Sample records for volume heat source

  1. Cogeneration technology alternatives study. Volume 4: Heat Sources, balance of plant and auxiliary systems

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Data and information established for heat sources balance of plant items, thermal energy storage, and heat pumps are presented. Design case descriptions are given along with projected performance values. Capital cost estimates for representative cogeneration plants are also presented.

  2. Convective heat transfer in a porous enclosure saturated by nanofluid with different heat sources

    NASA Astrophysics Data System (ADS)

    Muthtamilselvan, M.; Sureshkumar, S.

    2018-03-01

    The present study is proposed to investigate the effects of various lengths and different locations of the heater on the left sidewall in a square lid-driven porous cavity filled with nanofluid. A higher temperature is maintained on the left wall where three different lengths and three different locations of the heat source are considered for the analysis. The right wall is kept at a lower temperature while the top and bottom walls, and the remaining portions of the heated wall are adiabatic. The governing equations are solved by finite volume method. The results show that among the different lengths of the heat source, an enhancement in the heat transfer rate is observed only for the length LH = 1/3 of the heat source. In the case of location of the heat source, the overall heat transfer rate is increased when the heat source is located at the top of the hot wall. For Ri = 1 and 0.01, a better heat transfer rate is obtained when the heat source is placed at the top of the hot wall whereas for Ri = 100, it occurs when the heating portion is at the middle of the hot wall. As the solid volume fraction increases, the viscosity of the fluid is increased, which causes a reduction in the flow intensity. An addition of nanoparticles in the base fluid enhances the overall heat transfer rate significantly for all Da considered. The permeability of the porous medium plays a major role in convection of nanofluid than porosity. A high heat transfer rate (57.26%) is attained for Da = 10-1 and χ = 0.06.

  3. Heat recovery system employing a temperature controlled variable speed fan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, W.T.

    1986-05-20

    A heat recovery system is described for use in recovering heat from an industrial process producing a heated fluid comprising: a source of inlet air; a housing coupled to the source and including a heat exchanger; means for passing the heated fluid through the heat exchanger; the housing including means for moving a variable volume of air adjustable over a continuous range from the source through the heat exchanger; air discharge means communicating with the housing for discharging air which has passed through the heat exchanger; a control system including first temperature sensing means for sensing the discharge temperature ofmore » the discharge air moving through the discharge means and a control circuit coupled to the first temperature sensing means and to the moving means for varying the volume of air moved in response to the sensed discharge temperature to control the temperature of discharge air passing through the discharge means at a first predetermined value; and the control system including second temperature sensing means for sensing the temperature of the source of inlet air and valve means coupled to and controlled by the control circuit to cause liquid to bypass the heat exchanger when the inlet air temperature rises above a second predetermined value.« less

  4. Mini-Brayton heat source assembly design study. Volume 2: Titan 3C mission. [minimum weight modifications

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Major conclusions of the space shuttle heat source assembly study are reported that project a minimum weight design for a Titan 3 C synchronous orbit mission; requirements to recover the heat source in orbit are eliminated. This concept permits location of the heat source end enclosure supports and heat source assembly support housing in a low temperature region external to the insulation enclosure and considers titanium and beryllium alloys for these support elements. A high melting insulation blanket consisting of nickel foil coated with zirconia, or of gold foil separated with glass fiber layers, is selected to provide emergency cooling in the range 2000 to 2700 F to prevent the isotope heat source from reaching unsafe temperatures. A graphic view of the baseline heat source assembly is included.

  5. Methods for synthesizing microporous crystals and microporous crystal membranes

    DOEpatents

    Dutta, Prabir; Severance, Michael; Sun, Chenhu

    2017-02-07

    A method of making a microporous crystal material, comprising: a. forming a mixture comprising NaOH, water, and one or more of an aluminum source, a silicon source, and a phosphate source, whereupon the mixture forms a gel; b. heating the gel for a first time period, whereupon a first volume of water is removed from the gel and micoroporous crystal nuclei form, the nuclei having a framework; and c.(if a membrane is to be formed) applying the gel to a solid support seeded with microporous crystals having a framework that is the same as the framework of the nuclei; d. heating the gel for a second time period. during which a second volume of water is added to the gel; wherein the rate of addition of the second volume of water is between about 0.5 and about 2.0 fold the rate of removal of the first volume of water.

  6. Mini-Brayton heat source assembly design study. Volume 1: Space shuttle mission. [feasibility of Brayton isotope power system design

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Conceptual design definitions of a heat source assembly for use in nominal 500 watt electrical (W(e)) 1200 W(e)and 2000 W(e) mini-Brayton isotope power systems are reported. The HSA is an independent package which maintains thermal and nuclear control of an isotope fueled heat source and transfers the thermal energy to a Brayton rotating unit turbine-alternator-compressor power conversion unit.

  7. Final safety analysis report for the Galileo Mission: Volume 2: Book 1, Accident model document

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The Accident Model Document (AMD) is the second volume of the three volume Final Safety Analysis Report (FSAR) for the Galileo outer planetary space science mission. This mission employs Radioisotope Thermoelectric Generators (RTGs) as the prime electrical power sources for the spacecraft. Galileo will be launched into Earth orbit using the Space Shuttle and will use the Inertial Upper Stage (IUS) booster to place the spacecraft into an Earth escape trajectory. The RTG's employ silicon-germanium thermoelectric couples to produce electricity from the heat energy that results from the decay of the radioisotope fuel, Plutonium-238, used in the RTG heat source.more » The heat source configuration used in the RTG's is termed General Purpose Heat Source (GPHS), and the RTG's are designated GPHS-RTGs. The use of radioactive material in these missions necessitates evaluations of the radiological risks that may be encountered by launch complex personnel as well as by the Earth's general population resulting from postulated malfunctions or failures occurring in the mission operations. The FSAR presents the results of a rigorous safety assessment, including substantial analyses and testing, of the launch and deployment of the RTGs for the Galileo mission. This AMD is a summary of the potential accident and failure sequences which might result in fuel release, the analysis and testing methods employed, and the predicted source terms. Each source term consists of a quantity of fuel released, the location of release and the physical characteristics of the fuel released. Each source term has an associated probability of occurrence. 27 figs., 11 tabs.« less

  8. Energy-Environment Source Book. Volume 1: Energy, Society, and the Environment. Volume 2: Energy, Its Extraction, Conversion and Use.

    ERIC Educational Resources Information Center

    Fowler, John W.

    This source book, one part of a three-part NSTA series on energy-environment, is written for teachers who wish to incorporate material on the complex subject of energy into their teaching. This work is divided into two volumes, each with numerous tables and figures, along with appendices containing a glossary, mathematics primer, heat engine…

  9. Thulium heat source IR D Project 91-031

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walter, C.E.; Kammeraad, J.E.; Newman, J.G.

    1991-01-01

    The goal of the Thulium Heat Source study is to determine the performance capability and evaluate the safety and environmental aspects of a thulium-170 heat source. Thulium-170 has several attractive features, including the fact that it decays to a stable, chemically innocuous isotope in a relatively short time. A longer-range goal is to attract government funding for the development, fabrication, and demonstration testing in an Autonomous Underwater Vehicle (AUV) of one or more thulium isotope power (TIP) prototype systems. The approach is to study parametrically the performance of thulium-170 heat source designs in the power range of 5-50 kW{sub th}.more » At least three heat source designs will be characterized in this power range to assess their performance, mass, and volume. The authors will determine shielding requirements, and consider the safety and environmental aspects of their use.« less

  10. Production of large resonant plasma volumes in microwave electron cyclotron resonance ion sources

    DOEpatents

    Alton, Gerald D.

    1998-01-01

    Microwave injection methods for enhancing the performance of existing electron cyclotron resonance (ECR) ion sources. The methods are based on the use of high-power diverse frequency microwaves, including variable-frequency, multiple-discrete-frequency, and broadband microwaves. The methods effect large resonant "volume" ECR regions in the ion sources. The creation of these large ECR plasma volumes permits coupling of more microwave power into the plasma, resulting in the heating of a much larger electron population to higher energies, the effect of which is to produce higher charge state distributions and much higher intensities within a particular charge state than possible in present ECR ion sources.

  11. Volume-energy parameters for heat transfer to supercritical fluids

    NASA Technical Reports Server (NTRS)

    Kumakawa, A.; Niino, M.; Hendricks, R. C.; Giarratano, P. J.; Arp, V. D.

    1986-01-01

    Reduced Nusselt numbers of supercritical fluids from different sources were grouped by several volume-energy parameters. A modified bulk expansion parameter was introduced based on a comparative analysis of data scatter. Heat transfer experiments on liquefied methane were conducted under near-critical conditions in order to confirm the usefulness of the parameters. It was experimentally revealed that heat transfer characteristics of near-critical methane are similar to those of hydrogen. It was shown that the modified bulk expansion parameter and the Gibbs-energy parameter grouped the heat transfer data of hydrogen, oxygen and methane including the present data on near-critical methane. It was also indicated that the effects of surface roughness on heat transfer were very important in grouping the data of high Reynolds numbers.

  12. Production of large resonant plasma volumes in microwave electron cyclotron resonance ion sources

    DOEpatents

    Alton, G.D.

    1998-11-24

    Microwave injection methods are disclosed for enhancing the performance of existing electron cyclotron resonance (ECR) ion sources. The methods are based on the use of high-power diverse frequency microwaves, including variable-frequency, multiple-discrete-frequency, and broadband microwaves. The methods effect large resonant ``volume`` ECR regions in the ion sources. The creation of these large ECR plasma volumes permits coupling of more microwave power into the plasma, resulting in the heating of a much larger electron population to higher energies, the effect of which is to produce higher charge state distributions and much higher intensities within a particular charge state than possible in present ECR ion sources. 5 figs.

  13. A Designer Fluid For Aluminum Phase Change Devices. Performance Enhancement in Copper Heat Pipes Performance Enhancement in Copper Heat Pipes. Volume 3

    DTIC Science & Technology

    2016-11-17

    out dynamics of a designer fluid were investigated experimentally in a flat grooved heat pipe. Generated coatings were observed during heat pipe... experimental temperature distributions matched well. Uncertainties in the closure properties were the major source of error. 15. SUBJECT TERMS...72  Results and Discussion ( Experimental Results for IAS 2 in Grooved Wick #1

  14. Electrical heating of soils using high efficiency electrode patterns and power phases

    DOEpatents

    Buettner, Harley M.

    1999-01-01

    Powerline-frequency electrical (joule) heating of soils using a high efficiency electrode configuration and power phase arrangement. The electrode configuration consists of several heating or current injection electrodes around the periphery of a volume of soil to be heated, all electrodes being connected to one phase of a multi-phase or a single-phase power system, and a return or extraction electrode or electrodes located inside the volume to be heated being connected to the remaining phases of the multi-phase power system or to the neutral side of the single-phase power source. This electrode configuration and power phase arrangement can be utilized anywhere where powerline frequency soil heating is applicable and thus has many potential uses including removal of volatile organic compounds such as gasoline and tricholorethylene (TCE) from contaminated areas.

  15. Non-diffusive ignition of a gaseous reactive mixture following time-resolved, spatially distributed energy deposition

    NASA Astrophysics Data System (ADS)

    Kassoy, D. R.

    2014-01-01

    Systematic asymptotic methods are applied to the compressible conservation and state equations for a reactive gas, including transport terms, to develop a rational thermomechanical formulation for the ignition of a chemical reaction following time-resolved, spatially distributed thermal energy addition from an external source into a finite volume of gas. A multi-parameter asymptotic analysis is developed for a wide range of energy deposition levels relative to the initial internal energy in the volume when the heating timescale is short compared to the characteristic acoustic timescale of the volume. Below a quantitatively defined threshold for energy addition, a nearly constant volume heating process occurs, with a small but finite internal gas expansion Mach number. Very little added thermal energy is converted to kinetic energy. The gas expelled from the boundary of the hot, high-pressure spot is the source of mechanical disturbances (acoustic and shock waves) that propagate away into the neighbouring unheated gas. When the energy addition reaches the threshold value, the heating process is fully compressible with a substantial internal gas expansion Mach number, the source of blast waves propagating into the unheated environmental gas. This case corresponds to an extremely large non-dimensional hot-spot temperature and pressure. If the former is sufficiently large, a high activation energy chemical reaction is initiated on the short heating timescale. This phenomenon is in contrast to that for more modest levels of energy addition, where a thermal explosion occurs only after the familiar extended ignition delay period for a classical high activation reaction. Transport effects, modulated by an asymptotically small Knudsen number, are shown to be negligible unless a local gradient in temperature, concentration or velocity is exceptionally large.

  16. Quality assurance flood source and method of making

    DOEpatents

    Fisher, Darrell R [Richland, WA; Alexander, David L [West Richland, WA; Satz, Stanley [Surfside, FL

    2002-12-03

    Disclosed is a is an improved flood source, and method of making the same, which emits an evenly distributed flow of energy from a gamma emitting radionuclide dispersed throughout the volume of the flood source. The flood source is formed by filling a bottom pan with a mix of epoxy resin with cobalt-57, preferably at 10 to 20 millicuries and then adding a hardener. The pan is secured to a flat, level surface to prevent the pan from warping and to act as a heat sink for removal of heat from the pan during the curing of the resin-hardener mixture.

  17. Radiogenic heat production in sedimentary rocks of the Gulf of Mexico Basin, south Texas

    USGS Publications Warehouse

    McKenna, T.E.; Sharp, J.M.

    1998-01-01

    Radiogenic heat production within the sedimentary section of the Gulf of Mexico basin is a significant source of heat. Radiogenic heat should be included in thermal models of this basin (and perhaps other sedimentary basins). We calculate that radiogenic heat may contribute up to 26% of the overall surface heat-flow density for an area in south Texas. Based on measurements of the radioactive decay rate of ??-particles, potassium concentration, and bulk density, we calculate radiogenic heat production for Stuart City (Lower Cretaceous) limestones, Wilcox (Eocene) sandstones and mudrocks, and Frio (Oligocene) sandstones and mudrocks from south Texas. Heat production rates range from a low of 0.07 ?? 0.01 ??W/m3 in clean Stuart City limestones to 2.21 ?? 0.24??W/m3 in Frio mudrocks. Mean heat production rates for Wilcox sandstones, Frio sandstones, Wilcox mudrocks, and Frio mudrocks are 0.88, 1.19, 1.50, and 1.72 ??W/m3, respectively. In general, the mudrocks produce about 30-40% more heat than stratigraphically equivalent sandstones. Frio rocks produce about 15% more heat than Wilcox rocks per unit volume of clastic rock (sandstone/mudrock). A one-dimensional heat-conduction model indicates that this radiogenic heat source has a significant effect on subsurface temperatures. If a thermal model were calibrated to observed temperatures by optimizing basal heat-flow density and ignoring sediment heat production, the extrapolated present-day temperature of a deeply buried source rock would be overestimated.Radiogenic heat production within the sedimentary section of the Gulf of Mexico basin is a significant source of heat. Radiogenic heat should be included in thermal models of this basin (and perhaps other sedimentary basins). We calculate that radiogenic heat may contribute up to 26% of the overall surface heat-flow density for an area in south Texas. Based on measurements of the radioactive decay rate of ??-particles, potassium concentration, and bulk density, we calculate radiogenic heat production for Stuart City (Lower Cretaceous) limestones, Wilcox (Eocene) sandstones and mudrocks, and Frio (Oligocene) sandstones and mudrocks from south Texas. Heat production rates range from a low of 0.07??0.01 ??W/m3 in clean Stuart City limestones to 2.21??0.24 ??W/m3 in Frio mudrocks. Mean heat production rates for Wilcox sandstones, Frio sandstones, Wilcox mudrocks, and Frio mudrocks are 0.88, 1.19, 1.50, and 1.72 ??W/m3, respectively. In general, the mudrocks produce about 30-40% more heat than stratigraphically equivalent sandstones. Frio rocks produce about 15% more heat than Wilcox rocks per unit volume of clastic rock (sandstone/mudrock). A one-dimensional heat-conduction model indicates that this radiogenic heat source has a significant effect on subsurface temperatures. If a thermal model were calibrated to observed temperatures by optimizing basal heat-flow density and ignoring sediment heat production, the extrapolated present-day temperature of a deeply buried source rock would be overestimated.

  18. The mechanical design of a vapor compressor for a heat pump to be used in space

    NASA Technical Reports Server (NTRS)

    Berner, F.; Oesch, H.; Goetz, K.; Savage, C. J.

    1982-01-01

    A heat pump developed for use in Spacelab as a stand-alone refrigeration unit as well as within a fluid loop system is discussed. It will provide an active thermal control for payloads. Specifications for the heat pump were established: (1) heat removal rates at the source; (2) heat source temperatures from room temperature; (3) heat-sink fluid temperatures at condenser inlet; and (4) minimum power consumption. A reversed Carnot cycle heat pump using Freon 12 as working fluid incorporating a one-cylinder reciprocating compressor was selected. The maximum crankshaft speed was fixed relatively high at 100 rpm. The specified cooling rates then made it necessary to select a cylinder volume of 10 cu cm, which was obtained with a bore of 40 mm and a stroke of 8 mm.

  19. The rotating heat pipe - Implementation as a uniform-temperature heat source

    NASA Astrophysics Data System (ADS)

    Limoges, R. F.

    1981-11-01

    A wickless rotating heat pipe, if properly controlled, is a uniform heat source. The data presented are based on work done with 12.7 cm diameter x 76 cm long rotating heat pipes operating between 120 and 140 C. The major areas reviewed are: materials of fabrication, working fluids, sealing, temperature control, heaters, and safety. The optimum rotating heat pipe defined by these studies is fabricated of type 304 stainless steel, uses water as the working fluid, is sealed with welded joints, and utilizes a pressure switch and a fast-response quartz lamp for temperature control. Surface-temperature control of + or - 0.15 C and temperature uniformity within 0.8 C are obtained. Results of experiments designed to study the effects of hydrogen in the enclosed volume of the heat pipe are presented.

  20. Physics of Fusion Welding

    NASA Technical Reports Server (NTRS)

    Nunes, A. C., Jr.

    1986-01-01

    Applicabilities and limitations of three techniques analyzed. NASA technical memorandum discusses physics of electron-beam, gas/ tungsten-arc, and laser-beam welding. From comparison of capabilities and limitations of each technique with regard to various welding conditions and materials, possible to develop criteria for selecting best welding technique in specific application. All three techniques classified as fusion welding; small volume of workpiece melted by intense heat source. Heat source moved along seam, leaving in wake solid metal that joins seam edges together.

  1. Asymmetric Base-Bleed Effect on Aerospike Plume-Induced Base-Heating Environment

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Droege, Alan; DAgostino, Mark; Lee, Young-Ching; Williams, Robert

    2004-01-01

    A computational heat transfer design methodology was developed to study the dual-engine linear aerospike plume-induced base-heating environment during one power-pack out, in ascent flight. It includes a three-dimensional, finite volume, viscous, chemically reacting, and pressure-based computational fluid dynamics formulation, a special base-bleed boundary condition, and a three-dimensional, finite volume, and spectral-line-based weighted-sum-of-gray-gases absorption computational radiation heat transfer formulation. A separate radiation model was used for diagnostic purposes. The computational methodology was systematically benchmarked. In this study, near-base radiative heat fluxes were computed, and they compared well with those measured during static linear aerospike engine tests. The base-heating environment of 18 trajectory points selected from three power-pack out scenarios was computed. The computed asymmetric base-heating physics were analyzed. The power-pack out condition has the most impact on convective base heating when it happens early in flight. The source of its impact comes from the asymmetric and reduced base bleed.

  2. Beetle Exoskeleton May Facilitate Body Heat Acting Differentially across the Electromagnetic Spectrum.

    PubMed

    Carrascal, Luis M; Ruiz, Yolanda Jiménez; Lobo, Jorge M

    Exoskeletons of beetles and their associated morphological characteristics can serve many different functions, including thermoregulation. We study the thermal role of the exoskeleton in 13 Geotrupidae dung beetle species using heating experiments under controlled conditions. The main purpose was to measure the influence of heating sources (solar radiance vs. infrared), animal position (dorsal exposure vs. ventral exposure), species identity, and phylogenetic relationships on internal asymptotic temperatures and heating rates. The thermal response was significantly influenced by phylogenetic relatedness, although it was not affected by the apterous condition. The asymptotic internal temperature of specimens was not affected by the thoracic volume but was significantly higher under simulated sunlight conditions than under infrared radiation and when exposed dorsally as opposed to ventrally. There was thus a significant interaction between heating source and body position. Heating rate was negatively and significantly influenced by thoracic volume, and, although insignificantly slower under simulated sunlight, it was significantly affected by body position, being faster under dorsal exposure. The results constitute the first evidence supporting the hypothesis that the beetle exoskeleton acts differentially across the electromagnetic spectrum determining internal body temperatures. This interesting finding suggests the existence of a kind of passive physiology imposed by the exoskeleton and body size, where interspecific relationships play a minor role.

  3. Solar thermal components. A bibliography with abstracts

    NASA Technical Reports Server (NTRS)

    Bozman, W. R. (Editor)

    1979-01-01

    This bibliographic series cites and abstracts literature and technical papers on components applied to solar thermal energy utilization. The quarterly volumes are divided into ten categories: material properties; flat plat collectors; concentrating collectors; thermal storage; heat pumps; coolers and heat exchangers; solar ponds and distillation; greenhouses; process pleat; and irrigation pumps. Each quarterly volume is compiled from a wide variety of data bases, report literature, technical briefs, journal articles and other traditional and non traditional sources. The Technology Application Center maintains a library containing many of the articles and publications referenced in the series.

  4. Alternative energy sources IV; Proceedings of the Fourth Miami International Conference, Miami Beach, FL, December 14-16, 1981. Volume 1 - Solar Collectors Storage

    NASA Astrophysics Data System (ADS)

    Veziroglu, T. N.

    1982-10-01

    Aspects of solar measurements, solar collectors, selective coatings, thermal storage, phase change storage, and heat exchangers are discussed. The analysis and testing of flat-plate solar collectors are addressed. The development and uses of plastic collectors, a solar water heating system, solar energy collecting oil barrels, a glass collector panel, and a two-phase thermosyphon system are considered. Studies of stratification in thermal storage, of packed bed and fluidized bed systems, and of thermal storage in solar towers, in wall passive systems, and in reversible chemical reactions are reported. Phase change storage by direct contact processes and in residential solar space heating and cooling is examined, as are new materials and surface characteristics for solar heat storage. The use of R-11 and Freon-113 in heat exchange is discussed. No individual items are abstracted in this volume

  5. Bibliography on aircraft fire hazards and safety. Volume 1: Hazards. Part 1: Key numbers 1 to 817

    NASA Technical Reports Server (NTRS)

    Pelouch, J. J., Jr. (Compiler); Hacker, P. T. (Compiler)

    1974-01-01

    Ignition temperatures of n-hexane, n-octane, n-decane, JP-6 jet fuel, and aircraft engine oil MIL-7-7808 (0-60-18) were determined in air using heated Pyrex cylinders and Nichrome wires, rods, or tubes. Ignition temperature varied little with fuel-air ratio, but increased as the size of the heat source was decreased. Expressions are given which define the variation of the hot surface ignition temperatures of these combustibles with the radius and the surface area of the heat source. The expressions are applicable to stagnant or low velocity flow conditions (less than 0.2 in./sec.). In addition, the hot gas ignition temperatures of the combustible vapor-air mixtures were determined with jets of hot air. These ignition temperatures also varied little with fuel-air ratio and increased as the diameter of the heat sources was decreased.

  6. CADDIS Volume 2. Sources, Stressors and Responses: Urbanization - Temperature

    EPA Pesticide Factsheets

    water temperature changes associated with urbanization, heated surface runoff associated with urbanization, how temperature changes associated with urbanization can affect stream biota, interactive effects of urbanizaiton and climate change.

  7. Electron cyclotron resonance heating by magnetic filter field in a negative hydrogen ion source.

    PubMed

    Kim, June Young; Cho, Won-Hwi; Dang, Jeong-Jeung; Chung, Kyoung-Jae; Hwang, Y S

    2016-02-01

    The influence of magnetic filter field on plasma properties in the heating region has been investigated in a planar-type inductively coupled radio-frequency (RF) H(-) ion source. Besides filtering high energy electrons near the extraction region, the magnetic filter field is clearly observed to increase the electron temperature in the heating region at low pressure discharge. With increasing the operating pressure, enhancement of electron temperature in the heating region is reduced. The possibility of electron cyclotron resonance (ECR) heating in the heating region due to stray magnetic field generated by a filter magnet located at the extraction region is examined. It is found that ECR heating by RF wave field in the discharge region, where the strength of an axial magnetic field is approximately ∼4.8 G, can effectively heat low energy electrons. Depletion of low energy electrons in the electron energy distribution function measured at the heating region supports the occurrence of ECR heating. The present study suggests that addition of axial magnetic field as small as several G by an external electromagnet or permanent magnets can greatly increase the generation of highly ro-vibrationally excited hydrogen molecules in the heating region, thus improving the performance of H(-) ion generation in volume-produced negative hydrogen ion sources.

  8. PyFLOWGO: An open-source platform for simulation of channelized lava thermo-rheological properties

    NASA Astrophysics Data System (ADS)

    Chevrel, Magdalena Oryaëlle; Labroquère, Jérémie; Harris, Andrew J. L.; Rowland, Scott K.

    2018-02-01

    Lava flow advance can be modeled through tracking the evolution of the thermo-rheological properties of a control volume of lava as it cools and crystallizes. An example of such a model was conceived by Harris and Rowland (2001) who developed a 1-D model, FLOWGO, in which the velocity of a control volume flowing down a channel depends on rheological properties computed following the thermal path estimated via a heat balance box model. We provide here an updated version of FLOWGO written in Python that is an open-source, modern and flexible language. Our software, named PyFLOWGO, allows selection of heat fluxes and rheological models of the user's choice to simulate the thermo-rheological evolution of the lava control volume. We describe its architecture which offers more flexibility while reducing the risk of making error when changing models in comparison to the previous FLOWGO version. Three cases are tested using actual data from channel-fed lava flow systems and results are discussed in terms of model validation and convergence. PyFLOWGO is open-source and packaged in a Python library to be imported and reused in any Python program (https://github.com/pyflowgo/pyflowgo)

  9. Idealised modelling of ocean circulation driven by conductive and hydrothermal fluxes at the seabed

    NASA Astrophysics Data System (ADS)

    Barnes, Jowan M.; Morales Maqueda, Miguel A.; Polton, Jeff A.; Megann, Alex P.

    2018-02-01

    Geothermal heating is increasingly recognised as an important factor affecting ocean circulation, with modelling studies suggesting that this heat source could lead to first-order changes in the formation rate of Antarctic Bottom Water, as well as a significant warming effect in the abyssal ocean. Where it has been represented in numerical models, however, the geothermal heat flux into the ocean is generally treated as an entirely conductive flux, despite an estimated one third of the global geothermal flux being introduced to the ocean via hydrothermal sources. A modelling study is presented which investigates the sensitivity of the geothermally forced circulation to the way heat is supplied to the abyssal ocean. An analytical two-dimensional model of the circulation is described, which demonstrates the effects of a volume flux through the ocean bed. A simulation using the NEMO numerical general circulation model in an idealised domain is then used to partition a heat flux between conductive and hydrothermal sources and explicitly test the sensitivity of the circulation to the formulation of the abyssal heat flux. Our simulations suggest that representing the hydrothermal flux as a mass exchange indeed changes the heat distribution in the abyssal ocean, increasing the advective heat transport from the abyss by up to 35% compared to conductive heat sources. Consequently, we suggest that the inclusion of hydrothermal fluxes can be an important addition to course-resolution ocean models.

  10. Numerical investigation of the thermal behavior of heated natural composite materials

    NASA Astrophysics Data System (ADS)

    Qasim, S. M.; Mohammed, F. Abbas; Hashim, R.

    2015-11-01

    In the present work numerical investigation was carried out for laminar natural convection heat transfer from natural composite material (NCM). Three types of natural materials such as seed dates, egg shells, and feathers are mixed separately with polyester resin. Natural materials are added with different volume fraction (10%, 20%, and 30%) are heated with different heat flux (1078W/m2, 928W/m2, 750W/m2, 608W/m2, and 457W/m2) at (vertical, inclined, and horizontal) position. Continuity and Navier-Stocks equations are solved numerically in three dimensions using ANSYS FLUENT package 12.1 software commercial program. Numerical results showed the temperature distribution was affected for all types at volume fraction 30% and heat flux is 1078 W/m2, for different position. So, shows that the plumes and temperature behavior are affected by the air and the distance from heat source. Numerical results showed acceptable agreement with the experimental previous results.

  11. Thermal radiation heat transfer in participating media by finite volume discretization using collimated beam incidence

    NASA Astrophysics Data System (ADS)

    Harijishnu, R.; Jayakumar, J. S.

    2017-09-01

    The main objective of this paper is to study the heat transfer rate of thermal radiation in participating media. For that, a generated collimated beam has been passed through a two dimensional slab model of flint glass with a refractive index 2. Both Polar and azimuthal angle have been varied to generate such a beam. The Temperature of the slab and Snells law has been validated by Radiation Transfer Equation (RTE) in OpenFOAM (Open Field Operation and Manipulation), a CFD software which is the major computational tool used in Industry and research applications where the source code is modified in which radiation heat transfer equation is added to the case and different radiation heat transfer models are utilized. This work concentrates on the numerical strategies involving both transparent and participating media. Since Radiation Transfer Equation (RTE) is difficult to solve, the purpose of this paper is to use existing solver buoyantSimlpeFoam to solve radiation model in the participating media by compiling the source code to obtain the heat transfer rate inside the slab by varying the Intensity of radiation. The Finite Volume Method (FVM) is applied to solve the Radiation Transfer Equation (RTE) governing the above said physical phenomena.

  12. Effect of Cattaneo-Christov heat flux on buoyancy MHD nanofluid flow and heat transfer over a stretching sheet in the presence of Joule heating and thermal radiation impacts

    NASA Astrophysics Data System (ADS)

    Dogonchi, A. S.; Ganji, D. D.

    2018-06-01

    In this study, buoyancy MHD nanofluid flow and heat transfer over a stretching sheet in the presence of Joule heating and thermal radiation impacts, are studied. Cattaneo-Christov heat flux model instead of conventional Fourier's law of heat conduction is applied to investigate the heat transfer characteristics. A similarity transformation is used to transmute the governing momentum and energy equations into non-linear ordinary differential equations with the appropriate boundary conditions. The obtained non-linear ordinary differential equations are solved numerically. The impacts of diverse active parameters such as the magnetic parameter, the radiation parameter, the buoyancy parameter, the heat source parameter, the volume fraction of nanofluid and the thermal relaxation parameter are examined on the velocity and temperature profiles. In addition, the value of the Nusselt number is calculated and presented through figures. The results demonstrate that the temperature profile is lower in the case of Cattaneo-Christov heat flux model as compared to Fourier's law. Moreover, the Nusselt number raises with the raising volume fraction of nanofluid and it abates with the ascending the radiation parameter.

  13. Modeling of heat transfer in a vascular tissue-like medium during an interstitial hyperthermia process.

    PubMed

    Hassanpour, Saeid; Saboonchi, Ahmad

    2016-12-01

    This paper aims to evaluate the role of small vessels in heat transfer mechanisms of a tissue-like medium during local intensive heating processes, for example, an interstitial hyperthermia treatment. To this purpose, a cylindrical tissue with two co- and counter-current vascular networks and a central heat source is introduced. Next, the energy equations of tissue, supply fluid (arterial blood), and return fluid (venous blood) are derived using porous media approach. Then, a 2D computer code is developed to predict the temperature of blood (fluid phase) and tissue (solid phase) by conventional volume averaging method and a more realistic solution method. In latter method, despite the volume averaging the blood of interconnect capillaries is separated from the arterial and venous blood phases. It is found that in addition to blood perfusion rate, the arrangement of vascular network has considerable effects on the pattern and amount of the achieved temperature. In contrast to counter-current network, the co-current network of vessels leads to considerable asymmetric pattern of temperature contours and relocation of heat affected zone along the blood flow direction. However this relocation can be prevented by changing the site of hyperthermia heat source. The results show that the cooling effect of co-current blood vessels during of interstitial heating is more efficient. Despite much anatomical dissimilarities, these findings can be useful in designing of protocols for hyperthermia cancer treatment of living tissue. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Numerical investigation of saturated upward flow boiling of water in a vertical tube using VOF model: effect of different boundary conditions

    NASA Astrophysics Data System (ADS)

    Hasanpour, B.; Irandoost, M. S.; Hassani, M.; Kouhikamali, R.

    2018-01-01

    In this paper a numerical simulation of upward two-phase flow evaporation in a vertical tube has been studied by considering water as working fluid. To this end, the computational fluid dynamic simulations of this system are performed with heat and mass transfer mechanisms due to energy transfer during the phase change interaction near the heat transfer surface. The volume of fluid model in an available Eulerian-Eulerian approach based on finite volume method is utilized and the mass source term in conservation of mass equation is implemented using a user defined function. The characteristics of water flow boiling such as void fraction and heat transfer coefficient distribution are investigated. The main cause of fluctuations on heat transfer coefficient and volume fraction is velocity increment in the vapor phase rather than the liquid phase. The case study of this research including convective heat transfer coefficient and tube diameter are considered as a parametric study. The operating conditions are considered at high pressure in saturation temperature and the physical properties of water are determined by considering system's inlet temperature and pressure in saturation conditions. Good agreement is achieved between the numerical and the experimental values of heat transfer coefficients.

  15. Numerical investigation of saturated upward flow boiling of water in a vertical tube using VOF model: effect of different boundary conditions

    NASA Astrophysics Data System (ADS)

    Hasanpour, B.; Irandoost, M. S.; Hassani, M.; Kouhikamali, R.

    2018-07-01

    In this paper a numerical simulation of upward two-phase flow evaporation in a vertical tube has been studied by considering water as working fluid. To this end, the computational fluid dynamic simulations of this system are performed with heat and mass transfer mechanisms due to energy transfer during the phase change interaction near the heat transfer surface. The volume of fluid model in an available Eulerian-Eulerian approach based on finite volume method is utilized and the mass source term in conservation of mass equation is implemented using a user defined function. The characteristics of water flow boiling such as void fraction and heat transfer coefficient distribution are investigated. The main cause of fluctuations on heat transfer coefficient and volume fraction is velocity increment in the vapor phase rather than the liquid phase. The case study of this research including convective heat transfer coefficient and tube diameter are considered as a parametric study. The operating conditions are considered at high pressure in saturation temperature and the physical properties of water are determined by considering system's inlet temperature and pressure in saturation conditions. Good agreement is achieved between the numerical and the experimental values of heat transfer coefficients.

  16. Ground-water heat pumps: An examination of hydrogeologic, environmental, legal, and economic factors affecting their use. Volume 1: Main text, appendices A, B, and C

    NASA Astrophysics Data System (ADS)

    Armitage, D. M.; Bacon, D. J.; Massey-Norton, J. T.; Miller, J. M.

    1980-11-01

    Groundwater is attractive as a potential low temperature energy source in residential space conditioning applications. When used in conjunction with a heat pump, ground water can serve as both a heat source and a heat sink. Major hydrogeologic aspects that affect system use include groundwater temperature and availability at shallow depths as these factors influence operational efficiency. Ground water quality is considered as it affects the performance and life expectancy of the water side heat exchanger. Environmental impacts related to groundwater heat pump system use are most influenced by water use and disposal methods. In general, recharge to the subsurface is recommended. Legal restrictions on system use are often stricter at the municipal and county levels than at state and federal levels. Computer simulations indicate that under a variety of climatologic conditions, groundwater heat pumps use less energy than conventional heating and cooling equipment. Life cycle cost comparisons with conventional equipment depend on alternative system choices and well cost options included in the groundwater heat pump system.

  17. Vibration Method for Tracking the Resonant Mode and Impedance of a Microwave Cavity

    NASA Technical Reports Server (NTRS)

    Barmatz, M.; Iny, O.; Yiin, T.; Khan, I.

    1995-01-01

    A vibration technique his been developed to continuously maintain mode resonance and impedance much between a constant frequency magnetron source and resonant cavity. This method uses a vibrating metal rod to modulate the volume of the cavity in a manner equivalent to modulating an adjustable plunger. A similar vibrating metal rod attached to a stub tuner modulates the waveguide volume between the source and cavity. A phase sensitive detection scheme determines the optimum position of the adjustable plunger and stub turner during processing. The improved power transfer during the heating of a 99.8% pure alumina rod was demonstrated using this new technique. Temperature-time and reflected power-time heating curves are presented for the cases of no tracking, impedance tracker only, mode tracker only and simultaneous impedance and mode tracking. Controlled internal melting of an alumina rod near 2000 C using both tracking units was also demonstrated.

  18. Mapping of thermal injury in biologic tissues using quantitative pathologic techniques

    NASA Astrophysics Data System (ADS)

    Thomsen, Sharon L.

    1999-05-01

    Qualitative and quantitative pathologic techniques can be used for (1) mapping of thermal injury, (2) comparisons lesion sizes and configurations for different instruments or heating sources and (3) comparisons of treatment effects. Concentric zones of thermal damage form around a single volume heat source. The boundaries between some of these zones are distinct and measurable. Depending on the energy deposition, heating times and tissue type, the zones can include the following beginning at the hotter center and progressing to the cooler periphery: (1) tissue ablation, (2) carbonization, (3) tissue water vaporization, (4) structural protein denaturation (thermal coagulation), (5) vital enzyme protein denaturation, (6) cell membrane disruption, (7) hemorrhage, hemostasis and hyperhemia, (8) tissue necrosis and (9) wound organization and healing.

  19. Effects of discharge chamber length on the negative ion generation in volume-produced negative hydrogen ion source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, Kyoung-Jae; Jung, Bong-Ki; An, YoungHwa

    2014-02-15

    In a volume-produced negative hydrogen ion source, control of electron temperature is essential due to its close correlation with the generation of highly vibrationally excited hydrogen molecules in the heating region as well as the generation of negative hydrogen ions by dissociative attachment in the extraction region. In this study, geometric effects of the cylindrical discharge chamber on negative ion generation via electron temperature changes are investigated in two discharge chambers with different lengths of 7.5 cm and 11 cm. Measurements with a radio-frequency-compensated Langmuir probe show that the electron temperature in the heating region is significantly increased by reducingmore » the length of the discharge chamber due to the reduced effective plasma size. A particle balance model which is modified to consider the effects of discharge chamber configuration on the plasma parameters explains the variation of the electron temperature with the chamber geometry and gas pressure quite well. Accordingly, H{sup −} ion density measurement with laser photo-detachment in the short chamber shows a few times increase compared to the longer one at the same heating power depending on gas pressure. However, the increase drops significantly as operating gas pressure decreases, indicating increased electron temperatures in the extraction region degrade dissociative attachment significantly especially in the low pressure regime. It is concluded that the increase of electron temperature by adjusting the discharge chamber geometry is efficient to increase H{sup −} ion production as long as low electron temperatures are maintained in the extraction region in volume-produced negative hydrogen ion sources.« less

  20. CADDIS Volume 2. Sources, Stressors and Responses: Temperature - Figure 1. Major Heat Flux Processes in Streams

    EPA Pesticide Factsheets

    Introduction to the temperature module, when to list temperature as a candidate cause, ways to measure temperature, simple and detailed conceptual diagrams for temperature, temperature module references and literature reviews.

  1. Proceedings of the First National Workshop on the Global Weather Experiment: Current Achievements and Future Directions, volume 2, part 1

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Topics covered include: data systems and quality; analysis and assimilation techniques; impacts on forecasts; tropical forecasts; analysis intercomparisons; improvements in predictability; and heat sources and sinks.

  2. Physical and Theoretical Models of Heat Pollution Applied to Cramped Conditions Welding Taking into Account the Different Types of Heat

    NASA Astrophysics Data System (ADS)

    Bulygin, Y. I.; Koronchik, D. A.; Legkonogikh, A. N.; Zharkova, M. G.; Azimova, N. N.

    2017-05-01

    The standard k-epsilon turbulence model, adapted for welding workshops, equipped with fixed workstations with sources of pollution took into account only the convective component of heat transfer, which is quite reasonable for large-volume rooms (with low density distribution of sources of pollution) especially the results of model calculations taking into account only the convective component correlated well with experimental data. For the purposes of this study, when we are dealing with a small confined space where necessary to take account of the body heated to a high temperature (for welding), located next to each other as additional sources of heat, it can no longer be neglected radiative heat exchange. In the task - to experimentally investigate the various types of heat transfer in a limited closed space for welding and behavior of a mathematical model, describing the contribution of the various components of the heat exchange, including radiation, influencing the formation of fields of concentration, temperature, air movement and thermal stress in the test environment. Conducted field experiments to model cubic body, allowing you to configure and debug the model of heat and mass transfer processes with the help of the developed approaches, comparing the measurement results of air flow velocity and temperature with the calculated data showed qualitative and quantitative agreement between process parameters, that is an indicator of the adequacy of heat and mass transfer model.

  3. Study of flow control by localized volume heating in hypersonic boundary layers

    NASA Astrophysics Data System (ADS)

    Keller, M. A.; Kloker, M. J.; Kirilovskiy, S. V.; Polivanov, P. A.; Sidorenko, A. A.; Maslov, A. A.

    2014-12-01

    Boundary-layer flow control is a prerequisite for a safe and efficient operation of future hypersonic transport systems. Here, the influence of an electric discharge—modeled by a heat-source term in the energy equation—on laminar boundary-layer flows over a flat plate with zero pressure gradient at Mach 3, 5, and 7 is investigated numerically. The aim was to appraise the potential of electro-gasdynamic devices for an application as turbulence generators in the super- and hypersonic flow regime. The results with localized heat-source elements in boundary layers are compared to cases with roughness elements serving as classical passive trips. The numerical simulations are performed using the commercial code ANSYS FLUENT (by ITAM) and the high-order finite-difference DNS code NS3D (by IAG), the latter allowing for the detailed analysis of laminar flow instability. For the investigated setups with steady heating, transition to turbulence is not observed, due to the Reynolds-number lowering effect of heating.

  4. Heat-Storage Modules Containing LiNO3-3H2O and Graphite Foam

    NASA Technical Reports Server (NTRS)

    Bootle, John

    2008-01-01

    A heat-storage module based on a commercial open-cell graphite foam (Poco-Foam or equivalent) imbued with lithium nitrate trihydrate (LiNO3-3H2O) has been developed as a prototype of other such modules for use as short-term heat sources or heat sinks in the temperature range of approximately 28 to 30 C. In this module, the LiNO3-3H2O serves as a phase-change heat-storage material and the graphite foam as thermally conductive filler for transferring heat to or from the phase-change material. In comparison with typical prior heat-storage modules in which paraffins are the phase-change materials and aluminum fins are the thermally conductive fillers, this module has more than twice the heat-storage capacity per unit volume.

  5. Superfluid thermodynamic cycle refrigerator

    DOEpatents

    Swift, G.W.; Kotsubo, V.Y.

    1992-12-22

    A cryogenic refrigerator cools a heat source by cyclically concentrating and diluting the amount of [sup 3]He in a single phase [sup 3]He-[sup 4]He solution. The [sup 3]He in superfluid [sup 4]He acts in a manner of an ideal gas in a vacuum. Thus, refrigeration is obtained using any conventional thermal cycle, but preferably a Stirling or Carnot cycle. A single phase solution of liquid [sup 3]He at an initial concentration in superfluid [sup 4]He is contained in a first variable volume connected to a second variable volume through a superleak device that enables free passage of [sup 4]He while restricting passage of [sup 3]He. The [sup 3]He is compressed (concentrated) and expanded (diluted) in a phased manner to carry out the selected thermal cycle to remove heat from the heat load for cooling below 1 K. 12 figs.

  6. Superfluid thermodynamic cycle refrigerator

    DOEpatents

    Swift, Gregory W.; Kotsubo, Vincent Y.

    1992-01-01

    A cryogenic refrigerator cools a heat source by cyclically concentrating and diluting the amount of .sup.3 He in a single phase .sup.3 He-.sup.4 He solution. The .sup.3 He in superfluid .sup.4 He acts in a manner of an ideal gas in a vacuum. Thus, refrigeration is obtained using any conventional thermal cycle, but preferably a Stirling or Carnot cycle. A single phase solution of liquid .sup.3 He at an initial concentration in superfluid .sup.4 He is contained in a first variable volume connected to a second variable volume through a superleak device that enables free passage of .sup.4 He while restricting passage of .sup.3 He. The .sup.3 He is compressed (concentrated) and expanded (diluted) in a phased manner to carry out the selected thermal cycle to remove heat from the heat load for cooling below 1 K.

  7. 76 FR 15553 - National Emission Standards for Hazardous Air Pollutants for Area Sources: Industrial, Commercial...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-21

    ... unpredictability of the non-mercury metal HAP compositions and amounts in fuel has a material effect on the... heat input. c. Carbon 400 ppm by volume on a dry basis corrected Monoxide. to 3 percent oxygen. >=10... 15560

  8. 40 CFR 98.30 - Definition of the source category.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... purposes of producing electricity, generating steam, or providing useful heat or energy for industrial, commercial, or institutional use, or reducing the volume of waste by removing combustible matter. Stationary... § 98.6. (3) Irrigation pumps at agricultural operations. (4) Flares, unless otherwise required by...

  9. Development of a Process Signature for Manufacturing Processes with Thermal Loads

    NASA Astrophysics Data System (ADS)

    Frerichs, Friedhelm; Meyer, Heiner; Strunk, Rebecca; Kolkwitz, Benjamin; Epp, Jeremy

    2018-06-01

    The newly proposed concept of Process Signatures enables the comparison of seemingly different manufacturing processes via a process-independent approach based on the analysis of the loading condition and resulting material modification. This contribution compares the recently published results, based on numerically achieved data for the development of Process Signatures for sole surface and volume heatings without phase transformations, with the experimental data. The numerical approach applies the moving heat source theory in combination with energetic quantities. The external thermal loadings of both processes were characterized by the resulting temperature development, which correlates with a change in the residual stress state. The numerical investigations show that surface and volume heatings are interchangeable for certain parameter regimes regarding the changes in the residual stress state. Mainly, temperature gradients and thermal diffusion are responsible for the considered modifications. The applied surface- and volume-heating models are used in shallow cut grinding and induction heating, respectively. The comparison of numerical and experimental data reveals similarities, but also some systematic deviations of the residual stresses at the surface. The evaluation and final discussion support the assertion for very fast stress relaxation processes within the subsurface region. A consequence would be that the stress relaxation processes, which are not yet included in the numerical models, must be included in the Process Signatures for sole thermal impacts.

  10. Photoacoustic thermal flowmetry with a single light source

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Lan, Bangxin; Hu, Leo; Chen, Ruimin; Zhou, Qifa; Yao, Junjie

    2017-09-01

    We report a photoacoustic thermal flowmetry based on optical-resolution photoacoustic microscopy (OR-PAM) using a single laser source for both thermal tagging and photoacoustic excitation. When an optically absorbing medium is flowing across the optical focal zone of OR-PAM, a small volume of the medium within the optical focus is repeatedly illuminated and heated by a train of laser pulses with a high repetition rate. The average temperature of the heated volume at each laser pulse is indicated by the photoacoustic signal excited by the same laser pulse due to the well-established linear relationship between the Grueneisen coefficient and the local temperature. The thermal dynamics of the heated medium volume, which are closely related to the flow speed, can therefore be measured from the time course of the detected photoacoustic signals. Here, we have developed a lumped mathematical model to describe the time course of the photoacoustic signals as a function of the medium's flow speed. We conclude that the rising time constant of the photoacoustic signals is linearly dependent on the flow speed. Thus, the flow speed can be quantified by fitting the measured photoacoustic signals using the derived mathematical model. We first performed proof-of-concept experiments using defibrinated bovine blood flowing in a plastic tube. The experiment results have demonstrated that the proposed method has high accuracy (˜±6%) and a wide range of measurable flow speeds. We further validated the method by measuring the blood flow speeds of the microvasculature in a mouse ear in vivo.

  11. Influence of heat and particle fluxes nonlocality on spatial distribution of plasma density in two-chamber inductively coupled plasma sources

    NASA Astrophysics Data System (ADS)

    Kudryavtsev, A. A.; Serditov, K. Yu.

    2012-07-01

    This study presents 2D simulations of the two-chamber inductively coupled plasma source where power is supplied in the small discharge chamber and extends by electron thermal conductivity mechanism to the big diffusion chamber. Depending on pressure, two main scenarios of plasma density and its spatial distribution behavior were identified. One case is characterized by the localization of plasma in the small driver chamber where power is deposed. Another case describes when the diffusion chamber becomes the main source of plasma with maximum of the electron density. The differences in spatial distribution are caused by local or non-local behavior of electron energy transport in the discharge volume due to different characteristic scale of heat transfer with electronic conductivity.

  12. Dynamic modeling of photothermal interactions for laser-induced interstitial thermotherapy: parameter sensitivity analysis.

    PubMed

    Jiang, S C; Zhang, X X

    2005-12-01

    A two-dimensional model was developed to model the effects of dynamic changes in the physical properties on tissue temperature and damage to simulate laser-induced interstitial thermotherapy (LITT) treatment procedures with temperature monitoring. A modified Monte Carlo method was used to simulate photon transport in the tissue in the non-uniform optical property field with the finite volume method used to solve the Pennes bioheat equation to calculate the temperature distribution and the Arrhenius equation used to predict the thermal damage extent. The laser light transport and the heat transfer as well as the damage accumulation were calculated iteratively at each time step. The influences of different laser sources, different applicator sizes, and different irradiation modes on the final damage volume were analyzed to optimize the LITT treatment. The numerical results showed that damage volume was the smallest for the 1,064-nm laser, with much larger, similar damage volumes for the 980- and 850-nm lasers at normal blood perfusion rates. The damage volume was the largest for the 1,064-nm laser with significantly smaller, similar damage volumes for the 980- and 850-nm lasers with temporally interrupted blood perfusion. The numerical results also showed that the variations in applicator sizes, laser powers, heating durations and temperature monitoring ranges significantly affected the shapes and sizes of the thermal damage zones. The shapes and sizes of the thermal damage zones can be optimized by selecting different applicator sizes, laser powers, heating duration times, temperature monitoring ranges, etc.

  13. On buoyancy-driven natural ventilation of a room with a heated floor

    NASA Astrophysics Data System (ADS)

    Gladstone, Charlotte; Woods, Andrew W.

    2001-08-01

    The natural ventilation of a room, both with a heated floor and connected to a cold exterior through two openings, is investigated by combining quantitative models with analogue laboratory experiments. The heated floor generates an areal source of buoyancy while the openings allow displacement ventilation to operate. When combined, these produce a steady state in which the air in the room is well-mixed, and the heat provided by the floor equals the heat lost by displacement. We develop a quantitative model describing this process, in which the advective heat transfer through the openings is balanced with the heat flux supplied at the floor. This model is successfully tested with observations from small-scale analogue laboratory experiments. We compare our results with the steady-state flow associated with a point source of buoyancy: for a given applied heat flux, an areal source produces heated air of lower temperature but a greater volume flux of air circulates through the room. We generalize the model to account for the effects of (i) a cooled roof as well as a heated floor, and (ii) an external wind or temperature gradient. In the former case, the direction of the flow through the openings depends on the temperature of the exterior air relative to an averaged roof and floor temperature. In the latter case, the flow is either buoyancy dominated or wind dominated depending on the strength of the pressure associated with the wind. Furthermore, there is an intermediate multiple-solution regime in which either flow regime may develop.

  14. RF induced energy for partially implanted catheters: a computational study

    PubMed Central

    Lucano, Elena; Liberti, Micaela; Lloyd, Tom; Apollonio, Francesca; Wedan, Steve; Kainz, Wolfgang; Angelone, Leonardo M.

    2018-01-01

    Magnetic Resonance Imaging (MRI) is a radiological imaging technique widely used in clinical practice. MRI has been proposed to guide the catheters for interventional procedures, such as cardiac ablation. However, there are risks associated with this procedure, such as RF-induced heating of tissue near the catheters. The aim of this study is to develop a quantitative RF-safety method for patients with partially implanted leads at 64 MHz. RF-induced heating is related to the electric field incident along the catheter, which in turns depends on several variables, including the position of the RF feeding sources and the orientation of the polarization, which are however often unknown. This study evaluates the electric field profile along the lead trajectory using simulations with an anatomical human model landmarked at the heart. The energy absorbed in the volume near the tip of ageneric partially implanted lead was computed for all source positions and field orientation. The results showed that varying source positions and field orientation may result in changes of up to 18% for the E-field magnitude and up to 60% for the 10g-averaged specific absorption rate (SAR) in the volume surrounding the tip of the lead. PMID:28268553

  15. Thermal Performance Analysis of a Geologic Borehole Repository

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reagin, Lauren

    2016-08-16

    The Brazilian Nuclear Research Institute (IPEN) proposed a design for the disposal of Disused Sealed Radioactive Sources (DSRS) based on the IAEA Borehole Disposal of Sealed Radioactive Sources (BOSS) design that would allow the entirety of Brazil’s inventory of DSRS to be disposed in a single borehole. The proposed IPEN design allows for 170 waste packages (WPs) containing DSRS (such as Co-60 and Cs-137) to be stacked on top of each other inside the borehole. The primary objective of this work was to evaluate the thermal performance of a conservative approach to the IPEN proposal with the equivalent of twomore » WPs and two different inside configurations using Co-60 as the radioactive heat source. The current WP configuration (heterogeneous) for the IPEN proposal has 60% of the WP volume being occupied by a nuclear radioactive heat source and the remaining 40% as vacant space. The second configuration (homogeneous) considered for this project was a homogeneous case where 100% of the WP volume was occupied by a nuclear radioactive heat source. The computational models for the thermal analyses of the WP configurations with the Co-60 heat source considered three different cooling mechanisms (conduction, radiation, and convection) and the effect of mesh size on the results from the thermal analysis. The results of the analyses yielded maximum temperatures inside the WPs for both of the WP configurations and various mesh sizes. The heterogeneous WP considered the cooling mechanisms of conduction, convection, and radiation. The temperature results from the heterogeneous WP analysis suggest that the model is cooled predominantly by conduction with effect of radiation and natural convection on cooling being negligible. From the thermal analysis comparing the two WP configurations, the results suggest that either WP configuration could be used for the design. The mesh sensitivity results verify the meshes used, and results obtained from the thermal analyses were close to being independent of mesh size. The results from the computational case and analytically-calculated case for the homogeneous WP in benchmarking were almost identical, which indicates that the computational approach used here was successfully verified by the analytical solution.« less

  16. Proceedings of the AFOSR Special Conference on Prime-Power for High Energy Space Systems, Norfolk, Virginia, 22-25 February 1982. Volume I.

    DTIC Science & Technology

    1982-02-25

    source both liquid and solid fuel combustion devices have been successfully demonstrated during various development programs . Nuclear reactor heat...U02 fuel in the core . Improving the heat pipe model to correlate more closely with the experimental data is a major concern in the development of...ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT. TASK Research & Development Associates (RDA) AREA &WKNT AE (X Rosslyn, VA 22209 61102F 2301

  17. Proceedings of Symposium on Energy Engineering in the 21st Century (SEE 2000). Volume Two

    DTIC Science & Technology

    2000-01-13

    International Journal of Hybrid Microelectronics, Vol.7, pp. 1-9 (1984). 2. T. Burd, "CPU information and system performance summary," Internet site, Http...and P. C. Wayner, "Evaporation from a Porous Flow Control Element on a Porous Heat Source", International Journal of Heat and Mass Transfer, Vol.16...28. I. M. N. A. Fareleira, S. F. Y. Li and W. A. Wakeham, International Journal of Thermophvsics, v. 10, pp. 1041 (1981). 29. Y. Wada, Y. Nagasaka

  18. Binary vapor cycle method of electrical power generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humiston, G.F.

    1982-04-13

    A binary vapor cycle method of electrical power generation is disclosed wherein two refrigerant fluids can be used to operate an apparatus for the generation of mechanical power as well as electrical power generation. This method, which is essentially a dual heat pump system, offers an approach to utilizing the advantages of two different refrigerants within a single apparatus. This advantage is particularly advantageous in the ulitization of low specific energy sources, such as two water sources which exist in close proximity to each other, but at different temperatures. Thus, water, which itself is a heat pump fluid, can bemore » used as a means of transmitting heat energy to a second heat pump fluid, or refrigerant, without incurring the disadvantages of water, or water vapors, as a means to produce power, because of its high specific volume and low saturation pressures at low temperatures. Additionally, since the warm water source of energy most commonly available is in the form of reservoirs, such as the ocean waters, and the utilization of barometric legs to bring the warm water into contact with the process, eliminates the use of expensive heat exchangers, which is the case of ocean water, are subject to fouling and loss of efficiency due to clinging microorganisms.« less

  19. Formation of the lunar crust - An electrical source of heating

    NASA Technical Reports Server (NTRS)

    Sonett, C. P.; Colburn, D. S.; Schwartz, K.

    1975-01-01

    A model for formation of the lunar crust based on heating by electrical induction is explored, while adherence is maintained to certain constraints associated with existing models of the solar system. The heating mechanism is based on eddy current induction from disordered magnetic fields swept outwards by an intense (T Tauri-like) plasma flow from the sun. The electrical theory is an alternative to intense short-period accretion as a source of heat for the evolution of lunar maria and highlands, provided that long-lived radioactives are not swept to the surface from too large a melt volume during the initial thermal episode. This formation of the lunar highlands does not intrinsically require rapid accretion, nor on this basis is the time of formation of the planets generally restricted to a very short time. The threshold temperature for eddy current heating is attained by either a solar nebula at 300-400 C during formation of the moon or a very low energy long-period accumulation of the moon, both leading to melting in ten to the fifth to ten to the seventh power years.

  20. Design and experimental study of an integrated vapor chamber-thermal energy storage system

    NASA Astrophysics Data System (ADS)

    Kota, Krishna M.

    Future defense, aerospace and automotive technologies involve electronic systems that release high pulsed waste heat like during high power microwave and laser diode applications in tactical and combat aircraft, and electrical and electronic systems in hybrid electric vehicles, which will require the development of an efficient thermal management system. A key design issue is the need for fast charging so as not to overheat the key components. The goal of this work is to study the fabrication and technology implementation feasibility of a novel high energy storage, high heat flux passive heat sink. Key focus is to verify by theory and experiments, the practicability of using phase change materials as a temporary storage of waste heat for heat sink applications. The reason for storing the high heat fluxes temporarily is to be able to reject the heat at the average level when the heat source is off. Accordingly, a concept of a dual latent heat sink intended for moderate to low thermal duty cycle electronic heat sink applications is presented. This heat sink design combines the features of a vapor chamber with rapid thermal energy storage employing graphite foam inside the heat storage facility along with phase change materials and is attractive owing to its passive operation unlike some of the current thermal management techniques for cooling of electronics employing forced air circulation or external heat exchangers. In addition to the concept, end-application dependent criteria to select an optimized design for this dual latent heat sink are presented. A thermal resistance concept based design tool/model has been developed to analyze and optimize the design for experiments. The model showed that it is possible to have a dual latent heat sink design capable of handling 7 MJ of thermal load at a heat flux of 500 W/cm2 (over an area of 100 cm 2) with a volume of 0.072 m3 and weighing about 57.5 kg. It was also found that with such high heat flux absorption capability, the proposed conceptual design could have a vapor-to-condenser temperature difference of less than 10°C with a volume storage density of 97 MJ/m 3 and a mass storage density of 0.122 MJ/kg. The effectiveness of this heat sink depends on the rapidness of the heat storage facility in the design during the pulse heat generation period of the duty cycle. Heat storage in this heat sink involves transient simultaneous laminar film condensation of vapor and melting of an encapsulated phase change material in graphite foam. Therefore, this conjugate heat transfer problem including the wall inertia effect is numerically analyzed and the effectiveness of the heat storage mechanism of the heat sink is verified. An effective heat capacity formulation is employed for modeling the phase change problem and is solved using finite element method. The results of the developed model showed that the concept is effective in preventing undue temperature rise of the heat source. Experiments are performed to investigate the fabrication and implementation feasibility and heat transfer performance for validating the objectives of the design, i.e., to show that the VCTES heat sink is practicable and using PCM helps in arresting the vapor temperature rise in the heat sink. For this purpose, a prototype version of the VCTES heat sink is fabricated and tested for thermal performance. The volume foot-print of the vapor chamber is about 6"X5"X2.5". A custom fabricated thermal energy storage setup is incorporated inside this vapor chamber. A heat flux of 40 W/cm2 is applied at the source as a pulse and convection cooling is used on the condenser surface. Experiments are done with and without using PCM in the thermal energy storage setup. It is found that using PCM as a second latent system in the setup helps in lowering the undue temperature rise of the heat sink system. It is also found that the thermal resistance between the vapor chamber and the thermal energy storage setup, the pool boiling resistance at the heat source in the vapor chamber, the condenser resistance during heat discharging were key parameters that affect the thermal performance. Some suggestions for future improvements in the design to ease its implementation and enhance the heat transfer of this novel heat sink are also presented.

  1. Efficient Use of Cogeneration and Fuel Diversification

    NASA Astrophysics Data System (ADS)

    Kunickis, M.; Balodis, M.; Sarma, U.; Cers, A.; Linkevics, O.

    2015-12-01

    Energy policy of the European Community is implemented by setting various goals in directives and developing support mechanisms to achieve them. However, very often these policies and legislation come into contradiction with each other, for example Directive 2009/28/EC on the promotion of the use of energy from renewable sources and Directive 2012/27/EU on energy efficiency, repealing Directive 2004/8/EC on the promotion of cogeneration based on a useful heat demand. In this paper, the authors attempt to assess the potential conflicts between policy political objectives to increase the share of high-efficiency co-generation and renewable energy sources (RES), based on the example of Riga district heating system (DHS). If a new heat source using biomass is built on the right bank of Riga DHS to increase the share of RES, the society could overpay for additional heat production capacities, such as a decrease in the loading of existing generating units, thereby contributing to an inefficient use of existing capacity. As a result, the following negative consequences may arise: 1) a decrease in primary energy savings (PES) from high-efficiency cogeneration in Riga DHS, 2) an increase in greenhouse gas (GHG) emissions in the Baltic region, 3) the worsening security situation of electricity supply in the Latvian power system, 4) an increase in the electricity market price in the Lithuanian and Latvian price areas of Nord Pool power exchange. Within the framework of the research, calculations of PES and GHG emission volumes have been performed for the existing situation and for the situation with heat source, using biomass. The effect of construction of biomass heat source on power capacity balances and Nord Pool electricity prices has been evaluated.

  2. European Geophysical Society (23rd) General Assembly, Annales Geophysicae, Part 3, Space & Planetary Sciences, Supplement 3 to Volume 16 Held in Nice, France on 20-24 April 1998

    DTIC Science & Technology

    1998-01-01

    For the lower stratosphere diabatic heating sources and planetary wave activity will be discussed. Above 10 hPa observations are less frequent and...the observation durations being minutes-days; ~30 to 200 samples covering each source of the disturbances. The authors have been supported by STCU...the "classical" sinks. The observed stratospheric N20 mixing ratios will not be perturbed by the new source because of: (1) the inevitable loss

  3. Acceleration of runaway electrons and Joule heating in solar flares

    NASA Technical Reports Server (NTRS)

    Holman, G. D.

    1985-01-01

    The electric field acceleration of electrons out of a thermal plasma and the simultaneous Joule heating of the plasma are studied. Acceleration and heating timescales are derived and compared, and upper limits are obtained on the acceleration volume and the rate at which electrons can be accelerated. These upper limits, determined by the maximum magnetic field strength observed in flaring regions, place stringent restrictions upon the acceleration process. The role of the plasma resistivity in these processes is examined, and possible sources of anomalous resistivity are summarized. The implications of these results for the microwave and hard X-ray emission from solar flares are examined.

  4. Acceleration of runaway electrons and Joule heating in solar flares

    NASA Technical Reports Server (NTRS)

    Holman, G. D.

    1984-01-01

    The electric field acceleration of electrons out of a thermal plasma and the simultaneous Joule heating of the plasma are studied. Acceleration and heating timescales are derived and compared, and upper limits are obtained on the acceleration volume and the rate at which electrons can be accelerated. These upper limits, determined by the maximum magnetic field strength observed in flaring regions, place stringent restrictions upon the acceleration process. The role of the plasma resistivity in these processes is examined, and possible sources of anomalous resistivity are summarized. The implications of these results for the microwave and hard X-ray emission from solar flares are examined.

  5. Design, fabrication, and testing of energy-harvesting thermoelectric generator

    NASA Astrophysics Data System (ADS)

    Jovanovic, Velimir; Ghamaty, Saeid

    2006-03-01

    An energy-harvesting thermoelectric generator (TEG) is being developed to provide power for wireless sensors used in health monitoring of Navy machinery. TEGs are solid-state devices that convert heat directly into electricity without any moving parts. In this application, the TEGs utilize the heat transfer between shipboard waste heat sources and the ambient air to generate electricity. In order to satisfy the required small design volume of less than one cubic inch, Hi-Z is using its innovative thin-film Quantum Well (QW) thermoelectric technology that will provide a factor of four increase in efficiency and a large reduction in the device volume over the currently used bulk Bi IITe 3 based thermoelectics. QWs are nanostructured multi-layer films. These wireless sensors can be used to detect cracks, corrosion, impact damage, and temperature and vibration excursions as part of the Condition Based Maintenance (CBM) of the Navy ship machinery. The CBM of the ship machinery can be significantly improved by automating the process with the use of self-powered wireless sensors. These power-harvesting TEGs can be used to replace batteries as electrical power sources and to eliminate power cables and data lines. The first QW TEG module was fabricated and initial tests were successful. It is planned to conduct performance tests the entire prototype QW TEG device (consisting of the TEG module, housing, thermal insulation and the heat sink) in a simulated thermal environment of a Navy ship.

  6. Near-term hybrid vehicle program, phase 1. Appendix B: Design trade-off studies report. Volume 2: Supplement to design trade-off studies

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Results of studies leading to the preliminary design of a hybrid passenger vehicle which is projected to have the maximum potential for reducing petroleum consumption in the near term are presented. Heat engine/electric hybrid vehicle tradeoffs, assessment of battery power source, and weight and cost analysis of key components are among the topics covered. Performance of auxiliary equipment, such as power steering, power brakes, air conditioning, lighting and electrical accessories, heating and ventilation is discussed along with the selection of preferred passenger compartment heating procedure for the hybrid vehicle. Waste heat from the engine, thermal energy storage, and an auxiliary burner are among the approaches considered.

  7. 40 CFR 98.30 - Definition of the source category.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... useful heat or energy for industrial, commercial, or institutional use, or reducing the volume of waste... generators and emergency equipment, as defined in § 98.6. (3) Irrigation pumps at agricultural operations. (4... unit that combusts hazardous waste (as defined in § 261.3 of this chapter), reporting of GHG emissions...

  8. 40 CFR 98.30 - Definition of the source category.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... useful heat or energy for industrial, commercial, or institutional use, or reducing the volume of waste... generators and emergency equipment, as defined in § 98.6. (3) Irrigation pumps at agricultural operations. (4... unit that combusts hazardous waste (as defined in § 261.3 of this chapter), reporting of GHG emissions...

  9. Sensitive ion detection device and method for analysis of compounds as vapors in gases

    DOEpatents

    Denton, M. Bonner; Sperline, Roger P.

    2015-09-15

    An ion mobility spectrometer (IMS) for the detection of trace gaseous molecular compounds dissolved or suspended in a carrier gas, particularly in ambient air, without preconcentration or the trapping of analyte particles. The IMS of the invention comprises an ionization volume of greater than 5 cm.sup.3 and preferably greater than 100 cm.sup.3. The larger size ionizers of this invention enable analysis of trace (<1 ppb) of sample compounds in the gas phase. To facilitate efficient ion motion through the large volume ionization and reaction regions of the IMS, an electric field gradient can be provided in the ionization region or in both the ionization and reaction regions. The systems can be implemented with radioactive ionization sources, corona discharge ion sources or ions can be formed by photoionization. In specific embodiments, particularly when the sample gas is ambient air, the sample gas is heater prior to entry into the instrument, the instrument is run at temperatures above ambient, and the instrument can be heated by contact with heated sample gas exiting the instrument.

  10. Sensitive ion detection device and method for analysis of compounds as vapors in gases

    DOEpatents

    Denton, M. Bonner; Sperline, Roger P

    2014-02-18

    An ion mobility spectrometer (IMS) for the detection of trace gaseous molecular compounds dissolved or suspended in a carrier gas, particularly in ambient air, without preconcentration or the trapping of analyte particles. The IMS of the invention comprises an ionization volume of greater than 5 cm.sup.3 and preferably greater than 100 cm.sup.3. The larger size ionizers of this invention enable analysis of trace (<1 ppb) of sample compounds in the gas phase. To facilitate efficient ion motion through the large volume ionization and reaction regions of the IMS, an electric field gradient can be provided in the ionization region or in both the ionization and reaction regions. The systems can be implemented with radioactive ionization sources, corona discharge ion sources or ions can be formed by photoionization. In specific embodiments, particularly when the sample gas is ambient air, the sample gas is heater prior to entry into the instrument, the instrument is run at temperatures above ambient, and the instrument can be heated by contact with heated sample gas exiting the instrument.

  11. Concept of a self-pressurized feed system for liquid rocket engines and its fundamental experiment results

    NASA Astrophysics Data System (ADS)

    Matsumoto, Jun; Okaya, Shunichi; Igoh, Hiroshi; Kawaguchi, Junichiro

    2017-04-01

    A new propellant feed system referred to as a self-pressurized feed system is proposed for liquid rocket engines. The self-pressurized feed system is a type of gas-pressure feed system; however, the pressurization source is retained in the liquid state to reduce tank volume. The liquid pressurization source is heated and gasified using heat exchange from the hot propellant using a regenerative cooling strategy. The liquid pressurization source is raised to critical pressure by a pressure booster referred to as a charger in order to avoid boiling and improve the heat exchange efficiency. The charger is driven by a part of the generated pressurization gas using a closed-loop self-pressurized feed system. The purpose of this study is to propose a propellant feed system that is lighter and simpler than traditional gas pressure feed systems. The proposed system can be applied to all liquid rocket engines that use the regenerative cooling strategy. The concept and mathematical models of the self-pressurized feed system are presented first. Experiment results for verification are then shown and compared with the mathematical models.

  12. Phase 1 of the First Solar Small Power System Experiment (experimental System No. 1). Volume 2: Appendix A - D

    NASA Technical Reports Server (NTRS)

    Clark, T. B. (Editor)

    1979-01-01

    Recommended conceptual designs for the baseline solar concentrator and electrical subsystems are defined, and trade offs that were evaluated to arrive at the baseline systems are presented. In addition, the developmental history of the Stirling engine is reviewed, the U4 configuration is described, and a Stirling engine heat pipe system is evaluated for solar application where sodium vapor is used as the heat source. An organic Rankine cycle engine is also evaluated for solar small power system application.

  13. Source Contaminant Control for the Heat Melt Compactor

    NASA Technical Reports Server (NTRS)

    Roman, Monsi; Howard, David

    2015-01-01

    The Logistics Reduction and Repurposing project includes the heat melt compactor (HMC), a device that compacts waste containing plastic into a tile that will minimize volume, and may be used as materials for radiation shielding. During the process, a small purge gas stream is directed through the HMC chamber to transport out gasses and humidity released from the process. NASA Marshall Space Flight Center is tasked with developing and delivering a contamination control system to clean the purge gas prior to exhausting it back into the cabin for crew inhalation.

  14. Optimal temperature control of tissue embedded with gold nanoparticles for enhanced thermal therapy based on two-energy equation model.

    PubMed

    Wang, Shen-Ling; Qi, Hong; Ren, Ya-Tao; Chen, Qin; Ruan, Li-Ming

    2018-05-01

    Thermal therapy is a very promising method for cancer treatment, which can be combined with chemotherapy, radiotherapy and other programs for enhanced cancer treatment. In order to get a better effect of thermal therapy in clinical applications, optimal internal temperature distribution of the tissue embedded with gold nanoparticles (GNPs) for enhanced thermal therapy was investigated in present research. The Monte Carlo method was applied to calculate the heat generation of the tissue embedded with GNPs irradiated by continuous laser. To have a better insight into the physical problem of heat transfer in tissues, the two-energy equation was employed to calculate the temperature distribution of the tissue in the process of GNPs enhanced therapy. The Arrhenius equation was applied to evaluate the degree of permanent thermal damage. A parametric study was performed to investigate the influence factors on the tissue internal temperature distribution, such as incident light intensity, the GNPs volume fraction, the periodic heating and cooling time, and the incident light position. It was found that period heating and cooling strategy can effectively avoid overheating of skin surface and heat damage of healthy tissue. Lower GNPs volume fraction will be better for the heat source distribution. Furthermore, the ring heating strategy is superior to the central heating strategy in the treatment effect. All the analysis provides theoretical guidance for optimal temperature control of tissue embedded with GNP for enhanced thermal therapy. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Study of radioisotope safety devices for electric propulsion system, Volume 1: Summary report

    NASA Technical Reports Server (NTRS)

    Bradshaw, G. B.; Homeyer, W. G.; Postula, F. D.; Steeger, E. J.

    1972-01-01

    A new reference design was prepared for the 5 kW(e) thermionic power supply. The safety equipment in this design is a passive containment system which does not rely on the operation of any mechanisms such as a launch escape rocket or deployment of parachutes. It includes: (1) a blast shield to protect against the explosion of the launch vehicle; (2) a combination of refractory thermal insulation and heat storage material to protect against a sustained launch pad fire; (3) a reentry body with a spherical nose and a large conical flare at the aft end to stabilize the reentry attitude and lower the terminal velocity in air; (4) composite graphite thermal protection to sustain the reentry heat pulse; (5) crushable honeycomb behind the nose to limit the deceleration of the radioisotope source due to impact on land at terminal velocity; (6) a double-walled secondary containment vessel surrounding the isotopic capsules; (7) neutron shielding to reduce external dose rates; (8) an auxiliary cooling system employing redundant heat pipes to remove the radioactive decay heat from the heat source and reject it to the surroundings or to a forced convection loop.

  16. Simulating the impact of X-ray heating during the cosmic dawn

    NASA Astrophysics Data System (ADS)

    Ross, Hannah E.; Dixon, Keri L.; Iliev, Ilian T.; Mellema, Garrelt

    2017-07-01

    Upcoming observations of the 21-cm signal from the epoch of reionization will soon provide the first direct detection of this era. This signal is influenced by many astrophysical effects, including long-range X-ray heating of the intergalactic gas. During the preceding cosmic dawn era, the impact of this heating on the 21-cm signal is particularly prominent, especially before spin temperature saturation. We present the largest volume (349 Mpc comoving = 244 h-1Mpc) full numerical radiative transfer simulations to date of this epoch which include the effects of helium and multifrequency heating, both with and without X-ray sources. We show that X-ray sources contribute significantly to early heating of the neutral intergalactic medium and, hence, to the corresponding 21-cm signal. The inclusion of hard, energetic radiation yields an earlier, extended transition from absorption to emission compared to the stellar-only case. The presence of X-ray sources decreases the absolute value of the mean 21-cm differential brightness temperature. These hard sources also significantly increase the 21-cm fluctuations compared to the common assumption of temperature saturation. The 21-cm differential brightness temperature power spectrum is initially boosted on large scales, before decreasing on all scales. Compared to the case of the cold, unheated intergalactic medium, the signal has lower rms fluctuations and increased non-Gaussianity, as measured by the skewness and kurtosis of the 21-cm probability distribution functions. Images of the 21-cm signal with resolution around 11 arcmin still show fluctuations well above the expected noise for deep integrations with the SKA1-Low, indicating that direct imaging of the X-ray heating epoch could be feasible.

  17. Virtual welding equipment for simulation of GMAW processes with integration of power source regulation

    NASA Astrophysics Data System (ADS)

    Reisgen, Uwe; Schleser, Markus; Mokrov, Oleg; Zabirov, Alexander

    2011-06-01

    A two dimensional transient numerical analysis and computational module for simulation of electrical and thermal characteristics during electrode melting and metal transfer involved in Gas-Metal-Arc-Welding (GMAW) processes is presented. Solution of non-linear transient heat transfer equation is carried out using a control volume finite difference technique. The computational module also includes controlling and regulation algorithms of industrial welding power sources. The simulation results are the current and voltage waveforms, mean voltage drops at different parts of circuit, total electric power, cathode, anode and arc powers and arc length. We describe application of the model for normal process (constant voltage) and for pulsed processes with U/I and I/I-modulation modes. The comparisons with experimental waveforms of current and voltage show that the model predicts current, voltage and electric power with a high accuracy. The model is used in simulation package SimWeld for calculation of heat flux into the work-piece and the weld seam formation. From the calculated heat flux and weld pool sizes, an equivalent volumetric heat source according to Goldak model, can be generated. The method was implemented and investigated with the simulation software SimWeld developed by the ISF at RWTH Aachen University.

  18. Effects of passive heating on central blood volume and ventricular dimensions in humans

    PubMed Central

    Crandall, C G; Wilson, T E; Marving, J; Vogelsang, T W; Kjaer, A; Hesse, B; Secher, N H

    2008-01-01

    Mixed findings regarding the effects of whole-body heat stress on central blood volume have been reported. This study evaluated the hypothesis that heat stress reduces central blood volume and alters blood volume distribution. Ten healthy experimental and seven healthy time control (i.e. non-heat stressed) subjects participated in this protocol. Changes in regional blood volume during heat stress and time control were estimated using technetium-99m labelled autologous red blood cells and gamma camera imaging. Whole-body heating increased internal temperature (≥ 1.0°C), cutaneous vascular conductance (approximately fivefold), and heart rate (52 ± 2 to 93 ± 4 beats min−1), while reducing central venous pressure (5.5 ± 07 to 0.2 ± 0.6 mmHg) accompanied by minor decreases in mean arterial pressure (all P < 0.05). The heat stress reduced the blood volume of the heart (18 ± 2%), heart plus central vasculature (17 ± 2%), thorax (14 ± 2%), inferior vena cava (23 ± 2%) and liver (23 ± 2%) (all P≤ 0.005 relative to time control subjects). Radionuclide multiple-gated acquisition assessment revealed that heat stress did not significantly change left ventricular end-diastolic volume, while ventricular end-systolic volume was reduced by 24 ± 6% of pre-heat stress levels (P < 0.001 relative to time control subjects). Thus, heat stress increased left ventricular ejection fraction from 60 ± 1% to 68 ± 2% (P= 0.02). We conclude that heat stress shifts blood volume from thoracic and splanchnic regions presumably to aid in heat dissipation, while simultaneously increasing heart rate and ejection fraction. PMID:17962331

  19. Method and apparatus for millimeter-wave detection of thermal waves for materials evaluation

    DOEpatents

    Gopalsami, Nachappa; Raptis, Apostolos C.

    1991-01-01

    A method and apparatus for generating thermal waves in a sample and for measuring thermal inhomogeneities at subsurface levels using millimeter-wave radiometry. An intensity modulated heating source is oriented toward a narrow spot on the surface of a material sample and thermal radiation in a narrow volume of material around the spot is monitored using a millimeter-wave radiometer; the radiometer scans the sample point-by-point and a computer stores and displays in-phase and quadrature phase components of thermal radiations for each point on the scan. Alternatively, an intensity modulated heating source is oriented toward a relatively large surface area in a material sample and variations in thermal radiation within the full field of an antenna array are obtained using an aperture synthesis radiometer technique.

  20. Multiphase numerical analysis of heat pipe with different working fluids for solar applications

    NASA Astrophysics Data System (ADS)

    Aswath, S.; Netaji Naidu, V. H.; Padmanathan, P.; Raja Sekhar, Y.

    2017-11-01

    Energy crisis is a prognosis predicted in many cases with the indiscriminate encroachment of conventional energy sources for applications on a massive scale. This prediction, further emboldened by the marked surge in global average temperatures, attributed to climate change and global warming, the necessity to conserve the environment and explore alternate sources of energy is at an all-time high. Despite being among the lead candidates for such sources, solar energy is utilized far from its vast potential possibilities due to predominant economic constraints. Even while there is a growing need for solar panels at more affordable rates, the other options to harness better out of sun’s energy is to optimize and improvise existing technology. One such technology is the heat pipe used in Evacuated Tube Collectors (ETC). The applications of heat pipe have been gaining momentum in various fields since its inception and substantial volumes of research have explored optimizing and improving the technology which is proving effective in heat recovery and heat transfer better than conventional systems. This paper carries out a computational analysis on a comparative simulation between two working fluids within heat pipe of same geometry. It further endeavors to study the multiphase transitions within the heat pipe. The work is carried out using ANSYS Fluent with inputs taken from solar data for the location of Vellore, Tamil Nadu. A wickless, gravity-assisted heat pipe (GAHP) is taken for the simulation. Water and ammonia are used as the working fluids for comparative multiphase analysis to arrive at the difference in heat transfer at the condenser section. It is demonstrated that a heat pipe ETC with ammonia as working fluid showed higher heat exchange (temperature difference) as against that of water as working fluid. The multiphase model taken aided in study of phase transitions within both cases and supported the result of ammonia as fluid being a better candidate.

  1. Molar heat capacity at constant volume of 1,1-difluoroethane (R152a) and 1,1,1-trifluoroethane (R143a) from the triple-point temperature to 345 k at pressure to 35 MPa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magee, J.W.

    1998-09-01

    Molar heat capacities at constant volume (C{sub v}) of 1,1-difluoroethane (R152a) and 1,1,1-trifluoroethane (R143a) have been measured with an adiabatic calorimeter. Temperatures ranged from their triple points to 345 K, and pressures up to 35 MPa. Measurements were conducted on the liquid in equilibrium with its vapor and on compressed liquid samples. The samples were of high purity, verified by chemical analysis of each fluid. For the samples, calorimetric results were obtained for two-phase (C{sub v}{sup (2)}), saturated-liquid (C{sub {sigma}} or C{sub x}{prime}), and single-phase (C{sub v}) molar heat capacities. The C{sub {sigma}} data were used to estimate vapor pressuresmore » for values less than 105 kPa by applying a thermodynamic relationship between the saturated liquid heat capacity and the temperature derivatives of the vapor pressure. The triple-point temperature and the enthalpy of fusion were also measured for each substance. The principal sources of uncertainty are the temperature rise measurement and the change-of-volume work adjustment. The expanded relative uncertainty (with a coverage factor k = 2 and thus a two-standard deviation estimate) for C{sub v} is estimated to be 0.7%, for C{sub v}{sup (2)} it is 0.5%, and for C{sub {sigma}} it is 0.7%.« less

  2. Exoskeleton may influence the internal body temperatures of Neotropical dung beetles (Col. Scarabaeinae)

    PubMed Central

    Amore, Valentina; Hernández, Malva I.M.; Carrascal, Luis M.

    2017-01-01

    The insect exoskeleton is a multifunctional coat with a continuum of mechanical and structural properties constituting the barrier between electromagnetic waves and the internal body parts. This paper examines the ability of beetle exoskeleton to regulate internal body temperature considering its thermal permeability or isolation to simulated solar irradiance and infrared radiation. Seven Neotropical species of dung beetles (Coleoptera, Scarabaeinae) differing in colour, surface sculptures, size, sexual dimorphism, period of activity, guild category and altitudinal distribution were studied. Specimens were repeatedly subjected to heating trials under simulated solar irradiance and infrared radiation using a halogen neodymium bulb light with a balanced daylight spectrum and a ceramic infrared heat emitter. The volume of exoskeleton and its weight per volume unit were significantly more important for the heating rate at the beginning of the heating process than for the asymptotic maximum temperature reached at the end of the trials: larger beetles with relatively thicker exoskeletons heated more slowly. The source of radiation greatly influences the asymptotic temperature reached, but has a negligible effect in determining the rate of heat gain by beetles: they reached higher temperatures under artificial sunlight than under infrared radiation. Interspecific differences were negligible in the heating rate but had a large magnitude effect on the asymptotic temperature, only detectable under simulated sun irradiance. The fact that sun irradiance is differentially absorbed dorsally and transformed into heat among species opens the possibility that differences in dorsal exoskeleton would facilitate the heat gain under restrictive environmental temperatures below the preferred ones. The findings provided by this study support the important role played by the exoskeleton in the heating process of beetles, a cuticle able to act passively in the thermal control of body temperature without implying energetic costs and metabolic changes. PMID:28533987

  3. Exoskeleton may influence the internal body temperatures of Neotropical dung beetles (Col. Scarabaeinae).

    PubMed

    Amore, Valentina; Hernández, Malva I M; Carrascal, Luis M; Lobo, Jorge M

    2017-01-01

    The insect exoskeleton is a multifunctional coat with a continuum of mechanical and structural properties constituting the barrier between electromagnetic waves and the internal body parts. This paper examines the ability of beetle exoskeleton to regulate internal body temperature considering its thermal permeability or isolation to simulated solar irradiance and infrared radiation. Seven Neotropical species of dung beetles (Coleoptera, Scarabaeinae) differing in colour, surface sculptures, size, sexual dimorphism, period of activity, guild category and altitudinal distribution were studied. Specimens were repeatedly subjected to heating trials under simulated solar irradiance and infrared radiation using a halogen neodymium bulb light with a balanced daylight spectrum and a ceramic infrared heat emitter. The volume of exoskeleton and its weight per volume unit were significantly more important for the heating rate at the beginning of the heating process than for the asymptotic maximum temperature reached at the end of the trials: larger beetles with relatively thicker exoskeletons heated more slowly. The source of radiation greatly influences the asymptotic temperature reached, but has a negligible effect in determining the rate of heat gain by beetles: they reached higher temperatures under artificial sunlight than under infrared radiation. Interspecific differences were negligible in the heating rate but had a large magnitude effect on the asymptotic temperature, only detectable under simulated sun irradiance. The fact that sun irradiance is differentially absorbed dorsally and transformed into heat among species opens the possibility that differences in dorsal exoskeleton would facilitate the heat gain under restrictive environmental temperatures below the preferred ones. The findings provided by this study support the important role played by the exoskeleton in the heating process of beetles, a cuticle able to act passively in the thermal control of body temperature without implying energetic costs and metabolic changes.

  4. A Second Law Based Unstructured Finite Volume Procedure for Generalized Flow Simulation

    NASA Technical Reports Server (NTRS)

    Majumdar, Alok

    1998-01-01

    An unstructured finite volume procedure has been developed for steady and transient thermo-fluid dynamic analysis of fluid systems and components. The procedure is applicable for a flow network consisting of pipes and various fittings where flow is assumed to be one dimensional. It can also be used to simulate flow in a component by modeling a multi-dimensional flow using the same numerical scheme. The flow domain is discretized into a number of interconnected control volumes located arbitrarily in space. The conservation equations for each control volume account for the transport of mass, momentum and entropy from the neighboring control volumes. In addition, they also include the sources of each conserved variable and time dependent terms. The source term of entropy equation contains entropy generation due to heat transfer and fluid friction. Thermodynamic properties are computed from the equation of state of a real fluid. The system of equations is solved by a hybrid numerical method which is a combination of simultaneous Newton-Raphson and successive substitution schemes. The paper also describes the application and verification of the procedure by comparing its predictions with the analytical and numerical solution of several benchmark problems.

  5. Vapor Transport Through Fractures and Other High-Permeability Paths: Its Role in the Drift Scale Test at Yucca Mountain, Nevada

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, S.; Tsang, Y. W.

    2001-12-01

    Heating unsaturated fractured tuff sets off a series of complicated thermal-hydrological (TH) processes, which result in large-scale redistribution of moisture in the host rock. Moisture redistribution arises from boiling of water near heat sources, transport of vapor away from those heat sources, condensation of that vapor in cooler rock, and subsequent gravity drainage of condensate through fractures. Vapor transport through high-permeability paths, which include both the fractures in the rock and other conduits, contributes to the evolution of these TH processes in two ways. First, the highly permeable natural fractures provide easy passage for vapor away from the heat sources. Second, these fractures and other highly permeable conduits allow vapor (and the associated energy) to escape the rock through open boundaries of the test domain. The overall impact of vapor transport on the evolution of the TH processes can be more easily understood in the context of the Drift Scale Test (DST), the largest ever in situ heater test in unsaturated fractured tuff. The DST, in which a large volume of rock has been heated for four years now, is located in the middle nonlithophysal (Tptpmn) stratigraphic unit of Yucca Mountain, Nevada. The fractured tuff in Tptpmn contains many well-connected fractures. In the DST, heating is provided by nine cannister heaters placed in a five-meter-diameter Heated Drift (HD) and fifty wing heaters installed orthogonal to the axis of the HD. The test has many instrumentation boreholes, some of which are not sealed by packers or grout and may provide passage for vapor and energy. Of these conduits, the boreholes housing the wing heaters are most important for vapor transport because of their proximity to heat sources. While part of the vapor generated by heating moves away from the heat sources through the fractures and condenses elsewhere in the rock, the rest of the vapor, under gas-pressure difference, enters the HD by way of the high-permeability wing heater boreholes and escapes the test block through an open bulkhead that connects the HD to the outside world. We show that this vapor transport makes a significant difference in the validation of numerical models against TH processes in the DST. A huge volume of data, including changes in temperature and saturation of the rock, has been collected from the DST. Sophisticated conceptual and numerical models, based on the TOUGH2 simulator, have been developed to analyze these data and to help develop a better understanding of various aspects of coupled TH processes in unsaturated fractured tuff. In general, these models have predicted a close match between measured and simulated results, indicating a good representation of the underlying physical processes. However, there are subtle differences in the predictions from these models. Of particular interest here are two models: One in which vapor transport was considered through the natural fractures only, and the other in which vapor transport through the boreholes housing the wing heaters was included in addition to that through natural fractures. Direct statistical comparison of simulated and measured temperatures from more than 1,700 sensors yielded a mean error of 3-4oC for the first model, indicating that less heat was retained in the test block than that predicted by the model. On the other hand, a similar statistical comparison yielded a mean error of 1-2oC for the second model, suggesting that inclusion of vapor loss through the boreholes produces results closer to the measured data.

  6. Nonlinear Conservation Laws and Finite Volume Methods

    NASA Astrophysics Data System (ADS)

    Leveque, Randall J.

    Introduction Software Notation Classification of Differential Equations Derivation of Conservation Laws The Euler Equations of Gas Dynamics Dissipative Fluxes Source Terms Radiative Transfer and Isothermal Equations Multi-dimensional Conservation Laws The Shock Tube Problem Mathematical Theory of Hyperbolic Systems Scalar Equations Linear Hyperbolic Systems Nonlinear Systems The Riemann Problem for the Euler Equations Numerical Methods in One Dimension Finite Difference Theory Finite Volume Methods Importance of Conservation Form - Incorrect Shock Speeds Numerical Flux Functions Godunov's Method Approximate Riemann Solvers High-Resolution Methods Other Approaches Boundary Conditions Source Terms and Fractional Steps Unsplit Methods Fractional Step Methods General Formulation of Fractional Step Methods Stiff Source Terms Quasi-stationary Flow and Gravity Multi-dimensional Problems Dimensional Splitting Multi-dimensional Finite Volume Methods Grids and Adaptive Refinement Computational Difficulties Low-Density Flows Discrete Shocks and Viscous Profiles Start-Up Errors Wall Heating Slow-Moving Shocks Grid Orientation Effects Grid-Aligned Shocks Magnetohydrodynamics The MHD Equations One-Dimensional MHD Solving the Riemann Problem Nonstrict Hyperbolicity Stiffness The Divergence of B Riemann Problems in Multi-dimensional MHD Staggered Grids The 8-Wave Riemann Solver Relativistic Hydrodynamics Conservation Laws in Spacetime The Continuity Equation The 4-Momentum of a Particle The Stress-Energy Tensor Finite Volume Methods Multi-dimensional Relativistic Flow Gravitation and General Relativity References

  7. Ventilatory changes during the use of heat and moisture exchangers in patients submitted to mechanical ventilation with support pressure and adjustments in ventilation parameters to compensate for these possible changes: a self-controlled intervention study in humans.

    PubMed

    Lucato, Jeanette Janaina Jaber; Cunha, Thiago Marraccini Nogueira da; Reis, Aline Mela Dos; Picanço, Patricia Salerno de Almeida; Barbosa, Renata Cléia Claudino; Liberali, Joyce; Righetti, Renato Fraga

    2017-01-01

    To evaluate the possible changes in tidal volume, minute volume and respiratory rate caused by the use of a heat and moisture exchanger in patients receiving pressure support mechanical ventilation and to quantify the variation in pressure support required to compensate for the effect caused by the heat and moisture exchanger. Patients under invasive mechanical ventilation in pressure support mode were evaluated using heated humidifiers and heat and moisture exchangers. If the volume found using the heat and moisture exchangers was lower than that found with the heated humidifier, an increase in pressure support was initiated during the use of the heat and moisture exchanger until a pressure support value was obtained that enabled the patient to generate a value close to the initial tidal volume obtained with the heated humidifier. The analysis was performed by means of the paired t test, and incremental values were expressed as percentages of increase required. A total of 26 patients were evaluated. The use of heat and moisture exchangers increased the respiratory rate and reduced the tidal and minute volumes compared with the use of the heated humidifier. Patients required a 38.13% increase in pressure support to maintain previous volumes when using the heat and moisture exchanger. The heat and moisture exchanger changed the tidal and minute volumes and respiratory rate parameters. Pressure support was increased to compensate for these changes.

  8. Ventilatory changes during the use of heat and moisture exchangers in patients submitted to mechanical ventilation with support pressure and adjustments in ventilation parameters to compensate for these possible changes: a self-controlled intervention study in humans

    PubMed Central

    Lucato, Jeanette Janaina Jaber; da Cunha, Thiago Marraccini Nogueira; dos Reis, Aline Mela; Picanço, Patricia Salerno de Almeida; Barbosa, Renata Cléia Claudino; Liberali, Joyce; Righetti, Renato Fraga

    2017-01-01

    Objective To evaluate the possible changes in tidal volume, minute volume and respiratory rate caused by the use of a heat and moisture exchanger in patients receiving pressure support mechanical ventilation and to quantify the variation in pressure support required to compensate for the effect caused by the heat and moisture exchanger. Methods Patients under invasive mechanical ventilation in pressure support mode were evaluated using heated humidifiers and heat and moisture exchangers. If the volume found using the heat and moisture exchangers was lower than that found with the heated humidifier, an increase in pressure support was initiated during the use of the heat and moisture exchanger until a pressure support value was obtained that enabled the patient to generate a value close to the initial tidal volume obtained with the heated humidifier. The analysis was performed by means of the paired t test, and incremental values were expressed as percentages of increase required. Results A total of 26 patients were evaluated. The use of heat and moisture exchangers increased the respiratory rate and reduced the tidal and minute volumes compared with the use of the heated humidifier. Patients required a 38.13% increase in pressure support to maintain previous volumes when using the heat and moisture exchanger. Conclusion The heat and moisture exchanger changed the tidal and minute volumes and respiratory rate parameters. Pressure support was increased to compensate for these changes. PMID:28977257

  9. Parametric System Model for a Stirling Radioisotope Generator

    NASA Technical Reports Server (NTRS)

    Schmitz, Paul C.

    2015-01-01

    A Parametric System Model (PSM) was created in order to explore conceptual designs, the impact of component changes and power level on the performance of the Stirling Radioisotope Generator (SRG). Using the General Purpose Heat Source (GPHS approximately 250 Wth) modules as the thermal building block from which a SRG is conceptualized, trade studies are performed to understand the importance of individual component scaling on isotope usage. Mathematical relationships based on heat and power throughput, temperature, mass, and volume were developed for each of the required subsystems. The PSM uses these relationships to perform component- and system-level trades.

  10. Parametric System Model for a Stirling Radioisotope Generator

    NASA Technical Reports Server (NTRS)

    Schmitz, Paul C.

    2014-01-01

    A Parametric System Model (PSM) was created in order to explore conceptual designs, the impact of component changes and power level on the performance of Stirling Radioisotope Generator (SRG). Using the General Purpose Heat Source (GPHS approximately 250 watt thermal) modules as the thermal building block around which a SRG is conceptualized, trade studies are performed to understand the importance of individual component scaling on isotope usage. Mathematical relationships based on heat and power throughput, temperature, mass and volume were developed for each of the required subsystems. The PSM uses these relationships to perform component and system level trades.

  11. Heat transfer measurements for Stirling machine cylinders

    NASA Technical Reports Server (NTRS)

    Kornhauser, Alan A.; Kafka, B. C.; Finkbeiner, D. L.; Cantelmi, F. C.

    1994-01-01

    The primary purpose of this study was to measure the effects of inflow-produced heat turbulence on heat transfer in Stirling machine cylinders. A secondary purpose was to provide new experimental information on heat transfer in gas springs without inflow. The apparatus for the experiment consisted of a varying-volume piston-cylinder space connected to a fixed volume space by an orifice. The orifice size could be varied to adjust the level of inflow-produced turbulence, or the orifice plate could be removed completely so as to merge the two spaces into a single gas spring space. Speed, cycle mean pressure, overall volume ratio, and varying volume space clearance ratio could also be adjusted. Volume, pressure in both spaces, and local heat flux at two locations were measured. The pressure and volume measurements were used to calculate area averaged heat flux, heat transfer hysteresis loss, and other heat transfer-related effects. Experiments in the one space arrangement extended the range of previous gas spring tests to lower volume ratio and higher nondimensional speed. The tests corroborated previous results and showed that analytic models for heat transfer and loss based on volume ratio approaching 1 were valid for volume ratios ranging from 1 to 2, a range covering most gas springs in Stirling machines. Data from experiments in the two space arrangement were first analyzed based on lumping the two spaces together and examining total loss and averaged heat transfer as a function of overall nondimensional parameter. Heat transfer and loss were found to be significantly increased by inflow-produced turbulence. These increases could be modeled by appropriate adjustment of empirical coefficients in an existing semi-analytic model. An attempt was made to use an inverse, parameter optimization procedure to find the heat transfer in each of the two spaces. This procedure was successful in retrieving this information from simulated pressure-volume data with artificially generated noise, but it failed with the actual experimental data. This is evidence that the models used in the parameter optimization procedure (and to generate the simulated data) were not correct. Data from the surface heat flux sensors indicated that the primary shortcoming of these models was that they assumed turbulence levels to be constant over the cycle. Sensor data in the varying volume space showed a large increase in heat flux, probably due to turbulence, during the expansion stroke.

  12. 40 CFR Table 1 to Subpart Ja of... - Molar Exhaust Volumes and Molar Heat Content of Fuel Gas Constituents

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Molar Exhaust Volumes and Molar Heat... Exhaust Volumes and Molar Heat Content of Fuel Gas Constituents Constituent MEVa dscf/mol MHCb Btu/mol... standard conditions of 68 °F and 1 atmosphere. b MHC = molar heat content (higher heating value basis), Btu...

  13. 40 CFR Table 1 to Subpart Ja of... - Molar Exhaust Volumes and Molar Heat Content of Fuel Gas Constituents

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Molar Exhaust Volumes and Molar Heat... Exhaust Volumes and Molar Heat Content of Fuel Gas Constituents Constituent MEVa dscf/mol MHCb Btu/mol... standard conditions of 68 °F and 1 atmosphere. b MHC = molar heat content (higher heating value basis), Btu...

  14. The relationship between crustal tectonics and internal evolution in the moon and Mercury

    NASA Technical Reports Server (NTRS)

    Solomon, S. C.

    1977-01-01

    The relationship between crustal tectonics and thermal evolution is discussed in terms of the moon and Mercury. Finite strain theory and depth and temperature-dependent thermal expansion are used to evaluate previous conclusions about early lunar history. Factors bringing about core differentiation in the first 0.6 b.y. of Mercurian evolution are described. The influence of concentrating radioactive heat sources located in Mercury's crust on the predicted contraction is outlined. The predicted planetary volume change is explored with regard to quantitative limits on the extent of Mercurian core solidification. Lunar and Mercurian thermal stresses involved in thermal evolution are reviewed, noting the history of surface volcanism. It is concluded that surface faulting and volcanism are closely associated with the thermal evolution of the whole planetary volume. As the planet cools or is heated, several types of tectonic and volcanic effects may be produced by thermal stress occurring in the lithosphere.

  15. Analysis of the Factors Contributing to the Heat Observed in Electrochemical Cells used in Condensed Matter Nuclear Science (CMNS)

    NASA Astrophysics Data System (ADS)

    Al Katrib, Amal K.

    This paper discusses two types of study conducted by student in an attempt to support, or refute, hypotheses of possible sources behind the excess heat observed in CMNS experiments. The first study involves a study of over 200 papers in CMNS. This was initiated due to the concern of some critics of CMNS research that small energy changes in many H2O or D2O molecules in electrochemical cells can explain the observed excess heat. It was determined that 65% of the 17 papers that documented excess energy and cell volume values rendered ratios that exceed the vibrational energy of water molecules at room temperature (0.04eV/molecule), with the highest ratio being 43.6eV/molecule. Such ratios are far beyond what is plausible for water to be the source of anomalous heat. Therefore, it is concluded that some unknown rearrangement of water molecules in many CMNS papers is not the source of excess heat. This can be used to rule out the molecular rearrangement hypothesis used to explain the source of observed excess heat, which is the main objective of the first study. Other objectives for the 1st study include the generation of a database of those 335 papers in CMNS and a study of the possibility of any correlation between energy and cell volume based on data extracted from those papers. The second study involves the usage of spectroscopy methods, particularly UV-VIS, in identifying chemical reactions present within a typical CMNS electrochemical cell. Electrolysis of Mel Miles' chemical recipe (a Pd co-deposition system) was conducted. Both absorption and emission measurements were obtained for the overall solution and for the reference chemicals involved in an attempt to find a correlation between spectra and thus determine the specific chemical reactions involved in every stage. The absorption experiment rendered unreliable spectral data due to instrumentation/UV-VIS limitations, concentration effects, environmental factors, and human error. Therefore, it is concluded that absorption offers very little utility in identifying chemical reactions. The emission experiment was initiated but not fully finished; nonetheless, it showed better data, thus rendering it a more viable approach in chemical analysis than absorption. Several vibronic progression and lone peaks were clearly discernable in emission spectra. Without remediation and a follow-up study, recurring instrumentation/UV-VIS issues proscribe drawing conclusions; however, emission shows to be promising and can be later used to conclusively refute, or support, the chemical reactions hypothesis.

  16. Computational studies for a multiple-frequency electron cyclotron resonance ion source (abstract)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alton, G.D.

    1996-03-01

    The number density of electrons, the energy (electron temperature), and energy distribution are three of the fundamental properties which govern the performance of electron cyclotron resonance (ECR) ion sources in terms of their capability to produce high charge state ions. The maximum electron energy is affected by several processes including the ability of the plasma to absorb power. In principle, the performances of an ECR ion source can be realized by increasing the physical size of the ECR zone in relation to the total plasma volume. The ECR zones can be increased either in the spatial or frequency domains inmore » any ECR ion source based on B-minimum plasma confinement principles. The former technique requires the design of a carefully tailored magnetic field geometry so that the central region of the plasma volume is a large, uniformly distributed plasma volume which surrounds the axis of symmetry, as proposed in Ref. . Present art forms of the ECR source utilize single frequency microwave power supplies to maintain the plasma discharge; because the magnetic field distribution continually changes in this source design, the ECR zones are relegated to thin {open_quote}{open_quote}surfaces{close_quote}{close_quote} which surround the axis of symmetry. As a consequence of the small ECR zone in relation to the total plasma volume, the probability for stochastic heating of the electrons is quite low, thereby compromising the source performance. This handicap can be overcome by use of broadband, multiple frequency microwave power as evidenced by the enhanced performances of the CAPRICE and AECR ion sources when two frequency microwave power was utilized. We have used particle-in-cell codes to simulate the magnetic field distributions in these sources and to demonstrate the advantages of using multiple, discrete frequencies over single frequencies to power conventional ECR ion sources. (Abstract Truncated)« less

  17. Humidification and secretion volume in mechanically ventilated patients.

    PubMed

    Solomita, Mario; Palmer, Lucy B; Daroowalla, Feroza; Liu, Jeffrey; Miller, Dori; LeBlanc, Deniese S; Smaldone, Gerald C

    2009-10-01

    To determine potential effects of humidification on the volume of airway secretions in mechanically ventilated patients. Water vapor delivery from devices providing non-heated-wire humidification, heated-wire humidification, and heat and moisture exchanger (HME) were quantified on the bench. Then, patients requiring 24-hour mechanical ventilation were exposed sequentially to each of these humidification devices, and secretions were removed and measured by suctioning every hour during the last 4 hours of the 24-hour study period. In vitro water vapor delivery was greater using non-heated-wire humidification, compared to heated-wire humidification and HME. In vivo, a total of 9 patients were studied. Secretion volume following humidification by non-heated-wire humidification was significantly greater than for heated-wire humidification and HME (P=.004). The volume of secretions appeared to be linked to humidification, as greater water vapor delivery measured in vitro was associated with greater secretion volume in vivo.

  18. Thermo-mechanical concepts applied to modeling liquid propellant rocket engine stability

    NASA Astrophysics Data System (ADS)

    Kassoy, David R.; Norris, Adam

    2016-11-01

    The response of a gas to transient, spatially distributed energy addition can be quantified mathematically using thermo-mechanical concepts available in the literature. The modeling demonstrates that the ratio of the energy addition time scale to the acoustic time scale of the affected volume, and the quantity of energy added to that volume during the former determine the whether the responses to heating can be described as occurring at nearly constant volume, fully compressible or nearly constant pressure. Each of these categories is characterized by significantly different mechanical responses. Application to idealized configurations of liquid propellant rocket engines provides an opportunity to identify physical conditions compatible with gasdynamic disturbances that are sources of engine instability. Air Force Office of Scientific Research.

  19. INTRACORPOREAL HEAT DISSIPATION FROM A RADIOISOTOPE-POWERED ARTIFICIAL HEART.

    PubMed

    Huffman, Fred N.; Hagen, Kenneth G.; Whalen, Robert L.; Fuqua, John M.; Norman, John C.

    1974-01-01

    The feasibility of radioisotope-fueled circulatory support systems depends on the ability of the body to dissipate the reject heat from the power source driving the blood pump as well as to tolerate chronic intracorporeal radiation. Our studies have focused on the use of the circulating blood as a heat sink. Initial in vivo heat transfer studies utilized straight tube heat exchangers (electrically and radioisotope energized) to replace a segment of the descending aorta. More recent studies have used a left ventricular assist pump as a blood-cooled heat exchanger. This approach minimizes trauma, does not increase the area of prosthetic interface with the blood, and minimizes system volume. Heat rejected from the thermal engine (vapor or gas cycle) is transported from the nuclear power source in the abdomen to the pump in the thoracic cavity via hydraulic lines. Adjacent tissue is protected from the fuel capsule temperature (900 to 1200 degrees F) by vacuum foil insulation and polyurethane foam. The in vivo thermal management problems have been studied using a simulated thermal system (STS) which approximates the heat rejection and thermal transport mechanisms of the nuclear circulatory support systems under development by NHLI. Electric heaters simulate the reject heat from the thermal engines. These studies have been essential in establishing the location, suspension, surgical procedures, and postoperative care for implanting prototype nuclear heart assist systems in calves. The pump has a thermal impedance of 0.12 degrees C/watt. Analysis of the STS data in terms of an electrical analog model implies a heat transfer coefficient of 4.7 x 10(-3) watt/cm(2) degrees C in the abdomen compared to a value of 14.9 x 10(-3) watt/cm(2) degrees C from the heat exchanger plenum into the diaphragm.

  20. District heating and cooling systems for communities through power plant retrofit distribution network, Phase 2. Final report, 1 March 1980-31 January 1984. Volume II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1984-01-31

    This volume begins with an Introduction summarizing the history, methodology and scope of the study, the project team members and the private and public groups consulted in the course of the study. The Load and Service Area Assessment follows, including: a compilation and analysis of existing statistical thermal load data from census data, industrial directories, PSE and G records and other sources; an analysis of responses to a detailed, 4-page thermal load questionnaire; data on public buildings and fuel and energy use provided by the New Jersey Dept. of Energy; and results of other customer surveys conducted by PSE andmore » G. A discussion of institutional questions follows. The general topic of rates is then discussed, including a draft hypothetical Tariff for Thermal Services. Financial considerations are discussed including a report identifying alternative ownership/financing options for district heating systems and the tax implications of these options. Four of these options were then selected by PSE and G and a financial (cash-flow) analysis done (by the PSE and G System Planning Dept.) in comparison with a conventional heating alternative. Year-by-year cost of heat ($/10/sup 6/ Btu) was calculated and tabulated, and the various options compared.« less

  1. Finite Volume Element (FVE) discretization and multilevel solution of the axisymmetric heat equation

    NASA Astrophysics Data System (ADS)

    Litaker, Eric T.

    1994-12-01

    The axisymmetric heat equation, resulting from a point-source of heat applied to a metal block, is solved numerically; both iterative and multilevel solutions are computed in order to compare the two processes. The continuum problem is discretized in two stages: finite differences are used to discretize the time derivatives, resulting is a fully implicit backward time-stepping scheme, and the Finite Volume Element (FVE) method is used to discretize the spatial derivatives. The application of the FVE method to a problem in cylindrical coordinates is new, and results in stencils which are analyzed extensively. Several iteration schemes are considered, including both Jacobi and Gauss-Seidel; a thorough analysis of these schemes is done, using both the spectral radii of the iteration matrices and local mode analysis. Using this discretization, a Gauss-Seidel relaxation scheme is used to solve the heat equation iteratively. A multilevel solution process is then constructed, including the development of intergrid transfer and coarse grid operators. Local mode analysis is performed on the components of the amplification matrix, resulting in the two-level convergence factors for various combinations of the operators. A multilevel solution process is implemented by using multigrid V-cycles; the iterative and multilevel results are compared and discussed in detail. The computational savings resulting from the multilevel process are then discussed.

  2. Molar heat capacity at constant volume of difluoromethane (R32) and pentafluoroethane (R125) from the triple-point temperature to 345 K at pressures to 35 MPa

    NASA Astrophysics Data System (ADS)

    Lüddecke, T. O.; Magee, J. W.

    1996-07-01

    Molar heat capacities at constant volume ( C v) of dill uoromethane (R32) and pentalluoroethane (R125) were measured with an adiabatic calorimeter. Temperatures ranged from their triple points to 345 K, and pressures up to 35 MPa. Measurements were conducted on the liquid in equilibrium with its vapor and on compressed liquid samples. The samples were of a high purity, verified by chemical analysis of each fluid. For the samples, calorimetric results were obtained for two-phase ( C {v/(2)}), saturated liquid ( C σ or C' x ), and singlephase ( C v) molar heat capacities. The C σ data were used to estimate vapor pressures for values less than 0.3 MPa by applying a thermodynamic relationship between the saturated liquid heat capacity and the temperature derivatives of the vapor pressure. The triple-point temperature ( T tr) and the enthalpy of fusion (Δfus H) were also measured for each substance. The principal sources of uncertainty are the temperature rise measurement and the change-ofvolume work adjustment. The expanded uncertainty (at the two-sigma level) for C v is estimated to be 0.7%, for C {v/(2)} it is 0.5%, and for C σ it is 0.7%.

  3. Microscale Regenerative Heat Exchanger

    NASA Technical Reports Server (NTRS)

    Moran, Matthew E.; Stelter, Stephan; Stelter, Manfred

    2006-01-01

    The device described herein is designed primarily for use as a regenerative heat exchanger in a miniature Stirling engine or Stirling-cycle heat pump. A regenerative heat exchanger (sometimes called, simply, a "regenerator" in the Stirling-engine art) is basically a thermal capacitor: Its role in the Stirling cycle is to alternately accept heat from, then deliver heat to, an oscillating flow of a working fluid between compression and expansion volumes, without introducing an excessive pressure drop. These volumes are at different temperatures, and conduction of heat between these volumes is undesirable because it reduces the energy-conversion efficiency of the Stirling cycle.

  4. Fractional watt Vuillemier cryogenic refrigerator program engineering notebook. Volume 1: Thermal analysis

    NASA Technical Reports Server (NTRS)

    Miller, W. S.

    1974-01-01

    The cryogenic refrigerator thermal design calculations establish design approach and basic sizing of the machine's elements. After the basic design is defined, effort concentrates on matching the thermodynamic design with that of the heat transfer devices (heat exchangers and regenerators). Typically, the heat transfer device configurations and volumes are adjusted to improve their heat transfer and pressure drop characteristics. These adjustments imply that changes be made to the active displaced volumes, compensating for the influence of the heat transfer devices on the thermodynamic processes of the working fluid. Then, once the active volumes are changed, the heat transfer devices require adjustment to account for the variations in flows, pressure levels, and heat loads. This iterative process is continued until the thermodynamic cycle parameters match the design of the heat transfer devices. By examing several matched designs, a near-optimum refrigerator is selected.

  5. Detection of Temperature Difference in Neuronal Cells.

    PubMed

    Tanimoto, Ryuichi; Hiraiwa, Takumi; Nakai, Yuichiro; Shindo, Yutaka; Oka, Kotaro; Hiroi, Noriko; Funahashi, Akira

    2016-03-01

    For a better understanding of the mechanisms behind cellular functions, quantification of the heterogeneity in an organism or cells is essential. Recently, the importance of quantifying temperature has been highlighted, as it correlates with biochemical reaction rates. Several methods for detecting intracellular temperature have recently been established. Here we develop a novel method for sensing temperature in living cells based on the imaging technique of fluorescence of quantum dots. We apply the method to quantify the temperature difference in a human derived neuronal cell line, SH-SY5Y. Our results show that temperatures in the cell body and neurites are different and thus suggest that inhomogeneous heat production and dissipation happen in a cell. We estimate that heterogeneous heat dissipation results from the characteristic shape of neuronal cells, which consist of several compartments formed with different surface-volume ratios. Inhomogeneous heat production is attributable to the localization of specific organelles as the heat source.

  6. First results of the ITER-relevant negative ion beam test facility ELISE (invited).

    PubMed

    Fantz, U; Franzen, P; Heinemann, B; Wünderlich, D

    2014-02-01

    An important step in the European R&D roadmap towards the neutral beam heating systems of ITER is the new test facility ELISE (Extraction from a Large Ion Source Experiment) for large-scale extraction from a half-size ITER RF source. The test facility was constructed in the last years at Max-Planck-Institut für Plasmaphysik Garching and is now operational. ELISE is gaining early experience of the performance and operation of large RF-driven negative hydrogen ion sources with plasma illumination of a source area of 1 × 0.9 m(2) and an extraction area of 0.1 m(2) using 640 apertures. First results in volume operation, i.e., without caesium seeding, are presented.

  7. Bonding of glass with femtosecond laser pulses at high repetition rates

    NASA Astrophysics Data System (ADS)

    Richter, S.; Döring, S.; Tünnermann, A.; Nolte, S.

    2011-05-01

    We report on the welding of fused silica with ultrashort laser pulses at high repetition rates. Femtosecond laser pulses were focused at the interface of two optically contacted fused silica samples. Due to the nonlinear absorption in the focal volume and heat accumulation of successive pulses, the laser acts as a localized heat source at the focus position. Here, we analyze the influence of the laser and processing parameters on the amount of molten material. Moreover, we determine the achievable breaking stress by a three point bending test. With optimized parameters up to 75% of the breaking stress of the bulk material have been obtained.

  8. Process feasibility study in support of silicon material, task 1

    NASA Technical Reports Server (NTRS)

    Li, K. Y.; Hansen, K. C.; Yaws, C. L.

    1979-01-01

    Analyses of process system properties were continued for materials involved in the alternate processes under consideration for semiconductor silicon. Primary efforts centered on physical and thermodynamic property data for dichlorosilane. The following property data are reported for dichlorosilane which is involved in processing operations for solar cell grade silicon: critical temperature, critical pressure, critical volume, critical density, acentric factor, vapor pressure, heat of vaporization, gas heat capacity, liquid heat capacity and density. Work was initiated on the assembly of a system to prepare binary gas mixtures of known proportions and to measure the thermal conductivity of these mixtures between 30 and 350 C. The binary gas mixtures include silicon source material such as silanes and halogenated silanes which are used in the production of semiconductor silicon.

  9. Measured performance of a 1089 K (1500 deg F) heat storage device for sun-shade orbital missions

    NASA Technical Reports Server (NTRS)

    Namkoong, D.

    1972-01-01

    Tubes designed for a solar heat receiver to serve as an energy source for a Brayton power system were tested for 2002 hours and 1251 sun-shade cycles. The tubes were designed to transfer a constant thermal input to the Brayton system during an orbit. Excess solar energy during a sun period is stored as heat of fusion of lithium fluoride. The niobium - 1% zirconium tubes accommodate the 23 percent volume decrease of LiF during freezing. Test results showed slight, local distortions. The gas discharge temperature varied from 16 K (29 F) below to 28 K (50 F) above the nominal value of 1089 K (1500 F). The tube surface temperatures ranged from 1039 K (1410 F) to 1183 K (1670 F).

  10. Standard Partial Molar Heat Capacities and Volumes of Barium and Cadmium Ions in Dimethylsulfoxide at 298.15 K

    NASA Astrophysics Data System (ADS)

    Novikov, A. N.; Doronin, Ya. I.; Rakhmanova, P. A.

    2018-07-01

    The heat capacities and volumes of dimethylsulfoxide (DMSO) solutions of barium and cadmium iodides at 298.15 K were measured by calorimetry and densimetry. The standard partial molar heat capacities \\bar C_{p,2}^° and volumes \\bar V2^° of BaI2 and CdI2 in DMSO were calculated. The standard heat capacities \\bar C_{p,i}^° and volumes \\bar {V}i^° of barium and cadmium ions in DMSO at 298.15 K were determined.

  11. Bifunctional thermoelectric tube made of tilted multilayer material as an alternative to standard heat exchangers.

    PubMed

    Takahashi, Kouhei; Kanno, Tsutomu; Sakai, Akihiro; Tamaki, Hiromasa; Kusada, Hideo; Yamada, Yuka

    2013-01-01

    Enormously large amount of heat produced by human activities is now mostly wasted into the environment without use. To realize a sustainable society, it is important to develop practical solutions for waste heat recovery. Here, we demonstrate that a tubular thermoelectric device made of tilted multilayer of Bi(0.5)Sb(1.5)Te3/Ni provides a promising solution. The Bi(0.5)Sb(1.5)Te3/Ni tube allows tightly sealed fluid flow inside itself, and operates in analogy with the standard shell and tube heat exchanger. We show that it achieves perfect balance between efficient heat exchange and high-power generation with a heat transfer coefficient of 4.0 kW/m(2)K and a volume power density of 10 kW/m(3) using low-grade heat sources below 100°C. The Bi(0.5)Sb(1.5)Te3/Ni tube thus serves as a power generator and a heat exchanger within a single unit, which is advantageous for developing new cogeneration systems in factories, vessels, and automobiles where cooling of excess heat is routinely carried out.

  12. Bifunctional thermoelectric tube made of tilted multilayer material as an alternative to standard heat exchangers

    PubMed Central

    Takahashi, Kouhei; Kanno, Tsutomu; Sakai, Akihiro; Tamaki, Hiromasa; Kusada, Hideo; Yamada, Yuka

    2013-01-01

    Enormously large amount of heat produced by human activities is now mostly wasted into the environment without use. To realize a sustainable society, it is important to develop practical solutions for waste heat recovery. Here, we demonstrate that a tubular thermoelectric device made of tilted multilayer of Bi0.5Sb1.5Te3/Ni provides a promising solution. The Bi0.5Sb1.5Te3/Ni tube allows tightly sealed fluid flow inside itself, and operates in analogy with the standard shell and tube heat exchanger. We show that it achieves perfect balance between efficient heat exchange and high-power generation with a heat transfer coefficient of 4.0 kW/m2K and a volume power density of 10 kW/m3 using low-grade heat sources below 100°C. The Bi0.5Sb1.5Te3/Ni tube thus serves as a power generator and a heat exchanger within a single unit, which is advantageous for developing new cogeneration systems in factories, vessels, and automobiles where cooling of excess heat is routinely carried out. PMID:23511347

  13. Effect of melter feed foaming on heat flux to the cold cap

    NASA Astrophysics Data System (ADS)

    Lee, SeungMin; Hrma, Pavel; Pokorny, Richard; Klouzek, Jaroslav; VanderVeer, Bradley J.; Dixon, Derek R.; Luksic, Steven A.; Rodriguez, Carmen P.; Chun, Jaehun; Schweiger, Michael J.; Kruger, Albert A.

    2017-12-01

    The glass production rate, which is crucial for the nuclear waste cleanup lifecycle, is influenced by the chemical and mineralogical nature of melter feed constituents. The choice of feed materials affects both the conversion heat and the thickness of the foam layer that forms at the bottom of the cold cap and controls the heat flow from molten glass. We demonstrate this by varying the alumina source, namely, substituting boehmite or corundum for gibbsite, in a high-alumina high-level-waste melter feed. The extent of foaming was determined using the volume expansion test and the conversion heat with differential scanning calorimetry. Evolved gas analysis was used to identify gases responsible for the formation of primary and secondary foam. The foam thickness, a critical factor in the rate of melting, was estimated using known values of heat conductivities and melting rates. The result was in reasonable agreement with the foam thickness experimentally observed in quenched cold caps from the laboratory-scale melter.

  14. Effect of melter feed foaming on heat flux to the cold cap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, SeungMin; Hrma, Pavel; Pokorny, Richard

    The glass production rate, which is crucial for the nuclear waste cleanup lifecycle, is influenced by the chemical and mineralogical nature of melter feed constituents. The choice of feed materials affects both the conversion heat and the thickness of the foam layer that forms at the bottom of the cold cap and controls the heat flow from molten glass. We demonstrate this by varying the alumina source, namely, substituting boehmite or corundum for gibbsite, in a high-alumina high-level-waste melter feed. The extent of foaming was determined using the volume expansion test and the conversion heat with differential scanning calorimetry. Evolvedmore » gas analysis was used to identify gases responsible for the formation of primary and secondary foam. The foam thickness, a critical factor in the rate of melting, was estimated using known values of heat conductivities and melting rates. The result was in reasonable agreement with the foam thickness experimentally observed in the laboratory-scale melter.« less

  15. Atmospheric pressure plasma processing of polymeric materials utilizing close proximity indirect exposure

    DOEpatents

    Paulauskas, Felix L.; Bonds, Truman

    2016-09-20

    A plasma treatment method that includes providing treatment chamber including an intermediate heating volume and an interior treatment volume. The interior treatment volume contains an electrode assembly for generating a plasma and the intermediate heating volume heats the interior treatment volume. A work piece is traversed through the treatment chamber. A process gas is introduced to the interior treatment volume of the treatment chamber. A plasma is formed with the electrode assembly from the process gas, wherein a reactive species of the plasma is accelerated towards the fiber tow by flow vortices produced in the interior treatment volume by the electrode assembly.

  16. 3rd Miami international conference on alternative energy sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nejat Veziroglu, T.

    1980-01-01

    The conference includes sessions on solar energy, ocean thermal energy, wind energy, hydro power, nuclear breeders and nuclear fusion, synthetic fuels from coal or wastes, hydrogen production and uses, formulation of workable policies on energy use and energy conservation, heat and energy storage, and energy education. The volume of the proceedings presents the papers and lectures in condensed format grouped by subject under forty-two sessions for 319 presentations.

  17. Hydrogen-bond memory and water-skin supersolidity resolving the Mpemba paradox.

    PubMed

    Zhang, Xi; Huang, Yongli; Ma, Zengsheng; Zhou, Yichun; Zhou, Ji; Zheng, Weitao; Jiang, Qing; Sun, Chang Q

    2014-11-14

    The Mpemba paradox, that is, hotter water freezes faster than colder water, has baffled thinkers like Francis Bacon, René Descartes, and Aristotle since B.C. 350. However, a commonly accepted understanding or theoretical reproduction of this effect remains challenging. Numerical reproduction of observations, shown herewith, confirms that water skin supersolidity [Zhang et al., Phys. Chem. Chem. Phys., DOI: ] enhances the local thermal diffusivity favoring heat flowing outwardly in the liquid path. Analysis of experimental database reveals that the hydrogen bond (O:H-O) possesses memory to emit energy at a rate depending on its initial storage. Unlike other usual materials that lengthen and soften all bonds when they absorb thermal energy, water performs abnormally under heating to lengthen the O:H nonbond and shorten the H-O covalent bond through inter-oxygen Coulomb coupling [Sun et al., J. Phys. Chem. Lett., 2013, 4, 3238]. Cooling does the opposite to release energy, like releasing a coupled pair of bungees, at a rate of history dependence. Being sensitive to the source volume, skin radiation, and the drain temperature, the Mpemba effect proceeds only in the strictly non-adiabatic 'source-path-drain' cycling system for the heat "emission-conduction-dissipation" dynamics with a relaxation time that drops exponentially with the rise of the initial temperature of the liquid source.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell Feder and Mahmoud Z. Yousef

    Neutronics analysis to find nuclear heating rates and personnel dose rates were conducted in support of the integration of diagnostics in to the ITER Upper Port Plugs. Simplified shielding models of the Visible-Infrared diagnostic and of the ECH heating system were incorporated in to the ITER global CAD model. Results for these systems are representative of typical designs with maximum shielding and a small aperture (Vis-IR) and minimal shielding with a large aperture (ECH). The neutronics discrete-ordinates code ATTILA® and SEVERIAN® (the ATTILA parallel processing version) was used. Material properties and the 500 MW D-T volume source were taken frommore » the ITER “Brand Model” MCNP benchmark model. A biased quadrature set equivelant to Sn=32 and a scattering degree of Pn=3 were used along with a 46-neutron and 21-gamma FENDL energy subgrouping. Total nuclear heating (neutron plug gamma heating) in the upper port plugs ranged between 380 and 350 kW for the Vis-IR and ECH cases. The ECH or Large Aperture model exhibited lower total heating but much higher peak volumetric heating on the upper port plug structure. Personnel dose rates are calculated in a three step process involving a neutron-only transport calculation, the generation of activation volume sources at pre-defined time steps and finally gamma transport analyses are run for selected time steps. ANSI-ANS 6.1.1 1977 Flux-to-Dose conversion factors were used. Dose rates were evaluated for 1 full year of 500 MW DT operation which is comprised of 3000 1800-second pulses. After one year the machine is shut down for maintenance and personnel are permitted to access the diagnostic interspace after 2-weeks if dose rates are below 100 μSv/hr. Dose rates in the Visible-IR diagnostic model after one day of shutdown were 130 μSv/hr but fell below the limit to 90 μSv/hr 2-weeks later. The Large Aperture or ECH style shielding model exhibited higher and more persistent dose rates. After 1-day the dose rate was 230 μSv/hr but was still at 120 μSv/hr 4-weeks later. __________________________________________________« less

  19. Numerical Study of Laminar Flow and Convective Heat Transfer Utilizing Nanofluids in Equilateral Triangular Ducts with Constant Heat Flux

    PubMed Central

    Ting, Hsien-Hung; Hou, Shuhn-Shyurng

    2016-01-01

    This study numerically investigates heat transfer augmentation using water-based Al2O3 and CuO nanofluids flowing in a triangular cross-sectional duct under constant heat flux in laminar flow conditions. The Al2O3/water nanofluids with different volume fractions (0.1%, 0.5%, 1%, 1.5%, and 2%) and CuO/water nanofluids with various volume fractions (0.05%, 0.16%, 0.36%, 0.5%, and 0.8%) are employed, and Reynolds numbers in the range of 700 to 1900 in a laminar flow are considered. The heat transfer rate becomes more remarkable when employing nanofluids. As compared with pure water, at a Peclet number of 7000, a 35% enhancement in the convective heat transfer coefficient, is obtained for an Al2O3/water nanofluid with 2% particle volume fraction; at the same Peclet number, a 41% enhancement in the convective heat transfer coefficient is achieved for a CuO/water nanofluid with 0.8% particle volume concentration. Heat transfer enhancement increases with increases in particle volume concentration and Peclet number. Moreover, the numerical results are found to be in good agreement with published experimental data. PMID:28773698

  20. Pressure effects on the structure, kinetic, and thermodynamic properties of heat-induced aggregation of protein studied by FT-IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Taniguchi, Y.; Okuno, A.; Kato, M.

    2010-03-01

    Pressure can retrain the heat-induced aggregation and dissociate the heat-induced aggregates. We observed the aggregation-preventing pressure effect and the aggregates-dissociating pressure effect to characterize the heat-induced aggregation of equine serum albumin (ESA) by FT-IR spectroscopy. The results suggest the α-helical structure collapses at the beginning of heat-induced aggregation through the swollen structure, and then the rearrangement of structure to the intermolecular β-sheet takes place through partially unfolded structure. We determined the activation volume for the heat-induced aggregation (ΔV# = +93 ml/mol) and the partial molar volume difference between native state and heat-induced aggregates (ΔV=+32 ml/mol). This positive partial molar volume difference suggests that the heat-induced aggregates have larger internal voids than the native structure. Moreover, the positive volume change implies that the formation of the intermolecular β-sheet is unfavorable under high pressure.

  1. Laboratory tests on heat treatment of ballast water using engine waste heat.

    PubMed

    Balaji, Rajoo; Lee Siang, Hing; Yaakob, Omar; Koh, Kho King; Adnan, Faizul Amri Bin; Ismail, Nasrudin Bin; Ahmad, Badruzzaman Bin; Ismail, Mohd Arif Bin; Wan Nik, W B

    2018-05-01

    Waste heat recovery from shipboard machineries could be a potential source for heat treatment of ballast water. Similar to a shipboard schematic arrangement, a laboratory-scale engine-heat exchanger set-up harvesting waste heat from jacket water and exhaust gases was erected to test the level of species' mortalities. Mortalities were also assessed under experimental conditions for cultured and natural plankton communities at laboratory level. Effect of pump impellers on species' mortalities were also tested. Exposures between 60°C and 70°C for 60 sec resulted in 80-100% mortalities. Mortalities due to pump impeller effects were observed in the range of 70-100% for zooplankton. On the laboratory-scale arrangement, >95% mortalities of phytoplankton, zooplankton and bacteria were recorded. It was demonstrated that the temperature of tropical sea waters used as secondary coolant can be raised to cause species' mortalities, employing engine exhaust gases. The results also indicated that pump impeller effects will enhance species' mortalities. The limitations of the shipboard application of this method would be the large ballast volumes, flow rates and time for treatment.

  2. Finite volume analysis of temperature effects induced by active MRI implants with cylindrical symmetry: 1. Properly working devices.

    PubMed

    Busch, Martin H J; Vollmann, Wolfgang; Schnorr, Jörg; Grönemeyer, Dietrich H W

    2005-04-08

    Active Magnetic Resonance Imaging implants are constructed as resonators tuned to the Larmor frequency of a magnetic resonance system with a specific field strength. The resonating circuit may be embedded into or added to the normal metallic implant structure. The resonators build inductively coupled wireless transmit and receive coils and can amplify the signal, normally decreased by eddy currents, inside metallic structures without affecting the rest of the spin ensemble. During magnetic resonance imaging the resonators generate heat, which is additional to the usual one described by the specific absorption rate. This induces temperature increases of the tissue around the circuit paths and inside the lumen of an active implant and may negatively influence patient safety. This investigation provides an overview of the supplementary power absorbed by active implants with a cylindrical geometry, corresponding to vessel implants such as stents, stent grafts or vena cava filters. The knowledge of the overall absorbed power is used in a finite volume analysis to estimate temperature maps around different implant structures inside homogeneous tissue under worst-case assumptions. The "worst-case scenario" assumes thermal heat conduction without blood perfusion inside the tissue around the implant and mostly without any cooling due to blood flow inside vessels. The additional power loss of a resonator is proportional to the volume and the quality factor, as well as the field strength of the MRI system and the specific absorption rate of the applied sequence. For properly working devices the finite volume analysis showed only tolerable heating during MRI investigations in most cases. Only resonators transforming a few hundred mW into heat may reach temperature increases over 5 K. This requires resonators with volumes of several ten cubic centimeters, short inductor circuit paths with only a few 10 cm and a quality factor above ten. Using MR sequences, for which the MRI system manufacturer declares the highest specific absorption rate of 4 W/kg, vascular implants with a realistic construction, size and quality factor do not show temperature increases over a critical value of 5 K. The results show dangerous heating for the assumed "worst-case scenario" only for constructions not acceptable for vascular implants. Realistic devices are safe with respect to temperature increases. However, this investigation discusses only properly working devices. Ruptures or partial ruptures of the wires carrying the electric current of the resonance circuits or other defects can set up a power source inside an extremely small volume. The temperature maps around such possible "hot spots" should be analyzed in an additional investigation.

  3. Statistical Mechanical Proof of the Second Law of Thermodynamics based on Volume Entropy

    NASA Astrophysics Data System (ADS)

    Campisi, Michele

    2007-10-01

    As pointed out in [M. Campisi. Stud. Hist. Phil. M. P. 36 (2005) 275-290] the volume entropy (that is the logarithm of the volume of phase space enclosed by the constant energy hyper-surface) provides a good mechanical analogue of thermodynamic entropy because it satisfies the heat theorem and it is an adiabatic invariant. This property explains the ``equal'' sign in Clausius principle (Sf>=Si) in a purely mechanical way and suggests that the volume entropy might explain the ``larger than'' sign (i.e. the Law of Entropy Increase) if non adiabatic transformations were considered. Based on the principles of quantum mechanics here we prove that, provided the initial equilibrium satisfy the natural condition of decreasing ordering of probabilities, the expectation value of the volume entropy cannot decrease for arbitrary transformations performed by some external sources of work on a insulated system. This can be regarded as a rigorous quantum mechanical proof of the Second Law.

  4. Numerical Investigation of Influence of Electrode Immersion Depth on Heat Transfer and Fluid Flow in Electroslag Remelting Process

    NASA Astrophysics Data System (ADS)

    Wang, Qiang; Cai, Hui; Pan, Liping; He, Zhu; Liu, Shuang; Li, Baokuan

    2016-12-01

    The influence of the electrode immersion depth on the electromagnetic, flow and temperature fields, as well as the solidification progress in an electroslag remelting furnace have been studied by a transient three-dimensional coupled mathematical model. Maxwell's equations were solved by the electrical potential approach. The Lorentz force and Joule heating were added into the momentum and energy conservation equations as a source term, respectively, and were updated at each time step. The volume of fluid method was invoked to track the motion of the metal droplet and slag-metal interface. The solidification was modeled by an enthalpy-porosity formulation. An experiment was carried out to validate the model. The total amount of Joule heating decreases from 2.13 × 105 W to 1.86 × 105 W when the electrode immersion depth increases from 0.01 m to 0.03 m. The variation law of the slag temperature is different from that of the Joule heating. The volume average temperature rises from 1856 K to 1880 K when the immersion depth increases from 0.01 m to 0.02 m, and then drops to 1869 K if the immersion depth continuously increases to 0.03 m. As a result, the deepest metal pool, which is around 0.03 m, is formed when the immersion depth is 0.02 m.

  5. The energetics and mass structure of regions of star formation: S201

    NASA Technical Reports Server (NTRS)

    Thronson, H. A., Jr.; Smith, H. A.; Lada, C. J.; Glaccum, W.; Harper, D. A.; Loewenstein, R. F.; Smith, J.

    1984-01-01

    Theoretical predictions about dust and gas in star forming regions are tested by observing a 4 arcmin region surrounding the radio continuum source in 5201. The object was mapped in two far infrared wavelengths and found to show significant extended emission. Under the assumption that the molecular gas is heated solely via thermal coupling with the dust, the volume density was mapped in 5201. The ratios of infrared optical depth to CO column density were calculated for a number of positions in the source. Near the center of the cloud the values are found to be in good agreement with other determinations for regions with lower column density. In addition, the observations suggest significant molecular destruction in the outer parts of the object. Current models of gas heating were used to calculate a strong limit for the radius of the far infrared emitting grains, equal to or less than 0.15 micron. Grains of about this size are required by the observation of high temperature (T equal to or greater than 20 K) gas in many sources.

  6. Process And Apparatus To Accomplish Autothermal Or Steam Reforming Via A Reciprocating Compression Device

    DOEpatents

    Lyons, K. David; James, Robert; Berry, David A.; Gardner, Todd

    2004-09-21

    The invention provides a method and apparatus for producing a synthesis gas from a variety of hydrocarbons. The apparatus (device) consists of a semi-batch, non-constant volume reactor to generate a synthesis gas. While the apparatus feeds mixtures of air, steam, and hydrocarbons into a cylinder where work is performed on the fluid by a piston to adiabatically raise its temperature without heat transfer from an external source.

  7. Estimating Equivalency of Explosives Through A Thermochemical Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maienschein, J L

    2002-07-08

    The Cheetah thermochemical computer code provides an accurate method for estimating the TNT equivalency of any explosive, evaluated either with respect to peak pressure or the quasi-static pressure at long time in a confined volume. Cheetah calculates the detonation energy and heat of combustion for virtually any explosive (pure or formulation). Comparing the detonation energy for an explosive with that of TNT allows estimation of the TNT equivalency with respect to peak pressure, while comparison of the heat of combustion allows estimation of TNT equivalency with respect to quasi-static pressure. We discuss the methodology, present results for many explosives, andmore » show comparisons with equivalency data from other sources.« less

  8. Tale of three prospects

    USGS Publications Warehouse

    Duffield, Wendell A.; ,

    1992-01-01

    Most high-temperature, hydrothermal-convection systems probably are heated by bodies of magma (and/or hot plutons), whose presence is suggested by geologically young, if not active volcanism. Study of a young volcanic area provides information about the general thermal status of the underlying heat source, and detailed information about the time-space-volume-composition (TSVC) characteristics for a volcanic area can help define temperature at least semi-quantitatively when interpreted within the framework of published magma-cooling models. Thus, TSVC study is a fairly powerful and cost effective tool in the pre-drilling phase of an exploration program in young volcanic terrane. Examples are described for Coso, California; Agua de Pau, Azores; and Tecuamburro, Guatemala.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akar, Sertac; Turchi, Craig

    Substantial drought and declines in potable groundwater in the United States over the last decade has increased the demand for fresh water. Desalination of saline water such as brackish surface or groundwater, seawater, brines co-produced from oil and gas operations, industrial wastewater, blow-down water from power plant cooling towers, and agriculture drainage water can reduce the volume of water that requires disposal while providing a source of high-quality fresh water for industrial or commercial use. Membrane distillation (MD) is a developing technology that uses low-temperature thermal energy for desalination. Geothermal heat can be an ideal thermal-energy source for MD desalinationmore » technology, with a target range of $1/m3 to $2/m3 for desalinated water depending on the cost of heat. Three different cases were analyzed to estimate levelized cost of heat (LCOH) for integration of MD desalination technology with low-grade geothermal heat: (1) residual heat from injection brine at a geothermal power plant, (2) heat from existing underutilized low-temperature wells, and (3) drilling new wells for low-temperature resources. The Central and Western United States have important low-temperature (<90 degrees C) geothermal resource potential with wide geographic distribution, but these resources are highly underutilized because they are inefficient for power production. According to the USGS, there are 1,075 identified low temperature hydrothermal systems, 55 low temperature sedimentary systems and 248 identified medium to high temperature geothermal systems in the United States. The estimated total beneficial heat potential from identified low temperature hydrothermal geothermal systems and residual beneficial heat from medium to high temperature systems is estimated as 36,300 MWth, which could theoretically produce 1.4 to 7 million m3/day of potable water, depending on desalination efficiency.« less

  10. Low Temperature Geothermal Resource Assessment for Membrane Distillation Desalination in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akar, Sertac; Turchi, Craig

    Substantial drought and declines in potable groundwater in the United States over the last decade has increased the demand for fresh water. Desalination of saline water such as brackish surface or groundwater, seawater, brines co-produced from oil and gas operations, industrial wastewater, blow-down water from power plant cooling towers, and agriculture drainage water can reduce the volume of water that requires disposal while providing a source of high-quality fresh water for industrial or commercial use. Membrane distillation (MD) is a developing technology that uses low-temperature thermal energy for desalination. Geothermal heat can be an ideal thermal-energy source for MD desalinationmore » technology, with a target range of $1/m3 to $2/m3 for desalinated water depending on the cost of heat. Three different cases were analyzed to estimate levelized cost of heat (LCOH) for integration of MD desalination technology with low-grade geothermal heat: (1) residual heat from injection brine at a geothermal power plant, (2) heat from existing underutilized low-temperature wells, and (3) drilling new wells for low-temperature resources. The Central and Western United States have important low-temperature (<90 degrees C) geothermal resource potential with wide geographic distribution, but these resources are highly underutilized because they are inefficient for power production. According to the USGS, there are 1,075 identified low temperature hydrothermal systems, 55 low temperature sedimentary systems and 248 identified medium to high temperature geothermal systems in the United States. The estimated total beneficial heat potential from identified low temperature hydrothermal geothermal systems and residual beneficial heat from medium to high temperature systems is estimated as 36,300 MWth, which could theoretically produce 1.4 to 7 million m3/day of potable water, depending on desalination efficiency.« less

  11. Volume-Of-Fluid Simulation for Predicting Two-Phase Cooling in a Microchannel

    NASA Astrophysics Data System (ADS)

    Gorle, Catherine; Parida, Pritish; Houshmand, Farzad; Asheghi, Mehdi; Goodson, Kenneth

    2014-11-01

    Two-phase flow in microfluidic geometries has applications of increasing interest for next generation electronic and optoelectronic systems, telecommunications devices, and vehicle electronics. While there has been progress on comprehensive simulation of two-phase flows in compact geometries, validation of the results in different flow regimes should be considered to determine the predictive capabilities. In the present study we use the volume-of-fluid method to model the flow through a single micro channel with cross section 100 × 100 μm and length 10 mm. The channel inlet mass flux and the heat flux at the lower wall result in a subcooled boiling regime in the first 2.5 mm of the channel and a saturated flow regime further downstream. A conservation equation for the vapor volume fraction, and a single set of momentum and energy equations with volume-averaged fluid properties are solved. A reduced-physics phase change model represents the evaporation of the liquid and the corresponding heat loss, and the surface tension is accounted for by a source term in the momentum equation. The phase change model used requires the definition of a time relaxation parameter, which can significantly affect the solution since it determines the rate of evaporation. The results are compared to experimental data available from literature, focusing on the capability of the reduced-physics phase change model to predict the correct flow pattern, temperature profile and pressure drop.

  12. Automation and heat transfer characterization of immersion mode spectroscopy for analysis of ice nucleating particles

    NASA Astrophysics Data System (ADS)

    Beall, Charlotte M.; Stokes, M. Dale; Hill, Thomas C.; DeMott, Paul J.; DeWald, Jesse T.; Prather, Kimberly A.

    2017-07-01

    Ice nucleating particles (INPs) influence cloud properties and can affect the overall precipitation efficiency. Developing a parameterization of INPs in global climate models has proven challenging. More INP measurements - including studies of their spatial distribution, sources and sinks, and fundamental freezing mechanisms - must be conducted in order to further improve INP parameterizations. In this paper, an immersion mode INP measurement technique is modified and automated using a software-controlled, real-time image stream designed to leverage optical changes of water droplets to detect freezing events. For the first time, heat transfer properties of the INP measurement technique are characterized using a finite-element-analysis-based heat transfer simulation to improve accuracy of INP freezing temperature measurement. The heat transfer simulation is proposed as a tool that could be used to explain the sources of bias in temperature measurements in INP measurement techniques and ultimately explain the observed discrepancies in measured INP freezing temperatures between different instruments. The simulation results show that a difference of +8.4 °C between the well base temperature and the headspace gas results in an up to 0.6 °C stratification of the aliquot, whereas a difference of +4.2 °C or less results in a thermally homogenous water volume within the error of the thermal probe, ±0.2 °C. The results also show that there is a strong temperature gradient in the immediate vicinity of the aliquot, such that without careful placement of temperature probes, or characterization of heat transfer properties of the water and cooling environment, INP measurements can be biased toward colder temperatures. Based on a modified immersion mode technique, the Automated Ice Spectrometer (AIS), measurements of the standard test dust illite NX are reported and compared against six other immersion mode droplet assay techniques featured in Hiranuma et al. (2015) that used wet suspensions. AIS measurements of illite NX INP freezing temperatures compare reasonably with others, falling within the 5 °C spread in reported spectra. The AIS as well as its characterization of heat transfer properties allows higher confidence in accuracy of freezing temperature measurement, allows higher throughput of sample analysis, and enables disentanglement of the effects of heat transfer rates on sample volumes from time dependence of ice nucleation.

  13. Generation and Sustainment of Plasma Rotation by ICRF Heating

    NASA Astrophysics Data System (ADS)

    Perkins, F. W.

    2000-10-01

    When tokamak plasmas are heated by the fundamental minority ion-cyclotron process, they are observed to rotate toroidally, even though this heating process introduces negligable angular momentum. This work proposes and evaluates a physics mechanism which resolves this apparent conflict. The argument has two elements. First, it is assumed that angular momentum transport is governed by a diffusion equation with a v_tor = 0 boundary condition at the plasma surface and a torque-density source. When the source consists of separated regions of positive and negative torque density, a finite central rotation velocity results, even though the volume integrated torque density - the angular momentum input - vanishes. Secondly, ions energized by the ICRF process can generate separated regions of positive and negative torque density. Heating increases their banana widths which leads to radial energetic-particle transport that must be balanced by neutralizing radial currents and a j_rB_pR torque density in the bulk plasma. Additional, comparable torque density results from collisional transfer of mechanical angular momentum from energetic particles to the bulk plasma and particle loss through banana particles impacting the wall. Monte-Carlo calculations utilizing the ORBIT code evaluate all sources of torque density and rigorously assure that no net angular momentum is introduced. Two models of ICRF heating, diffusive and instantaneous, give similar results. When the resonance location is on the LFS, the calculated rotation has the magnitude, profile, and co-current sense of Alcator C-Mod observations. For HFS resonance locations, the model predicts counter-current rotation. Scans of rotational profiles vs. resonance location, initial energy, particle loss, pitch, and qm will be presented as will the location of the velocity shear layer its scaling to a reactor.

  14. Radiation from Large Gas Volumes and Heat Exchange in Steam Boiler Furnaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makarov, A. N., E-mail: tgtu-kafedra-ese@mail.ru

    2015-09-15

    Radiation from large cylindrical gas volumes is studied as a means of simulating the flare in steam boiler furnaces. Calculations of heat exchange in a furnace by the zonal method and by simulation of the flare with cylindrical gas volumes are described. The latter method is more accurate and yields more reliable information on heat transfer processes taking place in furnaces.

  15. Investigation of the boundary layer during the transition from volume to surface dominated H- production at the BATMAN test facility

    NASA Astrophysics Data System (ADS)

    Wimmer, C.; Schiesko, L.; Fantz, U.

    2016-02-01

    BATMAN (Bavarian Test Machine for Negative ions) is a test facility equipped with a 1/8 scale H- source for the ITER heating neutral beam injection. Several diagnostics in the boundary layer close to the plasma grid (first grid of the accelerator system) followed the transition from volume to surface dominated H- production starting with a Cs-free, cleaned source and subsequent evaporation of caesium, while the source has been operated at ITER relevant pressure of 0.3 Pa: Langmuir probes are used to determine the plasma potential, optical emission spectroscopy is used to follow the caesiation process, and cavity ring-down spectroscopy allows for the measurement of the H- density. The influence on the plasma during the transition from an electron-ion plasma towards an ion-ion plasma, in which negative hydrogen ions become the dominant negatively charged particle species, is seen in a strong increase of the H- density combined with a reduction of the plasma potential. A clear correlation of the extracted current densities (jH-, je) exists with the Cs emission.

  16. Investigation of the boundary layer during the transition from volume to surface dominated H⁻ production at the BATMAN test facility.

    PubMed

    Wimmer, C; Schiesko, L; Fantz, U

    2016-02-01

    BATMAN (Bavarian Test Machine for Negative ions) is a test facility equipped with a 18 scale H(-) source for the ITER heating neutral beam injection. Several diagnostics in the boundary layer close to the plasma grid (first grid of the accelerator system) followed the transition from volume to surface dominated H(-) production starting with a Cs-free, cleaned source and subsequent evaporation of caesium, while the source has been operated at ITER relevant pressure of 0.3 Pa: Langmuir probes are used to determine the plasma potential, optical emission spectroscopy is used to follow the caesiation process, and cavity ring-down spectroscopy allows for the measurement of the H(-) density. The influence on the plasma during the transition from an electron-ion plasma towards an ion-ion plasma, in which negative hydrogen ions become the dominant negatively charged particle species, is seen in a strong increase of the H(-) density combined with a reduction of the plasma potential. A clear correlation of the extracted current densities (j(H(-)), j(e)) exists with the Cs emission.

  17. Mitigation of eddy current heating during magnetic nanoparticle hyperthermia therapy.

    PubMed

    Stigliano, Robert V; Shubitidze, Fridon; Petryk, James D; Shoshiashvili, Levan; Petryk, Alicia A; Hoopes, P Jack

    2016-11-01

    Magnetic nanoparticle hyperthermia therapy is a promising technology for cancer treatment, involving delivering magnetic nanoparticles (MNPs) into tumours then activating them using an alternating magnetic field (AMF). The system produces not only a magnetic field, but also an electric field which penetrates normal tissue and induces eddy currents, resulting in unwanted heating of normal tissues. Magnitude of the eddy current depends, in part, on the AMF source and the size of the tissue exposed to the field. The majority of in vivo MNP hyperthermia therapy studies have been performed in small animals, which, due to the spatial distribution of the AMF relative to the size of the animals, do not reveal the potential toxicity of eddy current heating in larger tissues. This has posed a non-trivial challenge for researchers attempting to scale up to clinically relevant volumes of tissue. There is a relative dearth of studies focused on decreasing the maximum temperature resulting from eddy current heating to increase therapeutic ratio. This paper presents two simple, clinically applicable techniques for decreasing maximum temperature induced by eddy currents. Computational and experimental results are presented to understand the underlying physics of eddy currents induced in conducting, biological tissues and leverage these insights to mitigate eddy current heating during MNP hyperthermia therapy. Phantom studies show that the displacement and motion techniques reduce maximum temperature due to eddy currents by 74% and 19% in simulation, and by 77% and 33% experimentally. Further study is required to optimise these methods for particular scenarios; however, these results suggest larger volumes of tissue could be treated, and/or higher field strengths and frequencies could be used to attain increased MNP heating when these eddy current mitigation techniques are employed.

  18. Design considerations regarding an atomizer for multi-element electrothermal atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Katskov, Dmitri A.; Sadagov, Yuri M.

    2011-06-01

    The methodology of simultaneous multi-element electrothermal atomic absorption spectrometry (ETAAS-Electrothermal Atomic Absorption Spectrometry) stipulates rigid requirements to the design and operation of the atomizer. It must provide high degree of atomization for the group of analytes, invariant respective to the vaporization kinetics and heating ramp residence time of atoms in the absorption volume and absence of memory effects from major sample components. For the low resolution spectrometer with a continuum radiation source the reduced compared to traditional ETAAS (Electrothermal Atomic Absorption Spectrometry) sensitivity should be, at least partially, compensated by creating high density of atomic vapor in the absorption pulse. The sought-for characteristics were obtained for the 18 mm in length and 2.5 mm in internal diameter longitudinally heated graphite tube atomizer furnished with 2-4.5 mg of ring shaped carbon fiber yarn collector. The collector located next to the sampling port provides large substrate area that helps to keep the sample and its residue in the central part of the tube after drying. The collector also provides a "platform" effect that delays the vaporization and stipulates vapor release into absorption volume having already stabilized gas temperature. Due to the shape of external surface of the tube, presence of collector and rapid (about 10 °C/ms) heating, an inverse temperature distribution along the tube is attained at the beginnings of the atomization and cleaning steps. The effect is employed for cleaning of the atomizer using the set of short maximum power heating pulses. Preparation, optimal maintenance of the atomizer and its compliance to the multi-element determination requirements are evaluated and discussed. The experimental setup provides direct simultaneous determination of large group of element within 3-4 order concentration range. Limits of detection are close to those for sequential single element determination in Flame AAS with primary line source that is 50-1000 times higher than the limits obtainable with common ETAAS (Electrothermal Atomic Absorption Spectrometry) instrumentation.

  19. Diode Laser Pumped Alkali Vapor Lasers with Exciplex-Assisted Absorption

    DTIC Science & Technology

    2013-05-14

    transfer agent that established the population inversion. The excitation source used in these initial studies was a pulsed optical parametric oscillator ...parametric oscillator . The lasers operated at 703.2 (Ne*), 912.5 (Ar*), 893.1 (Kr*) and 980.2 run (Xe*). Peak powers as high as 27kW/cm2 were observed...Larissa Glebova and Leonid B. Glebov. Ultra-low absorption and laser-induced heating of volume Bragg combiners recorded in photo-thermo- refractive

  20. Effect of inert cover gas on performance of radioisotope Stirling space power system

    NASA Astrophysics Data System (ADS)

    Carpenter, R.; Kumar, V.; Or, C.; Schock, A.

    2001-02-01

    This paper describes an updated Orbital design of a radioisotope Stirling power system and its predicted performance at the beginning and end of a six-year mission to the Jovian moon Europa. The design is based on General Purpose Heat Source (GPHS) modules identical to those previously developed and safety-qualified by the Department of Energy (DOE) which were successfully launched on missions to Jupiter and Saturn by the Jet Propulsion Laboratory (JPL). In each generator, the heat produced by the decay of the Pu-238 isotope is converted to electric power by two free-piston Stirling engines and linear alternators developed by Stirling Technology Company (STC), and their rejected waste heat is transported to radiators by heat pipes. The principal difference between the proposed system design and previous Orbital designs (Or et al., 2000) is the thermal insulation between the heat source and the generator's housing. Previous designs had employed multifoil insulation, whereas the design described here employs Min-K-1800 thermal insulation. Such insulation had been successfully used by Teledyne and GE in earlier RTGs (Radioisotope Thermoelectric Generators). Although Min-K is a much poorer insulator than multifoil in vacuum and requires a substantially greater thickness for equivalent performance, it offers compensating advantages. Specifically it makes it possible to adjust the generator's BOM temperatures by filling its interior volume with inert cover gas. This makes it possible to meet the generator's BOM and EOM performance goals without exceeding its allowable temperature at the beginning of the mission. .

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell E. Feder and Mahmoud Z. Youssef

    Neutronics analysis to find nuclear heating rates and personnel dose rates were conducted in support of the integration of diagnostics in to the ITER Upper Port Plugs. Simplified shielding models of the Visible-Infrared diagnostic and of a large aperture diagnostic were incorporated in to the ITER global CAD model. Results for these systems are representative of typical designs with maximum shielding and a small aperture (Vis-IR) and minimal shielding with a large aperture. The neutronics discrete-ordinates code ATTILA® and SEVERIAN® (the ATTILA parallel processing version) was used. Material properties and the 500 MW D-T volume source were taken from themore » ITER “Brand Model” MCNP benchmark model. A biased quadrature set equivelant to Sn=32 and a scattering degree of Pn=3 were used along with a 46-neutron and 21-gamma FENDL energy subgrouping. Total nuclear heating (neutron plug gamma heating) in the upper port plugs ranged between 380 and 350 kW for the Vis-IR and Large Aperture cases. The Large Aperture model exhibited lower total heating but much higher peak volumetric heating on the upper port plug structure. Personnel dose rates are calculated in a three step process involving a neutron-only transport calculation, the generation of activation volume sources at pre-defined time steps and finally gamma transport analyses are run for selected time steps. ANSI-ANS 6.1.1 1977 Flux-to-Dose conversion factors were used. Dose rates were evaluated for 1 full year of 500 MW DT operation which is comprised of 3000 1800-second pulses. After one year the machine is shut down for maintenance and personnel are permitted to access the diagnostic interspace after 2-weeks if dose rates are below 100 μSv/hr. Dose rates in the Visible-IR diagnostic model after one day of shutdown were 130 μSv/hr but fell below the limit to 90 μSv/hr 2-weeks later. The Large Aperture style shielding model exhibited higher and more persistent dose rates. After 1-day the dose rate was 230 μSv/hr but was still at 120 μSv/hr 4-weeks later.« less

  2. AMOC sensitivity to surface buoyancy fluxes: Stronger ocean meridional heat transport with a weaker volume transport?

    NASA Astrophysics Data System (ADS)

    Sévellec, Florian; Fedorov, Alexey V.

    2016-09-01

    Oceanic northward heat transport is commonly assumed to be positively correlated with the Atlantic meridional overturning circulation (AMOC). For example, in numerical "water-hosing" experiments, imposing anomalous freshwater fluxes in the northern Atlantic leads to a slow-down of the AMOC and the corresponding reduction of oceanic northward heat transport. Here, we study the sensitivity of the ocean heat and volume transports to surface heat and freshwater fluxes using a generalized stability analysis. For the sensitivity to surface freshwater fluxes, we find that, while the direct relationship between the AMOC volume and heat transports holds on shorter time scales, it can reverse on timescales longer than 500 years or so. That is, depending on the model surface boundary conditions, reduction in the AMOC volume transport can potentially lead to a stronger heat transport on long timescales, resulting from the gradual increase in ocean thermal stratification. We discuss the implications of these results for the problem of steady state (statistical equilibrium) in ocean and climate GCM as well as paleoclimate problems including millennial climate variability.

  3. AMOC sensitivity to surface buoyancy fluxes: Stronger ocean meridional heat transport with a weaker volume transport?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sevellec, Florian; Fedorov, Alexey V.

    Oceanic northward heat transport is commonly assumed to be positively correlated with the Atlantic meridional overturning circulation (AMOC). For example, in numerical "water-hosing" experiments, imposing anomalous freshwater fluxes in the northern Atlantic leads to a slow-down of the AMOC and the corresponding reduction of oceanic northward heat transport. Here, we study the sensitivity of the ocean heat and volume transports to surface heat and freshwater fluxes using a generalized stability analysis. For the sensitivity to surface freshwater fluxes, we find that, while the direct relationship between the AMOC volume and heat transports holds on shorter time scales, it can reversemore » on timescales longer than 500 years or so. That is, depending on the model surface boundary conditions, reduction in the AMOC volume transport can potentially lead to a stronger heat transport on long timescales, resulting from the gradual increase in ocean thermal stratification. Finally, we discuss the implications of these results for the problem of steady state (statistical equilibrium) in ocean and climate GCM as well as paleoclimate problems including millennial climate variability.« less

  4. AMOC sensitivity to surface buoyancy fluxes: Stronger ocean meridional heat transport with a weaker volume transport?

    DOE PAGES

    Sevellec, Florian; Fedorov, Alexey V.

    2016-01-04

    Oceanic northward heat transport is commonly assumed to be positively correlated with the Atlantic meridional overturning circulation (AMOC). For example, in numerical "water-hosing" experiments, imposing anomalous freshwater fluxes in the northern Atlantic leads to a slow-down of the AMOC and the corresponding reduction of oceanic northward heat transport. Here, we study the sensitivity of the ocean heat and volume transports to surface heat and freshwater fluxes using a generalized stability analysis. For the sensitivity to surface freshwater fluxes, we find that, while the direct relationship between the AMOC volume and heat transports holds on shorter time scales, it can reversemore » on timescales longer than 500 years or so. That is, depending on the model surface boundary conditions, reduction in the AMOC volume transport can potentially lead to a stronger heat transport on long timescales, resulting from the gradual increase in ocean thermal stratification. Finally, we discuss the implications of these results for the problem of steady state (statistical equilibrium) in ocean and climate GCM as well as paleoclimate problems including millennial climate variability.« less

  5. Using thermal balance model to determine optimal reactor volume and insulation material needed in a laboratory-scale composting reactor.

    PubMed

    Wang, Yongjiang; Pang, Li; Liu, Xinyu; Wang, Yuansheng; Zhou, Kexun; Luo, Fei

    2016-04-01

    A comprehensive model of thermal balance and degradation kinetics was developed to determine the optimal reactor volume and insulation material. Biological heat production and five channels of heat loss were considered in the thermal balance model for a representative reactor. Degradation kinetics was developed to make the model applicable to different types of substrates. Simulation of the model showed that the internal energy accumulation of compost was the significant heat loss channel, following by heat loss through reactor wall, and latent heat of water evaporation. Lower proportion of heat loss occurred through the reactor wall when the reactor volume was larger. Insulating materials with low densities and low conductive coefficients were more desirable for building small reactor systems. Model developed could be used to determine the optimal reactor volume and insulation material needed before the fabrication of a lab-scale composting system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Evaluating humidity recovery efficiency of currently available heat and moisture exchangers: a respiratory system model study.

    PubMed

    Lucato, Jeanette Janaina Jaber; Adams, Alexander Bernard; Souza, Rogério; Torquato, Jamili Anbar; Carvalho, Carlos Roberto Ribeiro; Marini, John J

    2009-01-01

    To evaluate and compare the efficiency of humidification in available heat and moisture exchanger models under conditions of varying tidal volume, respiratory rate, and flow rate. Inspired gases are routinely preconditioned by heat and moisture exchangers to provide a heat and water content similar to that provided normally by the nose and upper airways. The absolute humidity of air retrieved from and returned to the ventilated patient is an important measurable outcome of the heat and moisture exchangers' humidifying performance. Eight different heat and moisture exchangers were studied using a respiratory system analog. The system included a heated chamber (acrylic glass, maintained at 37 degrees C), a preserved swine lung, a hygrometer, circuitry and a ventilator. Humidity and temperature levels were measured using eight distinct interposed heat and moisture exchangers given different tidal volumes, respiratory frequencies and flow-rate conditions. Recovery of absolute humidity (%RAH) was calculated for each setting. Increasing tidal volumes led to a reduction in %RAH for all heat and moisture exchangers while no significant effect was demonstrated in the context of varying respiratory rate or inspiratory flow. Our data indicate that heat and moisture exchangers are more efficient when used with low tidal volume ventilation. The roles of flow and respiratory rate were of lesser importance, suggesting that their adjustment has a less significant effect on the performance of heat and moisture exchangers.

  7. Physical effect of a variable magnetic field on the heat transfer of a nanofluid-based concentrating parabolic solar collector

    NASA Astrophysics Data System (ADS)

    Tahari, M.; Ghorbanian, A.; Hatami, M.; Jing, D.

    2017-12-01

    In this paper, the physical effect of a variable magnetic field on a nanofluid-based concentrating parabolic solar collector (NCPSC) is demonstrated. A section of reservoir is modeled as a semi-circular cavity under the solar radiation with the magnetic source located in the center or out of the cavity and the governing equations were solved by the FlexPDE numerical software. The effect of four physical parameters, i.e., Hartmann Number (Ha), nanoparticles volume fraction ( φ, magnetic field strength ( γ and magnetic source location ( b, on the Nusselt number is discussed. To find the interaction of these parameters and its effect on the heat transfer, a central composite design (CCD) is used and analysis is performed on the 25 experiments proposed by CCD. Analysis of variance (ANOVA) of the results reveals that increasing the Hartmann number decreases the Nusselt number due to the Lorentz force resulting from the presence of stronger magnetic field.

  8. A compact source for bunches of singly charged atomic ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murböck, T.; Birkl, G.; Schmidt, S.

    2016-04-15

    We have built, operated, and characterized a compact ion source for low-energy bunches of singly charged atomic ions in a vacuum beam line. It is based on atomic evaporation from an electrically heated oven and ionization by electron impact from a heated filament inside a grid-based ionization volume. An adjacent electrode arrangement is used for ion extraction and focusing by applying positive high-voltage pulses to the grid. The method is particularly suited for experimental environments which require low electromagnetic noise. It has proven simple yet reliable and has been used to produce μs-bunches of up to 10{sup 6} Mg{sup +}more » ions at a repetition rate of 1 Hz. We present the concept, setup and characterizing measurements. The instrument has been operated in the framework of the SpecTrap experiment at the HITRAP facility at GSI/FAIR to provide Mg{sup +} ions for sympathetic cooling of highly charged ions by laser-cooled {sup 24}Mg{sup +}.« less

  9. Mathematical Model of the Processes of Heat and Mass Transfer and Diffusion of the Magnetic Field in an Induction Furnace

    NASA Astrophysics Data System (ADS)

    Perminov, A. V.; Nikulin, I. L.

    2016-03-01

    We propose a mathematical model describing the motion of a metal melt in a variable inhomogeneous magnetic field of a short solenoid. In formulating the problem, we made estimates and showed the possibility of splitting the complete magnetohydrodynamical problem into two subproblems: a magnetic field diffusion problem where the distributions of the external and induced magnetic fields and currents are determined, and a heat and mass transfer problem with known distributions of volume sources of heat and forces. The dimensionless form of the heat and mass transfer equation was obtained with the use of averaging and multiscale methods, which permitted writing and solving separately the equations for averaged flows and temperature fields and their oscillations. For the heat and mass transfer problem, the boundary conditions for a real technological facility are discussed. The dimensionless form of the magnetic field diffusion equation is presented, and the experimental computational procedure and results of the numerical simulation of the magnetic field structure in the melt for various magnetic Reynolds numbers are described. The extreme dependence of heat release on the magnetic Reynolds number has been interpreted.

  10. Experimental study of laminar forced convective heat transfer of deionized water based copper (I) oxide nanofluids in a tube with constant wall heat flux

    NASA Astrophysics Data System (ADS)

    Umer, Asim; Naveed, Shahid; Ramzan, Naveed

    2016-10-01

    Nanofluids, having 1-100 nm size particles in any base fluid are promising fluid for heat transfer intensification due to their enhanced thermal conductivity as compared with the base fluid. The forced convection of nanofluids is the major practical application in heat transfer equipments. In this study, heat transfer enhancements at constant wall heat flux under laminar flow conditions were investigated. Nanofluids of different volume fractions (1, 2 and 4 %) of copper (I) oxide nanoparticles in deionized water were prepared using two step technique under mechanical mixing and ultrasonication. The results were investigated by increasing the Reynolds number of the nanofluids at constant heat flux. The trends of Nusselt number variation with dimensionless length (X/D) and Reynolds numbers were studied. It was observed that heat transfer coefficient increases with increases particles volume concentration and Reynolds number. The maximum enhancement in heat transfer coefficient of 61 % was observed with 4 % particle volume concentration at Reynolds number (Re ~ 605).

  11. Array of Bolometers for Submillimeter- Wavelength Operation

    NASA Technical Reports Server (NTRS)

    Bock, James; Turner, Anthony

    2007-01-01

    A feed-horn-coupled monolithic array of micromesh bolometers is undergoing development for use in a photometric camera. The array is designed for conducting astrophysical observations in a wavelength band centered at 350 m. The bolometers are improved versions of previously developed bolometers comprising metalized Si3N4 micromesh radiation absorbers coupled with neutron- transmutation-doped Ge thermistors. Incident radiation heats the absorbers above a base temperature, changing the electrical resistance of each thermistor. In the present array of improved bolometers (see figure), the thermistors are attached to the micromesh absorbers by indium bump bonds and are addressed by use of lithographed, vapor-deposited electrical leads. This architecture reduces the heat capacity and minimizes the thermal conductivity to 1/20 and 1/300, respectively, of earlier versions of these detectors, with consequent improvement in sensitivity and speed of response. The micromesh bolometers, intended to operate under an optical background set by thermal emission from an ambient-temperature space-borne telescope, are designed such that the random arrival of photons ("photon noise") dominates the noise sources arising from the detector and readout electronics. The micromesh is designed to be a highly thermally and optically efficient absorber with a limiting response time of about 100 s. The absorber and thermistor heat capacity are minimized in order to give rapid speed of response. Due to the minimization of the absorber volume, the dominant source of heat capacity arises from the thermistor.

  12. Finite volume analysis of temperature effects induced by active MRI implants with cylindrical symmetry: 1. Properly working devices

    PubMed Central

    Busch, Martin HJ; Vollmann, Wolfgang; Schnorr, Jörg; Grönemeyer, Dietrich HW

    2005-01-01

    Background Active Magnetic Resonance Imaging implants are constructed as resonators tuned to the Larmor frequency of a magnetic resonance system with a specific field strength. The resonating circuit may be embedded into or added to the normal metallic implant structure. The resonators build inductively coupled wireless transmit and receive coils and can amplify the signal, normally decreased by eddy currents, inside metallic structures without affecting the rest of the spin ensemble. During magnetic resonance imaging the resonators generate heat, which is additional to the usual one described by the specific absorption rate. This induces temperature increases of the tissue around the circuit paths and inside the lumen of an active implant and may negatively influence patient safety. Methods This investigation provides an overview of the supplementary power absorbed by active implants with a cylindrical geometry, corresponding to vessel implants such as stents, stent grafts or vena cava filters. The knowledge of the overall absorbed power is used in a finite volume analysis to estimate temperature maps around different implant structures inside homogeneous tissue under worst-case assumptions. The "worst-case scenario" assumes thermal heat conduction without blood perfusion inside the tissue around the implant and mostly without any cooling due to blood flow inside vessels. Results The additional power loss of a resonator is proportional to the volume and the quality factor, as well as the field strength of the MRI system and the specific absorption rate of the applied sequence. For properly working devices the finite volume analysis showed only tolerable heating during MRI investigations in most cases. Only resonators transforming a few hundred mW into heat may reach temperature increases over 5 K. This requires resonators with volumes of several ten cubic centimeters, short inductor circuit paths with only a few 10 cm and a quality factor above ten. Using MR sequences, for which the MRI system manufacturer declares the highest specific absorption rate of 4 W/kg, vascular implants with a realistic construction, size and quality factor do not show temperature increases over a critical value of 5 K. Conclusion The results show dangerous heating for the assumed "worst-case scenario" only for constructions not acceptable for vascular implants. Realistic devices are safe with respect to temperature increases. However, this investigation discusses only properly working devices. Ruptures or partial ruptures of the wires carrying the electric current of the resonance circuits or other defects can set up a power source inside an extremely small volume. The temperature maps around such possible "hot spots" should be analyzed in an additional investigation. PMID:15819973

  13. Start-up Characteristics of Swallow-tailed Axial-grooved Heat Pipe under the conditions of Multiple Heat Sources

    NASA Astrophysics Data System (ADS)

    Zhang, Renping

    2017-12-01

    A mathematical model was developed for predicting start-up characteristics of Swallow-tailed Axial-grooved Heat Pipe under the conditions of Multiple Heat Sources. The effects of heat capacitance of heat source, liquid-vapour interfacial evaporation-condensation heat transfer, shear stress at the interface was considered in current model. The interfacial evaporating mass flow rate is based on the kinetic analysis. Time variations of evaporating mass rate, wall temperature and liquid velocity are studied from the start-up to steady state. The calculated results show that wall temperature demonstrates step transition at the junction between the heat source and non-existent heat source on the evaporator. The liquid velocity changes drastically at the evaporator section, however, it has slight variation at the evaporator section without heat source. When the effect of heat source is ignored, the numerical temperature demonstrates a quicker response. With the consideration of capacitance of the heat source, the data obtained from the proposed model agree well with the experimental results.

  14. A new Caputo time fractional model for heat transfer enhancement of water based graphene nanofluid: An application to solar energy

    NASA Astrophysics Data System (ADS)

    Aman, Sidra; Khan, Ilyas; Ismail, Zulkhibri; Salleh, Mohd Zuki; Tlili, I.

    2018-06-01

    In this article the idea of Caputo time fractional derivatives is applied to MHD mixed convection Poiseuille flow of nanofluids with graphene nanoparticles in a vertical channel. The applications of nanofluids in solar energy are argued for various solar thermal systems. It is argued in the article that using nanofluids is an alternate source to produce solar energy in thermal engineering and solar energy devices in industries. The problem is modelled in terms of PDE's with initial and boundary conditions and solved analytically via Laplace transform method. The obtained solutions for velocity, temperature and concentration are expressed in terms of Wright's function. These solutions are significantly controlled by the variations of parameters including thermal Grashof number, Solutal Grashof number and nanoparticles volume fraction. Expressions for skin-friction, Nusselt and Sherwood numbers are also determined on left and right walls of the vertical channel with important numerical results in tabular form. It is found that rate of heat transfer increases with increasing nanoparticles volume fraction and Caputo time fractional parameters.

  15. Evaluation of Bacillus oleronius as a Biological Indicator for Terminal Sterilization of Large-Volume Parenterals.

    PubMed

    Izumi, Masamitsu; Fujifuru, Masato; Okada, Aki; Takai, Katsuya; Takahashi, Kazuhiro; Udagawa, Takeshi; Miyake, Makoto; Naruyama, Shintaro; Tokuda, Hiroshi; Nishioka, Goro; Yoden, Hikaru; Aoki, Mitsuo

    2016-01-01

    In the production of large-volume parenterals in Japan, equipment and devices such as tanks, pipework, and filters used in production processes are exhaustively cleaned and sterilized, and the cleanliness of water for injection, drug materials, packaging materials, and manufacturing areas is well controlled. In this environment, the bioburden is relatively low, and less heat resistant compared with microorganisms frequently used as biological indicators such as Geobacillus stearothermophilus (ATCC 7953) and Bacillus subtilis 5230 (ATCC 35021). Consequently, the majority of large-volume parenteral solutions in Japan are manufactured under low-heat sterilization conditions of F0 <2 min, so that loss of clarity of solutions and formation of degradation products of constituents are minimized. Bacillus oleronius (ATCC 700005) is listed as a biological indicator in "Guidance on the Manufacture of Sterile Pharmaceutical Products Produced by Terminal Sterilization" (guidance in Japan, issued in 2012). In this study, we investigated whether B. oleronius is an appropriate biological indicator of the efficacy of low-heat, moist-heat sterilization of large-volume parenterals. Specifically, we investigated the spore-forming ability of this microorganism in various cultivation media and measured the D-values and z-values as parameters of heat resistance. The D-values and z-values changed depending on the constituents of large-volume parenteral products. Also, the spores from B. oleronius showed a moist-heat resistance that was similar to or greater than many of the spore-forming organisms isolated from Japanese parenteral manufacturing processes. Taken together, these results indicate that B. oleronius is suitable as a biological indicator for sterility assurance of large-volume parenteral solutions subjected to low-heat, moist-heat terminal sterilization. © PDA, Inc. 2016.

  16. Determination of saturation pressure and enthalpy of vaporization of semi-volatile aerosols: the integrated volume mentod

    EPA Science Inventory

    This study presents the integrated volume method for estimating saturation pressure and enthalpy of vaporization of a whole aerosol distribution. We measure the change of total volume of an aerosol distribution between a reference state and several heated states, with the heating...

  17. Optimal design variable considerations in the use of phase change materials in indirect evaporative cooling

    NASA Astrophysics Data System (ADS)

    Chilakapaty, Ankit Paul

    The demand for sustainable, energy efficient and cost effective heating and cooling solutions is exponentially increasing with the rapid advancement of computation and information technology. Use of latent heat storage materials also known as phase change materials (PCMs) for load leveling is an innovative solution to the data center cooling demands. These materials are commercially available in the form of microcapsules dispersed in water, referred to as the microencapsulated phase change slurries and have higher heat capacity than water. The composition and physical properties of phase change slurries play significant role in energy efficiency of the cooling systems designed implementing these PCM slurries. Objective of this project is to study the effect of PCM particle size, shape and volumetric concentration on overall heat transfer potential of the cooling systems designed with PCM slurries as the heat transfer fluid (HTF). In this study uniform volume heat source model is developed for the simulation of heat transfer potential using phase change materials in the form of bulk temperature difference in a fully developed flow through a circular duct. Results indicate the heat transfer potential increases with PCM volumetric concentration with gradually diminishing returns. Also, spherical PCM particles offer greater heat transfer potential when compared to cylindrical particles. Results of this project will aid in efficient design of cooling systems based on PCM slurries.

  18. Megawatt Class Nuclear Space Power Systems (MCNSPS) conceptual design and evaluation report. Volume 3, technologies 2: Power conversion

    NASA Technical Reports Server (NTRS)

    Wetch, J. R.

    1988-01-01

    The major power conversion concepts considered for the Megawatt Class Nuclear Space Power System (MCNSPS) are discussed. These concepts include: (1) Rankine alkali-metal-vapor turbine alternators; (2) in-core thermionic conversion; (3) Brayton gas turbine alternators; and (4) free piston Stirling engine linear alternators. Considerations important to the coupling of these four conversion alternatives to an appropriate nuclear reactor heat source are examined along with the comparative performance characteristics of the combined systems meeting MCNSPS requirements.

  19. ASTRONAUTICS INFORMATION. OPEN LITERATURE SURVEY, VOLUME III, NO. 2 (ENTRIES 30,202-30,404)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1961-02-01

    <>15:014925. An annotated list of references on temperature control of satellite and space vehicles is presented. Methods and systems for maintaining vehicles within tolerable temperature bounds while operating outside planetary atmospheres are outlined. Discussions of the temperature environment in space and how it might affect vehicle operation are given. Re-entry heating problems are not included. Among the sources used were: Engineering Index, Applied Science and Technology Index, Astronautics Abstracts, PAL uniterm index, ASTIA, and LMSD card catalog. (auth)

  20. Middle Atmosphere Program. Handbook for MAP. Volume 12: Coordinated Study of the Behavior of the Middle Atmosphere in Winter (PMP-1) Workshops

    NASA Technical Reports Server (NTRS)

    Rodgers, C. D. (Editor)

    1984-01-01

    Intercomparison of middle atmosphere meteorological data from a variety of sources is discussed. The primary aim was to intercompare data on stratospheric and mesospheric temperatures from a variety of sounding systems in order to characterize the differences, to understand the reasons for them, and to help users of the data to understand how these differences will affect derived quantities such as heat and momentum fluxes which are significant in studies of stratospheric dynamics.

  1. Evaluating Humidity Recovery Efficiency of Currently Available Heat and Moisture Exchangers: A Respiratory System Model Study

    PubMed Central

    Lucato, Jeanette Janaina Jaber; Adams, Alexander Bernard; Souza, Rogério; Torquato, Jamili Anbar; Carvalho, Carlos Roberto Ribeiro; Marini, John J

    2009-01-01

    OBJECTIVES: To evaluate and compare the efficiency of humidification in available heat and moisture exchanger models under conditions of varying tidal volume, respiratory rate, and flow rate. INTRODUCTION: Inspired gases are routinely preconditioned by heat and moisture exchangers to provide a heat and water content similar to that provided normally by the nose and upper airways. The absolute humidity of air retrieved from and returned to the ventilated patient is an important measurable outcome of the heat and moisture exchangers’ humidifying performance. METHODS: Eight different heat and moisture exchangers were studied using a respiratory system analog. The system included a heated chamber (acrylic glass, maintained at 37°C), a preserved swine lung, a hygrometer, circuitry and a ventilator. Humidity and temperature levels were measured using eight distinct interposed heat and moisture exchangers given different tidal volumes, respiratory frequencies and flow-rate conditions. Recovery of absolute humidity (%RAH) was calculated for each setting. RESULTS: Increasing tidal volumes led to a reduction in %RAH for all heat and moisture exchangers while no significant effect was demonstrated in the context of varying respiratory rate or inspiratory flow. CONCLUSIONS: Our data indicate that heat and moisture exchangers are more efficient when used with low tidal volume ventilation. The roles of flow and respiratory rate were of lesser importance, suggesting that their adjustment has a less significant effect on the performance of heat and moisture exchangers. PMID:19578664

  2. The Proell Effect: A Macroscopic Maxwell's Demon

    NASA Astrophysics Data System (ADS)

    Rauen, Kenneth M.

    2011-12-01

    Maxwell's Demon is a legitimate challenge to the Second Law of Thermodynamics when the "demon" is executed via the Proell effect. Thermal energy transfer according to the Kinetic Theory of Heat and Statistical Mechanics that takes place over distances greater than the mean free path of a gas circumvents the microscopic randomness that leads to macroscopic irreversibility. No information is required to sort the particles as no sorting occurs; the entire volume of gas undergoes the same transition. The Proell effect achieves quasi-spontaneous thermal separation without sorting by the perturbation of a heterogeneous constant volume system with displacement and regeneration. The classical analysis of the constant volume process, such as found in the Stirling Cycle, is incomplete and therefore incorrect. There are extra energy flows that classical thermo does not recognize. When a working fluid is displaced across a regenerator with a temperature gradient in a constant volume system, complimentary compression and expansion work takes place that transfers energy between the regenerator and the bulk gas volumes of the hot and cold sides of the constant volume system. Heat capacity at constant pressure applies instead of heat capacity at constant volume. The resultant increase in calculated, recyclable energy allows the Carnot Limit to be exceeded in certain cycles. Super-Carnot heat engines and heat pumps have been designed and a US patent has been awarded.

  3. Diffusion across the modified polyethylene separator GX in the heat-sterilizable AgO-Zn battery

    NASA Technical Reports Server (NTRS)

    Lutwack, R.

    1973-01-01

    Models of diffusion across an inert membrane have been studied using the computer program CINDA. The models were constructed to simulate various conditions obtained in the consideration of the diffusion of Ag (OH)2 ions in the AgO-Zn battery. The effects on concentrations across the membrane at the steady state and on the fluxout as a function of time were used to examine the consequences of stepwise reducing the number of sources of ions, of stepwise blocking the source and sink surfaces, of varying the magnitude of the diffusion coefficient for a uniform membrane, of varying the diffusion coefficient across the membrane, and of excluding volumes to diffusion.

  4. Loop Heat Pipe Operation Using Heat Source Temperature for Set Point Control

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Paiva, Kleber; Mantelli, Marcia

    2011-01-01

    The LHP operating temperature is governed by the saturation temperature of its reservoir. Controlling the reservoir saturation temperature is commonly accomplished by cold biasing the reservoir and using electrical heaters to provide the required control power. Using this method, the loop operating temperature can be controlled within +/- 0.5K. However, because of the thermal resistance that exists between the heat source and the LHP evaporator, the heat source temperature will vary with its heat output even if LHP operating temperature is kept constant. Since maintaining a constant heat source temperature is of most interest, a question often raised is whether the heat source temperature can be used for LHP set point temperature control. A test program with a miniature LHP has been carried out to investigate the effects on the LHP operation when the control temperature sensor is placed on the heat source instead of the reservoir. In these tests, the LHP reservoir is cold-biased and is heated by a control heater. Tests results show that it is feasible to use the heat source temperature for feedback control of the LHP operation. Using this method, the heat source temperature can be maintained within a tight range for moderate and high powers. At low powers, however, temperature oscillations may occur due to interactions among the reservoir control heater power, the heat source mass, and the heat output from the heat source. In addition, the heat source temperature could temporarily deviate from its set point during fast thermal transients. The implication is that more sophisticated feedback control algorithms need to be implemented for LHP transient operation when the heat source temperature is used for feedback control.

  5. An efficient laser vaporization source for chemically modified metal clusters characterized by thermodynamics and kinetics

    NASA Astrophysics Data System (ADS)

    Masubuchi, Tsugunosuke; Eckhard, Jan F.; Lange, Kathrin; Visser, Bradley; Tschurl, Martin; Heiz, Ulrich

    2018-02-01

    A laser vaporization cluster source that has a room for cluster aggregation and a reactor volume, each equipped with a pulsed valve, is presented for the efficient gas-phase production of chemically modified metal clusters. The performance of the cluster source is evaluated through the production of Ta and Ta oxide cluster cations, TaxOy+ (y ≥ 0). It is demonstrated that the cluster source produces TaxOy+ over a wide mass range, the metal-to-oxygen ratio of which can easily be controlled by changing the pulse duration that influences the amount of reactant O2 introduced into the cluster source. Reaction kinetic modeling shows that the generation of the oxides takes place under thermalized conditions at less than 300 K, whereas metal cluster cores are presumably created with excess heat. These characteristics are also advantageous to yield "reaction intermediates" of interest via reactions between clusters and reactive molecules in the cluster source, which may subsequently be mass selected for their reactivity measurements.

  6. Development, Fabrication, and Testing of a Liquid/Liquid Microchannel Heat Exchanger for Constellation Spacecrafts

    NASA Technical Reports Server (NTRS)

    Hawkins-Reynolds, Ebony; Le,Hung; Stephans, Ryan A.

    2009-01-01

    Minimizing mass and volume is critically important for space hardware. Microchannel technology can be used to decrease both of these parameters for heat exchangers. Working in concert with NASA, Pacific Northwest National Laboratories (PNNL) has developed a microchannel liquid/liquid heat exchanger that has resulted in significant mass and volume savings. The microchannel heat exchanger delivers these improvements without sacrificing thermal and pressure drop performance. A conventional heat exchanger has been tested and the performance of it recorded to compare it to the microchannel heat exchanger that PNNL has fabricated. The microchannel heat exchanger was designed to meet all of the requirements of the baseline heat exchanger, while reducing the heat exchanger mass and volume. The baseline heat exchanger was designed to have an transfer approximately 3.1 kW for a specific set of inlet conditions. The baseline heat exchanger mass was 2.7 kg while the microchannel mass was only 2.0 kg. More impressive, however, was the volumetric savings associated with the microchannel heat exchanger. The microchannel heat exchanger was an order of magnitude smaller than the baseline heat exchanger (2180cm3 vs. 311 cm3). This paper will describe the test apparatus designed to complete performance tests for both heat exchangers. Also described in this paper will be the performance specifications for the microchannel heat exchanger and how they compare to the baseline heat exchanger.

  7. Apprentice Heating Systems Specialist, 11-1. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This military-developed text consists of four volumes of materials for use by those studying to become apprentice heating system specialists. Covered in the individual volumes are the following topics: related subjects (basic electricity, electrical controls, pipe and copper tubing, the principles of heating, fuels, and fuel systems); heating…

  8. 40 CFR 90.421 - Dilute gaseous exhaust sampling and analytical system description.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Volume Sampler (PDP-CVS) system with a heat exchanger, or a Critical Flow Venturi—Constant Volume Sampler (CFV-CVS) system with CFV sample probes and/or a heat exchanger or electronic flow compensation. Figure... sampling point. (ii) For the CFV-CVS, either a heat exchanger or electronic flow compensation is required...

  9. 40 CFR 91.421 - Dilute gaseous exhaust sampling and analytical system description.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Pump—Constant Volume Sampler (PDP-CVS) system with a heat exchanger, or a Critical Flow Venturi—Constant Volume Sampler (CFV-CVS) system with CVS sample probes and/or a heat exchanger or electronic flow... sampling point. (ii) For the CFV-CVS, either a heat exchanger or electronic flow compensation is required...

  10. 40 CFR 91.421 - Dilute gaseous exhaust sampling and analytical system description.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Pump—Constant Volume Sampler (PDP-CVS) system with a heat exchanger, or a Critical Flow Venturi—Constant Volume Sampler (CFV-CVS) system with CVS sample probes and/or a heat exchanger or electronic flow... sampling point. (ii) For the CFV-CVS, either a heat exchanger or electronic flow compensation is required...

  11. 40 CFR 90.421 - Dilute gaseous exhaust sampling and analytical system description.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Volume Sampler (PDP-CVS) system with a heat exchanger, or a Critical Flow Venturi—Constant Volume Sampler (CFV-CVS) system with CFV sample probes and/or a heat exchanger or electronic flow compensation. Figure... sampling point. (ii) For the CFV-CVS, either a heat exchanger or electronic flow compensation is required...

  12. 40 CFR 91.421 - Dilute gaseous exhaust sampling and analytical system description.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Pump—Constant Volume Sampler (PDP-CVS) system with a heat exchanger, or a Critical Flow Venturi—Constant Volume Sampler (CFV-CVS) system with CVS sample probes and/or a heat exchanger or electronic flow... sampling point. (ii) For the CFV-CVS, either a heat exchanger or electronic flow compensation is required...

  13. 40 CFR 90.421 - Dilute gaseous exhaust sampling and analytical system description.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Volume Sampler (PDP-CVS) system with a heat exchanger, or a Critical Flow Venturi—Constant Volume Sampler (CFV-CVS) system with CFV sample probes and/or a heat exchanger or electronic flow compensation. Figure... sampling point. (ii) For the CFV-CVS, either a heat exchanger or electronic flow compensation is required...

  14. Near-chip compliant layer for reducing perimeter stress during assembly process

    DOEpatents

    Schultz, Mark D.; Takken, Todd E.; Tian, Shurong; Yao, Yuan

    2018-03-20

    A heat source (single semiconductor chip or group of closely spaced semiconductor chips of similar height) is provided on a first side of a substrate, which substrate has on said first side a support member comprising a compressible material. A heat removal component, oriented at an angle to said heat source, is brought into proximity of said heat source such that said heat removal component contacts said support member prior to contacting said heat source. Said heat removal component is assembled to said heat source such that said support member at least partially absorbs global inequality of force that would otherwise be applied to said heat source, absent said support member comprising said compressible material.

  15. Near-chip compliant layer for reducing perimeter stress during assembly process

    DOEpatents

    Schultz, Mark D.; Takken, Todd E.; Tian, Shurong; Yao, Yuan

    2017-02-14

    A heat source (single semiconductor chip or group of closely spaced semiconductor chips of similar height) is provided on a first side of a substrate, which substrate has on said first side a support member comprising a compressible material. A heat removal component, oriented at an angle to said heat source, is brought into proximity of said heat source such that said heat removal component contacts said support member prior to contacting said heat source. Said heat removal component is assembled to said heat source such that said support member at least partially absorbs global inequality of force that would otherwise be applied to said heat source, absent said support member comprising said compressible material.

  16. Application of SAW method for multiple-criteria comparative analysis of the reliability of heat supply organizations

    NASA Astrophysics Data System (ADS)

    Akhmetova, I. G.; Chichirova, N. D.

    2016-12-01

    Heat supply is the most energy-consuming sector of the economy. Approximately 30% of all used primary fuel-and-energy resources is spent on municipal heat-supply needs. One of the key indicators of activity of heat-supply organizations is the reliability of an energy facility. The reliability index of a heat supply organization is of interest to potential investors for assessing risks when investing in projects. The reliability indices established by the federal legislation are actually reduced to a single numerical factor, which depends on the number of heat-supply outages in connection with disturbances in operation of heat networks and the volume of their resource recovery in the calculation year. This factor is rather subjective and may change in a wide range during several years. A technique is proposed for evaluating the reliability of heat-supply organizations with the use of the simple additive weighting (SAW) method. The technique for integrated-index determination satisfies the following conditions: the reliability level of the evaluated heat-supply system is represented maximum fully and objectively; the information used for the reliability-index evaluation is easily available (is located on the Internet in accordance with demands of data-disclosure standards). For reliability estimation of heat-supply organizations, the following indicators were selected: the wear of equipment of thermal energy sources, the wear of heat networks, the number of outages of supply of thermal energy (heat carrier due to technological disturbances on heat networks per 1 km of heat networks), the number of outages of supply of thermal energy (heat carrier due to technologic disturbances on thermal energy sources per 1 Gcal/h of installed power), the share of expenditures in the cost of thermal energy aimed at recovery of the resource (renewal of fixed assets), coefficient of renewal of fixed assets, and a coefficient of fixed asset retirement. A versatile program is developed and the analysis of heat-supply organizations is performed by the example of the Republic of Tatarstan. The assessment system is based on construction of comparative ratings of heat-supply organizations. A rating is the assessment of reliability of the organization, is characterized by a numerical value, and makes it possible to compare organizations engaged in the same kind of activity between each other.

  17. Thermal Conductivity of Single-Walled Carbon Nanotube with Internal Heat Source Studied by Molecular Dynamics Simulation

    NASA Astrophysics Data System (ADS)

    Li, Yuan-Wei; Cao, Bing-Yang

    2013-12-01

    The thermal conductivity of (5, 5) single-walled carbon nanotubes (SWNTs) with an internal heat source is investigated by using nonequilibrium molecular dynamics (NEMD) simulation incorporating uniform heat source and heat source-and-sink schemes. Compared with SWNTs without an internal heat source, i.e., by a fixed-temperature difference scheme, the thermal conductivity of SWNTs with an internal heat source is much lower, by as much as half in some cases, though it still increases with an increase of the tube length. Based on the theory of phonon dynamics, a function called the phonon free path distribution is defined to develop a simple one-dimensional heat conduction model considering an internal heat source, which can explain diffusive-ballistic heat transport in carbon nanotubes well.

  18. Thermodynamic Performance and Cost Optimization of a Novel Hybrid Thermal-Compressed Air Energy Storage System Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Houssainy, Sammy; Janbozorgi, Mohammad; Kavehpour, Pirouz

    Compressed Air Energy Storage (CAES) can potentially allow renewable energy sources to meet electricity demands as reliably as coal-fired power plants. However, conventional CAES systems rely on the combustion of natural gas, require large storage volumes, and operate at high pressures, which possess inherent problems such as high costs, strict geological locations, and the production of greenhouse gas emissions. A novel and patented hybrid thermal-compressed air energy storage (HT-CAES) design is presented which allows a portion of the available energy, from the grid or renewable sources, to operate a compressor and the remainder to be converted and stored in themore » form of heat, through joule heating in a sensible thermal storage medium. The HT-CAES design incudes a turbocharger unit that provides supplementary mass flow rate alongside the air storage. The hybrid design and the addition of a turbocharger have the beneficial effect of mitigating the shortcomings of conventional CAES systems and its derivatives by eliminating combustion emissions and reducing storage volumes, operating pressures, and costs. Storage efficiency and cost are the two key factors, which upon integration with renewable energies would allow the sources to operate as independent forms of sustainable energy. The potential of the HT-CAES design is illustrated through a thermodynamic optimization study, which outlines key variables that have a major impact on the performance and economics of the storage system. The optimization analysis quantifies the required distribution of energy between thermal and compressed air energy storage, for maximum efficiency, and for minimum cost. This study provides a roundtrip energy and exergy efficiency map of the storage system and illustrates a trade off that exists between its capital cost and performance.« less

  19. Impact-Induced Liquid-Water Environments on Mars

    NASA Astrophysics Data System (ADS)

    Daubar, I. J.; Kring, D. A.

    2001-11-01

    The origin and evolution of life on Earth were likely associated with hydrothermal systems (e.g., Corliss et al. 1980, Baross and Hoffman 1985, Holm and Andersson 1995, Shock 1996). Although research has been concentrated on volcanic hydrothermal systems on Earth (e.g., Norton 1984, Farmer 2000) and on Mars (e.g., Allen et al. 1982, Gulick and Baker 1989, Farmer 1996), we suggest that large impacts can, and did, drive similar systems. Impacts are a significant source of thermal energy: melt rock produced in impacts, and hot rock uplifted from depth both provide sources of heat to drive hydrothermal systems. On Mars, these heat sources could provide enough energy to melt an underlying layer of permafrost and perhaps even initiate long-lived crater lakes (Newsom et al. 1996, Cabrol et al. 1999). In terms of the production of heat and the habitable volume incorporated in hydrothermal systems, impacts might have been at least as important as volcanic systems early in planetary development. The oldest (Noachian) surfaces on Mars support this hypothesis: they show very little evidence of volcanism (Carr 1996) and are instead dominated by impact cratering processes. Kring and Cohen (2001, submitted) estimate that more than 6400 craters with diameters greater than 20 km were produced on Mars 3.9 Ga. We present estimates of the lifetimes of hydrothermal systems in Martian craters with sizes ranging from 20 km to 200 km in diameter. Lifetimes calculated assuming convective cooling are 105 years for 100-km craters and several 106 years for 180-km craters (Daubar and Kring 2001, cf. Thorsos et al. 2001). These results may be influenced by an insulating breccia layer, shock heating, and convection of water; these factors are currently being evaluated.

  20. A Geographical Analysis of Emergency Medical Service Calls and Extreme Heat in King County, WA, USA (2007-2012).

    PubMed

    DeVine, Aubrey C; Vu, Phuong T; Yost, Michael G; Seto, Edmund Y W; Busch Isaksen, Tania M

    2017-08-20

    This research analyzed the relationship between extreme heat and Emergency Medical Service (EMS) calls in King County, WA, USA between 2007 and 2012, including the effect of community-level characteristics. Extreme heat thresholds for the Basic Life Support (BLS) data and the Advanced Life Support (ALS) data were found using a piecewise generalized linear model with Akaike Information Criterion (AIC). The association between heat exposure and EMS call rates was investigated using a generalized estimating equations with Poisson mean model, while adjusting for community-level indicators of poverty, impervious surface, and elderly population (65+). In addition, we examined the effect modifications of these community-level factors. Extreme-heat thresholds of 31.1 °C and 33.5 °C humidex were determined for the BLS and ALS data, respectively. After adjusting for other variables in the model, increased BLS call volume was significantly associated with occurring on a heat day (relative rate (RR) = 1.080, p < 0.001), as well as in locations with higher percent poverty (RR = 1.066, p < 0.001). No significant effect modification was identified for the BLS data on a heat day. Controlling for other variables, higher ALS call volume was found to be significantly associated with a heat day (RR = 1.067, p < 0.001), as well as in locations with higher percent impervious surface (RR = 1.015, p = 0.039), higher percent of the population 65 years or older (RR = 1.057, p = 0.005), and higher percent poverty (RR = 1.041, p = 0.016). Furthermore, percent poverty and impervious surface were found to significantly modify the relative rate of ALS call volumes between a heat day and non-heat day. We conclude that EMS call volume increases significantly on a heat day compared to non-heat day for both call types. While this study shows that there is some effect modification between the community-level variables and call volume on a heat day, further research is necessary. Our findings also suggest that with adequate power, spatially refined analyses may not be necessary to accurately estimate the extreme-heat effect on health.

  1. Effect of Inert Cover Gas on Performance of Radioisotope Stirling Space Power System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carpenter, Robert; Kumar, V; Ore, C

    2001-01-01

    This paper describes an updated Orbital design of a radioisotope Stirling power system and its predicted performance at the beginning and end of a six-year mission to the Jovian moon Europa. The design is based on General Purpose Heat Source (GPHS) modules identical to those previously developed and safety-qualified by the Department of Energy (DOE) which were successfully launched to Jupiter and Saturn by the Jet Propulsion Laboratory (JPL). In each generator, the heat produced by the decay of the Pu-238 isotope is converted to electric power by two free-piston Stirling engines and linear alternators developed by Stirling Technology Companymore » (STC), and their rejected waste heat is transported to radiators by heat pipes. The principal difference between the proposed system design and previous Orbital designs (Or et al. 2000) is the thermal insulation between the heat source and the generator's housing. Previous designs had employed multifoil insulation, whereas the design described here employs Min-K-1800 thermal insulation. Such insulation had been successfully used by Teledyne and GE in earlier RTGs (Radioisotope Thermoelectric Generators). Although Min-K is a much poorer insulator than multifoil in vacuum and requires a substantially greater thickness for equivalent performance, it offers compensating advantages. Specifically it makes it possible to adjust the generator's BOM temperatures by filling its interior volume with inert cover gas. This makes it possible to meet the generator's BOM and EOM performance goals without exceeding its allowable temperature at the beginning of the mission.« less

  2. Heat Transfer Characteristics of Fan Coil Unit (FCU) Under The Effect of Chilled Water Volume Flowrate

    NASA Astrophysics Data System (ADS)

    Wijaya Sunu, Putu; Anakottapary, Daud Simon; Mulawarman, A. A. N. B.; Cipta Santosa, I. D. M.; Putu Sastra Negara, I.

    2018-01-01

    In this paper, the volume flowrate of chilled water in the water chiller simulation apparatus was optimized using experimental studied. The experimental analysis was performed on the fan coil unit (FCU) of the system. The chilled water flows in tube side and the air as a hot fluid flows throughout the tube and fin of FCU. The thermal performance and analysis of the heat transfer is examined using various chilled water flowrate e.g. 11, 12, 13, 14, 15 lpm. The effect of the flowrate to the important parameter such as LMTD temperature, heat absorb used for investigate the heat transfer characteristics. The result showed that the heat transfer characteristics has been increased with the increased of chilled water volume flowrate.

  3. Mars Science Laboratory Rover Integrated Pump Assembly Bellows Jamming Failure

    NASA Technical Reports Server (NTRS)

    Johnson, Michael R.; Johnson, Joel; Birur, Gajanana; Bhandari, Pradeep; Karlmann, Paul

    2012-01-01

    The Mars Science Laboratory rover and spacecraft utilize two mechanically pumped fluid loops for heat transfer to and from the internal electronics assemblies and the Radioisotope Thermo-Electric Generator (RTG). The heat transfer fluid is Freon R-11 (CFC-11) which has a large coefficient of thermal expansion. The Freon within the heat transfer system must have a volume for safe expansion of the fluid as the system temperature rises. The device used for this function is a gas-over-liquid accumulator. The accumulator uses a metal bellows to separate the fluid and gas sections. During expansion and contraction of the fluid in the system, the bellows extends and retracts to provide the needed volume change. During final testing of a spare unit, the bellows would not extend the full distance required to provide the needed expansion volume. Increasing the fluid pressure did not loosen the jammed bellows either. No amount of stroking the bellows back and forth would get it to pass the jamming point. This type of failure, if it occurred during flight, would result in significant overpressure of the heat transfer system leading to a burst failure at some point in the system piping. A loss of the Freon fluid would soon result in a loss of the mission. The determination of the source of the jamming of the bellows was quite elusive, leading to an extensive series of tests and analyses. The testing and analyses did indicate the root cause of the failure, qualitatively. The results did not provide a set of dimensional limits for the existing hardware design that would guarantee proper operation of the accumulator. In the end, a new design was developed that relied on good engineering judgment combined with the test results to select a reliable enough solution that still met other physical constraints of the hardware, the schedule, and the rover system.

  4. A Model for coupled heat and moisture transfer in permafrost regions of three rivers source areas, Qinghai, China

    NASA Astrophysics Data System (ADS)

    Wu, X. L.; Xiang, X. H.; Wang, C. H.; Shao, Q. Q.

    2012-04-01

    Soil freezing occurs in winter in many parts of the world. The transfer of heat and moisture in freezing and thawing soil is interrelated, and this heat and moisture transport plays an important role in hydrological activity of seasonal frozen region especially for three rivers sources area of China. Soil freezing depth and ice content in frozen zone will significantly influence runoff and groundwater recharge. The purpose of this research is to develop a numerical model to simulate water and heat movement in the soil under freezing and thawing conditions. The basic elements of the model are the heat and water flow equations, which are heat conduction equation and unsaturated soil fluid mass conservation equation. A full-implicit finite volume scheme is used to solve the coupled equations in space. The model is calibrated and verified against the observed moisture and temperature of soil during freezing and thawing period from 2005 to 2007. Different characters of heat and moisture transfer are testified, such as frozen depth, temperature field of 40 cm depth and topsoil moisture content, et al. The model is calibrated and verified against observed value, which indicate that the new model can be used successfully to simulate numerically the coupled heat and mass transfer process in permafrost regions. By simulating the runoff generation process and the driven factors of seasonal changes, the agreement illustrates that the coupled model can be used to describe the local phonemes of hydrologic activities and provide a support to the local Ecosystem services. This research was supported by the National Natural Science Foundation of China (No. 51009045; 40930635; 41001011; 41101018; 51079038), the National Key Program for Developing Basic Science (No. 2009CB421105), the Fundamental Research Funds for the Central Universities (No. 2009B06614; 2010B00414), the National Non Profit Research Program of China (No. 200905013-8; 201101024; 20101224).

  5. Oxidizer heat exchanger component test

    NASA Technical Reports Server (NTRS)

    Kanic, P. G.

    1988-01-01

    The RL10-IIB engine, is capable of multimode thrust operation. The engine operates at two low-thrust levels: tank head idle (THI), approximately 1 to 2 percent of full thrust; and pumped idle, 10 percent of full thrust. Operation at THI provides vehicle propellant settling thrust and efficient thermal conditioning; PI operation provides vehicle tank prepressurization and maneuver thrust for low-g deployment. Stable combustion of the RL10-IIB engine during the low-thrust operating modes can be accomplished by using a heat exchanger to supply gaseous oxygen to the propellant injector. The oxidized heat exchanger (OHE) vaporizes the liquid oxygen using hydrogen as the energy source. This report summarizes the test activity and post-test data analysis for two possible heat exchangers, each of which employs a completely different design philosophy. One design makes use of a low-heat transfer (PHT) approach in combination with a volume to attenuate pressure and flow oscillations. The test data showed that the LHT unit satisfied the oxygen exit quality of 0.95 or greater in both the THI and PI modes while maintaining stability. The HHT unit fulfilled all PI requirements; data for THI satisfactory operation is implied from experimental data that straddle the exact THI operating point.

  6. Heat Transfer during Blanching and Hydrocooling of Broccoli Florets.

    PubMed

    Iribe-Salazar, Rosalina; Caro-Corrales, José; Hernández-Calderón, Óscar; Zazueta-Niebla, Jorge; Gutiérrez-Dorado, Roberto; Carrazco-Escalante, Marco; Vázquez-López, Yessica

    2015-12-01

    The objective of this work was to simulate heat transfer during blanching (90 °C) and hydrocooling (5 °C) of broccoli florets (Brassica oleracea L. Italica) and to evaluate the impact of these processes on the physicochemical and nutrimental quality properties. Thermophysical properties (thermal conductivity [line heat source], specific heat capacity [differential scanning calorimetry], and bulk density [volume displacement]) of stem and inflorescence were measured as a function of temperature (5, 10, 20, 40, 60, and 80 °C). The activation energy and the frequency factor (Arrhenius model) of these thermophysical properties were calculated. A 3-dimensional finite element model was developed to predict the temperature history at different points inside the product. Comparison of the theoretical and experimental temperature histories was carried out. Quality parameters (firmness, total color difference, and vitamin C content) and peroxidase activity were measured. The satisfactory validation of the finite element model allows the prediction of temperature histories and profiles under different process conditions, which could lead to an eventual optimization aimed to minimize the nutritional and sensorial losses in broccoli florets. © 2015 Institute of Food Technologists®

  7. Solar coronal loop heating by cross-field wave transport

    NASA Technical Reports Server (NTRS)

    Amendt, Peter; Benford, Gregory

    1989-01-01

    Solar coronal arches heated by turbulent ion-cyclotron waves may suffer significant cross-field transport by these waves. Nonlinear processes fix the wave-propagation speed at about a tenth of the ion thermal velocity, which seems sufficient to spread heat from a central core into a large cool surrounding cocoon. Waves heat cocoon ions both through classical ion-electron collisions and by turbulent stochastic ion motions. Plausible cocoon sizes set by wave damping are in roughly kilometers, although the wave-emitting core may be only 100 m wide. Detailed study of nonlinear stabilization and energy-deposition rates predicts that nearby regions can heat to values intermediate between the roughly electron volt foot-point temperatures and the about 100 eV core, which is heated by anomalous Ohmic losses. A volume of 100 times the core volume may be affected. This qualitative result may solve a persistent problem with current-driven coronal heating; that it affects only small volumes and provides no way to produce the extended warm structures perceptible to existing instruments.

  8. Strain heating in process zones; implications for metamorphism and partial melting in the lithosphere

    NASA Astrophysics Data System (ADS)

    Devès, Maud H.; Tait, Stephen R.; King, Geoffrey C. P.; Grandin, Raphaël

    2014-05-01

    Since the late 1970s, most earth scientists have discounted the plausibility of melting by shear-strain heating because temperature-dependent creep rheology leads to negative feedback and self-regulation. This paper presents a new model of distributed shear-strain heating that can account for the genesis of large volumes of magmas in both the crust and the mantle of the lithosphere. The kinematic (geometry and rates) frustration associated with incompatible fault junctions (e.g. triple-junction) prevents localisation of all strain on the major faults. Instead, deformation distributes off the main faults forming a large process zone that deforms still at high rates under both brittle and ductile conditions. The increased size of the shear-heated region minimises conductive heat loss, compared with that commonly associated with narrow shear zones, thus promoting strong heating and melting under reasonable rheological assumptions. Given the large volume of the heated zone, large volumes of melt can be generated even at small melt fractions.

  9. Whole-body fluid distribution in humans during dehydration and recovery, before and after humid-heat acclimation induced using controlled hyperthermia.

    PubMed

    Patterson, M J; Stocks, J M; Taylor, N A S

    2014-04-01

    This experiment was designed to test the hypothesis that the plasma volume is not selectively defended during exercise- and heat-induced dehydration following humid-heat acclimation. Eight physically active males were heat acclimated (39.8 °C, relative humidity 59.2%) using 17 days of controlled hyperthermia (core temperature: 38.5 °C). Inter-compartmental fluid losses and movements were tracked (radioisotopes and Evans blue dye) during progressive dehydration (cycling) in these same conditions and also during a resting recovery without fluid replacement (28 °C), before (day 1), during (day 8) and after heat acclimation (day 22). On days 8 and 22, there were significant increases in total body water, interstitial fluid and plasma volume (P < 0.05), but the intracellular compartments did not change (P > 0.05). The baseline plasma volume remained expanded throughout: 43.4 [±2.6 (day 1)], 49.1 [±2.4 (day 8); P < 0.05] and 48.9 mL kg(-1) [±3.0 (day 22); P < 0.05]. During progressive dehydration, plasma reductions of 9.0% (±0.9: day 1), 12.4% (±1.6: day 8) and 13.6% (±1.2: day 22) were observed, with day 8 and 22 losses significantly exceeding day 1 (P < 0.05). During recovery, plasma volume restoration commenced, with the intracellular fluid contribution becoming more pronounced as acclimation progressed. It is concluded that the plasma volume was not defended more vigorously following humid-heat acclimation. Indeed, a greater fluid loss may well underlie the mechanisms for enhancing plasma volume recovery when heat acclimation is induced using the controlled-hyperthermia technique. © 2013 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  10. IECEC '84: Advanced energy systems - Their role in our future; Proceedings of the Nineteenth Intersociety Energy Conversion Engineering Conference, San Francisco, CA, August 19-24, 1984. Volumes 1, 2, 3, & 4

    NASA Astrophysics Data System (ADS)

    Among the topics discussed are: advanced energy conversion concepts, power sources for aircraft and spacecraft, alternate fuels for industrial and vehicular applications, biomass-derived fuels, electric vehicle design and development status, electrochemical energy conversion systems, electric power generation cycles, energy-efficient industrial processes, and energy policy and system analysis. Also discussed are advanced methods for energy storage and transport, fossil fuel conversion systems, geothermal energy system development and performance, novel and advanced heat engines, hydrogen fuel-based energy systems, MHD technology development status, nuclear energy systems, solar energy conversion methods, advanced heating and cooling systems, Stirling cycle device development, terrestrial photovoltaic systems, and thermoelectric and thermionic systems.

  11. In-situ measurement system

    DOEpatents

    Lord, David E.

    1983-01-01

    A multipurpose in situ underground measurement system comprising a plurality of long electrical resistance elements in the form of rigid reinforcing bars, each having an open loop "hairpin" configuration of shorter length than the other resistance elements. The resistance elements are arranged in pairs in a unitized structure, and grouted in place in the underground volume. The electrical resistance of each element and the difference in electrical resistance of the paired elements are obtained, which difference values may be used in analytical methods involving resistance as a function of temperature. A scanner sequentially connects the resistance-measuring apparatus to each individual pair of elements. A source of heating current is also selectively connectable for heating the elements to an initial predetermined temperature prior to electrical resistance measurements when used as an anemometer.

  12. Temperature control and measurement with tunable femtosecond optical tweezers

    NASA Astrophysics Data System (ADS)

    Mondal, Dipankar; Goswami, Debabrata

    2016-09-01

    We present the effects of wavelength dependent temperature rise in a femtosecond optical tweezers. Our experiments involve the femtosecond trapping laser tunable from 740-820 nm at low power 25 mW to cause heating in the trapped volume within a homogeneous solution of sub micro-molar concentration of IR dye. The 780 nm high repetition rate laser acts as a resonant excitation source which helps to create the local heating effortlessly within the trapping volume. We have used both position autocorrelation and equipartion theorem to evaluate temperature at different wavelength having different absorption coefficient. Fixing the pulse width in the temporal domain gives constant bandwidth at spatial domain, which makes our system behave as a tunable temperature rise device with high precision. This observation leads us to calculate temperature as well as viscosity within the vicinity of the trapping zone. A mutual energy transfer occurs between the trapped bead and solvents that leads to transfer the thermal energy of solvents into the kinetic energy of the trap bead and vice-versa. Thus hot solvated molecules resulting from resonant and near resonant excitation of trapping wavelength can continuously dissipate heat to the trapped bead which will be reflected on frequency spectrum of Brownian noise exhibited by the bead. Temperature rise near the trapping zone can significantly change the viscosity of the medium. We observe temperature rise profile according to its Gaussian shaped absorption spectrum with different wavelength.

  13. Space shuttle/food system study. Volume 1: Technical volume, oven study

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The baseline space shuttle galley was designed to utilize lightweight rehydratable foods, to be prepared for consumption by rehydration with chilled or hot water. The impact is examined of an extension of food types to include thermostabilized food, at ambient temperature, and frozen foods on the baseline design of the shuttle galley. Weight, volume, and power penalities associated with heating thermostabilized and frozen foods by means of a hot air convection heating system and a conduction heating system are determined along with the impact on crew/galley interface and meal preparation.

  14. Starting Conditions for Hydrothermal Systems Underneath Martian Craters: Hydrocode Modeling

    NASA Technical Reports Server (NTRS)

    Pierazzo, E.; Artemieva, N. A.; Ivanov, B. A.

    2004-01-01

    Mars is the most Earth-like of the Solar System s planets, and the first place to look for any sign of present or past extraterrestrial life. Its surface shows many features indicative of the presence of surface and sub-surface water, while impact cratering and volcanism have provided temporary and local surface heat sources throughout Mars geologic history. Impact craters are widely used ubiquitous indicators for the presence of sub-surface water or ice on Mars. In particular, the presence of significant amounts of ground ice or water would cause impact-induced hydrothermal alteration at Martian impact sites. The realization that hydrothermal systems are possible sites for the origin and early evolution of life on Earth has given rise to the hypothesis that hydrothermal systems may have had the same role on Mars. Rough estimates of the heat generated in impact events have been based on scaling relations, or thermal data based on terrestrial impacts on crystalline basements. Preliminary studies also suggest that melt sheets and target uplift are equally important heat sources for the development of a hydrothermal system, while its lifetime depends on the volume and cooling rate of the heat source, as well as the permeability of the host rocks. We present initial results of two-dimensional (2D) and three-dimensional (3D) simulations of impacts on Mars aimed at constraining the initial conditions for modeling the onset and evolution of a hydrothermal system on the red planet. Simulations of the early stages of impact cratering provide an estimate of the amount of shock melting and the pressure-temperature distribution in the target caused by various impacts on the Martian surface. Modeling of the late stage of crater collapse is necessary to characterize the final thermal state of the target, including crater uplift, and distribution of the heated target material (including the melt pool) and hot ejecta around the crater.

  15. Testing of aircraft passenger seat cushion materials. Full scale, test description and results, volume 1

    NASA Technical Reports Server (NTRS)

    Schutter, K. J.; Gaume, J. G.; Duskin, F. E.

    1981-01-01

    Eight different seat cushion configurations were subjected to full-scale burn tests. Each cushion configuration was tested twice for a total of sixteen tests. Two different fire sources were used. They consisted of one liter of Jet A fuel for eight tests and a radiant energy source with propane flame for eight tests. Both fire sources were ignited by a propane flame. During each test, data were recorded for smoke density, cushion temperatures, radiant heat flux, animal response to combustion products, rate of weight loss of test specimens, cabin temperature, and for the type and content of gas within the cabin atmosphere. When compared to existing passenger aircraft seat cushions, the test specimens incorporating a fire barrier and those fabricated from advanced materials, using improved construction methods, exhibited significantly greater fire resistance.

  16. Proceedings of Symposium on Energy Engineering in the 21st Century (SEE 2000). Volume Four

    DTIC Science & Technology

    2000-01-13

    Significantly Varying Demand of Heat and Power 1347 D. Hein and K. Kwanka T2. Thermodynamic Analysis and Sensitivity Studies on Braysson cycle Using...to Volumes 1-4 T. Cycle Analysis 1346 CHENG CYCLE COGENERATION FOR A SIGNIFICANTLY VARYING DEMAND OF HEAT AND POWER Dietmar Hein, Klaus Kwanka...significantly varying demand of heat and power a Cheng Cycle gas turbine cogeneration plant was installed. By injecting steam, produced by the heat

  17. Enhancement in heat transfer of a ferrofluid in a differentially heated square cavity through the use of permanent magnets

    NASA Astrophysics Data System (ADS)

    Joubert, J. C.; Sharifpur, M.; Solomon, A. Brusly; Meyer, J. P.

    2017-12-01

    The natural convection heat transfer of a magnetic nanofluid in a differentially heated cavity is investigated with and without an applied external magnetic field. The effects of volume fraction, magnetic field configuration, and magnetic field strength are investigated. Spherical Fe2O3 nanoparticles with a diameter of 15-20 nm are used in the nanofluids. Volume fractions ranging between 0.05% and 0.3% are tested for the case with no magnetic field, while only a volume fraction of 0.1% was tested in an externally applied magnetic field. The experiments were conducted for a range of Rayleigh numbers in 1.7 × 108 < Ra < 4.2 × 108. The viscosity of the nanofluid was determined experimentally. An empirical correlation for the viscosity was determined, and the stability of various nanofluids was investigated. Using heat transfer data obtained from the cavity, the average heat transfer coefficient and average Nusselt number for the nanofluids are determined. It was found that a volume fraction of 0.1% showed a maximum increase of 5.63% to the Nu at the maximum Ra. For the magnetic field study, it was found that the best-performing magnetic field enhanced the heat transfer behaviour by an additional 2.81% in Nu at Ra = 3.8 × 108.

  18. Status and operation of the Linac4 ion source prototypes

    NASA Astrophysics Data System (ADS)

    Lettry, J.; Aguglia, D.; Andersson, P.; Bertolo, S.; Butterworth, A.; Coutron, Y.; Dallocchio, A.; Chaudet, E.; Gil-Flores, J.; Guida, R.; Hansen, J.; Hatayama, A.; Koszar, I.; Mahner, E.; Mastrostefano, C.; Mathot, S.; Mattei, S.; Midttun, Ø.; Moyret, P.; Nisbet, D.; Nishida, K.; O'Neil, M.; Ohta, M.; Paoluzzi, M.; Pasquino, C.; Pereira, H.; Rochez, J.; Sanchez Alvarez, J.; Sanchez Arias, J.; Scrivens, R.; Shibata, T.; Steyaert, D.; Thaus, N.; Yamamoto, T.

    2014-02-01

    CERN's Linac4 45 kV H- ion sources prototypes are installed at a dedicated ion source test stand and in the Linac4 tunnel. The operation of the pulsed hydrogen injection, RF sustained plasma, and pulsed high voltages are described. The first experimental results of two prototypes relying on 2 MHz RF-plasma heating are presented. The plasma is ignited via capacitive coupling, and sustained by inductive coupling. The light emitted from the plasma is collected by viewports pointing to the plasma chamber wall in the middle of the RF solenoid and to the plasma chamber axis. Preliminary measurements of optical emission spectroscopy and photometry of the plasma have been performed. The design of a cesiated ion source is presented. The volume source has produced a 45 keV H- beam of 16-22 mA which has successfully been used for the commissioning of the Low Energy Beam Transport (LEBT), Radio Frequency Quadrupole (RFQ) accelerator, and chopper of Linac4.

  19. The energy release and temperature field in the ultracold neutron source of the WWR-M reactor at the Petersburg Nuclear Physics Institute

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serebrov, A. P., E-mail: serebrov@pnpi.spb.ru; Kislitsin, B. V.; Onegin, M. S.

    2016-12-15

    Results of calculations of energy releases and temperature fields in the ultracold neutron source under design at the WWR-M reactor are presented. It is shown that, with the reactor power of 18 MW, the power of energy release in the 40-L volume of the source with superfluid helium will amount to 28.5 W, while 356 W will be released in a liquid-deuterium premoderator. The lead shield between the reactor core and the source reduces the radiative heat release by an order of magnitude. A thermal power of 22 kW is released in it, which is removed by passage of water.more » The distribution of temperatures in all components of the vacuum structure is presented, and the temperature does not exceed 100°C at full reactor power. The calculations performed make it possible to go to design of the source.« less

  20. Plume Activity and Tidal Deformation on Enceladus Influenced by Faults and Variable Ice Shell Thickness

    NASA Astrophysics Data System (ADS)

    Běhounková, Marie; Souček, Ondřej; Hron, Jaroslav; Čadek, Ondřej

    2017-09-01

    We investigated the effect of variations in ice shell thickness and of the tiger stripe fractures crossing Enceladus' south polar terrain on the moon's tidal deformation by performing finite element calculations in three-dimensional geometry. The combination of thinning in the polar region and the presence of faults has a synergistic effect that leads to an increase of both the displacement and stress in the south polar terrain by an order of magnitude compared to that of the traditional model with a uniform shell thickness and without faults. Assuming a simplified conductive heat transfer and neglecting the heat sources below the ice shell, we computed the global heat budget of the ice shell. For the inelastic properties of the shell described by a Maxwell viscoelastic model, we show that unrealistically low average viscosity of the order of 10^{13} Pa s is necessary for preserving the volume of the ocean, suggesting the important role of the heat sources in the deep interior. Similarly, low viscosity is required to predict the observed delay of the plume activity, which hints at other delaying mechanisms than just the viscoelasticity of the ice shell. The presence of faults results in large spatial and temporal heterogeneity of geysering activity compared to the traditional models without faults. Our model contributes to understanding the physical mechanisms that control the fault activity, and it provides potentially useful information for future missions that will sample the plume for evidence of life.

  1. Heat sink phenomenon of bipolar and monopolar radiofrequency ablation observed using polypropylene tubes for vessel simulation.

    PubMed

    Al-Alem, Ihssan; Pillai, Krishna; Akhter, Javed; Chua, Terence C; Morris, David L

    2014-06-01

    Radiofrequency ablation (RFA) is widely used for treating liver tumors; recurrence is common owing to proximity to blood vessels possibly due to the heat sink effect. We seek to investigate this phenomenon using unipolar and bipolar RFA on an egg white tumor tissue model and an animal liver model. Temperature profiles during ablation (with and without vessel simulation) were studied, using both bipolar and unipolar RFA probes by 4 strategically placed temperature leads to monitor temperature profile during ablation. The volume of ablated tissue was also measured. The volume ablated during vessel simulation confirmed the impact of the heat sink phenomenon. The heat sink effect of unipolar RFA was greater compared with bipolar RFA (ratio of volume affected 2:1) in both tissue and liver models. The volume ablated using unipolar RFA was less than the bipolar RFA (ratio of volume ablated = 1:4). Unipolar RFA achieved higher ablation temperatures (122°C vs 98°C). Unipolar RFA resulted in tissue damage beyond the vessel, which was not observed using bipolar RFA. Bipolar RFA ablates a larger tumor volume compared with unipolar RFA, with a single ablation. The impact of heat sink phenomenon in tumor ablation is less so with bipolar than unipolar RFA with sparing of adjacent vessel damage. © The Author(s) 2013.

  2. The NATA code; theory and analysis. Volume 3: Programmer's manual. [for calculating flow in arc-heated wind tunnels and conditions on models tested in reentry simulation

    NASA Technical Reports Server (NTRS)

    Bade, W. L.; Yos, J. M.

    1975-01-01

    The present, third volume of the final report is a programmer's manual for the code. It provides a listing of the FORTRAN 4 source program; a complete glossary of FORTRAN symbols; a discussion of the purpose and method of operation of each subroutine (including mathematical analyses of special algorithms); and a discussion of the operation of the code on IBM/360 and UNIVAC 1108 systems, including required control cards and the overlay structure used to accommodate the code to the limited core size of the 1108. In addition, similar information is provided to document the programming of the NOZFIT code, which is employed to set up nozzle profile curvefits for use in NATA.

  3. Variable pressure power cycle and control system

    DOEpatents

    Goldsberry, Fred L.

    1984-11-27

    A variable pressure power cycle and control system that is adjustable to a variable heat source is disclosed. The power cycle adjusts itself to the heat source so that a minimal temperature difference is maintained between the heat source fluid and the power cycle working fluid, thereby substantially matching the thermodynamic envelope of the power cycle to the thermodynamic envelope of the heat source. Adjustments are made by sensing the inlet temperature of the heat source fluid and then setting a superheated vapor temperature and pressure to achieve a minimum temperature difference between the heat source fluid and the working fluid.

  4. General volume sizing strategy for thermal storage system using phase change material for concentrated solar thermal power plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Ben; Li, Peiwen; Chan, Cholik

    With an auxiliary large capacity thermal storage using phase change material (PCM), Concentrated Solar Power (CSP) is a promising technology for high efficiency solar energy utilization. In a thermal storage system, a dual-media thermal storage tank is typically adopted in industry for the purpose of reducing the use of the heat transfer fluid (HTF) which is usually expensive. While the sensible heat storage system (SHSS) has been well studied, a dual-media latent heat storage system (LHSS) still needs more attention and study. The volume sizing of the thermal storage tank, considering daily cyclic operations, is of particular significance. In thismore » paper, a general volume sizing strategy for LHSS is proposed, based on an enthalpy-based 1D transient model. One example was presented to demonstrate how to apply this strategy to obtain an actual storage tank volume. With this volume, a LHSS can supply heat to a thermal power plant with the HTF at temperatures above a cutoff point during a desired 6 hours of operation. This general volume sizing strategy is believed to be of particular interest for the solar thermal power industry.« less

  5. General volume sizing strategy for thermal storage system using phase change material for concentrated solar thermal power plant

    DOE PAGES

    Xu, Ben; Li, Peiwen; Chan, Cholik; ...

    2014-12-18

    With an auxiliary large capacity thermal storage using phase change material (PCM), Concentrated Solar Power (CSP) is a promising technology for high efficiency solar energy utilization. In a thermal storage system, a dual-media thermal storage tank is typically adopted in industry for the purpose of reducing the use of the heat transfer fluid (HTF) which is usually expensive. While the sensible heat storage system (SHSS) has been well studied, a dual-media latent heat storage system (LHSS) still needs more attention and study. The volume sizing of the thermal storage tank, considering daily cyclic operations, is of particular significance. In thismore » paper, a general volume sizing strategy for LHSS is proposed, based on an enthalpy-based 1D transient model. One example was presented to demonstrate how to apply this strategy to obtain an actual storage tank volume. With this volume, a LHSS can supply heat to a thermal power plant with the HTF at temperatures above a cutoff point during a desired 6 hours of operation. This general volume sizing strategy is believed to be of particular interest for the solar thermal power industry.« less

  6. A simulation approach to material removal in microwave drilling of soda lime glass at 2.45 GHz

    NASA Astrophysics Data System (ADS)

    Lautre, Nitin Kumar; Sharma, Apurbba Kumar; Pradeep, Kumar; Das, Shantanu

    2015-09-01

    Material removal during microwave drilling is basically due to thermal ablation of the material in the vicinity of the drilling tool. The microtip of the tool, also termed as concentrator, absorbs microwaves and ionizes the dielectric in its proximity creating a zone of plasma. The plasma takes the shape of a sphere owing to the atmospheric sphere, which acts as the source of thermal energy to be used for processing a material. This mechanism of heating, also called localized microwave heating, was used in the present study to drill holes in 1.2-mm-thick soda lime glass. The mechanism of material removal had been analyzed through simulation of the hot spot region, and the results were attempted to explain through experiment observations. It was realized that the glass being a poor conductor of heat, a low power (90 W in this case) yields better drilling results owing to more localized heat corresponding to a low-volume plasma sphere. The low application time prevents further heat transfer, and a localized concentration of heat becomes possible that primarily causes the material ablation. The plasma sphere appears sustain while the tool moves through the bulk of the glass thickness although its volume gets further shrunk. The process needs careful selection of the parameters. The simulation results show relatively low temperature in the top half (opposite to the tool tip) of the plasma sphere which eventually causes the semimolten viscous glass to collapse into the drill cavity as the tool advances into the bulk and stops the movement of the tool. The continued plasma sphere raises the tip temperature, which makes the tip to melt and gets blunt. The plasma formation ceases owing to larger diameter of the tool, and the tool gets stuck which could be verified through experimental results.

  7. The Weight Loss Effect of Heated Inner Cylinder by Free Convection in Horizontal Cylindrical Enclosure

    NASA Astrophysics Data System (ADS)

    Sboev, I. O.; Kondrashov, A. N.; Rybkin, K. A.; Burkova, L. N.; Goncharov, M. M.

    2018-03-01

    The work presents results of numerical simulations of natural convection in cavity formed by the surfaces of two horizontal coaxial cylinders. The temperature of the outer cylinder is constant. The area between the cylinders is filled with an ideal incompressible fluid. The inner cylinder is set as the heater. The solution of the equations of thermal convection in a two-dimensional approximation performed by the software package ANSYS Fluent with finite volume method. The study compares the results of numerical simulation with several well-known theoretical and experimental results. The nature of interaction of the inner cylinder with a convection current created in the gap was observed. It was shown that the flux appeared around a heated cylinder affects the weight of the heat source and causes an additional lift force from the surrounding fluid. The various Rayleigh numbers (from 1.0 ṡ 103 to 1.5 ṡ 106) and fluid with different Prandtl number (from 0.5 to 1.0 ṡ 105) are considered.

  8. Radiative energy transfer in molecular gases

    NASA Technical Reports Server (NTRS)

    Tiwari, Surendra N.

    1992-01-01

    Basic formulations, analyses, and numerical procedures are presented to study radiative interactions in gray as well as nongray gases under different physical and flow conditions. After preliminary fluid-dynamical considerations, essential governing equations for radiative transport are presented that are applicable under local and nonlocal thermodynamic equilibrium conditions. Auxiliary relations for relaxation times and spectral absorption models are also provided. For specific applications, several simple gaseous systems are analyzed. The first system considered consists of a gas bounded by two parallel plates having the same temperature. Within the gas there is a uniform heat source per unit volume. For this system, both vibrational nonequilibrium effects and radiation conduction interactions are studied. The second system consists of fully developed laminar flow and heat transfer in a parallel plate duct under the boundary condition of a uniform surface heat flux. For this system, effects of gray surface emittance are studied. With the single exception of a circular geometry, the third system is considered identical to the second system. Here, the influence of nongray walls is also studied.

  9. Momentum and Heat Transfer Models for Detonation in Nitromethane with Metal Particles

    NASA Astrophysics Data System (ADS)

    Ripley, Robert; Zhang, Fan; Lien, Fue-Sang

    2009-06-01

    Models for momentum and heat exchange have been derived from the results of previous 3D mesoscale simulations of detonation in packed aluminum particles saturated with nitromethane, where the shock interaction timescale was resolved. In these models, particle acceleration and heating within the shock and detonation zone have been expressed in terms of velocity and temperature transmission factors, which are a function of metal to explosive density ratio, metal volume fraction and ratio of particle size to detonation zone thickness. These models are incorporated as source terms in the governing equations for continuum dense two-phase flow and macroscopic simulation is then applied to detonation of nitromethane/aluminum in lightly-cased cylinders. Heterogeneous detonation features such as velocity deficit, enhanced pressure, and critical diameter effects are reproduced. Various spherical particle diameters from 3 -- 30 μm are utilized where most of the particles react in the expanding detonation products. Results for detonation velocity, pressure history, failure and U-shaped critical diameter behavior are compared to the existing experiments.

  10. Momentum and Heat Transfer Models for Detonation in Nitromethane with Metal Particles

    NASA Astrophysics Data System (ADS)

    Ripley, R. C.; Zhang, F.; Lien, F.-S.

    2009-12-01

    Models for momentum and heat exchange have been derived from the results of previous 3D mesoscale simulations of detonation in packed aluminum particles saturated with nitromethane, where the shock interaction timescale was resolved. In these models, particle acceleration and heating within the shock and detonation zone are expressed in terms of velocity and temperature transmission factors, which are a function of the metal to explosive density ratio, solid volume fraction and ratio of particle size to detonation zone thickness. These models are incorporated as source terms in the governing equations for continuum dense two-phase flow, and then applied to macroscopic simulation of detonation of nitromethane/aluminum in lightly-cased cylinders. Heterogeneous detonation features such as velocity deficit, enhanced pressure, and critical diameter effects are demonstrated. Various spherical particle diameters from 3-350 μm are utilized where most of the particles react in the expanding detonation products. Results for detonation velocity, pressure history, failure and U-shaped critical diameter behavior are compared to existing experiments.

  11. New simulation of QSO X-ray heating during the Cosmic Dawn

    NASA Astrophysics Data System (ADS)

    Ross, Hannah E.; Dixon, Keri; Iliev, Ilian; Mellema, Garrelt

    2018-05-01

    The upcoming radio interferometer Square Kilometre Array is expected to directly detect the redshifted 21-cm signal from the Cosmic Dawn for the first time. In this era temperature fluctuations from X-ray heating of the neutral intergalactic medium can impact this signal dramatically. Previously, in Ross et al. (2017), we presented the first large-volume, 244 h-1 Mpc=349 Mpc a side, fully numerical radiative transfer simulations of X-ray heating. This work is a follow-up where we now also consider QSO-like sources in addition to high mass X-ray binaries. Images of the two cases are clearly distinguishable at SKA1-LOW resolution and have RMS fluctuations above the expected noise. The inclusion of QSOs leads to a dramatic increase in non-Gaussianity of the signal, as measured by the skewness and kurtosis of the 21-cm signal. We conclude that this increased non-Gaussianity is a promising signature of early QSOs.

  12. Radiated flow of chemically reacting nanoliquid with an induced magnetic field across a permeable vertical plate

    NASA Astrophysics Data System (ADS)

    Mahanthesh, B.; Gireesha, B. J.; Athira, P. R.

    Impact of induced magnetic field over a flat porous plate by utilizing incompressible water-copper nanoliquid is examined analytically. Flow is supposed to be laminar, steady and two-dimensional. The plate is subjected to a regular free stream velocity as well as suction velocity. Flow formulation is developed by considering Maxwell-Garnetts (MG) and Brinkman models of nanoliquid. Impacts of thermal radiation, viscous dissipation, temperature dependent heat source/sink and first order chemical reaction are also retained. The subjected non-linear problems are non-dimensionalized and analytic solutions are presented via series expansion method. The graphs are plotted to analyze the influence of pertinent parameters on flow, magnetism, heat and mass transfer fields as well as friction factor, current density, Nusselt and Sherwood numbers. It is found that friction factor at the plate is more for larger magnetic Prandtl number. Also the rate of heat transfer decayed with increasing nanoparticles volume fraction and the strength of magnetism.

  13. Experimental and numerical study on heat transfer enhancement of flat tube radiator using Al2O3 and CuO nanofluids

    NASA Astrophysics Data System (ADS)

    Alosious, Sobin; R, Sarath S.; Nair, Anjan R.; Krishnakumar, K.

    2017-12-01

    Forced convective heat transfer of Al2O3 and CuO nanofluids through flat tube automobile radiator were studied experimentally and numerically. Nanofluids of 0.05% volume concentrations were prepared with Al2O3 and CuO nanoparticles having diameter below 50 nm. The working fluid recirculates through an automobile flat tube radiator with constant inlet temperature of 90 °C. Experiments were conducted by using water and nanofluids by varying the Reynolds numbers from 136 to 816. The flat tube of the radiator with same dimensions were modeled and numerically studied the heat transfer. The model includes the thickness of tube wall and also considers the effect of fins in the radiator. Numerical studies were carried out for six different volume concentrations from 0.05% to 1% and Reynolds number varied between 136 and 816 for both nanofluids. The results show an enhancement in heat transfer coefficient and effectiveness of radiator with increase in Reynolds number and volume concentration. A maximum enhancement of 13.2% and 16.4% in inside heat transfer coefficient were obtained for 1% concentration of CuO and Al2O3 nanofluids respectively. However increasing the volume concentration causes an increase in viscosity and density, which leads to an increase in pumping power. For same heat rejection of water, the area of the radiator can be reduced by 2.1% and 2.9% by using 1% concentration of CuO and Al2O3 nanofluids respectively. The optimum values of volume concentration were found to be 0.4% to 0.8% in which heat transfer enhancement dominates pumping power increase. Al2O3 nanofluids gives the maximum heat transfer enhancement and stability compared to CuO nanofluids.

  14. Recycling of ash from mezcal industry: a renewable source of lime.

    PubMed

    Chávez-Guerrero, L; Flores, J; Kharissov, B I

    2010-10-01

    Agave bagasse is a byproduct generated in the mezcal industry. Normally it is burned to reduce its volume, then a byproduct is generated in the form of residual ash, which can contaminate the water in rivers and lakes near the production places called "mezcaleras". This report details measurements of the Agave Salmiana fiber transformation after the burning process. The wasted ash was heated at 950°C, and then hydrolyzed. The compounds were indentified using the X-ray diffraction. The images obtained by scanning electron microscope showed all the morphological transformations of the lime through the whole process. Thermal, elemental and morphological characterization of the agave bagasse were done. Experiments showed that 16% of ash was produced in the burning process of agave bagasse (450°C), and 66% of the ash remains after heating (950°C) in the form of calcium oxide. The results show an important renewable source of calcium compounds, due to the high production of agave based beverages in México. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Generalized Fluid System Simulation Program (GFSSP) - Version 6

    NASA Technical Reports Server (NTRS)

    Majumdar, Alok; LeClair, Andre; Moore, Ric; Schallhorn, Paul

    2015-01-01

    The Generalized Fluid System Simulation Program (GFSSP) is a finite-volume based general-purpose computer program for analyzing steady state and time-dependent flow rates, pressures, temperatures, and concentrations in a complex flow network. The program is capable of modeling real fluids with phase changes, compressibility, mixture thermodynamics, conjugate heat transfer between solid and fluid, fluid transients, pumps, compressors, flow control valves and external body forces such as gravity and centrifugal. The thermo-fluid system to be analyzed is discretized into nodes, branches, and conductors. The scalar properties such as pressure, temperature, and concentrations are calculated at nodes. Mass flow rates and heat transfer rates are computed in branches and conductors. The graphical user interface allows users to build their models using the 'point, drag, and click' method; the users can also run their models and post-process the results in the same environment. The integrated fluid library supplies thermodynamic and thermo-physical properties of 36 fluids, and 24 different resistance/source options are provided for modeling momentum sources or sinks in the branches. Users can introduce new physics, non-linear and time-dependent boundary conditions through user-subroutine.

  16. Generalized Fluid System Simulation Program, Version 6.0

    NASA Technical Reports Server (NTRS)

    Majumdar, A. K.; LeClair, A. C.; Moore, A.; Schallhorn, P. A.

    2013-01-01

    The Generalized Fluid System Simulation Program (GFSSP) is a finite-volume based general-purpose computer program for analyzing steady state and time-dependant flow rates, pressures, temperatures, and concentrations in a complex flow network. The program is capable of modeling real fluids with phase changes, compressibility, mixture thermodynamics, conjugate heat transfer between solid and fluid, fluid transients, pumps, compressors and external body forces such as gravity and centrifugal. The thermo-fluid system to be analyzed is discretized into nodes, branches, and conductors. The scalar properties such as pressure, temperature, and concentrations are calculated at nodes. Mass flow rates and heat transfer rates are computed in branches and conductors. The graphical user interface allows users to build their models using the 'point, drag, and click' method; the users can also run their models and post-process the results in the same environment. The integrated fluid library supplies thermodynamic and thermo-physical properties of 36 fluids, and 24 different resistance/source options are provided for modeling momentum sources or sinks in the branches. This Technical Memorandum illustrates the application and verification of the code through 25 demonstrated example problems.

  17. Generalized Fluid System Simulation Program, Version 5.0-Educational

    NASA Technical Reports Server (NTRS)

    Majumdar, A. K.

    2011-01-01

    The Generalized Fluid System Simulation Program (GFSSP) is a finite-volume based general-purpose computer program for analyzing steady state and time-dependent flow rates, pressures, temperatures, and concentrations in a complex flow network. The program is capable of modeling real fluids with phase changes, compressibility, mixture thermodynamics, conjugate heat transfer between solid and fluid, fluid transients, pumps, compressors and external body forces such as gravity and centrifugal. The thermofluid system to be analyzed is discretized into nodes, branches, and conductors. The scalar properties such as pressure, temperature, and concentrations are calculated at nodes. Mass flow rates and heat transfer rates are computed in branches and conductors. The graphical user interface allows users to build their models using the point, drag and click method; the users can also run their models and post-process the results in the same environment. The integrated fluid library supplies thermodynamic and thermo-physical properties of 36 fluids and 21 different resistance/source options are provided for modeling momentum sources or sinks in the branches. This Technical Memorandum illustrates the application and verification of the code through 12 demonstrated example problems.

  18. Simulation of the electromagnetic field in a cylindrical cavity of an ECR ions source

    NASA Astrophysics Data System (ADS)

    Estupiñán, A.; Orozco, E. A.; Dugar-Zhabon, V. D.; Murillo Acevedo, M. T.

    2017-12-01

    Now there are numerous sources for multicharged ions production, each being designed for certain science or technological objectives. Electron cyclotron resonance ion sources (ECRIS) are best suited for designing heavy ion accelerators of very high energies, because they can generate multicharged ion beams at relatively great intensities. In these sources, plasma heating and its confinement are effected predominantly in minimum-B magnetic traps, this type of magnetic trap consist of two current coils used for the longitudinal magnetic confinement and a hexapole system around the cavity to generate a transversal confinement of the plasma. In an ECRIS, the electron cyclotron frequency and the microwave frequency are maintained equal on a quasi-ellipsoidal surface localized in the trap volume. It is crucial to heat electrons to energies sufficient to ionize K- and L-levels of heavy atoms. In this work, we present the preliminary numerical results concerning the space distribution of TE 111 microwave field in a cylindrical cavity. The 3D microwave field is calculated by solving the Maxwell equations through the Yee’s method. The magnetic field of minimum-B configuration is determined using the Biot-Savart law. The parameters of the magnetic system are that which guarantee the ECR surface location in a zone of a reasonably high microwave tension. Additionally, the accuracy of electric and magnetic fields calculations are checked.

  19. The Analysis for Energy Consumption of Marine Air Conditioning System Based on VAV and VWV

    NASA Astrophysics Data System (ADS)

    Xu, Sai Feng; Yang, Xing Lin; Le, Zou Ying

    2018-06-01

    For ocean-going vessels sailing in different areas on the sea, the change of external environment factors will cause frequent changes in load, traditional ship air-conditioning system is usually designed with a fixed cooling capacity, this design method causes serious waste of resources. A new type of sea-based air conditioning system is proposed in this paper, which uses the sea-based source heat pump system, combined with variable air volume, variable water technology. The multifunctional cabins' dynamic loads for a ship navigating in a typical Eurasian route were calculated based on Simulink. The model can predict changes in full voyage load. Based on the simulation model, the effects of variable air volume and variable water volume on the energy consumption of the air-conditioning system are analyzed. The results show that: When the VAV is coupled with the VWV, the energy saving rate is 23.2%. Therefore, the application of variable air volume and variable water technology to marine air conditioning systems can achieve economical and energy saving advantages.

  20. Determination of the Temperature Dependence of Heat Capacity for Some Molecular Crystals of Nitro Compounds

    NASA Astrophysics Data System (ADS)

    Kovalev, Yu. M.; Kuropatenko, V. F.

    2018-05-01

    An analysis of the existing approximations used for describing the dependence of heat capacity at a constant volume on the temperature of a molecular crystal has been carried out. It is shown that the considered Debye and Einstein approximations do not enable one to adequately describe the dependence of heat capacity at a constant volume on the temperature of the molecular crystals of nitro compounds. This inference requires the development of special approximations that would describe both low-frequency and high-frequency parts of the vibrational spectra of molecular crystals. This work presents a universal dependence allowing one to describe the dependence of heat capacity at a constant volume on temperature for a number of molecular crystals of nitro compounds.

  1. Carbothermic reduction with parallel heat sources

    DOEpatents

    Troup, Robert L.; Stevenson, David T.

    1984-12-04

    Disclosed are apparatus and method of carbothermic direct reduction for producing an aluminum alloy from a raw material mix including aluminum oxide, silicon oxide, and carbon wherein parallel heat sources are provided by a combustion heat source and by an electrical heat source at essentially the same position in the reactor, e.g., such as at the same horizontal level in the path of a gravity-fed moving bed in a vertical reactor. The present invention includes providing at least 79% of the heat energy required in the process by the electrical heat source.

  2. Loop Heat Pipe Operation Using Heat Source Temperature for Set Point Control

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Paiva, Kleber; Mantelli, Marcia

    2011-01-01

    Loop heat pipes (LHPs) have been used for thermal control of several NASA and commercial orbiting spacecraft. The LHP operating temperature is governed by the saturation temperature of its compensation chamber (CC). Most LHPs use the CC temperature for feedback control of its operating temperature. There exists a thermal resistance between the heat source to be cooled by the LHP and the LHP's CC. Even if the CC set point temperature is controlled precisely, the heat source temperature will still vary with its heat output. For most applications, controlling the heat source temperature is of most interest. A logical question to ask is: "Can the heat source temperature be used for feedback control of the LHP operation?" A test program has been implemented to answer the above question. Objective is to investigate the LHP performance using the CC temperature and the heat source temperature for feedback control

  3. Physiological Responses to Acute Exercise-Heat Stress

    DTIC Science & Technology

    1988-01-01

    muscle contraction and to dissipate the associated heat release. In hot environments, the core to skin temperature gradient is reduced to skin blood flow needs to be relatively high (compared to cooler environments) to achieve heat transfer sufficient for thermal balance. In addition, sweat secretion can result in a reduced plasma (by dehydration) and thus blood volume. Both high skin blood flow and reduced plasma volume can reduce

  4. Hybrid Vehicle Technology Constraints and Application Assessment Study : Volume 1. Summary.

    DOT National Transportation Integrated Search

    1977-11-01

    This four-volume report presents analyses and assessments of both heat engine/battery- and heat engine/flywheel-powered hybrid vehicles to determine if they could contribute to near-term (1980-1990) reductions in transportation energy consumption und...

  5. Hydride compressor

    DOEpatents

    Powell, James R.; Salzano, Francis J.

    1978-01-01

    Method of producing high energy pressurized gas working fluid power from a low energy, low temperature heat source, wherein the compression energy is gained by using the low energy heat source to desorb hydrogen gas from a metal hydride bed and the desorbed hydrogen for producing power is recycled to the bed, where it is re-adsorbed, with the recycling being powered by the low energy heat source. In one embodiment, the adsorption-desorption cycle provides a chemical compressor that is powered by the low energy heat source, and the compressor is connected to a regenerative gas turbine having a high energy, high temperature heat source with the recycling being powered by the low energy heat source.

  6. Dual source heat pump

    DOEpatents

    Ecker, Amir L.; Pietsch, Joseph A.

    1982-01-01

    What is disclosed is a heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating the fluid in heat exchange relationship with a refrigerant fluid; at least two refrigerant heat exchangers, one for effecting heat exchange with the fluid and a second for effecting heat exchange between refrigerant and a heat exchange fluid and the ambient air; a compressor for efficiently compressing the refrigerant; at least one throttling valve for throttling liquid refrigerant; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circulating device and heat exchange fluid circuit for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and direction of flow of the refrigerant therethrough for selecting a particular mode of operation. The heat exchange fluid provides energy for defrosting the second heat exchanger when operating in the air source mode and also provides a alternate source of heat.

  7. Styles of Phreatomagmatic Activity Adjacent to Volcanic Constructs on Mars

    NASA Astrophysics Data System (ADS)

    Wilson, L.; Mouginis-Mark, P.

    2001-05-01

    Early in the analysis of Viking Orbiter data, it was recognized that there were numerous sites on Mars where igneous intrusions may have interacted with ice near the surface. Hrad Vallis (34N, 142E) in Western Elysium Planitia, and Olympica Fossae (25N, 245E) to the southwest of Ceraunius Fossae, were two such candidate areas. New images from the Mars Orbiter Camera show striking differences between these two sites, revealing a wide diversity of depositional and erosional features. We are therefore exploring several potential terrestrial analogs to better constrain models of heat transfer from the igneous intrusion, the style of "eruption" of the water/sediment mixtures, and the hydrologic conditions in the substrate at the time of emplacement. We have found layering at the source of Hrad Vallis, and several nearby impact craters 270 - 530 m diameter that are almost totally mantled, consistent with the deposition of 20 - 30 m of sediment around the source graben. Prominent sub-radial ridges occur within this 8,400 km2 deposit; close to the source, these ridges have a spacing of 100 - 120 m but grade to smaller ridges 60 m apart within 2 km of the source. No "de-watering" features are visible on this unit. In contrast, Olympica Fossae displays no depositional features near the source graben. We interpret these morphologic differences to be due to a higher sediment load of the fluid that reached the surface at Hrad Vallis compared with Olympica Fossae. At neither site are there signs of "weeping" graben walls, indicating that the source of the water was probably at a depth greater than that of the graben (about 60 - 100 m). With due allowance for bulking and for errors of measurement, the volumes of the deposits are comparable to the volumes of their parent source depressions. We envisage that these deposits were created by phreatomagmatic explosions in which heat from a sill-like intrusion melts ice occupying pore space in crustal rocks and boils the resulting water. Calculations show that steam pressures of 1-3 MPa can readily loft the overburden from depths of a few hundred meters and lead to ejecta speeds greater than 100 m/s. Condensation of the water vapor during the explosion process leads to emplacement of a wet deposit, and plausible variations in ice content of the crustal rocks explain the sediment load variations.

  8. Methods for determining enzymatic activity comprising heating and agitation of closed volumes

    DOEpatents

    Thompson, David Neil; Henriksen, Emily DeCrescenzo; Reed, David William; Jensen, Jill Renee

    2016-03-15

    Methods for determining thermophilic enzymatic activity include heating a substrate solution in a plurality of closed volumes to a predetermined reaction temperature. Without opening the closed volumes, at least one enzyme is added, substantially simultaneously, to the closed volumes. At the predetermined reaction temperature, the closed volumes are agitated and then the activity of the at least one enzyme is determined. The methods are conducive for characterizing enzymes of high-temperature reactions, with insoluble substrates, with substrates and enzymes that do not readily intermix, and with low volumes of substrate and enzyme. Systems for characterizing the enzymes are also disclosed.

  9. 30 CFR 56.4500 - Heat sources.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Heat sources. 56.4500 Section 56.4500 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... Installation/construction/maintenance § 56.4500 Heat sources. Heat sources capable of producing combustion...

  10. 30 CFR 57.4500 - Heat sources.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Heat sources. 57.4500 Section 57.4500 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... Installation/construction/maintenance § 57.4500 Heat sources. Heat sources capable of producing combustion...

  11. 30 CFR 57.4500 - Heat sources.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Heat sources. 57.4500 Section 57.4500 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... Installation/construction/maintenance § 57.4500 Heat sources. Heat sources capable of producing combustion...

  12. 30 CFR 57.4500 - Heat sources.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Heat sources. 57.4500 Section 57.4500 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... Installation/construction/maintenance § 57.4500 Heat sources. Heat sources capable of producing combustion...

  13. 30 CFR 56.4500 - Heat sources.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Heat sources. 56.4500 Section 56.4500 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... Installation/construction/maintenance § 56.4500 Heat sources. Heat sources capable of producing combustion...

  14. 30 CFR 56.4500 - Heat sources.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Heat sources. 56.4500 Section 56.4500 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... Installation/construction/maintenance § 56.4500 Heat sources. Heat sources capable of producing combustion...

  15. 30 CFR 57.4500 - Heat sources.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Heat sources. 57.4500 Section 57.4500 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... Installation/construction/maintenance § 57.4500 Heat sources. Heat sources capable of producing combustion...

  16. 30 CFR 56.4500 - Heat sources.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Heat sources. 56.4500 Section 56.4500 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... Installation/construction/maintenance § 56.4500 Heat sources. Heat sources capable of producing combustion...

  17. Passive rejection of heat from an isotope heat source through an open door

    NASA Technical Reports Server (NTRS)

    Burns, R. K.

    1971-01-01

    The isotope heat-source design for a Brayton power system includes a door in the thermal insulation through which the heat can be passively rejected to space when the power system is not operating. The results of an analysis to predict the heat-source surface temperature and the heat-source heat-exchanger temperature during passive heat rejection as a function of insulation door opening angle are presented. They show that for a door opening angle greater than 20 deg, the temperatures are less than the steady-state temperatures during power system operation.

  18. Variability of Equatorward Transport in the Tropical Southwestern Pacific

    NASA Astrophysics Data System (ADS)

    Alberty, M. S.; Sprintall, J.; MacKinnon, J. A.; Cravatte, S. E.; Ganachaud, A. S.; Germineaud, C.

    2016-02-01

    Situated in the Pacific warm pool, the Solomon Sea is a semi-enclosed sea containing a system of low latitude Western boundary currents that serve as the primary source water for the Equatorial Undercurrent. The variability of equatorward heat and volume transport through the Solomon Sea has the capability to modulate regional and basin-scale climate processes, yet there are few and synoptic observations of these fluxes. Here we present the mean and variability of heat and volume transport out of the Solomon Sea observed during the MoorSPICE experiment. MoorSPICE is the Solomon Sea mooring-based observational component of the Southwest Pacific Ocean Circulation and Climate Experiment (SPICE), an international research project working to observe and improve our understanding of the southwest Pacific Ocean circulation and climate. Arrays of moorings were deployed in the outflow channels of the Solomon Sea for July 2012 until March 2014 to resolve the temperature and velocity fields in each strait. In particular we will discuss the phasing of the observed transport variability for each channel compared to that of the satellite-observed monsoonal wind forcing and annual cycle of the mesoscale eddy field.

  19. Prediction of nanofluids properties: the density and the heat capacity

    NASA Astrophysics Data System (ADS)

    Zhelezny, V. P.; Motovoy, I. V.; Ustyuzhanin, E. E.

    2017-11-01

    The results given in this report show that the additives of Al2O3 nanoparticles lead to increase the density and decrease the heat capacity of isopropanol. Based on the experimental data the excess molar volume and the excess molar heat capacity were calculated. The report suggests new method for predicting the molar volume and molar heat capacity of nanofluids. It is established that the values of the excess thermodynamic functions are determined by the properties and the volume of the structurally oriented layers of the base fluid molecules near the surface of nanoparticles. The heat capacity of the structurally oriented layers of the base fluid is less than the heat capacity of the base fluid for given parameters due to the greater regulation of its structure. It is shown that information on the geometric dimensions of the structured layers of the base fluid near nanoparticles can be obtained from data on the nanofluids density and at ambient temperature - by the dynamic light scattering method. For calculations of the nanofluids heat capacity over a wide range of temperatures a new correlation based on the extended scaling is proposed.

  20. Heating of solid targets with laser pulses

    NASA Technical Reports Server (NTRS)

    Bechtel, J. H.

    1975-01-01

    Analytical and numerical solutions to the heat-conduction equation are obtained for the heating of absorbing media with pulsed lasers. The spatial and temporal form of the temperature is determined using several different models of the laser irradiance. Both surface and volume generation of heat are discussed. It is found that if the depth of thermal diffusion for the laser-pulse duration is large compared to the optical-attenuation depth, the surface- and volume-generation models give nearly identical results. However, if the thermal-diffusion depth for the laser-pulse duration is comparable to or less than the optical-attenuation depth, the surface-generation model can give significantly different results compared to the volume-generation model. Specific numerical results are given for a tungsten target irradiated by pulses of different temporal durations and the implications of the results are discussed with respect to the heating of metals by picosecond laser pulses.

  1. Al/ oil nanofluids inside annular tube: an experimental study on convective heat transfer and pressure drop

    NASA Astrophysics Data System (ADS)

    Jafarimoghaddam, Amin; Aberoumand, Sadegh; Javaherdeh, Kourosh; Arani, Ali Akbar Abbasian; Jafarimoghaddam, Reza

    2018-04-01

    In this work, an experimental study on nanofluid preparation stability, thermo-physical properties, heat transfer performance and friction factor of Al/ Oil nanofluids has been carried out. Electrical Explosion Wire ( E.E.W) which is one of the most reliable one-step techniques for nanofluids preparation has been used. An annular tube has been considered as the test section in which the outer tube was subject to a uniform heat flux boundary condition of about 204 W. The utilized nanofluids were prepared in three different volume concentrations of 0.011%, 0.044% and 0.171%. A wide range of parameters such as Reynolds number Prandtl number, viscosity, thermal conductivity, density, specific heat, convective heat transfer coefficient, Nusselt number and the friction factor have been studied. The experiment was conducted in relatively low Reynolds numbers of less than 160 and within a hydrodynamically fully-developed regime. According to the results, thermal conductivity, density and viscosity increased depending on the volume concentrations and working temperatures while the specific heat declined. More importantly, it was observed that convective heat transfer coefficient and Nusselt number enhanced by 28.6% and 16.4%, respectively, for the highest volume concentration. Finally, the friction factor (which plays an important role in the pumping power) was found to be increased around 18% in the volume fraction of 0.171%.

  2. Hybrid Vehicle Technology Constraints and Application Assessment Study : Volume 3. Sections 5 through 9.

    DOT National Transportation Integrated Search

    1977-11-01

    This four-volume report presents analyses and assessments of both heat engine/battery- and heat engine/flywheel-powered hybrid vehicles to determine if they could contribute to near-term (1980-1990) reductions in transportation energy consumption und...

  3. Hybrid Vehicle Technology Constraints and Application Assessment Study : Volume 2. Sections 1 through 4.

    DOT National Transportation Integrated Search

    1977-01-01

    This four-volume report presents analyses and assessments of both heat engine/battery- and heat engine/flywheel-powered hybrid vehicles to determine if they could contribute to near-term (1980-1990) reductions in transportation energy consumption und...

  4. Development, Fabrication, and Testing of a Liquid/Liquid Microchannel Heat Exchanger for Constellation Spacecrafts

    NASA Technical Reports Server (NTRS)

    Hawkins-Reynolds, Ebony; Le, Hung; Stephan, Ryan

    2010-01-01

    Microchannel technology can be incorporated into heat exchanger designs to decrease the mass and volume of space hardware. The National Aeronautics and Space Administration at the Johnson Space Center (NASA JSC) partnered with Pacific Northwest National Laboratories (PNNL) to develop a liquid/liquid microchannel heat exchanger that has significant mass and volume savings without sacrificing thermal and pressure drop performance. PNNL designed the microchannel heat exchanger to the same performance design requirements of a conventional plate and fin liquid/liquid heat exchanger; 3 kW duty with inlet temperatures of 26 C and 4 C. Both heat exchangers were tested using the same test parameters on a test apparatus and performance data compared.

  5. Unconfined laminar nanofluid flow and heat transfer around a rotating circular cylinder in the steady regime

    NASA Astrophysics Data System (ADS)

    Bouakkaz, Rafik; Salhi, Fouzi; Khelili, Yacine; Quazzazi, Mohamed; Talbi, Kamel

    2017-06-01

    In this work, steady flow-field and heat transfer through a copper- water nanofluid around a rotating circular cylinder with a constant nondimensional rotation rate α varying from 0 to 5 was investigated for Reynolds numbers of 5-40. Furthermore, the range of nanoparticle volume fractions considered is 0-5%. The effect of volume fraction of nanoparticles on the fluid flow and heat transfer characteristics are carried out by using a finite-volume method based commercial computational fluid dynamics solver. The variation of the local and the average Nusselt numbers with Reynolds number, volume fractions, and rotation rate are presented for the range of conditions. The average Nusselt number is found to decrease with increasing value of the rotation rate for the fixed value of the Reynolds number and volume fraction of nanoparticles. In addition, rotation can be used as a drag reduction technique.

  6. A Mass Computation Model for Lightweight Brayton Cycle Regenerator Heat Exchangers

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.

    2010-01-01

    Based on a theoretical analysis of convective heat transfer across large internal surface areas, this paper discusses the design implications for generating lightweight gas-gas heat exchanger designs by packaging such areas into compact three-dimensional shapes. Allowances are made for hot and cold inlet and outlet headers for assembly of completed regenerator (or recuperator) heat exchanger units into closed cycle gas turbine flow ducting. Surface area and resulting volume and mass requirements are computed for a range of heat exchanger effectiveness values and internal heat transfer coefficients. Benefit cost curves show the effect of increasing heat exchanger effectiveness on Brayton cycle thermodynamic efficiency on the plus side, while also illustrating the cost in heat exchanger required surface area, volume, and mass requirements as effectiveness is increased. The equations derived for counterflow and crossflow configurations show that as effectiveness values approach unity, or 100 percent, the required surface area, and hence heat exchanger volume and mass tend toward infinity, since the implication is that heat is transferred at a zero temperature difference. To verify the dimensional accuracy of the regenerator mass computational procedure, calculation of a regenerator specific mass, that is, heat exchanger weight per unit working fluid mass flow, is performed in both English and SI units. Identical numerical values for the specific mass parameter, whether expressed in lb/(lb/sec) or kg/(kg/sec), show the dimensional consistency of overall results.

  7. A Mass Computation Model for Lightweight Brayton Cycle Regenerator Heat Exchangers

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.

    2010-01-01

    Based on a theoretical analysis of convective heat transfer across large internal surface areas, this paper discusses the design implications for generating lightweight gas-gas heat exchanger designs by packaging such areas into compact three-dimensional shapes. Allowances are made for hot and cold inlet and outlet headers for assembly of completed regenerator (or recuperator) heat exchanger units into closed cycle gas turbine flow ducting. Surface area and resulting volume and mass requirements are computed for a range of heat exchanger effectiveness values and internal heat transfer coefficients. Benefit cost curves show the effect of increasing heat exchanger effectiveness on Brayton cycle thermodynamic efficiency on the plus side, while also illustrating the cost in heat exchanger required surface area, volume, and mass requirements as effectiveness is increased. The equations derived for counterflow and crossflow configurations show that as effectiveness values approach unity, or 100 percent, the required surface area, and hence heat exchanger volume and mass tend toward infinity, since the implication is that heat is transferred at a zero temperature difference. To verify the dimensional accuracy of the regenerator mass computational procedure, calculation of a regenerator specific mass, that is, heat exchanger weight per unit working fluid mass flow, is performed in both English and SI units. Identical numerical values for the specific mass parameter, whether expressed in lb/(lb/sec) or kg/ (kg/sec), show the dimensional consistency of overall results.

  8. Thermal Interface Evaluation of Heat Transfer from a Pumped Loop to Titanium-Water Thermosyphons

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.; Sanzi, James L.; Gibson, Marc A.; Sechkar, Edward A.

    2009-01-01

    Titanium-water thermosyphons are being considered for use in the heat rejection system for lunar outpost fission surface power. Key to their use is heat transfer between a closed loop heat source and the heat pipe evaporators. This work describes laboratory testing of several interfaces that were evaluated for their thermal performance characteristics, in the temperature range of 350 to 400 K, utilizing a water closed loop heat source and multiple thermosyphon evaporator geometries. A gas gap calorimeter was used to measure heat flow at steady state. Thermocouples in the closed loop heat source and on the evaporator were used to measure thermal conductance. The interfaces were in two generic categories, those immersed in the water closed loop heat source and those clamped to the water closed loop heat source with differing thermal conductive agents. In general, immersed evaporators showed better overall performance than their clamped counterparts. Selected clamped evaporator geometries offered promise.

  9. First Principles Analysis of Convection in the Earth's Mantle, Eustatic Sea Level and Earth Volume

    NASA Astrophysics Data System (ADS)

    Kinsland, G. L.

    2011-12-01

    Steady state convection (convection whereby heat leaving the mantle at the top is equal to the heat entering the mantle across the core mantle boundary and that created within the mantle) of the Earth's mantle is, to a very good approximation, both a constant mass and constant volume process. Mass or volume which moves to one place; e.g., an oceanic ridge; must be accompanied by mass or volume removed from another place. The location of removal, whether from underneath of an ocean or a continent, determines the relationship between oceanic ridge volume and eustatic sea level. If all of the volume entering a ridge were to come from under an oceanic basin then the size of the ridge would not affect eustatic sea level as it would be compensated by a lowering of the sea floor elsewhere. If the volume comes from under a continent then the hypsometry of the continent becomes important. Thus, eustatic sea level is not simply related to convection rate and oceanic ridge volume as posited by Hays and Pitman(1973). Non-steady state convection is still a constant mass process but is not a constant volume process. The mantle experiences a net gain of heat, warms and expands during periods of relatively slow convection (that being convection rate which is less than that necessary to transport incoming and internally created heat to the surface). Conversely, the mantle has a net loss of heat, cools and contracts during periods of relatively rapid convection. The Earth itself expands and contracts as the mantle does. During rapid convection more volume is delivered from the interior of the mantle to the Earth's ridge system than during slow convection. The integral of the difference of ridge system volume between fast and slow convection over a fast-slow convection cycle is a measure of the difference in volume of the mantle over a cycle. The magnitude of the Earth's volume expansion and contraction as calculated from published values for the volume of ocean ridges and is about .05% and has a period of hundreds of millions of years. Hays, J.D., W.C. Pitmann III, 1973, Lithospheric plate motion, sea level changes and climatic and ecological consequences, Nature 246, 18 - 22.

  10. In situ measurement system

    DOEpatents

    Lord, D.E.

    1980-11-24

    A multipurpose in situ underground measurement system comprising a plurality of long electrical resistance elements in the form of rigid reinforcing bars, each having an open loop hairpin configuration of shorter length than the other resistance elements. The resistance elements are arranged in pairs in a unitized structure, and grouted in place in the underground volume. Measurement means are provided for obtaining for each pair the electrical resistance of each element and the difference in electrical resistance of the paired elements, which difference values may be used in analytical methods involving resistance as a function of temperature. A scanner means sequentially connects the resistance-measuring apparatus to each individual pair of elements. A source of heating current is also selectively connectable for heating the elements to an initial predetermined temperature prior to electrical resistance measurements when used as an anemometer.

  11. Numerical study of heat and mass transfer in inertial suspensions in pipes.

    NASA Astrophysics Data System (ADS)

    Niazi Ardekani, Mehdi; Brandt, Luca

    2017-11-01

    Controlling heat and mass transfer in particulate suspensions has many important applications such as packed and fluidized bed reactors and industrial dryers. In this work, we study the heat and mass transfer within a suspension of spherical particles in a laminar pipe flow, using the immersed boundary method (IBM) to account for the solid fluid interactions and a volume of fluid (VoF) method to resolve temperature equation both inside and outside of the particles. Tracers that follow the fluid streamlines are considered to investigate mass transfer within the suspension. Different particle volume fractions 5, 15, 30 and 40% are simulated for different pipe to particle diameter ratios: 5, 10 and 15. The preliminary results quantify the heat and mass transfer enhancement with respect to a single-phase laminar pipe flow. We show in particular that the heat transfer from the wall saturates for volume fractions more than 30%, however at high particle Reynolds numbers (small diameter ratios) the heat transfer continues to increase. Regarding the dispersion of tracer particles we show that the diffusivity of tracers increases with volume fraction in radial and stream-wise directions however it goes through a peak at 15% in the azimuthal direction. European Research Council, Grant No. ERC-2013-CoG- 616186, TRITOS; SNIC (the Swedish National Infrastructure for Computing).

  12. Solid State Ultracapacitor

    NASA Technical Reports Server (NTRS)

    Hill, Curtis W. (Inventor); Rolin, Terry D. (Inventor)

    2018-01-01

    An ink of the formula: 60-80% by weight BaTiO3 particles coated with SiO2; 5-50% by weight high dielectric constant glass; 0.1-5% by weight surfactant; 5-25% by weight solvent; and 5-25% weight organic vehicle. Also a method of manufacturing a capacitor comprising the steps of: heating particles of BaTiO3 for a special heating cycle, under a mixture of 70-96% by volume N2 and 4-30% by volume H2 gas; depositing a film of SiO2 over the particles; mechanically separating the particles; incorporating them into the above described ink formulation; depositing the ink on a substrate; and heating at 850-900 C for less than 5 minutes and allowing the ink and substrate to cool to ambient in N2 atmosphere. Also a dielectric made by: heating particles of BaTiO3 for a special heating cycle, under a mixture of 70-96% by volume N2 and 4-30% by volume H2 gas; depositing a film of SiO2 over the particles; mechanically separating the particles; forming them into a layer; and heating at 850-900 C for less than 5 minutes and allowing the layer to cool to ambient in N2 atmosphere.

  13. Safe atmosphere entry of an isotope heat source with a single stable trim attitude at hypersonic speeds

    NASA Technical Reports Server (NTRS)

    Levy, L. L., Jr.; Burns, R. K.

    1972-01-01

    A theoretical investigation has been made to design an isotope heat source capable of satisfying the conflicting thermal requirements of steady-state operation and atmosphere entry. The isotope heat source must transfer heat efficiently to a heat exchange during normal operation with a power system in space, and in the event of a mission abort, it must survive the thermal environment of atmosphere entry and ground impact without releasing radioactive material. A successful design requires a compatible integration of the internal components of the heat source with the external aerodynamic shape. To this end, configurational, aerodynamic, motion, and thermal analyses were coupled and iterated during atmosphere entries at suborbital through superorbital velocities at very shallow and very steep entry angles. Results indicate that both thermal requirements can be satisfied by a heat source which has a single stable aerodynamic orientation at hypersonic speeds. For such a design, the insulation material required to adequately protect the isotope fuel from entry heating need extend only half way around the fuel capsule on the aerodynamically stable (wind-ward) side of the heat source. Thus, a low-thermal-resistance, conducting heat path is provided on the opposite side of the heat source through which heat can be transferred to an adjacent heat exchanger during normal operation without exceeding specified temperature limits.

  14. 21 CFR 872.6475 - Heat source for bleaching teeth.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Heat source for bleaching teeth. 872.6475 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6475 Heat source for bleaching teeth. (a) Identification. A heat source for bleaching teeth is an AC-powered device that consists of a...

  15. 21 CFR 872.6475 - Heat source for bleaching teeth.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Heat source for bleaching teeth. 872.6475 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6475 Heat source for bleaching teeth. (a) Identification. A heat source for bleaching teeth is an AC-powered device that consists of a...

  16. 21 CFR 872.6475 - Heat source for bleaching teeth.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Heat source for bleaching teeth. 872.6475 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6475 Heat source for bleaching teeth. (a) Identification. A heat source for bleaching teeth is an AC-powered device that consists of a...

  17. 21 CFR 872.6475 - Heat source for bleaching teeth.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Heat source for bleaching teeth. 872.6475 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6475 Heat source for bleaching teeth. (a) Identification. A heat source for bleaching teeth is an AC-powered device that consists of a...

  18. 21 CFR 872.6475 - Heat source for bleaching teeth.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Heat source for bleaching teeth. 872.6475 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6475 Heat source for bleaching teeth. (a) Identification. A heat source for bleaching teeth is an AC-powered device that consists of a...

  19. A capital cost comparison of commercial ground-source heat pump systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rafferty, K.

    1994-06-01

    The purpose of the report is to compare capital costs associated with the three designs of ground source heat pumps. Specifically, the costs considered are those associated with the heat source/heat sink or ground source portion of the system. In order to standardize the heat rejection over the three designs, it was assumed that the heat pump loop would operate at a temperature range of 85{degree} (to the heat pumps) to 95{degree} (from the heat pumps) under peak conditions. The assumption of constant loop temperature conditions for all three permits an apples-to-apples comparison of the alternatives.

  20. Thermal performance of ethylene glycol based nanofluids in an electronic heat sink.

    PubMed

    Selvakumar, P; Suresh, S

    2014-03-01

    Heat transfer in electronic devices such as micro processors and power converters is much essential to keep these devices cool for the better functioning of the systems. Air cooled heat sinks are not able to remove the high heat flux produced by the today's electronic components. Liquids work better than air in removing heat. Thermal conductivity which is the most essential property of any heat transfer fluid can be enhanced by adding nano scale solid particles which possess higher thermal conductivity than the liquids. In this work the convective heat transfer and pressure drop characteristics of the water/ethylene glycol mixture based nanofluids consisting of Al2O3, CuO nanoparticles with a volume concentration of 0.1% are studied experimentally in a rectangular channel heat sink. The nano particles are characterized using Scanning Electron Microscope and the nannofluids are prepared by using an ultrasonic vibrator and Sodium Lauryl Salt surfactant. The experimental results showed that nanofluids of 0.1% volume concentration give higher convective heat transfer coefficient values than the plain water/ethylene glycol mixture which is prepared in the volume ratio of 70:30. There is no much penalty in the pressure drop values due to the inclusion of nano particles in the water/ethylene glycol mixture.

  1. Hybrid Vehicle Technology Constraints and Application Assessment Study : Volume 4. Sections 10, 11, and Appendix.

    DOT National Transportation Integrated Search

    1977-01-01

    This four-volume report presents analyses and assessments of both heat engine/battery- and heat engine/flywheel-powered hybrid vehicles to determine if they could contribute to near-term (1980-1990) reductions in transportation energy consumption und...

  2. Programmable temperature control system for biological materials

    NASA Technical Reports Server (NTRS)

    Anselmo, V. J.; Harrison, R. G.; Rinfret, A. P.

    1982-01-01

    A system was constructed which allows programmable temperature-time control for a 5 cu cm sample volume of arbitrary biological material. The system also measures the parameters necessary for the determination of the sample volume specific heat and thermal conductivity as a function of temperature, and provides a detailed measurement of the temperature during phase change and a means of calculating the heat of the phase change. Steady-state and dynamic temperature control is obtained by supplying heat to the sample volume through resistive elements constructed as an integral part of the sample container. For cooling purposes, this container is totally immersed into a cold heat sink. Using a mixture of dry ice and alcohol at 79 C, the sample volume can be controlled from +40 to -60 C at rates from steady state to + or - 65 C/min. Steady-state temperature precision is better than 0.2 C, while the dynamic capability depends on the temperature rate of change as well as the mass of both the sample and the container.

  3. Using noble gases and 87Sr/86Sr to constrain heat sources and fluid evolution at the Los Azufres Geothermal Field, Mexico

    NASA Astrophysics Data System (ADS)

    Wen, T.; Pinti, D. L.; Castro, M. C.; Lopez Hernandez, A.; Hall, C. M.; Shouakar-Stash, O.; Sandoval-Medina, F.

    2017-12-01

    Geothermal wells and hot springs were sampled for noble gases' volume fraction and isotopic measurements and 87Sr/86Sr in the Los Azufres Geothermal Field (LAGF), Mexico, to understand the evolution of fluid circulation following three decades of exploitation and re-injection of used brines. The LAGF, divided into the Southern Production Zone (SPZ) and the Northern Production Zone (NPZ), is hosted in a Miocene to Pliocene andesitic volcanic complex covered by Quaternary rhyolitic-dacitic units. Air contamination corrected 3He/4He ratios (Rc) normalized to the atmospheric ratio (Ra=1.384 x 10-6), show a median value of 6.58 indicating a dominant mantle helium component. Contributions of crustal helium up to 53% and 18% are observed in NPZ and SPZ, respectively. Observations based on Rc/Ra and 87Sr/86Sr ratios points to the mixing of three magmatic sources supplying mantle helium to the LAGF: (1) a pure mantle He (Rc/Ra = 8) and Sr (87Sr/86Sr = 0.7035) source; (2) a pure mantle helium (Rc/Ra = 8) with some radiogenic Sr (87Sr/86Sr = 0.7049) source possibly resulting from Quaternary rhyolitic volcanism; and (3) a fossil mantle He component (Rc/Ra = 3.8) with some radiogenic Sr (87Sr/86Sr = 0.7038), corresponding possibly to the Miocene andesite reservoir. Intrusions within the last 50 kyrs from sources (1) and (2) are likely responsible for the addition of mantle volatiles and heat to the hydrothermal system of Los Azufres. He and Ar isotopes indicate that heat flow is transported by both convection and conduction. Atmospheric noble gas elemental ratios suggest that geothermal wells located closer to the western re-injection zone are beginning to be dominated by re-injection of used brines (injectate). The area affected by boiling in LAGF has further extended to the north and west since the last noble gas sampling campaign in 2009.

  4. Entrance-length dendritic plate heat exchangers

    DOE PAGES

    Bejan, A.; Alalaimi, M.; Sabau, A. S.; ...

    2017-07-17

    We explore the idea that the highest heat transfer rate between two fluids in a given volume is achieved when plate channel lengths are given by the thermal entrance length, i.e., when the thermal boundary layers meet at the exit of each channel. The overall design can be thought of an elemental construct of a dendritic heat exchanger, which consists of two tree-shaped streams arranged in cross flow. Every channel is as long as the thermal entrance length of the developing flow that resides in that channel. The results indicate that the overall design will change with the total volumemore » and total number of channels. We found that the lengths of the surfaces swept in cross flow would have to decrease sizably as number of channels increases, while exhibiting mild decreases as total volume increases. The aspect ratio of each surface swept by fluid in cross flow should be approximately square, independent of total number of channels and volume. We also found that the minimum pumping power decreases sensibly as the total number of channels and the volume increase. FurtherThe maximized heat transfer rate per unit volume increases sharply as the total volume decreases, in agreement with the natural evolution toward miniaturization in technology.« less

  5. Entrance-length dendritic plate heat exchangers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bejan, A.; Alalaimi, M.; Sabau, A. S.

    We explore the idea that the highest heat transfer rate between two fluids in a given volume is achieved when plate channel lengths are given by the thermal entrance length, i.e., when the thermal boundary layers meet at the exit of each channel. The overall design can be thought of an elemental construct of a dendritic heat exchanger, which consists of two tree-shaped streams arranged in cross flow. Every channel is as long as the thermal entrance length of the developing flow that resides in that channel. The results indicate that the overall design will change with the total volumemore » and total number of channels. We found that the lengths of the surfaces swept in cross flow would have to decrease sizably as number of channels increases, while exhibiting mild decreases as total volume increases. The aspect ratio of each surface swept by fluid in cross flow should be approximately square, independent of total number of channels and volume. We also found that the minimum pumping power decreases sensibly as the total number of channels and the volume increase. FurtherThe maximized heat transfer rate per unit volume increases sharply as the total volume decreases, in agreement with the natural evolution toward miniaturization in technology.« less

  6. Heated tool for autoclaves

    NASA Technical Reports Server (NTRS)

    Serafini, T. T.; Vanucci, R. D.; Cavano, P. J.; Winters, W. E.

    1980-01-01

    Components made of composite materials are heated in autoclaves by employing electrical resistance heating blankets, thus avoiding need to heat entire autoclave volume. Method provides not only significant energy savings compared to heating entire pressure vessel but offers time savings in accelerated heat-up and cool-down cycles.

  7. Radiation Backgrounds at Cosmic Dawn: X-Rays from Compact Binaries

    NASA Astrophysics Data System (ADS)

    Madau, Piero; Fragos, Tassos

    2017-05-01

    We compute the expected X-ray diffuse background and radiative feedback on the intergalactic medium (IGM) from X-ray binaries prior to and during the epoch of reionization. The cosmic evolution of compact binaries is followed using a population synthesis technique that treats separately neutron stars and black hole binaries in different spectral states and is calibrated to reproduce the observed X-ray properties of galaxies at z ≲ 4. Together with an updated empirical determination of the cosmic history of star formation, recent modeling of the stellar mass-metallicity relation, and a scheme for absorption by the IGM that accounts for the presence of ionized H II bubbles during the epoch of reionization, our detailed calculations provide refined predictions of the X-ray volume emissivity and filtered radiation background from “normal” galaxies at z ≳ 6. Radiative transfer effects modulate the background spectrum, which shows a characteristic peak between 1 and 2 keV. Because of the energy dependence of photoabsorption, soft X-ray photons are produced by local sources, while more energetic radiation arrives unattenuated from larger cosmological volumes. While the filtering of X-ray radiation through the IGM slightly increases the mean excess energy per photoionization, it also weakens the radiation intensity below 1 keV, lowering the mean photoionization and heating rates. Numerical integration of the rate and energy equations shows that the contribution of X-ray binaries to the ionization of the bulk IGM is negligible, with the electron fraction never exceeding 1%. Direct He I photoionizations are the main source of IGM heating, and the temperature of the largely neutral medium in between H II cavities increases above the temperature of the cosmic microwave background (CMB) only at z ≲ 10, when the volume filling factor of H II bubbles is already ≳0.1. Therefore, in this scenario, it is only at relatively late epochs that neutral intergalactic hydrogen may be observable in 21 cm emission against the CMB.

  8. Radiation Backgrounds at Cosmic Dawn: X-Rays from Compact Binaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madau, Piero; Fragos, Tassos

    We compute the expected X-ray diffuse background and radiative feedback on the intergalactic medium (IGM) from X-ray binaries prior to and during the epoch of reionization. The cosmic evolution of compact binaries is followed using a population synthesis technique that treats separately neutron stars and black hole binaries in different spectral states and is calibrated to reproduce the observed X-ray properties of galaxies at z ≲ 4. Together with an updated empirical determination of the cosmic history of star formation, recent modeling of the stellar mass–metallicity relation, and a scheme for absorption by the IGM that accounts for the presencemore » of ionized H ii bubbles during the epoch of reionization, our detailed calculations provide refined predictions of the X-ray volume emissivity and filtered radiation background from “normal” galaxies at z ≳ 6. Radiative transfer effects modulate the background spectrum, which shows a characteristic peak between 1 and 2 keV. Because of the energy dependence of photoabsorption, soft X-ray photons are produced by local sources, while more energetic radiation arrives unattenuated from larger cosmological volumes. While the filtering of X-ray radiation through the IGM slightly increases the mean excess energy per photoionization, it also weakens the radiation intensity below 1 keV, lowering the mean photoionization and heating rates. Numerical integration of the rate and energy equations shows that the contribution of X-ray binaries to the ionization of the bulk IGM is negligible, with the electron fraction never exceeding 1%. Direct He i photoionizations are the main source of IGM heating, and the temperature of the largely neutral medium in between H ii cavities increases above the temperature of the cosmic microwave background (CMB) only at z ≲ 10, when the volume filling factor of H ii bubbles is already ≳0.1. Therefore, in this scenario, it is only at relatively late epochs that neutral intergalactic hydrogen may be observable in 21 cm emission against the CMB.« less

  9. Isochoric Heating of Solid-Density Matter with an Ultrafast Proton Beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Key, M H; Mackinnon, A J; Patel, P K

    A new technique is described for the isochoric heating (i.e., heating at constant volume) of matter to high energy-density plasma states (>10{sup 5} J/g) on a picosecond timescale (10{sup -12} sec). An intense, collimated, ultrashort-pulse beam of protons--generated by a high-intensity laser pulse--is used to isochorically heat a solid density material to a temperature of several eV. The duration of heating is shorter than the timescale for significant hydrodynamic expansion to occur, hence the material is heated to a solid density warm dense plasma state. Using spherically-shaped laser targets a focused proton beam is produced and used to heat amore » smaller volume to over 20 eV. The technique described of ultrafast proton heating provides a unique method for creating isochorically heated high-energy density plasma states.« less

  10. Hot water tank for use with a combination of solar energy and heat-pump desuperheating

    DOEpatents

    Andrews, John W.

    1983-06-28

    A water heater or system which includes a hot water tank having disposed therein a movable baffle to function as a barrier between the incoming volume of cold water entering the tank and the volume of heated water entering the tank which is heated by the circulation of the cold water through a solar collector and/or a desuperheater of a heat pump so as to optimize the manner in which heat is imparted to the water in accordance to the demand on the water heater or system. A supplemental heater is also provided and it is connected so as to supplement the heating of the water in the event that the solar collector and/or desuperheater cannot impart all of the desired heat input into the water.

  11. Compression of Martian atmosphere for production of oxygen

    NASA Technical Reports Server (NTRS)

    Lynch, D. C.; Cutler, A. H.; Nolan, P. E.

    1991-01-01

    The compression of CO2 from the Martian atmosphere for production of O2 via an electrochemical cell is addressed. Design specifications call for an oxygen production rate of 10 kg per day and for compression of 50 times that mass of CO2. Those specifications require a compression rate of over 770 cfm at standard Martian temperature and pressure (SMTP). Much of the CO2 being compressed represents waste, unless it can be recycled. Recycling can reduce the volume of gas that must be compressed to 40 cfm at SMTP. That volume reduction represents significant mass savings in the compressor, heating equipment, filters, and energy source. Successful recycle of the gas requires separation of CO (produced in the electrochemical cell) from CO2, N2, and Ar found in the Martian atmosphere. That aspect was the focus of this work.

  12. Gold nanoshell thermal confinement of conformal laser thermal therapy in liver metastasis

    NASA Astrophysics Data System (ADS)

    Elliott, Andrew M.; Wang, James; Shetty, Anil M.; Schwartz, Jon; Hazle, John D.; Stafford, R. Jason

    2008-02-01

    Cooled fiber tip technology has significantly improved the volume coverage of laser induced thermal therapy (LITT), making LITT an attractive technology for the minimally invasive treatment of cancer. Gold coated nanoshells can be tuned to experience a plasmon resonance at a desired laser frequency, there introduction into the treatment region can greatly amplify the effectiveness of the thermal treatment. The goal is to conformaly heat the target, while sparing surrounding healthy tissue. To this end a treatment option that is self-confining to the target lesion is highly desirable. This can be achieved in the liver by allowing nanoshells to be taken up by the healthy tissue of the liver as part of their natural removal from the blood stream. The lesion is then incased inside the nanoshell laden tissue of the surrounding healthy tissue. When an interstitial laser probe is introduced into the center of the lesion the thermal radiation scatters outward until it interacts with and is absorbed by the nanoshells located around the lesion periphery. As the periphery heats it acts as secondary source of thermal radiation, sending heat back into lesion and giving rise to ablative temperatures within the lesion while sparing the surrounding tissue. In order to better monitor therapy and know when the target volume has been ablated, or exceeded, accurate knowledge is needed of both the spatial distribution of heating and the maximum temperature achieved. Magnetic resonance temperature imaging (MRTI) is capable of monitoring the spatiotemporal distribution of temperature in vivo[1]. Experiments have been performed in vitro using a dog liver containing nanoshells (concentration 860ppm) and a tissue like lesion phantom designed to have the optical properties of liver metastasis [2].

  13. Solar heating and cooling: Technical data and systems analysis

    NASA Technical Reports Server (NTRS)

    Christensen, D. L.

    1975-01-01

    The solar energy research is reported including climatic data, architectural data, heating and cooling equipment, thermal loads, and economic data. Lists of data sources presented include: selected data sources for solar energy heating and cooling; bibliography of solar energy, and other energy sources; sources for manufacturing and sales, solar energy collectors; and solar energy heating and cooling projects.

  14. Heat exchange equipment and valve design and operability improvement. NE-Volume 14

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, K.P; Niyogi, K.K.

    1994-12-31

    The papers contained in this volume were presented at the Maurice Holtz Memorial Sessions on Heat Exchanger Equipment and Valve Design and Operability Improvement, as part of the 1994 International Joint Power Generation Conference and Exhibition, October 2--6, in Phoenix, Arizona. These eight papers deal with two types of components--heat exchangers and valves, both of which are used in practically all sensors of the nuclear industry.

  15. Acoustic and thermal properties of tissue

    NASA Astrophysics Data System (ADS)

    Retat, L.; Rivens, I.; ter Haar, G. R.

    2012-10-01

    Differences in ultrasound (US) and thermal properties of abdominal soft tissues may affect the delivery of thermal therapies such as high intensity focused ultrasound and may provide a basis for US monitoring of such therapies. 21 rat livers were obtained, within one hour of surgical removal. For a single liver, 3 lobes were selected and each treated in one of 3 ways: maintained at room temperature, water bath heated to 50°C ± 1°C for 10 ± 0.5 minutes, or water bath heated to 60°C ± 1°C for 10 ± 0.6 minutes. The attenuation coefficient, speed of sound and thermal conductivity of fresh rat liver was measured. The attenuation coefficients and speed of sound were measured using the finite-amplitude insertion-substitution (FAIS) method. For each rat liver, the control and treated lobes were scanned using a pair of weakly focused 2.5 MHz Imasonic transducers over the range 1.8 to 3 MHz. The conductivity measurement apparatus was designed to provide one-dimensional heat flow through each specimen using a combination of insulation, heat source and heat sink. Using 35 MHz US images to determine the volume of air trapped in the system, the thermal conductivity was corrected using a simulation based on the Helmhotz bio-heat equation. The process of correlating these results with biological properties is discussed.

  16. Heat transfer enhancement of Fe3O4 ferrofluids in the presence of magnetic field

    NASA Astrophysics Data System (ADS)

    Fadaei, Farzad; Shahrokhi, Mohammad; Molaei Dehkordi, Asghar; Abbasi, Zeinab

    2017-05-01

    In this article, three-dimensional (3D) forced-convection heat transfer of magnetic nanofluids in a pipe subject to constant wall heat flux in the presence of single or double permanent magnet(s) or current-carrying wire has been investigated and compared. In this regard, laminar fluid flow and equilibrium magnetization for the ferrofluid were considered. In addition, variations of magnetic field in different media were taken into account and the assumption of having a linear relationship of magnetization with applied magnetic field intensity was also relaxed. Effects of magnetic field intensity, nanoparticle volume fraction, Reynolds number value, and the type of magnetic field source (i.e., a permanent magnet or current-carrying wire) on the forced-convection heat transfer of magnetic nanofluids were carefully investigated. It was found that by applying the magnetic field, the fluid mixing could be intensified that leads to an increase in the Nusselt number value along the pipe length. Moreover, the obtained simulation results indicate that applying the magnetic field induced by two permanent magnets with a magnetization of 3×105 (A/m) (for each one), the fully developed Nusselt number value can be increased by 196%.

  17. Heat pump system

    DOEpatents

    Swenson, Paul F.; Moore, Paul B.

    1979-01-01

    An air heating and cooling system for a building includes an expansion-type refrigeration circuit and a heat engine. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The heat engine includes a heat rejection circuit having a source of rejected heat and a primary heat exchanger connected to the source of rejected heat. The heat rejection circuit also includes an evaporator in heat exchange relation with the primary heat exchanger, a heat engine indoor heat exchanger, and a heat engine outdoor heat exchanger. The indoor heat exchangers are disposed in series air flow relationship, with the heat engine indoor heat exchanger being disposed downstream from the refrigeration circuit indoor heat exchanger. The outdoor heat exchangers are also disposed in series air flow relationship, with the heat engine outdoor heat exchanger disposed downstream from the refrigeration circuit outdoor heat exchanger. A common fluid is used in both of the indoor heat exchangers and in both of the outdoor heat exchangers. In a first embodiment, the heat engine is a Rankine cycle engine. In a second embodiment, the heat engine is a non-Rankine cycle engine.

  18. Heat pump system

    DOEpatents

    Swenson, Paul F.; Moore, Paul B.

    1982-01-01

    An air heating and cooling system for a building includes an expansion-type refrigeration circuit and a heat engine. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The heat engine includes a heat rejection circuit having a source of rejected heat and a primary heat exchanger connected to the source of rejected heat. The heat rejection circuit also includes an evaporator in heat exchange relation with the primary heat exchanger, a heat engine indoor heat exchanger, and a heat engine outdoor heat exchanger. The indoor heat exchangers are disposed in series air flow relationship, with the heat engine indoor heat exchanger being disposed downstream from the refrigeration circuit indoor heat exchanger. The outdoor heat exchangers are also disposed in series air flow relationship, with the heat engine outdoor heat exchanger disposed downstream from the refrigeration circuit outdoor heat exchanger. A common fluid is used in both of the indoor heat exchanges and in both of the outdoor heat exchangers. In a first embodiment, the heat engine is a Rankine cycle engine. In a second embodiment, the heat engine is a non-Rankine cycle engine.

  19. Heat source reconstruction from noisy temperature fields using an optimised derivative Gaussian filter

    NASA Astrophysics Data System (ADS)

    Delpueyo, D.; Balandraud, X.; Grédiac, M.

    2013-09-01

    The aim of this paper is to present a post-processing technique based on a derivative Gaussian filter to reconstruct heat source fields from temperature fields measured by infrared thermography. Heat sources can be deduced from temperature variations thanks to the heat diffusion equation. Filtering and differentiating are key-issues which are closely related here because the temperature fields which are processed are unavoidably noisy. We focus here only on the diffusion term because it is the most difficult term to estimate in the procedure, the reason being that it involves spatial second derivatives (a Laplacian for isotropic materials). This quantity can be reasonably estimated using a convolution of the temperature variation fields with second derivatives of a Gaussian function. The study is first based on synthetic temperature variation fields corrupted by added noise. The filter is optimised in order to reconstruct at best the heat source fields. The influence of both the dimension and the level of a localised heat source is discussed. Obtained results are also compared with another type of processing based on an averaging filter. The second part of this study presents an application to experimental temperature fields measured with an infrared camera on a thin plate in aluminium alloy. Heat sources are generated with an electric heating patch glued on the specimen surface. Heat source fields reconstructed from measured temperature fields are compared with the imposed heat sources. Obtained results illustrate the relevancy of the derivative Gaussian filter to reliably extract heat sources from noisy temperature fields for the experimental thermomechanics of materials.

  20. Studies on heat transfer and pressure drop in turbulent flow of silver - water nanofluids through a circular tube at constant wall heat flux

    NASA Astrophysics Data System (ADS)

    Iyahraja, S.; Rajadurai, J. Selwin; Rajesh, S.; Pandian, R. Seeni Thangaraj; Kumaran, M. Selva; Selvakumar, G.

    2018-07-01

    In the present study, performance of convective heat transfer and friction factor of silver-water nanofluids in a horizontal circular pipe under turbulent flow were investigated experimentally under uniform heat flux condition. The volume concentration of silver nanoparticles is varied as 0.01, 0.05 and 0.1%. Heat transfer coefficient and friction factor of nanofluids were measured experimentally by varying the Reynolds number from 3000 to 21,000. It is observed that the addition of even low volume fraction of silver nanoparticles increases both Nusselt number and heat transfer coefficient of the nanofluid significantly. Nusselt number of silver-water nanofluid increases up to 32.6% for 0.1% volume fraction at Reynolds number of 21,000. However, the addition of nanoparticles in the base fluid increases the friction factor slightly. New empirical correlations are also proposed for the estimation of Nusselt number and friction factor of silver-water nanofluid based on the data of present experimental investigation. The proposed correlations of Nusselt number and friction factor show good agreement with their experimental data.

  1. Numerical Investigation of Heat Transfer Enhancement in a Rectangular Heated Pipe for Turbulent Nanofluid

    PubMed Central

    Kazi, Salim Newaz; Sadeghinezhad, Emad

    2014-01-01

    Thermal characteristics of turbulent nanofluid flow in a rectangular pipe have been investigated numerically. The continuity, momentum, and energy equations were solved by means of a finite volume method (FVM). The symmetrical rectangular channel is heated at the top and bottom at a constant heat flux while the sides walls are insulated. Four different types of nanoparticles Al2O3, ZnO, CuO, and SiO2 at different volume fractions of nanofluids in the range of 1% to 5% are considered in the present investigation. In this paper, effect of different Reynolds numbers in the range of 5000 < Re < 25000 on heat transfer characteristics of nanofluids flowing through the channel is investigated. The numerical results indicate that SiO2-water has the highest Nusselt number compared to other nanofluids while it has the lowest heat transfer coefficient due to low thermal conductivity. The Nusselt number increases with the increase of the Reynolds number and the volume fraction of nanoparticles. The results of simulation show a good agreement with the existing experimental correlations. PMID:25254236

  2. Studies on heat transfer and pressure drop in turbulent flow of silver - water nanofluids through a circular tube at constant wall heat flux

    NASA Astrophysics Data System (ADS)

    Iyahraja, S.; Rajadurai, J. Selwin; Rajesh, S.; Pandian, R. Seeni Thangaraj; Kumaran, M. Selva; Selvakumar, G.

    2018-02-01

    In the present study, performance of convective heat transfer and friction factor of silver-water nanofluids in a horizontal circular pipe under turbulent flow were investigated experimentally under uniform heat flux condition. The volume concentration of silver nanoparticles is varied as 0.01, 0.05 and 0.1%. Heat transfer coefficient and friction factor of nanofluids were measured experimentally by varying the Reynolds number from 3000 to 21,000. It is observed that the addition of even low volume fraction of silver nanoparticles increases both Nusselt number and heat transfer coefficient of the nanofluid significantly. Nusselt number of silver-water nanofluid increases up to 32.6% for 0.1% volume fraction at Reynolds number of 21,000. However, the addition of nanoparticles in the base fluid increases the friction factor slightly. New empirical correlations are also proposed for the estimation of Nusselt number and friction factor of silver-water nanofluid based on the data of present experimental investigation. The proposed correlations of Nusselt number and friction factor show good agreement with their experimental data.

  3. Numerical investigation of heat transfer enhancement in a rectangular heated pipe for turbulent nanofluid.

    PubMed

    Yarmand, Hooman; Gharehkhani, Samira; Kazi, Salim Newaz; Sadeghinezhad, Emad; Safaei, Mohammad Reza

    2014-01-01

    Thermal characteristics of turbulent nanofluid flow in a rectangular pipe have been investigated numerically. The continuity, momentum, and energy equations were solved by means of a finite volume method (FVM). The symmetrical rectangular channel is heated at the top and bottom at a constant heat flux while the sides walls are insulated. Four different types of nanoparticles Al2O3, ZnO, CuO, and SiO2 at different volume fractions of nanofluids in the range of 1% to 5% are considered in the present investigation. In this paper, effect of different Reynolds numbers in the range of 5000 < Re < 25000 on heat transfer characteristics of nanofluids flowing through the channel is investigated. The numerical results indicate that SiO2-water has the highest Nusselt number compared to other nanofluids while it has the lowest heat transfer coefficient due to low thermal conductivity. The Nusselt number increases with the increase of the Reynolds number and the volume fraction of nanoparticles. The results of simulation show a good agreement with the existing experimental correlations.

  4. Accelerated uplift and magmatic intrusion of the Yellowstone caldera, 2004 to 2006

    USGS Publications Warehouse

    Chang, Wu-Lung; Smith, Robert B.; Wicks, Charles; Farrell, J.M.; Puskas, C.M.

    2007-01-01

    The Yellowstone caldera began a rapid episode of ground uplift in mid-2004, revealed by Global Positioning System and interferometric synthetic aperture radar measurements, at rates up to 7 centimeters per year, which is over three times faster than previously observed inflation rates. Source modeling of the deformation data suggests an expanding volcanic sill of ???1200 square kilometers at a 10-kilometer depth beneath the caldera, coincident with the top of a seismically imaged crustal magma chamber. The modeled rate of source volume increase is 0.1 cubic kilometer per year, similar to the amount of magma intrusion required to supply the observed high heat flow of the caldera. This evidence suggests magma recharge as the main mechanism for the accelerated uplift, although pressurization of magmatic fluids cannot be ruled out.

  5. Numerical Investigation for Strengthening Heat Transfer Mechanism of the Tube-Row Heat Exchanger in a Compact Thermoelectric Generator

    NASA Astrophysics Data System (ADS)

    Zhang, Zheng; Chen, Zijian; Liu, Hongwu; Yue, Hao; Chen, Dongbo; Qin, Delei

    2018-04-01

    According to the basic principle of heat transfer enhancement, a 1-kW compact thermoelectric generator (TEG) is proposed that is suitable for use at high temperatures and high flow speeds. The associated heat exchanger has a tube-row structure with a guide-plate to control the thermal current. The heat exchanger has a volume of 7 L, and the TEG has a mass of 8 kg (excluding the thermoelectric modules (TEMs)). In this paper, the heat transfer process of the tube-row exchanger is modeled and analyzed numerically; and the influences of its structure on the heat transfer and temperature status of the TEMs are investigated. The results show that use of the thin - wall pipes and increase of surface roughness inside the pipes are effective ways to improve the heat transfer efficiency, obtain the rated surface temperature, and make the TEG compact and lightweight. Furthermore, under the same conditions, the calculated results are compared with the data of a fin heat exchanger. The comparison results show that the volume and mass of the tube-row heat exchanger are 19% and 33% lower than those of the fin type unit, and that the pressure drop is reduced by 16%. In addition, the average temperature in the tube-row heat exchanger is increased by 15°C and the average temperature difference is increased by 19°C; the tube-row TEG has a more compact volume and better temperature characteristics.

  6. Numerical Investigation for Strengthening Heat Transfer Mechanism of the Tube-Row Heat Exchanger in a Compact Thermoelectric Generator

    NASA Astrophysics Data System (ADS)

    Zhang, Zheng; Chen, Zijian; Liu, Hongwu; Yue, Hao; Chen, Dongbo; Qin, Delei

    2018-06-01

    According to the basic principle of heat transfer enhancement, a 1-kW compact thermoelectric generator (TEG) is proposed that is suitable for use at high temperatures and high flow speeds. The associated heat exchanger has a tube-row structure with a guide-plate to control the thermal current. The heat exchanger has a volume of 7 L, and the TEG has a mass of 8 kg (excluding the thermoelectric modules (TEMs)). In this paper, the heat transfer process of the tube-row exchanger is modeled and analyzed numerically; and the influences of its structure on the heat transfer and temperature status of the TEMs are investigated. The results show that use of the thin - wall pipes and increase of surface roughness inside the pipes are effective ways to improve the heat transfer efficiency, obtain the rated surface temperature, and make the TEG compact and lightweight. Furthermore, under the same conditions, the calculated results are compared with the data of a fin heat exchanger. The comparison results show that the volume and mass of the tube-row heat exchanger are 19% and 33% lower than those of the fin type unit, and that the pressure drop is reduced by 16%. In addition, the average temperature in the tube-row heat exchanger is increased by 15°C and the average temperature difference is increased by 19°C; the tube-row TEG has a more compact volume and better temperature characteristics.

  7. Loop Heat Pipe Transient Behavior Using Heat Source Temperature for Set Point Control with Thermoelectric Converter on Reservoir

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Paiva, Kleber; Mantelli, Marcia

    2011-01-01

    The LHP operating temperature is governed by the saturation temperature of its reservoir. Controlling the reservoir saturation temperature is commonly done by cold biasing the reservoir and using electrical heaters to provide the required control power. With this method, the loop operating temperature can be controlled within 0.5K or better. However, because the thermal resistance that exists between the heat source and the LHP evaporator, the heat source temperature will vary with its heat output even if the LHP operating temperature is kept constant. Since maintaining a constant heat source temperature is of most interest, a question often raised is whether the heat source temperature can be used for LHP set point temperature control. A test program with a miniature LHP was carried out to investigate the effects on the LHP operation when the control temperature sensor was placed on the heat source instead of the reservoir. In these tests, the LHP reservoir was cold-biased and was heated by a control heater. Test results show that it was feasible to use the heat source temperature for feedback control of the LHP operation. In particular, when a thermoelectric converter was used as the reservoir control heater, the heat source temperature could be maintained within a tight range using a proportional-integral-derivative or on/off control algorithm. Moreover, because the TEC could provide both heating and cooling to the reservoir, temperature oscillations during fast transients such as loop startup could be eliminated or substantially reduced when compared to using an electrical heater as the control heater.

  8. Energy saving analysis on mine-water source heat pump in a residential district of Henan province, central China

    NASA Astrophysics Data System (ADS)

    Wang, Hong; Duan, Huanlin; Chen, Aidong

    2018-02-01

    In this paper, the mine-water source heat pump system is proposed in residential buildings of a mining community. The coefficient of performance (COP) and the efficiency of exergy are analyzed. The results show that the COP and exergy efficiency of the mine-water source heat pump are improved, the exergy efficiency of mine-water source heat pump is more than 10% higher than that of the air source heat pump.The electric power conservation measure of “peak load shifting” is also emphasized in this article. It shows that itis a very considerable cost in the electric saving by adopting the trough period electricity to produce hot water. Due to the proper temperature of mine water, the mine-watersource heat pump unit is more efficient and stable in performance, which further shows the advantage of mine-water source heat pump in energy saving and environmental protection. It provides reference to the design of similar heat pump system as well.

  9. Experimental investigation of TiO2/water nanofluid laminar forced convective heat transfer through helical coiled tube

    NASA Astrophysics Data System (ADS)

    Kahani, M.; Zeinali Heris, S.; Mousavi, S. M.

    2014-05-01

    Coiled tubes and nanofludics are two significant techniques to enhance the heat transfer ability of thermal equipments. The forced convective heat transfer and the pressure drop of nanofluid inside straight tube and helical coiled one with a constant wall heat flux were studied experimentally. Distilled water was used as a host fluid and Nanofluids of aqueous TiO2 nanoparticles (50 nm) suspensions were prepared in various volume concentrations of 0.25-2 %. The heat transfer coefficient of nanofluids is obtained for different nanoparticle concentrations as well as various Reynolds numbers. The experiments covered a range of Reynolds number of 500-4,500. The results show the considerable enhancement of heat transfer rate, which is due to the nanoparticles present in the fluid. Heat transfer coefficient increases by increasing the volume concentration of nanoparticles as well as Reynolds number. Moreover, due to the curvature of the tube when fluid flows inside helical coiled tube instead of straight one, both convective heat transfer coefficient and the pressure drop of fluid grow considerably. Also, the thermal performance factors for tested nanofluids are greater than unity and the maximum thermal performance factor of 3.72 is found with the use of 2.0 % volume concentration of nanofluid at Reynolds number of 1,750.

  10. The effects of inlet turbulence and rotor/stator interactions on the aerodynamics and heat transfer of a large-scale rotating turbine model. Volume 2: Heat transfer data tabulation. 15 percent axial spacing

    NASA Technical Reports Server (NTRS)

    Dring, R. P.; Blair, M. F.; Joslyn, H. D.

    1986-01-01

    A combined experimental and analytical program was conducted to examine the effects of inlet turbulence on airfoil heat transfer. The experimental portion of the study was conducted in a large-scale (approx 5X engine), ambient temperature, rotating turbine model configured in both single stage and stage-and-a-half arrangements. Heat transfer measurements were obtained using low-conductivity airfoils with miniature thermcouples welded to a thin, electrically heated surface skin. Heat transfer data were acquired for various combinations of low or high inlet turbulence intensity, flow coefficient, first-stator/rotor axial spacing, Reynolds number and relative circumferential position of the first and second stators. Aerodynamic measurements obtained as part of the program include distributions of the mean and fluctuating velocities at the turbine inlet and, for each airfoil row, midspan airfoil surface pressures and circumferential distributions of the downstream steady state pressures and fluctuating velocities. Analytical results include airfoil heat transfer predictions produced using existing 2-D boundary layer computation schemes and an examination of solutions of the unsteady boundary layer equations. The results are reported in four separate volumes, of which this is Volume 2: Heat Transfer Data Tabulation; 15 Percent Axial Spacing.

  11. Parallel-plate heat pipe apparatus having a shaped wick structure

    DOEpatents

    Rightley, Michael J.; Adkins, Douglas R.; Mulhall, James J.; Robino, Charles V.; Reece, Mark; Smith, Paul M.; Tigges, Chris P.

    2004-12-07

    A parallel-plate heat pipe is disclosed that utilizes a plurality of evaporator regions at locations where heat sources (e.g. semiconductor chips) are to be provided. A plurality of curvilinear capillary grooves are formed on one or both major inner surfaces of the heat pipe to provide an independent flow of a liquid working fluid to the evaporator regions to optimize heat removal from different-size heat sources and to mitigate the possibility of heat-source shadowing. The parallel-plate heat pipe has applications for heat removal from high-density microelectronics and laptop computers.

  12. Thermophysical properties of heat-treated U-7Mo/Al dispersion fuel

    NASA Astrophysics Data System (ADS)

    Cho, Tae Won; Kim, Yeon Soo; Park, Jong Man; Lee, Kyu Hong; Kim, Sunghwan; Lee, Chong Tak; Yang, Jae Ho; Oh, Jang Soo; Sohn, Dong-Seong

    2018-04-01

    In this study, the effects of interaction layer (IL) on thermophysical properties of U-7Mo/Al dispersion fuel were examined. Microstructural analyses revealed that ILs were formed uniformly on U-Mo particles during heating of U-7Mo/Al samples. The IL volume fraction was measured by applying image analysis methods. The uranium loadings of the samples were calculated based on the measured meat densities at 298 K. The density of the IL was estimated by using the measured density and IL volume fraction. Thermal diffusivity and heat capacity of the samples after the heat treatment were measured as a function of temperature and volume fractions of U-Mo and IL. The thermal conductivity of IL-formed U-7Mo/Al was derived by using the measured thermal diffusivity, heat capacity, and density. The thermal conductivity obtained in the present study was lower than that predicted by the modified Hashin-Shtrikman model due to the theoretical model's inability to consider the thermal resistance at interfaces between the meat constituents.

  13. Tropical Diabatic Heating and the Role of Convective Processes as Represented in Several Contemporary Climate Models

    NASA Technical Reports Server (NTRS)

    Robertson, Franklin R.; Roads, John; Oglesby, Robert; Marshall, Susan

    2004-01-01

    One of the most fundamental properties of the global heat balance is the net heat input into the tropical atmosphere that helps drive the planetary atmospheric circulation. Although broadly understood in terms of its gross structure and balance of source / sink terms, incorporation of the relevant processes in predictive models is still rather poor. The work reported here examines the tropical radiative and water cycle behavior as produced by four contemporary climate models. Among these are the NSIPP-2 (NASA Seasonal to Interannual Prediction Project) which uses the RAS convective parameterization; the FVCCM, a code using finite volume numerics and the CCM3.6 physics; FVCCM-MCRAS again having the finite volume numerics, but MCRAS convective parameterization and a different radiation treatment; and, finally, the NCEP GSM which uses the RAS. Using multi-decadal integrations with specified SSTs we examine the statistics of radiative / convective processes and associated energy transports, and then estimate model energy flux sensitivities to SST changes. In particular the behavior of the convective parameterizations is investigated. Additional model integrations are performed specifically to assess the importance representing convective inhibition in regulating convective cloud-top structure and moisture detrainment as well as controlling surface energy fluxes. To evaluate the results of these experiments, a number of satellite retrievals are used: TRMM retrievals of vertical reflectivity structure, rainfall rate, and inferred diabatic heating are analyzed to show both seasonal and interannual variations in vertical structure of latent heat release. Top-of-atmosphere radiative fluxes from ERBS and CERES are used to examine shortwave and longwave cloud forcing and to deduce required seasonal energy transports. Retrievals of cloud properties from ISCCP and water vapor variations from SSM/T-2 are also used to understand behavior of the humidity fields. These observations are supplemented with output form the DOE Reanalysis-2.

  14. Produced Water Treatment Using Geothermal Energy from Oil and Gas Wells: An Appropriateness of Decommissioned Wells Index (ADWI) Approach

    NASA Astrophysics Data System (ADS)

    Kiaghadi, A.; Rifai, H. S.

    2016-12-01

    This study investigated the feasibility of harnessing geothermal energy from retrofitted oil and gas decommissioned wells to power desalination units and overcome the produced water treatment energy barrier. Previous studies using heat transfer models have indicated that well depth, geothermal gradient, formation heat conductivity, and produced water salt levels were the most important constraints that affect the achievable volume of treated water. Thus, the challenge of identifying which wells would be best suited for retrofit as geothermal wells was addressed by defining an Appropriateness of Decommissioned Wells Index (ADWI) using a 25 km x 25 km grid over Texas. Heat transfer modeling combined with fuzzy logic methodology were used to estimate the ADWI at each grid cell using the scale of Very Poor, Poor, Average, Good and Excellent. Values for each of the four constraints were extracted from existing databases and were used to select 20 representative values that covered the full range of the data. A heat transfer model was run for all the 160,000 possible combination scenarios and the results were regressed to estimate weighting coefficients that indicate the relative effect of well depth, geothermal gradient, heat conductivity, and produced water salt levels on the volume of treated water in Texas. The results indicated that wells located in cells with ADWI of "Average", "Good" or "Excellent" can potentially deliver 35,000, 106,000, or 240,000 L/day of treated water, respectively. Almost 98% of the cells in the Granite Wash, 97% in Eagle Ford Shale, 90% in Haynesville Shale, 79% in Permian Basin, and 78% in Barnett Shale were identified as better than "Average" locations; whereas, south of the Eagle Ford, southwestern Permian Basin, and the center of Granite Wash were "Excellent". Importantly, most of the locations with better than "Average" ADWI are within drought prone agricultural regions that would benefit from this resilient source of clean water.

  15. Heat transfer augmentation of a car radiator using nanofluids

    NASA Astrophysics Data System (ADS)

    Hussein, Adnan M.; Bakar, R. A.; Kadirgama, K.; Sharma, K. V.

    2014-05-01

    The car radiator heat transfer enhancement by using TiO2 and SiO2 nanoparticles dispersed in water as a base fluid was studied experimentally. The test rig is setup as a car radiator with tubes and container. The range of Reynolds number and volume fraction are (250-1,750) and (1.0-2.5 %) respectively. Results showed that the heat transfer increases with increasing of nanofluid volume fraction. The experimental data is agreed with other investigator.

  16. Computational inverse methods of heat source in fatigue damage problems

    NASA Astrophysics Data System (ADS)

    Chen, Aizhou; Li, Yuan; Yan, Bo

    2018-04-01

    Fatigue dissipation energy is the research focus in field of fatigue damage at present. It is a new idea to solve the problem of calculating fatigue dissipation energy by introducing inverse method of heat source into parameter identification of fatigue dissipation energy model. This paper introduces the research advances on computational inverse method of heat source and regularization technique to solve inverse problem, as well as the existing heat source solution method in fatigue process, prospects inverse method of heat source applying in fatigue damage field, lays the foundation for further improving the effectiveness of fatigue dissipation energy rapid prediction.

  17. Hot water tank for use with a combination of solar energy and heat-pump desuperheating

    DOEpatents

    Andrews, J.W.

    1980-06-25

    A water heater or system is described which includes a hot water tank having disposed therein a movable baffle to function as a barrier between the incoming volume of cold water entering the tank and the volume of heated water entering the tank which is heated by the circulation of the cold water through a solar collector and/or a desuperheater of a heat pump so as to optimize the manner in which heat is imparted to the water in accordance to the demand on the water heater or system. A supplemental heater is also provided and it is connected so as to supplement the heating of the water in the event that the solar collector and/or desuperheater cannot impart all of the desired heat input into the water.

  18. Solar powered dehumidifier apparatus

    DOEpatents

    Jebens, Robert W.

    1980-12-30

    A thermally insulated light transmitting housing forms a chamber containing a desiccant and having a first gas port open to the ambient and a second gas port connected by a two way valve to a volume to be dried. Solar energy transmitted through the housing heats and dries the desiccant. The increased air pressure due to the heating of the volume to be dried causes the air from the volume to be expelled through the valve into the chamber. The desiccant is then cooled by shielding it from solar energy before the volume cools thereby increasing its moisture absorbing capacity. Then the volume is allowed to cool drawing dehumidified air through the desiccant and the valve into the volume to be dried. This cycle is then repeated.

  19. Radioisotopic heat source

    DOEpatents

    Sayell, E.H.

    1973-10-23

    A radioisotopic heat source is described which includes a core of heat productive, radioisotopic material, an impact resistant layer of graphite surrounding said core, and a shell of iridium metal intermediate the core and the impact layer. The source may also include a compliant mat of iridium between the core and the iridium shell, as well as an outer covering of iridium metal about the entire heat source. (Official Gazette)

  20. Optimum load distribution between heat sources based on the Cournot model

    NASA Astrophysics Data System (ADS)

    Penkovskii, A. V.; Stennikov, V. A.; Khamisov, O. V.

    2015-08-01

    One of the widespread models of the heat supply of consumers, which is represented in the "Single buyer" format, is considered. The methodological base proposed for its description and investigation presents the use of principles of the theory of games, basic propositions of microeconomics, and models and methods of the theory of hydraulic circuits. The original mathematical model of the heat supply system operating under conditions of the "Single buyer" organizational structure provides the derivation of a solution satisfying the market Nash equilibrium. The distinctive feature of the developed mathematical model is that, along with problems solved traditionally within the bounds of bilateral relations of heat energy sources-heat consumer, it considers a network component with its inherent physicotechnical properties of the heat network and business factors connected with costs of the production and transportation of heat energy. This approach gives the possibility to determine optimum levels of load of heat energy sources. These levels provide the given heat energy demand of consumers subject to the maximum profit earning of heat energy sources and the fulfillment of conditions for formation of minimum heat network costs for a specified time. The practical realization of the search of market equilibrium is considered by the example of a heat supply system with two heat energy sources operating on integrated heat networks. The mathematical approach to the solution search is represented in the graphical form and illustrates computations based on the stepwise iteration procedure for optimization of levels of loading of heat energy sources (groping procedure by Cournot) with the corresponding computation of the heat energy price for consumers.

  1. Heating device for semiconductor wafers

    DOEpatents

    Vosen, Steven R.

    1999-01-01

    An apparatus for heat treating semiconductor wafers is disclosed. The apparatus includes a heating device which contains an assembly of light energy sources for emitting light energy onto a wafer. In particular, the light energy sources are positioned such that many different radial heating zones are created on a wafer being heated. For instance, in one embodiment, the light energy sources form a spiral configuration. In an alternative embodiment, the light energy sources appear to be randomly dispersed with respect to each other so that no discernable pattern is present. In a third alternative embodiment of the present invention, the light energy sources form concentric rings. Tuning light sources are then placed in between the concentric rings of light.

  2. Heating device for semiconductor wafers

    DOEpatents

    Vosen, S.R.

    1999-07-27

    An apparatus for heat treating semiconductor wafers is disclosed. The apparatus includes a heating device which contains an assembly of light energy sources for emitting light energy onto a wafer. In particular, the light energy sources are positioned such that many different radial heating zones are created on a wafer being heated. For instance, in one embodiment, the light energy sources form a spiral configuration. In an alternative embodiment, the light energy sources appear to be randomly dispersed with respect to each other so that no discernible pattern is present. In a third alternative embodiment of the present invention, the light energy sources form concentric rings. Tuning light sources are then placed in between the concentric rings of light. 4 figs.

  3. Influence of Mean-Density Gradient on Small-Scale Turbulence Noise

    NASA Technical Reports Server (NTRS)

    Khavaran, Abbas

    2000-01-01

    A physics-based methodology is described to predict jet-mixing noise due to small-scale turbulence. Both self- and shear-noise source teens of Lilley's equation are modeled and the far-field aerodynamic noise is expressed as an integral over the jet volume of the source multiplied by an appropriate Green's function which accounts for source convection and mean-flow refraction. Our primary interest here is to include transverse gradients of the mean density in the source modeling. It is shown that, in addition to the usual quadrupole type sources which scale to the fourth-power of the acoustic wave number, additional dipole and monopole sources are present that scale to lower powers of wave number. Various two-point correlations are modeled and an approximate solution to noise spectra due to multipole sources of various orders is developed. Mean flow and turbulence information is provided through RANS-k(epsilon) solution. Numerical results are presented for a subsonic jet at a range of temperatures and Mach numbers. Predictions indicated a decrease in high frequency noise with added heat, while changes in the low frequency noise depend on jet velocity and observer angle.

  4. RADIOACTIVE CONCENTRATOR AND RADIATION SOURCE

    DOEpatents

    Hatch, L.P.

    1959-12-29

    A method is presented for forming a permeable ion exchange bed using Montmorillonite clay to absorb and adsorb radioactive ions from liquid radioactive wastes. A paste is formed of clay, water, and a material that fomns with clay a stable aggregate in the presence of water. The mixture is extruded into a volume of water to form clay rods. The rods may then be used to remove radioactive cations from liquid waste solutions. After use, the rods are removed from the solution and heated to a temperature of 750 to 1000 deg C to fix the ratioactive cations in the clay.

  5. Using Direct Metal Deposition to Fabricate Mold Plates for an Injection Mold Machine Allowing for the Evaluation of Cost Effective Near-Sourcing Opportunities in Larger, High Volume Consumer Products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duty, Chad E; Groh, Bill

    2014-10-31

    ORNL collaborated with Radio Systems Corporation to investigate additive manufacturing (AM) of mold plates for plastic injection molding by direct metal deposition. The team s modelling effort identified a 100% improvement in heat transfer through use of conformal cooling lines that could be built into the mold using a revolutionary design enabled by additive manufacturing. Using the newly installed laser deposition system at the ORNL Manufacturing Demonstration Facility (MDF) a stainless steel mold core was printed.

  6. Method and apparatus for fuel gas moisturization and heating

    DOEpatents

    Ranasinghe, Jatila; Smith, Raub Warfield

    2002-01-01

    Fuel gas is saturated with water heated with a heat recovery steam generator heat source. The heat source is preferably a water heating section downstream of the lower pressure evaporator to provide better temperature matching between the hot and cold heat exchange streams in that portion of the heat recovery steam generator. The increased gas mass flow due to the addition of moisture results in increased power output from the gas and steam turbines. Fuel gas saturation is followed by superheating the fuel, preferably with bottom cycle heat sources, resulting in a larger thermal efficiency gain compared to current fuel heating methods. There is a gain in power output compared to no fuel heating, even when heating the fuel to above the LP steam temperature.

  7. Photothermal triggering of self-healing processes applied to the reparation of bio-based polymer networks

    NASA Astrophysics Data System (ADS)

    Altuna, F. I.; Antonacci, J.; Arenas, G. F.; Pettarin, V.; Hoppe, C. E.; Williams, R. J. J.

    2016-04-01

    Green laser irradiation successfully activated self-healing processes in epoxy-acid networks modified with low amounts of gold nanoparticles (NPs). A bio-based polymer matrix, obtained by crosslinking epoxidized soybean oil (ESO) with an aqueous citric acid (CA) solution, was self-healed through molecular rearrangements produced by transesterification reactions of β-hydroxyester groups generated in the polymerization reaction. The temperature increase required for the triggering of these thermally activated reactions was attained by green light irradiation of the damaged area. Compression force needed to assure a good contact between crack faces was achieved by volume dilatation generated by the same temperature rise. Gold NPs dispersed in the polymer efficiently generated heat in the presence of electromagnetic radiation under plasmon resonance, acting as nanometric heating sources and allowing remote activation of the self-healing in the crosslinked polymer.

  8. Geology of Europa

    NASA Technical Reports Server (NTRS)

    Greeley, R.; Chyba, C.; Head, J. W.; McCord, T.; McKinnon, W. B.; Pappalardo, R. T.

    2004-01-01

    Europa is a rocky object of radius 1565 km (slightly smaller than Earth s moon) and has an outer shell of water composition estimated to be of order 100 km thick, the surface of which is frozen. The total volume of water is about 3 x 10(exp 9) cubic kilometers, or twice the amount of water on Earth. Moreover, like its neighbor Io, Europa experiences internal heating generated from tidal flexing during its eccentric orbit around Jupiter. This raises the possibility that some of the water beneath the icy crust is liquid. The proportion of rock to ice, the generation of internal heat, and the possibility of liquid water make Europa unique in the Solar System. In this chapter, we outline the sources of data available for Europa (with a focus on the Galileo mission), review previous and on-going research on its surface geology, discuss the astrobiological potential of Europa, and consider plans for future exploration.

  9. Energy technology X - A decade of progress; Proceedings of the Tenth Conference, Washington, DC, February 28-March 2, 1983

    NASA Astrophysics Data System (ADS)

    Hill, R. F.

    The characterization, development, and availability of various energy sources for large scale energy production are discussed. Attention is given to government, industry, and international policies on energy resource development and implementation. Techniques for energy analysis, planning, and regulation are examined, with consideration given to conservation practices, military energy programs, and financing schemes. Efficient energy use is examined, including energy and load management, building retrofits, and cogeneration installations, as well as waste heat recovery. The state of the art of nuclear, fossil, and geothermal power extraction is investigated, with note taken of synthetic fuels, fluidized bed combustion, and pollution control in coal-powered plants. Finally, progress in renewable energy technologies, including solar heating and cooling, biomass, and large and small wind energy conversion devices is described. No individual items are abstracted in this volume

  10. Changes in concentration, composition and source contribution of atmospheric organic aerosols by shifting coal to natural gas in Urumqi

    NASA Astrophysics Data System (ADS)

    Ren, Yanqin; Wang, Gehui; Wu, Can; Wang, Jiayuan; Li, Jianjun; Zhang, Lu; Han, Yanni; Liu, Lang; Cao, Cong; Cao, Junji; He, Qing; Liu, Xinchun

    2017-01-01

    Size-segregated aerosols were collected in Urumqi, a megacity in northwest China, during two heating seasons, i.e., before (heating season І: January-March 2012) and after (heating season II: January-March 2014) the project "shifting coal to natural gas", and determined for n-alkanes, PAHs and oxygenated PAHs to investigate the impact of replacement of coal by natural gas on organic aerosols in the urban atmosphere. Our results showed that compared to those in heating season I concentrations of n-alkanes, PAHs and OPAHs decreased by 74%, 74% and 82% in heating season II, respectively. Source apportionment analysis suggested that coal combustion, traffic emission and biomass burning are the major sources of the determined organics during the heating seasons in Urumqi. Traffic emission is the main source for n-alkanes in the city. Coal combustion is the dominant source of PAHs and OPAHs in heating season І, but traffic emission becomes their major source in heating season ІI. Relative contributions of coal combustion to n-alkanes, PAHs and OPAHs in Urumqi decreased from 21 to 75% in heating season I to 4.0-21% in heating season II due to the replacement of coal with natural gas for house heating. Health risk assessment further indicated that compared with that in heating season I the number of lung cancer related to PAHs exposure in Urumqi decreased by 73% during heating season II due to the project implementation. Our results suggest that replacing coal by clean energy sources for house heating will significantly mitigate air pollution and improve human health in China.

  11. Thermodynamic properties of α-uranium

    NASA Astrophysics Data System (ADS)

    Ren, Zhiyong; Wu, Jun; Ma, Rong; Hu, Guichao; Luo, Chao

    2016-11-01

    The lattice constants and equilibrium atomic volume of α-uranium were calculated by Density Functional Theory (DFT). The first principles calculation results of the lattice for α-uranium are in agreement with the experimental results well. The thermodynamic properties of α-uranium from 0 to 900 K and 0-100 GPa were calculated with the quasi-harmonic Debye model. Volume, bulk modulus, entropy, Debye temperature, thermal expansion coefficient and the heat capacity of α-uranium were calculated. The calculated results show that the bulk modulus and Debye temperature increase with the increasing pressure at a given temperature while decreasing with the increasing temperature at a given pressure. Volume, entropy, thermal expansion coefficient and the heat capacity decrease with the increasing pressure while increasing with the increasing temperature. The theoretical results of entropy, Debye temperature, thermal expansion coefficient and the heat capacity show good agreement with the general trends of the experimental values. The constant-volume heat capacity shows typical Debye T3 power-law behavior at low temperature limit and approaches to the classical asymptotic Dulong-Petit limit at high temperature limit.

  12. A new source process for evolving repetitious earthquakes at Ngauruhoe volcano, New Zealand

    NASA Astrophysics Data System (ADS)

    Jolly, A. D.; Neuberg, J.; Jousset, P.; Sherburn, S.

    2012-02-01

    Since early 2005, Ngauruhoe volcano has produced repeating low-frequency earthquakes with evolving waveforms and spectral features which become progressively enriched in higher frequency energy during the period 2005 to 2009, with the trend reversing after that time. The earthquakes also show a seasonal cycle since January 2006, with peak numbers of events occurring in the spring and summer period and lower numbers of events at other times. We explain these patterns by the excitation of a shallow two-phase water/gas or water/steam cavity having temporal variations in volume fraction of bubbles. Such variations in two-phase systems are known to produce a large range of acoustic velocities (2-300 m/s) and corresponding changes in impedance contrast. We suggest that an increasing bubble volume fraction is caused by progressive heating of melt water in the resonant cavity system which, in turn, promotes the scattering excitation of higher frequencies, explaining both spectral shift and seasonal dependence. We have conducted a constrained waveform inversion and grid search for moment, position and source geometry for the onset of two example earthquakes occurring 17 and 19 January 2008, a time when events showed a frequency enrichment episode occurring over a period of a few days. The inversion and associated error analysis, in conjunction with an earthquake phase analysis show that the two earthquakes represent an excitation of a single source position and geometry. The observed spectral changes from a stationary earthquake source and geometry suggest that an evolution in both near source resonance and scattering is occurring over periods from days to months.

  13. Ray-tracing 3D dust radiative transfer with DART-Ray: code upgrade and public release

    NASA Astrophysics Data System (ADS)

    Natale, Giovanni; Popescu, Cristina C.; Tuffs, Richard J.; Clarke, Adam J.; Debattista, Victor P.; Fischera, Jörg; Pasetto, Stefano; Rushton, Mark; Thirlwall, Jordan J.

    2017-11-01

    We present an extensively updated version of the purely ray-tracing 3D dust radiation transfer code DART-Ray. The new version includes five major upgrades: 1) a series of optimizations for the ray-angular density and the scattered radiation source function; 2) the implementation of several data and task parallelizations using hybrid MPI+OpenMP schemes; 3) the inclusion of dust self-heating; 4) the ability to produce surface brightness maps for observers within the models in HEALPix format; 5) the possibility to set the expected numerical accuracy already at the start of the calculation. We tested the updated code with benchmark models where the dust self-heating is not negligible. Furthermore, we performed a study of the extent of the source influence volumes, using galaxy models, which are critical in determining the efficiency of the DART-Ray algorithm. The new code is publicly available, documented for both users and developers, and accompanied by several programmes to create input grids for different model geometries and to import the results of N-body and SPH simulations. These programmes can be easily adapted to different input geometries, and for different dust models or stellar emission libraries.

  14. Generalized Fluid System Simulation Program, Version 5.0-Educational. Supplemental Information for NASA/TM-2011-216470. Supplement

    NASA Technical Reports Server (NTRS)

    Majumdar, A. K.

    2011-01-01

    The Generalized Fluid System Simulation Program (GFSSP) is a finite-volume based general-purpose computer program for analyzing steady state and time-dependent flow rates, pressures, temperatures, and concentrations in a complex flow network. The program is capable of modeling real fluids with phase changes, compressibility, mixture thermodynamics, conjugate heat transfer between solid and fluid, fluid transients, pumps, compressors and external body forces such as gravity and centrifugal. The thermofluid system to be analyzed is discretized into nodes, branches, and conductors. The scalar properties such as pressure, temperature, and concentrations are calculated at nodes. Mass flow rates and heat transfer rates are computed in branches and conductors. The graphical user interface allows users to build their models using the point, drag and click method; the users can also run their models and post-process the results in the same environment. The integrated fluid library supplies thermodynamic and thermo-physical properties of 36 fluids and 21 different resistance/source options are provided for modeling momentum sources or sinks in the branches. This Technical Memorandum illustrates the application and verification of the code through 12 demonstrated example problems. This supplement gives the input and output data files for the examples.

  15. Proceedings of the International Symposium on Detonation (9th) Held in Portland, Oregon on 28 August - 1 September 1989. Volume 1

    DTIC Science & Technology

    1989-09-01

    damp TATB, and water is sprayed onto the mixture while it is heated to drive off the EXPLOSIVE MANUFACTURE solvent. Charge fabrication is then carried...Foil Gauge S Y Song and J . W . L ee ..... .... ..... ............ ..................... ........ 47 1 ix VOLUME I CONTENTS (Cont.) Page Heat of...deformed. During shear, materials may be ignition thresholds, and to characterize the heated by viscoplastic work. Shear plays a role relative shear

  16. Slip-Flow and Heat Transfer of a Non-Newtonian Nanofluid in a Microtube

    PubMed Central

    Niu, Jun; Fu, Ceji; Tan, Wenchang

    2012-01-01

    The slip-flow and heat transfer of a non-Newtonian nanofluid in a microtube is theoretically studied. The power-law rheology is adopted to describe the non-Newtonian characteristics of the flow, in which the fluid consistency coefficient and the flow behavior index depend on the nanoparticle volume fraction. The velocity profile, volumetric flow rate and local Nusselt number are calculated for different values of nanoparticle volume fraction and slip length. The results show that the influence of nanoparticle volume fraction on the flow of the nanofluid depends on the pressure gradient, which is quite different from that of the Newtonian nanofluid. Increase of the nanoparticle volume fraction has the effect to impede the flow at a small pressure gradient, but it changes to facilitate the flow when the pressure gradient is large enough. This remarkable phenomenon is observed when the tube radius shrinks to micrometer scale. On the other hand, we find that increase of the slip length always results in larger flow rate of the nanofluid. Furthermore, the heat transfer rate of the nanofluid in the microtube can be enhanced due to the non-Newtonian rheology and slip boundary effects. The thermally fully developed heat transfer rate under constant wall temperature and constant heat flux boundary conditions is also compared. PMID:22615961

  17. 10 CFR 431.92 - Definitions concerning commercial air conditioners and heat pumps.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... wall, and that is industrial equipment. It includes a prime source of refrigeration, separable outdoor... refrigeration as its prime heat source, that has a supplementary heat source available, with the choice of hot... water, or gas, but may not include reverse cycle refrigeration as a heating means. Single package...

  18. 10 CFR 431.92 - Definitions concerning commercial air conditioners and heat pumps.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... wall, and that is industrial equipment. It includes a prime source of refrigeration, separable outdoor... refrigeration as its prime heat source, that has a supplementary heat source available, with the choice of hot... water, or gas, but may not include reverse cycle refrigeration as a heating means. Single package...

  19. 10 CFR 431.92 - Definitions concerning commercial air conditioners and heat pumps.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... mounting through the wall, and that is industrial equipment. It includes a prime source of refrigeration... utilizes reverse cycle refrigeration as its prime heat source, that has a supplementary heat source..., hot water, or gas, but may not include reverse cycle refrigeration as a heating means. Single package...

  20. Dilatometric measurement of the partial molar volume of water sorbed to durum wheat flour.

    PubMed

    Hasegawa, Ayako; Ogawa, Takenobu; Adachi, Shuji

    2013-01-01

    Moisture sorption isotherms were measured at 25 °C for untreated, dry-heated and pre-gelatinized durum wheat flour samples. The isotherms could be expressed by the Guggenheim-Anderson-de Boer equation. The amount of water sorbed to the untreated flour was highest for low water activity, with water sorbed to the pre-gelatinized and dry-heated flour samples following. The dry-heated and pregelatinized flour samples exhibited the same dependence of the moisture content on the partial molar volume of water at 25 °C as the untreated flour. The partial molar volume of water was ca. 9 cm(3)/mol at a moisture content of 0.03 kg-H2O/kg-d.m. The volume increased with increasing moisture content, and reached a constant value of ca. 17.5 cm(3)/mol at a moisture content of 0.2 kg-H2O/kg-d.m. or higher.

  1. A controlled rate freeze/thaw system for cryopreservation of biological materials

    NASA Technical Reports Server (NTRS)

    Anselmo, V. J.; Harrison, R. G.

    1979-01-01

    A system which allows programmable temperature-time control for a 5 cc sample volume of an arbitrary biological material was constructed. Steady state and dynamic temperature control was obtained by supplying heat to the sample volume through resistive elements constructed as an integral part of the sample container. For cooling purposes, this container was totally immersed into a cold heat sink. Sample volume thermodynamic property data were obtained by measurements of heater power and heat flux through the container walls. Using a mixture of dry ice and alcohol at -79 C, sample volume was controlled from +40 C to -60 C at rates from steady state to + or - 65 C/min. Steady state temperature precision was better than 0.2 C while the dynamic capability depends on the temperature rate of change as well as the thermal mass of the sample and the container.

  2. Atmospheric Teleconnection over Eurasia Induced by Aerosol Radiative Forcing During Boreal Spring

    NASA Technical Reports Server (NTRS)

    Kim, Maeng-Ki; Lau, K. M.; Chin, Mian; Kim, Kyu-Myong; Sud, Y. C.; Walker, Greg K.

    2005-01-01

    The direct effects of aerosols on global and regional climate during boreal spring are investigated based on simulations using the NASA Global Modeling and Assimilation Office (GMAO) finite-volume general circulation model (fvGCM) with Microphyics of clouds in Relaxed Arakawa Schubert Scheme (McRAS). The aerosol loading are prescribed from three-dimensional monthly distribution of tropospheric aerosols viz., sulfate, black carbon, organic carbon, soil dust, and sea salt from output of the Goddard Ozone Chemistry Aerosol Radiation and Transport model (GOCART). The aerosol extinction coefficient, single scattering albedo, and asymmetric factor are computed as wavelength-dependent radiative forcing in the radiative transfer scheme of the fvGCM, and as a function of the aerosol loading and ambient relative humidity. We find that anomalous atmospheric heat sources induced by absorbing aerosols (dust and black carbon) excites a planetary scale teleconnection pattern in sea level pressure, temperature and geopotential height spanning North Africa through Eurasia to the North Pacific. Surface cooling due to direct effects of aerosols is found in the vicinity and downstream of the aerosol source regions, i.e., South Asia, East Asia, and northern and western Africa. Additionally, atmospheric heating is found in regions with large loading of dust (over Northern Africa, and Middle East), and black carbon (over South-East Asia). Paradoxically, the most pronounced feature in aerosol-induced surface temperature is an east-west dipole anomaly with strong cooling over the Caspian Sea, and warming over central and northeastern Asia, where aerosol concentration are low. Analyses of circulation anomalies show that the dipole anomaly is a part of an atmospheric teleconnection driven by atmospheric heating anomalies induced by absorbing aerosols in the source regions, but the influence was conveyed globally through barotropic energy dispersion and sustained by feedback processes associated with the regional circulations.

  3. Silicon Heat Pipe Array

    NASA Technical Reports Server (NTRS)

    Yee, Karl Y.; Ganapathi, Gani B.; Sunada, Eric T.; Bae, Youngsam; Miller, Jennifer R.; Beinsford, Daniel F.

    2013-01-01

    Improved methods of heat dissipation are required for modern, high-power density electronic systems. As increased functionality is progressively compacted into decreasing volumes, this need will be exacerbated. High-performance chip power is predicted to increase monotonically and rapidly with time. Systems utilizing these chips are currently reliant upon decades of old cooling technology. Heat pipes offer a solution to this problem. Heat pipes are passive, self-contained, two-phase heat dissipation devices. Heat conducted into the device through a wick structure converts the working fluid into a vapor, which then releases the heat via condensation after being transported away from the heat source. Heat pipes have high thermal conductivities, are inexpensive, and have been utilized in previous space missions. However, the cylindrical geometry of commercial heat pipes is a poor fit to the planar geometries of microelectronic assemblies, the copper that commercial heat pipes are typically constructed of is a poor CTE (coefficient of thermal expansion) match to the semiconductor die utilized in these assemblies, and the functionality and reliability of heat pipes in general is strongly dependent on the orientation of the assembly with respect to the gravity vector. What is needed is a planar, semiconductor-based heat pipe array that can be used for cooling of generic MCM (multichip module) assemblies that can also function in all orientations. Such a structure would not only have applications in the cooling of space electronics, but would have commercial applications as well (e.g. cooling of microprocessors and high-power laser diodes). This technology is an improvement over existing heat pipe designs due to the finer porosity of the wick, which enhances capillary pumping pressure, resulting in greater effective thermal conductivity and performance in any orientation with respect to the gravity vector. In addition, it is constructed of silicon, and thus is better suited for the cooling of semiconductor devices.

  4. Numerical modeling of heat transfer and pasteurizing value during thermal processing of intact egg.

    PubMed

    Abbasnezhad, Behzad; Hamdami, Nasser; Monteau, Jean-Yves; Vatankhah, Hamed

    2016-01-01

    Thermal Pasteurization of Eggs, as a widely used nutritive food, has been simulated. A three-dimensional numerical model, computational fluid dynamics codes of heat transfer equations using heat natural convection, and conduction mechanisms, based on finite element method, was developed to study the effect of air cell size and eggshell thickness. The model, confirmed by comparing experimental and numerical results, was able to predict the temperature profiles, the slowest heating zone, and the required heating time during pasteurization of intact eggs. The results showed that the air cell acted as a heat insulator. Increasing the air cell volume resulted in decreasing of the heat transfer rate, and the increasing the required time of pasteurization (up to 14%). The findings show that the effect on thermal pasteurization of the eggshell thickness was not considerable in comparison to the air cell volume.

  5. Particle shape effect on heat transfer performance in an oscillating heat pipe.

    PubMed

    Ji, Yulong; Wilson, Corey; Chen, Hsiu-Hung; Ma, Hongbin

    2011-04-05

    The effect of alumina nanoparticles on the heat transfer performance of an oscillating heat pipe (OHP) was investigated experimentally. A binary mixture of ethylene glycol (EG) and deionized water (50/50 by volume) was used as the base fluid for the OHP. Four types of nanoparticles with shapes of platelet, blade, cylinder, and brick were studied, respectively. Experimental results show that the alumina nanoparticles added in the OHP significantly affect the heat transfer performance and it depends on the particle shape and volume fraction. When the OHP was charged with EG and cylinder-like alumina nanoparticles, the OHP can achieve the best heat transfer performance among four types of particles investigated herein. In addition, even though previous research found that these alumina nanofluids were not beneficial in laminar or turbulent flow mode, they can enhance the heat transfer performance of an OHP.

  6. Particle shape effect on heat transfer performance in an oscillating heat pipe

    PubMed Central

    2011-01-01

    The effect of alumina nanoparticles on the heat transfer performance of an oscillating heat pipe (OHP) was investigated experimentally. A binary mixture of ethylene glycol (EG) and deionized water (50/50 by volume) was used as the base fluid for the OHP. Four types of nanoparticles with shapes of platelet, blade, cylinder, and brick were studied, respectively. Experimental results show that the alumina nanoparticles added in the OHP significantly affect the heat transfer performance and it depends on the particle shape and volume fraction. When the OHP was charged with EG and cylinder-like alumina nanoparticles, the OHP can achieve the best heat transfer performance among four types of particles investigated herein. In addition, even though previous research found that these alumina nanofluids were not beneficial in laminar or turbulent flow mode, they can enhance the heat transfer performance of an OHP. PMID:21711830

  7. Temperature dosimetry using MR relaxation characteristics of poly(vinyl alcohol) cryogel (PVA-C).

    PubMed

    Lukas, L A; Surry, K J; Peters, T M

    2001-11-01

    Hyperthermic therapy is being used for a variety of medical treatments, such as tumor ablation and the enhancement of radiation therapy. Research in this area requires a tool to record the temperature distribution created by a heat source, similar to the dosimetry gels used in radiation therapy to record dose distribution. Poly(vinyl alcohol) cryogel (PVA-C) is presented as a material capable of recording temperature distributions between 45 and 70 degrees C, with less than a 1 degrees C error. An approximately linear, positive relationship between MR relaxation times and applied temperature is demonstrated, with a maximum of 16.3 ms/ degrees C change in T(1) and 10.2 ms/ degrees C in T(2) for a typical PVA-C gel. Applied heat reduces the amount of cross-linking in PVA-C, which is responsible for a predictable change in T(1) and T(2) times. Temperature distributions in PVA-C volumes may be determined by matching MR relaxation times across the volumes to calibration values produced in samples subjected to known temperatures. Factors such as thermotolerance, perfusion effects, and thermal conductivity of PVA-C are addressed for potentially extending this method to modeling thermal doses in tissue. Copyright 2001 Wiley-Liss, Inc.

  8. Heat source reconstruction from noisy temperature fields using a gradient anisotropic diffusion filter

    NASA Astrophysics Data System (ADS)

    Beitone, C.; Balandraud, X.; Delpueyo, D.; Grédiac, M.

    2017-01-01

    This paper presents a post-processing technique for noisy temperature maps based on a gradient anisotropic diffusion (GAD) filter in the context of heat source reconstruction. The aim is to reconstruct heat source maps from temperature maps measured using infrared (IR) thermography. Synthetic temperature fields corrupted by added noise are first considered. The GAD filter, which relies on a diffusion process, is optimized to retrieve as well as possible a heat source concentration in a two-dimensional plate. The influence of the dimensions and the intensity of the heat source concentration are discussed. The results obtained are also compared with two other types of filters: averaging filter and Gaussian derivative filter. The second part of this study presents an application for experimental temperature maps measured with an IR camera. The results demonstrate the relevancy of the GAD filter in extracting heat sources from noisy temperature fields.

  9. Thermoelectric Generators for Automotive Waste Heat Recovery Systems Part I: Numerical Modeling and Baseline Model Analysis

    NASA Astrophysics Data System (ADS)

    Kumar, Sumeet; Heister, Stephen D.; Xu, Xianfan; Salvador, James R.; Meisner, Gregory P.

    2013-04-01

    A numerical model has been developed to simulate coupled thermal and electrical energy transfer processes in a thermoelectric generator (TEG) designed for automotive waste heat recovery systems. This model is capable of computing the overall heat transferred, the electrical power output, and the associated pressure drop for given inlet conditions of the exhaust gas and the available TEG volume. Multiple-filled skutterudites and conventional bismuth telluride are considered for thermoelectric modules (TEMs) for conversion of waste heat from exhaust into usable electrical power. Heat transfer between the hot exhaust gas and the hot side of the TEMs is enhanced with the use of a plate-fin heat exchanger integrated within the TEG and using liquid coolant on the cold side. The TEG is discretized along the exhaust flow direction using a finite-volume method. Each control volume is modeled as a thermal resistance network which consists of integrated submodels including a heat exchanger and a thermoelectric device. The pressure drop along the TEG is calculated using standard pressure loss correlations and viscous drag models. The model is validated to preserve global energy balances and is applied to analyze a prototype TEG with data provided by General Motors. Detailed results are provided for local and global heat transfer and electric power generation. In the companion paper, the model is then applied to consider various TEG topologies using skutterudite and bismuth telluride TEMs.

  10. Liquid air cycle engines

    NASA Technical Reports Server (NTRS)

    Rosevear, Jerry

    1992-01-01

    Given here is a definition of Liquid Air Cycle Engines (LACE) and existing relevant technologies. Heat exchanger design and fabrication techniques, the handling of liquid hydrogen to achieve the greatest heat sink capabilities, and air decontamination to prevent heat exchanger fouling are discussed. It was concluded that technology needs to be extended in the areas of design and fabrication of heat exchangers to improve reliability along with weight and volume reductions. Catalysts need to be improved so that conversion can be achieved with lower quantities and lower volumes. Packaging studies need to be investigated both analytically and experimentally. Recycling with slush hydrogen needs further evaluation with experimental testing.

  11. A new turbine model for enhancing convective heat transfer in the presence of low volume concentration of Ag-Oil Nanofluids

    NASA Astrophysics Data System (ADS)

    Jafarimoghaddam, Amin; Aberoumand, Sadegh; Jafarimoghaddam, Reza

    2017-12-01

    This study aims to experimentally investigate and introduce a new model for enhancing convective heat transfer in the presence of Ag/ oil nanofluid. An annular tube was designed with a turbine element attached to the inner tube. The inner tube was a bearing shaft which could rotate with the rotation of turbine element. As the previous works by authors, the setup was conducted with a fully developed laminar flow regime with the Reynolds numbers less than 160. The outer surface of the annular tube was heated by an element with constant heat flux of 204 W. Ag/ oil nanofluid was used in different volume concentrations of 0.011%, 0.044% and 0.171%. The new model could enhance the convective heat transfer coefficient up to 54% (compared to the simple annular tube in the case of base fluid) for the best studied case (nanofluid with the volume concentration of 0.171%) while the friction factor remained low. The new model can be applied for related applications regarding Ag/ oil nanofluid as a new step in enhancing the convective heat transfer coefficient.

  12. A new turbine model for enhancing convective heat transfer in the presence of low volume concentration of Ag-Oil Nanofluids

    NASA Astrophysics Data System (ADS)

    Jafarimoghaddam, Amin; Aberoumand, Sadegh; Jafarimoghaddam, Reza

    2018-05-01

    This study aims to experimentally investigate and introduce a new model for enhancing convective heat transfer in the presence of Ag/ oil nanofluid. An annular tube was designed with a turbine element attached to the inner tube. The inner tube was a bearing shaft which could rotate with the rotation of turbine element. As the previous works by authors, the setup was conducted with a fully developed laminar flow regime with the Reynolds numbers less than 160. The outer surface of the annular tube was heated by an element with constant heat flux of 204 W. Ag/ oil nanofluid was used in different volume concentrations of 0.011%, 0.044% and 0.171%. The new model could enhance the convective heat transfer coefficient up to 54% (compared to the simple annular tube in the case of base fluid) for the best studied case (nanofluid with the volume concentration of 0.171%) while the friction factor remained low. The new model can be applied for related applications regarding Ag/ oil nanofluid as a new step in enhancing the convective heat transfer coefficient.

  13. Finite Volume Numerical Methods for Aeroheating Rate Calculations from Infrared Thermographic Data

    NASA Technical Reports Server (NTRS)

    Daryabeigi, Kamran; Berry, Scott A.; Horvath, Thomas J.; Nowak, Robert J.

    2006-01-01

    The use of multi-dimensional finite volume heat conduction techniques for calculating aeroheating rates from measured global surface temperatures on hypersonic wind tunnel models was investigated. Both direct and inverse finite volume techniques were investigated and compared with the standard one-dimensional semi-infinite technique. Global transient surface temperatures were measured using an infrared thermographic technique on a 0.333-scale model of the Hyper-X forebody in the NASA Langley Research Center 20-Inch Mach 6 Air tunnel. In these tests the effectiveness of vortices generated via gas injection for initiating hypersonic transition on the Hyper-X forebody was investigated. An array of streamwise-orientated heating striations was generated and visualized downstream of the gas injection sites. In regions without significant spatial temperature gradients, one-dimensional techniques provided accurate aeroheating rates. In regions with sharp temperature gradients caused by striation patterns multi-dimensional heat transfer techniques were necessary to obtain more accurate heating rates. The use of the one-dimensional technique resulted in differences of 20% in the calculated heating rates compared to 2-D analysis because it did not account for lateral heat conduction in the model.

  14. OCT-based angiography of human dermal microvascular reactions to local stimuli: Implications for increasing capillary blood collection volumes.

    PubMed

    Men, Shaojie; Wong, Jennifer Manyu; Welch, Emily J; Xu, Jingjiang; Song, Shaozhen; Deegan, Anthony J; Ravichander, Aarthi; Casavant, Benjamin; Berthier, Erwin; Wang, Ruikang K

    2018-05-25

    To measure and compare microvascular responses within the skin of the upper arm to local stimuli, such as heating or rubbing, through the use of optical coherence tomography angiography (OCTA), and to investigate its impact on blood volume collection. With the use of heat packs or rubbing, local stimulation was applied to the skin of either the left or right upper arm. Data from the stimulated sites were obtained using OCTA comparing pre- and post-stimulation microvascular parameters, such as vessel density, mean vessel diameter, and mean avascular pore size. Additionally, blood was collected using a newly designed collection device and volume was recorded to evaluate the effect of the skin stimulation. Nineteen subjects were recruited for local stimulation study (including rubbing and heating) and 21 subjects for blood drawn study. Of these subjects, 14 agreed to participate in both studies. OCTA was successful in monitoring and measuring minute changes in the microvasculature of the stimulated skin. Compared to baseline, significant changes after local heating and rubbing were respectively found in vessel density (16% [P = 0.0004] and 33% [P < 0.0001] increase), mean vessel diameter (14% and 11% increase) and mean avascular pore size (5% [P = 0.0068] and 8% [P = 0.0005] decrease) after stimulations. A gradual recovery was recorded for each parameter, with no difference being measured after 30 minutes. Blood collection volumes significantly increased after stimulations of heating (48% increase; P = 0.049) and rubbing (78% increase; P = 0.048). Significant correlations were found between blood volume and microvascular parameters except mean avascular pore size under the heating condition. OCTA can provide important information regarding microvascular adaptations to local stimuli. With that, both heating and rubbing of the skin have positive effects on blood collection capacity, with rubbing having the most significant effect. Lasers Surg. Med. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  15. Constraints from Earth's heat budget on mantle dynamics

    NASA Astrophysics Data System (ADS)

    Kellogg, L. H.; Ferrachat, S.

    2006-12-01

    Recent years have seen an increase in the number of proposed models to explain Earth's mantle dynamics: while two end-members, pure layered convection with the upper and lower mantle convecting separately from each other, and pure, whole mantle convection, appear not to satisfy all the observations, several addition models have been proposed. These models include and attempt to characterize least one reservoir that is enriched in radiogenic elements relative to the mid-ocean ridge basalt (MORB) source, as is required to account for most current estimates of the Earth's heat budget. This reservoir would also be responsible for the geochemical signature in some ocean island basalts (OIBs) like Hawaii, but must be rarely sampled at the surface. Our current knowledge of the mass- and heat-budget for the bulk silicate Earth from geochemical, cosmochemical and geodynamical observations and constraints enables us to quantify the radiogenic heat enrichment required to balance the heat budget. Without assuming any particular model for the structure of the reservoir, we first determine the inherent trade-off between heat production rate and mass of the reservoir. Using these constraints, we then investigate the dynamical inferences of the heat budget, assuming that the additional heat is produced within a deep layer above the core-mantle boundary. We carry out dynamical models of layered convection using four different fixed reservoir volumes, corresponding to deep layers of thicknesses 150, 500 1000 and 1600 km, respectively, and including both temperature-dependent viscosity and an instrinsic viscosity jump between upper and lower mantle. We then assess the viability of these cases against 5 criteria: stability of the deep layer through time, topography of the interface, effective density profile, intrinsic chemical density and the heat flux at the CMB.

  16. Direct Heating of a Laser-Imploded Core by Ultraintense Laser-Driven Ions

    NASA Astrophysics Data System (ADS)

    Kitagawa, Y.; Mori, Y.; Komeda, O.; Ishii, K.; Hanayama, R.; Fujita, K.; Okihara, S.; Sekine, T.; Satoh, N.; Kurita, T.; Takagi, M.; Watari, T.; Kawashima, T.; Kan, H.; Nishimura, Y.; Sunahara, A.; Sentoku, Y.; Nakamura, N.; Kondo, T.; Fujine, M.; Azuma, H.; Motohiro, T.; Hioki, T.; Kakeno, M.; Miura, E.; Arikawa, Y.; Nagai, T.; Abe, Y.; Ozaki, S.; Noda, A.

    2015-05-01

    A novel direct core heating fusion process is introduced, in which a preimploded core is predominantly heated by energetic ions driven by LFEX, an extremely energetic ultrashort pulse laser. Consequently, we have observed the D (d ,n )He 3 -reacted neutrons (DD beam-fusion neutrons) with the yield of 5 ×108 n /4 π sr . Examination of the beam-fusion neutrons verified that the ions directly collide with the core plasma. While the hot electrons heat the whole core volume, the energetic ions deposit their energies locally in the core, forming hot spots for fuel ignition. As evidenced in the spectrum, the process simultaneously excited thermal neutrons with the yield of 6 ×107 n /4 π sr , raising the local core temperature from 0.8 to 1.8 keV. A one-dimensional hydrocode STAR 1D explains the shell implosion dynamics including the beam fusion and thermal fusion initiated by fast deuterons and carbon ions. A two-dimensional collisional particle-in-cell code predicts the core heating due to resistive processes driven by hot electrons, and also the generation of fast ions, which could be an additional heating source when they reach the core. Since the core density is limited to 2 g /cm3 in the current experiment, neither hot electrons nor fast ions can efficiently deposit their energy and the neutron yield remains low. In future work, we will achieve the higher core density (>10 g /cm3 ); then hot electrons could contribute more to the core heating via drag heating. Together with hot electrons, the ion contribution to fast ignition is indispensable for realizing high-gain fusion. By virtue of its core heating and ignition, the proposed scheme can potentially achieve high gain fusion.

  17. Direct heating of a laser-imploded core by ultraintense laser-driven ions.

    PubMed

    Kitagawa, Y; Mori, Y; Komeda, O; Ishii, K; Hanayama, R; Fujita, K; Okihara, S; Sekine, T; Satoh, N; Kurita, T; Takagi, M; Watari, T; Kawashima, T; Kan, H; Nishimura, Y; Sunahara, A; Sentoku, Y; Nakamura, N; Kondo, T; Fujine, M; Azuma, H; Motohiro, T; Hioki, T; Kakeno, M; Miura, E; Arikawa, Y; Nagai, T; Abe, Y; Ozaki, S; Noda, A

    2015-05-15

    A novel direct core heating fusion process is introduced, in which a preimploded core is predominantly heated by energetic ions driven by LFEX, an extremely energetic ultrashort pulse laser. Consequently, we have observed the D(d,n)^{3}He-reacted neutrons (DD beam-fusion neutrons) with the yield of 5×10^{8} n/4π sr. Examination of the beam-fusion neutrons verified that the ions directly collide with the core plasma. While the hot electrons heat the whole core volume, the energetic ions deposit their energies locally in the core, forming hot spots for fuel ignition. As evidenced in the spectrum, the process simultaneously excited thermal neutrons with the yield of 6×10^{7} n/4π sr, raising the local core temperature from 0.8 to 1.8 keV. A one-dimensional hydrocode STAR 1D explains the shell implosion dynamics including the beam fusion and thermal fusion initiated by fast deuterons and carbon ions. A two-dimensional collisional particle-in-cell code predicts the core heating due to resistive processes driven by hot electrons, and also the generation of fast ions, which could be an additional heating source when they reach the core. Since the core density is limited to 2 g/cm^{3} in the current experiment, neither hot electrons nor fast ions can efficiently deposit their energy and the neutron yield remains low. In future work, we will achieve the higher core density (>10 g/cm^{3}); then hot electrons could contribute more to the core heating via drag heating. Together with hot electrons, the ion contribution to fast ignition is indispensable for realizing high-gain fusion. By virtue of its core heating and ignition, the proposed scheme can potentially achieve high gain fusion.

  18. National Program for Solar Heating and Cooling of Buildings. Project Data Summaries. Vol. II: Demonstration Support.

    ERIC Educational Resources Information Center

    Energy Research and Development Administration, Washington, DC. Div. of Solar Energy.

    Brief abstracts of projects funded by the Energy Research and Development Administration (ERDA) and conducted under the National Program for Solar Heating and Cooling of Buildings are presented in three volumes. This, the second volume, identifies the major efforts currently underway in support of the national program. The National Aeronautics and…

  19. Heat Acclimation and Water-Immersion Deconditioning: Responses to Exercise

    NASA Technical Reports Server (NTRS)

    Shvartz, E.; Bhattacharya, A.; Sperinde, S. J.; Brock, P. J.; Sciaraffa, D.; Haines, R. F.; Greenleaf, J. E.

    1977-01-01

    Simulated subgravity conditions, such as bed rest and water immersion, cause a decrease in a acceleration tolerance (3, 4), tilt tolerance (3, 9, 10), work capacity (5, 7), and plasma volume (1, 8-10). Moderate exercise training performed during bed rest (4) and prior to water immersion (5) provides some protection against the adverse effects of deconditioning, but the relationship between exercise and changes due to deconditioning remains unclear. Heat acclimation increases plasma and interstitial volumes, total body water, stroke volume (11), and tilt tolerance (6) and may, therefore, be a more efficient method of ameliorating deconditioning than physical training alone. The present study was undertaken to determine the effects of heat acclimation and moderate physical training, performed in cool conditions, on water-immersion deconditioning.

  20. Solid state lighting devices and methods with rotary cooling structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koplow, Jeffrey P.

    Solid state lighting devices and methods for heat dissipation with rotary cooling structures are described. An example solid state lighting device includes a solid state light source, a rotating heat transfer structure in thermal contact with the solid state light source, and a mounting assembly having a stationary portion. The mounting assembly may be rotatably coupled to the heat transfer structure such that at least a portion of the mounting assembly remains stationary while the heat transfer structure is rotating. Examples of methods for dissipating heat from electrical devices, such as solid state lighting sources are also described. Heat dissipationmore » methods may include providing electrical power to a solid state light source mounted to and in thermal contact with a heat transfer structure, and rotating the heat transfer structure through a surrounding medium.« less

  1. Method for welding an article and terminating the weldment within the perimeter of the article

    NASA Technical Reports Server (NTRS)

    Snyder, John H. (Inventor); Smashey, Russell W. (Inventor); Boerger, Eric J. (Inventor); Borne, Bruce L. (Inventor)

    2000-01-01

    An article is welded, as in weld repair of a defect, by positioning a weld lift-off block at a location on the surface of the article adjacent to the intended location of the end of the weldment on the surface of the article. The weld lift-off block has a wedge shape including a base contacting the surface of the article, and an upper face angled upwardly from the base from a base leading edge. A weld pool is formed on the surface of the article by directly heating the surface of the article using a heat source. The heat source is moved relative to the surface of the article and onto the upper surface of the weld lift-off block by crossing the leading edge of the wedge, without discontinuing the direct heating of the article by the heat source. The heating of the article with the heat source is discontinued only after the heat source is directly heating the upper face of the weld lift-off block, and not the article.

  2. Microchannel crossflow fluid heat exchanger and method for its fabrication

    DOEpatents

    Swift, G.W.; Migliori, A.; Wheatley, J.C.

    1982-08-31

    A microchannel crossflow fluid heat exchanger and a method for its fabrication are disclosed. The heat exchanger is formed from a stack of thin metal sheets which are bonded together. The stack consists of alternating slotted and unslotted sheets. Each of the slotted sheets includes multiple parallel slots which form fluid flow channels when sandwiched between the unslotted sheets. Successive slotted sheets in the stack are rotated ninety degrees with respect to one another so as to form two sets of orthogonally extending fluid flow channels which are arranged in a crossflow configuration. The heat exchanger has a high surface to volume ratio, a small dead volume, a high heat transfer coefficient, and is suitable for use with fluids under high pressures. The heat exchanger has particular application in a Stirling engine that utilizes a liquid as the working substance.

  3. Microchannel crossflow fluid heat exchanger and method for its fabrication

    DOEpatents

    Swift, Gregory W.; Migliori, Albert; Wheatley, John C.

    1985-01-01

    A microchannel crossflow fluid heat exchanger and a method for its fabrication are disclosed. The heat exchanger is formed from a stack of thin metal sheets which are bonded together. The stack consists of alternating slotted and unslotted sheets. Each of the slotted sheets includes multiple parallel slots which form fluid flow channels when sandwiched between the unslotted sheets. Successive slotted sheets in the stack are rotated ninety degrees with respect to one another so as to form two sets of orthogonally extending fluid flow channels which are arranged in a crossflow configuration. The heat exchanger has a high surface to volume ratio, a small dead volume, a high heat transfer coefficient, and is suitable for use with fluids under high pressures. The heat exchanger has particular application in a Stirling engine that utilizes a liquid as the working substance.

  4. Cardiovascular adaptations supporting human exercise-heat acclimation.

    PubMed

    Périard, Julien D; Travers, Gavin J S; Racinais, Sébastien; Sawka, Michael N

    2016-04-01

    This review examines the cardiovascular adaptations along with total body water and plasma volume adjustments that occur in parallel with improved heat loss responses during exercise-heat acclimation. The cardiovascular system is well recognized as an important contributor to exercise-heat acclimation that acts to minimize physiological strain, reduce the risk of serious heat illness and better sustain exercise capacity. The upright posture adopted by humans during most physical activities and the large skin surface area contribute to the circulatory and blood pressure regulation challenge of simultaneously supporting skeletal muscle blood flow and dissipating heat via increased skin blood flow and sweat secretion during exercise-heat stress. Although it was traditionally held that cardiac output increased during exercise-heat stress to primarily support elevated skin blood flow requirements, recent evidence suggests that temperature-sensitive mechanisms may also mediate an elevation in skeletal muscle blood flow. The cardiovascular adaptations supporting this challenge include an increase in total body water, plasma volume expansion, better sustainment and/or elevation of stroke volume, reduction in heart rate, improvement in ventricular filling and myocardial efficiency, and enhanced skin blood flow and sweating responses. The magnitude of these adaptations is variable and dependent on several factors such as exercise intensity, duration of exposure, frequency and total number of exposures, as well as the environmental conditions (i.e. dry or humid heat) in which acclimation occurs. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Contact Force Compensated Thermal Stimulators for Holistic Haptic Interfaces.

    PubMed

    Sim, Jai Kyoung; Cho, Young-Ho

    2016-05-01

    We present a contact force compensated thermal stimulator that can provide a consistent tempera- ture sensation on the human skin independent of the contact force between the thermal stimulator and the skin. Previous passive thermal stimulators were not capable of providing a consistent tem- perature on the human skin even when using identical heat source voltage due to an inconsistency of the heat conduction, which changes due to the force-dependent thermal contact resistance. We propose a force-based feedback method that monitors the contact force and controls the heat source voltage according to this contact force, thus providing consistent temperature on the skin. We composed a heat circuit model equivalent to the skin heat-transfer rate as it is changed by the contact forces; we obtained the optimal voltage condition for the constant skin heat-transfer rate independent of the contact force using a numerical estimation simulation tool. Then, in the experiment, we heated real human skin at the obtained heat source voltage condition, and investigated the skin heat transfer-rate by measuring the skin temperature at various times at different levels of contact force. In the numerical estimation results, the skin heat-transfer rate for the contact forces showed a linear profile in the contact force range of 1-3 N; from this profile we obtained the voltage equation for heat source control. In the experimental study, we adjusted the heat source voltage according to the contact force based on the obtained equation. As a result, without the heat source voltage control for the contact forces, the coefficients of variation (CV) of the skin heat-transfer rate in the contact force range of 1-3 N was found to be 11.9%. On the other hand, with the heat source voltage control for the contact forces, the CV of the skin heat-transfer rate in the contact force range of 1-3 N was found to be barely 2.0%, which indicate an 83.2% improvement in consistency compared to the skin heat-transfer rate without the heat source voltage control. The present technique provides a consistent temperature sensation on the human skin independent of the body movement environment; therefore, it has high potential for use in holistic haptic interfaces that have thermal displays.

  6. Characterizing open and non-uniform vertical heat sources: towards the identification of real vertical cracks in vibrothermography experiments

    NASA Astrophysics Data System (ADS)

    Castelo, A.; Mendioroz, A.; Celorrio, R.; Salazar, A.; López de Uralde, P.; Gorosmendi, I.; Gorostegui-Colinas, E.

    2017-05-01

    Lock-in vibrothermography is used to characterize vertical kissing and open cracks in metals. In this technique the crack heats up during ultrasound excitation due mainly to friction between the defect's faces. We have solved the inverse problem, consisting in determining the heat source distribution produced at cracks under amplitude modulated ultrasound excitation, which is an ill-posed inverse problem. As a consequence the minimization of the residual is unstable. We have stabilized the algorithm introducing a penalty term based on Total Variation functional. In the inversion, we combine amplitude and phase surface temperature data obtained at several modulation frequencies. Inversions of synthetic data with added noise indicate that compact heat sources are characterized accurately and that the particular upper contours can be retrieved for shallow heat sources. The overall shape of open and homogeneous semicircular strip-shaped heat sources representing open half-penny cracks can also be retrieved but the reconstruction of the deeper end of the heat source loses contrast. Angle-, radius- and depth-dependent inhomogeneous heat flux distributions within these semicircular strips can also be qualitatively characterized. Reconstructions of experimental data taken on samples containing calibrated heat sources confirm the predictions from reconstructions of synthetic data. We also present inversions of experimental data obtained from a real welded Inconel 718 specimen. The results are in good qualitative agreement with the results of liquids penetrants testing.

  7. Light-assisted drying (LAD) of small volume biologics: a comparison of two IR light sources

    NASA Astrophysics Data System (ADS)

    Young, Madison A.; Van Vorst, Matthew; Elliott, Gloria D.; Trammell, Susan R.

    2016-03-01

    Protein therapeutics have been developed to treat diseases ranging from arthritis and psoriasis to cancer. A challenge in the development of protein-based drugs is maintaining the protein in the folded state during processing and storage. We are developing a novel processing method, light-assisted drying (LAD), to dehydrate proteins suspended in a sugar (trehalose) solution for storage at supra-zero temperatures. Our technique selectively heats the water in small volume samples using near-IR light to speed dehydration which prevents sugar crystallization that can damage embedded proteins. In this study, we compare the end moisture content (EMC) as a function of processing time of samples dried with two different light sources, Nd:YAG (1064 nm) and Thulium fiber (1850 nm) lasers. EMC is the ratio of water to dry weight in a sample and the lower the EMC the higher the possible storage temperature. LAD with the 1064 and 1850 nm lasers yielded 78% and 65% lower EMC, respectively, than standard air-drying. After 40 minutes of LAD with 1064 and 1850 nm sources, EMCs of 0.27+/-.27 and 0.15+/-.05 gH2O/gDryWeight were reached, which are near the desired value of 0.10 gH2O/gDryWeight that enables storage in a glassy state without refrigeration. LAD is a promising new technique for the preparation of biologics for anhydrous preservation.

  8. Modeling of the heat transfer performance of plate-type dispersion nuclear fuel elements

    NASA Astrophysics Data System (ADS)

    Ding, Shurong; Huo, Yongzhong; Yan, XiaoQing

    2009-08-01

    Considering the mutual actions between fuel particles and the metal matrix, the three-dimensional finite element models are developed to simulate the heat transfer behaviors of dispersion nuclear fuel plates. The research results indicate that the temperatures of the fuel plate might rise more distinctly with considering the particle swelling and the degraded surface heat transfer coefficients with increasing burnup; the local heating phenomenon within the particles appears when their thermal conductivities are too low. With rise of the surface heat transfer coefficients, the temperatures within the fuel plate decrease; the temperatures of the fuel plate are sensitive to the variations of the heat transfer coefficients whose values are lower, but their effects are weakened and slight when the heat transfer coefficients increase and reach a certain extent. Increasing the heat generation rate leads to elevating the internal temperatures. The temperatures and the maximum temperature differences within the plate increase along with the particle volume fractions. The surface thermal flux goes up along with particle volume fractions and heat generation rates, but the effects of surface heat transfer coefficients are not evident.

  9. Advanced radioisotope heat source for Stirling Engines

    NASA Astrophysics Data System (ADS)

    Dobry, T. J.; Walberg, G.

    2001-02-01

    The heat exchanger on a Stirling Engine requires a thermal energy transfer from a heat source to the engine through a very limited area on the heater head circumference. Designing an effective means to assure maximum transfer efficiency is challenging. A single General Purpose Heat Source (GPHS), which has been qualified for space operations, would satisfy thermal requirements for a single Stirling Engine that would produce 55 electrical watts. However, it is not efficient to transfer its thermal energy to the engine heat exchanger from its rectangular geometry. This paper describes a conceptual design of a heat source to improve energy transfer for Stirling Engines that may be deployed to power instrumentation on space missions. .

  10. Energy-efficient miniature-scale heat pumping based on shape memory alloys

    NASA Astrophysics Data System (ADS)

    Ossmer, Hinnerk; Wendler, Frank; Gueltig, Marcel; Lambrecht, Franziska; Miyazaki, Shuichi; Kohl, Manfred

    2016-08-01

    Cooling and thermal management comprise a major part of global energy consumption. The by far most widespread cooling technology today is vapor compression, reaching rather high efficiencies, but promoting global warming due to the use of environmentally harmful refrigerants. For widespread emerging applications using microelectronics and micro-electro-mechanical systems, thermoelectrics is the most advanced technology, which however hardly reaches coefficients of performance (COP) above 2.0. Here, we introduce a new approach for energy-efficient heat pumping using the elastocaloric effect in shape memory alloys. This development is mainly targeted at applications on miniature scales, while larger scales are envisioned by massive parallelization. Base materials are cold-rolled textured Ti49.1Ni50.5Fe0.4 foils of 30 μm thickness showing an adiabatic temperature change of +20/-16 K upon superelastic loading/unloading. Different demonstrator layouts consisting of mechanically coupled bridge structures with large surface-to-volume ratios are developed allowing for control by a single actuator as well as work recovery. Heat transfer times are in the order of 1 s, being orders of magnitude faster than for bulk geometries. Thus, first demonstrators achieve values of specific heating and cooling power of 4.5 and 2.9 W g-1, respectively. A maximum temperature difference of 9.4 K between heat source and sink is reached within 2 min. Corresponding COP on the device level are 4.9 (heating) and 3.1 (cooling).

  11. Thermophysical properties of heat-treated U-7Mo/Al dispersion fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Tae Won; Kim, Yeon Soo; Park, Jong Man

    In this study, the effects of interaction layer (IL) on thermophysical properties of U-7Mo/Al dispersion fuel were examined. Microstructural analyses revealed that ILs were formed uniformly on U-Mo particles during heating of U-7Mo/Al samples. The IL volume fraction was measured by applying image analysis methods. The uranium loadings of the samples were calculated based on the measured meat densities at 298 K. The density of the IL was estimated by using the measured density and IL volume fraction. Thermal diffusivity and heat capacity of the samples after the heat treatment were measured as a function of temperature and volume fractionsmore » of U-Mo and IL. The thermal conductivity of IL-formed U-7Mo/Al was derived by using the measured thermal diffusivity, heat capacity, and density. The thermal conductivity obtained in the present study was lower than that predicted by the modified Hashin–Shtrikman model due to the theoretical model’s inability to consider the thermal resistance at interfaces between the meat constituents.« less

  12. Finite Volume Numerical Methods for Aeroheating Rate Calculations from Infrared Thermographic Data

    NASA Technical Reports Server (NTRS)

    Daryabeigi, Kamran; Berry, Scott A.; Horvath, Thomas J.; Nowak, Robert J.

    2003-01-01

    The use of multi-dimensional finite volume numerical techniques with finite thickness models for calculating aeroheating rates from measured global surface temperatures on hypersonic wind tunnel models was investigated. Both direct and inverse finite volume techniques were investigated and compared with the one-dimensional semi -infinite technique. Global transient surface temperatures were measured using an infrared thermographic technique on a 0.333-scale model of the Hyper-X forebody in the Langley Research Center 20-Inch Mach 6 Air tunnel. In these tests the effectiveness of vortices generated via gas injection for initiating hypersonic transition on the Hyper-X forebody were investigated. An array of streamwise orientated heating striations were generated and visualized downstream of the gas injection sites. In regions without significant spatial temperature gradients, one-dimensional techniques provided accurate aeroheating rates. In regions with sharp temperature gradients due to the striation patterns two-dimensional heat transfer techniques were necessary to obtain accurate heating rates. The use of the one-dimensional technique resulted in differences of 20% in the calculated heating rates because it did not account for lateral heat conduction in the model.

  13. Mineralogy of the Hydrous Lower Mantle

    NASA Astrophysics Data System (ADS)

    Shim, S. H.; Chen, H.; Leinenweber, K. D.; Kunz, M.; Prakapenka, V.; Bechtel, H.; Liu, Z.

    2017-12-01

    The hydrous ringwoodite inclusions found in diamonds suggest water storage in the mantle transition zone. However, water storage in the lower mantle remains unclear. Bridgmanite and magnesiowustite appear to have very little storage capacity for water. Here, we report experimental results indicating significant changes in the lower-mantle mineralogy under the presence of water. We have synthesized Mg2SiO4 ringwoodite with 2 wt% water in multi-anvil press at 20 GPa and 1573 K at ASU. The hydrous ringwoodite sample was then loaded to diamond anvil cells with Ar or Ne as a pressure medium. We heated the pure hydrous ringwoodite samples at lower-mantle pressure using a CO2 laser heating system at ASU. We measured X-ray diffraction patterns at the GSECARS sector of the Advanced Photon Source (APS) and 12.2.2 sector of the Advanced Light Source (ALS). For the separate Pt-mixed samples, we have conducted in situ heating at the beamlines using near IR laser heating systems. We measured the infrared spectra of the heated samples at high pressure and after pressure quench at 1.4.4 sector of ALS. In the in situ experiments with hydrous ringwoodite + Pt mixture as a starting material, we found formation of stishovite together with bridgmanite and periclase during heating with a near IR laser beams at 1300-2500 K and 35-66 GPa. However, some hydrous ringwoodite still remains even after a total of 45 min of heating. In contrast, the hydrous ringwoodite samples heated without Pt by CO2 laser beams are transformed completely to bridgmanite, periclase and stishovite at 31-55 GPa and 1600-1900 K. We have detected IR active OH mode of stishovite from the samples heated at lower-mantle pressures. The unit-cell volume of stishovite measured after pressure quench is greater than that of dry stishovite by 0.3-0.6%, supporting 0.5-1 wt% of H2O in stishovite in these samples. Stishovite is a thermodynamically forbidden phase in the dry lower mantle because of the existence of periclase and bridgmanite. However, our results indicate that stishovite can exist together with periclase and bridgmanite when water is present, because water is stored in stishovite. Therefore, water-rich parts of the lower mantle, such as regions with subducting slabs, would have distinct mineralogy from their dry counterparts, containing stishovite as a water storage mineral.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frayce, D.; Khayat, R.E.; Derdouri, A.

    The dual reciprocity boundary element method (DRBEM) is implemented to solve three-dimensional transient heat conduction problems in the presence of arbitrary sources, typically as these problems arise in materials processing. The DRBEM has a major advantage over conventional BEM, since it avoids the computation of volume integrals. These integrals stem from transient, nonlinear, and/or source terms. Thus there is no need to discretize the inner domain, since only a number of internal points are needed for the computation. The validity of the method is assessed upon comparison with results from benchmark problems where analytical solutions exist. There is generally goodmore » agreement. Comparison against finite element results is also favorable. Calculations are carried out in order to assess the influence of the number and location of internal nodes. The influence of the ratio of the numbers of internal to boundary nodes is also examined.« less

  15. Testing of aircraft passenger seat cushion material, full scale. Data, volume 2

    NASA Technical Reports Server (NTRS)

    Schutter, K. J.; Gaume, J. G.; Duskin, F. E.

    1980-01-01

    Burn characteristics of presently used and proposed seat cushion materials and types of constructions were determined. Eight different seat cushion configurations were subjected to full scale burn tests. Each cushion configuration was tested twice for a total of 16 tests. Two different fire sources were used: Jet A-fuel for eight tests, and a radiant energy source with propane flame for eight tests. Data were recorded for smoke density, cushion temperatures, radiant heat flux, animal response to combustion products, rate of weight loss of test specimens, cabin temperature, and type and content of gas within the cabin. When compared to existing seat cushions, the test specimens incorporating a fire barrier and those fabricated from advanced materials, using improved construction methods, exhibited significantly greater fire resistance. Flammability comparison tests were conducted upon one fire blocking configuration and one polyimide configuration.

  16. Calculated performance of a mercury-compressor-jet powered airplane using a nuclear reactor as an energy source

    NASA Technical Reports Server (NTRS)

    Doyle, R B

    1951-01-01

    An analysis was made at a flight Mach number of 1.5, an altitude of 45,000 feet, a turbine-inlet temperature of 1460 degrees R, of a mercury compressor-jet powered airplane using a nuclear reactor as an energy source. The calculations covered a range of turbine-exhaust and turbine-inlet pressures and condenser-inlet Mach numbers. For a turbine--inlet pressure of 40 pounds per square inch absolute, a turbine-exhaust pressure of 14 pounds per square inch absolute, and a condenser-inlet Mach number of 0.23 the calculated airplane gross weight required to carry a 20,000 pound payload was 322000 pounds and the reactor heat release per unit volume was 8.9 kilowatts per cubic inch. These do not represent optimum operating conditions.

  17. Investigation of the "elevated heat pump" hypothesis of the Asian monsoon using satellite observations

    NASA Astrophysics Data System (ADS)

    Wonsick, M. M.; Pinker, R. T.; Ma, Y.

    2014-08-01

    The "elevated heat pump" (EHP) hypothesis has been a topic of intensive research and controversy. It postulates that aerosol-induced anomalous mid- and upper-tropospheric warming in the Himalayan foothills and above the Tibetan Plateau leads to an early onset and intensification of Asian monsoon rainfall. This finding is primarily based on results from a NASA finite-volume general circulation model run with and without radiative forcing from different types of aerosols. In particular, black carbon emissions from sources in northern India and dust from Western China, Afghanistan, Pakistan, the Thar Desert, and the Arabian Peninsula drive the modeled anomalous heating. Since the initial discussion of the EHP hypothesis in 2006, the aerosol-monsoon relationship has been investigated using various modeling and observational techniques. The current study takes a novel observational approach to detect signatures of the "elevated heat pump" effect on convection, precipitation, and temperature for contrasting aerosol content years during the period of 2000-2012. The analysis benefits from unique high-resolution convection information inferred from Meteosat-5 observations as available through 2005. Additional data sources include temperature data from the NCEP/NCAR Reanalysis and the European Reanalysis (ERA-Interim) precipitation data from the Global Precipitation Climatology Project (GPCP), aerosol optical depth from the Multi-angle Imaging Spectroradiometer (MISR) and the Moderate Resolution Imaging Spectroradiometer (MODIS), and aerosol optical properties from the Modern-Era Retrospective Analysis for Research and Applications (MERRA) aerosol reanalysis. Anomalous upper-tropospheric warming and the early onset and intensification of the Indian monsoon were not consistently observed during the years with high loads of absorbing aerosols. Possibly, model assumptions and/or unaccounted semi-direct aerosol effects caused the disagreement between observed and hypothesized behavior.

  18. Plume Activity and Tidal Deformation on Enceladus Influenced by Faults and Variable Ice Shell Thickness

    PubMed Central

    Souček, Ondřej; Hron, Jaroslav; Čadek, Ondřej

    2017-01-01

    Abstract We investigated the effect of variations in ice shell thickness and of the tiger stripe fractures crossing Enceladus' south polar terrain on the moon's tidal deformation by performing finite element calculations in three-dimensional geometry. The combination of thinning in the polar region and the presence of faults has a synergistic effect that leads to an increase of both the displacement and stress in the south polar terrain by an order of magnitude compared to that of the traditional model with a uniform shell thickness and without faults. Assuming a simplified conductive heat transfer and neglecting the heat sources below the ice shell, we computed the global heat budget of the ice shell. For the inelastic properties of the shell described by a Maxwell viscoelastic model, we show that unrealistically low average viscosity of the order of 1013 Pa s is necessary for preserving the volume of the ocean, suggesting the important role of the heat sources in the deep interior. Similarly, low viscosity is required to predict the observed delay of the plume activity, which hints at other delaying mechanisms than just the viscoelasticity of the ice shell. The presence of faults results in large spatial and temporal heterogeneity of geysering activity compared to the traditional models without faults. Our model contributes to understanding the physical mechanisms that control the fault activity, and it provides potentially useful information for future missions that will sample the plume for evidence of life. Key Words: Enceladus—Tidal deformation—Faults—Variable ice shell thickness—Tidal heating—Plume activity and timing. Astrobiology 17, 941–954. PMID:28816521

  19. Thermoregulation and aggregation in neonatal bearded dragons (Pogona vitticeps).

    PubMed

    Khan, Jameel J; Richardson, Jean M L; Tattersall, Glenn J

    2010-05-11

    Ectothermic vertebrates, such as reptiles, thermoregulate behaviorally by choosing from available temperatures in their environment. As neonates, bearded dragons (Pogona vitticeps) are often observed to aggregate in vertical strata. A proximate mechanism for this behavior is the thermal advantage of heat storage (i.e., grouped lizards benefit through a decreased surface area to volume ratio), although competition for limited thermal resources, or aggregation for social reasons are alternative explanations. This study was designed to gain an understanding of how aggregation and thermoregulation interact. We observed that both isolated and grouped individuals achieved a similar level of thermoregulation (mean T(b) over trial) within a thermal gradient, but that individuals within a group had lower thermoregulatory precision. An experimental design in which light and ambient temperature (T(a)) (20 versus 30 degrees C) were altered established that a light bulb (source of heat) was a limited and valuable resource to both isolated and grouped neonatal lizards. Lizards aggregated more when the light was on at both temperatures, suggesting that individuals were equally attracted to or repelled from the heat source, depending on the ambient temperature. These data suggest aggregation occurs in neonatal bearded dragons through mutual attraction to a common resource. Further, increased variability in thermal preference occurs in groups, demonstrating the potential for agonistic behaviors to compromise optimal thermoregulation in competitive situations, potentially leading to segregation, rather than aggregation. Crown Copyright 2010. Published by Elsevier Inc. All rights reserved.

  20. A new regime of nanoscale thermal transport: Collective diffusion increases dissipation efficiency

    DOE PAGES

    Hoogeboom-Pot, Kathleen M.; Hernandez-Charpak, Jorge N.; Gu, Xiaokun; ...

    2015-03-23

    Understanding thermal transport from nanoscale heat sources is important for a fundamental description of energy flow in materials, as well as for many technological applications including thermal management in nanoelectronics and optoelectronics, thermoelectric devices, nanoenhanced photovoltaics, and nanoparticle-mediated thermal therapies. Thermal transport at the nanoscale is fundamentally different from that at the macroscale and is determined by the distribution of carrier mean free paths and energy dispersion in a material, the length scales of the heat sources, and the distance over which heat is transported. Past work has shown that Fourier’s law for heat conduction dramatically overpredicts the rate ofmore » heat dissipation from heat sources with dimensions smaller than the mean free path of the dominant heat-carrying phonons. In this work, we uncover a new regime of nanoscale thermal transport that dominates when the separation between nanoscale heat sources is small compared with the dominant phonon mean free paths. Surprisingly, the interaction of phonons originating from neighboring heat sources enables more efficient diffusive-like heat dissipation, even from nanoscale heat sources much smaller than the dominant phonon mean free paths. This finding suggests that thermal management in nanoscale systems including integrated circuits might not be as challenging as previously projected. In conclusion, we demonstrate a unique capability to extract differential conductivity as a function of phonon mean free path in materials, allowing the first (to our knowledge) experimental validation of predictions from the recently developed first-principles calculations.« less

  1. A new regime of nanoscale thermal transport: Collective diffusion increases dissipation efficiency

    NASA Astrophysics Data System (ADS)

    Hoogeboom-Pot, Kathleen M.; Hernandez-Charpak, Jorge N.; Gu, Xiaokun; Frazer, Travis D.; Anderson, Erik H.; Chao, Weilun; Falcone, Roger W.; Yang, Ronggui; Murnane, Margaret M.; Kapteyn, Henry C.; Nardi, Damiano

    2015-04-01

    Understanding thermal transport from nanoscale heat sources is important for a fundamental description of energy flow in materials, as well as for many technological applications including thermal management in nanoelectronics and optoelectronics, thermoelectric devices, nanoenhanced photovoltaics, and nanoparticle-mediated thermal therapies. Thermal transport at the nanoscale is fundamentally different from that at the macroscale and is determined by the distribution of carrier mean free paths and energy dispersion in a material, the length scales of the heat sources, and the distance over which heat is transported. Past work has shown that Fourier's law for heat conduction dramatically overpredicts the rate of heat dissipation from heat sources with dimensions smaller than the mean free path of the dominant heat-carrying phonons. In this work, we uncover a new regime of nanoscale thermal transport that dominates when the separation between nanoscale heat sources is small compared with the dominant phonon mean free paths. Surprisingly, the interaction of phonons originating from neighboring heat sources enables more efficient diffusive-like heat dissipation, even from nanoscale heat sources much smaller than the dominant phonon mean free paths. This finding suggests that thermal management in nanoscale systems including integrated circuits might not be as challenging as previously projected. Finally, we demonstrate a unique capability to extract differential conductivity as a function of phonon mean free path in materials, allowing the first (to our knowledge) experimental validation of predictions from the recently developed first-principles calculations.

  2. Optimal nonimaging integrated evacuated solar collector

    NASA Astrophysics Data System (ADS)

    Garrison, John D.; Duff, W. S.; O'Gallagher, Joseph J.; Winston, Roland

    1993-11-01

    A non imaging integrated evacuated solar collector for solar thermal energy collection is discussed which has the lower portion of the tubular glass vacuum enveloped shaped and inside surface mirrored to optimally concentrate sunlight onto an absorber tube in the vacuum. This design uses vacuum to eliminate heat loss from the absorber surface by conduction and convection of air, soda lime glass for the vacuum envelope material to lower cost, optimal non imaging concentration integrated with the glass vacuum envelope to lower cost and improve solar energy collection, and a selective absorber for the absorbing surface which has high absorptance and low emittance to lower heat loss by radiation and improve energy collection efficiency. This leads to a very low heat loss collector with high optical collection efficiency, which can operate at temperatures up to the order of 250 degree(s)C with good efficiency while being lower in cost than current evacuated solar collectors. Cost estimates are presented which indicate a cost for this solar collector system which can be competitive with the cost of fossil fuel heat energy sources when the collector system is produced in sufficient volume. Non imaging concentration, which reduces cost while improving performance, and which allows efficient solar energy collection without tracking the sun, is a key element in this solar collector design.

  3. A LOW-E MAGIC ANGLE SPINNING PROBE FOR BIOLOGICAL SOLID STATE NMR AT 750 MHz

    PubMed Central

    McNeill, Seth A.; Gor’kov, Peter L.; Shetty, Kiran; Brey, William W.; Long, Joanna R.

    2009-01-01

    Crossed-coil NMR probes are a useful tool for reducing sample heating for biological solid state NMR. In a crossed-coil probe, the higher frequency 1H field, which is the primary source of sample heating in conventional probes, is produced by a separate low-inductance resonator. Because a smaller driving voltage is required, the electric field across the sample and the resultant heating is reduced. In this work we describe the development of a magic angle spinning (MAS) solid state NMR probe utilizing a dual resonator. This dual resonator approach, referred to as “Low-E,” was originally developed to reduce heating in samples of mechanically aligned membranes. The study of inherently dilute systems, such as proteins in lipid bilayers, via MAS techniques requires large sample volumes at high field to obtain spectra with adequate signal-to-noise ratio under physiologically relevant conditions. With the Low-E approach, we are able to obtain homogeneous and sufficiently strong radiofrequency fields for both 1H and 13C frequencies in a 4 mm probe with a 1H frequency of 750 MHz. The performance of the probe using windowless dipolar recoupling sequences is demonstrated on model compounds as well as membrane embedded peptides. PMID:19138870

  4. Laser-driven heat-front propagation in foam vs. gas

    NASA Astrophysics Data System (ADS)

    Pérez, F.; Colvin, J. D.; May, M. J.; Gammon, S. A.; Fournier, K. B.

    2014-10-01

    A high-energy laser (several kJ, 1015 W/cm2) can propagate inside an underdense plasma over millimeters, along its associated heat front. This creates a large volume of hot plasma (several keV) able to produce bright hard-x-ray sources when a high-Z dopant is included in the material. In the past years, we investigated the behavior of both gases and foams under these circumstances. Their design and predictability relies on the understanding of the heat front propagation. In the case of foams, several studies tried to assess the effect of their micro-structure in altering the laser interaction and the heat front propagation, but no experimental data has shown clear evidence. We present here the design and results of a recent experiment, using the OMEGA laser, where a Ge-doped silica foam was compared to a Ne/Kr gas of very similar characteristics, the only difference between these two materials being their micro-structure to allow for a straightforward determination of its influence. The design of future similar experiments will also be reported. J. Colvin presents theoretical and modeling aspects of this subject in a companion presentation. This work was performed under the auspices of the U.S. Department of Energy by LLNL under Contract No. DE-AC52-07NA27344.

  5. Plexcitonics: Coupled and Plasmon-Exciton Systems with Tailorable Properties

    DTIC Science & Technology

    2013-11-14

    demonstrated efficient steam generation from aqueous nanoparticles solutions without heating the bulk volume of the liquid. Application in ethanol ...solutions without heating the bulk volume of the liquid. Applications in ethanol distillation and sanitation have been demonstrated. Key Accomplishments...nanoparticle surface. This state-selective population of adsorbate resonances could be exploited to prepare reactants in specific states on nanoparticle

  6. Pyrolysis reactor and fluidized bed combustion chamber

    DOEpatents

    Green, Norman W.

    1981-01-06

    A solid carbonaceous material is pyrolyzed in a descending flow pyrolysis reactor in the presence of a particulate source of heat to yield a particulate carbon containing solid residue. The particulate source of heat is obtained by educting with a gaseous source of oxygen the particulate carbon containing solid residue from a fluidized bed into a first combustion zone coupled to a second combustion zone. A source of oxygen is introduced into the second combustion zone to oxidize carbon monoxide formed in the first combustion zone to heat the solid residue to the temperature of the particulate source of heat.

  7. Research and development of a heat-pump water heater. Volume 2. R and D task reports

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunning, R.L.; Amthor, F.R.; Doyle, E.J.

    1978-08-01

    The heat pump water heater is a device that works much like a window air conditioner except that heat from the home is pumped into a water tank rather than to the outdoors. The objective established for the device is to operate with a Coefficient of Performance (COP) of 3 or, an input of one unit of electric energy would create three units of heat energy in the form of hot water. With such a COP, the device would use only one-third the energy and at one-third the cost of a standard resistance water heater. This Volume 2 contains themore » final reports of the three major tasks performed in Phase I. In Task 2, a market study identifies the future market and selects an initial target market and channel of distribution, all based on an analysis of the parameters affecting feasibility of the device and the factors that will affect its market acceptance. In the Task 3 report, the results of a design and test program to arrive at final designs of heat pumps for both new water heaters and for retrofitting existing water heaters are presented. In the Task 4 report, a plan for an extensive field demonstration involving use in actual homes is presented. Volume 1 contains a final summary report of the information in Volume 2.« less

  8. Transient performance and temperature field of a natural convection air dehumidifier loop

    NASA Astrophysics Data System (ADS)

    Fazilati, Mohammad Ali; Sedaghat, Ahmad; Alemrajabi, Ali-Akbar

    2017-07-01

    In this paper, transient performance of the previously introduced natural convection heat and mass transfer loop is investigated for an air dehumidifier system. The performance of the loop is studied in different conditions of heat source/heat sink temperature and different startup desiccant concentrations. Unlike conventional loops, it is observed that natural convection of the fluid originates from the heat sink towards the heat source. The proper operation of the cycle is highly dependent on the heat sink/heat source temperatures. To reduce the time constant of the system, a proper desiccant concentration should be adopted for charge of the loop.

  9. Heat transfer and pressure drop characteristics of a plate heat exchanger using water based Al2O3 nanofluid for 30° and 60° chevron angles

    NASA Astrophysics Data System (ADS)

    Elias, M. M.; Saidur, R.; Ben-Mansour, R.; Hepbasli, A.; Rahim, N. A.; Jesbains, K.

    2018-04-01

    Nanofluid is a new class of engineering fluid that has good heat transfer characteristics which is essential to increase the heat transfer performance in various engineering applications such as heat exchangers and cooling of electronics. In this study, experiments were conducted to compare the heat transfer performance and pressure drop characteristics in a plate heat exchanger (PHE) for 30° and 60° chevron angles using water based Al2O3 nanofluid at the concentrations from 0 to 0.5 vol.% for different Reynolds numbers. The thermo-physical properties has been determined and presented in this paper. At 0.5 vol% concentration, the maximum heat transfer coefficient, the overall heat transfer coefficient and the heat transfer rate for 60° chevron angle have attained a higher percentage of 15.14%, 7.8% and 15.4%, respectively in comparison with the base fluid. Consequently, when the volume concentration or Reynolds number increases, the heat transfer coefficient and the overall heat transfer coefficient as well as the heat transfer rate of the PHE (Plate Heat Exchangers) increases respectively. Similarly, the pressure drop increases with the volume concentration. 60° chevron angle showed better performance in comparison with 30° chevron angle.

  10. Enhancement of negative hydrogen ion production in an electron cyclotron resonance source

    NASA Astrophysics Data System (ADS)

    Dugar-Zhabon, V. D.; Murillo, M. T.; Karyaka, V. I.

    2013-07-01

    In this paper, we present a method for improving the negative hydrogen ion yield in the electron cyclotron resonance source with driven plasma rings where the negative ion production is realized in two stages. First, the hydrogen and deuterium molecules are excited in collisions with plasma electrons to high-laying Rydberg and high vibration levels in the plasma volume. The second stage leads to negative ion production through the process of repulsive attachment of low-energy electrons by the excited molecules. The low-energy electrons originate due to a bombardment of the plasma electrode surface by ions of a driven ring and the thermoelectrons produced by a rare earth ceramic electrode, which is appropriately installed in the source chamber. The experimental and calculation data on the negative hydrogen ion generation rate demonstrate that very low-energy thermoelectrons significantly enhance the negative-ion generation rate that occurs in the layer adjacent to the plasma electrode surface. It is found that heating of the tungsten filaments placed in the source chamber improves the discharge stability and extends the pressure operation range.

  11. Mini-Brayton heat source assembly development

    NASA Technical Reports Server (NTRS)

    Wein, D.; Zimmerman, W. F.

    1978-01-01

    The work accomplished on the Mini-Brayton Heat Source Assembly program is summarized. Required technologies to design, fabricate and assemble components for a high temperature Heat Source Assembly (HSA) which would generate and transfer the thermal energy for a spaceborne Brayton Isotope Power System (BIPS) were developed.

  12. Simulation of the thermal performance of a hybrid solar-assisted ground-source heat pump system in a school building

    NASA Astrophysics Data System (ADS)

    Androulakis, N. D.; Armen, K. G.; Bozis, D. A.; Papakostas, K. T.

    2018-04-01

    A hybrid solar-assisted ground-source heat pump (SAGSHP) system was designed, in the frame of an energy upgrade study, to serve as a heating system in a school building in Greece. The main scope of this study was to examine techniques to reduce the capacity of the heating equipment and to keep the primary energy consumption low. Simulations of the thermal performance of both the building and of five different heating system configurations were performed by using the TRNSYS software. The results are presented in this work and show that the hybrid SAGSHP system displays the lower primary energy consumption among the systems examined. A conventional ground-source heat pump system has the same primary energy consumption, while the heat pump's capacity is double and the ground heat exchanger 2.5 times longer. This work also highlights the contribution of simulation tools to the design of complex heating systems with renewable energy sources.

  13. Application of sorption heat pumps for increasing of new power sources efficiency

    NASA Astrophysics Data System (ADS)

    Vasiliev, L.; Filatova, O.; Tsitovich, A.

    2010-07-01

    In the 21st century the way to increase the efficiency of new sources of energy is directly related with extended exploration of renewable energy. This modern tendency ensures the fuel economy needs to be realized with nature protection. The increasing of new power sources efficiency (cogeneration, trigeneration systems, fuel cells, photovoltaic systems) can be performed by application of solid sorption heat pumps, regrigerators, heat and cold accumulators, heat transformers, natural gas and hydrogen storage systems and efficient heat exchangers.

  14. Hydride heat pump

    DOEpatents

    Cottingham, James G.

    1977-01-01

    Method and apparatus for the use of hydrides to exhaust heat from one temperature source and deliver the thermal energy extracted for use at a higher temperature, thereby acting as a heat pump. For this purpose there are employed a pair of hydridable metal compounds having different characteristics working together in a closed pressure system employing a high temperature source to upgrade the heat supplied from a low temperature source.

  15. Passive Vaporizing Heat Sink

    NASA Technical Reports Server (NTRS)

    Knowles, TImothy R.; Ashford, Victor A.; Carpenter, Michael G.; Bier, Thomas M.

    2011-01-01

    A passive vaporizing heat sink has been developed as a relatively lightweight, compact alternative to related prior heat sinks based, variously, on evaporation of sprayed liquids or on sublimation of solids. This heat sink is designed for short-term dissipation of a large amount of heat and was originally intended for use in regulating the temperature of spacecraft equipment during launch or re-entry. It could also be useful in a terrestrial setting in which there is a requirement for a lightweight, compact means of short-term cooling. This heat sink includes a hermetic package closed with a pressure-relief valve and containing an expendable and rechargeable coolant liquid (e.g., water) and a conductive carbon-fiber wick. The vapor of the liquid escapes when the temperature exceeds the boiling point corresponding to the vapor pressure determined by the setting of the pressure-relief valve. The great advantage of this heat sink over a melting-paraffin or similar phase-change heat sink of equal capacity is that by virtue of the =10x greater latent heat of vaporization, a coolant-liquid volume equal to =1/10 of the paraffin volume can suffice.

  16. Microchannel crossflow fluid heat exchanger and method for its fabrication

    DOEpatents

    Swift, G.W.; Migliori, A.; Wheatley, J.C.

    1985-05-14

    A microchannel crossflow fluid heat exchanger and a method for its fabrication are disclosed. The heat exchanger is formed from a stack of thin metal sheets which are bonded together. The stack consists of alternating slotted and unslotted sheets. Each of the slotted sheets includes multiple parallel slots which form fluid flow channels when sandwiched between the unslotted sheets. Successive slotted sheets in the stack are rotated ninety degrees with respect to one another so as to form two sets of orthogonally extending fluid flow channels which are arranged in a crossflow configuration. The heat exchanger has a high surface to volume ratio, a small dead volume, a high heat transfer coefficient, and is suitable for use with fluids under high pressures. The heat exchanger has particular application in a Stirling engine that utilizes a liquid as the working substance. 9 figs.

  17. High-volume plasma exchange in a patient with acute liver failure due to non-exertional heat stroke in a sauna.

    PubMed

    Chen, Kuan-Jung; Chen, Tso-Hsiao; Sue, Yuh-Mou; Chen, Tzay-Jinn; Cheng, Chung-Yi

    2014-10-01

    Heat stroke is a life-threatening condition characterized by an increased core body temperature (over 40°C) and a systemic inflammatory response, which may lead to a syndrome of multiple organ dysfunction. Heat stroke may be due to either strenuous exercise or non-exercise-induced exposure to a high environmental temperature. Current management of heat stroke is mostly supportive, with an emphasis on cooling the core body temperature and preventing the development of multiple organ dysfunction. Prognosis of heat stroke depends on the severity of organ involvement. Here, we report a rare case of non-exercise-induced heat stroke in a 73-year-old male patient who was suffering from acute liver failure after prolonged exposure in a hot sauna room. We successfully managed this patient by administering high-volume plasma exchange, and the patient recovered completely after treatment. © 2014 Wiley Periodicals, Inc.

  18. Design of a nuclear isotope heat source assembly for a spaceborne mini-Brayton power module.

    NASA Technical Reports Server (NTRS)

    Wein, D.; Gorland, S. H.

    1973-01-01

    Results of a study to develop a feasible design definition of a heat source assembly (HSA) for use in nominal 500-, 1200-, or 2000-W(e) mini-Brayton spacecraft power systems. The HSA is a modular design which is used either as a single unit to provide thermal energy to the 500-W(e) mini-Brayton power module or in parallel with one or two additional HSAs for the 1200- or 2000-W(e) power module systems. Principal components consist of a multihundred watt RTG isotope heat source, a heat source heat exchanger which transfers the thermal energy from the heat source to the mini-Brayton power conversion system, an auxiliary cooling system which provides requisite cooling during nonoperation of the power conversion module and an emergency cooling system which precludes accidental release of isotope fuel in the event of system failure.

  19. Heat transfer enhancement and pumping power optimization using CuO-water nanofluid through rectangular corrugated pipe

    NASA Astrophysics Data System (ADS)

    Salehin, Musfequs; Ehsan, Mohammad Monjurul; Islam, A. K. M. Sadrul

    2017-06-01

    Heat transfer enhancement by corrugation in fluid domain is a popular method. The rate of improvement is more when it is used highly thermal conductive fluid as heating or cooling medium. In this present study, heat transfer augmentation was investigated numerically by implementing corrugation in the fluid domain and nanofluid as the base fluid in the turbulent forced convection regime. Finite volume method (FVM) was applied to solve the continuity, momentum and energy equations. All the numerical simulations were considered for single phase flow. A rectangle corrugated pipe with 5000 W/m2 constant heat flux subjected to the corrugated wall was considered as the fluid domain. In the range of Reynolds number 15000 to 40000, thermo-physical and hydrodynamic behavior was investigated by using CuO-water nanofluid from 1% to 5% volume fraction as the base fluid through the corrugated fluid domain. Corrugation justification was performed by changing the amplitude of the corrugation and the corrugation wave length for obtaining the increased heat transfer rate with minimum pumping power. For using CuO-water nanofluid, augmentation was also found more in the rectangle corrugated pipe both in heat transfer and pumping power requirement with the increase of Reynolds number and the volume fraction of nanofluid. For the increased pumping power, optimization of pumping power by using nanofluid was also performed for economic finding.

  20. On the Heating of Ions in Noncylindrical Z-Pinches

    NASA Astrophysics Data System (ADS)

    Svirsky, E. B.

    2018-01-01

    The method proposed here for analyzing processes in a hot plasma of noncylindrical Z-pinches is based on separation of the group of high-energy ions into a special fraction. Such ions constitute an insignificant fraction ( 10%) of the total volume of the Z-pinch plasma, but these ions contribute the most to the formation of conditions in which the pinch becomes a source of nuclear fusion products and X-ray radiation. The method allows a quite correct approach to obtaining quantitative estimates of the plasma parameters, the nuclear fusion energy yield, and the features of neutron fluxes in experiments with Z-pinches.

  1. Development of a simultaneous Hugoniot and temperature measurement for preheated-metal shock experiments: melting temperatures of Ta at pressures of 100 GPa.

    PubMed

    Li, Jun; Zhou, Xianming; Li, Jiabo; Wu, Qiang; Cai, Lingcang; Dai, Chengda

    2012-05-01

    Equations of state of metals are important issues in earth science and planetary science. A major limitation of them is the lack of experimental data for determining pressure-volume and temperature of shocked metal simultaneously. By measuring them in a single experiment, a major source of systematic error is eliminated in determining from which shock pressure release pressure originates. Hence, a non-contact fast optical method was developed and demonstrated to simultaneously measure a Hugoniot pressure-volume (P(H)-V(H)) point and interfacial temperature T(R) on the release of Hugoniot pressure (P(R)) for preheated metals up to 1000 K. Experimental details in our investigation are (i) a Ni-Cr resistance coil field placed around the metal specimen to generate a controllable and stable heating source, (ii) a fiber-optic probe with an optical lens coupling system and optical pyrometer with ns time resolution to carry out non-contact fast optical measurements for determining P(H)-V(H) and T(R). The shock response of preheated tantalum (Ta) at 773 K was investigated in our work. Measured data for shock velocity versus particle velocity at an initial state of room temperature was in agreement with previous shock compression results, while the measured shock data between 248 and 307 GPa initially heated to 773 K were below the Hugoniot evaluation from its off-Hugoniot states. Obtained interfacial temperatures on release of Hugoniot pressures (100-170 GPa) were in agreement with shock-melting points at initial ambient condition and ab initio calculations of melting curve. It indicates a good consistency for shock melting data of Ta at different initial temperatures. Our combined diagnostics for Hugoniot and temperature provides an important approach for studying EOS and the temperature effect of shocked metals. In particular, our measured melting temperatures of Ta address the current controversy about the difference by more than a factor of 2 between the melting temperatures measured under shock and those measured in a laser-heated diamond anvil cell at ∼100 GPa.

  2. Effect of different types of nanofluids on free convection heat transfer around spherical mini-reactor

    NASA Astrophysics Data System (ADS)

    Jayhooni, S. M. H.; Rahimpour, M. R.

    2013-06-01

    In the present paper, free convection fluid flow and heat transfer of various water based nanofluids has been investigated numerically around a spherical mini-reactor. This numerical simulation is a finite-volume, steady, two dimensions, elliptic and multi-grid solver. The wall of the spherical mini-reactor are maintained at constant temperature TH and the temperature of nanofluid far from it is considered constant (TC). Computational fluid dynamics (CFD) is used for solving the relevant mathematical expressions for free convection heat transfer around it. The numerical simulation and available correlation are valid for based fluid. The effects of pertinent parameters, such as, Rayleigh number, and the volume fraction of the nanoparticles in the fluid flow and heat transfer around the spherical mini-reactor are investigated. This study has been carried out for the pertinent parameters in the following ranges: the Rayleigh number of base fluid is assumed to be less than 109 (Ra < 109). Besides, the percentages of the volumetric fraction of nanoparticle which is used for preparing the nanofluids, are between 0 and 4 (0 ⩽ φ ⩽ 4%). The obtained results show that the average Nusselt number for a range of the solid volume fraction of the nanofluid increases by increasing the Rayleigh number. Finally, the heat transfer has been enhanced not only by increasing the particle volume fraction but also by decreasing the size of particle diameter. Moreover, the Churchill's correlation is approximately appropriate for predicting the free convection heat transfer inside diverse kinds of nanofluids especially for high range of Rayleigh numbers.

  3. Heat Transfer Enhancement in a Helically Coiled Tube with Al2O3/WATER Nanofluid Under Laminar Flow Condition

    NASA Astrophysics Data System (ADS)

    Kumar, P. C. Mukesh; Kumar, J.; Suresh, S.; Babu, K. Praveen

    2012-10-01

    In this experimental investigation, the heat transfer coefficients of a shell and helically coiled tube heat exchanger using Al2O3/water nanofluid under laminar flow condition were studied. The Al2O3 nanoparticles were characterized by X-Ray diffraction (XRD). The Al2O3/water nanofluid at 0.1%, 0.4% and 0.8% particle volume concentration were prepared by using two step method. The prepared nanofluid was characterized by scanning electron microscope (SEM). It is observed that the overall heat transfer coefficient, inner heat transfer coefficient and experimental inner Nusselt number increase while increasing particle volume concentration and increasing inner Dean number. The enhancement of overall heat transfer coefficient was found to be 7%, 16.9% and 24.2% at 0.1%, 0.4% and 0.8% Al2O3/water nanofluid respectively when compared with water. The enhancement of tube side experimental Nusselt number was found to be 17%, 22.9% and 28% at 0.1%, 0.4% and 0.8% particle volume concentration of Al2O3/water nanofluid respectively when compared with water at fixed Dean number. The tests were conducted in the range of 1600 < De < 2700, and 5200 < Re < 8600 under laminar flow condition and counter flow configuration. These enhancements are due to higher thermal conductivity of nanofluid while increasing particle volume concentration and Brownian motion of nanoparticles. It is studied that there is no negative impact on formation of secondary flow and mixing of fluid when nanofluid passes through the helically coiled tube.

  4. Heat sink effect on tumor ablation characteristics as observed in monopolar radiofrequency, bipolar radiofrequency, and microwave, using ex vivo calf liver model.

    PubMed

    Pillai, Krishna; Akhter, Javid; Chua, Terence C; Shehata, Mena; Alzahrani, Nayef; Al-Alem, Issan; Morris, David L

    2015-03-01

    Thermal ablation of liver tumors near large blood vessels is affected by the cooling effect of blood flow, leading to incomplete ablation. Hence, we conducted a comparative investigation of heat sink effect in monopolar (MP) and bipolar (BP) radiofrequency ablation (RFA), and microwave (MW) ablation devices.With a perfused calf liver, the ablative performances (volume, mass, density, dimensions), with and without heat sink, were measured. Heat sink was present when the ablative tip of the probes were 8.0 mm close to a major hepatic vein and absent when >30 mm away. Temperatures (T1 and T2) on either side of the hepatic vein near the tip of the probes, heating probe temperature (T3), outlet perfusate temperature (T4), and ablation time were monitored.With or without heat sink, BP radiofrequency ablated a larger volume and mass, compared with MP RFA or MW ablation, with latter device producing the highest density of tissue ablated. MW ablation produced an ellipsoidal shape while radiofrequency devices produced spheres.Percentage heat sink effect in Bipolar radiofrequency : Mono-polar radiofrequency : Microwave was (Volume) 33:41:22; (mass) 23:56:34; (density) 9.0:26:18; and (relative elipscity) 5.8:12.9:1.3, indicating that BP and MW devices were less affected.Percentage heat sink effect on time (minutes) to reach maximum temperature (W) = 13.28:9.2:29.8; time at maximum temperature (X) is 87:66:16.66; temperature difference (Y) between the thermal probes (T3) and the temperature (T1 + T2)/2 on either side of the hepatic vessel was 100:87:20; and temperature difference between the (T1 + T2)/2 and temperature of outlet circulating solution (T4), Z was 20.33:30.23:37.5.MW and BP radiofrequencies were less affected by heat sink while MP RFA was the most affected. With a single ablation, BP radiofrequency ablated a larger volume and mass regardless of heat sink.

  5. Heat Sink Effect on Tumor Ablation Characteristics as Observed in Monopolar Radiofrequency, Bipolar Radiofrequency, and Microwave, Using Ex Vivo Calf Liver Model

    PubMed Central

    Pillai, Krishna; Akhter, Javid; Chua, Terence C.; Shehata, Mena; Alzahrani, Nayef; Al-Alem, Issan; Morris, David L.

    2015-01-01

    Abstract Thermal ablation of liver tumors near large blood vessels is affected by the cooling effect of blood flow, leading to incomplete ablation. Hence, we conducted a comparative investigation of heat sink effect in monopolar (MP) and bipolar (BP) radiofrequency ablation (RFA), and microwave (MW) ablation devices. With a perfused calf liver, the ablative performances (volume, mass, density, dimensions), with and without heat sink, were measured. Heat sink was present when the ablative tip of the probes were 8.0 mm close to a major hepatic vein and absent when >30 mm away. Temperatures (T1 and T2) on either side of the hepatic vein near the tip of the probes, heating probe temperature (T3), outlet perfusate temperature (T4), and ablation time were monitored. With or without heat sink, BP radiofrequency ablated a larger volume and mass, compared with MP RFA or MW ablation, with latter device producing the highest density of tissue ablated. MW ablation produced an ellipsoidal shape while radiofrequency devices produced spheres. Percentage heat sink effect in Bipolar radiofrequency : Mono-polar radiofrequency : Microwave was (Volume) 33:41:22; (mass) 23:56:34; (density) 9.0:26:18; and (relative elipscity) 5.8:12.9:1.3, indicating that BP and MW devices were less affected. Percentage heat sink effect on time (minutes) to reach maximum temperature (W) = 13.28:9.2:29.8; time at maximum temperature (X) is 87:66:16.66; temperature difference (Y) between the thermal probes (T3) and the temperature (T1 + T2)/2 on either side of the hepatic vessel was 100:87:20; and temperature difference between the (T1 + T2)/2 and temperature of outlet circulating solution (T4), Z was 20.33:30.23:37.5. MW and BP radiofrequencies were less affected by heat sink while MP RFA was the most affected. With a single ablation, BP radiofrequency ablated a larger volume and mass regardless of heat sink. PMID:25738477

  6. Phase-Change Heat-Storage Module

    NASA Technical Reports Server (NTRS)

    Mulligan, James C.

    1989-01-01

    Heat-storage module accommodates momentary heating or cooling overload in pumped-liquid heat-transfer system. Large heat-storage capacity of module provided by heat of fusion of material that freezes at or near temperature desired to maintain object to be heated or cooled. Module involves relatively small penalties in weight, cost, and size and more than compensates by enabling design of rest of system to handle only average load. Latent heat of fusion of phase-change material provides large heat-storage capacity in small volume.

  7. Reducing residential solid fuel combustion through electrified space heating leads to substantial air quality, health and climate benefits in China's Beijing-Tianjin-Hebei region

    NASA Astrophysics Data System (ADS)

    Yang, J.; Mauzerall, D. L.

    2017-12-01

    During periods of high pollution in winter, household space heating can contribute more than half of PM2.5 concentrations in China's Beijing-Tianjin-Hebei (BTH) region. The majority of rural households and some urban households in the region still heat with small stoves and solid fuels such as raw coal, coal briquettes and biomass. Thus, reducing emissions from residential space heating has become a top priority of the Chinese government's air pollution mitigation plan. Electrified space heating is a promising alternative to solid fuel. However, there is little analysis of the air quality and climate implications of choosing various electrified heating devices and utilizing different electricity sources. Here we conduct an integrated assessment of the air quality, human health and climate implications of various electrified heating scenarios in the BTH region using the Weather Research and Forecasting model with Chemistry. We use the Multi-resolution Emission Inventory for China for the year 2012 as our base case and design two electrification scenarios in which either direct resistance heaters or air source heat pumps are installed to replace all household heating stoves. We initially assume all electrified heating devices use electricity from supercritical coal-fired power plants. We find that installing air source heat pumps reduces CO2 emissions and premature deaths due to PM2.5 pollution more than resistance heaters, relative to the base case. The increased health and climate benefits of heat pumps occur because they have a higher heat conversion efficiency and thus require less electricity for space heating than resistance heaters. We also find that with the same heat pump installation, a hybrid electricity source (40% of the electricity generated from renewable sources and the rest from coal) further reduces both CO2 emissions and premature deaths than using electricity only from coal. Our study demonstrates the air pollution and CO2 mitigation potential and public health benefits of using electrified space heating. In particular, we find air source heat pumps could bring more climate and health benefits than direct resistance heaters. Our results also support policies to integrate renewable energy sources with the reduction of solid fuel combustion for residential space heating.

  8. High-temperature self-circulating thermoacoustic heat exchanger

    NASA Astrophysics Data System (ADS)

    Backhaus, S.; Swift, G. W.; Reid, R. S.

    2005-07-01

    Thermoacoustic and Stirling engines and refrigerators use heat exchangers to transfer heat between the oscillating flow of their thermodynamic working fluids and external heat sources and sinks. An acoustically driven heat-exchange loop uses an engine's own pressure oscillations to steadily circulate its own thermodynamic working fluid through a physically remote high-temperature heat source without using moving parts, allowing for a significant reduction in the cost and complexity of thermoacoustic and Stirling heat exchangers. The simplicity and flexibility of such heat-exchanger loops will allow thermoacoustic and Stirling machines to access diverse heat sources and sinks. Measurements of the temperatures at the interface between such a heat-exchange loop and the hot end of a thermoacoustic-Stirling engine are presented. When the steady flow is too small to flush out the mixing chamber in one acoustic cycle, the heat transfer to the regenerator is excellent, with important implications for practical use.

  9. The usage of waste heat recovery units with improved heat engineering rates: theory and experimental research

    NASA Astrophysics Data System (ADS)

    Chebotarev, Victor; Koroleva, Alla; Pirozhnikova, Anastasia

    2017-10-01

    Use of recuperator in heat producing plants for utilization of natural gas combustion products allows to achieve the saving of gas fuel and also provides for environmental sanitation. Decrease of the volumes of natural gas combustion due to utilization of heat provides not only for reduction of harmful agents in the combustion products discharged into the atmosphere, but also creates conditions for increase of energy saving in heating processes of heat producing plants due to air overheating in the recuperator. Grapho-analytical method of determination of energy saving and reduction of discharges of combustion products into the atmosphere is represented in the article. Multifunctional diagram is developed, allowing to determine simultaneously savings from reduction of volumes of natural gas combusted and from reduction of amounts of harmful agents in the combustion products discharged into the atmosphere. Calculation of natural gas economy for heat producing plant taking into consideration certain capacity is carried out.

  10. Heating systems for heating subsurface formations

    DOEpatents

    Nguyen, Scott Vinh [Houston, TX; Vinegar, Harold J [Bellaire, TX

    2011-04-26

    Methods and systems for heating a subsurface formation are described herein. A heating system for a subsurface formation includes a sealed conduit positioned in an opening in the formation and a heat source. The sealed conduit includes a heat transfer fluid. The heat source provides heat to a portion of the sealed conduit to change phase of the heat transfer fluid from a liquid to a vapor. The vapor in the sealed conduit rises in the sealed conduit, condenses to transfer heat to the formation and returns to the conduit portion as a liquid.

  11. Inverse problem and variation method to optimize cascade heat exchange network in central heating system

    NASA Astrophysics Data System (ADS)

    Zhang, Yin; Wei, Zhiyuan; Zhang, Yinping; Wang, Xin

    2017-12-01

    Urban heating in northern China accounts for 40% of total building energy usage. In central heating systems, heat is often transferred from heat source to users by the heat network where several heat exchangers are installed at heat source, substations and terminals respectively. For given overall heating capacity and heat source temperature, increasing the terminal fluid temperature is an effective way to improve the thermal performance of such cascade heat exchange network for energy saving. In this paper, the mathematical optimization model of the cascade heat exchange network with three-stage heat exchangers in series is established. Aim at maximizing the cold fluid temperature for given hot fluid temperature and overall heating capacity, the optimal heat exchange area distribution and the medium fluids' flow rates are determined through inverse problem and variation method. The preliminary results show that the heat exchange areas should be distributed equally for each heat exchanger. It also indicates that in order to improve the thermal performance of the whole system, more heat exchange areas should be allocated to the heat exchanger where flow rate difference between two fluids is relatively small. This work is important for guiding the optimization design of practical cascade heating systems.

  12. Impact of various operating modes on performance and emission parameters of small heat source

    NASA Astrophysics Data System (ADS)

    Vician, Peter; Holubčík, Michal; Palacka, Matej; Jandačka, Jozef

    2016-06-01

    Thesis deals with the measurement of performance and emission parameters of small heat source for combustion of biomass in each of its operating modes. As the heat source was used pellet boiler with an output of 18 kW. The work includes design of experimental device for measuring the impact of changes in air supply and method for controlling the power and emission parameters of heat sources for combustion of woody biomass. The work describes the main factors that affect the combustion process and analyze the measurements of emissions at the heat source. The results of experiment demonstrate the values of performance and emissions parameters for the different operating modes of the boiler, which serve as a decisive factor in choosing the appropriate mode.

  13. Overall heat transfer coefficient and pressure drop in a typical tubular exchanger employing alumina nano-fluid as the tube side hot fluid

    NASA Astrophysics Data System (ADS)

    Kabeel, A. E.; Abdelgaied, Mohamed

    2016-08-01

    Nano-fluids are used to improve the heat transfer rates in heat exchangers, especially; the shell-and-tube heat exchanger that is considered one of the most important types of heat exchangers. In the present study, an experimental loop is constructed to study the thermal characteristics of the shell-and-tube heat exchanger; at different concentrations of Al2O3 nonmetallic particles (0.0, 2, 4, and 6 %). This material concentrations is by volume concentrations in pure water as a base fluid. The effects of nano-fluid concentrations on the performance of shell and tube heat exchanger have been conducted based on the overall heat transfer coefficient, the friction factor, the pressure drop in tube side, and the entropy generation rate. The experimental results show that; the highest heat transfer coefficient is obtained at a nano-fluid concentration of 4 % of the shell side. In shell side the maximum percentage increase in the overall heat transfer coefficient has reached 29.8 % for a nano-fluid concentration of 4 %, relative to the case of the base fluid (water) at the same tube side Reynolds number. However; in the tube side the maximum relative increase in pressure drop has recorded the values of 12, 28 and 48 % for a nano-material concentration of 2, 4 and 6 %, respectively, relative to the case without nano-fluid, at an approximate value of 56,000 for Reynolds number. The entropy generation reduces with increasing the nonmetallic particle volume fraction of the same flow rates. For increase the nonmetallic particle volume fraction from 0.0 to 6 % the rate of entropy generation decrease by 10 %.

  14. International Center For Actuators And Transducers

    DTIC Science & Technology

    2003-06-01

    electromagnetic noise-free systems. The photostrictive effect has also been used recently for a photophonic device, in which light is transformed into sound...of Actuators Loss and Heat Generation Heat generation Temperature riseSurface Area SHeat dissipation Effective Volume V e Total Volume V Driving...and the use of a responsive positioner was considered to compensate for the detrimental effects . YEAR (A.D.) 2000190018001700 Manufacturing (µm) 10

  15. Defense Small Business Innovation Research Program (SBIR) Abstracts of Phase I Awards 1984.

    DTIC Science & Technology

    1985-04-16

    PROTECTION OF SATELLITES FROM DIRECTED ENERGY WEAPONS, IS THE UTILIZATION OF HEAT PIPES WITHIN A SHIELD STRUCTURE. HEAT PIPES COULD BE DESIGNED TO...780 EDEN ROAD LANCASTER, PA 17601 ROBERT M. SHAUBACK TITLE: ANALYSIS AND PERFORMNCE EVALUATION OF HEAT PIPES WITH MULTIPLE HEAT SOURCES TOPIC: 97... PIPES CAPABLE OF ACCEPTING HEAT FROM MULTIPLE HEAT SOURCES. THERE IS NO THOROUGH ANALYTICAL OR EXPERIMENTAL BASIS FOR THE DESIGN OF HEAT PIPES OF

  16. Contraindications for superficial heat and therapeutic ultrasound: do sources agree?

    PubMed

    Batavia, Mitchell

    2004-06-01

    To determine the amount of agreement among general rehabilitation sources for both superficial heating and therapeutic ultrasound contraindications. English-language textbook and peer-reviewed journal sources, from January 1992 to July 2002. Searches of computerized databases (HealthSTAR, CINAHL, MEDLINE, Embase) as well as Library of Congress Online Catalogs, Books in Print, and AcqWeb's Directory of Publishers and Venders. Sources were excluded if they (1) were published before 1992, (2) failed to address general rehabilitation audiences, or (3) were identified as a researcher's related publication with similar information on the topic. Type and number of contraindications, type of audience, year of publication, number of references, rationales, and alternative treatment strategies. Eighteen superficial heat and 20 ultrasound sources identified anywhere from 5 to 22 and 9 to 36 contraindications/precautions, respectively. Agreement among sources was generally high but ranged from 11% to 95%, with lower agreement noted for pregnancy, metal implants, edema, skin integrity, and cognitive/communicative concerns. Seventy-two percent of superficial heat sources and 25% of ultrasound sources failed to reference at least 1 contraindication claim. Agreement among contraindication sources was generally good for both superficial heat and therapeutic ultrasound. Sources varied with regard to the number of contraindications, references, and rationales cited. Greater reliance on objective data and standardized classification systems may serve to develop more uniform guidelines for superficial heat and therapeutic ultrasound.

  17. Low to high temperature energy conversion system

    NASA Technical Reports Server (NTRS)

    Miller, C. G. (Inventor)

    1977-01-01

    A method for converting heat energy from low temperature heat sources to higher temperature was developed. It consists of a decomposition chamber in which ammonia is decomposed into hydrogen and nitrogen by absorbing heat of decomposition from a low temperature energy source. A recombination reaction then takes place which increases the temperature of a fluid significantly. The system is of use for the efficient operation of compact or low capital investment turbine driven electrical generators, or in other applications, to enable chemical reactions that have a critical lower temperature to be used. The system also recovers heat energy from low temperature heat sources, such as solar collectors or geothermal sources, and converts it to high temperatures.

  18. Vapor Compression and Thermoelectric Heat Pump Heat Exchangers for a Condensate Distillation System: Design and Experiment

    NASA Technical Reports Server (NTRS)

    Erickson, Lisa R.; Ungar, Eugene K.

    2013-01-01

    Maximizing the reuse of wastewater while minimizing the use of consumables is critical in long duration space exploration. One of the more promising methods of reclaiming urine is the distillation/condensation process used in the cascade distillation system (CDS). This system accepts a mixture of urine and toxic stabilizing agents, heats it to vaporize the water and condenses and cools the resulting water vapor. The CDS wastewater flow requires heating and its condensate flow requires cooling. Performing the heating and cooling processes separately requires two separate units, each of which would require large amounts of electrical power. By heating the wastewater and cooling the condensate in a single heat pump unit, mass, volume, and power efficiencies can be obtained. The present work describes and compares two competing heat pump methodologies that meet the needs of the CDS: 1) a series of mini compressor vapor compression cycles and 2) a thermoelectric heat exchanger. In the paper, the system level requirements are outlined, the designs of the two heat pumps are described in detail, and the results of heat pump performance tests are provided. A summary is provided of the heat pump mass, volume and power trades and a selection recommendation is made.

  19. MHD effects on heat transfer and entropy generation of nanofluid flow in an open cavity

    NASA Astrophysics Data System (ADS)

    Mehrez, Zouhaier; El Cafsi, Afif; Belghith, Ali; Le Quéré, Patrick

    2015-01-01

    The present numerical work investigates the effect of an external oriented magnetic field on heat transfer and entropy generation of Cu-water nanofluid flow in an open cavity heated from below. The governing equations are solved numerically by the finite-volume method. The study has been carried out for a wide range of solid volume fraction 0≤φ≤0.06, Hartmann number 0≤Ha≤100, Reynolds number 100≤Re≤500 and Richardson number 0.001≤Ri≤1 at three inclination angles of magnetic field γ: 0°, 45° and 90°. The numerical results are given by streamlines, isotherms, average Nusselt number, average entropy generation and Bejan number. The results show that flow behavior, temperature distribution, heat transfer and entropy generation are strongly affected by the presence of a magnetic field. The average Nusselt number and entropy generation, which increase by increasing volume fraction of nanoparticles, depend mainly on the Hartmann number and inclination angle of the magnetic field. The variation rates of heat transfer and entropy generation while adding nanoparticles or applying a magnetic field depend on the Richardson and Reynolds numbers.

  20. Effects of rotation on coolant passage heat transfer. Volume 2: Coolant passages with trips normal and skewed to the flow

    NASA Technical Reports Server (NTRS)

    Johnson, B. V.; Wagner, J. H.; Steuber, G. D.

    1993-01-01

    An experimental program was conducted to investigate heat transfer and pressure loss characteristics of rotating multipass passages, for configurations and dimensions typical of modem turbine blades. This experimental program is one part of the NASA Hot Section Technology (HOST) Initiative, which has as its overall objective the development and verification of improved analysis methods that will form the basis for a design system that will produce turbine components with improved durability. The objective of this program was the generation of a data base of heat transfer and pressure loss data required to develop heat transfer correlations and to assess computational fluid dynamic techniques for rotating coolant passages. The experimental work was broken down into two phases. Phase 1 consists of experiments conducted in a smooth wall large scale heat transfer model. A detailed discussion of these results was presented in volume 1 of a NASA Report. In Phase 2 the large scale model was modified to investigate the effects of skewed and normal passage turbulators. The results of Phase 2 along with comparison to Phase 1 is the subject of this Volume 2 NASA Report.

  1. Feel the Burn: What accounts for spatial variations in coronal heating?

    NASA Astrophysics Data System (ADS)

    Atwood, Shane; Kankelborg, Charles C.

    2016-05-01

    The coronal volume is filled with magnetic field, yet only part of that volume has sufficient heating to exhibit hot x-ray loops. How does the Sun decide where the heat goes? Using XRT and AIA images and HMI magnetograms, we identify footpoints of hot coronal loops, and magnetically similar regions underlying relatively unheated corona. We then use IRIS rasters and sit-and-stare observations to compare the spatial, temporal, and spectral structure of these relatively ``heated’’ and ``unheated’’ regions. We seek a signature of upward propagating energy that could be associated with hot active region loops.

  2. Post-evaluation of a ground source heat pump system for residential space heating in Shanghai China

    NASA Astrophysics Data System (ADS)

    Lei, Y.; Tan, H. W.; Wang, L. Z.

    2017-11-01

    Residents of Southern China are increasingly concerned about the space heating in winter. The chief aim of the present work is to find a cost-effective way for residential space heating in Shanghai, one of the biggest city in south China. Economic and energy efficiency of three residential space heating ways, including ground source heat pump (GSHP), air source heat pump (ASHP) and wall-hung gas boiler (WHGB), are assessed based on Long-term measured data. The results show that the heat consumption of the building is 120 kWh/m2/y during the heating season, and the seasonal energy efficiency ratio (SEER) of the GSHP, ASHP and WHGB systems are 3.27, 2.30, 0.88 respectively. Compared to ASHP and WHGB, energy savings of GSHP during the heating season are 6.2 kgce/(m2.y) and 2.2 kgce/(m2.y), and the payback period of GSHP are 13.3 and 7.6 years respectively. The sensitivity analysis of various factors that affect the payback period is carried out, and the results suggest that SEER is the most critical factor affecting the feasibility of ground source heat pump application, followed by building load factor and energy price factor. These findings of the research have led the author to the conclusion that ground source heat pump for residential space heating in Shanghai is a good alternative, which can achieve significant energy saving benefits, and a good system design and operation management are key factors that can shorten the payback period.

  3. Determining temperature distribution in tissue in the focal plane of the high (>100 W/cm(2)) intensity focused ultrasound beam using phase shift of ultrasound echoes.

    PubMed

    Karwat, Piotr; Kujawska, Tamara; Lewin, Peter A; Secomski, Wojciech; Gambin, Barbara; Litniewski, Jerzy

    2016-02-01

    In therapeutic applications of High Intensity Focused Ultrasound (HIFU) the guidance of the HIFU beam and especially its focal plane is of crucial importance. This guidance is needed to appropriately target the focal plane and hence the whole focal volume inside the tumor tissue prior to thermo-ablative treatment and beginning of tissue necrosis. This is currently done using Magnetic Resonance Imaging that is relatively expensive. In this study an ultrasound method, which calculates the variations of speed of sound in the locally heated tissue volume by analyzing the phase shifts of echo-signals received by an ultrasound scanner from this very volume is presented. To improve spatial resolution of B-mode imaging and minimize the uncertainty of temperature estimation the acoustic signals were transmitted and received by 8 MHz linear phased array employing Synthetic Transmit Aperture (STA) technique. Initially, the validity of the algorithm developed was verified experimentally in a tissue-mimicking phantom heated from 20.6 to 48.6 °C. Subsequently, the method was tested using a pork loin sample heated locally by a 2 MHz pulsed HIFU beam with focal intensity ISATA of 129 W/cm(2). The temperature calibration of 2D maps of changes in the sound velocity induced by heating was performed by comparison of the algorithm-determined changes in the sound velocity with the temperatures measured by thermocouples located in the heated tissue volume. The method developed enabled ultrasound temperature imaging of the heated tissue volume from the very inception of heating with the contrast-to-noise ratio of 3.5-12 dB in the temperature range 21-56 °C. Concurrently performed, conventional B-mode imaging revealed CNR close to zero dB until the temperature reached 50 °C causing necrosis. The data presented suggest that the proposed method could offer an alternative to MRI-guided temperature imaging for prediction of the location and extent of the thermal lesion prior to applying the final HIFU treatment. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. High-Pressure, High-Temperature Equations of State Using Fabricated Controlled-Geometry Ni/SiO2 Double Hot-Plate Samples

    NASA Astrophysics Data System (ADS)

    Pigott, J. S.; Ditmer, D. A.; Fischer, R. A.; Reaman, D. M.; Davis, R. J.; Panero, W. R.

    2014-12-01

    To model and predict the structure, dynamics, and composition of Earth's deep interior, accurate and precise measurements of thermal expansion and compressibility are required. The laser-heated diamond-anvil cell (LHDAC) coupled with synchrotron-based x-ray diffraction (XRD) is a powerful tool to determine pressure-volume-temperature (P-V-T) relationships. However, LHDAC experiments may be hampered by non-uniform heating caused by the mixing of transparent materials with opaque laser absorbers. Additionally, radial temperature gradients are exacerbated by small misalignments (1-3 µm) of the x-ray beam with respect to the center of the laser-heated hotspot. We have fabricated three-dimensional, controlled-geometry, double hot-plate samples. In this double hot-plate arrangement, a transparent oxide layer (SiO2) is sandwiched between two laser absorbing layers (Ni) in a single, cohesive sample. These samples were mass manufactured (>105 samples) using a combination of physical vapor deposition, photolithography, wet etching, and plasma etching. The double hot-plate arrangement coupled with the chemical and spatial homogeneity of the laser absorbing layers addresses problems caused by mixtures of transparent and opaque samples. The controlled-geometry samples have dimensions of 50 μm x 50 μm x 1.4 μm. The dimensions of the samples are much larger than the synchrotron x-ray beam. With a heating laser FWHM of ~50 μm, the radial temperature gradients within the volume probed by the x-ray are reduced. We conducted XRD experiments to P > 50 GPa and T > 2200 K at beamline 16-ID-B (HPCAT) of the Advanced Photon Source. Here we present relevant thermal modeling of the LHDAC environment along with Ni and SiO2 P-V-T equations of state. Our photolithography method of sample fabrication can be extended to different materials including but not limited to Fe and MgO.

  5. Analysis of classical Fourier, SPL and DPL heat transfer model in biological tissues in presence of metabolic and external heat source

    NASA Astrophysics Data System (ADS)

    Kumar, Dinesh; Singh, Surjan; Rai, K. N.

    2016-06-01

    In this paper, the temperature distribution in a finite biological tissue in presence of metabolic and external heat source when the surface subjected to different type of boundary conditions is studied. Classical Fourier, single-phase-lag (SPL) and dual-phase-lag (DPL) models were developed for bio-heat transfer in biological tissues. The analytical solution obtained for all the three models using Laplace transform technique and results are compared. The effect of the variability of different parameters such as relaxation time, metabolic heat source, spatial heat source, different type boundary conditions on temperature distribution in different type of the tissues like muscle, tumor, fat, dermis and subcutaneous based on three models are analyzed and discussed in detail. The result obtained in three models is compared with experimental observation of Stolwijk and Hardy (Pflug Arch 291:129-162, 1966). It has been observe that the DPL bio-heat transfer model provides better result in comparison of other two models. The value of metabolic and spatial heat source in boundary condition of first, second and third kind for different type of thermal therapies are evaluated.

  6. Internal heat gain from different light sources in the building lighting systems

    NASA Astrophysics Data System (ADS)

    Suszanowicz, Dariusz

    2017-10-01

    EU directives and the Construction Law have for some time required investors to report the energy consumption of buildings, and this has indeed caused low energy consumption buildings to proliferate. Of particular interest, internal heat gains from installed lighting affect the final energy consumption for heating of both public and residential buildings. This article presents the results of analyses of the electricity consumption and the luminous flux and the heat flux emitted by different types of light sources used in buildings. Incandescent light, halogen, compact fluorescent bulbs, and LED bulbs from various manufacturers were individually placed in a closed and isolated chamber, and the parameters for their functioning under identical conditions were recorded. The heat flux emitted by 1 W nominal power of each light source was determined. Based on the study results, the empirical coefficients of heat emission and energy efficiency ratios for different types of lighting sources (dependent lamp power and the light output) were designated. In the heat balance of the building, the designated rates allow for precise determination of the internal heat gains coming from lighting systems using various light sources and also enable optimization of lighting systems of buildings that are used in different ways.

  7. Performance Analysis of a Ground Source Heat Pump System Using Mine Water as Heat Sink and Source

    DOE PAGES

    Liu, Xiaobing; Malhotra, Mini; Walburger, Adam; ...

    2016-06-01

    This paper summarizes a case study of an innovative ground source heat pump (GSHP) system that uses flooded mines as a heat source and heat sink. This GSHP system provides space conditioning to a 56,000 sq ft 2(5,203 m 2) newly constructed research facility, in conjunction with supplementary existing steam heating and air-cooled chiller systems. Heat transfer performance and overall efficiency of the GSHP system were analysed using the available measured data from January through July 2014. The performance analysis identified some issues with using mine water for cooling and the integration of the GSHP system with the existing steammore » heating system. Recommendations were made to improve the control and operation of the GSHP system. These recommendations, in conjunction with the available measured data, were used to predict the annual energy use of the system. Finally, the energy and cost savings and CO 2 emission reduction potential of the GSHP system were estimated by comparing with a baseline scenario. This case study provides insights into the performance of and potential issues with the mine-water source heat pump system, which is relatively under-explored compared to other GSHP system designs and configurations.« less

  8. Numerical analysis of the heat source characteristics of a two-electrode TIG arc

    NASA Astrophysics Data System (ADS)

    Ogino, Y.; Hirata, Y.; Nomura, K.

    2011-06-01

    Various kinds of multi-electrode welding processes are used to ensure high productivity in industrial fields such as shipbuilding, automotive manufacturing and pipe fabrication. However, it is difficult to obtain the optimum welding conditions for a specific product, because there are many operating parameters, and because welding phenomena are very complicated. In the present research, the heat source characteristics of a two-electrode TIG arc were numerically investigated using a 3D arc plasma model with a focus on the distance between the two electrodes. The arc plasma shape changed significantly, depending on the electrode spacing. The heat source characteristics, such as the heat input density and the arc pressure distribution, changed significantly when the electrode separation was varied. The maximum arc pressure of the two-electrode TIG arc was much lower than that of a single-electrode TIG. However, the total heat input of the two-electrode TIG arc was nearly constant and was independent of the electrode spacing. These heat source characteristics of the two-electrode TIG arc are useful for controlling the heat input distribution at a low arc pressure. Therefore, these results indicate the possibility of a heat source based on a two-electrode TIG arc that is capable of high heat input at low pressures.

  9. Method and apparatus for extracting tritium and preparing radioactive waste for disposal

    DOEpatents

    Heung, Leung K.

    1994-01-01

    Apparatus for heating an object such as a nuclear target bundle to release and recover hydrogen and contain the disposable residue for disposal. The apparatus comprises an inverted furnace, a sleeve/crucible assembly for holding and enclosing the bundle, conveying equipment for placing the sleeve onto the crucible and loading the bundle into the sleeve/crucible, a lift for raising the enclosed bundle into the furnace, and hydrogen recovery equipment including a trap and strippers, all housed in a containment having negative internal pressure. The crucible/sleeve assembly has an internal volume that is sufficient to enclose and hold the bundle before heating; the crucible's internal volume is sufficient by itself to hold and enclose the bundle's volume after heating. The crucible can then be covered and disposed of; the sleeve, on the other hand, can be reused.

  10. Shear flow control of cold and heated rectangular jets by mechanical tabs. Volume 2: Tabulated data

    NASA Technical Reports Server (NTRS)

    Brown, W. H.; Ahuja, K. K.

    1989-01-01

    The effects of mechanical protrusions on the jet mixing characteristics of rectangular nozzles for heated and unheated subsonic and supersonic jet plumes were studied. The characteristics of a rectangular nozzle of aspect ratio 4 without the mechanical protrusions were first investigated. Intrusive probes were used to make the flow measurements. Possible errors introduced by intrusive probes in making shear flow measurements were also examined. Several scaled sizes of mechanical tabs were then tested, configured around the perimeter of the rectangular jet. Both the number and the location of the tabs were varied. From this, the best configuration was selected. This volume contains tabulated data for each of the data runs cited in Volume 1. Baseline characteristics, mixing modifications (subsonic and supersonic, heated and unheated) and miscellaneous charts are included.

  11. Electrochemical-Thermal Modeling and Microscale Phase Change for Passive Internal Thermal Management of Lithium Ion Batteries

    NASA Astrophysics Data System (ADS)

    Bandhauer, Todd Matthew

    In the current investigation, a fully coupled electrochemical and thermal model for lithium-ion batteries is developed to investigate the effects of different thermal management strategies on battery performance. This work represents the first ever study of these coupled electrochemical-thermal phenomena in batteries from the electrochemical heat generation all the way to the dynamic heat removal in actual hybrid electric vehicles (HEV) drive cycles. In addition, a novel, passive internal cooling system that uses heat removal through liquid-vapor phase change is developed. The proposed cooling system passively removes heat almost isothermally with negligible thermal resistances between the heat source and cooling fluid, thereby allowing battery performance to improve unimpeded by thermal limitations. For the battery model, local electrochemical reaction rates are predicted using temperature-dependent data on a commercially available battery designed for high rates (C/LiFePO4) in a computationally efficient manner. Data were collected on this small battery (˜1 Ah) over a wide range of temperatures (10°C to 60°C), depths of discharge (0.15 Ah < DOD < 0.95 Ah), and rates (-5 A to 5 A) using two separate test facilities to maintain sufficient temperature fidelity and to discern the relative influence of reversible and irreversible heating. The results show that total volumetric heat generation is a primarily a function of current and DOD, and secondarily a function of temperature. The results also show that reversible heating is significant compared to irreversible heating, with a minimum of 7.5% of the total heat generation attributable to reversible heating at 5 A and 15°C. Additional tests show that these constant current data can be used to simulate the response of the battery to dynamic loading, which serves as the basis for the electrochemical-thermal model development. This model is then used to compare the effects of external and internal cooling on battery performance. The proposed internal cooling system utilizes microchannels inserted into the interior of the cell that contain a liquid-vapor phase change fluid for heat removal at the source of heat generation. Although there have been prior investigations of phase change at the microscales, fluid flow for pure refrigerants at low mass fluxes (G < 120 kg m-2 s-1) experienced in the passive internal cooling system is not well understood. Therefore, passive, thermally driven refrigerant (R134a) flow in a representative test section geometry (3.175 mm x 160 mm) is investigated using a surrogate heat source. Heat inputs were varied over a wide range of values representative of battery operating conditions (120 < Q˙m < 6500 W L-1 ). The measured mass flow rate and test section outlet quality from these experiments are utilized to accurately calculate the two-phase frictional pressure drop in the test section, which is the dominant flow loss in the passive system in most cases. The two-phase frictional pressure drop model is used to predict the performance of a simplified passive internal cooling system. This thermal-hydraulic performance model is coupled to the electrochemical-thermal model for performance assessment of two-scaled up HEV battery packs (9.6 kWh based on 8 Ah and 20 Ah cells) subjected to an aggressive highway dynamic simulation. This assessment is used to compare the impact of air, liquid, and edge external cooling on battery performance. The results show that edge cooling causes large thermal gradients inside the cells, leading to non-uniform cycling. Air cooling also causes unacceptable temperature rise, while liquid cooling is sufficient only for the pack based on the thinner 8 Ah cell. In contrast, internally cooled cells reduce peak temperature without imposing significant thermal gradients. As a result, packs with internal cooling can be cycled more aggressively, leading to higher charge and discharge energy extraction densities in spite of the volume increase due to 160 microm channels inserted into the 284.5 microm unit cell. Furthermore, the saturation temperature of the phase change fluid can be optimized to balance capacity fade and energy extraction at elevated temperatures. At a saturation temperature of 34°C, the energy extraction density was 80.2% and 66.7% greater than for the best externally cooled system (liquid) even when the pack volume increased due to incorporation of the channels. (Abstract shortened by UMI.)

  12. Geothermal heat pumps for heating and cooling

    NASA Astrophysics Data System (ADS)

    Garg, Suresh C.

    1994-03-01

    Naval Facilities Engineering Service Center (NFESC) has been tasked by Naval Shore Facilities Energy Office to evaluate the NAS Patuxent River ground-source heat pump (GHP) installation. A large part of a building's energy consumption consists of heating and air conditioning for occupant comfort. The space heating requirements are normally met by fossil-fuel-fired equipment or electric resistance heating. Cooling is provided by either air conditioners or heat pumps, both using electricity as an energy source.

  13. It's Hard Saying Goodbye to an Old Flame

    ERIC Educational Resources Information Center

    Roy, Ken

    2004-01-01

    As heat sources go, the old standby for elementary and middle school science laboratories has been the centuries old alcohol lamp. Unfortunately, this inexpensive heat producer has been a continuous source of accidents--many of which are relatively serious. Hot plates are emerging as the most popular source of heat for science experiments. The…

  14. Simulation of the alpha particle heating and the helium ash source in an International Thermonuclear Experimental Reactor-like tokamak with an internal transport barrier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Lei, E-mail: lye@ipp.ac.cn; Guo, Wenfeng; Xiao, Xiaotao

    2014-12-15

    A guiding center orbit following code, which incorporates a set of non-singular coordinates for orbit integration, was developed and applied to investigate the alpha particle heating in an ITER-like tokamak with an internal transport barrier. It is found that a relatively large q (safety factor) value can significantly broaden the alpha heating profile in comparison with the local heating approximation; this broadening is due to the finite orbit width effects; when the orbit width is much smaller than the scale length of the alpha particle source profile, the heating profile agrees with the source profile, otherwise, the heating profile canmore » be significantly broadened. It is also found that the stagnation particles move to the magnetic axis during the slowing-down process, thus the effect of stagnation orbits is not beneficial to the helium ash removal. The source profile of helium ash is broadened in comparison with the alpha source profile, which is similar to the heating profile.« less

  15. Linking potential heat source and sink to urban heat island: Heterogeneous effects of landscape pattern on land surface temperature.

    PubMed

    Li, Weifeng; Cao, Qiwen; Lang, Kun; Wu, Jiansheng

    2017-05-15

    Rapid urbanization has significantly contributed to the development of urban heat island (UHI). Regulating landscape composition and configuration would help mitigate the UHI in megacities. Taking Shenzhen, China, as a case study area, we defined heat source and heat sink and identified strong and weak sources as well as strong and weak sinks according to the natural and socioeconomic factors influencing land surface temperature (LST). Thus, the potential thermal contributions of heat source and heat sink patches were differentiated. Then, the heterogeneous effects of landscape pattern on LST were examined by using semiparametric geographically weighted regression (SGWR) models. The results showed that landscape composition has more significant effects on thermal environment than configuration. For a strong source, the percentage of patches has a positive impact on LST. Additionally, when mosaicked with some heat sink, even a small improvement in the degree of dispersion of a strong source helps to alleviate UHI. For a weak source, the percentage and density of patches have positive impacts on LST. For a strong sink, the percentage, density, and degree of aggregation of patches have negative impacts on LST. The effects of edge density and patch shape complexity vary spatially with the fragmentation of a strong sink. Similarly, the impacts of a weak sink are mainly exerted via the characteristics of percent, density, and shape complexity of patches. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Thermal energy storage for the Stirling engine powered automobile

    NASA Technical Reports Server (NTRS)

    Morgan, D. T. (Editor)

    1979-01-01

    A thermal energy storage (TES) system developed for use with the Stirling engine as an automotive power system has gravimetric and volumetric storage densities which are competitive with electric battery storage systems, meets all operational requirements for a practical vehicle, and can be packaged in compact sized automobiles with minimum impact on passenger and freight volume. The TES/Stirling system is the only storage approach for direct use of combustion heat from fuel sources not suitable for direct transport and use on the vehicle. The particular concept described is also useful for a dual mode TES/liquid fuel system in which the TES (recharged from an external energy source) is used for short duration trips (approximately 10 miles or less) and liquid fuel carried on board the vehicle used for long duration trips. The dual mode approach offers the potential of 50 percent savings in the consumption of premium liquid fuels for automotive propulsion in the United States.

  17. Magnetic resonance imaging of boiling induced by high intensity focused ultrasound

    PubMed Central

    Khokhlova, Tatiana D.; Canney, Michael S.; Lee, Donghoon; Marro, Kenneth I.; Crum, Lawrence A.; Khokhlova, Vera A.; Bailey, Michael R.

    2009-01-01

    Both mechanically induced acoustic cavitation and thermally induced boiling can occur during high intensity focused ultrasound (HIFU) medical therapy. The goal was to monitor the temperature as boiling was approached using magnetic resonance imaging (MRI). Tissue phantoms were heated for 20 s in a 4.7-T magnet using a 2-MHz HIFU source with an aperture and radius of curvature of 44 mm. The peak focal pressure was 27.5 MPa with corresponding beam width of 0.5 mm. The temperature measured in a single MRI voxel by water proton resonance frequency shift attained a maximum value of only 73 °C after 7 s of continuous HIFU exposure when boiling started. Boiling was detected by visual observation, by appearance on the MR images, and by a marked change in the HIFU source power. Nonlinear modeling of the acoustic field combined with a heat transfer equation predicted 100 °C after 7 s of exposure. Averaging of the calculated temperature field over the volume of the MRI voxel (0.3×0.5×2 mm3) yielded a maximum of 73 °C that agreed with the MR thermometry measurement. These results have implications for the use of MRI-determined temperature values to guide treatments with clinical HIFU systems. PMID:19354416

  18. A continuous flow microfluidic calorimeter: 3-D numerical modeling with aqueous reactants.

    PubMed

    Sen, Mehmet A; Kowalski, Gregory J; Fiering, Jason; Larson, Dale

    2015-03-10

    A computational analysis of the reacting flow field, species diffusion and heat transfer processes with thermal boundary layer effects in a microchannel reactor with a coflow configuration was performed. Two parallel adjacent streams of aqueous reactants flow along a wide, shallow, enclosed channel in contact with a substrate, which is affixed to a temperature controlled plate. The Fluent computational fluid dynamics package solved the Navier-Stokes, mass transport and energy equations. The energy model, including the enthalpy of reaction as a nonuniform heat source, was validated by calculating the energy balance at several control volumes in the microchannel. Analysis reveals that the temperature is nearly uniform across the channel thickness, in the direction normal to the substrate surface; hence, measurements made by sensors at or near the surface are representative of the average temperature. Additionally, modeling the channel with a glass substrate and a silicone cover shows that heat transfer is predominantly due to the glass substrate. Finally, using the numerical results, we suggest that a microcalorimeter could be based on this configuration, and that temperature sensors such as optical nanohole array sensors could have sufficient spatial resolution to determine enthalpy of reaction.

  19. A continuous flow microfluidic calorimeter: 3-D numerical modeling with aqueous reactants

    PubMed Central

    Sen, Mehmet A.; Kowalski, Gregory J.; Fiering, Jason; Larson, Dale

    2015-01-01

    A computational analysis of the reacting flow field, species diffusion and heat transfer processes with thermal boundary layer effects in a microchannel reactor with a coflow configuration was performed. Two parallel adjacent streams of aqueous reactants flow along a wide, shallow, enclosed channel in contact with a substrate, which is affixed to a temperature controlled plate. The Fluent computational fluid dynamics package solved the Navier–Stokes, mass transport and energy equations. The energy model, including the enthalpy of reaction as a nonuniform heat source, was validated by calculating the energy balance at several control volumes in the microchannel. Analysis reveals that the temperature is nearly uniform across the channel thickness, in the direction normal to the substrate surface; hence, measurements made by sensors at or near the surface are representative of the average temperature. Additionally, modeling the channel with a glass substrate and a silicone cover shows that heat transfer is predominantly due to the glass substrate. Finally, using the numerical results, we suggest that a microcalorimeter could be based on this configuration, and that temperature sensors such as optical nanohole array sensors could have sufficient spatial resolution to determine enthalpy of reaction. PMID:25937678

  20. Plasma volume during stress in man - Osmolality and red cell volume

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Convertino, V. A.; Mangseth, G. R.

    1979-01-01

    The purpose was (1) to test the hypothesis that in man there is a range of plasma osmolality within which the red cell volume (RCV) and mean corpuscular volume (MCV) remain essentially constant and (2) to determine the upper limit of this range. During a variety of stresses - submaximal and maximal exercise, heat and altitude exposure, +Gz acceleration, and tilting - changes in plasma osmolality between -1 and +13 mosmol/kg resulted in essentially no change in the regression of percent change in plasma volume (PV) calculated from a change in hematocrit (Hct) on that calculated from a change in Hct + hemoglobin (Hb), i.e., the RCV and MCV were constant. Factors that do not influence RCV are the level of metabolism, heat exposure at rest, and short-term orthostasis (heat-to-foot acceleration). Factors that may influence RCV are exposure to high altitude and long-term orthostasis (head-up tilting). Factors that definitely influence RCV are prior dehydration and extended periods of stress. Thus, either the Hct or the Hct + Hb equations can be used to calculate percent changes in PV under short-term periods of stress when the change in plasma osmolality is less than 13 mosmol/kg.

  1. Probabilistic assessment of the potential indoor air impacts of vent-free gas heating appliances in energy-efficient homes in the United States.

    PubMed

    Whitmyre, Gary K; Pandian, Muhilan D

    2018-06-01

    Use of vent-free gas heating appliances for supplemental heating in U.S. homes is increasing. However, there is currently a lack of information on the potential impact of these appliances on indoor air quality for homes constructed according to energy-efficient and green building standards. A probabilistic analysis was conducted to estimate the impact of vent-free gas heating appliances on indoor air concentrations of carbon monoxide (CO), nitrogen dioxide (NO 2 ), carbon dioxide (CO 2 ), water vapor, and oxygen in "tight" energy-efficient homes in the United States. A total of 20,000 simulations were conducted for each Department of Energy (DOE) heating region to capture a wide range of home sizes, appliance features, and conditions, by varying a number of parameters, e.g., room volume, house volume, outdoor humidity, air exchange rates, appliance input rates (Btu/hr), and house heat loss factors. Predicted airborne levels of CO were below the U.S. Environmental Protection Agency (EPA) standard of 9 ppm for all modeled cases. The airborne concentrations of NO 2 were below the U.S. Consumer Product Safety Commission (CPSC) guideline of 0.3 ppm and the Health Canada benchmark of 0.25 ppm in all cases and were below the World Health Organization (WHO) standard of 0.11 ppm in 99-100% of all cases. Predicted levels of CO 2 were below the Health Canada standard of 3500 ppm for all simulated cases. Oxygen levels in the room of vent-free heating appliance use were not significantly reduced. The great majority of cases in all DOE regions were associated with relative humidity (RH) levels from all indoor water vapor sources that were less than the EPA-recommended 70% RH maximum to avoid active mold and mildew growth. The conclusion of this investigation is that when installed in accordance with the manufacturer's instructions, vent-free gas heating appliances maintain acceptable indoor air quality in tight energy-efficient homes, as defined by the standards referenced in this report. Probabilistic modeling of indoor air concentrations of carbon monoxide (CO), nitrogen dioxide (NO 2 ), carbon dioxide (CO 2 ), water vapor, and oxygen associated with use of vent-free gas heating appliances provides new data indicating that uses of these devices are consistent with acceptable indoor air quality in "tight" energy-efficient homes in the United States. This study will provide authoritative bodies such as the International Code Council with definitive information that will assist in the development of future versions of national building codes, and will provide evaluation of the performance of unvented gas heating products in energy conservation homes.

  2. A Review and Evaluation of the Phase Equilibria, Liquid-Phase Heats of Mixing and Excess Volumes, and Gas-Phase PVT Measurements for Nitrogen+Methane

    NASA Astrophysics Data System (ADS)

    Kidnay, A. J.; Miller, R. C.; Sloan, E. D.; Hiza, M. J.

    1985-07-01

    The available experimental data for vapor-liquid equilibria, heat of mixing, change in volume on mixing for liquid mixtures, and gas-phase PVT measurements for nitrogen+methane have been reviewed and where possible evaluated for consistency. The derived properties chosen for analysis and correlation were liquid mixture excess Gibbs free energies, and Henry's constants.

  3. Thermal load leveling during silicon crystal growth from a melt using anisotropic materials

    DOEpatents

    Carlson, Frederick M.; Helenbrook, Brian T.

    2016-10-11

    An apparatus for growing a silicon crystal substrate comprising a heat source, an anisotropic thermal load leveling component, a crucible, and a cold plate component is disclosed. The anisotropic thermal load leveling component possesses a high thermal conductivity and may be positioned atop the heat source to be operative to even-out temperature and heat flux variations emanating from the heat source. The crucible may be operative to contain molten silicon in which the top surface of the molten silicon may be defined as a growth interface. The crucible may be substantially surrounded by the anisotropic thermal load leveling component. The cold plate component may be positioned above the crucible to be operative with the anisotropic thermal load leveling component and heat source to maintain a uniform heat flux at the growth surface of the molten silicon.

  4. Blood Volume: Importance and Adaptations to Exercise Training, Environmental Stresses and Trauma/Sickness

    NASA Technical Reports Server (NTRS)

    Sawka, Michael N.; Convertino, Victor A.; Eichner, E. Randy; Schnieder, Suzanne M.; Young, Andrew J.

    2000-01-01

    This paper reviews the influence of several perturbations (physical exercise, heat stress, terrestrial altitude, microgravity, and trauma/sickness) on adaptations of blood volume (BV), erythrocyte volume (EV), and plasma volume (PV). Exercise training can induced BV expansion; PV expansion usually occurs immediately, but EV expansion takes weeks. EV and PV expansion contribute to aerobic power improvements associated with exercise training. Repeated heat exposure induces PV expansion but does not alter EV. PV expansion does not improve thermoregulation, but EV expansion improves thermoregulation during exercise in the heat. Dehydration decreases PV (and increases plasma tonicity) which elevates heat strain and reduces exercise performance. High altitude exposure causes rapid (hours) plasma loss. During initial weeks at altitude, EV is unaffected, but a gradual expansion occurs with extended acclimatization. BV adjustments contribute, but are not key, to altitude acclimatization. Microgravity decreases PV and EV which contribute to orthostatic intolerance and decreased exercise capacity in astronauts. PV decreases may result from lower set points for total body water and central venous pressure, which EV decrease bay result form increased erythrocyte destruction. Trauma, renal disease, and chronic diseases cause anemia from hemorrhage and immune activation, which suppressions erythropoiesis. The re-establishment of EV is associated with healing, improved life quality, and exercise capabilities for these injured/sick persons.

  5. The usefulness of GPS bicycle tracking data for evaluating the impact of infrastructure change on cycling behaviour.

    PubMed

    Heesch, Kristiann C; Langdon, Michael

    2016-02-01

    Issue addressed A key strategy to increase active travel is the construction of bicycle infrastructure. Tools to evaluate this strategy are limited. This study assessed the usefulness of a smartphone GPS tracking system for evaluating the impact of this strategy on cycling behaviour. Methods Cycling usage data were collected from Queenslanders who used a GPS tracking app on their smartphone from 2013-2014. 'Heat' and volume maps of the data were reviewed, and GPS bicycle counts were compared with surveillance data and bicycle counts from automatic traffic-monitoring devices. Results Heat maps broadly indicated that changes in cycling occurred near infrastructure improvements. Volume maps provided changes in counts of cyclists due to these improvements although errors were noted in geographic information system (GIS) geo-coding of some GPS data. Large variations were evident in the number of cyclists using the app in different locations. These variations limited the usefulness of GPS data for assessing differences in cycling across locations. Conclusion Smartphone GPS data are useful in evaluating the impact of improved bicycle infrastructure in one location. Using GPS data to evaluate differential changes in cycling across multiple locations is problematic when there is insufficient traffic-monitoring devices available to triangulate GPS data with bicycle traffic count data. So what? The use of smartphone GPS data with other data sources is recommended for assessing how infrastructure improvements influence cycling behaviour.

  6. Recovery Act: Cedarville School District Retrofit of Heating and Cooling Systems with Geothermal Heat Pumps and Ground Source Water Loops

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jarrell, Mark

    Cedarville School District retrofitted the heating and cooling systems in three campus areas (High School, Middle School, and Upper Elementary School) with geothermal heat pumps and ground source water loops, as a demonstration project for the effective implementation of geothermal heat pump systems and other energy efficiency and air quality improvements.

  7. Pin stack array for thermoacoustic energy conversion

    DOEpatents

    Keolian, Robert M.; Swift, Gregory W.

    1995-01-01

    A thermoacoustic stack for connecting two heat exchangers in a thermoacoustic energy converter provides a convex fluid-solid interface in a plane perpendicular to an axis for acoustic oscillation of fluid between the two heat exchangers. The convex surfaces increase the ratio of the fluid volume in the effective thermoacoustic volume that is displaced from the convex surface to the fluid volume that is adjacent the surface within which viscous energy losses occur. Increasing the volume ratio results in an increase in the ratio of transferred thermal energy to viscous energy losses, with a concomitant increase in operating efficiency of the thermoacoustic converter. The convex surfaces may be easily provided by a pin array having elements arranged parallel to the direction of acoustic oscillations and with effective radial dimensions much smaller than the thicknesses of the viscous energy loss and thermoacoustic energy transfer volumes.

  8. Heat source reentry vehicle design study

    NASA Technical Reports Server (NTRS)

    Ryan, R. L.

    1971-01-01

    The design details are presented of a flight-type heat source reentry vehicle and heat exchanger compatible with the isotope Brayton power conversion system. The reference reentry vehicle and heat exchanger were modified, orbital and superorbital capability was assessed, and a complete set of detail design layout drawings were provided.

  9. Ground-Source Heat Pumps | Climate Neutral Research Campuses | NREL

    Science.gov Websites

    cooling requirements and heating loads. GSHPs take advantage of moderate soil temperatures available year Are ground-source heat pumps right for your campus? Are soil conditions suitable? Are heating and consider the following before undertaking an assessment or GSHP installation. Suitable Soil Conditions The

  10. Study of Using Solar Thermal Power for the Margarine Melting Heat Process.

    PubMed

    Sharaf Eldean, Mohamed A; Soliman, A M

    2015-04-01

    The heating process of melting margarine requires a vast amount of thermal energy due to its high melting point and the size of the reservoir it is contained in. Existing methods to heat margarine have a high hourly cost of production and use fossil fuels which have been shown to have a negative impact on the environment. Thus, we perform an analytical feasibility study of using solar thermal power as an alternative energy source for the margarine melting process. In this study, the efficiency and cost effectiveness of a parabolic trough collector (PTC) solar field are compared with that of a steam boiler. Different working fluids (water vapor and Therminol-VP1 heat transfer oil (HTO)) through the solar field are also investigated. The results reveal the total hourly cost ($/h) by the conventional configuration is much greater than the solar applications regardless of the type of working fluid. Moreover, the conventional configuration causes a negative impact to the environment by increasing the amount of CO 2 , CO, and NO 2 by 117.4 kg/day, 184 kg/day, and 74.7 kg/day, respectively. Optimized period of melt and tank volume parameters at temperature differences not exceeding 25 °C are found to be 8-10 h and 100 m 3 , respectively. The solar PTC operated with water and steam as the working fluid is recommended as a vital alternative for the margarine melting heating process.

  11. Processes of conversion of a hot metal particle into aerogel through clusters

    NASA Astrophysics Data System (ADS)

    Smirnov, B. M.

    2015-10-01

    Processes are considered for conversion into a fractal structure of a hot metal micron-size particle that is located in a buffer gas or a gas flow and is heated by an external electric or electromagnetic source or by a plasma. The parameter of this heating is the particle temperature, which is the same in the entire particle volume because of its small size and high conductivity. Three processes determine the particle heat balance: particle radiation, evaporation of metal atoms from the particle surface, and heat transport to the surrounding gas due to its thermal conductivity. The particle heat balance is analyzed based on these processes, which are analogous to those for bulk metals with the small particle size, and its high temperature taken into account. Outside the particle, where the gas temperature is lower than on its surface, the formed metal vapor in a buffer gas flow is converted into clusters. Clusters grow as a result of coagulation until they become liquid, and then clusters form fractal aggregates if they are removed form the gas flow. Subsequently, associations of fractal aggregates join into a fractal structure. The rate of this process increases in medium electric fields, and the formed fractal structure has features of aerogels and fractal fibers. As a result of a chain of the above processes, a porous metal film may be manufactured for use as a filter or catalyst for gas flows.

  12. Program evaluation: Weatherization Residential Assistance Partnership (WRAP) Program. Volume 1, Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-12-01

    The Connecticut low income weatherization program was developed in response to a 1987 rate docket order from the Connecticut Department of Public Utility Control (DPUC) to Connecticut Light & Power Co., an operating subsidiary of Northeast Utilities (NU). (Throughout this report, NU is referred to as the operator of the program.) This program, known as the Weatherization Residential Assistance Partnership, or WRAP, was configured utilizing input from a collaborative group of interested parties to the docket. It was agreed that this program would be put forth by the electric utility, but would not ignore oil and gas savings (thus, itmore » was to be ``fuel- blind``). The allocated cost of conservation services for each fuel source, however, should be cost effective. It was to be offered to those utility customers at or below 200 percent of the federal poverty levels, and provide a wide array of energy saving measures directed toward heating, water heating and lighting. It was felt by the collaborative group that this program would raise the level of expenditures per participant for weatherization services provided by the state, and by linking to and revising the auditing process for weatherization, would lower the audit unit cost. The program plans ranged from the offering of low-cost heating, water heating and infiltration measures, increased insulation levels, carpentry and plumbing services, to furnace or burner replacement. The program was configured to allow for very comprehensive weatherization and heating system servicing.« less

  13. Procedure de caracterisation thermophysique d'un materiau a changement de phase composite pour le stockage thermique

    NASA Astrophysics Data System (ADS)

    Le Du, Mathieu

    The use of phase change materials (PCMs) allows to store and release large amounts of energy in reduced volumes by using latent heat storage through melting and solidifying at specific temperatures. Phase change materials received a great interest for reducing energy consumption by easing the implementation of passive solar heating and cooling. They can be integrated to buildings as wallboards to improve the heat storage capacity. In this study, an original experimental device has allowed to characterize the thermophysical proprieties of a composite wallboard constituted of PCMs. Generally, PCMs are characterized by calorimetric methods which use very small quantities of material. The device used can characterize large sample's dimensions, as they could be used in real condition. Apparent thermal conductivity and specific heat have been measured for various temperatures. During phase change process, total and latent heat storage capacities have been evaluated with the peak melting and freezing temperatures. Results are compared to the manufacturer's data and data from literature. Incoherencies have been found between sources. Despite several differences with published data, overall results are similar to the latest information, which allow validate the original experimental device. Thermal disturbances due to hysteresis have been noticed and discussed. Results allow suggesting recommendations on thermal procedure and experimental device to characterize efficiently this kind of materials. Temperature's ranges and heating and freezing rates affect results and it must be considered in the characterization. Moreover, experimental devices have to be designed to allow similar heating and freezing rates in order to compare results during melting and freezing. Key words: Phase change material, latent thermal storage, thermophysical characterization.

  14. Screening apatites for (U-Th)/He thermochronometry via continuous ramped heating: He age components and implications for age dispersion

    NASA Astrophysics Data System (ADS)

    McDannell, Kalin T.; Zeitler, Peter K.; Janes, Darwin G.; Idleman, Bruce D.; Fayon, Annia K.

    2018-02-01

    Old slowly-cooled apatites often yield dispersed (U-Th)/He ages for a variety of reasons, some well understood and some not. Analytical protocols like careful grain selection can reduce the impact of this dispersion but add costs in time and resources and too often have proven insufficient. We assess a new analytical protocol that utilizes static-gas measurement during continuous ramped heating (CRH) as a means to rapidly screen apatite samples. In about the time required for a conventional total-gas analysis, this method can discriminate between samples showing expected volume-diffusion behavior and those showing anomalous release patterns inconsistent with their direct use in thermochronologic applications. This method also appears able to discriminate between the radiogenic and extraneous 4He fractions released by a sample, potentially allowing ages to be corrected. Well-behaved examples such as the Durango standard and other apatites with good age reproducibility show the expected smooth, sigmoidal gas-release curves predicted for volume diffusion using typical apatite kinetics, with complete exhaustion by ∼900 °C for linear heating at 20 °C/min. Secondary factors such as U and Th zoning and alpha-loss distribution have a relatively minor impact on such profiles. In contrast, samples having greater age dispersion show significant He release in the form of outgassing spikes and He release deferred to higher temperatures. Screening results for a range of samples permit us to assess the degree to which CRH screening can identify misbehaving grains, give insight into the source of extraneous He, and suggest that in some cases it may be possible to correct ages for the presence of such components.

  15. Thermoelectric power generator with intermediate loop

    DOEpatents

    Bell, Lon E; Crane, Douglas Todd

    2013-05-21

    A thermoelectric power generator is disclosed for use to generate electrical power from heat, typically waste heat. An intermediate heat transfer loop forms a part of the system to permit added control and adjustability in the system. This allows the thermoelectric power generator to more effectively and efficiently generate power in the face of dynamically varying temperatures and heat flux conditions, such as where the heat source is the exhaust of an automobile, or any other heat source with dynamic temperature and heat flux conditions.

  16. Thermoelectric power generator with intermediate loop

    DOEpatents

    Bel,; Lon, E [Altadena, CA; Crane, Douglas Todd [Pasadena, CA

    2009-10-27

    A thermoelectric power generator is disclosed for use to generate electrical power from heat, typically waste heat. An intermediate heat transfer loop forms a part of the system to permit added control and adjustability in the system. This allows the thermoelectric power generator to more effectively and efficiently generate power in the face of dynamically varying temperatures and heat flux conditions, such as where the heat source is the exhaust of an automobile, or any other heat source with dynamic temperature and heat flux conditions.

  17. Determination of the thermal stability of fluids by tensimetry - Instrumentation and procedure

    NASA Technical Reports Server (NTRS)

    Helmick, Larry S.; Jones, William R., Jr.

    1990-01-01

    A computerized tensimeter and experimental procedure for determination of the thermal decomposition temperature (T sub d) of perfluoro alkylethers were developed and tested. Both the apparatus and the procedure are described in detail. Results of testing with bis(2-ethylhexyl) phthalate and trimethylolpropane triheptanoate demonstrate that the reciprocal of the decomposition temperature is a linear function of the logarithm of the gas volume/heated liquid volume ratio. The T sub d obtained for each compound at a gas volume/heated liquid volume ration of one was similar to the value previously reported using an isoteniscope technique. Results of testing with a polymer of hexafluoropropylene oxide demonstrate that this instrument and procedure can be used to determine the T sub d of perfluoro alkylethers.

  18. Determination of the thermal stability of perfluoroalkylethers by tensimetry: Instrumentation and Procedure

    NASA Technical Reports Server (NTRS)

    Helmick, Larry S.; Jones, William R., Jr.

    1989-01-01

    A computerized tensimeter and experimental procedure for determination of the thermal decomposition temperature (T sub d) of perfluoro alkylethers were developed and tested. Both the apparatus and the procedure are described in detail. Results of testing with bis(2-ethylhexyl) phthalate and trimethylolpropane triheptanoate demonstrate that the reciprocal of the decomposition temperature is a linear function of the logarithm of the gas volume/heated liquid volume ratio. The T sub d obtained for each compound at a gas volume/heated liquid volume ration of one was similar to the value previously reported using an isoteniscope technique. Results of testing with a polymer of hexafluoropropylene oxide demonstrate that this instrument and procedure can be used to determine the T sub d of perfluoroalkylethers.

  19. Pathways toward a low cost evacuated collector system

    NASA Astrophysics Data System (ADS)

    Hull, J. R.; Schertz, W. W.; Allen, J. W.; Ogallagher, J. J.; Winston, R.

    The goal of widespread use of solar thermal collectors will only be achieved when they are proven to be economically superior to competing energy sources. Evacuated tubular collectors appear to have the potential to achieve this goal. An advanced evacuated collector using nonimaging concentration under development at the University of Chicago and Argonne can achieve a 50% seasonal efficiency at heat delivery temperatures in excess of 170C. The same collector has an optical efficiency so that low temperature performance is also excellent. In this advanced collector design all of the critical components are enclosed in the vacuum, and the collector has an inherently long lifetime. The current cost of evacuated systems is too high, mainly because the volume of production has been too low to realize economies of mass production. It appears that certain design features of evacuated collectors can be changed (e.g., use of heat pipe absorbers) so as to introduce new system design and market strategy options that can reduce the balance of system cost.

  20. Ground Source Heat Pumps vs. Conventional HVAC: A Comparison of Economic and Environmental Costs

    DTIC Science & Technology

    2009-03-26

    of systems are surface water heat pumps (SWHPs), ground water heat pumps (GWHPs), and ground coupled heat pumps ( GCHPs ) (Kavanaugh & Rafferty, 1997...Kavanaugh & Rafferty, 1997). Ground Coupled Heat Pumps (Closed-Loop Ground Source Heat Pumps) GCHPs , otherwise known as closed-loop GSHPs, are the...Significant confusion has arisen through the use of GCHP and closed-loop GSHP terminology. Closed-loop GSHP is the preferred nomenclature for this

  1. Cooling technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salamon, Todd R; Vyas, Brijesh; Kota, Krishna

    An apparatus and a method are provided. Use is made of a wick structure configured to receive a liquid and generate vapor in when such wick structure is heated by heat transferred from heat sources to be cooled off. A vapor channel is provided configured to receive the vapor generated and direct said vapor away from the wick structure. In some embodiments, heat conductors are used to transfer the heat from the heat sources to the liquid in the wick structure.

  2. H- ion sources for CERN's Linac4

    NASA Astrophysics Data System (ADS)

    Lettry, J.; Aguglia, D.; Coutron, Y.; Chaudet, E.; Dallocchio, A.; Gil Flores, J.; Hansen, J.; Mahner, E.; Mathot, S.; Mattei, S.; Midttun, O.; Moyret, P.; Nisbet, D.; O'Neil, M.; Paoluzzi, M.; Pasquino, C.; Pereira, H.; Arias, J. Sanchez; Schmitzer, C.; Scrivens, R.; Steyaert, D.

    2013-02-01

    The specifications set to the Linac4 ion source are: H- ion pulses of 0.5 ms duration, 80 mA intensity and 45 keV energy within a normalized emittance of 0.25 mmmrad RMS at a repetition rate of 2 Hz. In 2010, during the commissioning of a prototype based on H- production from the plasma volume, it was observed that the powerful co-extracted electron beam inherent to this type of ion source could destroy its electron beam dump well before reaching nominal parameters. However, the same source was able to provide 80 mA of protons mixed with a small fraction of H2+ and H3+ molecular ions. The commissioning of the radio frequency quadrupole accelerator (RFQ), beam chopper and H- beam diagnostics of the Linac4 are scheduled for 2012 and its final installation in the underground building is to start in 2013. Therefore, a crash program was launched in 2010 and reviewed in 2011 aiming at keeping the original Linac4 schedule with the following deliverables: Design and production of a volume ion source prototype suitable for 20-30 mA H- and 80 mA proton pulses at 45 keV by mid-2012. This first prototype will be dedicated to the commissioning of the low energy components of the Linac4. Design and production of a second prototype suitable for 40-50 mA H- based on an external RF solenoid plasma heating and cesiated-surface production mechanism in 2013 and a third prototype based on BNL's Magnetron aiming at reliable 2 Hz and 80 mA H- operations in 2014. In order to ease the future maintenance and allow operation with Ion sources based on three different production principles, an ion source "front end" providing alignment features, pulsed gas injection, pumping units, beam tuning capabilities and pulsed bipolar high voltage acceleration was designed and is being produced. This paper describes the progress of the Linac4 ion source program, the design of the Front end and first ion source prototype. Preliminary results of the summer 2012 commissioning are presented. The outlook on the future prototype ion sources is sketched.

  3. Coherent vertical structures in numerical simulations of buoyant plumes from wildland fires

    Treesearch

    Philip Cunningham; Scott L. Goodrick; M. Yousuff Hussaini; Rodman R. Linn

    2005-01-01

    The structure and dynamics of buoyant plumes arising from surface-based heat sources in a vertically sheared ambient atmospheric flow are examined via simulations of a three-dimensional, compressible numerical model. Simple circular heat sources and asymmetric elliptical ring heat sources that are representative of wildland fires of moderate intensity are considered....

  4. Recovery Act: Tennessee Energy Efficient Schools Initiative Ground Source Heat Pump Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Townsend, Terry; Slusher, Scott

    The Tennessee Energy Efficient Schools Initiative (EESI) Hybrid-Water Source Heat Pump (HY-GSHP) Program sought to provide installation costs and operation costs for different Hybrid water source heat pump systems’ configurations so that other State of Tennessee School Districts will have a resource for comparison purposes if considering a geothermal system.

  5. Radioisotopic heat source

    DOEpatents

    Jones, G.J.; Selle, J.E.; Teaney, P.E.

    1975-09-30

    Disclosed is a radioisotopic heat source and method for a long life electrical generator. The source includes plutonium dioxide shards and yttrium or hafnium in a container of tantalum-tungsten-hafnium alloy, all being in a nickel alloy outer container, and subjected to heat treatment of from about 1570$sup 0$F to about 1720$sup 0$F for about one h. (auth)

  6. SPAR thermal analysis processors reference manual, system level 16. Volume 1: Program executive. Volume 2: Theory. Volume 3: Demonstration problems. Volume 4: Experimental thermal element capability. Volume 5: Programmer reference

    NASA Technical Reports Server (NTRS)

    Marlowe, M. B.; Moore, R. A.; Whetstone, W. D.

    1979-01-01

    User instructions are given for performing linear and nonlinear steady state and transient thermal analyses with SPAR thermal analysis processors TGEO, SSTA, and TRTA. It is assumed that the user is familiar with basic SPAR operations and basic heat transfer theory.

  7. Solar Heating and Cooling of Buildings (Phase O). Volume 1: Executive Summary.

    ERIC Educational Resources Information Center

    TRW Systems Group, Redondo Beach, CA.

    The purpose of this study was to establish the technical and economic feasibility of using solar energy for the heating and cooling of buildings. Five selected building types in 14 selected cities were used to determine loads for space heating, space cooling and dehumidification, and domestic service hot water heating. Relying on existing and…

  8. Studies of the water adsorption on Lampung’s natural zeolite of Indonesia for cooling application

    NASA Astrophysics Data System (ADS)

    Wulandari, D. A.; Nasruddin; Lemington

    2018-03-01

    Part of minerals that originally formed from volcanic rock and ash layers reacting further with alkaline groundwater is called natural zeolite, where its sources are not always available in all countries. Indonesia is located in the ring of fire which have a huge sources of zeolite, one of the area is Lampung, South Sumatra. Natural zeolite has been considered as one of potential heat adsorbent medium which can contribute to the energy consumption and reduce air pollution in the using of cooling application. The characteristic of this Lampung natural zeolite such as adsorption kinetics, adsorption water uptake, and adsorption capacity were test with ASAP 2020 system. Sorption kinetics by this experiment of zeolite samples were carried out in a constant temperature and humidity chamber. The chamber can supply constant air condition with deviations of ±0.5 °C for temperature and ±3% for relative humidity. The data based on rate of adsorption and the defined working condition was set as 20°C and 70% RH. Pore volume is a significant parameter for determining the limitation of water uptake, which can describe the saturated condition of zeolite. Sorption isotherm models used to describe sorption phenomena are commonly deduced from the Polanyi potential theory were investigated. The water adsorption quantity increased with the increase of relative pressure. To sum up, this pure zeolite has a less heat and mass transfer performance so its need to be activated before using in cooling application to get their great potential and by being coated in a desiccant heat exchanger systems.

  9. Inductive Electron Heating Revisited

    NASA Astrophysics Data System (ADS)

    Tuszewski, M.

    1996-11-01

    Inductively Coupled Plasmas (ICPs) have been studied for over a century. Recently, ICPs have been rediscovered by the multi-billion dollar semiconductor industry as an important class of high-density, low-pressure plasma sources suitable for the manufacture of next-generation integrated circuits. Present low-pressure ICP development is among the most active areas of plasma research. However, this development remains largely empirical, a prohibitively expensive approach for upcoming 300-mm diameter wafers. Hence, there is an urgent need for basic ICP plasma physics research, including experimental characterization and predictive numerical modeling. Inductive radio frequency (rf) power absorption is fundamental to the ICP electron heating and the resulting plasma transport but remains poorly understood. For example, recent experimental measurements and supporting fluid calculationsfootnote M. Tuszewski, Phys. Rev. Lett. 77 in press (1996) on a commercial deposition tool prototype show that the induced rf magnetic fields in the source can cause an order of magnitude reduction in plasma conductivity and in electron heating power density. In some cases, the rf fields penetrate through the entire volume of the ICP discharges while existing models that neglect the induced rf magnetic fields predict rf absorption in a thin skin layer near the plasma surface. The rf magnetic fields also cause more subtle changes in the plasma density and in the electron temperature spatial distributions. These data will be presented and the role of basic research in the applied world of semiconductor manufacturing will be discussed. ^*This research was conducted under the auspices of the U.S. DOE, supported by funds provided by the University of California for discretionary research by Los Alamos National Laboratory.

  10. The heat-pipe resembling action of boiling bubbles in endovenous laser ablation

    PubMed Central

    van den Bos, Renate R.; van Ruijven, Peter W. M.; Nijsten, Tamar; Neumann, H. A. Martino; van Gemert, Martin J. C.

    2010-01-01

    Endovenous laser ablation (EVLA) produces boiling bubbles emerging from pores within the hot fiber tip and traveling over a distal length of about 20 mm before condensing. This evaporation-condensation mechanism makes the vein act like a heat pipe, where very efficient heat transport maintains a constant temperature, the saturation temperature of 100°C, over the volume where these non-condensing bubbles exist. During EVLA the above-mentioned observations indicate that a venous cylindrical volume with a length of about 20 mm is kept at 100°C. Pullback velocities of a few mm/s then cause at least the upper part of the treated vein wall to remain close to 100°C for a time sufficient to cause irreversible injury. In conclusion, we propose that the mechanism of action of boiling bubbles during EVLA is an efficient heat-pipe resembling way of heating of the vein wall. PMID:20644976

  11. Heat Acclimation and Water-Immersion Deconditioning: Fluid Electrolyte Shifts with Tilting

    NASA Technical Reports Server (NTRS)

    Conertino, V. A.; Shvartz, E.; Haines, R. F.; Bhattacharya, A.; Superinde, S. J.; Keil, L. C.; Greenlean, J. E.

    1977-01-01

    One of the major problems encountered by astronauts exposed to space flight is a reduction of orthostatic tolerance on return to earth. Many studies have been performed in an attempt to define the physiologic mechanism of orthostatic intolerance and to develop some remedial treatment. Exercise training does not appear to enhance orthostatic tolerance . In contrast, heat acclimation (i.e., exercise training in the heat) has been reported to enhance orthostatic tolerance. Since plasma volume increases with both exercise training and heat acclimation, it is not clear what role fluid and electrolytes play in determining tolerance to hydrostatic pressure. The purpose of this study was to compare the effects of exercise training in a cool environment and heat acclimation on resting plasma volume (PV) and the ensuing fluid and electrolyte shifts which occur during head-up tilting before and after water immersion deconditioning.

  12. Conjugate heat transfer of laminar mixed convection of a nanofluid through an inclined tube with circumferentially non-uniform heating.

    PubMed

    Allahyari, Shahriar; Behzadmehr, Amin; Sarvari, Seyed Masoud Hosseini

    2011-04-26

    Laminar mixed convection of a nanofluid consisting of water and Al2O3 in an inclined tube with heating at the top half surface of a copper tube has been studied numerically. The bottom half of the tube wall is assumed to be adiabatic (presenting a tube of a solar collector). Heat conduction mechanism through the tube wall is considered. Three-dimensional governing equations with using two-phase mixture model have been solved to investigate hydrodynamic and thermal behaviours of the nanofluid over wide range of nanoparticle volume fractions. For a given nanoparticle mean diameter the effects of nanoparticle volume fractions on the hydrodynamics and thermal parameters are presented and discussed at different Richardson numbers and different tube inclinations. Significant augmentation on the heat transfer coefficient as well as on the wall shear stress is seen.

  13. Design Criteria for Microbiological Facilities at Fort Detrick. Volume II: Design Criteria

    ERIC Educational Resources Information Center

    Army Biological Labs., Fort Detrick, MD. Industrial Health and Safety Div.

    Volume II of a two-volume manual of design criteria, based primarily on biological safety considerations. It is prepared for the use of architect-engineers in designing new or modified microbiological facilities for Fort Detrick, Maryland. Volume II is divided into the following sections: (1) architectural, (2) heating, ventilating, and air…

  14. Numerical Investigation of Nanofluid Laminar Forced Convective Heat Transfer inside an Equilateral Triangular Tube

    NASA Astrophysics Data System (ADS)

    Etminan, Amin; Harun, Zambri; Sharifian, Ahmad

    2017-01-01

    In this article distilled water and CuO particles with volume fraction of 1%, 2% and 4% are studied numerically. The steady state flow regime is considered laminar with Reynolds number of 100 and nanoparticles diameters (dp) are set in the range of 20 nm and 80 nm. The hydraulic diameter and the length of equilateral triangular channel are 8 mm and 1000 mm respectively. The problem is solved using finite volume method with constant heat flux for two sides and constant temperature for one side. Convective heat transfer coefficient, Nusselt number and convective heat transfer coefficient distribution on walls are investigated in details. The fluid flow is supposed to be one phase flow. It can be observed that nanofluid leads to a remarkable enhancement on heat transfer coefficient pressure loss through the channel. The computations reveal that the size of nanoparticles has no significant influence on heat transfer properties. Besides, the study shows a good agreement between current results and experimental data in the literatures.

  15. Comparison on welding mode characteristics of arc heat source for heat input control in hybrid welding of aluminum alloy

    NASA Astrophysics Data System (ADS)

    Song, Moo-Keun; Kim, Jong-Do; Oh, Jae-Hwan

    2015-03-01

    Presently in shipbuilding, transportation and aerospace industries, the potential to apply welding using laser and laser-arc hybrid heat sources is widely under research. This study has the purpose of comparing the weldability depending on the arc mode by varying the welding modes of arc heat sources in applying laser-arc hybrid welding to aluminum alloy and of implementing efficient hybrid welding while controlling heat input. In the experimental study, we found that hybrid welding using CMT mode produced deeper penetration and sounder bead surface than those characteristics produced during only laser welding, with less heat input compared to that required in pulsed arc mode.

  16. Effects of properties variations of Al2O3-EG-water nanofluid on natural convection heat transfer in a two-dimensional enclosure: Enhancement or deterioration?

    NASA Astrophysics Data System (ADS)

    Khorasanizadeh, H.; Fakhari, M. M.; Ghaffari, S. P.

    2015-05-01

    Heat transfer enhancement or deterioration of variable properties Al2O3-EG-water nanofluid natural convection in a differentially heated rectangular cavity has been investigated numerically. A finite volume approach has been utilized to solve the governing equations for a Newtonian fluid. The influences of the pertinent parameters such as Rayleigh number, Ra, in the range of 103-107 and nanoparticles volume fraction from 0 to 0.04 have been studied. The results verified by making overall comparison with some existing experimental results have shown that for Ra = 103, for which conduction heat transfer is dominant, the average Nusselt number increases as nanoparticles volume fraction increases, but contradictory with the constant properties cases it decreases for higher Ra values. This reduction, which is associated with the increased viscosity, is more severe at Ra = 104 and the least deterioration in heat transfer occurs for Ra = 107. This is due to the fact that the Brownian motion enhances as Ra increases; thus at Ra = 107 the improved conductivity becomes more important than viscosity enhancement. To clarify the contradictory reports existing in the literature on the natural convection heat transfer enhancement or deterioration of nanofluids, a scale analysis performed showed that unlike methods of evaluating the base fluid Ra have led to such differences.

  17. Understanding the influence of buckwheat bran on wheat dough baking performance: Mechanistic insights from molecular and material science approaches.

    PubMed

    Zanoletti, Miriam; Marti, Alessandra; Marengo, Mauro; Iametti, Stefania; Pagani, M Ambrogina; Renzetti, Stefano

    2017-12-01

    A molecular and material science approach is used to describe the influence of coarse and fine buckwheat bran on wheat dough properties and bread textural quality. Focus is given on (i) gluten solvation and structural arrangements in presence of bran as studied by front-face fluorescence; (ii) thermo-mechanical behavior of dough during heating studied by dynamic mechanical thermal analysis and (iii) texture of bread crumb analyzed in terms of a cellular solid. The thermo-mechanical behavior of dough was found to be largely related to starch phase transitions during heating. The use of thermodynamic approaches to biopolymer melting revealed that key transitions such as the onset of starch gelatinization were function of the interplay of water and bran volume fractions in the dough. Front-face fluorescence studies in wheat dough revealed that gluten solvation and structural arrangements were delayed by increasing bran addition level and reduction in particle size, as indicated by the drastic decrease in the protein surface hydrophobicity index. Variations in gluten structure could be strongly related to dough baking performance, i.e. specific volume. With regards to texture, the approach revealed that crumb texture was controlled by variations in density, moisture and bran volume fractions. Overall, this study elucidates a number of physical mechanisms describing the influence of buckwheat bran addition to dough and bread quality. These mechanisms strongly pointed at the influence of bran on water partitioning among the main polymeric components. In the future, these mechanisms should be investigated with bran material of varying source, composition and structure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Material impacts and heat flux characterization of an electrothermal plasma source with an applied magnetic field

    NASA Astrophysics Data System (ADS)

    Gebhart, T. E.; Martinez-Rodriguez, R. A.; Baylor, L. R.; Rapp, J.; Winfrey, A. L.

    2017-08-01

    To produce a realistic tokamak-like plasma environment in linear plasma device, a transient source is needed to deliver heat and particle fluxes similar to those seen in an edge localized mode (ELM). ELMs in future large tokamaks will deliver heat fluxes of ˜1 GW/m2 to the divertor plasma facing components at a few Hz. An electrothermal plasma source can deliver heat fluxes of this magnitude. These sources operate in an ablative arc regime which is driven by a DC capacitive discharge. An electrothermal source was configured with two pulse lengths and tested under a solenoidal magnetic field to determine the resulting impact on liner ablation, plasma parameters, and delivered heat flux. The arc travels through and ablates a boron nitride liner and strikes a tungsten plate. The tungsten target plate is analyzed for surface damage using a scanning electron microscope.

  19. Potential low cost, safe, high efficiency propellant for future space program

    NASA Astrophysics Data System (ADS)

    Zhou, D.

    2005-03-01

    Mixtures of nanometer or micrometer sized carbon powder suspended in hydrogen and methane/hydrogen mixtures are proposed as candidates for low cost, high efficiency propellants for future space programs. While liquid hydrogen has low weight and high heat of combustion per unit mass, because of the low mass density the heat of combustion per unit volume is low, and the liquid hydrogen storage container must be large. The proposed propellants can produce higher gross heat combustion with small volume with trade off of some weight increase. Liquid hydrogen can serve as the fluid component of the propellant in the mixtures and thus used by current rocket engine designs. For example, for the same volume a mixture of 5% methane and 95% hydrogen, can lead to an increase in the gross heat of combustion by about 10% and an increase in the Isp (specific impulse) by 21% compared to a pure liquid hydrogen propellant. At liquid hydrogen temperatures of 20.3 K, methane will be in solid state, and must be formed as fine granules (or slush) to satisfy the requirement of liquid propellant engines.

  20. Different nano-particles volume fraction and Hartmann number effects on flow and heat transfer of water-silver nanofluid under the variable heat flux

    NASA Astrophysics Data System (ADS)

    Forghani-Tehrani, Pezhman; Karimipour, Arash; Afrand, Masoud; Mousavi, Sayedali

    2017-01-01

    Nanofluid flow and heat transfer composed of water-silver nanoparticles is investigated numerically inside a microchannel. Finite volume approach (FVM) is applied and the effects of gravity are ignored. The whole length of Microchannel is considered in three sections as l1=l3=0.151 and l2=0.71. The linear variable heat flux affects the microchannel wall in the length of l2 while a magnetic field with strength of B0 is considered over the whole domain of it. The influences of different values of Hartmann number (Ha=0, 10, 20), volume fraction of the nanoparticles (ɸ=0, 0.02, 0.04) and Reynolds number (Re=10, 50, 200) on the hydrodynamic and thermal properties of flow are reported. The investigation of slip velocity variations under the effects of a magnetic field are presented for the first time (to the best knowledge of author) while the non-dimensional slip coefficient are selected as B=0.01, 0.05, 0.1 at different states.

  1. Counterflow heat exchanger with core and plenums at both ends

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bejan, A.; Alalaimi, M.; Lorente, S.

    2016-04-22

    Here, this paper illustrates the morphing of flow architecture toward greater performance in a counterflow heat exchanger. The architecture consists of two plenums with a core of counterflow channels between them. Each stream enters one plenum and then flows in a channel that travels the core and crosses the second plenum. The volume of the heat exchanger is fixed while the volume fraction occupied by each plenum is variable. Performance is driven by two objectives, simultaneously: low flow resistance and low thermal resistance. The analytical and numerical results show that the overall flow resistance is the lowest when the coremore » is absent, and each plenum occupies half of the available volume and is oriented in counterflow with the other plenum. In this configuration, the thermal resistance also reaches its lowest value. These conclusions hold for fully developed laminar flow and turbulent flow through the core. The curve for effectiveness vs number of heat transfer units (N tu) is steeper (when N tu < 1) than the classical curves for counterflow and crossflow.« less

  2. User's manual for the one-dimensional hypersonic experimental aero-thermodynamic (1DHEAT) data reduction code

    NASA Technical Reports Server (NTRS)

    Hollis, Brian R.

    1995-01-01

    A FORTRAN computer code for the reduction and analysis of experimental heat transfer data has been developed. This code can be utilized to determine heat transfer rates from surface temperature measurements made using either thin-film resistance gages or coaxial surface thermocouples. Both an analytical and a numerical finite-volume heat transfer model are implemented in this code. The analytical solution is based on a one-dimensional, semi-infinite wall thickness model with the approximation of constant substrate thermal properties, which is empirically corrected for the effects of variable thermal properties. The finite-volume solution is based on a one-dimensional, implicit discretization. The finite-volume model directly incorporates the effects of variable substrate thermal properties and does not require the semi-finite wall thickness approximation used in the analytical model. This model also includes the option of a multiple-layer substrate. Fast, accurate results can be obtained using either method. This code has been used to reduce several sets of aerodynamic heating data, of which samples are included in this report.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tong, Tao; Letoquin, Ronan; Keller, Bernd

    An LED lamp or bulb is disclosed that comprises a light source, a heat sink structure and a remote planar phosphor carrier having at least one conversion material. The phosphor carrier can be remote to the light sources and mounted to the heat sink so that heat from the phosphor carrier spreads into the heat sink. The phosphor carrier can comprise a thermally conductive transparent material and a phosphor layer, with an LED based light source mounted to the heat sink such that light from the light source passes through the phosphor carrier. At least some of the LED lightmore » is converted by the phosphor carrier, with some lamp embodiments emitting a white light combination of LED and phosphor light. The phosphor arranged according to the present invention can operate at lower temperature to thereby operate at greater phosphor conversion efficiency and with reduced heat related damage to the phosphor.« less

  4. What does heat tell a mosquito? Characterization of the orientation behaviour of Aedes aegypti towards heat sources.

    PubMed

    Zermoglio, Paula F; Robuchon, Eddy; Leonardi, María Soledad; Chandre, Fabrice; Lazzari, Claudio R

    2017-07-01

    The use of heat as a cue for the orientation of haematophagous insects towards hot-blooded hosts has been acknowledged for many decades. In mosquitoes, thermoreception has been studied at the molecular, physiological and behavioural levels, and the response to heat has been evaluated in multimodal contexts. However, a direct characterization of how these insects evaluate thermal sources is still lacking. In this study we characterize Aedes aegypti thermal orientation using a simple dual choice paradigm, providing direct evidence on how different attributes of heat sources affect their choice. We found that female mosquitoes, but not males, are able to discriminate among heat sources that are at ambient, host-range and deleterious temperatures when no other stimuli are present, eliciting a positive response towards host-range and an avoidance response towards deleterious temperatures. We also tested the preference of females according to the size and position of the sources. We found that females do not discriminate between heat sources of different sizes, but actively orientate towards closer sources at host temperature. Furthermore, we show that females cannot use IR radiation as an orientation cue. Orientation towards a host involves the integration of cues of different nature in distinct phases of the orientation. Although such integration might be decisive for successful encounter of the host, we show that heat alone is sufficient to elicit orientation behaviour. We discuss the performance of mosquitoes' thermal behaviour compared to other blood-sucking insects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Special Important Aspects of the Thomson Effect

    NASA Astrophysics Data System (ADS)

    Lashkevych, Igor; Velázquez, J. E.; Titov, Oleg Yu.; Gurevich, Yuri G.

    2018-06-01

    A comprehensive study of the mechanisms of heating and cooling originating from an electrical current in semiconductor devices is reported. The variation in temperature associated with the Peltier effect is not related to the presence of heat sources and sinks if the heat flux is correctly determined. The Thomson effect is commonly regarded as a heat source/sink proportional to the Thomson coefficient, which is added to the Joule heating. In the present work, we will show that this formulation of the Thomson effect is not sufficiently clear. When the heat flux is correctly defined, the Thomson heat source/sink is proportional to the Seebeck coefficient. In the conditions in which the Peltier effect takes place, the temperature gradient is created, and, consequently, the Thomson effect will occur naturally.

  6. Special Important Aspects of the Thomson Effect

    NASA Astrophysics Data System (ADS)

    Lashkevych, Igor; Velázquez, J. E.; Titov, Oleg Yu.; Gurevich, Yuri G.

    2018-03-01

    A comprehensive study of the mechanisms of heating and cooling originating from an electrical current in semiconductor devices is reported. The variation in temperature associated with the Peltier effect is not related to the presence of heat sources and sinks if the heat flux is correctly determined. The Thomson effect is commonly regarded as a heat source/sink proportional to the Thomson coefficient, which is added to the Joule heating. In the present work, we will show that this formulation of the Thomson effect is not sufficiently clear. When the heat flux is correctly defined, the Thomson heat source/sink is proportional to the Seebeck coefficient. In the conditions in which the Peltier effect takes place, the temperature gradient is created, and, consequently, the Thomson effect will occur naturally.

  7. A multicomponent tracer field experiment to measure the flow volume, surface area, and rectilinear spacing of fractures away from the wellbore

    NASA Astrophysics Data System (ADS)

    Cathles, L. M.; Sanford, W. E.; Hawkins, A.; Li, Y. V.

    2017-12-01

    The nature of flow in fractured porous media is important to almost all subsurface processes including oil and gas recovery, contaminant transport and remediation, CO2 sequestration, and geothermal heat extraction. One would like to know, under flowing conditions, the flow volume, surface area, effective aperture, and rectilinear spacing of fractures in a representative volume of rock away from the well bore, but no methods currently allow acquisition of this data. It could, however, be collected by deploying inert tracers with a wide range of aqueous diffusion constants (e.g., rapidly diffusing heat to non-diffusing nanoparticle) in the following fashion: The flow volume is defined by the heated volume measured by resistivity surveys. The fracture volume within this flow volume is indicate by the nanoparticle transit time. The average fracture spacing is indicated by the evolving thermal profile in the monitor and the production wells (measured by fiber optic cable), and by the retention of absorbing tracers. The average fracture aperture is determined by permeability measurements and the average fracture separation. We have proposed a field test to redundantly measure these fracture parameters in the fractured Dakota Sandstone where it approaches the surface in Ft Collins, Colorado. Five 30 m deep wells (an injection, production, and 3 monitor wells) cased to 20 m are proposed. The experiments will involve at least 9 different tracers. The planned field test and its potential significance will be described.

  8. Method and apparatus for extracting tritium and preparing radioactive waste for disposal

    DOEpatents

    Heung, L.K.

    1994-03-29

    Apparatus is described for heating an object such as a nuclear target bundle to release and recover hydrogen and contain the disposable residue for disposal. The apparatus comprises an inverted furnace, a sleeve/crucible assembly for holding and enclosing the bundle, conveying equipment for placing the sleeve onto the crucible and loading the bundle into the sleeve/crucible, a lift for raising the enclosed bundle into the furnace, and hydrogen recovery equipment including a trap and strippers, all housed in a containment having negative internal pressure. The crucible/sleeve assembly has an internal volume that is sufficient to enclose and hold the bundle before heating; the crucible's internal volume is sufficient by itself to hold and enclose the bundle's volume after heating. The crucible can then be covered and disposed of; the sleeve, on the other hand, can be reused. 4 figures.

  9. CFD Analysis of nanofluid forced convection heat transport in laminar flow through a compact pipe

    NASA Astrophysics Data System (ADS)

    Yu, Kitae; Park, Cheol; Kim, Sedon; Song, Heegun; Jeong, Hyomin

    2017-08-01

    In the present paper, developing laminar forced convection flows were numerically investigated by using water-Al2O3 nano-fluid through a circular compact pipe which has 4.5mm diameter. Each model has a steady state and uniform heat flux (UHF) at the wall. The whole numerical experiments were processed under the Re = 1050 and the nano-fluid models were made by the Alumina volume fraction. A single-phase fluid models were defined through nano-fluid physical and thermal properties calculations, Two-phase model(mixture granular model) were processed in 100nm diameter. The results show that Nusselt number and heat transfer rate are improved as the Al2O3 volume fraction increased. All of the numerical flow simulations are processed by the FLUENT. The results show the increment of thermal transfer from the volume fraction concentration.

  10. Effect of heat shock on the fatty acid and protein profiles of Cronobacter sakazakii BCRC 13988 as well as its growth and survival in the presence of various carbon, nitrogen sources and disinfectants.

    PubMed

    Li, Po-Ting; Hsiao, Wan-Ling; Yu, Roch-Chui; Chou, Cheng-Chun

    2013-12-01

    In the present study, Cronobacter sakazakii, a foodborne pathogen, was first subjected to heat shock at 47 °C for 15 min. Effect of heat shock on the fatty acid and protein profiles, carbon and nitrogen source requirements as well as the susceptibilities of C. sakazakii to Clidox-S, a chlorine-containing disinfectant and Quatricide, a quaternary ammonium compound were investigated. Results revealed that heat shock increased the proportion of myristic acid (14:0), palmitic acid (16:0) and the ratio of saturated fatty acid to unsaturated fatty acid, while reducing the proportion of palmitoleic acid (16:1) and cis-vacceric acid (18:1). In addition, eleven proteins showed enhanced expression, while one protein showed decreased expression in the heat-shocked compared to the non-heat-shocked cells. Non-heat-shocked cells in the medium supplemented with beef extract exhibited the highest maximum population. On the contrary, the highest maximum population of heat-shocked C. sakazakii was noted in the medium having either tryptone or yeast extract as the nitrogen source. Among the various carbon sources examined, the growth of the test organism, regardless of heat shock, was greatest in the medium having glucose as the carbon source. Furthermore, heat shock enhanced the resistance of C. sakazakii to Clidox-S or Quatricide. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Direct observation of isolated Damon-Eshbach and backward volume spin-wave packets in ferromagnetic microstripes

    PubMed Central

    Wessels, Philipp; Vogel, Andreas; Tödt, Jan-Niklas; Wieland, Marek; Meier, Guido; Drescher, Markus

    2016-01-01

    The analysis of isolated spin-wave packets is crucial for the understanding of magnetic transport phenomena and is particularly interesting for applications in spintronic and magnonic devices, where isolated spin-wave packets implement an information processing scheme with negligible residual heat loss. We have captured microscale magnetization dynamics of single spin-wave packets in metallic ferromagnets in space and time. Using an optically driven high-current picosecond pulse source in combination with time-resolved scanning Kerr microscopy probed by femtosecond laser pulses, we demonstrate phase-sensitive real-space observation of spin-wave packets in confined permalloy (Ni80Fe20) microstripes. Impulsive excitation permits extraction of the dynamical parameters, i.e. phase- and group velocities, frequencies and wave vectors. In addition to well-established Damon-Eshbach modes our study reveals waves with counterpropagating group- and phase-velocities. Such unusual spin-wave motion is expected for backward volume modes where the phase fronts approach the excitation volume rather than emerging out of it due to the negative slope of the dispersion relation. These modes are difficult to excite and observe directly but feature analogies to negative refractive index materials, thus enabling model studies of wave propagation inside metamaterials. PMID:26906113

  12. Oxygen Mass Flow Rate Generated for Monitoring Hydrogen Peroxide Stability

    NASA Technical Reports Server (NTRS)

    Ross, H. Richard

    2002-01-01

    Recent interest in propellants with non-toxic reaction products has led to a resurgence of interest in hydrogen peroxide for various propellant applications. Because peroxide is sensitive to contaminants, material interactions, stability and storage issues, monitoring decomposition rates is important. Stennis Space Center (SSC) uses thermocouples to monitor bulk fluid temperature (heat evolution) to determine reaction rates. Unfortunately, large temperature rises are required to offset the heat lost into the surrounding fluid. Also, tank penetration to accomodate a thermocouple can entail modification of a tank or line and act as a source of contamination. The paper evaluates a method for monitoring oxygen evolution as a means to determine peroxide stability. Oxygen generation is not only directly related to peroxide decomposition, but occurs immediately. Measuring peroxide temperature to monitor peroxide stability has significant limitations. The bulk decomposition of 1% / week in a large volume tank can produce in excess of 30 cc / min. This oxygen flow rate corresponds to an equivalent temperature rise of approximately 14 millidegrees C, which is difficult to measure reliably. Thus, if heat transfer were included, there would be no temperature rise. Temperature changes from the surrounding environment and heat lost to the peroxide will also mask potential problems. The use of oxygen flow measurements provides an ultra sensitive technique for monitoring reaction events and will provide an earlier indication of an abnormal decomposition when compared to measuring temperature rise.

  13. Temperature of Heating and Cooling of Massive, Thin, and Wedge-Shaped Plates from Hard-to-Machine Steels During Their Grinding

    NASA Astrophysics Data System (ADS)

    Dement‧ev, V. B.; Ivanova, T. N.; Dolginov, A. M.

    2017-01-01

    Grinding of flat parts occurs by solid abrasive particles due to the physicomechanical process of deformation and to the action of a process liquid at high temperatures in a zone small in volume and difficult for observation. The rate of heating and cooling depends on the change in the intensity of the heat flux and in the velocity and time of action of the heat source. A study has been made of the regularities of the influence of each of these parameters on the depth and character of structural transformations during the grinding of flat parts from hard-to-machine steels. A procedure to calculate temperature in grinding massive, thin, and wedge-shaped parts has been developed with account taken of the geometric and thermophysical parameters of the tool and the treated part, and also of cutting regimes. The procedure can be used as a constituent part in developing a system for automatic design of the technological process of grinding of flat surfaces. A relationship between the temperature in the grinding zone and the regimes of treatment has been established which makes it possible to control the quality of the surface layer of massive, thin, and wedge-shaped plates from hard-to-machine steels. The rational boundaries of shift of cutting regimes have been determined.

  14. Progress in FMIT test assembly development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Opperman, E.K.; Vogel, M.A.; Shen, E.J.

    Research and development supporting the completed design of the Fusion Materials Irradiation Test (FMIT) Facility is continuing at the Hanford Engineering Development Laboratory (HEDL) in Richland, Washington. The FMIT, a deuteron accelerator based (d + Li) neutron source, will produce an intense flux of high energy neutrons for use in radiation damage studies of fusion reactor materials. The most intense flux magnitude of greater than 10/sup 15/ n/cm/sup 2/-s is located close to the neutron producing lithium target and is distributed within a volume about the size of an American football. The conceptual design and development of FMIT experiments calledmore » Test Assemblies has progressed over the past five years in parallel with the design of the FMIT. The paper will describe the recent accomplishments made in developing test assemblies appropriate for use in the limited volume close to the FMIT target where high neutron flux and heating rates and the associated spacial gradients significantly impact design considerations.« less

  15. 10 CFR Appendix E to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Water Heaters

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Heater means a water heater that uses electricity as the energy source, is designed to heat and store... that uses gas as the energy source, is designed to heat and store water at a thermostatically... energy source, is designed to heat and store water at a thermostatically controlled temperature of less...

  16. 10 CFR Appendix E to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Water Heaters

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Heater means a water heater that uses electricity as the energy source, is designed to heat and store... that uses gas as the energy source, is designed to heat and store water at a thermostatically... energy source, is designed to heat and store water at a thermostatically controlled temperature of less...

  17. 10 CFR Appendix E to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Water Heaters

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Heater means a water heater that uses electricity as the energy source, is designed to heat and store... that uses gas as the energy source, is designed to heat and store water at a thermostatically... energy source, is designed to heat and store water at a thermostatically controlled temperature of less...

  18. Mantle source volumes and the origin of the mid-Tertiary ignimbrite flare-up in the southern Rocky Mountains, western U.S.

    NASA Astrophysics Data System (ADS)

    Farmer, G. Lang; Bailley, Treasure; Elkins-Tanton, Linda T.

    2008-04-01

    Voluminous intermediate to silicic composition volcanic rocks were generated throughout the southern Rocky Mountains, western U.S., during the mid-Tertiary "ignimbrite flare-up", principally at the San Juan and Mogollon-Datil volcanic fields. At both volcanic centers, radiogenic isotope data have been interpreted as evidence that 50% or more of the volcanic rocks (by mass) were derived from mantle-derived, mafic parental magmas, but no consensus exists as to whether melting was largely of lithospheric or sub-lithospheric mantle. Recent xenolith studies, however, have revealed that thick (> 100 km), fertile, and hydrated continental lithosphere was present beneath at least portions of the southern Rocky Mountains during the mid-Tertiary. The presence of such thick mantle lithosphere, combined with an apparent lack of syn-magmatic extension, leaves conductive heating of lithospheric mantle as a plausible method of generating the mafic magmas that fueled the ignimbrite flare-up in this inland region. To further assess this possibility, we estimated the minimum volume of mantle needed to generate the mafic magmas parental to the preserved mid-Tertiary igneous rocks. Conservative estimates of the mantle source volumes that supplied the Mogollon-Datil and San Juan volcanic fields are ˜ 2 M km 3 and ˜ 7 M km 3, respectively. These volumes could have comprised only lithospheric mantle if at least the lower ˜ 20 km of the mantle lithosphere beneath the entire southern Rocky Mountains region underwent partial melting during the mid-Tertiary and if the resulting mafic magmas were drawn laterally for distances of up to ˜ 300 km into each center. Such widespread melting of lithospheric mantle requires that the lithospheric mantle have been uniformly fertile and primed for melting in the mid-Tertiary, a possibility if the lithospheric mantle had experienced widespread hydration and refrigeration during early Tertiary low angle subduction. Exposure of the mantle lithosphere to hot, upwelling sub-lithospheric mantle during mid-Tertiary slab roll back could have then triggered the mantle melting. While a plausible source for mid-Tertiary basaltic magmas in the southern Rocky Mountains, lithospheric mantle could not have been the sole source for mafic magmas generated to the south in that portion of the ignimbrite flare-up now preserved in the Sierra Madre Occidental of northern Mexico. The large mantle source volumes (> 45 M km 3) required to fuel the voluminous silicic ignimbrites deposited in this region (> 400 K km 3) are too large to have been accommodated within the lithospheric mantle alone, implying that melting in sub-lithospheric mantle must have played a significant role in generating this mid-Tertiary magmatic event.

  19. Numerical Study on Natural Vacuum Solar Desalination System with Varying Heat Source Temperature

    NASA Astrophysics Data System (ADS)

    Ambarita, H.

    2017-03-01

    A natural vacuum desalination unit with varying low grade heat source temperature is investigated numerically. The objective is to explore the effects of the variable temperature of the low grade heat source on performances and characteristics of the desalination unit. The specifications of the desalination unit are naturally vacuumed with surface area of seawater in evaporator and heating coil are 0.2 m2 and 0.188 m2, respectively. Temperature of the heating coil is simulated based on the solar radiation in the Medan city. A program to solve the governing equations in forward time step marching technique is developed. Temperature of the evaporator, fresh water production rate, and thermal efficiency of the desalination unit are analysed. Simulation is performed for 9 hours, it starts from 8.00 and finishes at 17.00 of local time. The results show that, the desalination unit with operation time of 9 hours can produce 5.705 L of freshwater and thermal efficiency is 81.8 %. This reveals that varying temperature of the heat source of natural vacuum desalination unit shows better performance in comparison with constant temperature of the heat source.

  20. Ground Source Geothermal District Heating and Cooling System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowe, James William

    2016-10-21

    Ball State University converted its campus from a coal-fired steam boiler district heating system to a ground source heat pump geothermal district system that produces simultaneously hot water for heating and chilled water for cooling. This system will include the installation of 3,600 four hundred feet deep vertical closed loop boreholes making it the largest ground source geothermal district system in the country. The boreholes will act as heat exchangers and transfer heat by virtue of the earth’s ability to maintain an average temperature of 55 degree Fahrenheit. With growing international concern for global warming and the need to reducemore » worldwide carbon dioxide loading of the atmosphere geothermal is poised to provide the means to help reduce carbon dioxide emissions. The shift from burning coal to utilizing ground source geothermal will increase electrical consumption but an overall decrease in energy use and reduction in carbon dioxide output will be achieved. This achievement is a result of coupling the ground source geothermal boreholes with large heat pump chiller technology. The system provides the thermodynamic means to move large amounts of energy with limited energy input. Ball State University: http://cms.bsu.edu/About/Geothermal.aspx« less

  1. A model for the influences of soluble and insoluble solids, and treated volume on the ultraviolet-C resistance of heat-stressed Salmonella enterica in simulated fruit juices.

    PubMed

    Estilo, Emil Emmanuel C; Gabriel, Alonzo A

    2018-02-01

    This study was conducted to determine the effects of intrinsic juice characteristics namely insoluble solids (IS, 0-3 %w/v), and soluble solids (SS, 0-70 °Brix), and extrinsic process parameter treated volume (250-1000 mL) on the UV-C inactivation rates of heat-stressed Salmonella enterica in simulated fruit juices (SFJs). A Rotatable Central Composite Design of Experiment (CCRD) was used to determine combinations of the test variables, while Response Surface Methodology (RSM) was used to characterize and quantify the influences of the test variables on microbial inactivation. The heat-stressed cells exhibited log-linear UV-C inactivation behavior (R 2 0.952 to 0.999) in all CCRD combinations with D UV-C values ranging from 10.0 to 80.2 mJ/cm 2 . The D UV-C values obtained from the CCRD significantly fitted into a quadratic model (P < 0.0001). RSM results showed that individual linear (IS, SS, volume), individual quadratic (IS 2 and volume 2 ), and factor interactions (IS × volume and SS × volume) were found to significantly influence UV-C inactivation. Validation of the model in SFJs with combinations not included in the CCRD showed that the predictions were within acceptable error margins. Copyright © 2017. Published by Elsevier Ltd.

  2. Analysis and comparison of methods for the preparation of domestic hot water from district heating system, selected renewable and non-renewable sources in low-energy buildings

    NASA Astrophysics Data System (ADS)

    Knapik, Maciej

    2018-02-01

    The article presents an economic analysis and comparison of selected (district heating, natural gas, heat pump with renewable energy sources) methods for the preparation of domestic hot water in a building with low energy demand. In buildings of this type increased demand of energy for domestic hot water preparation in relation to the total energy demand can be observed. As a result, the proposed solutions allow to further lower energy demand by using the renewable energy sources. This article presents the results of numerical analysis and calculations performed mainly in MATLAB software, based on typical meteorological years. The results showed that system with heat pump and renewable energy sources Is comparable with district heating system.

  3. An Electrothermal Plasma Source Developed for Simulation of Transient Heat Loads in Future Large Fusion Devices

    NASA Astrophysics Data System (ADS)

    Gebhart, Trey; Baylor, Larry; Winfrey, Leigh

    2016-10-01

    The realization of fusion energy requires materials that can withstand high heat and particle fluxes at the plasma material interface. In this work, an electrothermal (ET) plasma source has been designed as a possible transient heat flux source for a linear plasma material interaction device. An ET plasma source operates in the ablative arc regime, which is driven by a DC capacitive discharge. The current travels through the 4mm bore of a boron nitride liner and subsequently ablates and ionizes the liner material. This results in a high density plasma with a large unidirectional bulk flow out of the source exit. The pulse length for the ET source has been optimized using a pulse forming network to have a duration of 1ms at full-width half maximum. The peak currents and maximum source energies seen in this system are 2kA and 5kJ. The goal of this work is to show that the ET source produces electron densities and heat fluxes that are comparable to transient events in future large magnetic confinement fusion devices. Heat flux, plasma temperature, and plasma density were determined for each test shot using infrared imaging and optical spectroscopy techniques. This work will compare the ET source output (heat flux, temperature, and density) with and without an applied magnetic field. Research sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U. S. Department of Energy.

  4. Waste Heat Recovery from a High Temperature Diesel Engine

    NASA Astrophysics Data System (ADS)

    Adler, Jonas E.

    Government-mandated improvements in fuel economy and emissions from internal combustion engines (ICEs) are driving innovation in engine efficiency. Though incremental efficiency gains have been achieved, most combustion engines are still only 30-40% efficient at best, with most of the remaining fuel energy being rejected to the environment as waste heat through engine coolant and exhaust gases. Attempts have been made to harness this waste heat and use it to drive a Rankine cycle and produce additional work to improve efficiency. Research on waste heat recovery (WHR) demonstrates that it is possible to improve overall efficiency by converting wasted heat into usable work, but relative gains in overall efficiency are typically minimal ( 5-8%) and often do not justify the cost and space requirements of a WHR system. The primary limitation of the current state-of-the-art in WHR is the low temperature of the engine coolant ( 90 °C), which minimizes the WHR from a heat source that represents between 20% and 30% of the fuel energy. The current research proposes increasing the engine coolant temperature to improve the utilization of coolant waste heat as one possible path to achieving greater WHR system effectiveness. An experiment was performed to evaluate the effects of running a diesel engine at elevated coolant temperatures and to estimate the efficiency benefits. An energy balance was performed on a modified 3-cylinder diesel engine at six different coolant temperatures (90 °C, 100 °C, 125 °C, 150 °C, 175 °C, and 200 °C) to determine the change in quantity and quality of waste heat as the coolant temperature increased. The waste heat was measured using the flow rates and temperature differences of the coolant, engine oil, and exhaust flow streams into and out of the engine. Custom cooling and engine oil systems were fabricated to provide adequate adjustment to achieve target coolant and oil temperatures and large enough temperature differences across the engine to reduce uncertainty. Changes to exhaust emissions were recorded using a 5-gas analyzer. The engine condition was also monitored throughout the tests by engine compression testing, oil analysis, and a complete teardown and inspection after testing was completed. The integrity of the head gasket seal proved to be a significant problem and leakage of engine coolant into the combustion chamber was detected when testing ended. The post-test teardown revealed problems with oil breakdown at locations where temperatures were highest, with accompanying component wear. The results from the experiment were then used as inputs for a WHR system model using ethanol as the working fluid, which provided estimates of system output and improvement in efficiency. Thermodynamic models were created for eight different WHR systems with coolant temperatures of 90 °C, 150 °C, 175 °C, and 200 °C and condenser temperatures of 60 °C and 90 °C at a single operating point of 3100 rpm and 24 N-m of torque. The models estimated that WHR output for both condenser temperatures would increase by over 100% when the coolant temperature was increased from 90 °C to 200 °C. This increased WHR output translated to relative efficiency gains as high as 31.0% for the 60 °C condenser temperature and 24.2% for the 90 °C condenser temperature over the baseline engine efficiency at 90 °C. Individual heat exchanger models were created to estimate the footprint for a WHR system for each of the eight systems. When the coolant temperature increased from 90 °C to 200 °C, the total heat exchanger volume increased from 16.6 x 103 cm3 to 17.1 x 10 3 cm3 with a 60 °C condenser temperature, but decreased from 15.1 x 103 cm3 to 14.2 x 10 3 cm3 with a 90 °C condenser temperature. For all cases, increasing the coolant temperature resulted in an improvement in the efficiency gain for each cubic meter of heat exchanger volume required. Additionally, the engine oil coolers represented a significant portion of the required heat exchanger volume due to abnormally low engine oil temperatures during the experiment ( 80 °C). Future studies should focus on allowing the engine oil to reach higher operating temperatures which would decrease the heat rejected to the engine oil and reduce the heat duty for the oil coolers resulting in reduced oil cooler volume.

  5. Lighting system with heat distribution face plate

    DOEpatents

    Arik, Mehmet; Weaver, Stanton Earl; Stecher, Thomas Elliot; Kuenzler, Glenn Howard; Wolfe, Jr., Charles Franklin; Li, Ri

    2013-09-10

    Lighting systems having a light source and a thermal management system are provided. The thermal management system includes synthetic jet devices, a heat sink and a heat distribution face plate. The synthetic jet devices are arranged in parallel to one and other and are configured to actively cool the lighting system. The heat distribution face plate is configured to radially transfer heat from the light source into the ambient air.

  6. Self-contained small utility system

    DOEpatents

    Labinov, Solomon D.; Sand, James R.

    1995-01-01

    A method and apparatus is disclosed to provide a fuel efficient source of readily converted energy to an isolated or remote energy consumption facility. External heat from any of a large variety of sources is converted to an electrical, mechanical, heat or cooling form of energy. A polyatomic working fluid energized by external heat sources is dissociated to a higher gaseous energy state for expansion through a turbine prime mover. The working fluid discharge from the turbine prime mover is routed to a recouperative heat exchanger for exothermic recombination reaction heat transfer to working fluid discharged from the compressor segment of the thermodynaic cycle discharge. The heated compressor discharge fluid is thereafter further heated by the external heat source to the initial higher energy state. Under the pressure at the turbine outlet, the working fluid goes out from a recouperative heat exchanger to a superheated vapor heat exchanger where it is cooled by ambient medium down to an initial temperature of condensation. Thereafter, the working fluid is condensed to a complete liquid state in a condenser cooled by an external medium. This liquid is expanded isenthalpically down to the lowest pressure of the cycle. Under this pressure, the working fluid is evaporated to the superheated vapor state of the inlet of a compressor.

  7. Method of fabricating a catalytic structure

    DOEpatents

    Rollins, Harry W [Idaho Falls, ID; Petkovic, Lucia M [Idaho Falls, ID; Ginosar, Daniel M [Idaho Falls, ID

    2009-09-22

    A precursor to a catalytic structure comprising zinc oxide and copper oxide. The zinc oxide has a sheet-like morphology or a spherical morphology and the copper oxide comprises particles of copper oxide. The copper oxide is reduced to copper, producing the catalytic structure. The catalytic structure is fabricated by a hydrothermal process. A reaction mixture comprising a zinc salt, a copper salt, a hydroxyl ion source, and a structure-directing agent is formed. The reaction mixture is heated under confined volume conditions to produce the precursor. The copper oxide in the precursor is reduced to copper. A method of hydrogenating a carbon oxide using the catalytic structure is also disclosed, as is a system that includes the catalytic structure.

  8. Heat capacity measurements of sub-nanoliter volumes of liquids using bimaterial microchannel cantilevers

    NASA Astrophysics Data System (ADS)

    Khan, M. F.; Miriyala, N.; Lee, J.; Hassanpourfard, M.; Kumar, A.; Thundat, T.

    2016-05-01

    Lab-on-a-Chip compatible techniques for thermal characterization of miniaturized volumes of liquid analytes are necessary in applications such as protein blotting, DNA melting, and drug development, where samples are either rare or volume-limited. We developed a closed-chamber calorimeter based on a bimaterial microchannel cantilever (BMC) for sub-nanoliter level thermal analysis. When the liquid-filled BMC is irradiated with infrared (IR) light at a specific wavelength, the IR absorption by the liquid analyte results in localized heat generation and the subsequent deflection of the BMC, due to a thermal expansion mismatch between the constituent materials. The time constant of the deflection, which is dependent upon the heat capacity of the liquid analyte, can be directly measured by recording the time-dependent bending of the BMC. We have used the BMC to quantitatively measure the heat capacity of five volatile organic compounds. With a deflection noise level of ˜10 nm and a signal-to-noise ratio of 68:1, the BMC offers a sensitivity of 30.5 ms/(J g-1 K-1) and a resolution of 23 mJ/(g K) for ˜150 pl liquid for heat capacity measurements. This technique can be used for small-scale thermal characterization of different chemical and biological samples.

  9. Transverse transport of Fe3O4-H2O with viscosity variation under pure internal heating

    NASA Astrophysics Data System (ADS)

    Mehmood, Rashid; Tabassum, R.

    2018-05-01

    Smart fluids are the fluids whose properties can be changed by applying an electric or a magnetic field. Such type of fluid finds tremendous applications in electronic devices, semi-active dampers, magnetic resonance imaging, in space craft propulsion and many more. This communication addresses water based magneto ferrofluid striking at a stretching surface in an oblique manner. In order to present physically realistic analysis, viscosity is assumed to be dependent upon temperature as well as volume fraction of magnetite nanoparticle. The flow governing problem is altered into nonlinear coupled system of ordinary differential equations via scaling transformation which is then solved numerically by means of Runge-kutta Fehlberg scheme. Impact of sundry parameters such as magnetic field parameter, nanoparticle volume fraction, heat generation parameter and variable viscosity parameter on velocity and temperature profile of magneto ferrofluid is presented graphically and discussed in a physical manner. Practical measures of interest namely skin friction and heat flux at the surface are computed. Streamline patterns are traced out to examine the flow pattern. It is found that skin friction and rate of heat transfer at the wall enhances by strengthening the applied magnetic field. Local heat flux can also be enhanced with increasing the volume fraction of magnetite nanoparticles.

  10. Natural convection of Al2O3-water nanofluid in a wavy enclosure

    NASA Astrophysics Data System (ADS)

    Leonard, Mitchell; Mozumder, Aloke K.; Mahmud, Shohel; Das, Prodip K.

    2017-06-01

    Natural convection heat transfer and fluid flow inside enclosures filled with fluids, such as air, water or oil, have been extensively analysed for thermal enhancement and optimisation due to their applications in many engineering problems, including solar collectors, electronic cooling, lubrication technologies, food processing and nuclear reactors. In comparison, little effort has been given to the problem of natural convection inside enclosures filled with nanofluids, while the addition of nanoparticles into a fluid base to alter thermal properties can be a feasible solution for many heat transfer problems. In this study, the problem of natural convection heat transfer and fluid flow inside a wavy enclosure filled with Al2O3-water nanofluid is investigated numerically using ANSYS-FLUENT. The effects of surface waviness and aspect ratio of the wavy enclosure on the heat transfer and fluid flow are analysed for various concentrations of Al2O3 nanoparticles in water. Flow fields and temperature fields are investigated and heat transfer rate is examined for different values of Rayleigh number. Results show that heat transfer within the enclosure can be enhanced by increasing surface waviness, aspect ratio or nanoparticles volume fraction. Changes in surface waviness have little effect on the heat transfer rate at low Rayleigh numbers, but when Ra ≥ 105 heat transfer increases with the increase of surface waviness from zero to higher values. Increasing the aspect ratio causes an increase in heat transfer rate, as the Rayleigh number increases the effect of changing aspect ratio is more apparent with the greatest heat transfer enhancement seen at higher Rayleigh numbers. Nanoparticles volume fraction has a little effect on the average Nusselt number at lower Rayleigh numbers when Ra ≥ 105 average Nusselt number increases with the increase of volume fraction. These findings provide insight into the heat transfer effects of using Al2O3-water nanofluid as a heat transfer medium and the effects of changing geometrical parameters, which will help in developing novel geometries with enhanced and controlled heat-transfer for solar collectors, electronic cooling, and food processing industries.

  11. Prospects for development of heat supply systems in high-rise districts

    NASA Astrophysics Data System (ADS)

    Zhila, Viktor; Solovyeva, Elena

    2018-03-01

    The article analyzes the main advantages and disadvantages of centralized and decentralized heat supply systems in high-rise districts. The main schemes of centralized heat supply systems are considered. They include centralized heat supply from boiler houses, centralized heat supply from autonomous heat sources, heat supply from roof boiler houses and door-to-door heating supply. For each of these variant, the gas distribution systems are considered and analyzed. These systems vary depending on the heat source location. For each of these systems, technical and economic indicators are taken into account, the analysis of which allows choosing the best option for districts where high-rise buildings predominate.

  12. Controlling the pressure within an annular volume of a wellbore

    DOEpatents

    Hermes, Robert E.; Gonzalez, Manuel E.; Llewellyn, Brian C.; Bloys, James B.

    2008-10-28

    A process is described for replacing at least a portion of the liquid within the annular volume of a casing system within a wellbore with a second liquid. The second liquid is preselected to provide a measure of control of the pressure within the annular volume as the fluid within the volume is being heated.

  13. Controlling the pressure within an annular volume of a wellbore

    DOEpatents

    Hermes, Robert E [Los Alamos, NM; Gonzalez, Manuel E [Kingwood, TX; Llewellyn, Brian C [Kingwood, TX; Bloys, James B [Katy, TX; Coates, Don M [Santa Fe, NM

    2011-05-31

    A process is described for replacing at least a portion of the liquid within the annular volume of a casing system within a wellbore with a second liquid. The second liquid is preselected to provide a measure of control of the pressure within the annular volume as the fluid within the volume is being heated.

  14. Controlling the pressure within an annular volume of a wellbore

    DOEpatents

    Hermes, Robert E [Los Alamos, NM; Gonzalez, Manuel E [Kingwood, TX; Llewellyn, Brian C [Kingwood, TX; Bloys, James B [Katy, TX

    2011-01-18

    A process is described for replacing at least a portion of the liquid within the annular volume of a casing system within a wellbore with a second liquid. The second liquid is preselected to provide a measure of control of the pressure within the annular volume as the fluid within the volume is being heated.

  15. Controlling the pressure within an annular volume of a wellbore

    DOEpatents

    Hermes, Robert E.; Gonzalez, Manuel E.; Llewellyn, Brian C.; Bloys, James B.

    2010-06-29

    A process is described for replacing at least a portion of the liquid within the annular volume of a casing system within a wellbore with a second liquid. The second liquid is preselected to provide a measure of control of the pressure within the annular volume as the fluid within the volume is being heated.

  16. Controlling the pressure within an annular volume of a wellbore

    DOEpatents

    Hermes, Robert E [Los Alamos, NM; Gonzalez, Manuel E [Kingwood, NM; Llewellyn, Brian C [Kingwood, TX; Bloys, James B [Katy, TX; Coates, Don M [Santa Fe, NM

    2011-06-21

    A process is described for replacing at least a portion of the liquid within the annular volume of a casing system within a wellbore with a second liquid. The second liquid is preselected to provide a measure of control of the pressure within the annular volume as the fluid within the volume is being heated.

  17. Plasma-catalyzed fuel reformer

    DOEpatents

    Hartvigsen, Joseph J.; Elangovan, S.; Czernichowski, Piotr; Hollist, Michele

    2013-06-11

    A reformer is disclosed that includes a plasma zone to receive a pre-heated mixture of reactants and ionize the reactants by applying an electrical potential thereto. A first thermally conductive surface surrounds the plasma zone and is configured to transfer heat from an external heat source into the plasma zone. The reformer further includes a reaction zone to chemically transform the ionized reactants into synthesis gas comprising hydrogen and carbon monoxide. A second thermally conductive surface surrounds the reaction zone and is configured to transfer heat from the external heat source into the reaction zone. The first thermally conductive surface and second thermally conductive surface are both directly exposed to the external heat source. A corresponding method and system are also disclosed and claimed herein.

  18. The efficiency of the heat pump water heater, during DHW tapping cycle

    NASA Astrophysics Data System (ADS)

    Gużda, Arkadiusz; Szmolke, Norbert

    2017-10-01

    This paper discusses one of the most effective systems for domestic hot water (DHW) production based on air-source heat pump with an integrated tank. The operating principle of the heat pump is described in detail. Moreover, there is an account of experimental set-up and results of the measurements. In the experimental part, measurements were conducted with the aim of determining the energy parameters and measures of the economic efficiency related to the presented solution. The measurements that were conducted are based on the tapping cycle that is similar to the recommended one in EN-16147 standard. The efficiency of the air source heat pump during the duration of the experiment was 2.43. In the end of paper, authors conducted a simplified ecological analysis in order to determine the influence of operation of air-source heat pump with integrated tank on the environment. Moreover the compression with the different source of energy (gas boiler with closed combustion chamber and boiler fired by the coal) was conducted. The heat pump is the ecological friendly source of the energy.

  19. Effects of Fe-Enrichment on the Equation of State and Stability of (Mg,Fe)SiO3 Perovskite and Post-Perovskite

    NASA Astrophysics Data System (ADS)

    Dorfman, S. M.; Holl, C. M.; Meng, Y.; Prakapenka, V.; Duffy, T. S.

    2010-12-01

    Fe-enrichment in the deep lower mantle has been proposed as an explanation for seismic anomalies such as large low shear velocity provinces (LLSVPs) and ultralow velocity zones (ULVZs). In order to resolve the effect of Fe on the stability and equation of state of the lower mantle’s dominant constituent, (Mg,Fe)SiO3 perovskite, we have studied Fe-rich natural orthopyroxenes, (Mg0.61Fe0.37Ca0.02)SiO3 and (Mg0.25Fe0.70Ca0.05)SiO3 (compositions determined by microprobe analysis), at lower mantle P-T conditions. Pyroxene starting materials were mixed with Au (pressure calibrant and laser absorber) and loaded with NaCl or Ne (pressure medium and thermal insulator) in a symmetric diamond anvil cell. X-ray diffraction experiments at pressures up to 122 GPa with in-situ laser heating were performed at the GSECARS (13-ID-D) and HPCAT (16-ID-B) sectors of the Advanced Photon Source. Heating samples to 2000 K produced single-phase orthorhombic GdFeO3-type perovskite at 63 GPa for the Mg# 61 composition and at 72 GPa for the Mg# 25 composition. At lower pressures (56 GPa for Mg# 61, 67 GPa for Mg# 25), heating both compositions resulted in a mixture of perovskite, SiO2 and (Mg,Fe)O. These measurements provide new constraints on the dependence of (Mg,Fe)SiO3 perovskite stability on pressure and composition. Upon further compression to 93 GPa and higher pressures with laser heating, Mg# 25 perovskite transformed to a two-phase mixture of perovskite and post-perovskite. This is consistent with previous findings that Fe substitution destabilizes (Mg,Fe)SiO3 perovskite relative to (Mg,Fe)SiO3 post-perovskite (Mao et al. 2004, Caracas and Cohen 2005). The bulk modulus at 80 GPa (K80) is ~550 GPa for both Fe-rich perovskites, comparable to values measured for MgSiO3 perovskite (Lundin et al. 2008). However, the volume of Fe-rich perovskites increases linearly with Fe-content. The (Mg0.25Fe0.70Ca0.05)SiO3 perovskite is 3% greater at 80 GPa than V80 for the Mg end-member, corresponding to a 20% density difference. This volume difference arises from variations in the a (2% larger than Fe-free perovskite) and c (1% larger) lattice parameters. Volumes under compression show no evidence of a discontinuity in the range measured; any magnetic spin transition in the Fe is either gradual or has too weak an effect on volume to be observed.

  20. Pyrotechnic device provides one-shot heat source

    NASA Technical Reports Server (NTRS)

    Haller, H. C.; Lalli, V. R.

    1968-01-01

    Pyrotechnic heater provides a one-shot heat source capable of creating a predetermined temperature around sealed packages. It is composed of a blend of an active chemical element and another compound which reacts exothermically when ignited and produces fixed quantities of heat.

Top