component of the U.S. Department of Agriculture, Forest Service, Forest Inventory and Analysis (FIA) program's reporting. In effect, reliable volume estimation procedures are...
New platform for evaluating ultrasound-guided interventional technologies
NASA Astrophysics Data System (ADS)
Kim, Younsu; Guo, Xiaoyu; Boctor, Emad M.
2016-04-01
Ultrasound-guided needle tracking systems are frequently used in surgical procedures. Various needle tracking technologies have been developed using ultrasound, electromagnetic sensors, and optical sensors. To evaluate these new needle tracking technologies, 3D volume information is often acquired to compute the actual distance from the needle tip to the target object. The image-guidance conditions for comparison are often inconsistent due to the ultrasound beam-thickness. Since 3D volumes are necessary, there is often some time delay between the surgical procedure and the evaluation. These evaluation methods will generally only measure the final needle location because they interrupt the surgical procedure. The main contribution of this work is a new platform for evaluating needle tracking systems in real-time, resolving the problems stated above. We developed new tools to evaluate the precise distance between the needle tip and the target object. A PZT element transmitting unit is designed as needle introducer shape so that it can be inserted in the needle. We have collected time of flight and amplitude information in real-time. We propose two systems to collect ultrasound signals. We demonstrate this platform on an ultrasound DAQ system and a cost-effective FPGA board. The results of a chicken breast experiment show the feasibility of tracking a time series of needle tip distances. We performed validation experiments with a plastisol phantom and have shown that the preliminary data fits a linear regression model with a RMSE of less than 0.6mm. Our platform can be applied to more general needle tracking methods using other forms of guidance.
NASA Astrophysics Data System (ADS)
Sun, Qiliang; Alves, Tiago M.; Lu, Xiangyang; Chen, Chuanxu; Xie, Xinong
2018-03-01
Submarine slope failure can mobilize large amounts of seafloor sediment, as shown in varied offshore locations around the world. Submarine landslide volumes are usually estimated by mapping their tops and bases on seismic data. However, two essential components of the total volume of failed sediments are overlooked in most estimates: (a) the volume of subseismic turbidites generated during slope failure and (b) the volume of shear compaction occurring during the emplacement of failed sediment. In this study, the true volume of a large submarine landslide in the northern South China Sea is estimated using seismic, multibeam bathymetry and Ocean Drilling Program/Integrated Ocean Drilling Program well data. The submarine landslide was evacuated on the continental slope and deposited in an ocean basin connected to the slope through a narrow moat. This particular character of the sea floor provides an opportunity to estimate the amount of strata remobilized by slope instability. The imaged volume of the studied landslide is 1035 ± 64 km3, 406 ± 28 km3 on the slope and 629 ± 36 km3 in the ocean basin. The volume of subseismic turbidites is 86 km3 (median value), and the volume of shear compaction is 100 km3, which are 8.6% and 9.7% of the landslide volume imaged on seismic data, respectively. This study highlights that the original volume of the failed sediments is significantly larger than that estimated using seismic and bathymetric data. Volume loss related to the generation of landslide-related turbidites and shear compaction must be considered when estimating the total volume of failed strata in the submarine realm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sweezy, Jeremy Ed
A photon next-event fluence estimator at a point has been implemented in the Monte Carlo Application Toolkit (MCATK). The next-event estimator provides an expected value estimator for the flux at a point due to all source and collision events. An advantage of the next-event estimator over track-length estimators, which are normally employed in MCATK, is that flux estimates can be made in locations that have no random walk particle tracks. The next-event estimator allows users to calculate radiographs and estimate response for detectors outside of the modeled geometry. The next-event estimator is not yet accessable through the MCATK FlatAPI formore » C and Fortran. The next-event estimator in MCATK has been tested against MCNP6 using 5 suites of test problems. No issues were found in the MCATK implementation. One issue was found in the exclusion radius approximation in MCNP6. The theory, implementation, and testing are described in this document.« less
NASA Tech Briefs, April 2002. Volume 26, No. 4
NASA Technical Reports Server (NTRS)
2002-01-01
The contents include: 1) Application Briefs; 2) Sneak Preview of Sensors Expo; 3) The Complexity of the Diagnosis Problem; 4) Design Concepts for the ISS TransHab Module; 5) Characteristics of Supercritical Transitional Mixing Layers; 6) Electrometer for Triboelectric Evaluation of Materials; 7) Infrared CO2 Sensor With Built-In Calibration Chambers; 8) Solid-State Potentiometric CO Sensor; 9) Planetary Rover Absolute Heading Detection Using a Sun Sensor; 10) Concept for Utilizing Full Areas of STJ Photodetector Arrays; 11) Development of Cognitive Sensors; 12) Enabling Higher-Voltage Operation of SOl CMOS Transistors; 13) Estimating Antenna-Pointing Errors From Beam Squints; 14) Advanced-Fatigue-Crack-Growth and Fracture- Mechanics Program; 15) Software for Sequencing Spacecraft Actions; 16) Program Distributes and Tracks Organizational Memoranda; 16) Flat Membrane Device for Dehumidification of Air; 17) Inverted Hindle Mount Reduces Sag of a Large, Precise Mirror; 18) Heart-Pump-Outlet/Cannula Coupling; 19) Externally Triggered Microcapsules Release Drugs In Situ; 20) Combinatorial Drug Design Augmented by Information Theory; 21) Multiple-Path-Length Optical Absorbance Cell; 22) Model of a Fluidized Bed Containing a Mixture of Particles; 23) Refractive Secondary Concentrators for Solar Thermal Systems; 24) Cold Flow Calorimeter; 25) Methodology for Tracking Hazards and Predicting Failures; 26) Estimating Heterodyne-Interferometer Polarization Leakage; 27) An Efficient Algorithm for Propagation of Temporal- Constraint Networks; 28) Software for Continuous Replanning During Execution; 29) Surface-Launched Explorers for Reconnaissance/Scouting; 30) Firmware for a Small Motion-Control Processor; 31) Gear Bearings and Gear-Bearing Transmissions; and 32) Linear Dynamometer With Variable Stroke and Frequency.
Can Family Planning Service Statistics Be Used to Track Population-Level Outcomes?
Magnani, Robert J; Ross, John; Williamson, Jessica; Weinberger, Michelle
2018-03-21
The need for annual family planning program tracking data under the Family Planning 2020 (FP2020) initiative has contributed to renewed interest in family planning service statistics as a potential data source for annual estimates of the modern contraceptive prevalence rate (mCPR). We sought to assess (1) how well a set of commonly recorded data elements in routine service statistics systems could, with some fairly simple adjustments, track key population-level outcome indicators, and (2) whether some data elements performed better than others. We used data from 22 countries in Africa and Asia to analyze 3 data elements collected from service statistics: (1) number of contraceptive commodities distributed to clients, (2) number of family planning service visits, and (3) number of current contraceptive users. Data quality was assessed via analysis of mean square errors, using the United Nations Population Division World Contraceptive Use annual mCPR estimates as the "gold standard." We also examined the magnitude of several components of measurement error: (1) variance, (2) level bias, and (3) slope (or trend) bias. Our results indicate modest levels of tracking error for data on commodities to clients (7%) and service visits (10%), and somewhat higher error rates for data on current users (19%). Variance and slope bias were relatively small for all data elements. Level bias was by far the largest contributor to tracking error. Paired comparisons of data elements in countries that collected at least 2 of the 3 data elements indicated a modest advantage of data on commodities to clients. None of the data elements considered was sufficiently accurate to be used to produce reliable stand-alone annual estimates of mCPR. However, the relatively low levels of variance and slope bias indicate that trends calculated from these 3 data elements can be productively used in conjunction with the Family Planning Estimation Tool (FPET) currently used to produce annual mCPR tracking estimates for FP2020. © Magnani et al.
The volume and mean depth of Earth's lakes
NASA Astrophysics Data System (ADS)
Cael, B. B.; Heathcote, A. J.; Seekell, D. A.
2017-01-01
Global lake volume estimates are scarce, highly variable, and poorly documented. We developed a rigorous method for estimating global lake depth and volume based on the Hurst coefficient of Earth's surface, which provides a mechanistic connection between lake area and volume. Volume-area scaling based on the Hurst coefficient is accurate and consistent when applied to lake data sets spanning diverse regions. We applied these relationships to a global lake area census to estimate global lake volume and depth. The volume of Earth's lakes is 199,000 km3 (95% confidence interval 196,000-202,000 km3). This volume is in the range of historical estimates (166,000-280,000 km3), but the overall mean depth of 41.8 m (95% CI 41.2-42.4 m) is significantly lower than previous estimates (62-151 m). These results highlight and constrain the relative scarcity of lake waters in the hydrosphere and have implications for the role of lakes in global biogeochemical cycles.
Exsanguinated blood volume estimation using fractal analysis of digital images.
Sant, Sonia P; Fairgrieve, Scott I
2012-05-01
The estimation of bloodstain volume using fractal analysis of digital images of passive blood stains is presented. Binary digital photos of bloodstains of known volumes (ranging from 1 to 7 mL), dispersed in a defined area, were subjected to image analysis using FracLac V. 2.0 for ImageJ. The box-counting method was used to generate a fractal dimension for each trial. A positive correlation between the generated fractal number and the volume of blood was found (R(2) = 0.99). Regression equations were produced to estimate the volume of blood in blind trials. An error rate ranging from 78% for 1 mL to 7% for 6 mL demonstrated that as the volume increases so does the accuracy of the volume estimation. This method used in the preliminary study proved that bloodstain patterns may be deconstructed into mathematical parameters, thus removing the subjective element inherent in other methods of volume estimation. © 2012 American Academy of Forensic Sciences.
Lidar-based wake tracking for closed-loop wind farm control
NASA Astrophysics Data System (ADS)
Raach, Steffen; Schlipf, David; Cheng, Po Wen
2016-09-01
This work presents two advancements towards closed-loop wake redirecting of a wind turbine. First, a model-based estimation approach is presented which uses a nacelle-based lidar system facing downwind to obtain information about the wake. A reduced order wake model is described which is then used in the estimation to track the wake. The tracking is demonstrated with lidar measurement data from an offshore campaign and with simulated lidar data from a SOWFA simulation. Second, a controller for closed-loop wake steering is presented. It uses the wake tracking information to set the yaw actuator of the wind turbine to redirect the wake to a desired position. Altogether, this paper aims to present the concept of closed-loop wake redirecting and gives a possible solution to it.
Anatomizing one of the largest saltwater inflows into the Baltic Sea in December 2014
NASA Astrophysics Data System (ADS)
Gräwe, Ulf; Naumann, Michael; Mohrholz, Volker; Burchard, Hans
2015-11-01
In December 2014, an exceptional inflow event into the Baltic Sea was observed, a so-called Major Baltic Inflow (MBI). Such inflow events are important for the deep water ventilation in the Baltic Sea and typically occur every 3-10 years. Based on first observational data sets, this inflow had been ranked as the third largest since 100 years. With the help of a multinested modeling system, reaching from the North Atlantic (8 km resolution) to the Western Baltic Sea (600 m resolution, which is baroclinic eddy resolving), this event is reproduced in detail. The model gave a slightly lower salt transport of 3.8 Gt, compared to the observational estimate of four Gt. Moreover, by using passive tracers to mark the different inflowing water masses, including an age tracer, the inflowing water masses could be tracked and their paths and timing through the different basins could be reproduced and investigated. The analysis is supported by the recently developed Total Exchange Flow (TEF) to quantify the volume transport in different salinity classes. To account for uncertainties in the modeled velocity and tracer fields, a Monte Carlo Analysis (MCA) is applied to correct possible biases and errors. With the help of the MCA, 95% confidence intervals are computed for the transport estimates. Based on the MCA, the "best guess" of the volume transport is 291.0 ± 13.65 km3 and 3.89 ± 0.18 Gt for the total salt transport.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, M; Penjweini, R; Zhu, T
Purpose: Photodynamic therapy (PDT) is used in conjunction with surgical debulking of tumorous tissue during treatment for pleural mesothelioma. One of the key components of effective PDT is uniform light distribution. Currently, light is monitored with 8 isotropic light detectors that are placed at specific locations inside the pleural cavity. A tracking system with real-time feedback software can be utilized to improve the uniformity of light in addition to the existing detectors. Methods: An infrared (IR) tracking camera is used to monitor the movement of the light source. The same system determines the pleural geometry of the treatment area. Softwaremore » upgrades allow visualization of the pleural cavity as a two-dimensional volume. The treatment delivery wand was upgraded for ease of light delivery while incorporating the IR system. Isotropic detector locations are also displayed. Data from the tracking system is used to calculate the light fluence rate delivered. This data is also compared with in vivo data collected via the isotropic detectors. Furthermore, treatment volume information will be used to form light dose volume histograms of the pleural cavity. Results: In a phantom study, the light distribution was improved by using real-time guidance compared to the distribution when using detectors without guidance. With the tracking system, 2D data can be collected regarding light fluence rather than just the 8 discrete locations inside the pleural cavity. Light fluence distribution on the entire cavity can be calculated at every time in the treatment. Conclusion: The IR camera has been used successfully during pleural PDT patient treatment to track the motion of the light source and provide real-time display of 2D light fluence. It is possible to use the feedback system to deliver a more uniform dose of light throughout the pleural cavity.« less
Forest representation of vessels in cone-beam computed tomographic angiography.
Chen, Zikuan; Ning, Ruola
2005-01-01
Cone-beam computed tomographic angiography (CBCTA) provides a fast three-dimensional (3D) vascular imaging modality, aiming at digitally representing the spatial vascular structure in an angiographic volume. Due to the finite coverage of cone-beam scan, as well as the volume cropping in volumetric image processing, an angiographic volume may fail to contain a whole vascular tree, but rather consist of a multitude of vessel segments or subtrees. As such, it is convenient to represent multitudinal components by a forest. The vessel tracking issue then becomes component characterization/identification in the forest. The forest representation brings several conveniences for vessel tracking: (1) to sort and count the vessels in an angiographic volume, for example, according to spatial occupancy and skeleton pathlength; (2) to single out a vessel and perform in situ 3D measurement and 3D visualization in the support space; (3) to delineate individual vessels from the original angiographic volume; and (4) to cull the forest by getting rid of non-vessels and small vessels. A 3D skeletonization is used to generate component skeletons. For tree construction from skeletons, we suggest a pathlength-based procedure, which lifts the restrictions of unit-width skeleton and root determination. We experimentally demonstrate the forest representation of a dog's carotid arteries in a CBCTA system. In principle, the forest representation is useful for managing vessels in both 2D angiographic images and 3D angiographic volumes.
Hierarchical State-Space Estimation of Leatherback Turtle Navigation Ability
Mills Flemming, Joanna; Jonsen, Ian D.; Field, Christopher A.
2010-01-01
Remotely sensed tracking technology has revealed remarkable migration patterns that were previously unknown; however, models to optimally use such data have developed more slowly. Here, we present a hierarchical Bayes state-space framework that allows us to combine tracking data from a collection of animals and make inferences at both individual and broader levels. We formulate models that allow the navigation ability of animals to be estimated and demonstrate how information can be combined over many animals to allow improved estimation. We also show how formal hypothesis testing regarding navigation ability can easily be accomplished in this framework. Using Argos satellite tracking data from 14 leatherback turtles, 7 males and 7 females, during their southward migration from Nova Scotia, Canada, we find that the circle of confusion (the radius around an animal's location within which it is unable to determine its location precisely) is approximately 96 km. This estimate suggests that the turtles' navigation does not need to be highly accurate, especially if they are able to use more reliable cues as they near their destination. Moreover, for the 14 turtles examined, there is little evidence to suggest that male and female navigation abilities differ. Because of the minimal assumptions made about the movement process, our approach can be used to estimate and compare navigation ability for many migratory species that are able to carry electronic tracking devices. PMID:21203382
Influence of ultrasound speckle tracking strategies for motion and strain estimation.
Curiale, Ariel H; Vegas-Sánchez-Ferrero, Gonzalo; Aja-Fernández, Santiago
2016-08-01
Speckle Tracking is one of the most prominent techniques used to estimate the regional movement of the heart based on ultrasound acquisitions. Many different approaches have been proposed, proving their suitability to obtain quantitative and qualitative information regarding myocardial deformation, motion and function assessment. New proposals to improve the basic algorithm usually focus on one of these three steps: (1) the similarity measure between images and the speckle model; (2) the transformation model, i.e. the type of motion considered between images; (3) the optimization strategies, such as the use of different optimization techniques in the transformation step or the inclusion of structural information. While many contributions have shown their good performance independently, it is not always clear how they perform when integrated in a whole pipeline. Every step will have a degree of influence over the following and hence over the final result. Thus, a Speckle Tracking pipeline must be analyzed as a whole when developing novel methods, since improvements in a particular step might be undermined by the choices taken in further steps. This work presents two main contributions: (1) We provide a complete analysis of the influence of the different steps in a Speckle Tracking pipeline over the motion and strain estimation accuracy. (2) The study proposes a methodology for the analysis of Speckle Tracking systems specifically designed to provide an easy and systematic way to include other strategies. We close the analysis with some conclusions and recommendations that can be used as an orientation of the degree of influence of the models for speckle, the transformation models, interpolation schemes and optimization strategies over the estimation of motion features. They can be further use to evaluate and design new strategy into a Speckle Tracking system. Copyright © 2016 Elsevier B.V. All rights reserved.
DOT National Transportation Integrated Search
1975-01-01
The six-volume report presents the technical methodology, data samples, and results of tests conducted on the SOAC on the Rail Transit Test Track at the High Speed Ground Test Center in Pueblo, Colorado during the period April to July 1973. The Test ...
DOT National Transportation Integrated Search
1975-01-01
The six-volume report presents the technical methodology, data samples, and results of tests conducted on the SOAC on the Rail Transit Test Track at the High Speed Ground Test Center in Pueblo, Colorado during the period April to July 1973. The Test ...
DOT National Transportation Integrated Search
1975-01-01
The six-volume report presents the technical methodology, data samples, and results of tests conducted on the SOAC on the Rail Transit Test Track at the High Speed Ground Test Center in Pueblo, Colorado during the period April to July 1973. The Test ...
DOT National Transportation Integrated Search
1975-01-01
The six-volume report presents the technical methodology, data samples, and results of tests conducted on the SOAC on the Rail Transit Test Track at the High Speed Ground Test Center in Pueblo, Colorado during the period April to July 1973. The Test ...
DOT National Transportation Integrated Search
1975-01-01
The six-volume report presents the technical methodology, data samples, and results of tests conducted on the SOAC on the Rail Transit Test Track at the High Speed Ground Test Center in Pueblo, Colorado during the period April to July 1973. The Test ...
Robust 3D Position Estimation in Wide and Unconstrained Indoor Environments
Mossel, Annette
2015-01-01
In this paper, a system for 3D position estimation in wide, unconstrained indoor environments is presented that employs infrared optical outside-in tracking of rigid-body targets with a stereo camera rig. To overcome limitations of state-of-the-art optical tracking systems, a pipeline for robust target identification and 3D point reconstruction has been investigated that enables camera calibration and tracking in environments with poor illumination, static and moving ambient light sources, occlusions and harsh conditions, such as fog. For evaluation, the system has been successfully applied in three different wide and unconstrained indoor environments, (1) user tracking for virtual and augmented reality applications, (2) handheld target tracking for tunneling and (3) machine guidance for mining. The results of each use case are discussed to embed the presented approach into a larger technological and application context. The experimental results demonstrate the system’s capabilities to track targets up to 100 m. Comparing the proposed approach to prior art in optical tracking in terms of range coverage and accuracy, it significantly extends the available tracking range, while only requiring two cameras and providing a relative 3D point accuracy with sub-centimeter deviation up to 30 m and low-centimeter deviation up to 100 m. PMID:26694388
Inferring animal densities from tracking data using Markov chains.
Whitehead, Hal; Jonsen, Ian D
2013-01-01
The distributions and relative densities of species are keys to ecology. Large amounts of tracking data are being collected on a wide variety of animal species using several methods, especially electronic tags that record location. These tracking data are effectively used for many purposes, but generally provide biased measures of distribution, because the starts of the tracks are not randomly distributed among the locations used by the animals. We introduce a simple Markov-chain method that produces unbiased measures of relative density from tracking data. The density estimates can be over a geographical grid, and/or relative to environmental measures. The method assumes that the tracked animals are a random subset of the population in respect to how they move through the habitat cells, and that the movements of the animals among the habitat cells form a time-homogenous Markov chain. We illustrate the method using simulated data as well as real data on the movements of sperm whales. The simulations illustrate the bias introduced when the initial tracking locations are not randomly distributed, as well as the lack of bias when the Markov method is used. We believe that this method will be important in giving unbiased estimates of density from the growing corpus of animal tracking data.
NASA Astrophysics Data System (ADS)
Dubuque, Shaun; Coffman, Thayne; McCarley, Paul; Bovik, A. C.; Thomas, C. William
2009-05-01
Foveated imaging has been explored for compression and tele-presence, but gaps exist in the study of foveated imaging applied to acquisition and tracking systems. Results are presented from two sets of experiments comparing simple foveated and uniform resolution targeting (acquisition and tracking) algorithms. The first experiments measure acquisition performance when locating Gabor wavelet targets in noise, with fovea placement driven by a mutual information measure. The foveated approach is shown to have lower detection delay than a notional uniform resolution approach when using video that consumes equivalent bandwidth. The second experiments compare the accuracy of target position estimates from foveated and uniform resolution tracking algorithms. A technique is developed to select foveation parameters that minimize error in Kalman filter state estimates. Foveated tracking is shown to consistently outperform uniform resolution tracking on an abstract multiple target task when using video that consumes equivalent bandwidth. Performance is also compared to uniform resolution processing without bandwidth limitations. In both experiments, superior performance is achieved at a given bandwidth by foveated processing because limited resources are allocated intelligently to maximize operational performance. These findings indicate the potential for operational performance improvements over uniform resolution systems in both acquisition and tracking tasks.
A neural network z-vertex trigger for Belle II
NASA Astrophysics Data System (ADS)
Neuhaus, S.; Skambraks, S.; Abudinen, F.; Chen, Y.; Feindt, M.; Frühwirth, R.; Heck, M.; Kiesling, C.; Knoll, A.; Paul, S.; Schieck, J.
2015-05-01
We present the concept of a track trigger for the Belle II experiment, based on a neural network approach, that is able to reconstruct the z (longitudinal) position of the event vertex within the latency of the first level trigger. The trigger will thus be able to suppress a large fraction of the dominating background from events outside of the interaction region. The trigger uses the drift time information of the hits from the Central Drift Chamber (CDC) of Belle II within narrow cones in polar and azimuthal angle as well as in transverse momentum (sectors), and estimates the z-vertex without explicit track reconstruction. The preprocessing for the track trigger is based on the track information provided by the standard CDC trigger. It takes input from the 2D (r — φ) track finder, adds information from the stereo wires of the CDC, and finds the appropriate sectors in the CDC for each track in a given event. Within each sector, the z-vertex of the associated track is estimated by a specialized neural network, with a continuous output corresponding to the scaled z-vertex. The input values for the neural network are calculated from the wire hits of the CDC.
NASA Astrophysics Data System (ADS)
Martinec, Zdeněk; Velímský, Jakub; Haagmans, Roger; Šachl, Libor
2018-02-01
This study deals with the analysis of Swarm vector magnetic field measurements in order to estimate the magnetic field of magnetospheric ring current. For a single Swarm satellite, the magnetic measurements are processed by along-track spectral analysis on a track-by-track basis. The main and lithospheric magnetic fields are modelled by the CHAOS-6 field model and subtracted from the along-track Swarm magnetic data. The mid-latitude residual signal is then spectrally analysed and extrapolated to the polar regions. The resulting model of the magnetosphere (model MME) is compared to the existing Swarm Level 2 magnetospheric field model (MMA_SHA_2C). The differences of up to 10 nT are found on the nightsides Swarm data from 2014 April 8 to May 10, which are due to different processing schemes used to construct the two magnetospheric magnetic field models. The forward-simulated magnetospheric magnetic field generated by the external part of model MME then demonstrates the consistency of the separation of the Swarm along-track signal into the external and internal parts by the two-step along-track spectral analysis.
Robust feedback zoom tracking for digital video surveillance.
Zou, Tengyue; Tang, Xiaoqi; Song, Bao; Wang, Jin; Chen, Jihong
2012-01-01
Zoom tracking is an important function in video surveillance, particularly in traffic management and security monitoring. It involves keeping an object of interest in focus during the zoom operation. Zoom tracking is typically achieved by moving the zoom and focus motors in lenses following the so-called "trace curve", which shows the in-focus motor positions versus the zoom motor positions for a specific object distance. The main task of a zoom tracking approach is to accurately estimate the trace curve for the specified object. Because a proportional integral derivative (PID) controller has historically been considered to be the best controller in the absence of knowledge of the underlying process and its high-quality performance in motor control, in this paper, we propose a novel feedback zoom tracking (FZT) approach based on the geometric trace curve estimation and PID feedback controller. The performance of this approach is compared with existing zoom tracking methods in digital video surveillance. The real-time implementation results obtained on an actual digital video platform indicate that the developed FZT approach not only solves the traditional one-to-many mapping problem without pre-training but also improves the robustness for tracking moving or switching objects which is the key challenge in video surveillance.
Trabant, Dennis C.
1999-01-01
The volume of four of the largest glaciers on Iliamna Volcano was estimated using the volume model developed for evaluating glacier volumes on Redoubt Volcano. The volume model is controlled by simulated valley cross sections that are constructed by fitting third-order polynomials to the shape of the valley walls exposed above the glacier surface. Critical cross sections were field checked by sounding with ice-penetrating radar during July 1998. The estimated volumes of perennial snow and glacier ice for Tuxedni, Lateral, Red, and Umbrella Glaciers are 8.6, 0.85, 4.7, and 0.60 cubic kilometers respectively. The estimated volume of snow and ice on the upper 1,000 meters of the volcano is about 1 cubic kilometer. The volume estimates are thought to have errors of no more than ?25 percent. The volumes estimated for the four largest glaciers are more than three times the total volume of snow and ice on Mount Rainier and about 82 times the total volume of snow and ice that was on Mount St. Helens before its May 18, 1980 eruption. Volcanoes mantled by substantial snow and ice covers have produced the largest and most catastrophic lahars and floods. Therefore, it is prudent to expect that, during an eruptive episode, flooding and lahars threaten all of the drainages heading on Iliamna Volcano. On the other hand, debris avalanches can happen any time. Fortunately, their influence is generally limited to the area within a few kilometers of the summit.
C-plane Reconstructions from Sheaf Acquisition for Ultrasound Electrode Vibration Elastography.
Ingle, Atul; Varghese, Tomy
2014-09-03
This paper presents a novel algorithm for reconstructing and visualizing ablated volumes using radiofrequency ultrasound echo data acquired with the electrode vibration elastography approach. The ablation needle is vibrated using an actuator to generate shear wave pulses that are tracked in the ultrasound image plane at different locations away from the needle. This data is used for reconstructing shear wave velocity maps for each imaging plane. A C-plane reconstruction algorithm is proposed which estimates shear wave velocity values on a collection of transverse planes that are perpendicular to the imaging planes. The algorithm utilizes shear wave velocity maps from different imaging planes that share a common axis of intersection. These C-planes can be used to generate a 3D visualization of the ablated region. Experimental validation of this approach was carried out using data from a tissue mimicking phantom. The shear wave velocity estimates were within 20% of those obtained from a clinical scanner, and a contrast of over 4 dB was obtained between the stiff and soft regions of the phantom.
Sea-level response to ice sheet evolution: An ocean perspective
NASA Technical Reports Server (NTRS)
Jacobs, Stanley S.
1991-01-01
The ocean's influence upon and response to Antarctic ice sheet changes is considered in relation to sea level rise over recent and future decades. Assuming present day ice fronts are in approximate equilibrium, a preliminary budget for the ice sheet is estimated from accumulation vs. iceberg calving and the basal melting that occurs beneath floating ice shelves. Iceberg calving is derived from the volume of large bergs identified and tracked by the Navy/NOAA Joint Ice Center and from shipboard observations. Basal melting exceeds 600 cu km/yr and is concentrated near the ice fronts and ice shelf grounding lines. An apparent negative mass balance for the Antarctic ice sheet may result from an anomalous calving rate during the past decade, but there are large uncertainties associated with all components of the ice budget. The results from general circulation models are noted in the context of projected precipitation increases and ocean temperature changes on and near the continent. An ocean research program that could help refine budget estimates is consistent with goals of the West Antarctic Ice Sheet Initiative.
Glacier volume estimation of Cascade Volcanoes—an analysis and comparison with other methods
Driedger, Carolyn L.; Kennard, P.M.
1986-01-01
During the 1980 eruption of Mount St. Helens, the occurrence of floods and mudflows made apparent a need to assess mudflow hazards on other Cascade volcanoes. A basic requirement for such analysis is information about the volume and distribution of snow and ice on these volcanoes. An analysis was made of the volume-estimation methods developed by previous authors and a volume estimation method was developed for use in the Cascade Range. A radio echo-sounder, carried in a backpack, was used to make point measurements of ice thickness on major glaciers of four Cascade volcanoes (Mount Rainier, Washington; Mount Hood and the Three Sisters, Oregon; and Mount Shasta, California). These data were used to generate ice-thickness maps and bedrock topographic maps for developing and testing volume-estimation methods. Subsequently, the methods were applied to the unmeasured glaciers on those mountains and, as a test of the geographical extent of applicability, to glaciers beyond the Cascades having measured volumes. Two empirical relationships were required in order to predict volumes for all the glaciers. Generally, for glaciers less than 2.6 km in length, volume was found to be estimated best by using glacier area, raised to a power. For longer glaciers, volume was found to be estimated best by using a power law relationship, including slope and shear stress. The necessary variables can be estimated from topographic maps and aerial photographs.
A vision-based approach for tramway rail extraction
NASA Astrophysics Data System (ADS)
Zwemer, Matthijs H.; van de Wouw, Dennis W. J. M.; Jaspers, Egbert; Zinger, Sveta; de With, Peter H. N.
2015-03-01
The growing traffic density in cities fuels the desire for collision assessment systems on public transportation. For this application, video analysis is broadly accepted as a cornerstone. For trams, the localization of tramway tracks is an essential ingredient of such a system, in order to estimate a safety margin for crossing traffic participants. Tramway-track detection is a challenging task due to the urban environment with clutter, sharp curves and occlusions of the track. In this paper, we present a novel and generic system to detect the tramway track in advance of the tram position. The system incorporates an inverse perspective mapping and a-priori geometry knowledge of the rails to find possible track segments. The contribution of this paper involves the creation of a new track reconstruction algorithm which is based on graph theory. To this end, we define track segments as vertices in a graph, in which edges represent feasible connections. This graph is then converted to a max-cost arborescence graph, and the best path is selected according to its location and additional temporal information based on a maximum a-posteriori estimate. The proposed system clearly outperforms a railway-track detector. Furthermore, the system performance is validated on 3,600 manually annotated frames. The obtained results are promising, where straight tracks are found in more than 90% of the images and complete curves are still detected in 35% of the cases.
NASA Astrophysics Data System (ADS)
Waghorn, Ben J.; Shah, Amish P.; Ngwa, Wilfred; Meeks, Sanford L.; Moore, Joseph A.; Siebers, Jeffrey V.; Langen, Katja M.
2010-07-01
Intra-fraction organ motion during intensity-modulated radiation therapy (IMRT) treatment can cause differences between the planned and the delivered dose distribution. To investigate the extent of these dosimetric changes, a computational model was developed and validated. The computational method allows for calculation of the rigid motion perturbed three-dimensional dose distribution in the CT volume and therefore a dose volume histogram-based assessment of the dosimetric impact of intra-fraction motion on a rigidly moving body. The method was developed and validated for both step-and-shoot IMRT and solid compensator IMRT treatment plans. For each segment (or beam), fluence maps were exported from the treatment planning system. Fluence maps were shifted according to the target position deduced from a motion track. These shifted, motion-encoded fluence maps were then re-imported into the treatment planning system and were used to calculate the motion-encoded dose distribution. To validate the accuracy of the motion-encoded dose distribution the treatment plan was delivered to a moving cylindrical phantom using a programmed four-dimensional motion phantom. Extended dose response (EDR-2) film was used to measure a planar dose distribution for comparison with the calculated motion-encoded distribution using a gamma index analysis (3% dose difference, 3 mm distance-to-agreement). A series of motion tracks incorporating both inter-beam step-function shifts and continuous sinusoidal motion were tested. The method was shown to accurately predict the film's dose distribution for all of the tested motion tracks, both for the step-and-shoot IMRT and compensator plans. The average gamma analysis pass rate for the measured dose distribution with respect to the calculated motion-encoded distribution was 98.3 ± 0.7%. For static delivery the average film-to-calculation pass rate was 98.7 ± 0.2%. In summary, a computational technique has been developed to calculate the dosimetric effect of intra-fraction motion. This technique has the potential to evaluate a given plan's sensitivity to anticipated organ motion. With knowledge of the organ's motion it can also be used as a tool to assess the impact of measured intra-fraction motion after dose delivery.
Internal Motion Estimation by Internal-external Motion Modeling for Lung Cancer Radiotherapy.
Chen, Haibin; Zhong, Zichun; Yang, Yiwei; Chen, Jiawei; Zhou, Linghong; Zhen, Xin; Gu, Xuejun
2018-02-27
The aim of this study is to develop an internal-external correlation model for internal motion estimation for lung cancer radiotherapy. Deformation vector fields that characterize the internal-external motion are obtained by respectively registering the internal organ meshes and external surface meshes from the 4DCT images via a recently developed local topology preserved non-rigid point matching algorithm. A composite matrix is constructed by combing the estimated internal phasic DVFs with external phasic and directional DVFs. Principle component analysis is then applied to the composite matrix to extract principal motion characteristics, and generate model parameters to correlate the internal-external motion. The proposed model is evaluated on a 4D NURBS-based cardiac-torso (NCAT) synthetic phantom and 4DCT images from five lung cancer patients. For tumor tracking, the center of mass errors of the tracked tumor are 0.8(±0.5)mm/0.8(±0.4)mm for synthetic data, and 1.3(±1.0)mm/1.2(±1.2)mm for patient data in the intra-fraction/inter-fraction tracking, respectively. For lung tracking, the percent errors of the tracked contours are 0.06(±0.02)/0.07(±0.03) for synthetic data, and 0.06(±0.02)/0.06(±0.02) for patient data in the intra-fraction/inter-fraction tracking, respectively. The extensive validations have demonstrated the effectiveness and reliability of the proposed model in motion tracking for both the tumor and the lung in lung cancer radiotherapy.
Left atrium function by 2D speckle tracking in aortic valve disease.
Salas-Pacheco, Jose L; Ávila-Vanzzini, Nydia; Eugenia, Ruiz-Esparza M; Arias-Godínez, Jose A
2016-12-01
A paucity of data exists about left atrium (LA) function in aortic valve stenosis (AS) or regurgitation (AR). Two-dimensional speckle tracking echocardiography allows the noninvasive study of LA functional disturbances in aortic valve disease and their impact in the development of pulmonary hypertension (PH). Consecutive patients with moderate or severe AS or AR were included. Left ventricle (LV) and LA speckle tracking strain quantification was performed. We included 42 patients with AS and 30 with AR. Differences were not found in LA volumes and strain in AS or AR. The LA volumetric derangements parallel the decrease in LA longitudinal strain. Maximum LA volume, minimum LA volume, and indexed LA volume were higher in severe valvular disease (SVD) than in moderate [23 cc (P=.018, IC 95% : 4-41), 16 cc (P=.035, IC 95% : 2-31), and 14 cc (P=.022, IC 95% : 2-25), respectively], occurred in the same way with LA strain in the conduit (6.3%, P=.034, IC 95% : 1-12) and reservoir (7.1%, P=.04, IC 95% : 2-14) phases. In multivariable model, strain of reservoir phase was the variable mainly associated with PH; each decrease in one unit of strain of reservoir phase increased 6% the PH probability (OR: 1.06, P=.01). This study demonstrates that in patients with AS and AR, the LA has a similar behavior and that exist a close correlation between LA volumetric and functional parameters. The variable mainly associated with PH was LA strain of reservoir phase. © 2016, Wiley Periodicals, Inc.
High-performance object tracking and fixation with an online neural estimator.
Kumarawadu, Sisil; Watanabe, Keigo; Lee, Tsu-Tian
2007-02-01
Vision-based target tracking and fixation to keep objects that move in three dimensions in view is important for many tasks in several fields including intelligent transportation systems and robotics. Much of the visual control literature has focused on the kinematics of visual control and ignored a number of significant dynamic control issues that limit performance. In line with this, this paper presents a neural network (NN)-based binocular tracking scheme for high-performance target tracking and fixation with minimum sensory information. The procedure allows the designer to take into account the physical (Lagrangian dynamics) properties of the vision system in the control law. The design objective is to synthesize a binocular tracking controller that explicitly takes the systems dynamics into account, yet needs no knowledge of dynamic nonlinearities and joint velocity sensory information. The combined neurocontroller-observer scheme can guarantee the uniform ultimate bounds of the tracking, observer, and NN weight estimation errors under fairly general conditions on the controller-observer gains. The controller is tested and verified via simulation tests in the presence of severe target motion changes.
Atmospheric heating of meteorites: Results from nuclear track studies
NASA Technical Reports Server (NTRS)
Jha, R.
1984-01-01
A quantitative model to estimate the degree of annealing of nuclear tracks in mineral grains subjected to a variable temperature history was proposed. This model is applied to study the track annealing records in different meteorites resulting from their atmospheric heating. Scale lengths were measured of complete and partial track annealing, delta X sub 1 and delta X sub 2, respectively. In mineral grain close to fusion crust in about a dozen meteorites. Values of delta X sub 1 and delta X sub 2 depend on extent and duration of heating during atmospheric transit and hence on meteorite entry parameters. To estimate track annealing, the temperature history during atmospheric heating at different distances from the crusted surface of the meteorite is obtained by solving heat conduction equation in conjunction with meteorite entry model, and use of the annealing model to evaluate the degree of annealing of tracks. It is shown that the measured values of delta X sub 1 and delta X sub 2 in three of the meteorites studied are consistent with values using preatmospheric mass, entry velocity and entry angle of these meteorites.
Unsupervised markerless 3-DOF motion tracking in real time using a single low-budget camera.
Quesada, Luis; León, Alejandro J
2012-10-01
Motion tracking is a critical task in many computer vision applications. Existing motion tracking techniques require either a great amount of knowledge on the target object or specific hardware. These requirements discourage the wide spread of commercial applications based on motion tracking. In this paper, we present a novel three degrees of freedom motion tracking system that needs no knowledge on the target object and that only requires a single low-budget camera that can be found installed in most computers and smartphones. Our system estimates, in real time, the three-dimensional position of a nonmodeled unmarked object that may be nonrigid, nonconvex, partially occluded, self-occluded, or motion blurred, given that it is opaque, evenly colored, enough contrasting with the background in each frame, and that it does not rotate. Our system is also able to determine the most relevant object to track in the screen. Our proposal does not impose additional constraints, therefore it allows a market-wide implementation of applications that require the estimation of the three position degrees of freedom of an object.
Accurate motion parameter estimation for colonoscopy tracking using a regression method
NASA Astrophysics Data System (ADS)
Liu, Jianfei; Subramanian, Kalpathi R.; Yoo, Terry S.
2010-03-01
Co-located optical and virtual colonoscopy images have the potential to provide important clinical information during routine colonoscopy procedures. In our earlier work, we presented an optical flow based algorithm to compute egomotion from live colonoscopy video, permitting navigation and visualization of the corresponding patient anatomy. In the original algorithm, motion parameters were estimated using the traditional Least Sum of squares(LS) procedure which can be unstable in the context of optical flow vectors with large errors. In the improved algorithm, we use the Least Median of Squares (LMS) method, a robust regression method for motion parameter estimation. Using the LMS method, we iteratively analyze and converge toward the main distribution of the flow vectors, while disregarding outliers. We show through three experiments the improvement in tracking results obtained using the LMS method, in comparison to the LS estimator. The first experiment demonstrates better spatial accuracy in positioning the virtual camera in the sigmoid colon. The second and third experiments demonstrate the robustness of this estimator, resulting in longer tracked sequences: from 300 to 1310 in the ascending colon, and 410 to 1316 in the transverse colon.
NASA Technical Reports Server (NTRS)
Malla, R. P.; Wu, S.-C.; Lichten, S. M.
1993-01-01
Geocentric tracking station coordinates and short-period Earth-orientation variations can be measured with Global Positioning System (GPS) measurements. Unless calibrated, geocentric coordinate errors and changes in Earth orientation can lead to significant deep-space tracking errors. Ground-based GPS estimates of daily and subdaily changes in Earth orientation presently show centimeter-level precision. Comparison between GPS-estimated Earth-rotation variations, which are the differences between Universal Time 1 and Universal Coordinated Time (UT1-UTC), and those calculated from ocean tide models suggests that observed subdaily variations in Earth rotation are dominated by oceanic tidal effects. Preliminary GPS estimates for the geocenter location (from a 3-week experiment) agree with independent satellite laser-ranging estimates to better than 10 cm. Covariance analysis predicts that temporal resolution of GPS estimates for Earth orientation and geocenter improves significantly when data collected from low Earth-orbiting satellites as well as from ground sites are combined. The low Earth GPS tracking data enhance the accuracy and resolution for measuring high-frequency global geodynamical signals over time scales of less than 1 day.
The minitrack tracking function description, volume 1
NASA Technical Reports Server (NTRS)
Englar, T. S., Jr.; Mango, S. A.; Roettcher, C. A.; Watters, D. L.
1973-01-01
The treatment of tracking data by the Minitrack system is described from the transmission of the nominal 136-MHz radio beacon energy from a satellite and the reception of this signal by the interferometer network through the ultimate derivation of the direction cosines (the angular coordinates of the vector from the tracking station to the spacecraft) as a function of time. Descriptions of some of the lesser-known functions operating on the system, such as the computer preprocessing program, are included. A large part of the report is devoted to the preprocessor, which provides for the data compression, smoothing, calibration correction, and ambiguity resolution of the raw interferometer phase tracking measurements teletyped from each of the worldwide Minitrack tracking stations to the central computer facility at Goddard Space Flight Center. An extensive bibliography of Minitrack hardware and theory is presented.
Image-guided convection-enhanced delivery of muscimol to the primate brain
Heiss, John D.; Walbridge, Stuart; Asthagiri, Ashok R.; Lonser, Russell R.
2009-01-01
Object Muscimol is a potent γ-aminobutyric acid-A receptor agonist (GABAA) that temporarily and selectively suppresses neurons. Targeted muscimol-suppression of neuronal structures could provide insight into the pathophysiology and treatment of a variety of neurologic disorders. To determine if muscimol delivered to the brain by convection-enhanced delivery (CED) could be monitored using a co-infused surrogate magnetic resonance (MR)-imaging tracer, we perfused the striata of primates with tritiated muscimol and gadolinium-DTPA. Methods Three primates underwent convective co-infusion of 3H-muscimol (0.8 μM) and gadolinium-DTPA (−5 mM) into the bilateral striata. Primates underwent serial MR-imaging during infusion and animals were sacrificed immediately after infusion. Post-mortem quantitative autoradiography and histological analysis was performed. Results MR-imaging revealed that infusate (tritiated muscimol and gadolinium-DTPA) distribution was clearly discernible from the non-infused parenchyma. Real-time MR-imaging of the infusion revealed the precise region of anatomic perfusion in each animal. Imaging analysis during infusion revealed that the distribution volume of infusate linearly increased (R=0.92) with volume of infusion. Overall, the mean (±S.D.) volume of distribution to volume of infusion ratio was 8.2±1.3. Autoradiographic analysis revealed that MR-imaging of gadolinium-DTPA closely correlated with the distribution of 3H-muscimol and precisely estimated its volume of distribution (mean difference in volume of distribution, 7.4%). Quantitative autoradiograms revealed that muscimol was homogeneously distributed over the perfused region in a square-shaped concentration profile. Conclusions Muscimol can be effectively delivered to clinically relevant volumes of the primate brain. Moreover, the distribution of muscimol can be tracked by co-infusion of gadolinium-DTPA using MR-imaging. The ability to accurately monitor and control the anatomic extent of muscimol distribution during its convection-enhanced delivery will enhance safety, permit correlations of muscimol distribution with clinical effect, and should lead to an improved understanding of the pathophysiologic processes underlying a variety of neurologic disorders. PMID:19715424
Radial Internal Material Handling System (RIMS) for Circular Habitat Volumes
NASA Technical Reports Server (NTRS)
Howe, Alan S.; Haselschwardt, Sally; Bogatko, Alex; Humphrey, Brian; Patel, Amit
2013-01-01
On planetary surfaces, pressurized human habitable volumes will require a means to carry equipment around within the volume of the habitat, regardless of the partial gravity (Earth, Moon, Mars, etc.). On the NASA Habitat Demonstration Unit (HDU), a vertical cylindrical volume, it was determined that a variety of heavy items would need to be carried back and forth from deployed locations to the General Maintenance Work Station (GMWS) when in need of repair, and other equipment may need to be carried inside for repairs, such as rover parts and other external equipment. The vertical cylindrical volume of the HDU lent itself to a circular overhead track and hoist system that allows lifting of heavy objects from anywhere in the habitat to any other point in the habitat interior. In addition, the system is able to hand-off lifted items to other material handling systems through the side hatches, such as through an airlock. The overhead system consists of two concentric circle tracks that have a movable beam between them. The beam has a hoist carriage that can move back and forth on the beam. Therefore, the entire system acts like a bridge crane curved around to meet itself in a circle. The novelty of the system is in its configuration, and how it interfaces with the volume of the HDU habitat. Similar to how a bridge crane allows coverage for an entire rectangular volume, the RIMS system covers a circular volume. The RIMS system is the first generation of what may be applied to future planetary surface vertical cylinder habitats on the Moon or on Mars.
Maggioni, Matteo; Boracchi, Giacomo; Foi, Alessandro; Egiazarian, Karen
2012-09-01
We propose a powerful video filtering algorithm that exploits temporal and spatial redundancy characterizing natural video sequences. The algorithm implements the paradigm of nonlocal grouping and collaborative filtering, where a higher dimensional transform-domain representation of the observations is leveraged to enforce sparsity, and thus regularize the data: 3-D spatiotemporal volumes are constructed by tracking blocks along trajectories defined by the motion vectors. Mutually similar volumes are then grouped together by stacking them along an additional fourth dimension, thus producing a 4-D structure, termed group, where different types of data correlation exist along the different dimensions: local correlation along the two dimensions of the blocks, temporal correlation along the motion trajectories, and nonlocal spatial correlation (i.e., self-similarity) along the fourth dimension of the group. Collaborative filtering is then realized by transforming each group through a decorrelating 4-D separable transform and then by shrinkage and inverse transformation. In this way, the collaborative filtering provides estimates for each volume stacked in the group, which are then returned and adaptively aggregated to their original positions in the video. The proposed filtering procedure addresses several video processing applications, such as denoising, deblocking, and enhancement of both grayscale and color data. Experimental results prove the effectiveness of our method in terms of both subjective and objective visual quality, and show that it outperforms the state of the art in video denoising.
Diefenbach, Angela K.; Crider, Juliet G.; Schilling, Steve P.; Dzurisin, Daniel
2012-01-01
We describe a low-cost application of digital photogrammetry using commercially available photogrammetric software and oblique photographs taken with an off-the-shelf digital camera to create sequential digital elevation models (DEMs) of a lava dome that grew during the 2004–2008 eruption of Mount St. Helens (MSH) volcano. Renewed activity at MSH provided an opportunity to devise and test this method, because it could be validated against other observations of this well-monitored volcano. The datasets consist of oblique aerial photographs (snapshots) taken from a helicopter using a digital single-lens reflex camera. Twelve sets of overlapping digital images of the dome taken during 2004–2007 were used to produce DEMs and to calculate lava dome volumes and extrusion rates. Analyses of the digital images were carried out using photogrammetric software to produce three-dimensional coordinates of points identified in multiple photos. The evolving morphology of the dome was modeled by comparing successive DEMs. Results were validated by comparison to volume measurements derived from traditional vertical photogrammetric surveys by the US Geological Survey Cascades Volcano Observatory. Our technique was significantly less expensive and required less time than traditional vertical photogrammetric techniques; yet, it consistently yielded volume estimates within 5% of the traditional method. This technique provides an inexpensive, rapid assessment tool for tracking lava dome growth or other topographic changes at restless volcanoes.
Ancona, Roberta; Comenale Pinto, Salvatore; Caso, Pio; D'Andrea, Antonello; Di Salvo, Giovanni; Arenga, Fortunato; Coppola, Maria Gabriella; Sellitto, Vincenzo; Macrino, Maria; Calabrò, Raffaele
2014-01-01
Although often referred to as "the forgotten chamber", compared with left ventricle (LV), especially in the past years, the left atrium (LA) plays a critical role in the clinical expression and prognosis of patients with heart and cerebrovascular disease, as demonstrated by several studies. Echocardiographers initially focused on early detection of atrial geometrical abnormalities through monodimensional atrial diameter quantification and then bidimensional (2D) areas and volume estimation. Now, together with conventional echocardiographic parameters, new echocardiographic techniques, such as strain Doppler, 2D speckle tracking and three-dimensional (3D) echocardiography, allow assessing early LA dysfunction and they all play a fundamental role to detect early functional remodelling before anatomical alterations occur. LA dysfunction and its important prognostic implications may be detected sooner by LA strain than by volumetric measurements.
Rakhimberdiev, Eldar; Winkler, David W; Bridge, Eli; Seavy, Nathaniel E; Sheldon, Daniel; Piersma, Theunis; Saveliev, Anatoly
2015-01-01
Solar archival tags (henceforth called geolocators) are tracking devices deployed on animals to reconstruct their long-distance movements on the basis of locations inferred post hoc with reference to the geographical and seasonal variations in the timing and speeds of sunrise and sunset. The increased use of geolocators has created a need for analytical tools to produce accurate and objective estimates of migration routes that are explicit in their uncertainty about the position estimates. We developed a hidden Markov chain model for the analysis of geolocator data. This model estimates tracks for animals with complex migratory behaviour by combining: (1) a shading-insensitive, template-fit physical model, (2) an uncorrelated random walk movement model that includes migratory and sedentary behavioural states, and (3) spatially explicit behavioural masks. The model is implemented in a specially developed open source R package FLightR. We used the particle filter (PF) algorithm to provide relatively fast model posterior computation. We illustrate our modelling approach with analysis of simulated data for stationary tags and of real tracks of both a tree swallow Tachycineta bicolor migrating along the east and a golden-crowned sparrow Zonotrichia atricapilla migrating along the west coast of North America. We provide a model that increases accuracy in analyses of noisy data and movements of animals with complicated migration behaviour. It provides posterior distributions for the positions of animals, their behavioural states (e.g., migrating or sedentary), and distance and direction of movement. Our approach allows biologists to estimate locations of animals with complex migratory behaviour based on raw light data. This model advances the current methods for estimating migration tracks from solar geolocation, and will benefit a fast-growing number of tracking studies with this technology.
B-spline based image tracking by detection
NASA Astrophysics Data System (ADS)
Balaji, Bhashyam; Sithiravel, Rajiv; Damini, Anthony; Kirubarajan, Thiagalingam; Rajan, Sreeraman
2016-05-01
Visual image tracking involves the estimation of the motion of any desired targets in a surveillance region using a sequence of images. A standard method of isolating moving targets in image tracking uses background subtraction. The standard background subtraction method is often impacted by irrelevant information in the images, which can lead to poor performance in image-based target tracking. In this paper, a B-Spline based image tracking is implemented. The novel method models the background and foreground using the B-Spline method followed by a tracking-by-detection algorithm. The effectiveness of the proposed algorithm is demonstrated.
An Optimization-Based State Estimatioin Framework for Large-Scale Natural Gas Networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jalving, Jordan; Zavala, Victor M.
We propose an optimization-based state estimation framework to track internal spacetime flow and pressure profiles of natural gas networks during dynamic transients. We find that the estimation problem is ill-posed (because of the infinite-dimensional nature of the states) and that this leads to instability of the estimator when short estimation horizons are used. To circumvent this issue, we propose moving horizon strategies that incorporate prior information. In particular, we propose a strategy that initializes the prior using steady-state information and compare its performance against a strategy that does not initialize the prior. We find that both strategies are capable ofmore » tracking the state profiles but we also find that superior performance is obtained with steady-state prior initialization. We also find that, under the proposed framework, pressure sensor information at junctions is sufficient to track the state profiles. We also derive approximate transport models and show that some of these can be used to achieve significant computational speed-ups without sacrificing estimation performance. We show that the estimator can be easily implemented in the graph-based modeling framework Plasmo.jl and use a multipipeline network study to demonstrate the developments.« less
NASA Technical Reports Server (NTRS)
Chie, C. M.; White, M. A.; Lindsey, W. C.; Davarian, F.; Dixon, R. C.
1984-01-01
Functional requirements and specifications are defined for an autonomous integrated receive system (AIRS) to be used as an improvement in the current tracking and data relay satellite system (TDRSS), and as a receiving system in the future tracking and data acquisition system (TDAS). The AIRS provides improved acquisition, tracking, bit error rate (BER), RFI mitigation techniques, and data operations performance compared to the current TDRSS ground segment receive system. A computer model of the AIRS is used to provide simulation results predicting the performance of AIRS. Cost and technology assessments are included.
From Air Temperature to Lake Evaporation on a Daily Time Step: A New Empirical Approach
NASA Astrophysics Data System (ADS)
Welch, C.; Holmes, T. L.; Stadnyk, T. A.
2016-12-01
Lake evaporation is a key component of the water balance in much of Canada due to the vast surface area covered by open water. Hence, incorporating this flux effectively into hydrological simulation frameworks is essential to effective water management. Inclusion has historically been limited by the intensive data required to apply the energy budget methods previously demonstrated to most effectively capture the timing and volume of the evaporative flux. Widespread, consistent, lake water temperature and net radiation data are not available across much of Canada, particularly the sparsely populated boreal shield. We present a method to estimate lake evaporation on a daily time step that consists of a series of empirical equations applicable to lakes of widely varying morphologies. Specifically, estimation methods that require the single meteorological variable of air temperature are presented for lake water temperature, net radiation, and heat flux. The methods were developed using measured data collected at two small Boreal shield lakes, Lake Winnipeg North and South basins, and Lake Superior in 2008 and 2009. The mean average error (MAE) of the lake water temperature estimates is generally 1.5°C, and the MAE of the heat flux method is 50 W m-2. The simulated values are combined to estimate daily lake evaporation using the Priestley-Taylor method. Heat storage within the lake is tracked and limits the potential heat flux from a lake. Five-day running averages compare well to measured evaporation at the two small shield lakes (Bowen Ratio Energy Balance) and adequately to Lake Superior (eddy covariance). In addition to air temperature, the method requires a mean depth for each lake. The method demonstrably improves the timing and volume of evaporative flux in comparison to existing evaporation methods that depend only on temperature. The method will be further tested in a semi-distributed hydrological model to assess the cumulative effects across a lake-dominated catchment in the Lower Nelson River basin.
NASA Astrophysics Data System (ADS)
Crone, T. J.; Kinsey, J. C.; Mittelstaedt, E. L.
2017-12-01
Hydrothermal venting at mid-ocean ridges influences ocean chemistry, the thermal and chemical structure of the oceanic crust, and the evolution of unique and diverse autolithotrophically-supported ecosystems. Axially-hosted hydrothermal systems are responsible for 20-25% of the total heat flux out of Earth's interior, and likely play a large role in local as well as global biogeochemical cycles. Despite the importance of these systems, only a few studies have attempted to constrain the volume and heat flux of an entire hydrothermal vent field. In July of 2014 we used the Sentry autonomous underwater vehicle (AUV) to survey the water column over the ASHES hydrothermal vent field which is located within the caldera of Axial Seamount, an active submarine volcano located on the Juan de Fuca Ridge. To estimate the total heat and mass flux from this vent field, we equipped Sentry with a Nortek acoustic Doppler velocimeter (ADV), an inertial measurement unit (IMU), two acoustic Doppler current profilers (ADCPs), and two SBE3 temperature probes, allowing us to obtain precise measurements of fluid temperature and water velocity. The survey was designed using a control volume approach in which Sentry was pre-programmed to survey a 150-m-square centered over the vent field flying a grid pattern with 5-m track line spacing followed by a survey of the perimeter. This pattern was repeated multiple times during several 10-h dives at different altitudes, including 10, 20, 40, and 60 m above the seafloor, and during one 40-h survey at an altitude of 10 m. During the 40-h survey, the pattern was repeated nine times allowing us to obtain observations over several tidal cycles. Water velocity data obtained with Sentry were corrected for platform motion and then combined with the temperature measurements to estimate heat flux. The analysis of these data will likely provide the most accurate and highest resolution heat and mass flux estimates at a seafloor hydrothermal field to date.
NASA Technical Reports Server (NTRS)
Treuhaft, Robert N.; Law, Beverly E.; Siqueira, Paul R.
2000-01-01
Parameters describing the vertical structure of forests, for example tree height, height-to-base-of-live-crown, underlying topography, and leaf area density, bear on land-surface, biogeochemical, and climate modeling efforts. Single, fixed-baseline interferometric synthetic aperture radar (INSAR) normalized cross-correlations constitute two observations from which to estimate forest vertical structure parameters: Cross-correlation amplitude and phase. Multialtitude INSAR observations increase the effective number of baselines potentially enabling the estimation of a larger set of vertical-structure parameters. Polarimetry and polarimetric interferometry can further extend the observation set. This paper describes the first acquisition of multialtitude INSAR for the purpose of estimating the parameters describing a vegetated land surface. These data were collected over ponderosa pine in central Oregon near longitude and latitude -121 37 25 and 44 29 56. The JPL interferometric TOPSAR system was flown at the standard 8-km altitude, and also at 4-km and 2-km altitudes, in a race track. A reference line including the above coordinates was maintained at 35 deg for both the north-east heading and the return southwest heading, at all altitudes. In addition to the three altitudes for interferometry, one line was flown with full zero-baseline polarimetry at the 8-km altitude. A preliminary analysis of part of the data collected suggests that they are consistent with one of two physical models describing the vegetation: 1) a single-layer, randomly oriented forest volume with a very strong ground return or 2) a multilayered randomly oriented volume; a homogeneous, single-layer model with no ground return cannot account for the multialtitude correlation amplitudes. Below the inconsistency of the data with a single-layer model is followed by analysis scenarios which include either the ground or a layered structure. The ground returns suggested by this preliminary analysis seem too strong to be plausible, but parameters describing a two-layer compare reasonably well to a field-measured probability distribution of tree heights in the area.
A field test of cut-off importance sampling for bole volume
Jeffrey H. Gove; Harry T. Valentine; Michael J. Holmes
2000-01-01
Cut-off importance sampling has recently been introduced as a technique for estimating bole volume to some point below the tree tip, termed the cut-off point. A field test of this technique was conducted on a small population of eastern white pine trees using dendrometry as the standard for volume estimation. Results showed that the differences in volume estimates...
NASA Astrophysics Data System (ADS)
Watanabe, Takashi; Yoshida, Toshiya; Ohniwa, Katsumi
This paper discusses a new control strategy for photovoltaic power generation systems with consideration of dynamic characteristics of the photovoltaic cells. The controller estimates internal currents of an equivalent circuit for the cells. This estimated, or the virtual current and the actual voltage of the cells are fed to a conventional Maximum-Power-Point-Tracking (MPPT) controller. Consequently, this MPPT controller still tracks the optimum point even though it is so designed that the seeking speed of the operating point is extremely high. This system may suit for applications, which are installed in rapidly changeable insolation and temperature-conditions e.g. automobiles, trains, and airplanes. The proposed method is verified by experiment with a combination of this estimating function and the modified Boehringer's MPPT algorithm.
An algorithm of adaptive scale object tracking in occlusion
NASA Astrophysics Data System (ADS)
Zhao, Congmei
2017-05-01
Although the correlation filter-based trackers achieve the competitive results both on accuracy and robustness, there are still some problems in handling scale variations, object occlusion, fast motions and so on. In this paper, a multi-scale kernel correlation filter algorithm based on random fern detector was proposed. The tracking task was decomposed into the target scale estimation and the translation estimation. At the same time, the Color Names features and HOG features were fused in response level to further improve the overall tracking performance of the algorithm. In addition, an online random fern classifier was trained to re-obtain the target after the target was lost. By comparing with some algorithms such as KCF, DSST, TLD, MIL, CT and CSK, experimental results show that the proposed approach could estimate the object state accurately and handle the object occlusion effectively.
Whole-Body Human Inverse Dynamics with Distributed Micro-Accelerometers, Gyros and Force Sensing †
Latella, Claudia; Kuppuswamy, Naveen; Romano, Francesco; Traversaro, Silvio; Nori, Francesco
2016-01-01
Human motion tracking is a powerful tool used in a large range of applications that require human movement analysis. Although it is a well-established technique, its main limitation is the lack of estimation of real-time kinetics information such as forces and torques during the motion capture. In this paper, we present a novel approach for a human soft wearable force tracking for the simultaneous estimation of whole-body forces along with the motion. The early stage of our framework encompasses traditional passive marker based methods, inertial and contact force sensor modalities and harnesses a probabilistic computational technique for estimating dynamic quantities, originally proposed in the domain of humanoid robot control. We present experimental analysis on subjects performing a two degrees-of-freedom bowing task, and we estimate the motion and kinetics quantities. The results demonstrate the validity of the proposed method. We discuss the possible use of this technique in the design of a novel soft wearable force tracking device and its potential applications. PMID:27213394
Integration of 3D intraoperative ultrasound for enhanced neuronavigation
NASA Astrophysics Data System (ADS)
Paulsen, Keith D.; Ji, Songbai; Hartov, Alex; Fan, Xiaoyao; Roberts, David W.
2012-03-01
True three-dimensional (3D) volumetric ultrasound (US) acquisitions stand to benefit intraoperative neuronavigation on multiple fronts. While traditional two-dimensional (2D) US and its tracked, hand-swept version have been recognized for many years to advantage significantly image-guided neurosurgery, especially when coregistered with preoperative MR scans, its unregulated and incomplete sampling of the surgical volume of interest have limited certain intraoperative uses of the information that are overcome through direct volume acquisition (i.e., through 2D scan-head transducer arrays). In this paper, we illustrate several of these advantages, including image-based intraoperative registration (and reregistration) and automated, volumetric displacement mapping for intraoperative image updating. These applications of 3D US are enabled by algorithmic advances in US image calibration, and volume rasterization and interpolation for multi-acquisition synthesis that will also be highlighted. We expect to demonstrate that coregistered 3D US is well worth incorporating into the standard neurosurgical navigational environment relative to traditional tracked, hand-swept 2D US.
High-speed autofocusing of a cell using diffraction pattern
NASA Astrophysics Data System (ADS)
Oku, Hiromasa; Ishikawa, Masatoshi; Theodorus; Hashimoto, Koichi
2006-05-01
This paper proposes a new autofocusing method for observing cells under a transmission illumination. The focusing method uses a quick and simple focus estimation technique termed “depth from diffraction,” which is based on a diffraction pattern in a defocused image of a biological specimen. Since this method can estimate the focal position of the specimen from only a single defocused image, it can easily realize high-speed autofocusing. To demonstrate the method, it was applied to continuous focus tracking of a swimming paramecium, in combination with two-dimensional position tracking. Three-dimensional tracking of the paramecium for 70 s was successfully demonstrated.
NASA Astrophysics Data System (ADS)
Cousquer, Yohann; Pryet, Alexandre; Atteia, Olivier; Ferré, Ty P. A.; Delbart, Célestine; Valois, Rémi; Dupuy, Alain
2018-03-01
The inverse problem of groundwater models is often ill-posed and model parameters are likely to be poorly constrained. Identifiability is improved if diverse data types are used for parameter estimation. However, some models, including detailed solute transport models, are further limited by prohibitive computation times. This often precludes the use of concentration data for parameter estimation, even if those data are available. In the case of surface water-groundwater (SW-GW) models, concentration data can provide SW-GW mixing ratios, which efficiently constrain the estimate of exchange flow, but are rarely used. We propose to reduce computational limits by simulating SW-GW exchange at a sink (well or drain) based on particle tracking under steady state flow conditions. Particle tracking is used to simulate advective transport. A comparison between the particle tracking surrogate model and an advective-dispersive model shows that dispersion can often be neglected when the mixing ratio is computed for a sink, allowing for use of the particle tracking surrogate model. The surrogate model was implemented to solve the inverse problem for a real SW-GW transport problem with heads and concentrations combined in a weighted hybrid objective function. The resulting inversion showed markedly reduced uncertainty in the transmissivity field compared to calibration on head data alone.
Particle Filtering for Obstacle Tracking in UAS Sense and Avoid Applications
Moccia, Antonio
2014-01-01
Obstacle detection and tracking is a key function for UAS sense and avoid applications. In fact, obstacles in the flight path must be detected and tracked in an accurate and timely manner in order to execute a collision avoidance maneuver in case of collision threat. The most important parameter for the assessment of a collision risk is the Distance at Closest Point of Approach, that is, the predicted minimum distance between own aircraft and intruder for assigned current position and speed. Since assessed methodologies can cause some loss of accuracy due to nonlinearities, advanced filtering methodologies, such as particle filters, can provide more accurate estimates of the target state in case of nonlinear problems, thus improving system performance in terms of collision risk estimation. The paper focuses on algorithm development and performance evaluation for an obstacle tracking system based on a particle filter. The particle filter algorithm was tested in off-line simulations based on data gathered during flight tests. In particular, radar-based tracking was considered in order to evaluate the impact of particle filtering in a single sensor framework. The analysis shows some accuracy improvements in the estimation of Distance at Closest Point of Approach, thus reducing the delay in collision detection. PMID:25105154
Vehicle Tracking System using Nanotechnology Satellites and Tags
NASA Technical Reports Server (NTRS)
Lorenzini, Dino A.; Tubis, Chris
1995-01-01
This paper describes a joint project to design, develop, and deploy a satellite based tracking system incorporating micro-nanotechnology components. The system consists of a constellation of 'nanosats', a satellite command station and data collection sites, and a large number of low-cost electronic 'tags'. Both government and commercial applications are envisioned for the satellite based tracking system. The projected low price for the tracking service is made possible by the lightweight nanosats and inexpensive electronic tags which use high production volume single chip transceivers and microprocessor devices. The nanosat consists of a five inch aluminum cube with body mounted solar panels (GaAs solar cells) on all six faces. A UHF turnstile antenna and a simple, spring release mechanism complete the external configuration of the spacecraft.
A radiographic method to estimate lung volume and its use in small mammals.
Canals, Mauricio; Olivares, Ricardo; Rosenmann, Mario
2005-01-01
In this paper we develop a method to estimate lung volume using chest x-rays of small mammals. We applied this method to assess the lung volume of several rodents. We showed that a good estimator of the lung volume is: V*L = 0.496 x VRX approximately equal to 1/2 x VRX, where VRX is a measurement obtained from the x-ray that represents the volume of a rectangular box containing the lungs and mediastinum organs. The proposed formula may be interpreted as the volume of an ellipsoid formed by both lungs joined at their bases. When that relationship was used to estimate lung volume, values similar to those expected from allometric relationship were found in four rodents. In two others, M. musculus and R. norvegicus, lung volume was similar to reported data, although values were lower than expected.
Healy, R.W.; Russell, T.F.
1993-01-01
A new mass-conservative method for solution of the one-dimensional advection-dispersion equation is derived and discussed. Test results demonstrate that the finite-volume Eulerian-Lagrangian localized adjoint method (FVELLAM) outperforms standard finite-difference methods, in terms of accuracy and efficiency, for solute transport problems that are dominated by advection. For dispersion-dominated problems, the performance of the method is similar to that of standard methods. Like previous ELLAM formulations, FVELLAM systematically conserves mass globally with all types of boundary conditions. FVELLAM differs from other ELLAM approaches in that integrated finite differences, instead of finite elements, are used to approximate the governing equation. This approach, in conjunction with a forward tracking scheme, greatly facilitates mass conservation. The mass storage integral is numerically evaluated at the current time level, and quadrature points are then tracked forward in time to the next level. Forward tracking permits straightforward treatment of inflow boundaries, thus avoiding the inherent problem in backtracking, as used by most characteristic methods, of characteristic lines intersecting inflow boundaries. FVELLAM extends previous ELLAM results by obtaining mass conservation locally on Lagrangian space-time elements. Details of the integration, tracking, and boundary algorithms are presented. Test results are given for problems in Cartesian and radial coordinates.
Distributed Multisensor Fusion System Specification and Evaluation Issues
2005-10-01
incest , results in tracks that have an error that is increased, but a reported uncertainty that is erroneously decreased [McLaughlin, Evans...surveillance pic - ture are the number of omitted tracks, the number of false tracks and the num- ber of duplicated tracks. These are similar to some of the...1023–7. McLaughlin, S. P., Evans, R. J. & Krishnamurthy, V. (2003) Data incest removal in a survivable estimation fusion architecture, in Proceedings
Target Tracking Using SePDAF under Ambiguous Angles for Distributed Array Radar
Long, Teng; Zhang, Honggang; Zeng, Tao; Chen, Xinliang; Liu, Quanhua; Zheng, Le
2016-01-01
Distributed array radar can improve radar detection capability and measurement accuracy. However, it will suffer cyclic ambiguity in its angle estimates according to the spatial Nyquist sampling theorem since the large sparse array is undersampling. Consequently, the state estimation accuracy and track validity probability degrades when the ambiguous angles are directly used for target tracking. This paper proposes a second probability data association filter (SePDAF)-based tracking method for distributed array radar. Firstly, the target motion model and radar measurement model is built. Secondly, the fusion result of each radar’s estimation is employed to the extended Kalman filter (EKF) to finish the first filtering. Thirdly, taking this result as prior knowledge, and associating with the array-processed ambiguous angles, the SePDAF is applied to accomplish the second filtering, and then achieving a high accuracy and stable trajectory with relatively low computational complexity. Moreover, the azimuth filtering accuracy will be promoted dramatically and the position filtering accuracy will also improve. Finally, simulations illustrate the effectiveness of the proposed method. PMID:27618058
An Integrated Approach to Indoor and Outdoor Localization
2017-04-17
localization estimate, followed by particle filter based tracking. Initial localization is performed using WiFi and image observations. For tracking we...source. A two-step process is proposed that performs an initial localization es-timate, followed by particle filter based t racking. Initial...mapped, it is possible to use them for localization [20, 21, 22]. Haverinen et al. show that these fields could be used with a particle filter to
Intelligent complementary sliding-mode control for LUSMS-based X-Y-theta motion control stage.
Lin, Faa-Jeng; Chen, Syuan-Yi; Shyu, Kuo-Kai; Liu, Yen-Hung
2010-07-01
An intelligent complementary sliding-mode control (ICSMC) system using a recurrent wavelet-based Elman neural network (RWENN) estimator is proposed in this study to control the mover position of a linear ultrasonic motors (LUSMs)-based X-Y-theta motion control stage for the tracking of various contours. By the addition of a complementary generalized error transformation, the complementary sliding-mode control (CSMC) can efficiently reduce the guaranteed ultimate bound of the tracking error by half compared with the slidingmode control (SMC) while using the saturation function. To estimate a lumped uncertainty on-line and replace the hitting control of the CSMC directly, the RWENN estimator is adopted in the proposed ICSMC system. In the RWENN, each hidden neuron employs a different wavelet function as an activation function to improve both the convergent precision and the convergent time compared with the conventional Elman neural network (ENN). The estimation laws of the RWENN are derived using the Lyapunov stability theorem to train the network parameters on-line. A robust compensator is also proposed to confront the uncertainties including approximation error, optimal parameter vectors, and higher-order terms in Taylor series. Finally, some experimental results of various contours tracking show that the tracking performance of the ICSMC system is significantly improved compared with the SMC and CSMC systems.
Lipinski, Doug; Mohseni, Kamran
2010-03-01
A ridge tracking algorithm for the computation and extraction of Lagrangian coherent structures (LCS) is developed. This algorithm takes advantage of the spatial coherence of LCS by tracking the ridges which form LCS to avoid unnecessary computations away from the ridges. We also make use of the temporal coherence of LCS by approximating the time dependent motion of the LCS with passive tracer particles. To justify this approximation, we provide an estimate of the difference between the motion of the LCS and that of tracer particles which begin on the LCS. In addition to the speedup in computational time, the ridge tracking algorithm uses less memory and results in smaller output files than the standard LCS algorithm. Finally, we apply our ridge tracking algorithm to two test cases, an analytically defined double gyre as well as the more complicated example of the numerical simulation of a swimming jellyfish. In our test cases, we find up to a 35 times speedup when compared with the standard LCS algorithm.
NASA Technical Reports Server (NTRS)
Kahn, W. D.; Klosko, S. M.; Wells, W. T.
1982-01-01
Advances in satellite tracking data accuracy and coverage over the past 15 years have led to major improvements in global geopotential models. But the spacial resolution of the gravity field obtained solely from satellite dynamics sensed by tracking data is still of the order of 1000 km. Attention is given to an approach which will provide information regarding the fine structure of the gravity field on the basis of an application of local corrections to the global field. According to this approach, a basic satellite to satellite tracked (SST) range-rate measurement is constructed from the link between a ground station, a geosynchronous satellite (ATS 6), and a near-earth satellite (Apollo or GEOS 3). Attention is given to a mathematical model, the simulation of SST gravity anomaly estimation accuracies, a gravity anomaly estimation from GEOS 3/ATS 6 and Apollo/ATS 6 SST observations, and an evaluation of the mean gravity anomalies determined from SST.
Reducing Contingency through Sampling at the Luckey FUSRAP Site - 13186
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frothingham, David; Barker, Michelle; Buechi, Steve
2013-07-01
Typically, the greatest risk in developing accurate cost estimates for the remediation of hazardous, toxic, and radioactive waste sites is the uncertainty in the estimated volume of contaminated media requiring remediation. Efforts to address this risk in the remediation cost estimate can result in large cost contingencies that are often considered unacceptable when budgeting for site cleanups. Such was the case for the Luckey Formerly Utilized Sites Remedial Action Program (FUSRAP) site near Luckey, Ohio, which had significant uncertainty surrounding the estimated volume of site soils contaminated with radium, uranium, thorium, beryllium, and lead. Funding provided by the American Recoverymore » and Reinvestment Act (ARRA) allowed the U.S. Army Corps of Engineers (USACE) to conduct additional environmental sampling and analysis at the Luckey Site between November 2009 and April 2010, with the objective to further delineate the horizontal and vertical extent of contaminated soils in order to reduce the uncertainty in the soil volume estimate. Investigative work included radiological, geophysical, and topographic field surveys, subsurface borings, and soil sampling. Results from the investigative sampling were used in conjunction with Argonne National Laboratory's Bayesian Approaches for Adaptive Spatial Sampling (BAASS) software to update the contaminated soil volume estimate for the site. This updated volume estimate was then used to update the project cost-to-complete estimate using the USACE Cost and Schedule Risk Analysis process, which develops cost contingencies based on project risks. An investment of $1.1 M of ARRA funds for additional investigative work resulted in a reduction of 135,000 in-situ cubic meters (177,000 in-situ cubic yards) in the estimated base volume estimate. This refinement of the estimated soil volume resulted in a $64.3 M reduction in the estimated project cost-to-complete, through a reduction in the uncertainty in the contaminated soil volume estimate and the associated contingency costs. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
O’Shea, Tuathan P., E-mail: tuathan.oshea@icr.ac.uk; Bamber, Jeffrey C.; Harris, Emma J.
Purpose: Ultrasound-based motion estimation is an expanding subfield of image-guided radiation therapy. Although ultrasound can detect tissue motion that is a fraction of a millimeter, its accuracy is variable. For controlling linear accelerator tracking and gating, ultrasound motion estimates must remain highly accurate throughout the imaging sequence. This study presents a temporal regularization method for correlation-based template matching which aims to improve the accuracy of motion estimates. Methods: Liver ultrasound sequences (15–23 Hz imaging rate, 2.5–5.5 min length) from ten healthy volunteers under free breathing were used. Anatomical features (blood vessels) in each sequence were manually annotated for comparison withmore » normalized cross-correlation based template matching. Five sequences from a Siemens Acuson™ scanner were used for algorithm development (training set). Results from incremental tracking (IT) were compared with a temporal regularization method, which included a highly specific similarity metric and state observer, known as the α–β filter/similarity threshold (ABST). A further five sequences from an Elekta Clarity™ system were used for validation, without alteration of the tracking algorithm (validation set). Results: Overall, the ABST method produced marked improvements in vessel tracking accuracy. For the training set, the mean and 95th percentile (95%) errors (defined as the difference from manual annotations) were 1.6 and 1.4 mm, respectively (compared to 6.2 and 9.1 mm, respectively, for IT). For each sequence, the use of the state observer leads to improvement in the 95% error. For the validation set, the mean and 95% errors for the ABST method were 0.8 and 1.5 mm, respectively. Conclusions: Ultrasound-based motion estimation has potential to monitor liver translation over long time periods with high accuracy. Nonrigid motion (strain) and the quality of the ultrasound data are likely to have an impact on tracking performance. A future study will investigate spatial uniformity of motion and its effect on the motion estimation errors.« less
Asymmetry of quadriceps muscle oxygenation during elite short-track speed skating.
Hesford, Catherine Mary; Laing, Stewart J; Cardinale, Marco; Cooper, Chris E
2012-03-01
It has been suggested that, because of the low sitting position in short-track speed skating, muscle blood flow is restricted, leading to decreases in tissue oxygenation. Therefore, wearable wireless-enabled near-infrared spectroscopy (NIRS) technology was used to monitor changes in quadriceps muscle blood volume and oxygenation during a 500-m race simulation in short-track speed skaters. Six elite skaters, all of Olympic standard (age = 23 ± 1.8 yr, height = 1.8 ± 0.1 m, mass = 80.1 ± 5.7 kg, midthigh skinfold thickness = 7 ± 2 mm), were studied. Subjects completed a 500-m race simulation time trial (TT). Whole-body oxygen consumption was simultaneously measured with muscle oxygenation in right and left vastus lateralis as measured by NIRS. Mean time for race completion was 44.8 ± 0.4 s. VO2 peaked 20 s into the race. In contrast, muscle tissue oxygen saturation (TSI%) decreased and plateaued after 8 s. Linear regression analysis showed that right leg TSI% remained constant throughout the rest of the TT (slope value = 0.01), whereas left leg TSI% increased steadily (slope value = 0.16), leading to a significant asymmetry (P < 0.05) in the final lap. Total muscle blood volume decreased equally in both legs at the start of the simulation. However, during subsequent laps, there was a strong asymmetry during cornering; when skaters traveled solely on the right leg, there was a decrease in its muscle blood volume, whereas an increase was seen in the left leg. NIRS was shown to be a viable tool for wireless monitoring of muscle oxygenation. The asymmetry in muscle desaturation observed on the two legs in short-track speed skating has implications for training and performance.
NASA Astrophysics Data System (ADS)
Rakhmangulov, Aleksandr; Muravev, Dmitri; Mishkurov, Pavel
2016-11-01
The issue of operative data reception on location and movement of railcars is significant the constantly growing requirements of the provision of timely and safe transportation. The technical solution for efficiency improvement of data collection on rail rolling stock is the implementation of an identification system. Nowadays, there are several such systems, distinguished in working principle. In the authors' opinion, the most promising for rail transportation is the RFID technology, proposing the equipping of the railway tracks by the stationary points of data reading (RFID readers) from the onboard sensors on the railcars. However, regardless of a specific type and manufacturer of these systems, their implementation is affiliated with the significant financing costs for large, industrial, rail transport systems, owning the extensive network of special railway tracks with a large number of stations and loading areas. To reduce the investment costs for creation, the identification system of rolling stock on the special railway tracks of industrial enterprises has developed the method based on the idea of priority installation of the RFID readers on railway hauls, where rail traffic volumes are uneven in structure and power, parameters of which is difficult or impossible to predict on the basis of existing data in an information system. To select the optimal locations of RFID readers, the mathematical model of the staged installation of such readers has developed depending on the non-uniformity value of rail traffic volumes, passing through the specific railway hauls. As a result of that approach, installation of the numerous RFID readers at all station tracks and loading areas of industrial railway stations might be not necessary,which reduces the total cost of the rolling stock identification and the implementation of the method for optimal management of transportation process.
Automatically tracking neurons in a moving and deforming brain
Nguyen, Jeffrey P.; Linder, Ashley N.; Plummer, George S.; Shaevitz, Joshua W.
2017-01-01
Advances in optical neuroimaging techniques now allow neural activity to be recorded with cellular resolution in awake and behaving animals. Brain motion in these recordings pose a unique challenge. The location of individual neurons must be tracked in 3D over time to accurately extract single neuron activity traces. Recordings from small invertebrates like C. elegans are especially challenging because they undergo very large brain motion and deformation during animal movement. Here we present an automated computer vision pipeline to reliably track populations of neurons with single neuron resolution in the brain of a freely moving C. elegans undergoing large motion and deformation. 3D volumetric fluorescent images of the animal’s brain are straightened, aligned and registered, and the locations of neurons in the images are found via segmentation. Each neuron is then assigned an identity using a new time-independent machine-learning approach we call Neuron Registration Vector Encoding. In this approach, non-rigid point-set registration is used to match each segmented neuron in each volume with a set of reference volumes taken from throughout the recording. The way each neuron matches with the references defines a feature vector which is clustered to assign an identity to each neuron in each volume. Finally, thin-plate spline interpolation is used to correct errors in segmentation and check consistency of assigned identities. The Neuron Registration Vector Encoding approach proposed here is uniquely well suited for tracking neurons in brains undergoing large deformations. When applied to whole-brain calcium imaging recordings in freely moving C. elegans, this analysis pipeline located 156 neurons for the duration of an 8 minute recording and consistently found more neurons more quickly than manual or semi-automated approaches. PMID:28545068
Automatically tracking neurons in a moving and deforming brain.
Nguyen, Jeffrey P; Linder, Ashley N; Plummer, George S; Shaevitz, Joshua W; Leifer, Andrew M
2017-05-01
Advances in optical neuroimaging techniques now allow neural activity to be recorded with cellular resolution in awake and behaving animals. Brain motion in these recordings pose a unique challenge. The location of individual neurons must be tracked in 3D over time to accurately extract single neuron activity traces. Recordings from small invertebrates like C. elegans are especially challenging because they undergo very large brain motion and deformation during animal movement. Here we present an automated computer vision pipeline to reliably track populations of neurons with single neuron resolution in the brain of a freely moving C. elegans undergoing large motion and deformation. 3D volumetric fluorescent images of the animal's brain are straightened, aligned and registered, and the locations of neurons in the images are found via segmentation. Each neuron is then assigned an identity using a new time-independent machine-learning approach we call Neuron Registration Vector Encoding. In this approach, non-rigid point-set registration is used to match each segmented neuron in each volume with a set of reference volumes taken from throughout the recording. The way each neuron matches with the references defines a feature vector which is clustered to assign an identity to each neuron in each volume. Finally, thin-plate spline interpolation is used to correct errors in segmentation and check consistency of assigned identities. The Neuron Registration Vector Encoding approach proposed here is uniquely well suited for tracking neurons in brains undergoing large deformations. When applied to whole-brain calcium imaging recordings in freely moving C. elegans, this analysis pipeline located 156 neurons for the duration of an 8 minute recording and consistently found more neurons more quickly than manual or semi-automated approaches.
Alian, Aymen A; Atteya, Gourg; Gaal, Dorothy; Golembeski, Thomas; Smith, Brian G; Dai, Feng; Silverman, David G; Shelley, Kirk
2016-08-01
Scoliosis surgery is often associated with substantial blood loss, requiring fluid resuscitation and blood transfusions. In adults, dynamic preload indices have been shown to be more reliable for guiding fluid resuscitation, but these indices have not been useful in children undergoing surgery. The aim of this study was to introduce frequency-analyzed photoplethysmogram (PPG) and arterial pressure waveform variables and to study the ability of these parameters to detect early bleeding in children during surgery. We studied 20 children undergoing spinal fusion. Electrocardiogram, arterial pressure, finger pulse oximetry (finger PPG), and airway pressure waveforms were analyzed using time domain and frequency domain methods of analysis. Frequency domain analysis consisted of calculating the amplitude density of PPG and arterial pressure waveforms at the respiratory and cardiac frequencies using Fourier analysis. This generated 2 measurements: The first is related to slow mean arterial pressure modulation induced by ventilation (also known as DC modulation when referring to the PPG), and the second corresponds to pulse pressure modulation (AC modulation or changes in the amplitude of pulse oximeter plethysmograph when referring to the PPG). Both PPG and arterial pressure measurements were divided by their respective cardiac pulse amplitude to generate DC% and AC% (normalized values). Standard hemodynamic data were also recorded. Data at baseline and after bleeding (estimated blood loss about 9% of blood volume) were presented as median and interquartile range and compared using Wilcoxon signed-rank tests; a Bonferroni-corrected P value <0.05 was considered statistically significant. There were significant increases in PPG DC% (median [interquartile range] = 359% [210 to 541], P = 0.002), PPG AC% (160% [87 to 251], P = 0.003), and arterial DC% (44% [19 to 84], P = 0.012) modulations, respectively, whereas arterial AC% modulations showed nonsignificant increase (41% [1 to 85], P = 0.12). The change in PPG DC% was significantly higher than that in PPG AC%, arterial DC%, arterial AC%, and systolic blood pressure with P values of 0.008, 0.002, 0.003, and 0.002, respectively. Only systolic blood pressure showed significant changes (11% [4 to 21], P = 0.003) between bleeding phase and baseline. Finger PPG and arterial waveform parameters (using frequency analysis) can track changes in blood volume during the bleeding phase, suggesting the potential for a noninvasive monitor for tracking changes in blood volume in pediatric patients. PPG waveform baseline modulation (PPG DC%) was more sensitive to changes in venous blood volume when compared with respiration-induced modulation seen in the arterial pressure waveform.
Chen, Jie; Li, Jiahong; Yang, Shuanghua; Deng, Fang
2017-11-01
The identification of the nonlinearity and coupling is crucial in nonlinear target tracking problem in collaborative sensor networks. According to the adaptive Kalman filtering (KF) method, the nonlinearity and coupling can be regarded as the model noise covariance, and estimated by minimizing the innovation or residual errors of the states. However, the method requires large time window of data to achieve reliable covariance measurement, making it impractical for nonlinear systems which are rapidly changing. To deal with the problem, a weighted optimization-based distributed KF algorithm (WODKF) is proposed in this paper. The algorithm enlarges the data size of each sensor by the received measurements and state estimates from its connected sensors instead of the time window. A new cost function is set as the weighted sum of the bias and oscillation of the state to estimate the "best" estimate of the model noise covariance. The bias and oscillation of the state of each sensor are estimated by polynomial fitting a time window of state estimates and measurements of the sensor and its neighbors weighted by the measurement noise covariance. The best estimate of the model noise covariance is computed by minimizing the weighted cost function using the exhaustive method. The sensor selection method is in addition to the algorithm to decrease the computation load of the filter and increase the scalability of the sensor network. The existence, suboptimality and stability analysis of the algorithm are given. The local probability data association method is used in the proposed algorithm for the multitarget tracking case. The algorithm is demonstrated in simulations on tracking examples for a random signal, one nonlinear target, and four nonlinear targets. Results show the feasibility and superiority of WODKF against other filtering algorithms for a large class of systems.
Acer, N; Bayar, B; Basaloglu, H; Oner, E; Bayar, K; Sankur, S
2008-11-20
The size and shape of tarsal bones are especially relevant when considering some orthopedic diseases such as clubfoot. For this reason, the measurements of the tarsal bones have been the subject of many studies, none of which has used stereological methods to estimate the volume. In the present stereological study, we estimated the volume of calcaneal bone of normal feet and dry bones. We used a combination of the Cavalieri principle and computer tomographic scans taken from eight males and nine dry calcanei to estimate the volumes of calcaneal bones. The mean volume of dry calcaneal bones was estimated, producing mean results using the point-counting method and Archimedes principle being 49.11+/-10.7 or 48.22+/-11.92 cm(3), respectively. A positive correlation was found between anthropometric measurements and the volume of calcaneal bones. The findings of the present study using the stereological methods could provide data for the evaluation of normal and pathological volumes of calcaneal bones.
A Direct Adaptive Control Approach in the Presence of Model Mismatch
NASA Technical Reports Server (NTRS)
Joshi, Suresh M.; Tao, Gang; Khong, Thuan
2009-01-01
This paper considers the problem of direct model reference adaptive control when the plant-model matching conditions are violated due to abnormal changes in the plant or incorrect knowledge of the plant's mathematical structure. The approach consists of direct adaptation of state feedback gains for state tracking, and simultaneous estimation of the plant-model mismatch. Because of the mismatch, the plant can no longer track the state of the original reference model, but may be able to track a new reference model that still provides satisfactory performance. The reference model is updated if the estimated plant-model mismatch exceeds a bound that is determined via robust stability and/or performance criteria. The resulting controller is a hybrid direct-indirect adaptive controller that offers asymptotic state tracking in the presence of plant-model mismatch as well as parameter deviations.
Tracking and Data Relay Satellite (TDRS) Orbit Estimation Using an Extended Kalman Filter
NASA Technical Reports Server (NTRS)
Ward, Douglas T.; Dang, Ket D.; Slojkowski, Steve; Blizzard, Mike; Jenkins, Greg
2007-01-01
Alternatives to the Tracking and Data Relay Satellite (TDRS) orbit estimation procedure were studied to develop a technique that both produces more reliable results and is more amenable to automation than the prior procedure. The Earth Observing System (EOS) Terra mission has TDRS ephemeris prediction 3(sigma) requirements of 75 meters in position and 5.5 millimeters per second in velocity over a 1.5-day prediction span. Meeting these requirements sometimes required reruns of the prior orbit determination (OD) process, with manual editing of tracking data to get an acceptable solution. After a study of the available alternatives, the Flight Dynamics Facility (FDF) began using the Real-Time Orbit Determination (RTOD(Registered TradeMark)) Kalman filter program for operational support of TDRSs in February 2007. This extended Kalman filter (EKF) is used for daily support, including within hours after most thrusting, to estimate the spacecraft position, velocity, and solar radiation coefficient of reflectivity (C(sub R)). The tracking data used are from the Bilateration Ranging Transponder System (BRTS), selected TDRS System (TDRSS) User satellite tracking data, and Telemetry, Tracking, and Command (TT&C) data. Degraded filter results right after maneuvers and some momentum unloads provided incentive for a hybrid OD technique. The results of combining EKF strengths with the Goddard Trajectory Determination System (GTDS) Differential Correction (DC) program batch-least-squares solutions, as recommended in a 2005 paper on the chain-bias technique, are also presented.
3D Tracking of Mating Events in Wild Swarms of the Malaria Mosquito Anopheles gambiae
Butail, Sachit; Manoukis, Nicholas; Diallo, Moussa; Yaro, Alpha S.; Dao, Adama; Traoré, Sekou F.; Ribeiro, José M.; Lehmann, Tovi; Paley, Derek A.
2013-01-01
We describe an automated tracking system that allows us to reconstruct the 3D kinematics of individual mosquitoes in swarms of Anopheles gambiae. The inputs to the tracking system are video streams recorded from a stereo camera system. The tracker uses a two-pass procedure to automatically localize and track mosquitoes within the swarm. A human-in-the-loop step verifies the estimates and connects broken tracks. The tracker performance is illustrated using footage of mating events filmed in Mali in August 2010. PMID:22254411
The international food unit: a new measurement aid that can improve portion size estimation.
Bucher, T; Weltert, M; Rollo, M E; Smith, S P; Jia, W; Collins, C E; Sun, M
2017-09-12
Portion size education tools, aids and interventions can be effective in helping prevent weight gain. However consumers have difficulties in estimating food portion sizes and are confused by inconsistencies in measurement units and terminologies currently used. Visual cues are an important mediator of portion size estimation, but standardized measurement units are required. In the current study, we present a new food volume estimation tool and test the ability of young adults to accurately quantify food volumes. The International Food Unit™ (IFU™) is a 4x4x4 cm cube (64cm 3 ), subdivided into eight 2 cm sub-cubes for estimating smaller food volumes. Compared with currently used measures such as cups and spoons, the IFU™ standardizes estimation of food volumes with metric measures. The IFU™ design is based on binary dimensional increments and the cubic shape facilitates portion size education and training, memory and recall, and computer processing which is binary in nature. The performance of the IFU™ was tested in a randomized between-subject experiment (n = 128 adults, 66 men) that estimated volumes of 17 foods using four methods; the IFU™ cube, a deformable modelling clay cube, a household measuring cup or no aid (weight estimation). Estimation errors were compared between groups using Kruskall-Wallis tests and post-hoc comparisons. Estimation errors differed significantly between groups (H(3) = 28.48, p < .001). The volume estimations were most accurate in the group using the IFU™ cube (Mdn = 18.9%, IQR = 50.2) and least accurate using the measuring cup (Mdn = 87.7%, IQR = 56.1). The modelling clay cube led to a median error of 44.8% (IQR = 41.9). Compared with the measuring cup, the estimation errors using the IFU™ were significantly smaller for 12 food portions and similar for 5 food portions. Weight estimation was associated with a median error of 23.5% (IQR = 79.8). The IFU™ improves volume estimation accuracy compared to other methods. The cubic shape was perceived as favourable, with subdivision and multiplication facilitating volume estimation. Further studies should investigate whether the IFU™ can facilitate portion size training and whether portion size education using the IFU™ is effective and sustainable without the aid. A 3-dimensional IFU™ could serve as a reference object for estimating food volume.
Using LiDAR to Estimate Surface Erosion Volumes within the Post-storm 2012 Bagley Fire
NASA Astrophysics Data System (ADS)
Mikulovsky, R. P.; De La Fuente, J. A.; Mondry, Z. J.
2014-12-01
The total post-storm 2012 Bagley fire sediment budget of the Squaw Creek watershed in the Shasta-Trinity National Forest was estimated using many methods. A portion of the budget was quantitatively estimated using LiDAR. Simple workflows were designed to estimate the eroded volume's of debris slides, fill failures, gullies, altered channels and streams. LiDAR was also used to estimate depositional volumes. Thorough manual mapping of large erosional features using the ArcGIS 10.1 Geographic Information System was required as these mapped features determined the eroded volume boundaries in 3D space. The 3D pre-erosional surface for each mapped feature was interpolated based on the boundary elevations. A surface difference calculation was run using the estimated pre-erosional surfaces and LiDAR surfaces to determine volume of sediment potentially delivered into the stream system. In addition, cross sections of altered channels and streams were taken using stratified random selection based on channel gradient and stream order respectively. The original pre-storm surfaces of channel features were estimated using the cross sections and erosion depth criteria. Open source software Inkscape was used to estimate cross sectional areas for randomly selected channel features and then averaged for each channel gradient and stream order classes. The average areas were then multiplied by the length of each class to estimate total eroded altered channel and stream volume. Finally, reservoir and in-channel depositional volumes were estimated by mapping channel forms and generating specific reservoir elevation zones associated with depositional events. The in-channel areas and zones within the reservoir were multiplied by estimated and field observed sediment thicknesses to attain a best guess sediment volume. In channel estimates included re-occupying stream channel cross sections established before the fire. Once volumes were calculated, other erosion processes of the Bagley sedimentation study, such as surface soil erosion were combined to estimate the total fire and storm sediment budget for the Squaw Creek watershed. The LiDAR-based measurement workflows can be easily applied to other sediment budget studies using one high resolution LiDAR dataset.
Accuracy of Standing-Tree Volume Estimates Based on McClure Mirror Caliper Measurements
Noel D. Cost
1971-01-01
The accuracy of standing-tree volume estimates, calculated from diameter measurements taken by a mirror caliper and with sectional aluminum poles for height control, was compared with volume estimates calculated from felled-tree measurements. Twenty-five trees which varied in species, size, and form were used in the test. The results showed that two estimates of total...