NASA Technical Reports Server (NTRS)
Andrews, C. W.
1976-01-01
Volume fraction of a constituent or phase was estimated in six specimens of conventional and DS-eutectic superalloys, using ASTM E562-76, a new standard recommended practice for determining volume fraction by systematic manual point count. Volume fractions determined ranged from 0.086 to 0.36, and with one exception, the 95 percent relative confidence limits were approximately 10 percent of the determined volume fractions. Since the confidence-limit goal of 10 percent, which had been arbitrarily chosen previously, was achieved in all but one case, this application of the new practice was considered successful.
NASA Astrophysics Data System (ADS)
Bouakkaz, Rafik; Salhi, Fouzi; Khelili, Yacine; Quazzazi, Mohamed; Talbi, Kamel
2017-06-01
In this work, steady flow-field and heat transfer through a copper- water nanofluid around a rotating circular cylinder with a constant nondimensional rotation rate α varying from 0 to 5 was investigated for Reynolds numbers of 5-40. Furthermore, the range of nanoparticle volume fractions considered is 0-5%. The effect of volume fraction of nanoparticles on the fluid flow and heat transfer characteristics are carried out by using a finite-volume method based commercial computational fluid dynamics solver. The variation of the local and the average Nusselt numbers with Reynolds number, volume fractions, and rotation rate are presented for the range of conditions. The average Nusselt number is found to decrease with increasing value of the rotation rate for the fixed value of the Reynolds number and volume fraction of nanoparticles. In addition, rotation can be used as a drag reduction technique.
Characterization and Demonstrations of Laser-Induced Incandescence in both Normal and Low-Gravity
NASA Technical Reports Server (NTRS)
VanderWal, Randall L.
1997-01-01
Knowledge of soot volume fraction is important to a wide range of combustion studies in microgravity. Laser-induced incandescence (LII) offers high sensitivity, high temporal and spatial resolution in addition to geometric versatility for real-time determination of soot volume fraction. Implementation of LII into the 2.2 see drop tower at The NASA-Lewis Research Center along with system characterization is described. Absolute soot volume fraction measurements are presented for laminar and turbulent gas-jet flames in microgravity to illustrate the capabilities of LII in microgravity. Comparison between LII radial intensity profiles with soot volume fraction profiles determined through a full-field light extinction technique are also reported validating the accuracy of LII for soot volume fraction measurements in a microgravity environment.
Accuracy of cancellous bone volume fraction measured by micro-CT scanning.
Ding, M; Odgaard, A; Hvid, I
1999-03-01
Volume fraction, the single most important parameter in describing trabecular microstructure, can easily be calculated from three-dimensional reconstructions of micro-CT images. This study sought to quantify the accuracy of this measurement. One hundred and sixty human cancellous bone specimens which covered a large range of volume fraction (9.8-39.8%) were produced. The specimens were micro-CT scanned, and the volume fraction based on Archimedes' principle was determined as a reference. After scanning, all micro-CT data were segmented using individual thresholds determined by the scanner supplied algorithm (method I). A significant deviation of volume fraction from method I was found: both the y-intercept and the slope of the regression line were significantly different from those of the Archimedes-based volume fraction (p < 0.001). New individual thresholds were determined based on a calibration of volume fraction to the Archimedes-based volume fractions (method II). The mean thresholds of the two methods were applied to segment 20 randomly selected specimens. The results showed that volume fraction using the mean threshold of method I was underestimated by 4% (p = 0.001), whereas the mean threshold of method II yielded accurate values. The precision of the measurement was excellent. Our data show that care must be taken when applying thresholds in generating 3-D data, and that a fixed threshold may be used to obtain reliable volume fraction data. This fixed threshold may be determined from the Archimedes-based volume fraction of a subgroup of specimens. The threshold may vary between different materials, and so it should be determined whenever a study series is performed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sugano, Yasutaka; Mizuta, Masahiro; Takao, Seishin
Purpose: Radiotherapy of solid tumors has been performed with various fractionation regimens such as multi- and hypofractionations. However, the ability to optimize the fractionation regimen considering the physical dose distribution remains insufficient. This study aims to optimize the fractionation regimen, in which the authors propose a graphical method for selecting the optimal number of fractions (n) and dose per fraction (d) based on dose–volume histograms for tumor and normal tissues of organs around the tumor. Methods: Modified linear-quadratic models were employed to estimate the radiation effects on the tumor and an organ at risk (OAR), where the repopulation of themore » tumor cells and the linearity of the dose-response curve in the high dose range of the surviving fraction were considered. The minimization problem for the damage effect on the OAR was solved under the constraint that the radiation effect on the tumor is fixed by a graphical method. Here, the damage effect on the OAR was estimated based on the dose–volume histogram. Results: It was found that the optimization of fractionation scheme incorporating the dose–volume histogram is possible by employing appropriate cell surviving models. The graphical method considering the repopulation of tumor cells and a rectilinear response in the high dose range enables them to derive the optimal number of fractions and dose per fraction. For example, in the treatment of prostate cancer, the optimal fractionation was suggested to lie in the range of 8–32 fractions with a daily dose of 2.2–6.3 Gy. Conclusions: It is possible to optimize the number of fractions and dose per fraction based on the physical dose distribution (i.e., dose–volume histogram) by the graphical method considering the effects on tumor and OARs around the tumor. This method may stipulate a new guideline to optimize the fractionation regimen for physics-guided fractionation.« less
NASA Astrophysics Data System (ADS)
Soltani, Omid; Akbari, Mohammad
2016-10-01
In this paper, the effects of temperature and particles concentration on the dynamic viscosity of MgO-MWCNT/ethylene glycol hybrid nanofluid is examined. The experiments carried out in the solid volume fraction range of 0 to 1.0% under the temperature ranging from 30 °C to 60 °C. The results showed that the hybrid nanofluid behaves as a Newtonian fluid for all solid volume fractions and temperatures considered. The measurements also indicated that the dynamic viscosity increases with increasing the solid volume fraction and decreases with the temperature rising. The relative viscosity revealed that when the solid volume fraction enhances from 0.1 to 1%, the dynamic viscosity increases up to 168%. Finally, using experimental data, in order to predict the dynamic viscosity of MgO-MWCNT/ethylene glycol hybrid nanofluids, a new correlation has been suggested. The comparisons between the correlation outputs and experimental results showed that the suggested correlation has an acceptable accuracy.
Safaei, M. R.; Mahian, O.; Garoosi, F.; Hooman, K.; Karimipour, A.; Kazi, S. N.; Gharehkhani, S.
2014-01-01
This paper addresses erosion prediction in 3-D, 90° elbow for two-phase (solid and liquid) turbulent flow with low volume fraction of copper. For a range of particle sizes from 10 nm to 100 microns and particle volume fractions from 0.00 to 0.04, the simulations were performed for the velocity range of 5–20 m/s. The 3-D governing differential equations were discretized using finite volume method. The influences of size and concentration of micro- and nanoparticles, shear forces, and turbulence on erosion behavior of fluid flow were studied. The model predictions are compared with the earlier studies and a good agreement is found. The results indicate that the erosion rate is directly dependent on particles' size and volume fraction as well as flow velocity. It has been observed that the maximum pressure has direct relationship with the particle volume fraction and velocity but has a reverse relationship with the particle diameter. It also has been noted that there is a threshold velocity as well as a threshold particle size, beyond which significant erosion effects kick in. The average friction factor is independent of the particle size and volume fraction at a given fluid velocity but increases with the increase of inlet velocities. PMID:25379542
NASA Astrophysics Data System (ADS)
Saeedi, Amir Hussein; Akbari, Mohammad; Toghraie, Davood
2018-05-01
In this paper, the nanofluid dynamic viscosity composed of CeO2- Ethylene Glycol is examined within 25-50 °C with 5 °C intervals and at six volume fractions (0.05, 0.1, 0.2, 0.4, 0.8 and 1.2%) experimentally. The nanofluid was exposed to ultrasound waves for various durations to study the effect of this parameter on dynamic viscosity of the fluid. We found that at a constant temperature, nanofluid viscosity increases with increases in the volume fraction of the nanoparticles. Also, at a given volume fraction, nanofluid viscosity decreases when temperature is increased. Maximum increase in nanofluid viscosity compared to the base fluid viscosity occurs at 25 °C and volume fraction of 1.2%. It can be inferred that the obtained mathematical relationship is a suitable predicting model for estimating dynamic viscosity of CeO2- Ethylene Glycol (EG) at different volume fractions and temperatures and its results are consistent to laboratory results in the set volume fraction and temperature ranges.
NASA Astrophysics Data System (ADS)
Gallier, Stany; Peters, François; Lobry, Laurent
2018-04-01
This work intends to evaluate the role of many-body long-range hydrodynamics by simulations of sheared neutrally buoyant non-Brownian, noncolloidal suspensions. Three-dimensional simulations of sheared suspensions are conducted with and without long-range hydrodynamics, for a volume fraction range between 0.1-0.62 (frictionless) and 0.1-0.56 (frictional). Discarding long-range hydrodynamics has only a moderate effect on viscosity for the range of volume fractions investigated and viscosities diverge with similar scaling laws; the critical fraction is found to be approximately 0.64 (frictionless) and 0.58 (frictional). Conversely, many-body hydrodynamics are found to affect diffusion and particle velocities, which are correlated on a longer range when long-range interactions are included, even in dense suspensions. This means that long-range hydrodynamics may not be significantly screened by crowding. Assuming only short-range lubrication interactions is therefore suitable for predicting viscosity in noncolloidal suspensions but becomes questionable when flow details (e.g., diffusion or velocity correlations) are needed.
NASA Astrophysics Data System (ADS)
Kari, Leif
2017-09-01
The constitutive equations of chemically and physically ageing rubber in the audible frequency range are modelled as a function of ageing temperature, ageing time, actual temperature, time and frequency. The constitutive equations are derived by assuming nearly incompressible material with elastic spherical response and viscoelastic deviatoric response, using Mittag-Leffler relaxation function of fractional derivative type, the main advantage being the minimum material parameters needed to successfully fit experimental data over a broad frequency range. The material is furthermore assumed essentially entropic and thermo-mechanically simple while using a modified William-Landel-Ferry shift function to take into account temperature dependence and physical ageing, with fractional free volume evolution modelled by a nonlinear, fractional differential equation with relaxation time identical to that of the stress response and related to the fractional free volume by Doolittle equation. Physical ageing is a reversible ageing process, including trapping and freeing of polymer chain ends, polymer chain reorganizations and free volume changes. In contrast, chemical ageing is an irreversible process, mainly attributed to oxygen reaction with polymer network either damaging the network by scission or reformation of new polymer links. The chemical ageing is modelled by inner variables that are determined by inner fractional evolution equations. Finally, the model parameters are fitted to measurements results of natural rubber over a broad audible frequency range, and various parameter studies are performed including comparison with results obtained by ordinary, non-fractional ageing evolution differential equations.
NASA Astrophysics Data System (ADS)
Hemmat Esfe, Mohammad; Firouzi, Masoumeh; Afrand, Masoud
2018-01-01
In this paper, functionalized single walled carbon nanotubes (FSWCNTs) were suspended in Ethylene Glycol (EG) at different volume fractions. A KD2 pro thermal conductivity meter was used to measure the thermal conductivity in the temperature range from 30 to 50 °C. Nanofluids were prepared in solid volume fraction of 0.02, 0.05, 0.075, 0.1, 0.25, 0.5 and, 0.75%. Experimental results revealed that the thermal conductivity of the nanofluid is a non-linear function of temperature and SWCNTs volume fraction in the range of this investigation. Thermal conductivity increases with temperature and nanoparticles volume fraction as usual for this type of nanofluid. Maximum increment in thermal conductivity of the nanofluids was found to be about 45% at 0.75 vol fractions loading at 50 °C. Finally, a new correlation based on artificial neural network (ANN) approach has been proposed for SWCNT-EG thermal conductivity in terms of nanoparticles volume fraction and temperature using the experimental data. Used ANN approach has estimated the experimental values of thermal conductivity with the absolute average relative deviation lower than 0.9%, mean square error of 3.67 × 10-5 and regression coefficient of 0.9989. Comparison between the suggested techniques with various used correlation in the literatures established that the ANN approach is better to other presented methods and therefore can be proposed as a useful means for predicting of the nanofluids thermal conductivity.
Peng, Song; Hu, Liang; Chen, Wenzhi; Chen, Jinyun; Yang, Caiyong; Wang, Xi; Zhang, Rong; Wang, Zhibiao; Zhang, Lian
2015-04-01
To investigate the value of microbubble contrast-enhanced ultrasound (CEUS) in evaluating the treatment response of uterine fibroids to HIFU ablation. Sixty-eight patients with a solitary uterine fibroid from the First Affiliated Hospital of Chongqing Medical University were included and analyzed. All patients underwent pre- and post-treatment magnetic resonance imaging (MRI) with a standardized protocol, as well as pre-evaluation, intraprocedure, and immediate post-treatment CEUS. CEUS and MRI were compared by different radiologists. In comparison with MRI, CEUS showed that the size of fibroids, volume of fibroids, size of non-perfused regions, non-perfused volume (NPV) or fractional ablation (NPV ratio) was similar to that of MRI. In terms of CEUS examination results, the median volume of fibroids was 75.2 (interquartile range, 34.2-127.3) cm(3), the median non-perfused volume was 54.9 (interquartile range, 28.0-98.1) cm(3), the mean fractional ablation was 83.7±13.6 (range, 30.0-100.0)%. In terms of MRI examination results, the median volume of fibroids was 74.1 (interquartile range, 33.4-116.2) cm(3). On the basis of contrast-enhanced T1-weighted images immediately after HIFU treatment, the median non-perfused volume was 58.5 (interquartile range, 27.7-100.0) cm(3), the average fractional ablation was 84.2±14.2 (range, 40.0-100.0)%. CEUS clearly showed the size of fibroids and the non-perfused areas of the fibroid. Results from CEUS correlated well with results obtained from MRI. Copyright © 2015 Elsevier B.V. All rights reserved.
A discrete model of Ostwald ripening based on multiple pairwise interactions
NASA Astrophysics Data System (ADS)
Di Nunzio, Paolo Emilio
2018-06-01
A discrete multi-particle model of Ostwald ripening based on direct pairwise interactions is developed for particles with incoherent interfaces as an alternative to the classical LSW mean field theory. The rate of matter exchange depends on the average surface-to-surface interparticle distance, a characteristic feature of the system which naturally incorporates the effect of volume fraction of second phase. The multi-particle diffusion is described through the definition of an interaction volume containing all the particles involved in the exchange of solute. At small volume fractions this is proportional to the size of the central particle, at higher volume fractions it gradually reduces as a consequence of diffusion screening described on a geometrical basis. The topological noise present in real systems is also included. For volume fractions below about 0.1 the model predicts broad and right-skewed stationary size distributions resembling a lognormal function. Above this value, a transition to sharper, more symmetrical but still right-skewed shapes occurs. An excellent agreement with experiments is obtained for 3D particle size distributions of solid-solid and solid-liquid systems with volume fraction 0.07, 0.30, 0.52 and 0.74. The kinetic constant of the model depends on the cube root of volume fraction up to about 0.1, then increases rapidly with an upward concavity. It is in good agreement with the available literature data on solid-liquid mixtures in the volume fraction range from 0.20 to about 0.75.
Mukherjee, Kanchan Kumar; Kumar, Narendra; Tripathi, Manjul; Oinam, Arun S; Ahuja, Chirag K; Dhandapani, Sivashanmugam; Kapoor, Rakesh; Ghoshal, Sushmita; Kaur, Rupinder; Bhatt, Sandeep
2017-01-01
To evaluate the feasibility, safety and efficacy of dose fractionated gamma knife radiosurgery (DFGKRS) on a daily schedule beyond the linear quadratic (LQ) model, for large volume arteriovenous malformations (AVMs). Between 2012-16, 14 patients of large AVMs (median volume 26.5 cc) unsuitable for surgery or embolization were treated in 2-3 of DFGKRS sessions. The Leksell G frame was kept in situ during the whole procedure. 86% (n = 12) patients had radiologic evidence of bleed, and 43% (n = 6) had presented with a history of seizures. 57% (n = 8) patients received a daily treatment for 3 days and 43% (n = 6) were on an alternate day (2 fractions) regimen. The marginal dose was split into 2 or 3 fractions of the ideal prescription dose of a single fraction of 23-25 Gy. The median follow up period was 35.6 months (8-57 months). In the three-fraction scheme, the marginal dose ranged from 8.9-11.5 Gy, while in the two-fraction scheme, the marginal dose ranged from 11.3-15 Gy at 50% per fraction. Headache (43%, n = 6) was the most common early postoperative complication, which was controlled with short course steroids. Follow up evaluation of at least three years was achieved in seven patients, who have shown complete nidus obliteration in 43% patients while the obliteration has been in the range of 50-99% in rest of the patients. Overall, there was a 67.8% reduction in the AVM volume at 3 years. Nidus obliteration at 3 years showed a significant rank order correlation with the cumulative prescription dose (p 0.95, P value 0.01), with attainment of near-total (more than 95%) obliteration rates beyond 29 Gy of the cumulative prescription dose. No patient receiving a cumulative prescription dose of less than 31 Gy had any severe adverse reaction. In co-variate adjusted ordinal regression, only the cumulative prescription dose had a significant correlation with common terminology criteria for adverse events (CTCAE) severity (P value 0.04), independent of age, AVM volume, number of fractions and volume of brain receiving atleast 8 Gy of radiation. DFGKRS is feasible for large AVMs with a fair nidus obliteration rate and acceptable toxicity. Cumulative prescription dose seems to be the most significant independent predictor for outcome following DFGKRS with 29-30 Gy resulting in a fair nidus obliteration with least adverse events.
SU-F-T-538: CyberKnife with MLC for Treatment of Large Volume Tumors: A Feasibility Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bichay, T; Mayville, A
2016-06-15
Purpose: CyberKnife is a well-documented modality for SRS and SBRT treatments. Typical tumors are small and 1–5 fractions are usually used. We determined the feasibility of using CyberKnife, with an InCise multileaf collimator option, for larger tumors undergoing standard dose and fractionation. The intent was to understand the limitation of using this modality for other external beam radiation treatments. Methods: Five tumors from different anatomical sites with volumes from 127.8 cc to 1,320.5 cc were contoured and planned on a Multiplan V5.1 workstation. The target average diameter ranged from 7 cm to 13 cm. The dose fractionation was 1.8–2.0 Gy/fractionmore » and 25–45 fractions for total doses of 45–81 Gy. The sites planned were: pancreas, head and neck, prostate, anal, and esophagus. The plans were optimized to meet conventional dose constraints based on various RTOG protocols for conventional fractionation. Results: The Multiplan treatment planning system successfully generated clinically acceptable plans for all sites studied. The resulting dose distributions achieved reasonable target coverage, all greater than 95%, and satisfactory normal tissue sparing. Treatment times ranged from 9 minutes to 38 minutes, the longest being a head and neck plan with dual targets receiving different doses and with multiple adjacent critical structures. Conclusion: CyberKnife, with the InCise multileaf collimation option, can achieve acceptable dose distributions in large volume tumors treated with conventional dose and fractionation. Although treatment times are greater than conventional accelerator time; target coverage and dose to critical structures can be kept within a clinically acceptable range. While time limitations exist, when necessary CyberKnife can provide an alternative to traditional treatment modalities for large volume tumors.« less
NASA Astrophysics Data System (ADS)
Carson, James K.
2018-06-01
Glass spheres are often used as filler materials for composites. Comparatively few articles in the literature have been devoted to the measurement or modelling of thermal properties of composites containing glass spheres, and there does not appear to be any reported data on the measurement of thermal diffusivities over a range of filler volume fractions. In this study, the thermal diffusivities of guar-gel/glass sphere composites were measured using a transient comparative method. The addition of the glass beads to the gel increased the thermal diffusivity of the composite, more than doubling the thermal diffusivity of the composite relative to the diffusivity of the gel at the maximum glass volume fraction of approximately 0.57. Thermal conductivities of the composites were derived from the thermal diffusivity measurements, measured densities and estimated specific heat capacities of the composites. Two approaches to modelling the effective thermal diffusivity were considered.
Hao, Tian
2015-09-14
The underlying relationships among viscosity equations of glass liquids and colloidal suspensions are explored with the aid of free volume concept. Viscosity equations of glass liquids available in literature are focused and found to have a same physical basis but different mathematical expressions for the free volume. The glass transitions induced by temperatures in glass liquids and the percolation transition induced by particle volume fractions in colloidal suspensions essentially are a second order phase transition: both those two transitions could induce the free volume changes, which in turn determines how the viscosities are going to change with temperatures and/or particle volume fractions. Unified correlations of the free volume to both temperatures and particle volume fractions are thus proposed. The resulted viscosity equations are reducible to many popular viscosity equations currently widely used in literature; those equations should be able to cover many different types of materials over a wide temperature range. For demonstration purpose, one of the simplified versions of those newly developed equations is compared with popular viscosity equations and the experimental data: it can well fit the experimental data over a wide temperature range. The current work reveals common physical grounds among various viscosity equations, deepening our understanding on viscosity and unifying the free volume theory across many different systems.
Modelling compressible dense and dilute two-phase flows
NASA Astrophysics Data System (ADS)
Saurel, Richard; Chinnayya, Ashwin; Carmouze, Quentin
2017-06-01
Many two-phase flow situations, from engineering science to astrophysics, deal with transition from dense (high concentration of the condensed phase) to dilute concentration (low concentration of the same phase), covering the entire range of volume fractions. Some models are now well accepted at the two limits, but none are able to cover accurately the entire range, in particular regarding waves propagation. In the present work, an alternative to the Baer and Nunziato (BN) model [Baer, M. R. and Nunziato, J. W., "A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials," Int. J. Multiphase Flow 12(6), 861 (1986)], initially designed for dense flows, is built. The corresponding model is hyperbolic and thermodynamically consistent. Contrarily to the BN model that involves 6 wave speeds, the new formulation involves 4 waves only, in agreement with the Marble model [Marble, F. E., "Dynamics of a gas containing small solid particles," Combustion and Propulsion (5th AGARD Colloquium) (Pergamon Press, 1963), Vol. 175] based on pressureless Euler equations for the dispersed phase, a well-accepted model for low particle volume concentrations. In the new model, the presence of pressure in the momentum equation of the particles and consideration of volume fractions in the two phases render the model valid for large particle concentrations. A symmetric version of the new model is derived as well for liquids containing gas bubbles. This model version involves 4 characteristic wave speeds as well, but with different velocities. Last, the two sub-models with 4 waves are combined in a unique formulation, valid for the full range of volume fractions. It involves the same 6 wave speeds as the BN model, but at a given point of space, 4 waves only emerge, depending on the local volume fractions. The non-linear pressure waves propagate only in the phase with dominant volume fraction. The new model is tested numerically on various test problems ranging from separated phases in a shock tube to shock-particle cloud interaction. Its predictions are compared to BN and Marble models as well as against experimental data showing clear improvements.
Kashif, Muhammad; Bonnety, Jérôme; Guibert, Philippe; Morin, Céline; Legros, Guillaume
2012-12-17
A Laser Extinction Method has been set up to provide two-dimensional soot volume fraction field time history at a tunable frequency up to 70 Hz inside an axis-symmetric diffusion flame experiencing slow unsteady phenomena preserving the symmetry. The use of a continuous wave laser as the light source enables this repetition rate, which is an incremental advance in the laser extinction technique. The technique is shown to allow a fine description of the soot volume fraction field in a flickering flame exhibiting a 12.6 Hz flickering phenomenon. Within this range of repetition rate, the technique and its subsequent post-processing require neither any method for time-domain reconstruction nor any correction for energy intrusion. Possibly complemented by such a reconstruction method, the technique should support further soot volume fraction database in oscillating flames that exhibit characteristic times relevant to the current efforts in the validation of soot processes modeling.
NASA Astrophysics Data System (ADS)
Ge, Wenwei; Li, Jiefang; Viehland, D.; Chang, Yunfei; Messing, Gary L.
2011-06-01
The structure, ferroelectric and piezoelectric properties of <001> textured (K0.5Na0.5)0.98Li0.02NbO3 ceramics were investigated as a function of temperature and dc bias E. X-ray diffraction revealed an orthorhombic (O) → tetragonal (T) polymorphic phase boundary (PPB). Phase coexistence was found near the PPB over a 30 °C temperature range, where the relative phase volume fractions changed with temperature. Furthermore, increasing E applied along the <001> texture direction resulted in a notable increase in the volume fraction of the T phase at the expense of the O phase, effectively shifting the O → T boundary to lower temperature. An enhancement in the piezoelectric properties was found to accompany this increase in the T volume fraction.
Laser-induced incandescence calibration via gravimetric sampling
NASA Technical Reports Server (NTRS)
Choi, M. Y.; Vander Wal, R. L.; Zhou, Z.
1996-01-01
Absolute calibration of laser-induced incandescence (LII) is demonstrated via comparison of LII signal intensities with gravimetrically determined soot volume fractions. This calibration technique does not rely upon calculated or measured optical characteristics of soot. The variation of the LII signal with gravimetrically measured soot volume fractions ranging from 0.078 to 1.1 ppm established the linearly of the calibration. With the high spatial and temporal resolution capabilities of laser-induced incandescence (LII), the spatial and temporal fluctuations of the soot field within a gravimetric chimney were characterized. Radial uniformity of the soot volume fraction, f(sub v) was demonstrated with sufficient averaging of the single laser-shot LII images of the soot field thus confirming the validity of the calibration method for imaging applications. As illustration, instantaneous soot volume fractions within a Re = 5000 ethylene/air diffusion flame measured via planar LII were established quantitatively with this calibration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, L; Hu, W; Moyers, M
2015-06-15
Purpose: Positron-emitting isotope distributions can be used for the image fusion of the carbon ion planning CT and online target verification PETCT, after radiation in the same decay period,the relationship between the same target volume and the SUV value of different every single fraction dose can be found,then the range of SUV for the radiation target could be decided.So this online range also can provide reference for the correlation and consistency in planning target dose verification and evaluation for the clinical trial. Methods: The Rando head phantom can be used as real body,the 10cc cube volume target contouring is done,beammore » ISO Center depth is 7.6cm and the 90 degree fixed carbon ion beams should be delivered in single fraction effective dose of 2.5GyE,5GyE and 8GyE.After irradiation,390 seconds later the 30 minutes PET-CT scanning is performed,parameters are set to 50Kg virtual weight,0.05mCi activity.MIM Maestro is used for the image processing and fusion,five 16mm diameter SUV spheres have been chosen in the different direction in the target.The average SUV in target for different fraction dose can be found by software. Results: For 10cc volume target,390 seconds decay period,the Single fraction effective dose equal to 2.5Gy,Ethe SUV mean value is 3.42,the relative range is 1.72 to 6.83;Equal to 5GyE,SUV mean value is 9.946,the relative range is 7.016 to 12.54;Equal or above to 8GyE,SUV mean value is 20.496,the relative range is 11.16 to 34.73. Conclusion: Making an evaluation for accuracy of the dose distribution using the SUV range which is from the planning CT with after treatment online PET-CT fusion for the normal single fraction carbon ion treatment is available.Even to the plan which single fraction dose is above 2GyE,in the condition of other parameters all the same,the SUV range is linearly dependent with single fraction dose,so this method also can be used in the hyper-fraction treatment plan.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leggett, R.B.; Borling, D.C.; Powers, B.S.
1998-02-01
A multiphase flowmeter (MPFM) installed in offshore Egypt has accurately measured three-phase flow in extremely gassy flow conditions. The meter is completely nonintrusive, with no moving parts, requires no flow mixing before measurement, and has no bypass loop to remove gas before multiphase measurement. Flow regimes observed during the field test of this meter ranged from severe slugging to annular flow caused by the dynamics of gas-lift gas in the production stream. Average gas-volume fraction ranged from 93 to 98% during tests conducted on seven wells. The meter was installed in the Gulf of Suez on a well protector platformmore » in the Gulf of Suez Petroleum Co. (Gupco) October field, and was placed in series with a test separator located on a nearby production platform. Wells were individually tested with flow conditions ranging from 1,300 to 4,700 B/D fluid, 2.4 to 3.9 MMscf/D of gas, and water cuts from 1 to 52%. The meter is capable of measuring water cuts up to 100%. Production was routed through both the MPFM and the test separator simultaneously as wells flowed with the assistance of gas-lift gas. The MPFM measured gas and liquid rates to within {+-} 10% of test-separator reference measurement flow rates, and accomplished this at gas-volume fractions from 93 to 96%. At higher gas-volume fractions up to 98%, accuracy deteriorated but the meter continued to provide repeatable results.« less
NASA Astrophysics Data System (ADS)
Joubert, J. C.; Sharifpur, M.; Solomon, A. Brusly; Meyer, J. P.
2017-12-01
The natural convection heat transfer of a magnetic nanofluid in a differentially heated cavity is investigated with and without an applied external magnetic field. The effects of volume fraction, magnetic field configuration, and magnetic field strength are investigated. Spherical Fe2O3 nanoparticles with a diameter of 15-20 nm are used in the nanofluids. Volume fractions ranging between 0.05% and 0.3% are tested for the case with no magnetic field, while only a volume fraction of 0.1% was tested in an externally applied magnetic field. The experiments were conducted for a range of Rayleigh numbers in 1.7 × 108 < Ra < 4.2 × 108. The viscosity of the nanofluid was determined experimentally. An empirical correlation for the viscosity was determined, and the stability of various nanofluids was investigated. Using heat transfer data obtained from the cavity, the average heat transfer coefficient and average Nusselt number for the nanofluids are determined. It was found that a volume fraction of 0.1% showed a maximum increase of 5.63% to the Nu at the maximum Ra. For the magnetic field study, it was found that the best-performing magnetic field enhanced the heat transfer behaviour by an additional 2.81% in Nu at Ra = 3.8 × 108.
NASA Astrophysics Data System (ADS)
Ren, Yu; Zhou, Shimeng; Luo, Wenbo; Xue, Zhiyong; Zhang, Yajing
2018-03-01
Bimodal microstructures with primary α-phase volume fractions ranging from 14.3% to 57.1% were gained in Ti-6Al-4V (Ti-64) alloy through annealed in two-phase region at various temperatures below the β-transus point. Then the influence of the primary α-phase volume fraction on the mechanical properties of Ti-64 were studied. The results show that, at room temperature and a strain rate of 10‑3 s‑1, the yield stress decreases but the fracture strain augments with added primary α-phase volume fraction. The equiaxed primary α-phase possesses stronger ability to coordinate plastic deformation, leading to the improvement of the ductile as well as degradation of the strength of Ti-64 with higher primary α-phase volume fraction. As the temperature goes up to 473 K, the quasi-static yield stress and ultimate strength decrease first and then increase with the incremental primary α-phase volume fraction, due to the interaction between the work hardening and the softening caused by the DRX and the growth of the primary α-phase. At room temperature and a strain rate of 3×103 s‑1, the varying pattern of strength with the primary α-phase volume fraction resembles that at a quasi-static strain rate. However, the flow stress significantly increases but the strain-hardening rate decreases compared to those at quasi-static strain rate due to the competition between the strain rate hardening and the thermal softening during dynamic compression process.
Long-term aging behaviors in a model soft colloidal system.
Li, Qi; Peng, Xiaoguang; McKenna, Gregory B
2017-02-15
Colloidal and molecular systems share similar behaviors near to the glass transition volume fraction or temperature. Here, aging behaviors after volume fraction up-jump (induced by performing temperature down-jumps) conditions for a PS-PNIPAM/AA soft colloidal system were investigated using light scattering (diffusing wave spectroscopy, DWS). Both aging responses and equilibrium dynamics were investigated. For the aging responses, long-term experiments (100 000 s) were performed, and both equilibrium and non-equilibrium behaviors of the system were obtained. In the equilibrium state, as effective volume fraction increases (or temperature decreases), the colloidal dispersion displays a transition from the liquid to a glassy state. The equilibrium α-relaxation dynamics strongly depend on both the effective volume fraction and the initial mass concentration for the studied colloidal systems. Compared with prior results from our lab [X. Di, X. Peng and G. B. McKenna, J. Chem. Phys., 2014, 140, 054903], the effective volume fractions investigated spanned a wider range, to deeper into the glassy domain. The results show that the α-relaxation time τ α of the samples aged into equilibrium deviate from the classical Vogel-Fulcher-Tammann (VFT)-type expectations and the super-Arrhenius signature disappears above the glass transition volume fraction. The non-equilibrium aging response shows that the time for the structural evolution into equilibrium and the α-relaxation time are decoupled. The DWS investigation of the aging behavior after different volume fraction jumps reveals a different non-equilibrium or aging behavior for the considered colloidal systems compared with either molecular glasses or the macroscopic rheology of a similar colloidal dispersions.
The Effects of Flocculation on the Propagation of Ultrasound in Dilute Kaolin Slurries.
Austin; Challis
1998-10-01
A broadband ultrasonic spectrometer has been used to measure ultrasonic attenuation and phase velocity dispersion as functions of frequency in kaolin suspensions over a range of solid volume fractions from phi = 0.01 to phi = 0.08 and over a pH range from 3 to 9. The Harker and Temple theory was used to simulate ultrasound propagation in the suspension, using measured slope viscosity, particle size, and size distribution. Simulated results for ultrasonic attenuation and phase velocity agree well with measured values. Both sets of results agree well and show that for volume fractions above phi approximately 0.05 attenuation and velocity dispersion increase for increasing floc size, whereas for volume fractions below phi approximately 0.05 attenuation and velocity dispersion both decrease. It is proposed that the mechanism for this change in behavior around phi approximately 0.05 involves changes in floc density and floc size distribution with phi and pH. Copyright 1998 Academic Press.
The effects of particle shape, size, and interaction on colloidal glasses and gels
NASA Astrophysics Data System (ADS)
Kramb, Ryan C.
Using multiple step seeded emulsion polymerization reactions, colloid particles of tunable shape are synthesized from polystyrene. In all, four particle shapes are studied referred to as spheres (S), heteronuclear dicolloids (hDC), symmetric homonuclear dicolloids (sDC), and tricolloids (TC). Two size ranges of particles are studied with approximate diameters in the range of 200-300nm and 1.1-1.3mum. The solvent ionic strength is varied from 10 -3M to 1M resulting in particle interaction potentials that range from repulsive to attractive. The effect of anisotropic shape is found to increase the glass transition volume fraction (φg) in good agreement with activated naive Mode Coupling Theory (nMCT) calculations. Differences in φg and the linear elastic modulus (G0') due to particle shape can be understood in terms of the Random Close Packed volume fraction (φRCP ) for each shape; φRCP- φg is a constant. In addition, a reentrant phase diagram is found for S and sDC particles with a maximum in the fluid state volume fraction found at weakly attractive interaction potential, in agreement well with theoretical calculations. Nonlinear rheology and yielding behavior of repulsive and attractive spheres and anisotropic particles are examined and understood in terms of barriers constraining motion. The barriers are due to interparticle bonds or cages constraining translational or rotational motion. Yield stress has similar volume fraction dependence as G 0' and a similar framework is used to understand differences due to particle shape and interaction. For larger particles, the effects of shape and interaction are studied with respect to dynamic yielding and shear thickening. The dynamic yield stress is found to increase with volume fraction while the stress at thickening is constant. The intersection of these indicates a possible jamming point below φRCP.
Ac-conductivity and dielectric response of new zinc-phosphate glass/metal composites
NASA Astrophysics Data System (ADS)
Maaroufi, A.; Oabi, O.; Lucas, B.
2016-07-01
The ac-conductivity and dielectric response of new composites based on zinc-phosphate glass with composition 45 mol%ZnO-55 mol%P2O5, filled with metallic powder of nickel (ZP/Ni) were investigated by impedance spectroscopy in the frequency range from 100 Hz to 1 MHz at room temperature. A high percolating jump of seven times has been observed in the conductivity behavior from low volume fraction of filler to the higher fractions, indicating an insulator - semiconductor phase transition. The measured conductivity at higher filler volume fraction is about 10-1 S/cm and is frequency independent, while, the obtained conductivity for low filler volume fraction is around 10-8 S/cm and is frequency dependent. Moreover, the elaborated composites are characterized by high dielectric constants in the range of 105 for conductive composites at low frequencies (100 Hz). In addition, the distribution of the relaxation processes was also evaluated. The Debye, Cole-Cole, Davidson-Cole and Havriliak-Negami models in electric modulus formalism were used to model the observed relaxation phenomena in ZP/Ni composites. The observed relaxation phenomena are fairly simulated by Davidson-Cole model, and an account of the interpretation of results is given.
NASA Astrophysics Data System (ADS)
Jayhooni, S. M. H.; Rahimpour, M. R.
2013-06-01
In the present paper, free convection fluid flow and heat transfer of various water based nanofluids has been investigated numerically around a spherical mini-reactor. This numerical simulation is a finite-volume, steady, two dimensions, elliptic and multi-grid solver. The wall of the spherical mini-reactor are maintained at constant temperature TH and the temperature of nanofluid far from it is considered constant (TC). Computational fluid dynamics (CFD) is used for solving the relevant mathematical expressions for free convection heat transfer around it. The numerical simulation and available correlation are valid for based fluid. The effects of pertinent parameters, such as, Rayleigh number, and the volume fraction of the nanoparticles in the fluid flow and heat transfer around the spherical mini-reactor are investigated. This study has been carried out for the pertinent parameters in the following ranges: the Rayleigh number of base fluid is assumed to be less than 109 (Ra < 109). Besides, the percentages of the volumetric fraction of nanoparticle which is used for preparing the nanofluids, are between 0 and 4 (0 ⩽ φ ⩽ 4%). The obtained results show that the average Nusselt number for a range of the solid volume fraction of the nanofluid increases by increasing the Rayleigh number. Finally, the heat transfer has been enhanced not only by increasing the particle volume fraction but also by decreasing the size of particle diameter. Moreover, the Churchill's correlation is approximately appropriate for predicting the free convection heat transfer inside diverse kinds of nanofluids especially for high range of Rayleigh numbers.
NASA Astrophysics Data System (ADS)
Zhang, Xiaolin; Mao, Mao; Yin, Yan; Wang, Bin
2018-01-01
This study numerically evaluates the effects of aerosol microphysics, including coated volume fraction of black carbon (BC), shell/core ratio, and size distribution, on the absorption enhancement (
Heat transfer augmentation of a car radiator using nanofluids
NASA Astrophysics Data System (ADS)
Hussein, Adnan M.; Bakar, R. A.; Kadirgama, K.; Sharma, K. V.
2014-05-01
The car radiator heat transfer enhancement by using TiO2 and SiO2 nanoparticles dispersed in water as a base fluid was studied experimentally. The test rig is setup as a car radiator with tubes and container. The range of Reynolds number and volume fraction are (250-1,750) and (1.0-2.5 %) respectively. Results showed that the heat transfer increases with increasing of nanofluid volume fraction. The experimental data is agreed with other investigator.
Preoperative single fraction partial breast radiotherapy for early-stage breast cancer.
Palta, Manisha; Yoo, Sua; Adamson, Justus D; Prosnitz, Leonard R; Horton, Janet K
2012-01-01
Several recent series evaluating external beam accelerated partial breast irradiation (PBI) have reported adverse cosmetic outcomes, possibly related to large volumes of normal tissue receiving near-prescription doses. We hypothesized that delivery of external beam PBI in a single fraction to the preoperative tumor volume would be feasible and result in a decreased dose to the uninvolved breast compared with institutional postoperative PBI historical controls. A total of 17 patients with unifocal Stage T1 breast cancer were identified. Contrast-enhanced subtraction magnetic resonance images were loaded into an Eclipse treatment planning system and used to define the target volumes. A "virtual plan" was created using four photon beams in a noncoplanar beam arrangement and optimized to deliver 15 Gy to the planning target volume. The median breast volume was 1,713 cm(3) (range: 1,014-2,140), and the median clinical target volume was 44 cm(3) (range: 26-73). In all cases, 100% of the prescription dose covered 95% of the clinical target volume. The median conformity index was 0.86 (range: 0.70-1.12). The median percentage of the ipsilateral breast volume receiving 100% and 50% of the prescribed dose was 3.8% (range: 2.2-6.9) and 13.3% (range: 7.5-20.8) compared with 18% (range: 3-42) and 53% (range: 24-65) in the institutional historical controls treated with postoperative external beam PBI (p = .002). The median maximum skin dose was 9 Gy. The median dose to 1 and 10 cm(3) of skin was 6.7 and 4.9 Gy. The doses to the heart and ipsilateral lung were negligible. Preoperative PBI resulted in a substantial reduction in ipsilateral breast tissue dose compared with postoperative PBI. The skin dose appeared reasonable, given the small volumes. A prospective Phase I trial evaluating this technique is ongoing. Copyright © 2012 Elsevier Inc. All rights reserved.
Imai, Haruki; Tanaka, Yoji; Nomura, Naoyuki; Doi, Hisashi; Tsutsumi, Yusuke; Ono, Takashi; Hanawa, Takao
2017-02-01
Zr-Ag composites were fabricated to decrease the magnetic susceptibility by compensating for the magnetic susceptibility of their components. The Zr-Ag composites with a different Zr-Ag ratio were swaged, and their magnetic susceptibility, artifact volume, and mechanical properties were evaluated by magnetic balance, three-dimensional (3-D) artifact rendering, and a tensile test, respectively. These properties were correlated with the volume fraction of Ag using the linear rule of mixture. We successfully obtained the swaged Zr-Ag composites up to the reduction ratio of 96% for Zr-4, 16, 36, 64Ag and 86% for Zr-81Ag. However, the volume fraction of Ag after swaging tended to be lower than that before swaging, especially for Ag-rich Zr-Ag composites. The magnetic susceptibility of the composites linearly decreased with the increasing volume fraction of Ag. No artifact could be estimated with the Ag volume fraction in the range from 93.7% to 95.4% in three conditions. Young's modulus, ultimate tensile strength (UTS), and 0.2% yield strength of Zr-Ag composites showed slightly lower values compared to the estimated values using a linear rule of mixture. The decrease in magnetic susceptibility of Zr and Ag by alloying or combining would contribute to the decrease of the Ag fraction, leading to the improvement of mechanical properties. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Singh, Manpreet; Das, Anindya; Venugopalan, T.; Mukherjee, Krishnendu; Walunj, Mahesh; Nanda, Tarun; Kumar, B. Ravi
2017-12-01
The effects of microstructure parameters of dual-phase steels on tensile high strain dynamic deformation characteristic were examined in this study. Cold-rolled steel sheets were annealed using three different annealing process parameters to obtain three different dual-phase microstructures of varied ferrite and martensite phase fraction. The volume fraction of martensite obtained in two of the steels was near identical ( 19 pct) with a subtle difference in its spatial distribution. In the first microstructure variant, martensite was mostly found to be situated at ferrite grain boundaries and in the second variant, in addition to at grain boundaries, in-grain martensite was also observed. The third microstructure was very different from the above two with respect to martensite volume fraction ( 67 pct) and its morphology. In this case, martensite packets were surrounded by a three-dimensional ferrite network giving an appearance of core and shell type microstructure. All the three steels were tensile deformed at strain rates ranging from 2.7 × 10-4 (quasi-static) to 650 s-1 (dynamic range). Field-emission scanning electron microscope was used to characterize the starting as well as post-tensile deformed microstructures. Dual-phase steel consisting of small martensite volume fraction ( 19 pct), irrespective of its spatial distribution, demonstrated high strain rate sensitivity and on the other hand, steel with large martensite volume fraction ( 67 pct) displayed a very little strain rate sensitivity. Interestingly, total elongation was found to increase with increasing strain rate in the dynamic regime for steel with core-shell type of microstructure containing large martensite volume fraction. The observed enhancement in plasticity in dynamic regime was attributed to adiabatic heating of specimen. To understand the evolving damage mechanism, the fracture surface and the vicinity of fracture ends were studied in all the three dual-phase steels.
NASA Astrophysics Data System (ADS)
Singh, Manpreet; Das, Anindya; Venugopalan, T.; Mukherjee, Krishnendu; Walunj, Mahesh; Nanda, Tarun; Kumar, B. Ravi
2018-02-01
The effects of microstructure parameters of dual-phase steels on tensile high strain dynamic deformation characteristic were examined in this study. Cold-rolled steel sheets were annealed using three different annealing process parameters to obtain three different dual-phase microstructures of varied ferrite and martensite phase fraction. The volume fraction of martensite obtained in two of the steels was near identical ( 19 pct) with a subtle difference in its spatial distribution. In the first microstructure variant, martensite was mostly found to be situated at ferrite grain boundaries and in the second variant, in addition to at grain boundaries, in-grain martensite was also observed. The third microstructure was very different from the above two with respect to martensite volume fraction ( 67 pct) and its morphology. In this case, martensite packets were surrounded by a three-dimensional ferrite network giving an appearance of core and shell type microstructure. All the three steels were tensile deformed at strain rates ranging from 2.7 × 10-4 (quasi-static) to 650 s-1 (dynamic range). Field-emission scanning electron microscope was used to characterize the starting as well as post-tensile deformed microstructures. Dual-phase steel consisting of small martensite volume fraction ( 19 pct), irrespective of its spatial distribution, demonstrated high strain rate sensitivity and on the other hand, steel with large martensite volume fraction ( 67 pct) displayed a very little strain rate sensitivity. Interestingly, total elongation was found to increase with increasing strain rate in the dynamic regime for steel with core-shell type of microstructure containing large martensite volume fraction. The observed enhancement in plasticity in dynamic regime was attributed to adiabatic heating of specimen. To understand the evolving damage mechanism, the fracture surface and the vicinity of fracture ends were studied in all the three dual-phase steels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ajani, Abdallah A.; Qureshi, Muhammad M.; Kovalchuk, Nataliya
To evaluate the change in volume and movement of the parotid gland measured by serial contrast-enhanced computed tomography scans in patients with head and neck cancer treated with parotid-sparing intensity-modulated radiotherapy (IMRT). A prospective study was performed on 13 patients with head and neck cancer undergoing dose-painted IMRT to 69.96 Gy in 33 fractions. Serial computed tomography scans were performed at baseline, weeks 2, 4, and 6 of radiotherapy (RT), and at 6 weeks post-RT. The parotid volume was contoured at each scan, and the movement of the medial and lateral borders was measured. The patient's body weight was recordedmore » at each corresponding week during RT. Regression analyses were performed to ascertain the rate of change during treatment as a percent change per fraction in parotid volume and distance relative to baseline. The mean parotid volume decreased by 37.3% from baseline to week 6 of RT. The overall rate of change in parotid volume during RT was−1.30% per fraction (−1.67% and−0.91% per fraction in≥31 Gy and<31 Gy mean planned parotid dose groups, respectively, p = 0.0004). The movement of parotid borders was greater in the≥31 Gy mean parotid dose group compared with the<31 Gy group (0.22% per fraction and 0.14% per fraction for the lateral border and 0.19% per fraction and 0.06% per fraction for the medial border, respectively). The median change in body weight was−7.4% (range, 0.75% to−17.5%) during RT. A positive correlation was noted between change in body weight and parotid volume during the course of RT (Spearman correlation coefficient, r = 0.66, p<0.01). Head and neck IMRT results in a volume loss of the parotid gland, which is related to the planned parotid dose, and the patient's weight loss during RT.« less
Miniaturized Nanocomposite Piezoelectric Microphones for UAS Applications
2012-10-22
volume fraction for three different materials: ZnO/SU-8 composite, ZnO thin film, and PZT thin film. This was computed for a microphone of outer...radius, 2 400R mμ= , and a thickness 1t mμ= . Note the significant increase in sensitivity compared to a solid ZnO or PZT film. This arises because, as...predicted range. An optimal volume fraction of 0.3 yielded a 17-fold increase in sensitivity over ZnO and a 49-fold increase over PZT . Figure 6
Change in Seroma Volume During Whole-Breast Radiation Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Rajiv; Spierer, Marnee; Mutyala, Subhakar
2009-09-01
Purpose: After breast-conserving surgery, a seroma often forms in the surgical cavity. If not drained, it may affect the volume of tumor bed requiring a boost after whole-breast radiation therapy (WBRT). Our objective was to evaluate the change in seroma volume that occurs during WBRT, before boost planning. Methods and Materials: A retrospective review was performed of women receiving breast-conserving therapy with evidence of seroma at the time of WBRT planning. Computed tomography (CT) simulation was performed before WBRT and before the tumor bed boost. All patients received either a hypofractionated (42.4 Gy/16 fraction + 9.6 Gy/4 fraction boost) ormore » standard fractionated (50.4 Gy/28 fraction + 10 Gy/5 fraction boost) regimen. Seroma volumes were contoured and compared on CT at the time of WBRT simulation and tumor bed boost planning. Results: Twenty-four patients with evidence of seroma were identified and all patients received WBRT without drainage of the seroma. Mean seroma volume before WBRT and at boost planning were significantly different at 65.7 cm{sup 3} (SD, 50.5 cm{sup 3}) and 35.6 cm{sup 3} (SD, 24.8 cm{sup 3}), respectively (p < 0.001). Mean and median reduction in seroma volume during radiation were 39.6% (SD, 23.8%) and 46.2% (range, 10.7-76.7%), respectively. Fractionation schedule was not correlated with change in seroma volume. Length of time from surgery to start of radiation therapy showed an inverse correlation with change in seroma volume (Pearson correlation r = -0.53, p < 0.01). Conclusions: The volume of seroma changes significantly during WBRT. Consequently, the accuracy of breast boost planning is likely affected, as is the volume of normal breast tissue irradiated. CT-based boost planning before boost irradiation is suggested to ensure appropriate coverage.« less
Blaesi, Aron H; Saka, Nannaji
2017-11-01
In recent studies, we have introduced melt-processed polymeric cellular dosage forms to achieve both immediate drug release and predictable manufacture. Dosage forms ranging from minimally-porous solids to highly porous, open-cell and thin-walled structures were prepared, and the drug release characteristics investigated as the volume fraction of cells and the excipient molecular weight were varied. In the present study, both minimally-porous solid and cellular dosage forms consisting of various weight fractions of Acetaminophen drug and polyethylene glycol (PEG) excipient are prepared and analyzed. Microstructures of the solid forms and the cell walls range from single-phase solid solutions of the excipient and a small amount of drug molecules to two-phase composites of the excipient and tightly packed drug particles. Results of dissolution experiments show that the minimally-porous solid forms disintegrate and release drug by slow surface erosion. The erosion rate decreases as the drug weight fraction is increased. By contrast, the open-cell structures disintegrate rapidly by viscous exfoliation, and the disintegration time is independent of drug weight fraction. Drug release models suggest that the solid forms erode by convective mass transfer of the faster-eroding excipient if the drug volume fraction is small. At larger drug volume fractions, however, the slower-eroding drug particles hinder access of the free-flowing fluid to the excipient, thus slowing down erosion of the composite. Conversely, the disintegration rate of the cellular forms is limited by diffusion of the dissolution fluid into the excipient phase of the thin cell walls. Because the wall thickness is of the order of the drug particle size, and the particles are enveloped by the excipient during melt-processing, the drug particles cannot hinder diffusion through the excipient across the walls. Thus the disintegration time of the cellular forms is mostly unaffected by the volume fraction of drug in the walls. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Reddy, Ramana; Kumar, Sanjeev
2007-12-01
In this paper, we show through simulations that when sticky particles are broken continually, particles are dispersed into fine dust only if they are present in a narrow range of volume fractions. The upper limit of this range is 0.20 in the 2D and 0.10 in the 3D space. An increase in the dimensionality of space reduces the upper limit nearly by a factor of two. This scaling holds for dispersal of particles in hyperdimensional space of dimensions up to ten, the maximum dimension studied in this work. The maximum values of volume fractions obtained are significantly lower than those required for close packing and random packing of discs in 2D and spheres in 3D space. These values are also smaller than those required for critical phenomena of cluster percolation. The results obtained are attributed to merger cascades of sticky particles, triggered by breakup events. A simple theory that incorporates this cascade is developed to quantitatively explain the observed scaling of the upper limit with the dimensionality of space. The theory also captures the dynamics of the dispersal process in the corresponding range of particle volume fractions. The theory suggests that cascades of order one and two predominantly decide the upper limit for complete dispersal of particles.
SU-E-T-429: Uncertainties of Cell Surviving Fractions Derived From Tumor-Volume Variation Curves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chvetsov, A
2014-06-01
Purpose: To evaluate uncertainties of cell surviving fraction reconstructed from tumor-volume variation curves during radiation therapy using sensitivity analysis based on linear perturbation theory. Methods: The time dependent tumor-volume functions V(t) have been calculated using a twolevel cell population model which is based on the separation of entire tumor cell population in two subpopulations: oxygenated viable and lethally damaged cells. The sensitivity function is defined as S(t)=[δV(t)/V(t)]/[δx/x] where δV(t)/V(t) is the time dependent relative variation of the volume V(t) and δx/x is the relative variation of the radiobiological parameter x. The sensitivity analysis was performed using direct perturbation method wheremore » the radiobiological parameter x was changed by a certain error and the tumor-volume was recalculated to evaluate the corresponding tumor-volume variation. Tumor volume variation curves and sensitivity functions have been computed for different values of cell surviving fractions from the practically important interval S{sub 2}=0.1-0.7 using the two-level cell population model. Results: The sensitivity functions of tumor-volume to cell surviving fractions achieved a relatively large value of 2.7 for S{sub 2}=0.7 and then approached zero as S{sub 2} is approaching zero Assuming a systematic error of 3-4% we obtain that the relative error in S{sub 2} is less that 20% in the range S2=0.4-0.7. This Resultis important because the large values of S{sub 2} are associated with poor treatment outcome should be measured with relatively small uncertainties. For the very small values of S2<0.3, the relative error can be larger than 20%; however, the absolute error does not increase significantly. Conclusion: Tumor-volume curves measured during radiotherapy can be used for evaluation of cell surviving fractions usually observed in radiation therapy with conventional fractionation.« less
2014-01-01
Background Many pathologies seen in the preterm population are associated with abnormal blood supply, yet robust evaluation of preterm cardiac function is scarce and consequently normative ranges in this population are limited. The aim of this study was to quantify and validate left ventricular dimension and function in preterm infants using cardiovascular magnetic resonance (CMR). An initial investigation of the impact of the common congenital defect patent ductus arteriosus (PDA) was then carried out. Methods Steady State Free Procession short axis stacks were acquired. Normative ranges of left ventricular end diastolic volume (EDV), stroke volume (SV), left ventricular output (LVO), ejection fraction (EF), left ventricular (LV) mass, wall thickness and fractional thickening were determined in “healthy” (control) neonates. Left ventricular parameters were then investigated in PDA infants. Unpaired student t-tests compared the 2 groups. Multiple linear regression analysis assessed impact of shunt volume in PDA infants, p-value ≤ 0.05 being significant. Results 29 control infants median (range) corrected gestational age at scan 34+6(31+1-39+3) weeks were scanned. EDV, SV, LVO, LV mass normalized by weight and EF were shown to decrease with increasing corrected gestational age (cGA) in controls. In 16 PDA infants (cGA 30+3(27+3-36+1) weeks) left ventricular dimension and output were significantly increased, yet there was no significant difference in ejection fraction and fractional thickening between the two groups. A significant association between shunt volume and increased left ventricular mass correcting for postnatal age and corrected gestational age existed. Conclusion CMR assessment of left ventricular function has been validated in neonates, providing more robust normative ranges of left ventricular dimension and function in this population. Initial investigation of PDA infants would suggest that function is relatively maintained. PMID:25160730
Ramphao, M C; Wentzel, M C; Ekama, G A; Alexander, W V
2006-01-01
Installing membranes for solid-liquid separation into biological nutrient removal (BNR) activated sludge (AS) systems makes a profound difference not only to the design of the membrane bio-reactor (MBR) BNR system itself, but also to the design approach for the whole wastewater treatment plant (WWTP). In multi-zone BNR systems with membranes in the aerobic reactor and fixed volumes for the anaerobic, anoxic and aerobic zones (i.e. fixed volume fractions), the mass fractions can be controlled (within a range) with the inter-reactor recycle ratios. This zone mass fraction flexibility is a significant advantage of MBR BNR systems over BNR systems with secondary settling tanks (SSTs), because it allows changing the mass fractions to optimise biological N and P removal in conformity with influent wastewater characteristics and the effluent N and P concentrations required. For PWWF/ADWF ratios (fq) in the upper range (fq approximately 2.0), aerobic mass fractions in the lower range (f(maer) < 0.60) and high (usually raw) wastewater strengths, the indicated mode of operation of MBR BNR systems is as extended aeration WWTPs (no primary settling and long sludge age). However, the volume reduction compared with equivalent BNR systems with SSTs will not be large (40-60%), but the cost of the membranes can be offset against sludge thickening and stabilisation costs. Moving from a flow unbalanced raw wastewater system to a flow balanced (fq = 1) low (usually settled) wastewater strength system can double the ADWF capacity of the biological reactor, but the design approach of the WWTP changes away from extended aeration to include primary sludge stabilisation. The cost of primary sludge treatment then has to be offset against the savings of the increased WWTP capacity.
Morimoto, Masahiro; Yoshioka, Yasuo; Shiomi, Hiroya; Isohashi, Fumiaki; Konishi, Koji; Kotsuma, Tadayuki; Fukuda, Shoichi; Kagawa, Naoki; Kinoshita, Manabu; Hashimoto, Naoya; Yoshimine, Toshiki; Koizumi, Masahiko
2011-05-01
To investigate the treatment results of intracranial meningiomas treated with hypofractionated stereotactic radiation therapy in three to five fractions. Thirty-one patients (32 lesions) with intracranial meningioma were treated with hypofractionated stereotactic radiation therapy in three to five fractions using CyberKnife. Fifteen lesions were diagnosed as Grade I (World Health Organization classification) by surgical resection and 17 lesions were diagnosed as meningioma based on radiological findings. The median follow-up time was 48 months. The median planning target volume was 6.3 cm(3) (range, 1.4-27.1), and the prescribed dose (D90≤) ranged from 21 to 36 Gy (median, 27.8) administrated in three to five fractions. Five-year overall and progression-free survival rate of all 31 patients with intracranial meningioma was 86 and 83%, respectively. Five-year progression-free rate of all 32 lesions was 87%. Six of the 31 patients (19%) developed marked peritumoral edema, three of whom were asymptomatic and three symptomatic, the latter with late adverse effects of more than or equal to Grade 3. The mean planning target volume of the six lesions with marked peritumoral edema was 15.6 cm(3), and for the remaining 26 lesions without marked peritumoral edema was 7.1 cm(3) (P = 0.004). The threshold diameter of 2.56 cm for meningioma was calculated from the planning target volume (11 cm(3)) and was used as marker of developing peritumoral edema (P = 0.003). Tumor volume is a significant indicative factor for peritumoral edema in intracranial meningioma treated with hypofractionated stereotactic radiation therapy in three to five factions.
The hydraulic permeability of blood clots as a function of fibrin and platelet density.
Wufsus, A R; Macera, N E; Neeves, K B
2013-04-16
Interstitial fluid flow within blood clots is a biophysical mechanism that regulates clot growth and dissolution. Assuming that a clot can be modeled as a porous medium, the physical property that dictates interstitial fluid flow is the hydraulic permeability. The objective of this study was to bound the possible values of the hydraulic permeability in clots formed in vivo and present relationships that can be used to estimate clot permeability as a function of composition. A series of clots with known densities of fibrin and platelets, the two major components of a clot, were formed under static conditions. The permeability was calculated by measuring the interstitial fluid velocity through the clots at a constant pressure gradient. Fibrin gels formed with a fiber volume fraction of 0.02-0.54 had permeabilities of 1.2 × 10(-1)-1.5 × 10(-4)μm(2). Platelet-rich clots with a platelet volume fraction of 0.01-0.61 and a fibrin volume fraction of 0.03 had permeabilities over a range of 1.1 × 10(-2)-1.5 × 10(-5)μm(2). The permeability of fibrin gels and of clots with platelet volume fraction of <0.2 were modeled as an array of disordered cylinders with uniform diameters. Clots with a platelet volume fraction of >0.2 were modeled as a Brinkman medium of coarse solids (platelets) embedded in a mesh of fine fibers (fibrin). Our data suggest that the permeability of clots formed in vivo can vary by up to five orders of magnitude, with pore sizes that range from 4 to 350 nm. These findings have important implications for the transport of coagulation zymogens/enzymes in the interstitial spaces during clot formation, as well as the design of fibrinolytic drug delivery strategies. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.
The Hydraulic Permeability of Blood Clots as a Function of Fibrin and Platelet Density
Wufsus, A.R.; Macera, N.E.; Neeves, K.B.
2013-01-01
Interstitial fluid flow within blood clots is a biophysical mechanism that regulates clot growth and dissolution. Assuming that a clot can be modeled as a porous medium, the physical property that dictates interstitial fluid flow is the hydraulic permeability. The objective of this study was to bound the possible values of the hydraulic permeability in clots formed in vivo and present relationships that can be used to estimate clot permeability as a function of composition. A series of clots with known densities of fibrin and platelets, the two major components of a clot, were formed under static conditions. The permeability was calculated by measuring the interstitial fluid velocity through the clots at a constant pressure gradient. Fibrin gels formed with a fiber volume fraction of 0.02–0.54 had permeabilities of 1.2 × 10−1–1.5 × 10−4μm2. Platelet-rich clots with a platelet volume fraction of 0.01–0.61 and a fibrin volume fraction of 0.03 had permeabilities over a range of 1.1 × 10−2–1.5 × 10−5μm2. The permeability of fibrin gels and of clots with platelet volume fraction of <0.2 were modeled as an array of disordered cylinders with uniform diameters. Clots with a platelet volume fraction of >0.2 were modeled as a Brinkman medium of coarse solids (platelets) embedded in a mesh of fine fibers (fibrin). Our data suggest that the permeability of clots formed in vivo can vary by up to five orders of magnitude, with pore sizes that range from 4 to 350 nm. These findings have important implications for the transport of coagulation zymogens/enzymes in the interstitial spaces during clot formation, as well as the design of fibrinolytic drug delivery strategies. PMID:23601328
Unique strain history during ejection in canine left ventricle.
Douglas, A S; Rodriguez, E K; O'Dell, W; Hunter, W C
1991-05-01
Understanding the relationship between structure and function in the heart requires a knowledge of the connection between the local behavior of the myocardium (e.g., shortening) and the pumping action of the left ventricle. We asked the question, how do changes in preload and afterload affect the relationship between local myocardial deformation and ventricular volume? To study this, a set of small radiopaque beads was implanted in approximately 1 cm3 of the isolated canine heart left ventricular free wall. Using biplane cineradiography, we tracked the motion of these markers through various cardiac cycles (controlling pre- and afterload) using the relative motion of six markers to quantify the local three dimensional Lagrangian strain. Two different reference states (used to define the strains) were considered. First, we used the configuration of the heart at end diastole for that particular cardiac cycle to define the individual strains (which gave the local "shortening fraction") and the ejection fraction. Second, we used a single reference state for all cardiac cycles i.e., the end-diastolic state at maximum volume, to define absolute strains (which gave local fractional length) and the volume fraction. The individual strain versus ejection fraction trajectories were dependent on preload and afterload. For any one heart, however, each component of absolute strain was more tightly correlated to volume fraction. Around each linear regression, the individual measurements of absolute strain scattered with standard errors that averaged less than 7% of their range. Thus the canine hearts examined had a preferred kinematic (shape) history during ejection, different from the kinematics of filling and independent or pre-or afterload and of stroke volume.
Communication: Influence of nanophase segregation on ion transport in room temperature ionic liquids
Griffin, Philip J.; Wang, Yangyang; Holt, Adam P.; ...
2016-04-21
In this paper, we report measurements of the ionic conductivity, shear viscosity, and structural dynamics in a homologous series of quaternary ammonium ionic liquids (ILs) and a prototypical imidazolium-based IL over a wide range of temperatures down to the glass transition. We find that the ionic conductivity of these materials generally decreases, while the shear viscosity correspondingly increases, with increasing volume fraction of aliphatic side groups. Upon crossing an aliphatic volume fraction of ~0.40, we observe a sharp, order-of-magnitude decrease in ionic conductivity and enhancement of viscosity, which coincides with the presence of long-lived, nanometer-sized alkyl aggregates. These strong changesmore » in dynamics are not mirrored in the ionicity of these ILs, which decreases nearly linearly with aliphatic volume fraction. Finally, our results demonstrate that nanophase segregation in neat ILs strongly reduces ionic conductivity primarily due to an aggregation-induced suppression of dynamics.« less
Multi-scale Rule-of-Mixtures Model of Carbon Nanotube/Carbon Fiber/Epoxy Lamina
NASA Technical Reports Server (NTRS)
Frankland, Sarah-Jane V.; Roddick, Jaret C.; Gates, Thomas S.
2005-01-01
A unidirectional carbon fiber/epoxy lamina in which the carbon fibers are coated with single-walled carbon nanotubes is modeled with a multi-scale method, the atomistically informed rule-of-mixtures. This multi-scale model is designed to include the effect of the carbon nanotubes on the constitutive properties of the lamina. It included concepts from the molecular dynamics/equivalent continuum methods, micromechanics, and the strength of materials. Within the model both the nanotube volume fraction and nanotube distribution were varied. It was found that for a lamina with 60% carbon fiber volume fraction, the Young's modulus in the fiber direction varied with changes in the nanotube distribution, from 138.8 to 140 GPa with nanotube volume fractions ranging from 0.0001 to 0.0125. The presence of nanotube near the surface of the carbon fiber is therefore expected to have a small, but positive, effect on the constitutive properties of the lamina.
NASA Technical Reports Server (NTRS)
Cutten, D. R.; Jarzembski, M. A.; Srivastava, V.; Pueschel, R. F.; Howard, S. D.; McCaul, E. W., Jr.
2003-01-01
An inversion technique has been developed to determine volume fractions of an atmospheric aerosol composed primarily of ammonium sulfate and ammonium nitrate and water combined with fixed concentration of elemental and organic carbon. It is based on measured aerosol backscatter obtained with 9.11 - and 10.59-micron wavelength continuous wave CO2 lidars and modeled backscatter from aerosol size distribution data. The technique is demonstrated during a flight of the NASA DC-8 aircraft over the Sierra Nevada Mountain Range, California on 19 September, 1995. Volume fraction of each component and effective complex refractive index of the composite particle were determined assuming an internally mixed composite aerosol model. The volume fractions were also used to re-compute aerosol backscatter, providing good agreement with the lidar-measured data. The robustness of the technique for determining volume fractions was extended with a comparison of calculated 2.1,-micron backscatter from size distribution data with the measured lidar data converted to 2.1,-micron backscatter using an earlier derived algorithm, verifying the algorithm as well as the backscatter calculations.
Chen, Zhen; Zhao, Kong-Shuang; Guo, Lin; Feng, Cai-Hong
2007-04-28
Dielectric measurements were carried out on colloidal suspensions of palladium nanoparticle chains dispersed in poly(vinyl pyrrolidone)/ethylene glycol (PVP/EG) solution with different particle volume fractions, and dielectric relaxation with relaxation time distribution and small relaxation amplitude was observed in the frequency range from 10(5) to 10(7) Hz. By means of the method based on logarithmic derivative of the dielectric constant and a numerical Kramers-Kronig transform method, two dielectric relaxations were confirmed and dielectric parameters were determined from the dielectric spectra. The dielectric parameters showed a strong dependence on the volume fraction of palladium nanoparticle chain. Through analyzing limiting conductivity at low frequency, the authors found the conductance percolation phenomenon of the suspensions, and the threshold volume fraction is about 0.18. It was concluded from analyzing the dielectric parameters that the high frequency dielectric relaxation results from interfacial polarization and the low frequency dielectric relaxation is a consequence of counterion polarization. They also found that the dispersion state of the palladium nanoparticle chain in PVP/EG solution is dependent on the particle volume fraction, and this may shed some light on a better application of this kind of materials.
Tensile strength and fracture of cemented granular aggregates.
Affes, R; Delenne, J-Y; Monerie, Y; Radjaï, F; Topin, V
2012-11-01
Cemented granular aggregates include a broad class of geomaterials such as sedimentary rocks and some biomaterials such as the wheat endosperm. We present a 3D lattice element method for the simulation of such materials, modeled as a jammed assembly of particles bound together by a matrix partially filling the interstitial space. From extensive simulation data, we analyze the mechanical properties of aggregates subjected to tensile loading as a function of matrix volume fraction and particle-matrix adhesion. We observe a linear elastic behavior followed by a brutal failure along a fracture surface. The effective stiffness before failure increases almost linearly with the matrix volume fraction. We show that the tensile strength of the aggregates increases with both the increasing tensile strength at the particle-matrix interface and decreasing stress concentration as a function of matrix volume fraction. The proportion of broken bonds in the particle phase reveals a range of values of the particle-matrix adhesion and matrix volume fraction for which the cracks bypass the particles and hence no particle damage occurs. This limit is shown to depend on the relative toughness of the particle-matrix interface with respect to the particles.
Crystallization and dynamical arrest of attractive hard spheres.
Babu, Sujin; Gimel, Jean-Christophe; Nicolai, Taco
2009-02-14
Crystallization of hard spheres interacting with a square well potential was investigated by numerical simulations using so-called Brownian cluster dynamics. The phase diagram was determined over a broad range of volume fractions. The crystallization rate was studied as a function of the interaction strength expressed in terms of the second virial coefficient. For volume fractions below about 0.3 the rate was found to increase abruptly with increasing attraction at the binodal of the metastable liquid-liquid phase separation. The rate increased until a maximum was reached after which it decreased with a power law dependence on the second virial coefficient. Above a critical percolation concentration, a transient system spanning network of connected particles was formed. Crystals were formed initially as part of the network, but eventually crystallization led to the breakup of the network. The lifetime of the transient gels increased very rapidly over a small range of interaction energies. Weak attraction destabilized the so-called repulsive crystals formed in pure hard sphere systems and shifted the coexistence line to higher volume fractions. Stronger attraction led to the formation of a denser, so-called attractive, crystalline phase. Nucleation of attractive crystals in the repulsive crystalline phase was observed close to the transition.
Kinetic attractor phase diagrams of active nematic suspensions: the dilute regime.
Forest, M Gregory; Wang, Qi; Zhou, Ruhai
2015-08-28
Large-scale simulations by the authors of the kinetic-hydrodynamic equations for active polar nematics revealed a variety of spatio-temporal attractors, including steady and unsteady, banded (1d) and cellular (2d) spatial patterns. These particle scale activation-induced attractors arise at dilute nanorod volume fractions where the passive equilibrium phase is isotropic, whereas all previous model simulations have focused on the semi-dilute, nematic equilibrium regime and mostly on low-moment orientation tensor and polarity vector models. Here we extend our previous results to complete attractor phase diagrams for active nematics, with and without an explicit polar potential, to map out novel spatial and dynamic transitions, and to identify some new attractors, over the parameter space of dilute nanorod volume fraction and nanorod activation strength. The particle-scale activation parameter corresponds experimentally to a tunable force dipole strength (so-called pushers with propulsion from the rod tail) generated by active rod macromolecules, e.g., catalysis with the solvent phase, ATP-induced propulsion, or light-activated propulsion. The simulations allow 2d spatial variations in all flow and orientational variables and full spherical orientational degrees of freedom; the attractors correspond to numerical integration of a coupled system of 125 nonlinear PDEs in 2d plus time. The phase diagrams with and without the polar interaction potential are remarkably similar, implying that polar interactions among the rodlike particles are not essential to long-range spatial and temporal correlations in flow, polarity, and nematic order. As a general rule, above a threshold, low volume fractions induce 1d banded patterns, whereas higher yet still dilute volume fractions yield 2d patterns. Again as a general rule, varying activation strength at fixed volume fraction induces novel dynamic transitions. First, stationary patterns saturate the instability of the isotropic state, consisting of discrete 1d banded or 2d cellular patterns depending on nanorod volume fraction. Increasing activation strength further induces a sequence of attractor bifurcations, including oscillations superimposed on the 1d and 2d stationary patterns, a uniform translational motion of 1d and 2d oscillating patterns, and periodic switching between 1d and 2d patterns. These results imply that active macromolecular suspensions are capable of long-range spatial and dynamic organization at isotropic equilibrium concentrations, provided particle-scale activation is sufficiently strong.
Gong, Dan-yan; Pan, Yang; Huang, Yong; Bao, Wei; Li, Qian-qian
2016-03-15
Grain size distribution characteristics of suspended particulate matter (SPM) reflects the apparent polluted condition of the urban landscape water. In order to explore the internal relationship between the eutrophication of urban landscape water's apparent pollution and grain size distribution of SPM, and its influencing factors, this paper selected five representative sampling sites in Feng Jin River which is a typical eutrophication river in Suzhou City, measured the grain size distribution of SPM, sensation pollution index (SPI) and water quality index, and analyzed their correlation. The results showed that: The rich nutrient water possessed a similar characteristics in grain size distribution. The grain size distribution of SPM in water was multimodal, and the the peak position was roughly the same; the grain size distribution of SPM was composed by multiple components. It could be roughly divided into six parts with the particle size range of every group being < 1.5 µm, 1.5-8 µm, 8-35 µm, 35-186 µm, 186-516 µm, > 516 µm. The component III was superior (with an average volume fraction of 38.3%-43.2%), and its volume fraction had a significant positive relation with the SPI value and the Chl-a content. The increase of component III volume fraction was the reflection of particle size's result of increasing SPI value. The increase of component III volume fraction was mainly derived from the increasing algal content. The volume fraction of group IV + group VI + group V was significantly higher under the condition of exogenous enter. When there was no exogenous component, the volume fraction of group IV + group VI + group V had a significant negative correlation with SPI value; when there were exogenous components, the volume fraction of group IV + group VI + group V had a weak positive correlation with SPI value, but the correlation did not reach a significant level. Environmental factors (Fv/Fm and DO) and exogenous factors had an influence by functioning on the algal content which signified the polluted material, and then affected the volume fraction of particle size's components and the quality of apparent water. Hydrodynamic conditions mainly had a certain influence on the median particle size, and had no effect on the apparent polluted condition of water.
Micro-Mechanical Modeling of Ductile Fracture in Welded Aluminum-Lithium Alloys
NASA Technical Reports Server (NTRS)
Ibrahim, Ahmed
2002-01-01
This computation model for microscopic crack growth in welded aluminum-lithium alloys consists of a cavity with initial volume specified by the fraction f(sub 0), i.e. the void volume relative to the cell volume. Thus, cell size D and initial porosity f(sub 0) defines the key parameters in this model. The choice of cell size requires: 1) D must be representative of the large inclusion spacing. 2) Predicted R-curves scale almost proportionally with D for fixed f(sub 0). 3) mapping of one finite element per cell must provide adequate resolution of the stress-strain fields in the active layer and the adjacent material. For the ferritic steels studied thus far with this model, calibrated cell sizes range from 50-200 microns with f(sub 0) in the 0.0001 to 0.004 micron range. This range of values for D and f (sub 0) satisfies issues 1) and 3). This computational model employs the Gurson and Tvergaard constitutive model for porous plastic materials to describe the progressive damage of cells due to the growth of pre-existing voids. The model derives from a rigid-plastic limit analysis of a solid having a volume fraction (f) of voids approximated by a homogenous spherical body containing a spherical void.
Brain architecture and social complexity in modern and ancient birds.
Burish, Mark J; Kueh, Hao Yuan; Wang, Samuel S-H
2004-01-01
Vertebrate brains vary tremendously in size, but differences in form are more subtle. To bring out functional contrasts that are independent of absolute size, we have normalized brain component sizes to whole brain volume. The set of such volume fractions is the cerebrotype of a species. Using this approach in mammals we previously identified specific associations between cerebrotype and behavioral specializations. Among primates, cerebrotypes are linked principally to enlargement of the cerebral cortex and are associated with increases in the complexity of social structure. Here we extend this analysis to include a second major vertebrate group, the birds. In birds the telencephalic volume fraction is strongly correlated with social complexity. This correlation accounts for almost half of the observed variation in telencephalic size, more than any other behavioral specialization examined, including the ability to learn song. A prominent exception to this pattern is owls, which are not social but still have very large forebrains. Interpolating the overall correlation for Archaeopteryx, an ancient bird, suggests that its social complexity was likely to have been on a par with modern domesticated chickens. Telencephalic volume fraction outperforms residuals-based measures of brain size at separating birds by social structure. Telencephalic volume fraction may be an anatomical substrate for social complexity, and perhaps cognitive ability, that can be generalized across a range of vertebrate brains, including dinosaurs. Copyright 2004 S. Karger AG, Basel
Ting, Hsien-Hung; Hou, Shuhn-Shyurng
2016-01-01
This study numerically investigates heat transfer augmentation using water-based Al2O3 and CuO nanofluids flowing in a triangular cross-sectional duct under constant heat flux in laminar flow conditions. The Al2O3/water nanofluids with different volume fractions (0.1%, 0.5%, 1%, 1.5%, and 2%) and CuO/water nanofluids with various volume fractions (0.05%, 0.16%, 0.36%, 0.5%, and 0.8%) are employed, and Reynolds numbers in the range of 700 to 1900 in a laminar flow are considered. The heat transfer rate becomes more remarkable when employing nanofluids. As compared with pure water, at a Peclet number of 7000, a 35% enhancement in the convective heat transfer coefficient, is obtained for an Al2O3/water nanofluid with 2% particle volume fraction; at the same Peclet number, a 41% enhancement in the convective heat transfer coefficient is achieved for a CuO/water nanofluid with 0.8% particle volume concentration. Heat transfer enhancement increases with increases in particle volume concentration and Peclet number. Moreover, the numerical results are found to be in good agreement with published experimental data. PMID:28773698
Yoshida, Ken; Yamazaki, Hideya; Takenaka, Tadashi; Kotsuma, Tadayuki; Yoshida, Mineo; Furuya, Seiichi; Tanaka, Eiichi; Uegaki, Tadaaki; Kuriyama, Keiko; Matsumoto, Hisanobu; Yamada, Shigetoshi; Ban, Chiaki
2010-07-01
To investigate the feasibility of our novel image-based high-dose-rate interstitial brachytherapy (HDR-ISBT) for uterine cervical cancer, we evaluated the dose-volume histogram (DVH) according to the recommendations of the Gynecological GEC-ESTRO Working Group for image-based intracavitary brachytherapy (ICBT). Between June 2005 and June 2007, 18 previously untreated cervical cancer patients were enrolled. We implanted magnetic resonance imaging (MRI)-available plastic applicators by our unique ambulatory technique. Total treatment doses were 30-36 Gy (6 Gy per fraction) combined with external beam radiotherapy (EBRT). Treatment plans were created based on planning computed tomography with MRI as a reference. DVHs of the high-risk clinical target volume (HR CTV), intermediate-risk CTV (IR CTV), and the bladder and rectum were calculated. Dose values were biologically normalized to equivalent doses in 2-Gy fractions (EQD(2)). The median D90 (HR CTV) and D90 (IR CTV) per fraction were 6.8 Gy (range, 5.5-7.5) and 5.4 Gy (range, 4.2-6.3), respectively. The median V100 (HR CTV) and V100 (IR CTV) were 98.4% (range, 83-100) and 81.8% (range, 64-93.8), respectively. When the dose of EBRT was added, the median D90 and D100 of HR CTV were 80.6 Gy (range, 65.5-96.6) and 62.4 Gy (range, 49-83.2). The D(2cc) of the bladder was 62 Gy (range, 51.4-89) and of the rectum was 65.9 Gy (range, 48.9-76). Although the targets were advanced and difficult to treat effectively by ICBT, MRI-aided image-based ISBT showed favorable results for CTV and organs at risk compared with previously reported image-based ICBT results. (c) 2010 Elsevier Inc. All rights reserved.
Dosimetric Effects of Air Pockets Around High-Dose Rate Brachytherapy Vaginal Cylinders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richardson, Susan, E-mail: srichardson@radonc.wustl.ed; Palaniswaamy, Geethpriya; Grigsby, Perry W.
2010-09-01
Purpose: Most physicians use a single-channel vaginal cylinder for postoperative endometrial cancer brachytherapy. Recent published data have identified air pockets between the vaginal cylinders and the vaginal mucosa. The purpose of this research was to evaluate the incidence, size, and dosimetric effects of these air pockets. Methods and Materials: 25 patients receiving postoperative vaginal cuff brachytherapy with a high-dose rate vaginal cylinders were enrolled in this prospective data collection study. Patients were treated with 6 fractions of 200 to 400 cGy per fraction prescribed at 5 mm depth. Computed tomography simulation for brachytherapy treatment planning was performed for each fraction.more » The quantity, volume, and dosimetric impact of the air pockets surrounding the cylinder were quantified. Results: In 25 patients, a total of 90 air pockets were present in 150 procedures (60%). Five patients had no air pockets present during any of their treatments. The average number of air pockets per patient was 3.6, with the average total air pocket volume being 0.34 cm{sup 3} (range, 0.01-1.32 cm{sup 3}). The average dose reduction to the vaginal mucosa at the air pocket was 27% (range, 9-58%). Ten patients had no air pockets on their first fraction but air pockets occurred in subsequent fractions. Conclusion: Air pockets between high-dose rate vaginal cylinder applicators and the vaginal mucosa are present in the majority of fractions of therapy, and their presence varies from patient to patient and fraction to fraction. The existence of air pockets results in reduced radiation dose to the vaginal mucosa.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Judith Alice; Long, Kevin Nicholas
2017-05-01
This work was done to support customer questions about whether a Sylgard/Glass Microballoon (GMB) potting material in current use could be replaced with pure Sylgard and if this would significantly change stresses imparted to internal components under thermal cycling conditions. To address these questions, we provide micromechanics analysis of Sylgard/GMB materials using both analytic composite theory and finite element simulations to better understand the role of the GMB volume fraction in determining thermal expansion coefficient, elastic constants, and behavior in both confined and unconfined compression boundary value problems. A key finding is that damage accumulation in the material from breakagemore » of GMBs significantly limits the global stress magnitude and results in a plateau stress behavior over large ranges of compressive strain. The magnitude of this plateau stress is reduced with higher volume fractions of GMBs. This effect is particularly pronounced in confined compression, which we estimate bears the most similarity to the application of interest. This stress-limiting damage mechanism is not present in pure Sylgard, however, and the result is much higher stresses under confined compression. Thus, we recommend that some volume fraction greater than 10% GMBs be used for confined deformation applications.« less
NASA Astrophysics Data System (ADS)
Joshi, Pranit Satish; Mahapatra, Pallab Sinha; Pattamatta, Arvind
2017-12-01
Experiments and numerical simulation of natural convection heat transfer with nanosuspensions are presented in this work. The investigations are carried out for three different types of nanosuspensions: namely, spherical-based (alumina/water), tubular-based (multi-walled carbon nanotube/water), and flake-based (graphene/water). A comparison with in-house experiments is made for all the three nanosuspensions at different volume fractions and for the Rayleigh numbers in the range of 7 × 105-1 × 107. Different models such as single component homogeneous, single component non-homogeneous, and multicomponent non-homogeneous are used in the present study. From the present numerical investigation, it is observed that for lower volume fractions (˜0.1%) of nanosuspensions considered, single component models are in close agreement with the experimental results. Single component models which are based on the effective properties of the nanosuspensions alone can predict heat transfer characteristics very well within the experimental uncertainty. Whereas for higher volume fractions (˜0.5%), the multi-component model predicts closer results to the experimental observation as it incorporates drag-based slip force which becomes prominent. The enhancement observed at lower volume fractions for non-spherical particles is attributed to the percolation chain formation, which perturbs the boundary layer and thereby increases the local Nusselt number values.
NASA Astrophysics Data System (ADS)
Tripathy, Mukta; Schweizer, Kenneth S.
2011-04-01
In paper II of this series we apply the center-of-mass version of Nonlinear Langevin Equation theory to study how short-range attractive interactions influence the elastic shear modulus, transient localization length, activated dynamics, and kinetic arrest of a variety of nonspherical particle dense fluids (and the spherical analog) as a function of volume fraction and attraction strength. The activation barrier (roughly the natural logarithm of the dimensionless relaxation time) is predicted to be a rich function of particle shape, volume fraction, and attraction strength, and the dynamic fragility varies significantly with particle shape. At fixed volume fraction, the barrier grows in a parabolic manner with inverse temperature nondimensionalized by an onset value, analogous to what has been established for thermal glass-forming liquids. Kinetic arrest boundaries lie at significantly higher volume fractions and attraction strengths relative to their dynamic crossover analogs, but their particle shape dependence remains the same. A limited universality of barrier heights is found based on the concept of an effective mean-square confining force. The mean hopping time and self-diffusion constant in the attractive glass region of the nonequilibrium phase diagram is predicted to vary nonmonotonically with attraction strength or inverse temperature, qualitatively consistent with recent computer simulations and colloid experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Macchia, Gabriella, E-mail: gmacchia@rm.unicatt.i; Cilla, Savino M.P.; Ferrandina, Gabriella
2010-04-15
Purpose: To determine the maximum tolerated dose of short-course radiotherapy (intensity-modulated radiotherapy technique) to the upper two thirds of the vagina in endometrial cancers with low risk of local recurrence. Patients and Methods: A Phase I clinical trial was performed. Eligible patients had low-risk resected primary endometrial adenocarcinomas. Radiotherapy was delivered in 5 fractions over 1 week. The planning target volume was the clinical target volume plus 5 mm. The clinical target volume was defined as the upper two thirds of the vagina as evidenced at CT simulation by a vaginal radio-opaque device. The planning target volume was irradiated bymore » a seven-field intensity-modulated radiotherapy technique, planned by the Plato Sunrise inverse planning system. A first cohort of 6 patients received 25 Gy (5-Gy fractions), and a subsequent cohort received 30 Gy (6-Gy fractions). The Common Toxicity Criteria scale, version 3.0, was used to score toxicity. Results: Twelve patients with endometrial cancer were enrolled. Median age was 58 years (range, 49-74 years). Pathologic stage was IB (83.3%) and IC (16.7%). Median tumor size was 30 mm (range, 15-50 mm). All patients completed the prescribed radiotherapy. No patient experienced a dose-limiting toxicity at the first level, and the radiotherapy dose was escalated from 25 to 30 Gy. No patients at the second dose level experienced dose-limiting toxicity. The most common Grade 2 toxicity was gastrointestinal, which was tolerable and manageable. Conclusions: The maximum tolerated dose of short-course radiotherapy was 30 Gy at 6 Gy per fraction. On the basis of this result, we are conducting a Phase II study with radiotherapy delivered at 30 Gy.« less
Phase-Transformation-Induced Extra Thermal Expansion Behavior of (SrxBa1-x)TiO3/Cu Composite.
Sheng, Jie; Wang, Lidong; Li, Shouwei; Yin, Benke; Liu, Xiangli; Fei, Wei-Dong
2016-06-03
The properties of metal matrix composites (MMCs) can be optimized effectively through adjusting the type or the volume fraction of reinforcement. Generally, the coefficient of thermal expansion (CTE) of MMCs can be reduced by increasing the volume fraction of the reinforcement with lower CTE than metal matrix. However, it is great challenge to fabricate low CTE MMCs with low reinforcement volume fraction because of the limitation of reinforcement CTEs. SrxBa1-xTiO3 (SBT) powder presents negative thermal expansion behavior during the phase transformation from tetragonal to cubic phase. Here, we demonstrate that the phase transformation of SBT can be utilized to reduce and design the thermal expansion properties of SBT particle-reinforced Cu (SBT/Cu) composite, and ultralow CTE can be obtained in SBT/Cu composite. The X-ray diffraction analysis on heating indicates that the temperature range of phase transformation is extended greatly, therefore, the low CTE can be achieved within wide temperature range. Landau-Devonshire theory study on the phase transformation behaviors of SBT particles in the composite indicates that thermal mismatch stress significantly affects the Curie temperature of SBT particles and the CTE of the composite. The results given in the present study provide a new approach to design the MMCs with low CTE.
Hejri-Zarifi, Sudiyeh; Ahmadian-Kouchaksaraei, Zahra; Pourfarzad, Amir; Khodaparast, Mohammad Hossein Haddad
2014-12-01
Germinated palm date seeds were milled into two fractions: germ and residue. Dough rheological characteristics, baking (specific volume and sensory evaluation), and textural properties (at first day and during storage for 5 days) were determined in Barbari flat bread. Germ and residue fractions were incorporated at various levels ranged in 0.5-3 g/100 g of wheat flour. Water absorption, arrival time and gelatination temperature were decreased by germ fraction but accompanied by an increasing effect on the mixing tolerance index and degree of softening in most levels. Although improvement in dough stability was monitored but specific volume of bread was not affected by both fractions. Texture analysis of bread samples during 5 days of storage indicated that both fractions of germinated date seeds were able to diminish bread staling. Avrami non-linear regression equation was chosen as useful mathematical model to properly study bread hardening kinetics. In addition, principal component analysis (PCA) allowed discriminating among dough and bread specialties. Partial least squares regression (PLSR) models were applied to determine the relationships between sensory and instrumental data.
StimuFrac Compressibility as a Function of CO2 Molar Fraction
Carlos A. Fernandez
2016-04-29
Compressibility values were obtained in a range of pressures at 250degC by employing a fixed volume view cell completely filled with PAA aqueous solution and injecting CO2 at constant flow rate (0.3mL/min). Pressure increase as a function of supercritical CO2 (scCO2) mass fraction in the mixture was monitored. The plot shows the apparent compressibility of Stimufrac as a function of scCO2 mass fraction obtained in a pressure range between 2100-7000 psi at 250degC. At small mass fractions of scCO2 the compressibility increases probably due to the dissolution/reaction of CO2 in aqueous PAA and reaches a maximum at mCO2/mH2O = 0.06. Then, compressibility decreases showing a linear relationship with scCO2 mass fraction due to the continuous increase in density of the binary fluid associated to the pressure increase.
AxonPacking: An Open-Source Software to Simulate Arrangements of Axons in White Matter
Mingasson, Tom; Duval, Tanguy; Stikov, Nikola; Cohen-Adad, Julien
2017-01-01
HIGHLIGHTS AxonPacking: Open-source software for simulating white matter microstructure.Validation on a theoretical disk packing problem.Reproducible and stable for various densities and diameter distributions.Can be used to study interplay between myelin/fiber density and restricted fraction. Quantitative Magnetic Resonance Imaging (MRI) can provide parameters that describe white matter microstructure, such as the fiber volume fraction (FVF), the myelin volume fraction (MVF) or the axon volume fraction (AVF) via the fraction of restricted water (fr). While already being used for clinical application, the complex interplay between these parameters requires thorough validation via simulations. These simulations required a realistic, controlled and adaptable model of the white matter axons with the surrounding myelin sheath. While there already exist useful algorithms to perform this task, none of them combine optimisation of axon packing, presence of myelin sheath and availability as free and open source software. Here, we introduce a novel disk packing algorithm that addresses these issues. The performance of the algorithm is tested in term of reproducibility over 50 runs, resulting density, and stability over iterations. This tool was then used to derive multiple values of FVF and to study the impact of this parameter on fr and MVF in light of the known microstructure based on histology sample. The standard deviation of the axon density over runs was lower than 10−3 and the expected hexagonal packing for monodisperse disks was obtained with a density close to the optimal density (obtained: 0.892, theoretical: 0.907). Using an FVF ranging within [0.58, 0.82] and a mean inter-axon gap ranging within [0.1, 1.1] μm, MVF ranged within [0.32, 0.44] and fr ranged within [0.39, 0.71], which is consistent with the histology. The proposed algorithm is implemented in the open-source software AxonPacking (https://github.com/neuropoly/axonpacking) and can be useful for validating diffusion models as well as for enabling researchers to study the interplay between microstructure parameters when evaluating qMRI methods. PMID:28197091
Electrokinetic Particle Aggregation and Flow Instabilities in Non-Dilute Colloidal Suspensions
NASA Astrophysics Data System (ADS)
Navaneetham, Guru; Posner, Jonathan
2007-11-01
An experimental investigation of electrokinetic particle aggregation and flow instabilities of non-dilute colloidal suspensions in microfabricated channels is presented. The addition of charged colloidal particles can alter the solution's conductivity, permittivity as well as the average particle electrophoretic mobility. In this work, a colloid volume fraction gradient is achieved at the intersection of a Y-shaped PDMS microchannel. The solution conductivity and the particle mobility as a function of the particle (500 nm polystyrene) volume fraction are presented. The critical conditions required for particle aggregation and flow instability are given along with a scaling analysis which shows that the flow becomes unstable at a critical electric Rayleigh number for a wide range of applied electric fields and colloid volume fractions. Electrokinetic particle aggregation and instabilities of non-dilute colloidal suspensions may be important for applications such as the electrophoretic deposition of particles to form micropatterned colloidal assemblies, electrorheological devices, and on-chip, electrokinetic manipulation of colloids.
NASA Astrophysics Data System (ADS)
Wang, Ya-fei; Huang, Qun-xing; Wang, Fei; Chi, Yong; Yan, Jian-hua
2018-01-01
A novel method to evaluate the quantitative effects of soot morphology and incident wavelength on the measurement accuracy of soot volume fraction, by the laser extinction (LE) technique is proposed in this paper. The results indicate that the traditional LE technique would overestimate soot volume fraction if the effects of morphology and wavelength are not considered. Before the agglomeration of isolated soot primary particles, the overestimation of the LE technique is in the range of 2-20%, and rises with increasing primary particle diameter and with decreasing incident wavelength. When isolated primary particles are agglomerated into fractal soot aggregates, the overestimation would exceed 30%, and rise with increasing primary particle number per soot aggregate, fractal dimension and fractal prefactor and with decreasing incident wavelength to a maximum value of 55%. Finally, based on these results above, the existing formula of the LE technique gets modified, and the modification factor is 0.65-0.77.
Carroll, M; Cheung, J; Zhang, L; Court, L
2012-06-01
To understand the dose-response of the esophagus in photon and proton therapy, it is important to appreciate the variations in delivered dose caused by inter- and intra-fraction motion. Four lung cancer patients were identified who had experienced grade 3 esophagitis during their treatment, and for whom their esophagus was close, but not encompassed by, the treatment volume. Each patient had been treated with proton therapy using 35-37 2Gy fractions, and had received weekly 4DCT imaging. IMRT plans were also created using the same treatment planning constraints. In-house image registration software was used to deform the esophagus contour from the treatment plan to each phase of the 4DCT for each weekly image set. Daily setup using both bony and soft tissue (GTV) registration was simulated, and the treatment dose calculated for each CT image. Changes to the esophagus DVH relative to the treatment plan were quantified in terms of the relative volume of the esophagus receiving 45, 55, and 65Gy (V45, V55 and V65). For all combinations of treatment modality (photon, proton) and setup method (bony, GTV), intra-fraction motion resulted in a range of V45, V55 and V65 from 3.6 to 5.5%. Inter-fraction motion comparing daily exhale or inhale phases showed the range of V45, V55 and V65 from 8.5 to 18.6% (exhale) and 9.8 to 16.3% (inhale). Inter-fractional motion resulted in larger variations in dose delivered to the esophagus than intra-fractional motion. The inter-fraction range for V45, V55 and V65 varied by around 10% between patients. The treatment modality (photon, proton) and setup technique (bony, GTV) had minimal impact on the results. © 2012 American Association of Physicists in Medicine.
NASA Astrophysics Data System (ADS)
Baïri, A.; Laraqi, N.; Adeyeye, K.
2018-03-01
This study examines the thermal behavior of a hemispherical electronic component subjected to a natural nanofluidic convective flow. During its operation, this active dome generates a high power, leading to Rayleigh number values reaching 4.56×109 . It is contained in a hemispherical enclosure and the space between the dome and the cupola is filled with a monophasic water-based copper nanofluid whose volume fraction varies between 0 (pure water) and 10%. According to the intended application, the disc of the enclosure may be tilted at an angle ranging from 0° to 180° (horizontal disc with dome facing upwards and downwards, respectively). The numerical solution has been obtained by means of the volume control method. The surface average temperature of the dome has been determined for many configurations obtained by combining the Rayleigh number, the cavity's tilt angle and the nanofluid volume fraction which vary in wide ranges. The temperature fields presented for several configurations confirm the effects of natural convection. The results clearly highlight the effects of these influence parameters on the thermal state of the assembly. The study shows that some combinations of the Rayleigh-tilt angle-volume fraction are incompatible with a normal operating system at steady state and that a thermoregulation is required. The correlation of the temperature-Rayleigh-Prandtl-angle type proposed in this work allows to easily carry out the thermal dimensioning of the considered electronic assembly.
Mustafa, Fatin Hamimi; Jones, Peter W; McEwan, Alistair L
2017-01-11
Under-nutrition in neonates is closely linked to low body fat percentage. Undernourished neonates are exposed to immediate mortality as well as unwanted health impacts in their later life including obesity and hypertension. One potential low cost approach for obtaining direct measurements of body fat is near-infrared (NIR) interactance. The aims of this study were to model the effect of varying volume fractions of melanin and water in skin over NIR spectra, and to define sensitivity of NIR reflection on changes of thickness of subcutaneous fat. GAMOS simulations were used to develop two single fat layer models and four complete skin models over a range of skin colour (only for four skin models) and hydration within a spectrum of 800-1100 nm. The thickness of the subcutaneous fat was set from 1 to 15 mm in 1 mm intervals in each model. Varying volume fractions of water in skin resulted minimal changes of NIR intensity at ranges of wavelengths from 890 to 940 nm and from 1010 to 1100 nm. Variation of the melanin volume in skin meanwhile was found to strongly influence the NIR intensity and sensitivity. The NIR sensitivities and NIR intensity over thickness of fat decreased from the Caucasian skin to African skin throughout the range of wavelengths. For the relationship between the NIR reflection and the thickness of subcutaneous fat, logarithmic relationship was obtained. The minimal changes of NIR intensity values at wavelengths within the ranges from 890 to 940 nm and from 1010 to 1100 nm to variation of volume fractions of water suggests that wavelengths within those two ranges are considered for use in measurement of body fat to solve the variation of hydration in neonates. The stronger influence of skin colour on NIR shows that the melanin effect needs to be corrected by an independent measurement or by a modeling approach. The logarithmic response obtained with higher sensitivity at the lower range of thickness of fat suggests that implementation of NIRS may be suited for detecting under-nutrition and monitoring nutritional interventions for malnutrition in neonates in resource-constrained communities.
Dielectric properties of CaCu3Ti4O12-silicone resin composites
NASA Astrophysics Data System (ADS)
Babu, Sanjesh; Singh, Kirti; Govindan, Anil
2012-06-01
CaCu3Ti4O12 (CCTO)-silicone resin composites with various CCTO volume fractions were prepared. Relatively high dielectric constant ( ɛ=119) and low loss (tan δ=0.35) of the composites with CCTO volume fraction of 0.9 were observed. Two theoretical models were employed to predict the dielectric constant of these composites; the dielectric constant obtained via the Maxwell-Garnett model was in close agreement with the experimental data. The dielectric constant of CCTO-silicone resin composites showed a weak frequency dependence at the measuring frequency range and the loss tangent apparently decreases with increase in frequency.
NASA Astrophysics Data System (ADS)
Zhang, Pengpeng; Hunt, Margie; Happersett, Laura; Yang, Jie; Zelefsky, Michael; Mageras, Gig
2013-11-01
To develop an optimization algorithm for volumetric modulated arc therapy which incorporates an electromagnetic tracking (EMT) guided gating strategy and is robust to residual intra-fractional motion uncertainties. In a computer simulation, intra-fractional motion traces from prior treatments with EMT were converted to a probability distribution function (PDF), truncated using a patient specific action volume that encloses allowed deviations from the planned position, and renormalized to yield a new PDF with EMT-gated interventions. In lieu of a conventional planning target volume (PTV), multiple instances of clinical target volume (CTV) and organs at risk (OARs) were replicated and displaced to extreme positions inside the action volume representing possible delivery scenarios. When optimizing the volumetric modulated arc therapy plan, doses to the CTV and OARs were calculated as a sum of doses to the replicas weighted by the PDF to account for motion. A treatment plan meeting the clinical constraints was produced and compared to the counterpart conventional margin (PTV) plan. EMT traces from a separate testing database served to simulate motion during gated delivery. Dosimetric end points extracted from dose accumulations for each motion trace were utilized to evaluate potential clinical benefit. Five prostate cases from a hypofractionated protocol (42.5 Gy in 5 fractions) were retrospectively investigated. The patient specific gating window resulted in tight anterior and inferior action levels (∼1 mm) to protect rectal wall and bladder wall, and resulted in an average of four beam interruptions per fraction in the simulation. The robust-optimized plans achieved the same average CTV D95 coverage of 40.5 Gy as the PTV-optimized plans, but with reduced patient-averaged rectum wall D1cc by 2.2 Gy (range 0.7 to 4.7 Gy) and bladder wall mean dose by 2.9 Gy (range 2.0 to 3.4 Gy). Integration of an intra-fractional motion management strategy into the robust optimization process is feasible and may yield improved OAR sparing compared to the standard margin approach.
Zhang, Pengpeng; Hunt, Margie; Happersett, Laura; Yang, Jie; Zelefsky, Michael; Mageras, Gig
2013-11-07
To develop an optimization algorithm for volumetric modulated arc therapy which incorporates an electromagnetic tracking (EMT) guided gating strategy and is robust to residual intra-fractional motion uncertainties. In a computer simulation, intra-fractional motion traces from prior treatments with EMT were converted to a probability distribution function (PDF), truncated using a patient specific action volume that encloses allowed deviations from the planned position, and renormalized to yield a new PDF with EMT-gated interventions. In lieu of a conventional planning target volume (PTV), multiple instances of clinical target volume (CTV) and organs at risk (OARs) were replicated and displaced to extreme positions inside the action volume representing possible delivery scenarios. When optimizing the volumetric modulated arc therapy plan, doses to the CTV and OARs were calculated as a sum of doses to the replicas weighted by the PDF to account for motion. A treatment plan meeting the clinical constraints was produced and compared to the counterpart conventional margin (PTV) plan. EMT traces from a separate testing database served to simulate motion during gated delivery. Dosimetric end points extracted from dose accumulations for each motion trace were utilized to evaluate potential clinical benefit. Five prostate cases from a hypofractionated protocol (42.5 Gy in 5 fractions) were retrospectively investigated. The patient specific gating window resulted in tight anterior and inferior action levels (~1 mm) to protect rectal wall and bladder wall, and resulted in an average of four beam interruptions per fraction in the simulation. The robust-optimized plans achieved the same average CTV D95 coverage of 40.5 Gy as the PTV-optimized plans, but with reduced patient-averaged rectum wall D1cc by 2.2 Gy (range 0.7 to 4.7 Gy) and bladder wall mean dose by 2.9 Gy (range 2.0 to 3.4 Gy). Integration of an intra-fractional motion management strategy into the robust optimization process is feasible and may yield improved OAR sparing compared to the standard margin approach.
Effect of Cross-Linking on Free Volume Properties of PEG Based Thiol-Ene Networks
NASA Astrophysics Data System (ADS)
Ramakrishnan, Ramesh; Vasagar, Vivek; Nazarenko, Sergei
According to the Fox and Loshaek theory, in elastomeric networks, free volume decreases linearly with the cross-link density increase. The aim of this study is to show whether the poly(ethylene glycol) (PEG) based multicomponent thiol-ene elastomeric networks demonstrate this model behavior? Networks with a broad cross-link density range were prepared by changing the ratio of the trithiol crosslinker to PEG dithiol and then UV cured with PEG diene while maintaining 1:1 thiol:ene stoichiometry. Pressure-volume-temperature (PVT) data of the networks was generated from the high pressure dilatometry experiments which was fit using the Simha-Somcynsky Equation-of-State analysis to obtain the fractional free volume of the networks. Using Positron Annihilation Lifetime Spectroscopy (PALS) analysis, the average free volume hole size of the networks was also quantified. The fractional free volume and the average free volume hole size showed a linear change with the cross-link density confirming that the Fox and Loshaek theory can be applied to this multicomponent system. Gas diffusivities of the networks showed a good correlation with free volume. A free volume based model was developed to describe the gas diffusivity trends as a function of cross-link density.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bossart, Elizabeth L., E-mail: EBossart@med.miami.edu; Stoyanova, Radka; Sandler, Kiri
2016-06-01
Purpose: To compare dosimetric characteristics with multiparametric magnetic resonance imaging–identified imaging tumor volume (gross tumor volume, GTV), prostate clinical target volume and planning target volume, and organs at risk (OARs) for 2 treatment techniques representing 2 arms of an institutional phase 3 randomized trial of hypofractionated external beam image guided highly targeted radiation therapy. Methods and Materials: Group 1 (n=20) patients were treated before the trial inception with the standard dose prescription. Each patient had an additional treatment plan generated per the experimental arm. A total of 40 treatment plans were compared (20 plans for each technique). Group 2 (n=15)more » consists of patients currently accrued to the hypofractionated external beam image guided highly targeted radiation therapy trial. Plans were created as per the treatment arm, with additional plans for 5 of the group 2 experimental arm with a 3-mm expansion in the imaging GTV. Results: For all plans in both patient groups, planning target volume coverage ranged from 95% to 100%; GTV coverage of 89.3 Gy for the experimental treatment plans ranged from 95.2% to 99.8%. For both groups 1 and 2, the percent volumes of rectum/anus and bladder receiving 40 Gy, 65 Gy, and 80 Gy were smaller in the experimental plans than in the standard plans. The percent volume at 1 Gy per fraction and 1.625 Gy per fraction were compared between the standard and the experimental arms, and these were found to be equivalent. Conclusions: The dose per fraction to the OARs can be made equal even when giving a large simultaneous integrated boost to the GTV. The data suggest that a GTV margin may be added without significant dose effects on the OARs.« less
Large-amplitude jumps and non-Gaussian dynamics in highly concentrated hard sphere fluids.
Saltzman, Erica J; Schweizer, Kenneth S
2008-05-01
Our microscopic stochastic nonlinear Langevin equation theory of activated dynamics has been employed to study the real-space van Hove function of dense hard sphere fluids and suspensions. At very short times, the van Hove function is a narrow Gaussian. At sufficiently high volume fractions, such that the entropic barrier to relaxation is greater than the thermal energy, its functional form evolves with time to include a rapidly decaying component at small displacements and a long-range exponential tail. The "jump" or decay length scale associated with the tail increases with time (or particle root-mean-square displacement) at fixed volume fraction, and with volume fraction at the mean alpha relaxation time. The jump length at the alpha relaxation time is predicted to be proportional to a measure of the decoupling of self-diffusion and structural relaxation. At long times corresponding to mean displacements of order a particle diameter, the volume fraction dependence of the decay length disappears. A good superposition of the exponential tail feature based on the jump length as a scaling variable is predicted at high volume fractions. Overall, the theoretical results are in good accord with recent simulations and experiments. The basic aspects of the theory are also compared with a classic jump model and a dynamically facilitated continuous time random-walk model. Decoupling of the time scales of different parts of the relaxation process predicted by the theory is qualitatively similar to facilitated dynamics models based on the concept of persistence and exchange times if the elementary event is assumed to be associated with transport on a length scale significantly smaller than the particle size.
NASA Astrophysics Data System (ADS)
Grzegorz Kossakowski, Paweł; Wciślik, Wiktor
2017-10-01
The paper is concerned with the nucleation, growth and coalescence of microdefects in the form of voids in S235JR steel. The material is known to be one of the basic steel grades commonly used in the construction industry. The theory and methods of damage mechanics were applied to determine and describe the failure mechanisms that occur when the material undergoes deformation. Until now, engineers have generally employed the Gurson-Tvergaard- Needleman model. This material model based on damage mechanics is well suited to define and analyze failure processes taking place in the microstructure of S235JR steel. It is particularly important to determine the critical void volume fraction fc , which is one of the basic parameters of the Gurson-Tvergaard-Needleman material model. As the critical void volume fraction fc refers to the failure stage, it is determined from the data collected for the void coalescence phase. A case of multi-axial stresses is considered taking into account the effects of spatial stress state. In this study, the parameter of stress triaxiality η was used to describe the failure phenomena. Cylindrical tensile specimens with a circumferential notch were analysed to obtain low values of initial stress triaxiality (η = 0.556 of the range) in order to determine the critical void volume fraction fc . It is essential to emphasize how unique the method applied is and how different it is from the other more common methods involving parameter calibration, i.e. curve-fitting methods. The critical void volume fraction fc at void coalescence was established through digital image analysis of surfaces of S235JR steel, which involved studying real, physical results obtained directly from the material tested.
Sanyal, Arnav; Keaveny, Tony M.
2013-01-01
The biaxial failure behavior of the human trabecular bone, which has potential relevance both for fall and gait loading conditions, is not well understood, particularly for low-density bone, which can display considerable mechanical anisotropy. Addressing this issue, we investigated the biaxial normal strength behavior and the underlying failure mechanisms for human trabecular bone displaying a wide range of bone volume fraction (0.06–0.34) and elastic anisotropy. Micro-computer tomography (CT)-based nonlinear finite element analysis was used to simulate biaxial failure in 15 specimens (5 mm cubes), spanning the complete biaxial normal stress failure space in the axial-transverse plane. The specimens, treated as approximately transversely isotropic, were loaded in the principal material orientation. We found that the biaxial stress yield surface was well characterized by the superposition of two ellipses—one each for yield failure in the longitudinal and transverse loading directions—and the size, shape, and orientation of which depended on bone volume fraction and elastic anisotropy. However, when normalized by the uniaxial tensile and compressive strengths in the longitudinal and transverse directions, all of which depended on bone volume fraction, microarchitecture, and mechanical anisotropy, the resulting normalized biaxial strength behavior was well described by a single pair of (longitudinal and transverse) ellipses, with little interspecimen variation. Taken together, these results indicate that the role of bone volume fraction, microarchitecture, and mechanical anisotropy is mostly accounted for in determining the uniaxial strength behavior and the effect of these parameters on the axial-transverse biaxial normal strength behavior per se is minor. PMID:24121715
Measuring Compositions in Organic Depth Profiling: Results from a VAMAS Interlaboratory Study.
Shard, Alexander G; Havelund, Rasmus; Spencer, Steve J; Gilmore, Ian S; Alexander, Morgan R; Angerer, Tina B; Aoyagi, Satoka; Barnes, Jean-Paul; Benayad, Anass; Bernasik, Andrzej; Ceccone, Giacomo; Counsell, Jonathan D P; Deeks, Christopher; Fletcher, John S; Graham, Daniel J; Heuser, Christian; Lee, Tae Geol; Marie, Camille; Marzec, Mateusz M; Mishra, Gautam; Rading, Derk; Renault, Olivier; Scurr, David J; Shon, Hyun Kyong; Spampinato, Valentina; Tian, Hua; Wang, Fuyi; Winograd, Nicholas; Wu, Kui; Wucher, Andreas; Zhou, Yufan; Zhu, Zihua; Cristaudo, Vanina; Poleunis, Claude
2015-08-20
We report the results of a VAMAS (Versailles Project on Advanced Materials and Standards) interlaboratory study on the measurement of composition in organic depth profiling. Layered samples with known binary compositions of Irganox 1010 and either Irganox 1098 or Fmoc-pentafluoro-l-phenylalanine in each layer were manufactured in a single batch and distributed to more than 20 participating laboratories. The samples were analyzed using argon cluster ion sputtering and either X-ray photoelectron spectroscopy (XPS) or time-of-flight secondary ion mass spectrometry (ToF-SIMS) to generate depth profiles. Participants were asked to estimate the volume fractions in two of the layers and were provided with the compositions of all other layers. Participants using XPS provided volume fractions within 0.03 of the nominal values. Participants using ToF-SIMS either made no attempt, or used various methods that gave results ranging in error from 0.02 to over 0.10 in volume fraction, the latter representing a 50% relative error for a nominal volume fraction of 0.2. Error was predominantly caused by inadequacy in the ability to compensate for primary ion intensity variations and the matrix effect in SIMS. Matrix effects in these materials appear to be more pronounced as the number of atoms in both the primary analytical ion and the secondary ion increase. Using the participants' data we show that organic SIMS matrix effects can be measured and are remarkably consistent between instruments. We provide recommendations for identifying and compensating for matrix effects. Finally, we demonstrate, using a simple normalization method, that virtually all ToF-SIMS participants could have obtained estimates of volume fraction that were at least as accurate and consistent as XPS.
Measuring Compositions in Organic Depth Profiling: Results from a VAMAS Interlaboratory Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shard, A. G.; Havelund, Rasmus; Spencer, Steve J.
We report the results of a VAMAS (Versailles Project on Advanced Materials and Standards) interlaboratory study on the measurement of composition in organic depth profiling. Layered samples with known binary compositions of Irganox 1010 and either Irganox 1098 or Fmoc-pentafluoro-L-phenylalanine in each layer were manufactured in a single batch and distributed to more than 20 participating laboratories. The samples were analyzed using argon cluster ion sputtering and either X-ray Photoelectron Spectroscopy (XPS) or Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) to generate depth profiles. Participants were asked to estimate the volume fractions in two of the layers and were provided withmore » the compositions of all other layers. Participants using XPS provided volume fractions within 0.03 of the nominal values. Participants using ToF-SIMS either made no attempt, or used various methods that gave results ranging in error from 0.02 to over 0.10 in volume fraction, the latter representing a 50% relative error for a nominal volume fraction of 0.2. Error was predominantly caused by inadequacy in the ability to compensate for primary ion intensity variations and the matrix effect in SIMS. Matrix effects in these materials appear to be more pronounced as the number of atoms in both the primary analytical ion and the secondary ion increase. Using the participants’ data we show that organic SIMS matrix effects can be measured and are remarkably consistent between instruments. We provide recommendations for identifying and compensating for matrix effects. Finally we demonstrate, using a simple normalization method, that virtually all ToF-SIMS participants could have obtained estimates of volume fraction that were at least as accurate and consistent as XPS.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Xiaojian; Qiao, Qiao; Department of Radiotherapy, First Hospital of China Medical University, Shenyang
Purpose: To evaluate the efficiency of standard image-guided radiation therapy (IGRT) to account for lumpectomy cavity (LC) variation during whole-breast irradiation (WBI) and propose an adaptive strategy to improve dosimetry if IGRT fails to address the interfraction LC variations. Methods and Materials: Daily diagnostic-quality CT data acquired during IGRT in the boost stage using an in-room CT for 19 breast cancer patients treated with sequential boost after WBI in the prone position were retrospectively analyzed. Contours of the LC, treated breast, ipsilateral lung, and heart were generated by populating contours from planning CTs to boost fraction CTs using an auto-segmentationmore » tool with manual editing. Three plans were generated on each fraction CT: (1) a repositioning plan by applying the original boost plan with the shift determined by IGRT; (2) an adaptive plan by modifying the original plan according to a fraction CT; and (3) a reoptimization plan by a full-scale optimization. Results: Significant variations were observed in LC. The change in LC volume at the first boost fraction ranged from a 70% decrease to a 50% increase of that on the planning CT. The adaptive and reoptimization plans were comparable. Compared with the repositioning plans, the adaptive plans led to an improvement in target coverage for an increased LC case (1 of 19, 7.5% increase in planning target volume evaluation volume V{sub 95%}), and breast tissue sparing for an LC decrease larger than 35% (3 of 19, 7.5% decrease in breast evaluation volume V{sub 50%}; P=.008). Conclusion: Significant changes in LC shape and volume at the time of boost that deviate from the original plan for WBI with sequential boost can be addressed by adaptive replanning at the first boost fraction.« less
Protoplast Volume:Water Potential Relationship and Bound Water Fraction in Spinach Leaves 1
Santakumari, Mane; Berkowitz, Gerald A.
1989-01-01
Methods used to estimate the (nonosmotic) bound water fraction (BWF) (i.e. apoplast water) of spinach (Spinacia oleracea L.) leaves were evaluated. Studies using three different methods of pressure/volume (P/V) curve construction all resulted in a similar calculation of BWF; approximately 40%. The theoretically derived BWF, and the water potential (Ψw)/relative water content relationship established from P/V curves were used to establish the relationship between protoplast (i.e. symplast) volume and Ψw. Another method of establishing the protoplast volume/Ψw relationship in spinach leaves was compared with the results from P/V curve experiments. This second technique involved the vacuum infiltration of solutions at a range of osmotic potentials into discs cut from spinach leaves. These solutions contained radioactively labeled H2O and sorbitol. This dual label infiltration technique allowed for simultaneous measurement of the total and apoplast volumes in leaf tissue; the difference yielded the protoplast volume. The dual label infiltration experiments and the P/V curve constructions both showed that below −1 megapascals, protoplast volume decreases sharply with decreasing water potential; with 50% reduction in protoplast volume occurring at −1.8 megapascals leaf water potential. PMID:16666983
Kazi, Salim Newaz; Sadeghinezhad, Emad
2014-01-01
Thermal characteristics of turbulent nanofluid flow in a rectangular pipe have been investigated numerically. The continuity, momentum, and energy equations were solved by means of a finite volume method (FVM). The symmetrical rectangular channel is heated at the top and bottom at a constant heat flux while the sides walls are insulated. Four different types of nanoparticles Al2O3, ZnO, CuO, and SiO2 at different volume fractions of nanofluids in the range of 1% to 5% are considered in the present investigation. In this paper, effect of different Reynolds numbers in the range of 5000 < Re < 25000 on heat transfer characteristics of nanofluids flowing through the channel is investigated. The numerical results indicate that SiO2-water has the highest Nusselt number compared to other nanofluids while it has the lowest heat transfer coefficient due to low thermal conductivity. The Nusselt number increases with the increase of the Reynolds number and the volume fraction of nanoparticles. The results of simulation show a good agreement with the existing experimental correlations. PMID:25254236
Yarmand, Hooman; Gharehkhani, Samira; Kazi, Salim Newaz; Sadeghinezhad, Emad; Safaei, Mohammad Reza
2014-01-01
Thermal characteristics of turbulent nanofluid flow in a rectangular pipe have been investigated numerically. The continuity, momentum, and energy equations were solved by means of a finite volume method (FVM). The symmetrical rectangular channel is heated at the top and bottom at a constant heat flux while the sides walls are insulated. Four different types of nanoparticles Al2O3, ZnO, CuO, and SiO2 at different volume fractions of nanofluids in the range of 1% to 5% are considered in the present investigation. In this paper, effect of different Reynolds numbers in the range of 5000 < Re < 25000 on heat transfer characteristics of nanofluids flowing through the channel is investigated. The numerical results indicate that SiO2-water has the highest Nusselt number compared to other nanofluids while it has the lowest heat transfer coefficient due to low thermal conductivity. The Nusselt number increases with the increase of the Reynolds number and the volume fraction of nanoparticles. The results of simulation show a good agreement with the existing experimental correlations.
A technique for production of nanocrystalline cellulose with a narrow size distribution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bai, Wen; Holbery, James D.; Li, Kaichang
2009-02-01
Nanocrystalline cellulose (NCC) was prepared by sulfuric acid hydrolysis of microcrystalline cellulose. A differential centrifugation technique was studied to obtain NCC whiskers with a narrow size distribution. It was shown that the volume of NCC in different fractions had an inverse relationship with relative centrifugal force (RCF). The length of NCC whiskers was also fractionized by differential RCF. The aspect ratio of NCC in different fractions had a relatively narrow range. This technique provides an easy way of producing NCC whiskers with a narrow size distribution.
NASA Astrophysics Data System (ADS)
Banerjee, S.; Cook-Chennault, K. A.; Du, W.; Sundar, U.; Halim, H.; Tang, A.
2016-11-01
Three-phase lead zirconate titanate (PZT, PbZr0.52Ti0.48O3)-epoxy-multi-walled carbon nanotube (MWCNT) bulk composites were prepared, where the volume fraction of PZT was held constant at 30%, while the volume fraction of the MWCNTs was varied from 1.0%-10%. The samples were poled using either a parallel plate contact or contactless (corona) poling technique. The piezoelectric strain coefficient (d33), dielectric constant (ɛ), and dielectric loss tangent (tan δ) of the samples were measured at 110 Hz, and compared as a function of poling technique and volume fraction of MWCNTs. The highest values for dielectric constant and piezoelectric strain coefficients were 465.82 and 18.87 pC/N for MWCNT volume fractions of 10% and 6%, respectively. These values were obtained for samples that were poled using the corona contactless method. The impedance and dielectric spectra of the composites were recorded over a frequency range of 100 Hz-20 MHz. The impedance values observed for parallel-plate contact poled samples are higher than that of corona poled composites. The fractured surface morphology and distribution of the PZT particles and MWCNTs were observed with the aid of electron dispersion spectroscopy and a scanning electron microscope. The surface morphology of the MWCNTs was observed with the aid of a field emission transmission electron microscope.
Zhao, Ningbo; Li, Zhiming
2017-01-01
To effectively predict the thermal conductivity and viscosity of alumina (Al2O3)-water nanofluids, an artificial neural network (ANN) approach was investigated in the present study. Firstly, using a two-step method, four Al2O3-water nanofluids were prepared respectively by dispersing different volume fractions (1.31%, 2.72%, 4.25%, and 5.92%) of nanoparticles with the average diameter of 30 nm. On this basis, the thermal conductivity and viscosity of the above nanofluids were analyzed experimentally under various temperatures ranging from 296 to 313 K. Then a radial basis function (RBF) neural network was constructed to predict the thermal conductivity and viscosity of Al2O3-water nanofluids as a function of nanoparticle volume fraction and temperature. The experimental results showed that both nanoparticle volume fraction and temperature could enhance the thermal conductivity of Al2O3-water nanofluids. However, the viscosity only depended strongly on Al2O3 nanoparticle volume fraction and was increased slightly by changing temperature. In addition, the comparative analysis revealed that the RBF neural network had an excellent ability to predict the thermal conductivity and viscosity of Al2O3-water nanofluids with the mean absolute percent errors of 0.5177% and 0.5618%, respectively. This demonstrated that the ANN provided an effective way to predict the thermophysical properties of nanofluids with limited experimental data. PMID:28772913
Zhao, Ningbo; Li, Zhiming
2017-05-19
To effectively predict the thermal conductivity and viscosity of alumina (Al₂O₃)-water nanofluids, an artificial neural network (ANN) approach was investigated in the present study. Firstly, using a two-step method, four Al₂O₃-water nanofluids were prepared respectively by dispersing different volume fractions (1.31%, 2.72%, 4.25%, and 5.92%) of nanoparticles with the average diameter of 30 nm. On this basis, the thermal conductivity and viscosity of the above nanofluids were analyzed experimentally under various temperatures ranging from 296 to 313 K. Then a radial basis function (RBF) neural network was constructed to predict the thermal conductivity and viscosity of Al₂O₃-water nanofluids as a function of nanoparticle volume fraction and temperature. The experimental results showed that both nanoparticle volume fraction and temperature could enhance the thermal conductivity of Al₂O₃-water nanofluids. However, the viscosity only depended strongly on Al₂O₃ nanoparticle volume fraction and was increased slightly by changing temperature. In addition, the comparative analysis revealed that the RBF neural network had an excellent ability to predict the thermal conductivity and viscosity of Al₂O₃-water nanofluids with the mean absolute percent errors of 0.5177% and 0.5618%, respectively. This demonstrated that the ANN provided an effective way to predict the thermophysical properties of nanofluids with limited experimental data.
A mathematical model of force transmission from intrafascicularly terminating muscle fibers.
Sharafi, Bahar; Blemker, Silvia S
2011-07-28
Many long skeletal muscles are comprised of fibers that terminate intrafascicularly. Force from terminating fibers can be transmitted through shear within the endomysium that surrounds fibers or through tension within the endomysium that extends from fibers to the tendon; however, it is unclear which pathway dominates in force transmission from terminating fibers. The purpose of this work was to develop mathematical models to (i) compare the efficacy of lateral (through shear) and longitudinal (through tension) force transmission in intrafascicularly terminating fibers, and (ii) determine how force transmission is affected by variations in the structure and properties of fibers and the endomysium. The models demonstrated that even though the amount of force that can be transmitted from an intrafascicularly terminating fiber is dependent on fiber resting length (the unstretched length at which passive stress is zero), endomysium shear modulus, and fiber volume fraction (the fraction of the muscle cross-sectional area that is occupied by fibers), fibers that have values of resting length, shear modulus, and volume fraction within physiologic ranges can transmit nearly all of their peak isometric force laterally through shearing of the endomysium. By contrast, the models predicted only limited force transmission ability through tension within the endomysium that extends from the fiber to the tendon. Moreover, when fiber volume fraction decreases to unhealthy ranges (less than 50%), the force-transmitting potential of terminating fibers through shearing of the endomysium decreases significantly. The models presented here support the hypothesis that lateral force transmission through shearing of the endomysium is an effective mode of force transmission in terminating fibers. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Koca, H. D.; Evgin, T.; Horny, N.; Chirtoc, M.; Turgut, A.; Tavman, I. H.
2017-12-01
In this study, thermal properties of high-density polyethylene (HDPE) filled with nanosized Al particles (80 nm) were investigated. Samples were prepared using melt mixing method up to filler volume fraction of 29 %, followed by compression molding. By using modulated photothermal radiometry (PTR) technique, thermal diffusivity and thermal effusivity were obtained. The effective thermal conductivity of nanocomposites was calculated directly from PTR measurements and from the measurements of density, specific heat capacity (by differential scanning calorimetry) and thermal diffusivity (obtained from PTR signal amplitude and phase). It is concluded that the thermal conductivity of HDPE composites increases with increasing Al fraction and the highest effective thermal conductivity enhancement of 205 % is achieved at a filler volume fraction of 29 %. The obtained results were compared with the theoretical models and experimental data given in the literature. The results demonstrate that Agari and Uno, and Cheng and Vachon models can predict well the thermal conductivity of HDPE/Al nanocomposites in the whole range of Al fractions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warren, Samantha, E-mail: samantha.warren@oncology.ox.ac.uk; Partridge, Mike; Bolsi, Alessandra
Purpose: Planning studies to compare x-ray and proton techniques and to select the most suitable technique for each patient have been hampered by the nonequivalence of several aspects of treatment planning and delivery. A fair comparison should compare similarly advanced delivery techniques from current clinical practice and also assess the robustness of each technique. The present study therefore compared volumetric modulated arc therapy (VMAT) and single-field optimization (SFO) spot scanning proton therapy plans created using a simultaneous integrated boost (SIB) for dose escalation in midesophageal cancer and analyzed the effect of setup and range uncertainties on these plans. Methods andmore » Materials: For 21 patients, SIB plans with a physical dose prescription of 2 Gy or 2.5 Gy/fraction in 25 fractions to planning target volume (PTV){sub 50Gy} or PTV{sub 62.5Gy} (primary tumor with 0.5 cm margins) were created and evaluated for robustness to random setup errors and proton range errors. Dose–volume metrics were compared for the optimal and uncertainty plans, with P<.05 (Wilcoxon) considered significant. Results: SFO reduced the mean lung dose by 51.4% (range 35.1%-76.1%) and the mean heart dose by 40.9% (range 15.0%-57.4%) compared with VMAT. Proton plan robustness to a 3.5% range error was acceptable. For all patients, the clinical target volume D{sub 98} was 95.0% to 100.4% of the prescribed dose and gross tumor volume (GTV) D{sub 98} was 98.8% to 101%. Setup error robustness was patient anatomy dependent, and the potential minimum dose per fraction was always lower with SFO than with VMAT. The clinical target volume D{sub 98} was lower by 0.6% to 7.8% of the prescribed dose, and the GTV D{sub 98} was lower by 0.3% to 2.2% of the prescribed GTV dose. Conclusions: The SFO plans achieved significant sparing of normal tissue compared with the VMAT plans for midesophageal cancer. The target dose coverage in the SIB proton plans was less robust to random setup errors and might be unacceptable for certain patients. Robust optimization to ensure adequate target coverage of SIB proton plans might be beneficial.« less
Warren, Samantha; Partridge, Mike; Bolsi, Alessandra; Lomax, Anthony J.; Hurt, Chris; Crosby, Thomas; Hawkins, Maria A.
2016-01-01
Purpose Planning studies to compare x-ray and proton techniques and to select the most suitable technique for each patient have been hampered by the nonequivalence of several aspects of treatment planning and delivery. A fair comparison should compare similarly advanced delivery techniques from current clinical practice and also assess the robustness of each technique. The present study therefore compared volumetric modulated arc therapy (VMAT) and single-field optimization (SFO) spot scanning proton therapy plans created using a simultaneous integrated boost (SIB) for dose escalation in midesophageal cancer and analyzed the effect of setup and range uncertainties on these plans. Methods and Materials For 21 patients, SIB plans with a physical dose prescription of 2 Gy or 2.5 Gy/fraction in 25 fractions to planning target volume (PTV)50Gy or PTV62.5Gy (primary tumor with 0.5 cm margins) were created and evaluated for robustness to random setup errors and proton range errors. Dose–volume metrics were compared for the optimal and uncertainty plans, with P<.05 (Wilcoxon) considered significant. Results SFO reduced the mean lung dose by 51.4% (range 35.1%-76.1%) and the mean heart dose by 40.9% (range 15.0%-57.4%) compared with VMAT. Proton plan robustness to a 3.5% range error was acceptable. For all patients, the clinical target volume D98 was 95.0% to 100.4% of the prescribed dose and gross tumor volume (GTV) D98 was 98.8% to 101%. Setup error robustness was patient anatomy dependent, and the potential minimum dose per fraction was always lower with SFO than with VMAT. The clinical target volume D98 was lower by 0.6% to 7.8% of the prescribed dose, and the GTV D98 was lower by 0.3% to 2.2% of the prescribed GTV dose. Conclusions The SFO plans achieved significant sparing of normal tissue compared with the VMAT plans for midesophageal cancer. The target dose coverage in the SIB proton plans was less robust to random setup errors and might be unacceptable for certain patients. Robust optimization to ensure adequate target coverage of SIB proton plans might be beneficial. PMID:27084641
Warren, Samantha; Partridge, Mike; Bolsi, Alessandra; Lomax, Anthony J; Hurt, Chris; Crosby, Thomas; Hawkins, Maria A
2016-05-01
Planning studies to compare x-ray and proton techniques and to select the most suitable technique for each patient have been hampered by the nonequivalence of several aspects of treatment planning and delivery. A fair comparison should compare similarly advanced delivery techniques from current clinical practice and also assess the robustness of each technique. The present study therefore compared volumetric modulated arc therapy (VMAT) and single-field optimization (SFO) spot scanning proton therapy plans created using a simultaneous integrated boost (SIB) for dose escalation in midesophageal cancer and analyzed the effect of setup and range uncertainties on these plans. For 21 patients, SIB plans with a physical dose prescription of 2 Gy or 2.5 Gy/fraction in 25 fractions to planning target volume (PTV)50Gy or PTV62.5Gy (primary tumor with 0.5 cm margins) were created and evaluated for robustness to random setup errors and proton range errors. Dose-volume metrics were compared for the optimal and uncertainty plans, with P<.05 (Wilcoxon) considered significant. SFO reduced the mean lung dose by 51.4% (range 35.1%-76.1%) and the mean heart dose by 40.9% (range 15.0%-57.4%) compared with VMAT. Proton plan robustness to a 3.5% range error was acceptable. For all patients, the clinical target volume D98 was 95.0% to 100.4% of the prescribed dose and gross tumor volume (GTV) D98 was 98.8% to 101%. Setup error robustness was patient anatomy dependent, and the potential minimum dose per fraction was always lower with SFO than with VMAT. The clinical target volume D98 was lower by 0.6% to 7.8% of the prescribed dose, and the GTV D98 was lower by 0.3% to 2.2% of the prescribed GTV dose. The SFO plans achieved significant sparing of normal tissue compared with the VMAT plans for midesophageal cancer. The target dose coverage in the SIB proton plans was less robust to random setup errors and might be unacceptable for certain patients. Robust optimization to ensure adequate target coverage of SIB proton plans might be beneficial. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Zhang, Qi; Li, Wei; Lin, Da-Chao; He, Ning; Duan, Yun
2011-01-30
The aim of this paper is to provide new experimental data of the minimum ignition energy (MIE) of gaseous nitromethane/air mixtures to discuss the explosion pressure and the flame temperature as a function of nitromethane concentration. Observations on the influence of nitromethane concentration on combustion pressure and temperature through the pressure and temperature measure system show that peak temperature (the peak of combustion temperature wave) is always behind peak pressure (the peak of the combustion pressure wave) in arrival time, the peak combustion pressure of nitromethane increases in the range of its volume fraction 10-40% as the concentration of nitromethane increases, and it slightly decreases in the range of 40-50%. The maximum peak pressure is equal to 0.94 MPa and the minimum peak pressure 0.58 MPa. Somewhat similar to the peak pressure, the peak combustion temperature increases with the volume fraction of nitromethane in the range of 10-40%, and slightly decreases in 40-50%. The maximum peak temperature is 1340 °C and the minimum 860 °C. The combustion temperature rise rate increases with the concentration of nitromethane in 10-30%, while decreases in 30-50% and its maximum value of combustion temperature rise rate in 10-50% is 4200 °C/s at the volume fraction of 30%. Influence of the concentration of nitromethane on the combustion pressure rise rate is relatively complicated, and the maximum value of rise rate of combustion pressure wave in 10-50% is 11 MPa/s at the concentration 20%. Copyright © 2010 Elsevier B.V. All rights reserved.
Phase-Transformation-Induced Extra Thermal Expansion Behavior of (SrxBa1–x)TiO3/Cu Composite
Sheng, Jie; Wang, Lidong; Li, Shouwei; Yin, Benke; Liu, Xiangli; Fei, Wei-Dong
2016-01-01
The properties of metal matrix composites (MMCs) can be optimized effectively through adjusting the type or the volume fraction of reinforcement. Generally, the coefficient of thermal expansion (CTE) of MMCs can be reduced by increasing the volume fraction of the reinforcement with lower CTE than metal matrix. However, it is great challenge to fabricate low CTE MMCs with low reinforcement volume fraction because of the limitation of reinforcement CTEs. SrxBa1−xTiO3 (SBT) powder presents negative thermal expansion behavior during the phase transformation from tetragonal to cubic phase. Here, we demonstrate that the phase transformation of SBT can be utilized to reduce and design the thermal expansion properties of SBT particle-reinforced Cu (SBT/Cu) composite, and ultralow CTE can be obtained in SBT/Cu composite. The X-ray diffraction analysis on heating indicates that the temperature range of phase transformation is extended greatly, therefore, the low CTE can be achieved within wide temperature range. Landau-Devonshire theory study on the phase transformation behaviors of SBT particles in the composite indicates that thermal mismatch stress significantly affects the Curie temperature of SBT particles and the CTE of the composite. The results given in the present study provide a new approach to design the MMCs with low CTE. PMID:27255420
Normal modes of weak colloidal gels
NASA Astrophysics Data System (ADS)
Varga, Zsigmond; Swan, James W.
2018-01-01
The normal modes and relaxation rates of weak colloidal gels are investigated in calculations using different models of the hydrodynamic interactions between suspended particles. The relaxation spectrum is computed for freely draining, Rotne-Prager-Yamakawa, and accelerated Stokesian dynamics approximations of the hydrodynamic mobility in a normal mode analysis of a harmonic network representing several colloidal gels. We find that the density of states and spatial structure of the normal modes are fundamentally altered by long-ranged hydrodynamic coupling among the particles. Short-ranged coupling due to hydrodynamic lubrication affects only the relaxation rates of short-wavelength modes. Hydrodynamic models accounting for long-ranged coupling exhibit a microscopic relaxation rate for each normal mode, λ that scales as l-2, where l is the spatial correlation length of the normal mode. For the freely draining approximation, which neglects long-ranged coupling, the microscopic relaxation rate scales as l-γ, where γ varies between three and two with increasing particle volume fraction. A simple phenomenological model of the internal elastic response to normal mode fluctuations is developed, which shows that long-ranged hydrodynamic interactions play a central role in the viscoelasticity of the gel network. Dynamic simulations of hard spheres that gel in response to short-ranged depletion attractions are used to test the applicability of the density of states predictions. For particle concentrations up to 30% by volume, the power law decay of the relaxation modulus in simulations accounting for long-ranged hydrodynamic interactions agrees with predictions generated by the density of states of the corresponding harmonic networks as well as experimental measurements. For higher volume fractions, excluded volume interactions dominate the stress response, and the prediction from the harmonic network density of states fails. Analogous to the Zimm model in polymer physics, our results indicate that long-ranged hydrodynamic interactions play a crucial role in determining the microscopic dynamics and macroscopic properties of weak colloidal gels.
NASA Astrophysics Data System (ADS)
Parke, L.; Hooper, I. R.; Hicken, R. J.; Dancer, C. E. J.; Grant, P. S.; Youngs, I. J.; Sambles, J. R.; Hibbins, A. P.
2013-10-01
A cold-pressing technique has been developed for fabricating composites composed of a polytetrafluoroethylene-polymer matrix and a wide range of volume-fractions of MnZn-ferrite filler (0%-80%). The electromagnetic properties at centimetre wavelengths of all prepared composites exhibited good reproducibility, with the most heavily loaded composites possessing simultaneously high permittivity (180 ± 10) and permeability (23 ± 2). The natural logarithm of both the relative complex permittivity and permeability shows an approximately linear dependence with the volume fraction of ferrite. Thus, this simple method allows for the manufacture of bespoke materials required in the design and construction of devices based on the principles of transformation optics.
Rheology of concentrated suspensions of non-colloidal rigid fibers
NASA Astrophysics Data System (ADS)
Guazzelli, Elisabeth; Tapia, Franco; Shaikh, Saif; Butler, Jason E.; Pouliquen, Olivier
2017-11-01
Pressure and volume-imposed rheology is used to study suspensions of non-colloidal, rigid fibers in the concentrated regime for aspect ratios ranging from 3 to 15. The suspensions exhibit yield-stresses. Subtracting these apparent yield-stresses reveals a viscous scaling for both the shear and normal stresses. The variation in aspect ratio does not affect the friction coefficient (ratio of shear and normal stresses), but increasing the aspect ratio lowers the maximum volume fraction at which the suspension flows. Constitutive laws are proposed for the viscosities and the friction coefficient close to this maximum flowable fraction. The scaling of the stresses near this jamming transition are found to differ substantially from that of a suspension of spheres.
Optical properties of PbS/PVP nanocomposites films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patel, Mitesh H., E-mail: miteshpatel7204@gmail.com; Chaudhuri, Tapas K.; Patel, Vaibhav K.
2016-05-06
PbS/Polyvinylpyrrolidone (PVP) nanocomposites films with different volume fraction of PbS have been deposited from single molecular precursors. X-ray diffraction patterns conforms the formation of PbS nanocrystals in PVP matrix. The transmission spectra of the films in the wavelength range of 300 to 2400 nm show the absorption edges are blue shifted due to formation of PbS Nanoparticles. The band gap determined are 2.4, 1.5 and 1.25 eV for PbS volume fraction of 8.5, 16, 27%, respectively. The corresponding refractive indices, n determined from Fresnel relation are 1.8, 2, and 2.35 which are in between that of PbS (4.2) and PVP (1.48).
Effect of cold drawing ratio on γ′ precipitation in Inconel X-750
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ha, Jeong Won; Research and Development Center, KOS Limited, Yangsan 626-230; Seong, Baek Seok
2014-10-15
Inconel X-750 is a Ni-based precipitation-hardened superalloy having large tensile and fracture strengths. In the study, X-750 wires were cold drawn to different extents. Small angle neutron scattering was employed to quantitatively measure the size and volume fraction of the γ′ phase as a function of the cold drawing ratio (DR) and aging temperature. The presence and size of γ′ precipitates were confirmed by transmission electron microscopy. The drawing ratio had an important effect on the volume fraction of the γ′ precipitates. However, the size of the precipitates was independent on the drawing ratio. The specimen with the minimum drawingmore » ratio (DR0) produced the largest volume fraction of γ′ as compared with large drawing ratio (DR) specimens such as DR17 and DR42. The small volume fraction of the γ′ phase for a sizeable drawing ratio was associated with the large amount of nucleation sites for secondary carbides, M{sub 23}C{sub 6}, and the fast diffusion path, i.e., dislocation, needed to form M{sub 23}C{sub 6}. A Cr depletion zone around the secondary carbides raised the solubility of γ′. Therefore, the significant drawing ratio contributing to the large volume fraction of the secondary carbides decreased the volume fraction of the γ′ precipitates in Inconel X-750. - Highlights: • The volume fraction of secondary carbides increased with the drawing ratio. • The volume fraction of γ′ decreased as the drawing ratio increased. • The drawing ratio affected the γ′ volume fraction with no variation of the γ' size. • The volume fraction of γ′ was affected by the secondary carbide volume fraction.« less
NASA Astrophysics Data System (ADS)
Hemmat Esfe, Mohammad; Saedodin, Seyfolah; Rejvani, Mousa; Shahram, Jalal
2017-06-01
In the present study, rheological behavior of ZnO/10W40 nano-lubricant is investigated by an experimental approach. Firstly, ZnO nanoparticles of 10-30 nm were dispersed in 10W40 engine oil with solid volume fractions of 0.25-2%, then the viscosity of the composed nano-lubricant was measured in temperature ranges of 5-55 °C and in various shear rates. From analyzing the results, it was revealed that both of the base oil and nano-lubricants are non-Newtonian fluids which exhibit shear thinning behavior. Sensitivity of viscosity to the solid volume fraction enhancement was calculated by a new correlation which was proposed in terms of solid volume fraction and temperature. In order to attain an accurate model by which experimental data are predicted, an artificial neural network (ANN) with a hidden layer and 5 neurons was designed. This model was considerably accurate in predicting experimental data of dynamic viscosity as R-squared and average absolute relative deviation (AARD %) were respectively 0.9999 and 0.0502.
Zwingenberger, Allison L; Daniel, Leticia; Steffey, Michele A; Mayhew, Philipp D; Mayhew, Kelli N; Culp, William T N; Hunt, Geraldine B
2014-11-01
To correlate changes in hepatic volume, hepatic perfusion, and vascular anatomy of dogs with congenital extrahepatic portosystemic shunts, before and after attenuation with an ameroid constrictor. Prospective study. Dogs (n = 22) with congenital extrahepatic portosystemic shunts. CT angiography and perfusion scans were performed before and after attenuation of a portosystemic shunt with an ameroid constrictor. Changes in hepatic volume, hepatic perfusion, and vascular anatomy were measured. Portal scintigraphy was performed in 8 dogs preoperatively and 22 dogs postoperatively. Dogs with smaller preoperative liver volumes had greater increases in liver volume postoperatively compared with those with larger preoperative liver volumes. Hepatic arterial fraction was increased in dogs preoperatively and returned to normal range after shunt attenuation, and was correlated with increase in liver size and decreased shunt fraction. Three dogs with no visible portal vasculature preoperatively developed portal branches postoperatively. Dogs with smaller preoperative liver volumes had the largest postoperative increase in liver volume. Hepatic arterial perfusion and portal scintigraphy correlate with liver volume and are indicators of successful shunt attenuation. Dogs without visible vasculature on CT angiography had visible portal vasculature postoperatively. © Copyright 2014 by The American College of Veterinary Surgeons.
SU-E-T-402: Y-90 Microspheres (SIR Spheres) for Treatment of Liver Metastasis : Technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nair, M
2014-06-01
Purpose: The purpose of this presentation is to discuss the radiation safety and dosimetric technique used for the therapeutic procedure using Y-90 microspheres through intra -arterial administration on patients with liver metastasis Methods: The radiation dosimetry, technique and safety aspects of 14 patients with primary and metastatic liver cancer, treated with Y-90 microsphere (SIR spheres) are discussed. The liver and tumor volumes were determined using the CT and MR scans . The images were imported into the treatment planning system and the liver and tumor volumes and the volume of the liver affected were outlined and the volume calculation wasmore » performed using the software. The lung shunt fraction (LSF) and tumor to liver uptake ratio (TLR) were determined using the nuclear medicine SPECT imaging with Tc-99m MAA. The absorbed dose to the target volume in liver was calculated using the following equation:Dose ? (Gy) = C x E? x 5.92 x 10-6 (Gy/s) x T(1/2)(days) x 1.44 x 8.64 x 104 (s) The distribution of activity in the tumor bed was confirmed by post Y-90 administration imaging using the Bremsstrahlung peak at 30% window. The patient and the procedure room were surveyed and radiation safety instructions were given to the patient Results: The tumor volume ranged from 77 cc to 700 cc, tumor to liver uptake ranged from 3 to 12. The lung shunt fraction varied from 1.08% to 9.0%. The activity administered ranged from 1.0GBq to 2.5 GBq, . The radiation survey in contact with the patient ranged from 1.8 mR/hr to 2.5 mR/hr and reading at 1 meter was less than 0.2 mR/hr Conclusion: The technique for radiation dosimetry and radiation safety for Y-90 microsphere therapy is established. The post treatment imaging helped to confirm the distribution of Y-90 microspheres inside the tumor bed.« less
Evolution of Local Microstructures: Spatial Instabilities of Coarsening Clusters
NASA Technical Reports Server (NTRS)
Frazier, Donald O.
1999-01-01
This work examines the diffusional growth of discrete phase particles dispersed within a matrix. Engineering materials are microstructurally heterogeneous, and the details of the microstructure determine how well that material performs in a given application. Critical to the development of designing multiphase microstructures with long-term stability is the process of Ostwald ripening. Ripening, or phase coarsening, is a diffusion-limited process which arises in polydisperse multiphase materials. Growth and dissolution occur because fluxes of solute, driven by chemical potential gradients at the interfaces of the dispersed phase material, depend on particle size. The kinetics of these processes are "competitive," dictating that larger particles grow at the expense of smaller ones, overall leading to an increase of the average particle size. The classical treatment of phase coarsening was done by Todes, Lifshitz, and Slyozov, (TLS) in the limit of zero volume fraction, V(sub v), of the dispersed phase. Since the publication of TLS theory there have been numerous investigations, many of which sought to describe the kinetic scaling behavior over a 0 range of volume fractions. Some studies in the literature report that the relative increase in coarsening rate at low (but not zero) volume fractions compared to that predicted by TLS is proportional to v(sub v)(exp 1/2), whereas others suggcest V(sub v)(exp 1/3). This issue has been resolved recently by simulation studies at low volume fractions in three dimensions by members of the Rensselaer/MSFC team. Our studies of ripening behavior using large-scale numerical simulations suggest that although there are different circumstances which can lead to either scaling law, the most important length scale at low volume fractions is the diffusional analog of the Debye screening length. The numerical simulations we employed exploit the use of a recently developed "snapshot" technique, and identifies the nature of the coarsening dynamics at various volume fractions. Preliminary results of numerical and experimental investigations, focused on the growth of finite particle clusters, provide important insight into the nature of the transition between the two scaling regimes. The companion microgravity experiment centers on the growth within finite particle clusters, and follows the temporal dynamics driving microstructural evolution, using holography.
Refractive index of liquid mixtures: theory and experiment.
Reis, João Carlos R; Lampreia, Isabel M S; Santos, Angela F S; Moita, Maria Luísa C J; Douhéret, Gérard
2010-12-03
An innovative approach is presented to interpret the refractive index of binary liquid mixtures. The concept of refractive index "before mixing" is introduced and shown to be given by the volume-fraction mixing rule of the pure-component refractive indices (Arago-Biot formula). The refractive index of thermodynamically ideal liquid mixtures is demonstrated to be given by the volume-fraction mixing rule of the pure-component squared refractive indices (Newton formula). This theoretical formulation entails a positive change of refractive index upon ideal mixing, which is interpreted in terms of dissimilar London dispersion forces centred in the dissimilar molecules making up the mixture. For real liquid mixtures, the refractive index of mixing and the excess refractive index are introduced in a thermodynamic manner. Examples of mixtures are cited for which excess refractive indices and excess molar volumes show all of the four possible sign combinations, a fact that jeopardises the finding of a general equation linking these two excess properties. Refractive indices of 69 mixtures of water with the amphiphile (R,S)-1-propoxypropan-2-ol are reported at five temperatures in the range 283-303 K. The ideal and real refractive properties of this binary system are discussed. Pear-shaped plots of excess refractive indices against excess molar volumes show that extreme positive values of excess refractive index occur at a substantially lower mole fraction of the amphiphile than extreme negative values of excess molar volume. Analysis of these plots provides insights into the mixing schemes that occur in different composition segments. A nearly linear variation is found when Balankina's ratios between excess and ideal values of refractive indices are plotted against ratios between excess and ideal values of molar volumes. It is concluded that, when coupled with volumetric properties, the new thermodynamic functions defined for the analysis of refractive indices of liquid mixtures give important complementary information on the mixing process over the whole composition range.
Thermal and ultrasonic evaluation of porosity in composite laminates
NASA Technical Reports Server (NTRS)
Johnston, Patrick H.; Winfree, William P.; Long, Edward R., Jr.; Kullerd, Susan M.; Nathan, N.; Partos, Richard D.
1992-01-01
The effects of porosity on damage incurred by low-velocity impact are investigated. Specimens of graphite/epoxy composite were fabricated with various volume fractions of voids. The void fraction was independently determined using optical examination and acid resin digestion methods. Thermal diffusivity and ultrasonic attenuation were measured, and these results were related to the void volume fraction. The relationship between diffusivity and fiber volume fraction was also considered. The slope of the ultrasonic attenuation coefficient was found to increase linearly with void content, and the diffusivity decreased linearly with void volume fraction, after compensation for an approximately linear dependence on the fiber volume fraction.
Predicting the apparent viscosity and yield stress of digested and secondary sludge mixtures.
Eshtiaghi, Nicky; Markis, Flora; Zain, Dwen; Mai, Kiet Hung
2016-05-15
The legal banning of conventional sludge disposal methods such as landfill has led to a global movement towards achieving a sustainable sludge management strategy. Reusing sludge for energy production (biogas production) through the anaerobic digestion of sludge can provide a sustainable solution. However, for the optimum performance of digesters with minimal use of energy input, operating conditions must be regulated in accordance with the rheological characteristics of the sludge. If it is assumed that only secondary sludge enters the anaerobic digesters, an impact of variations to the solids concentration and volume fraction of each sludge type must be investigated to understand how the apparent viscosity and yield stress of the secondary and digested sludge mixture inside the digesters changes. In this study, five different total solids concentration of secondary and digested sludge were mixed at different digested sludge volume fractions ranging from 0 to 1. It was found that if secondary sludge was mixed with digested sludge at the same total solids concentration, the apparent viscosity and the yield stress of the mixture increased exponentially by increasing the volume fraction of digested sludge. However, if secondary sludge was added to digested sludge with a different solids concentration, the apparent viscosity and yield stress of the resulting mixed sludge was controlled by the concentrated sludge regardless of its type. Semi - empirical correlations were proposed to predict the apparent viscosity and yield stress of the mixed digested and secondary sludge. A master curve was also developed to predict the flow behaviour of sludge mixtures regardless of the total solid concentration and volume fraction of each sludge type within the studied solids concentration range of 1.4 and 7%TS. This model can be used for digesters optimization and design by predicting the rheology of sludge mixture inside digester. Copyright © 2016 Elsevier Ltd. All rights reserved.
Study of heat transfer due to turbulent flow of nanofluids through rib-groove channel
NASA Astrophysics Data System (ADS)
Al-Shamani, A. N.; Sopian, K.; Abed, A. M.; Alghoul, M. A.; Ruslan, M. H.; Mat, S.
2015-09-01
Nanofluids for improve characteristics flow in a rib-groove channel are investigate. The continuity, momentum and energy equations were solved by FLUENT program. The bottom wall of channel is heated while the upper wall is symmetry, the left side velocity inlet, and the right side is outlet (pressure out). Four different rib-groove shapes are used. Four different types of nanoparticles, Al2O3, CuO, SiO2, and ZnO with different volumes fractions in the range of 1% to 4% and different nanoparticle diameter in the range of 25 nm to 70 nm, are dispersed in the base fluid water are used. In this paper, several parameters such as different Reynolds numbers in the range of 10000 < Re < 40000 are investigated. The numerical results indicate that the trapezoidal with increasing height in the flow direction rib- trapezoidal groove has the best heat transfer and high Nusselt number; the nanofluids with SiO2 have the best behavior. The Nusselt number increases as the volume fraction increases and it decreases as the nanoparticle diameter increases.
Misawa, M; Inamura, Y; Hosaka, D; Yamamuro, O
2006-08-21
Quasielastic neutron scattering measurements have been made for 1-propanol-water mixtures in a range of alcohol concentration from 0.0 to 0.167 in mole fraction at 25 degrees C. Fraction alpha of water molecules hydrated to fractal surface of alcohol clusters in 1-propanol-water mixture was obtained as a function of alcohol concentration. Average hydration number N(ws) of 1-propanol molecule is derived from the value of alpha as a function of alcohol concentration. By extrapolating N(ws) to infinite dilution, we obtain values of 12-13 as hydration number of isolated 1-propanol molecule. A simple interpretation of structural origin of anomalous excess partial molar volume of water is proposed and as a result a simple equation for the excess partial molar volume is deduced in terms of alpha. Calculated values of the excess partial molar volumes of water and 1-propanol and the excess molar volume of the mixture are in good agreement with experimental values.
Park, Jaeyeong; Kim, Jung-Su; Kang, Minju; Sohn, Seok Su; Cho, Won Tae; Kim, Hyoung Seop; Lee, Sunghak
2017-01-01
TWIP-cored three-layer steel sheets were newly fabricated by hot rolling of TWIP steel sheet surrounded by low-carbon (LC) or interstitial-free (IF) steel sheets. TWIP/LC or TWIP/IF interfaces were well bonded without pores or voids, while a few pearlites were thinly formed along the interfaces. The strengths and elongation of the TWIP-cored sheets increased as the volume fraction of TWIP-cored region increased, and were also well matched with the ones calculated by a rule of mixtures based on volume fraction or force fraction. According to digital image correlation and electron back-scatter diffraction analyses, very high strain hardening effect in the initial deformation stage and active twin formation in the interfacial region beneficially affected the overall homogeneous deformation in the TWIP-cored sheets without any yield point phenomenon occurring in the LC sheet and serrations occurring in the TWIP sheet, respectively. These TWIP-cored sheets can cover a wide range of yield strength, tensile strength, and ductility levels, e.g., 320~498 MPa, 545~878 MPa, and 48~54%, respectively, by controlling the volume fraction of TWIP-cored region, and thus present new applications to multi-functional automotive steel sheets requiring excellent properties. PMID:28067318
NASA Astrophysics Data System (ADS)
Park, Jaeyeong; Kim, Jung-Su; Kang, Minju; Sohn, Seok Su; Cho, Won Tae; Kim, Hyoung Seop; Lee, Sunghak
2017-01-01
TWIP-cored three-layer steel sheets were newly fabricated by hot rolling of TWIP steel sheet surrounded by low-carbon (LC) or interstitial-free (IF) steel sheets. TWIP/LC or TWIP/IF interfaces were well bonded without pores or voids, while a few pearlites were thinly formed along the interfaces. The strengths and elongation of the TWIP-cored sheets increased as the volume fraction of TWIP-cored region increased, and were also well matched with the ones calculated by a rule of mixtures based on volume fraction or force fraction. According to digital image correlation and electron back-scatter diffraction analyses, very high strain hardening effect in the initial deformation stage and active twin formation in the interfacial region beneficially affected the overall homogeneous deformation in the TWIP-cored sheets without any yield point phenomenon occurring in the LC sheet and serrations occurring in the TWIP sheet, respectively. These TWIP-cored sheets can cover a wide range of yield strength, tensile strength, and ductility levels, e.g., 320~498 MPa, 545~878 MPa, and 48~54%, respectively, by controlling the volume fraction of TWIP-cored region, and thus present new applications to multi-functional automotive steel sheets requiring excellent properties.
Park, Jaeyeong; Kim, Jung-Su; Kang, Minju; Sohn, Seok Su; Cho, Won Tae; Kim, Hyoung Seop; Lee, Sunghak
2017-01-09
TWIP-cored three-layer steel sheets were newly fabricated by hot rolling of TWIP steel sheet surrounded by low-carbon (LC) or interstitial-free (IF) steel sheets. TWIP/LC or TWIP/IF interfaces were well bonded without pores or voids, while a few pearlites were thinly formed along the interfaces. The strengths and elongation of the TWIP-cored sheets increased as the volume fraction of TWIP-cored region increased, and were also well matched with the ones calculated by a rule of mixtures based on volume fraction or force fraction. According to digital image correlation and electron back-scatter diffraction analyses, very high strain hardening effect in the initial deformation stage and active twin formation in the interfacial region beneficially affected the overall homogeneous deformation in the TWIP-cored sheets without any yield point phenomenon occurring in the LC sheet and serrations occurring in the TWIP sheet, respectively. These TWIP-cored sheets can cover a wide range of yield strength, tensile strength, and ductility levels, e.g., 320~498 MPa, 545~878 MPa, and 48~54%, respectively, by controlling the volume fraction of TWIP-cored region, and thus present new applications to multi-functional automotive steel sheets requiring excellent properties.
NASA Astrophysics Data System (ADS)
Kuchipudi, Suresh Chandra
Additive manufacturing (AM) also known as 3D printing has tremendous advancements in recent days with a vast number of applications in industrial, automotive, architecture, consumer projects, fashion, toys, food, art, etc. Composite materials are widely used in structures with weight as a critical factor especially in aerospace industry. Recently, additive manufacturing technology, a rapidly growing innovative technology, has gained lot of importance in making composite materials. The properties of composite materials depend upon the properties of constituent's matrix and fiber. There is lot of research on effect of fiber orientation on mechanical properties of composite materials made using conventional manufacturing methods. It will be interesting and relevant to study the relationship between the fiber orientation and fiber volume with mechanical properties of additively manufactured composite materials. This thesis work presents experimental investigation of mechanical behavior like tensile strength and fatigue life with variation in fiber orientation and fiber volume fraction of 3D printed composite materials. The aim is to study the best combination of volume fraction of fiber and fiber orientation that has better fatigue strength for additive manufactured composite materials. Using this study, we can decide the type of orientation and volume percent for desired properties. This study also finds the range of fatigue limits of 3d printed composite materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Shanhui; Tong, Chaohui; Zhu, Yuejin, E-mail: zhuyuejin@nbu.edu.cn
The complex microstructures of drug particle/ABA star triblock copolymer in dilute solutions have been investigated by a theoretical approach which combines the self-consistent field theory and the hybrid particle-field theory. Simulation results reveal that, when the volume fraction of drug particles is smaller than the saturation concentration, the drug particle encapsulation efficiency is 100%, and micelle loading capacity increases with increasing particle volume fraction. When the volume fraction of drug particles is equal to the saturation concentration, the micelles attain the biggest size, and micelle loading capacity reaches a maximum value which is independent of the copolymer volume fraction. Whenmore » the volume fraction of drug particles is more than the saturation concentration, drug particle encapsulation efficiency decreases with increasing volume fraction of drug particles. Furthermore, it is found that the saturation concentration scales linearly with the copolymer volume fraction. The above simulation results are in good agreement with experimental results.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Lina; Zhou, Shouhao; Balter, Peter
Purpose: To identify the optimal dose parameters predictive for local/lobar control after stereotactic ablative radiation therapy (SABR) in early-stage non-small cell lung cancer (NSCLC). Methods and Materials: This study encompassed a total of 1092 patients (1200 lesions) with NSCLC of clinical stage T1-T2 N0M0 who were treated with SABR of 50 Gy in 4 fractions or 70 Gy in 10 fractions, depending on tumor location/size, using computed tomography-based heterogeneity corrections and a convolution superposition calculation algorithm. Patients were monitored by chest CT or positron emission tomography/CT and/or biopsy after SABR. Factors predicting local/lobar recurrence (LR) were determined by competing risk multivariate analysis.more » Continuous variables were divided into 2 subgroups at cutoff values identified by receiver operating characteristic curves. Results: At a median follow-up time of 31.7 months (interquartile range, 14.8-51.3 months), the 5-year time to local recurrence within the same lobe and overall survival rates were 93.8% and 44.8%, respectively. Total cumulative number of patients experiencing LR was 40 (3.7%), occurring at a median time of 14.4 months (range, 4.8-46 months). Using multivariate competing risk analysis, independent predictive factors for LR after SABR were minimum biologically effective dose (BED{sub 10}) to 95% of planning target volume (PTVD95 BED{sub 10}) ≤86 Gy (corresponding to PTV D95 physics dose of 42 Gy in 4 fractions or 55 Gy in 10 fractions) and gross tumor volume ≥8.3 cm{sup 3}. The PTVmean BED{sub 10} was highly correlated with PTVD95 BED{sub 10.} In univariate analysis, a cutoff of 130 Gy for PTVmean BED{sub 10} (corresponding to PTVmean physics dose of 55 Gy in 4 fractions or 75 Gy in 10 fractions) was also significantly associated with LR. Conclusions: In addition to gross tumor volume, higher radiation dose delivered to the PTV predicts for better local/lobar control. We recommend that both PTVD95 BED{sub 10} >86 Gy and PTVmean BED{sub 10} >130 Gy should be considered for SABR plan optimization.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Tianying; Zukoski, Charles F., E-mail: czukoski@illinois.edu
2014-09-01
For decades, attempts have been made to understand the formation of colloidal glasses and gels by linking suspension mechanics to particle properties where details of size, shape, and spatial dependencies of pair potentials present a bewildering array of variables that can be manipulated to achieve observed properties. Despite the range of variables that control suspension properties, one consistent observation is the remarkably similarity of flow properties observed as particle properties are varied. Understanding the underlying origins of the commonality in those behaviors (e.g., shear-thinning with increasing stress, diverging zero shear rate viscosity with increasing volume fraction, development of a dynamicmore » yield stress plateau with increases in volume faction or strength of attraction, development of two characteristic relaxation times probed in linear viscoelasticity, the creation of a rubbery plateau modulus at high strain frequencies, and shear-thickening) remains a challenge. Recently, naïve mode coupling and dynamic localization theories have been developed to capture collective behavior giving rise to formation of colloidal glasses and gels. This approach characterizes suspension mechanics of strongly interacting particles in terms of sluggish long-range particle diffusion modulated by varying particle interactions and volume fraction. These theories capture the scaling of the modulus with the volume fraction and strength of interparticle attraction, the frequency dependence of the moduli at the onset of the gel/glass transition, together with the divergence of the zero shear rate viscosity and cessation of diffusivity for hard sphere systems as close packing is approached. In this study, we explore the generality of the predictions of dynamic localization theory for systems of particles composed of bimodal particle size distributions experiencing weak interactions. We find that the mechanical properties of these suspensions are well captured within the framework of dynamic localization theory and that suspension mechanics can be understood in terms of a dynamical potential barrier, the magnitude of which governs the zero shear rate viscosity, and onset of a dynamic yield stress plateau as volume fraction or strength of interaction is raised.« less
Evolution of Local Microstructures (ELMS): Spatial Instabilities of Coarsening
NASA Technical Reports Server (NTRS)
Glicksman, Martin E.; Frazier, Donald O.; Rogers, Jan R.; Witherow, William K.; Downey, J. Patton; Facemire, Barbara R.
1999-01-01
This work examines the diffusional growth of discrete phase particles dispersed within a matrix. Engineering materials are microstructurally heterogeneous, and the details of the microstructure determine how well that material performs in a given application. Critical to the development of designing multiphase microstructures with long-term stability is the process of Ostwald ripening. Ripening, or phase coarsening, is a diffusion-limited process which arises in polydisperse multiphase materials. Growth and dissolution occur because fluxes of solute, driven by chemical potential gradients at the interfaces of the dispersed phase material, depend on particle size. The kinetics of these processes are "competitive," dictating that larger particles grow at the expense of smaller ones, overall leading to an increase of the average particle size. The classical treatment of phase coarsening was done by Todes, Lifshitz, and Slyozov, (TLS) in the limit of zero volume fraction, V(sub v), of the dispersed phase. Since the publication of TLS theory there have been numerous investigations, many of which sought to describe the kinetic scaling behavior over a range of volume fractions. Some studies in the literature report that the relative increase in coarsening rate at low (but not zero) volume fractions compared to that / 2 1/ 3 predicted by TLS is proportional to V(sub v)(exp 1/2), whereas others suggest V(sub v)(exp 1/3). This issue has been resolved recently by simulation studies at low volume fractions in three dimensions by members of the Rensselaer/MSFC team.
NASA Astrophysics Data System (ADS)
Sledkov, R. M.; Galkin, I. Yu.; Stepanov, O. E.; Strebnev, N. A.
2017-01-01
When one solves engineering problems related to the cooling of fuel assemblies (FAs) in a spent fuel storage pool (SFSP) and the assessment of nuclear safety of FA storage in an SFSP in the initial event of loss of SFSP cooling, it is essential to determine the coolant density and, consequently, steam volume fractions φ in bundles of fuel elements at a pressure of 0.1-0.5 MPa. Such formulas for calculating φ that remain valid in a wide range of operating parameters and geometric shapes of channels and take the conditions of loss of SFSP cooling into account are currently almost lacking. The results of systematization and analysis of the available formulas for φ are reported in the present study. The calculated values were compared with the experimental data obtained in the process of simulating the conditions of FA cooling in an SFSP in the event of loss of its cooling. Six formulas for calculating the steam volume fraction, which were used in this comparison, were chosen from a total of 11 considered relations. As a result, the formulas producing the most accurate values of φ in the conditions of loss of SFSP cooling were selected. In addition, a relation that allows one to perform more accurate calculations of steam volume fractions in the conditions of loss of SFSP cooling was derived based on the Fedorov formula in the two-group approximation.
Effect of dairy wastewater on changes in COD fractions in technical-scale SBR type reactors.
Struk-Sokołowska, Joanna; Rodziewicz, Joanna; Mielcarek, Artur
2017-04-01
The annual global production of milk is approximately 630,000 million litres and the volume of generated dairy wastewater accounts for 3.2 m 3 ·m -3 product. Dairy wastewater is characterized by a high load of chemical oxygen demand (COD). In many wastewater plants dairy wastewater and municipal wastewater are co-treated. The effect of dairy wastewater contribution on COD fraction changes in municipal sewage which has been treated with a sequencing batch reactor (SBR) in three wastewater treatment plants in north-east Poland is presented. In these plants the real contribution of dairy wastewater was 10, 13 and 17%. In raw wastewater, S S fraction (readily biodegradable dissolved organic matter) was dominant and ranged from 38.3 to 62.6%. In the effluent, S S fraction was not noted, which is indicative of consumption by microorganisms. The presence of dairy wastewater in municipal sewage does not cause changes in the content of the X I fraction (insoluble fractions of non-biodegradable organic matter). SBR effluents were dominated by non-biodegradable dissolved organic matter S I , which from 57.7 to 61.7%. In raw wastewater S I ranged from 1.0 to 4.6%. X s fraction (slowly biodegradable non-soluble organic matter) in raw wastewater ranged from 24.6 to 45.5% while in treated wastewater it ranged from 28.6 to 30.8%. In the control object (fourth wastewater plant) which does not process dairy wastewater, the S S , S I , X s and X I fraction in inflow was 28.7, 2.4, 51.7 and 17.2% respectively. In the effluent the S S , S I , X s and X I fraction was below 0.1, 33.6, 50.0 and 16.4% respectively.
Roshani, G H; Karami, A; Salehizadeh, A; Nazemi, E
2017-11-01
The problem of how to precisely measure the volume fractions of oil-gas-water mixtures in a pipeline remains as one of the main challenges in the petroleum industry. This paper reports the capability of Radial Basis Function (RBF) in forecasting the volume fractions in a gas-oil-water multiphase system. Indeed, in the present research, the volume fractions in the annular three-phase flow are measured based on a dual energy metering system including the 152 Eu and 137 Cs and one NaI detector, and then modeled by a RBF model. Since the summation of volume fractions are constant (equal to 100%), therefore it is enough for the RBF model to forecast only two volume fractions. In this investigation, three RBF models are employed. The first model is used to forecast the oil and water volume fractions. The next one is utilized to forecast the water and gas volume fractions, and the last one to forecast the gas and oil volume fractions. In the next stage, the numerical data obtained from MCNP-X code must be introduced to the RBF models. Then, the average errors of these three models are calculated and compared. The model which has the least error is picked up as the best predictive model. Based on the results, the best RBF model, forecasts the oil and water volume fractions with the mean relative error of less than 0.5%, which indicates that the RBF model introduced in this study ensures an effective enough mechanism to forecast the results. Copyright © 2017 Elsevier Ltd. All rights reserved.
Xu, Shouping; Wu, Zhaoxia; Yang, Cungeng; Ma, Lin; Qu, Baolin; Chen, Guangpei; Yao, Weirong; Wang, Shi; Liu, Yaqiang
2016-01-01
Objective: To investigate the changes in CT number (CTN) in gross tumour volume (GTV) and organs at risk (OARs) during the course of radiation therapy (RT) for nasopharyngeal cancer (NPC). Methods: Daily megavoltage CT (MVCT) data collected from 30 patients with NPC treated with a prescription dose of 70 Gy in 30–33 fractions using helical tomotherapy were retrospectively analyzed. The contours of GTV and OARs on daily MVCTs were obtained by populating the planning contours from planning CT to daily MVCTs with manual editing, if necessary. The changes of GTV and OAR volumes and the histograms of CTN in the GTV and OARs during the course of RT delivery were analyzed. Results: Volumes of GTV and parotid glands were reduced during the course of radiation treatment, with an average shrinkage rate of 0.23% per day (range, 0.02–0.8%) and 1.2% per day (range, 0.2–2.3%), respectively. The mean CTN changes in GTV and ipsilateral and contralateral parotid glands were reduced by 52 ± 35 HU, 18 ± 20 HU and 17 ± 22 HU, respectively. For GTV, the CTN and GTV volume decreases were found to be correlated with each other (p < 0.0001). No noticeable CTN change was found in the spinal cord and non-specified tissue irradiated with low doses. Conclusion: The CTN changes in GTV and parotids are measurable during the delivery of fractionated radiotherapy for NPC, were associated with the doses received (the number of fractions delivered) and were patient specific. Advances in knowledge: The CTN change during radiotherapy is dose dependent and is measurable for NPC. PMID:27033059
Quantitative tomographic measurements of opaque multiphase flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
GEORGE,DARIN L.; TORCZYNSKI,JOHN R.; SHOLLENBERGER,KIM ANN
2000-03-01
An electrical-impedance tomography (EIT) system has been developed for quantitative measurements of radial phase distribution profiles in two-phase and three-phase vertical column flows. The EIT system is described along with the computer algorithm used for reconstructing phase volume fraction profiles. EIT measurements were validated by comparison with a gamma-densitometry tomography (GDT) system. The EIT system was used to accurately measure average solid volume fractions up to 0.05 in solid-liquid flows, and radial gas volume fraction profiles in gas-liquid flows with gas volume fractions up to 0.15. In both flows, average phase volume fractions and radial volume fraction profiles from GDTmore » and EIT were in good agreement. A minor modification to the formula used to relate conductivity data to phase volume fractions was found to improve agreement between the methods. GDT and EIT were then applied together to simultaneously measure the solid, liquid, and gas radial distributions within several vertical three-phase flows. For average solid volume fractions up to 0.30, the gas distribution for each gas flow rate was approximately independent of the amount of solids in the column. Measurements made with this EIT system demonstrate that EIT may be used successfully for noninvasive, quantitative measurements of dispersed multiphase flows.« less
NASA Technical Reports Server (NTRS)
Conklin, Lindsey
2017-01-01
Fiber-reinforced composite structures have become more common in aerospace components due to their light weight and structural efficiency. In general, the strength and stiffness of a composite structure are directly related to the fiber volume fraction, which is defined as the fraction of fiber volume to total volume of the composite. The most common method to measure the fiber volume fraction is acid digestion, which is a useful method when the total weight of the composite, the fiber weight, and the total weight can easily be obtained. However, acid digestion is a destructive test, so the material will no longer be available for additional characterization. Acid digestion can also be difficult to machine out specific components of a composite structure with complex geometries. These disadvantages of acid digestion led the author to develop a method to calculate the fiber volume fraction. The developed method uses optical microscopy to calculate the fiber area fraction based on images of the cross section of the composite. The fiber area fraction and fiber volume fraction are understood to be the same, based on the assumption that the shape and size of the fibers are consistent in the depth of the composite. This tutorial explains the developed method for optically determining fiber area fraction performed at NASA Langley Research Center.
Analytical modeling of hyperthermia using magnetic nanoparticles
NASA Astrophysics Data System (ADS)
Bensenane, Mohamed Nassim; Senoudi, Assia Rachida; Benmouna, Reda; Ould-Kaddour, Fouzia
2018-06-01
Hyperthermia using magnetic nanoparticles (MNPs) is one of many techniques to treat cancer causing minimal damage to healthy tissues. In the present work we give an analytical resolution of the bio-heat equation (based on Pennes model) providing the temperature rise as a function of the characteristics of the magnetic nanoparticles, the applied magnetic field and the biological properties of the tissue. The temperature inside the tumor was found to be very sensitive to the frequency f of alternating magnetic field, magnetic field amplitude H0 and volume fraction φ. This study optimizes the intensity of magnetic field to reach ideal hyperthermia conditions. When f varies between 50 and 150 KHz, temperature increases from 39 °C until 53 °C; when H0 is ranged from 5 - 15 kA/m, it increases from 39.5 °C until 49 °C, and when volume fraction φ of MNPs is ranged from 2 × 10-4 to 3 × 10-4 it increases from 44 °C until 48 °C.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ispir, B; Akdeniz, Y; Ugurluer, G
2015-06-15
Purpose: To evaluate prostate volume changes during radiation therapy using implanted gold markers and on-board imaging. Methods: Twenty-five patients were included who underwent an implantation of three gold markers. Cartesian coordinates of markers were assessed in kV-images. The coordinates of centers of two markers were measured on kV-images from the center of the marker at the apex which was reference. The distances between the markers were extrapolated from the coordinates using the Euclid formula. The radius of the sphere through markers was calculated using sinus theorem. The prostate volume for the first and last fraction was substituted with a spheremore » model and was calculated for each patient. The t-test was used for analysis. Results: The mean prostate volume for first and last fraction was 24.65 and 20.87 cc, respectively (p≤0.05). The prostate volume was smaller for 23 patients, whereas there was an expansion for 2 patients. Fifteen patients had androgen deprivation during radiotherapy (H group) and ten did not (NH group). The mean prostate volume for the first and last fraction for the NH group was 30.73 cc and 24.89 cc and for the H group 20.84 cc and 18.19 cc, respectively. There was a 15.8% volume change during treatment for the NH group and 12.2% for the H group, but the difference was not statistically significant. The radius difference of the theoretical sphere for the first and last fraction was 0.98 mm (range, 0.09–2.95 mm) and remained below 2 mm in 88% of measurements. Conclusion: There was a significant volume change during prostate radiotherapy. The difference between H group and NH group was not significant. The radius changes did not exceed 3 mm and it was below adaptive treatment requirements. Our results indicate that prostate volume changes during treatment should be taken into account during contouring and treatment planning.« less
Microstructure and rheology of thermoreversible nanoparticle gels.
Ramakrishnan, S; Zukoski, C F
2006-08-29
Naïve mode coupling theory is applied to particles interacting with short-range Yukawa attractions. Model results for the location of the gel line and the modulus of the resulting gels are reduced to algebraic equations capturing the effects of the range and strength of attraction. This model is then applied to thermo reversible gels composed of octadecyl silica particles suspended in decalin. The application of the model to the experimental system requires linking the experimental variable controlling strength of attraction, temperature, to the model strength of attraction. With this link, the model predicts temperature and volume fraction dependencies of gelation and modulus with five parameters: particle size, particle volume fraction, overlap volume of surface hairs, and theta temperature. In comparing model predictions with experimental results, we first observe that in these thermal gels there is no evidence of clustering as has been reported in depletion gels. One consequence of this observation is that there are no additional adjustable parameters required to make quantitative comparisons between experimental results and model predictions. Our results indicate that the naïve mode coupling approach taken here in conjunction with a model linking temperature to strength of attraction provides a robust approach for making quantitative predictions of gel mechanical properties. Extension of model predictions to additional experimental systems requires linking experimental variables to the Yukawa strength and range of attraction.
1997-06-01
composites. The topics ranged from molecular clusters, nanophase materials, growth, processing, and synthesis. Commercial composite materials have been on...example, an analysis of the emission from a GaAs target shows mainly (99.4%) neutral Ga and As atoms. [63] However, the fraction of molecular species...sputtered from ionic crystals can be considerably higher. [64] There is evidence that a large fraction of the molecular species originate from
Xu, Wenxiang; Wang, Han; Niu, Yanze; Bai, Jingtao
2016-01-07
With advances in interfacial properties characterization technologies, the interfacial volume fraction is a feasible parameter for evaluating effective physical properties of materials. However, there is a need to determine the interfacial volume fraction around anisotropic fibers and a need to assess the influence of such the interfacial property on effective properties of fibrous materials. Either ways, the accurate prediction of interfacial volume fraction is required. Towards this end, we put forward both theoretical and numerical schemes to determine the interfacial volume fraction in fibrous materials, which are considered as a three-phase composite structure consisting of matrix, anisotropic hard spherocylinder fibers, and soft interfacial layers with a constant dimension coated on the surface of each fiber. The interfacial volume fraction actually represents the fraction of space not occupied by all hard fibers and matrix. The theoretical scheme that adopts statistical geometry and stereological theories is essentially an analytic continuation from spherical inclusions. By simulating such three-phase chopped fibrous materials, we numerically derive the interfacial volume fraction. The theoretical and numerical schemes provide a quantitative insight that the interfacial volume fraction depends strongly on the fiber geometries like fiber shape, geometric size factor, and fiber size distribution. As a critical interfacial property, the present contribution can be further drawn into assessing effective physical properties of fibrous materials, which will be demonstrated in another paper (Part II) of this series.
Preparation and Wear Resistance of Aluminum Composites Reinforced with In Situ Formed TiO/Al2O3
NASA Astrophysics Data System (ADS)
Qin, Q. D.; Huang, B. W.; Li, W.; Zeng, Z. Y.
2016-05-01
An in situ TiO/Al2O3-reinforced Al composite is successfully prepared using a powder metallurgy route by the reaction of Ti2CO and Al powder. The Ti2CO powder is produced by carrying out a carbothermic reduction of titanium dioxide at 1000 °C. XRD results show that the final product is composed of Al, TiO, Al2O3, and Al3Ti. Morphology examination of the composite reveals the presence of bigger blocks of TiO and fine particles of Al2O3 and the volume fraction of reinforcement is found to range between 18 and 55%. As the volume fraction of the reinforced materials approaches 50%, the particles start to agglomerate. Dry sliding wear tests conducted using a conventional pin-on-disk testing machine show that the wear resistance of the composite is higher than that of the pure aluminum ingot. The wear rate of the composite increases almost linearly with the increase in the wear distance. The sliding wear test shows that as the volume fraction of the reinforced phase increases, the coefficient of friction decreases. The wear mechanism is also discussed.
NASA Astrophysics Data System (ADS)
Akbari, Omid Ali; Toghraie, Davood; Karimipour, Arash; Marzban, Ali; Ahmadi, Gholam Reza
2017-02-01
In this investigation, the behavior of non-Newtonian nanofluid hydrodynamic and heat transfer are simulated. In this study, we numerically simulated a laminar forced non-Newtonian nanofluid flow containing a 0.5 wt% carboxy methyl cellulose (CMC) solutionin water as the base fluid with alumina at volume fractions of 0.5 and 1.5 as the solid nanoparticle. Numerical solution was modelled in Cartesian coordinate system in a two-dimensional microchannel in Reynolds number range of 10≤Re≤1000. The analyzed geometrical space here was a rectangular part of whose upper and bottom walls was influenced by a constant temperature. The effect of volume fraction of the nanoparticles, Reynolds number and non-Newtonian nanofluids was studied. In this research, the changes pressure drop, the Nusselt number, dimensionless temperature and heat transfer coefficient, caused by the motion of non-Newtonian nanofluids are described. The results indicated that the increase of the volume fraction of the solid nanoparticles and a reduction in the diameter of the nanoparticles would improve heat transfer which is more significant in Reynolds number. The results of the introduced parameters in the form of graphs drawing and for different parameters are compared.
The influence of voxel size on atom probe tomography data.
Torres, K L; Daniil, M; Willard, M A; Thompson, G B
2011-05-01
A methodology for determining the optimal voxel size for phase thresholding in nanostructured materials was developed using an atom simulator and a model system of a fixed two-phase composition and volume fraction. The voxel size range was banded by the atom count within each voxel. Some voxel edge lengths were found to be too large, resulting in an averaging of compositional fluctuations; others were too small with concomitant decreases in the signal-to-noise ratio for phase identification. The simulated methodology was then applied to the more complex experimentally determined data set collected from a (Co(0.95)Fe(0.05))(88)Zr(6)Hf(1)B(4)Cu(1) two-phase nanocomposite alloy to validate the approach. In this alloy, Zr and Hf segregated to an intergranular amorphous phase while Fe preferentially segregated to a crystalline phase during the isothermal annealing step that promoted primary crystallization. The atom probe data analysis of the volume fraction was compared to transmission electron microscopy (TEM) dark-field imaging analysis and a lever rule analysis of the volume fraction within the amorphous and crystalline phases of the ribbon. Copyright © 2011 Elsevier B.V. All rights reserved.
Application of Medical Magnetic Resonance Imaging for Particle Concentration Measurement
NASA Astrophysics Data System (ADS)
Borup, Daniel; Elkins, Christopher; Eaton, John
2014-11-01
Particle transport and deposition in internal flows is important in a range of applications such as dust aggregation in turbine engines and aerosolized medicine deposition in human airways. Unlike optical techniques, Magnetic Resonance Imaging (MRI) is well suited for complex applications in which optical access is not possible. Here we present efforts to measure 3D particle concentration distribution using MRI. Glass particles dispersed in water flow reduce MRI signal from a spin-echo or gradient-echo scanning sequence by decreasing spin density and dephasing the spins present in the fluid. A preliminary experiment was conducted with a particle streak injected at the centerline of a turbulent round pipe flow with a U bend. Measurements confirmed that signal strength was related to particle concentration and showed the effects of gravitational settling and turbulent dispersion. Next, measurements of samples in a mixing chamber were taken. Particle volume fraction was varied and sensitivity to particle/fluid velocity was investigated. These results give a relationship between MRI signal, particle volume fraction, MRI sequence echo time, and spin relaxation parameters that can be used to measure local particle volume fraction in other turbulent flows of interest.
Coarsening in Solid-liquid Mixtures: Overview of Experiments on Shuttle and ISS
NASA Technical Reports Server (NTRS)
Duval, Walter M. B.; Hawersaat, Robert W.; Lorik, T.; Thompson, J.; Gulsoy, B.; Voorhees, P. W.
2013-01-01
The microgravity environment on the Shuttle and the International Space Station (ISS) provides the ideal condition to perform experiments on Coarsening in Solid-Liquid Mixtures (CSLM) as deleterious effects such as particle sedimentation and buoyancy-induced convection are suppressed. For an ideal system such as Lead-Tin in which all the thermophysical properties are known, the initial condition in microgravity of randomly dispersed particles with local clustering of solid Tin in eutectic liquid Lead-Tin matrix, permitted kinetic studies of competitive particle growth for a range of volume fractions. Verification that the quenching phase of the experiment had negligible effect of the spatial distribution of particles is shown through the computational solution of the dynamical equations of motion, thus insuring quench-free effects from the coarsened microstructure measurements. The low volume fraction experiments conducted on the Shuttle showed agreement with transient Ostwald ripening theory, and the steady-state requirement of LSW theory was not achieved. More recent experiments conducted on ISS with higher volume fractions have achieved steady-state condition and show that the kinetics follows the classical diffusion limited particle coarsening prediction and the measured 3D particle size distribution becomes broader as predicted from theory.
Repin, Nikolay; Scanlon, Martin G; Fulcher, R Gary
2012-07-01
Enrichment of colloidal dairy systems with dietary fibre frequently causes quality defects because of phase separation. We investigate phase separation in skimmed milk enriched with Glucagel (a commercial product made from barley that is predominantly comprised of the polysaccharide β-glucan). The driving force for phase separation was depletion flocculation of casein micelles in the presence of molecules of the polysaccharide. Depending on the volume fraction of casein micelles and the concentration of Glucagel, the stable system phase separated either as a transient gel or as a sedimented system. The rate at which phase separation progressed also depended on the volume fraction of casein micelles and the concentration of Glucagel. To confirm the role of depletion flocculation in the phase separation process, enzymatic reduction in the molecular weight of β-glucan was shown to limit the range of attraction between micelles and allow the stable phase to exist at a higher β-glucan concentration for any given volume fraction of casein micelles. These phase diagrams will be useful to dairy product manufacturers striving to improve the nutrient profile of their products while avoiding product quality impairment. Copyright © 2012 Elsevier Inc. All rights reserved.
Kinetics of Diffusional Droplet Growth in a Liquid/Liquid Two-Phase System
NASA Technical Reports Server (NTRS)
Glicksman, M. E.; Fradkov, V. E.
1996-01-01
We address the problem of diffusional interactions in a finite sized cluster of spherical particles for volume fractions, V(sub v) in the range 0-0.01. We determined the quasi-static monopole diffusion solution for n particles distributed at random in a continuous matrix. A global mass conservation condition is employed, obviating the need for any external boundary condition. The numerical results provide the instantaneous (snapshot) growth or shrinkage rate of each particle, precluding the need for extensive time-dependent computations. The close connection between these snapshot results and the coarsegrained kinetic constants are discussed. A square-root dependence of the deviations of the rate constants from their zero volume fraction value is found for the higher V(sub v) investigated. This behavior is consistent with predictions from diffusion Debye-Huckel screening theory. By contrast, a cube-root dependence, reported in earlier numerical studies, is found for the lower V(sub v) investigated. The roll-over region of the volume fraction where the two asymptotics merge depends on the number of particles, n, alone. A theoretical estimate for the roll-over point predicts that the corresponding V(sub v) varies as n(sup -2), in good agreement with the numerical results.
Fully resolved simulations of expansion waves propagating into particle beds
NASA Astrophysics Data System (ADS)
Marjanovic, Goran; Hackl, Jason; Annamalai, Subramanian; Jackson, Thomas; Balachandar, S.
2017-11-01
There is a tremendous amount of research that has been done on compression waves and shock waves moving over particles but very little concerning expansion waves. Using 3-D direct numerical simulations, this study will explore expansion waves propagating into fully resolved particle beds of varying volume fractions and geometric arrangements. The objectives of these simulations are as follows: 1) To fully resolve all (1-way coupled) forces on the particles in a time varying flow and 2) to verify state-of-the-art drag models for such complex flows. We will explore a range of volume fractions, from very low ones that are similar to single particle flows, to higher ones where nozzling effects are observed between neighboring particles. Further, we will explore two geometric arrangements: body centered cubic and face centered cubic. We will quantify the effects that volume fraction and geometric arrangement plays on the drag forces and flow fields experienced by the particles. These results will then be compared to theoretical predictions from a model based on the generalized Faxen's theorem. This work was supported in part by the U.S. Department of Energy under the Predictive Science Academic Alliance Program, under Contract No. DE-NA0002378.
Zachary, Chase E; Jiao, Yang; Torquato, Salvatore
2011-05-01
We extend the results from the first part of this series of two papers by examining hyperuniformity in heterogeneous media composed of impenetrable anisotropic inclusions. Specifically, we consider maximally random jammed (MRJ) packings of hard ellipses and superdisks and show that these systems both possess vanishing infinite-wavelength local-volume-fraction fluctuations and quasi-long-range pair correlations scaling as r(-(d+1)) in d Euclidean dimensions. Our results suggest a strong generalization of a conjecture by Torquato and Stillinger [Phys. Rev. E 68, 041113 (2003)], namely, that all strictly jammed saturated packings of hard particles, including those with size and shape distributions, are hyperuniform with signature quasi-long-range correlations. We show that our arguments concerning the constrained distribution of the void space in MRJ packings directly extend to hard-ellipse and superdisk packings, thereby providing a direct structural explanation for the appearance of hyperuniformity and quasi-long-range correlations in these systems. Additionally, we examine general heterogeneous media with anisotropic inclusions and show unexpectedly that one can decorate a periodic point pattern to obtain a hard-particle system that is not hyperuniform with respect to local-volume-fraction fluctuations. This apparent discrepancy can also be rationalized by appealing to the irregular distribution of the void space arising from the anisotropic shapes of the particles. Our work suggests the intriguing possibility that the MRJ states of hard particles share certain universal features independent of the local properties of the packings, including the packing fraction and average contact number per particle.
Sade, Leyla Elif; Kozan, Hatice; Eroglu, Serpil; Pirat, Bahar; Aydinalp, Alp; Sezgin, Atilla; Muderrisoglu, Haldun
2017-02-01
Residual pulmonary hypertension challenges the right ventricular function and worsens the prognosis in heart transplant recipients. The complex geometry of the right ventricle complicates estimation of its function with conventional transthoracic echocardiography. We evaluated right ventricular function in heart transplant recipients with the use of 3-dimensional echocardiography in relation to systolic pulmonary artery pressure. We performed 32 studies in 26 heart transplant patients, with 6 patients having 2 studies at different time points with different pressures and thus included. Right atrial volume, tricuspid annular plane systolic excursion, peak systolic annular velocity, fractional area change, and 2-dimensional speckle tracking longitudinal strain were obtained by 2-dimensional and tissue Doppler imaging. Three-dimensional right ventricular volumes, ejection fraction, and 3-dimensional right ventricular strain were obtained from the 3-dimensional data set by echocardiographers. Systolic pulmonary artery pressure was obtained during right heart catheterization. Overall mean systolic pulmonary artery pressure was 26 ± 7 mm Hg (range, 14-44 mmHg). Three-dimensional end-diastolic (r = 0.75; P < .001) and end-systolic volumes (r = 0.55; P = .001)correlated well with systolic pulmonary artery pressure. Right ventricular ejection fraction and right atrium volume also significantly correlated with systolic pulmonary artery pressure (r = 0.49 and P = .01 for both). However, right ventricular 2- and 3-dimensional strain, tricuspid annular plane systolic excursion, and tricuspid annular velocity did not. The effects of pulmonary hemodynamic burden on right ventricular function are better estimated by a 3-dimensional volume evaluation than with 3-dimensional longitudinal strain and other 2-dimensional and tissue Doppler measurements. These results suggest that the peculiar anatomy of the right ventricle necessitates 3-dimensional volume quantification in heart transplant recipients in relation to residual pulmonary hypertension.
Gao, Ji-xian; Wang, Tie-feng; Wang, Jin-fu
2010-05-01
The influence of SO2 dynamic adsorption behaviors using ZL50 activated carbon for flue gas desulphurization and denitrification under different SO2 volume fraction was investigated experimentally, and the kinetic analysis was conducted by kinetic models. With the increase of SO2 volume fraction in flue gas, the SO2 removal ratio and the activity ratio of ZL50 activated carbon decreased, respectively, and SO2 adsorption rate and capacity increased correspondingly. The calculated results indicate that Bangham model has the best prediction effect, the chemisorption processes of SO2 was significantly affected by catalytic oxidative reaction. The adsorption rate constant of Lagergren's pseudo first order model increased with the increase of inlet SO, volume fraction, which indicated that catalytic oxidative reaction of SO2 adsorbed by ZL50 activated carbon may be the rate controlling step in earlier adsorption stage. The Lagergren's and Bangham's initial adsorption rate were deduced and defined, respectively. The Ho's and Elovich's initial adsorption rate were also deduced in this paper. The Bangham's initial adsorption rate values were defined in good agreement with those of experiments. The defined Bangham's adsorptive reaction kinetic model can describe the SO2 dynamic adsorption rate well. The studied results indicated that the SO2 partial order of initial reaction rate was one or adjacent to one, while the O2 and water vapor partial order of initial reaction rate were constants ranging from 0.15-0.20 and 0.45-0.50, respectively.
NASA Astrophysics Data System (ADS)
Morissette, Sherry L.
A new gelcasting system based on aqueous, alumina-poly(vinyl alcohol) (PVA) suspensions cross-linked by an organotitanate coupling agent has been developed. Both the chemorheological properties and forming behavior of this system exhibited a strong compositional dependence. A sol- gel phase diagram was established, which yielded the critical titanium concentration [Ti] c required for gelation at a given PVA volume fraction, as well as the minimum PVA volume fraction ( fminPVA = 0.0245) and titanium PVA concentration ([Ti]min = 9.984 x 10--4 g Ti/ml) below which gelation was not observed irrespective of solution composition. The gelation time of suspensions of constant PVA volume fraction ( fsolnPVA ) decreased with increasing cross-linking agent concentration, PVA temperature, and solids volume fraction. The steady-state viscosity and elastic modulus of polymer solutions ( fsolnPVA = 0.05) of varying [Ti] were well described by the PVA percolation model, giving scaling exponents of 0.84 and 1.79, respectively. The steady-state elastic modulus of gel casting suspensions, which provides a measure of their handling strength in the as-gelled state, increased with increasing solids volume fraction. Gelcasting suspensions were used as feedstock for solid free-form fabrication (SFF) of ceramic components. The influence of processing conditions (e.g., tip diameter, mixing rate, table speed, etc.) and suspension rheology on deposition behavior was investigated. Continuous printablity was achieved for tip diameters ranging from dt = 0.254 -- 1.370 mm for all mixing rates (Rmix 5 -- 300 rpm) and suspension compositions (i.e., fAl2O3 = 0.45, φPVA = 0.275, [Ti] 0 -- 6.30 x 10--3 g Ti/ml) probed, where the minimum tip diameter for continuous printing was 0.203 mm. Printed lines were uniform with good edge definition. Line dimensions were independent of mixing rate for the given process conditions. The as-cast alumina volume fraction ( fAl2O3 ) depended on casting conditions and cross-linking agent concentration, where fAl2O3 decreased with increasing tip diameter and increased with increasing cross-linking agent concentration. Free-fomied Al2O3 components exhibited uniform particle packing and had minimal macro-defects (e.g., slumping or stair casing) and no detectable micro-defects (e.g., bubbles or cracking).
NASA Technical Reports Server (NTRS)
Pan, Ning
1992-01-01
Although the question of minimum or critical fiber volume fraction beyond which a composite can then be strengthened due to addition of fibers has been dealt with by several investigators for both continuous and short fiber composites, a study of maximum or optimal fiber volume fraction at which the composite reaches its highest strength has not been reported yet. The present analysis has investigated this issue for short fiber case based on the well-known shear lag (the elastic stress transfer) theory as the first step. Using the relationships obtained, the minimum spacing between fibers is determined upon which the maximum fiber volume fraction can be calculated, depending on the fiber packing forms within the composites. The effects on the value of this maximum fiber volume fraction due to such factors as fiber and matrix properties, fiber aspect ratio and fiber packing forms are discussed. Furthermore, combined with the previous analysis on the minimum fiber volume fraction, this maximum fiber volume fraction can be used to examine the property compatibility of fiber and matrix in forming a composite. This is deemed to be useful for composite design. Finally some examples are provided to illustrate the results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chvetsov, A; Schwartz, J; Mayr, N
2014-06-01
Purpose: To show that a distribution of cell surviving fractions S{sub 2} in a heterogeneous group of patients can be derived from tumor-volume variation curves during radiotherapy for non-small cell lung cancer. Methods: Our analysis was based on two data sets of tumor-volume variation curves for heterogeneous groups of 17 patients treated for nonsmall cell lung cancer with conventional dose fractionation. The data sets were obtained previously at two independent institutions by using megavoltage (MV) computed tomography (CT). Statistical distributions of cell surviving fractions S{sup 2} and cell clearance half-lives of lethally damaged cells T1/2 have been reconstructed in eachmore » patient group by using a version of the two-level cell population tumor response model and a simulated annealing algorithm. The reconstructed statistical distributions of the cell surviving fractions have been compared to the distributions measured using predictive assays in vitro. Results: Non-small cell lung cancer presents certain difficulties for modeling surviving fractions using tumor-volume variation curves because of relatively large fractional hypoxic volume, low gradient of tumor-volume response, and possible uncertainties due to breathing motion. Despite these difficulties, cell surviving fractions S{sub 2} for non-small cell lung cancer derived from tumor-volume variation measured at different institutions have similar probability density functions (PDFs) with mean values of 0.30 and 0.43 and standard deviations of 0.13 and 0.18, respectively. The PDFs for cell surviving fractions S{sup 2} reconstructed from tumor volume variation agree with the PDF measured in vitro. Comparison of the reconstructed cell surviving fractions with patient survival data shows that the patient survival time decreases as the cell surviving fraction increases. Conclusion: The data obtained in this work suggests that the cell surviving fractions S{sub 2} can be reconstructed from the tumor volume variation curves measured during radiotherapy with conventional fractionation. The proposed method can be used for treatment evaluation and adaptation.« less
NASA Astrophysics Data System (ADS)
Nurdin, Irwan; Satriananda
2017-03-01
Thermal conductivity of maghemite nanofluids were experimentally investigated at different maghemite nanoparticles volume fraction and temperatures. Maghemite nanofluids were prepared by suspending maghemite nanoparticles in water as base fluids. The thermal conductivity ratio of maghemite nanofluids was linearly increase with increasing particle volume fraction and temperature. The highest enhancement of thermal conductivity is 42.5% which is obtained at particle volume fraction 2.5% and temperature 60 °C.
Middleton, Michael S; Haufe, William; Hooker, Jonathan; Borga, Magnus; Dahlqvist Leinhard, Olof; Romu, Thobias; Tunón, Patrik; Hamilton, Gavin; Wolfson, Tanya; Gamst, Anthony; Loomba, Rohit; Sirlin, Claude B
2017-05-01
Purpose To determine the repeatability and accuracy of a commercially available magnetic resonance (MR) imaging-based, semiautomated method to quantify abdominal adipose tissue and thigh muscle volume and hepatic proton density fat fraction (PDFF). Materials and Methods This prospective study was institutional review board- approved and HIPAA compliant. All subjects provided written informed consent. Inclusion criteria were age of 18 years or older and willingness to participate. The exclusion criterion was contraindication to MR imaging. Three-dimensional T1-weighted dual-echo body-coil images were acquired three times. Source images were reconstructed to generate water and calibrated fat images. Abdominal adipose tissue and thigh muscle were segmented, and their volumes were estimated by using a semiautomated method and, as a reference standard, a manual method. Hepatic PDFF was estimated by using a confounder-corrected chemical shift-encoded MR imaging method with hybrid complex-magnitude reconstruction and, as a reference standard, MR spectroscopy. Tissue volume and hepatic PDFF intra- and interexamination repeatability were assessed by using intraclass correlation and coefficient of variation analysis. Tissue volume and hepatic PDFF accuracy were assessed by means of linear regression with the respective reference standards. Results Adipose and thigh muscle tissue volumes of 20 subjects (18 women; age range, 25-76 years; body mass index range, 19.3-43.9 kg/m 2 ) were estimated by using the semiautomated method. Intra- and interexamination intraclass correlation coefficients were 0.996-0.998 and coefficients of variation were 1.5%-3.6%. For hepatic MR imaging PDFF, intra- and interexamination intraclass correlation coefficients were greater than or equal to 0.994 and coefficients of variation were less than or equal to 7.3%. In the regression analyses of manual versus semiautomated volume and spectroscopy versus MR imaging, PDFF slopes and intercepts were close to the identity line, and correlations of determination at multivariate analysis (R 2 ) ranged from 0.744 to 0.994. Conclusion This MR imaging-based, semiautomated method provides high repeatability and accuracy for estimating abdominal adipose tissue and thigh muscle volumes and hepatic PDFF. © RSNA, 2017.
Phase-field simulations of coherent precipitate morphologies and coarsening kinetics
NASA Astrophysics Data System (ADS)
Vaithyanathan, Venugopalan
2002-09-01
The primary aim of this research is to enhance the fundamental understanding of coherent precipitation reactions in advanced metallic alloys. The emphasis is on a particular class of precipitation reactions which result in ordered intermetallic precipitates embedded in a disordered matrix. These precipitation reactions underlie the development of high-temperature Ni-base superalloys and ultra-light aluminum alloys. Phase-field approach, which has emerged as the method of choice for modeling microstructure evolution, is employed for this research with the focus on factors that control the precipitate morphologies and coarsening kinetics, such as precipitate volume fractions and lattice mismatch between precipitates and matrix. Two types of alloy systems are considered. The first involves L1 2 ordered precipitates in a disordered cubic matrix, in an attempt to model the gamma' precipitates in Ni-base superalloys and delta' precipitates in Al-Li alloys. The effect of volume fraction on coarsening kinetics of gamma' precipitates was investigated using two-dimensional (2D) computer simulations. With increase in volume fraction, larger fractions of precipitates were found to have smaller aspect ratios in the late stages of coarsening, and the precipitate size distributions became wider and more positively skewed. The most interesting result was associated with the effect of volume fraction on the coarsening rate constant. Coarsening rate constant as a function of volume fraction extracted from the cubic growth law of average half-edge length was found to exhibit three distinct regimes: anomalous behavior or decreasing rate constant with volume fraction at small volume fractions ( ≲ 20%), volume fraction independent or constant behavior for intermediate volume fractions (˜20--50%), and the normal behavior or increasing rate constant with volume fraction for large volume fractions ( ≳ 50%). The second alloy system considered was Al-Cu with the focus on understanding precipitation of metastable tetragonal theta'-Al 2Cu in a cubic Al solid solution matrix. In collaboration with Chris Wolverton at Ford Motor Company, a multiscale model, which involves a novel combination of first-principles atomistic calculations with a mesoscale phase-field microstructure model, was developed. Reliable energetics in the form of bulk free energy, interfacial energy and parameters for calculating the elastic energy were obtained using accurate first-principles calculations. (Abstract shortened by UMI.)
Hagiwara, A; Hori, M; Yokoyama, K; Nakazawa, M; Ueda, R; Horita, M; Andica, C; Abe, O; Aoki, S
2017-10-01
Myelin and axon volume fractions can now be estimated via MR imaging in vivo, as can the g-ratio, which equals the ratio of the inner to the outer diameter of a nerve fiber. The purpose of this study was to evaluate WM damage in patients with MS via this novel MR imaging technique. Twenty patients with relapsing-remitting MS with a combined total of 149 chronic plaques were analyzed. Myelin volume fraction was calculated based on simultaneous tissue relaxometry. Intracellular and CSF compartment volume fractions were quantified via neurite orientation dispersion and density imaging. Axon volume fraction and g-ratio were calculated by combining these measurements. Myelin and axon volume fractions and g-ratio were measured in plaques, periplaque WM, and normal-appearing WM. All metrics differed significantly across the 3 groups ( P < .001, except P = .027 for g-ratio between periplaque WM and normal-appearing WM). Those in plaques differed most from those in normal-appearing WM. The percentage changes in plaque and periplaque WM metrics relative to normal-appearing WM were significantly larger in absolute value for myelin volume fraction than for axon volume fraction and g-ratio ( P < .001, except P = .033 in periplaque WM relative to normal-appearing WM for comparison between myelin and axon volume fraction). In this in vivo MR imaging study, the myelin of WM was more damaged than axons in plaques and periplaque WM of patients with MS. Myelin and axon volume fractions and g-ratio may potentially be useful for evaluating WM damage in patients with MS. © 2017 by American Journal of Neuroradiology.
Average properties of bidisperse bubbly flows
NASA Astrophysics Data System (ADS)
Serrano-García, J. C.; Mendez-Díaz, S.; Zenit, R.
2018-03-01
Experiments were performed in a vertical channel to study the properties of a bubbly flow composed of two distinct bubble size species. Bubbles were produced using a capillary bank with tubes with two distinct inner diameters; the flow through each capillary size was controlled such that the amount of large or small bubbles could be controlled. Using water and water-glycerin mixtures, a wide range of Reynolds and Weber number ranges were investigated. The gas volume fraction ranged between 0.5% and 6%. The measurements of the mean bubble velocity of each species and the liquid velocity variance were obtained and contrasted with the monodisperse flows with equivalent gas volume fractions. We found that the bidispersity can induce a reduction of the mean bubble velocity of the large species; for the small size species, the bubble velocity can be increased, decreased, or remain unaffected depending of the flow conditions. The liquid velocity variance of the bidisperse flows is, in general, bound by the values of the small and large monodisperse values; interestingly, in some cases, the liquid velocity fluctuations can be larger than either monodisperse case. A simple model for the liquid agitation for bidisperse flows is proposed, with good agreement with the experimental measurements.
Ejim, Emmanuel; Oguanobi, Nelson
2016-09-01
Reliable diagnostic measures for the evaluation of left ventricular systolic performance in the setting of altered myocardial loading characteristics in sickle cell anaemia remains unresolved. The study was designed to assess left ventricular systolic function in adult sickle cell patients using non-invasive endsystolic stress - end-systolic volume index ratio. A descriptive cross sectional comparative study was done using 52 patients recruited at the adult sickle cell anaemia clinic of the University of Nigeria Teaching Hospital Enugu. An equal number of age and sex-matched healthy volunteers served as controls. All the participants had haematocrit estimation, haemoglobin electrophoresis, as well as echocardiographic evaluation. The mean age of the patients and controls were 23.93 ± 5.28 (range 18-42) and 24.17 ± 4.39 (range 19 -42) years respectively, (t = 0.262; p= .794). No significant difference was seen in estimate of fractional shortening, and ejection fraction. The cardiac out-put, cardiac index and velocity of circumferential shortening were all significantly increased in the cases compared with the controls. The end systolic stress - end systolic volume index ratio (ESS/ESVI) was significantly lower in cases than controls. There were strong positive correlation between the ejection phase indices (ejection fraction and fractional shortening) and end systolic stress and ESS/ESVI. The study findings suggest the presence of left ventricular systolic dysfunction in adult sickle cell anaemia. This is best detected using the loading-pressures independent force-length relationship expressed in ESS/ESVI ratio.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hattangadi, Jona A.; Chapman, Paul H.; Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA
2012-06-01
Purpose: To evaluate patients with high-risk cerebral arteriovenous malformations (AVMs), based on eloquent brain location or large size, who underwent planned two-fraction proton stereotactic radiosurgery (PSRS). Methods and Materials: From 1991 to 2009, 59 patients with high-risk cerebral AVMs received two-fraction PSRS. Median nidus volume was 23 cc (range, 1.4-58.1 cc), 70% of cases had nidus volume {>=}14 cc, and 34% were in critical locations (brainstem, basal ganglia). Median AVM score based on age, AVM size, and location was 3.19 (range, 0.9-6.9). Many patients had prior surgery or embolization (40%) or prior PSRS (12%). The most common prescription was 16more » Gy radiobiologic equivalent (RBE) in two fractions, prescribed to the 90% isodose. Results: At a median follow-up of 56.1 months, 9 patients (15%) had total and 20 patients (34%) had partial obliteration. Patients with total obliteration received higher total dose than those with partial or no obliteration (mean dose, 17.6 vs. 15.5 Gy (RBE), p = 0.01). Median time to total obliteration was 62 months (range, 23-109 months), and 5-year actuarial rate of partial or total obliteration was 33%. Five-year actuarial rate of hemorrhage was 22% (95% confidence interval, 12.5%-36.8%) and 14% (n = 8) suffered fatal hemorrhage. Lesions with higher AVM scores were more likely to hemorrhage (p = 0.024) and less responsive to radiation (p = 0.026). The most common complication was Grade 1 headache acutely (14%) and long term (12%). One patient developed a Grade 2 generalized seizure disorder, and two had mild neurologic deficits. Conclusions: High-risk AVMs can be safely treated with two-fraction PSRS, although total obliteration rate is low and patients remain at risk for future hemorrhage. Future studies should include higher doses or a multistaged PSRS approach for lesions more resistant to obliteration with radiation.« less
2011-06-01
usually walking on the right of on-coming people, and cars discouraged from passing on the right of a car traveling in the same direction. “Usually...forces a loss of detail due to horizontal compression: Valleys or troughs are squeezed into oblivion . To enable valleys to be seen, Figures 20 and 21...Volume. Left Panel: North- bound Traffic. Right Panel: Southbound Traffic. Northbound and Southbound Volume Ranges are Different 5.5 Fractional
Worm, Esben S; Høyer, Morten; Hansen, Rune; Larsen, Lars P; Weber, Britta; Grau, Cai; Poulsen, Per R
2018-06-01
Intrafraction motion can compromise the treatment accuracy in liver stereotactic body radiation therapy (SBRT). Respiratory gating can improve treatment delivery; however, gating based on external motion surrogates is inaccurate. The present study reports the use of Calypso-based internal electromagnetic motion monitoring for gated liver SBRT. Fifteen patients were included in a study of 3-fraction respiratory gated liver SBRT guided by 3 implanted electromagnetic transponders. The planning target volume was created by a 5-mm axial and 7-mm (n = 12) or 10-mm (n = 3) craniocaudal expansion of the clinical target volume (CTV) and covered with 67% of the prescribed CTV mean dose. Treatment was gated to the end-exhale phase of the respiratory cycle with beam-on when the target deviated <3 mm (left-right/anteroposterior) and 4 mm (craniocaudal) from the planned position, according to the monitored (25-Hz) transponder centroid position. The couch was adjusted remotely if baseline drifts >1 to 2 mm occurred. Log files of transponder motion were used to determine the geometric error and reconstruct the delivered CTV dose in the actual gated treatments and in simulated nongated treatments. No severe side effects were observed in relation to transponder implantation. All 45 treatment fractions were successfully guided using the Calypso system. The mean number of couch corrections during each gated fraction was 2.8 (range 0-7). The mean duty cycle during gated treatment was 62.5% (range 29.1%-84.9%). Without gating, the mean 3-dimensional geometric error during a fraction would have been 5.4 mm (range 2.7-12.1). Gating reduced this error to 2.0 mm (range 1.2-3.0). The patient mean reduction in minimum dose to 95% of the CTV relative to the planned dose was 6.0 percentage points (range 0.7-22.0) without gating and 0.8 percentage point (range 0.2-2.0) with gating. Gating using internal motion monitoring was successfully applied for liver SBRT. It markedly improved the geometric and dosimetric accuracy compared with nongated standard treatment. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Hope, Adam T.
Many nuclear reactor components previously constructed with Ni-based alloys containing 20 wt% Cr have been found to be susceptible to stress corrosion cracking. The nuclear power industry now uses high chromium (˜30wt%) Ni-based filler metals to mitigate stress corrosion cracking. Current alloys are plagued with weldability issues, either solidification cracking or ductility dip cracking (DDC). Solidification cracking is related to solidification temperature range and the DDC is related to the fraction eutectic present in the microstructure. It was determined that an optimal alloy should have a solidification temperature range less than 150°C and at least 2% volume fraction eutectic. Due to the nature of the Nb rich eutectic that forms, it is difficult to avoid both cracking types simultaneously. Through computational modeling, alternative eutectic forming elements, Hf and Ta, have been identified as replacements for Nb in such alloys. Compositions have been optimized through a combination of computational and experimental techniques combined with a design of experiment methodology. Small buttons were melted using commercially pure materials in a copper hearth to obtain the desired compositions. These buttons were then subjected to a gas tungsten arc spot weld. A type C thermocouple was used to acquire the cooling history during the solidification process. The cooling curves were processed using Single Sensor Differential Thermal Analysis to determine the solidification temperature range, and indicator of solidification cracking susceptibility. Metallography was performed to determine the fraction eutectic present, an indicator of DDC resistance. The optimal level of Hf to resist cracking was found to be 0.25 wt%. The optimal level of Ta was found to be 4 wt%. gamma/MC type eutectics were found to form first in all Nb, Ta, and Hf-bearing compositions. Depending on Fe and Cr content, gamma/Laves eutectic was sometimes found in Nb and Ta-bearing compositions, while Hf-bearing compositions had gamma/Ni7Hf2 as the final eutectic to solidify. This study found that the extra Cr in the current generation alloys promotes the gamma/Laves phase eutectic, which expands the solidification temperature range and promotes solidification cracking. Both Ta-bearing and Hf-bearing eutectics were found to solidify at higher temperatures than Nb-bearing eutectics, leading to narrower solidification temperature ranges. Weldability testing on the optimized Ta-bearing compositions revealed good resistance to both DDC and solidification cracking. Unexpectedly, the optimized Hf-bearing compositions were quite susceptible to solidification cracking. This led to an investigation on the possible wetting effect of eutectics on solidification cracking susceptibly, and a theory on how wetting affects the solidification crack susceptibility and the volume fraction of eutectic needed for crack healing has been proposed. Alloys with eutectics that easily wet the grain boundaries have increased solidification crack susceptibility at low volume fraction eutectics, but as the fraction eutectic is increased, experience crack healing at relatively lower fraction eutectics than alloys with eutectics that don't wet as easily. Hf rich eutectics were found to wet grain boundaries significantly more than Nb rich eutectics. Additions of Mo were also found to increase the wetting of eutectics in Nb-bearing alloys.
Simulating Fiber Ordering and Aggregation In Shear Flow Using Dissipative Particle Dynamics
NASA Astrophysics Data System (ADS)
Stimatze, Justin T.
We have developed a mesoscale simulation of fiber aggregation in shear flow using LAMMPS and its implementation of dissipative particle dynamics. Understanding fiber aggregation in shear flow and flow-induced microstructural fiber networks is critical to our interest in high-performance composite materials. Dissipative particle dynamics enables the consideration of hydrodynamic interactions between fibers through the coarse-grained simulation of the matrix fluid. Correctly simulating hydrodynamic interactions and accounting for fluid forces on the microstructure is required to correctly model the shear-induced aggregation process. We are able to determine stresses, viscosity, and fiber forces while simulating the evolution of a model fiber system undergoing shear flow. Fiber-fiber contact interactions are approximated by combinations of common pairwise forces, allowing the exploration of interaction-influenced fiber behaviors such as aggregation and bundling. We are then able to quantify aggregate structure and effective volume fraction for a range of relevant system and fiber-fiber interaction parameters. Our simulations have demonstrated several aggregate types dependent on system parameters such as shear rate, short-range attractive forces, and a resistance to relative rotation while in contact. A resistance to relative rotation at fiber-fiber contact points has been found to strongly contribute to an increased angle between neighboring aggregated fibers and therefore an increase in average aggregate volume fraction. This increase in aggregate volume fraction is strongly correlated with a significant enhancement of system viscosity, leading us to hypothesize that controlling the resistance to relative rotation during manufacturing processes is important when optimizing for desired composite material characteristics.
NASA Astrophysics Data System (ADS)
Velmurugan, Thanigaimalai; Sukumar, Prabakar; Krishnappan, Chokkalingam; Boopathy, Raghavendiran
2010-01-01
Ten patients with cancer of uterine cervix who underwent interstitial brachytherapy using MUPIT templates were CT scanned (CT1) using which bladder, rectum and CTV were delineated. The treatment plan PCT1 was generated and optimized geometrically on the volume. CT scan (CT2) was repeated before the second fraction of the treatment CTV and critical organs were delineated. The plan (PCT2) was created by reproducing the Plan PCT1 in the CT2 images and compared with PCT1. Bladder, Rectum and CTV percentage volume variation ranges from +28.6% to -34.3%, 38.4% to -14.9% and 8.5% to -15.2% respectively. Maximum dose variation in bladder was +17.1%, in rectum was up to +410% and in CTV was -13.0%. The dose to these structures varies independently with no strong correlation with the volume variation. Hence it is suggested that repeat CT and re-planning is mandatory before second fraction execution.
Measuring the fraction of pool volume filled with fine sediment
Sue Hilton; Thomas E. Lisle
1993-01-01
The fraction of pool volume filled with fine sediment (usually fine sand to medium gravel) can be a useful index of the sediment supply and substrate habitat of gravel-bed channels. It can be used to evaluate and monitor channel condition and to detect and evaluate sediment sources. This fraction (V*) is the ratio of fine-sediment volume to pool water volume plus fine-...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chvetsov, Alexei V., E-mail: chvetsov2@gmail.com; Schwartz, Jeffrey L.; Mayr, Nina
2014-06-15
Purpose: In our previous work, the authors showed that a distribution of cell surviving fractionsS{sub 2} in a heterogeneous group of patients could be derived from tumor-volume variation curves during radiotherapy for head and neck cancer. In this research study, the authors show that this algorithm can be applied to other tumors, specifically in nonsmall cell lung cancer. This new application includes larger patient volumes and includes comparison of data sets obtained at independent institutions. Methods: Our analysis was based on two data sets of tumor-volume variation curves for heterogeneous groups of 17 patients treated for nonsmall cell lung cancermore » with conventional dose fractionation. The data sets were obtained previously at two independent institutions by using megavoltage computed tomography. Statistical distributions of cell surviving fractionsS{sub 2} and clearance half-lives of lethally damaged cells T{sub 1/2} have been reconstructed in each patient group by using a version of the two-level cell population model of tumor response and a simulated annealing algorithm. The reconstructed statistical distributions of the cell surviving fractions have been compared to the distributions measured using predictive assays in vitro. Results: Nonsmall cell lung cancer presents certain difficulties for modeling surviving fractions using tumor-volume variation curves because of relatively large fractional hypoxic volume, low gradient of tumor-volume response, and possible uncertainties due to breathing motion. Despite these difficulties, cell surviving fractionsS{sub 2} for nonsmall cell lung cancer derived from tumor-volume variation measured at different institutions have similar probability density functions (PDFs) with mean values of 0.30 and 0.43 and standard deviations of 0.13 and 0.18, respectively. The PDFs for cell surviving fractions S{sub 2} reconstructed from tumor volume variation agree with the PDF measured in vitro. Conclusions: The data obtained in this work, when taken together with the data obtained previously for head and neck cancer, suggests that the cell surviving fractionsS{sub 2} can be reconstructed from the tumor volume variation curves measured during radiotherapy with conventional fractionation. The proposed method can be used for treatment evaluation and adaptation.« less
Chvetsov, Alexei V; Yartsev, Slav; Schwartz, Jeffrey L; Mayr, Nina
2014-06-01
In our previous work, the authors showed that a distribution of cell surviving fractions S2 in a heterogeneous group of patients could be derived from tumor-volume variation curves during radiotherapy for head and neck cancer. In this research study, the authors show that this algorithm can be applied to other tumors, specifically in nonsmall cell lung cancer. This new application includes larger patient volumes and includes comparison of data sets obtained at independent institutions. Our analysis was based on two data sets of tumor-volume variation curves for heterogeneous groups of 17 patients treated for nonsmall cell lung cancer with conventional dose fractionation. The data sets were obtained previously at two independent institutions by using megavoltage computed tomography. Statistical distributions of cell surviving fractions S2 and clearance half-lives of lethally damaged cells T(1/2) have been reconstructed in each patient group by using a version of the two-level cell population model of tumor response and a simulated annealing algorithm. The reconstructed statistical distributions of the cell surviving fractions have been compared to the distributions measured using predictive assays in vitro. Nonsmall cell lung cancer presents certain difficulties for modeling surviving fractions using tumor-volume variation curves because of relatively large fractional hypoxic volume, low gradient of tumor-volume response, and possible uncertainties due to breathing motion. Despite these difficulties, cell surviving fractions S2 for nonsmall cell lung cancer derived from tumor-volume variation measured at different institutions have similar probability density functions (PDFs) with mean values of 0.30 and 0.43 and standard deviations of 0.13 and 0.18, respectively. The PDFs for cell surviving fractions S2 reconstructed from tumor volume variation agree with the PDF measured in vitro. The data obtained in this work, when taken together with the data obtained previously for head and neck cancer, suggests that the cell surviving fractions S2 can be reconstructed from the tumor volume variation curves measured during radiotherapy with conventional fractionation. The proposed method can be used for treatment evaluation and adaptation.
Analysis of thermoelastic damping in laminated composite micromechanical beam resonators
NASA Astrophysics Data System (ADS)
Vengallatore, Srikar
2005-12-01
Minimization of structural damping is an essential requirement in the design of multifunctional composite micromachined resonators used for sensing and communications applications. Here, we study thermoelastic damping in symmetric, three-layered, laminated, micromechanical Euler-Bernoulli beams using an analytical framework developed by Bishop and Kinra in 1997. The frequency dependence of damping in two representative sets of structures—metallized ceramic beams and ceramic/ceramic laminates—is investigated in detail. The effects of material properties and relative volume fractions are numerically evaluated. The results indicate that metallization of Si and SiC beams using Al, Cu, Ag or Au leads to a considerable increase in damping over a broad frequency range. Similarly, coating silicon with SiC leads to a monotonic increase of the peak damping value as a function of the volume fraction of silicon carbide but, remarkably, there exists a range of frequencies at which the damping in the composite is less than that of bare silicon. Implications for the design of metallized ceramic beams, and for the simultaneous optimization of natural frequency and damping, are discussed.
NASA Astrophysics Data System (ADS)
Jadhav, Shital; Powar, Amit; Patil, Sandip; Supare, Ashish; Farane, Bhagwan; Singh, Rajkumar, Dr.
2017-05-01
The present study was performed to investigate the effect of volume fraction of alpha and transformed beta phase on the high-cycle fatigue (HCF) properties of the bimodal titanium Ti6Al4V alloy. The effect of such morphology on mechanical properties was studied using tensile and rotating bending fatigue test as per ASTM standards. Microstructures and fractography of the specimens were studied using optical and scanning electron microscopy (SEM) respectively.Ti6Al4V alloy samples were heat treated to have three distinctive volume fractions of alpha and transformed beta phase. With an increase in quench delay from 30,50 and 70 sec during quenching after solutionizing temperature of 967°C, the volume fraction of alpha was found to be increased from 20% to 67%. Tests on tensile and rotating bending fatigue showed that the specimen with 20% volume fraction of alpha phase exhibited the highest tensile and fatigue strength, however the properties gets deteriorate with increase in volume fraction of alpha.
Saltzman, Erica J; Schweizer, Kenneth S
2006-12-01
Brownian trajectory simulation methods are employed to fully establish the non-Gaussian fluctuation effects predicted by our nonlinear Langevin equation theory of single particle activated dynamics in glassy hard-sphere fluids. The consequences of stochastic mobility fluctuations associated with the space-time complexities of the transient localization and barrier hopping processes have been determined. The incoherent dynamic structure factor was computed for a range of wave vectors and becomes of an increasingly non-Gaussian form for volume fractions beyond the (naive) ideal mode coupling theory (MCT) transition. The non-Gaussian parameter (NGP) amplitude increases markedly with volume fraction and is well described by a power law in the maximum restoring force of the nonequilibrium free energy profile. The time scale associated with the NGP peak becomes much smaller than the alpha relaxation time for systems characterized by significant entropic barriers. An alternate non-Gaussian parameter that probes the long time alpha relaxation process displays a different shape, peak intensity, and time scale of its maximum. However, a strong correspondence between the classic and alternate NGP amplitudes is predicted which suggests a deep connection between the early and final stages of cage escape. Strong space-time decoupling emerges at high volume fractions as indicated by a nondiffusive wave vector dependence of the relaxation time and growth of the translation-relaxation decoupling parameter. Displacement distributions exhibit non-Gaussian behavior at intermediate times, evolving into a strongly bimodal form with slow and fast subpopulations at high volume fractions. Qualitative and semiquantitative comparisons of the theoretical results with colloid experiments, ideal MCT, and multiple simulation studies are presented.
Fundamentals of electric power conversion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Umans, S.D.
1992-12-01
Its rugged nature and straightforward design make the induction motor the most commonly used type of electric motor. This motor ranges in size from the fractional-horsepower, single-phase motors found in household appliances to polyphase motors rated at thousands of horsepower for industrial applications. Volume 1 of this report describes the function of induction motors, their characteristics, and induction motor testing. Volume 2 describes the characteristics of high-efficiency induction motors, with emphasis on the techniques used to obtain high efficiency. This two-volume report is written in nontechnical language and is intended for readers who require background from an applications, marketing, motormore » planning, or managerial perspective.« less
Fundamentals of electric power conversion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Umans, S.D.
1992-12-01
Its rugged nature and straightforward design make the induction motor the most commonly used type of electric motor. This motor ranges in size fro the fractional-horsepower, single-phase motors found in household appliances to polyphase motors rated at thousands of horsepower for industrial applications. Volume 1 of this report describes the function of induction motors, their characteristics, and induction motor testing. Volume 2 describes the characteristics of high-efficiency induction motors, with emphasis on the techniques used to obtain high efficiency. This two-volume report is written in nontechnical language and is intended for readers who require background from applications, marketing, motor planning,more » or managerial perspective.« less
Li, Li; Qin, Lei; Wang, Li-Kun; Wan, Yuan-Yuan; Sun, Bai-Sheng
2008-05-01
The 1-3-2 composite is made of 1-3 composite and ceramic base. Its effective properties are calculated based on the linear piezoelectric theory and uniform field theory. The influence of piezoelectric phase volume fraction and composite aspect (thickness/width) on resonance characteristic of square 1-3-2 piezoelectric composite plate has been researched. In addition, some 1-3-2 composite samples were fabricated by dice-fill technology. The resonance frequency of samples was investigated. The results show that the experiment agrees well with the calculation. The pure thickness resonance mode of 1-3-2 composite will be gained when the volume fraction of ceramic bottom is less than 30%; that of ceramic rods is in the range of 30 approximately 80% and the ratio of thickness to width is less than 0.35.
NASA Astrophysics Data System (ADS)
Fadhilah, Nur; Alhadi, Emha Riyadhul Jinan; Risanti, Doty Dewi
2018-04-01
The Au nanoparticles as core can increase the light harvesting due to the strong near-field effect LSPR (Localized Surface Plasmon Resonance), effectively minimized the electron recombination process and also can improve the optical absorption of the dye sensitized. Au@SiO2 core-shell nanoparticles were prepared using SiO2 extracted from Sidoarjo mud volcano. In this work investigated the influence of pH solution and silica shell volume fraction in Au@SiO2 nanoparticles core-shell structure on DSSC loaded with Ru-based dye. From XRD characterization it was found that core-shell contains SiO2, Au, γAl2O3 and traces NaCl. UV-Vis absorption spectra of core-shell showed the position of the surface plasmon AuNP band in the range of 500-600 nm. The Au@SiO2 core-shell with volume fraction of 30ml silica has the highest peak absorbance. The enhanced light absorption is primarily attributed to the LSPR effect of the Au core. Our results on incident photon-to-current conversion efficiency indicates that the presence of SiO2 depending on its volume fraction tends to shift to longer wavelength.
Viscosity Prediction for Petroleum Fluids Using Free Volume Theory and PC-SAFT
NASA Astrophysics Data System (ADS)
Khoshnamvand, Younes; Assareh, Mehdi
2018-04-01
In this study, free volume theory ( FVT) in combination with perturbed-chain statistical associating fluid theory is implemented for viscosity prediction of petroleum reservoir fluids containing ill-defined components such as cuts and plus fractions. FVT has three adjustable parameters for each component to calculate viscosity. These three parameters for petroleum cuts (especially plus fractions) are not available. In this work, these parameters are determined for different petroleum fractions. A model as a function of molecular weight and specific gravity is developed using 22 real reservoir fluid samples with API grades in the range of 22 to 45. Afterward, the proposed model accuracy in comparison with the accuracy of De la Porte et al. with reference to experimental data is presented. The presented model is used for six real samples in an evaluation step, and the results are compared with available experimental data and the method of De la Porte et al. Finally, the method of Lohrenz et al. and the method of Pedersen et al. as two common industrial methods for viscosity calculation are compared with the proposed approach. The absolute average deviation was 9.7 % for free volume theory method, 15.4 % for Lohrenz et al., and 22.16 for Pedersen et al.
Thermal diffusion behavior of hard-sphere suspensions.
Ning, Hui; Buitenhuis, Johan; Dhont, Jan K G; Wiegand, Simone
2006-11-28
We studied the thermal diffusion behavior of octadecyl coated silica particles (R(h)=27 nm) in toluene between 15.0 and 50.0 degrees C in a volume fraction range of 1%-30% by means of thermal diffusion forced Rayleigh scattering. The colloidal particles behave like hard spheres at high temperatures and as sticky spheres at low temperatures. With increasing temperature, the obtained Soret coefficient S(T) of the silica particles changed sign from negative to positive, which implies that the colloidal particles move to the warm side at low temperatures, whereas they move to the cold side at high temperatures. Additionally, we observed also a sign change of the Soret coefficient from positive to negative with increasing volume fraction. This is the first colloidal system for which a sign change with temperature and volume fraction has been observed. The concentration dependence of the thermal diffusion coefficient of the colloidal spheres is related to the colloid-colloid interactions, and will be compared with an existing theoretical description for interacting spherical particles. To characterize the particle-particle interaction parameters, we performed static and dynamic light scattering experiments. The temperature dependence of the thermal diffusion coefficient is predominantly determined by single colloidal particle properties, which are related to colloid-solvent molecule interactions.
Effect of alloying elements and heat treatment on the fracture toughness of Ti-Al-Nb alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamat, S.V.; Gogia, A.K.; Banerjee, D.
The fracture toughness and toughening mechanisms of Ti{sub 3}Al based alloy compositions covering a large range of Nb, small variations in Al and quaternary substitutions of Nb have been studied in a variety of heat treated conditions designed to vary the volume fractions of the constituents phases. It was found that the B2 phase of these alloys failed by cleavage in a coarse grained condition but in a ductile manner when fine grained. A higher Nb and a lower Al content improved the cleavage fracture stress of the B2 phase while replacement of a part of Nb and a lowermore » Al content improved the cleavage fracture stress of the B2 phase while replacement of a part of Nb with Mo or Ta had no significant effect. Heat treatments which result in a two phase microstructure ({alpha}{sub 2} + {beta}/B2) exhibited a trend of increasing fracture toughness with increasing volume fraction of {beta}/B2 up to about 60--80 volume fraction of {beta}/B2. This behavior was largely explained by quantifying the role of crack tip blunting. The effect of alloying elements on fracture toughness in two phase microstructures was similar to that observed in the coarse grained B2 condition.« less
Two-phase quasi-equilibrium in β-type Ti-based bulk metallic glass composites
Zhang, L.; Pauly, S.; Tang, M. Q.; Eckert, J.; Zhang, H. F.
2016-01-01
The microstructural evolution of cast Ti/Zr-based bulk metallic glass composites (BMGCs) containing β-Ti still remains ambiguous. This is why to date the strategies and alloys suitable for producing such BMGCs with precisely controllable volume fractions and crystallite sizes are still rather limited. In this work, a Ti-based BMGC containing β-Ti was developed in the Ti-Zr-Cu-Co-Be system. The glassy matrix of this BMGC possesses an exceptional glass-forming ability and as a consequence, the volume fractions as well as the composition of the β-Ti dendrites remain constant over a wide range of cooling rates. This finding can be explained in terms of a two-phase quasi-equilibrium between the supercooled liquid and β-Ti, which the system attains on cooling. The two-phase quasi-equilibrium allows predicting the crystalline and glassy volume fractions by means of the lever rule and we succeeded in reproducing these values by slight variations in the alloy composition at a fixed cooling rate. The two-phase quasi-equilibrium could be of critical importance for understanding and designing the microstructures of BMGCs containing the β-phase. Its implications on the nucleation and growth of the crystalline phase are elaborated. PMID:26754315
Wang, Ling-Wei; Chen, Yi-Wei; Ho, Ching-Yin; Hsueh Liu, Yen-Wan; Chou, Fong-In; Liu, Yuan-Hao; Liu, Hong-Ming; Peir, Jinn-Jer; Jiang, Shiang-Huei; Chang, Chi-Wei; Liu, Ching-Sheng; Lin, Ko-Han; Wang, Shyh-Jen; Chu, Pen-Yuan; Lo, Wen-Liang; Kao, Shou-Yen; Yen, Sang-Hue
2016-05-01
To investigate the efficacy and safety of fractionated boron neutron capture therapy (BNCT) for recurrent head and neck (H&N) cancer after photon radiation therapy. In this prospective phase 1/2 trial, 2-fraction BNCT with intravenous L-boronophenylalanine (L-BPA, 400 mg/kg) was administered at a 28-day interval. Before each fraction, fluorine-18-labeled-BPA-positron emission tomography was conducted to determine the tumor/normal tissue ratio of an individual tumor. The prescription dose (D80) of 20 Gy-Eq per fraction was selected to cover 80% of the gross tumor volume by using a dose volume histogram, while minimizing the volume of oral mucosa receiving >10 Gy-Eq. Tumor responses and adverse effects were assessed using the Response Evaluation Criteria in Solid Tumors v1.1 and the Common Terminology Criteria for Adverse Events v3.0, respectively. Seventeen patients with a previous cumulative radiation dose of 63-165 Gy were enrolled. All but 2 participants received 2 fractions of BNCT. The median tumor/normal tissue ratio was 3.4 for the first fraction and 2.5 for the second, whereas the median D80 for the first and second fraction was 19.8 and 14.6 Gy-Eq, respectively. After a median follow-up period of 19.7 months (range, 5.2-52 mo), 6 participants exhibited a complete response and 6 exhibited a partial response. Regarding acute toxicity, 5 participants showed grade 3 mucositis and 1 participant showed grade 4 laryngeal edema and carotid hemorrhage. Regarding late toxicity, 2 participants exhibited grade 3 cranial neuropathy. Four of six participants (67%) receiving total D80 > 40 Gy-Eq had a complete response. Two-year overall survival was 47%. Two-year locoregional control was 28%. Our results suggested that 2-fraction BNCT with adaptive dose prescription was effective and safe in locally recurrent H&N cancer. Modifications to our protocol may yield more satisfactory results in the future. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Ling-Wei, E-mail: lwwang@vghtpe.gov.tw; National Yang-Ming University, Taiwan; Chen, Yi-Wei
Purpose: To investigate the efficacy and safety of fractionated boron neutron capture therapy (BNCT) for recurrent head and neck (H&N) cancer after photon radiation therapy. Methods and Materials: In this prospective phase 1/2 trial, 2-fraction BNCT with intravenous L-boronophenylalanine (L-BPA, 400 mg/kg) was administered at a 28-day interval. Before each fraction, fluorine-18-labeled-BPA–positron emission tomography was conducted to determine the tumor/normal tissue ratio of an individual tumor. The prescription dose (D80) of 20 Gy-Eq per fraction was selected to cover 80% of the gross tumor volume by using a dose volume histogram, while minimizing the volume of oral mucosa receiving >10 Gy-Eq.more » Tumor responses and adverse effects were assessed using the Response Evaluation Criteria in Solid Tumors v1.1 and the Common Terminology Criteria for Adverse Events v3.0, respectively. Results: Seventeen patients with a previous cumulative radiation dose of 63-165 Gy were enrolled. All but 2 participants received 2 fractions of BNCT. The median tumor/normal tissue ratio was 3.4 for the first fraction and 2.5 for the second, whereas the median D80 for the first and second fraction was 19.8 and 14.6 Gy-Eq, respectively. After a median follow-up period of 19.7 months (range, 5.2-52 mo), 6 participants exhibited a complete response and 6 exhibited a partial response. Regarding acute toxicity, 5 participants showed grade 3 mucositis and 1 participant showed grade 4 laryngeal edema and carotid hemorrhage. Regarding late toxicity, 2 participants exhibited grade 3 cranial neuropathy. Four of six participants (67%) receiving total D80 > 40 Gy-Eq had a complete response. Two-year overall survival was 47%. Two-year locoregional control was 28%. Conclusions: Our results suggested that 2-fraction BNCT with adaptive dose prescription was effective and safe in locally recurrent H&N cancer. Modifications to our protocol may yield more satisfactory results in the future.« less
NASA Astrophysics Data System (ADS)
Nurdin, I.; Johan, M. R.; Ang, B. C.
2018-03-01
Thermal conductivity and kinematic viscosity of maghemite nanofluids were experimentally investigated at a small volume fraction of maghemite nanoparticles and temperatures. Maghemite nanofluids were prepared by suspending maghemite nanoparticles in water as base fluids. Results show that the thermal conductivity of maghemite nanofluids linearly increase with increasing particle volume fraction and temperature, while kinematic viscosity increase with increasing particle volume fraction and decrease with increasing temperature. The highest enhancement of thermal conductivity and kinematic viscosity are 18.84% and 13.66% respectively, at particle volume fraction 0.6% and temperature 35.
Predicting Morphology of Polymers Using Mesotek+
2010-02-01
file is then produced for Mesotek+ to reproduce the phase behavior for an experimental system of poly (styrene-b- isoprene ) in the solvent tetradecane...theoretical code 3a and (b) experimental code 3b. .....6 Figure 3. Results from 40/60 volume styrene-b- isoprene + tetradecane using gnuplot: A...styrene volume fraction, B) isoprene volume fraction, and C) tetradecane volume fraction. The color bar to the right of each plot indicates how the
DOE Office of Scientific and Technical Information (OSTI.GOV)
Umans, S.D.
1992-12-01
Its rugged nature and straightforward design make the induction motor the most commonly used type of electric motor. This motor ranges in size fro the fractional-horsepower, single-phase motors found in household appliances to polyphase motors rated at thousands of horsepower for industrial applications. Volume 1 of this report describes the function of induction motors, their characteristics, and induction motor testing. Volume 2 describes the characteristics of high-efficiency induction motors, with emphasis on the techniques used to obtain high efficiency. This two-volume report is written in nontechnical language and is intended for readers who require background from applications, marketing, motor planning,more » or managerial perspective.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Umans, S.D.
1992-12-01
Its rugged nature and straightforward design make the induction motor the most commonly used type of electric motor. This motor ranges in size from the fractional-horsepower, single-phase motors found in household appliances to polyphase motors rated at thousands of horsepower for industrial applications. Volume 1 of this report describes the function of induction motors, their characteristics, and induction motor testing. Volume 2 describes the characteristics of high-efficiency induction motors, with emphasis on the techniques used to obtain high efficiency. This two-volume report is written in nontechnical language and is intended for readers who require background from an applications, marketing, motormore » planning, or managerial perspective.« less
CCN Activity of Organic Aerosols Observed Downwind of Urban Emissions during CARES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mei, Fan; Setyan, Ari; Zhang, Qi
2013-12-17
During the Carbonaceous Aerosols and Radiative Effects Study (CARES), activation fraction of size-resolved aerosol particles and aerosol chemical composition were characterized at the T1 site (~60 km downwind of Sacramento, California) from 10 June to 28 June 2010. The hygroscopicity of CCN-active particles (K CCN) with diameter from 100 to 170 nm, derived from the size-resolved activated fraction, varied from 0.10 to 0.21, with an average of 0.15, which was substantially lower than that proposed for continental sites in earlier studies. The low K CCN value was due to the high organic volume fraction, averaged over 80% at the T1more » site. The derived K CCN exhibited little diurnal variation, consistent with the relatively constant organic volume fraction observed. At any time, over 90% of the size selected particles with diameter between 100 and 171nm were CCN active, suggesting most particles within this size range were aged background particles. Due to the large organic volume fraction, organic hygroscopicity (K org) strongly impacted particle hygroscopicity and therefore calculated CCN concentration. For vast majority of the cases, an increase of K org from 0.03 to 0.18, which are within the typical range, doubled the calculated CCN concentration. Organic hygroscopicity was derived from K CCN and aerosol chemical composition, and its variations with the fraction of total organic mass spectral signal at m/z 44 (f 44) and O:C were compared to results from previous studies. Overall, the relationships between K org and f 44 are quite consistent for organic aerosol (OA) observed during field studies and those formed in smog chamber. Compared to the relationship between K org and f 44, the relationship between K org and O:C exhibits more significant differences among different studies, suggesting korg may be better parameterized using f 44. A least squares fit yielded K org = 2.10 (±0.07) × f 44 -0.11 (±0.01) with the Pearson R 2 value of 0.71. One possible explanation for the stronger correlation between K org and f 44 is that the m/z 44 signal (mostly contributed by the CO 2 + ion) is more closely related to organic acids, which may dominate the overall korg due to their relatively high water solubility and hygroscopicity.« less
Characterization of a hydro-pneumatic suspension strut with gas-oil emulsion
NASA Astrophysics Data System (ADS)
Yin, Yuming; Rakheja, Subhash; Yang, Jue; Boileau, Paul-Emile
2018-06-01
The nonlinear stiffness and damping properties of a simple and low-cost design of a hydro-pneumatic suspension (HPS) strut that permits entrapment of gas into the hydraulic oil are characterized experimentally and analytically. The formulation of gas-oil emulsion is studied in the laboratory, and the variations in the bulk modulus and mass density of the emulsion are formulated as a function of the gas volume fraction. An analytical model of the HPS is formulated considering polytropic change in the gas state, seal friction, and the gas-oil emulsion flows through orifices and valves. The model is formulated considering one and two bleed orifices configurations of the strut. The measured data acquired under a nearly constant temperature are used to identify gas volume fraction of the emulsion, and friction and flow discharge coefficients as functions of the strut velocity and fluid pressure. The results suggested that single orifice configuration, owing to high fluid pressure, causes greater gas entrapment within the oil and thus significantly higher compressibility of the gas-oil emulsion. The model results obtained under different excitations in the 0.1-8 Hz frequency range showed reasonably good agreements with the measured stiffness and damping properties of the HPS strut. The results show that the variations in fluid compressibility and free gas volume cause increase in effective stiffness but considerable reduction in the damping in a highly nonlinear manner. Increasing the gas volume fraction resulted in substantial hysteresis in the force-deflection and force-velocity characteristics of the strut.
Bassand, J P; Faivre, R; Berthout, P; Cardot, J C; Verdenet, J; Bidet, R; Maurat, J P
1985-06-01
Previous studies have shown that variations of the ejection fraction (EF) during exercise were representative of the contractile state of the left ventricle: an increased EF on effort is considered to be physiological, whilst a decrease would indicate latent LV dysfunction unmasked during exercise. This hypothesis was tested by performing Technetium 99 gamma cineangiography at equilibrium under basal conditions and at maximal effort in 8 healthy subjects and 44 patients with pure, severe aortic regurgitation to measure the ejection and regurgitant fractions and the variations in end systolic and end diastolic LV volume. In the control group the EF increased and end systolic volume decreased significantly on effort whilst the regurgitant fraction and end diastolic volume were unchanged. In the 44 patients with aortic regurgitation no significant variations in EF, end systolic and end diastolic volumes were observed because the individual values were very dispersed. Variations of the EF and end systolic volume were inversely correlated. The regurgitant fraction decreased significantly on effort. Based on the variations of the EF and end systolic volume three different types of response to effort could be identified: in 7 patients, the EF increased on effort and end systolic volume decreased without any significant variation in the end diastolic volume, as in the group of normal control subjects; in 22 patients, a reduction in EF was observed on effort, associated with an increased end systolic volume. These changes indicated latent IV dysfunction inapparent at rest and unmasked by exercise; in a third group of 15 patients, the EF decreased on effort despite a physiological decrease in end systolic volume due to a greater decrease in end diastolic volume.(ABSTRACT TRUNCATED AT 250 WORDS)
Kim, Min-Soo; Lee, Jeong-Rim; Shin, Yang-Sik; Chung, Ji-Won; Lee, Kyu-Ho; Ahn, Ki Ryang
2014-03-01
This single-center, prospective, randomized, double-blind, 2-arm, parallel group comparison trial was performed to establish whether the adult-sized laryngeal mask airway (LMA) Classic (The Laryngeal Mask Company Ltd, Henley-on-Thames, UK) could be used safely without any consideration of cuff hyperinflation when a cuff of the LMA Classic was inflated using half the maximum inflation volume or the resting volume before insertion of device. Eighty patients aged 20 to 70 years scheduled for general anesthesia using the LMA Classic were included. Before insertion, the cuff was partially filled with half the maximum inflation volume in the half volume group or the resting volume created by opening the pilot balloon valve to equalize with atmospheric pressure in the resting volume group. Several parameters regarding insertion, intracuff pressure, airway leak pressure, and leakage volume/fraction were collected after LMA insertion. The LMA Classic with a partially inflated cuff was successfully inserted in all enrolled patients. Both groups had the same success rate of 95% at the first insertion attempt. The half volume group had a lower mean intracuff pressure compared with the resting volume group (54.5 ± 16.1 cm H2O vs 61.8 ± 16.1 cm H2O; P = .047). There was no difference in airway leak pressure or leakage volume/fraction between the 2 groups under mechanical ventilation. The partially inflated cuff method using half the maximum recommended inflation volume or the resting volume is feasible with the adult-sized LMA Classic, resulting in a high success rate of insertion and adequate range of intracuff pressures. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Afrand, Masoud; Abedini, Ehsan; Teimouri, Hamid
2017-03-01
In this paper, the effect of dispersion of magnesium oxide nanoparticles on viscosity of a mixture of water and ethylene glycol (50-50% vol.) was examined experimentally. Experiments were performed for various nanofluid samples at different temperatures and shear rates. Measurements revealed that the nanofluid samples with volume fractions of less than 1.5% had Newtonian behavior, while the sample with volume fraction of 3% showed non-Newtonian behavior. Results showed that the viscosity of nanofluids enhanced with increasing nanoparticles volume fraction and decreasing temperature. Results of sensitivity analysis revealed that the viscosity sensitivity of nanofluid samples to temperature at higher volume fractions is more than that of at lower volume fractions. Finally, because of the inability of the existing model to predict the viscosity of MgO/EG-water nanofluid, an experimental correlation has been proposed for predicting the viscosity of the nanofluid.
Ultrasonic Characterization of Microstructural Changes in Ti-10V-4.5Fe-1.5Al β-Titanium Alloy
NASA Astrophysics Data System (ADS)
Viswanath, A.; Kumar, Anish; Jayakumar, T.; Purnachandra Rao, B.
2015-08-01
Ultrasonic measurements have been carried out in Ti-10V-4.5Fe-1.5Al β-titanium alloy specimens subjected to β annealing at 1173 K (900 °C) for 1 hour followed by heat treatment in the temperature range of 823 K to 1173 K (550 °C to 900 °C) at an interval of 50 K (50 °C) for 1 hour, followed by water quenching. Ultrasonic parameters such as ultrasonic longitudinal wave velocity, ultrasonic shear wave velocity, shear anisotropy parameter, ultrasonic attenuation, and normalized nonlinear ultrasonic parameter have been correlated with various microstructural changes to understand the interaction of the propagating ultrasonic wave with microstructural features in the alloy. Simulation studies using JMatPro® software and X-ray diffraction measurements have been carried out to estimate the α-phase volume fraction in the specimens heat treated below the β-transus temperature (BTT). It is found that the α-phase (HCP) volume fraction increases from 0 to 52 pct, with decrease in the temperature from 1073 K to 823 K (800 °C to 550 °C). Ultrasonic longitudinal and shear wave velocities are found to increase with decrease in the heat treatment temperature below the BTT, and they exhibited linear relationships with the α-phase volume fraction. Thickness-independent ultrasonic parameters, Poisson's ratio, and the shear anisotropy parameter exhibited the opposite behavior, i.e., decrease with increase in the α-phase consequent to decrease in the heat treatment temperature from 1073 K to 823 K (800 °C to 550 °C). Ultrasonic attenuation is found to decrease from 0.7 dB/mm for the β-annealed specimen to 0.23 dB/mm in the specimen heat treated at 823 K (550 °C) due to the combined effect of the decrease in the β-phase (BCC) with higher damping characteristics and the reduction in scattering due to randomization of β grains with the precipitation of α-phase. Normalized nonlinear ultrasonic parameter is found to increase with increase in the α-phase volume fraction due to increased interfacial strain. For the first time, quantitative correlations established between various ultrasonic parameters and the volume fraction of α-phase in a β-titanium alloy are reported in the present paper. The established correlations are useful for estimation of volume fraction of α-phase in heat-treated β-titanium alloy, by nondestructive ultrasonic measurements.
Compositional Effects on Nickel-Base Superalloy Single Crystal Microstructures
NASA Technical Reports Server (NTRS)
MacKay, Rebecca A.; Gabb, Timothy P.; Garg,Anita; Rogers, Richard B.; Nathal, Michael V.
2012-01-01
Fourteen nickel-base superalloy single crystals containing 0 to 5 wt% chromium (Cr), 0 to 11 wt% cobalt (Co), 6 to 12 wt% molybdenum (Mo), 0 to 4 wt% rhenium (Re), and fixed amounts of aluminum (Al) and tantalum (Ta) were examined to determine the effect of bulk composition on basic microstructural parameters, including gamma' solvus, gamma' volume fraction, volume fraction of topologically close-packed (TCP) phases, phase chemistries, and gamma - gamma'. lattice mismatch. Regression models were developed to describe the influence of bulk alloy composition on the microstructural parameters and were compared to predictions by a commercially available software tool that used computational thermodynamics. Co produced the largest change in gamma' solvus over the wide compositional range used in this study, and Mo produced the largest effect on the gamma lattice parameter and the gamma - gamma' lattice mismatch over its compositional range, although Re had a very potent influence on all microstructural parameters investigated. Changing the Cr, Co, Mo, and Re contents in the bulk alloy had a significant impact on their concentrations in the gamma matrix and, to a smaller extent, in the gamma' phase. The gamma phase chemistries exhibited strong temperature dependencies that were influenced by the gamma and gamma' volume fractions. A computational thermodynamic modeling tool significantly underpredicted gamma' solvus temperatures and grossly overpredicted the amount of TCP phase at 982 C. Furthermore, the predictions by the software tool for the gamma - gamma' lattice mismatch were typically of the wrong sign and magnitude, but predictions could be improved if TCP formation was suspended within the software program. However, the statistical regression models provided excellent estimations of the microstructural parameters based on bulk alloy composition, thereby demonstrating their usefulness.
Kim, Youngho; Lee, Sang Ho; Kim, Byungkyu
2009-12-01
Under the assumption that separation efficiencies are mainly affected by the velocity of flow-induced circulation due to buffer injection in a pendent drop, this paper describes an analysis of the separation efficiency of a droplet-based magnetically activated cell separation (DMACS) system. To investigate the velocity of the flow-induced circulation, we supposed that numerous flows in a pendent drop could be considered as a "theoretically normalized" flow (or conceptually normalized flow, CNF) based on the Cauchy-Goursat theorem. With the morphological characteristics (length and duration time) of a pendent drop depending on the initial volume, we obtained the velocities of the CNF. By measuring the separation efficiencies for different initial volumes and by analyzing the separation efficiency in terms of the velocity of the CNF, we found that the separation efficiencies (in the case of a low rate of buffer injection; 5 and 15 microl x min(-1)) are mainly affected by the velocity of the CNF. Moreover, we confirmed that the phenomenological features of a pendent drop cause a fluctuation of its separation efficiencies over a range of specific volumes (initial volumes ranging from 40 to 80 microl), because of the "sweeping-off" phenomenon, that is, positive cells gathered into the positive fraction are forced to move away from the magnetic side by flow-induced circulation due to buffer injection. In addition, from the variation of the duration time, that is, the interval between the beginning of injection of the buffer solution and the time at which a pendent drop detaches, it could also be confirmed that a shorter duration time leads to decrease of the number of positive cells in negative fraction regardless of the rate of buffer injection (5, 15, and 50 microl x min(-1)). Therefore, if a DMACS system is operated with a 15 microl x min(-1) buffer injection flow rate and an initial volume of 80 microl or more, we would have the best efficiency of separation in the negative fraction.
Medvedofsky, Diego; Addetia, Karima; Patel, Amit R; Sedlmeier, Anke; Baumann, Rolf; Mor-Avi, Victor; Lang, Roberto M
2015-10-01
Echocardiographic assessment of the right ventricle is difficult because of its complex shape. Three-dimensional echocardiographic (3DE) imaging allows more accurate and reproducible analysis of the right ventricle than two-dimensional methodology. However, three-dimensional volumetric analysis has been hampered by difficulties obtaining consistently high-quality coronal views, required by the existing software packages. The aim of this study was to test a new approach for volumetric analysis without coronal views by using instead right ventricle-focused three-dimensional acquisition with multiple short-axis views extracted from the same data set. Transthoracic 3DE and cardiovascular magnetic resonance (CMR) images were prospectively obtained on the same day in 147 patients with wide ranges of right ventricular (RV) size and function. RV volumes and ejection fraction were measured from 3DE images using the new software and compared with CMR reference values. Comparisons included linear regression and Bland-Altman analyses. Repeated measurements were performed to assess measurement variability. Sixteen patients were excluded because of suboptimal image quality (89% feasibility). RV volumes and ejection fraction obtained with the new 3DE technique were in good agreement with CMR (end-diastolic volume, r = 0.95; end-systolic volume, r = 0.96; ejection fraction, r = 0.83). Biases were, respectively, -6 ± 11%, 0 ± 15%, and -7 ± 17% of the mean measured values. In a subset of patients with suboptimal 3DE images, the new analysis resulted in significantly improved accuracy against CMR and reproducibility, compared with previously used coronal view-based techniques. The time required for the 3DE analysis was approximately 4 min. The new software is fast, reproducible, and accurate compared with CMR over a wide range of RV size and function. Because right ventricle-focused 3DE acquisition is feasible in most patients, this approach may be applicable to a broader population of patients who can benefit from RV volumetric assessment. Copyright © 2015 American Society of Echocardiography. Published by Elsevier Inc. All rights reserved.
Dielectric and piezoelectric properties of percolative three-phase piezoelectric polymer composites
NASA Astrophysics Data System (ADS)
Sundar, Udhay
Three-phase piezoelectric bulk composites were fabricated using a mix and cast method. The composites were comprised of lead zirconate titanate (PZT), aluminum (Al) and an epoxy matrix. The volume fraction of the PZT and Al were varied from 0.1 to 0.3 and 0.0 to 0.17, respectively. The influences of three entities on piezoelectric and dielectric properties: inclusion of an electrically conductive filler (Al), poling process (contact and Corona) and Al surface treatment, were observed. The piezoelectric strain coefficient, d33, effective dielectric constant, epsilon r, capacitance, C, and resistivity were measured and compared according to poling process, volume fraction of constituent phases and Al surface treatment. The maximum values of d33 were 3.475 and 1.0 pC/N for Corona and contact poled samples respectively, for samples with volume fractions of 0.40 and 0.13 of PZT and Al (surface treated) respectively. Also, the maximum dielectric constant for the surface treated Al samples was 411 for volume fractions of 0.40 and 0.13 for PZT and Al respectively. The percolation threshold was observed to occur at an Al volume fraction of 0.13. The composites achieved a percolated state for Al volume fractions >0.13 for both contact and corona poled samples. In addition, a comparative time study was conducted to examine the influence of surface treatment processing time of Al particles. The effectiveness of the surface treatment, sample morphology and composition was observed with the aid of SEM and EDS images. These images were correlated with piezoelectric and dielectric properties. PZT-epoxy-aluminum thick films (200 mum) were also fabricated using a two-step spin coat deposition and annealing method. The PZT volume fraction were varied from 0.2, 0.3 and 0.4, wherein the Aluminum volume fraction was varied from 0.1 to 0.17 for each PZT volume fraction, respectively. The two-step process included spin coating the first layer at 500 RPM for 30 seconds, and the second layer at 1000 RPM for 1 minute. The piezoelectric strain coefficients d33 and d31, capacitance and the dielectric constant were measured, and were studied as a function of Aluminum volume fraction.
40 CFR 63.4730 - What records must I keep?
Code of Federal Regulations, 2010 CFR
2010-07-01
... to determine the mass fraction of organic HAP and density for each coating, thinner, and cleaning material and the volume fraction of coating solids for each coating. If you conducted testing to determine mass fraction of organic HAP, density, or volume fraction of coating solids, you must keep a copy of...
Lattice Boltzmann simulations for wall-flow dynamics in porous ceramic diesel particulate filters
NASA Astrophysics Data System (ADS)
Lee, Da Young; Lee, Gi Wook; Yoon, Kyu; Chun, Byoungjin; Jung, Hyun Wook
2018-01-01
Flows through porous filter walls of wall-flow diesel particulate filter are investigated using the lattice Boltzmann method (LBM). The microscopic model of the realistic filter wall is represented by randomly overlapped arrays of solid spheres. The LB simulation results are first validated by comparison to those from previous hydrodynamic theories and constitutive models for flows in porous media with simple regular and random solid-wall configurations. We demonstrate that the newly designed randomly overlapped array structures of porous walls allow reliable and accurate simulations for the porous wall-flow dynamics in a wide range of solid volume fractions from 0.01 to about 0.8, which is beyond the maximum random packing limit of 0.625. The permeable performance of porous media is scrutinized by changing the solid volume fraction and particle Reynolds number using Darcy's law and Forchheimer's extension in the laminar flow region.
Contribution of Surface Chemistry to the Shear Thickening of Silica Nanoparticle Suspensions.
Yang, Wufang; Wu, Yang; Pei, Xiaowei; Zhou, Feng; Xue, Qunji
2017-01-31
Shear thickening is a general process crucial for many processed products ranging from food and personal care to pharmaceuticals. Theoretical calculations and mathematical simulations of hydrodynamic interactions and granular-like contacts have proved that contact forces between suspended particles dominate the rheological characteristic of colloidal suspensions. However, relevant experimental studies are very rare. This study was conducted to reveal the influence of nanoparticle (NP) interactions on the rheological behavior of shear-thickening fluids (STFs) by changing the colloidal surface chemistries. Silica NPs with various surface chemical compositions are fabricated and used to prepare dense suspensions. Rheological experiments are conducted to determine the influence of NP interactions on corresponding dense suspension systems. The results suggest that the surface chemistries of silica NPs determine the rheological behavior of dense suspensions, including shear-thickening behavior, onset stress, critical volume fraction, and jamming volume fraction. This study provides useful reference for designing effective STFs and regulating their characteristics.
Hydrodynamic effects on phase transition in active matter
NASA Astrophysics Data System (ADS)
Gidituri, Harinadha; Akella, V. S.; Panchagnula, Mahesh; Vedantam, Srikanth; Multiphase flow physics lab Team
2017-11-01
Organized motion of active (self-propelled) objects are ubiquitous in nature. The objective of this study to investigate the effect of hydrodynamics on the coherent structures in active and passive particle mixtures. We use a mesoscopic method Dissipative Particle Dynamics (DPD). The system shows three different states viz. meso-turbulent (disordered state), polar flock and vortical (ordered state) for different values of activity and volume fraction of active particles. From our numerical simulations we construct a phase diagram between activity co-efficient, volume fraction and viscosity of the passive fluid. Transition from vortical to polar is triggered by increasing the viscosity of passive fluid which causes strong short-range hydrodynamic interactions. However, as the viscosity of the fluid decreases, both vortical and meso-turbulent states transition to polar flock phase. We also calculated the diffusion co-efficients via mean square displacement (MSD) for passive and active particles. We observe ballistic and diffusive regimes in the present system.
Interface stresses in fiber-reinforced materials with regular fiber arrangements
NASA Astrophysics Data System (ADS)
Mueller, W. H.; Schmauder, S.
The theory of linear elasticity is used here to analyze the stresses inside and at the surface of fiber-reinforced composites. Plane strain, plane stress, and generalized plane strain are analyzed using the shell model and the BHE model and are numerically studied using finite element analysis. Interface stresses are shown to depend weakly on Poisson's ratio. For equal values of the ratio, generalized plane strain and plane strain results are identical. For small volume fractions up to 40 vol pct of fibers, the shell and the BHE models predict the interface stresses very well over a wide range of elastic mismatches and for different fiber arrangements. At higher volume fractions the stresses are influenced by interactions with neighboring fibers. Introducing an external pressure into the shell model allows the prediction of interface stresses in real composite with isolated or regularly arranged fibers.
Allahyari, Shahriar; Behzadmehr, Amin; Sarvari, Seyed Masoud Hosseini
2011-04-26
Laminar mixed convection of a nanofluid consisting of water and Al2O3 in an inclined tube with heating at the top half surface of a copper tube has been studied numerically. The bottom half of the tube wall is assumed to be adiabatic (presenting a tube of a solar collector). Heat conduction mechanism through the tube wall is considered. Three-dimensional governing equations with using two-phase mixture model have been solved to investigate hydrodynamic and thermal behaviours of the nanofluid over wide range of nanoparticle volume fractions. For a given nanoparticle mean diameter the effects of nanoparticle volume fractions on the hydrodynamics and thermal parameters are presented and discussed at different Richardson numbers and different tube inclinations. Significant augmentation on the heat transfer coefficient as well as on the wall shear stress is seen.
Ahmed, Khalil; Nasir, Muhammad; Fatima, Nasreen; Khan, Khalid M.; Zahra, Durey N.
2014-01-01
This paper presents the comparative results of a current study on unsaturated polyester resin (UPR) matrix composites processed by filament winding method, with cotton spun yarn of different mass irregularities and two different volume fractions. Physical and mechanical properties were measured, namely ultimate stress, stiffness, elongation%. The mechanical properties of the composites increased significantly with the increase in the fiber volume fraction in agreement with the Counto model. Mass irregularities in the yarn structure were quantitatively measured and visualized by scanning electron microscopy (SEM). Mass irregularities cause marked decrease in relative strength about 25% and 33% which increases with fiber volume fraction. Ultimate stress and stiffness increases with fiber volume fraction and is always higher for yarn with less mass irregularities. PMID:26644920
Karlsson, Kristin; Nyman, Jan; Baumann, Pia; Wersäll, Peter; Drugge, Ninni; Gagliardi, Giovanna; Johansson, Karl-Axel; Persson, Jan-Olov; Rutkowska, Eva; Tullgren, Owe; Lax, Ingmar
2013-11-01
To evaluate the dose-response relationship between radiation-induced atelectasis after stereotactic body radiation therapy (SBRT) and bronchial dose. Seventy-four patients treated with SBRT for tumors close to main, lobar, or segmental bronchi were selected. The association between incidence of atelectasis and bronchial dose parameters (maximum point-dose and minimum dose to the high-dose bronchial volume [ranging from 0.1 cm(3) up to 2.0 cm(3)]) was statistically evaluated with survival analysis models. Prescribed doses varied between 4 and 20 Gy per fraction in 2-5 fractions. Eighteen patients (24.3%) developed atelectasis considered to be radiation-induced. Statistical analysis showed a significant correlation between the incidence of radiation-induced atelectasis and minimum dose to the high-dose bronchial volumes, of which 0.1 cm(3) (D(0.1cm3)) was used for further analysis. The median value of D(0.1cm3) (α/β = 3 Gy) was EQD(2,LQ) = 147 Gy3 (range, 20-293 Gy3). For patients who developed atelectasis the median value was EQD(2,LQ) = 210 Gy3, and for patients who did not develop atelectasis, EQD(2,LQ) = 105 Gy3. Median time from treatment to development of atelectasis was 8.0 months (range, 1.1-30.1 months). In this retrospective study a significant dose-response relationship between the incidence of atelectasis and the dose to the high-dose volume of the bronchi is shown. Copyright © 2013 Elsevier Inc. All rights reserved.
Geometric confinement influences cellular mechanical properties I -- adhesion area dependence.
Su, Judith; Jiang, Xingyu; Welsch, Roy; Whitesides, George M; So, Peter T C
2007-06-01
Interactions between the cell and the extracellular matrix regulate a variety of cellular properties and functions, including cellular rheology. In the present study of cellular adhesion, area was controlled by confining NIH 3T3 fibroblast cells to circular micropatterned islands of defined size. The shear moduli of cells adhering to islands of well defined geometry, as measured by magnetic microrheometry, was found to have a significantly lower variance than those of cells allowed to spread on unpatterned surfaces. We observe that the area of cellular adhesion influences shear modulus. Rheological measurements further indicate that cellular shear modulus is a biphasic function of cellular adhesion area with stiffness decreasing to a minimum value for intermediate areas of adhesion, and then increasing for cells on larger patterns. We propose a simple hypothesis: that the area of adhesion affects cellular rheological properties by regulating the structure of the actin cytoskeleton. To test this hypothesis, we quantified the volume fraction of polymerized actin in the cytosol by staining with fluorescent phalloidin and imaging using quantitative 3D microscopy. The polymerized actin volume fraction exhibited a similar biphasic dependence on adhesion area. Within the limits of our simplifying hypothesis, our experimental results permit an evaluation of the ability of established, micromechanical models to predict the cellular shear modulus based on polymerized actin volume fraction. We investigated the "tensegrity", "cellular-solids", and "biopolymer physics" models that have, respectively, a linear, quadratic, and 5/2 dependence on polymerized actin volume fraction. All three models predict that a biphasic trend in polymerized actin volume fraction as a function of adhesion area will result in a biphasic behavior in shear modulus. Our data favors a higher-order dependence on polymerized actin volume fraction. Increasingly better experimental agreement is observed for the tensegrity, the cellular solids, and the biopolymer models respectively. Alternatively if we postulate the existence of a critical actin volume fraction below which the shear modulus vanishes, the experimental data can be equivalently described by a model with an almost linear dependence on polymerized actin volume fraction; this observation supports a tensegrity model with a critical actin volume fraction.
Laser-Induced Incandescence Measurements in Low Gravity
NASA Technical Reports Server (NTRS)
VanderWal, R. L.
1997-01-01
A low-gravity environment offers advantages to investigations concerned with soot growth or flame radiation by eliminating of buoyancy-induced convection. Basic to each type of study is knowledge of spatially resolved soot volume fraction, (f(sub v). Laser-induced incandescence (LII) has emerged as a diagnostic for soot volume fraction determination because it possesses high temporal and spatial resolution, geometric versatility and high sensitivity. Implementation and system characterization of LII in a drop tower that provides 2.2 sec of low-gravity (micro)g) at the NASA Lewis Research Center are described here. Validation of LII for soot volume fraction determination in (micro)g is performed by comparison between soot volume fraction measurements obtained by light extinction [20] and LII in low-gravity for a 50/50 mixture (by volume) of 0 acetylene/nitrogen issuing into quiescent air. Quantitative soot volume fraction measurements within other laminar flames of ethane and propane and a turbulent diffusion flame in (micro)g via LII are also demonstrated. An analysis of LII images of a turbulent acetylene diffusion flame in 1-g and (micro)g is presented.
Quantification of skeletal fraction volume of a soil pit by means of photogrammetry
NASA Astrophysics Data System (ADS)
Baruck, Jasmin; Zieher, Thomas; Bremer, Magnus; Rutzinger, Martin; Geitner, Clemens
2015-04-01
The grain size distribution of a soil is a key parameter determining soil water behaviour, soil fertility and land use potential. It plays an important role in soil classification and allows drawing conclusions on landscape development as well as soil formation processes. However, fine soil material (i.e. particle diameter ≤2 mm) is usually documented more thoroughly than the skeletal fraction (i.e. particle diameter >2 mm). While fine soil material is commonly analysed in the laboratory in order to determine the soil type, the skeletal fraction is typically estimated in the field at the profile. For a more precise determination of the skeletal fraction other methods can be applied and combined. These methods can be volume-related (sampling rings, percussion coring tubes) or non-volume-related (sieve of spade excavation). In this study we present a framework for the quantification of skeletal fraction volumes of a soil pit by means of photogrammetry. As a first step 3D point clouds of both soil pit and skeletal grains were generated. Therefore all skeletal grains of the pit were spread out onto a plane, clean plastic sheet in the field and numerous digital photos were taken using a reflex camera. With the help of the open source tool VisualSFM (structure from motion) two scaled 3D point clouds were derived. As a second step the skeletal fraction point cloud was segmented by radiometric attributes in order to determine volumes of single skeletal grains. The comparison of the total skeletal fraction volume with the volume of the pit (closed by spline interpolation) yields an estimate of the volumetric proportion of skeletal grains. The presented framework therefore provides an objective reference value of skeletal fraction for the support of qualitative field records.
40 CFR 63.3930 - What records must I keep?
Code of Federal Regulations, 2011 CFR
2011-07-01
... formulation data, or test data used to determine the mass fraction of organic HAP and density for each coating... coating. If you conducted testing to determine mass fraction of organic HAP, density, or volume fraction... rather than a record of the volume used. (e) A record of the mass fraction of organic HAP for each...
Thermal Analysis of Filler Reinforced Polymeric Composites
NASA Astrophysics Data System (ADS)
Ghadge, Mahesh Devidas
Improving heat dissipating property of composite materials is becoming increasingly important in domains ranging from the automotive industry, electronic devices to aeronautical industry. Effective heat dissipation is required especially in aircraft and racing tires to guarantee high performance and good service life [1]. The present study is focused on improving the thermal conductivity of Emulsion-styrene butadiene rubber (ESBR) which is a cheap alternative to other rubber composites. The disadvantages of ESBR are low thermal conductivity and high heat generation. Adding fillers with high thermal conductivity to ESBR is proposed as a technique for improving the thermal conductivity of ESBR. The purpose of the research is to predict the thermal conductivity of ESBR when filled with fillers of much higher thermal conductivity and also to find out to what extent the filler properties affect the heat transfer capabilities of the composite matrix. The influence of different filler shapes i.e. spherical, cylindrical and platelets on the overall thermal capability of composite matrix is studied, the finite element modelings are conducted using Abaqus. Three-dimensional and two-dimensional models are created in Abaqus to simulate the microstructure of the composite matrix filled with fillers. Results indicate that the overall thermal conductivity increases with increasing filler loading i.e. for a filler volume fraction of 0.27, the conductivity increased by around 50%. Filler shapes, orientation angle, and aspect ratio of the fillers significantly influences the thermal conductivity. Conductivity increases with increasing aspect ratio (length/diameter) of the cylindrical fillers since longer conductive chains are able to form at the same volume percentage as compared to spherical fillers. The composite matrix reaches maximum thermal conductivity when the cylindrical fillers are oriented in the direction of heat flow. The heat conductivity predicted by FEM for ESBR is compared with that predicted by mean field theories. At low volume fractions the FEM and mean field theory results are matching. However, at high volume fractions, the results obtained by the two methods are not in agreement. This is due to the fact that mean field theory do not consider the particle interactions happening at higher volume fractions. The present analysis can be used to tailor the thermal properties of ESBR for required thermal conductivity for a wide range of applications such as racing tires, electronic gadgets or aeronautical components. In addition, the proposed FEM models can be used to design and optimize the properties of new composite materials providing more insight into the thermal conductivity of composite polymers and aid in understanding heat transfer mechanism of reinforced polymers.
NASA Astrophysics Data System (ADS)
Hu, Chengliang; Chen, Lunqiang; Zhao, Zhen; Gong, Aijun; Shi, Weibing
2018-05-01
The combination of hot/warm and cold forging with an intermediate controlled cooling process is a promising approach to saving costs in the manufacture of automobile parts. In this work, the effects of the ferrite-pearlite microstructure, which formed after controlled cooling, on the cold forgeability of a medium-carbon steel were investigated. Different specimens for both normal and notched tensile tests were directly heated to high temperature and then cooled down at different cooling rates, producing different ferrite volume fractions, ranging from 6.69 to 40.53%, in the ferrite-pearlite microstructure. The yield strength, ultimate tensile strength, elongation rate, percentage reduction of area, and fracture strain were measured by tensile testing. The yield strength, indicating deformation resistance, and fracture strain, indicating formability, were used to evaluate the cold forgeability. As the ferrite volume fraction increased, the cold forgeability of the dual-phase ferritic-pearlitic steel improved. A quantitatively relationship between the ferrite volume fraction and the evaluation indexes of cold forgeability for XC45 steel was obtained from the test data. To validate the mathematical relationship, different tensile specimens machined from real hot-forged workpieces were tested. There was good agreement between the predicted and measured values. Our predictions from the relationship for cold forgeability had an absolute error less than 5%, which is acceptable for industrial applications and will help to guide the design of combined forging processes.
Coupled CFD-PBE Predictions of Renal Stone Size Distributions in the Nephron in Microgravity
NASA Technical Reports Server (NTRS)
Kassemi, Mohammad; Griffin, Elise; Thompson, David
2016-01-01
In this paper, a deterministic model is developed to assess the risk of critical renal stone formation for astronauts during space travel. A Population Balance Equation (PBE) model is used to compute the size distribution of a population of nucleating, growing and agglomerating renal calculi as they are transported through different sections of the nephron. The PBE model is coupled to a Computational Fluid Dynamics (CFD) model that solves for steady state flow of urine and transport of renal calculi along with the concentrations of ionic species, calcium and oxalate, in the nephron using an Eulerian two-phase mathematical framework. Parametric simulation are performed to study stone size enhancement and steady state volume fraction distributions in the four main sections of the nephron under weightlessness conditions. Contribution of agglomeration to the stone size distribution and effect of wall friction on the stone volume fraction distributions are carefully examined. Case studies using measured astronaut urinary calcium and oxalate concentrations in microgravity as input indicate that under nominal conditions the largest stone sizes developed in Space will be still considerably below the critical range for problematic stone development. However, results also indicate that the highest stone volume fraction occurs next to the tubule and duct walls. This suggests that there is an increased potential for wall adhesion with the possibility of evolution towards critical stone sizes.
Effective conductivity of suspensions of overlapping spheres
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, I.C.; Torquato, S.
1992-03-15
An accurate first-passage simulation technique formulated by the authors (J. Appl. Phys. {bold 68}, 3892 (1990)) is employed to compute the effective conductivity {sigma}{sub {ital e}} of distributions of penetrable (or overlapping) spheres of conductivity {sigma}{sub 2} in a matrix of conductivity {sigma}{sub 1}. Clustering of particles in this model results in a generally intricate topology for virtually the entire range of sphere volume fractions {phi}{sub 2} (i.e., 0{le}{phi}{sub 2}{le}1). Results for the effective conductivity {sigma}{sub {ital e}} are presented for several values of the conductivity ratio {alpha}={sigma}{sub 2}/{sigma}{sub 1}, including superconducting spheres ({alpha}={infinity}) and perfectly insulating spheres ({alpha}=0), andmore » for a wide range of volume fractions. The data are shown to lie between rigorous three-point bounds on {sigma}{sub {ital e}} for the same model. Consistent with the general observations of Torquato (J. Appl. Phys. {bold 58}, 3790 (1985)) regarding the utility of rigorous bounds, one of the bounds provides a good estimate of the effective conductivity, even in the extreme contrast cases ({alpha}{much gt}1 or {alpha}{congruent}0), depending upon whether the system is below or above the percolation threshold.« less
Backe, Will J.; Ort, Christoph; Brewer, Alex J.; Field, Jennifer A.
2014-01-01
A new method was developed for the analysis of natural and synthetic androgenic steroids and their selected metabolites in aquatic environmental matrices using direct large-volume injection (LVI) high performance liquid chromatography (HPLC) tandem mass spectrometry (MS/MS). Method accuracy ranged from 88 to 108% for analytes with well-matched internal standards. Precision, quantified by relative standard deviation (RSD), was less than 12%. Detection limits for the method ranged from 1.2 to 360 ng/L. The method was demonstrated on a series of 1-hr composite wastewater influent samples collected over a day with the purpose of assessing temporal profiles of androgen loads in wastewater. Testosterone, androstenedione, boldenone, and nandrolone were detected in the sample series at concentrations up to 290 ng/L and loads up to 535 mg. Boldenone, a synthetic androgen, had a temporal profile that was strongly correlated to testosterone, a natural human androgen, suggesting its source may be endogenous. An analysis of the sample particulate fraction revealed detectable amounts of sorbed testosterone and androstenedione. Androstenedione sorbed to the particulate fraction accounted for an estimated five to seven percent of the total androstenedione mass. PMID:21391574
Backe, Will J; Ort, Christoph; Brewer, Alex J; Field, Jennifer A
2011-04-01
A new method was developed for the analysis of natural and synthetic androgenic steroids and their selected metabolites in aquatic environmental matrixes using direct large-volume injection (LVI) high-performance liquid chromatography (HPLC) tandem mass spectrometry (MS/MS). Method accuracy ranged from 87.6 to 108% for analytes with well-matched internal standards. Precision, quantified by relative standard deviation (RSD), was less than 12%. Detection limits for the method ranged from 1.2 to 360 ng/L. The method was demonstrated on a series of 1 h composite wastewater influent samples collected over a day with the purpose of assessing temporal profiles of androgen loads in wastewater. Testosterone, androstenedione, boldenone, and nandrolone were detected in the sample series at concentrations up to 290 ng/L and loads up to 535 mg/h. Boldenone, a synthetic androgen, had a temporal profile that was strongly correlated to testosterone, a natural human androgen, suggesting its source may be endogenous. An analysis of the sample particulate fraction revealed detectable amounts of sorbed testosterone and androstenedione. Androstenedione sorbed to the particulate fraction accounted for an estimated 5 to 7% of the total androstenedione mass.
Turbulent flow and heat transfer of Water/Al2O3 nanofluid inside a rectangular ribbed channel
NASA Astrophysics Data System (ADS)
Parsaiemehr, Mohammad; Pourfattah, Farzad; Akbari, Omid Ali; Toghraie, Davood; Sheikhzadeh, Ghanbarali
2018-02-01
In present study, the turbulent flow and heat transfer of Water/Al2O3 nanofluid inside a rectangular channel have been numerically simulated. The main purpose of present study is investigating the effect of attack angle of inclined rectangular rib, Reynolds number and volume fraction of nanoparticles on heat transfer enhancement. For this reason, the turbulent flow of nanofluid has been simulated at Reynolds numbers ranging from 15000 to 30000 and volume fractions of nanoparticles from 0 to 4%. The changes attack angle of ribs have been investigated ranging from 0 to 180°. The results show that, the changes of attack angle of ribs, due to the changes of flow pattern and created vortexes inside the channel, have significant effect on fluid mixing. Also, the maximum rate of heat transfer enhancement accomplishes in attack angle of 60°. In Reynolds numbers of 15000, 20000 and 30000 and attack angle of 60°, comparing to the attack angle of 0°, the amount of Nusselt number enhances to 2.37, 1.96 and 2 times, respectively. Also, it can be concluded that, in high Reynolds numbers, by using ribs and nanofluid, the performance evaluation criterion improves.
Influence of polymer fibers on rheological properties of cement mortars
NASA Astrophysics Data System (ADS)
Malaszkiewicz, Dorota
2017-10-01
The reinforcing effect of fibers in cement composites often results in the improvement of the brittle nature of cementitious materials. But the decrease in the workability of fresh concrete is often the disadvantage of fibers addition. Conventional single-point workability tests cannot characterize workability of concrete in terms of fundamental rheological parameters. To this end, this paper describes an investigation of the influence of synthetic fiber additions (fiber length in the range 12-50 mm and volume fraction in the range 0-4%) on the rheological properties of fiber reinforced fresh mortar (FRFM) and development of these properties over time. The rheometer Viskomat XL was used in this study. Within the limitations of the instrument and testing procedure it is shown that FRFMs conform to the Bingham model. Natural postglacial sand 0/4 mm was used as a fine aggregate and cement CEMI 42.5 R was used as a binder. Three commercial synthetic fibers were selected for these examinations. Rheological properties were expressed in terms of Bingham model parameters g (yield value ) and h (plastic viscosity). Based on the test results it was found out that the fiber type and volume fraction affected both the yield stress and plastic viscosity.
Mapping Bone Mineral Density Obtained by Quantitative Computed Tomography to Bone Volume Fraction
NASA Technical Reports Server (NTRS)
Pennline, James A.; Mulugeta, Lealem
2017-01-01
Methods for relating or mapping estimates of volumetric Bone Mineral Density (vBMD) obtained by Quantitative Computed Tomography to Bone Volume Fraction (BVF) are outlined mathematically. The methods are based on definitions of bone properties, cited experimental studies and regression relations derived from them for trabecular bone in the proximal femur. Using an experimental range of values in the intertrochanteric region obtained from male and female human subjects, age 18 to 49, the BVF values calculated from four different methods were compared to the experimental average and numerical range. The BVF values computed from the conversion method used data from two sources. One source provided pre bed rest vBMD values in the intertrochanteric region from 24 bed rest subject who participated in a 70 day study. Another source contained preflight vBMD values from 18 astronauts who spent 4 to 6 months on the ISS. To aid the use of a mapping from BMD to BVF, the discussion includes how to formulate them for purpose of computational modeling. An application of the conversions would be used to aid in modeling of time varying changes in vBMD as it relates to changes in BVF via bone remodeling and/or modeling.
Viscosity, density, and thermal conductivity of aluminum oxide and zinc oxide nanolubricants
Kedzierski, M.A.; Brignoli, R.; Quine, K.T.; Brown, J.S.
2017-01-01
This paper presents liquid kinematic viscosity, density, and thermal conductivity measurements of eleven different synthetic polyolester-based nanoparticle nanolubricants (dispersions) at atmospheric pressure over the temperature range 288 K to 318 K. Aluminum oxide (Al2O3) and zinc oxide (ZnO) nanoparticles with nominal diameters of 127 nm and 135 nm, respectively, were investigated. A good dispersion of the spherical and non-spherical nanoparticles in the lubricant was maintained with a surfactant. Viscosity, density, and thermal conductivity measurements were made for the neat lubricant along with eleven nanolubricants with differing nanoparticle and surfactant mass fractions. Existing models were used to predict kinematic viscosity (±20%), thermal conductivity (±1%), and specific volume (±6%) of the nanolubricant as a function of temperature, nanoparticle mass fraction, surfactant mass fraction, and nanoparticle diameter. The liquid viscosity, density and thermal conductivity were shown to increase with respect to increasing nanoparticle mass fraction. PMID:28736463
Single-Fraction Proton Beam Stereotactic Radiosurgery for Cerebral Arteriovenous Malformations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hattangadi-Gluth, Jona A.; Chapman, Paul H.; Kim, Daniel
2014-06-01
Purpose/Objective(s): To evaluate the obliteration rate and potential adverse effects of single-fraction proton beam stereotactic radiosurgery (PSRS) in patients with cerebral arteriovenous malformations (AVMs). Methods and Materials: From 1991 to 2010, 248 consecutive patients with 254 cerebral AVMs received single-fraction PSRS at our institution. The median AVM nidus volume was 3.5 cc (range, 0.1-28.1 cc), 23% of AVMs were in critical/deep locations (basal ganglia, thalamus, or brainstem), and the most common prescription dose was 15 Gy(relative biological effectiveness [RBE]). Univariable and multivariable analyses were performed to assess factors associated with obliteration and hemorrhage. Results: At a median follow-up time of 35 months (range, 6-198 months),more » 64.6% of AVMs were obliterated. The median time to total obliteration was 31 months (range, 6-127 months), and the 5-year and 10-year cumulative incidence of total obliteration was 70% and 91%, respectively. On univariable analysis, smaller target volume (hazard ratio [HR] 0.78, 95% confidence interval [CI] 0.86-0.93, P<.0001), smaller treatment volume (HR 0.93, 95% CI 0.90-0.96, P<.0001), higher prescription dose (HR 1.16, 95% CI 1.07-1.26, P=.001), and higher maximum dose (HR 1.14, 95% CI 1.05-1.23, P=.002) were associated with total obliteration. Deep/critical location was also associated with decreased likelihood of obliteration (HR 0.68, 95% CI 0.47-0.98, P=.04). On multivariable analysis, critical location (adjusted HR [AHR] 0.42, 95% CI 0.27-0.65, P<.001) and smaller target volume (AHR 0.81, 95% CI 0.68-0.97, P=.02) remained associated with total obliteration. Posttreatment hemorrhage occurred in 13 cases (5-year cumulative incidence of 7%), all among patients with less than total obliteration, and 3 of these events were fatal. The most common complication was seizure, controlled with medications, both acutely (8%) and in the long term (9.1%). Conclusions: The current series is the largest modern series of PSRS for cerebral AVMs. PSRS can achieve a high obliteration rate with minimal morbidity. Post-treatment hemorrhage remains a potentially fatal risk among patients who have not yet responded to treatment.« less
2016-07-01
Predicted variation in (a) hot-spot number density , (b) hot-spot volume fraction, and (c) hot-spot specific surface area for each ensemble with piston speed...packing density , characterized by its effective solid volume fraction φs,0, affects hot-spot statistics for pressure dominated waves corresponding to...distribution in solid volume fraction within each ensemble was nearly Gaussian, and its standard deviation decreased with increasing density . Analysis of
Lamb Wave Assessment of Fiber Volume Fraction in Composites
NASA Technical Reports Server (NTRS)
Seale, Michael D.; Smith, Barry T.; Prosser, W. H.; Zalameda, Joseph N.
1998-01-01
Among the various techniques available, ultrasonic Lamb waves offer a convenient method of examining composite materials. Since the Lamb wave velocity depends on the elastic properties of a material, an effective tool exists to evaluate composites by measuring the velocity of these waves. Lamb waves can propagate over long distances and are sensitive to the desired in-plane elastic properties of the material. This paper discusses a study in which Lamb waves were used to examine fiber volume fraction variations of approximately 0.40-0.70 in composites. The Lamb wave measurements were compared to fiber volume fractions obtained from acid digestion tests. Additionally, a model to predict the fiber volume fraction from Lamb wave velocity values was evaluated.
Estimation of the fractional coverage of rainfall in climate models
NASA Technical Reports Server (NTRS)
Eltahir, E. A. B.; Bras, R. L.
1993-01-01
The fraction of the grid cell area covered by rainfall, mu, is an essential parameter in descriptions of land surface hydrology in climate models. A simple procedure is presented for estimating this fraction, based on extensive observations of storm areas and rainfall volumes. Storm area and rainfall volume are often linearly related; this relation can be used to compute the storm area from the volume of rainfall simulated by a climate model. A formula is developed for computing mu, which describes the dependence of the fractional coverage of rainfall on the season of the year, the geographical region, rainfall volume, and the spatial and temporal resolution of the model. The new formula is applied in computing mu over the Amazon region. Significant temporal variability in the fractional coverage of rainfall is demonstrated. The implications of this variability for the modeling of land surface hydrology in climate models are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neal, C.R.; Davidson, J.P.
The Malaitan alnoite contains a rich and varied megacryst suite of unprecedented compositional range. The authors have undertaken trace element and isotope modeling in order to formulate a petrogenetic scheme which links the host alnoeite to its entrained megacrysts. This requires that a proto-alnoeite magma is the product of zone refining initiated by diapiric upwelling (where the initial melt passes through 200 times its volume of mantle). Isotopic evidence indicates the source of the proto-alnoeite contains a time-integrated LREE-depleted signature. Impingement upon the rigid lithosphere halts or dramatically slows the upward progress of the mantle diapir. At this point, themore » magma cools and megacryst fractionation begins with augites crystallizing first, followed by subcalcic diopsides and finally phlogopites. Garnet probably crystallizes over the entire range of clinopyroxene fractionation. Estimated proportions of fractionating phases are 30% augite, 24.5% subcalcic diopside, 27% garnet, 12.9% phlogopite, 5% bronzite, 0.5% ilmenite, and 0.1% zircon. As this proto-alnoeite magma crystallizes, it assimilates a subducted component of seawater-altered basalt which underplates the Ontong Java Plateau. This is witnessed in the isotopic composition of the megacrysts and alnoeite.« less
NASA Astrophysics Data System (ADS)
Ghita, Mihaela; Coffey, Caroline B.; Butterworth, Karl T.; McMahon, Stephen J.; Schettino, Giuseppe; Prise, Kevin M.
2016-01-01
To limit toxicity to normal tissues adjacent to the target tumour volume, radiotherapy is delivered using fractionated regimes whereby the total prescribed dose is given as a series of sequential smaller doses separated by specific time intervals. The impact of fractionation on out-of-field survival and DNA damage responses was determined in AGO-1522 primary human fibroblasts and MCF-7 breast tumour cells using uniform and modulated exposures delivered using a 225 kVp x-ray source. Responses to fractionated schedules (two equal fractions delivered with time intervals from 4 h to 48 h) were compared to those following acute exposures. Cell survival and DNA damage repair measurements indicate that cellular responses to fractionated non-uniform exposures differ from those seen in uniform exposures for the investigated cell lines. Specifically, there is a consistent lack of repair observed in the out-of-field populations during intervals between fractions, confirming the importance of cell signalling to out-of-field responses in a fractionated radiation schedule, and this needs to be confirmed for a wider range of cell lines and conditions.
Neonatal hygroscopic condenser humidifier.
Gedeon, A; Mebius, C; Palmer, K
1987-01-01
A hygroscopic condenser humidifier was developed for neonates on mechanical ventilation and was evaluated by laboratory tests and clinically. Humidification provided by the unit was measured in the 10- to 50-ml tidal-volume range at ambient temperatures of 24 degrees C and 38 degrees C. The effect of a leaking patient connection on device performance was investigated. Leakage rates were measured routinely in a neonatal ICU and surgery to determine the clinical significance. In the entire tidal volume and temperature range, the unit provided an inspiratory water content in excess of 30 g/m3 when the leak fraction (volume leaked/volume delivered at Y-piece) was less than 15%. This was found in three out of four cases. In about one out of ten cases, the leak exceeded 30%, which invariably led to corrective action, such as repositioning or changing the endotracheal tube. However, even at a 30% leak, a water content of about 26 g/m3 was still available for humidifying the inspired gas, which corresponds to normal physiologic conditions found in the trachea for nasal breathing of room air.
Estrada, Nicolas
2016-12-01
Using discrete element methods, the effects of the grain size distribution on the density and the shear strength of frictionless disk packings are analyzed. Specifically, two recent findings on the relationship between the system's grain size distribution and its rheology are revisited, and their validity is tested across a broader range of distributions than what has been used in previous studies. First, the effects of the distribution on the solid fraction are explored. It is found that the distribution that produces the densest packing is not the uniform distribution by volume fractions as suggested in a recent publication. In fact, the maximal packing fraction is obtained when the grading curve follows a power law with an exponent close to 0.5 as suggested by Fuller and Thompson in 1907 and 1919 [Trans Am. Soc. Civ. Eng. 59, 1 (1907) and A Treatise on Concrete, Plain and Reinforced (1919), respectively] while studying mixtures of cement and stone aggregates. Second, the effects of the distribution on the shear strength are analyzed. It is confirmed that these systems exhibit a small shear strength, even if composed of frictionless particles as has been shown recently in several works. It is also found that this shear strength is independent of the grain size distribution. This counterintuitive result has previously been shown for the uniform distribution by volume fractions. In this paper, it is shown that this observation keeps true for different shapes of the grain size distribution.
Liu, Han; Wu, Qiuwen
2011-01-01
For prostate cancer patients, online image-guided (IG) radiotherapy has been widely used in clinic to correct the translational inter-fractional motion at each treatment fraction. For uncertainties that cannot be corrected online, such as rotation and deformation of the target volume, margins are still required to be added to the clinical target volume (CTV) for the treatment planning. Offline adaptive radiotherapy has been implemented to optimize the treatment for each individual patient based on the measurements at early stages of treatment process. It has been shown that offline adaptive radiotherapy can effectively reduce the required margin. Recently a hybrid strategy of offline adaptive replanning and online IG was proposed and the geometric evaluation was performed. It was found that the planning margins can be further reduced by 1–2 mm compared to online IG only strategy. The purpose of this study was to investigate the dosimetric benefits of such hybrid strategy on the target and organs at risk (OARs). A total of 420 repeated helical computed tomography (HCT) scans from 28 patients were included in the study. Both low-risk patients (LRP, CTV = prostate) and intermediate-risk patients (IRP, CTV = prostate + seminal vesicles, SV) were included in the simulation. Two registration methods, based on center-of-mass (COM) shift of prostate only and prostate plus SV, were performed for IRP. The intensity modulated radiotherapy (IMRT) was used in the simulation. Criteria on both cumulative dose and fractional doses were evaluated. Furthermore, the geometric evaluation was extended to investigate the optimal number of fractions necessary to construct the internal target volume (ITV) for the hybrid strategy. The dosimetric margin improvement was smaller than its geometric counterpart and was in the range of 0 mm to 1 mm. The optimal number of fractions necessary for the ITV construction is 2 for LRP and 3–4 for IRP in a hypofractionation protocol. A new cumulative index of target volume (CITV) was proposed for the evaluation of adaptive radiotherapy strategies, and it was found that it had the advantages over other indices in evaluating different adaptive radiotherapy strategies. PMID:21772083
Liu, Han; Wu, Qiuwen
2011-08-07
For prostate cancer patients, online image-guided (IG) radiotherapy has been widely used in clinic to correct the translational inter-fractional motion at each treatment fraction. For uncertainties that cannot be corrected online, such as rotation and deformation of the target volume, margins are still required to be added to the clinical target volume (CTV) for the treatment planning. Offline adaptive radiotherapy has been implemented to optimize the treatment for each individual patient based on the measurements at early stages of treatment process. It has been shown that offline adaptive radiotherapy can effectively reduce the required margin. Recently a hybrid strategy of offline adaptive replanning and online IG was proposed and the geometric evaluation was performed. It was found that the planning margins can further be reduced by 1-2 mm compared to online IG only strategy. The purpose of this study was to investigate the dosimetric benefits of such a hybrid strategy on the target and organs at risk. A total of 420 repeated helical computed tomography scans from 28 patients were included in the study. Both low-risk patients (LRP, CTV = prostate) and intermediate-risk patients (IRP, CTV = prostate + seminal vesicles, SV) were included in the simulation. Two registration methods, based on center-of-mass shift of prostate only and prostate plus SV, were performed for IRP. The intensity-modulated radiotherapy was used in the simulation. Criteria on both cumulative and fractional doses were evaluated. Furthermore, the geometric evaluation was extended to investigate the optimal number of fractions necessary to construct the internal target volume (ITV) for the hybrid strategy. The dosimetric margin improvement was smaller than its geometric counterpart and was in the range of 0-1 mm. The optimal number of fractions necessary for the ITV construction is 2 for LRPs and 3-4 for IRPs in a hypofractionation protocol. A new cumulative index of target volume was proposed for the evaluation of adaptive radiotherapy strategies, and it was found that it had the advantages over other indices in evaluating different adaptive radiotherapy strategies.
Suzuki, Yuriko; Hori, Masaaki; Kamiya, Kouhei; Fukunaga, Issei; Aoki, Shigeki; VAN Cauteren, Marc
2016-01-01
Q-space imaging (QSI) is a diffusion-weighted imaging (DWI) technique that enables investigation of tissue microstructure. However, for sufficient displacement resolution to measure the microstructure, QSI requires high q-values that are usually difficult to achieve with a clinical scanner. The recently introduced "low q-value method" fits the echo attenuation to only low q-values to extract the root mean square displacement. We investigated the clinical feasibility of the low q-value method for estimating the microstructure of the human corpus callosum using a 3.0-tesla clinical scanner within a clinically feasible scan time. We performed a simulation to explore the acceptable range of maximum q-values for the low q-value method. We simulated echo attenuations caused by restricted diffusion in the intra-axonal space (IAS) and hindered diffusion in the extra-axonal space (EAS) assuming 100,000 cylinders with various diameters, and we estimated mean axon diameter, IAS volume fraction, and EAS diffusivity by fitting echo attenuations with different maximum q-values. Furthermore, we scanned the corpus callosum of 7 healthy volunteers and estimated the mean axon diameter and IAS volume fraction. Good agreement between estimated and defined values in the simulation study with maximum q-values of 700 and 800 cm(-1) suggested that the maximum q-value used in the in vivo experiment, 737 cm(-1), was reasonable. In the in vivo experiment, the mean axon diameter was larger in the body of the corpus callosum and smaller in the genu and splenium, and this anterior-to-posterior trend is consistent with previously reported histology, although our mean axon diameter seems larger in size. On the other hand, we found an opposite anterior-to-posterior trend, with high IAS volume fraction in the genu and splenium and a lower fraction in the body, which is similar to the fiber density reported in the histology study. The low q-value method may provide insights into tissue microstructure using a 3T clinical scanner within clinically feasible scan time.
Al-Omair, Ameen; Soliman, Hany; Xu, Wei; Karotki, Aliaksandr; Mainprize, Todd; Phan, Nicolas; Das, Sunit; Keith, Julia; Yeung, Robert; Perry, James; Tsao, May; Sahgal, Arjun
2013-12-01
Our purpose was to report efficacy of hypofractionated cavity stereotactic radiotherapy (HCSRT) in patients with and without prior whole brain radiotherapy (WBRT). 32 surgical cavities in 30 patients (20 patients/21 cavities had no prior WBRT and 10 patients/11 cavities had prior WBRT) were treated with image-guided linac stereotactic radiotherapy. 7 of the 10 prior WBRT patients had "resistant" local disease given prior surgery, post-operative WBRT and a re-operation, followed by salvage HCSRT. The clinical target volume was the post-surgical cavity, and a 2-mm margin applied as planning target volume. The median total dose was 30 Gy (range: 25-37.5 Gy) in 5 fractions. In the no prior and prior WBRT cohorts, the median follow-up was 9.7 months (range: 3.0-23.6) and 15.3 months (range: 2.9-39.7), the median survival was 23.6 months and 39.7 months, and the 1-year cavity local recurrence progression- free survival (LRFS) was 79 and 100%, respectively. At 18 months the LRFS dropped to 29% in the prior WBRT cohort. Grade 3 radiation necrosis occurred in 3 prior WBRT patients. We report favorable outcomes with HCSRT, and well selected patients with prior WBRT and "resistant" disease may have an extended survival favoring aggressive salvage HCSRT at a moderate risk of radiation necrosis.
Al-Jawoosh, Sara; Ireland, Anthony; Su, Bo
2018-04-10
To fabricate and characterise a novel biomimetic composite material consisting of aligned porous ceramic preforms infiltrated with polymer. Freeze-casting was used to fabricate and control the microstructure and porosity of ceramic preforms, which were subsequently infiltrated with 40-50% by volume UDMA-TEGDMA polymer. The composite materials were then subjected to characterisation, namely density, compression, three-point bend, hardness and fracture toughness testing. Samples were also subjected to scanning electron microscopy and computerised tomography (Micro-CT). Three-dimensional aligned honeycomb-like ceramic structures were produced and full interpenetration of the polymer phase was observed using micro-CT. Depending on the volume fraction of the ceramic preform, the density of the final composite ranged from 2.92 to 3.36g/cm 3 , compressive strength ranged from 206.26 to 253.97MPa, flexural strength from 97.73 to 145.65MPa, hardness ranged from 1.46 to 1.62GPa, and fracture toughness from 3.91 to 4.86MPam 1/2 . Freeze-casting provides a novel method to engineer composite materials with a unique aligned honeycomb-like interpenetrating structure, consisting of two continuous phases, inorganic and organic. There was a correlation between the ceramic fraction and the subsequent, density, strength, hardness and fracture toughness of the composite material. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Inc. All rights reserved.
Jwo, Ching-Song; Chang, Ho; Teng, Tun-Ping; Kao, Mu-Jnug; Guo, Yu-Ting
2007-06-01
By using copper oxide nanofluid fabricated by the self-made Submerged Arc Nanofluid Synthesis System (SANSS), this paper measures the thermal conductivity under different volume fractions and different temperatures by thermal properties analyzer, and analyzes the correlation among the thermal conductivity, volume fraction, and temperature of nanofluid. The CuO nanoparticles used in the experiment are needle-like, with a mean particle size of about 30 nm. They can be stably suspended in deionized water for a long time. The experimental results show that under the condition that the temperature is 40 degrees C, when the volume fraction of nanofluid increases from 0.2% to 0.8%, the thermal conductivity increment of the prepared nanofluid towards deionized water can be increased from 14.7% to 38.2%. Under the condition that the volume fraction is 0.8%, as the temperature of nanofluid rises from 5 degrees C to 40 degrees C, the thermal conductivity increment of the prepared nanofluid towards deionized water increases from 5.9% to 38.2%. Besides, the effects of temperature change are greater than the effects of volume fraction on the thermal conductivity of nanofluid. Therefore, when the self-made copper oxide nanofluid is applied to the heat exchange device under medium and high temperature, an optimal radiation effect can be acquired.
Simultaneous integrated vs. sequential boost in VMAT radiotherapy of high-grade gliomas.
Farzin, Mostafa; Molls, Michael; Astner, Sabrina; Rondak, Ina-Christine; Oechsner, Markus
2015-12-01
In 20 patients with high-grade gliomas, we compared two methods of planning for volumetric-modulated arc therapy (VMAT): simultaneous integrated boost (SIB) vs. sequential boost (SEB). The investigation focused on the analysis of dose distributions in the target volumes and the organs at risk (OARs). After contouring the target volumes [planning target volumes (PTVs) and boost volumes (BVs)] and OARs, SIB planning and SEB planning were performed. The SEB method consisted of two plans: in the first plan the PTV received 50 Gy in 25 fractions with a 2-Gy dose per fraction. In the second plan the BV received 10 Gy in 5 fractions with a dose per fraction of 2 Gy. The doses of both plans were summed up to show the total doses delivered. In the SIB method the PTV received 54 Gy in 30 fractions with a dose per fraction of 1.8 Gy, while the BV received 60 Gy in the same fraction number but with a dose per fraction of 2 Gy. All of the OARs showed higher doses (Dmax and Dmean) in the SEB method when compared with the SIB technique. The differences between the two methods were statistically significant in almost all of the OARs. Analysing the total doses of the target volumes we found dose distributions with similar homogeneities and comparable total doses. Our analysis shows that the SIB method offers advantages over the SEB method in terms of sparing OARs.
Xu, Wenxiang; Duan, Qinglin; Ma, Huaifa; Chen, Wen; Chen, Huisu
2015-11-02
Interfaces are known to be crucial in a variety of fields and the interfacial volume fraction dramatically affects physical properties of composite media. However, it is an open problem with great significance how to determine the interfacial property in composite media with inclusions of complex geometry. By the stereological theory and the nearest-surface distribution functions, we first propose a theoretical framework to symmetrically present the interfacial volume fraction. In order to verify the interesting generalization, we simulate three-phase composite media by employing hard-core-soft-shell structures composed of hard mono-/polydisperse non-spherical particles, soft interfaces, and matrix. We numerically derive the interfacial volume fraction by a Monte Carlo integration scheme. With the theoretical and numerical results, we find that the interfacial volume fraction is strongly dependent on the so-called geometric size factor and sphericity characterizing the geometric shape in spite of anisotropic particle types. As a significant interfacial property, the present theoretical contribution can be further drawn into predicting the effective transport properties of composite materials.
Xu, Wenxiang; Duan, Qinglin; Ma, Huaifa; Chen, Wen; Chen, Huisu
2015-01-01
Interfaces are known to be crucial in a variety of fields and the interfacial volume fraction dramatically affects physical properties of composite media. However, it is an open problem with great significance how to determine the interfacial property in composite media with inclusions of complex geometry. By the stereological theory and the nearest-surface distribution functions, we first propose a theoretical framework to symmetrically present the interfacial volume fraction. In order to verify the interesting generalization, we simulate three-phase composite media by employing hard-core-soft-shell structures composed of hard mono-/polydisperse non-spherical particles, soft interfaces, and matrix. We numerically derive the interfacial volume fraction by a Monte Carlo integration scheme. With the theoretical and numerical results, we find that the interfacial volume fraction is strongly dependent on the so-called geometric size factor and sphericity characterizing the geometric shape in spite of anisotropic particle types. As a significant interfacial property, the present theoretical contribution can be further drawn into predicting the effective transport properties of composite materials. PMID:26522701
Compañ, Vicente; Tiemblo, Pilar; García, F; García, J M; Guzmán, Julio; Riande, Evaristo
2005-06-01
The oxygen permeability and diffusion coefficients of hydrogel membranes prepared with copolymers of 2-ethoxyethyl methacrylate (EEMA)/2,3-dihydroxypropylmethacrylate (MAG) with mole fraction of the second monomer in the range between 0 and 0.75 are described. Values of the permeability and diffusion coefficients of oxygen are determined by using electrochemical procedures involving the measurement of the steady-state current in membranes prepared by radical polymerization of the monomers. The results obtained for the transport properties were analyzed taking into account the fractional free volumes, the cohesive energy densities and the glass transition temperatures of the hydrogels.
Four-Dimensional Patient Dose Reconstruction for Scanned Ion Beam Therapy of Moving Liver Tumors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richter, Daniel; TU Darmstadt, Darmstadt; Saito, Nami
2014-05-01
Purpose: Estimation of the actual delivered 4-dimensional (4D) dose in treatments of patients with mobile hepatocellular cancer with scanned carbon ion beam therapy. Methods and Materials: Six patients were treated with 4 fractions to a total relative biological effectiveness (RBE)–weighted dose of 40 Gy (RBE) using a single field. Respiratory motion was addressed by dedicated margins and abdominal compression (5 patients) or gating (1 patient). 4D treatment dose reconstructions based on the treatment records and the measured motion monitoring data were performed for the single-fraction dose and a total of 17 fractions. To assess the impact of uncertainties in the temporalmore » correlation between motion trajectory and beam delivery sequence, 3 dose distributions for varying temporal correlation were calculated per fraction. For 3 patients, the total treatment dose was formed from the fractional distributions using all possible combinations. Clinical target volume (CTV) coverage was analyzed using the volumes receiving at least 95% (V{sub 95}) and 107% (V{sub 107}) of the planned doses. Results: 4D dose reconstruction based on daily measured data is possible in a clinical setting. V{sub 95} and V{sub 107} values for the single fractions ranged between 72% and 100%, and 0% and 32%, respectively. The estimated total treatment dose to the CTV exhibited improved and more robust dose coverage (mean V{sub 95} > 87%, SD < 3%) and overdose (mean V{sub 107} < 4%, SD < 3%) with respect to the single-fraction dose for all analyzed patients. Conclusions: A considerable impact of interplay effects on the single-fraction CTV dose was found for most of the analyzed patients. However, due to the fractionated treatment, dose heterogeneities were substantially reduced for the total treatment dose. 4D treatment dose reconstruction for scanned ion beam therapy is technically feasible and may evolve into a valuable tool for dose assessment.« less
Yielding in a strongly aggregated colloidal gel: 2D simulations and theory
NASA Astrophysics Data System (ADS)
Roy, Saikat; Tirumkudulu, Mahesh
2015-11-01
We investigated the micro-structural details and the mechanical response under uniaxial compression of the strongly aggregating gel starting from low to high packing fraction.The numerical simulations account for short-range inter-particle attractions, normal and tangential deformation at particle contacts,sliding and rolling friction, and preparation history. It is observed that in the absence of rolling resistance(RR),the average coordination number varies only slightly with compaction whereas it is significant in the presence of RR. The particle contact distribution is isotropic throughout the consolidation process. In both cases, the yield strain is constant with the volume fraction. The modulus values are very similar at different attraction, and with and without RR implying that the elastic modulus does not scale with attraction.The modulus was found to be a weak function of the preparation history. The increase in yield stress with volume fraction is a consequence of the increased elastic modulus of the network. However, the yield stress scales similarly both with and without RR. The power law exponent of 5.4 is in good agreement with previous simulation results. A micromechanical theory is also proposed to describe the stress versus strain relation for the gelled network.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karlsson, Kristin, E-mail: kristin.karlsson@karolinska.se; Department of Oncology-Pathology, Karolinska Institute, Stockholm; Nyman, Jan
2013-11-01
Purpose: To evaluate the dose–response relationship between radiation-induced atelectasis after stereotactic body radiation therapy (SBRT) and bronchial dose. Methods and Materials: Seventy-four patients treated with SBRT for tumors close to main, lobar, or segmental bronchi were selected. The association between incidence of atelectasis and bronchial dose parameters (maximum point-dose and minimum dose to the high-dose bronchial volume [ranging from 0.1 cm{sup 3} up to 2.0 cm{sup 3}]) was statistically evaluated with survival analysis models. Results: Prescribed doses varied between 4 and 20 Gy per fraction in 2-5 fractions. Eighteen patients (24.3%) developed atelectasis considered to be radiation-induced. Statistical analysis showedmore » a significant correlation between the incidence of radiation-induced atelectasis and minimum dose to the high-dose bronchial volumes, of which 0.1 cm{sup 3} (D{sub 0.1cm3}) was used for further analysis. The median value of D{sub 0.1cm3} (α/β = 3 Gy) was EQD{sub 2,LQ} = 147 Gy{sub 3} (range, 20-293 Gy{sub 3}). For patients who developed atelectasis the median value was EQD{sub 2,LQ} = 210 Gy{sub 3}, and for patients who did not develop atelectasis, EQD{sub 2,LQ} = 105 Gy{sub 3}. Median time from treatment to development of atelectasis was 8.0 months (range, 1.1-30.1 months). Conclusion: In this retrospective study a significant dose–response relationship between the incidence of atelectasis and the dose to the high-dose volume of the bronchi is shown.« less
Bousis, Christos; Emfietzoglou, Dimitris; Nikjoo, Hooshang
2012-12-01
To calculate the absorbed fraction (AF) of low energy electrons in small tissue-equivalent spherical volumes by Monte Carlo (MC) track structure simulation and assess the influence of phase (liquid water versus density-scaled water vapor) and of the continuous-slowing-down approximation (CSDA) used in semi-analytic calculations. An event-by-event MC code simulating the transport of electrons in both the vapor and liquid phase of water using appropriate electron-water interaction cross sections was used to quantify the energy deposition of low-energy electrons in spherical volumes. Semi-analytic calculations within the CSDA using a convolution integral of the Howell range-energy expressions are also presented for comparison. The AF for spherical volumes of radii from 10-1000 nm are presented for monoenergetic electrons over the energy range 100-10,000 eV and the two Auger-emitting radionuclides (125)I and (123)I. The MC calculated AF for the liquid phase are found to be smaller than those of the (density scaled) gas phase by up to 10-20% for the monoenergetic electrons and 10% for the two Auger-emitters. Differences between the liquid-phase MC results and the semi-analytic CSDA calculations are up to ∼ 55% for the monoenergetic electrons and up to ∼ 35% for the two Auger-emitters. Condensed-phase effects in the inelastic interaction of low-energy electrons with water have a noticeable but relatively small impact on the AF for the energy range and target sizes examined. Depending on the electron energies, the semi-analytic approach may lead to sizeable errors for target sizes with linear dimensions below 1 micron.
Local structure of percolating gels at very low volume fractions
NASA Astrophysics Data System (ADS)
Griffiths, Samuel; Turci, Francesco; Royall, C. Patrick
2017-01-01
The formation of colloidal gels is strongly dependent on the volume fraction of the system and the strength of the interactions between the colloids. Here we explore very dilute solutions by the means of numerical simulations and show that, in the absence of hydrodynamic interactions and for sufficiently strong interactions, percolating colloidal gels can be realised at very low values of the volume fraction. Characterising the structure of the network of the arrested material we find that, when reducing the volume fraction, the gels are dominated by low-energy local structures, analogous to the isolated clusters of the interaction potential. Changing the strength of the interaction allows us to tune the compactness of the gel as characterised by the fractal dimension, with low interaction strength favouring more chain-like structures.
Dependence of particle volume fraction on sound velocity and attenuation of EPDM composites.
Kim, K S; Lee, K I; Kim, H Y; Yoon, S W; Hong, S H
2007-05-01
The sound velocity and the attenuation coefficient of EPDM (Ethylene-propylene Diene Monomer) composites incorporated with Silicon Carbide particles (SiCp's) of various volume fractions (0-40%) were experimentally and theoretically investigated. For the experiment a through-transmission technique was used. For the theoretical prediction, some mechanical property models such as Reuss model and Coherent Potential Approximation (CPA) model etc. were employed. The experimental results showed that the sound velocity decreased with the increase of the SiCp volume fraction up to 30% and then increased with the 40 vol% specimen. The attenuation coefficient was increased with the increasing SiCp volume fractions. The modified Reuss model with a longitudinal elastic modulus predicted most well the experimental sound velocity and elastic modulus results.
Compressive evaluation of homogeneous and graded epoxy-glass particulate composites.
Seaglar, J; Rousseau, C-E
2015-04-01
The propagation of stress waves in epoxy-glass particulate composites and graded materials was studied experimentally. Materials tested in this study consisted of an epoxy matrix with various concentrations of spherical glass particles having a mean diameter of 42μm. Plate impact experiments were performed using a gas gun. Embedded within the specimens were manganin stress gauges used to record propagating compressive longitudinal stress waves through the material. High strain rate experiments using a Split Hopkinson Pressure Bar (SHPB) apparatus were also performed to evaluate the dynamic strength of the specimens, while quasi-static compression tests were undertaken to characterize their quasi-static behavior. Ultrasonic wave speed measurements were carried-out in order to obtain additional material properties and characterize the gradation in functionally graded materials (FGM). It was found that low volume fractions of particles are detrimental to the performance of the material under impact loading, while concentrations in the range of about 30 to 45% by volume exhibit characteristics of higher degrees of scattering. This suggests that materials in this latter range would be more effective in the thwarting of destructive shock waves than the homogeneous matrix material. Impact testing of FGM specimens suggests that impact loading on the stiff (high volume fraction) face results in much higher levels of scattering. Therefore, such materials would be effective for use in light weight armor or as shielding materials due to their effective attenuation of mechanical impulses. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Xin; Liu Xiaoxia; Mei Guanghai
Purpose: Cavernous sinus hemangioma is a rare vascular tumor. The direct microsurgical approach usually results in massive hemorrhage. Although radiosurgery plays an important role in managing cavernous sinus hemangiomas as a treatment alternative to microsurgery, the potential for increased toxicity with single-session treatment of large tumors is a concern. The purpose of this study was to assess the efficacy of hypofractionated stereotactic radiotherapy in patients with large cavernous sinus hemangiomas. Methods: Fourteen patients with large (volume >20 cm{sup 3}) cavernous sinus hemangiomas were enrolled in a prospective Phase II study between December 2007 and December 2010. The hypofractionated stereotactic radiotherapymore » dose was 21 Gy delivered in 3 fractions. Results: After a mean follow-up of 15 months (range, 6-36 months), the magnetic resonance images showed a mean of 77% tumor volume reduction (range, 44-99%). Among the 6 patients with cranial nerve impairments before hypofractionated stereotactic radiotherapy, 1 achieved symptomatic complete resolution and 5 had improvement. No radiotherapy-related complications were observed during follow-up. Conclusion: Our current experience, though preliminary, substantiates the role of hypofractionated stereotactic radiotherapy for large cavernous sinus hemangiomas. Although a longer and more extensive follow-up is needed, hypofractionated stereotactic radiotherapy of 21 Gy delivered in 3 fractions is effective in reducing the tumor volume without causing any new deficits and can be considered as a treatment modality for large cavernous sinus hemangiomas.« less
Characterizing pixel and point patterns with a hyperuniformity disorder length
NASA Astrophysics Data System (ADS)
Chieco, A. T.; Dreyfus, R.; Durian, D. J.
2017-09-01
We introduce the concept of a "hyperuniformity disorder length" h that controls the variance of volume fraction fluctuations for randomly placed windows of fixed size. In particular, fluctuations are determined by the average number of particles within a distance h from the boundary of the window. We first compute special expectations and bounds in d dimensions, and then illustrate the range of behavior of h versus window size L by analyzing several different types of simulated two-dimensional pixel patterns—where particle positions are stored as a binary digital image in which pixels have value zero if empty and one if they contain a particle. The first are random binomial patterns, where pixels are randomly flipped from zero to one with probability equal to area fraction. These have long-ranged density fluctuations, and simulations confirm the exact result h =L /2 . Next we consider vacancy patterns, where a fraction f of particles on a lattice are randomly removed. These also display long-range density fluctuations, but with h =(L /2 )(f /d ) for small f , and h =L /2 for f →1 . And finally, for a hyperuniform system with no long-range density fluctuations, we consider "Einstein patterns," where each particle is independently displaced from a lattice site by a Gaussian-distributed amount. For these, at large L ,h approaches a constant equal to about half the root-mean-square displacement in each dimension. Then we turn to gray-scale pixel patterns that represent simulated arrangements of polydisperse particles, where the volume of a particle is encoded in the value of its central pixel. And we discuss the continuum limit of point patterns, where pixel size vanishes. In general, we thus propose to quantify particle configurations not just by the scaling of the density fluctuation spectrum but rather by the real-space spectrum of h (L ) versus L . We call this approach "hyperuniformity disorder length spectroscopy".
Characterizing pixel and point patterns with a hyperuniformity disorder length.
Chieco, A T; Dreyfus, R; Durian, D J
2017-09-01
We introduce the concept of a "hyperuniformity disorder length" h that controls the variance of volume fraction fluctuations for randomly placed windows of fixed size. In particular, fluctuations are determined by the average number of particles within a distance h from the boundary of the window. We first compute special expectations and bounds in d dimensions, and then illustrate the range of behavior of h versus window size L by analyzing several different types of simulated two-dimensional pixel patterns-where particle positions are stored as a binary digital image in which pixels have value zero if empty and one if they contain a particle. The first are random binomial patterns, where pixels are randomly flipped from zero to one with probability equal to area fraction. These have long-ranged density fluctuations, and simulations confirm the exact result h=L/2. Next we consider vacancy patterns, where a fraction f of particles on a lattice are randomly removed. These also display long-range density fluctuations, but with h=(L/2)(f/d) for small f, and h=L/2 for f→1. And finally, for a hyperuniform system with no long-range density fluctuations, we consider "Einstein patterns," where each particle is independently displaced from a lattice site by a Gaussian-distributed amount. For these, at large L,h approaches a constant equal to about half the root-mean-square displacement in each dimension. Then we turn to gray-scale pixel patterns that represent simulated arrangements of polydisperse particles, where the volume of a particle is encoded in the value of its central pixel. And we discuss the continuum limit of point patterns, where pixel size vanishes. In general, we thus propose to quantify particle configurations not just by the scaling of the density fluctuation spectrum but rather by the real-space spectrum of h(L) versus L. We call this approach "hyperuniformity disorder length spectroscopy".
Laser-Induced Incandescence in Microgravity
NASA Technical Reports Server (NTRS)
VanderWal, Randall L.
1997-01-01
Microgravity offers unique opportunities for studying both soot growth and the effect of soot radiation upon flame structure and spread. LII has been characterized and developed at NASA-Lewis for soot volume fraction determination in a wide range of 1-g combustion applications. Reported here are the first demonstrations of LII performed in a microgravity environment. Examples are shown for laminar and turbulent gas-jet diffusion flames in 0-g.
Characterization of Thick Glass Reinforced Composites
1992-07-01
24 ounces per square yard. The matrices were different polyester resin systems from American Cyanamid and Owens Corning . Specimen thicknesses ranged...fab- ricated similar size plates using the American Cyanamid resin. The Owens Corning plates con- tained 53% volume fraction fiber while the American...thicknesses for the Owens Corning and four for the American Cyanamid. Specimens were loaded in three point bending at a displacement rate that was changed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, H
Purpose: To evaluate the dosimetric metrics of HDR Ring and Tandem applicator Brachytherapy for primary cervical cancers. Methods: The dosimetric metrics of high-risk clinical target volumes (HDR-CTV) of 12 patients (in total 60 fractions/plans) treated with the HDR ring and tandem applicators were retrospectively analyzed. Ring diameter is from 2.6 to 3.4 cm, tandem length is from 4 to 6 cm, and the angle is either 45 or 60 degrees. The first fraction plan was MR guided, the MR images were then used as a reference for contouring the HR-CTV in CT images of following 4 fractions. The nominal prescriptionmore » dose was between 5.2 and 5.8 Gy at the point A. The plans were adjusted to cover at least 90% of the HR-CTV by 90% of the prescription dose and to reduce the doses to the bladder, rectum and bowel-bag. Minimum target dose of D100 and D90 were converted into the biologically equivalent EBRT dose D90-iso and D100-iso (using α/β=10 Gy, 2 Gy/fx). Equivalent uniform doses (EUD) based on the average cancer killing across the target volume were calculated by the modified linear quadratic model (MLQ) from the differential dose volume histogram (DVH) tables. Results: The average D90iso of all plans is 8.1 Gy (ranging from 6.2 to 15 Gy, median 7.8 Gy); the average D100iso is just 4.1 Gy (ranging from 1.8 to 7.8 Gy; median 3.9 Gy). The average EUD is 7.0 Gy (ranging from 6.1 to 9.6 Gy, median 6.9 Gy), which is 87% of the D90iso, and 170% of the D100iso. Conclusion: The EUDs is smaller than D90iso but greater than D100iso. Because the EUD takes into account the intensive cancer cell killing in the high dose zone of HR-CTV, MLQ calculated EUD apparently is more relevant than D90 and D100 to describe the HDR brachytherapy treatment quality.« less
Identification of the Centrifuged Lipoaspirate Fractions Suitable for Postgrafting Survival.
Qiu, Lihong; Su, Yingjun; Zhang, Dongliang; Song, Yajuan; Liu, Bei; Yu, Zhou; Guo, Shuzhong; Yi, Chenggang
2016-01-01
The Coleman centrifugation procedure generates fractions with different adipocyte and progenitor cell densities. This study aimed to identify all fractions that are feasible for implantation. Human lipoaspirates were processed by Coleman centrifugation. The centrifugates were divided arbitrarily into upper, middle, and lower layers. Adipocyte viability, morphology, numbers of stromal vascular fraction cells, and adipose-derived mesenchymal stem cells of each layer were determined. The 12-week volume retention of subcutaneously implanted 0.3-ml lipoasperate of each layer was investigated in an athymic mice model. Most damaged adipocytes were located in the upper layers, whereas the intact adipocytes were distributed in the middle and lower layers. A gradient of stromal vascular fraction cell density was formed in the centrifugates. The implant volume retentions of samples from the upper, middle, and lower layers were 33.44 ± 5.9, 55.11 ± 4.4, and 71.2 ± 5.8 percent, respectively. Furthermore, the middle and lower layers contained significantly more adipose-derived stem cells than did the upper layer. The lower layer contains more viable adipocytes and stromal vascular fraction cells leading to the highest implant volume retention, whereas the most impaired cells are distributed in the upper layer, leading to the least volume retention. Although with a lower stromal vascular fraction content, the middle layer has a substantial number of intact adipocytes that are capable of retaining partial adipose tissue volume after implantation, suggesting that the middle layer may be an alternative fat source when large volumes of fat grafts are needed for transplantation.
Geodetic imaging: Reservoir monitoring using satellite interferometry
Vasco, D.W.; Wicks, C.; Karasaki, K.; Marques, O.
2002-01-01
Fluid fluxes within subsurface reservoirs give rise to surface displacements, particularly over periods of a year or more. Observations of such deformation provide a powerful tool for mapping fluid migration within the Earth, providing new insights into reservoir dynamics. In this paper we use Interferometric Synthetic Aperture Radar (InSAR) range changes to infer subsurface fluid volume strain at the Coso geothermal field. Furthermore, we conduct a complete model assessment, using an iterative approach to compute model parameter resolution and covariance matrices. The method is a generalization of a Lanczos-based technique which allows us to include fairly general regularization, such as roughness penalties. We find that we can resolve quite detailed lateral variations in volume strain both within the reservoir depth range (0.4-2.5 km) and below the geothermal production zone (2.5-5.0 km). The fractional volume change in all three layers of the model exceeds the estimated model parameter uncertainly by a factor of two or more. In the reservoir depth interval (0.4-2.5 km), the predominant volume change is associated with northerly and westerly oriented faults and their intersections. However, below the geothermal production zone proper [the depth range 2.5-5.0 km], there is the suggestion that both north- and northeast-trending faults may act as conduits for fluid flow.
Pindado Jiménez, Oscar; Pérez Pastor, Rosa Ma; Escolano Segovia, Olga; del Reino Querencia, Susana
2015-01-01
This work proposes an analytical procedure for measuring aliphatic and aromatic hydrocarbons fractions present in groundwater. In this method, hydrocarbons are solid phase extracted (SPE) twice from the groundwater and the resulting fractions are analyzed by gas chromatography with flame ionization detection. The first SPE disposes the hydrocarbons present in groundwater in organic solvents and the second SPE divides them into aliphatic and aromatic hydrocarbons. The validation study is carried out and its uncertainties are discussed. Identifying the main sources of uncertainty is evaluated through applying the bottom-up approach. Limits of detection for hydrocarbons ranges are below 5 µg L(-1), precision is not above of 30%, and acceptable recoveries are reached for aliphatic and aromatic fractions studied. The uncertainty due to volume of the sample, factor of calibration and recovery are the highest contributions. The expanded uncertainty range from 13% to 26% for the aliphatic hydrocarbons ranges and from 14% to 23% for the aromatic hydrocarbons ranges. As application, the proposed method is satisfactorily applied to a set of groundwater samples collected in a polluted area where there is evidence to present a high degree of hydrocarbons. The results have shown the range of aliphatic hydrocarbons >C21-C35 is the most abundant, with values ranging from 215 µg L(-1) to 354 µg L(-1), which it is associated to a contamination due to diesel. Copyright © 2014 Elsevier B.V. All rights reserved.
Intra-fraction motion of larynx radiotherapy
NASA Astrophysics Data System (ADS)
Durmus, Ismail Faruk; Tas, Bora
2018-02-01
In early stage laryngeal radiotherapy, movement is an important factor. Thyroid cartilage can move from swallowing, breathing, sound and reflexes. The effects of this motion on the target volume (PTV) during treatment were examined. In our study, the target volume movement during the treatment for this purpose was examined. Thus, setup margins are re-evaluated and patient-based PTV margins are determined. Intrafraction CBCT was scanned in 246 fractions for 14 patients. During the treatment, the amount of deviation which could be lateral, vertical and longitudinal axis was determined. ≤ ± 0.1cm deviation; 237 fractions in the lateral direction, 202 fractions in the longitudinal direction, 185 fractions in the vertical direction. The maximum deviation values were found in the longitudinal direction. Intrafraction guide in laryngeal radiotherapy; we are sure of the correctness of the treatment, the target volume is to adjust the margin and dose more precisely, we control the maximum deviation of the target volume for each fraction. Although the image quality of intrafraction-CBCT scans was lower than the image quality of planning CT, they showed sufficient contrast for this work.
NASA Astrophysics Data System (ADS)
Matos, B. R.; Isidoro, R. A.; Santiago, E. I.; Fonseca, F. C.
2014-12-01
The present study reports on the performance enhancement of direct ethanol fuel cell (DEFC) at 130 °C with Nafion-titania composite electrolytes prepared by sol-gel technique and containing high volume fractions of the ceramic phase. It is found that for high volume fractions of titania (>10 vol%) the ethanol uptake of composites is largely reduced while the proton conductivity at high-temperatures is weakly dependent on the titania content. Such tradeoff between alcohol uptake and conductivity resulted in a boost of DEFC performance at high temperatures using Nafion-titania composites with high fraction of the inorganic phase.
Baxter, Ryan M; Macdonald, Daniel W; Kurtz, Steven M; Steinbeck, Marla J
2013-06-05
Wear, oxidation, and particularly rim impingement damage of ultra-high molecular weight polyethylene total disc replacement components have been observed following surgical revision. However, neither in vitro testing nor retrieval-based evidence has shown the effect(s) of impingement on the characteristics of polyethylene wear debris. Thus, we sought to determine (1) differences in polyethylene particle size, shape, number, or biological activity that correspond to mild or severe rim impingement and (2) in an analysis of all total disc replacements, regardless of impingement classification, whether there are correlations between the extent of regional damage and the characteristics of polyethylene wear debris. The extent of dome and rim damage was characterized for eleven retrieved polyethylene cores obtained at revision surgery after an average duration of implantation of 9.7 years (range, 4.6 to 16.1 years). Polyethylene wear debris was isolated from periprosthetic tissues with use of nitric acid and was imaged with use of environmental scanning electron microscopy. Subsequently, particle size, shape, number, biological activity, and chronic inflammation scores were determined. Grouping of particles by size ranges that represented high biological relevance (<0.1 to 1-μm particles), intermediate biological relevance (1 to 10-μm particles), and low biological relevance (>10-μm particles) revealed an increased volume fraction of particles in the <0.1 to 1-μm and 1 to 10-μm size ranges in the mild-impingement cohort as compared with the severe-impingement cohort. The increased volume fractions resulted in a higher specific biological activity per unit particle volume in the mild-impingement cohort than in the severe-impingement cohort. However, functional biological activity, which is normalized by particle volume (mm3/g of tissue), was significantly higher in the severe-impingement cohort. This increase was due to a larger volume of particles in all three size ranges. In both cohorts, the functional biological activity correlated with the chronic inflammatory response, and the extent of rim penetration positively correlated with increasing particle size, number, and functional biological activity. The results of this study suggest that severe rim impingement increases the production of biologically relevant particles from motion-preserving lumbar total disc replacement components. Prognostic Level IV. See Instructions for Authors for a complete description of levels of evidence.
Baxter, Ryan M.; MacDonald, Daniel W.; Kurtz, Steven M.; Steinbeck, Marla J.
2013-01-01
Background: Wear, oxidation, and particularly rim impingement damage of ultra-high molecular weight polyethylene total disc replacement components have been observed following surgical revision. However, neither in vitro testing nor retrieval-based evidence has shown the effect(s) of impingement on the characteristics of polyethylene wear debris. Thus, we sought to determine (1) differences in polyethylene particle size, shape, number, or biological activity that correspond to mild or severe rim impingement and (2) in an analysis of all total disc replacements, regardless of impingement classification, whether there are correlations between the extent of regional damage and the characteristics of polyethylene wear debris. Methods: The extent of dome and rim damage was characterized for eleven retrieved polyethylene cores obtained at revision surgery after an average duration of implantation of 9.7 years (range, 4.6 to 16.1 years). Polyethylene wear debris was isolated from periprosthetic tissues with use of nitric acid and was imaged with use of environmental scanning electron microscopy. Subsequently, particle size, shape, number, biological activity, and chronic inflammation scores were determined. Results: Grouping of particles by size ranges that represented high biological relevance (<0.1 to 1-μm particles), intermediate biological relevance (1 to 10-μm particles), and low biological relevance (>10-μm particles) revealed an increased volume fraction of particles in the <0.1 to 1-μm and 1 to 10-μm size ranges in the mild-impingement cohort as compared with the severe-impingement cohort. The increased volume fractions resulted in a higher specific biological activity per unit particle volume in the mild-impingement cohort than in the severe-impingement cohort. However, functional biological activity, which is normalized by particle volume (mm3/g of tissue), was significantly higher in the severe-impingement cohort. This increase was due to a larger volume of particles in all three size ranges. In both cohorts, the functional biological activity correlated with the chronic inflammatory response, and the extent of rim penetration positively correlated with increasing particle size, number, and functional biological activity. Conclusions: The results of this study suggest that severe rim impingement increases the production of biologically relevant particles from motion-preserving lumbar total disc replacement components. Level of Evidence: Prognostic Level IV. See Instructions for Authors for a complete description of levels of evidence. PMID:23780545
CyberKnife frameless single-fraction stereotactic radiosurgery for tumors of the sacrum.
Gerszten, Peter C; Ozhasoglu, Cihat; Burton, Steven A; Welch, William C; Vogel, William J; Atkins, Barbara A; Kalnicki, Shalom
2003-08-15
The role of stereotactic radiosurgery for the treatment of intracranial lesions is well established. The experience with radiosurgery for the treatment of spinal and sacral lesions is more limited. Sacral lesions should be amenable to radiosurgical treatment similar to that used for their intracranial counterparts. The authors evaluated a single- fraction radiosurgical technique performed using the CyberKnife Real-Time Image-Guided Radiosurgery System for the treatment of the sacral lesion. The CyberKnife is a frameless radiosurgery system based on the coupling of an orthogonal pair of x-ray cameras to a dynamically manipulated robot-mounted linear accelerator possessing six degrees of freedom, which guides the therapy beam to the intended target without the need for frame-based fixation. All sacral lesions were located and tracked for radiation delivery relative to fiducial bone markers placed percutaneously. Eighteen patients were treated with single-fraction radiosurgery. Tumor histology included one benign and 17 malignant tumors. Dose plans were calculated based on computerized tomography scans acquired using 1.25-mm slices. Planning treatment volume was defined as the radiographically documented tumor volume with no margin. Tumor dose was maintained at 12 to 20 Gy to the 80% isodose line (mean 15 Gy). Tumor volume ranged from 23.6 to 187.4 ml (mean 90 ml). The volume of the cauda equina receiving greater than 8 Gy ranged from 0 to 1 ml (mean 0.1 ml). All patients underwent the procedure in an outpatient setting. No acute radiation toxicity or new neurological deficits occurred during the mean follow-up period of 6 months. Pain improved in all 13 patients who were symptomatic prior to treatment. No tumor progression has been documented on follow-up imaging. Stereotactic radiosurgery was found to be feasible, safe, and effective for the treatment of both benign and malignant sacral lesions. The major potential benefits of radiosurgical ablation of sacral lesions are relatively short treatment time in an outpatient setting and minimal or no side effects. This new technique offers a new and important therapeutic modality for the primary treatment of a variety of sacral tumors or for lesions not amenable to open surgical techniques.
Stereotactic fractionated radiotherapy for the treatment of benign meningiomas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Candish, Charles; McKenzie, Michael; Clark, Brenda G.
Purpose: To assess the use of stereotactic fractionated radiotherapy (SRT) for the treatment of meningiomas. Methods and Materials: Between April 1999 and October 2004, 38 patients underwent SRT. Of 34 patients (36 tumors) assessed, the median age was 53 years. The indication was primary treatment in 26 cases (no histology) and postoperative in 10 cases. The most common sites were cavernous sinus (17), optic nerve (6), and cerebellopontine angle (5). The median gross target volume and planning target volume were 8.9 cm{sup 3} and 18.9 cm{sup 3}, respectively. Stereotactic treatment was delivered with 6-MV photons with static conformal fields (custom-mademore » blocks, 9 patients, and micromultileaf collimator, 25 patients). Median number of fields was six. The median dose prescribed was 50 Gy (range, 45-50.4 Gy) in 28 fractions. The median homogeneity and conformality indices were 1.1 and 1.79, respectively. Results: Treatment was well tolerated. Median follow-up was 26 months with 100% progression-free survival. One patient developed an area of possible radionecrosis related to previous radiotherapy, and 2 men developed mild hypogonadism necessitating testosterone replacement. The vision of 5 of 6 patients with optic pathway meningiomas improved or remained static. Conclusions: Stereotactic fractionated radiotherapy for the treatment of meningiomas is practical, and with early follow-up, seems to be effective.« less
Pharmacokinetic evidence for improved ophthalmic drug delivery by reduction of instilled volume.
Patton, T F
1977-07-01
The bioavailability of topically applied pilocarpine nitrate was studied as a function of instilled volume. As the instilled volume decreased, the fraction of dose absorbed increased. The relationship between fraction absorbed and instilled volume was not direct, but appropriate adjustment of instilled volume and concentration should permit substantial dosage reductions without sacrifice of drug concentration in the eye. The implications of these findings from both a therapeutic and toxicity standpoint are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woody, Neil M.; Videtic, Gregory M.M.; Stephans, Kevin L.
Purpose: Recent studies with two fractionation schemes predicted that the volume of chest wall receiving >30 Gy (V30) correlated with chest wall pain after stereotactic body radiation therapy (SBRT) to the lung. This study developed a predictive model of chest wall pain incorporating radiobiologic effects, using clinical data from four distinct SBRT fractionation schemes. Methods and Materials: 102 SBRT patients were treated with four different fractionations: 60 Gy in three fractions, 50 Gy in five fractions, 48 Gy in four fractions, and 50 Gy in 10 fractions. To account for radiobiologic effects, a modified equivalent uniform dose (mEUD) model calculatedmore » the dose to the chest wall with volume weighting. For comparison, V30 and maximum point dose were also reported. Using univariable logistic regression, the association of radiation dose and clinical variables with chest wall pain was assessed by uncertainty coefficient (U) and C statistic (C) of receiver operator curve. The significant associations from the univariable model were verified with a multivariable model. Results: 106 lesions in 102 patients with a mean age of 72 were included, with a mean of 25.5 (range, 12-55) months of follow-up. Twenty patients reported chest wall pain at a mean time of 8.1 (95% confidence interval, 6.3-9.8) months after treatment. The mEUD models, V30, and maximum point dose were significant predictors of chest wall pain (p < 0.0005). mEUD improved prediction of chest wall pain compared with V30 (C = 0.79 vs. 0.77 and U = 0.16 vs. 0.11). The mEUD with moderate weighting (a = 5) better predicted chest wall pain than did mEUD without weighting (a = 1) (C = 0.79 vs. 0.77 and U = 0.16 vs. 0.14). Body mass index (BMI) was significantly associated with chest wall pain (p = 0.008). On multivariable analysis, mEUD and BMI remained significant predictors of chest wall pain (p = 0.0003 and 0.03, respectively). Conclusion: mEUD with moderate weighting better predicted chest wall pain than did V30, indicating that a small chest wall volume receiving a high radiation dose is responsible for chest wall pain. Independently of dose to the chest wall, BMI also correlated with chest wall pain.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, S; Kim, R; Benhabib, S
Purpose: HDR brachytherapy using interstitial needle template for cervical cancer is commonly delivered in 4-5 fractions. Routine verification of needle positions before each fraction is often based on radiographic imaging of implanted fiducial markers. The current study evaluated interfractional displacement of implanted fiducial markers using CT images. Methods: 9 sequential patients with cervical interstitial needle implants were evaluated. The superior and inferior borders of the target volumes were defined by fiducial markers in planning CT. The implant position was verified with kV orthogonal images before each fraction. A second CT was acquired prior 3rd fraction (one or 2 days postmore » planning CT). Distances from inferior and superior fiducial markers to pubic symphysis plane (perpendicular to vaginal obtulator)were measured. Distance from needle tip of a reference needle (next to the inferior marker) to the pubic symphysis plane was also determined. The difference in fiducial marker distance or needle tip distance between planning CT and CT prior 3rd fraction were measured to assess markers migration and needle displacement. Results: The mean inferior marker displacement was 4.5 mm and ranged 0.9 to 11.3 mm. The mean superior marker displacement was 2.7 mm and ranged 0 to 10.4 mm. There was a good association between inferior and superior marker displacement (r=0.95). Mean averaged inferior and superior marker displacement was 3.3 mm and ranged from 0.1 to 10.9 mm, with a standard deviation of 3.2 mm. The mean needle displacement was 5.6 mm and ranged 0.2 to 15.6 mm. Needle displacements were reduced (p<0.05) after adjusting according to needle-to-fiducials distance. Conclusion: There were small fiducial marker displacements between HDR fractions. Our study suggests a target margin of 9.7 mm to cover interfractional marker displacements (in 95% cases) for pretreatment verification based on radiographic imaging.« less
A Detailed Dosimetric Analysis of Spinal Cord Tolerance in High-Dose Spine Radiosurgery.
Katsoulakis, Evangelia; Jackson, Andrew; Cox, Brett; Lovelock, Michael; Yamada, Yoshiya
2017-11-01
Dose-volume tolerance of the spinal cord (SC) in spinal stereotactic radiosurgery (SRS) is difficult to define because radiation myelitis rates are low, and published reports document cases of myelopathy but do not account for the total number of patients treated at given dose-volume combinations who do not have myelitis. This study reports SC toxicity from single-fraction spinal SRS and presents a comprehensive atlas of the incidence of adverse events to examine dose-volume predictors. A prospective database of all patients undergoing single-fraction spinal SRS at our institution between 2004 and 2011 was reviewed. SC toxicity was defined by clinical myelitis with accompanying magnetic resonance imaging (MRI) signal changes that were not attributable to tumor progression. Dose-volume histogram (DVH) atlases were created for these endpoints. Rates of adverse events with 95% confidence limits and probabilities that rates of adverse events were <2% and <5% for myelitis were determined as functions of dose and absolute volume. Information about DVH and myelitis was available for 228 patients treated at 259 sites. The median follow-up time was 14.6 months (range, 0.1-138.3 months). The median prescribed dose to the planning treatment volume was 24 Gy (range, 18-24 Gy). There were 2 cases of radiation myelitis (rate r=0.7%) with accompanying MRI signal changes. Myelitis occurred in 2 patients, with Dmax >13.33 Gy, and minimum doses to the hottest 0.1, 0.2, 0.5, and 1 cc were >10.66, 10.9, and 8 Gy, respectively; however, both myelitis cases occurred below the 34th percentile for Dmax and there were 194 DVHs in total with Dmax >13.33 Gy. A median SC Dmax of 13.85 Gy is safe and supports that a Dmax limit of 14 Gy carries a low <1% rate of myelopathy. No dose-volume thresholds or relationships between SC dose and myelitis were apparent. This is the largest study examining dosimetric data and radiation-induced myelitis in de novo spine SRS. Copyright © 2017 Elsevier Inc. All rights reserved.
Gomez, Daniel R.; Tucker, Susan L.; Martel, Mary K.; Mohan, Radhe; Balter, Peter A.; Guerra, Jose Luis Lopez; Liu, Hongmei; Komaki, Ritsuko; Cox, James D.; Liao, Zhongxing
2014-01-01
Introduction We analyzed the ability of various patient- and treatment-related factors to predict radiation-induced esophagitis (RE) in patients with non-small cell lung cancer (NSCLC) treated with three-dimensional (3D) conformal radiation therapy (3D-CRT), intensity-modulated radiation therapy (IMRT), or proton beam therapy (PBT). Methods and Materials Patients were treated for NSCLC with 3D-CRT, IMRT, or PBT at MD Anderson from 2000 to 2008 and had full dose-volume histogram (DVH) data available. The endpoint was severe (grade ≥3) RE. The Lyman-Kutcher-Burman (LKB) model was used to analyze RE as a function of the fractional esophageal DVH, with clinical variables included as dose-modifying factors. Results Overall, 652 patients were included: 405 treated with 3D-CRT, 139 with IMRT, and 108 with PBT; corresponding rates of grade ≥3 RE were 8%, 28%, and 6%, with a median time to onset of 42 days (range 11–93 days). A fit of the fractional-DVH LKB model demonstrated that the volume parameter n was significantly different (p=0.046) than 1, indicating that high doses to small volumes are more predictive than mean esophageal dose. The model fit was better for 3D-CRT and PBT than for IMRT. Including receipt of concurrent chemotherapy as a dose-modifying factor significantly improved the LKB model (p=0.005), and the model was further improved by including a variable representing treatment with >30 fractions. Examining individual types of chemotherapy agents revealed a trend toward receipt of concurrent taxanes and increased risk of RE (p=0.105). Conclusions The fractional dose (dose rate) and number of fractions (total dose) distinctly affect the risk of severe RE estimated using the LKB model, and concurrent chemotherapy improves the model fit. This risk of severe RE is underestimated by this model in patients receiving IMRT. PMID:22920974
Matsumura, Noboru; Oguro, Sota; Okuda, Shigeo; Jinzaki, Masahiro; Matsumoto, Morio; Nakamura, Masaya; Nagura, Takeo
2017-10-01
In patients with rotator cuff tears, muscle degeneration is known to be a predictor of irreparable tears and poor outcomes after surgical repair. Fatty infiltration and volume of the whole muscles constituting the rotator cuff were quantitatively assessed using 3-dimensional 2-point Dixon magnetic resonance imaging. Ten shoulders with a partial-thickness tear, 10 shoulders with an isolated supraspinatus tear, and 10 shoulders with a massive tear involving supraspinatus and infraspinatus were compared with 10 control shoulders after matching age and sex. With segmentation of muscle boundaries, the fat fraction value and the volume of the whole rotator cuff muscles were computed. After reliabilities were determined, differences in fat fraction, muscle volume, and fat-free muscle volume were evaluated. Intra-rater and inter-rater reliabilities were regarded as excellent for fat fraction and muscle volume. Tendon rupture adversely increased the fat fraction value of the respective rotator cuff muscle (P < .002). In the massive tear group, muscle volume was significantly decreased in the infraspinatus (P = .035) and increased in the teres minor (P = .039). With subtraction of fat volume, a significant decrease of fat-free volume of the supraspinatus muscle became apparent with a massive tear (P = .003). Three-dimensional measurement could evaluate fatty infiltration and muscular volume with excellent reliabilities. The present study showed that chronic rupture of the tendon adversely increases the fat fraction of the respective muscle and indicates that the residual capacity of the rotator cuff muscles might be overestimated in patients with severe fatty infiltration. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.
MHD effects on heat transfer and entropy generation of nanofluid flow in an open cavity
NASA Astrophysics Data System (ADS)
Mehrez, Zouhaier; El Cafsi, Afif; Belghith, Ali; Le Quéré, Patrick
2015-01-01
The present numerical work investigates the effect of an external oriented magnetic field on heat transfer and entropy generation of Cu-water nanofluid flow in an open cavity heated from below. The governing equations are solved numerically by the finite-volume method. The study has been carried out for a wide range of solid volume fraction 0≤φ≤0.06, Hartmann number 0≤Ha≤100, Reynolds number 100≤Re≤500 and Richardson number 0.001≤Ri≤1 at three inclination angles of magnetic field γ: 0°, 45° and 90°. The numerical results are given by streamlines, isotherms, average Nusselt number, average entropy generation and Bejan number. The results show that flow behavior, temperature distribution, heat transfer and entropy generation are strongly affected by the presence of a magnetic field. The average Nusselt number and entropy generation, which increase by increasing volume fraction of nanoparticles, depend mainly on the Hartmann number and inclination angle of the magnetic field. The variation rates of heat transfer and entropy generation while adding nanoparticles or applying a magnetic field depend on the Richardson and Reynolds numbers.
NASA Astrophysics Data System (ADS)
Togun, Hussein
2016-03-01
This paper presents a numerical investigate on CuO-water nano-fluid and heat transfer in a backward-facing step with and without obstacle. The range of Reynolds number varied from 75 to 225 with volume fraction on CuO nanoparticles varied from 1 to 4 % at constant heat flux was investigated. Continuity, momentum, and energy equations with finite volume method in two dimensions were employed. Four different configurations of backward-facing step (without obstacle, with obstacle of 1.5 mm, with obstacle of 3 mm, with obstacle of 4.5 mm) were considered to find the best thermal performance. The results show that the maximum augmentation in heat transfer was about 22 % for backward-facing step with obstacle of 4.5 mm and using CuO nanoparticles at Reynolds number of 225 compared with backward-facing step without obstacle. It is also observed that increase in size of recirculation region with increase of height obstacle on the channel wall has remarkable effect on thermal performance. The results also found that increases in Reynolds number, height obstacle, and volume fractions of CuO nanoparticles lead to increase of pressure drop.
Sintering of viscous droplets under surface tension
NASA Astrophysics Data System (ADS)
Wadsworth, Fabian B.; Vasseur, Jérémie; Llewellin, Edward W.; Schauroth, Jenny; Dobson, Katherine J.; Scheu, Bettina; Dingwell, Donald B.
2016-04-01
We conduct experiments to investigate the sintering of high-viscosity liquid droplets. Free-standing cylinders of spherical glass beads are heated above their glass transition temperature, causing them to densify under surface tension. We determine the evolving volume of the bead pack at high spatial and temporal resolution. We use these data to test a range of existing models. We extend the models to account for the time-dependent droplet viscosity that results from non-isothermal conditions, and to account for non-zero final porosity. We also present a method to account for the initial distribution of radii of the pores interstitial to the liquid spheres, which allows the models to be used with no fitting parameters. We find a good agreement between the models and the data for times less than the capillary relaxation timescale. For longer times, we find an increasing discrepancy between the data and the model as the Darcy outgassing time-scale approaches the sintering timescale. We conclude that the decreasing permeability of the sintering system inhibits late-stage densification. Finally, we determine the residual, trapped gas volume fraction at equilibrium using X-ray computed tomography and compare this with theoretical values for the critical gas volume fraction in systems of overlapping spheres.
Ferracci, Valerio; Brown, Andrew S; Harris, Peter M; Brown, Richard J C
2015-02-27
The response of a flame ionisation detector (FID) on a gas chromatograph to methane, ethane, propane, i-butane and n-butane in a series of multi-component refinery gas standards was investigated to assess the matrix sensitivity of the instrument. High-accuracy synthetic gas standards, traceable to the International System of Units, were used to minimise uncertainties. The instrument response exhibited a small dependence on the component amount fraction: this behaviour, consistent with that of another FID, was thoroughly characterised over a wide range of component amount fractions and was shown to introduce a negligible bias in the analysis of refinery gas samples, provided a suitable reference standard is employed. No significant effects of the molar volume, density and viscosity of the gas mixtures on the instrument response were observed, indicating that the FID is suitable for the analysis of refinery gas mixtures over a wide range of component amount fractions provided that appropriate drift-correction procedures are employed. Copyright © 2015 Elsevier B.V. All rights reserved.
Effect of ethanol on crystallization of the polymorphs of L-histidine
NASA Astrophysics Data System (ADS)
Wantha, Lek; Punmalee, Neeranuch; Sawaddiphol, Vanida; Flood, Adrian E.
2018-05-01
It is known that the antisolvents used for crystallization can affect the crystallization outcome and may promote the crystallization of a specific polymorph. In this study L-histidine (L-his) is used as a model substance, and ethanol was selected to be an antisolvent. The formation of the polymorphs of L-his in antisolvent crystallization as a function of supersaturation, ethanol volume fraction, and temperature was studied. The induction time for the antisolvent crystallization was also measured. The results showed that the induction time decreases with higher supersaturation and ethanol volume fraction, indicating that the nucleation rate of L-his from antisolvent crystallization (where water was used as the solvent and ethanol as the antisolvent) increases with higher supersaturation, as expected, and ethanol fraction. At all temperatures studied, the pure metastable polymorph B of L-his was obtained initially at higher ethanol volume fraction and supersaturation, while a mixture of the polymorphs A and B was obtained at lower ethanol volume fraction and supersaturation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, C; Hrycushko, B; Jiang, S
2014-06-01
Purpose: To compare the radiobiological effect on large tumors and surrounding normal tissues from single fraction SRS, multi-fractionated SRT, and multi-staged SRS treatment. Methods: An anthropomorphic head phantom with a centrally located large volume target (18.2 cm{sup 3}) was scanned using a 16 slice large bore CT simulator. Scans were imported to the Multiplan treatment planning system where a total prescription dose of 20Gy was used for a single, three staged and three fractionated treatment. Cyber Knife treatment plans were inversely optimized for the target volume to achieve at least 95% coverage of the prescription dose. For the multistage plan,more » the target was segmented into three subtargets having similar volume and shape. Staged plans for individual subtargets were generated based on a planning technique where the beam MUs of the original plan on the total target volume are changed by weighting the MUs based on projected beam lengths within each subtarget. Dose matrices for each plan were export in DICOM format and used to calculate equivalent dose distributions in 2Gy fractions using an alpha beta ratio of 10 for the target and 3 for normal tissue. Results: Singe fraction SRS, multi-stage plan and multi-fractionated SRT plans had an average 2Gy dose equivalent to the target of 62.89Gy, 37.91Gy and 33.68Gy, respectively. The normal tissue within 12Gy physical dose region had an average 2Gy dose equivalent of 29.55Gy, 16.08Gy and 13.93Gy, respectively. Conclusion: The single fraction SRS plan had the largest predicted biological effect for the target and the surrounding normal tissue. The multi-stage treatment provided for a more potent biologically effect on target compared to the multi-fraction SRT treatments with less biological normal tissue than single-fraction SRS treatment.« less
Atomistic simulation of the thermal conductivity in amorphous SiO2 matrix/Ge nanocrystal composites
NASA Astrophysics Data System (ADS)
Kuryliuk, Vasyl V.; Korotchenkov, Oleg A.
2017-04-01
We use nonequilibrium molecular dynamics computer simulations with the Tersoff potential aiming to provide a comprehensive picture of the thermal conductivity of amorphous SiO2 (a-SiO2) matrix with embedded Ge nanocrystals (nc-Ge). The modelling predicts the a-SiO2 matrix thermal conductivity in a temperature range of 50 < T < 500 K yielding a fair agreement with experiment at around room temperature. It is worth noticing that the predicted room-temperature thermal conductivity in a-SiO2 is in very good agreement with the experimental result, which is in marked contrast with the thermal conductivity calculated employing the widely used van Beest-Kramer-van Santen (BKS) potential. We show that the thermal conductivity of composite nc-Ge/a-SiO2 systems decreases steadily with increasing the volume fraction of Ge inclusions, indicative of enhanced interface scattering of phonons imposed by embedded Ge nanocrystals. We also observe that increasing the volume fractions above a certain threshold value results in a progressively increased thermal conductivity of the nanocomposite, which can be explained by increasing volume fraction of a better thermally conducting Ge. Finally, non-equilibrium molecular dynamics simulations with the Tersoff potential are promising for computing the thermal conductivity of nanocomposites based on amorphous SiO2 and can be readily scaled to more complex composite structures with embedded nanoparticles, which thus help design nanocomposites with desired thermal properties.
Effect on the operation properties of DMBR with the addition of GAC
NASA Astrophysics Data System (ADS)
Lin, Jizhi; Zhang, Qian; Hong, Junming
2017-01-01
The membrane bioreactor and dynamic membrane bioreactor were used to examine the effect of granular activated carbon (GAC) on the treatment of synthetic wastewater. After the addition of different volume fractions GAC in the DMBR, the operation parameters, effluent COD, NH4 +-N, NO3 --N, TN concentrations and sludge viscosity of the bioreactor was investigated. The results showed that the addition of GAC could relieve the membrane fouling and improve the removal efficiencies of pollutants in the DMBR. The effluent concentrations of pollutants were linear correlation with the addition of volume fractions of GAC in the bioreactor. The value of R2 of each modulation was almost more than 0.9. The sludge viscosity was almost not affected by the volume fractions of GAC in the bioreactor. The best volume fractions of GAC were 20% in the DMBR.
Yu, Qiang; Reutens, David; O'Brien, Kieran; Vegh, Viktor
2017-02-01
Tissue microstructure features, namely axon radius and volume fraction, provide important information on the function of white matter pathways. These parameters vary on the scale much smaller than imaging voxels (microscale) yet influence the magnetic resonance imaging diffusion signal at the image voxel scale (macroscale) in an anomalous manner. Researchers have already mapped anomalous diffusion parameters from magnetic resonance imaging data, but macroscopic variations have not been related to microscale influences. With the aid of a tissue model, we aimed to connect anomalous diffusion parameters to axon radius and volume fraction using diffusion-weighted magnetic resonance imaging measurements. An ex vivo human brain experiment was performed to directly validate axon radius and volume fraction measurements in the human brain. These findings were validated using electron microscopy. Additionally, we performed an in vivo study on nine healthy participants to map axon radius and volume fraction along different regions of the corpus callosum projecting into various cortical areas identified using tractography. We found a clear relationship between anomalous diffusion parameters and axon radius and volume fraction. We were also able to map accurately the trend in axon radius along the corpus callosum, and in vivo findings resembled the low-high-low-high behaviour in axon radius demonstrated previously. Axon radius and volume fraction measurements can potentially be used in brain connectivity studies and to understand the implications of white matter structure in brain diseases and disorders. Hum Brain Mapp 38:1068-1081, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Hoppmann, Mario; Hunkeler, Priska A.; Hendricks, Stefan; Kalscheuer, Thomas; Gerdes, Rüdiger
2016-04-01
In Antarctica, ice crystals (platelets) form and grow in supercooled waters below ice shelves. These platelets rise, accumulate beneath nearby sea ice, and subsequently form a several meter thick, porous sub-ice platelet layer. This special ice type is a unique habitat, influences sea-ice mass and energy balance, and its volume can be interpreted as an indicator of the health of an ice shelf. Although progress has been made in determining and understanding its spatio-temporal variability based on point measurements, an investigation of this phenomenon on a larger scale remains a challenge due to logistical constraints and a lack of suitable methodology. In the present study, we applied a lateral constrained Marquardt-Levenberg inversion to a unique multi-frequency electromagnetic (EM) induction sounding dataset obtained on the ice-shelf influenced fast-ice regime of Atka Bay, eastern Weddell Sea. We adapted the inversion algorithm to incorporate a sensor specific signal bias, and confirmed the reliability of the algorithm by performing a sensitivity study using synthetic data. We inverted the field data for sea-ice and platelet-layer thickness and electrical conductivity, and calculated ice-volume fractions within the platelet layer using Archie's Law. The thickness results agreed well with drillhole validation datasets within the uncertainty range, and the ice-volume fraction yielded results comparable to other studies. Both parameters together enable an estimation of the total ice volume within the platelet layer, which was found to be comparable to the volume of landfast sea ice in this region, and corresponded to more than a quarter of the annual basal melt volume of the nearby Ekström Ice Shelf. Our findings show that multi-frequency EM induction sounding is a suitable approach to efficiently map sea-ice and platelet-layer properties, with important implications for research into ocean/ice-shelf/sea-ice interactions. However, a successful application of this technique requires a break with traditional EM sensor calibration strategies due to the need of absolute calibration with respect to a physical forward model.
NASA Astrophysics Data System (ADS)
Hendricks, S.; Hoppmann, M.; Hunkeler, P. A.; Kalscheuer, T.; Gerdes, R.
2015-12-01
In Antarctica, ice crystals (platelets) form and grow in supercooled waters below ice shelves. These platelets rise and accumulate beneath nearby sea ice to form a several meter thick sub-ice platelet layer. This special ice type is a unique habitat, influences sea-ice mass and energy balance, and its volume can be interpreted as an indicator for ice - ocean interactions. Although progress has been made in determining and understanding its spatio-temporal variability based on point measurements, an investigation of this phenomenon on a larger scale remains a challenge due to logistical constraints and a lack of suitable methodology. In the present study, we applied a lateral constrained Marquardt-Levenberg inversion to a unique multi-frequency electromagnetic (EM) induction sounding dataset obtained on the ice-shelf influenced fast-ice regime of Atka Bay, eastern Weddell Sea. We adapted the inversion algorithm to incorporate a sensor specific signal bias, and confirmed the reliability of the algorithm by performing a sensitivity study using synthetic data. We inverted the field data for sea-ice and sub-ice platelet-layer thickness and electrical conductivity, and calculated ice-volume fractions from platelet-layer conductivities using Archie's Law. The thickness results agreed well with drill-hole validation datasets within the uncertainty range, and the ice-volume fraction also yielded plausible results. Our findings imply that multi-frequency EM induction sounding is a suitable approach to efficiently map sea-ice and platelet-layer properties. However, we emphasize that the successful application of this technique requires a break with traditional EM sensor calibration strategies due to the need of absolute calibration with respect to a physical forward model.
Modeling of Light Reflection from Human Skin
NASA Astrophysics Data System (ADS)
Delgado, J. A.; Cornejo, A.; Rivas-Silva, J. F.; Rodríguez, E. E.
2006-09-01
In this work a two-layer model is used to simulate the spectral reflectance of adult human skin. We report and discuss diffuse reflectance spectra of this model for three values of the volume fraction of melanosomes fme, namely a) lightly pigmented skin fme = 4%, b) moderately pigmented skin fme = 14% and c) heavily pigmented skin fme = 30% at a volume fraction of blood fbl = 0.2%. We also considered the modeling of reflectance spectra for two values of fbl (0.2% and 1%) with fme = 4%. Both simulations were done in the 400-700 nm spectral range using the Monte Carlo simulation code MCML in standard C. Results showed that the principal signatures of human skin reflectance spectrum are obtained with this model and that it could be of valuable use to made predictions of diffuse reflectance of human skin for different values of the parameters related to skin characterization. These parameters can be associated to distinct medical conditions, such as erythema, jaundice, etc.
Characterizing property distributions of polymeric nanogels by size-exclusion chromatography.
Mourey, Thomas H; Leon, Jeffrey W; Bennett, James R; Bryan, Trevor G; Slater, Lisa A; Balke, Stephen T
2007-03-30
Nanogels are highly branched, swellable polymer structures with average diameters between 1 and 100nm. Size-exclusion chromatography (SEC) fractionates materials in this size range, and it is commonly used to measure nanogel molar mass distributions. For many nanogel applications, it may be more important to calculate the particle size distribution from the SEC data than it is to calculate the molar mass distribution. Other useful nanogel property distributions include particle shape, area, and volume, as well as polymer volume fraction per particle. All can be obtained from multi-detector SEC data with proper calibration and data analysis methods. This work develops the basic equations for calculating several of these differential and cumulative property distributions and applies them to SEC data from the analysis of polymeric nanogels. The methods are analogous to those used to calculate the more familiar SEC molar mass distributions. Calibration methods and characteristics of the distributions are discussed, and the effects of detector noise and mismatched concentration and molar mass sensitive detector signals are examined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alfred-Duplan, C.; Musso, J.; Gavarri, J.R.
1994-05-01
Composite pellets were prepared from low-density polyethylene (LDPE) and vanadium dioxide powders. The VO[sub 2] pigments are used for their insulating-to-metallic transition at 341 K in order to obtain electrically variable composite materials. The volume fractions of VO[sub 2] powders vary from [phi] = 0 to [phi] = 0.55. The composite samples are characterized by X-ray diffraction and scanning electron microscopy. Complex impedance analysis in the frequency range 10[sup [minus]1] to 10[sup 6]. Hz is carried out at room temperature and at T = 363 K, to observe the insulator-metal transition of VO[sub 2] pigments dispersed in the polymer host.more » The variation of the complex impedance modulus [vert bar]Z[vert bar] with frequency and with VO[sub 2] volume fraction ([phi]) is discussed. A specific (R, C) impedance model permits interpretation of the experimental results in terms of percolation; the observed variations can be accounted for.« less
Role of isostaticity and load-bearing microstructure in the elasticity of yielded colloidal gels.
Hsiao, Lilian C; Newman, Richmond S; Glotzer, Sharon C; Solomon, Michael J
2012-10-02
We report a simple correlation between microstructure and strain-dependent elasticity in colloidal gels by visualizing the evolution of cluster structure in high strain-rate flows. We control the initial gel microstructure by inducing different levels of isotropic depletion attraction between particles suspended in refractive index matched solvents. Contrary to previous ideas from mode coupling and micromechanical treatments, our studies show that bond breakage occurs mainly due to the erosion of rigid clusters that persist far beyond the yield strain. This rigidity contributes to gel elasticity even when the sample is fully fluidized; the origin of the elasticity is the slow Brownian relaxation of rigid, hydrodynamically interacting clusters. We find a power-law scaling of the elastic modulus with the stress-bearing volume fraction that is valid over a range of volume fractions and gelation conditions. These results provide a conceptual framework to quantitatively connect the flow-induced microstructure of soft materials to their nonlinear rheology.
Turbulent forced convection of nanofluids downstream an abrupt expansion
NASA Astrophysics Data System (ADS)
Kimouche, Abdelali; Mataoui, Amina
2018-03-01
Turbulent forced convection of Nanofluids through an axisymmetric abrupt expansion is investigated numerically in the present study. The governing equations are solved by ANYS 14.0 CFD code based on the finite volume method by implementing the thermo-physical properties of each nanofluid. All results are analyzed through the evolutions of skin friction coefficient and Nusselt number. For each nanofluid, the effect of both volume fraction and Reynolds number on this type of flow configuration, are examined. An increase on average Nusselt number with the volume fraction and Reynolds number, are highlighted and correlated. Two relationships are proposed. The first one, determines the average Nusselt number versus Reynolds number, volume fraction and the ratio of densities of the solid particles to that of the base fluid ( \\overline{Nu}=f(\\operatorname{Re},φ, ρ_s/ρ_f) ). The second one varies according Reynolds number, volume fraction and the conductivities ratio of solid particle to that of the base fluid ( \\overline{Nu}=f(\\operatorname{Re},φ, k_s/k_f) ).
Fractional-wrapped branes with rotation, linear motion and background fields
NASA Astrophysics Data System (ADS)
Maghsoodi, Elham; Kamani, Davoud
2017-09-01
We obtain two boundary states corresponding to the two folds of a fractional-wrapped Dp-brane, i.e. the twisted version under the orbifold C2 /Z2 and the untwisted version. The brane has rotation and linear motion, in the presence of the following background fields: the Kalb-Ramond tensor, a U (1) internal gauge potential and a tachyon field. The rotation and linear motion are inside the volume of the brane. The brane lives in the d-dimensional spacetime, with the orbifold-toroidal structure Tn ×R 1 , d - n - 5 ×C2 /Z2 in the twisted sector. Using these boundary states we calculate the interaction amplitude of two parallel fractional Dp-branes with the foregoing setup. Various properties of this amplitude such as the long-range behavior will be analyzed.
NASA Astrophysics Data System (ADS)
Massango, Herieta; Kono, Koji; Tsutaoka, Takanori; Kasagi, Teruhiro; Yamamoto, Shinichiro; Hatakeyama, Kenichi
2018-05-01
Complex permeability and permittivity spectra of Ni-Zn Ferrite/Cu hybrid granular composite materials have been studied in the RF to microwave frequency range. The electrical conductivity σ shows insulating properties in the volume fraction of Cu particles below φ = 0.14. A large jump in conductivity was observed between φ = 0.14 and 0.24 indicating that the Cu particles make metallic conduction between this interval. Hence, the percolation threshold φC, was estimated to be 0.14. A percolation-induced low frequency plasmonic state with negative permittivity spectrum was observed from φ = 0.14-0.24. Meanwhile the negative permeability was observed at φ = 0.16, 0.19 and 0.24. Hence the DNG characteristic was realized in these Cu volume content in the frequency range from 105 MHz to 2 GHz.
NASA Astrophysics Data System (ADS)
Winter, S.; F-X Wagner, M.
2016-03-01
A combination of good ductility and fatigue resistance makes β-titanium alloys interesting for many current and potential future applications. The mechanical behavior is primarily determined by microstructural parameters like (beta phase) grain size, morphology and volume fraction of primary / secondary α-phase precipitates, and this allows changing and optimizing their mechanical properties across a wide range. In this study, we investigate the possibility to modify the microstructure of the high-strength beta titanium alloy Ti-10V-2Fe-3Al, with a special focus on shape and volume fraction of primary α-phase. In addition to the conventional strategy for precipitation of primary α, a special thermo-mechanical processing is performed; this processing route combines the conventional heat treatment with incremental forming during the primary α-phase annealing. After incremental forming, considerable variations in terms of microstructure and mechanical properties can be obtained for different thermo-mechanical processing routes. The microstructures of the deformed samples are characterized by globular as well as lamellar (bimodal) α precipitates, whereas conventional annealing only results in the formation of lamellar precipitates. Because of the smaller size, and the lower amount, of α-phase after incremental forming, tensile strength is not as high as after the conventional strategy. However, high amounts of grain boundary α and lamellar αp-phase in the undeformed samples lead to a significantly lower ductility in comparison to the matrix with bimodal structures obtained by thermo-mechanical processing. These results illustrate the potential of incremental forming during the annealing to modify the microstructure of the beta titanium Ti-10V-2Fe-3Al in a wide range of volume fractions and morphologies of the primary α phase, which in turn leads to considerably changes, and improved, mechanical properties.
Momentum balance and stresses in a suspension of spherical particles in a plane Couette flow
NASA Astrophysics Data System (ADS)
Rahmani, Mona; Hammouti, Abdelkader; Wachs, Anthony
2018-04-01
Non-Brownian suspension of monodisperse spherical particles, with volume fractions ranging between ϕ = 0.05 and 0.38 and particle Reynolds numbers ranging between Rep = 0.002 and 20, in plane Couette shear flows is investigated using three-dimensional particle-resolved numerical simulations. We examine the effects of volume fraction and particle Reynolds number on the macroscopic and microscopic stresses in the fluid phase. The effective viscosity of the suspension is in a good agreement with the previous empirical and experimental studies. At Rep = 20, however, the effective viscosity increases significantly compared to the lower particle Reynolds number simulations in the Stokes flow regime. Examining the stresses over the depth of the Couette gap reveals that this increase in wall shear stresses at high particle Reynolds numbers is mainly due to the significantly higher particle phase stress contributions. Next, we examine the momentum balance in the fluid and particle phase for different regimes to assess the significance of particle/particle interaction and fluid and particle inertia. At the highest particle Reynolds number and volume fraction, the particle inertia plays a dominant role in the momentum balance and the fluid inertia is non-negligible, while the short-lived contact forces are negligible compared to these effects. For all other regimes, the fluid inertia is negligible, but the particle inertia and contact forces are important in the momentum balance. Reynolds stresses originated from velocity fluctuations do not contribute significantly to the suspension stresses in any of the regimes we have studied, while the reduction in the shear-induced particle rotation can be a reason for higher wall shear stress at Rep = 20. Finally, we study the kinematics of particles, including their velocity fluctuations, rotation, and diffusion over the depth of the Couette gap. The particle diffusion coefficients in the cross flow direction exhibit an abrupt increase at Rep = 20.
Interpreting spectral unmixing coefficients: From spectral weights to mass fractions
NASA Astrophysics Data System (ADS)
Grumpe, Arne; Mengewein, Natascha; Rommel, Daniela; Mall, Urs; Wöhler, Christian
2018-01-01
It is well known that many common planetary minerals exhibit prominent absorption features. Consequently, the analysis of spectral reflectance measurements has become a major tool of remote sensing. Quantifying the mineral abundances, however, is not a trivial task. The interaction between the incident light rays and particulate surfaces, e.g., the lunar regolith, leads to a non-linear relationship between the reflectance spectra of the pure minerals, the so-called ;endmembers;, and the surface's reflectance spectrum. It is, however, possible to transform the non-linear reflectance mixture into a linear mixture of single-scattering albedos of the Hapke model. The abundances obtained by inverting the linear single-scattering albedo mixture may be interpreted as volume fractions which are weighted by the endmember's extinction coefficient. Commonly, identical extinction coefficients are assumed throughout all endmembers and the obtained volume fractions are converted to mass fractions using either measured or assumed densities. In theory, the proposed method may cover different grain sizes if each grain size range of a mineral is treated as a distinct endmember. Here, we present a method to transform the mixing coefficients to mass fractions for arbitrary combinations of extinction coefficients and densities. The required parameters are computed from reflectance measurements of well defined endmember mixtures. Consequently, additional measurements, e.g., the endmember density, are no longer required. We evaluate the method based on laboratory measurements and various results presented in the literature, respectively. It is shown that the procedure transforms the mixing coefficients to mass fractions yielding an accuracy comparable to carefully calibrated laboratory measurements without additional knowledge. For our laboratory measurements, the square root of the mean squared error is less than 4.82 wt%. In addition, the method corrects for systematic effects originating from mixtures of endmembers showing a highly varying albedo, e.g., plagioclase and pyroxene.
Eaton, Bree R; Gebhardt, Brian; Prabhu, Roshan; Shu, Hui-Kuo; Curran, Walter J; Crocker, Ian
2013-06-07
Hypofractionated Radiosurgery (HR) is a therapeutic option for delivering partial brain radiotherapy (RT) to large brain metastases or resection cavities otherwise not amenable to single fraction radiosurgery (SRS). The use, safety and efficacy of HR for brain metastases is not well characterized and the optimal RT dose-fractionation schedule is undefined. Forty-two patients treated with HR in 3-5 fractions for 20 (48%) intact and 22 (52%) resected brain metastases with a median maximum dimension of 3.9 cm (0.8-6.4 cm) between May 2008 and August 2011 were reviewed. Twenty-two patients (52%) had received prior radiation therapy. Local (LC), intracranial progression free survival (PFS) and overall survival (OS) are reported and analyzed for relationship to multiple RT variables through Cox-regression analysis. The most common dose-fractionation schedules were 21 Gy in 3 fractions (67%), 24 Gy in 4 fractions (14%) and 30 Gy in 5 fractions (12%). After a median follow-up time of 15 months (range 2-41), local failure occurred in 13 patients (29%) and was a first site of failure in 6 patients (14%). Kaplan-Meier estimates of 1 year LC, intracranial PFS, and OS are: 61% (95% CI 0.53 - 0.70), 55% (95% CI 0.47 - 0.63), and 73% (95% CI 0.65 - 0.79), respectively. Local tumor control was negatively associated with PTV volume (p = 0.007) and was a significant predictor of OS (HR 0.57, 95% CI 0.33 - 0.98, p = 0.04). Symptomatic radiation necrosis occurred in 3 patients (7%). HR is well tolerated in both new and recurrent, previously irradiated intact or resected brain metastases. Local control is negatively associated with PTV volume and a significant predictor of overall survival, suggesting a need for dose escalation when using HR for large intracranial lesions.
Planar measurements of soot volume fraction and OH in a JP-8 pool fire
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henriksen, Tara L.; Ring, Terry A.; Eddings, Eric G.
2009-07-15
The simultaneous measurement of soot volume fraction by laser induced incandescence (LII) and qualitative imaging of OH by laser induced fluorescence (LIF) was performed in a JP-8 pool fire contained in a 152 mm diameter pan. Line of sight extinction was used to calibrate the LII system in a laminar flame, and to provide an independent method of measuring average soot volume fraction in the turbulent flame. The presence of soot in the turbulent flame was found to be approximately 50% probable, resulting in high levels of optical extinction, which increased slightly through the flame from approximately 30% near themore » base, to approximately 50% at the tip. This high soot loading pushes both techniques toward their detection limit. Nevertheless, useful accuracy was obtained, with the LII measurement of apparent extinction in the turbulent flame being approximately 21% lower than a direct measurement, consistent with the influence of signal trapping. The axial and radial distributions of soot volume fraction are presented, along with PDFs of volume fraction, and new insight into the behavior of soot sheets in pool fires are sought from the simultaneous measurements of OH and LII. (author)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murthy, Vedang, E-mail: vmurthy@actrec.gov.in; Shukla, Pragya; Adurkar, Pranjal
2012-09-01
Purpose: To evaluate whether information from the initial fractions can determine which patients are likely to consistently exceed their planning dose-volume constraints during the course of radiotherapy for prostate cancer. Methods and Materials: Ten patients with high-risk prostate cancer were treated with helical tomotherapy to a dose of 60 Gy in 20 fractions. The prostate, rectum, and bladder were recontoured on their daily megavoltage computed tomography scans and the dose was recalculated. The bladder and rectal volumes (in mL) receiving {>=}100% and {>=}70% of the prescribed dose in each fraction and in the original plans were recorded. A fraction formore » which the difference between planned and delivered was more than 2 mL was considered a volume failure. Similarly if the difference in the planned and delivered maximum dose (D{sub max}) was {>=}1% for the rectum and bladder, the fraction was considered a dose failure. Each patient's first 3 to 5 fractions were analyzed to determine if they correctly identified those patients who would consistently fail (i.e., {>=}20% of fractions) during the course of their radiotherapy. Results: Six parameters were studied; the rectal volume (RV) and bladder volumes (BV) (in mL) received {>=}100% and {>=}70% of the prescribed dose and maximum dose to 2 mL of the rectum and bladder. This was given by RV{sub 100}, RV{sub 70}, BV{sub 100}, BV{sub 70}, RD{sub max}, and BD{sub max}, respectively. When more than 1 of the first 3 fractions exceed the planning constraint as defined, it accurately predicts consistent failures through the course of the treatment. This method is able to correctly identify the consistent failures about 80% (RV{sub 70}, BV{sub 100}, and RV{sub 100}), 90% (BV{sub 70}), and 100% (RD{sub max} and BD{sub max}) of the times. Conclusions: This study demonstrates the feasibility of a method accurately identifying patients who are likely to consistently exceed the planning constraints during the course of their treatment, using information from the first 3 to 5 fractions.« less
Bahri, S; Flickinger, J C; Kalend, A M; Deutsch, M; Belani, C P; Sciurba, F C; Luketich, J D; Greenberger, J S
1999-01-01
A five-field conformal technique with three-dimensional radiation therapy treatment planning (3-DRTP) has been shown to permit better definition of the target volume for lung cancer, while minimizing the normal tissue volume receiving greater than 50% of the target dose. In an initial study to confirm the safety of conventional doses, we used the five-field conformal 3-DRTP technique. We then used the technique in a second study, enhancing the therapeutic index in a series of 42 patients, as well as to evaluate feasibility, survival outcome, and treatment toxicity. Forty-two consecutive patients with nonsmall-cell lung carcinoma (NSCLC) were evaluated during the years 1993-1997. The median age was 60 years (range 34-80). The median radiation therapy (RT) dose to the gross tumor volume was 6,300 cGy (range 5,000-6,840 cGy) delivered over 6 to 6.5 weeks in 180-275 cGy daily fractions, 5 days per week. There were three patients who received a split course treatment of 5,500 cGy in 20 fractions, delivering 275 cGy daily with a 2-week break built into the treatment course after 10 fractions. The stages of disease were II in 2%, IIIA in 40%, IIIB in 42.9%, and recurrent disease in 14.3% of the patients. The mean tumor volume was 324.14 cc (range 88.3-773.7 cc); 57.1% of the patients received combined chemoradiotherapy, while the others were treated with radiation therapy alone. Of the 42 patients, 7 were excluded from the final analysis because of diagnosis of distant metastasis during treatment. Two of the patients had their histology reinterpreted as being other than NSCLC, 2 patients did not complete RT at the time of analysis, and 1 patient voluntarily discontinued treatment because of progressive deterioration. Median follow-up was 11.2 months (range 3-32.5 months). Survival for patients with Stage III disease was 70.2% at 1 year and 51.5% at 2 years, with median survival not yet reached. Local control for the entire series was 23.3+/-11.4% at 2 years. However, for Stage III patients, local control was 50% at 1 year and 30% at 2 years. Patients who received concurrent chemotherapy had significantly improved survival (P = 0.002) and local control (P = 0.004), compared with RT alone. Late esophageal toxicity of > or =Grade 3 occurred in 14.1+/-9.3% of patients (3 of 20) receiving combined chemoradiotherapy, but in none of the 15 patients treated with RT alone. Pulmonary toxicity limited to Grades 1-2 occurred in 6.8% of the patients, and none developed > or =Grade 3 pulmonary toxicity. Patients with locally advanced NSCLC, who commonly have tumor volumes in excess of 200 cc, presenta challenge for adequate dose delivery without significant toxicity. Our five-field conformal 3-DRTP technique, which incorporates treatment planning by dose/volume histogram (DVH) was associated with minimal toxicity and may facilitate dose escalation to the gross tumor.
Auction dynamics: A volume constrained MBO scheme
NASA Astrophysics Data System (ADS)
Jacobs, Matt; Merkurjev, Ekaterina; Esedoǧlu, Selim
2018-02-01
We show how auction algorithms, originally developed for the assignment problem, can be utilized in Merriman, Bence, and Osher's threshold dynamics scheme to simulate multi-phase motion by mean curvature in the presence of equality and inequality volume constraints on the individual phases. The resulting algorithms are highly efficient and robust, and can be used in simulations ranging from minimal partition problems in Euclidean space to semi-supervised machine learning via clustering on graphs. In the case of the latter application, numerous experimental results on benchmark machine learning datasets show that our approach exceeds the performance of current state-of-the-art methods, while requiring a fraction of the computation time.
Microstructural analysis of aluminum high pressure die castings
NASA Astrophysics Data System (ADS)
David, Maria Diana
Microstructural analysis of aluminum high pressure die castings (HPDC) is challenging and time consuming. Automating the stereology method is an efficient way in obtaining quantitative data; however, validating the accuracy of this technique can also pose some challenges. In this research, a semi-automated algorithm to quantify microstructural features in aluminum HPDC was developed. Analysis was done near the casting surface where it exhibited fine microstructure. Optical and Secondary electron (SE) and backscatter electron (BSE) SEM images were taken to characterize the features in the casting. Image processing steps applied on SEM and optical micrographs included median and range filters, dilation, erosion, and a hole-closing function. Measurements were done on different image pixel resolutions that ranged from 3 to 35 pixel/μm. Pixel resolutions below 6 px/μm were too low for the algorithm to distinguish the phases from each other. At resolutions higher than 6 px/μm, the volume fraction of primary α-Al and the line intercept count curves plateaued. Within this range, comparable results were obtained validating the assumption that there is a range of image pixel resolution relative to the size of the casting features at which stereology measurements become independent of the image resolution. Volume fraction within this curve plateau was consistent with the manual measurements while the line intercept count was significantly higher using the computerized technique for all resolutions. This was attributed to the ragged edges of some primary α-Al; hence, the algorithm still needs some improvements. Further validation of the code using other castings or alloys with known phase amount and size may also be beneficial.
Elastic modulus of phases in Ti–Mo alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Wei-dong; Liu, Yong, E-mail: yonliu11@aliyun.com; Wu, Hong
2015-08-15
In this work, a series of binary Ti–Mo alloys with the Mo contents ranging from 3.2 to 12 at.% were prepared using non-consumable arc melting. The microstructures were investigated by X-ray diffraction and transmission electron microscope, and the elastic modulus was evaluated by nanoindentation testing technique. The evolution of the volume fractions of ω phase was investigated using X-ray photoelectron spectroscopy. The results indicated that the phase constitution and elastic modulus of the Ti–Mo alloys are sensitive to the Mo content. Ti–3.2Mo and Ti–8Mo alloys containing only α and β phases, respectively, have a low elastic modulus. In contrast, Ti–4.5Mo,more » Ti–6Mo, Ti–7Mo alloys, with different contents of ω phase, have a high elastic modulus. A simple micromechanical model was used to calculate the elastic modulus of ω phase (E{sub ω}), which was determined to be 174.354 GPa. - Highlights: • Ti–Mo alloys with the Mo contents ranging from 3.2 to 12 at.% were investigated. • XPS was used to investigate the volume fractions of ω phase. • The elastic modulus of Ti–Mo alloys is sensitive to the Mo content. • The elastic modulus of ω phase was determined to be 174.354 GPa.« less
Gkoumas, Spyridon; Villanueva-Perez, Pablo; Wang, Zhentian; Romano, Lucia; Abis, Matteo; Stampanoni, Marco
2016-01-01
In X-ray grating interferometry, dark-field contrast arises due to partial extinction of the detected interference fringes. This is also called visibility reduction and is attributed to small-angle scattering from unresolved structures in the imaged object. In recent years, analytical quantitative frameworks of dark-field contrast have been developed for highly diluted monodisperse microsphere suspensions with maximum 6% volume fraction. These frameworks assume that scattering particles are separated by large enough distances, which make any interparticle scattering interference negligible. In this paper, we start from the small-angle scattering intensity equation and, by linking Fourier and real-space, we introduce the structure factor and thus extend the analytical and experimental quantitative interpretation of dark-field contrast, for a range of suspensions with volume fractions reaching 40%. The structure factor accounts for interparticle scattering interference. Without introducing any additional fitting parameters, we successfully predict the experimental values measured at the TOMCAT beamline, Swiss Light Source. Finally, we apply this theoretical framework to an experiment probing a range of system correlation lengths by acquiring dark-field images at different energies. This proposed method has the potential to be applied in single-shot-mode using a polychromatic X-ray tube setup and a single-photon-counting energy-resolving detector. PMID:27734931
Soriano, Brian D; Hoch, Martin; Ithuralde, Alejandro; Geva, Tal; Powell, Andrew J; Kussman, Barry D; Graham, Dionne A; Tworetzky, Wayne; Marx, Gerald R
2008-04-08
Quantitative assessment of ventricular volumes and mass in pediatric patients with single-ventricle physiology would aid clinical management, but it is difficult to obtain with 2-dimensional echocardiography. The purpose of the present study was to compare matrix-array 3-dimensional echocardiography (3DE) measurements of single-ventricle volumes, mass, and ejection fraction with those measured by cardiac magnetic resonance (CMR) in young patients. Twenty-nine patients (median age, 7 months) with a functional single ventricle undergoing CMR under general anesthesia were prospectively enrolled. The 3DE images were acquired at the conclusion of the CMR. Twenty-seven of 29 3DE data sets (93%) were optimal for 3DE assessment. Two blinded and independent observers performed 3DE measurements of volume, mass, and ejection fraction. The 3DE end-diastolic volume correlated well (r=0.96) but was smaller than CMR by 9% (P<0.01), and 3DE ejection fraction was smaller than CMR by 11% (P<0.01). There was no significant difference in measurements of end-systolic volume and mass. The 3DE interobserver differences for mass and volumes were not significant except for ejection fraction (8% difference; P<0.05). Intraobserver differences were not significant. In young pediatric patients with a functional single ventricle, matrix-array 3DE measurements of mass and volumes compare well with those obtained by CMR. 3DE will provide an important modality for the serial analysis of ventricular size and performance in young patients with functional single ventricles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halevy, I.; Zamir, G; Winterrose, M
The phase stability of a commercial purity (Ti-CP), high purity (Ti-HP) and Ti-6Al-4V alloy were investigated in a diamond anvil cell up to 32 GPa and 298 K using a polychromatic X-ray beam. The Ti-CP and Ti-HP shown the same HCP (c/a {approx} 0.632) to Hexagonal (c/a {approx} 1.63) non reversible martensitic transition at about 9 GPa. The as received Ti-6Al-4V shows a very low relative volume fraction {beta}-Ti/{alpha}-Ti. No phase changes were observed in the Ti-6Al-4V alloy in the pressure range of this study. The {alpha} phase of the Ti-6Al-4V shows monotonic volume cell pressure dependence. This volume changemore » is reversible and non-hysteretic. The cell of the a phase recovered its original volume when the pressure was released.« less
NASA Astrophysics Data System (ADS)
Achsah, R. S.; Shyam, S.; Mayuri, N.; Anantharaj, R.
2018-04-01
Deep eutectic solvents (DES) and ionic liquids (ILs) have their applications in various fields of research and in industries due to their attractive physiochemical properties. In this study, the combined thermodynamic properties of DES (choline chloride-glycerol) + IL1 (1-butyl-3-methylimiazolium acetate) and DES(choline chloride-glycerol) + IL2 (1-ethyl-3-methylimadzolium ethyl sulphate) have been studied. The thermodynamic properties such as excess molar volume, partial molar volume, excess partial molar volume and apparent molar volume were calculated for different mole fractions ranging from 0 to 1 and varying temperatures from 293.15 K to 343.15 K. In order to know the solvent properties of DESs and ILs mixtures at different temperatures and their molecular interactions to enhance the solvent performance and process efficiency at fixed composition and temperature the thermodynamic properties were analyzed.
NASA Astrophysics Data System (ADS)
McCarley, Joshua; Alabbad, B.; Tin, S.
2018-03-01
The influence of varying fractions of primary gamma prime precipitates on the hot deformation and annealing behavior of an experimental Nickel-based superalloy containing 24 wt pct. Co was investigated. Billets heat treated at 1110 °C or 1135 °C were subjected to hot compression tests at temperatures ranging from 1020 °C to 1060 °C and strain rates ranging from 0.001 to 0.1/s. The microstructures were characterized using electron back scatter diffraction in the as-deformed condition as well as following a super-solvus anneal heat treatment at 1140 °C for 1 hour. This investigation sought to quantify and understand what effect the volume fraction of primary gamma prime precipitates has on the dynamic recrystallization behavior and resulting length fraction ∑3 twin boundaries in the low stacking fault superalloy following annealing. Although deformation at the lower temperatures and higher strain rates led to dynamic recrystallization for both starting microstructures, comparatively lower recrystallized fractions were observed in the 1135 °C billet microstructures deformed at strain rates of 0.1/s and 0.05/s. Subsequent annealing of the 1135 °C billet microstructures led to a higher proportion of annealing twins when compared to the annealed 1110 °C billet microstructures.
Park, Jung-Jun; Yoo, Doo-Yeol; Park, Gi-Joon; Kim, Sung-Wook
2017-01-28
In this study, the flexural behavior of ultra-high-performance fiber-reinforced concrete (UHPFRC) is examined as a function of fiber length and volume fraction. Straight steel fiber with three different lengths ( l f ) of 13, 19.5, and 30 mm and four different volume fractions ( v f ) of 0.5%, 1.0%, 1.5%, and 2.0% are considered. Test results show that post-cracking flexural properties of UHPFRC, such as flexural strength, deflection capacity, toughness, and cracking behavior, improve with increasing fiber length and volume fraction, while first-cracking properties are not significantly influenced by fiber length and volume fraction. A 0.5 vol % reduction of steel fiber content relative to commercial UHPFRC can be achieved without deterioration of flexural performance by replacing short fibers ( l f of 13 mm) with longer fibers ( l f of 19.5 mm and 30 mm).
Park, Jung-Jun; Yoo, Doo-Yeol; Park, Gi-Joon; Kim, Sung-Wook
2017-01-01
In this study, the flexural behavior of ultra-high-performance fiber-reinforced concrete (UHPFRC) is examined as a function of fiber length and volume fraction. Straight steel fiber with three different lengths (lf) of 13, 19.5, and 30 mm and four different volume fractions (vf) of 0.5%, 1.0%, 1.5%, and 2.0% are considered. Test results show that post-cracking flexural properties of UHPFRC, such as flexural strength, deflection capacity, toughness, and cracking behavior, improve with increasing fiber length and volume fraction, while first-cracking properties are not significantly influenced by fiber length and volume fraction. A 0.5 vol % reduction of steel fiber content relative to commercial UHPFRC can be achieved without deterioration of flexural performance by replacing short fibers (lf of 13 mm) with longer fibers (lf of 19.5 mm and 30 mm). PMID:28772477
Effective Thermal Conductivity of an Aluminum Foam + Water Two Phase System
NASA Technical Reports Server (NTRS)
Moskito, John
1996-01-01
This study examined the effect of volume fraction and pore size on the effective thermal conductivity of an aluminum foam and water system. Nine specimens of aluminum foam representing a matrix of three volume fractions (4-8% by vol.) and three pore sizes (2-4 mm) were tested with water to determine relationships to the effective thermal conductivity. It was determined that increases in volume fraction of the aluminum phase were correlated to increases in the effective thermal conductivity. It was not statistically possible to prove that changes in pore size of the aluminum foam correlated to changes in the effective thermal conductivity. However, interaction effects between the volume fraction and pore size of the foam were statistically significant. Ten theoretical models were selected from the published literature to compare against the experimental data. Models by Asaad, Hadley, and de Vries provided effective thermal conductivity predictions within a 95% confidence interval.
Modelling duodenum radiotherapy toxicity using cohort dose-volume-histogram data.
Holyoake, Daniel L P; Aznar, Marianne; Mukherjee, Somnath; Partridge, Mike; Hawkins, Maria A
2017-06-01
Gastro-intestinal toxicity is dose-limiting in abdominal radiotherapy and correlated with duodenum dose-volume parameters. We aimed to derive updated NTCP model parameters using published data and prospective radiotherapy quality-assured cohort data. A systematic search identified publications providing duodenum dose-volume histogram (DVH) statistics for clinical studies of conventionally-fractionated radiotherapy. Values for the Lyman-Kutcher-Burman (LKB) NTCP model were derived through sum-squared-error minimisation and using leave-one-out cross-validation. Data were corrected for fraction size and weighted according to patient numbers, and the model refined using individual patient DVH data for two further cohorts from prospective clinical trials. Six studies with published DVH data were utilised, and with individual patient data included outcomes for 531 patients in total (median follow-up 16months). Observed gastro-intestinal toxicity rates ranged from 0% to 14% (median 8%). LKB parameter values for unconstrained fit to published data were: n=0.070, m=0.46, TD 50(1) [Gy]=183.8, while the values for the model incorporating the individual patient data were n=0.193, m=0.51, TD 50(1) [Gy]=299.1. LKB parameters derived using published data are shown to be consistent to those previously obtained using individual patient data, supporting a small volume-effect and dependence on exposure to high threshold dose. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Hobbs, Brian P.; Chandler, Adam G.; Anderson, Ella F.; Herron, Delise H.; Charnsangavej, Chusilp; Yao, James
2013-01-01
Purpose To assess the effects of acquisition duration on computed tomographic (CT) perfusion parameter values in neuroendocrine liver metastases and normal liver tissue. Materials and Methods This retrospective study was institutional review board approved, with waiver of informed consent. CT perfusion studies in 16 patients (median age, 57.5 years; range, 42.0–69.7 years), including six men (median, 54.1 years; range, 42.0–69.7), and 10 women (median, 59.3 years; range 43.6–66.3), with neuroendocrine liver metastases were analyzed by means of distributed parametric modeling to determine tissue blood flow, blood volume, mean transit time, permeability, and hepatic arterial fraction for tumors and normal liver tissue. Analyses were undertaken with acquisition time of 12–590 seconds. Nonparameteric regression analyses were used to evaluate the functional relationships between CT perfusion parameters and acquisition duration. Evidence for time invariance was evaluated for each parameter at multiple time points by inferring the fitted derivative to assess its proximity to zero as a function of acquisition time by using equivalence tests with three levels of confidence (20%, 70%, and 90%). Results CT perfusion parameter values varied, approaching stable values with increasing acquisition duration. Acquisition duration greater than 160 seconds was required to obtain at least low confidence stability in any of the CT perfusion parameters. At 160 seconds of acquisition, all five CT perfusion parameters stabilized with low confidence in tumor and normal tissues, with the exception of hepatic arterial fraction in tumors. After 220 seconds of acquisition, there was stabilization with moderate confidence for blood flow, blood volume, and hepatic arterial fraction in tumors and normal tissue, and for mean transit time in tumors; however, permeability values did not satisfy the moderate stabilization criteria in both tumors and normal tissue until 360 seconds of acquisition. Blood flow, mean transit time, permeability, and hepatic arterial fraction were significantly different between tumor and normal tissue at 360 seconds (P < .001). Conclusion CT perfusion parameter values are affected by acquisition duration and approach progressively stable values with increasing acquisition times. © RSNA, 2013 Online supplemental material is available for this article. PMID:23824990
Patel, Amit R; Fatemi, Omid; Norton, Patrick T; West, J Jason; Helms, Adam S; Kramer, Christopher M; Ferguson, John D
2008-06-01
Left atrial (LA) volume determines prognosis and response to therapy for atrial fibrillation. Integration of electroanatomic maps with three-dimensional images rendered from computed tomography and magnetic resonance imaging (MRI) is used to facilitate atrial fibrillation ablation. The purpose of this study was to measure LA volume changes and regional motion during the cardiac cycle that might affect the accuracy of image integration and to determine their relationship to standard LA volume measurements. MRI was performed in 30 patients with paroxysmal atrial fibrillation. LA time-volume curves were generated and used to divide LA ejection fraction into pumping ejection fraction and conduit ejection fraction and to determine maximum LA volume (LA(max)) and preatrial contraction volume. LA volume was measured using an MRI angiogram and traditional geometric models from echocardiography (area-length model and ellipsoid model). In-plane displacement of the pulmonary veins, anterior left atrium, mitral annulus, and LA appendage was measured. LA(max) was 107 +/- 36 mL and occurred at 42% +/- 5% of the R-R interval. Preatrial contraction volume was 86 +/- 34 mL and occurred at 81% +/- 4% of the R-R interval. LA ejection fraction was 45% +/- 10%, and pumping ejection fraction was 31% +/- 10%. LA volume measurements made from MRI angiogram, area-length model, and ellipsoid model underestimated LA(max) by 21 +/- 25 mL, 16 +/- 26 mL, and 35 +/- 22 mL, respectively. Anterior LA, mitral annulus, and LA appendage were significantly displaced during the cardiac cycle (8.8 +/- 2.0 mm, 13.2 +/- 3.8 mm, and 10.2 +/- 3.4 mm, respectively); the pulmonary veins were not displaced. LA volume changes significantly during the cardiac cycle, and substantial regional variation in LA motion exists. Standard measurements of LA volume significantly underestimate LA(max) compared to the gold standard measure of three-dimensional volumetrics.
Bhattarai, Ajaya; Chatterjee, Sujeet Kumar; Niraula, Tulasi Prasad
2013-01-01
The accurate measurements on density of the binary mixtures of cetyltrimethylammonium bromide and sodium dodecyl sulphate in pure water and in methanol(1) + water (2) mixed solvent media containing (0.10, 0.20, and 0.30) volume fractions of methanol at 308.15, 318.15, and 323.15 K are reported. The concentrations are varied from (0.03 to 0.12) mol.l(-1) of sodium dodecyl sulphate in presence of ~ 5.0×10(-4) mol.l(-1) cetyltrimethylammonium bromide. The results showed almost increase in the densities with increasing surfactant mixture concentration, also the densities are found to decrease with increasing temperature over the entire concentration range, investigated in a given mixed solvent medium and these values are found to decrease with increasing methanol content in the solvent composition. The concentration dependence of the apparent molar volumes appear to be negligible over the entire concentration range, investigated in a given mixed solvent medium and the apparent molar volumes increase with increasing temperature and are found to decrease with increasing methanol content in the solvent composition.
Lyng, H; Olsen, D R; Petersen, S B; Rofstad, E K
1995-04-01
The concentration of phospholipid metabolites in tumours has been hypothesized to be related to rate of cell membrane turnover and may reflect rate of cell proliferation. The purpose of the study reported here was to investigate whether 31P NMR resonance ratios involving the phosphomonoester (PME) or phosphodiester (PDE) resonance are correlated to fraction of cells in S-phase or volume-doubling time in experimental tumours. Four human melanoma xenograft lines (BEX-t, HUX-t, SAX-t, WIX-t) were included in the study. The tumours were grown subcutaneously in male BALB/c-nu/nu mice. 31P NMR spectroscopy was performed at a magnetic field strength of 4.7 T. Fraction of cells in S-phase was measured by flow cytometry. Tumour volume-doubling time was determined by Gompertzian analysis of volumetric growth data. BEX-t and SAX-t tumours differed in fraction of cells in S-phase and volume-doubling time, but showed similar 31P NMR resonance ratios. BEX-t and WIX-t tumours showed significantly different 31P NMR resonance ratios but similar fractions of cells in S-phase. The 31P NMR resonance ratios were significantly different for small and large HUX-t tumours even though fraction of cells in S-phase and volume-doubling time did not differ with tumour volume. None of the 31P NMR resonance ratios showed significant increase with increasing fraction of cells in S-phase or significant decrease with increasing tumour volume-doubling time across the four xenograft lines.(ABSTRACT TRUNCATED AT 250 WORDS)
Soot Volume Fraction Maps for Normal and Reduced Gravity Laminar Acetylene Jet Diffusion Flames
NASA Technical Reports Server (NTRS)
Greenberg, Paul S.; Ku, Jerry C.
1997-01-01
The study of soot particulate distribution inside gas jet diffusion flames is important to the understanding of fundamental soot particle and thermal radiative transport processes, as well as providing findings relevant to spacecraft fire safety, soot emissions, and radiant heat loads for combustors used in air-breathing propulsion systems. Compared to those under normal gravity (1-g) conditions, the elimination of buoyancy-induced flows is expected to significantly change the flow field in microgravity (O g) flames, resulting in taller and wider flames with longer particle residence times. Work by Bahadori and Edelman demonstrate many previously unreported qualitative and semi-quantitative results, including flame shape and radiation, for sooting laminar zas jet diffusion flames. Work by Ku et al. report soot aggregate size and morphology analyses and data and model predictions of soot volume fraction maps for various gas jet diffusion flames. In this study, we present the first 1-g and 0-g comparisons of soot volume fraction maps for laminar acetylene and nitrogen-diluted acetylene jet diffusion flames. Volume fraction is one of the most useful properties in the study of sooting diffusion flames. The amount of radiation heat transfer depends directly on the volume fraction and this parameter can be measured from line-of-sight extinction measurements. Although most Soot aggregates are submicron in size, the primary particles (20 to 50 nm in diameter) are in the Rayleigh limit, so the extinction absorption) cross section of aggregates can be accurately approximated by the Rayleigh solution as a function of incident wavelength, particles' complex refractive index, and particles' volume fraction.
NASA Astrophysics Data System (ADS)
Forestieri, Sara D.; Cornwell, Gavin C.; Helgestad, Taylor M.; Moore, Kathryn A.; Lee, Christopher; Novak, Gordon A.; Sultana, Camille M.; Wang, Xiaofei; Bertram, Timothy H.; Prather, Kimberly A.; Cappa, Christopher D.
2016-07-01
The extent to which water uptake influences the light scattering ability of marine sea spray aerosol (SSA) particles depends critically on SSA chemical composition. The organic fraction of SSA can increase during phytoplankton blooms, decreasing the salt content and therefore the hygroscopicity of the particles. In this study, subsaturated hygroscopic growth factors at 85 % relative humidity (GF(85 %)) of predominately submicron SSA particles were quantified during two induced phytoplankton blooms in marine aerosol reference tanks (MARTs). One MART was illuminated with fluorescent lights and the other was illuminated with sunlight, referred to as the "indoor" and "outdoor" MARTs, respectively. Optically weighted GF(85 %) values for SSA particles were derived from measurements of light scattering and particle size distributions. The mean optically weighted SSA diameters were 530 and 570 nm for the indoor and outdoor MARTs, respectively. The GF(85 %) measurements were made concurrently with online particle composition measurements, including bulk composition (using an Aerodyne high-resolution aerosol mass spectrometer) and single particle (using an aerosol time-of-flight mass spectrometer) measurement, and a variety of water-composition measurements. During both microcosm experiments, the observed optically weighted GF(85 %) values were depressed substantially relative to pure inorganic sea salt by 5 to 15 %. There was also a time lag between GF(85 %) depression and the peak chlorophyll a (Chl a) concentrations by either 1 (indoor MART) or 3-to-6 (outdoor MART) days. The fraction of organic matter in the SSA particles generally increased after the Chl a peaked, also with a time lag, and ranged from about 0.25 to 0.5 by volume. The observed depression in the GF(85 %) values (relative to pure sea salt) is consistent with the large observed volume fractions of non-refractory organic matter (NR-OM) comprising the SSA. The GF(85 %) values exhibited a reasonable negative correlation with the SSA NR-OM volume fractions after the peak of the blooms (i.e., Chl a maxima); i.e., the GF(85 %) values generally decreased when the NR-OM volume fractions increased. The GF(85 %) vs. NR-OM volume fraction relationship was interpreted using the Zdanovskii-Stokes-Robinson (ZSR) mixing rule and used to estimate the GF(85 %) of the organic matter in the nascent SSA. The estimated pure NR-OM GF(85 %) values were 1.16 ± 0.09 and 1.23 ± 0.10 for the indoor and outdoor MARTS, respectively. These measurements demonstrate a clear relationship between SSA particle composition and the sensitivity of light scattering to variations in relative humidity. The implications of these observations to the direct climate effects of SSA particles are discussed.
Al-Omair, Ameen; Soliman, Hany; Xu, Wei; Karotki, Aliaksandr; Mainprize, Todd; Phan, Nicolas; Das, Sunit; Keith, Julia; Yeung, Robert; Perry, James; Tsao, May; Sahgal, Arjun
2013-01-01
Our purpose was to report efficacy of hypofractionated cavity stereotactic radiotherapy (HCSRT) in patients with and without prior whole brain radiotherapy (WBRT). 32 surgical cavities in 30 patients (20 patients/21 cavities had no prior WBRT and 10 patients/11 cavities had prior WBRT) were treated with image-guided linac stereotactic radiotherapy. 7 of the 10 prior WBRT patients had “resistant” local disease given prior surgery, post-operative WBRT and a re-operation, followed by salvage HCSRT. The clinical target volume was the post-surgical cavity, and a 2-mm margin applied as planning target volume. The median total dose was 30 Gy (range: 25-37.5 Gy) in 5 fractions. In the no prior and prior WBRT cohorts, the median follow-up was 9.7 months (range: 3.0-23.6) and 15.3 months (range: 2.9-39.7), the median survival was 23.6 months and 39.7 months, and the 1-year cavity local recurrence progression-free survival (LRFS) was 79 and 100%, respectively. At 18 months the LRFS dropped to 29% in the prior WBRT cohort. Grade 3 radiation necrosis occurred in 3 prior WBRT patients. We report favorable outcomes with HCSRT, and well selected patients with prior WBRT and “resistant” disease may have an extended survival favoring aggressive salvage HCSRT at a moderate risk of radiation necrosis. PMID:23617283
Kataoka, Sho; Kamimura, Yoshihiro; Endo, Akira
2018-04-10
Hybrid organic-inorganic layered perovskites are typically nonporous solids. However, the incorporation of silsesquioxanes with a cubic cage structure as interlayer materials creates micropores between the perovskite layers. In this study, we increase in the micropore volume in layered perovskites by replacing a portion of the silsesquioxane interlayers with organic amines. In the proposed method, approximately 20% of the silsesquioxane interlayers can be replaced without changing the layer distance owing to the size of the silsesquioxane. When small amines (e.g., ethylamine) are used in this manner, the micropore volume of the obtained hybrid layered perovskites increases by as much as 44%; when large amines (e.g., phenethylamine) are used, their micropore volume decreases by as much as 43%. Through the variation of amine fraction, the micropore volume can be adjusted in the range. Finally, the magnetic moment measurements reveal that the layered perovskites with mixed interlayers exhibit ferromagnetic ordering at temperature below 20 K, thus indicating that the obtained perovskites maintain their functions as layered perovskites.
Standard filtration practices may significantly distort planktonic microbial diversity estimates.
Padilla, Cory C; Ganesh, Sangita; Gantt, Shelby; Huhman, Alex; Parris, Darren J; Sarode, Neha; Stewart, Frank J
2015-01-01
Fractionation of biomass by filtration is a standard method for sampling planktonic microbes. It is unclear how the taxonomic composition of filtered biomass changes depending on sample volume. Using seawater from a marine oxygen minimum zone, we quantified the 16S rRNA gene composition of biomass on a prefilter (1.6 μm pore-size) and a downstream 0.2 μm filter over sample volumes from 0.05 to 5 L. Significant community shifts occurred in both filter fractions, and were most dramatic in the prefilter community. Sequences matching Vibrionales decreased from ~40 to 60% of prefilter datasets at low volumes (0.05-0.5 L) to less than 5% at higher volumes, while groups such at the Chromatiales and Thiohalorhabdales followed opposite trends, increasing from minor representation to become the dominant taxa at higher volumes. Groups often associated with marine particles, including members of the Deltaproteobacteria, Planctomycetes, and Bacteroidetes, were among those showing the greatest increase with volume (4 to 27-fold). Taxon richness (97% similarity clusters) also varied significantly with volume, and in opposing directions depending on filter fraction, highlighting potential biases in community complexity estimates. These data raise concerns for studies using filter fractionation for quantitative comparisons of aquatic microbial diversity, for example between free-living and particle-associated communities.
Mechanical properties of steels with a microstructure of bainite/martensite and austenite islands
NASA Astrophysics Data System (ADS)
Syammach, Sami M.
Advanced high strength steels (AHSS) are continually being developed in order to reduce weight and improve safety for automotive applications. There is need for economic steels with improved strength and ductility combinations. These demands have led to research and development of third generation AHSS. Third generation AHSS include steel grades with a bainitic and tempered martensitic matrix with retained austenite islands. These steels may provide improved mechanical properties compared to first generation AHSS and should be more economical than second generation AHSS. There is a need to investigate these newer types of steels to determine their strength and formability properties. Understanding these bainitic and tempered martensitic steels is important because they likely can be produced using currently available production systems. If viable, these steels could be a positive step in the evolution of AHSS. The present work investigates the effect of the microstructure on the mechanical properties of steels with a microstructure of bainite, martensite, and retained austenite, so called TRIP aided bainitic ferrite (TBF) steels. The first step in this project was creating the desired microstructure. To create a microstructure of bainite, martensite, and austenite an interrupted austempering heat treatment was used. Varying the heat treatment times and temperatures produced microstructures of varying amounts of bainite, martensite, and austenite. Mechanical properties such as strength, ductility, strain hardening, and hole-expansion ratios were then evaluated for each heat treatment. Correlations between mechanical properties and microstructure were then evaluated. It was found that samples after each of the heat treatments exhibited strengths between 1050 MPa and 1350 MPa with total elongations varying from 8 pct to 16 pct. By increasing the bainite and austenite volume fraction the strength of the steel was found to decrease, but the ductility increased. Larger martensite volume fraction increased the strength of the steel. Strain hardening results showed that increasing the martensite volume fraction increased the strain hardening exponent while bainite decreased the strain hardening behavior. Austenite was found to slightly increase the strain hardening behavior. Hole-expansion tests showed hole expansion ratios ranging from 20 pct to 45 pct. Increasing the bainite volume fraction was found to increase the hole-expansion ratio. Increasing the martensite volume fraction was found to decrease the hole-expansion ratio. Overall, each of the heat treatments resulted in a steel with attractive properties, and the results showed how the microstructure of bainite, martensite, and austenite influences the mechanical properties of this type of steels.
Rheological flow laws for multiphase magmas: An empirical approach
NASA Astrophysics Data System (ADS)
Pistone, Mattia; Cordonnier, Benoît; Ulmer, Peter; Caricchi, Luca
2016-07-01
The physical properties of magmas play a fundamental role in controlling the eruptive dynamics of volcanoes. Magmas are multiphase mixtures of crystals and gas bubbles suspended in a silicate melt and, to date, no flow laws describe their rheological behaviour. In this study we present a set of equations quantifying the flow of high-viscosity (> 105 Pa·s) silica-rich multiphase magmas, containing both crystals (24-65 vol.%) and gas bubbles (9-12 vol.%). Flow laws were obtained using deformation experiments performed at high temperature (673-1023 K) and pressure (200-250 MPa) over a range of strain-rates (5 · 10- 6 s- 1 to 4 · 10- 3 s- 1), conditions that are relevant for volcanic conduit processes of silica-rich systems ranging from crystal-rich lava domes to crystal-poor obsidian flows. We propose flow laws in which stress exponent, activation energy, and pre-exponential factor depend on a parameter that includes the volume fraction of weak phases (i.e. melt and gas bubbles) present in the magma. The bubble volume fraction has opposing effects depending on the relative crystal volume fraction: at low crystallinity bubble deformation generates gas connectivity and permeability pathways, whereas at high crystallinity bubbles do not connect and act as ;lubricant; objects during strain localisation within shear bands. We show that such difference in the evolution of texture is mainly controlled by the strain-rate (i.e. the local stress within shear bands) at which the experiments are performed, and affect the empirical parameters used for the flow laws. At low crystallinity (< 44 vol.%) we observe an increase of viscosity with increasing strain-rate, while at high crystallinity (> 44 vol.%) the viscosity decreases with increasing strain-rate. Because these behaviours are also associated with modifications of sample textures during the experiment and, thus, are not purely the result of different deformation rates, we refer to ;apparent shear-thickening; and ;apparent shear-thinning; for the behaviours observed at low and high crystallinity, respectively. At low crystallinity, increasing deformation rate favours the transfer of gas bubbles in regions of high strain localisation, which, in turn, leads to outgassing and the observed increase of viscosity with increasing strain-rate. At high crystallinity gas bubbles remain trapped within crystals and no outgassing occurs, leading to strain localisation in melt-rich shear bands and to a decrease of viscosity with increasing strain-rate, behaviour observed also in crystal-bearing suspensions. Increasing the volume fraction of weak phases induces limited variation of the stress exponent and pre-exponential factor in both apparent shear-thickening and apparent shear-thinning regimes; conversely, the activation energy is strongly dependent on gas bubble and melt volume fractions. A transient rheology from apparent shear-thickening to apparent shear-thinning behaviour is observed for a crystallinity of 44 vol.%. The proposed equations can be implemented in numerical models dealing with the flow of crystal- and bubble-bearing magmas. We present results of analytical simulations showing the effect of the rheology of three-phase magmas on conduit flow dynamics, and show that limited bubble volumes (< 10 vol.%) lead to strain localisation at the conduit margins during the ascent of crystal-rich lava domes and crystal-poor obsidian flows.
On adiabatic pair potentials of highly charged colloid particles
NASA Astrophysics Data System (ADS)
Sogami, Ikuo S.
2018-03-01
Generalizing the Debye-Hückel formalism, we develop a new mean field theory for adiabatic pair potentials of highly charged particles in colloid dispersions. The unoccupied volume and the osmotic pressure are the key concepts to describe the chemical and thermodynamical equilibrium of the gas of small ions in the outside region of all of the colloid particles. To define the proper thermodynamic quantities, it is postulated to take an ensemble averaging with respect to the particle configurations in the integrals for their densities consisting of the electric potential satisfying a set of equations that are derived by linearizing the Poisson-Boltzmann equation. With the Fourier integral representation of the electric potential, we calculate first the internal electric energy of the system from which the Helmholtz free energy is obtained through the Legendre transformation. Then, the Gibbs free energy is calculated using both ways of the Legendre transformation with respect to the unoccupied volume and the summation of chemical potentials. The thermodynamic functions provide three types of pair potentials, all of which are inversely proportional to the fraction of the unoccupied volume. At the limit when the fraction factor reduces to unity, the Helmholtz pair potential turns exactly into the well known Derjaguin-Landau-Verwey-Overbeek repulsive potential. The Gibbs pair potential possessing a medium-range strong repulsive part and a long-range weak attractive tail can explain the Schulze-Hardy rule for coagulation in combination with the van der Waals-London potential and describes a rich variety of phenomena of phase transitions observed in the dilute dispersions of highly charged particles.
Mowlavi, Ali Asghar; Fornasier, Maria Rossa; Mirzaei, Mohammd; Bregant, Paola; de Denaro, Mario
2014-10-01
The beta and gamma absorbed fractions in organs and tissues are the important key factors of radionuclide internal dosimetry based on Medical Internal Radiation Dose (MIRD) approach. The aim of this study is to find suitable analytical functions for beta and gamma absorbed fractions in spherical and ellipsoidal volumes with a uniform distribution of iodine-131 radionuclide. MCNPX code has been used to calculate the energy absorption from beta and gamma rays of iodine-131 uniformly distributed inside different ellipsoids and spheres, and then the absorbed fractions have been evaluated. We have found the fit parameters of a suitable analytical function for the beta absorbed fraction, depending on a generalized radius for ellipsoid based on the radius of sphere, and a linear fit function for the gamma absorbed fraction. The analytical functions that we obtained from fitting process in Monte Carlo data can be used for obtaining the absorbed fractions of iodine-131 beta and gamma rays for any volume of the thyroid lobe. Moreover, our results for the spheres are in good agreement with the results of MIRD and other scientific literatures.
Parotid Gland Sparing With Helical Tomotherapy in Head-and-Neck Cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voordeckers, Mia, E-mail: mia.voordeckers@uzbrussel.be; Farrag, Ashraf; Assiut University
Purpose: This study evaluated the ability of helical tomotherapy to spare the function of the parotid glands in patients with head-and-neck cancer by analyzing dose-volume histograms, salivary gland scintigraphy, and quality of life assessment. Methods and Materials: Data from 76 consecutive patients treated with helical tomotherapy (Hi-Art Tomotherapy) at University Hospital Brussel were analyzed. During planning, priority was given to planning target volume (PTV) coverage: {>=}95% of the dose must be delivered to {>=}95% of the PTV. Elective nodal regions received 54 Gy (1.8 Gy/fraction). A dose of 70.5 Gy (2.35 Gy/fraction) was prescribed to the primary tumor and pathologicmore » lymph nodes (simultaneous integrated boost scheme). Objective scoring of salivary excretion was performed by salivary gland scintigraphy. Subjective scoring of salivary gland function was evaluated by the European Organization for Research and Treatment of Cancer quality of life questionnaires Quality of Life Questionnaire-C30 (QLQ-C30) and Quality of Life Questionnaire-Head and Neck 35 (H and N35). Results: Analysis of dose-volume histograms (DVHs) showed excellent coverage of the PTV. The volume of PTV receiving 95% of the prescribed dose (V95%) was 99.4 (range, 96.3-99.9). DVH analysis of parotid gland showed a median value of the mean parotid dose of 32.1 Gy (range, 17.5-70.3 Gy). The median parotid volume receiving a dose <26 Gy was 51.2%. Quality of life evaluation demonstrated an initial deterioration of almost all scales and items in QLQ-C30 and QLQ-H and N35. Most items improved in time, and some reached baseline values 18 months after treatment. Conclusion: DVH analysis, scintigraphic evaluation of parotid function, and quality of life assessment of our patient group showed that helical tomotherapy makes it possible to preserve parotid gland function without compromising disease control. We recommend mean parotid doses of <34 Gy and doses <26 Gy to a maximum 47% of the parotid volume as planning goals. Intensity-modulated radiotherapy should be considered as standard treatment in patients with head-and-neck cancer.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parsons, J.T.; Bova, F.J.; Million, R.R.
1994-11-15
To investigate the risk of radiation-induced optic neuropathy according to total radiotherapy dose and fraction size, based on both retrospective and prospectively collected data. Between October 1964 and May 1989, 215 optic nerves in 131 patients received fractionated external-beam irradiation during the treatment of primary extracranial head and neck tumors. All patients had a minimum of 3 years of ophthalmologic follow-up (range, 3 to 21 years). The clinical end point was visual acuity of 20/100 or worse as a result of optic nerve injury. Anterior ischemic optic neuropathy developed in five nerves (at mean and median times of 32 andmore » 30 months, respectively, and a range of 2-4 years). Retrobulbar optic neuropathy developed in 12 nerves (at mean and median times of 47 and 28 months, respectively, and a range of 1-14 years). No injuries were observed in 106 optic nerves that received a total dose of <59 Gy. Among nerves that received doses of {ge} 60 Gy, the dose per fraction was more important than the total dose in producing optic neuropathy. The 15-year actuarial risk of optic compared with 47% when given in fraction sizes {ge}1.9 Gy. The data also suggest an increased risk of optic nerve injury with increasing age. As there is no effective treatment of radiation-induced optic neuropathy, efforts should be directed at its prevention by minimizing the total dose, paying attention to the dose per fraction to the nerve, and using reduced field techniques where appropriate to limit the volume of tissues that receive high-dose irradiation. 32 refs., 5 figs., 5 tabs.« less
NASA Astrophysics Data System (ADS)
Sheikholeslami, M.; Ganji, D. D.
2017-12-01
In this paper, semi analytical approach is applied to investigate nanofluid Marangoni convection in presence of magnetic field. Koo-Kleinstreuer-Li model is taken into account to simulate nanofluid properties. Homotopy analysis method is utilized to solve the final ordinary equations which are obtained from similarity transformation. Roles of Hartmann number and nanofluid volume fraction are presented graphically. Results show that temperature augments with rise of nanofluid volume fraction. Impact of nanofluid volume fraction on normal velocity is more than tangential velocity. Temperature gradient enhances with rise of magnetic number.
Visualization of the hot chocolate sound effect by spectrograms
NASA Astrophysics Data System (ADS)
Trávníček, Z.; Fedorchenko, A. I.; Pavelka, M.; Hrubý, J.
2012-12-01
We present an experimental and a theoretical analysis of the hot chocolate effect. The sound effect is evaluated using time-frequency signal processing, resulting in a quantitative visualization by spectrograms. This method allows us to capture the whole phenomenon, namely to quantify the dynamics of the rising pitch. A general form of the time dependence volume fraction of the bubbles is proposed. We show that the effect occurs due to the nonlinear dependence of the speed of sound in the gas/liquid mixture on the volume fraction of the bubbles and the nonlinear time dependence of the volume fraction of the bubbles.
NASA Astrophysics Data System (ADS)
Juhui, Chen; Yanjia, Tang; Dan, Li; Pengfei, Xu; Huilin, Lu
2013-07-01
Flow behavior of gas and particles is predicted by the large eddy simulation of gas-second order moment of solid model (LES-SOM model) in the simulation of flow behavior in CFB. This study shows that the simulated solid volume fractions along height using a two-dimensional model are in agreement with experiments. The velocity, volume fraction and second-order moments of particles are computed. The second-order moments of clusters are calculated. The solid volume fraction, velocity and second order moments are compared at the three different model constants.
NASA Astrophysics Data System (ADS)
Gholipour Peyvandi, R.; Islami Rad, S. Z.
2017-12-01
The determination of the volume fraction percentage of the different phases flowing in vessels using transmission gamma rays is a conventional method in petroleum and oil industries. In some cases, with access only to the one side of the vessels, attention was drawn toward backscattered gamma rays as a desirable choice. In this research, the volume fraction percentage was measured precisely in water-gasoil-air three-phase flows by using the backscatter gamma ray technique andthe multilayer perceptron (MLP) neural network. The volume fraction determination in three-phase flows requires two gamma radioactive sources or a dual-energy source (with different energies) while in this study, we used just a 137Cs source (with the single energy) and a NaI detector to analyze backscattered gamma rays. The experimental set-up provides the required data for training and testing the network. Using the presented method, the volume fraction was predicted with a mean relative error percentage less than 6.47%. Also, the root mean square error was calculated as 1.60. The presented set-up is applicable in some industries with limited access. Also, using this technique, the cost, radiation safety and shielding requirements are minimized toward the other proposed methods.
Origins of microstructural transformations in charged vesicle suspensions: the crowding hypothesis.
Seth, Mansi; Ramachandran, Arun; Murch, Bruce P; Leal, L Gary
2014-09-02
It is observed that charged unilamellar vesicles in a suspension can spontaneously deflate and subsequently transition to form bilamellar vesicles, even in the absence of externally applied triggers such as salt or temperature gradients. We provide strong evidence that the driving force for this deflation-induced transition is the repulsive electrostatic pressure between charged vesicles in concentrated suspensions, above a critical effective volume fraction. We use volume fraction measurements and cryogenic transmission electron microscopy imaging to quantitatively follow both the macroscopic and microstructural time-evolution of cationic diC18:1 DEEDMAC vesicle suspensions at different surfactant and salt concentrations. A simple model is developed to estimate the extent of deflation of unilamellar vesicles caused by electrostatic interactions with neighboring vesicles. It is determined that when the effective volume fraction of the suspension exceeds a critical value, charged vesicles in a suspension can experience "crowding" due to overlap of their electrical double layers, which can result in deflation and subsequent microstructural transformations to reduce the effective volume fraction of the suspension. Ordinarily in polydisperse colloidal suspensions, particles interacting via a repulsive potential transform into a glassy state above a critical volume fraction. The behavior of charged vesicle suspensions reported in this paper thus represents a new mechanism for the relaxation of repulsive interactions in crowded situations.
Crystallization of sheared hard spheres at 64.5% volume fraction
NASA Astrophysics Data System (ADS)
Swinney, H. L.; Rietz, F.; Schroeter, M.; Radin, C.
2017-11-01
A classic experiment by G.D. Scott Nature 188, 908, 1960) showed that pouring balls into a rigid container filled the volume to an upper limit of 64% of the container volume, which is well below the 74% volume fraction filled by spheres in a hexagonal close packed (HCP) or face center cubic (FCC) lattice. Subsequent experiments have confirmed a ``random closed packed'' (RCP) fraction of about 64%. However, the physics of the RCP limit has remained a mystery. Our experiment on a cubical box filled with 49400 weakly sheared glass spheres reveals a first order phase transition from a disordered to an ordered state at a volume fraction of 64.5%. The ordered state consists of crystallites of mixed FCC and HCP symmetry that coexist with the amorphous bulk. The transition is initiated by homogeneous nucleation: in the shearing process small crystallites with about ten or fewer spheres dissolve, while larger crystallites grow. A movie illustrates the crystallization process. German Academic Exchange Service (DAAD), German Research Foundation (DFG), NSF DMS, and R.A. Welch Foundation.
Kühl, J Tobias; Lønborg, Jacob; Fuchs, Andreas; Andersen, Mads J; Vejlstrup, Niels; Kelbæk, Henning; Engstrøm, Thomas; Møller, Jacob E; Kofoed, Klaus F
2012-06-01
Measurement of left atrial (LA) maximal volume (LA(max)) using two-dimensional transthoracic echocardiography (TTE) provides prognostic information in several cardiac diseases. However, the relationship between LA(max) and LA function is poorly understood and TTE is less well suited for measuring dynamic LA volume changes. Conversely, cardiac magnetic resonance imaging (CMR) and multi-slice computed tomography (MSCT) appears more appropriate for such measures. We sought to determine the relationship between LA size assessed with TTE and LA size and function assessed with CMR and MSCT. Fifty-four patients were examined 3 months post myocardial infarction with echocardiography, CMR and MSCT. Left atrial volumes and LA reservoir function were assessed by TTE. LA time-volume curves were determined and LA reservoir function (cyclic change and fractional change), passive emptying function (reservoir volume) and pump function (left atrial ejection fraction-LAEF) were derived using CMR and MSCT. Left atrial fractional change and left atrial ejection fraction (LAEF) determined with CMR and MSCT were unrelated to LA(max) enlargement by echocardiography (P = NS). There was an overall good agreement between CMR and MSCT, with a small to moderate bias in LA(max) (4.9 ± 10.4 ml), CC (3.1 ± 9.1 ml) and reservoir volume (3.4 ± 9.1 ml). TTE underestimates LA(max) with up to 32% compared with CMR and MSCT (P < 0.001). Left atrial function assessed with MSCT and CMR as LA fractional change and LAEF is not significantly related to LA(max) measured by TTE. TTE systematically underestimated LA volumes, whereas there are good agreements between MSCT and CMR for volumetric and functional properties.
Pancreas volume and fat fraction in children with Type 1 diabetes.
Regnell, S E; Peterson, P; Trinh, L; Broberg, P; Leander, P; Lernmark, Å; Månsson, S; Elding Larsson, H
2016-10-01
People with Type 1 diabetes have smaller pancreases than healthy individuals. Several diseases causing pancreatic atrophy are associated with pancreatic steatosis, but pancreatic fat in Type 1 diabetes has not been measured. This cross-sectional study aimed to compare pancreas size and fat fraction in children with Type 1 diabetes and controls. The volume and fat fraction of the pancreases of 22 children with Type 1 diabetes and 29 controls were determined using magnetic resonance imaging. Pancreas volume was 27% smaller in children with diabetes (median 34.9 cm(3) ) than in controls (47.8 cm(3) ; P < 0.001). Pancreas volume correlated positively with age in controls (P = 0.033), but not in children with diabetes (P = 0.649). Pancreas volume did not correlate with diabetes duration, but it did correlate positively with units of insulin/kg body weight/day (P = 0.048). A linear model of pancreas volume as influenced by age, body surface area and insulin units/kg body weight/day found that insulin dosage correlated with pancreas volume after controlling for both age and body surface area (P = 0.009). Pancreatic fat fraction was not significantly different between the two groups (1.34% vs. 1.57%; P = 0.891). Our findings do not indicate that pancreatic atrophy in Type 1 diabetes is associated with an increased pancreatic fat fraction, unlike some other diseases featuring reduced pancreatic volume. We speculate that our results may support the hypotheses that much of pancreatic atrophy in Type 1 diabetes occurs before the clinical onset of the disease and that exogenous insulin administration decelerates pancreatic atrophy after diabetes onset. © 2016 Diabetes UK.
Improved correction for the tissue fraction effect in lung PET/CT imaging
NASA Astrophysics Data System (ADS)
Holman, Beverley F.; Cuplov, Vesna; Millner, Lynn; Hutton, Brian F.; Maher, Toby M.; Groves, Ashley M.; Thielemans, Kris
2015-09-01
Recently, there has been an increased interest in imaging different pulmonary disorders using PET techniques. Previous work has shown, for static PET/CT, that air content in the lung influences reconstructed image values and that it is vital to correct for this ‘tissue fraction effect’ (TFE). In this paper, we extend this work to include the blood component and also investigate the TFE in dynamic imaging. CT imaging and PET kinetic modelling are used to determine fractional air and blood voxel volumes in six patients with idiopathic pulmonary fibrosis. These values are used to illustrate best and worst case scenarios when interpreting images without correcting for the TFE. In addition, the fractional volumes were used to determine correction factors for the SUV and the kinetic parameters. These were then applied to the patient images. The kinetic parameters K1 and Ki along with the static parameter SUV were all found to be affected by the TFE with both air and blood providing a significant contribution to the errors. Without corrections, errors range from 34-80% in the best case and 29-96% in the worst case. In the patient data, without correcting for the TFE, regions of high density (fibrosis) appeared to have a higher uptake than lower density (normal appearing tissue), however this was reversed after air and blood correction. The proposed correction methods are vital for quantitative and relative accuracy. Without these corrections, images may be misinterpreted.
Simulations of sooting turbulent jet flames using a hybrid flamelet/stochastic Eulerian field method
NASA Astrophysics Data System (ADS)
Consalvi, Jean-Louis; Nmira, Fatiha; Burot, Daria
2016-03-01
The stochastic Eulerian field method is applied to simulate 12 turbulent C1-C3 hydrocarbon jet diffusion flames covering a wide range of Reynolds numbers and fuel sooting propensities. The joint scalar probability density function (PDF) is a function of the mixture fraction, enthalpy defect, scalar dissipation rate and representative soot properties. Soot production is modelled by a semi-empirical acetylene/benzene-based soot model. Spectral gas and soot radiation is modelled using a wide-band correlated-k model. Emission turbulent radiation interactions (TRIs) are taken into account by means of the PDF method, whereas absorption TRIs are modelled using the optically thin fluctuation approximation. Model predictions are found to be in reasonable agreement with experimental data in terms of flame structure, soot quantities and radiative loss. Mean soot volume fractions are predicted within a factor of two of the experiments whereas radiant fractions and peaks of wall radiative fluxes are within 20%. The study also aims to assess approximate radiative models, namely the optically thin approximation (OTA) and grey medium approximation. These approximations affect significantly the radiative loss and should be avoided if accurate predictions of the radiative flux are desired. At atmospheric pressure, the relative errors that they produced on the peaks of temperature and soot volume fraction are within both experimental and model uncertainties. However, these discrepancies are found to increase with pressure, suggesting that spectral models describing properly the self-absorption should be considered at over-atmospheric pressure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woodford, Curtis; Yartsev, Slav; Dar, A. Rashid
2007-11-15
Purpose: To evaluate gross tumor volume (GTV) changes for patients with non-small-cell lung cancer by using daily megavoltage (MV) computed tomography (CT) studies acquired before each treatment fraction on helical tomotherapy and to relate the potential benefit of adaptive image-guided radiotherapy to changes in GTV. Methods and Materials: Seventeen patients were prescribed 30 fractions of radiotherapy on helical tomotherapy for non-small-cell lung cancer at London Regional Cancer Program from Dec 2005 to March 2007. The GTV was contoured on the daily MVCT studies of each patient. Adapted plans were created using merged MVCT-kilovoltage CT image sets to investigate the advantagesmore » of replanning for patients with differing GTV regression characteristics. Results: Average GTV change observed over 30 fractions was -38%, ranging from -12 to -87%. No significant correlation was observed between GTV change and patient's physical or tumor features. Patterns of GTV changes in the 17 patients could be divided broadly into three groups with distinctive potential for benefit from adaptive planning. Conclusions: Changes in GTV are difficult to predict quantitatively based on patient or tumor characteristics. If changes occur, there are points in time during the treatment course when it may be appropriate to adapt the plan to improve sparing of normal tissues. If GTV decreases by greater than 30% at any point in the first 20 fractions of treatment, adaptive planning is appropriate to further improve the therapeutic ratio.« less
Microwave Determination of Water Mole Fraction in Humid Gas Mixtures
NASA Astrophysics Data System (ADS)
Cuccaro, R.; Gavioso, R. M.; Benedetto, G.; Madonna Ripa, D.; Fernicola, V.; Guianvarc'h, C.
2012-09-01
A small volume (65 cm3) gold-plated quasi-spherical microwave resonator has been used to measure the water vapor mole fraction x w of H2O/N2 and H2O/air mixtures. This experimental technique exploits the high precision achievable in the determination of the cavity microwave resonance frequencies and is particularly sensitive to the presence of small concentrations of water vapor as a result of the high polarizability of this substance. The mixtures were prepared using the INRIM standard humidity generator for frost-point temperatures T fp in the range between 241 K and 270 K and a commercial two-pressure humidity generator operated at a dew-point temperature between 272 K and 291 K. The experimental measurements compare favorably with the calculated molar fractions of the mixture supplied by the humidity generators, showing a normalized error lower than 0.8.
Xia, Wei; Yan, Zhuangzhi; Gao, Xin
2017-10-01
To find early predictors of histologic response in soft tissue sarcoma through volume transfer constant (K trans ) analysis based on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). 11 Patients with soft tissue sarcoma of the lower extremity that underwent preoperative chemoradiotherapy followed by limb salvage surgery were included in this retrospective study. For each patient, DCE-MRI data sets were collected before and two weeks after therapy initiation, and histologic tumor cell necrosis rate (TCNR) was reported at surgery. The DCE-MRI volumes were aligned by registration. Then, the aligned volumes were used to obtain the K trans variation map. Accordingly, three sub-volumes (with increased, decreased or unchanged K trans ) were defined and identified, and fractions of the sub-volumes, denoted as F + , F - and F 0 , respectively, were calculated. The predictive ability of volume fractions was determined by using area under a receiver operating characteristic curve (AUC). Linear regression analysis was performed to investigate the relationship between TCNR and volume fractions. In addition, the K trans values of the sub-volumes were compared. The AUC for F - (0.896) and F 0 (0.833) were larger than that for change of tumor longest diameter ΔD (0.625) and the change of mean K trans ΔK trans ¯ (0.792). Moreover, the regression results indicated that TCNR was directly proportional to F 0 (R 2 =0.75, P=0.0003), while it was inversely proportional to F - (R 2 =0.77, P=0.0002). However, TCNR had relatively weak linear relationship with ΔK trans ¯ (R 2 =0.64, P=0.0018). Additionally, TCNR did not have linear relationship with DD (R 2 =0.16, P=0.1246). The volume fraction F - and F 0 have potential as early predictors of soft tissue sarcoma histologic response. Copyright © 2017 Elsevier B.V. All rights reserved.
Zile, Michael R.; Jhund, Pardeep S.; Baicu, Catalin F.; Claggett, Brian L.; Pieske, Burkert; Voors, Adriaan A.; Prescott, Margaret F.; Shi, Victor; Lefkowitz, Martin; McMurray, John J.V.; Solomon, Scott D.
2017-01-01
Background Heart failure with preserved ejection fraction is a clinical syndrome that has been associated with changes in the extracellular matrix. The purpose of this study was to determine whether profibrotic biomarkers accurately reflect the presence and severity of disease and underlying pathophysiology and modify response to therapy in patients with heart failure with preserved ejection fraction. Methods and Results Four biomarkers, soluble form of ST2 (an interleukin-1 receptor family member), galectin-3, matrix metalloproteinase-2, and collagen III N-terminal propeptide were measured in the Prospective Comparison of ARNI With ARB on Management of Heart Failure With Preserved Ejection Fraction (PARAMOUNT) trial at baseline, 12 and 36 weeks after randomization to valsartan or LCZ696. We examined the relationship between baseline biomarkers, demographic and echocardiographic characteristics, change in primary (change in N-terminal pro B-type natriuretic peptide) and secondary (change in left atrial volume) end points. The median (interquartile range) value for soluble form of ST2 (33 [24.6–48.1] ng/mL) and galectin 3 (17.8 [14.1–22.8] ng/mL) were higher, and for matrix metalloproteinase-2 (188 [155.5–230.6] ng/mL) lower, than in previously published referent controls; collagen III N-terminal propeptide (5.6 [4.3–6.9] ng/mL) was similar to referent control values. All 4 biomarkers correlated with severity of disease as indicated by N-terminal pro B-type natriuretic peptide, E/E′, and left atrial volume. Baseline biomarkers did not modify the response to LCZ696 for lowering N-terminal pro B-type natriuretic peptide; however, left atrial volume reduction varied by baseline level of soluble form of ST2 and galectin 3; patients with values less than the observed median (<33 ng/mL soluble form of ST2 and <17.8 ng/mL galectin 3) had reduction in left atrial volume, those above median did not. Although LCZ696 reduced N-terminal pro B-type natriuretic peptide, levels of the other 4 biomarkers were not affected over time. Conclusions In patients with heart failure with preserved ejection fraction, biomarkers that reflect collagen homeostasis correlated with the presence and severity of disease and underlying pathophysiology, and may modify the structural response to treatment. PMID:26754625
Liberto, Erica; Cagliero, Cecilia; Cordero, Chiara; Rubiolo, Patrizia; Bicchi, Carlo; Sgorbini, Barbara
2017-03-17
Recent technological advances in dynamic headspace sampling (D-HS) and the possibility to automate this sampling method have lead to a marked improvement in its the performance, a strong renewal of interest in it, and have extended its fields of application. The introduction of in-parallel and in-series automatic multi-sampling and of new trapping materials, plus the possibility to design an effective sampling process by correctly applying the breakthrough volume theory, have make profiling more representative, and have enhanced selectivity, and flexibility, also offering the possibility of fractionated enrichment in particular for high-volatility compounds. This study deals with fractionated D-HS ability to produce a sample representative of the volatile fraction of solid or liquid matrices. Experiments were carried out on a model equimolar (0.5mM) EtOH/water solution, comprising 16 compounds with different polarities and volatilities, structures ranging from C5 to C15 and vapor pressures from 4.15kPa (2,3-pentandione) to 0.004kPa (t-β-caryophyllene), and on an Arabica roasted coffee powder. Three trapping materials were considered: Tenax TA™ (TX), Polydimethylsiloxane foam (PDMS), and a three-carbon cartridge Carbopack B/Carbopack C/Carbosieve S-III™ (CBS). The influence of several parameters on the design of successful fractionated D-HS sampling. Including the physical and chemical characteristics of analytes and matrix, trapping material, analyte breakthrough, purge gas volumes, and sampling temperature, were investigated. The results show that, by appropriately choosing sampling conditions, fractionated D-HS sampling, based on component volatility, can produce a fast and representative profile of the matrix volatile fraction, with total recoveries comparable to those obtained by full evaporation D-HS for liquid samples, and very high concentration factors for solid samples. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gomez, Daniel R., E-mail: dgomez@mdanderson.org; Tucker, Susan L.; Martel, Mary K.
2012-11-15
Introduction: We analyzed the ability of various patient- and treatment-related factors to predict radiation-induced esophagitis (RE) in patients with non-small cell lung cancer (NSCLC) treated with three-dimensional conformal radiation therapy (3D-CRT), intensity-modulated radiation therapy (IMRT), or proton beam therapy (PBT). Methods and Materials: Patients were treated for NSCLC with 3D-CRT, IMRT, or PBT at MD Anderson from 2000 to 2008 and had full dose-volume histogram (DVH) data available. The endpoint was severe (grade {>=}3) RE. The Lyman-Kutcher-Burman (LKB) model was used to analyze RE as a function of the fractional esophageal DVH, with clinical variables included as dose-modifying factors. Results:more » Overall, 652 patients were included: 405 patients were treated with 3D-CRT, 139 with IMRT, and 108 with PBT; corresponding rates of grade {>=}3 RE were 8%, 28%, and 6%, respectively, with a median time to onset of 42 days (range, 11-93 days). A fit of the fractional DVH LKB model demonstrated that the fractional effective dose was significantly different (P=.046) than 1 (fractional mean dose) indicating that high doses to small volumes are more predictive than mean esophageal dose. The model fit was better for 3D-CRT and PBT than for IMRT. Including receipt of concurrent chemotherapy as a dose-modifying factor significantly improved the LKB model (P=.005), and the model was further improved by including a variable representing treatment with >30 fractions. Examining individual types of chemotherapy agents revealed a trend toward receipt of concurrent taxanes and increased risk of RE (P=.105). Conclusions: Fractional dose (dose rate) and number of fractions (total dose) distinctly affect the risk of severe RE, estimated using the LKB model, and concurrent chemotherapy improves the model fit. This risk of severe RE is underestimated by this model in patients receiving IMRT.« less
Gomez, Daniel R; Tucker, Susan L; Martel, Mary K; Mohan, Radhe; Balter, Peter A; Lopez Guerra, Jose Luis; Liu, Hongmei; Komaki, Ritsuko; Cox, James D; Liao, Zhongxing
2012-11-15
We analyzed the ability of various patient- and treatment-related factors to predict radiation-induced esophagitis (RE) in patients with non-small cell lung cancer (NSCLC) treated with three-dimensional conformal radiation therapy (3D-CRT), intensity-modulated radiation therapy (IMRT), or proton beam therapy (PBT). Patients were treated for NSCLC with 3D-CRT, IMRT, or PBT at MD Anderson from 2000 to 2008 and had full dose-volume histogram (DVH) data available. The endpoint was severe (grade≥3) RE. The Lyman-Kutcher-Burman (LKB) model was used to analyze RE as a function of the fractional esophageal DVH, with clinical variables included as dose-modifying factors. Overall, 652 patients were included: 405 patients were treated with 3D-CRT, 139 with IMRT, and 108 with PBT; corresponding rates of grade≥3 RE were 8%, 28%, and 6%, respectively, with a median time to onset of 42 days (range, 11-93 days). A fit of the fractional DVH LKB model demonstrated that the fractional effective dose was significantly different (P=.046) than 1 (fractional mean dose) indicating that high doses to small volumes are more predictive than mean esophageal dose. The model fit was better for 3D-CRT and PBT than for IMRT. Including receipt of concurrent chemotherapy as a dose-modifying factor significantly improved the LKB model (P=.005), and the model was further improved by including a variable representing treatment with >30 fractions. Examining individual types of chemotherapy agents revealed a trend toward receipt of concurrent taxanes and increased risk of RE (P=.105). Fractional dose (dose rate) and number of fractions (total dose) distinctly affect the risk of severe RE, estimated using the LKB model, and concurrent chemotherapy improves the model fit. This risk of severe RE is underestimated by this model in patients receiving IMRT. Copyright © 2012 Elsevier Inc. All rights reserved.
Velali, Ekaterini; Papachristou, Eleni; Pantazaki, Anastasia; Choli-Papadopoulou, Theodora; Argyrou, Nikoleta; Tsourouktsoglou, Theodora; Lialiaris, Stergios; Constantinidis, Alexandros; Lykidis, Dimitrios; Lialiaris, Thedore S; Besis, Athanasios; Voutsa, Dimitra; Samara, Constantini
2016-11-01
Three organic fractions of different polarity, including a non polar organic fraction (NPOF), a moderately polar organic fraction (MPOF), and a polar organic fraction (POF) were obtained from size-segregated (<0.49, 0.49-0.97, 0.97-3 and >3 μm) urban particulate matter (PM) samples, and tested for cytotoxicity and genotoxicity using a battery of in vitro assays. The cytotoxicity induced by the organic PM fractions was measured by the mitochondrial dehydrogenase (MTT) cell viability assay applied on MRC-5 human lung epithelial cells. DNA damages were evaluated through the comet assay, determination of the poly(ADP-Ribose) polymerase (PARP) activity, and the oxidative DNA adduct 8-hydroxy-deoxyguanosine (8-OHdG) formation, while pro-inflammatory effects were assessed by determination of the tumor necrosis factor-alpha (TNF-α) mediator release. In addition, the Sister Chromatid Exchange (SCE) inducibility of the solvent-extractable organic matter was measured on human peripheral lymphocyte. Variations of responses were assessed in relation to the polarity (hence the expected composition) of the organic PM fractions, particle size, locality, and season. Organic PM fractions were found to induce rather comparable Cytotoxicity and genotoxicity of PM appeared to be rather independent from the polarity of the extractable organic PM matter (EOM) with POF often being relatively more toxic than NPOF or MPOF. All assays indicated stronger mass-normalized bioactivity for fine than coarse particles peaking in the 0.97-3 and/or the 0.49-0.97 μm size ranges. Nevertheless, the air volume-normalized bioactivity in all assays was highest for the <0.49 μm size range highlighting the important human health risk posed by the inhalation of these quasi-ultrafine particles. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zile, Michael R; Jhund, Pardeep S; Baicu, Catalin F; Claggett, Brian L; Pieske, Burkert; Voors, Adriaan A; Prescott, Margaret F; Shi, Victor; Lefkowitz, Martin; McMurray, John J V; Solomon, Scott D
2016-01-01
Heart failure with preserved ejection fraction is a clinical syndrome that has been associated with changes in the extracellular matrix. The purpose of this study was to determine whether profibrotic biomarkers accurately reflect the presence and severity of disease and underlying pathophysiology and modify response to therapy in patients with heart failure with preserved ejection fraction. Four biomarkers, soluble form of ST2 (an interleukin-1 receptor family member), galectin-3, matrix metalloproteinase-2, and collagen III N-terminal propeptide were measured in the Prospective Comparison of ARNI With ARB on Management of Heart Failure With Preserved Ejection Fraction (PARAMOUNT) trial at baseline, 12 and 36 weeks after randomization to valsartan or LCZ696. We examined the relationship between baseline biomarkers, demographic and echocardiographic characteristics, change in primary (change in N-terminal pro B-type natriuretic peptide) and secondary (change in left atrial volume) end points. The median (interquartile range) value for soluble form of ST2 (33 [24.6-48.1] ng/mL) and galectin 3 (17.8 [14.1-22.8] ng/mL) were higher, and for matrix metalloproteinase-2 (188 [155.5-230.6] ng/mL) lower, than in previously published referent controls; collagen III N-terminal propeptide (5.6 [4.3-6.9] ng/mL) was similar to referent control values. All 4 biomarkers correlated with severity of disease as indicated by N-terminal pro B-type natriuretic peptide, E/E', and left atrial volume. Baseline biomarkers did not modify the response to LCZ696 for lowering N-terminal pro B-type natriuretic peptide; however, left atrial volume reduction varied by baseline level of soluble form of ST2 and galectin 3; patients with values less than the observed median (<33 ng/mL soluble form of ST2 and <17.8 ng/mL galectin 3) had reduction in left atrial volume, those above median did not. Although LCZ696 reduced N-terminal pro B-type natriuretic peptide, levels of the other 4 biomarkers were not affected over time. In patients with heart failure with preserved ejection fraction, biomarkers that reflect collagen homeostasis correlated with the presence and severity of disease and underlying pathophysiology, and may modify the structural response to treatment. URL: http://www.clinicaltrials.gov. Unique identifier: NCT00887588. © 2016 American Heart Association, Inc.
Brown Adipose Tissue Quantification in Human Neonates Using Water-Fat Separated MRI
Rasmussen, Jerod M.; Entringer, Sonja; Nguyen, Annie; van Erp, Theo G. M.; Guijarro, Ana; Oveisi, Fariba; Swanson, James M.; Piomelli, Daniele; Wadhwa, Pathik D.
2013-01-01
There is a major resurgence of interest in brown adipose tissue (BAT) biology, particularly regarding its determinants and consequences in newborns and infants. Reliable methods for non-invasive BAT measurement in human infants have yet to be demonstrated. The current study first validates methods for quantitative BAT imaging of rodents post mortem followed by BAT excision and re-imaging of excised tissues. Identical methods are then employed in a cohort of in vivo infants to establish the reliability of these measures and provide normative statistics for BAT depot volume and fat fraction. Using multi-echo water-fat MRI, fat- and water-based images of rodents and neonates were acquired and ratios of fat to the combined signal from fat and water (fat signal fraction) were calculated. Neonatal scans (n = 22) were acquired during natural sleep to quantify BAT and WAT deposits for depot volume and fat fraction. Acquisition repeatability was assessed based on multiple scans from the same neonate. Intra- and inter-rater measures of reliability in regional BAT depot volume and fat fraction quantification were determined based on multiple segmentations by two raters. Rodent BAT was characterized as having significantly higher water content than WAT in both in situ as well as ex vivo imaging assessments. Human neonate deposits indicative of bilateral BAT in spinal, supraclavicular and axillary regions were observed. Pairwise, WAT fat fraction was significantly greater than BAT fat fraction throughout the sample (ΔWAT-BAT = 38%, p<10−4). Repeated scans demonstrated a high voxelwise correlation for fat fraction (Rall = 0.99). BAT depot volume and fat fraction measurements showed high intra-rater (ICCBAT,VOL = 0.93, ICCBAT,FF = 0.93) and inter-rater reliability (ICCBAT,VOL = 0.86, ICCBAT,FF = 0.93). This study demonstrates the reliability of using multi-echo water-fat MRI in human neonates for quantification throughout the torso of BAT depot volume and fat fraction measurements. PMID:24205024
Wahart, Aurélien; Guy, Jean-Baptiste; Vallard, Alexis; Geissler, Benjamin; Ben Mrad, Majed; Falk, Alexander T; Prevot, Nathalie; de Laroche, Guy; Rancoule, Chloé; Chargari, Cyrus; Magné, Nicolas
2016-01-01
The aim of this study was to report the first cases of salvage radiotherapy (RT) using the intensity-modulated radiotherapy (IMRT) with simultaneous integrated boost (SIB) targeted on choline positron emission tomography (PET) uptake in a local recurrent prostate cancer, after a radical prostatectomy. Four patients received salvage irradiation for biochemical relapse that occurred after the initial radical prostatectomy. The relapse occurred from 10 months to 6 years with PSA levels ranging from 2.35 to 4.86 ng ml(-1). For each patient, an (18)F-choline PET-CT showed a focal choline uptake in prostatic fossa, with standardized uptake value calculated on the basis of predicted lean body mass (SUL) max of 3.3-6.8. No involved lymph node or distant metastases were diagnosed. IMRT doses were of 62.7 Gy (1.9 Gy/fraction, 33 fractions), with a SIB of 69.3 Gy (2.1 Gy/fraction, 33 fractions) to a PET-guided target volume. Acute toxicities were limited. We observed no gastrointestinal toxicity ≥grade 2 and only one grade 2 genitourinary toxicity. At 1-month follow-up evaluation, no complication and a decrease in PSA level (6.8-43.8% of the pre-therapeutic level) were reported. After 4 months, a decrease in PSA level was obtained for all the patients, ranging from 30% to 70%. At a median follow-up of 15 months, PSA level was controlled for all the patients, but one of them experienced a distant lymph node recurrence. Salvage irradiation to the prostate bed with SIB guided by PET-CT is feasible, with biological efficacy and no major acute toxicity. IMRT with PET-oriented SIB for salvage treatment of prostate cancer is possible, without major acute toxicity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bae, Sun Hyun; Kim, Mi-Sook, E-mail: mskim@kcch.re.kr; Cho, Chul Koo
2012-11-15
Purpose: To identify the predictors for the development of severe gastroduodenal toxicity (GDT) in patients treated with stereotactic body radiotherapy (SBRT) using 3 fractionations for abdominopelvic malignancies. Methods and Materials: From 2001 to 2011, 202 patients with abdominopelvic malignancies were treated with curative-intent SBRT. Among these patients, we retrospectively reviewed the clinical records of 40 patients with the eligibility criteria as follows: 3 fractionations, follow-up period {>=}1 year, absence of previous radiation therapy (RT) history or combination of external-beam RT and the presence of gastroduodenum (GD) that received a dose higher than 20% of prescribed dose. The median SBRT dosemore » was 45 Gy (range, 33-60 Gy) with 3 fractions. We analyzed the clinical and dosimetric parameters, including multiple dose-volume histogram endpoints: V{sub 20} (volume of GD that received 20 Gy), V{sub 25}, V{sub 30}, V{sub 35}, and D{sub max} (the maximum point dose). The grade of GDT was defined by the National Cancer Institute Common Toxicity Criteria version 4.0, and GDT {>=}grade 3 was defined as severe GDT. Results: The median time to the development of severe GDT was 6 months (range, 3-12 months). Severe GDT was found in 6 patients (15%). D{sub max} was the best dosimetric predictor for severe GDT. D{sub max} of 35 Gy and 38 Gy were respectively associated with a 5% and 10% probability of the development of severe GDT. A history of ulcer before SBRT was the best clinical predictor on univariate analysis (P=.0001). Conclusions: We suggest that D{sub max} is a valuable predictor of severe GDT after SBRT using 3 fractionations for abdominopelvic malignancies. A history of ulcer before SBRT should be carefully considered as a clinical predictor, especially in patients who receive a high dose to GD.« less
An Experimental Investigation of the Laminar Flamelet Concept for Soot Properties
NASA Technical Reports Server (NTRS)
Diez, F. J.; Aalburg, C.; Sunderland, P. B.; Urban, D. L.; Yuan, Z.-G.; Faeth, G. M.
2007-01-01
The soot properties of round, nonbuoyant, laminar jet diffusion flames are described, based on experiments at microgravity carried out on orbit during three flights of the Space Shuttle Columbia, (Flights STS-83, 94 and 107). Experimental conditions included ethylene- and propane-fueled flames burning in still air at an ambient temperature of 300 K and ambient pressures of 35-100 kPa. Measurements included soot volume fraction distributions using deconvoluted laser extinction imaging, and soot temperature distributions using deconvoluted multiline emission imaging. Flowfield modeling based on the work of Spalding is presented. The present work explores whether soot properties of these flames are universal functions of mixture fraction, i.e., whether they satisfy soot state relationships. Measurements are presented, including radiative emissions and distributions of soot temperature and soot volume fraction. It is shown that most of the volume of these flames is bounded by the dividing streamline and thus should follow residence time state relationships. Most streamlines from the fuel supply to the surroundings are found to exhibit nearly the same maximum soot volume fraction and temperature. The radiation intensity along internal streamlines also is found to have relatively uniform values. Finally, soot state relationships were observed, i.e., soot volume fraction was found to correlate with estimated mixture fraction for each fuel/pressure selection. These results support the existence of soot property state relationships for steady nonbuoyant laminar diffusion flames, and thus in a large class of practical turbulent diffusion flames through the application of the laminar flamelet concept.
Galus, Sabina; Kadzińska, Justyna
2016-03-01
The objective of this work is to study the effect of the rapeseed oil content on the physical properties of whey protein emulsion films. For this purpose, whey protein films with the addition of 0, 1, 2 and 3% of rapeseed oil, and glycerol as a plasticizer were obtained by the casting method. Film-forming emulsions were evaluated and compared using light scattering granulometry. The Sauter mean diameters ( d 32 ) of lipid droplets in film-forming solutions showed an increasing trend when increasing the oil volume fractions. The inclusion of rapeseed oil enhanced the hydrophobic character of whey protein films, reducing moisture content and film solubility in water. All emulsified films showed high lightness ( L* ≈90). Parameter a * decreased and parameter b* and total colour difference (∆ E ) increased with the increase of the volume fractions of oil. These results were consistent with visual observations; control films were transparent and those containing oil opaque. Water vapour sorption experimental data at the full range of water activity values from 0.11 to 0.93 were well described with Peleg's equation (R 2 ≥0.99). The tensile strength, Young's modulus and elongation at break increased with the increase of rapeseed oil volume fraction, which could be explained by interactions between lipids and the protein matrix. These results revealed that rapeseed oil has enormous potential to be incorporated into whey protein to make edible film or coating for some food products. The mechanical resistance decreased with the addition of the lipids, and the opacity and soluble matter content increased.
Direct numerical simulation of moderate-Reynolds-number flow past arrays of rotating spheres
NASA Astrophysics Data System (ADS)
Zhou, Qiang; Fan, Liang-Shih
2015-07-01
Direct numerical simulations with an immersed boundary-lattice Boltzmann method are used to investigate the effects of particle rotation on flows past random arrays of mono-disperse spheres at moderate particle Reynolds numbers. This study is an extension of a previous study of the authors [Q. Zhou and L.-S. Fan, "Direct numerical simulation of low-Reynolds-number flow past arrays of rotating spheres," J. Fluid Mech. 765, 396-423 (2015)] that explored the effects of particle rotation at low particle Reynolds numbers. The results of this study indicate that as the particle Reynolds number increases, the normalized Magnus lift force decreases rapidly when the particle Reynolds number is in the range lower than 50. For the particle Reynolds number greater than 50, the normalized Magnus lift force approaches a constant value that is invariant with solid volume fractions. The proportional dependence of the Magnus lift force on the rotational Reynolds number (based on the angular velocity and the diameter of the spheres) observed at low particle Reynolds numbers does not change in the present study, making the Magnus lift force another possible factor that can significantly affect the overall dynamics of fluid-particle flows other than the drag force. Moreover, it is found that both the normalized drag force and the normalized torque increase with the increase of the particle Reynolds number and the solid volume fraction. Finally, correlations for the drag force, the Magnus lift force, and the torque in random arrays of rotating spheres at arbitrary solids volume fractions, rotational Reynolds numbers, and particle Reynolds numbers are formulated.
NASA Astrophysics Data System (ADS)
Worth, Brian D.; Jones, J. Wayne; Allison, John E.
1995-11-01
The influence of microstructure on creep deformation was examined in the near-y TiAl alloy Ti-49A1-1V. Specifically, microstructures with varying volume fractions of lamellar constituent were produced through thermomechanical processing. Creep studies were conducted on these various microstructures under constant load in air at temperatures between 760 °C and 870 °C and at stresses ranging from 50 to 200 MPa. Microstructure significantly influences the creep behavior of this alloy, with a fully lamellar microstructure yielding the highest creep resistance of the microstructures examined. Creep resistance is dependent on the volume fraction of lamellar constituent, with the lowest creep resistance observed at intermediate lamellar volume fractions. Examination of the creep deformation structure revealed planar slip of dislocations in the equiaxed y microstructure, while subboundary formation was observed in the duplex microstructure. The decrease in creep resistance of the duplex microstructure, compared with the equiaxed y microstructure, is attributed to an increase in dislocation mobility within the equiaxed y constituent, that results from partitioning of oxygen from the γ phase to the α2 phase. Dislocation motion in the fully lamellar microstructure was confined to the individual lamellae, with no evidence of shearing of γ/γ or γ/α2 interfaces. This suggests that the high creep resistance of the fully lamellar microstructure is a result of the fine spacing of the lamellar structure, which results in a decreased effective slip length for dislocation motion over that found in the duplex and equiaxed y microstructures.
Effect of cooling rate on leucite volume fraction in dental porcelains.
Mackert, J R; Evans, A L
1991-02-01
Prasad et al. (1988) have shown that slow cooling of dental porcelain produces increases in thermal expansion sufficient to make a compatible metal-porcelain system incompatible. The present study was undertaken to determine whether the increase in porcelain thermal expansion might be attributable to crystallization of additional leucite during slow cooling of the porcelain. Eight x-ray diffraction specimens for each of six commercial dental porcelains and for the Component No. 1 frit of the Weinstein and Weinstein (1962) and Weinstein et al. (1962) patents were fabricated and divided into two groups. Specimens in the first group (termed fast-cooled) were cooled in the conventional manner by removing them from the furnace at the maximum firing temperature immediately into room air. Specimens in the second group (termed slow-cooled) were cooled slowly by interrupting power to the furnace muffle and allowing them to cool inside the closed furnace. Quantitative x-ray diffraction was performed on the fast- and slow-cooled porcelain specimens with standards containing leucite volume fractions of 0.111, 0.223, 0.334, and 0.445. Unpaired, one-tailed t tests were performed on the fast- and slow-cool data, and a significant increase (p less than 0.05) in the amount of leucite (as a function of the slow cooling) was found for each of the porcelains. The increases in the leucite volume fractions resulting from the slow cooling ranged from a low of 8.5% to a high of 55.8%, with an average increase of 26.9%.(ABSTRACT TRUNCATED AT 250 WORDS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plataniotis, George A.; Dale, Roger G.
2008-12-01
Purpose: To express the magnitude of the contribution of chemotherapy to local tumor control in chemoradiotherapy cervical cancer trials in terms of the concept of the biologically effective dose. Methods and Materials: The local control rates of both arms of each study (radiotherapy vs. radiotherapy plus chemotherapy) reported from randomized controlled trials of concurrent chemoradiotherapy for cervical cancer were reviewed and expressed using the Poisson model for tumor control probability (TCP) as TCP = exp(-exp E), where E is the logarithm of cell kill. By combining the two TCP values from each study, we calculated the chemotherapy-related log cell killmore » as Ec = ln[(lnTCP{sub Radiotherapy})/(lnTCP{sub Chemoradiotherapy})]. Assuming a range of radiosensitivities ({alpha} = 0.1-0.5 Gy{sup -1}) and taking the calculated log cell kill, we calculated the chemotherapy-BED, and using the linear quadratic model, the number of 2-Gy fractions corresponding to each BED. The effect of a range of tumor volumes and radiosensitivities ({alpha} Gy{sup -1}) on the TCP was also explored. Results: The chemotherapy-equivalent number of 2-Gy fractions range was 0.2-4 and was greater in tumors with lower radiosensitivity. In those tumors with intermediate radiosensitivity ({alpha} = 0.3 Gy{sup -1}), the equivalent number of 2-Gy fractions was 0.6-1.3, corresponding to 120-260 cGy of extra dose. The opportunities for clinically detectable improvement are only available in tumors with intermediate radiosensitivity with {alpha} = 0.22-0.28 Gy{sup -1}. The dependence of TCP on the tumor volume decreases as the radiosensitivity increases. Conclusion: The results of our study have shown that the contribution of chemotherapy to the TCP in cervical cancer is expected to be clinically detectable in larger and less-radiosensitive tumors.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moran, M.S., E-mail: meena.moran@yale.ed; Yale New Haven Hospital, New Haven, Connecticut and William W. Backus Hospital, Norwich, Connecticut; Castrucci, W.A.
2010-03-15
Purpose: Low-lying pelvic malignancies often require simultaneous radiation to pelvis and inguinal nodes. We previously reported improved homogeneity with the modified segmental boost technique (MSBT) compared to that with traditional methods, using phantom models. Here we report our institutional clinical experience with MSBT. Methods and Materials: MSBT patients from May 2001 to March 2007 were evaluated. Parameters analyzed included isocenter/multileaf collimation shifts, time per fraction (four fields), monitor units (MU)/fraction, femoral doses, maximal dose relative to body mass index, and inguinal node depth. In addition, a dosimetric comparison of the MSBT versus intensity modulated radiation therapy (IMRT) was conducted. Results:more » Of the 37 MSBT patients identified, 32 were evaluable. Port film adjustments were required in 6% of films. Median values for each analyzed parameter were as follows: MU/fraction, 298 (range, 226-348); delivery time, 4 minutes; inguinal depth, 4.5 cm; volume receiving 45 Gy (V45), 7%; V27.5, 87%; body mass index, 25 (range, 16.0-33.8). Inguinal dose was 100% in all cases; in-field inhomogeneity ranged from 111% to 118%. IMRT resulted in significantly decreased dose to normal tissue but required more time for treatment planning and a higher number of MUs (1,184 vs. 313 MU). Conclusions: In our clinical experience, the mono-isocentric MSBT provides a high degree of accuracy, improved homogeneity compared with traditional techniques, ease of simulation, treatment planning, treatment delivery, and acceptable femoral doses for pelvic/inguinal radiation fields requiring 45 to 50.4 Gy. In addition, the MSBT delivers a relatively uniform dose distribution throughout the treatment volume, despite varying body habitus. Clinical scenarios for the use of MSBT vs. intensity-modulated radiation therapy are discussed. To our knowledge, this is the first study reporting the utility of MSBT in the clinical setting.« less
Abnormal brain white matter microstructure is associated with both pre-hypertension and hypertension
Gao, He; Bai, Wenjia; Evangelou, Evangelos; Glocker, Ben; O’Regan, Declan P.; Elliott, Paul; Matthews, Paul M.
2017-01-01
Objectives To characterize effects of chronically elevated blood pressure on the brain, we tested for brain white matter microstructural differences associated with normotension, pre-hypertension and hypertension in recently available brain magnetic resonance imaging data from 4659 participants without known neurological or psychiatric disease (62.3±7.4 yrs, 47.0% male) in UK Biobank. Methods For assessment of white matter microstructure, we used measures derived from neurite orientation dispersion and density imaging (NODDI) including the intracellular volume fraction (an estimate of neurite density) and isotropic volume fraction (an index of the relative extra-cellular water diffusion). To estimate differences associated specifically with blood pressure, we applied propensity score matching based on age, sex, educational level, body mass index, and history of smoking, diabetes mellitus and cardiovascular disease to perform separate contrasts of non-hypertensive (normotensive or pre-hypertensive, N = 2332) and hypertensive (N = 2337) individuals and of normotensive (N = 741) and pre-hypertensive (N = 1581) individuals (p<0.05 after Bonferroni correction). Results The brain white matter intracellular volume fraction was significantly lower, and isotropic volume fraction was higher in hypertensive relative to non-hypertensive individuals (N = 1559, each). The white matter isotropic volume fraction also was higher in pre-hypertensive than in normotensive individuals (N = 694, each) in the right superior longitudinal fasciculus and the right superior thalamic radiation, where the lower intracellular volume fraction was observed in the hypertensives relative to the non-hypertensive group. Significance Pathological processes associated with chronically elevated blood pressure are associated with imaging differences suggesting chronic alterations of white matter axonal structure that may affect cognitive functions even with pre-hypertension. PMID:29145428
Accelerated Gray and White Matter Deterioration With Age in Schizophrenia.
Cropley, Vanessa L; Klauser, Paul; Lenroot, Rhoshel K; Bruggemann, Jason; Sundram, Suresh; Bousman, Chad; Pereira, Avril; Di Biase, Maria A; Weickert, Thomas W; Weickert, Cynthia Shannon; Pantelis, Christos; Zalesky, Andrew
2017-03-01
Although brain changes in schizophrenia have been proposed to mirror those found with advancing age, the trajectory of gray matter and white matter changes during the disease course remains unclear. The authors sought to measure whether these changes in individuals with schizophrenia remain stable, are accelerated, or are diminished with age. Gray matter volume and fractional anisotropy were mapped in 326 individuals diagnosed with schizophrenia or schizoaffective disorder and in 197 healthy comparison subjects aged 20-65 years. Polynomial regression was used to model the influence of age on gray matter volume and fractional anisotropy at a whole-brain and voxel level. Between-group differences in gray matter volume and fractional anisotropy were regionally localized across the lifespan using permutation testing and cluster-based inference. Significant loss of gray matter volume was evident in schizophrenia, progressively worsening with age to a maximal loss of 8% in the seventh decade of life. The inferred rate of gray matter volume loss was significantly accelerated in schizophrenia up to middle age and plateaued thereafter. In contrast, significant reductions in fractional anisotropy emerged in schizophrenia only after age 35, and the rate of fractional anisotropy deterioration with age was constant and best modeled with a straight line. The slope of this line was 60% steeper in schizophrenia relative to comparison subjects, indicating a significantly faster rate of white matter deterioration with age. The rates of reduction of gray matter volume and fractional anisotropy were significantly faster in males than in females, but an interaction between sex and diagnosis was not evident. The findings suggest that schizophrenia is characterized by an initial, rapid rate of gray matter loss that slows in middle life, followed by the emergence of a deficit in white matter that progressively worsens with age at a constant rate.
NASA Astrophysics Data System (ADS)
Kupke, A.; Hodgson, P. D.; Weiss, M.
2017-07-01
The elastic recovery in dual-phase (DP) steels is not a linear process and changes with plastic deformation. The level of change in the apparent Young's modulus has been reported to depend on material composition and microstructure, but most previous experimental studies were limited to industrial DP steels and led to contradicting results. This work represents a first fundamental study that investigates the separate and combined effect of phase volume fraction and hardness on the change in apparent Young's modulus in DP steel. A common automotive DP steel (DP780) is heat treated to obtain seven different combinations of martensite and ferrite volume fraction and hardness while keeping the chemical composition as well as the shape of the martensite and ferrite phases unchanged. Loading-unloading tests were performed to analyze the chord modulus at various levels of pre-strain. The results suggest that the point of saturation of the chord modulus with pre-strain depends on the morphology of the microstructure, occurring earlier for microstructures consisting of ferrite grains surrounded by martensite laths. It is further revealed that the reduction of the apparent Young's modulus, which is the difference between the material's initial Young's modulus and the chord modulus, increases with martensite hardness if the martensite volume fraction is kept constant. A higher martensite volume fraction initially elevates the reduction of the apparent Young's modulus. After a critical volume fraction of martensite phase of 35%, a decrease in apparent Young's modulus reduction was observed. A comparison of the plastic unloading strain suggests that the mechanisms leading to a reduction in apparent Young's modulus are strongest for the microstructure consisting of 35% martensite volume fraction.
Berger, Thomas; Petersen, Jørgen Breede Baltzer; Lindegaard, Jacob Christian; Fokdal, Lars Ulrik; Tanderup, Kari
2017-11-01
Density changes occurring during fractionated radiotherapy in the pelvic region may degrade proton dose distributions. The aim of the study was to quantify the dosimetric impact of gas cavities and body outline variations. Seven patients with locally advanced cervical cancer (LACC) were analyzed through a total of 175 daily cone beam computed tomography (CBCT) scans. Four-beams intensity-modulated proton therapy (IMPT) dose plans were generated targeting the internal target volume (ITV) composed of: primary tumor, elective and pathological nodes. The planned dose was 45 Gy [Relative-Biological-Effectiveness-weighted (RBE)] in 25 fractions and simultaneously integrated boosts of pathologic lymph nodes were 55-57.5 Gy (RBE). In total, 475 modified CTs were generated to evaluate the effect of: 1/gas cavities, 2/outline variations and 3/the two combined. The anatomy of each fraction was simulated by propagating gas cavities contours and body outlines from each daily CBCT to the pCT. Hounsfield units corresponding to gas and fat were assigned to the propagated contours. D98 (least dose received by the hottest 98% of the volume) and D99.9 for targets and V43Gy(RBE) (volume receiving ≥43 Gy(RBE)) for organs at risk (OARs) were recalculated on each modified CT, and total dose was evaluated through dose volume histogram (DVH) addition across all fractions. Weight changes during radiotherapy were between -3.1% and 1.2%. Gas cavities and outline variations induced a median [range] dose degradation for ITV45 of 1.0% [0.5-3.5%] for D98 and 2.1% [0.8-6.4%] for D99.9. Outline variations had larger dosimetric impact than gas cavities. Worst nodal dose degradation was 2.0% for D98 and 2.3% for D99.9. The impact on bladder, bowel and rectum was limited with V43Gy(RBE) variations ≤3.5 cm 3 . Bowel gas cavities and outline variations had minor impact on accumulated dose in targets and OAR of four-field IMPT in a LACC population of moderate weight changes.
NASA Astrophysics Data System (ADS)
Juddoo, Mrinal; Masri, Assaad R.; Pope, Stephen B.
2011-12-01
This paper reports measured stability limits and PDF calculations of piloted, turbulent flames of compressed natural gas (CNG) partially-premixed with either pure oxygen, or with varying levels of O2/N2. Stability limits are presented for flames of CNG fuel premixed with up to 20% oxygen as well as CNG-O2-N2 fuel where the O2 content is varied from 8 to 22% by volume. Calculations are presented for (i) Sydney flame B [Masri et al. 1988] which uses pure CNG as well as flames B15 to B25 where the CNG is partially-premixed with 15-25% oxygen by volume, respectively and (ii) Sandia methane-air (1:3 by volume) flame E [Barlow et al. 2005] as well as new flames E15 and E25 that are partially-premixed with 'reconstituted air' where the O2 content in nitrogen is 15 and 25% by volume, respectively. The calculations solve a transported PDF of composition using a particle-based Monte Carlo method and employ the EMST mixing model as well as detailed chemical kinetics. The addition of oxygen to the fuel increases stability, shortens the flames, broadens the reaction zone, and shifts the stoichiometric mixture fraction towards the inner side of the jet. It is found that for pure CNG flames where the reaction zone is narrow (∼0.1 in mixture fraction space), the PDF calculations fail to reproduce the correct level of local extinction on approach to blow-off. A broadening in the reaction zone up to about 0.25 in mixture fraction space is needed for the PDF/EMST approach to be able to capture these finite-rate chemistry effects. It is also found that for the same level of partial premixing, increasing the O2/N2 ratio increases the maximum levels of CO and NO but shifts the peak to richer mixture fractions. Over the range of oxygenation investigated here, stability limits have shown to improve almost linearly with increasing oxygen levels in the fuel and with increasing the contribution of release rate from the pilot.
Water content dependence of trapped air in two soils
Stonestrom, David A.; Rubin, Jacob
1989-01-01
An improved air pycnometer method was used to examine the water content dependence of trapped-air volumes in two repacked, nonswelling soils. Trapped-air volumes were determined at a series of hydrostatic equilibrium stages which were attained during water pressure-controlled wetting and drying cycles over a range of 0 to −10 kPa for a sand and 0 to −20 kPa for a loam. Small pressure perturbations, between 0.2 and 0.6 kPa, were used in the air pycnometer method. Volumes of trapped air obtained at each hydrostatic equilibrium stage were independent of perturbation level and remained relatively constant over the time required to make repeated determinations. In contrast with most of the results obtained in previous studies, which often showed irregular relations, in this study the volume fraction of trapped air was found to be a regular, monotonically increasing (though possibly hysteretic) function of water content. For the soils studied, the function definitely exceeded zero only at water contents greater than 70% of saturation. However, during the initial drying from complete water saturation, the volume fraction of trapped air was virtually zero. Air trapping influenced the water retention curves significantly only at water contents higher than about 60% of saturation. Except at zero water pressure, however, not all of the differences between the initial and the other drying retention curves were accounted for by observed differences in trapped-air volumes. Air trapping was not required for the onset of hysteresis in the water retention relation for the cases studied, i.e., when drying-to-wetting reversals were imposed at about 27% and 40% of saturation for the sand and loam soils, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kopp, Christine, E-mail: Christine.Kopp@lrz.tu-muenchen.de; Theodorou, Marilena; Poullos, Nektarios
2012-03-01
Purpose: To evaluate tumor control and side effects associated with fractionated stereotactic radiotherapy (FSRT) in the management of residual or recurrent nonfunctioning pituitary adenomas (NFPAs). Methods and Materials: We assessed exact tumor volume shrinkage in 16 patients with NFPA after FSRT. All patients had previously undergone surgery. Gross tumor volume (GTV) was outlined on contrast-enhanced magnetic resonance imaging (MRI) before and median 63 months (range, 28-100 months) after FSRT. MRI was performed as an axial three-dimensional gradient echo T1-weighted sequence at 1.6-mm slice thickness without gap (3D MRI). Results: Mean tumor size of all 16 pituitary adenomas before treatment wasmore » 7.4 mL (3.3-18.9 mL). We found shrinkage of the treated pituitary adenoma in all patients. Within a median follow-up of 63 months (28-100 months) an absolute mean volume reduction of 3.8 mL (0.9-12.4 mL) was seen. The mean relative size reduction compared with the volume before radiotherapy was 51% (22%-95%). Shrinkage measured by 3D MRI was greater at longer time intervals after radiotherapy. A strong negative correlation between the initial tumor volume and the absolute volume reduction after FSRT was found. There was no correlation between tumor size reduction and patient age, sex, or number of previous surgeries. Conclusions: By using 3D MRI in all patients undergoing FSRT of an NFPA, tumor shrinkage is detected. Our data demonstrate that volumetric assessment based on 3D MRI adds additional information to routinely used radiological response measurements. After FSRT a mean relative size reduction of 51% can be expected within 5 years.« less
Sintering of viscous droplets under surface tension
Vasseur, Jérémie; Llewellin, Edward W.; Schauroth, Jenny; Dobson, Katherine J.; Scheu, Bettina; Dingwell, Donald B.
2016-01-01
We conduct experiments to investigate the sintering of high-viscosity liquid droplets. Free-standing cylinders of spherical glass beads are heated above their glass transition temperature, causing them to densify under surface tension. We determine the evolving volume of the bead pack at high spatial and temporal resolution. We use these data to test a range of existing models. We extend the models to account for the time-dependent droplet viscosity that results from non-isothermal conditions, and to account for non-zero final porosity. We also present a method to account for the initial distribution of radii of the pores interstitial to the liquid spheres, which allows the models to be used with no fitting parameters. We find a good agreement between the models and the data for times less than the capillary relaxation timescale. For longer times, we find an increasing discrepancy between the data and the model as the Darcy outgassing time-scale approaches the sintering timescale. We conclude that the decreasing permeability of the sintering system inhibits late-stage densification. Finally, we determine the residual, trapped gas volume fraction at equilibrium using X-ray computed tomography and compare this with theoretical values for the critical gas volume fraction in systems of overlapping spheres. PMID:27274687
Initial susceptibility and viscosity properties of low concentration ɛ-Fe3 N based magnetic fluid
NASA Astrophysics Data System (ADS)
Huang, Wei; Wu, Jianmin; Guo, Wei; Li, Rong; Cui, Liya
2007-03-01
In this paper, the initial susceptibility of ɛ-Fe3N magnetic fluid at volume concentrations in the range Φ = 0.0 ˜ 0.0446 are measured. Compared with the experimental initial susceptibility, the Langevin, Weiss and Onsager susceptibility were calculated using the data obtained from the low concentration ɛ-Fe3N magnetic fluid samples. The viscosity of the ɛ-Fe3N magnetic fluid at the same concentrations is measured. The result shows that, the initial susceptibility of the low concentration ɛ-Fe3N magnetic fluid is proportional to the concentration. A linear relationship between relative viscosity and the volume fraction is observed when the concentration Φ < 0.02.
NASA Astrophysics Data System (ADS)
Ha, Jeong Won; Seong, Baek Seok; Jeong, Hi Won; Choi, Yoon Suk; Kang, Namhyun
2015-02-01
Inconel X-750 is a Ni-based precipitation-hardened superalloy typically used in springs designed for high-temperature applications such as the hold-down springs in nuclear power plants. γ‧ is a major precipitate in X-750 alloys which affects the strength, creep resistance, and stress relaxation properties of the spring. In this study, a solution-treated X-750 wire coiled into a spring was used that was aged at various temperatures and submitted to stress relaxation tests with and without loading. Small angle neutron scattering was employed to quantify the size and volume fraction of γ‧ phase in the springs as a function of the aging temperature and the application of a load during stress relaxation. The volume fraction of γ‧ precipitates increased in the specimen aged at 732 °C following stress relaxation at 500 °C for 300 h. However, the mean size of the precipitates in the samples was not affected by stress relaxation. The specimen aged at the lower temperature (620 °C) contained a smaller γ‧ volume fraction and gained a smaller fraction of γ‧ during stress relaxation compared with the sample aged at the higher temperature (732 °C). The smaller increase in the γ‧ volume fraction for the sample aged at 620 °C was associated with a larger increase in the M23C6 secondary carbide content during relaxation. The Cr depletion zone around the secondary carbides raises the solubility of γ‧ thereby decreasing the volume fraction of γ‧ precipitates in Inconel X-750. In terms of stress relaxation, a larger increase in the γ‧ volume fraction was measured with loading rather than without. This is probably associated with the dislocation accumulation generated under loading that facilitate the nucleation and growth of heterogeneous γ‧ phase due to enhanced diffusion.
Mikami, Yoko; Jolly, Umjeet; Heydari, Bobak; Peng, Mingkai; Almehmadi, Fahad; Zahrani, Mohammed; Bokhari, Mahmoud; Stirrat, John; Lydell, Carmen P; Howarth, Andrew G; Yee, Raymond; White, James A
2017-01-01
Left ventricular ejection fraction remains the primary risk stratification tool used in the selection of patients for implantable cardioverter defibrillator therapy. However, this solitary marker fails to identify a substantial portion of patients experiencing sudden cardiac arrest. In this study, we examined the incremental value of considering right ventricular ejection fraction for the prediction of future arrhythmic events in patients with systolic dysfunction using the gold standard of cardiovascular magnetic resonance. Three hundred fourteen consecutive patients with ischemic cardiomyopathy or nonischemic dilated cardiomyopathy undergoing cardiovascular magnetic resonance were followed for the primary outcome of sudden cardiac arrest or appropriate implantable cardioverter defibrillator therapy. Blinded quantification of left ventricular and right ventricular (RV) volumes was performed from standard cine imaging. Quantification of fibrosis from late gadolinium enhancement imaging was incrementally performed. RV dysfunction was defined as right ventricular ejection fraction ≤45%. Among all patients (164 ischemic cardiomyopathy, 150 nonischemic dilated cardiomyopathy), the mean left ventricular ejection fraction was 32±12% (range, 6-54%) with mean right ventricular ejection fraction of 48±15% (range, 7-78%). At a median of 773 days, 49 patients (15.6%) experienced the primary outcome (9 sudden cardiac arrest, 40 appropriate implantable cardioverter defibrillator therapies). RV dysfunction was independently predictive of the primary outcome (hazard ratio=2.98; P=0.002). Among those with a left ventricular ejection fraction >35% (N=121; mean left ventricular ejection fraction, 45±6%), RV dysfunction provided an adjusted hazard ratio of 4.2 (P=0.02). RV dysfunction is a strong, independent predictor of arrhythmic events. Among patients with mild to moderate LV dysfunction, a cohort greatly contributing to global sudden cardiac arrest burden, this marker provides robust discrimination of high- versus low-risk subjects. © 2017 American Heart Association, Inc.
Dorin, Thomas; Donnadieu, Patricia; Chaix, Jean-Marc; Lefebvre, Williams; Geuser, Frédéric De; Deschamps, Alexis
2015-11-01
Transmission Electron Microscopy (TEM) can be used to measure the size distribution and volume fraction of fine scale precipitates in metallic systems. However, such measurements suffer from a number of artefacts that need to be accounted for, related to the finite thickness of the TEM foil and to the projected observation in two dimensions of the microstructure. We present a correction procedure to describe the 3D distribution of disc-like particles and apply this method to the plate-like T1 precipitates in an Al-Li-Cu alloy in two ageing conditions showing different particle morphologies. The precipitates were imaged in a High-Angular Annular Dark Field Microscope (HAADF-STEM). The corrected size distribution is further used to determine the precipitate volume fraction. Atom probe tomography (APT) is finally utilised as an alternative way to measure the precipitate volume fraction and test the validity of the electron microscopy results. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Louis, P.; Gokhale, A. M.
1996-01-01
Computer simulation is a powerful tool for analyzing the geometry of three-dimensional microstructure. A computer simulation model is developed to represent the three-dimensional microstructure of a two-phase particulate composite where particles may be in contact with one another but do not overlap significantly. The model is used to quantify the "connectedness" of the particulate phase of a polymer matrix composite containing hollow carbon particles in a dielectric polymer resin matrix. The simulations are utilized to estimate the morphological percolation volume fraction for electrical conduction, and the effective volume fraction of the particles that actually take part in the electrical conduction. The calculated values of the effective volume fraction are used as an input for a self-consistent physical model for electrical conductivity. The predicted values of electrical conductivity are in very good agreement with the corresponding experimental data on a series of specimens having different particulate volume fraction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Metellus, Philippe; Batra, Sachin; Karkar, Siddharth
2010-11-01
Purpose: To evaluate long-term outcome of cavernous sinus meningioma (CSM) treated with fractionated conformal radiotherapy (FCR). Patients and Methods: Fifty-three patients with CSMs (16 men [30.2%], 37 women [69.8%], aged 53 {+-} 13.0 years [mean {+-} SD]) were treated by FCR. In 28 patients (52.8%) FCR was performed as first-line treatment and in 25 patients (47.2%) as adjuvant treatment. All patients received FCR with a dose of 52.9 {+-} 1.8 Gy in 29.4 {+-} 1.0 fractions over 6 weeks. Dose per fraction was 1.9 {+-} 0.1 Gy. Radiotherapy was delivered stereotactically in 47 cases (88.7%) and conformally in 6 (11.3%)more » Results: The median follow-up was 6.9 years (range, 3-19 years). According to Sekhar's classification, 19 patients (35.8%) were Grade 1-2, 30 patients (56.6%) were Grade 3-4, and 4 patients (7.6%) were Grade 5. Pretreatment tumor volume was determined in 46 patients, and tumor volume was 12.6 {+-} 8.2 cm{sup 3}. In these patients, the distance between tumor and optic apparatus was 1.62 {+-} 1.2 mm. Actuarial 5- and 10-year progression-free survival rates were 98.1% and 95.8%, respectively. Clinical improvement was observed in 31 patients (58.5%), and 20 patients (37.7%) remained unchanged. Radiologic response was observed in 18 patients (30.2%), and 35 patients (66.0%) showed stable lesions. Two patients (3.8%) showed tumor progression during follow-up. Transient morbidity was observed in 3 patients (5.7%) and permanent morbidity in 1 (1.9%). Conclusion: Fractionated conformal radiotherapy affords satisfactory long-term tumor control and low treatment morbidity.« less
Bidisperse and polydisperse suspension rheology at large solid fraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pednekar, Sidhant; Chun, Jaehun; Morris, Jeffrey F.
At the same solid volume fraction, bidisperse and polydisperse suspensions display lower viscosities, and weaker normal stress response, compared to monodisperse suspensions. The reduction of viscosity associated with size distribution can be explained by an increase of the maximum flowable, or jamming, solid fraction. In this work, concentrated or "dense" suspensions are simulated under strong shearing, where thermal motion and repulsive forces are negligible, but we allow for particle contact with a mild frictional interaction with interparticle friction coefficient of 0.2. Aspects of bidisperse suspension rheology are first revisited to establish that the approach reproduces established trends; the study ofmore » bidisperse suspensions at size ratios of large to small particle radii (2 to 4) shows that a minimum in the viscosity occurs for zeta slightly above 0.5, where zeta=phi_{large}/phi is the fraction of the total solid volume occupied by the large particles. The simple shear flows of polydisperse suspensions with truncated normal and log normal size distributions, and bidisperse suspensions which are statistically equivalent with these polydisperse cases up to third moment of the size distribution, are simulated and the rheologies are extracted. Prior work shows that such distributions with equivalent low-order moments have similar phi_{m}, and the rheological behaviors of normal, log normal and bidisperse cases are shown to be in close agreement for a wide range of standard deviation in particle size, with standard correlations which are functionally dependent on phi/phi_{m} providing excellent agreement with the rheology found in simulation. The close agreement of both viscosity and normal stress response between bi- and polydisperse suspensions demonstrates the controlling in influence of the maximum packing fraction in noncolloidal suspensions. Microstructural investigations and the stress distribution according to particle size are also presented.« less
Groenewold, Gary S; Scott, Jill R; Rae, Catherine
2011-07-04
Recovery of chemical contaminants from fixed surfaces for analysis can be challenging, particularly if it is not possible to acquire a solid sample to be taken to the laboratory. A simple device is described that collects semi-volatile organic compounds from fixed surfaces by creating an enclosed volume over the surface, then generating a modest vacuum. A solid-phase microextraction (SPME) fiber is then inserted into the evacuated volume where it functions to sorb volatilized organic contaminants. The device is based on a syringe modified with a seal that is used to create the vacuum, with a perforable plunger through which the SPME fiber is inserted. The reduced pressure speeds partitioning of the semi-volatile compounds into the gas phase and reduces the boundary layer around the SPME fiber, which enables a fraction of the volatilized organics to partition into the SPME fiber. After sample collection, the SPME fiber is analyzed using conventional gas chromatography/mass spectrometry. The methodology has been used to collect organophosphorus compounds from glass surfaces, to provide a simple test for the functionality of the devices. Thirty minute sampling times (ΔT(vac)) resulted in fractional recovery efficiencies that ranged from 10(-3) to >10(-2), and in absolute terms, collection of low nanograms was demonstrated. Fractional recovery values were positively correlated to the vapor pressure of the compounds being sampled. Fractional recovery also increased with increasing ΔT(vac) and displayed a roughly logarithmic profile, indicating that an operational equilibrium is being approached. Fractional recovery decreased with increasing time between exposure and sampling; however, recordable quantities of the phosphonates could be collected three weeks after exposure. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Covey, Steven J.
1993-01-01
Notched unidirectional SCS-6/Ti-15-3 composite of three different fiber volume fractions (vf = 0.15, 0.37, and 0.41) was investigated for various room temperature microstructural and material properties including: fatigue crack initiation, fatigue crack growth, and fracture toughness. While the matrix hardness is similar for all fiber volume fractions, the fiber/matrix interfacial shear strength and matrix residual stress increases with fiber volume fraction. The composite fatigue crack initiation stress is shown to be matrix controlled and occurs when the net maximum matrix stress approaches the endurance limit stress of the matrix. A model is presented which includes residual stresses and presents the composite initiation stress as a function of fiber volume fraction. This model predicts a maximum composite initiation stress at vf approximately 0.15 which agrees with the experimental data. The applied composite stress levels were increased as necessary for continued crack growth. The applied Delta(K) values at crack arrest increase with fiber volume fraction by an amount better approximated using an energy based formulation rather than when scaled linear with modulus. After crack arrest, the crack growth rate exponents for vf37 and vf41 were much lower and toughness much higher, when compared to the unreinforced matrix, because of the bridged region which parades with the propagating fatigue crack. However, the vf15 material exhibited a higher crack growth rate exponent and lower toughness than the unreinforced matrix because once the bridged fibers nearest the crack mouth broke, the stress redistribution broke all bridged fibers, leaving an unbridged crack. Degraded, unbridged behavior is modeled using the residual stress state in the matrix ahead of the crack tip. Plastic zone sizes were directly measured using a metallographic technique and allow prediction of an effective matrix stress intensity which agrees with the fiber pressure model if residual stresses are considered. The sophisticated macro/micro finite element models of the 0.15 and 0.37 fiber volume fractions presented show good agreement with experimental data and the fiber pressure model when an estimated effective fiber/matrix debond length is used.
NASA Astrophysics Data System (ADS)
Liu, Fengshan; Rogak, Steven; Snelling, David R.; Saffaripour, Meghdad; Thomson, Kevin A.; Smallwood, Gregory J.
2016-11-01
Multimode pulsed Nd:YAG lasers are commonly used in auto-compensating laser-induced incandescence (AC-LII) measurements of soot in flames and engine exhaust as well as black carbon in the atmosphere. Such lasers possess a certain degree of fluence non-uniformity across the laser beam even with the use of beam shaping optics. Recent research showed that the measured volume fraction of ambient-temperature soot using AC-LII increases significantly, by about a factor of 5-8, with increasing the laser fluence in the low-fluence regime from a very low fluence to a relatively high fluence of near sublimation. The causes of this so-called soot volume fraction anomaly are currently not understood. The effects of laser fluence non-uniformity on the measured soot volume fraction using AC-LII were investigated. Three sets of LII experiments were conducted in the exhaust of a MiniCAST soot generator under conditions of high elemental carbon using Nd:YAG lasers operated at 1064 nm. The laser beams were shaped and relay imaged to achieve a relatively uniform fluence distribution in the measurement volume. To further homogenize the laser fluence, one set of LII experiments was conducted by using a diffractive optical element. The measured soot volume fractions in all three sets of LII experiments increase strongly with increasing the laser fluence before a peak value is reached and then start to decrease at higher fluences. Numerical calculations were conducted using the experimental laser fluence histograms. Laser fluence non-uniformity is found partially responsible for the soot volume fraction anomaly, but is insufficient to explain the degree of soot volume fraction anomaly observed experimentally. Representing the laser fluence variations by a histogram derived from high-resolution images of the laser beam energy profile gives a more accurate definition of inhomogeneity than a simple averaged linear profile across the laser beam.
NASA Astrophysics Data System (ADS)
Ojha, Prasanta K.; Rath, Sangram K.; Sharma, Sandeep K.; Sudarshan, Kathi; Pujari, Pradeep K.; Chongdar, Tapas K.; Gokhale, Nitin M.
2015-01-01
The role of La+3/Sr+2 ratios, which is varied from 0.08 to 5.09, on density, molar volume, packing fraction, free volume, thermal and electrical properties in strontium lanthanum aluminoborosilicate based glass sealants intended for solid oxide fuel cell (SOFC) applications is evaluated. The studies reveal expansion of the glass network evident from increasing molar volume and decreasing packing fraction of glasses with progressive La+3 substitutions. The molecular origin of these macroscopic structural features can be accounted for by the free volume parameters measured from positron annihilation lifetime spectroscopy (PALS). The La+3 induced expanded glass networks show increased number of subnanoscopic voids with larger sizes, as revealed from the ortho-positronium (o-Ps) lifetime and its intensity. A remarkably direct correspondence between the molar volume and fractional free volume trend is established with progressive La2O3 substitution in the glasses. The effect of these structural changes on the glass transition temperature, softening temperature, coefficient of thermal expansion, thermal stability as well as electrical conductivity has been studied.
NASA Astrophysics Data System (ADS)
Cao, Su; Ma, Bin; Giassi, Davide; Bennett, Beth Anne V.; Long, Marshall B.; Smooke, Mitchell D.
2018-03-01
In this study, the influence of pressure and fuel dilution on the structure and geometry of coflow laminar methane-air diffusion flames is examined. A series of methane-fuelled, nitrogen-diluted flames has been investigated both computationally and experimentally, with pressure ranging from 1.0 to 2.7 atm and CH4 mole fraction ranging from 0.50 to 0.65. Computationally, the MC-Smooth vorticity-velocity formulation was employed to describe the reactive gaseous mixture, and soot evolution was modelled by sectional aerosol equations. The governing equations and boundary conditions were discretised on a two-dimensional computational domain by finite differences, and the resulting set of fully coupled, strongly nonlinear equations was solved simultaneously at all points using a damped, modified Newton's method. Experimentally, chemiluminescence measurements of CH* were taken to determine its relative concentration profile and the structure of the flame front. A thin-filament ratio pyrometry method using a colour digital camera was employed to determine the temperature profiles of the non-sooty, atmospheric pressure flames, while soot volume fraction was quantified, after evaluation of soot temperature, through an absolute light calibration using a thermocouple. For a broad spectrum of flames in atmospheric and elevated pressures, the computed and measured flame quantities were examined to characterise the influence of pressure and fuel dilution, and the major conclusions were as follows: (1) maximum temperature increases with increasing pressure or CH4 concentration; (2) lift-off height decreases significantly with increasing pressure, modified flame length is roughly independent of pressure, and flame radius decreases with pressure approximately as P-1/2; and (3) pressure and fuel stream dilution significantly affect the spatial distribution and the peak value of the soot volume fraction.
NASA Astrophysics Data System (ADS)
Yilbas, B. S.; Shuja, S. Z.
2017-01-01
Thermal performance of a solar volumetric receiver incorporating the different cell geometric configurations is investigated. Triangular, hexagonal, and rectangular absorbing cells are incorporated in the analysis. The fluid volume fraction, which is the ratio of the volume of the working fluid over the total volume of solar volumetric receiver, is introduced to assess the effect of cell size on the heat transfer rates in the receiver. In this case, reducing the fluid volume fraction corresponds to increasing cell size in the receiver. SiC is considered as the cell material, and air is used as the working fluid in the receiver. The Lambert's Beer law is incorporated to account for the solar absorption in the receiver. A finite element method is used to solve the governing equation of flow and heat transfer. It is found that the fluid volume fraction has significant effect on the flow field in the solar volumetric receiver, which also modifies thermal field in the working fluid. The triangular absorbing cell gives rise to improved effectiveness of the receiver and then follows the hexagonal and rectangular cells. The second law efficiency of the receiver remains high when hexagonal cells are used. This occurs for the fluid volume fraction ratio of 0.5.
NASA Astrophysics Data System (ADS)
Fisher, Matthew Lyle
Colloidal processing has been demonstrated as an effective technique for increasing the reliability of ceramic components by reducing the flaw populations in sintered bodies. The formation of long-range repulsive potentials produces a dispersed slurry which can be filtered to remove heterogeneities and truncate the flaw size distribution. When the pair potentials are changed from repulsive to weakly attractive, a short-range repulsive potential can be developed in the slurry state which prevents mass segregation, allows particles to consolidate to high volume fractions, and produces plastic consolidated bodies. Plastic behavior in saturated ceramic compacts would allow plastic shape forming technologies to be implemented on advanced ceramic powders. Two networks of different interparticle potential have been mixed to control the rheological properties of slurries and develop clay-like plasticity in consolidated bodies. The elastic modulus and yield stress of slurries were found to increase with volume fraction in a power law fashion. Consolidated bodies containing mixtures of alkylated and non-alkylated powder pack to high volume fraction and exhibit similar flow properties to clay. The mixing of aqueous networks of different pair potential can also be effective in tailoring the flow properties. The flow stress of saturated compacts has been adjusted by the addition of a second network of uncoated particles which is stabilized electrostatically. The influence of the addition of silica of various sizes on the viscosity and zeta potentials of alumina suspensions has been investigated. The adsorption of nano-silica to the surface of alumina shifts the iep. The amount of silica at which the maximum shift in zeta potential occurs is consistent with the silica required to produce the minimum viscosity. This level of silica on the surface is consistent with calculations of the amount necessary for dense random parking of silica spheres around alumina. The influence of counterion size on short range repulsive forces at high salt concentrations was investigated with alumina and silica slurries coagulated with the chlorides of Li+, Na+, K+, Cs+ and TMA+ (tetramethylammonium+). The results clearly show that the range of the repulsive forces correlated with the size of the unhydrated ion, namely stronger particle networks are achieved with smaller counterions. The findings are contradictory to the widely accepted hydration force model. Silica and alumina slurries were also studied at and below the iep where the indifferent electrolyte cations would not be expected to adsorb. It appears that a lyotropic sequence for excluded ions exists and is correlated to the hydration of ions and surfaces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins, D.G.; West, J.T.
FRAC-IN-THE-BOX is a computer code developed to calculate the fractions of rectangular parallelepiped mesh cell volumes that are intersected by combinatorial geometry type zones. The geometry description used in the code is a subset of the combinatorial geometry used in SABRINA. The input file may be read into SABRINA and three dimensional plots made of the input geometry. The volume fractions for those portions of the geometry that are too complicated to describe with the geometry routines provided in FRAC-IN-THE-BOX may be calculated in SABRINA and merged with the volume fractions computed for the remainder of the geometry. 21 figs.,more » 1 tab.« less
NASA Astrophysics Data System (ADS)
Hanafee, Z. M.; Khalina, A.; Norkhairunnisa, M.; Syams, Z. Edi; Liew, K. E.
2017-09-01
This paper investigates the effect of fibre volume fraction on mechanical properties of banana-pineapple leaf (PaLF)-glass reinforced epoxy resin under tensile loading. Uniaxial tensile tests were carried out on specimens with different fibre contents (30%, 40%, 50% in weight). The composite specimens consists of 13 different combinations. The effect of hybridisation between synthetic and natural fibre onto tensile properties was determined and the optimum fibre volume fraction was obtained at 50% for both banana and PaLF composites. Additional 1 layer of woven glass fibre increased the tensile strength of banana-PaLF composite up to 85%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milker-Zabel, Stefanie; Zabel, Angelika; Schulz-Ertner, Daniela
Purpose: To analyze our long-term experience and prognostic factors after fractionated stereotactic radiotherapy (FSRT) in patients with benign or atypical intracranial meningioma. Methods and materials: Between January 1985 and December 2001, 317 patients with a median age of 55.7 years were treated with FSRT for intracranial meningioma. The tumor distribution was World Health Organization (WHO) Grade 1 in 48.3%, WHO Grade 2 in 8.2%, and unknown in 43.5%. Of the 317 patients, 97 underwent RT as their primary treatment, 79 underwent postoperative RT (subtotal resection in 38 and biopsy only in 41), and 141 were treated for recurrent disease. Themore » median target volume was 33.6 cm{sup 3} (range, 1.0-412.6 cm{sup 3}). The median total dose was 57.6 Gy at 1.8 Gy/fraction five times weekly. Results: The median follow-up was 5.7 years (range, 1.2-14.3 years). The overall local tumor control rate was 93.1% (295 of 317). Of the 317 patients, 72 had a partial response on CT/MRI and 223 (70.4%) remained stable. At a median of 4.5 years after FSRT, 22 patients (6.9%) had local tumor progression on MRI. Local tumor failure was significantly greater in patients with WHO Grade 2 meningioma (p < 0.002) than in patients with WHO Grade 1 or unknown histologic features. Patients treated for recurrent meningioma showed a trend toward decreased progression-free survival compared with patients treated with primary therapy, after biopsy, or after subtotal resection (p < 0.06). Patients with a tumor volume >60 cm{sup 3} had a recurrence rate of 15.5% vs. 4.3% for those with a tumor volume of {<=}60 cm{sup 3} (p < 0.001). In 42.9% of the patients, preexisting neurologic deficits improved. Worsening of preexisting neurologic symptoms occurred in 8.2%. Eight patients developed new clinical symptoms, such as reduced vision, trigeminal neuralgia, and intermittent tinnitus located at the side of the irradiated meningioma after FSRT. Conclusion: These data have demonstrated that FSRT is an effective and safe treatment modality for local control of meningioma with a low risk of significant late toxicity. We identified the tumor volume, indication for FSRT, and histologic features of the meningioma as statistically significant prognostic factors.« less
Philippe, A M; Baravian, C; Bezuglyy, V; Angilella, J R; Meneau, F; Bihannic, I; Michot, L J
2013-04-30
In the present study, we investigate the evolution with shear of the viscosity of aqueous suspensions of size-selected natural swelling clay minerals for volume fractions extending from isotropic liquids to weak nematic gels. Such suspensions are strongly shear-thinning, a feature that is systematically observed for suspensions of nonspherical particles and that is linked to their orientational properties. We then combined our rheological measurements with small-angle X-ray scattering experiments that, after appropriate treatment, provide the orientational field of the particles. Whatever the clay nature, particle size, and volume fraction, this orientational field was shown to depend only on a nondimensional Péclet number (Pe) defined for one isolated particle as the ratio between hydrodynamic energy and Brownian thermal energy. The measured orientational fields were then directly compared to those obtained for infinitely thin disks through a numerical computation of the Fokker-Plank equation. Even in cases where multiple hydrodynamic interactions dominate, qualitative agreement between both orientational fields is observed, especially at high Péclet number. We have then used an effective approach to assess the viscosity of these suspensions through the definition of an effective volume fraction. Using such an approach, we have been able to transform the relationship between viscosity and volume fraction (ηr = f(φ)) into a relationship that links viscosity with both flow and volume fraction (ηr = f(φ, Pe)).
The effect of latent adenovirus 5 infection on cigarette smoke-induced lung inflammation.
Vitalis, T Z; Kern, I; Croome, A; Behzad, H; Hayashi, S; Hogg, J C
1998-03-01
The aim of this study was to test the hypothesis that latent adenovirus (Ad) 5 infection increases the lung inflammation that follows a single acute exposure to cigarette smoke. A recently developed model of latent adenoviral infection in guinea-pigs was used. Twelve animals were infected with Ad5 (10(8) plaque-forming units) and 12 animals were sham-infected. Thirty five days later six Ad5-infected and six sham-infected animals were exposed to the smoke from five cigarettes. The remaining animals were used as controls for both infection and smoking. As markers of inflammation, the volume fraction of macrophages, T-lymphocytes, neutrophils and eosinophils were measured by quantitative histology. We found that latent Ad5-infection alone, doubled the number of macrophages in the lung parenchyma and that smoking alone, doubled the volume fraction of neutrophils in the airway wall and the volume fraction of macrophages in the lung parenchyma. Neither viral infection nor smoking, alone, had an effect on T-lymphocytes or eosinophils. However, the combination of viral infection and smoking doubled the T-lymphocyte helper cells and quadrupled the volume fraction of macrophages in the lung parenchyma. We conclude that in guinea-pigs, latent adenovirus 5 infection increases the inflammation that follows a single acute exposure to cigarette smoke, by increasing the volume fraction of macrophages and T-lymphocyte helper cells.
Universal scaling of permeability through the granular-to-continuum transition
NASA Astrophysics Data System (ADS)
Wadsworth, F. B.; Scheu, B.; Heap, M. J.; Kendrick, J. E.; Vasseur, J.; Lavallée, Y.; Dingwell, D. B.
2015-12-01
Magmas fragment forming a transiently granular material, which can weld back to a fluid-continuum. This process results in dramatic changes in the gas-volume fraction of the material, which impacts the gas permeability. We collate published data for the gas-volume fraction and permeability of volcanic and synthetic materials which have undergone this process to different amounts and note that in all cases there exists a discontinuity in the relationship between these two properties. By discriminating data for which good microstructural information are provided, we use simple scaling arguments to collapse the data in both the still-granular, high gas-volume fraction regime and the fluid-continuum low gas-volume fraction regime such that a universal description can be achieved. We use this to argue for the microstructural meaning of the well-described discontinuity between gas-permeability and gas-volume fraction and to infer the controls on the position of this transition between dominantly granular and dominantly fluid-continuum material descriptions. As a specific application, we consider the transiently granular magma transported through and deposited in fractures in more-coherent magmas, thought to be a primary degassing pathway in high viscosity systems. We propose that our scaling coupled with constitutive laws for densification can provide insights into the longevity of such degassing channels, informing sub-surface pressure modelling at such volcanoes.
Applications for carbon fibre recovered from composites
NASA Astrophysics Data System (ADS)
Pickering; Liu, Z.; Turner, TA; Wong, KH
2016-07-01
Commercial operations to recover carbon fibre from waste composites are now developing and as more recovered fibre becomes available new applications for recovered fibre are required. Opportunities to use recovered carbon fibre as a structural reinforcement are considered involving the use of wet lay processes to produce nonwoven mats. Mats with random in-plane fibre orientation can readily be produced using existing commercial processes. However, the fibre volume fraction, and hence the mechanical properties that can be achieved, result in composites with limited mechanical properties. Fibre volume fractions of 40% can be achieved with high moulding pressures of over 100 bar, however, moulding at these pressures results in substantial fibre breakage which reduces the mean fibre length and the properties of the composite manufactured. Nonwoven mats made from aligned, short carbon fibres can achieve higher fibre volume fractions with lower fibre breakage even at high moulding pressure. A process for aligning short fibres is described and a composite of over 60% fibre volume fraction has been manufactured at a pressures up to 100 bar with low fibre breakage. Further developments of the alignment process have been undertaken and a composite of 46% fibre volume fraction has been produced moulded at a pressure of 7 bar in an autoclave, exhibiting good mechanical properties that compete with higher grade materials. This demonstrates the potential for high value applications for recovered carbon fibre by fibre alignment.
Markis, Flora; Baudez, Jean-Christophe; Parthasarathy, Rajarathinam; Slatter, Paul; Eshtiaghi, Nicky
2016-09-01
Predicting the flow behaviour, most notably, the apparent viscosity and yield stress of sludge mixtures inside the anaerobic digester is essential because it helps optimize the mixing system in digesters. This paper investigates the rheology of sludge mixtures as a function of digested sludge volume fraction. Sludge mixtures exhibited non-Newtonian, shear thinning, yield stress behaviour. The apparent viscosity and yield stress of sludge mixtures prepared at the same total solids concentration was influenced by the interactions within the digested sludge and increased with the volume fraction of digested sludge - highlighted using shear compliance and shear modulus of sludge mixtures. However, when a thickened primary - secondary sludge mixture was mixed with dilute digested sludge, the apparent viscosity and yield stress decreased with increasing the volume fraction of digested sludge. This was caused by the dilution effect leading to a reduction in the hydrodynamic and non-hydrodynamic interactions when dilute digested sludge was added. Correlations were developed to predict the apparent viscosity and yield stress of the mixtures as a function of the digested sludge volume fraction and total solids concentration of the mixtures. The parameters of correlations can be estimated using pH of sludge. The shear and complex modulus were also modelled and they followed an exponential relationship with increasing digested sludge volume fraction. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Othmani, Cherif; Takali, Farid; Njeh, Anouar
2017-06-01
In this paper, the propagation of the Lamb waves in the GaAs-FGPM-AlAs sandwich plate is studied. Based on the orthogonal function, Legendre polynomial series expansion is applied along the thickness direction to obtain the Lamb dispersion curves. The convergence and accuracy of this polynomial method are discussed. In addition, the influences of the volume fraction p and thickness hFGPM of the FGPM middle layer on the Lamb dispersion curves are developed. The numerical results also show differences between the characteristics of Lamb dispersion curves in the sandwich plate for various gradient coefficients of the FGPM middle layer. In fact, if the volume fraction p increases the phase velocity will increases and the number of modes will decreases at a given frequency range. All the developments performed in this paper were implemented in Matlab software. The corresponding results presented in this work may have important applications in several industry areas and developing novel acoustic devices such as sensors, electromechanical transducers, actuators and filters.
Effects of strain state on the kinetics of strain-induced martensite in steels
NASA Astrophysics Data System (ADS)
Diani, J. M.; Parks, D. M.
1998-09-01
This paper deals with the quantitative prediction of the volume fraction of strain-induced martensite produced in a steel that undergoes a thermomechanical loading. This issue is relevant for several steels with a low stacking fault energy, where a significant amount of transformed martensite drives many mechanical properties. Practical situations range from the optimization in the rolling process of a sheet to the improvement of the toughness of the final product. The model relies on the assumption that the martensite ( α') is nucleated within a grain at the intersections of shear bands formed by the movement of partial dislocations on certain of the twelve {111} γ<2¯11> γ systems (subscript γ refers to the austenitic, or mother, phase). A modified Taylor-based numerical calculation is performed on a polycrystalline aggregate in order to obtain the intensity of the shear, and hence the volume fraction of martensite in each grain. Results are found to model and predict various experimental results obtained mainly on 304L stainless steel under different strain states.
Ecological risk study on subacute toxicology experiment of streptomycin wastewater for Zebrafish
NASA Astrophysics Data System (ADS)
Shi, Qing; Shen, Hongyan
2017-08-01
An exposure experiment was conducted to study the effect of different volume fraction of effluent streptomycin wastewater on the activity of the peroxidase (POD) activity and the malondialdehyde (MDA) content in muscles of Zebrafish for 20 days. The results show that POD activity is significantly induced on the eighth day. POD activities in the muscles of Zebrafish exposed to the streptomycin wastewater of 20% exposure group were significantly different (0.01
The rheology of three-phase suspensions at low bubble capillary number
Truby, J. M.; Mueller, S. P.; Llewellin, E. W.; Mader, H. M.
2015-01-01
We develop a model for the rheology of a three-phase suspension of bubbles and particles in a Newtonian liquid undergoing steady flow. We adopt an ‘effective-medium’ approach in which the bubbly liquid is treated as a continuous medium which suspends the particles. The resulting three-phase model combines separate two-phase models for bubble suspension rheology and particle suspension rheology, which are taken from the literature. The model is validated against new experimental data for three-phase suspensions of bubbles and spherical particles, collected in the low bubble capillary number regime. Good agreement is found across the experimental range of particle volume fraction (0≤ϕp≲0.5) and bubble volume fraction (0≤ϕb≲0.3). Consistent with model predictions, experimental results demonstrate that adding bubbles to a dilute particle suspension at low capillarity increases its viscosity, while adding bubbles to a concentrated particle suspension decreases its viscosity. The model accounts for particle anisometry and is easily extended to account for variable capillarity, but has not been experimentally validated for these cases. PMID:25568617
Sultanem, Khalil; Patrocinio, Horacio; Lambert, Christine; Corns, Robert; Leblanc, Richard; Parker, William; Shenouda, George; Souhami, Luis
2004-01-01
Despite major advances in treatment modalities, the prognosis of patients with glioblastoma multiforme (GBM) remains poor. Exploring hypofractionated regimens to replace the standard 6-week radiotherapy schedule is an attractive strategy as an attempt to prevent accelerated tumor cell repopulation. There is equally interest in dose escalation to the gross tumor volume where the majority of failures occur. We report our preliminary results using hypofractionated intensity-modulated accelerated radiotherapy regimen in the treatment of patients with GBM. Between July 1998 and December 2001, 25 patients with histologically proven diagnosis of GBM, Karnofsky performance status > or =60, and a postoperative tumor volume < or =110 cm3 were treated with a hypofractionated accelerated course of radiotherapy. The gross tumor volume (GTV) was defined as the contrast-enhancing lesion on the postoperative MRI T1-weighted images with the latter fused with computed tomography images for treatment planning. The planning target volume was defined as GTV + 1.5-cm margin. Using forward-planning intensity modulation (step-and-shoot technique), 60 Gy in 20 daily fractions of 3 Gy each were given to the GTV, whereas the planning target volume received a minimum of 40 Gy in 20 fractions of 2 Gy each at its periphery. Treatments were delivered over a 4-week period using 5 daily fractions per week. Dose was prescribed at the isocenter (ICRU point). Three beam angles were used in all of the cases. Treatments were well tolerated. Acute toxicity was limited to increased brain edema during radiotherapy in 2 patients who were on tapering doses of corticosteroids. This was corrected by increasing the steroid dose. At a median follow-up of 8.8 months, no late toxicity was observed. One patient experienced visual loss at 9 months after completion of treatment. MRI suggested nonspecific changes to the optic chiasm. On review of the treatment plan, the total dose to the optic chiasm was confirmed to be equal to or less than 40 Gy in 20 fractions. When Radiation Therapy Oncology Group recursive partitioning analysis was used, 10 patients were class III-IV, and 15 patients were class V-VI. To date, 21 patients have had clinical and/or radiologic evidence of disease progression, and 16 patients have died. The median survival was 9.5 months (range: 2.8-22.9 months), the 1-year survival rate was 40%, and the median progression-free survival was 5.2 months (range: 1.9-12.8 months). This hypofractionated accelerated irradiation schedule using forward planning (step-and-shoot) hypofractionated, intensity-modulated accelerated radiotherapy is feasible and seems to be a safe treatment for patients with GBM. A 2-week reduction in the treatment time may be of valuable benefit for this group of patients. However, despite this accelerated regimen, no survival advantage has been observed.
Initial parametric study of the flammability of plume releases in Hanford waste tanks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antoniak, Z.I.; Recknagle, K.P.
This study comprised systematic analyses of waste tank headspace flammability following a plume-type of gas release from the waste. First, critical parameters affecting plume flammability were selected, evaluated, and refined. As part of the evaluation the effect of ventilation (breathing) air inflow on the convective flow field inside the tank headspace was assessed, and the magnitude of the so-called {open_quotes}numerical diffusion{close_quotes} on numerical simulation accuracy was investigated. Both issues were concluded to be negligible influences on predicted flammable gas concentrations in the tank headspace. Previous validation of the TEMPEST code against experimental data is also discussed, with calculated results inmore » good agreements with experimental data. Twelve plume release simulations were then run, using release volumes and flow rates that were thought to cover the range of actual release volumes and rates. The results indicate that most plume-type releases remain flammable only during the actual release ends. Only for very large releases representing a significant fraction of the volume necessary to make the entire mixed headspace flammable (many thousands of cubic feet) can flammable concentrations persist for several hours after the release ends. However, as in the smaller plumes, only a fraction of the total release volume is flammable at any one time. The transient evolution of several plume sizes is illustrated in a number of color contour plots that provide insight into plume mixing behavior.« less
Direct computation of thermodynamic properties of chemically reacting air with consideration to CFD
NASA Astrophysics Data System (ADS)
Iannelli, Joe
2003-10-01
This paper details a two-equation procedure to calculate exactly mass and mole fractions, pressure, temperature, specific heats, speed of sound and the thermodynamic and jacobian partial derivatives of pressure and temperature for a five-species chemically reacting equilibrium air. The procedure generates these thermodynamic properties using as independent variables either pressure and temperature or density and internal energy, for CFD applications. An original element in this procedure consists in the exact physically meaningful solution of the mass-fraction and mass-action equations. Air-equivalent molecular masses for oxygen and nitrogen are then developed to account, within a mixture of only oxygen and nitrogen, for the presence of carbon dioxide, argon and the other noble gases within atmospheric air. The mathematical formulation also introduces a versatile system non-dimensionalization that makes the procedure uniformly applicable to flows ranging from shock-tube flows with zero initial velocity to aerothermodynamic flows with supersonic/hypersonic free-stream Mach numbers. Over a temperature range of more than 10000 K and pressure and density ranges corresponding to an increase in altitude in standard atmosphere of 30000 m above sea level, the predicted distributions of mole fractions, constant-volume specific heat, and speed of sound for the model five species agree with independently published results, and all the calculated thermodynamic properties, including their partial derivatives, remain continuous, smooth, and physically meaningful.
Numerical simulation of convective heat transfer of nonhomogeneous nanofluid using Buongiorno model
NASA Astrophysics Data System (ADS)
Sayyar, Ramin Onsor; Saghafian, Mohsen
2017-08-01
The aim is to study the assessment of the flow and convective heat transfer of laminar developing flow of Al2O3-water nanofluid inside a vertical tube. A finite volume method procedure on a structured grid was used to solve the governing partial differential equations. The adopted model (Buongiorno model) assumes that the nanofluid is a mixture of a base fluid and nanoparticles, with the relative motion caused by Brownian motion and thermophoretic diffusion. The results showed the distribution of nanoparticles remained almost uniform except in a region near the hot wall where nanoparticles volume fraction were reduced as a result of thermophoresis. The simulation results also indicated there is an optimal volume fraction about 1-2% of the nanoparticles at each Reynolds number for which the maximum performance evaluation criteria can be obtained. The difference between Nusselt number and nondimensional pressure drop calculated based on two phase model and the one calculated based on single phase model was less than 5% at all nanoparticles volume fractions and can be neglected. In natural convection, for 4% of nanoparticles volume fraction, in Gr = 10 more than 15% enhancement of Nusselt number was achieved but in Gr = 300 it was less than 1%.
Prediction of a Densely Loaded Particle-Laden Jet using a Euler-Lagrange Dense Spray Model
NASA Astrophysics Data System (ADS)
Pakseresht, Pedram; Apte, Sourabh V.
2017-11-01
Modeling of a dense spray regime using an Euler-Lagrange discrete-element approach is challenging because of local high volume loading. A subgrid cluster of droplets can lead to locally high void fractions for the disperse phase. Under these conditions, spatio-temporal changes in the carrier phase volume fractions, which are commonly neglected in spray simulations in an Euler-Lagrange two-way coupling model, could become important. Accounting for the carrier phase volume fraction variations, leads to zero-Mach number, variable density governing equations. Using pressure-based solvers, this gives rise to a source term in the pressure Poisson equation and a non-divergence free velocity field. To test the validity and predictive capability of such an approach, a round jet laden with solid particles is investigated using Direct Numerical Simulation and compared with available experimental data for different loadings. Various volume fractions spanning from dilute to dense regimes are investigated with and without taking into account the volume displacement effects. The predictions of the two approaches are compared and analyzed to investigate the effectiveness of the dense spray model. Financial support was provided by National Aeronautics and Space Administration (NASA).
Literature Review: An Overview of Epoxy Resin Syntactic Foams with Glass Microballoons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keller, Jennie
2014-03-12
Syntactic foams are an important category of composite materials that have abundant applications in a wide variety of fields. The bulk phase of syntactic foams is a three-part epoxy resin formulation that consists of a base resin, a curative (curing agent) and a modifier (diluent and/or accelerator) [12]. These thermoset materials [12] are used frequently for their thermal stability [9], low moisture absorption and high compressive strength [10]. The characteristic feature of a syntactic foam is a network of beads that forms pores within the epoxy matrix [3]. In this review, hollow glass beads (known as glass microballoons) are considered,more » however, solid beads or microballoons made from materials such as ceramic, polymer or metal can also be used [3M, Peter]. The network of hollow beads forms a closed-cell foam; the term closed-cell comes from the fact that the microspheres used in the resin matrix are completely closed and filled with gas (termed hollow). In contrast, the microspheres used in open-cell foams are either not completely closed or broken so that matrix material can fill the spheres [11]. Although closed foams have been found to possess higher densities than open cell foams, their rigid structures give them superior mechanical properties [12]. Past research has extensively studied the effects that changing the volume fraction of microballoons to epoxy will have on the resulting syntactic foam [3,4,9]. In addition, published literature also explores how the microballoon wall thickness affects the final product [4,9,10]. Findings detail that indeed both the mechanical and some thermal properties of syntactic foams can be tailored to a specific application by varying either the volume fraction or the wall thickness of the microballoons used [10]. The major trends in syntactic foam research show that microballoon volume fraction has an inversely proportionate relationship to dynamic properties, while microballoon wall thickness is proportional to those same properties [3,4,9,10]. The glass transition temperature has a proportional relationship to the volume fraction of microballoons used, however, there is limited research that supports correlations between other thermal variables and microballoons specifications. In fact, very little experimental data exists to relate thermal conductivity and volume fraction or wall thickness of microballoons [5]. This review proposes that thermal conductivity should be a topic of interest for future researchers because of how frequently syntactic foams are used in insulating applications. This paper will explore three aspects pertaining to epoxy resin syntactic foams with glass microballoons: the immense range of applications that syntactic foams are used for, the materials and fabrication techniques most commonly used, and lastly the results from characterization of syntactic foams with varying microballoon volume fractions and wall thicknesses. In addition to varying microballoon parameters, it is also possible to change the base, accelerator and curing agent used in the epoxy formulation. For simplicity, this paper will focus on a very common combination of materials produced by the Dow Chemical Company®.« less
NASA Technical Reports Server (NTRS)
Miller, C. G., III; Wilder, S. E.
1976-01-01
Equilibrium thermodynamic and flow properties are presented in tabulated and graphical form for moving, standing, and reflected normal shock waves into hydrogen-helium mixtures representative of postulated outer planet atmospheres. These results are presented in four volumes and the volmetric compositions of the mixtures are 0.95H2-0.05He in Volume 1, 0.90H2-0.10He in Volume 2, 0.85H2-0.15He in Volume 3, and 0.75H2-0.25He in Volume 4. Properties include pressure, temperature, density, enthalpy, speed of sound, entropy, molecular-weight ratio, isentropic exponent, velocity, and species mole fractions. Incident (moving) shock velocities are varied from 4 to 70 km/sec for a range of initial pressure of 5 N/sq m to 100 kN/sq m. Results are applicable to shock-tube flows and for determining flow conditions behind the normal portion of the bow shock about a blunt body at high velocities in postulated outer planet atmospheres. The document is a revised version of the original edition of NASA SP-3085 published in 1974.
Matsushima, Takashi; Blumenfeld, Raphael
2017-03-01
The microstructural organization of a granular system is the most important determinant of its macroscopic behavior. Here we identify the fundamental factors that determine the statistics of such microstructures, using numerical experiments to gain a general understanding. The experiments consist of preparing and compacting isotropically two-dimensional granular assemblies of polydisperse frictional disks and analyzing the emergent statistical properties of quadrons-the basic structural elements of granular solids. The focus on quadrons is because the statistics of their volumes have been found to display intriguing universal-like features [T. Matsushima and R. Blumenfeld, Phys. Rev. Lett. 112, 098003 (2014)PRLTAO0031-900710.1103/PhysRevLett.112.098003]. The dependence of the structures and of the packing fraction on the intergranular friction and the initial state is analyzed, and a number of significant results are found. (i) An analytical formula is derived for the mean quadron volume in terms of three macroscopic quantities: the mean coordination number, the packing fraction, and the rattlers fraction. (ii) We derive a unique, initial-state-independent relation between the mean coordination number and the rattler-free packing fraction. The relation is supported numerically for a range of different systems. (iii) We collapse the quadron volume distributions from all systems onto one curve, and we verify that they all have an exponential tail. (iv) The nature of the quadron volume distribution is investigated by decomposition into conditional distributions of volumes given the cell order, and we find that each of these also collapses onto a single curve. (v) We find that the mean quadron volume decreases with increasing intergranular friction coefficients, an effect that is prominent in high-order cells. We argue that this phenomenon is due to an increased probability of stable irregularly shaped cells, and we test this using a herewith developed free cell analytical model. We conclude that, in principle, the microstructural characteristics are governed mainly by the packing procedure, while the effects of intergranular friction and initial states are details that can be scaled away. However, mechanical stability constraints suppress slightly the occurrence of small quadron volumes in cells of order ≥6, and the magnitude of this effect does depend on friction. We quantify in detail this dependence and the deviation it causes from an exact collapse for these cells. (vi) We argue that our results support strongly the view that ensemble granular statistical mechanics does not satisfy the uniform measure assumption of conventional statistical mechanics. Results (i)-(iv) have been reported in the aforementioned reference, and they are reviewed and elaborated on here.
Enhanced explosive sensing based on bis(methyltetraphenyl)silole nanoaggregate
NASA Astrophysics Data System (ADS)
Shin, Bomina; Sohn, Honglae
2018-01-01
New photoluminescent bis(methyltetraphenyl)silole nanoaggregates for the detection of trinitrotoluene (TNT) were developed by using aggregation-induced emission property. Bis(methyltetraphenyl)silole nanoaggregates exhibited that photoluminescence (PL) intensity was increased when the water fraction was increased to 90% by volume. Relative PL efficiency of bis(methyltetraphenyl)silole nanoaggregates was exponentially increased to the percent of water fraction and particle diameter was dependent on solvent composition. Particle size of bis(methyltetraphenyl)silole nanoaggregates was tuned by controlling the water fraction by volume. Absolute quantum yield of bis(methyltetraphenyl)silole nanoaggregates in 90% water volume fraction were 32.4%, which increases by about 40 times. Detection of TNT was achieved from the quenching PL measurement of bis(methyltetraphenyl)silole nanoaggregates by adding the TNT. A linear Stern-Volmer relationship was observed for the detection of TNT.
Patel, Vipulkumar; Celec, Peter; Grunt, Magdalena; Schwarzenbach, Heidi; Jenneckens, Ingo; Hillebrand, Timo
2016-01-01
Circulating cell-free DNA (ccfDNA) is a promising diagnostic tool and its size fractionation is of interest. However, kits for isolation of ccfDNA available on the market are designed for small volumes hence processing large sample volumes is laborious. We have tested a new method that enables enrichment of ccfDNA from large volumes of plasma and subsequently allows size-fractionation of isolated ccfDNA into two fractions with individually established cut-off levels of ccfDNA length. This method allows isolation of low-abundant DNA as well as separation of long and short DNA molecules. This procedure may be important e.g., in prenatal diagnostics and cancer research that have been already confirmed by our primary experiments. Here, we report the results of selective separation of 200- and 500-bp long synthetic DNA fragments spiked in plasma samples. Furthermore, we size-fractionated ccfDNA from the plasma of pregnant women and verified the prevalence of fetal ccfDNA in all fractions.
Kostoglou, M; Varka, E-M; Kalogianni, E P; Karapantsios, T D
2010-09-01
Destabilization of hexane-in-water emulsions is studied by a continuous, non-intrusive, multi-probe, electrical conductance technique. Emulsions made of different oil fractions and surfactant (C(10)E(5)) concentrations are prepared in a stirred vessel using a Rushton turbine to break and agitate droplets. During the separation of phases, electrical signals from pairs of ring electrodes mounted at different heights onto the vessel wall, are recorded. The evolution of the local water volume fractions at the locations of the electrodes is estimated from these signals. It is found that in the absence of coalescence, the water fraction evolution curve from the bottom pair of electrodes is compatible with a bidisperse oil droplet size distribution. The sizes and volume fractions of the two droplet modes are estimated using theoretical arguments. The electrically determined droplet sizes are compared to data from microscopy image analysis. Results are discussed in detail. Copyright 2010 Elsevier Inc. All rights reserved.
Computer simulation results for bounds on the effective conductivity of composite media
NASA Astrophysics Data System (ADS)
Smith, P. A.; Torquato, S.
1989-02-01
This paper studies the determination of third- and fourth-order bounds on the effective conductivity σe of a composite material composed of aligned, infinitely long, identical, partially penetrable, circular cylinders of conductivity σ2 randomly distributed throughout a matrix of conductivity σ1. Both bounds involve the microstructural parameter ζ2 which is a multifold integral that depends upon S3, the three-point probability function of the composite. This key integral ζ2 is computed (for the possible range of cylinder volume fraction φ2) using a Monte Carlo simulation technique for the penetrable-concentric-shell model in which cylinders are distributed with an arbitrary degree of impenetrability λ, 0≤λ≤1. Results for the limiting cases λ=0 (``fully penetrable'' or randomly centered cylinders) and λ=1 (``totally impenetrable'' cylinders) compare very favorably with theoretical predictions made by Torquato and Beasley [Int. J. Eng. Sci. 24, 415 (1986)] and by Torquato and Lado [Proc. R. Soc. London Ser. A 417, 59 (1988)], respectively. Results are also reported for intermediate values of λ: cases which heretofore have not been examined. For a wide range of α=σ2/σ1 (conductivity ratio) and φ2, the third-order bounds on σe significantly improve upon second-order bounds which just depend upon φ2. The fourth-order bounds are, in turn, narrower than the third-order bounds. Moreover, when the cylinders are highly conducting (α≫1), the fourth-order lower bound provides an excellent estimate of the effective conductivity for a wide range of volume fractions.
The Limitations of an Exclusively Colloidal View of Protein Solution Hydrodynamics and Rheology
Sarangapani, Prasad S.; Hudson, Steven D.; Migler, Kalman B.; Pathak, Jai A.
2013-01-01
Proteins are complex macromolecules with dynamic conformations. They are charged like colloids, but unlike colloids, charge is heterogeneously distributed on their surfaces. Here we overturn entrenched doctrine that uncritically treats bovine serum albumin (BSA) as a colloidal hard sphere by elucidating the complex pH and surface hydration-dependence of solution viscosity. We measure the infinite shear viscosity of buffered BSA solutions in a parameter space chosen to tune competing long-range repulsions and short-range attractions (2 mg/mL ≤ [BSA] ≤ 500 mg/mL and 3.0 ≤ pH ≤ 7.4). We account for surface hydration through partial specific volume to define volume fraction and determine that the pH-dependent BSA intrinsic viscosity never equals the classical hard sphere result (2.5). We attempt to fit our data to the colloidal rheology models of Russel, Saville, and Schowalter (RSS) and Krieger-Dougherty (KD), which are each routinely and successfully applied to uniformly charged suspensions and to hard-sphere suspensions, respectively. We discover that the RSS model accurately describes our data at pH 3.0, 4.0, and 5.0, but fails at pH 6.0 and 7.4, due to steeply rising solution viscosity at high concentration. When we implement the KD model with the maximum packing volume fraction as the sole floating parameter while holding the intrinsic viscosity constant, we conclude that the model only succeeds at pH 6.0 and 7.4. These findings lead us to define a minimal framework for models of crowded protein solution viscosity wherein critical protein-specific attributes (namely, conformation, surface hydration, and surface charge distribution) are addressed. PMID:24268154
A semi-automatic method for left ventricle volume estimate: an in vivo validation study
NASA Technical Reports Server (NTRS)
Corsi, C.; Lamberti, C.; Sarti, A.; Saracino, G.; Shiota, T.; Thomas, J. D.
2001-01-01
This study aims to the validation of the left ventricular (LV) volume estimates obtained by processing volumetric data utilizing a segmentation model based on level set technique. The validation has been performed by comparing real-time volumetric echo data (RT3DE) and magnetic resonance (MRI) data. A validation protocol has been defined. The validation protocol was applied to twenty-four estimates (range 61-467 ml) obtained from normal and pathologic subjects, which underwent both RT3DE and MRI. A statistical analysis was performed on each estimate and on clinical parameters as stroke volume (SV) and ejection fraction (EF). Assuming MRI estimates (x) as a reference, an excellent correlation was found with volume measured by utilizing the segmentation procedure (y) (y=0.89x + 13.78, r=0.98). The mean error on SV was 8 ml and the mean error on EF was 2%. This study demonstrated that the segmentation technique is reliably applicable on human hearts in clinical practice.
Multiply Surface-Functionalized Nanoporous Carbon for Vehicular Hydrogen Storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pfeifer, Peter; Gillespie, Andrew; Stalla, David
The purpose of the project “Multiply Surface-Functionalized Nanoporous Carbon for Vehicular Hydrogen Storage” is the development of materials that store hydrogen (H 2) by adsorption in quantities and at conditions that outperform current compressed-gas H 2 storage systems for electric power generation from hydrogen fuel cells (HFCs). Prominent areas of interest for HFCs are light-duty vehicles (“hydrogen cars”) and replacement of batteries with HFC systems in a wide spectrum of applications, ranging from forklifts to unmanned areal vehicles to portable power sources. State-of-the-art compressed H 2 tanks operate at pressures between 350 and 700 bar at ambient temperature and storemore » 3-4 percent of H 2 by weight (wt%) and less than 25 grams of H 2 per liter (g/L) of tank volume. Thus, the purpose of the project is to engineer adsorbents that achieve storage capacities better than compressed H 2 at pressures less than 350 bar. Adsorption holds H 2 molecules as a high-density film on the surface of a solid at low pressure, by virtue of attractive surface-gas interactions. At a given pressure, the density of the adsorbed film is the higher the stronger the binding of the molecules to the surface is (high binding energies). Thus, critical for high storage capacities are high surface areas, high binding energies, and low void fractions (high void fractions, such as in interstitial space between adsorbent particles, “waste” storage volume by holding hydrogen as non-adsorbed gas). Coexistence of high surface area and low void fraction makes the ideal adsorbent a nanoporous monolith, with pores wide enough to hold high-density hydrogen films, narrow enough to minimize storage as non-adsorbed gas, and thin walls between pores to minimize the volume occupied by solid instead of hydrogen. A monolith can be machined to fit into a rectangular tank (low pressure, conformable tank), cylindrical tank (high pressure), or other tank shape without any waste of volume.« less
Time and size resolved Measurement of Mass Concentration at an Urban Site
NASA Astrophysics Data System (ADS)
Karg, E.; Ferron, G. A.; Heyder, J.
2003-04-01
Time- and size-resolved measurements of ambient particles are necessary for modelling of atmospheric particle transport, the interpretation of particulate pollution events and the estimation of particle deposition in the human lungs. In the size range 0.01 - 2 µm time- and size-resolved data are obtained from differential mobility and optical particle counter measurements and from gravimetric filter analyses on a daily basis (PM2.5). By comparison of the time averaged and size integrated particle volume concentration with PM2.5 data, an average density of ambient particles can be estimated. Using this density, the number concentration data can be converted in time- and size-resolved mass concentration. Such measurements were carried out at a Munich downtown crossroads. The spectra were integrated in the size ranges 10 - 100 nm, 100 - 500 nm and 500 - 2000 nm. Particles in these ranges are named ultrafine, fine and coarse particles. These ranges roughly represent freshly emitted particles, aged/accumulated particles and particles entrained by erosive processes. An average number concentration of 80000 1/cm3 (s.d. 67%), a particle volume concentration of 53 µm3/cm3 (s.d. 76%) and a PM2.5 mass concentration of 27 µg/m3 was found. These particle volume- and PM2.5 data imply an average density of 0.51 g/cm3. Average number concentration showed 95.3%, 4.7% and 0.006% of the total particle concentration in the size ranges mentioned above. Mass concentration was 14.7%, 80.2% and 5.1% of the total, assuming the average density to be valid for all particles. The variability in mass concentration was 94%, 75% and 33% for the three size ranges. Nearly all ambient particles were in the ultrafine size range, whereas most of the mass concentration was in the fine size range. However, a considerable mass fraction of nearly 15% was found in the ultrafine size range. As the sampling site was close to the road and traffic emissions were the major source of the particles, 1) the density was very low due to agglomerated and porous structures of freshly emitted combustion particles and 2) the variability was highest in the ultrafine range, obviously correlated to traffic activity and lowest in the micron size range. In conclusion, almost all ambient particles were ultrafine particles, whereas most of the particle mass was associated with fine particles. Nevertheless, a considerable mass fraction was found in the ultrafine size range. These particles had a very low density so that they can be considered as agglomerated and porous particles emitted from vehicles passing the crossroads. Therefore they showed a much higher variation in mass concentration than the fine and coarse particles.
Shear-induced structural transitions in Newtonian non-Newtonian two-phase flow
NASA Astrophysics Data System (ADS)
Cristobal, G.; Rouch, J.; Colin, A.; Panizza, P.
2000-09-01
We show the existence under shear flow of steady states in a two-phase region of a brine-surfactant system in which lyotropic dilute lamellar (non-Newtonian) and sponge (Newtonian) phases are coexisting. At high shear rates and low sponge phase-volume fractions, we report on the existence of a dynamic transition corresponding to the formation of a colloidal crystal of multilamellar vesicles (or ``onions'') immersed in the sponge matrix. As the sponge phase-volume fraction increases, this transition exhibits a hysteresis loop leading to a structural bistability of the two-phase flow. Contrary to single phase lamellar systems where it is always 100%, the onion volume fraction can be monitored continuously from 0 to 100 %.
A model for phase evolution and volume expansion in tube type Nb3Sn conductors
NASA Astrophysics Data System (ADS)
Xu, X.; Sumption, M. D.; Collings, E. W.
2013-12-01
In this work, an analytic model for phase formation and volume expansion during heat treatment in tube type Nb3Sn strands is presented. Tube type Nb3Sn conductors consist of Nb or Nb-Ta alloy tube with a simple Cu/Sn binary metal insert to form the basic subelement (filament). A number of these elements, each with an outer Cu jacket, are restacked to form a multifilamentary strand. The present tube type conductors, with 4.2 K, 12 T non-Cu critical current density (Jc) in the 2000-2500 A mm-2 range and effective subelement diameters (deff) in the 12-36 μm range, are of interest for a number of applications. During the reaction of typical tube type strands, the Sn-Cu becomes molten and reacts with the Nb tube first to form NbSn2, then Nb6Sn5. At later times in the reaction sequence, all of the NbSn2 and Nb6Sn5 is converted to Nb3Sn. Some of the Nb3Sn is formed by a Nb-Sn reaction and has a fine grain (FG) structure, while some is converted from Nb6Sn5, which results in a coarse grain (CG) region. The fractions of FG and CG A15 are important in determining the final conductor properties. In this work we develop an analytic model to predict the radial extents of the various phases, and in particular the final FG and CG fractions based on the starting Nb, Cu, and Sn amounts in the subelements. The model is then compared to experimental results and seen to give reasonable agreement. By virtue of this model we outline an approach to minimize the CG regions in tube type and PIT strands and maximize the final FG area fractions. Furthermore, the volume change during the various reaction stages was also studied. It is proposed that the Sn content in the Cu-Sn alloy has a crucial influence on the radial expansion.
Rapid sampling of stochastic displacements in Brownian dynamics simulations
NASA Astrophysics Data System (ADS)
Fiore, Andrew M.; Balboa Usabiaga, Florencio; Donev, Aleksandar; Swan, James W.
2017-03-01
We present a new method for sampling stochastic displacements in Brownian Dynamics (BD) simulations of colloidal scale particles. The method relies on a new formulation for Ewald summation of the Rotne-Prager-Yamakawa (RPY) tensor, which guarantees that the real-space and wave-space contributions to the tensor are independently symmetric and positive-definite for all possible particle configurations. Brownian displacements are drawn from a superposition of two independent samples: a wave-space (far-field or long-ranged) contribution, computed using techniques from fluctuating hydrodynamics and non-uniform fast Fourier transforms; and a real-space (near-field or short-ranged) correction, computed using a Krylov subspace method. The combined computational complexity of drawing these two independent samples scales linearly with the number of particles. The proposed method circumvents the super-linear scaling exhibited by all known iterative sampling methods applied directly to the RPY tensor that results from the power law growth of the condition number of tensor with the number of particles. For geometrically dense microstructures (fractal dimension equal three), the performance is independent of volume fraction, while for tenuous microstructures (fractal dimension less than three), such as gels and polymer solutions, the performance improves with decreasing volume fraction. This is in stark contrast with other related linear-scaling methods such as the force coupling method and the fluctuating immersed boundary method, for which performance degrades with decreasing volume fraction. Calculations for hard sphere dispersions and colloidal gels are illustrated and used to explore the role of microstructure on performance of the algorithm. In practice, the logarithmic part of the predicted scaling is not observed and the algorithm scales linearly for up to 4 ×106 particles, obtaining speed ups of over an order of magnitude over existing iterative methods, and making the cost of computing Brownian displacements comparable to the cost of computing deterministic displacements in BD simulations. A high-performance implementation employing non-uniform fast Fourier transforms implemented on graphics processing units and integrated with the software package HOOMD-blue is used for benchmarking.
Ceriani, Luca; Ruberto, Teresa; Delaloye, Angelika Bischof; Prior, John O; Giovanella, Luca
2010-03-01
The purposes of this study were to characterize the performance of a 3-dimensional (3D) ordered-subset expectation maximization (OSEM) algorithm in the quantification of left ventricular (LV) function with (99m)Tc-labeled agent gated SPECT (G-SPECT), the QGS program, and a beating-heart phantom and to optimize the reconstruction parameters for clinical applications. A G-SPECT image of a dynamic heart phantom simulating the beating left ventricle was acquired. The exact volumes of the phantom were known and were as follows: end-diastolic volume (EDV) of 112 mL, end-systolic volume (ESV) of 37 mL, and stroke volume (SV) of 75 mL; these volumes produced an LV ejection fraction (LVEF) of 67%. Tomographic reconstructions were obtained after 10-20 iterations (I) with 4, 8, and 16 subsets (S) at full width at half maximum (FWHM) gaussian postprocessing filter cutoff values of 8-15 mm. The QGS program was used for quantitative measurements. Measured values ranged from 72 to 92 mL for EDV, from 18 to 32 mL for ESV, and from 54 to 63 mL for SV, and the calculated LVEF ranged from 65% to 76%. Overall, the combination of 10 I, 8 S, and a cutoff filter value of 10 mm produced the most accurate results. The plot of the measures with respect to the expectation maximization-equivalent iterations (I x S product) revealed a bell-shaped curve for the LV volumes and a reverse distribution for the LVEF, with the best results in the intermediate range. In particular, FWHM cutoff values exceeding 10 mm affected the estimation of the LV volumes. The QGS program is able to correctly calculate the LVEF when used in association with an optimized 3D OSEM algorithm (8 S, 10 I, and FWHM of 10 mm) but underestimates the LV volumes. However, various combinations of technical parameters, including a limited range of I and S (80-160 expectation maximization-equivalent iterations) and low cutoff values (< or =10 mm) for the gaussian postprocessing filter, produced results with similar accuracies and without clinically relevant differences in the LV volumes and the estimated LVEF.
Marshall, B.D.; Neymark, L.A.; Peterman, Z.E.
2003-01-01
Low-temperature calcite and opal record the past seepage of water into open fractures and lithophysal cavities in the unsaturated zone at Yucca Mountain, Nevada, site of a proposed high-level radioactive waste repository. Systematic measurements of calcite and opal coatings in the Exploratory Studies Facility (ESF) tunnel at the proposed repository horizon are used to estimate the volume of calcite at each site of calcite and/or opal deposition. By estimating the volume of water required to precipitate the measured volumes of calcite in the unsaturated zone, seepage rates of 0.005 to 5 liters/year (l/year) are calculated at the median and 95th percentile of the measured volumes, respectively. These seepage rates are at the low end of the range of seepage rates from recent performance assessment (PA) calculations, confirming the conservative nature of the performance assessment. However, the distribution of the calcite and opal coatings indicate that a much larger fraction of the potential waste packages would be contacted by this seepage than is calculated in the performance assessment.
NASA Astrophysics Data System (ADS)
Kim, P.; Choi, Y.; Ghim, Y. S.
2016-12-01
Both sunphotometer (Cimel, CE-318) and skyradiometer (Prede, POM-02) were operated in May, 2015 as a part of the Megacity Air Pollution Studies-Seoul (MAPS-Seoul) campaign. These instruments were collocated at the Hankuk University of Foreign Studies (Hankuk_UFS) site of AErosol RObotic NETwork (AERONET) and the Yongin (YGN) site of SKYradiometer NETwork (SKYNET). The aerosol volume size distribution at the surface was measured using a wide range aerosol spectrometer (WRAS) system consisting of a scanning mobility particle sizer (Grimm, Model 5.416; 45 bins, 0.01-1.09 μm) and an optical particle counter (Grimm, Model 1.109; 31 bins, 0.27-34 μm). The measurement site (37.34oN, 127.27oE, 167 m above sea level) is located about 35 km southeast of downtown Seoul. To investigate the discrepancies in volume concentrations, effective diameters and fine mode volume fractions, we compared the volume size distributions from sunphotometer, skyradiometer, and WRAS system when the measurement time coincided within 5 minutes considering that the measurement intervals were different between instruments.
A Five-Dimensional Mathematical Model for Regional and Global Changes in Cardiac Uptake and Motion
NASA Astrophysics Data System (ADS)
Pretorius, P. H.; King, M. A.; Gifford, H. C.
2004-10-01
The objective of this work was to simultaneously introduce known regional changes in contraction pattern and perfusion to the existing gated Mathematical Cardiac Torso (MCAT) phantom heart model. We derived a simple integral to calculate the fraction of the ellipsoidal volume that makes up the left ventricle (LV), taking into account the stationary apex and the moving base. After calculating the LV myocardium volume of the existing beating heart model, we employed the property of conservation of mass to manipulate the LV ejection fraction to values ranging between 13.5% and 68.9%. Multiple dynamic heart models that differ in degree of LV wall thickening, base-to-apex motion, and ejection fraction, are thus available for use with the existing MCAT methodology. To introduce more complex regional LV contraction and perfusion patterns, we used composites of dynamic heart models to create a central region with little or no motion or perfusion, surrounded by a region in which the motion and perfusion gradually reverts to normal. To illustrate this methodology, the following gated cardiac acquisitions for different clinical situations were simulated analytically: 1) reduced regional motion and perfusion; 2) same perfusion as in (1) without motion intervention; and 3) washout from the normal and diseased myocardial regions. Both motion and perfusion can change dynamically during a single rotation or multiple rotations of a simulated single-photon emission computed tomography acquisition system.
Potential sources of Southern Siberia aerosols by data of AERONET site in Tomsk, Russia
NASA Astrophysics Data System (ADS)
Shukurov, K. A.; Shukurova, L. M.
2017-11-01
For all days of measurements in 2002-2015 of volume concentration of aerosols at the AERONET Tomsk/Tomsk-22 station an array of 10-day backward trajectories of air parcels arriving in Tomsk into seven layers of the troposphere with heights in the range of 0.5-5.0 km is calculated using the trajectory model NOAA HYSPLIT_4. For the three fractions of the aerosol with particle sizes < 1.0 μm, 1.0-2.5 μm, 2.5-5.0 μm and their sum (< 5.0 μm), the field of capacity of the potential sources of aerosols of these fractions for southern Siberia is determined by the CWT (concentration weighted trajectory) method using the backward trajectory array. The analysis is carried out taking into account the processes both the scavenging of the aerosols with precipitation and the dry deposition. Trajectories arriving at different heights were analyzed taking into account the weight coefficients proportional to the backward light scattering coefficients of an aerosols at corresponding heights for warm and cold seasons in Western Siberia. The most capable (in unit of volume concentration μm3 /μm2 ) potential sources of these fractions for southern Siberia are located above North Africa, Eastern Siberia, Central Asia and the Dzhungarian desert in the Xinjiang-Uyghur Autonomous Region of China.
Comparative stereology of the mouse and finch left ventricle.
Bossen, E H; Sommer, J R; Waugh, R A
1978-01-01
The volume fractions and surface per unit cell volume of some subcellular components of the left ventricles of the finch and mouse were quantitated by stereologic techniques. These species were chosen for study because they have similar heart rates but differ morphologically in some respects: fiber diameter is larger in the mouse; the mouse has transverse tubules while the finch does not; and the finch has a form of junctional sarcoplasmic reticulum (JSR), extended JSR (EJSR), located in the cell interior with no direct plasmalemmal contact, while the mouse interior JSR (IJSR) abuts on transverse tubules. Our data show that the volume fraction (Vv) and surface area per unit cell volume (Sv) of total SR, and free SR (FSR) are similar. The volume fractions of mitochondria, myofibrils, and total junctional SR were also similar. The Sv of the cell surface of the finch was similar to the Sv of the cell surface of the mouse (Sv-plasmalemma plus Sv of the transverse tubules). The principal difference was in the distribution of JSR; the mouse peripheral JSR (PJSR) represents only 9% of the total JSR, while the finch PJSR accounts for 24% of the bird's JSR. The similar volume fractions of total junctional SR (PJSR + EJSR in the finch; PJSR + IJSR in the mouse) suggest that the EJSR is not an embryologic remnant, and raises the possibility that some function of JSR is independent of plasmalemmal contact.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heijkoop, Sabrina T., E-mail: s.heijkoop@erasmusmc.nl; Langerak, Thomas R.; Quint, Sandra
Purpose: To evaluate the clinical implementation of an online adaptive plan-of-the-day protocol for nonrigid target motion management in locally advanced cervical cancer intensity modulated radiation therapy (IMRT). Methods and Materials: Each of the 64 patients had four markers implanted in the vaginal fornix to verify the position of the cervix during treatment. Full and empty bladder computed tomography (CT) scans were acquired prior to treatment to build a bladder volume-dependent cervix-uterus motion model for establishment of the plan library. In the first phase of clinical implementation, the library consisted of one IMRT plan based on a single model-predicted internal targetmore » volume (mpITV), covering the target for the whole pretreatment observed bladder volume range, and a 3D conformal radiation therapy (3DCRT) motion-robust backup plan based on the same mpITV. The planning target volume (PTV) combined the ITV and nodal clinical target volume (CTV), expanded with a 1-cm margin. In the second phase, for patients showing >2.5-cm bladder-induced cervix-uterus motion during planning, two IMRT plans were constructed, based on mpITVs for empty-to-half-full and half-full-to-full bladder. In both phases, a daily cone beam CT (CBCT) scan was acquired to first position the patient based on bony anatomy and nodal targets and then select the appropriate plan. Daily post-treatment CBCT was used to verify plan selection. Results: Twenty-four and 40 patients were included in the first and second phase, respectively. In the second phase, 11 patients had two IMRT plans. Overall, an IMRT plan was used in 82.4% of fractions. The main reasons for selecting the motion-robust backup plan were uterus outside the PTV (27.5%) and markers outside their margin (21.3%). In patients with two IMRT plans, the half-full-to-full bladder plan was selected on average in 45% of the first 12 fractions, which was reduced to 35% in the last treatment fractions. Conclusions: The implemented online adaptive plan-of-the-day protocol for locally advanced cervical cancer enables (almost) daily tissue-sparing IMRT.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woelfelschneider, J; Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, DE; Seregni, M
2015-06-15
Purpose: Tumor tracking is an advanced technique to treat intra-fractionally moving tumors. The aim of this study is to validate a surrogate-driven model based on four-dimensional computed tomography (4DCT) that is able to predict CT volumes corresponding to arbitrary respiratory states. Further, the comparison of three different driving surrogates is evaluated. Methods: This study is based on multiple 4DCTs of two patients treated for bronchial carcinoma and metastasis. Analyses for 18 additional patients are currently ongoing. The motion model was estimated from the planning 4DCT through deformable image registration. To predict a certain phase of a follow-up 4DCT, the modelmore » considers for inter-fractional variations (baseline correction) and intra-fractional respiratory parameters (amplitude and phase) derived from surrogates. In this evaluation, three different approaches were used to extract the motion surrogate: for each 4DCT phase, the 3D thoraco-abdominal surface motion, the body volume and the anterior-posterior motion of a virtual single external marker defined on the sternum were investigated. The estimated volumes resulting from the model were compared to the ground-truth clinical 4DCTs using absolute HU differences in the lung volume and landmarks localized using the Scale Invariant Feature Transform (SIFT). Results: The results show absolute HU differences between estimated and ground-truth images with median values limited to 55 HU and inter-quartile ranges (IQR) lower than 100 HU. Median 3D distances between about 1500 matching landmarks are below 2 mm for 3D surface motion and body volume methods. The single marker surrogates Result in increased median distances up to 0.6 mm. Analyses for the extended database incl. 20 patients are currently in progress. Conclusion: The results depend mainly on the image quality of the initial 4DCTs and the deformable image registration. All investigated surrogates can be used to estimate follow-up 4DCT phases, however uncertainties decrease for three-dimensional approaches. This work was funded in parts by the German Research Council (DFG) - KFO 214/2.« less
NASA Astrophysics Data System (ADS)
Pradhan, Lagen Kumar; Pandey, Rabichandra; Kumar, Sunil; Kar, Manoranjan
2018-05-01
Novel ceramic-polymer nanocomposites have great potential for electrical energy storage applications due to its high energy storage density. In the present work, BNT and PVDF based flexible polymer nanocomposites (BNT-PVDF) with different volume fraction (ϕ = 0, 5, 10, 15) were fabricated by solution casting method. Enhancement in beta phase of PVDF polymer matrix with the volume fraction (ϕ = 5, 10, 15) of BNT has been confirmed by X-ray diffraction (XRD) technique as well as Fourier transform infrared (FTIR) spectroscopy analysis. The enhancement of β phase increases as compared to (α) phases with volume fraction (ϕ) of nanofiller (BNT) in the matrix (PVDF) due to internal stress at the interface as well as structural modification of PVDF matrix. BNT-PVDF nanocomposites (with ϕ=10) showed a high dielectric constant (ɛr ≈ 78) relative to pure PVDF (ɛr ≈ 10) at 100 Hz. In addition to this, it exhibits relaxor type ferroelectric behavior with energy storage efficiency up to 77% for the volume fraction (ϕ) of 10.
Twinning and martensite in a 304 austenitic stainless steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Yongfeng; Li, Xi; Sun, Xin
2012-08-30
The microstructure characteristics and deformation behavior of 304L stainless steel during tensile deformation at two different strain rates have been investigated by means of interrupted tensile tests, electron-backscatter-diffraction (EBSD) and transmission electron microscopy (TEM) techniques. The volume fractions of transformed martensite and deformation twins at different stages of the deformation process were measured using X-ray diffraction method and TEM observations. It is found that the volume fraction of martensite monotonically increases with increasing strain but decreases with increasing strain rate. On the other hand, the volume fraction of twins increases with increasing strain for strain level less than 57%. Beyondmore » that, the volume fraction of twins decreases with increasing strain. Careful TEM observations show that stacking faults (SFs) and twins preferentially occur before the nucleation of martensite. Meanwhile, both {var_epsilon}-martensite and {alpha}{prime}-martensite are observed in the deformation microstructures, indicating the co-existence of stress induced- transformation and strain-induced-transformation. We also discussed the effects of twinning and martensite transformation on work-hardening as well as the relationship between stacking faults, twinning and martensite transformation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Dongsheng; Lavender, Curt
2015-05-08
Improving yield strength and asymmetry is critical to expand applications of magnesium alloys in industry for higher fuel efficiency and lower CO 2 production. Grain refinement is an efficient method for strengthening low symmetry magnesium alloys, achievable by precipitate refinement. This study provides guidance on how precipitate engineering will improve mechanical properties through grain refinement. Precipitate refinement for improving yield strengths and asymmetry is simulated quantitatively by coupling a stochastic second phase grain refinement model and a modified polycrystalline crystal viscoplasticity φ-model. Using the stochastic second phase grain refinement model, grain size is quantitatively determined from the precipitate size andmore » volume fraction. Yield strengths, yield asymmetry, and deformation behavior are calculated from the modified φ-model. If the precipitate shape and size remain constant, grain size decreases with increasing precipitate volume fraction. If the precipitate volume fraction is kept constant, grain size decreases with decreasing precipitate size during precipitate refinement. Yield strengths increase and asymmetry approves to one with decreasing grain size, contributed by increasing precipitate volume fraction or decreasing precipitate size.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahn, Seonghyeon; Kwak, Jongheon; Choi, Chungryong
Here, we investigated, via small angle X-ray scattering and transmission electron microscopy, the morphologies of binary blend of polyisoprene- b-polystyrene- b-poly(2-vinylpyridine) (ISP) triblock terpolymer and polyisoprene-b-polystyrene (IS) diblock copolymer. An asymmetric ISP with volume fractions ( f) of 0.12, 0.75, and 0.13 for PI, PS, and P2VP blocks, respectively, showed a new morphology: Coexistence of spheres and cylinders with tetragonal packing. Asymmetric IS with f I = 0.11 and f S =0.89 showed conventional body-centered cubic spherical microdomains. Very interestingly, a binary blend of ISP and IS with overall volume fractions of f I = 0.12, f S = 0.79,more » and f P = 0.09 exhibited core-shell double gyroid (CSG: Q 230 space group), where PI consists of thin core and PS forms thick shell, while P2VP becomes thin matrix. It is very unusual to form highly asymmetric CSG with the matrix having very small volume fraction (0.09).« less
Ahn, Seonghyeon; Kwak, Jongheon; Choi, Chungryong; ...
2017-11-08
Here, we investigated, via small angle X-ray scattering and transmission electron microscopy, the morphologies of binary blend of polyisoprene- b-polystyrene- b-poly(2-vinylpyridine) (ISP) triblock terpolymer and polyisoprene-b-polystyrene (IS) diblock copolymer. An asymmetric ISP with volume fractions ( f) of 0.12, 0.75, and 0.13 for PI, PS, and P2VP blocks, respectively, showed a new morphology: Coexistence of spheres and cylinders with tetragonal packing. Asymmetric IS with f I = 0.11 and f S =0.89 showed conventional body-centered cubic spherical microdomains. Very interestingly, a binary blend of ISP and IS with overall volume fractions of f I = 0.12, f S = 0.79,more » and f P = 0.09 exhibited core-shell double gyroid (CSG: Q 230 space group), where PI consists of thin core and PS forms thick shell, while P2VP becomes thin matrix. It is very unusual to form highly asymmetric CSG with the matrix having very small volume fraction (0.09).« less
Nanoparticle engineering of colloidal suspension behavior
NASA Astrophysics Data System (ADS)
Chan, Angel Thanda
We investigate the effects of highly charged nanoparticles on the phase behavior, structure, and assembly of colloidal microsphere suspensions. Specifically, by selectively tuning the electrostatic interactions between silica microspheres and polystyrene nanoparticles, we study the behavior of four key systems: (i) strongly repulsive, (ii) haloing, (iii) weakly attractive, and (iv) strongly attractive systems. In each system, a combination of nanoparticle adsorption, zeta potential, and confocal microscopy measurements are carried out to systematically study the effects of nanoparticle volume fraction, microsphere/nanoparticle size ratios, and interparticle interactions on their behavior. Our observations indicate that minimal adsorption of highly charged nanoparticles occurs on like-charged and negligibly-charged microspheres, whereas their extent of association increases dramatically with increasing microsphere-nanoparticle attraction. A rich phase behavior emerges in these systems based on whether the nanoparticle species serve as depletants, haloing, or bridging species. The phase transitions in the haloing system occur at constant nanoparticle volume fractions, φnano, over a broad range of microsphere volume fractions, φmicro . By contrast, the observed transitions in the weakly and strongly attractive mixtures occur at a constant number ratio of nanoparticles per microsphere, Nnano/Nmicro. Important structural differences emerge, which can be exploited in the assembly of colloidal gels for direct ink writing and colloidal crystals on epitaxially patterned substrates. Finally, for the first time, we explore nanoparticle haloing as a new route for stabilizing hydrophobic colloidal drugs in aqueous suspensions media for preparation of injectable pharmaceuticals. These microsphere suspensions exhibit improved stability relative to their surfactant-stabilized counterparts after autoclaving, a critical processing step for this target applications. This research opens up a new avenue for stabilization of hydrophobic particles, when surfactant additions alone do not provide sufficient stabilization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haasbeek, Cornelis J.A.; Lagerwaard, Frank J.; Cuijpers, Johan P.
2007-04-01
Purpose: Changes in position or size of target volumes have been observed during radiotherapy for lung cancer. The need for adaptive treatment planning during stereotactic radiotherapy of Stage I tumors was retrospectively analyzed using repeat four-dimensional computed tomography (4DCT) scans. Methods and Materials: A planning study was performed for 60 tumors in 59 patients using 4DCT scans repeated after two or more treatment fractions. Planning target volumes (PTV) encompassed all tumor mobility, and dose distributions from the initial plan were projected onto PTVs derived from the repeat 4DCT. A dosimetric and volumetric analysis was performed. Results: The repeat 4DCT scansmore » were performed at a mean of 6.6 days (range, 2-12 days) after the first fraction of stereotactic radiotherapy. In 25% of cases the repeat PTV was larger, but the difference exceeded 1 mL in 5 patients only. The mean 3D displacement between the center of mass of both PTVs was 2.0 mm. The initial 80% prescription isodose ensured a mean coverage of 98% of repeat PTVs, and this isodose fully encompassed the repeat internal target volumes in all but 1 tumor. 'Inadequate' coverage in the latter was caused by a new area of atelectasis adjacent to the tumor on the repeat 4DCT. Conclusions: Limited 'time trends' were observed in PTVs generated by repeated uncoached 4DCT scans, and the dosimetric consequences proved to be minimal. Treatment based only on the initial PTV would not have resulted in major tumor underdosage, indicating that adaptive treatment planning is of limited value for fractionated stereotactic radiotherapy.« less
Räth, Christoph; Baum, Thomas; Monetti, Roberto; Sidorenko, Irina; Wolf, Petra; Eckstein, Felix; Matsuura, Maiko; Lochmüller, Eva-Maria; Zysset, Philippe K; Rummeny, Ernst J; Link, Thomas M; Bauer, Jan S
2013-12-01
In this study, we investigated the scaling relations between trabecular bone volume fraction (BV/TV) and parameters of the trabecular microstructure at different skeletal sites. Cylindrical bone samples with a diameter of 8mm were harvested from different skeletal sites of 154 human donors in vitro: 87 from the distal radius, 59/69 from the thoracic/lumbar spine, 51 from the femoral neck, and 83 from the greater trochanter. μCT images were obtained with an isotropic spatial resolution of 26μm. BV/TV and trabecular microstructure parameters (TbN, TbTh, TbSp, scaling indices (< > and σ of α and αz), and Minkowski Functionals (Surface, Curvature, Euler)) were computed for each sample. The regression coefficient β was determined for each skeletal site as the slope of a linear fit in the double-logarithmic representations of the correlations of BV/TV versus the respective microstructure parameter. Statistically significant correlation coefficients ranging from r=0.36 to r=0.97 were observed for BV/TV versus microstructure parameters, except for Curvature and Euler. The regression coefficients β were 0.19 to 0.23 (TbN), 0.21 to 0.30 (TbTh), -0.28 to -0.24 (TbSp), 0.58 to 0.71 (Surface) and 0.12 to 0.16 (<α>), 0.07 to 0.11 (<αz>), -0.44 to -0.30 (σ(α)), and -0.39 to -0.14 (σ(αz)) at the different skeletal sites. The 95% confidence intervals of β overlapped for almost all microstructure parameters at the different skeletal sites. The scaling relations were independent of vertebral fracture status and similar for subjects aged 60-69, 70-79, and >79years. In conclusion, the bone volume fraction-microstructure scaling relations showed a rather universal character. © 2013.
Han, Na; Ahmed, Ifty; Parsons, Andrew J; Harper, Lee; Scotchford, Colin A; Scammell, Brigitte E; Rudd, Chris D
2013-05-01
Polymers prepared from polylactic acid (PLA) have found a multitude of uses as medical devices. For a material that degrades, the main advantage is that an implant would not necessitate a second surgical event for removal. In this study, fibers produced from a quaternary phosphate-based glass (PBG) in the system 50P2O5-40CaO-5Na2O-5Fe2O3 were used to reinforce PLA polymer. The purpose of this study was to assess the effect of screw holes in a range of PBG-reinforced PLA composites with varying fiber layup and volume fraction. The flexural properties obtained showed that the strength and modulus values increased with increasing fiber volume fraction; from 96 MPa to 320 MPa for strength and between 4 GPa and 24 GPa for modulus. Furthermore, utilizing a larger number of thinner unidirectional (UD) fiber prepreg layers provided a significant increase in mechanical properties, which was attributed to enhanced wet out and thus better fiber dispersion during production. The effect of gamma sterilization via flexural tests showed no statistically significant difference between the sterilized and nonsterilized samples, with the exception of the modulus values for samples with screw holes. Degradation profiles revealed that samples with screw holes degraded faster than those without screw holes due to an increased surface area for the plates with screw holes in PBS up to 30 days. Scanning electron microscope (SEM) analysis revealed fiber pullout before and after degradation. Compared with various fiber impregnation samples, with 25% volume fraction, 8 thinner unidirectional prepreg stacked samples had the shortest fiber pull-out lengths in comparison to the other samples investigated.
Kadzińska, Justyna
2016-01-01
Summary The objective of this work is to study the effect of the rapeseed oil content on the physical properties of whey protein emulsion films. For this purpose, whey protein films with the addition of 0, 1, 2 and 3% of rapeseed oil, and glycerol as a plasticizer were obtained by the casting method. Film-forming emulsions were evaluated and compared using light scattering granulometry. The Sauter mean diameters (d32) of lipid droplets in film-forming solutions showed an increasing trend when increasing the oil volume fractions. The inclusion of rapeseed oil enhanced the hydrophobic character of whey protein films, reducing moisture content and film solubility in water. All emulsified films showed high lightness (L*≈90). Parameter a* decreased and parameter b* and total colour difference (∆E) increased with the increase of the volume fractions of oil. These results were consistent with visual observations; control films were transparent and those containing oil opaque. Water vapour sorption experimental data at the full range of water activity values from 0.11 to 0.93 were well described with Peleg’s equation (R2≥0.99). The tensile strength, Young’s modulus and elongation at break increased with the increase of rapeseed oil volume fraction, which could be explained by interactions between lipids and the protein matrix. These results revealed that rapeseed oil has enormous potential to be incorporated into whey protein to make edible film or coating for some food products. The mechanical resistance decreased with the addition of the lipids, and the opacity and soluble matter content increased. PMID:27904396
DOE Office of Scientific and Technical Information (OSTI.GOV)
Streitparth, Florian; Pech, Maciej; Boehmig, Michael
2006-08-01
Purpose: The aim of this study was to assess the tolerance dose of gastric mucosa for single-fraction computed tomography (CT)-guided, high-dose-rate (HDR) brachytherapy of liver malignancies. Methods and Materials: A total of 33 patients treated by CT-guided HDR brachytherapy of liver malignancies in segments II and/or III were included. Dose planning was performed upon a three-dimensional CT data set acquired after percutaneous applicator positioning. All patients received gastric protection post-treatment. For further analysis, the contours of the gastric wall were defined in every CT slice using Brachyvision Software. Dose-volume histograms were calculated for each treatment and correlated with clinical datamore » derived from questionnaires assessing Common Toxicity Criteria (CTC). All patients presenting symptoms of upper GI toxicity were examined endoscopically. Results: Summarizing all patients the minimum dose applied to 1 ml of the gastric wall (D{sub 1ml}) ranged from 6.3 to 34.2 Gy; median, 14.3 Gy. Toxicity was present in 18 patients (55%). We found nausea in 16 (69%), emesis in 9 (27%), cramping in 13 (39%), weight loss in 12 (36%), gastritis in 4 (12%), and ulceration in 5 patients (15%). We found a threshold dose D{sub 1ml} of 11 Gy for general gastric toxicity and 15.5 Gy for gastric ulceration verified by an univariate analysis (p = 0.01). Conclusions: For a single fraction, small volume irradiation we found in the upper abdomen a threshold dose D{sub 1ml} of 15.5 Gy for the clinical endpoint ulceration of the gastric mucosa. This in vivo assessment is in accordance with previously published tolerance data.« less
Feasibility of Adaptive MR-guided Stereotactic Body Radiotherapy (SBRT) of Lung Tumors
Simpson, Garrett N; Llorente, Ricardo; Samuels, Michael A; Dogan, Nesrin
2018-01-01
Online adaptive radiotherapy (ART) with frequent imaging has the potential to improve dosimetric accuracy by accounting for anatomical and functional changes during the course of radiotherapy. Presented are three interesting cases that provide an assessment of online adaptive magnetic resonance-guided radiotherapy (MRgRT) for lung stereotactic body radiotherapy (SBRT). The study includes three lung SBRT cases, treated on an MRgRT system where MR images were acquired for planning and prior to each treatment fraction. Prescription dose ranged from 48 to 50 Gy in four to five fractions, normalized to where 95% of the planning target volume (PTV) was covered by 100% of the prescription dose. The process begins with the gross tumor volume (GTV), PTV, spinal cord, lungs, heart, and esophagus being delineated on the planning MRI. The treatment plan was then generated using a step-and-shoot intensity modulated radiotherapy (IMRT) technique, which utilized a Monte Carlo dose calculation. Next, the target and organs at risk (OAR) contours from the planning MRI were deformably propagated to the daily setup MRIs. These deformed contours were reviewed and modified by the physician. To determine the efficacy of ART, two different strategies were explored: 1) Calculating the plan created for the planning MR on each fraction setup MR dataset (Non-Adapt) and 2) creating a new optimized IMRT plan on the fraction setup MR dataset (FxAdapt). The treatment plans from both strategies were compared using the clinical dose-volume constraints. PTV coverage constraints were not met for 33% Non-Adapt fractions; all FxAdapt fractions met this constraint. Eighty-eight percent of all OAR constraints studied were better on FxAdapt plans, while 12% of OAR constraints were superior on Non-Adapt fractions. The OAR that garnered the largest benefit would be the uninvolved lung, with superior sparing in 92% of the FxAdapt studied. Similar, but less pronounced, benefits from adaptive planning were experienced for the spinal cord, chest wall, and esophagus. Online adaptive MR-guided lung SBRT can provide better target conformality and homogeneity and OAR sparing compared with non-adaptive SBRT in selected cases. Conversely, if the PTV isn’t adjacent to multiple OARs, then the benefit from ART may be limited. Further studies, which incorporate a larger cohort of patients with uniform prescriptions, are needed to thoroughly evaluate the benefits of daily online ART during MRgRT. PMID:29872603
Roshani, G H; Karami, A; Khazaei, A; Olfateh, A; Nazemi, E; Omidi, M
2018-05-17
Gamma ray source has very important role in precision of multi-phase flow metering. In this study, different combination of gamma ray sources (( 133 Ba- 137 Cs), ( 133 Ba- 60 Co), ( 241 Am- 137 Cs), ( 241 Am- 60 Co), ( 133 Ba- 241 Am) and ( 60 Co- 137 Cs)) were investigated in order to optimize the three-phase flow meter. Three phases were water, oil and gas and the regime was considered annular. The required data was numerically generated using MCNP-X code which is a Monte-Carlo code. Indeed, the present study devotes to forecast the volume fractions in the annular three-phase flow, based on a multi energy metering system including various radiation sources and also one NaI detector, using a hybrid model of artificial neural network and Jaya Optimization algorithm. Since the summation of volume fractions is constant, a constraint modeling problem exists, meaning that the hybrid model must forecast only two volume fractions. Six hybrid models associated with the number of used radiation sources are designed. The models are employed to forecast the gas and water volume fractions. The next step is to train the hybrid models based on numerically obtained data. The results show that, the best forecast results are obtained for the gas and water volume fractions of the system including the ( 241 Am- 137 Cs) as the radiation source. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ishibashi, Hidemi
2009-03-01
Laboratory measurements of viscosity were done for basalt erupted in 1707 AD from Fuji volcano, Japan, using a concentric cylinder rotational viscometer at temperatures of 1297-1157 °C, 1 atm pressure, and fO 2 near the Ni-NiO buffer. On cooling, elongated plagioclase crystals with a mean length/width ratio of ca. 8.5 appeared at 1237 °C, followed by olivine at 1157 °C. At progressively lower temperatures, the total crystal volume fraction increased monotonously to ca. 0.25; viscosity increased from 38.9 to 765 Pa s at a shear strain rate of 1 s - 1 . This basalt magma behaves as a Newtonian fluid at temperatures greater than 1217 °C, but shear-thinning behavior occurs at temperatures less than 1197 °C because of the suspended plagioclase crystals. This behavior is well approximated as a power law fluid. At the onset of shear thinning, the crystal volume fraction was between 0.06 and 0.13, which is attributed to the pronounced lath-shape of plagioclase crystals. The relative viscosity increases monotonously with increase of crystal volume fraction at a constant shear strain rate, and with decrease of shear strain rate at a constant crystal volume fraction. A modified form of the Krieger-Dougherty equation is introduced herein. It enables us to describe the dependencies of relative viscosity on both the crystal volume fraction and shear strain rate, and consequently the onset of shear-thinning behavior.
Kälin, Pascal S; Crawford, Rebecca J; Marcon, Magda; Manoliu, Andrei; Bouaicha, Samy; Fischer, Michael A; Ulbrich, Erika J
2018-04-23
We aimed to provide mean values for fat-fraction and volume for full-length bilateral rotator cuff and deltoid muscles in asymptomatic adults selected on the basis of their good musculoskeletal and systemic health, and to understand the influence of gender, age, and arm dominance. Seventy-six volunteers aged 20 to 60 years who were screened for normal BMI and high general health were included in the study. MRI was performed at 3 Tesla using three-point DIXON sequences. Volume and fat-signal fraction of the rotator cuff muscles and the deltoid muscle were determined with semi-automated segmentation of entire muscle lengths. Differences according to age, gender, and handedness per muscle were evaluated. Fat-signal fractions were comparable between genders (mean ± 2 SD, 95% CI, women 7.0 ± 3.0; 6.8-7.2%, men 6.8 ± 2.7; 6.7-7.0%) but did not show convincing changes with age. Higher shoulder muscle volume and lower fat-signal fraction in the dominant arm were shown for teres minor and deltoid (p < 0.01) with similar trends shown for the other rotator cuff muscles. Bilateral fat-signal fractions and volumes based on entire length shoulder muscles in asymptomatic 20-60 year old adults may provide reference for clinicians. Differences shown according to arm dominance should be considered and may rationalize the need for bilateral imaging in determining appropriate management.
Analyzing near infrared scattering from human skin to monitor changes in hematocrit
NASA Astrophysics Data System (ADS)
Chaiken, Joseph; Deng, Bin; Goodisman, Jerry; Shaheen, George; Bussjager, R. J.
2012-01-01
The leading preventable cause of death, world-wide, civilian or military, for all people between the ages of 18-45 is undetected internal hemorrhage. Autonomic compensation mechanisms mask changes such as e.g. hematocrit fluctuations that could give early warning if only they could be monitored continuously with reasonable degrees of precision and relative accuracy. Probing tissue with near infrared radiation (NIR) simultaneously produces remitted fluorescence and Raman scattering (IE) plus Rayleigh/Mie light scattering (EE) that noninvasively give chemical and physical information about the materials and objects within. We model tissue as a three-phase system: plasma and red blood cell (RBC) phases that are mobile and a static tissue phase. In vivo, any volume of tissue naturally experiences spatial and temporal fluctuations of blood plasma and RBC content. Plasma and RBC fractions may be discriminated from each other on the basis of their physical, chemical and optical properties. Thus IE and EE from NIR probing yield information about these fractions. Assuming there is no void volume in viable tissue, or that void volume is constant, changes in plasma and RBC volume fractions may be calculated from simultaneous measurements of the two observables, EE and IE. In a previously published analysis we showed the underlying phenomenology but did not provide an algorithm for calculating volume fractions from experimental data. Here we present a simple analysis that allows continuous monitoring of fluid fraction and hematocrit (Hct) changes by measuring IE and EE, and apply it to some experimental in vivo measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Kai
Size, number density and volume fraction of nano-precipitates are important microstructural parameters controlling the strengthening of materials. In this work a widely accessible, convenient, moderately time efficient method with acceptable accuracy and precision has been provided for measurement of volume fraction of nano-precipitates in crystalline materials. The method is based on the traditional but highly accurate technique of measuring foil thickness via convergent beam electron diffraction. A new equation is proposed and verified with the aid of 3-dimensional atom probe (3DAP) analysis, to compensate for the additional error resulted from the hardly distinguishable contrast of too short incomplete precipitates cutmore » by the foil surface. The method can be performed on a regular foil specimen with a modern LaB{sub 6} or field-emission-gun transmission electron microscope. Precisions around ± 16% have been obtained for precipitate volume fractions of needle-like β″/C and Q precipitates in an aged Al-Mg-Si-Cu alloy. The measured number density is close to that directly obtained using 3DAP analysis by a misfit of 4.5%, and the estimated precision for number density measurement is about ± 11%. The limitations of the method are also discussed. - Highlights: •A facile method for measuring volume fraction of nano-precipitates based on CBED •An equation to compensate for small invisible precipitates, with 3DAP verification •Precisions around ± 16% for volume fraction and ± 11% for number density.« less
1990-09-01
can see that as the particle diameter ratio decreased more from unity, the freezing curve in the D - x phase diagram begins to show a maximum with...predicted for the rod area fraction of 0.26. Free energy curves for the two phases are shown as a function of rod concentration. The random phise has lower...fabrication techniques leing used range from consolidation of subinicron-sized powders to vapor phase deposition. ’hc papers included in this
Lew, Virgilio L; Tiffert, Teresa
2017-01-01
In a healthy adult, the transport of O 2 and CO 2 between lungs and tissues is performed by about 2 · 10 13 red blood cells, of which around 1.7 · 10 11 are renewed every day, a turnover resulting from an average circulatory lifespan of about 120 days. Cellular lifespan is the result of an evolutionary balance between the energy costs of maintaining cells in a fit functional state versus cell renewal. In this Review we examine how the set of passive and active membrane transporters of the mature red blood cells interact to maximize their circulatory longevity thus minimizing costs on expensive cell turnover. Red blood cell deformability is critical for optimal rheology and gas exchange functionality during capillary flow, best fulfilled when the volume of each human red blood cell is kept at a fraction of about 0.55-0.60 of the maximal spherical volume allowed by its membrane area, the optimal-volume-ratio range. The extent to which red blood cell volumes can be preserved within or near these narrow optimal-volume-ratio margins determines the potential for circulatory longevity. We show that the low cation permeability of red blood cells allows volume stability to be achieved with extraordinary cost-efficiency, favouring cell longevity over cell turnover. We suggest a mechanism by which the interplay of a declining sodium pump and two passive membrane transporters, the mechanosensitive PIEZO1 channel, a candidate mediator of P sickle in sickle cells, and the Ca 2+ -sensitive, K + -selective Gardos channel, can implement red blood cell volume stability around the optimal-volume-ratio range, as required for extended circulatory longevity.
Lew, Virgilio L.; Tiffert, Teresa
2017-01-01
In a healthy adult, the transport of O2 and CO2 between lungs and tissues is performed by about 2 · 1013 red blood cells, of which around 1.7 · 1011 are renewed every day, a turnover resulting from an average circulatory lifespan of about 120 days. Cellular lifespan is the result of an evolutionary balance between the energy costs of maintaining cells in a fit functional state versus cell renewal. In this Review we examine how the set of passive and active membrane transporters of the mature red blood cells interact to maximize their circulatory longevity thus minimizing costs on expensive cell turnover. Red blood cell deformability is critical for optimal rheology and gas exchange functionality during capillary flow, best fulfilled when the volume of each human red blood cell is kept at a fraction of about 0.55–0.60 of the maximal spherical volume allowed by its membrane area, the optimal-volume-ratio range. The extent to which red blood cell volumes can be preserved within or near these narrow optimal-volume-ratio margins determines the potential for circulatory longevity. We show that the low cation permeability of red blood cells allows volume stability to be achieved with extraordinary cost-efficiency, favouring cell longevity over cell turnover. We suggest a mechanism by which the interplay of a declining sodium pump and two passive membrane transporters, the mechanosensitive PIEZO1 channel, a candidate mediator of Psickle in sickle cells, and the Ca2+-sensitive, K+-selective Gardos channel, can implement red blood cell volume stability around the optimal-volume-ratio range, as required for extended circulatory longevity. PMID:29311949
Habibi, Mohammadali; Samiei, Sanaz; Ambale Venkatesh, Bharath; Opdahl, Anders; Helle-Valle, Thomas M; Zareian, Mytra; Almeida, Andre L C; Choi, Eui-Young; Wu, Colin; Alonso, Alvaro; Heckbert, Susan R; Bluemke, David A; Lima, João A C
2016-08-01
Early detection of structural changes in left atrium (LA) before atrial fibrillation (AF) development could be helpful in identification of those at higher risk for AF. Using cardiac magnetic resonance imaging, we examined the association of LA volume and function, and incident AF in a multiethnic population free of clinical cardiovascular diseases. In a case-cohort study embedded in MESA (Multi-Ethnic Study of Atherosclerosis), baseline LA size and function assessed by cardiac magnetic resonance feature-tracking were compared between 197 participants with incident AF and 322 participants randomly selected from the whole MESA cohort. Participants were followed up for 8 years. Incident AF cases had a larger LA volume and decreased passive, active, and total LA emptying fractions and peak global LA longitudinal strain (peak LA strain) at baseline. In multivariable analysis, elevated LA maximum volume index (hazard ratio, 1.38 per SD; 95% confidence interval, 1.01-1.89) and decreased peak LA strain (hazard ratio, 0.68 per SD; 95% confidence interval, 0.48-0.96), and passive and total LA emptying fractions (hazard ratio for passive LA emptying fractions, 0.55 per SD; 95% confidence interval, 0.40-0.75 and hazard ratio for active LA emptying fractions, 0.70 per SD; 95% confidence interval, 0.52-0.95), but not active LA emptying fraction, were associated with incident AF. Elevated LA volumes and decreased passive and total LA emptying fractions were independently associated with incident AF in an asymptomatic multiethnic population. Including LA functional variables along with other risk factors of AF may help to better risk stratify individuals at risk of AF development. © 2016 American Heart Association, Inc.
Fractionated Mercury Isotopes in Fish: The Effects of Nuclear Mass, Spin, and Volume
NASA Astrophysics Data System (ADS)
Das, R.; Odom, A. L.
2007-12-01
Mercury is long known as a common environmental contaminant. In methylated form it is even more toxic and the methylation process is facilitated by microbial activities. Methyl mercury easily crosses cell membrane and accumulates in soft tissues of fishes and finally biomagnifies with increasing trophic levels. Natural variations in the isotopic composition of mercury have been reported and such variations have emphasized mass dependent fractionations, while theory and laboratory experiments indicate that mass-independent isotopic fractionation (MIF) effects are likely to be found as well. This study focuses on the MIF of mercury isotopes in the soft tissues of fishes. Samples include both fresh water and marine fish, from different continents and oceans. Approximately 1 gm of fish soft tissue was dissolved in 5 ml of conc. aqua regia for 24 hrs and filtered through a ¬¬¬100 μm filter paper and diluted with DI water. Hg is measured as a gaseous phase generated by reduction of the sample with SnCl2 in a continuous- flow cold-vapor generator connected to a Thermo-Finnigan Neptune MC-ICPMS. To minimize instrumental fractionation isotope ratios were measured by sample standard bracketing and reported as δ‰ relative to NIST SRM 3133 Hg standard where δAHg = [(A Hg/202Hg)sample/(A Hg/202Hg)NIST313] -1 ×1000‰. In this study we have measured the isotope ratios 198Hg/202Hg, 199Hg/202Hg, 200Hg/202Hg, 201Hg/202Hg and 204Hg/202Hg. In all the fish samples δ198Hg, δ200Hg, δ202Hg, δ204Hg define a mass- dependent fractionation sequence, where as the δ199Hg and δ201Hg depart from the mass- dependent fractionation line and indicate an excess of the odd-N isotopes. The magnitude of the deviation (ΔAHg where A=199 or 201) as obtained by difference between the measured δ199Hg and δ201Hg of the samples and the value obtained by linear scaling defined by the even-N isotopes ranges from approximately 0.2 ‰ to 3‰. The ratios of Δ199Hg /Δ201Hg range from 0.8 to 1.3, and thus more than one mass-independent isotope effect is inferred. MIF of mercury can be caused by the nuclear volume effect. Schauble, 2007 has calculated nuclear volume fractionation scaling factors for a number of common mercury chemical species in equilibrium with Hg° vapor. From his calculations the nuclear field shift effect is larger in Δ199Hg than in Δ201Hg by approximately a factor of two. The predominant mercury chemical species in fish is methylmercury cysteine. From the experimental studies of Buchachenko and others (2004) on the reaction of methylmercury chloride with creatine kinase it seems reasonable to predicted that the thiol functional groups of cysteine gets enriched in 199Hg and 201Hg. Here the magnetic isotope effect (MIE) produces a kinetic partial separation of isotopes with non-zero nuclear spin quantum numbers from the even-N isotopes. The ratio of enrichment of Δ201Hg /Δ199Hg is predicted from theory to be 1.11, which is the ratio of the magnetic moments of 199Hg and 201Hg. Because mercury possesses two odd-N isotopes, it is possible to detect and evaluate the effects of two distinct, mass-independent isotope fractionating processes. From the data obtained on fish samples, we can deconvolute the contributions of the isotope effects of nuclear mass, spin and volume. For these samples the role of spin or the magnetic isotope effect is the most dominant.
Non invasive evaluation of cardiomechanics in patients undergoing MitrClip procedure
2013-01-01
Background In the last recent years a new percutaneous procedure, the MitraClip, has been validated for the treatment of mitral regurgitation. MitraClip procedure is a promising alternative for patients unsuitable for surgery as it reduces the risk of death related to surgery ensuring a similar result. Few data are present in literature about the variation of hemodynamic parameters and ventricular coupling after Mitraclip implantation. Methods Hemodynamic data of 18 patients enrolled for MitraClip procedure were retrospectively reviewed and analyzed. Echocardiographic measurements were obtained the day before the procedure (T0) and 21 ± 3 days after the procedure (T1), including evaluation of Ejection Fraction, mitral valve regurgitation severity and mechanism, forward Stroke Volume, left atrial volume, estimated systolic pulmonary pressure, non invasive echocardiographic estimation of single beat ventricular elastance (Es(sb)), arterial elastance (Ea) measured as systolic pressure • 0.9/ Stroke Volume, ventricular arterial coupling (Ea/Es(sb) ratio). Data were expressed as median and interquartile range. Measures obtained before and after the procedure were compared using Wilcoxon non parametric test for paired samples. Results Mitraclip procedure was effective in reducing regurgitation. We observed an amelioration of echocardiographic parameters with a reduction of estimated systolic pulmonary pressure (45 to 37,5 p = 0,0002) and left atrial volume (110 to 93 p = 0,0001). Despite a few cases decreasing in ejection fraction (37 to 35 p = 0,035), the maintained ventricular arterial coupling after the procedure (P = 0,67) was associated with an increasing in forward stroke volume (60,3 to 78 p = 0,05). Conclusion MitraClip is effective in reducing mitral valve regurgitation and determines an amelioration of hemodynamic parameters with preservation of ventricular arterial coupling. PMID:23642140
DOE Office of Scientific and Technical Information (OSTI.GOV)
Binkley, Michael S.; Shrager, Joseph B.; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California
2014-09-01
Purpose: Lung volume reduction surgery (LVRS) improves dyspnea and other outcomes in selected patients with severe emphysema, but many have excessive surgical risk for LVRS. We analyzed the dose-volume relationship for lobar volume reduction after stereotactic ablative radiation therapy (SABR) of lung tumors, hypothesizing that SABR could achieve therapeutic volume reduction if applied in emphysema. Methods and Materials: We retrospectively identified patients treated from 2007 to 2011 who had SABR for 1 lung tumor, pre-SABR pulmonary function testing, and ≥6 months computed tomographic (CT) imaging follow-up. We contoured the treated lobe and untreated adjacent lobe(s) on CT before and after SABRmore » and calculated their volume changes relative to the contoured total (bilateral) lung volume (TLV). We correlated lobar volume reduction with the volume receiving high biologically effective doses (BED, α/β = 3). Results: 27 patients met the inclusion criteria, with a median CT follow-up time of 14 months. There was no grade ≥3 toxicity. The median volume reduction of the treated lobe was 4.4% of TLV (range, −0.4%-10.8%); the median expansion of the untreated adjacent lobe was 2.6% of TLV (range, −3.9%-11.6%). The volume reduction of the treated lobe was positively correlated with the volume receiving BED ≥60 Gy (r{sup 2}=0.45, P=.0001). This persisted in subgroups determined by high versus low pre-SABR forced expiratory volume in 1 second, treated lobe CT emphysema score, number of fractions, follow-up CT time, central versus peripheral location, and upper versus lower lobe location, with no significant differences in effect size between subgroups. Volume expansion of the untreated adjacent lobe(s) was positively correlated with volume reduction of the treated lobe (r{sup 2}=0.47, P<.0001). Conclusions: We identified a dose-volume response for treated lobe volume reduction and adjacent lobe compensatory expansion after lung tumor SABR, consistent across multiple clinical parameters. These data serve to inform our ongoing prospective trial of stereotactic ablative volume reduction (SAVR) for severe emphysema in poor candidates for LVRS.« less
Development of real time abdominal compression force monitoring and visual biofeedback system
NASA Astrophysics Data System (ADS)
Kim, Tae-Ho; Kim, Siyong; Kim, Dong-Su; Kang, Seong-Hee; Cho, Min-Seok; Kim, Kyeong-Hyeon; Shin, Dong-Seok; Suh, Tae-Suk
2018-03-01
In this study, we developed and evaluated a system that could monitor abdominal compression force (ACF) in real time and provide a surrogating signal, even under abdominal compression. The system could also provide visual-biofeedback (VBF). The real-time ACF monitoring system developed consists of an abdominal compression device, an ACF monitoring unit and a control system including an in-house ACF management program. We anticipated that ACF variation information caused by respiratory abdominal motion could be used as a respiratory surrogate signal. Four volunteers participated in this test to obtain correlation coefficients between ACF variation and tidal volumes. A simulation study with another group of six volunteers was performed to evaluate the feasibility of the proposed system. In the simulation, we investigated the reproducibility of the compression setup and proposed a further enhanced shallow breathing (ESB) technique using VBF by intentionally reducing the amplitude of the breathing range under abdominal compression. The correlation coefficient between the ACF variation caused by the respiratory abdominal motion and the tidal volume signal for each volunteer was evaluated and R 2 values ranged from 0.79 to 0.84. The ACF variation was similar to a respiratory pattern and slight variations of ACF ranges were observed among sessions. About 73-77% average ACF control rate (i.e. compliance) over five trials was observed in all volunteer subjects except one (64%) when there was no VBF. The targeted ACF range was intentionally reduced to achieve ESB for VBF simulation. With VBF, in spite of the reduced target range, overall ACF control rate improved by about 20% in all volunteers except one (4%), demonstrating the effectiveness of VBF. The developed monitoring system could help reduce the inter-fraction ACF set up error and the intra fraction ACF variation. With the capability of providing a real time surrogating signal and VBF under compression, it could improve the quality of respiratory tumor motion management in abdominal compression radiation therapy.
Dose-time relationships for post-irradiation cutaneous telangiectasia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cohen, L.; Ubaldi, S.E.
1977-01-01
Seventy-five patients who had received electron beam radiation a year or more previously were studied. The irradiated skin portals were photographed and late reactions graded in terms of the number and severity of telangiectatic lesions observed. The skin dose, number of fractions, overall treatment time and irradiated volume were recorded in each case. A Strandqvist-type iso-effect line was derived for this response. A multi-probit search program also was used to derive best-fitting cell population kinetic parameters for the same data. From these parameters a comprehensive iso-effect table could be computed for a wide range of treatment schedules including daily treatmentmore » as well as fractionation at shorter and longer intervals; this provided a useful set of normal tissue tolerance limits for late effects.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rana, S; Park, S; Zheng, Y
Purpose: The purpose of this study is to investigate the dosimetric feasibility of hypo-fractionated intensity modulated proton therapy (IMPT) for unilateral metallic prosthesis prostate cancer patients based on proton collaborative group (PCG)-GU002-10 (NCT01230866) protocol criteria. Methods: A total of five unilateral metallic prosthesis prostate cancer cases were included in this retrospective study. For each case, IMPT plans were generated for treatment to be delivered with 7.6 Gy[RBE] per fraction in 5 fractions per week for a total dose of 38 Gy(RBE). Each plan was generated using two anterior-oblique beams and one lateral beam. Treatment plans were optimized with an objectivemore » meeting PCG-GU002-10 (NCT01230866) protocol criteria: (i) planning target volume (PTV): D99.5% > 36.1 Gy[RBE], (ii) rectum: V24 < 35%, V33.6 < 10%, (iii) bladder: V39 < 8 cc, and (iv) femoral head: V23 < 1cc. Results: All five cases satisfied PTV D99.5% (average=36.82 Gy[RBE]; range, 36.36–37.13 Gy[RBE]). PTV D95% ranged from 36.66 Gy[RBE] to 38.65 Gy[RBE] and PTV V100 ranged from 95.47% to 97.95%. For the rectum, V24 was less than 35% (average=14.07 Gy[RBE]; range, 6.22–18.42%, whereas V33.6 Gy[RBE] was less than 10% (average=6.83; range, 3.06 – 9.15%). Rectal mean dose ranged from 4.22 Gy[RBE] to 9.97 Gy[RBE]. For the bladder, V39 was found to be less than 8 cc (average=3.69 cc; range, 0.19–7.68 cc). Bladder mean dose ranged from 4.22 Gy[RBE] to 18.83 Gy[RBE]. For the femoral head, V23 was 0 in all five cases. Conclusion: All five unilateral metallic prosthesis prostate cancer IMPT plans generated with one lateral and two anterior-oblique beams satisfied the dosimetric criteria of PCG-GU002-10 (NCT01230866) protocol.« less
NASA Astrophysics Data System (ADS)
Khorasanizadeh, H.; Fakhari, M. M.; Ghaffari, S. P.
2015-05-01
Heat transfer enhancement or deterioration of variable properties Al2O3-EG-water nanofluid natural convection in a differentially heated rectangular cavity has been investigated numerically. A finite volume approach has been utilized to solve the governing equations for a Newtonian fluid. The influences of the pertinent parameters such as Rayleigh number, Ra, in the range of 103-107 and nanoparticles volume fraction from 0 to 0.04 have been studied. The results verified by making overall comparison with some existing experimental results have shown that for Ra = 103, for which conduction heat transfer is dominant, the average Nusselt number increases as nanoparticles volume fraction increases, but contradictory with the constant properties cases it decreases for higher Ra values. This reduction, which is associated with the increased viscosity, is more severe at Ra = 104 and the least deterioration in heat transfer occurs for Ra = 107. This is due to the fact that the Brownian motion enhances as Ra increases; thus at Ra = 107 the improved conductivity becomes more important than viscosity enhancement. To clarify the contradictory reports existing in the literature on the natural convection heat transfer enhancement or deterioration of nanofluids, a scale analysis performed showed that unlike methods of evaluating the base fluid Ra have led to such differences.
NASA Astrophysics Data System (ADS)
Salehin, Musfequs; Ehsan, Mohammad Monjurul; Islam, A. K. M. Sadrul
2017-06-01
Heat transfer enhancement by corrugation in fluid domain is a popular method. The rate of improvement is more when it is used highly thermal conductive fluid as heating or cooling medium. In this present study, heat transfer augmentation was investigated numerically by implementing corrugation in the fluid domain and nanofluid as the base fluid in the turbulent forced convection regime. Finite volume method (FVM) was applied to solve the continuity, momentum and energy equations. All the numerical simulations were considered for single phase flow. A rectangle corrugated pipe with 5000 W/m2 constant heat flux subjected to the corrugated wall was considered as the fluid domain. In the range of Reynolds number 15000 to 40000, thermo-physical and hydrodynamic behavior was investigated by using CuO-water nanofluid from 1% to 5% volume fraction as the base fluid through the corrugated fluid domain. Corrugation justification was performed by changing the amplitude of the corrugation and the corrugation wave length for obtaining the increased heat transfer rate with minimum pumping power. For using CuO-water nanofluid, augmentation was also found more in the rectangle corrugated pipe both in heat transfer and pumping power requirement with the increase of Reynolds number and the volume fraction of nanofluid. For the increased pumping power, optimization of pumping power by using nanofluid was also performed for economic finding.
The mercury isotope composition of Arctic coastal seawater
NASA Astrophysics Data System (ADS)
Štrok, Marko; Baya, Pascale Anabelle; Hintelmann, Holger
2015-11-01
For the first time, Hg isotope composition of seawater in the Canadian Arctic Archipelago is reported. Hg was pre-concentrated from large volumes of seawater sampling using anion exchange resins onboard the research vessel immediately after collection. Elution of Hg was performed in laboratory followed by isotope composition determination by multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). For comparison, seawater from two stations was shipped to the laboratory and processed within it. Results showed negative mass-dependent fractionation in the range from -2.85 to -1.10‰ for δ202Hg, as well as slightly positive mass-independent fractionation of odd Hg isotopes. Positive mass-independent fractionation of 200Hg was also observed. Samples that were pre-concentrated in the laboratory showed different Hg isotope signatures and this is most probably due to the abiotic reduction of Hg in the dark by organic matter during storage and shipment after sampling. This emphasizes the need for immediate onboard pre-concentration.
Self-diffusion Coefficient and Structure of Binary n-Alkane Mixtures at the Liquid-Vapor Interfaces.
Chilukoti, Hari Krishna; Kikugawa, Gota; Ohara, Taku
2015-10-15
The self-diffusion coefficient and molecular-scale structure of several binary n-alkane liquid mixtures in the liquid-vapor interface regions have been examined using molecular dynamics simulations. It was observed that in hexane-tetracosane mixture hexane molecules are accumulated in the liquid-vapor interface region and the accumulation intensity decreases with increase in a molar fraction of hexane in the examined range. Molecular alignment and configuration in the interface region of the liquid mixture change with a molar fraction of hexane. The self-diffusion coefficient in the direction parallel to the interface of both tetracosane and hexane in their binary mixture increases in the interface region. It was found that the self-diffusion coefficient of both tetracosane and hexane in their binary mixture is considerably higher in the vapor side of the interface region as the molar fraction of hexane goes lower, which is mostly due to the increase in local free volume caused by the local structure of the liquid in the interface region.
NASA Astrophysics Data System (ADS)
Mora, A.; Skurtys, O.; Osorio, F.
2015-04-01
The rheological properties of high molecular weight POE and CMC suspensions by adding micro-metric solid particles such as fibers or spheres were studied. The volume fraction, Φ, was varied between 0 and 0.4. Their rheological properties were obtained after fitting a Cross model. For POE suspending fluid with spherical particle, the behavior of the normalized steady shear viscosity, μ/μ0, as function of the fraction volume followed a Thomas model. However, for CMC suspensions, μ/μ0 seems to be lineal with Φ. For a pure fluid or a suspension with Φ = 0; 2, the suspension presented an elastic behavior whereas it was observed a viscous behavior when the volume fraction was increased.
Harbaugh, Calista M; Shlykov, Maksim A; Tsuchida, Ryan E; Holcombe, Sven A; Hirschl, Jake; Wang, Stewart C; Ehrlich, Peter F
2015-06-01
Motor vehicle crashes are the leading cause of injury-related mortality in children, with a higher rate of multiorgan injuries than in adults. This may be related to increased solid organ volume relative to abdominal cavity and decreased protection of an underdeveloped cartilaginous rib cage in young children. To date, these anatomic relationships have not been fully described. Our study used analytic morphomics to obtain precise measures of the pediatric liver, spleen, kidneys, and ribs. This pilot study included 215 trauma patients (aged 0-18 years) with anonymized computed tomography (CT) scans. Liver, spleen, and kidney volumes were modeled using semiautomatic algorithms (MATLAB 2013a, MathWorks Inc., Natick, MA). Thirty-one scans were adequate to model the rib cage. Pearson's r was used to correlate absolute organ volume, fractional organ volume, and organ exposure with age and weight. Spleen, right and left kidney, and liver volumes increased with age and weight (p < 0.01). Right/left kidney and liver fractional volumes decreased with age (p < 0.01), whereas spleen fractional volume remained relatively constant. Exposed surface area of the liver only significantly decreased with age in the anterior (p < 0.01), right (p < 0.01), and posterior views (p = 0.02). With this study, we have demonstrated the ability to model solid organ and rib cage anatomy of children using cross-sectional imaging. In younger children, there may be a decrease in fractional organ volume and increase in liver surface exposure, although analysis of a larger sample size is warranted. In the future, this information may be used to improve the design of safety restraints in motor vehicles.
Hot interstellar tunnels. 1: Simulation of interacting supernova remnants
NASA Technical Reports Server (NTRS)
Smith, B. W.
1976-01-01
The theory required to build a numerical simulation of interacting supernova remnants is developed. The hot cavities within a population of remnants will become connected, with varying ease and speed, for a variety of assumed conditions in the outer shells of old remnants. Apparently neither radiative cooling nor thermal conduction in a large-scale galactic magnetic field can destroy hot cavity regions, if they grow, faster than they are reheated by supernova shock waves, but interstellar mass motions disrupt the contiguity of extensive cavities necessary for the dispersal of these shocks over a wide volume. Monte Carlo simulations show that a quasi-equilibrium is reached in the test space within 10 million yrs of the first supernova and is characterized by an average cavity filling fraction of the interstellar volume. Aspects of this equilibrium are discussed for a range of supernova rates. Two predictions are not confirmed within this range: critical growth of hot regions to encompass the entire medium, and the efficient quenching of a remnant's expansion by interaction with other cavities.
An Avoidance Model for Short-Range Order Induced by Soft Repulsions in Systems of Rigid Rods
NASA Astrophysics Data System (ADS)
Han, Jining; Herzfeld, Judith
1996-03-01
The effects of soft repulsions on hard particle systems are calculated using an avoidance model which improves upon the simple mean field approximation. Avoidance reduces, but does not eliminate, the energy due to soft repulsions. On the other hand, it also reduces the configurational entropy. Under suitable conditions, this simple trade-off yields a free energy that is lower than the mean field value. In these cases, the variationally determined avoidance gives an estimate for the short-range positional order induced by soft repulsions. The results indicate little short-range order for isotropically oriented rods. However, for parallel rods, short-range order increases to significant levels as the particle axial ratio increases. The implications for long- range positional ordering are also discussed. In particular, avoidance may explain the smectic ordering of tobacco mosaic virus at volume fractions lower than those necessary for smectic ordering of hard particles.
Semen characteristics and refrigeration in free-ranging giant anteaters (Myrmecophaga tridactyla).
Luba, Camila do Nascimento; Boakari, Yatta Linhares; Costa Lopes, Alexandre Martins; da Silva Gomes, Marcelo; Miranda, Flávia Regina; Papa, Frederico Ozanan; Ferreira, João Carlos Pinheiro
2015-12-01
The giant anteater (Myrmecophaga tridactyla) is considered vulnerable to extinction. Scientific data on the reproductive parameters of this species are scarce. Semen from eight free-ranging giant anteaters was collected to establish its characteristics and the effects of cooling and storage at 5 °C after dilution with the BotuCrio extender without cryoprotectant. The ejaculate presented two distinct sequential fractions, including a whitish fraction, which was milky and rich in sperm cells, and a gel fraction, which was colorless, viscous, and azoospermic. The mean ± standard error of the mean values of the seminal characteristics were as follows: volume of the first fraction, 0.75 ± 0.1 mL; motility, 75 ± 2.9%; vigor, 3.2 ± 0.3; sperm motility index, 68.8 ± 4.3; concentration, 108.5 ± 13.4 × 10(6)/mL; plasma membrane integrity index, 71 ± 4.0%; spermatic defects detected using modified Karras staining, 35.5 ± 3.3%; and spermatic alterations identified by differential interference contrast microscopy, 48.3 ± 6.8%. During refrigeration, the semen presented decreasing motility from 0 to 18 hours, sperm motility index decreased from 0 to 24 hours, and vigor did not change in the first 6 hours and then decreased to 18 hours. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Jang, Bo Shim; Suk, Lee; Sam, Ju Cho; Sang, Hoon Lee; Juree, Kim; Kwang, Hwan Cho; Chul, Kee Min; Hyun Do, Huh; Rena, Lee; Dae, Sik Yang; Young, Je Park; Won, Seob Yoon; Chul, Yong Kim; Soo, Il Kwon
2010-11-01
This study compares and analyzes stereotactic radiotherapy using tomotherapy and linac-based fractionated stereotactic radiotherapy in the treatment of intra-cranial tumors, according to some cases. In this study, linac-based fractionated stereotactic radiotherapy and tomotherapy treatment were administered to five patients diagnosed with intra-cranial cancer in which the dose of 18-20 Gy was applied on 3-5 separate occasions. The tumor dosing was decided by evaluating the inhomogeneous index (II) and conformity index (CI). Also, the radiation-sensitive tissue was evaluated using low dose factors V1, V2, V3, V4, V5, and V10, as well as the non-irradiation ratio volume (NIV). The values of the II for each prescription dose in the linac-based non-coplanar radiotherapy plan and tomotherapy treatment plan were (0.125±0.113) and (0.090±0.180), respectively, and the values of the CI were (0.899±0.149) and (0.917±0.114), respectively. The low dose areas, V1, V2, V3, V4, V5, and V10, in radiation-sensitive tissues in the linac-based non-coplanar radiotherapy plan fell into the ranges 0.3%-95.6%, 0.1%-87.6%, 0.1%-78.8%, 38.8%-69.9%, 26.6%-65.2%, and 4.2%-39.7%, respectively, and the tomotherapy treatment plan had ranges of 13.6%-100%, 3.5%-100%, 0.4%-94.9%, 0.2%-82.2%, 0.1%-78.5%, and 0.3%-46.3%, respectively. Regarding the NIV for each organ, it is possible to obtain similar values except for the irradiation area of the brain stem. The percentages of NIV 10%, NIV20%, and NIV30%for the brain stem in each patient were 15%-99.8%, 33.4%-100%, and 39.8%-100%, respectively, in the fractionated stereotactic treatment plan and 44.2%-96.5%, 77.7%-99.8%, and 87.8%-100%, respectively, in the tomotherapy treatment plan. In order to achieve higher-quality treatment of intra-cranial tumors, treatment plans should be tailored according to the isodose target volume, inhomogeneous index, conformity index, position of the tumor upon fractionated stereotactic radiosurgery, and radiation dosage for radiation-sensitive tissues.
Coburn-Litvak, P S; Tata, D A; Gorby, H E; McCloskey, D P; Richardson, G; Anderson, B J
2004-01-01
Corticosterone (CORT), the predominant glucocorticoid in rodents, is known to damage hippocampal area CA3. Here we investigate how that damage is represented at the cellular and ultrastructural level of analyses. Rats were injected with CORT (26.8 mg/kg, s.c.) or vehicle for 56 days. Cell counts were estimated with the physical disector method. Glial and mitochondrial volume fractions were obtained from electron micrographs. The effectiveness of the CORT dose used was demonstrated in two ways. First, CORT significantly inhibited body weight gain relative to vehicles. Second, CORT significantly reduced adrenal gland, heart and gastrocnemius muscle weight. Both the adrenal and gastrocnemius muscle weight to body weight ratios were also significantly reduced. Although absolute brain weight was reduced, the brain to body weight ratio was higher in the CORT group relative to vehicles, suggesting that the brain is more resistant to the effects of CORT than many peripheral organs and muscles. Consistent with that interpretation, CORT did not alter CA3 cell density, cell layer volume, or apical dendritic neuropil volume. Likewise, CORT did not significantly alter glial volume fraction, but did reduce mitochondrial volume fraction. These findings highlight the need for ultrastructural analyses in addition to cellular level analyses before conclusions can be drawn about the damaging effects of prolonged CORT elevations. The relative reduction in mitochondria may indicate a reduction in bioenergetic capacity that, in turn, could render CA3 vulnerable to metabolic challenges.
Coarsening of Ni(3)Si precipitates in binary Ni-Si alloys
NASA Astrophysics Data System (ADS)
Cho, Jin-Hoon
The coarsening behavior of coherent gammasp'\\ (Nisb3Si) precipitates with volume fractions, f, ranging from 0.017 to 0.32 in binary Ni-Si alloys was investigated. All of the alloys were aged at 650sp° C for times as long as 2760 h and measurements were made of the kinetics of coarsening, particle size distributions and the evolution of particle morphologies using transmission electron microscopy. The kinetics of solute depletion were investigated using measurements of the ferromagnetic Curie temperature. We successfully overcame the difficulties in obtaining uniform spatial distributions of precipitates at small f by employing an up-quenching treatment; alloys with f less than 0.1 were pre-aged at 530sp° C prior to re-aging at the normal aging temperature of 650sp° C. Almost identical coarsening behavior exhibited by an alloy subjected to both isothermal and up-quenching treatments confirm that the up-quenching treatments do not affect any aspect of the coarsening behavior. Consistent with previous studies, the particles are spherical in shape when small and evolve to a cuboidal shape, with flat faces parallel to {}, as they grow. This shape transition was characterized quantitatively by analyzing the intensity distributions of Fast Fourier Transform spectra generated from the digitized images of TEM micrographs. The precipitates display no tendency towards becoming plate-shaped and they resist coalescence even at the largest sizes, which approach 400 nm in diameter at 2760 h of aging for higher volume fraction alloys. For f < 0.1, the kinetics of coarsening and solute depletion as well as the standard deviation of the particle size distributions decrease as f increases. This anomalous behavior has been documented previously by other investigators, but is contrary to the predictions of theories that incorporate the volume fraction effect in coarsening kinetics. We find no convincing evidence to suggest that f influences any aspect of the coarsening behavior at larger f. It is suggested that the lack of agreement between the volume fraction effects observed experimentally and those predicted theoretically stems from the elastic interactions having a strong influence on the kinetics of coarsening, effectively counteracting the accelerating influence of f on the coarsening kinetics predicted by the theories.
NASA Astrophysics Data System (ADS)
Kalwarczyk, Tomasz; Sozanski, Krzysztof; Jakiela, Slawomir; Wisniewska, Agnieszka; Kalwarczyk, Ewelina; Kryszczuk, Katarzyna; Hou, Sen; Holyst, Robert
2014-08-01
We propose a scaling equation describing transport properties (diffusion and viscosity) in the solutions of colloidal particles. We apply the equation to 23 different systems including colloids and proteins differing in size (range of diameters: 4 nm to 1 μm), and volume fractions (10-3-0.56). In solutions under study colloids/proteins interact via steric, hydrodynamic, van der Waals and/or electrostatic interactions. We implement contribution of those interactions into the scaling law. Finally we use our scaling law together with the literature values of the barrier for nucleation to predict crystal nucleation rates of hard-sphere like colloids. The resulting crystal nucleation rates agree with existing experimental data.We propose a scaling equation describing transport properties (diffusion and viscosity) in the solutions of colloidal particles. We apply the equation to 23 different systems including colloids and proteins differing in size (range of diameters: 4 nm to 1 μm), and volume fractions (10-3-0.56). In solutions under study colloids/proteins interact via steric, hydrodynamic, van der Waals and/or electrostatic interactions. We implement contribution of those interactions into the scaling law. Finally we use our scaling law together with the literature values of the barrier for nucleation to predict crystal nucleation rates of hard-sphere like colloids. The resulting crystal nucleation rates agree with existing experimental data. Electronic supplementary information (ESI) available: Experimental and some analysis details. See DOI: 10.1039/c4nr00647j
Mean and Fluctuating Force Distribution in a Random Array of Spheres
NASA Astrophysics Data System (ADS)
Akiki, Georges; Jackson, Thomas; Balachandar, Sivaramakrishnan
2015-11-01
This study presents a numerical study of the force distribution within a cluster of mono-disperse spherical particles. A direct forcing immersed boundary method is used to calculate the forces on individual particles for a volume fraction range of [0.1, 0.4] and a Reynolds number range of [10, 625]. The overall drag is compared to several drag laws found in the literature. As for the fluctuation of the hydrodynamic streamwise force among individual particles, it is shown to have a normal distribution with a standard deviation that varies with the volume fraction only. The standard deviation remains approximately 25% of the mean streamwise force on a single sphere. The force distribution shows a good correlation between the location of two to three nearest upstream and downstream neighbors and the magnitude of the forces. A detailed analysis of the pressure and shear forces contributions calculated on a ghost sphere in the vicinity of a single particle in a uniform flow reveals a mapping of those contributions. The combination of the mapping and number of nearest neighbors leads to a first order correction of the force distribution within a cluster which can be used in Lagrangian-Eulerian techniques. We also explore the possibility of a binary force model that systematically accounts for the effect of the nearest neighbors. This work was supported by the National Science Foundation (NSF OISE-0968313) under Partnership for International Research and Education (PIRE) in Multiphase Flows at the University of Florida.
Geochemical Evolution of Pre-caldera Magmas at Caviahue Caldera, Neuquen Province, Argentina
NASA Astrophysics Data System (ADS)
Todd, E.; Ort, M.
2004-12-01
Caldera subsidence and glacial erosion at Caviahue, an upper Miocene to Pliocene volcanic center located in the Andean Southern Volcanic Zone (SVZ) at 37°50'S, has exposed a detailed cross-section of pre-caldera volcanic activity from the upper Miocene to the Pliocene. Caldera walls expose 500 to 800 m of ignimbrites, cinder cones, volcanic breccias, and lava flows, which range from 1 to nearly 100 m in thickness. Lavas erupted from the monogenetic pre-caldera volcanic field have compositions ranging from evolved basaltic andesites (4% MgO, 10% FeO) to trachytes. Strong Ni-depletion signatures and high Fe/Mg ratios indicate extensive geochemical modification of Caviahue lavas. Petrologic and geochemical analyses of major and trace element abundances in Caviahue lavas indicate cyclic fractionation and recharge in an upper-crustal magma chamber during pre-caldera volcanism. Compatible and incompatible element abundances (especially Ni, MgO, K, and Zr), plotted in stratigraphic succession, show at least six distinct fractionation trends occurred between emplacement of the oldest exposed lava flows and the eruption of the ignimbrite associated with caldera formation. Each fractionation trend is punctuated by the infusion of a volume of new, more primitive magma. Modeling of recharge events indicates that these introduced from less than half to several times the volume of the existing magma body of new, more primitive (but still evolved) magma to the chamber. Geochemical analyses of lavas deposited between intermittent periods of magma residence and volcanic eruptions show strong patterns of plagioclase, olivine, clinopyroxene, and oxide fractionation. Deposits recognized on the caldera floor thought to be associated with caldera collapse are correlated with extra-caldera trachytic ignimbrite deposits dated at 2.02 Ma, providing a late Pliocene age for caldera collapse. Post-caldera volcanism has been active until present, but has shifted to smaller polygenetic volcanic centers on the periphery of the Caviahue Caldera with the majority of volcanic activity at the historically active Volcán Copahue, located on the western rim of the caldera.
Revathi, S; Kennedy, L John; Basha, S K Khadheer; Padmanabhan, R
2018-07-01
Nanostructured PbZr0.52Ti0.48O3 (PZT) powder was synthesized at 500 °C-800 °C using sol-gel route. X-ray diffraction and Rietveld analysis confirmed the formation of perovskite structure. The sample heat treated at 800 °C alone showed the formation of morphotropic phase boundary with coexistence of tetragonal and rhombohedral phase. The PZT powder and PVDF were used in 0-3 connectivity to form the PZT/PVDF composite film using solvent casting method. The composite films containing 10%, 50%, 70% and 80% volume fraction of PZT in PVDF were fabricated. The XRD spectra validated that the PZT structure remains unaltered in the composites and was not affected by the presence of PVDF. The scanning electron microscopy images show good degree of dispersion of PZT in PVDF matrix and the formation of pores at higher PZT loading. The quantitative analysis of elements and their composition were confirmed from energy dispersive X-ray analysis. The optical band gap of the PVDF film is 3.3 eV and the band gap decreased with increase in volume fraction of PZT fillers. The FTIR spectra showed the bands corresponding to different phases of PVDF (α, β, γ) and perovskite phase of PZT. The thermogravimetric analysis showed that PZT/PVDF composite films showed better thermal stability than the pure PVDF film and hydrophobicity. The dielectric constant was measured at frequency ranging from 1 Hz to 6 MHz and for temperature ranging from room temperature to 150 °C. The composite with 50% PZT filler loading shows the maximum dielectric constant at the studied frequency and temperature range with flexibility.
Cone-beam CT-guided radiotherapy in the management of lung cancer: Diagnostic and therapeutic value.
Elsayad, Khaled; Kriz, Jan; Reinartz, Gabriele; Scobioala, Sergiu; Ernst, Iris; Haverkamp, Uwe; Eich, Hans Theodor
2016-02-01
Recent studies have demonstrated an increase in the necessity of adaptive planning over the course of lung cancer radiation therapy (RT) treatment. In this study, we evaluated intrathoracic changes detected by cone-beam CT (CBCT) in lung cancer patients during RT. A total of 71 lung cancer patients treated with fractionated CBCT-guided RT were evaluated. Intrathoracic changes and plan adaptation priority (AP) scores were compared between small cell lung cancer (SCLC, n = 13) and non-small cell lung cancer (NSCLC, n = 58) patients. The median cumulative radiation dose administered was 54 Gy (range 30-72 Gy) and the median fraction dose was 1.8 Gy (range 1.8-3.0 Gy). All patients were subjected to a CBCT scan at least weekly (range 1-5/week). We observed intrathoracic changes in 83 % of the patients over the course of RT [58 % (41/71) regression, 17 % (12/71) progression, 20 % (14/71) atelectasis, 25 % (18/71) pleural effusion, 13 % (9/71) infiltrative changes, and 10 % (7/71) anatomical shift]. Nearly half, 45 % (32/71), of the patients had one intrathoracic soft tissue change, 22.5 % (16/71) had two, and three or more changes were observed in 15.5 % (11/71) of the patients. Plan modifications were performed in 60 % (43/71) of the patients. Visual volume reduction did correlate with the number of CBCT scans acquired (r = 0.313, p = 0.046) and with the timing of chemotherapy administration (r = 0.385, p = 0.013). Weekly CBCT monitoring provides an adaptation advantage in patients with lung cancer. In this study, the monitoring allowed for plan adaptations due to tumor volume changes and to other anatomical changes.
NASA Astrophysics Data System (ADS)
Little, Charles D.
2007-03-01
Taking advantage of wide-field, time-lapse microscopy we examined the assembly of vascular polygonal networks in whole bird embryos and in explanted embryonic mouse tissue (allantois). Primary vasculogenesis assembly steps range from cellular (1-10 μm) to tissue (100μm-1mm) level events: Individual vascular endothelial cells extend protrusions and move with respect to the extracellular matrix/surrounding tissue. Consequently, long-range, tissue-level, deformations directly influence the vascular pattern. Experimental perturbation of endothelial-specific cell-cell adhesions (VE-cadherin), during mouse vasculogenesis, permitted dissection of the cellular motion required for sprout formation. In particular, cells are shown to move actively onto vascular cords that are subject to strain via tissue deformations. Based on the empirical data we propose a simple model of preferential migration along stretched cells. Numerical simulations reveal that the model evolves into a quasi-stationary pattern containing linear segments, which interconnect above a critical volume fraction. In the quasi-stationary state the generation of new branches offsets the coarsening driven by surface tension. In agreement with empirical data, the characteristic size of the resulting polygonal pattern is density-independent within a wide range of volume fractions. These data underscore the potential of combining physical studies with experimental embryology as a means of studying complex morphogenetic systems. In collaboration with Brenda J. Rongish^1, Andr'as Czir'ok^1,2, Erica D. Perryn^1, Cheng Cui^1, and Evan A. Zamir^1 ^1Department of Anatomy and Cell Biology, the University of Kansas Medical Center, Kansas City, KS ^2Department of Biological Physics, E"otv"os Lor'and University, Budapest, Hungary.
A Model of Thermal Conductivity for Planetary Soils. 2; Theory for Cemented Soils
NASA Technical Reports Server (NTRS)
Piqueux, S.; Christensen, P. R.
2009-01-01
A numerical model of heat conduction through particulate media made of spherical grains cemented by various bonding agents is presented. The pore-filling gas conductivity, volume fraction, and thermal conductivity of the cementing phase are tunable parameters. Cement fractions <0.001-0.01% in volume have small effects on the soil bulk thermal conductivity. A significant conductivity increase (factor 3-8) is observed for bond fractions of 0.01 to 1% in volume. In the 1 to 15% bond fraction domain, the conductivity increases continuously but less intensely (25-100% conductivity increase compared to a 1% bond system). Beyond 15% of cements, the conductivity increases vigorously and the bulk conductivity rapidly approaches that of bedrock. The composition of the cements (i.e. conductivity) has little influence on the bulk thermal inertia of the soil, especially if the volume of bond <10%. These results indicate that temperature measurements are sufficient to detect cemented soils and quantify the amount of cementing phase, but the mineralogical nature of the bonds and the typical grain size are unlikely to be determined from orbit. On Mars, a widespread surface unit characterized by a medium albedo (0.19-0.26) and medium/high thermal inertia (200-600 J s(0.5)/sq m/K) has long been hypothesized to be associated with a duricrust. The fraction of cement required to fit the thermal data is less than approx.1-5% by volume. This small amount of material is consistent with orbital observations, confirming that soil cementation is an important factor controlling the thermal inertia of the Martian surface
A model of thermal conductivity for planetary soils: 2. Theory for cemented soils
NASA Astrophysics Data System (ADS)
Piqueux, S.; Christensen, P. R.
2009-09-01
A numerical model of heat conduction through particulate media made of spherical grains cemented by various bonding agents is presented. The pore-filling gas conductivity, volume fraction, and thermal conductivity of the cementing phase are tunable parameters. Cement fractions <0.001-0.01% in volume have small effects on the soil bulk thermal conductivity. A significant conductivity increase (factor 3-8) is observed for bond fractions of 0.01 to 1% in volume. In the 1 to 15% bond fraction domain, the conductivity increases continuously but less intensely (25-100% conductivity increase compared to a 1% bond system). Beyond 15% of cements, the conductivity increases vigorously and the bulk conductivity rapidly approaches that of bedrock. The composition of the cements (i.e. conductivity) has little influence on the bulk thermal inertia of the soil, especially if the volume of bond <10%. These results indicate that temperature measurements are sufficient to detect cemented soils and quantify the amount of cementing phase, but the mineralogical nature of the bonds and the typical grain size are unlikely to be determined from orbit. On Mars, a widespread surface unit characterized by a medium albedo (0.19-0.26) and medium/high thermal inertia (200-600 J s-0.5 m-2 K-1) has long been hypothesized to be associated with a duricrust. The fraction of cement required to fit the thermal data is less than ˜1-5% by volume. This small amount of material is consistent with orbital observations, confirming that soil cementation is an important factor controlling the thermal inertia of the Martian surface.
Liu, Minglu; Ma, Yuanyu; Wu, Hsinwei; Wang, Robert Y
2015-02-24
Phase-change materials (PCMs) are of broad interest for thermal storage and management applications. For energy-dense storage with fast thermal charging/discharging rates, a PCM should have a suitable melting temperature, large enthalpy of fusion, and high thermal conductivity. To simultaneously accomplish these traits, we custom design nanocomposites consisting of phase-change Bi nanoparticles embedded in an Ag matrix. We precisely control nanoparticle size, shape, and volume fraction in the composite by separating the nanoparticle synthesis and nanocomposite formation steps. We demonstrate a 50-100% thermal energy density improvement relative to common organic PCMs with equivalent volume fraction. We also tune the melting temperature from 236-252 °C by varying nanoparticle diameter from 8.1-14.9 nm. Importantly, the silver matrix successfully prevents nanoparticle coalescence, and no melting changes are observed during 100 melt-freeze cycles. The nanocomposite's Ag matrix also leads to very high thermal conductivities. For example, the thermal conductivity of a composite with a 10% volume fraction of 13 nm Bi nanoparticles is 128 ± 23 W/m-K, which is several orders of magnitude higher than typical thermal storage materials. We complement these measurements with calculations using a modified effective medium approximation for nanoscale thermal transport. These calculations predict that the thermal conductivity of composites with 13 nm Bi nanoparticles varies from 142 to 47 W/m-K as the nanoparticle volume fraction changes from 10 to 35%. Larger nanoparticle diameters and/or smaller nanoparticle volume fractions lead to larger thermal conductivities.
Bülow, Robin; Ittermann, Till; Dörr, Marcus; Poesch, Axel; Langner, Sönke; Völzke, Henry; Hosten, Norbert; Dewey, Marc
2018-03-14
Reference ranges of left ventricular (LV) parameters from cardiac magnetic resonance (CMR) were established to investigate the impact of ageing and hypertension as important determinants of cardiac structure and function. One thousand five hundred twenty-five contrast-enhanced CMRs were conducted in the Study of Health in Pomerania. LV end-diastolic volume (LVEDV), end-systolic volume (LVESV), stroke volume (LVSV), ejection fraction (LVEF), and myocardial mass (LVMM) were determined using long- and short-axis steady-state free-precession sequences. The reference population was defined as participants without late enhancement, hypertension, and prior cardiovascular diseases. Reference ranges were established by quantile regression (5th and 95th percentile) and compared with an additional sample of treated and untreated hypertensives. LV volumes in the reference population (n = 634, 300 males, 334 females, 52.1 ± 13.3 years) aged between 20-69 years were lower with higher age (p = 0.001), whereas LVEFs were higher (p ≤ 0.020). LVMM was lower only in males (p = 0.002). Compared with the reference population, hypertension was associated with lower LVEDV in males (n = 258, p ≤ 0.032). Antihypertensive therapy was associated with higher LVEF in males (n = 258, +2.5%, p = 0.002) and females (n = 180, +2.1%, p = 0.001). Population-based LV reference ranges were derived from contrast-enhanced CMR. Hypertension-related changes were identified by comparing these values with those of hypertensives, and they might be used to monitor cardiac function in these patients. • Left ventricular function changed slightly but significantly between 20-69 years. • Reference values of BSA-indexed myocardial mass decreased with age in males. • Hypertension was associated with lower LV end-diastolic volume only in males. • CMR may allow assessing remodelling related to hypertension or antihypertensive treatment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhainaut, J.F.; Devaux, J.Y.; Monsallier, J.F.
1986-07-01
Continuous positive pressure ventilation is associated with a reduction in left ventricular preload and cardiac output, but the mechanisms responsible are controversial. The decrease in left ventricular preload may result exclusively from a decreased systemic venous return due to increased pleural pressure, or from an additional effect such as decreased left ventricular compliance. To determine the mechanisms responsible, we studied the changes in cardiac output induced by continuous positive pressure ventilation in eight patients with the adult respiratory distress syndrome. We measured cardiac output by thermodilution, and biventricular ejection fraction by equilibrium gated blood pool scintigraphy. Biventricular end-diastolic volumes weremore » then calculated by dividing stroke volume by ejection fraction. As positive end-expiratory pressure increased from 0 to 20 cm H/sub 2/O, stroke volume and biventricular end-diastolic volumes fell about 25 percent, and biventricular ejection fraction remained unchanged. At 20 cm H/sub 2/O positive end-expiratory pressure, volume expansion for normalizing cardiac output restored biventricular end-diastolic volumes without markedly changing biventricular end-diastolic transmural pressures. The primary cause of the reduction in left ventricular preload with continuous positive pressure ventilation appears to be a fall in venous return and hence in right ventricular stroke volume, without evidence of change in left ventricular diastolic compliance.« less
Turner, Simon; Sandiford, Mike; Reagan, Mark; Hawkesworth, Chris; Hildreth, Wes
2010-01-01
We present the results of a combined U-series isotope and numerical modeling study of the 1912 Katmai-Novarupta eruption in Alaska. A stratigraphically constrained set of samples have compositions that range from basalt through basaltic andesite, andesite, dacite, and rhyolite. The major and trace element range can be modeled by 80–90% closed-system crystal fractionation over a temperature interval from 1279°C to 719°C at 100 MPa, with an implied volume of parental basalt of ∼65 km3. Numerical models suggest, for wall rock temperatures appropriate to this depth, that 90% of this volume of magma would cool and crystallize over this temperature interval within a few tens of kiloyears. However, the range in 87Sr/86Sr, (230Th/238U), and (226Ra/230Th) requires open-system processes. Assimilation of the host sediments can replicate the range of Sr isotopes. The variation of (226Ra/230Th) ratios in the basalt to andesite compositional range requires that these were generated less than several thousand years before eruption. Residence times for dacites are close to 8000 years, whereas the rhyolites appear to be 50–200 kyr old. Thus, the magmas that erupted within only 60 h had a wide range of crustal residence times. Nevertheless, they were emplaced in the same thermal regime and evolved along similar liquid lines of descent from parental magmas with similar compositions. The system was built progressively with multiple inputs providing both mass and heat, some of which led to thawing of older silicic material that provided much of the rhyolite.
Thermal Dose Fractionation Affects Tumor Physiologic Response
Thrall, Donald E; Maccarini, Paolo; Stauffer, Paul; MacFall, James; Hauck, Marlene; Snyder, Stacey; Case, Beth; Linder, Keith; Lan, Lan; McCall, Linda; Dewhirst, Mark W.
2013-01-01
Purpose It is unknown whether a thermal dose should be administered using a few large fractions with higher temperatures or a larger number of fractions with lower temperatures. To evaluate this, we assessed the effect of administering the same total thermal dose, approximately 30 CEM43T90, in 1 versus 3–4 fractions per week, over 5 weeks. Materials and Methods Canine sarcomas were randomized to receive one of the hyperthermia fractionation schemes along with fractionated radiotherapy. Tumor response was based on changes in tumor volume, oxygenation, water diffusion quantified using MRI, and a panel of histologic and immunohistochemical endpoints. Results There was a greater reduction in tumor volume and water diffusion at the end of therapy In tumors receiving 1 hyperthermia fraction per week. There was a weak but significant association between improved tumor oxygenation 24 hours after the first hyperthermia treatment and extent of volume reduction at the end of therapy. Finally, the direction of change of HIF 1α and CA IX immunoreactivity after the first hyperthermia fraction was similar and there was an inverse relationship between temperature and the direction of change of CA IX. There were no significant changes in interstitial fluid pressure, VEGF, wVf, apoptosis or necrosis as a function of treatment group or temperature. Conclusions We did not identify an advantage to a 3–4/week hyperthermia prescription and response data pointed to a 1/week prescription being superior. PMID:22804741
Dalino Ciaramella, Paolo; Vertemati, Maurizio; Petrella, Duccio; Bonacina, Edgardo; Grossrubatscher, Erika; Duregon, Eleonora; Volante, Marco; Papotti, Mauro; Loli, Paola
2017-07-01
Diagnosis of benign and purely localized malignant adrenocortical lesions is still a complex issue. Moreover, histology-based diagnosis may suffer of a moment of subjectivity due to inter- and intra-individual variations. The aim of the present study was to assess, by computerized morphometry, the morphological features in benign and malignant adrenocortical neoplasms. Eleven adrenocortical adenomas (ACA) were compared with 18 adrenocortical cancers (ACC). All specimens were stained with H&E, cellular proliferation marker Ki-67 and reticulin. We generated a morphometric model based on the analysis of volume fractions occupied by Ki-67 positive and negative cells (nuclei and cytoplasm), vascular and inflammatory compartment; we also analyzed the surface fraction occupied by reticulin. We compared the quantitative data of Ki-67 obtained by morphometry with the quantification resulting from pathologist's visual reading. The volume fraction of Ki-67 positive cells in ACCs was higher than in ACAs. The volume fraction of nuclei in unit volume and the nuclear/cytoplasmic ratio in both Ki-67 negative cells and Ki-67 positive cells were prominent in ACCs. The surface fraction of reticulin was considerably lower in ACCs. Our computerized morphometric model is simple, reproducible and can be used by the pathologist in the histological workup of adrenocortical tumors to achieve precise and reader-independent quantification of several morphological characteristics of adrenocortical tumors. Copyright © 2017 Elsevier GmbH. All rights reserved.
Thermosetting resins with high fractions of free volume and inherently low dielectric constants.
Lin, Liang-Kai; Hu, Chien-Chieh; Su, Wen-Chiung; Liu, Ying-Ling
2015-08-18
This work demonstrates a new class of thermosetting resins, based on Meldrum's acid (MA) derivatives, which have high fractions of free volume and inherently low k values of about 2.0 at 1 MHz. Thermal decomposition of the MA groups evolves CO2 and acetone to create air-trapped cavities so as to reduce the dielectric constants.
A smoothed two- and three-dimensional interface reconstruction method
Mosso, Stewart; Garasi, Christopher; Drake, Richard
2008-04-22
The Patterned Interface Reconstruction algorithm reduces the discontinuity between material interfaces in neighboring computational elements. This smoothing improves the accuracy of the reconstruction for smooth bodies. The method can be used in two- and three-dimensional Cartesian and unstructured meshes. Planar interfaces will be returned for planar volume fraction distributions. Finally, the algorithm is second-order accurate for smooth volume fraction distributions.
Molina, L; Cabes, M; Díaz-Ferrero, J; Coll, M; Martí, R; Broto-Puig, F; Comellas, L; Rodríguez-Larena, M C
2000-01-01
The analysis of planar (non-ortho) polychlorinated biphenyls (PCB) by HRGC-ECD or HRGC-HRMS requires a fractionation step to avoid the interferences of the bulk of PCB, usually in much higher concentration than the planar ones. In this paper, a new method, based on the fractionation of PCB on SPE commercial tubes pre-packed with Carbopack B, has been developed. After the extract has been applied on the stationary phase, the bulk of PCD are eluted with 15 ml of hexane (fraction I), mono-ortho PCB with 20 ml of hexane/toluene 99:1 (fraction II) and planar PCB with 20 ml of toluene (fraction III) in a station under vacuum. The method has been validated: accuracy (expressed as recovery in %) is >70% and precision (expressed as % RSD) is <20% considering changes of day, analyst and batch of tubes. The method is linear in the range studied. Other advantages are that the method is simple, rapid and it can be easily automated. The application of this separation to the determination of planar PCB in fly-ash extracts from an intercalibration exercise and to sewage sludge, sediment and soil samples has been successful. In addition, this method removes hydrocarbons from the planar PCB fraction and allows its concentration to very small volumes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roar Skartlien; Espen Sollum; Andreas Akselsen
2012-07-01
A 3D lattice Boltzmann model for two-phase flow with amphiphilic surfactant was used to investigate the evolution of emulsion morphology and shear stress in starting shear flow. The interfacial contributions were analyzed for low and high volume fractions and varying surfactant activity. A transient viscoelastic contribution to the emulsion rheology under constant strain rate conditions was attributed to the interfacial stress. For droplet volume fractions below 0.3 and an average capillary number of about 0.25, highly elliptical droplets formed. Consistent with affine deformation models, gradual elongation of the droplets increased the shear stress at early times and reduced it atmore » later times. Lower interfacial tension with increased surfactant activity counterbalanced the effect of increased interfacial area, and the net shear stress did not change significantly. For higher volume fractions, co-continuous phases with a complex topology were formed. The surfactant decreased the interfacial shear stress due mainly to advection of surfactant to higher curvature areas. Our results are in qualitative agreement with experimental data for polymer blends in terms of transient interfacial stresses and limited enhancement of the emulsion viscosity at larger volume fractions where the phases are co-continuous.« less
Application of a Model for Quenching and Partitioning in Hot Stamping of High-Strength Steel
NASA Astrophysics Data System (ADS)
Zhu, Bin; Liu, Zhuang; Wang, Yanan; Rolfe, Bernard; Wang, Liang; Zhang, Yisheng
2018-04-01
Application of quenching and partitioning process in hot stamping has proven to be an effective method to improve the plasticity of advanced high-strength steels (AHSSs). In this study, the hot stamping and partitioning process of advanced high-strength steel 30CrMnSi2Nb is investigated with a hot stamping mold. Given the specific partitioning time and temperature, the influence of quenching temperature on the volume fraction of microstructure evolution and mechanical properties of the above steel are studied in detail. In addition, a model for quenching and partitioning process is applied to predict the carbon diffusion and interface migration during partitioning, which determines the retained austenite volume fraction and final properties of the part. The predicted trends of the retained austenite volume fraction agree with the experimental results. In both cases, the volume fraction of retained austenite increases first and then decreases with the increasing quenching temperature. The optimal quenching temperature is approximately 290 °C for 30CrMnSi2Nb with the partition conditions of 425 °C and 20 seconds. It is suggested that the model can be used to help determine the process parameters to obtain retained austenite as much as possible.
Effects of C and Si on strain aging of strain-based API X60 pipeline steels
NASA Astrophysics Data System (ADS)
Sung, Hyo Kyung; Lee, Dong Ho; Lee, Sunghak; Lee, Byeong-Joo; Hong, Seung-Pyo; Kim, Young-Woon; Yoo, Jang Yong; Hwang, Byoungchul; Shin, Sang Yong
2017-05-01
Four types of strain-based API X60 pipeline steels were fabricated by varying the C and Si contents, and the effects of C and Si on strain aging were investigated. The 0.05 wt% C steels consisted mainly of polygonal ferrite (PF), whereas the 0.08 wt% C steels consisted of acicular ferrite (AF). The volume fraction of AF increased with increasing C content because C is an austenite stabilizer element. The volume fractions of bainitic ferrite (BF) of the 0.15 wt% Si steels were higher than those of the 0.25 wt% Si steels, whereas the volume fractions of the secondary phases were lower. From the tensile properties before and after the aging process of the strainbased API X60 pipeline steels, the yield strength increased and the uniform and total elongation decreased, which is the strain aging effect. The strain aging effect in the strain-based API X60 pipeline steels was minimized when the volume fraction of AF was increased and secondary phases were distributed uniformly. On the other hand, an excessively high C content formed fine precipitates, and the strain aging effect occurred because of the interactions among dislocations and fine precipitates.
NASA Astrophysics Data System (ADS)
Pradipta, Rangga; Mardiyati, Steven, Purnomo, Ikhsan
2017-03-01
Sanseviera trifasciata commonly called mother-in-law tongue also known as snake plant is native to Indonesia, India and Africa. Sansevieria is a new fiber in composite research and has showed promising properties as reinforcement material in polymer matrix composites. Chemical treatment on reinforcing fiber is crucial to reduce hydrophilic tendency and thus improve compatibility with the matrix. In this study, effect of maleic anhydride as chemical treatment on the mechanical properties of Sansevieria fiber/vinyl ester composite was investigated. Sansevieria fibers were immersed by using NaOH 3% for two hours at 100°C and then treated by using maleic anhydrate for two hours at 120°C. Composites were prepared by solution casting with various volume fractions of fiber; 0%, 2.5%, 5%, 7.5% and 10%. Actual density, volume fraction of void and mechanical properties of composite were conducted according to ASTM standard testing methods D792, D3171 and D3039. It was found that mechanical properties of composites increased as volume fractions of fiber was increased. The highest tensile strength and modulus of elasticity of composites were 57.45 MPa and 3.47 GPa respectively, obtained from composites with volume fraction of fiber 10%.
NASA Astrophysics Data System (ADS)
Masuram, N. B.; Roux, J. A.; Jeswani, A. L.
2016-06-01
Liquid resin is injected into the tapered injection chamber through the injection slots to completely wetout the fiber reinforcements in a resin injection pultrusion process. As the resin penetrates through the fibers, the resin also pushes the fibers away from the wall towards the centerline causing compaction of the fiber reinforcements. The fibers are squeezed together due to compaction, making resin penetration more difficult; thus higher resin injection pressures are required to effectively penetrate through the fibers and achieve complete wetout. Fiber volume fraction in the final pultruded composite is a key to decide the mechanical and/or chemical properties of the composite. If the fiber volume fraction is too high, more fibers are squeezed together creating a fiber lean region near the wall and fiber rich region away from the wall. Also, the design of the injection chamber significantly affects the minimum injection pressure required to completely wet the fibers. A tapered injection chamber is considered such that wetout occurs at lower injection pressures due to the taper angle of the injection chamber. In this study, the effect of fiber volume fraction on the fiber reinforcement compaction and complete fiber wetout for a tapered injection chamber is investigated.
High solid loading aqueous base metal/ceramic feedstock for injection molding
NASA Astrophysics Data System (ADS)
Behi, Mohammad
2001-07-01
Increasing volume fraction of metal powder in feedstock provided lower shrinkage. Reduction of the shrinkage results in better dimensional precision. The rheology of the feedstock material plays an important role to allowing larger volume fractions of the metal powder to be incorporated in the feedstock formulations. The viscosity of the feedstock mainly depends on the binder viscosity, powder volume fraction and characteristics of metal powder. Aqueous polysaccharide agar was used as a baseline binder system for this study. The effect of several gel-strengthening additives on 1.5wt% and 2wt% agar gel was evaluated. A new gel-strengthening additive was found to be the most effective among the others. The effect of other additives such as glucose, sucrose and fructose on viscosity of baseline binder and feedstock was investigated. Two new agar based binder compositions were developed. The use of these new binder formulations significantly improved the volume fraction of the metal powder, the stability of the feedstock, and reduced the final shrinkage of the molded articles. Two types of 17-4PH stainless steel metal powders, one gas atomized and, the other water atomized, were used for this research.
Effect of martensitic transformation on springback behavior of 304L austenitic stainless steel
NASA Astrophysics Data System (ADS)
Fathi, H.; Mohammadian Semnani, H. R.; Emadoddin, E.; Sadeghi, B. Mohammad
2017-09-01
The present paper studies the effect of martensitic transformation on the springback behavior of 304L austenitic stainless steel. Martensite volume fraction was determined at the bent portion under various strain rates after bending test. Martensitic transformation has a significant effect on the springback behavior of this material. The findings of this study indicated that the amount of springback was reduced under a situation of low strain rate, while a higher amount of springback was obtained with a higher strain rate. The reason for this phenomenon is that higher work hardening occurs during the forming process with the low strain rate due to the higher martensite volume fraction, therefore the formability of the sheet is enhanced and it leads to a decreased amount of springback after the bending test. Dependency of the springback on the martensite volume fraction and strain rate was expressed as formulas from the results of the experimental tests and simulation method. Bending tests were simulated using LS-DYNA software and utilizing MAT_TRIP to determine the martensite volume fraction and strain under various strain rates. Experimental result reveals good agreement with the simulation method.
Accurate Measurement of Bone Density with QCT
NASA Technical Reports Server (NTRS)
Cleek, Tammy M.; Beaupre, Gary S.; Matsubara, Miki; Whalen, Robert T.; Dalton, Bonnie P. (Technical Monitor)
2002-01-01
The objective of this study was to determine the accuracy of bone density measurement with a new OCT technology. A phantom was fabricated using two materials, a water-equivalent compound and hydroxyapatite (HA), combined in precise proportions (QRM GrnbH, Germany). The phantom was designed to have the approximate physical size and range in bone density as a human calcaneus, with regions of 0, 50, 100, 200, 400, and 800 mg/cc HA. The phantom was scanned at 80, 120 and 140 KVp with a GE CT/i HiSpeed Advantage scanner. A ring of highly attenuating material (polyvinyl chloride or teflon) was slipped over the phantom to alter the image by introducing non-axi-symmetric beam hardening. Images were corrected with a new OCT technology using an estimate of the effective X-ray beam spectrum to eliminate beam hardening artifacts. The algorithm computes the volume fraction of HA and water-equivalent matrix in each voxel. We found excellent agreement between expected and computed HA volume fractions. Results were insensitive to beam hardening ring material, HA concentration, and scan voltage settings. Data from all 3 voltages with a best fit linear regression are displays.
NASA Astrophysics Data System (ADS)
Ritter, Ann M.; Henry, Michael F.; Savage, Warren F.
1984-07-01
Nitronic 50 and Nitronic 50W, two nitrogen-strengthened stainless steels, were heat treated over a wide range of temperatures, and the compositions of the ferrite and austenite at each temperature were measured with analytical electron microscopy techniques. The compositional data were used to generate the (γ + δ phase field on a 58 pct Fe vertical section. Volume fractions of ferrite and austenite were calculated from phase chemistries and compared with volume fractions determined from optical micrographs. Weld solidification modes were predicted by reference to the Cr and Ni contents of each alloy, and the results were compared with predictions based on the ratios of calculated Cr and Ni equivalents for the alloys. Nitronic 50, which contained ferrite and austenite at the solidus temperature of 1370 °C, solidified through the eutectic triangle, and the weld microstructure was similar to that of austenitic-ferritic solidification. Nitronic 50W was totally ferritic at 1340 °C and solidified as primary delta ferrite. During heat treatments, Nitronic 50 and Nitronic 50W precipitated secondary phases, notably Z-phase (NbCrN), sigma phase, and stringered phases rich in Mn and Cr.
The role of cobalt on the creep of Waspaloy
NASA Technical Reports Server (NTRS)
Jarrett, R. N.; Chin, L.; Tien, J. K.
1984-01-01
Cobalt was systematically replaced with nickel in Waspaloy (which normally contains 13% Co) to determine the effects of cobalt on the creep behavior of this alloy. Effects of cobalt were found to be minimal on tensile strengths and microstructure. The creep resistance and the stress rupture resistance determined in the range from 704 to 760 C (1300 to 1400 C) were found to decrease as cobalt was removed from the standard alloy at all stresses and temperatures. Roughly a ten-fold drop in rupture life and a corresponding increase in minimum creep rate were found under all test conditions. Both the apparent creep activation energy and the matrix contribution to creep resistance were found to increase with cobalt. These creep effects are attributed to cobalt lowering the stacking fault energy of the alloy matrix. The creep resistance loss due to the removal of cobalt is shown to be restored by slightly increasing the gamma' volume fraction. Results are compared to a previous study on Udimet 700, a higher strength, higher gamma' volume fraction alloy with similar phase chemistry, in which cobalt did not affect creep resistance. An explanation for this difference in behavior based on interparticle spacing and cross-slip is presented.
Applications of Polymer Matrix Syntactic Foams
NASA Astrophysics Data System (ADS)
Gupta, Nikhil; Zeltmann, Steven E.; Shunmugasamy, Vasanth Chakravarthy; Pinisetty, Dinesh
2013-11-01
A collection of applications of polymer matrix syntactic foams is presented in this article. Syntactic foams are lightweight porous composites that found their early applications in marine structures due to their naturally buoyant behavior and low moisture absorption. Their light weight has been beneficial in weight sensitive aerospace structures. Syntactic foams have pushed the performance boundaries for composites and have enabled the development of vehicles for traveling to the deepest parts of the ocean and to other planets. The high volume fraction of porosity in syntactic foams also enabled their applications in thermal insulation of pipelines in oil and gas industry. The possibility of tailoring the mechanical and thermal properties of syntactic foams through a combination of material selection, hollow particle volume fraction, and hollow particle wall thickness has helped in rapidly growing these applications. The low coefficient of thermal expansion and dimensional stability at high temperatures are now leading their use in electronic packaging, composite tooling, and thermoforming plug assists. Methods have been developed to tailor the mechanical and thermal properties of syntactic foams independent of each other over a wide range, which is a significant advantage over other traditional particulate and fibrous composites.
BaTiO3/PVDF Nanocomposite Film with High Energy Storage Density
NASA Astrophysics Data System (ADS)
Wang, Xiaohui
2016-03-01
A gradated multilayer BaTiO3/poly(vinylidenefluoride) thin film structure is presented to achieve both a higher breakdown strength and a superior energy-storage capability. Key to the process is the sequential deposition of uniform dispersions of the single component source, which generate a blended PVDF-BTO-PVDF structure prior to full evaporation of solvent, and thermal treatment of the dielectric. The result is like sandwich structure with partial 0-3 character. The central layer designed to provide the high electric displacement, is composed of high volume fraction 6-10 nm BTO nanocrystals produced by a TEG-sol method. The outer layers of the structure are predominantly PVDF, with a significantly lower volume fraction of BTO, taking advantage of the higher dielectric strength for pure PVDF at the electrode-nanocomposite interface. The film is mechanically flexible, and can be removed from the substrate, with total thicknesses in the range 1.2 - 1.5 μm. Parallel plate capacitance devices improved dielectric performances, compared to reported values for BTO-PVDF 0-3 nanocomposites, with a maximal discharged energy density of 19.4J/cm3 and dielectric breakdown strengths of up to 495 kV/mm.
NASA Astrophysics Data System (ADS)
Han, Tongcheng
2018-07-01
Understanding the electrical properties of rocks under varying pressure is important for a variety of geophysical applications. This study proposes an approach to modelling the pressure-dependent electrical properties of porous rocks based on an effective medium model. The so-named Textural model uses the aspect ratios and pressure-dependent volume fractions of the pores and the aspect ratio and electrical conductivity of the matrix grains. The pores were represented by randomly oriented stiff and compliant spheroidal shapes with constant aspect ratios, and their pressure-dependent volume fractions were inverted from the measured variation of total porosity with differential pressure using a dual porosity model. The unknown constant stiff and compliant pore aspect ratios and the aspect ratio and electrical conductivity of the matrix grains were inverted by best fitting the modelled electrical formation factor to the measured data. Application of the approach to three sandstone samples covering a broad porosity range showed that the pressure-dependent electrical properties can be satisfactorily modelled by the proposed approach. The results demonstrate that the dual porosity concept is sufficient to explain the electrical properties of porous rocks under pressure through the effective medium model scheme.
Experimental investigation of air pressure affecting filtration performance of fibrous filter sheet.
Xu, Bin; Yu, Xiao; Wu, Ya; Lin, Zhongping
2017-03-01
Understanding the effect of air pressure on their filtration performance is important for assessing the effectiveness of fibrous filters under different practical circumstances. The effectiveness of three classes of air filter sheets were investigated in laboratory-based measurements at a wide range of air pressures (60-130 KPa). The filtration efficiency was found most sensitive to the air pressure change at smaller particle sizes. As the air pressure increased from 60 to 130 KPa, significant decrease in filtration efficiency (up to 15%) and increase in pressure drop (up to 90 Pa) were observed. The filtration efficiency of the filter sheet with largest fiber diameter and smallest solid volume fraction was affected most, while the pressure drop of the filter sheet with smallest fiber diameter and largest solid volume fraction was affected most. The effect of air pressure on the filtration efficiency was slightly larger at greater filter face air velocity. However, the effect of air pressure on the pressure drop was negligible. The filtration efficiency and pressure drop were explicitly expressed as functions of the air pressure. Two coefficients were empirically derived and successfully accounted for the effects of air pressure on filtration efficiency and pressure drop.
NASA Astrophysics Data System (ADS)
Miled, Karim; Limam, Oualid; Sab, Karam
2012-06-01
To predict aggregates' size distribution effect on the concrete compressive strength, a probabilistic mechanical model is proposed. Within this model, a Voronoi tessellation of a set of non-overlapping and rigid spherical aggregates is used to describe the concrete microstructure. Moreover, aggregates' diameters are defined as statistical variables and their size distribution function is identified to the experimental sieve curve. Then, an inter-aggregate failure criterion is proposed to describe the compressive-shear crushing of the hardened cement paste when concrete is subjected to uniaxial compression. Using a homogenization approach based on statistical homogenization and on geometrical simplifications, an analytical formula predicting the concrete compressive strength is obtained. This formula highlights the effects of cement paste strength and aggregates' size distribution and volume fraction on the concrete compressive strength. According to the proposed model, increasing the concrete strength for the same cement paste and the same aggregates' volume fraction is obtained by decreasing both aggregates' maximum size and the percentage of coarse aggregates. Finally, the validity of the model has been discussed through a comparison with experimental results (15 concrete compressive strengths ranging between 46 and 106 MPa) taken from literature and showing a good agreement with the model predictions.
NASA Astrophysics Data System (ADS)
Demouy, S.; Benoit, M.; De Saint Blanquat, M.; Brunet, P.
2012-12-01
Cordilleran-type batholiths are built by prolonged arc activity along continental margins and may provide detailed magmatic records of the subduction system evolution. The magmas produced in subduction context involve both mantellic and crustal end members and are subject to various petrological processes. The MASH zones (Hildreth and Moorbath, 1988), at the basis of the continental crust, are the best places for the genesis of such hybrid magmas. The various geochemical signatures observed in the plutonic rocks, may also be attributed to source heterogeneities or generated by subsequent petrological processes. This study has focused in the Arequipa section of the Coastal Batholith of Southern Peru (200-60 Ma), in an area extending over 80x40 km. Major and trace elements as well as Sr and Nd isotopic analyses were performed in a set of 100 samples ranging from gabbro to granite. The obtained data highlight the wide heterogeneity of the geochemical signatures that is not related to the classification of the rocks. In first step, Rb/Sr systematic was used to isolate a set of samples plotting along a Paleocene isochron and defining a cogenetic suite. This suite appears to have evolved by simple fractional crystallization. By using reverse modeling, the parameters controlling the fractional crystallization process were defined, as partition coefficients, initial concentrations and amount of fractional crystallization. The other magmatic suites display a wide range of isotopic and geochemical signatures. To explain this heterogeneity, a model involving competition between fractional crystallization and magma mixing into MASH zones was proposed. A large range of hybrid magma types is potentially generated during the maturation of the system, but this range tends to disappear as fractionation and mixing occurs. Finally the model predicts the genesis of a homogeneous reservoir created at depth, from which magmas may evolve only by fractional crystallization. Therefore stabilization of this reservoir is directly related to the thermal conditions present at the basis of the continental crust, and allows the production of large volumes at the batholiths level, known as flare-up events. These results are critical in order to estimate the amount of crustal growth and thickening in the Arequipa area, as they provide the basis for the estimation of the mantle versus crustal contribution during the magma genesis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schellenberg, Devin; Goodman, Karyn A.; Lee, Florence
2008-11-01
Purpose: Fractionated radiotherapy and chemotherapy for locally advanced pancreatic cancer achieves only modest local control. This prospective trial evaluated the efficacy of a single fraction of 25 Gy stereotactic body radiotherapy (SBRT) delivered between Cycle 1 and 2 of gemcitabine chemotherapy. Methods and Materials: A total of 16 patients with locally advanced, nonmetastatic, pancreatic adenocarcinoma received gemcitabine with SBRT delivered 2 weeks after completion of the first cycle. Gemcitabine was resumed 2 weeks after SBRT and was continued until progression or dose-limiting toxicity. The gross tumor volume, with a 2-3-mm margin, was treated in a single 25-Gy fraction by Cyberknife.more » Patients were evaluated at 4-6 weeks, 10-12 weeks, and every 3 months after SBRT. Results: All 16 patients completed SBRT. A median of four cycles (range one to nine) of chemotherapy was delivered. Three patients (19%) developed local disease progression at 14, 16, and 21 months after SBRT. The median survival was 11.4 months, with 50% of patients alive at 1 year. Patients with normal carbohydrate antigen (CA)19-9 levels either at diagnosis or after Cyberknife SBRT had longer survival (p <0.01). Acute gastrointestinal toxicity was mild, with 2 cases of Grade 2 (13%) and 1 of Grade 3 (6%) toxicity. Late gastrointestinal toxicity was more common, with five ulcers (Grade 2), one duodenal stenosis (Grade 3), and one duodenal perforation (Grade 4). A trend toward increased duodenal volumes radiated was observed in those experiencing late effects (p = 0.13). Conclusion: SBRT with gemcitabine resulted in comparable survival to conventional chemoradiotherapy and good local control. However, the rate of duodenal ulcer development was significant.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ziemer, B; Hubbard, L; Groves, E
2015-06-15
Purpose: To evaluate a first pass analysis (FPA) technique for CT perfusion measurement in a swine animal and its validation using fractional flow reserve (FFR) as a reference standard. Methods: Swine were placed under anesthesia and relevant physiologic parameters were continuously recorded. Intra-coronary adenosine was administered to induce maximum hyperemia. A pressure wire was advanced distal to the first diagonal branch of the left anterior descending (LAD) artery for FFR measurements and a balloon dilation catheter was inserted over the pressure wire into the proximal LAD to create varying levels of stenosis. Images were acquired with a 320-row wide volumemore » CT scanner. Three main coronary perfusion beds were delineated in the myocardium using arteries extracted from CT angiography images using a minimum energy hypothesis. The integrated density in the perfusion bed was used to calculate perfusion using the FPA technique. The perfusion in the LAD bed over a range of stenosis severity was measured. The measured fractional perfusion was compared to FFR and linear regression was performed. Results: The measured fractional perfusion using the FPA technique (P-FPA) and FFR were related as P-FPA = 1.06FFR – 0.06 (r{sup 2} = 0.86). The perfusion measurements were calculated with only three to five total CT volume scans, which drastically reduces the radiation dose as compared with the existing techniques requiring 15–20 volume scans. Conclusion: The measured perfusion using the first pass analysis technique showed good correlation with FFR measurements as a reference standard. The technique for perfusion measurement can potentially make a substantial reduction in radiation dose as compared with the existing techniques.« less
Amini, Arya; Altoos, Basel; Bourlon, Maria T; Bedrick, Edward; Bhatia, Shilpa; Kessler, Elizabeth R; Flaig, Thomas W; Fisher, Christine M; Kavanagh, Brian D; Lam, Elaine T; Karam, Sana D
2015-01-01
We report the radiographic and clinical response rate of stereotactic body radiation therapy (SBRT) compared with conventional fractionated external beam radiation therapy (CF-EBRT) for renal cell carcinoma (RCC) bone lesions treated at our institution. Forty-six consecutive patients were included in the study, with 95 total lesions treated (50 SBRT, 45 CF-EBRT). We included patients who had histologic confirmation of primary RCC and radiographic evidence of metastatic bone lesions. The most common SBRT regimen used was 27 Gy in 3 fractions. Median follow-up was 10 months (range, 1-64 months). Median time to symptom control between SBRT and CF-EBRT were 2 (range, 0-6 weeks) and 4 weeks (range, 0-7 weeks), respectively. Symptom control rates with SBRT and CF-EBRT were significantly different (P = .020) with control rates at 10, 12, and 24 months of 74.9% versus 44.1%, 74.9% versus 39.9%, and 74.9% versus 35.7%, respectively. The median time to radiographic failure and unadjusted pain progression was 7 months in both groups. When controlling for gross tumor volume, dose per fraction, smoking, and the use of systemic therapy, biologically effective dose ≥80 Gy was significant for clinical response (hazard ratio [HR], 0.204; 95% confidence interval [CI], 0.043-0.963; P = .046) and radiographic (HR, 0.075; 95% CI, 0.013-0.430; P = .004). When controlling for gross tumor volume and total dose, biologically effective dose ≥80 Gy was again predictive of clinical local control (HR, 0.140; 95% CI, 0.025-0.787; P = .026). Toxicity rates were low and equivalent in both groups, with no grade 4 or 5 toxicity reported. SBRT is both safe and effective for treating RCC bone metastases, with rapid improvement in symptoms after treatment and more durable clinical and radiographic response rate. Future prospective trials are needed to further define efficacy and toxicity of treatment, especially in the setting of targeted agents. Copyright © 2015 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le, Hien, E-mail: hien.le@health.sa.gov.au; Rojas, Ana; Alonzi, Roberto
2013-10-01
Objective: To determine whether late genitourinary toxicity, biochemical control of prostate cancer, and dosimetric parameters in patients with large prostate glands is different from those variables in men with smaller glands after treatment with high-dose-rate brachytherapy alone (HDR-BT). Methods: From November 2003 to July 2009, 164 patients with locally advanced prostate carcinoma were sequentially enrolled and treated with 34 or 36 Gy in 4 fractions and 31.5 Gy in 3 fractions of {sup 192}Ir HDR-BT alone. The median follow-up time was 71 months. Gland size was not considered in the selection criteria for this study. Estimates of freedom from biochemicalmore » relapse (FFbR) and late morbidity, stratified by median clinical target volume (CTV), were obtained, and differences were compared. Results: The median CTV volume was 60 cc (range, 15-208 cc). Dose–volume parameters D90 and V100 (ie, minimum dose to 90% of the prostate volume and volume receiving 100% of the prescribed isodose) achieved in patients with glands ≥60 cc were not significantly different from those with glands <60 cc (P≥.2). Nonetheless, biochemical control in patients with larger CTV was significantly higher (91% vs 78% at 6 years; P=.004). In univariate and multivariate analysis, CTV was a significant predictor for risk of biochemical relapse. This was not at the expense of an increase in either moderate (P=.6) or severe (P=.3) late genitourinary toxicity. The use of hormonal therapy was 17% lower in the large gland group (P=.01). Conclusions: Prostate gland size does not affect dosimetric parameters in HDR-BT assessed by D90 and V100. In patients with larger glands, a significantly higher biochemical control of disease was observed, with no difference in late toxicity. This improvement cannot be attributed to differences in dosimetry. Gland size should not be considered in the selection of patients for HDR-BT.« less
Bohm, Philipp; Schneider, Günther; Linneweber, Lutz; Rentzsch, Axel; Krämer, Nadine; Abdul-Khaliq, Hashim; Kindermann, Wilfried; Meyer, Tim; Scharhag, Jürgen
2016-05-17
It is under debate whether the cumulative effects of intensive endurance exercise induce chronic cardiac damage, mainly involving the right heart. The aim of this study was to examine the cardiac structure and function in long-term elite master endurance athletes with special focus on the right ventricle by contrast-enhanced cardiovascular magnetic resonance. Thirty-three healthy white competitive elite male master endurance athletes (age range, 30-60 years) with a training history of 29±8 years, and 33 white control subjects pair-matched for age, height, and weight underwent cardiopulmonary exercise testing, echocardiography including tissue-Doppler imaging and speckle tracking, and cardiovascular magnetic resonance. Indexed left ventricular mass and right ventricular mass (left ventricular mass/body surface area, 96±13 and 62±10 g/m(2); P<0.001; right ventricular mass/body surface area, 36±7 and 24±5 g/m(2); P<0.001) and indexed left ventricular end-diastolic volume and right ventricular end-diastolic volume (left ventricular end-diastolic volume/body surface area, 104±13 and 69±18 mL/m(2); P<0.001; right ventricular end-diastolic volume/body surface area, 110±22 and 66±16 mL/m(2); P<0.001) were significantly increased in athletes in comparison with control subjects. Right ventricular ejection fraction did not differ between athletes and control subjects (52±8 and 54±6%; P=0.26). Pathological late enhancement was detected in 1 athlete. No correlations were found for left ventricular and right ventricular volumes and ejection fraction with N-terminal pro-brain natriuretic peptide, and high-sensitive troponin was negative in all subjects. Based on our results, chronic right ventricular damage in elite endurance master athletes with lifelong high training volumes seems to be unlikely. Thus, the hypothesis of an exercise-induced arrhythmogenic right ventricular cardiomyopathy has to be questioned. © 2016 American Heart Association, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demizu, Yusuke, E-mail: y_demizu@nifty.com; Jin, Dongcun; Sulaiman, Nor Shazrina
Purpose: To retrospectively analyze the treatment outcomes of particle therapy using protons or carbon ions for unresectable or incompletely resected bone and soft tissue sarcomas (BSTSs) of the pelvis. Methods and Materials: From May 2005 to December 2014, 91 patients with nonmetastatic histologically proven unresectable or incompletely resected pelvic BSTSs underwent particle therapy with curative intent. The particle therapy used protons (52 patients) or carbon ions (39 patients). All patients received a dose of 70.4 Gy (relative biologic effectiveness) in 32 fractions (55 patients) or 16 fractions (36 patients). Results: The median patient age was 67 years (range 18-87). The median planning targetmore » volume (PTV) was 455 cm{sup 3} (range 108-1984). The histologic type was chordoma in 53 patients, chondrosarcoma in 14, osteosarcoma in 10, malignant fibrous histiocytoma/undifferentiated pleomorphic sarcoma in 5, and other in 9 patients. Of the 91 patients, 82 had a primary tumor and 9 a recurrent tumor. The median follow-up period was 32 months (range 3-112). The 3-year rate of overall survival (OS), progression-free survival (PFS), and local control was 83%, 72%, and 92%, respectively. A Cox proportional hazards model revealed that chordoma histologic features and a PTV of ≤500 cm{sup 3} were significantly associated with better OS, and a primary tumor and PTV of ≤500 cm{sup 3} were significantly associated with better PFS. Ion type and number of fractions were not significantly associated with OS, PFS, or local control. Late grade ≥3 toxicities were observed in 23 patients. Compared with the 32-fraction protocol, the 16-fraction protocol was associated with significantly more frequent late grade ≥3 toxicities (18 of 36 vs 5 of 55; P<.001). Conclusions: Particle therapy using protons or carbon ions was effective for unresectable or incompletely resected pelvic BSTS, and the 32-fraction protocol was effective and relatively less toxic. Nevertheless, a longer follow-up period is needed to confirm these results.« less
Demizu, Yusuke; Jin, Dongcun; Sulaiman, Nor Shazrina; Nagano, Fumiko; Terashima, Kazuki; Tokumaru, Sunao; Akagi, Takashi; Fujii, Osamu; Daimon, Takashi; Sasaki, Ryohei; Fuwa, Nobukazu; Okimoto, Tomoaki
2017-06-01
To retrospectively analyze the treatment outcomes of particle therapy using protons or carbon ions for unresectable or incompletely resected bone and soft tissue sarcomas (BSTSs) of the pelvis. From May 2005 to December 2014, 91 patients with nonmetastatic histologically proven unresectable or incompletely resected pelvic BSTSs underwent particle therapy with curative intent. The particle therapy used protons (52 patients) or carbon ions (39 patients). All patients received a dose of 70.4 Gy (relative biologic effectiveness) in 32 fractions (55 patients) or 16 fractions (36 patients). The median patient age was 67 years (range 18-87). The median planning target volume (PTV) was 455 cm 3 (range 108-1984). The histologic type was chordoma in 53 patients, chondrosarcoma in 14, osteosarcoma in 10, malignant fibrous histiocytoma/undifferentiated pleomorphic sarcoma in 5, and other in 9 patients. Of the 91 patients, 82 had a primary tumor and 9 a recurrent tumor. The median follow-up period was 32 months (range 3-112). The 3-year rate of overall survival (OS), progression-free survival (PFS), and local control was 83%, 72%, and 92%, respectively. A Cox proportional hazards model revealed that chordoma histologic features and a PTV of ≤500 cm 3 were significantly associated with better OS, and a primary tumor and PTV of ≤500 cm 3 were significantly associated with better PFS. Ion type and number of fractions were not significantly associated with OS, PFS, or local control. Late grade ≥3 toxicities were observed in 23 patients. Compared with the 32-fraction protocol, the 16-fraction protocol was associated with significantly more frequent late grade ≥3 toxicities (18 of 36 vs 5 of 55; P<.001). Particle therapy using protons or carbon ions was effective for unresectable or incompletely resected pelvic BSTS, and the 32-fraction protocol was effective and relatively less toxic. Nevertheless, a longer follow-up period is needed to confirm these results. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayo, Charles, E-mail: charles.mayo@umassmemorial.or; Yorke, Ellen; Merchant, Thomas E.
Publications relating brainstem radiation toxicity to quantitative dose and dose-volume measures derived from three-dimensional treatment planning were reviewed. Despite the clinical importance of brainstem toxicity, most studies reporting brainstem effects after irradiation have fewer than 100 patients. There is limited evidence relating toxicity to small volumes receiving doses above 60-64 Gy using conventional fractionation and no definitive criteria regarding more subtle dose-volume effects or effects after hypofractionated treatment. On the basis of the available data, the entire brainstem may be treated to 54 Gy using conventional fractionation using photons with limited risk of severe or permanent neurological effects. Smaller volumesmore » of the brainstem (1-10 mL) may be irradiated to maximum doses of 59 Gy for dose fractions <=2 Gy; however, the risk appears to increase markedly at doses >64 Gy.« less
NASA Astrophysics Data System (ADS)
Hustedt, C. J.; Lambert, P. K.; Kannan, V.; Huskins-Retzlaff, E. L.; Casem, D. T.; Tate, M. W.; Philipp, H. T.; Woll, A. R.; Purohit, P.; Weiss, J. T.; Gruner, S. M.; Ramesh, K. T.; Hufnagel, T. C.
2018-04-01
We report in situ time-resolved measurements of the dynamic evolution of the volume fraction of extension twins in polycrystalline pure magnesium and in the AZ31B magnesium alloy, using synchrotron x-ray diffraction during compressive loading at high strain rates. The dynamic evolution of the twinning volume fraction leads to a dynamic evolution of the texture. Although both the pure metal and the alloy had similar initial textures, we observe that the evolution of texture is slower in the alloy. We also measured the evolution of the lattice strains in each material during deformation which, together with the twin volume fractions, allows us to place some constraints on the relative contributions of dislocation-based slip and deformation twinning to the overall plastic deformation during the dynamic deformations.
3D Modeling Effect of Spherical Inclusions on the Magnetostriction of Bulk Superconductors
NASA Astrophysics Data System (ADS)
Zhao, Yufeng; Pan, Baocai
2018-02-01
In this paper, the dependence of the effective magnetostriction of bulk superconductors on the elastic parameters including the volume fraction and elastic modulus ratio is studied by a three-dimensional model consisting of a spherical inclusion-superconducting matrix system. The effect of the elastic modulus and volume fraction on the magnetostriction is also obtained through the magnetostriction loop. The results indicate that the elastic modulus and volume fraction have obvious effects on the effective magnetostriction of the superconducting composite, which gives an explanation about the differences between the experimental and the theoretical results. Furthermore, it is worth pointing out that the linear field dependence of magnetostriction is unique to the Bean model by comparing the curve shapes of the magnetostriction loop with and without inclusion.
Damping behavior of polymer composites with high volume fraction of NiMnGa powders
NASA Astrophysics Data System (ADS)
Sun, Xiaogang; Song, Jie; Jiang, Hong; Zhang, Xiaoning; Xie, Chaoying
2011-03-01
Polymer composites inserted with high volume fraction (up to 70 Vol%) of NiMnGa powders were fabricated and their damping behavior was investigated by dynamic mechanical analysis. It is found that the polymer matrix has little influence on the transformation temperatures of NiMnGa powders. A damping peak appears for NiMnGa/epoxy resin (EP) composites accompanying with the martensitic transformation or reverse martensitic transformation of NiMnGa powders during cooling or heating. The damping capacity for NiMnGa/EP composites increases linearly with the increase of volume fraction of NiMnGa powders and, decreases dramatically as the test frequency increases. The fracture strain of NiMnGa/EP composites decrease with the increase of NiMnGa powders.
Hoffmann, Aswin L; Nahum, Alan E
2013-10-07
The simple Linear-Quadratic (LQ)-based Withers iso-effect formula (WIF) is widely used in external-beam radiotherapy to derive a new tumour dose prescription such that there is normal-tissue (NT) iso-effect when changing the fraction size and/or number. However, as conventionally applied, the WIF is invalid unless the normal-tissue response is solely determined by the tumour dose. We propose a generalized WIF (gWIF) which retains the tumour prescription dose, but replaces the intrinsic fractionation sensitivity measure (α/β) by a new concept, the normal-tissue effective fractionation sensitivity, [Formula: see text], which takes into account both the dose heterogeneity in, and the volume effect of, the late-responding normal-tissue in question. Closed-form analytical expressions for [Formula: see text] ensuring exact normal-tissue iso-effect are derived for: (i) uniform dose, and (ii) arbitrary dose distributions with volume-effect parameter n = 1 from the normal-tissue dose-volume histogram. For arbitrary dose distributions and arbitrary n, a numerical solution for [Formula: see text] exhibits a weak dependence on the number of fractions. As n is increased, [Formula: see text] increases from its intrinsic value at n = 0 (100% serial normal-tissue) to values close to or even exceeding the tumour (α/β) at n = 1 (100% parallel normal-tissue), with the highest values of [Formula: see text] corresponding to the most conformal dose distributions. Applications of this new concept to inverse planning and to highly conformal modalities are discussed, as is the effect of possible deviations from LQ behaviour at large fraction sizes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pedicini, Piernicola, E-mail: ppiern@libero.it; Strigari, Lidia; Benassi, Marcello
2014-04-01
To increase the efficacy of radiotherapy for non–small cell lung cancer (NSCLC), many schemes of dose fractionation were assessed by a new “toxicity index” (I), which allows one to choose the fractionation schedules that produce less toxic treatments. Thirty-two patients affected by non resectable NSCLC were treated by standard 3-dimensional conformal radiotherapy (3DCRT) with a strategy of limited treated volume. Computed tomography datasets were employed to re plan by simultaneous integrated boost intensity-modulated radiotherapy (IMRT). The dose distributions from plans were used to test various schemes of dose fractionation, in 3DCRT as well as in IMRT, by transforming the dose-volumemore » histogram (DVH) into a biological equivalent DVH (BDVH) and by varying the overall treatment time. The BDVHs were obtained through the toxicity index, which was defined for each of the organs at risk (OAR) by a linear quadratic model keeping an equivalent radiobiological effect on the target volume. The less toxic fractionation consisted in a severe/moderate hyper fractionation for the volume including the primary tumor and lymph nodes, followed by a hypofractionation for the reduced volume of the primary tumor. The 3DCRT and IMRT resulted, respectively, in 4.7% and 4.3% of dose sparing for the spinal cord, without significant changes for the combined-lungs toxicity (p < 0.001). Schedules with reduced overall treatment time (accelerated fractionations) led to a 12.5% dose sparing for the spinal cord (7.5% in IMRT), 8.3% dose sparing for V{sub 20} in the combined lungs (5.5% in IMRT), and also significant dose sparing for all the other OARs (p < 0.001). The toxicity index allows to choose fractionation schedules with reduced toxicity for all the OARs and equivalent radiobiological effect for the tumor in 3DCRT, as well as in IMRT, treatments of NSCLC.« less
40 CFR 63.3512 - What records must I keep?
Code of Federal Regulations, 2012 CFR
2012-07-01
... used to determine the mass fraction of organic HAP and density for each coating and thinner and the volume fraction of coating solids for each coating. If you conducted testing to determine mass fraction...) A record of the mass fraction of organic HAP for each coating and thinner used during each...
40 CFR 63.3512 - What records must I keep?
Code of Federal Regulations, 2013 CFR
2013-07-01
... used to determine the mass fraction of organic HAP and density for each coating and thinner and the volume fraction of coating solids for each coating. If you conducted testing to determine mass fraction...) A record of the mass fraction of organic HAP for each coating and thinner used during each...
40 CFR 63.4130 - What records must I keep?
Code of Federal Regulations, 2012 CFR
2012-07-01
... to determine the mass fraction of organic HAP and density for each coating, thinner, and cleaning... mass fraction of organic HAP, density, or volume fraction of coating solids, you must keep a copy of... period. (e) A record of the mass fraction of organic HAP for each coating, thinner, and cleaning material...
40 CFR 63.4130 - What records must I keep?
Code of Federal Regulations, 2014 CFR
2014-07-01
... to determine the mass fraction of organic HAP and density for each coating, thinner, and cleaning... mass fraction of organic HAP, density, or volume fraction of coating solids, you must keep a copy of... period. (e) A record of the mass fraction of organic HAP for each coating, thinner, and cleaning material...
40 CFR 63.4730 - What records must I keep?
Code of Federal Regulations, 2011 CFR
2011-07-01
... to determine the mass fraction of organic HAP and density for each coating, thinner, and cleaning... mass fraction of organic HAP, density, or volume fraction of coating solids, you must keep a copy of..., and cleaning material used during each compliance period. (e) A record of the mass fraction of organic...
40 CFR 63.3512 - What records must I keep?
Code of Federal Regulations, 2014 CFR
2014-07-01
... used to determine the mass fraction of organic HAP and density for each coating and thinner and the volume fraction of coating solids for each coating. If you conducted testing to determine mass fraction...) A record of the mass fraction of organic HAP for each coating and thinner used during each...
40 CFR 63.4730 - What records must I keep?
Code of Federal Regulations, 2012 CFR
2012-07-01
... used to determine the mass fraction of organic HAP and density for each coating, thinner, and cleaning... mass fraction of organic HAP, density, or volume fraction of coating solids, you must keep a copy of..., and cleaning material used during each compliance period. (e) A record of the mass fraction of organic...
40 CFR 63.4730 - What records must I keep?
Code of Federal Regulations, 2013 CFR
2013-07-01
... used to determine the mass fraction of organic HAP and density for each coating, thinner, and cleaning... mass fraction of organic HAP, density, or volume fraction of coating solids, you must keep a copy of..., and cleaning material used during each compliance period. (e) A record of the mass fraction of organic...
40 CFR 63.4730 - What records must I keep?
Code of Federal Regulations, 2014 CFR
2014-07-01
... used to determine the mass fraction of organic HAP and density for each coating, thinner, and cleaning... mass fraction of organic HAP, density, or volume fraction of coating solids, you must keep a copy of..., and cleaning material used during each compliance period. (e) A record of the mass fraction of organic...
40 CFR 63.4130 - What records must I keep?
Code of Federal Regulations, 2013 CFR
2013-07-01
... to determine the mass fraction of organic HAP and density for each coating, thinner, and cleaning... mass fraction of organic HAP, density, or volume fraction of coating solids, you must keep a copy of... period. (e) A record of the mass fraction of organic HAP for each coating, thinner, and cleaning material...
A Computer-Interfaced Drop Counter as an Inexpensive Fraction Collector for Column Chromatography
ERIC Educational Resources Information Center
Nash, Barbara T.
2008-01-01
A computer-interfaced drop counter is described that serves as an inexpensive alternative to a fraction collector for column chromatography experiments. Undergraduate biochemistry laboratories frequently do not have the budget to purchase fraction collectors. Protocols that call for the manual measurement of fraction volumes as well as the manual…
Gent, Malcolm Richard; Menendez, Mario; Toraño, Javier; Torno, Susana
2011-06-01
It is demonstrated that substantial reductions in plastics presently disposed of in landfills can be achieved by cyclone density media separation (DMS). In comparison with the size fraction of plastics presently processed by industrial density separations (generally 6.4 to 9.5 mm), cyclone DMS methods are demonstrated to effectively process a substantially greater range of particle sizes (from 0.5 up to 120 mm). The purities of plastic products and recoveries obtained with a single stage separation using a cylindrical cyclone are shown to attain virtually 100% purity and recoveries >99% for high-density fractions and >98% purity and recoveries were obtained for low-density products. Four alternative schemas of multi-stage separations are presented and analyzed as proposed methods to obtain total low- and high-density plastics fraction recoveries while maintaining near 100% purities. The results of preliminary tests of two of these show that the potential for processing product purities and recoveries >99.98% of both density fractions are indicated. A preliminary economic comparison of capital costs of DMS systems suggests cyclone DMS methods to be comparable with other DMS processes even if the high volume capacity for recycling operations of these is not optimized.
The jammed-to-mobile transition in frozen sand under stress
NASA Astrophysics Data System (ADS)
Durham, W. B.; Pathare, A.; Stern, L. A.; Lenferink, H. J.
2009-12-01
We conducted laboratory deformation experiments on sand-rich mixtures of sand + ice under sufficient confinement to inhibit macroscopic dilation. Dry sand packs constrained not to dilate when they are under a shearing load reach an immobile or “jammed” state, as load-supporting “force chains” of sand particles form after a small amount of strain and cannot be broken without volume expansion. Our research objective here was to find the minimum volume fraction of ice required to overcome the jammed state. The result surprised us: the required volume fraction is not a fixed number, but depends on the packing characteristics of the sand in question. Experiments were carried out in a triaxial gas deformation rig at confining pressures (60 - 200 MPa) always at least twice the level of differential stresses (11 - 50 MPa) in order to suppress dilatancy. Run temperatures were 223 - 243 K. We used two kinds of quartz sand, one well-sorted, with a maximum dry packing density (MDPD) of about 0.68 sand by volume, and the other a mixture of two sizes, having a higher MDPD of 0.75. Ice volume fraction ranged from well below saturation (where unfilled porosity necessarily remained) to slightly greater than the value of porosity at MDPD. We tested these frozen sands in compression under constant applied differential stress (creep). Strain rates were very low at these conditions, and runs took days or weeks to complete. The amount of strain required to reach the jammed state in ice-undersaturated samples was approximately 0.04, and did not show an obvious dependence on ice content. For both sands, the onset of mobility occurred at approximately 5% above the value of pore volume at MDPD. Furthermore, viscosity of mobile frozen sand near the transition point was extremely sensitive to ice fraction, which implies that at geologic strain rates, far slower than we can reach in the lab, the ice fraction at transition may lie closer to that at MDPD. Cryogenic scanning electron microscopy shows that fracturing of sand grains occurs in ice-undersaturated samples, but gradually disappears as saturation is reached. There are no fractured sand grains in deforming mobile frozen sand packs. One application of this work is to the regolith of Mars at mid-latitudes and poleward, where significant ice is expected to be present. Partially relaxed (“softened”) landforms such as craters require the presence of ice, but also suggest strengths far higher than that of ice. The extreme sensitivity of viscosity to ice content near the mobility boundary, and the near coincidence of mobility and saturation at MDPD together suggest a plausible explanation for partial landform softening on Mars that does not require a fortuitous ice content or an unrealistically brief period of saturation; namely, that the water content of the Martian regolith lies at or near saturation. If true, we can estimate the historical water content of the Martian regolith for reasonable soil densities as being between 120 and 240 global meters of water for the upper kilometer of crust. This is somewhat lower than previous estimates.
Niinemets, Ulo; Lukjanova, Aljona; Turnbull, Matthew H; Sparrow, Ashley D
2007-08-01
Acclimation potential of needle photosynthetic capacity varies greatly among pine species, but the underlying chemical, anatomical and morphological controls are not entirely understood. We investigated the light-dependent variation in needle characteristics in individuals of Pinus patula Schlect. & Cham., which has 19-31-cm long pendulous needles, and individuals of P. radiata D. Don., which has shorter (8-17-cm-long) stiffer needles. Needle nitrogen and carbon contents, mesophyll and structural tissue volume fractions, needle dry mass per unit total area (M(A)) and its components, volume to total area ratio (V/A(T)) and needle density (D = M(A)/(V/A(T))), and maximum carboxylase activity of Rubisco (V(cmax)) and capacity of photosynthetic electron transport (J(max)) were investigated in relation to seasonal mean integrated irradiance (Q(int)). Increases in Q(int) from canopy bottom to top resulted in proportional increases in both needle thickness and width such that needle total to projected surface area ratio, characterizing the efficiency of light interception, was independent of Q(int). Increased light availability also led to larger M(A) and nitrogen content per unit area (N(A)). Light-dependent modifications in M(A) resulted from increases in both V/A(T) and D, whereas N(A) changed because of increases in both M(A) and mass-based nitrogen content (N(M)) (N(A) = N(M)M(A)). Overall, the volume fraction of mesophyll cells increased with increasing irradiance and V/A(T) as the fraction of hypodermis and epidermis decreased with increasing needle thickness. Increases in M(A) and N(A) resulted in enhanced J(max) and V(cmax) per unit area in both species, but mass-based photosynthetic capacity increased only in P. patula. In addition, J(max) and V(cmax) showed greater plasticity in response to light in P. patula. Species differences in mesophyll volume fraction explained most of the variation in mass-based needle photosynthetic capacity between species, demonstrating that differences in plastic adjustments in mass-based photosynthetic activities among these representative individuals were mainly associated with contrasting investments in mesophyll cells. Greater area-based photosynthetic plasticity in P. patula relative to P. radiata was associated with larger increases in M(A) and mesophyll volume fraction with increasing irradiance. These data collectively demonstrate that light-dependent increases in mass-based nitrogen contents and photosynthetic activities were associated with an increased mesophyll volume fraction in needles at higher irradiances. They also emphasize the importance of light-dependent anatomical modifications in determining needle photosynthetic capacity.
NASA Technical Reports Server (NTRS)
Whitson, Peggy A. (Inventor); Clift, Vaughan L. (Inventor)
1997-01-01
The present invention provides an apparatus for separating a relatively large volume of blood into cellular and acellular fractions without the need for centrifugation. The apparatus comprises a housing divided by a fibrous filter into a blood sample collection chamber having a volume of at least about 1 milliliter and a serum sample collection chamber. The fibrous filter has a pore size of less than about 3 microns, and is coated with a mixture of mannitol and plasma fraction protein (or an animal or vegetable equivalent thereof). The coating causes the cellular fraction to be trapped by the small pores, leaving the cellular fraction intact on the fibrous filter while the acellular fraction passes through the filter for collection in unaltered form from the serum sample collection chamber.
NASA Astrophysics Data System (ADS)
Zhang, Jian; Feng, Pei-Hsien; Pan, Yan-Chi; Hwang, Weng-Sing; Su, Yen-Hao; Lu, Muh-Jung
2016-10-01
The effects of heat treatment on the microstructure and mechanical properties of Mg-containing (7 ppm), low-carbon commercial steel (SS400) were investigated. Twenty different heat treatment paths were performed using a Gleeble 1500 thermomechanical simulator. It was observed by using an optical microscope that as the cooling rate increased and holding temperature decreased, the volume fractions of pearlite, Widmanstätten ferrite, and grain boundary allotriomorphs ferrite fell, whereas that of acicular ferrite (AF) increased. Quantifying the fractions of AF and other phases by using electron backscatter diffraction shows that the heat treatment path with a cooling rate of 20 K/s and holding temperature of 723 K (450 °C) induced the highest volume fraction (44 pct) of AF. As such, the toughness of the sample was increased 12.4 times compared with that observed in the sample containing 4 pct AF. Typical inclusions were analyzed using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy. The results showed that the magnesium-based complex inclusions could act as nucleation sites of AF. Inclusions with a size of about 5 μm can serve as heterogeneous nucleation sites for AF. Mg-containing SS400 steel also has excellent hot-ductility in the temperature range of 973 K to 1273 K (700 °C to 1000 °C), and the minimum percentage reduction in area (R.A pct) value of around 63 pct at 1073 K (800 °C).
Separation of nitrogen heterocyclic compounds from model coal tar fraction by solvent extraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, S.J.; Chun, Y.J.
2005-07-01
The separation of four kinds of nitrogen heterocyclic compounds (NHCs) from a model mixture comprising NHCs (indole (In), quinoline (Q), iso-quinoline (iQ), quinaldine (Qu)), three kinds of bicyclic aromatic compounds (BACs; 1-methyl-naphthalene (IMN), 2-methyl naphthalene (2MN), dimethylnaphthalene (DMN)), biphenyl (Bp) and phenyl ether (Pe) was examined by a solvent extraction. The model mixture used as a raw material of this work was prepared according to the components and compositions contained in coal tar fraction (the temperature ranges of fraction: 240-265{sup o}C). An aqueous solution of methanol, ethanol, iso-propyl alcohol, N,N-dimethyl acetamide, DMF, formamide, N-methylformamide/methanol, and formamide/methanol were used as solvents.more » An aqueous solution of formamide was found suitable for separating NHCs contained in coal tar fraction based on distribution coefficient and selectivity. The effect of operation factors on separating NHCs was investigated by the distribution equilibrium using an aqueous solution of formamide. Increasing the operation temperature and the volume ratio of solvent to feed at initial (S/F)(o) resulted in improving the distribution coefficients of each NHC, but increasing the volume fraction of water in the solvent at initial (y(w,O)) resulted in deteriorating the distribution coefficients of each NHC. With increasing y(w,O) and (S/F)(o), the selectivities of each NHC in reference to DMN increased. Increase in operation temperature resulted in decrease in selectivities of each NHC in reference to DMN. At an experimental condition fixed, the sequence of the distribution coefficient and selectivity in reference to DMN for each NHC was In {gt} iQ {gt} Q {gt} Qu, and also the sequence of the distribution coefficient for each BAC was IMN {gt} 2MN {gt} DMN. The sequence of the distribution coefficient for entire compounds analyzed by this work was In {gt} iQ {gt} Q {gt} Qu {gt} BP {gt} 1MN {gt} 2MN {gt} Pe {gt} DMN.« less