Science.gov

Sample records for volume holographic correlator

  1. An optical space domain volume holographic correlator

    NASA Astrophysics Data System (ADS)

    Birch, Philip; Gardezi, Akber; Mitra, Bhargav; Young, Rupert; Chatwin, Chris

    2009-04-01

    We propose a novel space domain volume holographic correlator system. One of the limitations of conventional correlators is the bandwidth limits imposed by updating the filter and the readout speed of the CCD. The volume holographic correlator overcomes these by storing a large number of filters that can be interrogated simultaneously. By using angle multiplexing, the match can be read out onto a high speed linear array of sensors. A scanning window can be used to implement shift invariance, thus, making the system operate like a space domain correlator. The space domain correlation method offers an advantage over the frequency domain correlator in that the correlation filter no longer has shift invariance imposed on it since the kernel can be modified depending on its position. This maybe used for normalising the kernel or imposing some non-linearity in an attempt to improve performance. However, one of the key advantages of the frequency domain method is lost using this technique, namely the speed of the computation. A large kernel space-domain correlation, performed on a computer, will be very slow compared to what is achievable using a 4f optical correlator. We propose a method of implementing this using the scanning holographic memory based correlator.

  2. Read-only high accuracy volume holographic optical correlator

    NASA Astrophysics Data System (ADS)

    Zhao, Tian; Li, Jingming; Cao, Liangcai; He, Qingsheng; Jin, Guofan

    2011-10-01

    A read-only volume holographic correlator (VHC) is proposed. After the recording of all of the correlation database pages by angular multiplexing, a stand-alone read-only high accuracy VHC will be separated from the VHC recording facilities which include the high-power laser and the angular multiplexing system. The stand-alone VHC has its own low power readout laser and very compact and simple structure. Since there are two lasers that are employed for recording and readout, respectively, the optical alignment tolerance of the laser illumination on the SLM is very sensitive. The twodimensional angular tolerance is analyzed based on the theoretical model of the volume holographic correlator. The experimental demonstration of the proposed read-only VHC is introduced and discussed.

  3. Large range rotation distortion measurement for remote sensing images based on volume holographic optical correlator

    NASA Astrophysics Data System (ADS)

    Zheng, Tianxiang; Cao, Liangcai; Zhao, Tian; He, Qingsheng; Jin, Guofan

    2012-10-01

    Volume holographic optical correlator can compute the correlation results between images at a super-high speed. In the application of remote imaging processing such as scene matching, 6,000 template images have been angularly multiplexed in the photorefractive crystal and the 6,000 parallel processing channels are achieved. In order to detect the correlation pattern of images precisely and distinguishingly, an on-off pixel inverted technology of images is proposed. It can fully use the CCD's linear range for detection and expand the normalized correlation value differences as the target image rotates. Due to the natural characteristics of the remote sensing images, the statistical formulas between the rotation distortions and the correlation results can be estimated. The rotation distortion components can be estimated by curve fitting method with the data of correlation results. The intensities of the correlation spots are related to the distortion between the two images. The rotation distortion could be derived from the intensities in the post processing procedure. With 18 rotations of the input image and sending them into the volume holographic system, the detection of the rotation variation in the range of 180° can be fulfilled. So the large range rotation distortion detection is firstly realized. It offers a fast, large range rotation measurement method for image distortions.

  4. Multilayer Volume Holographic Optical Memory

    NASA Technical Reports Server (NTRS)

    Markov, Vladimir; Millerd, James; Trolinger, James; Norrie, Mark; Downie, John; Timucin, Dogan; Lau, Sonie (Technical Monitor)

    1998-01-01

    We demonstrate a scheme for volume holographic storage based on the features of shift selectivity of a speckle reference wave hologram. The proposed recording method allows more efficient use of the recording medium and increases the storage density in comparison with spherical or plane-wave reference beams. Experimental results of multiple hologram storage and replay in a photorefractive crystal of iron-doped lithium niobate are presented. The mechanism of lateral and longitudinal shift selectivity are described theoretically and shown to agree with experimental measurements.

  5. In-line digital holographic imaging in volume holographic microscopy.

    PubMed

    Zhai, Xiaomin; Lin, Wei-Tang; Chen, Hsi-Hsun; Wang, Po-Hao; Yeh, Li-Hao; Tsai, Jui-Chang; Singh, Vijay Raj; Luo, Yuan

    2015-12-01

    A dual-plane in-line digital holographic imaging method incorporating volume holographic microscopy (VHM) is presented to reconstruct objects in a single shot while eliminating zero-order and twin-image diffracted waves. The proposed imaging method is configured such that information from different axial planes is acquired simultaneously using multiplexed volume holographic imaging gratings, as used in VHM, and recorded as in-line holograms where the corresponding reference beams are generated in the fashion of Gabor's in-line holography. Unlike conventional VHM, which can take axial intensity information only at focal depths, the proposed method digitally reconstructs objects at any axial position. Further, we demonstrate the proposed imaging technique's ability to effectively eliminate zero-order and twin images for single-shot three-dimensional object reconstruction. PMID:26625046

  6. Active holographic interconnects for interfacing volume storage

    NASA Astrophysics Data System (ADS)

    Domash, Lawrence H.; Schwartz, Jay R.; Nelson, Arthur R.; Levin, Philip S.

    1992-04-01

    In order to achieve the promise of terabit/cm3 data storage capacity for volume holographic optical memory, two technological challenges must be met. Satisfactory storage materials must be developed and the input/output architectures able to match their capacity with corresponding data access rates must also be designed. To date the materials problem has received more attention than devices and architectures for access and addressing. Two philosophies of parallel data access to 3-D storage have been discussed. The bit-oriented approach, represented by recent work on two-photon memories, attempts to store bits at local sites within a volume without affecting neighboring bits. High speed acousto-optic or electro- optic scanners together with dynamically focused lenses not presently available would be required. The second philosophy is that volume optical storage is essentially holographic in nature, and that each data write or read is to be distributed throughout the material volume on the basis of angle multiplexing or other schemes consistent with the principles of holography. The requirements for free space optical interconnects for digital computers and fiber optic network switching interfaces are also closely related to this class of devices. Interconnects, beamlet generators, angle multiplexers, scanners, fiber optic switches, and dynamic lenses are all devices which may be implemented by holographic or microdiffractive devices of various kinds, which we shall refer to collectively as holographic interconnect devices. At present, holographic interconnect devices are either fixed holograms or spatial light modulators. Optically or computer generated holograms (submicron resolution, 2-D or 3-D, encoding 1013 bits, nearly 100 diffraction efficiency) can implement sophisticated mathematical design principles, but of course once fabricated they cannot be changed. Spatial light modulators offer high speed programmability but have limited resolution (512 X 512 pixels

  7. Study on spectrometer based upon volume holographic transmission grating

    NASA Astrophysics Data System (ADS)

    Huang, Zhen; Liu, Guodong; Ren, Zhong; Zeng, Lvming

    2010-10-01

    In this present paper, a spectrometer based upon axial transmissive optical structure with the volume-phase holographic (VPH) transmission grating technology is introduced. We give a physical insight for the structure and mechanism of photorefractive volume holographic gratings and theoretically analyze some important performance parameters of the spectrometer device using the coupled wave theory, which should be considered in the process of the following design for the device with volume phase holographic transmission gratings. The experimental results show, owing to its axial transmissive optical geometry and the perfect performance of the VPH transmission grating, the spectrometer based on the volume-phase holographic transmission grating has satisfactory high resolution and wavelength accuracy. It has great promise to be widely used in the future.

  8. Transport of intensity phase imaging in a volume holographic microscope.

    PubMed

    Waller, Laura; Luo, Yuan; Yang, Se Young; Barbastathis, George

    2010-09-01

    We demonstrate a method for single-shot quantitative phase imaging based on the transport of intensity equation (TIE) in a volume holographic microscope (VHM). The VHM system uses a multiplexed volume hologram to laterally separate images from different focal planes. This axial intensity information is then used to solve the TIE and recover object phase quantitatively. Further, we show improved phase recovery by using five multiplexed gratings in one hologram. PMID:20808383

  9. Second-harmonic diffraction from holographic volume grating.

    PubMed

    Nee, Tsu-Wei

    2006-10-01

    The full polarization property of holographic volume-grating enhanced second-harmonic diffraction (SHD) is investigated theoretically. The nonlinear coefficient is derived from a simple atomic model of the material. By using a simple volume-grating model, the SHD fields and Mueller matrices are first derived. The SHD phase-mismatching effect for a thick sample is analytically investigated. This theory is justified by fitting with published experimental SHD data of thin-film samples. The SHD of an existing polymethyl methacrylate (PMMA) holographic 2-mm-thick volume-grating sample is investigated. This sample has two strong coupling linear diffraction peaks and five SHD peaks. The splitting of SHD peaks is due to the phase-mismatching effect. The detector sensitivity and laser power needed to measure these peak signals are quantitatively estimated. PMID:16985536

  10. Hybrid surface-relief/volume one dimensional holographic gratings

    NASA Astrophysics Data System (ADS)

    Lucchetta, D. E.; Spegni, P.; Di Donato, A.; Simoni, F.; Castagna, R.

    2015-04-01

    Many one dimensional optically patterned photopolymers exist as surface relief or volume phase gratings. However, as far as we know, holographically recorded acrylate-based gratings in which both configurations are present are not described in literature. In this work we report a two steps fabrication process in which a large-area high-resolution hybrid volume/surface relief grating phase gratings is created in a thin film of multiacrylate material spinned on a proper designed substrate. Optical and morphological investigations, made on the optically patterned area, confirm the presence of a one dimensional double (surface relief and Bragg volume phase) periodic structure.

  11. Evaluation of volume phase holographic gratings at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Arns, James A.; Smee, Stephen A.; Barkhouser, Robert H.; Benson, Mark

    2008-07-01

    Collaboration between Kaiser Optical Systems, Inc. and the Department of Physics and Astronomy at Johns Hopkins University has resulted in the construction of volume phase holographic (VPH) transmission gratings that were subsequently tested in a cryogenic environment. VPH gratings were built on two popular optical glasses and subjected to temperatures near 100 Kelvin. Test conditions, observations and results are reported. Design considerations for optimizing VPH grating performance in cold environment is discussed.

  12. An external cavity diode laser using a volume holographic grating

    NASA Astrophysics Data System (ADS)

    Chuang, Ho-Chiao; Chang, Chang-Ray; Chen, Chun-Chia; Chang, Ming-Shien

    2012-10-01

    This study presents an external cavity diode laser (ECDL) system, utilizing a volume holographic grating (VHG) and a microfabricated silicon flexure as the VHG holder. The laser design is aimed for easy assembly, controllability, and better stability of the laser cavity. The laser frequency was stabilized to a D2 transition of rubidium at 780.247 nm, with a mode-hop-free tuning range of 16 GHz and 9.6 GHz with and without feed-forward on the diode injection current. The measured linewidth was 850 kHz in 500 s, qualified for laser cooling experiments.

  13. Holographic thermalization with initial long range correlation

    DOE PAGESBeta

    Lin, Shu

    2016-01-19

    Here, we studied the evolution of the Wightman correlator in a thermalizing state modeled by AdS3-Vaidya background. A prescription was given for calculating the Wightman correlator in coordinate space without using any approximation. For equal-time correlator , we obtained an enhancement factor v2 due to long range correlation present in the initial state. This was missed by previous studies based on geodesic approximation. Moreover, we found that the long range correlation in initial state does not lead to significant modification to thermalization time as compared to known results with generic initial state. We also studied the spatially integrated Wightman correlatormore » and showed evidence on the distinction between long distance and small momentum physics for an out-of-equilibrium state. We also calculated the radiation spectrum of particles weakly coupled to O and found that lower frequency mode approaches thermal spectrum faster than high frequency mode.« less

  14. Aspects of current correlators in holographic theories with hyperscaling violation

    NASA Astrophysics Data System (ADS)

    Edalati, Mohammad; Pedraza, Juan F.

    2013-10-01

    We study the low-energy and low-momentum behavior of current correlators in a class of holographic zero-temperature, finite-density critical theories which do not respect the hyperscaling relation. The dual holographic description is assumed to be given by probe D-branes embedded in background geometries characterized by a dynamical critical exponent z and a hyperscaling violation exponent θ. We show that a subset of these theories with 1≤z<2(1-θ/d) exhibit a stable, linearly dispersing mode in their low-energy spectrum of excitations. This mode, which appears as a pole in the retarded correlators of charge density and longitudinal currents, has some characteristics similar to that of the zero sound in Fermi liquids. Given some reasonable assumptions, we argue that the class of theories with θ=d-1 that logarithmically violate the area law in the entanglement entropy in a manner reminiscent of theories with Fermi surfaces does not exhibit a zero-sound-like mode in the low-energy spectrum of the probe sector. Furthermore, utilizing the holographic Wilsonian approach, we explicitly show that such a mode has a natural interpretation as a Goldstone boson arising from the spontaneous breaking of a specific symmetry.

  15. The Impact of Volume Phase Holographic Filters and Gratings on the Development of Raman Instrumentation

    ERIC Educational Resources Information Center

    Owen, Harry

    2007-01-01

    Volume phase holographic (VPH) optical elements have made a major contribution to Raman spectroscopy by providing notch filters, and VPH gratings that provide remarkable performance advantages over previous technologies. Holographic notch filters have eliminated Rayleigh scattered laser light from single monochromators, thereby contributing to the…

  16. Angle amplifier based on multiplexed volume holographic gratings

    NASA Astrophysics Data System (ADS)

    Cao, Liangcai; Zhao, Yifei; He, Qingsheng; Jin, Guofan

    2008-03-01

    Angle amplifier of laser beam scanner is a widely used device in optical systems. Volume holographic optical elements can be applied in the angle amplifier. Compared with the traditional angle amplifier, it has the advantages of high angle resolution, high diffraction efficiency, small size, and high angle magnification and flexible design. Bragg anglewavelength- compensating recording method is introduced. Because of the Bragg compensatory relation between angle and wavelength, this device could be recorded at another wavelength. The design of the angle amplifier recording at the wavelength of 514.2nm for the working wavelength of 632.8nm is described. An optical setup for recording the angle amplifier device is designed and discussed. Experimental results in the photorefractive crystal Fe:LiNbO 3 demonstrate the feasibility of the angle amplifier scheme.

  17. Cryogenic Volume-Phase Holographic Grisms for MOIRCS

    NASA Astrophysics Data System (ADS)

    Ebizuka, Noboru; Ichiyama, Kotaro; Yamada, Toru; Tokoku, Chihiro; Onodera, Masato; Hanesaka, Mai; Kodate, Kashiko; Katsuno Uchimoto, Yuka; Maruyama, Miyoko; Shimasaku, Kazuhiro; Tanaka, Ichi; Yoshikawa, Tomohiro; Kashikawa, Nobunari; Iye, Masanori; Ichikawa, Takashi

    2011-03-01

    We have developed high-dispersion VPH (volume phase holographic) grisms with zinc selenide (ZnSe) prisms for the cryogenic optical system of MOIRCS (Multi-Object near-InfraRed Camera and Spectrograph) for Y-, J-, H-, and K-band observations. We fabricated VPH gratings using a hologram resin. After several heat cycles at between room temperature and 120 K, the VPH gratings were assembled to grisms by gluing with two ZnSe prisms. Several heat cycles were also carried out for the grisms before being installed into MOIRCS. We measured the efficiencies of the VPH grisms in a laboratory, and found them to be 70%-82%. The performances obtained by observations of MOIRCS with the 8.2 m Subaru Telescope have been found to be very consistent with the results in the laboratory test. This is the first astronomical application of cryogenic VPH grisms.

  18. Volume Holographic Reflection Endoscope for In-Vivo Ovarian Cancer Clinical Studies

    PubMed Central

    Howlett, I. D.; Gordon, M.; Brownlee, J. W.; Barton, J. K.; Kostuk, R. K.

    2014-01-01

    We present the design for an endoscopic system capable of imaging tissues of the ovary at two selected imaging depths simultaneously. The method utilizes a multiplexed volume hologram to select wavefronts from different depths within the tissue. It is the first demonstration of an endoscopic volume holographic imaging system. The endoscope uses both gradient index (GRIN) optical components and off the shelf singlet lenses to relay an image from the distal tip to the proximal end. The endoscope has a minimum diameter of 3.75 mm. The system length is 30 cm which is connected to a handle that includes the holographic components and optics that relay the image to a camera. Preliminary evaluation of the endoscope was performed with tissue phantoms and calibrated targets, which shows lateral resolution ≈ 4 μm at an operating wavelength of 660 nm. The hologram is recorded in phenanthraquinone doped poly methacrylate and is designed to produce images from two tissue depths. One image is obtained at the tissue surface and the second 70 μm below the surface. This method requires no mechanical scanning and acquires an image at the camera frame rate. The preliminary ex-vivo results show good correlation with histology sections of the same tissue sections. PMID:25009709

  19. Volume holographic reflection endoscope for in-vivo ovarian cancer clinical studies

    NASA Astrophysics Data System (ADS)

    Howlett, I. D.; Gordon, M.; Brownlee, J. W.; Barton, J. K.; Kostuk, R. K.

    2014-03-01

    We present the design for an endoscopic system capable of imaging tissues of the ovary at two selected imaging depths simultaneously. The method utilizes a multiplexed volume hologram to select wavefronts from different depths within the tissue. It is the first demonstration of an endoscopic volume holographic imaging system. The endoscope uses both gradient index (GRIN) optical components and off the shelf singlet lenses to relay an image from the distal tip to the proximal end. The endoscope has a minimum diameter of 3.75 mm. The system length is 30 cm which is connected to a handle that includes the holographic components and optics that relay the image to a camera. Preliminary evaluation of the endoscope was performed with tissue phantoms and calibrated targets, which shows lateral resolution ≍ 4 μm at an operating wavelength of 660 nm. The hologram is recorded in phenanthraquinone doped poly methacrylate and is designed to produce images from two tissue depths. One image is obtained at the tissue surface and the second 70 μm below the surface. This method requires no mechanical scanning and acquires an image at the camera frame rate. The preliminary ex-vivo results show good correlation with histology sections of the same tissue sections.

  20. Blue-sensitized nanoparticle-(thiol-ene) polymer composites for volume holographic recording

    NASA Astrophysics Data System (ADS)

    Takahashi, Jun-ichiro; Kawana, Masaru; Tomita, Yasuo

    2016-04-01

    We describe an experimental investigation of volume holographic recording in photopolymerizable thiol-ene based nanoparticle-polymer composites (NPCs) at a wavelength of 404 nm. We introduce a new photoinitiator, Irgacure819, for efficient volume holographic recording in the blue-violet spectral region and measure the photopolymerization dynamics and the holographic recording properties at its varying concentrations. It is found that doping of 0.1 wt.% Irgacure 819 provides the saturated refractive index modulation amplitude as large as 9.5×10-3 and the material recording sensitiviey as high as 1800 cm/J. These measured values are much larger than the minimum required values for holographic data storage media. It is also shown that the out-of-plane shrinkage can be suppressed more with decreasing the photoinitiator concentration. We compare these results with another blue sensitizer, Darocur TPO, to evaluate the performance of Irgacure 819.

  1. Volume holographic printing using unconventional angular multiplexing for three-dimensional display.

    PubMed

    Cao, Liangcai; Wang, Zheng; Zhang, Hao; Jin, Guofan; Gu, Claire

    2016-08-01

    We propose and demonstrate a volume holographic printing method for dynamic three-dimensional (3D) display with an expanded space-bandwidth product (SBP) using unconventional angular multiplexing techniques. By wavefront encoding of the 3D scene, with the help of computer-generated holography, the object beam is loaded onto a 2D phase spatial light modulator (SLM) with a limited SBP. The printing method then writes a single hologram through the interference of the object beam with a reference beam as a holographic element (hogel) in the volume holographic polymer. In addition, multiple 3D scenes can be recorded and dynamically reconstructed by angular multiplexing in the same hogel location. The SBP can be increased by two orders of magnitude compared to the conventional holographic printing method, showing the potential to realize a dynamic and high-resolution 3D display. PMID:27505387

  2. Phase aberration correction by correlation in digital holographic adaptive optics

    PubMed Central

    Liu, Changgeng; Yu, Xiao; Kim, Myung K.

    2013-01-01

    We present a phase aberration correction method based on the correlation between the complex full-field and guide-star holograms in the context of digital holographic adaptive optics (DHAO). Removal of a global quadratic phase term before the correlation operation plays an important role in the correction. Correlation operation can remove the phase aberration at the entrance pupil plane and automatically refocus the corrected optical field. Except for the assumption that most aberrations lie at or close to the entrance pupil, the presented method does not impose any other constraints on the optical systems. Thus, it greatly enhances the flexibility of the optical design for DHAO systems in vision science and microscopy. Theoretical studies show that the previously proposed Fourier transform DHAO (FTDHAO) is just a special case of this general correction method, where the global quadratic phase term and a defocus term disappear. Hence, this correction method realizes the generalization of FTDHAO into arbitrary DHAO systems. The effectiveness and robustness of this method are demonstrated by simulations and experiments. PMID:23669707

  3. Broadband behavior of transmission volume holographic optical elements for solar concentration.

    PubMed

    Bañares-Palacios, Paula; Álvarez-Álvarez, Samuel; Marín-Sáez, Julia; Collados, María-Victoria; Chemisana, Daniel; Atencia, Jesús

    2015-06-01

    A ray tracing algorithm is developed to analyze the energy performance of transmission and phase volume holographic lenses that operate with broadband illumination. The agreement between the experimental data and the theoretical treatment has been tested. The model has been applied to analyze the optimum recording geometry for solar concentration applications.

  4. Associative memory in a volume holographic medium: a new approach based on operator theory

    NASA Astrophysics Data System (ADS)

    Pashaie, Ramin

    2014-07-01

    In this article, we present a new method for holographic implementation of associative memories. In the current approach, the memory capacity is implemented in the form of spatial perturbation of refractive index within the volume of a three dimensional holographic material. We use operator theory to solve the inverse problem and compute a closed-form solution for the spatial distribution of the perturbation considering any arbitrary set of input-output prototype vectors. Simplicity of the hardware is the major advantage of the current method.

  5. Position feedback system for volume holographic storage media

    DOEpatents

    Hays, Nathan J.; Henson, James A.; Carpenter, Christopher M.; Akin, Jr.. William R.; Ehrlich, Richard M.; Beazley, Lance D.

    1998-07-07

    A method of holographic recording in a photorefractive medium wherein stored holograms may be retrieved with maximum signal-to noise ratio (SNR) is disclosed. A plurality of servo blocks containing position feedback information is recorded in the crystal and made non-erasable by heating the crystal. The servo blocks are recorded at specific increments, either angular or frequency, depending whether wavelength or angular multiplexing is applied, and each servo block is defined by one of five patterns. Data pages are then recorded at positions or wavelengths enabling each data page to be subsequently reconstructed with servo patterns which provide position feedback information. The method of recording data pages and servo blocks is consistent with conventional practices. In addition, the recording system also includes components (e.g. voice coil motor) which respond to position feedback information and adjust the angular position of the reference angle of a reference beam to maximize SNR by reducing crosstalk, thereby improving storage capacity.

  6. Characterization of volume holographic recording in photopolymerizable nanoparticle-(thiol-ene) polymer composites at 404 nm

    NASA Astrophysics Data System (ADS)

    Kawana, Masaru; Takahashi, Jun-ichiro; Yasui, Satoru; Tomita, Yasuo

    2015-02-01

    We report on the photopolymerization dynamics and the volume holographic recording properties of a thiol-ene based nanoparticle-polymer composite (NPC) doped with a blue-sensitive photoinitiator, Darocur® TPO, by using a highly coherent blue diode laser operating at a wavelength of 404 nm. Our study indicates that volume gratings recorded in the NPC amount to meeting the material requirements of refractive index modulation and material recording sensitivity for holographic data storage media. It is also found that polymerization shrinkage of recorded NPC gratings is higher than that of the same thiol-ene based NPC with a green (523 nm)-sensitive photoinitiator, Irgacure® 784/BzO2. We attribute such a difference in shrinkage to the photopolymerization dynamics at these recording wavelengths. We show that this shrinkage increase at 404 nm can be mitigated to some extent by controlling the thiol-ene stoichiometry in the NPC.

  7. Optical correlation aspect of holography: from ghost-imaging to static phase-conjugation holographic associative memories

    NASA Astrophysics Data System (ADS)

    Polyanskii, P. V.; Husak, Ye. M.

    2013-12-01

    We highlight the milestones of fifty-year history of emerging holographic associative memory as the chronologically first proposed practical application of the laser holographic techniques (van Heerden, 1963). Holographic associative memories are considered here as an important aspect of correlation optics, and the forming associative response is interpreted with account of fine phase relations among numerous partial images involved into discrimination mechanism of reconstruction. Three main approaches proposed for implementation of holographic associative memories are discussed and compared, namely, classical 'linear' ghost-image holography, the associateve memories based on resonator architectures using optical feedback and thresholding algorithms, and the quadric (second-order) hologrambased associative memories.

  8. Generation of tunable-volume transmission-holographic gratings at low light levels

    SciTech Connect

    Zhao, L.; Duan, Wenhui; Yelin, S. F.

    2011-09-15

    By utilizing giant Kerr nonlinearity obtained by electromagnetically induced transparency (EIT), tunable volume transmission holographic gratings for a weak probe field can be generated by means of a standing-wave signal field at low light levels in a four-level N-type ultracold atomic ensemble. The induced grating can be characterized as a mixed volume holographic grating with a strong phase modulation accompanied by a weak amplitude modulation. Based on Kogelnik's coupled-wave theory in optical holography, we find that high diffraction efficiency (up to 85%) and sensitive angular selectivity (up to {+-}0.000149 rad) can be achieved for the induced grating in the Bragg diffraction regime. And, both of them can be dynamically controlled by tuning the weak standing-wave signal field and the coupling field. Our study not only develops a fundamental understanding of volume diffraction effects in EIT media, but also provides a practical prototype of EIT-based holographic devices for all-optical classical and quantum information processing.

  9. Laser-induced fluorescence imaging of subsurface tissue structures with a volume holographic spatial-spectral imaging system.

    PubMed

    Luo, Yuan; Gelsinger-Austin, Paul J; Watson, Jonathan M; Barbastathis, George; Barton, Jennifer K; Kostuk, Raymond K

    2008-09-15

    A three-dimensional imaging system incorporating multiplexed holographic gratings to visualize fluorescence tissue structures is presented. Holographic gratings formed in volume recording materials such as a phenanthrenquinone poly(methyl methacrylate) photopolymer have narrowband angular and spectral transmittance filtering properties that enable obtaining spatial-spectral information within an object. We demonstrate this imaging system's ability to obtain multiple depth-resolved fluorescence images simultaneously.

  10. Laser-induced fluorescence imaging of subsurface tissue structures with a volume holographic spatial-spectral imaging system.

    PubMed

    Luo, Yuan; Gelsinger-Austin, Paul J; Watson, Jonathan M; Barbastathis, George; Barton, Jennifer K; Kostuk, Raymond K

    2008-09-15

    A three-dimensional imaging system incorporating multiplexed holographic gratings to visualize fluorescence tissue structures is presented. Holographic gratings formed in volume recording materials such as a phenanthrenquinone poly(methyl methacrylate) photopolymer have narrowband angular and spectral transmittance filtering properties that enable obtaining spatial-spectral information within an object. We demonstrate this imaging system's ability to obtain multiple depth-resolved fluorescence images simultaneously. PMID:18794943

  11. Holographic volume gratings in dye-doped jelly-like gelatin

    NASA Astrophysics Data System (ADS)

    Efendiev, T. Sh.; Katarkevich, V. M.; Rubinov, A. N.

    2007-06-01

    Holographic characteristics of a thick self-developing photosensitive medium - dye-doped jelly-like gelatin are investigated by means of pulsed laser exposure. The experiments were performed using aqueous gelatin solutions of Rhodamin 6G with a layer thickness of 1 mm. The slanted holographic gratings were written with two crossed beams from a frequency-doubled (λ = 532 nm) and Q-switched YAG:Nd laser (τ 0.5 ~ 17 ns, f <= 50 Hz). In the course of recording the hologram was read with the beam from a single-mode He-Ne laser (λ = 632.8 nm) which was not absorbed by the photosensitive medium. The real-time evolution of the grating diffraction efficiency was studied in dependence of the dye and gelatin concentration as well as the writing pulse fluence. It is shown that under appropriate choice of the medium composition and parameters of the recording radiation, it is possible to obtain phase volume holographic gratings with a diffraction efficiency of ~ 87 % and an angular selectivity of ~ 20'.

  12. A treatment of the general volume holographic grating as an array of parallel stacked mirrors

    NASA Astrophysics Data System (ADS)

    Brotherton-Ratcliffe, D.

    2012-07-01

    An alternative model to Kogelnik's coupled wave theory of the volume holographic grating is developed in terms of an infinite array of parallel stacked mirrors. The model is based on summing the individual Fresnel reflections from an infinite number of infinitesimal discontinuities in the permittivity profile. The resulting first-order coupled partial differential equations are solved in a rotated frame of reference in order to derive analytical expressions for the diffraction efficiency of the general slanted grating at an arbitrary angle of incidence. The model has been tested using computational solutions of the Helmholtz equation for the unslanted reflection grating. For index modulations characteristic of modern silver halide and photopolymer materials used in display and optical element holography the new model shows excellent agreement with the numerical results. Kogelnik's model also provides good agreement as long as the dephasing parameter is not too large. The model has been tested against Kogelnik's theory for a variety of cases with finite fringe slant with good agreement for typical index modulations. A further advantage of the new model is that colour holographic gratings may be treated at and away from Bragg resonance. Numerical and analytical results are presented concerning the diffractive efficiency of two- and three-colour holographic gratings.

  13. Analysis of volume holographic storage allowing large-angle illumination

    NASA Astrophysics Data System (ADS)

    Shamir, Joseph

    2005-05-01

    Advanced technological developments have stimulated renewed interest in volume holography for applications such as information storage and wavelength multiplexing for communications and laser beam shaping. In these and many other applications, the information-carrying wave fronts usually possess narrow spatial-frequency bands, although they may propagate at large angles with respect to each other or a preferred optical axis. Conventional analytic methods are not capable of properly analyzing the optical architectures involved. For mitigation of the analytic difficulties, a novel approximation is introduced to treat narrow spatial-frequency band wave fronts propagating at large angles. This approximation is incorporated into the analysis of volume holography based on a plane-wave decomposition and Fourier analysis. As a result of the analysis, the recently introduced generalized Bragg selectivity is rederived for this more general case and is shown to provide enhanced performance for the above indicated applications. The power of the new theoretical description is demonstrated with the help of specific examples and computer simulations. The simulations reveal some interesting effects, such as coherent motion blur, that were predicted in an earlier publication.

  14. Performances of new green sensitive liquid photopolymers for volume phase holographic gratings

    NASA Astrophysics Data System (ADS)

    Zanutta, Alessio; Bianco, Andrea; Zerbi, Filippo M.

    2012-03-01

    Liquid photopolymers produced by Polygrama-Lynx (SM-532TR and SM-532TRF) have been studied to determine their performances in terms of refractive index modulation, transparency and overall optical quality. Volume phase holographic gratings (VPHGs) based on these materials have been obtained using a 532 DPSS laser and the grating efficiency has been measured at different angles and wavelengths. Using the Kogelnik model and/or the RCWA approach, the thickness and the refractive index modulation has been determined for gratings as function of light exposure, line density, etc. Index modulations up to 0.03 together with good optical quality were obtained.

  15. Transmitted wavefront error of a volume phase holographic grating at cryogenic temperature.

    PubMed

    Lee, David; Taylor, Gordon D; Baillie, Thomas E C; Montgomery, David

    2012-06-01

    This paper describes the results of transmitted wavefront error (WFE) measurements on a volume phase holographic (VPH) grating operating at a temperature of 120 K. The VPH grating was mounted in a cryogenically compatible optical mount and tested in situ in a cryostat. The nominal root mean square (RMS) wavefront error at room temperature was 19 nm measured over a 50 mm diameter test aperture. The WFE remained at 18 nm RMS when the grating was cooled. This important result demonstrates that excellent WFE performance can be obtained with cooled VPH gratings, as required for use in future cryogenic infrared astronomical spectrometers planned for the European Extremely Large Telescope. PMID:22660099

  16. In vivo simultaneous multispectral fluorescence imaging with spectral multiplexed volume holographic imaging system

    NASA Astrophysics Data System (ADS)

    Lv, Yanlu; Zhang, Jiulou; Zhang, Dong; Cai, Wenjuan; Chen, Nanguang; Luo, Jianwen

    2016-06-01

    A simultaneous multispectral fluorescence imaging system incorporating multiplexed volume holographic grating (VHG) is developed to acquire multispectral images of an object in one shot. With the multiplexed VHG, the imaging system can provide the distribution and spectral characteristics of multiple fluorophores in the scene. The implementation and performance of the simultaneous multispectral imaging system are presented. Further, the system's capability in simultaneously obtaining multispectral fluorescence measurements is demonstrated with in vivo experiments on a mouse. The demonstrated imaging system has the potential to obtain multispectral images fluorescence simultaneously.

  17. Holographic volume absorption grating in glass-like polymer recording material.

    PubMed

    Matusevich, V; Matusevich, A; Kowarschik, R; Matusevich, Yu I; Krul, L P

    2008-02-01

    We investigated the contribution of the absorption and phase gratings to the total diffraction efficiency of volume holographic gratings written in glass-like polymer recording materials based on poly(methyl methacrylate) and its thermostable derivative (copolymer with acrylic acid) with distributed phenanthrenequinone. The typical maximal diffraction efficiency was 0.5%-2.0% for the absorption grating and 22-32% for the phase grating. The modulation of the absorption coefficient varied between 10 cm(-1) and 100 cm(-1) and the modulation of the refractive index was about 10(-4)-10(-3).

  18. High-speed image matching with coaxial holographic optical correlator

    NASA Astrophysics Data System (ADS)

    Ikeda, Kanami; Watanabe, Eriko

    2016-09-01

    A computation speed of more than 100 Gbps is experimentally demonstrated using our developed ultrahigh-speed optical correlator. To verify this high computation speed practically, the computation speeds of our optical correlator and conventional digital image matching are quantitatively compared. We use a population count function that achieves the fastest calculation speed when calculating binary matching by a central processing unit (CPU). The calculation speed of the optical correlator is dramatically faster than that using a CPU (2.40 GHz × 4) and 16 GB of random access memory, especially when the calculation data are large-scale.

  19. Optimization of multi-grating volume holographic spectrum splitters for photovoltaic applications.

    PubMed

    Ingersoll, G B; Leger, J R

    2016-07-10

    Recent research has shown that using multiple diverse-bandgap photovoltaic (PV) cells in conjunction with a spectrum splitting optical system can significantly improve PV power generation efficiency. Although volume Bragg gratings (VBGs) can serve as effective spectrum splitters, the inherent dispersion of a VBG can be detrimental given a broad-spectrum input. The performance of a single holographic spectrum splitter element can be improved by utilizing multiple single volume gratings, each operating in a slightly different spectral band. However, care must be taken to avoid inter-grating coupling effects that limit the ultimate performance. This work explores broadband two-grating holographic optical elements (HOEs) in multiplexed (single element) and sandwiched-grating arrangements. Particle swarm optimization is used to tailor these systems to the solar spectrum, taking into account both efficiency and dispersion. Both multiplexed and sandwiched two-grating systems exhibit performance improvements over single-grating solutions, especially when reduced dispersion is required. Under a ±2° constraint on output angular spread from wavelength dispersion, sandwiched-, multiplexed-, and single-grating systems exhibit power conversion efficiencies of 82.1%, 80.9%, and 77.5%, respectively, compared to an ideal bandpass spectrum splitter. Dispersion performance can be further improved by employing more than two VBGs in the spectrum splitter, but efficiency is compromised by additional cross-coupling effects. Multiplexed-grating systems are especially susceptible to these effects, but have the advantage of utilizing only a single HOE. PMID:27409317

  20. Simultaneous multiplane imaging of human ovarian cancer by volume holographic imaging.

    PubMed

    Orsinger, Gabriel V; Watson, Jennifer M; Gordon, Michael; Nymeyer, Ariel C; de Leon, Erich E; Brownlee, Johnathan W; Hatch, Kenneth D; Chambers, Setsuko K; Barton, Jennifer K; Kostuk, Raymond K; Romanowski, Marek

    2014-03-01

    Ovarian cancer is the most deadly gynecologic cancer, a fact which is attributable to poor early detection and survival once the disease has reached advanced stages. Intraoperative laparoscopic volume holographic imaging has the potential to provide simultaneous visualization of surface and subsurface structures in ovarian tissues for improved assessment of developing ovarian cancer. In this ex vivo ovarian tissue study, we assembled a benchtop volume holographic imaging system (VHIS) to characterize the microarchitecture of 78 normal and 40 abnormal tissue specimens derived from ovarian, fallopian tube, uterine, and peritoneal tissues, collected from 26 patients aged 22 to 73 undergoing bilateral salpingo-oophorectomy, hysterectomy with bilateral salpingo-oophorectomy, or abdominal cytoreductive surgery. All tissues were successfully imaged with the VHIS in both reflectance- and fluorescence-modes revealing morphological features which can be used to distinguish between normal, benign abnormalities, and cancerous tissues. We present the development and successful application of VHIS for imaging human ovarian tissue. Comparison of VHIS images with corresponding histopathology allowed for qualitatively distinguishing microstructural features unique to the studied tissue type and disease state. These results motivate the development of a laparoscopic VHIS for evaluating the surface and subsurface morphological alterations in ovarian cancer pathogenesis.

  1. Optimization of multi-grating volume holographic spectrum splitters for photovoltaic applications.

    PubMed

    Ingersoll, G B; Leger, J R

    2016-07-10

    Recent research has shown that using multiple diverse-bandgap photovoltaic (PV) cells in conjunction with a spectrum splitting optical system can significantly improve PV power generation efficiency. Although volume Bragg gratings (VBGs) can serve as effective spectrum splitters, the inherent dispersion of a VBG can be detrimental given a broad-spectrum input. The performance of a single holographic spectrum splitter element can be improved by utilizing multiple single volume gratings, each operating in a slightly different spectral band. However, care must be taken to avoid inter-grating coupling effects that limit the ultimate performance. This work explores broadband two-grating holographic optical elements (HOEs) in multiplexed (single element) and sandwiched-grating arrangements. Particle swarm optimization is used to tailor these systems to the solar spectrum, taking into account both efficiency and dispersion. Both multiplexed and sandwiched two-grating systems exhibit performance improvements over single-grating solutions, especially when reduced dispersion is required. Under a ±2° constraint on output angular spread from wavelength dispersion, sandwiched-, multiplexed-, and single-grating systems exhibit power conversion efficiencies of 82.1%, 80.9%, and 77.5%, respectively, compared to an ideal bandpass spectrum splitter. Dispersion performance can be further improved by employing more than two VBGs in the spectrum splitter, but efficiency is compromised by additional cross-coupling effects. Multiplexed-grating systems are especially susceptible to these effects, but have the advantage of utilizing only a single HOE.

  2. Simultaneous multiplane imaging of human ovarian cancer by volume holographic imaging

    PubMed Central

    Orsinger, Gabriel V.; Watson, Jennifer M.; Gordon, Michael; Nymeyer, Ariel C.; de Leon, Erich E.; Brownlee, Johnathan W.; Hatch, Kenneth D.; Chambers, Setsuko K.; Barton, Jennifer K.; Kostuk, Raymond K.; Romanowski, Marek

    2014-01-01

    Abstract. Ovarian cancer is the most deadly gynecologic cancer, a fact which is attributable to poor early detection and survival once the disease has reached advanced stages. Intraoperative laparoscopic volume holographic imaging has the potential to provide simultaneous visualization of surface and subsurface structures in ovarian tissues for improved assessment of developing ovarian cancer. In this ex vivo ovarian tissue study, we assembled a benchtop volume holographic imaging system (VHIS) to characterize the microarchitecture of 78 normal and 40 abnormal tissue specimens derived from ovarian, fallopian tube, uterine, and peritoneal tissues, collected from 26 patients aged 22 to 73 undergoing bilateral salpingo-oophorectomy, hysterectomy with bilateral salpingo-oophorectomy, or abdominal cytoreductive surgery. All tissues were successfully imaged with the VHIS in both reflectance- and fluorescence-modes revealing morphological features which can be used to distinguish between normal, benign abnormalities, and cancerous tissues. We present the development and successful application of VHIS for imaging human ovarian tissue. Comparison of VHIS images with corresponding histopathology allowed for qualitatively distinguishing microstructural features unique to the studied tissue type and disease state. These results motivate the development of a laparoscopic VHIS for evaluating the surface and subsurface morphological alterations in ovarian cancer pathogenesis. PMID:24676382

  3. Generation of individually modulated femtosecond pulse string by multilayer volume holographic gratings.

    PubMed

    Yan, Xiaona; Gao, Lirun; Yang, Xihua; Dai, Ye; Chen, Yuanyuan; Ma, Guohong

    2014-10-20

    A scheme to generate individually modulated femtosecond pulse string by multilayer volume holographic grating (MVHG) is proposed. Based on Kogelnik's coupled-wave theory and matrix optics, temporal and spectral expressions of diffracted field are given when a femtosecond pulse is diffracted by a MVHG. It is shown that the number of diffracted sub-pulses in the pulse string equals to the number of grating layers of the MVHG, peak intensity and duration of each diffracted sub-pulse depend on thickness of the corresponding grating layer, whereas pulse interval between adjacent sub-pulses is related to thickness of the corresponding buffer layer. Thus by modulating parameters of the MVHG, individually modulated femtosecond pulse string can be acquired. Based on Bragg selectivity of the volume grating and phase shift provided by the buffer layers, we give an explanation on these phenomena. The result is useful to design MVHG-based devices employed in optical communications, pulse shaping and processing. PMID:25401645

  4. Characterization of volume holographic optical elements recorded in Bayfol HX photopolymer for solar photovoltaic applications.

    PubMed

    Marín-Sáez, Julia; Atencia, Jesús; Chemisana, Daniel; Collados, María-Victoria

    2016-03-21

    Volume Holographic Optical Elements (HOEs) present interesting characteristics for photovoltaic applications as they can select spectrum for concentrating the target bandwidth and avoiding non-desired wavelengths, which can cause the decrease of the performance on the cell, for instance by overheating it. Volume HOEs have been recorded on Bayfol HX photopolymer to test the suitability of this material for solar concentrating photovoltaic systems. The HOEs were recorded at 532 nm and provided a dynamic range, reaching close to 100% efficiency at 800 nm. The diffracted spectrum had a FWHM of 230 nm when illuminating at Bragg angle. These characteristics prove HOEs recorded on Bayfol HX photopolymer are suitable for concentrating solar light onto photovoltaic cells sensitive to that wavelength range. PMID:27136889

  5. Generation of individually modulated femtosecond pulse string by multilayer volume holographic gratings.

    PubMed

    Yan, Xiaona; Gao, Lirun; Yang, Xihua; Dai, Ye; Chen, Yuanyuan; Ma, Guohong

    2014-10-20

    A scheme to generate individually modulated femtosecond pulse string by multilayer volume holographic grating (MVHG) is proposed. Based on Kogelnik's coupled-wave theory and matrix optics, temporal and spectral expressions of diffracted field are given when a femtosecond pulse is diffracted by a MVHG. It is shown that the number of diffracted sub-pulses in the pulse string equals to the number of grating layers of the MVHG, peak intensity and duration of each diffracted sub-pulse depend on thickness of the corresponding grating layer, whereas pulse interval between adjacent sub-pulses is related to thickness of the corresponding buffer layer. Thus by modulating parameters of the MVHG, individually modulated femtosecond pulse string can be acquired. Based on Bragg selectivity of the volume grating and phase shift provided by the buffer layers, we give an explanation on these phenomena. The result is useful to design MVHG-based devices employed in optical communications, pulse shaping and processing.

  6. Characterization of volume holographic optical elements recorded in Bayfol HX photopolymer for solar photovoltaic applications.

    PubMed

    Marín-Sáez, Julia; Atencia, Jesús; Chemisana, Daniel; Collados, María-Victoria

    2016-03-21

    Volume Holographic Optical Elements (HOEs) present interesting characteristics for photovoltaic applications as they can select spectrum for concentrating the target bandwidth and avoiding non-desired wavelengths, which can cause the decrease of the performance on the cell, for instance by overheating it. Volume HOEs have been recorded on Bayfol HX photopolymer to test the suitability of this material for solar concentrating photovoltaic systems. The HOEs were recorded at 532 nm and provided a dynamic range, reaching close to 100% efficiency at 800 nm. The diffracted spectrum had a FWHM of 230 nm when illuminating at Bragg angle. These characteristics prove HOEs recorded on Bayfol HX photopolymer are suitable for concentrating solar light onto photovoltaic cells sensitive to that wavelength range.

  7. Development of a large mosaic volume phase holographic (VPH) grating for APOGEE

    NASA Astrophysics Data System (ADS)

    Arns, James; Wilson, John C.; Skrutskie, Mike; Smee, Steve; Barkhouser, Robert; Eisenstein, Daniel; Gunn, Jim; Hearty, Fred; Harding, Al; Maseman, Paul; Holtzman, Jon; Schiavon, Ricardo; Gillespie, Bruce; Majewski, Steven

    2010-07-01

    Volume phase holographic (VPH) gratings are increasingly being used as diffractive elements in astronomical instruments due to their potential for very high peak diffraction efficiencies and the possibility of a compact instrument design when the gratings are used in transmission. Historically, VPH grating (VPHG) sizes have been limited by the size of manufacturer's holographic recording optics. We report on the design, specification and fabrication of a large, 290 mm × 475 mm elliptically-shaped, mosaic VPHG for the Apache Point Observatory Galactic Evolution Experiment (APOGEE) spectrograph. This high-resolution near-infrared multi-object spectrograph is in construction for the Sloan Digital Sky Survey III (SDSS III). The 1008.6 lines/mm VPHG was designed for optimized performance over a wavelength range from 1.5 to 1.7 μm. A step-and-repeat exposure method was chosen to fabricate a three-segment mosaic on a 305 mm × 508 mm monolithic fused-silica substrate. Specification considerations imposed on the VPHG to assure the mosaic construction will satisfy the end use requirements are discussed. Production issues and test results of the mosaic VPHG are discussed.

  8. Volume phase holographic grating used for beams combination of RGB primary colors

    NASA Astrophysics Data System (ADS)

    Liu, Hui; Zhang, Xizhao; Tang, Minxue

    2013-12-01

    Volume phase holographic grating (VPHG) has the characteristics of high diffraction efficiency, high signal to noise ratio, high wavelength and angular selectivity, low scattering , low absorption and low cost. It has been widely used in high resolution spectrometer, wavelength division multiplexing and pulse compression technique. In this paper, a novel kind of RGB primary colors beams combiner which is consisted of a transmission VPHG and a reflection VPHG as core components is proposed. The design idea of the element is described in detail. Based on the principle of VPHG, the rigorous coupled wave analysis (RCWA) and Kogelnik's coupled wave theory, diffraction properties of the transmission and reflection VPHG are studied theoretically. As an example, three primary colors at wavelengths of 632.8nm, 532nm and 476.5nm are taken into account. Dichromated gelatin (DCG) is used as the holographic recording material. The grating parameters are determined by the Bragg conditions. The TE and TM wave diffraction efficiency, the wavelength selectivity and the angular selectivity of the transmission and reflection VPHG are calculated and optimized by setting the amplitude of the index modulation (Δn) and the thickness of the gelatin layer (d) by applying Kogelnik's coupled wave theory and G-solver software, respectively. The theoretical calculating results give guidance for further manufacture of the element.

  9. Quasinormal modes and holographic correlators in a crunching AdS geometry

    NASA Astrophysics Data System (ADS)

    Kumar, S. Prem; Vaganov, Vladislav

    2016-02-01

    We calculate frequency space holographic correlators in an asymptotically AdS crunching background, dual to a relevant deformation of the M2-brane CFT placed in de Sitter spacetime. For massless bulk scalars, exploiting the connection to a solvable supersymmetric quantum mechanical problem, we obtain the exact frequency space correlator for the dual operator in the deformed CFT. Controlling the shape of the crunching surface in the Penrose diagram by smoothly dialling the deformation from zero to infinity, we observe that in the large deformation limit the Penrose diagram becomes a `square', and the exact holographic correlators display striking similarities to their counterparts in the BTZ black hole and its higher dimensional generalisations. We numerically determine quasinormal poles for relevant and irrelevant operators, and find an intricate pattern of these in the complex frequency plane. In the case of relevant operators, the deformation parameter has an infinite sequence of critical values, each one characterised by a pair of poles colliding and moving away from the imaginary frequency axis with increasing deformation. In the limit of infinite deformation all scalar operators have identical quasinormal spectra. We compare and contrast our strongly coupled de Sitter QFT results with strongly coupled thermal correlators from AdS black holes.

  10. Volume phase holographic grating performance on the VIRUS-P instrument

    NASA Astrophysics Data System (ADS)

    Adams, Joshua J.; Hill, Gary J.; MacQueen, Phillip J.

    2008-07-01

    The Visible Integral-field Replicable Unit Spectrograph Prototype (VIRUS-P) has been in operation on the Harlan J Smith 2.7m Telescope at McDonald Observatory since October of 2006. The prototype was created to test the design and science capabilities of the full VIRUS instrument, wherein 150 copies of the spectrograph will be installed on the Hobby Eberly Telescope (HET). We here discuss the specialized test bench built to assess the blue optimized Volume Phase Holographic (VPH) grating performance. We also give lab and on-telescope efficiency measurements for three such gratings in the wavelength range 3400-6800Å. Two sources of stray light relevant to most spectrograph designs are also discussed.

  11. Performance of volume phase holographic transmission grating recorded in DCG for PGP

    NASA Astrophysics Data System (ADS)

    Li, Ming; Tang, Minxue; Xia, Haohan; Fang, Chunhuan; Wu, Jianhong; Zhao, Xunjie

    2010-11-01

    The volume phase holographic (VPH) transmission grating recorded in dichromate gelatin (DCG) with a specific spectral coverage from 420 nm to 760 nm is designed for a novel prism-grating-prism imaging spectrometer. Based on the Rigorous Coupled-Wave Analysis, its performances are predicted and analyzed. The grating is manufactured and its properties are measured experimentally. The diffraction efficiency over the spectral range, the bandwidth, and the angular selectivity of the grating is measured, analyzed and compared with that of the theoretical ones. The results show that by adjusting and controlling the preparation conditions of DCG plates, the exposure time and the post-processing technique of the grating, the VPH transmission grating with high diffraction efficiency approximate to the design requirement can be obtained. The measured peak diffraction efficiency reaches nearly 85% at central wavelength of 590 nm while the average diffraction efficiency is larger than 75% over the required spectral range from 420 nm to 760 nm.

  12. Reduction of blurring in broadband volume holographic imaging using a deconvolution method

    PubMed Central

    Lv, Yanlu; Zhang, Xuanxuan; Zhang, Dong; Zhang, Lin; Luo, Yuan; Luo, Jianwen

    2016-01-01

    Volume holographic imaging (VHI) is a promising biomedical imaging tool that can simultaneously provide multi-depth or multispectral information. When a VHI system is probed with a broadband source, the intensity spreads in the horizontal direction, causing degradation of the image contrast. We theoretically analyzed the reason of the horizontal intensity spread, and the analysis was validated by the simulation and experimental results of the broadband impulse response of the VHI system. We proposed a deconvolution method to reduce the horizontal intensity spread and increase the image contrast. Imaging experiments with three different objects, including bright field illuminated USAF test target and lung tissue specimen and fluorescent beads, were carried out to test the performance of the proposed method. The results demonstrated that the proposed method can significantly improve the horizontal contrast of the image acquire by broadband VHI system. PMID:27570703

  13. Statistical analysis on extended reference method for volume holographic data storage

    NASA Astrophysics Data System (ADS)

    Dai, Foster F.; Gu, Claire

    1997-06-01

    We previously proposed a novel recording method to reduce the crosstalk noise and improve the storage capacity in angle-multiplexed volume holographic data storages. Instead of conventionally using a plane wave to record holograms, the technique employs a recording reference extending uniformly within a narrow spatial frequency bandwidth and reads the memory with a plane wave. The analytical results show that the SNR obtained by using the extended reference method is about 20 dB higher than that achieved in terms of the conventional recording method. For interpixel crosstalk noise, a statistical analysis is presented and the SNR is given in a closed form for both the point reference and the extended reference methods. Considering both interpage and interpixel crosstalk noise, we further investigate the crosstalk-limited storage density. The results show that the proposed extended reference method achieves about 10 times larger storage density than the point reference method.

  14. Design and development of the high-resolution spectrograph HERMES and the unique volume phase holographic gratings

    NASA Astrophysics Data System (ADS)

    Heijmans, J. A. C.; Gers, L.; Faught, B.

    2011-10-01

    We report on the grating development for the High Efficiency and Resolution Multi Element Spectrograph (HERMES). This paper discusses the challenges of designing, optimizing, and tolerancing large aperture volume phase holographic (VPH) gratings for HERMES. The high spectral resolution requirements require steep angles of incidence, of 67.2 degrees, and high line densities, ranging between 2400 and 3800 lines per mm, resulting in VPH gratings that are highly s-polarized that push the fabrication process to its limits.

  15. Methods for evaluating the performance of volume phase holographic gratings for the VIRUS spectrograph array

    NASA Astrophysics Data System (ADS)

    Chonis, Taylor S.; Hill, Gary J.; Clemens, J. Christopher; Dunlap, Bart; Lee, Hanshin

    2012-09-01

    The Visible Integral field Replicable Unit Spectrograph (VIRUS) is an array of at least 150 copies of a simple, fiber-fed integral field spectrograph that will be deployed on the Hobby-Eberly Telescope (HET) to carry out the HET Dark Energy Experiment (HETDEX). Each spectrograph contains a volume phase holographic grating as its dispersing element that is used in first order for 350 < λ(nm) < 550. We discuss the test methods used to evaluate the performance of the prototype gratings, which have aided in modifying the fabrication prescription for achieving the specified batch diffraction efficiency required for HETDEX. In particular, we discuss tests in which we measure the diffraction efficiency at the nominal grating angle of incidence in VIRUS for all orders accessible to our test bench that are allowed by the grating equation. For select gratings, these tests have allowed us to account for < 90% of the incident light for wavelengths within the spectral coverage of VIRUS. The remaining light that is unaccounted for is likely being diffracted into reflective orders or being absorbed or scattered within the grating layer (for bluer wavelengths especially, the latter term may dominate the others). Finally, we discuss an apparatus that will be used to quickly verify the first order diffraction efficiency specification for the batch of at least 150 VIRUS production gratings.

  16. Mass production of volume phase holographic gratings for the VIRUS spectrograph array

    NASA Astrophysics Data System (ADS)

    Chonis, Taylor S.; Frantz, Amy; Hill, Gary J.; Clemens, J. Christopher; Lee, Hanshin; Tuttle, Sarah E.; Adams, Joshua J.; Marshall, J. L.; DePoy, D. L.; Prochaska, Travis

    2014-07-01

    The Visible Integral-field Replicable Unit Spectrograph (VIRUS) is a baseline array of 150 copies of a simple, fiber-fed integral field spectrograph that will be deployed on the Hobby-Eberly Telescope (HET). VIRUS is the first optical astronomical instrument to be replicated on an industrial scale, and represents a relatively inexpensive solution for carrying out large-area spectroscopic surveys, such as the HET Dark Energy Experiment (HETDEX). Each spectrograph contains a volume phase holographic (VPH) grating with a 138 mm diameter clear aperture as its dispersing element. The instrument utilizes the grating in first-order for 350 < λ (nm) < 550. Including witness samples, a suite of 170 VPH gratings has been mass produced for VIRUS. Here, we present the design of the VIRUS VPH gratings and a discussion of their mass production. We additionally present the design and functionality of a custom apparatus that has been used to rapidly test the first-order diffraction efficiency of the gratings for various discrete wavelengths within the VIRUS spectral range. This device has been used to perform both in-situ tests to monitor the effects of adjustments to the production prescription as well as to carry out the final acceptance tests of the gratings' diffraction efficiency. Finally, we present the as-built performance results for the entire suite of VPH gratings.

  17. Wavelength stabilization of high power laser systems using volume holographic gratings

    NASA Astrophysics Data System (ADS)

    Negoita, Viorel C.; Li, Yufeng; Barnowski, Tobias; Jiang, John; An, Haiyan; Roff, Robert; Shih, Ming; Vethake, Thilo; Gottwald, Tina; Schad, Sven; Treusch, Georg

    2014-03-01

    We present our latest experimental results in wavelength stabilization of high power laser diode systems by using Volume Holographic (Bragg) Gratings. Such systems are used as optical pumps to increase the efficiency and brightness of Thin Disk Lasers. To achieve a wide locking range from threshold until maximum operation current (for example from 30A to 250A), careful control of laser system alignment is necessary to ensure effective feedback and locking, without using strong gratings which could reduce laser efficiency. For this purpose, we use wavefront correction optics to compensate for laser bar smile and Fast Axis Collimation pointing errors. We reduce the pointing errors from ~ 1 mrad to an average under 0.1 mrad across the bar and across the entire stack. Time resolved spectra are used to investigate the dynamic locking behavior with the goal of achieving a locking speed comparable to the rise time of the current (100 μs). Experimental results for multi-kW laser systems are presented, both in CW and soft pulsed operation modes.

  18. New GRISMs for AFOSC based on volume phase holographic gratings in photopolymers

    NASA Astrophysics Data System (ADS)

    Zanutta, Alessio; Bianco, Andrea; Landoni, Marco; Tomasella, Lina; Benetti, Stefano; Giro, Enrico

    2014-07-01

    Volume Phase Holographic Gratings (VPHG) can provide an improvement of diffraction efficiency and function- ality in already available astronomical instrumentation. Here, we present the design, manufacturing and testing of two GRISMs mounted on the AFOSC camera (at the 1.8 m Asiago telescope) based on VPHGs. Such diffrac- tion gratings have been written on a new solid and green sensitive photopolymer material produced by Bayer MaterialScience AG that show interesting performances (refractive index modulation, homogeneity, stability). The GRISMs have been designed according to the specific requests of astronomers. One GRISM consists in a very low dispersion VPHG (285 l/mm) that covers the range 500 - 1000 nm and suitable for observations of supernovae. The second one is a 600 l/mm VPHG for the Ha region. Both gratings show peak efficiency close to 90% and same diffraction efficiency is shown by the corresponding GRISMs. This high device's performances means that the coupling losses are very low, also thanks to the matching of the refractive index between sub- strates and prisms. Some observations have been finally carried out and the gain in terms of efficiency and signal to noise ratio have been calculated in order to compare the photopolymeric VPHGs with the classic GRISMs already mounted and used in the AFOSC spectrometer.

  19. Design of optical system for spectrometer involving a volume phase holographic transmission grating

    NASA Astrophysics Data System (ADS)

    Ren, Zhong; Liu, Guodong; Huang, Zhen

    2014-08-01

    At present, spectrometer has popularly being used into varieties of fields including environment, food, medical health monitoring and metal industry because it has the advantages of noninvasive, high efficient and convenient etc. The performance of the spectrometer is determined by its optical system. Normally, according to the apparatus and principle of splitting-light, optical system of spectrometer can be classified into several categories, for example, filter-typed, dispersion typed, Fourier transform typed and acousto-optic tunable typed. The grating typed optical system has been popularly used into the spectrometer due to the features of higher diffraction efficiency, resolution and dispersion rate etc. In the grating-typed optical system, although the traditional plane and concave grating have usually been used into some spectrometers, some disadvantages of them still limit their applications, such as, large aberration, worse spectral flatness and low deficiency, etc. In this paper, to overcome these disadvantages of the traditional plane and concave grating, a novel optical system for spectrometer (OSS) based on volume phase holographic transmission (VPHT) grating was designed. For this novel grating, its manufacture and theories were investigated, and its diffraction efficiency was firstly numerically simulated according to different parameters. In order to prove the feasibility of this designed OSS, the spectral calibration experiment was performed and the spectral resolution reached 2nm.

  20. The transmission volume-phase holographic grating recorded on dichromated gelatin film used in Raman spectrometer

    NASA Astrophysics Data System (ADS)

    Mei, Qijing; Liu, Peng; Tang, Minxue

    2015-11-01

    With the intrinsic advantages of high diffraction efficiency, signal to noise ratio, wavelength and angular selectivity, and low scattering and absorption, volume phase holographic grating (VPHG) has been widely used for spectroscopy, telecommunications, astronomy and ultra-fast laser sciences. The transmission VPHG combined with on-axis imaging lenses can be used in the Raman spectroscopic imaging, which enables a spectrometer to work at high resolution over a wide field of view, and compresses the configuration to achieve very little vignetting. The subject of this paper is to design a kind of transmission VPHG used in Raman Spectrometer with high diffraction efficiency theoretically. According to the Bragg condition and the coupled wave theory, the diffraction efficiency of transmission VPHG recorded on dichromated gelatin (DCG) has been optimized by using G-solver software, which is applicable to the visible waveband ranging from 0.46μm to 0.70μm. The effects of the recording and reconstruction setup parameters, the amplitude of the index modulation (Δn) and the thickness of the gelatin layer (d), and the polarization state of reconstruction beams on the diffraction efficiency properties of the gratings are analyzed at the same time.

  1. Volume holographic gratings as optical sensor for heavy metal in bathing waters

    NASA Astrophysics Data System (ADS)

    Bianco, G.; Ferrara, M. A.; Borbone, F.; Zuppardi, F.; Roviello, A.; Striano, V.; Coppola, G.

    2015-05-01

    Sensor holograms utilize the diffraction principle of transmitting volume holographic grating (VHG) recorded within a photopolymer appositely functionalized to detect a specific stimulus or analyte. A change in the swelling or shrinking state or cross-linking density of the polymer can be caused by the hologram interaction with an analyte. This leads to a change in the recorded hologram sensor and thus, considering an incident monochromatic light and the VHG angular selectivity, to an angle shift of the diffracted maximum intensity. In this work, two new photopolymers based on a sol-gel matrix opportunely functionalized to be sensitive to transition metals or heavy metals were used as sensitive material to record VHGs. An interferometric set up with a laser source at 532nm was used to record VHGs and gratings of 1000 lines/mm were realized. When exposed to a solution of water and lead, an angle shift of about 3° of the first order diffraction of the grating was measured, demonstrating its capability to reveal the presence of heavy metal in water.

  2. Strongly correlated quantum fluids: ultracold quantum gases, quantum chromodynamic plasmas and holographic duality

    NASA Astrophysics Data System (ADS)

    Adams, Allan; Carr, Lincoln D.; Schäfer, Thomas; Steinberg, Peter; Thomas, John E.

    2012-11-01

    Strongly correlated quantum fluids are phases of matter that are intrinsically quantum mechanical and that do not have a simple description in terms of weakly interacting quasiparticles. Two systems that have recently attracted a great deal of interest are the quark-gluon plasma, a plasma of strongly interacting quarks and gluons produced in relativistic heavy ion collisions, and ultracold atomic Fermi gases, very dilute clouds of atomic gases confined in optical or magnetic traps. These systems differ by 19 orders of magnitude in temperature, but were shown to exhibit very similar hydrodynamic flows. In particular, both fluids exhibit a robustly low shear viscosity to entropy density ratio, which is characteristic of quantum fluids described by holographic duality, a mapping from strongly correlated quantum field theories to weakly curved higher dimensional classical gravity. This review explores the connection between these fields, and also serves as an introduction to the focus issue of New Journal of Physics on ‘Strongly Correlated Quantum Fluids: From Ultracold Quantum Gases to Quantum Chromodynamic Plasmas’. The presentation is accessible to the general physics reader and includes discussions of the latest research developments in all three areas.

  3. Spatio-temporal experiments of volume elastic objects with high speed digital holographic interferometry

    NASA Astrophysics Data System (ADS)

    Pérez López, C.; Hernández Montes, M. S.; Mendoza Santoyo, F.; Gutiérrez Hernandez, D. A.

    2011-08-01

    The optical non-destructive digital holographic interferometry (DHI) technique has proven to be a powerful tool in measuring vibration phenomena with a spatial resolution ranging from a few hundreds of nanometers to tens of micrometers. With the aid of high speed digital cameras it is possible to achieve simultaneously spatial and temporal resolution, and thus capable of measuring the entire object mechanical oscillation trajectory from one to several cycles. It is important to mention that due to faster computers with large data storage capacity there is an increasing interest in applying numerical simulation methods to mimic different real life objects for example, in the field of modern elastic materials and biological systems. The complex algorithms involved cannot render significant results mainly due to the rather large number of variables. In order to test these numerical simulations some experiments using optical techniques have been designed and reported. This is very important for example in measurements of the dynamic elastic properties of materials. In this work we present some preliminary results from experiments that use DHI to measure vibrations of an elastic spherical object subject to a mechanical excitation that induces resonant vibration modes in its volume. We report on the spatial and temporal effects that by their nature have a non-linear mechanical response. The use of a high speed CMOS camera in DHI assures the measurement of this nonlinear behavior as a sum of linear effects that happen during very short time lapses and with very small displacement amplitudes. We conclude by stating that complex numerical models may be compared to results using DHI, thus proposing an alternative method to prove and verify the mathematical models vs. real measurements on volumetric elastic objects.

  4. Holographic view on quantum correlations and mutual information between disjoint blocks of a quantum critical system

    NASA Astrophysics Data System (ADS)

    Molina-Vilaplana, Javier; Sodano, Pasquale

    2011-10-01

    In ( d + 1) dimensional Multiscale Entanglement Renormalization Ansatz (MERA) networks, tensors are connected so as to reproduce the discrete, ( d + 2) holographic geometry of Anti de Sitter space (AdS d+2) with the original system lying at the boundary. We analyze the MERA renormalization flow that arises when computing the quantum correlations between two disjoint blocks of a quantum critical system, to show that the structure of the causal cones characteristic of MERA, requires a transition between two different regimes attainable by changing the ratio between the size and the separation of the two disjoint blocks. We argue that this transition in the MERA causal developments of the blocks may be easily accounted by an AdS d+2 black hole geometry when the mutual information is computed using the Ryu-Takayanagi formula. As an explicit example, we use a BTZ AdS3 black hole to compute the MI and the quantum correlations between two disjoint intervals of a one dimensional boundary critical system. Our results for this low dimensional system not only show the existence of a phase transition emerging when the conformal four point ratio reaches a critical value but also provide an intuitive entropic argument accounting for the source of this instability. We discuss the robustness of this transition when finite temperature and finite size effects are taken into account.

  5. Comparative evaluation of the volume holographic memory information capacity limits caused by different limitation factors

    NASA Astrophysics Data System (ADS)

    Gurevich, Boris S.; Gurevich, Simon B.; Zhumaliev, Kubanychbek M.; Alymkulov, Salmor A.; Sagymbaev, Samat A.; Akkoziev, Imil A.

    2000-10-01

    The possibility to use the third dimension of the medium for data storage and extraction in memory devices is accessible in a wide sense only if a holographic method of data recording and reconstruction is used. However, this possibility has many limitations part of which is inherent just to the holographic devices. Among them one can find significant influence of a limited dynamic range, quadratic dependence of power expenses on the amount of stored information, limitations of the number of selective positions which can be used for the hologram multiplexing as well as some geometric limitations which are significant in 3-D holographic memory. On a level with that, such phenomena exercise influence on holographic memory device information capability as diffraction limits of information input and storage, spatial information losses in a complex system, limitations of rate of information input and output in holographic memory devices etc. The limitations caused by each of the listed factors have been compared and analyzed. It has been found that some of these factors do not influence on information capability limitations provided by the other reasons.

  6. Optical memory development. Volume 2: Gain-assisted holographic storage media

    NASA Technical Reports Server (NTRS)

    Gange, R. A.; Mezrich, R. S.

    1972-01-01

    Thin deformable films were investigated for use as the storage medium in a holographic optical memory. The research was directed toward solving the problems of material fatigue, selective heat addressing, electrical charging of the film surface and charge patterning by light. A number of solutions to these problems were found but the main conclusion to be drawn from the work is that deformable media which employ heat in the recording process are not satisfactory for use in a high-speed random-access read/write holographic memory. They are, however, a viable approach in applications where either high speed or random-access is not required.

  7. The infrared imaging spectrograph (IRIS) for TMT: volume phase holographic grating performance testing and discussion

    NASA Astrophysics Data System (ADS)

    Chen, Shaojie; Meyer, Elliot; Wright, Shelley A.; Moore, Anna M.; Larkin, James E.; Maire, Jerome; Mieda, Etsuko; Simard, Luc

    2014-07-01

    Maximizing the grating efficiency is a key goal for the first light instrument IRIS (Infrared Imaging Spectrograph) currently being designed to sample the diffraction limit of the TMT (Thirty Meter Telescope). Volume Phase Holographic (VPH) gratings have been shown to offer extremely high efficiencies that approach 100% for high line frequencies (i.e., 600 to 6000l/mm), which has been applicable for astronomical optical spectrographs. However, VPH gratings have been less exploited in the near-infrared, particularly for gratings that have lower line frequencies. Given their potential to offer high throughputs and low scattered light, VPH gratings are being explored for IRIS as a potential dispersing element in the spectrograph. Our team has procured near-infrared gratings from two separate vendors. We have two gratings with the specifications needed for IRIS current design: 1.51-1.82μm (H-band) to produce a spectral resolution of 4000 and 1.19-1.37μm (J-band) to produce a spectral resolution of 8000. The center wavelengths for each grating are 1.629μm and 1.27μm, and the groove densities are 177l/mm and 440l/mm for H-band R=4000 and J-band R=8000, respectively. We directly measure the efficiencies in the lab and find that the peak efficiencies of these two types of gratings are quite good with a peak efficiency of ~88% at the Bragg angle in both TM and TE modes at H-band, and 90.23% in TM mode, 79.91% in TE mode at J-band for the best vendor. We determine the drop in efficiency off the Bragg angle, with a 20-23% decrease in efficiency at H-band when 2.5° deviation from the Bragg angle, and 25%-28% decrease at J-band when 5° deviation from the Bragg angle.

  8. Three-dimensional digital holographic aperture synthesis for rapid and highly-accurate large-volume metrology

    NASA Astrophysics Data System (ADS)

    Crouch, Stephen; Kaylor, Brant M.; Barber, Zeb W.; Reibel, Randy R.

    2015-09-01

    Currently large volume, high accuracy three-dimensional (3D) metrology is dominated by laser trackers, which typically utilize a laser scanner and cooperative reflector to estimate points on a given surface. The dependency upon the placement of cooperative targets dramatically inhibits the speed at which metrology can be conducted. To increase speed, laser scanners or structured illumination systems can be used directly on the surface of interest. Both approaches are restricted in their axial and lateral resolution at longer stand-off distances due to the diffraction limit of the optics used. Holographic aperture ladar (HAL) and synthetic aperture ladar (SAL) can enhance the lateral resolution of an imaging system by synthesizing much larger apertures by digitally combining measurements from multiple smaller apertures. Both of these approaches only produce two-dimensional imagery and are therefore not suitable for large volume 3D metrology. We combined the SAL and HAL approaches to create a swept frequency digital holographic 3D imaging system that provides rapid measurement speed for surface coverage with unprecedented axial and lateral resolution at longer standoff ranges. The technique yields a "data cube" of Fourier domain data, which can be processed with a 3D Fourier transform to reveal a 3D estimate of the surface. In this paper, we provide the theoretical background for the technique and show experimental results based on an ultra-wideband frequency modulated continuous wave (FMCW) chirped heterodyne ranging system showing ~100 micron lateral and axial precisions at >2 m standoff distances.

  9. Ultra-low frequency Stokes and anti-Stokes Raman spectroscopy at 785nm with volume holographic grating filters

    NASA Astrophysics Data System (ADS)

    Carriere, James T.; Havermeyer, Frank

    2012-01-01

    We report the first results of ultra-low frequency Stokes and anti-Stokes Raman spectra at 785nm showing clearly resolved frequency shifts down to 10cm-1 from the excitation line, using commercially available ultra-narrow band notch and ASE suppression filters, and a single stage spectrometer. Near infra-red (NIR) wavelengths are of particular interest for Raman spectroscopy due to the reduced fluorescence observed for most materials. Previously reported attempts to produce ultra-low frequency Raman spectra at 785nm with volume holographic notch filters were largely unsuccessful, due to the fact that these ultra-narrow line notch filters and the wavelength of the laser must be very well matched to be effective. Otherwise, if the filters have any manufacturing errors or the laser wavelength is unstable, insufficient suppression of the Rayleigh scattered light will allow it to overwhelm the Raman signal. Recent improvements in both notch and ASE filters, wavelength-stabilized lasers, and optical system design have enabled low-frequency Raman spectra to be successfully taken at 785nm for several typical materials. Two ultra-narrow line notch filters formed as volume holographic gratings (VHGs) in glass with individually measured optical densities of 4.5 were used to block the Rayleigh scattered light from a matched VHG wavelength stabilized laser. Five discrete peaks below 100cm-1 were simultaneously observed for sulfur in both the Stokes and anti-Stokes regions at 28, 44, 52, 62, and 83cm-1. With no degradation in filter performance over time and extremely narrow spectral transition widths of less than 10cm-1, this relatively simple system is able to make ultra-low frequency Stokes and anti-Stokes Raman measurements at a fraction of the size and cost of traditional triple monochromator systems.

  10. Optimisation of a Stirred Bioreactor through the Use of a Novel Holographic Correlation Velocimetry Flow Measurement Technique

    PubMed Central

    Ismadi, Mohd-Zulhilmi; Higgins, Simon; Samarage, Chaminda R.; Paganin, David; Hourigan, Kerry; Fouras, Andreas

    2013-01-01

    We describe a method for measuring three dimensional (3D) velocity fields of a fluid at high speed, by combining a correlation-based approach with in-line holography. While this method utilizes tracer particles contained within the flow, our method does not require the holographic reconstruction of 3D images. The direct flow reconstruction approach developed here allows for measurements at seeding densities in excess of the allowable levels for techniques based on image or particle reconstruction, thus making it suited for biological flow measurement, such as the flow in bioreactor. We outline the theory behind our method, which we term Holographic Correlation Velocimetry (HCV), and subsequently apply it to both synthetic and laboratory data. Moreover, because the system is based on in-line holography, it is very efficient with regard to the use of light, as it does not rely on side scattering. This efficiency could be utilized to create a very high quality system at a modest cost. Alternatively, this efficiency makes the system appropriate for high-speed flows and low exposure times, which is essential for imaging dynamic systems. PMID:23776534

  11. Design and optimization of a volume-phase holographic grating for simultaneous use with red, green, and blue light using unpolarized light.

    PubMed

    Mahamat, Adoum H; Narducci, Frank A; Schwiegerling, James

    2016-03-01

    Volume-phase holographic (VPH) gratings have been designed for use in many areas of science and technology, such as optical communication, optical imaging, and astronomy. In this paper, the design of a volume-phase holographic grating, simultaneously optimized to operate in the red, green, and blue wavelengths, is presented along with a study of its fabrication tolerances. The grating is optimized to produce 98% efficiency at λ=532  nm and at least 75% efficiency in the region between 400 and 700 nm, when the incident light is unpolarized. The optimization is done for recording in dichromated gelatin with a thickness of 12 μm, an average refractive index of 1.5, and a refractive index modulation of 0.022. PMID:26974620

  12. Imaging bacterial 3D motion using digital in-line holographic microscopy and correlation-based de-noising algorithm

    PubMed Central

    Molaei, Mehdi; Sheng, Jian

    2014-01-01

    Abstract: Better understanding of bacteria environment interactions in the context of biofilm formation requires accurate 3-dimentional measurements of bacteria motility. Digital Holographic Microscopy (DHM) has demonstrated its capability in resolving 3D distribution and mobility of particulates in a dense suspension. Due to their low scattering efficiency, bacteria are substantially difficult to be imaged by DHM. In this paper, we introduce a novel correlation-based de-noising algorithm to remove the background noise and enhance the quality of the hologram. Implemented in conjunction with DHM, we demonstrate that the method allows DHM to resolve 3-D E. coli bacteria locations of a dense suspension (>107 cells/ml) with submicron resolutions (<0.5 µm) over substantial depth and to obtain thousands of 3D cell trajectories. PMID:25607177

  13. Real-time optical correlator using computer-generated holographic filter on a liquid crystal light valve

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin; Yu, Jeffrey

    1990-01-01

    Limitations associated with the binary phase-only filter often used in optical correlators are presently circumvented in the writing of complex-valued data on a gray-scale spatial light modulator through the use of a computer-generated hologram (CGH) algorithm. The CGH encodes complex-valued data into nonnegative real CGH data in such a way that it may be encoded in any of the available gray-scale spatial light modulators. A CdS liquid-crystal light valve is used for the complex-valued CGH encoding; computer simulations and experimental results are compared, and the use of such a CGH filter as the synapse hologram in a holographic optical neural net is discussed.

  14. A novel backlight unit for volume-holographic optical elements-based time-multiplexed three-dimensional displays

    NASA Astrophysics Data System (ADS)

    Kim, Byung-Mok; Hwang, Yong-Seok; Kim, Eun-Soo

    2015-11-01

    In volume-holographic optical elements (VHOEs)-based time-sequential three-dimensional (3-D) displays, two reference beams generated from a backlight unit (BLU) illuminate VHOEs, and from which object beams satisfying the Brag condition are then diffracted. These beams form a pair of alternating light fields for stereo 3-D view. Since this system operates based on diffraction optics, its performance highly depends on the degrees of collimation and uniformity of the reference beams. Thus, a new BLU system to generate uniformly-collimated reference beams for the VHOEs-based 3-D display is proposed by combined use of a light-guide-plate (LGP) grooved with an array of angle-variant flat-top prisms, and two LED light sources attached with reflection-type beam collimators. Simulation results with LightTools 7.1 show that the average full-width at half maximum (FWHM), backshift ratio and intensity uniformity of the LGP output beam of the proposed system have been significantly reduced down to 2.8° and 0.4%, and increased up to 90.9%, respectively, from the values of 51.8°, 26.5% and 24.5% of the conventional system. They represent 18.5-, 66.3- and 3.7-fold improvements of those values in the proposed system, respectively. These successful results confirm the feasibility of the proposed system in the practical VHOEs-based 3-D display.

  15. Holographic content addressable storage

    NASA Astrophysics Data System (ADS)

    Chao, Tien-Hsin; Lu, Thomas; Reyes, George

    2015-03-01

    We have developed a Holographic Content Addressable Storage (HCAS) architecture. The HCAS systems consists of a DMD (Digital Micromirror Array) as the input Spatial Light Modulator (SLM), a CMOS (Complementary Metal-oxide Semiconductor) sensor as the output photodetector and a photorefractive crystal as the recording media. The HCAS system is capable of performing optical correlation of an input image/feature against massive reference data set stored in the holographic memory. Detailed system analysis will be reported in this paper.

  16. Performance analysis of the FDTD method applied to holographic volume gratings: Multi-core CPU versus GPU computing

    NASA Astrophysics Data System (ADS)

    Francés, J.; Bleda, S.; Neipp, C.; Márquez, A.; Pascual, I.; Beléndez, A.

    2013-03-01

    The finite-difference time-domain method (FDTD) allows electromagnetic field distribution analysis as a function of time and space. The method is applied to analyze holographic volume gratings (HVGs) for the near-field distribution at optical wavelengths. Usually, this application requires the simulation of wide areas, which implies more memory and time processing. In this work, we propose a specific implementation of the FDTD method including several add-ons for a precise simulation of optical diffractive elements. Values in the near-field region are computed considering the illumination of the grating by means of a plane wave for different angles of incidence and including absorbing boundaries as well. We compare the results obtained by FDTD with those obtained using a matrix method (MM) applied to diffraction gratings. In addition, we have developed two optimized versions of the algorithm, for both CPU and GPU, in order to analyze the improvement of using the new NVIDIA Fermi GPU architecture versus highly tuned multi-core CPU as a function of the size simulation. In particular, the optimized CPU implementation takes advantage of the arithmetic and data transfer streaming SIMD (single instruction multiple data) extensions (SSE) included explicitly in the code and also of multi-threading by means of OpenMP directives. A good agreement between the results obtained using both FDTD and MM methods is obtained, thus validating our methodology. Moreover, the performance of the GPU is compared to the SSE+OpenMP CPU implementation, and it is quantitatively determined that a highly optimized CPU program can be competitive for a wider range of simulation sizes, whereas GPU computing becomes more powerful for large-scale simulations.

  17. Analysis of the effects of viscosity, volume, and temperature in photopolymer material for holographic applications

    NASA Astrophysics Data System (ADS)

    Guo, Jinxin; Gleeson, Michael R.; Sheridan, John T.

    2013-05-01

    In recent work carried out, we introduced the developments made to the Non-local Photo-polymerization Driven Diffusion model, and illustrate some of the useful trends, which the model predicts and then analyse their implications on photopolymer improvement. The model was improved in its physicality through the inclusion of viscosity effects (changes in fractional free volume), multiple components and their photo-kinetic and photo-physical behaviour, and free space vacuoles. In this paper, we further explore this model to provide a more rigorous and informed basis for predicting the behaviours of photopolymer materials in both photo-chemical and photo-physical sides. Such improvements include a) the analysis of the effects of viscosity on the refractive index modulation, b) the effects of the introduction of free space holes, e.g. the volumetric changes, and c) an examination of the effects of local temperatures and various concentration ratios to optimise material performance.

  18. High-speed holographic correlation system for video identification on the internet

    NASA Astrophysics Data System (ADS)

    Watanabe, Eriko; Ikeda, Kanami; Kodate, Kashiko

    2013-12-01

    Automatic video identification is important for indexing, search purposes, and removing illegal material on the Internet. By combining a high-speed correlation engine and web-scanning technology, we developed the Fast Recognition Correlation system (FReCs), a video identification system for the Internet. FReCs is an application thatsearches through a number of websites with user-generated content (UGC) and detects video content that violates copyright law. In this paper, we describe the FReCs configuration and an approach to investigating UGC websites using FReCs. The paper also illustrates the combination of FReCs with an optical correlation system, which is capable of easily replacing a digital authorization sever in FReCs with optical correlation.

  19. Volume phase holographic gratings for the Subaru Prime Focus Spectrograph: performance measurements of the prototype grating set

    NASA Astrophysics Data System (ADS)

    Barkhouser, Robert H.; Arns, James; Gunn, James E.

    2014-08-01

    The Prime Focus Spectrograph (PFS) is a major instrument under development for the 8.2 m Subaru telescope on Mauna Kea. Four identical, fixed spectrograph modules are located in a room above one Nasmyth focus. A 55 m fiber optic cable feeds light into the spectrographs from a robotic fiber positioner mounted at the telescope prime focus, behind the wide field corrector developed for Hyper Suprime-Cam. The positioner contains 2400 fibers and covers a 1.3 degree hexagonal field of view. Each spectrograph module will be capable of simultaneously acquiring 600 spectra. The spectrograph optical design consists of a Schmidt collimator, two dichroic beamsplitters to separate the light into three channels, and for each channel a volume phase holographic (VPH) grating and a dual- corrector, modified Schmidt reimaging camera. This design provides a 275 mm collimated beam diameter, wide simultaneous wavelength coverage from 380 nm to 1.26 µm, and good imaging performance at the fast f/1.1 focal ratio required from the cameras to avoid oversampling the fibers. The three channels are designated as the blue, red, and near-infrared (NIR), and cover the bandpasses 380-650 nm (blue), 630-970 nm (red), and 0.94-1.26 µm (NIR). A mosaic of two Hamamatsu 2k×4k, 15 µm pixel CCDs records the spectra in the blue and red channels, while the NIR channel employs a 4k×4k, substrate-removed HAWAII-4RG array from Teledyne, with 15 µm pixels and a 1.7 µm wavelength cutoff. VPH gratings have become the dispersing element of choice for moderate-resolution astronomical spectro- graphs due their potential for very high diffraction efficiency, low scattered light, and the more compact instru- ment designs offered by transmissive dispersers. High quality VPH gratings are now routinely being produced in the sizes required for instruments on large telescopes. These factors made VPH gratings an obvious choice for PFS. In order to reduce risk to the project, as well as fully exploit the performance

  20. Resolution enhancement of holographic printer using a hogel overlapping method.

    PubMed

    Hong, Keehoon; Park, Soon-gi; Yeom, Jiwoon; Kim, Jonghyun; Chen, Ni; Pyun, Kyungsuk; Choi, Chilsung; Kim, Sunil; An, Jungkwuen; Lee, Hong-Seok; Chung, U-in; Lee, Byoungho

    2013-06-17

    We propose a hogel overlapping method for the holographic printer to enhance the lateral resolution of holographic stereograms. The hogel size is directly related to the lateral resolution of the holographic stereogram. Our analysis by computer simulation shows that there is a limit to decreasing the hogel size while printing holographic stereograms. Instead of reducing the size of hogel, the lateral resolution of holographic stereograms can be enhanced by printing overlapped hogels, which makes it possible to take advantage of multiplexing property of the volume hologram. We built a holographic printer, and recorded two holographic stereograms using the conventional and proposed overlapping methods. The images and movies of the holographic stereograms experimentally captured were compared between the conventional and proposed methods. The experimental results confirm that the proposed hogel overlapping method improves the lateral resolution of holographic stereograms compared to the conventional holographic printing method.

  1. Measurement of absolute cell volume, osmotic membrane water permeability, and refractive index of transmembrane water and solute flux by digital holographic microscopy.

    PubMed

    Boss, Daniel; Kühn, Jonas; Jourdain, Pascal; Depeursinge, Christian; Magistretti, Pierre J; Marquet, Pierre

    2013-03-01

    A dual-wavelength digital holographic microscope to measure absolute volume of living cells is proposed. The optical setup allows us to reconstruct two quantitative phase contrast images at two different wavelengths from a single hologram acquisition. When adding the absorbing dye fast green FCF as a dispersive agent to the extracellular medium, cellular thickness can be univocally determined in the full field of view. In addition to the absolute cell volume, the method can be applied to derive important biophysical parameters of living cells including osmotic membrane water permeability coefficient and the integral intracellular refractive index (RI). Further, the RI of transmembrane flux can be determined giving an indication about the nature of transported solutes. The proposed method is applied to cultured human embryonic kidney cells, Chinese hamster ovary cells, human red blood cells, mouse cortical astrocytes, and neurons. PMID:23487181

  2. Finite volume form factors and correlation functions at finite temperature

    NASA Astrophysics Data System (ADS)

    Pozsgay, Balázs

    2009-07-01

    In this thesis we investigate finite size effects in 1+1 dimensional integrable QFT. In particular we consider matrix elements of local operators (finite volume form factors) and vacuum expectation values and correlation functions at finite temperature. In the first part of the thesis we give a complete description of the finite volume form factors in terms of the infinite volume form factors (solutions of the bootstrap program) and the S-matrix of the theory. The calculations are correct to all orders in the inverse of the volume, only exponentially decaying (residual) finite size effects are neglected. We also consider matrix elements with disconnected pieces and determine the general rule for evaluating such contributions in a finite volume. The analytic results are tested against numerical data obtained by the truncated conformal space approach in the Lee-Yang model and the Ising model in a magnetic field. In a separate section we also evaluate the leading exponential correction (the μ-term) associated to multi-particle energies and matrix elements. In the second part of the thesis we show that finite volume factors can be used to derive a systematic low-temperature expansion for correlation functions at finite temperature. In the case of vacuum expectation values the series is worked out up to the third non-trivial order and a complete agreement with the LeClair-Mussardo formula is observed. A preliminary treatment of the two-point function is also given by considering the first nontrivial contributions.

  3. Diffusional enhancement of volume gratings as an optimized strategy for holographic memory in PQ-PMMA photopolymer.

    PubMed

    Liu, Hongpeng; Yu, Dan; Li, Xuecong; Luo, Suhua; Jiang, Yongyuan; Sun, Xiudong

    2010-03-29

    The dark enhancements of diffraction efficiency in single and multiple gratings are investigated theoretically and experimentally in phenanthrenequinone doped poly-(methyl methacrylate) materials. It is demonstrated a possibility to improve holographic characteristics of the material via the enhancement. Nearly 17-fold increment of diffraction efficiency is observed after exposure. The dependences of PQ's concentration on the rate and increment of dark enhancement are achieved quantitatively. And the enhancement in multiplexing is presented as a simple and efficient method to improve response of the material and homogeneity of diffraction efficiency. PQ's diffusion and enhancement process of refractive index modulation are simulated by a diffusion model for describing enhancement dynamics qualitatively and quantitatively. This study provides a significant foundation for the application of dark enhancement in holographic storage.

  4. Weak correlation of starch and volume in synchronized photosynthetic cells

    NASA Astrophysics Data System (ADS)

    Rading, M. Michael; Sandmann, Michael; Steup, Martin; Chiarugi, Davide; Valleriani, Angelo

    2015-01-01

    In cultures of unicellular algae, features of single cells, such as cellular volume and starch content, are thought to be the result of carefully balanced growth and division processes. Single-cell analyses of synchronized photoautotrophic cultures of the unicellular alga Chlamydomonas reinhardtii reveal, however, that the cellular volume and starch content are only weakly correlated. Likewise, other cell parameters, e.g., the chlorophyll content per cell, are only weakly correlated with cell size. We derive the cell size distributions at the beginning of each synchronization cycle considering growth, timing of cell division and daughter cell release, and the uneven division of cell volume. Furthermore, we investigate the link between cell volume growth and starch accumulation. This work presents evidence that, under the experimental conditions of light-dark synchronized cultures, the weak correlation between both cell features is a result of a cumulative process rather than due to asymmetric partition of biomolecules during cell division. This cumulative process necessarily limits cellular similarities within a synchronized cell population.

  5. Organic Materials for Holographic Applications

    NASA Astrophysics Data System (ADS)

    Chen, Alan Gengsheng

    Volume holography plays an important role in modern optical technology. This research explores organic materials for holographic applications in optical systems. A novel medium composed of azo dye molecules (methyl red sodium salt) and liquid crystals (PCB) was developed for holographic applications. A conformation change of azo dye molecules in cis-trans isomerization reorients liquid crystal molecules. Reversible polarization holograms are recorded dynamically with a threshold intensity as low as 3.0 mW/cm^2 and a response time from 1 ms to 100 ms depending on the recording spatial frequencies. Surface anchoring forces play a key role in holographic storage. We investigated these forces with differently treated substrates. Optical surface memory effects are described experimentally. We also seek novel materials for dynamic volume holography. Liquid crystal molecules (EBBA and MBBA) have been dispersed in polymer matrices for volume holographic storage. Dynamic holographic effects due to thermal and optically driven anisotropies are observed. A programmable multilayer holographic storage device using a stack of polarization sensitive polymer films and liquid crystals is developed. The parallel access time is about 10 ms. This device is useful for real-time holographic displays, optical interconnections, and high -density optical data storage. In addition, holography has been employed for spectral filtering. Filtering by a thick hologram can manipulate the amplitude and phase of the spectral components of an optical pulse. A camphorquinone doped polymer resin is used as a volume holographic element. Pulses from a CPM laser are filtered into two or three different frequency components, which beat in the time domain to generate a sub-picosecond pulse with very different shape. The device will find applications in optical communications and time-resolved spectroscopy.

  6. Holographic art

    NASA Astrophysics Data System (ADS)

    Bryskin, V. Z.; Prostev, A.

    1991-02-01

    The authors of the present paper have been working together in the field of holographic art during the last three years. Our holographic works of art are based on the use of the Denisyuk reflection holograms. These holograms make it possible to creat an art image with the help of the completely new means of representation. The increase of the reflection holograms size could widen the possibilites of art holography. For example , the high quality holograms C size 60x80 cm ) are produced in the USSR. Assembled into large-sized panels, they can be used both in advertisments, interior decoration and in creating unique works of art. They can also be used for decoration of Christian cathedrals and churches, where such art holographic compositions would produce great impressin on people. Here we'd like to discuss the problem of an aesthetic perception of a holographic image.

  7. Holographic thinking

    NASA Astrophysics Data System (ADS)

    Meulien-Ohlmann, Odile

    2000-10-01

    Holographic thinking is everywhere although we do not realize it. Turn on your TV and you will see many representations of holographic images. It is in many science fiction movies, as well as in books and the news. Now, start your computer and search the Web. What do you see, a screen with plenty of little boxes or frames, each one containing information. You can choose to go deeper by clicking here and there, but ultimately all the little boxes are related to each other. What do you have? A holographic principle where each point stands by itself, containing the whole entity while composing part of it at the same time. The following paragraphs, discussing and evaluating the characteristics of holographic thinking can be read in any order you wish. Each paragraph contributes an understanding of just one aspect of all the ideas which cannot be limited to this paper alone.

  8. LDA optical setup using holographic imaging configuration

    NASA Astrophysics Data System (ADS)

    Ghosh, Abhijit; Nirala, A. K.

    2015-11-01

    This paper describes one of the possible ways for improving fringe quality at LDA measuring volume using a holographic imaging configuration consisting of a single hololens. For its comparative study with a conventional imaging configuration, a complete characterization of fringes formed at the measurement volume by both the configuration is presented. Results indicate the qualitative as well as quantitative improvement of the fringes formed at measurement volume by the holographic imaging configuration. Hence it is concluded that use of holographic imaging configuration for making LDA optical setup is a better choice than the conventional one.

  9. New recording materials for the holographic industry

    NASA Astrophysics Data System (ADS)

    Jurbergs, David; Bruder, Friedrich-Karl; Deuber, Francois; Fäcke, Thomas; Hagen, Rainer; Hönel, Dennis; Rölle, Thomas; Weiser, Marc-Stephan; Volkov, Andy

    2009-02-01

    This paper describes a new class of recording materials for volume holographic applications suitable to meet commercial manufacturing needs. These next-generation holographic photopolymers have the ability to satisfy the unmet demand for color and depth tuning that is only possible with volume holograms. Unlike earlier holographic photopolymers, these new materials offer the advantages of no chemical or thermal processing combined with low shrinkage and detuning. Furthermore, these materials exhibit high transparency, a high resolution of more than 5000 lines/mm and are environmentally robust. Bayer MaterialScience plans to commercialize these materials, which combine excellent holographic characteristics with compatibility to mass-production processes. In this paper, we will briefly discuss the potential markets and applications for a new photopolymer, describe the attributes of this new class of photopolymers, relate their ease of use in holographic recording, and discuss potential applications of such materials..

  10. Holographic Reticle

    NASA Technical Reports Server (NTRS)

    Henn, Edward A.; Scribner, Marc M.

    1990-01-01

    Holographic reticle proposed for use in nondestructive evaluation of surface irregularities. Extends inspection capability to include measurements of depth. Surfaces inspected without contamination, damage, or costly disassembly. Provides valuable information difficult to obtain. For example, surface defects as corrosion and porosity, as well as propagation of cracks, measured accurately. Roughness, wear, and plating thickness also measured. Also used to determine quality of microcircuits.

  11. A robust cell counting approach based on a normalized 2D cross-correlation scheme for in-line holographic images.

    PubMed

    Ra, Ho-Kyeong; Kim, Hyungseok; Yoon, Hee Jung; Son, Sang Hyuk; Park, Taejoon; Moon, Sangjun

    2013-09-01

    To achieve the important aims of identifying and marking disease progression, cell counting is crucial for various biological and medical procedures, especially in a Point-Of-Care (POC) setting. In contrast to the conventional manual method of counting cells, a software-based approach provides improved reliability, faster speeds, and greater ease of use. We present a novel software-based approach to count in-line holographic cell images using the calculation of a normalized 2D cross-correlation. This enables fast, computationally-efficient pattern matching between a set of cell library images and the test image. Our evaluation results show that the proposed system is capable of quickly counting cells whilst reliably and accurately following human counting capability. Our novel approach is 5760 times faster than manual counting and provides at least 68% improved accuracy compared to other image processing algorithms. PMID:23839256

  12. Amniotic fluid index: correlation with amniotic fluid volume.

    PubMed

    Hoskins, I A; McGovern, P G; Ordorica, S A; Frieden, F J; Young, B K

    1992-01-01

    We calculated the amniotic fluid indexes (AFIs) of 310 women on 459 occasions. Normative data were analyzed and compared with data in several high-risk groups. In the normal gestations there was a progressive increase in AFI with advancing gestation until 32 weeks, after which there was a decline. The mean AFIs in abnormal gestations varied with the clinical diagnoses. These values were compared to those obtained by assessing amniotic fluid volume (AFV), that is a pocket more than 2 cm. There were 51 patients with abnormal AFVs. Forty-two had decreased fluid, six also had decreased AFIs; nine had increased AFVs and five (all with diabetes) also had increased AFIs. Thus, AFIs in normal pregnancies showed an orderly pattern of change with gestational age, and there was no accurate correlation between AFI and AFV. Thus, using AFV alone may lead to false interpretations of amniotic fluid status. PMID:1418123

  13. Partitioned-field uniaxial holographic lenses.

    PubMed

    López, Ana M; Atencia, Jesús; Tornos, José; Quintanilla, Manuel

    2002-04-01

    The efficiency and aberration of partitioned-field uniaxial volume holographic compound lenses are theoretically and experimentally studied. These systems increase the image fields of holographic volume lenses, limited by the angular selectivity that is typical of these elements. At the same time, working with uniaxial systems has led to a decrease in aberration because two recording points (that behave as aberration-free points) are used. The extension of the image field is experimentally proved.

  14. Intelligent holographic databases

    NASA Astrophysics Data System (ADS)

    Barbastathis, George

    Memory is a key component of intelligence. In the human brain, physical structure and functionality jointly provide diverse memory modalities at multiple time scales. How could we engineer artificial memories with similar faculties? In this thesis, we attack both hardware and algorithmic aspects of this problem. A good part is devoted to holographic memory architectures, because they meet high capacity and parallelism requirements. We develop and fully characterize shift multiplexing, a novel storage method that simplifies disk head design for holographic disks. We develop and optimize the design of compact refreshable holographic random access memories, showing several ways that 1 Tbit can be stored holographically in volume less than 1 m3, with surface density more than 20 times higher than conventional silicon DRAM integrated circuits. To address the issue of photorefractive volatility, we further develop the two-lambda (dual wavelength) method for shift multiplexing, and combine electrical fixing with angle multiplexing to demonstrate 1,000 multiplexed fixed holograms. Finally, we propose a noise model and an information theoretic metric to optimize the imaging system of a holographic memory, in terms of storage density and error rate. Motivated by the problem of interfacing sensors and memories to a complex system with limited computational resources, we construct a computer game of Desert Survival, built as a high-dimensional non-stationary virtual environment in a competitive setting. The efficacy of episodic learning, implemented as a reinforced Nearest Neighbor scheme, and the probability of winning against a control opponent improve significantly by concentrating the algorithmic effort to the virtual desert neighborhood that emerges as most significant at any time. The generalized computational model combines the autonomous neural network and von Neumann paradigms through a compact, dynamic central representation, which contains the most salient features

  15. Holographic Quantum Liquid

    SciTech Connect

    Karch, A.; Son, D. T.; Starinets, A. O.

    2009-02-06

    Quantum liquids are characterized by the distinctive properties such as the low-temperature behavior of heat capacity and the spectrum of low-energy quasiparticle excitations. In particular, at low temperature, Fermi liquids exhibit the zero sound, predicted by Landau in 1957 and subsequently observed in liquid He-3. In this Letter, we ask whether such characteristic behavior is present in theories with a holographically dual description. We consider a class of gauge theories with fundamental matter fields whose holographic dual in the appropriate limit is given in terms of the Dirac-Born-Infeld action in anti-de Sitter space. We find that these systems also exhibit a sound mode at zero temperature despite having a non-Fermi-liquid behavior of the specific heat. These properties suggest that holography identifies a new type of quantum liquid which potentially could be experimentally realized in strongly correlated systems.

  16. Analytic holographic superconductor

    NASA Astrophysics Data System (ADS)

    Herzog, Christopher P.

    2010-06-01

    We investigate a holographic superconductor that admits an analytic treatment near the phase transition. In the dual 3+1-dimensional field theory, the phase transition occurs when a scalar operator of scaling dimension two gets a vacuum expectation value. We calculate current-current correlation functions along with the speed of second sound near the critical temperature. We also make some remarks about critical exponents. An analytic treatment is possible because an underlying Heun equation describing the zero mode of the phase transition has a polynomial solution. Amusingly, the treatment here may generalize for an order parameter with any integer spin, and we propose a Lagrangian for a spin-two holographic superconductor.

  17. Holographic vitrification

    NASA Astrophysics Data System (ADS)

    Anninos, Dionysios; Anous, Tarek; Denef, Frederik; Peeters, Lucas

    2015-04-01

    We establish the existence of stable and metastable stationary black hole bound states at finite temperature and chemical potentials in global and planar four-dimensional asymptotically anti-de Sitter space. We determine a number of features of their holographic duals and argue they represent structural glasses. We map out their thermodynamic landscape in the probe approximation, and show their relaxation dynamics exhibits logarithmic aging, with aging rates determined by the distribution of barriers.

  18. Formation of uniform fringe pattern free from diffraction noise at LDA measurement volume using holographic imaging configuration

    NASA Astrophysics Data System (ADS)

    Ghosh, Abhijit; Nirala, A. K.

    2016-05-01

    In the present study we have proposed a technique for improving fringe quality at laser Doppler anemometry measurement volume in real time using single hololens imaging configuration over conventional imaging configuration with Gaussian beam optics. In order to remove interference fringe gradients as well as higher order diffraction noise formed at measurement volume in the former approach, a combined hololens imaging system has also been proposed. For qualitative as well as quantitative analysis of fringes formed at measurement volume, atomic force microscopy (AFM) analysis has been performed.

  19. Holographic Spacetime

    NASA Astrophysics Data System (ADS)

    Banks, Tom

    2012-10-01

    The theory of holographic spacetime (HST) generalizes both string theory and quantum field theory (QFT). It provides a geometric rationale for supersymmetry (SUSY) and a formalism in which super-Poincare invariance follows from Poincare invariance. HST unifies particles and black holes, realizing both as excitations of noncommutative geometrical variables on a holographic screen. Compact extra dimensions are interpreted as finite-dimensional unitary representations of super-algebras, and have no moduli. Full field theoretic Fock spaces, and continuous moduli are both emergent phenomena of super-Poincare invariant limits in which the number of holographic degrees of freedom goes to infinity. Finite radius de Sitter (dS) spaces have no moduli, and break SUSY with a gravitino mass scaling like Λ1/4. In regimes where the Covariant Entropy Bound is saturated, QFT is not a good description in HST, and inflation is such a regime. Following ideas of Jacobson, the gravitational and inflaton fields are emergent classical variables, describing the geometry of an underlying HST model, rather than "fields associated with a microscopic string theory". The phrase in quotes is meaningless in the HST formalism, except in asymptotically flat and AdS spacetimes, and some relatives of these.

  20. Tuning Ion Conducting Pathways Using Holographic Polymerization

    NASA Astrophysics Data System (ADS)

    Smith, Derrick; Li, Christopher; Dong, Bin; Bunning, Timothy

    2012-02-01

    While much research has demonstrated repeatable characteristics of electrolyte membranes, the fundamentals behind the interactions during ionic diffusion in solid polymer electrolyte membranes for battery applications are not well understood, specifically the role of nanostructures, which hold the key to improving performance of energy storage devices such as fuel cells and Lithium ion batteries. The challenges in fabricating highly controlled model systems are largely responsible for the interdependent ambiguities between nanostructures and the corresponding ion conducting behavior. In this work, Holographic Polymer Electrolyte Membranes (hPEM) volume gratings comprised of alternating layers of crosslinked polymer resin and lithium ion salt were fabricated using holographic polymerization with an average d-spacing of approximately 200 nm. These one-dimensional confinement structures were used to quantitatively study the anisotropic ionic conductivity between the directions of in-plane and normal to the layers, and the unique ion conducting behavior was correlated with nanoscale phase separation. These volume gratings also offer an exciting route to fabricate multifunctional gratings for optic and sensing applications.

  1. Holographic photolysis of caged neurotransmitters

    PubMed Central

    Lutz, Christoph; Otis, Thomas S.; DeSars, Vincent; Charpak, Serge; DiGregorio, David A.; Emiliani, Valentina

    2009-01-01

    Stimulation of light-sensitive chemical probes has become a powerful tool for the study of dynamic signaling processes in living tissue. Classically, this approach has been constrained by limitations of lens–based and point-scanning illumination systems. Here we describe a novel microscope configuration that incorporates a nematic liquid crystal spatial light modulator (LC-SLM) to generate holographic patterns of illumination. This microscope can produce illumination spots of variable size and number and patterns shaped to precisely match user-defined elements in a specimen. Using holographic illumination to photolyse caged glutamate in brain slices, we demonstrate that shaped excitation on segments of neuronal dendrites and simultaneous, multi-spot excitation of different dendrites enables precise spatial and rapid temporal control of glutamate receptor activation. By allowing the excitation volume shape to be tailored precisely, the holographic microscope provides an extremely flexible method for activation of various photosensitive proteins and small molecules. PMID:19160517

  2. The traveltime holographic principle

    NASA Astrophysics Data System (ADS)

    Huang, Yunsong; Schuster, Gerard T.

    2015-01-01

    Fermat's interferometric principle is used to compute interior transmission traveltimes τpq from exterior transmission traveltimes τsp and τsq. Here, the exterior traveltimes are computed for sources s on a boundary B that encloses a volume V of interior points p and q. Once the exterior traveltimes are computed, no further ray tracing is needed to calculate the interior times τpq. Therefore this interferometric approach can be more efficient than explicitly computing interior traveltimes τpq by ray tracing. Moreover, the memory requirement of the traveltimes is reduced by one dimension, because the boundary B is of one fewer dimension than the volume V. An application of this approach is demonstrated with interbed multiple (IM) elimination. Here, the IMs in the observed data are predicted from the migration image and are subsequently removed by adaptive subtraction. This prediction is enabled by the knowledge of interior transmission traveltimes τpq computed according to Fermat's interferometric principle. We denote this principle as the `traveltime holographic principle', by analogy with the holographic principle in cosmology where information in a volume is encoded on the region's boundary.

  3. Holographic Optical Data Storage

    NASA Technical Reports Server (NTRS)

    Timucin, Dogan A.; Downie, John D.; Norvig, Peter (Technical Monitor)

    2000-01-01

    Although the basic idea may be traced back to the earlier X-ray diffraction studies of Sir W. L. Bragg, the holographic method as we know it was invented by D. Gabor in 1948 as a two-step lensless imaging technique to enhance the resolution of electron microscopy, for which he received the 1971 Nobel Prize in physics. The distinctive feature of holography is the recording of the object phase variations that carry the depth information, which is lost in conventional photography where only the intensity (= squared amplitude) distribution of an object is captured. Since all photosensitive media necessarily respond to the intensity incident upon them, an ingenious way had to be found to convert object phase into intensity variations, and Gabor achieved this by introducing a coherent reference wave along with the object wave during exposure. Gabor's in-line recording scheme, however, required the object in question to be largely transmissive, and could provide only marginal image quality due to unwanted terms simultaneously reconstructed along with the desired wavefront. Further handicapped by the lack of a strong coherent light source, optical holography thus seemed fated to remain just another scientific curiosity, until the field was revolutionized in the early 1960s by some major breakthroughs: the proposition and demonstration of the laser principle, the introduction of off-axis holography, and the invention of volume holography. Consequently, the remainder of that decade saw an exponential growth in research on theory, practice, and applications of holography. Today, holography not only boasts a wide variety of scientific and technical applications (e.g., holographic interferometry for strain, vibration, and flow analysis, microscopy and high-resolution imagery, imaging through distorting media, optical interconnects, holographic optical elements, optical neural networks, three-dimensional displays, data storage, etc.), but has become a prominent am advertising

  4. Holographic microscopy.

    PubMed

    Briones, R A; Heflinger, L O; Wuerker, R F

    1978-03-15

    An off-axis transmission holographic scheme, in which a 1:1 lens and a hologram are treated as a single rigid entity, is found to reconstruct a 3-D diffraction-limited image when reconstructed, with a reference beam reversed back through the original lens-hologram unit. Reconstruction can be performed with wavelengths other than the recording wavelength, provided achromatic lenses are used, and the reference beam angle is properly changed for reconstruction. Comparisons are made between He-Ne and ruby laser holograms. Two-micron resolution of the combustion of solid rocket propellants at high pressures is achieved at a working distance of 6 cm.

  5. Holographic turbulence.

    PubMed

    Adams, Allan; Chesler, Paul M; Liu, Hong

    2014-04-18

    We construct turbulent black holes in asymptotically AdS4 spacetime by numerically solving Einstein's equations. Using the AdS/CFT correspondence we find that both the dual holographic fluid and bulk geometry display signatures of an inverse cascade with the bulk geometry being well approximated by the fluid-gravity gradient expansion. We argue that statistically steady-state black holes dual to d dimensional turbulent flows have horizons whose area growth has a fractal-like structure with fractal dimension D=d+4/3.

  6. Holographic Aquaculture

    NASA Astrophysics Data System (ADS)

    Ian, Richard; King, Elisabeth

    1988-01-01

    Proposed is an exploratory study to verify the feasibility of an inexpensive micro-climate control system for both marine and freshwater pond and tank aquaculture, offering good control over water temperature, incident light flux, and bandwidth, combined with good energy efficiency. The proposed control system utilizes some familiar components of passive solar design, together with a new holographic glazing system which is currently being developed by, and proprietary to Advanced Environmental Research Group (AERG). The use of solar algae ponds and tanks to warm and purify water for fish and attached macroscopic marine algae culture is an ancient and effective technique, but limited seasonally and geographically by the availability of sunlight. Holographic Diffracting Structures (HDSs) can be made which passively track, accept and/or reject sunlight from a wide range of altitude and azimuth angles, and redirect and distribute light energy as desired (either directly or indirectly over water surface in an enclosed, insulated structure), effectively increasing insolation values by accepting sunlight which would not otherwise enter the structure.

  7. Holographic movies

    NASA Astrophysics Data System (ADS)

    Palais, Joseph C.; Miller, Mark E.

    1996-09-01

    A unique method for the construction and display of a 3D holographic movie is developed. An animated film is produced by rotating a 3D object in steps between successive holographic exposures. Strip holograms were made on 70-mm AGFA 8E75 Holotest roll film. Each hologram was about 11-mm high and 55-mm high and 55-mm wide. The object was rotated 2 deg between successive exposures. A complete cycle of the object motion was recorded on 180 holograms using the lensless Fourier transform construction. The ends of the developed film were spliced together to produce a continuous loop. Although the film moves continuously on playback and there is not shutter, there is no flicker or image displacement because of the Fourier transform hologram construction, as predicted by the theoretical analysis. The movie can be viewed for an unlimited time because the object motion is cyclical and the film is continuous. The film is wide enough such that comfortable viewing with both eyes is possible, enhancing the 3D effect. Viewers can stand comfortably away from the film since no viewing slit or aperture is necessary. Several people can simultaneously view the movie.

  8. Holographic enhanced remote sensing system

    NASA Technical Reports Server (NTRS)

    Iavecchia, Helene P.; Gaynor, Edwin S.; Huff, Lloyd; Rhodes, William T.; Rothenheber, Edward H.

    1990-01-01

    The Holographic Enhanced Remote Sensing System (HERSS) consists of three primary subsystems: (1) an Image Acquisition System (IAS); (2) a Digital Image Processing System (DIPS); and (3) a Holographic Generation System (HGS) which multiply exposes a thermoplastic recording medium with sequential 2-D depth slices that are displayed on a Spatial Light Modulator (SLM). Full-parallax holograms were successfully generated by superimposing SLM images onto the thermoplastic and photopolymer. An improved HGS configuration utilizes the phase conjugate recording configuration, the 3-SLM-stacking technique, and the photopolymer. The holographic volume size is currently limited to the physical size of the SLM. A larger-format SLM is necessary to meet the desired 6 inch holographic volume. A photopolymer with an increased photospeed is required to ultimately meet a display update rate of less than 30 seconds. It is projected that the latter two technology developments will occur in the near future. While the IAS and DIPS subsystems were unable to meet NASA goals, an alternative technology is now available to perform the IAS/DIPS functions. Specifically, a laser range scanner can be utilized to build the HGS numerical database of the objects at the remote work site.

  9. Holographic Gratings for Optical Processing

    NASA Technical Reports Server (NTRS)

    Kukhtarev, Nickolai

    2002-01-01

    Investigation of astronomical objects and tracking of man-made space objects lead to generation of huge amount of information for optical processing. Traditional big-size optical elements (such as optical telescopes) have a tendency for increasing aperture size in order to improve sensitivity. This tendency leads to increasing of weight and costs of optical systems and stimulate search for the new, more adequate technologies. One approach to meet these demands is based on developing of holographic optical elements using new polymeric materials. We have investigated possibility to use new material PQ-PMMA (phenantrenequinone-doped PMMA (Polymethyl Methacrylate)) for fabrication of highly selective optical filters and fast spatial-temporal light modulators. This material was originally developed in Russia and later was tested in CalTech as a candidate material for optical storage. Our theoretical investigation predicts the possibility of realization of fast spatial and temporal light modulation, using volume reflection-type spectral filter. We have developed also model of holographic-grating recording in PQ-PMMA material, based on diffusional amplification. This mechanism of recording allow to receive high diffraction efficiency during recording of reflection-type volume holographic grating (holographic mirror). We also investigated recording of dynamic gratings in the photorefractive crystals LiNbO3 (LN) for space-based spectroscopy and for adaptive correction of aberrations in the telescope's mirrors. We have shown, that specific 'photogalvanic' mechanism of holographic grating recording in LN allow to realize recording of blazed gratings for volume and surface gratings. Possible applications of dynamic gratings in LN for amplification of images, transmitted through an imaging fiber guide was also demonstrated.

  10. Holographic optics: Design and applications; Proceedings of the Meeting, Los Angeles, CA, Jan. 13, 14, 1988

    NASA Astrophysics Data System (ADS)

    Cindrich, Ivan

    1988-01-01

    The present conference discusses topics in design and analysis methods for holographic optics, as well as their materials and fabrication techniques and their applications. Attention is given to novel holographic helmet display designs, holographic optics optimization by damped least-squares and wavefront matching, the optical performance of holographic kinoforms, a cascaded transmission hologram for HUDs, a multilayer thin film simulation of volume holograms, and the DMP-128 holographic-recording photopolymer. Also discussed are a uniform hologram construction layout, diffractive optics with incoherent optical systems, holographic laser-protective eyewear, novel applications for embossed holograms, and hologon deflectors with dispersive optical elements for scan line bow correction.

  11. A new method for determination of postmortem left ventricular volumes: clinico-pathologic correlations.

    PubMed

    Wissler, R W; Lichtig, C; Hughes, R; Al-Sadir, J; Glagov, S

    1975-05-01

    A description is presented of a new and simple procedure for ventricular volume determination by means of pressure fixation of the heart and preparation of plastic molds of the ventricles which can be used to displace water in a graduated cylinder to determine the volume of the mold. Correlations between postmortem ventricular volume as measured by this method and antemortem stroke volume or clinical cardiac status indicate that a large left ventricular volume is often correlated with a low cardiac output and cardiogenic shock. PMID:1119371

  12. Holographic Compact Disk Read-Only Memories

    NASA Technical Reports Server (NTRS)

    Liu, Tsuen-Hsi

    1996-01-01

    Compact disk read-only memories (CD-ROMs) of proposed type store digital data in volume holograms instead of in surface differentially reflective elements. Holographic CD-ROM consist largely of parts similar to those used in conventional CD-ROMs. However, achieves 10 or more times data-storage capacity and throughput by use of wavelength-multiplexing/volume-hologram scheme.

  13. Preterm Infant Hippocampal Volumes Correlate with Later Working Memory Deficits

    ERIC Educational Resources Information Center

    Beauchamp, Miriam H.; Thompson, Deanne K.; Howard, Kelly; Doyle, Lex W.; Egan, Gary F.; Inder, Terrie E.; Anderson, Peter J.

    2008-01-01

    Children born preterm exhibit working memory deficits. These deficits may be associated with structural brain changes observed in the neonatal period. In this study, the relationship between neonatal regional brain volumes and working memory deficits at age 2 years were investigated, with a particular interest in the dorsolateral prefrontal…

  14. Holographic heat engines

    NASA Astrophysics Data System (ADS)

    Johnson, Clifford V.

    2014-10-01

    It is shown that in theories of gravity where the cosmological constant is considered a thermodynamic variable, it is natural to use black holes as heat engines. Two examples are presented in detail using AdS charged black holes as the working substance. We notice that for static black holes, the maximally efficient traditional Carnot engine is also a Stirling engine. The case of negative cosmological constant supplies a natural realization of these engines in terms of the field theory description of the fluids to which they are holographically dual. We first propose a precise picture of how the traditional thermodynamic dictionary of holography is extended when the cosmological constant is dynamical and then conjecture that the engine cycles can be performed by using renormalization group flow. We speculate about the existence of a natural dual field theory counterpart to the gravitational thermodynamic volume.

  15. Inter-Fraction Tumor Volume Response during Lung Stereotactic Body Radiation Therapy Correlated to Patient Variables

    PubMed Central

    Ayan, Ahmet S.; Mo, Xiaokui; Williams, Terence M.; Mayr, Nina A.; Grecula, John C.; Chakravarti, Arnab; Xu-Welliver, Meng

    2016-01-01

    Purpose Analyze inter-fraction volumetric changes of lung tumors treated with stereotactic body radiation therapy (SBRT) and determine if the volume changes during treatment can be predicted and thus considered in treatment planning. Methods and Materials Kilo-voltage cone-beam CT (kV-CBCT) images obtained immediately prior to each fraction were used to monitor inter-fraction volumetric changes of 15 consecutive patients (18 lung nodules) treated with lung SBRT at our institution (45–54 Gy in 3–5 fractions) in the year of 2011–2012. Spearman's (ρ) correlation and Spearman's partial correlation analysis was performed with respect to patient/tumor and treatment characteristics. Multiple hypothesis correction was performed using False Discovery Rate (FDR) and q-values were reported. Results All tumors studied experienced volume change during treatment. Tumor increased in volume by an average of 15% and regressed by an average of 11%. The overall volume increase during treatment is contained within the planning target volume (PTV) for all tumors. Larger tumors increased in volume more than smaller tumors during treatment (q = 0.0029). The volume increase on CBCT was correlated to the treatment planning gross target volume (GTV) as well as internal target volumes (ITV) (q = 0.0085 and q = 0.0039 respectively) and could be predicted for tumors with a GTV less than 22 mL. The volume increase was correlated to the integral dose (ID) in the ITV at every fraction (q = 0.0049). The peak inter-fraction volume occurred at an earlier fraction in younger patients (q = 0.0122). Conclusions We introduced a new analysis method to follow inter-fraction tumor volume changes and determined that the observed changes during lung SBRT treatment are correlated to the initial tumor volume, integral dose (ID), and patient age. Furthermore, the volume increase during treatment of tumors less than 22mL can be predicted during treatment planning. The volume increase remained

  16. Cross-correlations between price and volume in Chinese gold markets

    NASA Astrophysics Data System (ADS)

    Ruan, Qingsong; Jiang, Wei; Ma, Guofeng

    2016-06-01

    We apply the multifractal detrended cross-correlation analysis (MF-DCCA) method to investigate the cross-correlation behaviors between price and volume in Chinese gold spot and futures markets. Qualitatively, we find that the price and volume series are significantly cross-correlated using the cross-correlation test statistics Qcc(m) and the ρDCCA coefficients. Quantitatively, by employing the MF-DCCA analysis, we find that there is a power-law cross-correlation and significant multifractal features between price and volume in gold spot and futures markets. Furthermore, by comparing the multifractality of the original series to the shuffled and surrogated series, we find that, for the gold spot market, the main contribution of multifractality is fat-tail distribution; for the gold futures market, both long-range correlations and fat-tail distributions play important roles in the contribution of multifractality. Finally, by employing the method of rolling windows, we undertake further investigation into the time-varying features of the cross-correlations between price and volume. We find that for both spot and futures markets, the cross-correlations are anti-persistent in general. In the short term, the cross-correlation shows obvious fluctuations due to exogenous shocks while, in the long term, the relationship tends to be at a metastable level due to the dynamic mechanism.

  17. Physical Exercise Habits Correlate with Gray Matter Volume of the Hippocampus in Healthy Adult Humans

    NASA Astrophysics Data System (ADS)

    Killgore, William D. S.; Olson, Elizabeth A.; Weber, Mareen

    2013-12-01

    Physical activity facilitates neurogenesis of dentate cells in the rodent hippocampus, a brain region critical for memory formation and spatial representation. Recent findings in humans also suggest that aerobic exercise can lead to increased hippocampal volume and enhanced cognitive functioning in children and elderly adults. However, the association between physical activity and hippocampal volume during the period from early adulthood through middle age has not been effectively explored. Here, we correlated the number of minutes of self-reported exercise per week with gray matter volume of the hippocampus using voxel-based morphometry (VBM) in 61 healthy adults ranging from 18 to 45 years of age. After controlling for age, gender, and total brain volume, total minutes of weekly exercise correlated significantly with volume of the right hippocampus. Findings highlight the relationship between regular physical exercise and brain structure during early to middle adulthood.

  18. Interactive holographic display

    NASA Astrophysics Data System (ADS)

    Son, Jung-Young; Lee, Beam-Ryeol; Kim, Jin-Woong; Chernyshov, Oleksii O.; Park, Min-Chul

    2014-06-01

    A holographic display which is capable of displaying floating holographic images is introduced. The display is for user interaction with the image on the display. It consists of two parts; multiplexed holographic image generation and a spherical mirror. The time multiplexed image from 2 X 10 DMD frames appeared on PDLC screen is imaged by the spherical mirror and becomes a floating image. This image is combined spatially with two layered TV images appearing behind. Since the floating holographic image has a real spatial position and depth, it allows a user to interact with the image.

  19. Correlations among brain gray matter volumes, age, gender, and hemisphere in healthy individuals.

    PubMed

    Taki, Yasuyuki; Thyreau, Benjamin; Kinomura, Shigeo; Sato, Kazunori; Goto, Ryoi; Kawashima, Ryuta; Fukuda, Hiroshi

    2011-01-01

    To determine the relationship between age and gray matter structure and how interactions between gender and hemisphere impact this relationship, we examined correlations between global or regional gray matter volume and age, including interactions of gender and hemisphere, using a general linear model with voxel-based and region-of-interest analyses. Brain magnetic resonance images were collected from 1460 healthy individuals aged 20-69 years; the images were linearly normalized and segmented and restored to native space for analysis of global gray matter volume. Linearly normalized images were then non-linearly normalized and smoothed for analysis of regional gray matter volume. Analysis of global gray matter volume revealed a significant negative correlation between gray matter ratio (gray matter volume divided by intracranial volume) and age in both genders, and a significant interaction effect of age × gender on the gray matter ratio. In analyzing regional gray matter volume, the gray matter volume of all regions showed significant main effects of age, and most regions, with the exception of several including the inferior parietal lobule, showed a significant age × gender interaction. Additionally, the inferior temporal gyrus showed a significant age × gender × hemisphere interaction. No regional volumes showed significant age × hemisphere interactions. Our study may contribute to clarifying the mechanism(s) of normal brain aging in each brain region.

  20. Holographic Chern-Simons defects

    NASA Astrophysics Data System (ADS)

    Fujita, Mitsutoshi; Melby-Thompson, Charles M.; Meyer, René; Sugimoto, Shigeki

    2016-06-01

    We study SU( N ) Yang-Mills-Chern-Simons theory in the presence of defects that shift the Chern-Simons level from a holographic point of view by embedding the system in string theory. The model is a D3-D7 system in Type IIB string theory, whose gravity dual is given by the AdS soliton background with probe D7 branes attaching to the AdS boundary along the defects. We holographically renormalize the free energy of the defect system with sources, from which we obtain the correlation functions for certain operators naturally associated to these defects. We find interesting phase transitions when the separation of the defects as well as the temperature are varied. We also discuss some implications for the Fractional Quantum Hall Effect and for 2-dimensional QCD.

  1. Holographic Chern-Simons defects

    DOE PAGESBeta

    Fujita, Mitsutoshi; Melby-Thompson, Charles M.; Meyer, René; Sugimoto, Shigeki

    2016-06-28

    Here, we study SU(N ) Yang-Mills-Chern-Simons theory in the presence of defects that shift the Chern-Simons level from a holographic point of view by embedding the system in string theory. The model is a D3-D7 system in Type IIB string theory, whose gravity dual is given by the AdS soliton background with probe D7 branes attaching to the AdS boundary along the defects. We holographically renormalize the free energy of the defect system with sources, from which we obtain the correlation functions for certain operators naturally associated to these defects. We find interesting phase transitions when the separation of themore » defects as well as the temperature are varied. We also discuss some implications for the Fractional Quantum Hall Effect and for 2-dimensional QCD.« less

  2. Pineal Gland Volume Assessed by MRI and Its Correlation with 6-Sulfatoxymelatonin Levels among Older Men.

    PubMed

    Sigurdardottir, Lara G; Markt, Sarah C; Sigurdsson, Sigurdur; Aspelund, Thor; Fall, Katja; Schernhammer, Eva; Rider, Jennifer R; Launer, Lenore; Harris, Tamara; Stampfer, Meir J; Gudnason, Vilmundur; Czeisler, Charles A; Lockley, Steven W; Valdimarsdottir, Unnur A; Mucci, Lorelei A

    2016-10-01

    The pineal gland produces the hormone melatonin, and its volume may influence melatonin levels. We describe an innovative method for estimating pineal volume in humans and present the association of pineal parenchyma volume with levels of the primary melatonin metabolite, 6-sulfatoxymelatonin. We selected a random sample of 122 older Icelandic men nested within the AGES-Reykjavik cohort and measured their total pineal volume, their parenchyma volume, and the extent of calcification and cysts. For volume estimations we used manual segmentation of magnetic resonance images in the axial plane with simultaneous side-by-side view of the sagittal and coronal plane. We used multivariable adjusted linear regression models to estimate the association of pineal parenchyma volume and baseline characteristics, including 6-sulfatoxymelatonin levels. We used logistic regression to test for differences in first morning urinary 6-sulfatoxymelatonin levels among men with or without cystic or calcified glands. The pineal glands varied in volume, shape, and composition. Cysts were present in 59% of the glands and calcifications in 21%. The mean total pineal volume measured 207 mm(3) (range 65-536 mm(3)) and parenchyma volume 178 mm(3) (range 65-503 mm(3)). In multivariable-adjusted models, pineal parenchyma volume was positively correlated with 6-sulfatoxymelatonin levels (β = 0.52, p < 0.001). Levels of 6-sulfatoxymelatonin did not differ significantly by presence of cysts or calcification. By using an innovative method for pineal assessment, we found pineal parenchyma volume to be positively correlated with 6-sulfatoxymelatonin levels, in line with other recent studies.

  3. Pineal Gland Volume Assessed by MRI and Its Correlation with 6-Sulfatoxymelatonin Levels among Older Men.

    PubMed

    Sigurdardottir, Lara G; Markt, Sarah C; Sigurdsson, Sigurdur; Aspelund, Thor; Fall, Katja; Schernhammer, Eva; Rider, Jennifer R; Launer, Lenore; Harris, Tamara; Stampfer, Meir J; Gudnason, Vilmundur; Czeisler, Charles A; Lockley, Steven W; Valdimarsdottir, Unnur A; Mucci, Lorelei A

    2016-10-01

    The pineal gland produces the hormone melatonin, and its volume may influence melatonin levels. We describe an innovative method for estimating pineal volume in humans and present the association of pineal parenchyma volume with levels of the primary melatonin metabolite, 6-sulfatoxymelatonin. We selected a random sample of 122 older Icelandic men nested within the AGES-Reykjavik cohort and measured their total pineal volume, their parenchyma volume, and the extent of calcification and cysts. For volume estimations we used manual segmentation of magnetic resonance images in the axial plane with simultaneous side-by-side view of the sagittal and coronal plane. We used multivariable adjusted linear regression models to estimate the association of pineal parenchyma volume and baseline characteristics, including 6-sulfatoxymelatonin levels. We used logistic regression to test for differences in first morning urinary 6-sulfatoxymelatonin levels among men with or without cystic or calcified glands. The pineal glands varied in volume, shape, and composition. Cysts were present in 59% of the glands and calcifications in 21%. The mean total pineal volume measured 207 mm(3) (range 65-536 mm(3)) and parenchyma volume 178 mm(3) (range 65-503 mm(3)). In multivariable-adjusted models, pineal parenchyma volume was positively correlated with 6-sulfatoxymelatonin levels (β = 0.52, p < 0.001). Levels of 6-sulfatoxymelatonin did not differ significantly by presence of cysts or calcification. By using an innovative method for pineal assessment, we found pineal parenchyma volume to be positively correlated with 6-sulfatoxymelatonin levels, in line with other recent studies. PMID:27449477

  4. Neuroanatomical Correlates of Intelligence in Healthy Young Adults: The Role of Basal Ganglia Volume

    PubMed Central

    Rhein, Cosima; Mühle, Christiane; Richter-Schmidinger, Tanja; Alexopoulos, Panagiotis; Doerfler, Arnd; Kornhuber, Johannes

    2014-01-01

    Background In neuropsychiatric diseases with basal ganglia involvement, higher cognitive functions are often impaired. In this exploratory study, we examined healthy young adults to gain detailed insight into the relationship between basal ganglia volume and cognitive abilities under non-pathological conditions. Methodology/Principal Findings We investigated 137 healthy adults that were between the ages of 21 and 35 years with similar educational backgrounds. Magnetic resonance imaging (MRI) was performed, and volumes of basal ganglia nuclei in both hemispheres were calculated using FreeSurfer software. The cognitive assessment consisted of verbal, numeric and figural aspects of intelligence for either the fluid or the crystallised intelligence factor using the intelligence test Intelligenz-Struktur-Test (I-S-T 2000 R). Our data revealed significant correlations of the caudate nucleus and pallidum volumes with figural and numeric aspects of intelligence, but not with verbal intelligence. Interestingly, figural intelligence associations were dependent on sex and intelligence factor; in females, the pallidum volumes were correlated with crystallised figural intelligence (r = 0.372, p = 0.01), whereas in males, the caudate volumes were correlated with fluid figural intelligence (r = 0.507, p = 0.01). Numeric intelligence was correlated with right-lateralised caudate nucleus volumes for both females and males, but only for crystallised intelligence (r = 0.306, p = 0.04 and r = 0.459, p = 0.04, respectively). The associations were not mediated by prefrontal cortical subfield volumes when controlling with partial correlation analyses. Conclusions/Significance The findings of our exploratory analysis indicate that figural and numeric intelligence aspects, but not verbal aspects, are strongly associated with basal ganglia volumes. Unlike numeric intelligence, the type of figural intelligence appears to be related to distinct basal ganglia

  5. Beam shaping for holographic techniques

    NASA Astrophysics Data System (ADS)

    Laskin, Alexander; Laskin, Vadim; Ostrun, Aleksei

    2014-09-01

    Uniform intensity of laser radiation is very important in holographic and interferometry technologies, therefore transformation of typical Gaussian distribution of a TEM00 laser to flat-top (top hat) is an actual technical task, it is solved by applying beam shaping optics. Holography and interferometry have specific requirements to a uniform laser beam, most important of them are flatness of phase front and extended depth of field. There are different refractive and diffractive beam shaping approaches used in laser industrial and scientific applications, but only few of them are capable to fulfil the optimum conditions for beam quality demanding holography and interferometry. We suggest applying refractive field mapping beam shapers piShaper, which operational principle presumes almost lossless transformation of Gaussian to flat-top beam with flatness of output wavefront, conserving of beam consistency, providing collimated low divergent output beam, high transmittance, extended depth of field, negligible wave aberration, and achromatic design provides capability to work with several lasers with different wavelengths simultaneously. This approach is used in SLM-based technologies of Computer Generated Holography, Dot-Matrix mastering of security holograms, holographic data storage, holographic projection, lithography, interferometric recording of Volume Bragg Gratings. High optical quality of resulting flat-top beam allows applying additional optical components to vary beam size and shape, thus adapting an optical system to requirements of a particular application. This paper will describe design basics of refractive beam shapers and optical layouts of their applying in holographic systems. Examples of real implementations and experimental results will be presented as well.

  6. Correlation between tumor regression grade and rectal volume in neoadjuvant concurrent chemoradiotherapy for rectal cancer

    PubMed Central

    Lee, Hong Seok; Choi, Doo Ho; Park, Hee Chul; Park, Won; Yu, Jeong Il; Chung, Kwangzoo

    2016-01-01

    Purpose To determine whether large rectal volume on planning computed tomography (CT) results in lower tumor regression grade (TRG) after neoadjuvant concurrent chemoradiotherapy (CCRT) in rectal cancer patients. Materials and Methods We reviewed medical records of 113 patients treated with surgery following neoadjuvant CCRT for rectal cancer between January and December 2012. Rectal volume was contoured on axial images in which gross tumor volume was included. Average axial rectal area (ARA) was defined as rectal volume divided by longitudinal tumor length. The impact of rectal volume and ARA on TRG was assessed. Results Average rectal volume and ARA were 11.3 mL and 2.9 cm². After completion of neoadjuvant CCRT in 113 patients, pathologic results revealed total regression (TRG 4) in 28 patients (25%), good regression (TRG 3) in 25 patients (22%), moderate regression (TRG 2) in 34 patients (30%), minor regression (TRG 1) in 24 patients (21%), and no regression (TRG0) in 2 patients (2%). No difference of rectal volume and ARA was found between each TRG groups. Linear correlation existed between rectal volume and TRG (p = 0.036) but not between ARA and TRG (p = 0.058). Conclusion Rectal volume on planning CT has no significance on TRG in patients receiving neoadjuvant CCRT for rectal cancer. These results indicate that maintaining minimal rectal volume before each treatment may not be necessary. PMID:27592514

  7. Does Height to Width Ratio Correlate with Mean Volume in Gastropods?

    NASA Astrophysics Data System (ADS)

    Barriga, R.; Seixas, G.; Payne, J.

    2012-12-01

    Marine organisms' shell shape and size show important biological information. For example, shape and size can dictate how the organism ranges for food and escapes predation. Due to lack of data and analysis, the evolution of shell size in marine gastropods (snails) remains poorly known. In this study, I attempt to find the relationship between height to width ratio and mean volume. I collected height and width measurements from primary literature sources and calculated volume from these measurements. My results indicate that there was no correlation between height to width ratio and mean volume between 500 to 200 Ma, but there was a correlation between 200 Ma to present where there is a steady increase in both height to width ratio and mean volume. This means that shell shape was not an important factor at the beginning of gastropod evolution but after 200 Ma body size evolution was increasingly driven by the height to width ratio.

  8. Correlation of cell volume fractions with cell concentrations in fermentation media.

    PubMed

    Ju, L K; Ho, C S

    1988-06-20

    Cell volume fractions and cell concentrations were measured in submerged cultures of Saccharomyces cerevisiae, Escherichia coli, and Penicillium chrysogenum. Correlations for cell volume fractions with cell concentrations in fermentation media of the microorganisms were established accordingly. Other key properties of microorganisms, such as cell water content, wet cell density, and dry cell density, can also be obtained with the use of the current method. The results are in good agreement with data available in the literature.

  9. Holographic display for see-through augmented reality using mirror-lens holographic optical element.

    PubMed

    Li, Gang; Lee, Dukho; Jeong, Youngmo; Cho, Jaebum; Lee, Byoungho

    2016-06-01

    A holographic display system for realizing a three-dimensional optical see-through augmented reality (AR) is proposed. A multi-functional holographic optical element (HOE), which simultaneously performs the optical functions of a mirror and a lens, is adopted in the system. In the proposed method, a mirror that is used to guide the light source into a reflection type spatial light modulator (SLM) and a lens that functions as Fourier transforming optics are recorded on a single holographic recording material by utilizing an angular multiplexing technique of volume hologram. The HOE is transparent and performs the optical functions just for Bragg matched condition. Therefore, the real-world scenes that are usually distorted by a Fourier lens or an SLM in the conventional holographic display can be observed without visual disturbance by using the proposed mirror-lens HOE (MLHOE). Furthermore, to achieve an optimized optical recording condition of the MLHOE, the optical characteristics of the holographic material are measured. The proposed holographic AR display system is verified experimentally. PMID:27244395

  10. Correlated Variability in the Breathing Pattern and End-Expiratory Lung Volumes in Conscious Humans

    PubMed Central

    Dellaca, Raffaele L.; Aliverti, Andrea; Lo Mauro, Antonella; Lutchen, Kenneth R.; Pedotti, Antonio; Suki, Bela

    2015-01-01

    In order to characterize the variability and correlation properties of spontaneous breathing in humans, the breathing pattern of 16 seated healthy subjects was studied during 40 min of quiet breathing using opto-electronic plethysmography, a contactless technology that measures total and compartmental chest wall volumes without interfering with the subjects breathing. From these signals, tidal volume (VT), respiratory time (TTOT) and the other breathing pattern parameters were computed breath-by-breath together with the end-expiratory total and compartmental (pulmonary rib cage and abdomen) chest wall volume changes. The correlation properties of these variables were quantified by detrended fluctuation analysis, computing the scaling exponentα. VT, TTOT and the other breathing pattern variables showed α values between 0.60 (for minute ventilation) to 0.71 (for respiratory rate), all significantly lower than the ones obtained for end-expiratory volumes, that ranged between 1.05 (for rib cage) and 1.13 (for abdomen) with no significant differences between compartments. The much stronger long-range correlations of the end expiratory volumes were interpreted by a neuromechanical network model consisting of five neuron groups in the brain respiratory center coupled with the mechanical properties of the respiratory system modeled as a simple Kelvin body. The model-based α for VT is 0.57, similar to the experimental data. While the α for TTOT was slightly lower than the experimental values, the model correctly predicted α for end-expiratory lung volumes (1.045). In conclusion, we propose that the correlations in the timing and amplitude of the physiological variables originate from the brain with the exception of end-expiratory lung volume, which shows the strongest correlations largely due to the contribution of the viscoelastic properties of the tissues. This cycle-by-cycle variability may have a significant impact on the functioning of adherent cells in the

  11. Holographic Complexity Equals Bulk Action?

    PubMed

    Brown, Adam R; Roberts, Daniel A; Susskind, Leonard; Swingle, Brian; Zhao, Ying

    2016-05-13

    We conjecture that the quantum complexity of a holographic state is dual to the action of a certain spacetime region that we call a Wheeler-DeWitt patch. We illustrate and test the conjecture in the context of neutral, charged, and rotating black holes in anti-de Sitter spacetime, as well as black holes perturbed with static shells and with shock waves. This conjecture evolved from a previous conjecture that complexity is dual to spatial volume, but appears to be a major improvement over the original. In light of our results, we discuss the hypothesis that black holes are the fastest computers in nature. PMID:27232013

  12. Holographic Complexity Equals Bulk Action?

    NASA Astrophysics Data System (ADS)

    Brown, Adam R.; Roberts, Daniel A.; Susskind, Leonard; Swingle, Brian; Zhao, Ying

    2016-05-01

    We conjecture that the quantum complexity of a holographic state is dual to the action of a certain spacetime region that we call a Wheeler-DeWitt patch. We illustrate and test the conjecture in the context of neutral, charged, and rotating black holes in anti-de Sitter spacetime, as well as black holes perturbed with static shells and with shock waves. This conjecture evolved from a previous conjecture that complexity is dual to spatial volume, but appears to be a major improvement over the original. In light of our results, we discuss the hypothesis that black holes are the fastest computers in nature.

  13. High volume confinement in two-photon fluorescence correlation spectroscopy with radially polarized light

    NASA Astrophysics Data System (ADS)

    Ivanov, D.; Shcheslavskiy, V.; Märki, I.; Leutenegger, M.; Lasser, T.

    2009-02-01

    We present the results on two-photon total-internal-reflection fluorescence correlation spectroscopy. The combination of liquid crystal spatial light modulator, providing radial polarization, with ultrafast laser (picosecond Nd:GdVO4 laser) allowed us to take the advantage of nonlinear optical contrast mechanisms to suppress the side-lobe energy specific for radial polarization and reduce the effective excited volume twice compared to one-photon evanescent wave excitation in fluorescence correlation spectroscopy.

  14. High volume confinement in two-photon total-internal-reflection fluorescence correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Ivanov, D.; Shcheslavskiy, V.; Märki, I.; Leutenegger, M.; Lasser, T.

    2009-02-01

    We report results on two-photon total-internal-reflection fluorescence correlation spectroscopy with radially polarized light. The combination of liquid crystal spatial light modulator, providing radial polarization with ultrafast laser (picosecond Nd:GdVO4 laser), allowed us to take the advantage of nonlinear optical contrast mechanisms to suppress the side-lobe energy specific for radial polarization and reduce the effective excited volume twice compared to one-photon evanescent wave excitation in fluorescence correlation spectroscopy.

  15. RELAP5/MOD3 code manual. Volume 4, Models and correlations

    SciTech Connect

    1995-08-01

    The RELAP5 code has been developed for best-estimate transient simulation of light water reactor coolant systems during postulated accidents. The code models the coupled behavior of the reactor coolant system and the core for loss-of-coolant accidents and operational transients such as anticipated transient without scram, loss of offsite power, loss of feedwater, and loss of flow. A generic modeling approach is used that permits simulating a variety of thermal hydraulic systems. Control system and secondary system components are included to permit modeling of plant controls, turbines, condensers, and secondary feedwater systems. RELAP5/MOD3 code documentation is divided into seven volumes: Volume I presents modeling theory and associated numerical schemes; Volume II details instructions for code application and input data preparation; Volume III presents the results of developmental assessment cases that demonstrate and verify the models used in the code; Volume IV discusses in detail RELAP5 models and correlations; Volume V presents guidelines that have evolved over the past several years through the use of the RELAP5 code; Volume VI discusses the numerical scheme used in RELAP5; and Volume VII presents a collection of independent assessment calculations.

  16. Parental Praise Correlates with Posterior Insular Cortex Gray Matter Volume in Children and Adolescents.

    PubMed

    Matsudaira, Izumi; Yokota, Susumu; Hashimoto, Teruo; Takeuchi, Hikaru; Asano, Kohei; Asano, Michiko; Sassa, Yuko; Taki, Yasuyuki; Kawashima, Ryuta

    2016-01-01

    A positive parenting style affects psychological and cognitive development in children. Neuroimaging studies revealed that a positive parenting style influenced brain structure in children. Parental praise is a concrete behavior observed in positive parenting. Although previous psychological studies revealed a positive effect of parental praise on children, little is known about the relationship between parental praise and brain structure in children. Thus, the purpose of the present study was to determine whether there was a correlation between the parental attitude towards praising their child and gray matter volume in the children (116 boys and 109 girls; mean age, 10.6 years old). We examined the correlation between regional gray matter volume and parental praise using voxel-based morphometry (VBM) following magnetic resonance imaging (MRI). In addition, to confirm the positive effects of parental praise, we analyzed the correlation between the frequency of parental praise and personality traits in children. We showed that the parental attitude towards praising their child was significantly and positively correlated with the gray matter volume of the left posterior insular cortex in children. Moreover, we found a significant positive correlation between parental attitude towards praising their child and the personality traits of conscientiousness and openness to experience in the children. Prior studies said that gray matter volume in the posterior insula was correlated with empathy, and the functional connectivity between this area and the amygdala was associated with emotional regulation. Furthermore, the posterior insula relates to auditory function, and therefore, was likely involved in the processing of parental praise. Considering the possibility of experience-dependent plasticity, frequent parental praise would lead to increased posterior insular gray matter volume in children. Our study is the first to elucidate the relationship between a specific

  17. Parental Praise Correlates with Posterior Insular Cortex Gray Matter Volume in Children and Adolescents.

    PubMed

    Matsudaira, Izumi; Yokota, Susumu; Hashimoto, Teruo; Takeuchi, Hikaru; Asano, Kohei; Asano, Michiko; Sassa, Yuko; Taki, Yasuyuki; Kawashima, Ryuta

    2016-01-01

    A positive parenting style affects psychological and cognitive development in children. Neuroimaging studies revealed that a positive parenting style influenced brain structure in children. Parental praise is a concrete behavior observed in positive parenting. Although previous psychological studies revealed a positive effect of parental praise on children, little is known about the relationship between parental praise and brain structure in children. Thus, the purpose of the present study was to determine whether there was a correlation between the parental attitude towards praising their child and gray matter volume in the children (116 boys and 109 girls; mean age, 10.6 years old). We examined the correlation between regional gray matter volume and parental praise using voxel-based morphometry (VBM) following magnetic resonance imaging (MRI). In addition, to confirm the positive effects of parental praise, we analyzed the correlation between the frequency of parental praise and personality traits in children. We showed that the parental attitude towards praising their child was significantly and positively correlated with the gray matter volume of the left posterior insular cortex in children. Moreover, we found a significant positive correlation between parental attitude towards praising their child and the personality traits of conscientiousness and openness to experience in the children. Prior studies said that gray matter volume in the posterior insula was correlated with empathy, and the functional connectivity between this area and the amygdala was associated with emotional regulation. Furthermore, the posterior insula relates to auditory function, and therefore, was likely involved in the processing of parental praise. Considering the possibility of experience-dependent plasticity, frequent parental praise would lead to increased posterior insular gray matter volume in children. Our study is the first to elucidate the relationship between a specific

  18. Parental Praise Correlates with Posterior Insular Cortex Gray Matter Volume in Children and Adolescents

    PubMed Central

    Matsudaira, Izumi; Yokota, Susumu; Hashimoto, Teruo; Takeuchi, Hikaru; Asano, Kohei; Asano, Michiko; Sassa, Yuko; Taki, Yasuyuki; Kawashima, Ryuta

    2016-01-01

    A positive parenting style affects psychological and cognitive development in children. Neuroimaging studies revealed that a positive parenting style influenced brain structure in children. Parental praise is a concrete behavior observed in positive parenting. Although previous psychological studies revealed a positive effect of parental praise on children, little is known about the relationship between parental praise and brain structure in children. Thus, the purpose of the present study was to determine whether there was a correlation between the parental attitude towards praising their child and gray matter volume in the children (116 boys and 109 girls; mean age, 10.6 years old). We examined the correlation between regional gray matter volume and parental praise using voxel-based morphometry (VBM) following magnetic resonance imaging (MRI). In addition, to confirm the positive effects of parental praise, we analyzed the correlation between the frequency of parental praise and personality traits in children. We showed that the parental attitude towards praising their child was significantly and positively correlated with the gray matter volume of the left posterior insular cortex in children. Moreover, we found a significant positive correlation between parental attitude towards praising their child and the personality traits of conscientiousness and openness to experience in the children. Prior studies said that gray matter volume in the posterior insula was correlated with empathy, and the functional connectivity between this area and the amygdala was associated with emotional regulation. Furthermore, the posterior insula relates to auditory function, and therefore, was likely involved in the processing of parental praise. Considering the possibility of experience-dependent plasticity, frequent parental praise would lead to increased posterior insular gray matter volume in children. Our study is the first to elucidate the relationship between a specific

  19. Correlation between Changes in Seismicity Rates and Well Injection Volumes in Oklahoma

    NASA Astrophysics Data System (ADS)

    Gupta, A.; Baker, J.; Walsh, R.; Zoback, M. D.

    2015-12-01

    We present a statistical approach to establish correlations between locations with seismicity increase in Oklahoma and nearby well injection volumes. Seismicity rates in the state have significantly increased since approximately 2008. Fluid injection into deep wells has been theorized to be the cause of this seismicity, but the increase occurred significantly after the start of injection activities in the region. Further, injection-induced earthquakes depend on the presence and orientation of basement faults and the stress state in the region. Because of these complexities, it has been difficult to directly correlate fluid injection with seismicity. Here we show that a statistical correlation between increase in seismicity and injection volumes can be established in Oklahoma. We first employ a change point method to locate the regions where a change in seismicity rates has occurred. We then use a logistic regression model to relate the injection volumes in a region with the presence or absence of seismicity change in the region. This model is further used to evaluate the relative contribution of cumulative injection volumes and monthly injection rates to seismicity. The model can be used to identify "seismically sensitive regions" where seismicity increase has been observed with little fluid injection, and "seismically stable regions" where seismicity changes have not been observed even with high fluid injection. This information can be combined with geological information in a region, and used to make decisions about acceptable volumes for injection and to identify lower-risk regions for injection.

  20. Full Color Holographic Endoscopy

    NASA Astrophysics Data System (ADS)

    Osanlou, A.; Bjelkhagen, H.; Mirlis, E.; Crosby, P.; Shore, A.; Henderson, P.; Napier, P.

    2013-02-01

    The ability to produce color holograms from the human tissue represents a major medical advance, specifically in the areas of diagnosis and teaching. This has been achieved at Glyndwr University. In corporation with partners at Gooch & Housego, Moor Instruments, Vivid Components and peninsula medical school, Exeter, UK, for the first time, we have produced full color holograms of human cell samples in which the cell boundary and the nuclei inside the cells could be clearly focused at different depths - something impossible with a two-dimensional photographic image. This was the main objective set by the peninsula medical school at Exeter, UK. Achieving this objective means that clinically useful images essentially indistinguishable from the object human cells could be routinely recorded. This could potentially be done at the tip of a holo-endoscopic probe inside the body. Optimised recording exposure and development processes for the holograms were defined for bulk exposures. This included the optimisation of in-house recording emulsions for coating evaluation onto polymer substrates (rather than glass plates), a key step for large volume commercial exploitation. At Glyndwr University, we also developed a new version of our in-house holographic (world-leading resolution) emulsion.

  1. Sex, ecology and the brain: evolutionary correlates of brain structure volumes in Tanganyikan cichlids.

    PubMed

    Gonzalez-Voyer, Alejandro; Kolm, Niclas

    2010-12-17

    Analyses of the macroevolutionary correlates of brain structure volumes allow pinpointing of selective pressures influencing specific structures. Here we use a multiple regression framework, including phylogenetic information, to analyze brain structure evolution in 43 Tanganyikan cichlid species. We analyzed the effect of ecological and sexually selected traits for species averages, the effect of ecological traits for each sex separately and the influence of sexual selection on structure dimorphism. Our results indicate that both ecological and sexually selected traits have influenced brain structure evolution. The patterns observed in males and females generally followed those observed at the species level. Interestingly, our results suggest that strong sexual selection is associated with reduced structure volumes, since all correlations between sexually selected traits and structure volumes were negative and the only statistically significant association between sexual selection and structure dimorphism was also negative. Finally, we previously found that monoparental female care was associated with increased brain size. However, here cerebellum and hypothalamus volumes, after controlling for brain size, associated negatively with female-only care. Thus, in accord with the mosaic model of brain evolution, brain structure volumes may not respond proportionately to changes in brain size. Indeed selection favoring larger brains can simultaneously lead to a reduction in relative structure volumes.

  2. Sex, Ecology and the Brain: Evolutionary Correlates of Brain Structure Volumes in Tanganyikan Cichlids

    PubMed Central

    Gonzalez-Voyer, Alejandro; Kolm, Niclas

    2010-01-01

    Analyses of the macroevolutionary correlates of brain structure volumes allow pinpointing of selective pressures influencing specific structures. Here we use a multiple regression framework, including phylogenetic information, to analyze brain structure evolution in 43 Tanganyikan cichlid species. We analyzed the effect of ecological and sexually selected traits for species averages, the effect of ecological traits for each sex separately and the influence of sexual selection on structure dimorphism. Our results indicate that both ecological and sexually selected traits have influenced brain structure evolution. The patterns observed in males and females generally followed those observed at the species level. Interestingly, our results suggest that strong sexual selection is associated with reduced structure volumes, since all correlations between sexually selected traits and structure volumes were negative and the only statistically significant association between sexual selection and structure dimorphism was also negative. Finally, we previously found that monoparental female care was associated with increased brain size. However, here cerebellum and hypothalamus volumes, after controlling for brain size, associated negatively with female-only care. Thus, in accord with the mosaic model of brain evolution, brain structure volumes may not respond proportionately to changes in brain size. Indeed selection favoring larger brains can simultaneously lead to a reduction in relative structure volumes. PMID:21179407

  3. Correlation between Gray/White Matter Volume and Cognition in Healthy Elderly People

    ERIC Educational Resources Information Center

    Taki, Yasuyuki; Kinomura, Shigeo; Sato, Kazunori; Goto, Ryoi; Wu, Kai; Kawashima, Ryuta; Fukuda, Hiroshi

    2011-01-01

    This study applied volumetric analysis and voxel-based morphometry (VBM) of brain magnetic resonance (MR) images to assess whether correlations exist between global and regional gray/white matter volume and the cognitive functions of semantic memory and short-term memory, which are relatively well preserved with aging, using MR image data from 109…

  4. Holographic string encoding.

    PubMed

    Hannagan, Thomas; Dupoux, Emmanuel; Christophe, Anne

    2011-01-01

    In this article, we apply a special case of holographic representations to letter position coding. We translate different well-known schemes into this format, which uses distributed representations and supports constituent structure. We show that in addition to these brain-like characteristics, performances on a standard benchmark of behavioral effects are improved in the holographic format relative to the standard localist one. This notably occurs because of emerging properties in holographic codes, like transposition and edge effects, for which we give formal demonstrations. Finally, we outline the limits of the approach as well as its possible future extensions.

  5. A Holographic Road Show.

    ERIC Educational Resources Information Center

    Kirkpatrick, Larry D.; Rugheimer, Mac

    1979-01-01

    Describes the viewing sessions and the holograms of a holographic road show. The traveling exhibits, believed to stimulate interest in physics, include a wide variety of holograms and demonstrate several physical principles. (GA)

  6. Improving the clinical correlation of multiple sclerosis black hole volume change by paired-scan analysis.

    PubMed

    Tam, Roger C; Traboulsee, Anthony; Riddehough, Andrew; Li, David K B

    2012-01-01

    The change in T 1-hypointense lesion ("black hole") volume is an important marker of pathological progression in multiple sclerosis (MS). Black hole boundaries often have low contrast and are difficult to determine accurately and most (semi-)automated segmentation methods first compute the T 2-hyperintense lesions, which are a superset of the black holes and are typically more distinct, to form a search space for the T 1w lesions. Two main potential sources of measurement noise in longitudinal black hole volume computation are partial volume and variability in the T 2w lesion segmentation. A paired analysis approach is proposed herein that uses registration to equalize partial volume and lesion mask processing to combine T 2w lesion segmentations across time. The scans of 247 MS patients are used to compare a selected black hole computation method with an enhanced version incorporating paired analysis, using rank correlation to a clinical variable (MS functional composite) as the primary outcome measure. The comparison is done at nine different levels of intensity as a previous study suggests that darker black holes may yield stronger correlations. The results demonstrate that paired analysis can strongly improve longitudinal correlation (from -0.148 to -0.303 in this sample) and may produce segmentations that are more sensitive to clinically relevant changes.

  7. Digital Holographic Logic

    NASA Technical Reports Server (NTRS)

    Preston, K., Jr.

    1972-01-01

    The characteristics of the holographic logic computer are discussed. The holographic operation is reviewed from the Fourier transform viewpoint, and the formation of holograms for use in performing digital logic are described. The operation of the computer with an experiment in which the binary identity function is calculated is discussed along with devices for achieving real-time performance. An application in pattern recognition using neighborhood logic is presented.

  8. The correlation between emotional intelligence and gray matter volume in university students.

    PubMed

    Tan, Yafei; Zhang, Qinglin; Li, Wenfu; Wei, Dongtao; Qiao, Lei; Qiu, Jiang; Hitchman, Glenn; Liu, Yijun

    2014-11-01

    A number of recent studies have investigated the neurological substrates of emotional intelligence (EI), but none of them have considered the neural correlates of EI that are measured using the Schutte Self-Report Emotional Intelligence Scale (SSREIS). This scale was developed based on the EI model of Salovey and Mayer (1990). In the present study, SSREIS was adopted to estimate EI. Meanwhile, magnetic resonance imaging (MRI) and voxel-based morphometry (VBM) were used to evaluate the gray matter volume (GMV) of 328 university students. Results found positive correlations between Monitor of Emotions and VBM measurements in the insula and orbitofrontal cortex. In addition, Utilization of Emotions was positively correlated with the GMV in the parahippocampal gyrus, but was negatively correlated with the VBM measurements in the fusiform gyrus and middle temporal gyrus. Furthermore, Social Ability had volume correlates in the vermis. These findings indicate that the neural correlates of the EI model, which primarily focuses on the abilities of individuals to appraise and express emotions, can also regulate and utilize emotions to solve problems.

  9. The correlation between emotional intelligence and gray matter volume in university students.

    PubMed

    Tan, Yafei; Zhang, Qinglin; Li, Wenfu; Wei, Dongtao; Qiao, Lei; Qiu, Jiang; Hitchman, Glenn; Liu, Yijun

    2014-11-01

    A number of recent studies have investigated the neurological substrates of emotional intelligence (EI), but none of them have considered the neural correlates of EI that are measured using the Schutte Self-Report Emotional Intelligence Scale (SSREIS). This scale was developed based on the EI model of Salovey and Mayer (1990). In the present study, SSREIS was adopted to estimate EI. Meanwhile, magnetic resonance imaging (MRI) and voxel-based morphometry (VBM) were used to evaluate the gray matter volume (GMV) of 328 university students. Results found positive correlations between Monitor of Emotions and VBM measurements in the insula and orbitofrontal cortex. In addition, Utilization of Emotions was positively correlated with the GMV in the parahippocampal gyrus, but was negatively correlated with the VBM measurements in the fusiform gyrus and middle temporal gyrus. Furthermore, Social Ability had volume correlates in the vermis. These findings indicate that the neural correlates of the EI model, which primarily focuses on the abilities of individuals to appraise and express emotions, can also regulate and utilize emotions to solve problems. PMID:25282329

  10. Individual differences in posterior cortical volume correlate with proneness to pride and gratitude.

    PubMed

    Zahn, Roland; Garrido, Griselda; Moll, Jorge; Grafman, Jordan

    2014-11-01

    Proneness to specific moral sentiments (e.g. pride, gratitude, guilt, indignation) has been linked with individual variations in functional MRI (fMRI) response within anterior brain regions whose lesion leads to inappropriate behaviour. However, the role of structural anatomical differences in rendering individuals prone to particular moral sentiments relative to others is unknown. Here, we investigated grey matter volumes (VBM8) and proneness to specific moral sentiments on a well-controlled experimental task in healthy individuals. Individuals with smaller cuneus, and precuneus volumes were more pride-prone, whereas those with larger right inferior temporal volumes experienced gratitude more readily. Although the primary analysis detected no associations with guilt- or indignation-proneness, subgenual cingulate fMRI responses to guilt were negatively correlated with grey matter volumes in the left superior temporal sulcus and anterior dorsolateral prefrontal cortices (right >left). This shows that individual variations in functional activations within critical areas for moral sentiments were not due to grey matter volume differences in the same areas. Grey matter volume differences between healthy individuals may nevertheless play an important role by affecting posterior cortical brain systems that are non-critical but supportive for the experience of specific moral sentiments. This may be of particular relevance when their experience depends on visuo-spatial elaboration.

  11. Individual differences in posterior cortical volume correlate with proneness to pride and gratitude

    PubMed Central

    Zahn, Roland; Garrido, Griselda; Moll, Jorge

    2014-01-01

    Proneness to specific moral sentiments (e.g. pride, gratitude, guilt, indignation) has been linked with individual variations in functional MRI (fMRI) response within anterior brain regions whose lesion leads to inappropriate behaviour. However, the role of structural anatomical differences in rendering individuals prone to particular moral sentiments relative to others is unknown. Here, we investigated grey matter volumes (VBM8) and proneness to specific moral sentiments on a well-controlled experimental task in healthy individuals. Individuals with smaller cuneus, and precuneus volumes were more pride-prone, whereas those with larger right inferior temporal volumes experienced gratitude more readily. Although the primary analysis detected no associations with guilt- or indignation-proneness, subgenual cingulate fMRI responses to guilt were negatively correlated with grey matter volumes in the left superior temporal sulcus and anterior dorsolateral prefrontal cortices (right >left). This shows that individual variations in functional activations within critical areas for moral sentiments were not due to grey matter volume differences in the same areas. Grey matter volume differences between healthy individuals may nevertheless play an important role by affecting posterior cortical brain systems that are non-critical but supportive for the experience of specific moral sentiments. This may be of particular relevance when their experience depends on visuo-spatial elaboration. PMID:24106333

  12. Digital holographic microscopy for the evaluation of human sperm structure.

    PubMed

    Coppola, G; Di Caprio, G; Wilding, M; Ferraro, P; Esposito, G; Di Matteo, L; Dale, R; Coppola, G; Dale, B

    2014-11-01

    The morphology of the sperm head has often been correlated with the outcome of in vitro fertilization, and has been shown to be the sole parameter in semen of value in predicting the success of intracytoplasmic sperm injection and intracytoplasmic morphologically selected sperm injection. In this paper, we have studied whether digital holographic microscopy (DHM) may be useful to obtain quantitative data on human sperm head structure and compared this technique with high-power digitally enhanced Nomarski optics. The main advantage of digital holography is that high-resolution three-dimensional quantitative sample imaging may be automatically produced by numerical refocusing of a two-dimensional image at different object planes without any mechanical scanning. We show that DHM generates useful information on the dimensions and structure of human sperm, not revealed by conventional phase-contrast microscopy, in particular the volume of vacuoles, and suggest its use as an additional prognostic tool in assisted reproduction technology.

  13. Volume localized spin echo correlation spectroscopy with suppression of 'diagonal' peaks.

    PubMed

    Banerjee, Abhishek; Chandrakumar, N

    2014-02-01

    Two dimensional homonuclear (1)H correlation spectroscopy is of considerable interest for volume localized spectral studies, both in vivo and in vitro, of biological as well as material objects. The information principally sought from correlation spectra resides in the cross-peaks, which are often masked however by the presence of diagonal peaks in COSY, or 'pseudo-diagonal' peaks at F1=0 in SECSY. It has therefore been a concern to suppress these diagonal or 'pseudo-diagonal' peaks, in order to ensure that cross-peak information is fully discernible. We present here a report of our work on volume localized DIagonal Suppressed Spin Echo Correlation specTroscopy (LDISSECT) and demonstrate its performance in comparison to the standard volume localized SECSY experiment, employing brain metabolite phantoms in a gel. The sequence works in the inhomogeneous, multi-component environment by exploiting the short acquisition time to suppress undesired information by employing an additional rf pulse. A brief description of the pulse sequence, its theory, and simulations are also included, besides experimental benchmarking on two brain metabolite phantoms in gel phase.

  14. Friedmann Propulsion in an Flat Holographic Universe

    NASA Astrophysics Data System (ADS)

    Binder, Bernd

    2008-01-01

    Because of inversion symmetries in holographic systems, the spatial compression of lower-dimensional holographic memory leads to an expansion of the holographic image and vice versa (scaling duality), where the geometric mean between the small quantum memory and cosmic image scale defines the inversion scale, the unit scale to normalize the global holographic currents of momentum exchange. Assigning to the cosmic image (bulk) a 4d, to the quantum memory (baryon) a 2d, and to the inversion scale a 3d spherical topology, the cosmic critical density in the flat FRW cosmic test model corresponds to 1 memory unit (baryon). Otherwise, if we expect expansion driven by 3d Einstein gravity on all scales, we get the well known cosmic ``dark matter'' deficit of 96% or 0.04 baryons per unit volume. The cosmic deficit or quantum excess is assigned by Gauss law to the topological ratio 4d bulk surface S3 to 2d quantum surface S1, which dilutes gravity or the mass density by the dimensionless factor 0.04~S3/2/S13 = 1/(8π) leading to a theoretical Hubble parameter of 73.2 kms-1 Mpc-1. Regarding propulsion based on fractional linear transforms mapping the quantum compression by inversion to a cosmic expansion, the anisotropic transform resembles the Alcubierre mechanism if expansion is behind and the compression ahead of the spaceship.

  15. Holographic dark energy and late cosmic acceleration

    NASA Astrophysics Data System (ADS)

    Pavón, Diego

    2007-06-01

    It has been persuasively argued that the number of effective degrees of freedom of a macroscopic system is proportional to its area rather than to its volume. This entails interesting consequences for cosmology. Here we present a model based on this 'holographic principle' that accounts for the present stage of accelerated expansion of the Universe and significantly alleviates the coincidence problem also for non-spatially flat cosmologies. Likewise, we comment on a recently proposed late transition to a fresh decelerated phase.

  16. Magnonic Holographic Memory

    NASA Astrophysics Data System (ADS)

    Khitun, Alexander; Kozhevnikov, Alexander; Gertz, Frederick; Filimonov, Yuri

    2015-03-01

    Collective oscillation of spins in magnetic lattice known as spin waves (magnons) possess relatively long coherence length at room temperature, which makes it possible to build sub-micrometer scale holographic devices similar to the devices developed in optics. In this work, we present a prototype 2-bit magnonic holographic memory. The memory consists of the double-cross waveguide structure made of Y3Fe2(FeO4)3 with magnets placed on the top of waveguide junctions. Information is encoded in the orientation of the magnets, while the read-out is accomplished by the spin waves generated by the micro-antennas placed on the edges of the waveguides. The interference pattern produced by multiple spin waves makes it possible to build a unique holographic image of the magnetic structure and recognize the state of the each magnet. The development of magnonic holographic devices opens a new horizon for building scalable holographic devices compatible with conventional electronic devices. This work was supported in part by the FAME Center, one of six centers of STARnet, a Semiconductor Research Corporation program sponsored by MARCO and DARPA and by the National Science Foundation under the NEB2020 Grant ECCS-1124714.

  17. Towards 3C-3D digital holographic fluid velocity vector field measurement—tomographic digital holographic PIV (Tomo-HPIV)

    NASA Astrophysics Data System (ADS)

    Soria, J.; Atkinson, C.

    2008-07-01

    Most unsteady and/or turbulent flows of geophysical and engineering interest have a highly three-dimensional (3D) complex topology and their experimental investigation is in pressing need of quantitative velocity measurement methods that are robust and can provide instantaneous 3C-3D velocity field data over a significant volumetric domain of the flow. This paper introduces and demonstrates a new method that uses multiple digital CCD array cameras to record in-line digital holograms of the same volume of seed particles from multiple orientations. This technique uses the same basic equipment as Tomo-PIV minus the camera lenses, it overcomes the depth-of-field problem of digital in-line holography and does not require the complex optical calibration of Tomo-PIV. The digital sensors can be oriented in an optimal manner to overcome the depth-of-field limitation of in-line holograms recorded using digital CCD or CMOS array cameras, resulting in a 3D reconstruction of the seed particles within the volume of interest, which can subsequently be analysed using 3D cross-correlation PIV analysis to yield a 3C-3D velocity field. A demonstration experiment of Tomo-HPIV using uniform translation with nominally 11 µm diameter seed particles shows that the 3D displacement derived from 3D cross-correlation Tomo-HPIV analysis can be measured within 5% of the imposed uniform translation, where the imposed uniform translation has an estimated standard uncertainty of 4.3%. So this paper proposes a multi-camera digital holographic imaging 3C-3D PIV method, which is identified as tomographic digital holographic PIV or Tomo-HPIV.

  18. PBMC telomerase activity, but not leukocyte telomere length, correlates with hippocampal volume in major depression

    PubMed Central

    Wolkowitz, Owen M.; Mellon, Synthia H.; Lindqvist, Daniel; Epel, Elissa S.; Blackburn, Elizabeth H.; Lin, Jue; Reus, Victor I.; Burke, Heather; Rosser, Rebecca; Mahan, Laura; Mackin, Scott; Yang, Tony; Weiner, Michael; Mueller, Susanne

    2015-01-01

    Accelerated cell aging, indexed in peripheral leukocytes by telomere length and in peripheral blood mononuclear cells (PBMCs) by telomerase activity, has been reported in several studies of major depressive disorder (MDD). However, the relevance of these peripheral measures for brain indices that are presumably more directly related to MDD pathophysiology is unknown. In this study, we explored the relationship between PBMC telomerase activity and leukocyte telomere length and magnetic resonance imaging-estimated hippocampal volume in un-medicated depressed individuals and healthy controls. We predicted that, to the extent peripheral and central telomerase activity are directly related, PBMC telomerase activity would be positively correlated with hippocampal volume, perhaps due to hippocampal telomerase-associated neurogenesis, neuroprotection or neurotrophic facilitation, and that this effect would be clearer in individuals with increased PBMC telomerase activity, as previously reported in un-medicated MDD. We did not have specific hypotheses regarding the relationship between leukocyte telomere length and hippocampal volume, due to conflicting reports in the published literature. We found, in 25 un-medicated MDD subjects, that PBMC telomerase activity was significantly positively correlated with hippocampal volume; this relationship was not observed in 18 healthy controls. Leukocyte telomere length was not significantly related to hippocampal volume in either group (19 unmedicated MDD subjects and 17 healthy controls). Although the nature of the relationship between peripheral telomerase activity and telomere length and the hippocampus is unclear, these preliminary data are consistent with the possibility that PBMC telomerase activity indexes, and may provide a novel window into, hippocampal neuroprotection and/or neurogenesis in MDD. PMID:25773002

  19. Molecular weights of individual proteins correlate with molecular volumes measured by atomic force microscopy.

    PubMed

    Schneider, S W; Lärmer, J; Henderson, R M; Oberleithner, H

    1998-02-01

    Proteins are usually identified by their molecular weights, and atomic force microscopy (AFM) produces images of single molecules in three dimensions. We have used AFM to measure the molecular volumes of a number of proteins and to determine any correlation with their known molecular weights. We used native proteins (the TATA-binding protein Tbp, a fusion protein of glutathione-S-transferase and the renal potassium channel protein ROMK1, the immunoglobulins IgG and IgM, and the vasodilator-stimulated phosphoprotein VASP) and also denatured proteins (the red blood cell proteins actin, Band 3 and spectrin separated by SDS-gel electrophoresis and isolated from nitrocellulose). Proteins studied had molecular weights between 38 and 900 kDa and were imaged attached to a mica substrate. We found that molecular weight increased with an increasing molecular volume (correlation coefficient = 0.994). Thus, the molecular volumes measured with AFM compare well with the calculated volumes of the individual proteins. The degree of resolution achieved (lateral 5 nm, vertical 0.2 nm) depended upon the firm attachment of the proteins to the mica. This was aided by coating the mica with suitable detergent and by imaging using the AFM tapping mode which minimizes any lateral force applied to the protein. We conclude that single (native and denatured) proteins can be imaged by AFM in three dimensions and identified by their specific molecular volumes. This new approach permits detection of the number of monomers of a homomultimeric protein and study of single proteins under physiological conditions at the molecular level.

  20. Diffused holographic information storage and retrieval using photorefractive optical materials

    NASA Astrophysics Data System (ADS)

    McMillen, Deanna Kay

    Holography offers a tremendous opportunity for dense information storage, theoretically one bit per cubic wavelength of material volume, with rapid retrieval, of up to thousands of pages of information simultaneously. However, many factors prevent the theoretical storage limit from being reached, including dynamic range problems and imperfections in recording materials. This research explores new ways of moving closer to practical holographic information storage and retrieval by altering the recording materials, in this case, photorefractive crystals, and by increasing the current storage capacity while improving the information retrieved. As an experimental example of the techniques developed, the information retrieved is the correlation peak from an optical recognition architecture, but the materials and methods developed are applicable to many other holographic information storage systems. Optical correlators can potentially solve any signal or image recognition problem. Military surveillance, fingerprint identification for law enforcement or employee identification, and video games are but a few examples of applications. A major obstacle keeping optical correlators from being universally accepted is the lack of a high quality, thick (high capacity) holographic recording material that operates with red or infrared wavelengths which are available from inexpensive diode lasers. This research addresses the problems from two positions: find a better material for use with diode lasers, and reduce the requirements placed on the material while maintaining an efficient and effective system. This research found that the solutions are new dopants introduced into photorefractive lithium niobate to improve wavelength sensitivities and the use of a novel inexpensive diffuser that reduces the dynamic range and optical element quality requirements (which reduces the cost) while improving performance. A uniquely doped set of 12 lithium niobate crystals was specified and

  1. Brain tissue volume changes in relapsing-remitting multiple sclerosis: correlation with lesion load.

    PubMed

    Quarantelli, Mario; Ciarmiello, Andrea; Morra, Vincenzo Brescia; Orefice, Giuseppe; Larobina, Michele; Lanzillo, Roberta; Schiavone, Vittorio; Salvatore, Elena; Alfano, Bruno; Brunetti, Arturo

    2003-02-01

    The aim of this study was to simultaneously measure in vivo volumes of gray matter (GM), normal white matter (WM), abnormal white matter (aWM), and cerebro-spinal fluid (CSF), and to assess their relationship in 50 patients with relapsing-remitting multiple sclerosis (RR-MS) (age range, 21-59; mean EDSS, 2.5; mean disease duration, 9.9 years), using an unsupervised multiparametric segmentation procedure applied to brain MR studies. Tissue volumes were normalized to total intracranial volume providing corresponding fractional volumes (fGM, faWM, fWM, and fCSF), subsequently corrected for aWM-related segmentation inaccuracies and adjusted to mean patients' age according to age-related changes measured in 54 normal volunteers (NV) (age range 16-70). In MS patients aWM was 23.8 +/- 29.8 ml (range 0.4-138.8). A significant decrease in fGM was present in MS patients as compared to NV (49.5 +/- 3.2% vs 53.3 +/- 2.1%; P < 0.0001), with a corresponding increase in fCSF (13.0 +/- 3.8% vs 9.1 +/- 2.4%; P < 0.0001). No difference could be detected between the two groups for fWM (37.5 +/- 2.6% vs 37.6 +/- 2.2%). faWM correlated inversely with fGM (R = -0.434, P < 0.001 at regression analysis), and directly with fCSF (R = 0.473, P < 0.001), but not with fWM. There was a significant correlation between disease duration and EDSS, while no relationship was found between EDSS or disease duration and fractional volumes. Brain atrophy in RR-MS is mainly related to GM loss, which correlates with faWM. Both measures do not appear to significantly affect EDSS, which correlates to disease duration. PMID:12595189

  2. Gray matter alterations and correlation of nutritional intake with the gray matter volume in prediabetes.

    PubMed

    Hou, Yi-Cheng; Lai, Chien-Han; Wu, Yu-Te; Yang, Shwu-Huey

    2016-06-01

    The neurophysiology of prediabetes plays an important role in preventive medicine. The dysregulation of glucose metabolism is likely linked to changes in neuron-related gray matter. Therefore, we designed this study to investigate gray matter alterations in medication-naive prediabetic patients. We expected to find alterations in the gray matter of prediabetic patients.A total of 64 prediabetic patients and 54 controls were enrolled. All subjects received T1 scans using a 3-T magnetic resonance imaging machine. Subjects also completed nutritional intake records at the 24-hour and 3-day time points to determine their carbohydrate, protein, fat, and total calorie intake. We utilized optimized voxel-based morphometry to estimate the gray matter differences between the patients and controls. In addition, the preprandial serum glucose level and the carbohydrate, protein, fat, and total calorie intake levels were tested to determine whether these parameters were correlated with the gray matter volume.Prediabetic patients had lower gray matter volumes than controls in the right anterior cingulate gyrus, right posterior cingulate gyrus, left insula, left super temporal gyrus, and left middle temporal gyrus (corrected P < 0.05; voxel threshold: 33). Gray matter volume in the right anterior cingulate was also negatively correlated with the preprandial serum glucose level gyrus in a voxel-dependent manner (r = -0.501; 2-tailed P = 0.001).The cingulo-temporal and insula gray matter alterations may be associated with the glucose dysregulation in prediabetic patients.

  3. Gray matter alterations and correlation of nutritional intake with the gray matter volume in prediabetes

    PubMed Central

    Hou, Yi-Cheng; Lai, Chien-Han; Wu, Yu-Te; Yang, Shwu-Huey

    2016-01-01

    Abstract The neurophysiology of prediabetes plays an important role in preventive medicine. The dysregulation of glucose metabolism is likely linked to changes in neuron-related gray matter. Therefore, we designed this study to investigate gray matter alterations in medication-naive prediabetic patients. We expected to find alterations in the gray matter of prediabetic patients. A total of 64 prediabetic patients and 54 controls were enrolled. All subjects received T1 scans using a 3-T magnetic resonance imaging machine. Subjects also completed nutritional intake records at the 24-hour and 3-day time points to determine their carbohydrate, protein, fat, and total calorie intake. We utilized optimized voxel-based morphometry to estimate the gray matter differences between the patients and controls. In addition, the preprandial serum glucose level and the carbohydrate, protein, fat, and total calorie intake levels were tested to determine whether these parameters were correlated with the gray matter volume. Prediabetic patients had lower gray matter volumes than controls in the right anterior cingulate gyrus, right posterior cingulate gyrus, left insula, left super temporal gyrus, and left middle temporal gyrus (corrected P < 0.05; voxel threshold: 33). Gray matter volume in the right anterior cingulate was also negatively correlated with the preprandial serum glucose level gyrus in a voxel-dependent manner (r = –0.501; 2-tailed P = 0.001). The cingulo-temporal and insula gray matter alterations may be associated with the glucose dysregulation in prediabetic patients. PMID:27336893

  4. Gray matter alterations and correlation of nutritional intake with the gray matter volume in prediabetes.

    PubMed

    Hou, Yi-Cheng; Lai, Chien-Han; Wu, Yu-Te; Yang, Shwu-Huey

    2016-06-01

    The neurophysiology of prediabetes plays an important role in preventive medicine. The dysregulation of glucose metabolism is likely linked to changes in neuron-related gray matter. Therefore, we designed this study to investigate gray matter alterations in medication-naive prediabetic patients. We expected to find alterations in the gray matter of prediabetic patients.A total of 64 prediabetic patients and 54 controls were enrolled. All subjects received T1 scans using a 3-T magnetic resonance imaging machine. Subjects also completed nutritional intake records at the 24-hour and 3-day time points to determine their carbohydrate, protein, fat, and total calorie intake. We utilized optimized voxel-based morphometry to estimate the gray matter differences between the patients and controls. In addition, the preprandial serum glucose level and the carbohydrate, protein, fat, and total calorie intake levels were tested to determine whether these parameters were correlated with the gray matter volume.Prediabetic patients had lower gray matter volumes than controls in the right anterior cingulate gyrus, right posterior cingulate gyrus, left insula, left super temporal gyrus, and left middle temporal gyrus (corrected P < 0.05; voxel threshold: 33). Gray matter volume in the right anterior cingulate was also negatively correlated with the preprandial serum glucose level gyrus in a voxel-dependent manner (r = -0.501; 2-tailed P = 0.001).The cingulo-temporal and insula gray matter alterations may be associated with the glucose dysregulation in prediabetic patients. PMID:27336893

  5. Full-color holographic 3D printer

    NASA Astrophysics Data System (ADS)

    Takano, Masami; Shigeta, Hiroaki; Nishihara, Takashi; Yamaguchi, Masahiro; Takahashi, Susumu; Ohyama, Nagaaki; Kobayashi, Akihiko; Iwata, Fujio

    2003-05-01

    A holographic 3D printer is a system that produces a direct hologram with full-parallax information using the 3-dimensional data of a subject from a computer. In this paper, we present a proposal for the reproduction of full-color images with the holographic 3D printer. In order to realize the 3-dimensional color image, we selected the 3 laser wavelength colors of red (λ=633nm), green (λ=533nm), and blue (λ=442nm), and we built a one-step optical system using a projection system and a liquid crystal display. The 3-dimensional color image is obtained by synthesizing in a 2D array the multiple exposure with these 3 wavelengths made on each 250mm elementary hologram, and moving recording medium on a x-y stage. For the natural color reproduction in the holographic 3D printer, we take the approach of the digital processing technique based on the color management technology. The matching between the input and output colors is performed by investigating first, the relation between the gray level transmittance of the LCD and the diffraction efficiency of the hologram and second, by measuring the color displayed by the hologram to establish a correlation. In our first experimental results a non-linear functional relation for single and multiple exposure of the three components were found. These results are the first step in the realization of a natural color 3D image produced by the holographic color 3D printer.

  6. Characteristic free volumes of bulk metallic glasses: Measurement and their correlation with glass-forming ability

    SciTech Connect

    Hu Qiang; Zeng Xierong; Fu, M. W.

    2011-03-01

    A convenient method is proposed for the measurement of the characteristic free volumes, viz., the amount of excess free volume annihilation in structural relaxation V{sub f-sr} and the amount of new free volume production in glass transition V{sub f-gt} of bulk metallic glasses (BMGs) by thermal dilation (DIL) test. Through the DIL tests, the characteristic free volumes are found to be sensitive to the change of glass forming ability (GFA). The Pd{sub 40}Cu{sub 30}Ni{sub 10}P{sub 20} BMG has a quite small V{sub f-sr}. For a series of Fe-Cr-Mo-C-B-(Er) BMGs, Fe{sub 48}Cr{sub 15}Mo{sub 14}C{sub 15}B{sub 6}Er{sub 2} with the largest GFA is identified to have the largest V{sub f-gt} and smallest V{sub f-sr}. The correlation between V{sub f-sr} and the squares of critical diameters of these iron-based BMGs can be fitted as a negative exponential function with high accuracy.

  7. Self-reported impulsivity is negatively correlated with amygdalar volumes in cocaine dependence

    PubMed Central

    Mei, Songli; Xu, Jiansong; Carroll, Kathleen M.; Potenza, Marc N.

    2015-01-01

    Although impulsivity has been associated with cocaine dependence and other addictive behaviors, the biological factors underlying impulsivity have yet to be precisely determined. This study aimed to examine relationships between impulsivity and volumes of the amygdala and hippocampus in cocaine-dependent and healthy comparison individuals. The Barratt Impulsiveness Scale (BIS-11) was used to assess impulsivity. FreeSurfer was used to assess amygdalar and hippocampal volumes from high-resolution structural magnetic resonance images. Relative to healthy comparison subjects, cocaine-dependent individuals scored higher on all three subscales of BIS-11 but did not differ from healthy comparison subjects in amygdalar or hippocampal volumes. Cocaine-dependent individuals showed significant negative correlations between amygdalar volumes and scores on the BIS-11 Attentional subscale, and this relationship differed significantly from the non-significant relationship in healthy comparison subjects. As individual differences in amygdalar structure may contribute to the high impulsivity observed in cocaine-dependent individuals, the findings suggest that future studies should assess the extent to which therapies that target impulsivity in cocaine dependence may operate through the amygdala or alter its structure or function. PMID:26187551

  8. Computer generated holographic microtags

    DOEpatents

    Sweatt, William C.

    1998-01-01

    A microlithographic tag comprising an array of individual computer generated holographic patches having feature sizes between 250 and 75 nanometers. The tag is a composite hologram made up of the individual holographic patches and contains identifying information when read out with a laser of the proper wavelength and at the proper angles of probing and reading. The patches are fabricated in a steep angle Littrow readout geometry to maximize returns in the -1 diffracted order. The tags are useful as anti-counterfeiting markers because of the extreme difficulty in reproducing them.

  9. Computer generated holographic microtags

    DOEpatents

    Sweatt, W.C.

    1998-03-17

    A microlithographic tag comprising an array of individual computer generated holographic patches having feature sizes between 250 and 75 nanometers is disclosed. The tag is a composite hologram made up of the individual holographic patches and contains identifying information when read out with a laser of the proper wavelength and at the proper angles of probing and reading. The patches are fabricated in a steep angle Littrow readout geometry to maximize returns in the -1 diffracted order. The tags are useful as anti-counterfeiting markers because of the extreme difficulty in reproducing them. 5 figs.

  10. Spectrally nonselective holographic objective

    NASA Astrophysics Data System (ADS)

    Wardosanidze, Zurab V.

    1991-10-01

    Reflection holograms and holographic optical elements fabricated by the Denisyuk method are spectrally selective. In certain applications there may be a need for the development of holographic structures that are not selective in terms of the spectral composition of the reconstructing light. This paper describes the possibility of creating spectral nonselective optical elements and reflection holograms on a dichromate gelatin layer (DGL). The essential condition for achieving nonselectivity in this case is a strong absorption of actinic radiation in the initial emulsion layer conditioning the strongly damping character of the summary field in thickness.

  11. Correlation of neurocognitive function and brain parenchyma volumes in children surviving cancer

    NASA Astrophysics Data System (ADS)

    Reddick, Wilburn E.; White, Holly A.; Glass, John O.; Mulhern, Raymond K.

    2002-04-01

    This research builds on our hypothesis that white matter damage and associated neurocognitive symptoms, in children treated for cancer with cranial spinal irradiation, spans a continuum of severity that can be reliably probed using non-invasive MR technology. Quantitative volumetric assessments of MR imaging and psychological assessments were obtained in 40 long-term survivors of malignant brain tumors treated with cranial irradiation. Neurocognitive assessments included a test of intellect (Wechsler Intelligence Test for Children, Wechsler Adult Intelligence Scale), attention (Conner's Continuous Performance Test), and memory (California Verbal Learning Test). One-sample t-tests were conducted to evaluate test performance of survivors against age-adjusted scores from the test norms; these analyses revealed significant impairments in all apriori selected measures of intelligence, attention, and memory. Partial correlation analyses were performed to assess the relationships between brain tissues volumes (normal appearing white matter (NAWM), gray matter, and CSF) and neurocognitive function. Global intelligence (r = 0.32, p = 0.05) and global attentional (r = 0.49, p < 0.01) were significantly positively correlated with NAWM volumes, whereas global memory was significantly positively correlated with overall brain parenchyma (r = 0.38, p = 0.04). We conclude that quantitative assessment of MR examinations in survivors of childhood cancer treated with cranial irradiation reveal that loss of NAWM is associated with decreased intellectual and attentional deficits, whereas overall parenchyma loss, as reflected by increased CSF and decreased white matter, is associated with memory-related deficits.

  12. Digital Volume Correlation for Study of the Mechanics of Whole Bones

    PubMed Central

    Hussein, Amira I; Barbone, Paul E; Morgan, Elise F.

    2013-01-01

    Full-field measurement of deformation in biological structures such as bones is a promising experimental approach for study of the spatial heterogeneity in mechanical behavior. With the advent of high-resolution, 3-D imaging, digital volume correlation (DVC) allows for the measurement of spatially heterogeneous, 3-D deformation fields throughout entire volumes. For bones such as the vertebra, use of DVC to detect the onset and progression of failure is of direct relevance to the study of osteoporotic fractures. Application of DVC to whole bones, as opposed to machined specimens of bone tissue, involves additional challenges such as the irregular geometry, large data sets, and decreased signal-to-noise ratio. These challenges are addressed in this paper, and the DVC method that results is used to examine yield and post-yield deformations in vertebral compression experiments. PMID:23336099

  13. Digital Volume Correlation for Study of the Mechanics of Whole Bones.

    PubMed

    Hussein, Amira I; Barbone, Paul E; Morgan, Elise F

    2012-01-01

    Full-field measurement of deformation in biological structures such as bones is a promising experimental approach for study of the spatial heterogeneity in mechanical behavior. With the advent of high-resolution, 3-D imaging, digital volume correlation (DVC) allows for the measurement of spatially heterogeneous, 3-D deformation fields throughout entire volumes. For bones such as the vertebra, use of DVC to detect the onset and progression of failure is of direct relevance to the study of osteoporotic fractures. Application of DVC to whole bones, as opposed to machined specimens of bone tissue, involves additional challenges such as the irregular geometry, large data sets, and decreased signal-to-noise ratio. These challenges are addressed in this paper, and the DVC method that results is used to examine yield and post-yield deformations in vertebral compression experiments.

  14. Correlating Gray Matter Volume with Individual Difference in the Flanker Interference Effect

    PubMed Central

    Chen, Changming; Yang, Jiemin; Lai, Jiayu; Li, Hong; Yuan, Jiajin; Abbasi, Najam ul Hasan

    2015-01-01

    The Eriksen Flanker task has been widely used as a measurement of cognitive control, however till now information is still scarce about how the neuroanatomical properties are related to performance in this task. Using voxel-based morphometry technique (VBM), the current study identified a set of distributed areas where the gray matter volume (GM) correlated positively with participants’ efficiency in interference inhibition. These areas included the bilateral prefrontal gyri, left insula and inferior temporal gyrus, the left inferior parietal lobule. Further analysis using a novel machine learning algorithm with balanced cross-validation procedure confirmed that in these areas the GM-behavioral association was unlikely a byproduct of outlier values, instead, the gray matter volume could predict reliably participants’ interference inhibition efficiency. These results underscore the importance of the fronto-parietal and insula systems to the brain functioning of interference inhibition from the neuroanatomical perspective. PMID:26322974

  15. Holographic RG flows, entanglement entropy and the sum rule

    NASA Astrophysics Data System (ADS)

    Casini, Horacio; Testé, Eduardo; Torroba, Gonzalo

    2016-03-01

    We calculate the two-point function of the trace of the stress tensor in holographic renormalization group flows between pairs of conformal field theories. We show that the term proportional to the momentum squared in this correlator gives the change of the central charge between fixed points in d = 2 and in d > 2 it gives the holographic entanglement entropy for a planar region. This can also be seen as a holographic realization of the Adler-Zee formula for the renormalization of Newton's constant. Holographic regularization is found to provide a perfect match of the finite and divergent terms of the sum rule, and it is analogous to the regularization of the entropy in terms of mutual information. Finally, we provide a general proof of reflection positivity in terms of stability of the dual bulk action, and discuss the relation between unitarity constraints, the null energy condition and regularity in the interior of the gravity solution.

  16. (3)He MRI in healthy volunteers: preliminary correlation with smoking history and lung volumes.

    PubMed

    Guenther, D; Eberle, B; Hast, J; Lill, J; Markstaller, K; Puderbach, M; Schreiber, W G; Hanisch, G; Heussel, C P; Surkau, R; Grossmann, T; Weiler, N; Thelen, M; Kauczor, H U

    2000-06-01

    MRI with hyperpolarized helium-3 ((3)He) provides high-resolution imaging of ventilated airspaces. The first aim of this (3)He-study was to compare observations of localized signal defects in healthy smokers and non-smokers. A second aim was to describe relationships between parameters of lung function, volume of inspired (3)He and signal-to-noise ratio. With Ethics Committee approval and informed consent, 12 healthy volunteers (seven smokers and five non-smokers) were studied. Imaging was performed in a 1.5 T scanner using a two-dimensional FLASH sequence at 30V transmitter amplitude (TR/TE/alpha = 11 ms/4.2 ms/<10 degrees ). Known amounts of (3)He were inhaled from a microprocessor-controlled delivery device and imaged during single breath-holds. Images were evaluated visually, and scored using a prospectively defined 'defect-index'. Signal-to-noise ratio of the images were correlated with localization, (3)He volumes and static lung volumes. Due to poor image quality studies of two smokers were not eligible for the evaluation. Smokers differed from non-smokers in total number and size of defects: the 'defect-index' of smokers ranged between 0.8 and 6.0 (median = 1.1), that of non-smokers between 0.1 and 0.8 (median = 0.4). Intraindividually, an anteroposterior gradient of signal-to-noise ratio was apparent. Signal-to-noise ratio correlated with the estimated amount of hyperpolarization administered (r = 0. 77), but not with static lung volumes. We conclude that (3)He MRI is a sensitive measure to detect regional abnormalities in the distribution of ventilation in clinically healthy persons with normal pulmonary function tests.

  17. Intracranial pressure pulse waveform correlates with aqueductal cerebrospinal fluid stroke volume.

    PubMed

    Hamilton, Robert; Baldwin, Kevin; Fuller, Jennifer; Vespa, Paul; Hu, Xiao; Bergsneider, Marvin

    2012-11-01

    This study identifies a novel relationship between cerebrospinal fluid (CSF) stroke volume through the cerebral aqueduct and the characteristic peaks of the intracranial pulse (ICP) waveform. ICP waveform analysis has become much more advanced in recent years; however, clinical practice remains restricted to mean ICP, mainly due to the lack of physiological understanding of the ICP waveform. Therefore, the present study set out to shed some light on the physiological meaning of ICP morphological metrics derived by the morphological clustering and analysis of continuous intracranial pulse (MOCAIP) algorithm by investigating their relationships with a well defined physiological variable, i.e., the stroke volume of CSF through the cerebral aqueduct. Seven patients received both overnight ICP monitoring along with a phase-contrast MRI (PC-MRI) of the cerebral aqueduct to quantify aqueductal stroke volume (ASV). Waveform morphological analysis of the ICP signal was performed by the MOCAIP algorithm. Following extraction of morphological metrics from the ICP signal, nine temporal ICP metrics and two amplitude-based metrics were compared with the ASV via Spearman's rank correlation. Of the nine temporal metrics correlated with the ASV, only the width of the P2 region (ICP-Wi2) reached significance. Furthermore, both ICP pulse pressure amplitude and mean ICP did not reach significance. In this study, we showed the width of the second peak (ICP-Wi2) of an ICP pulse wave is positively related to the volume of CSF movement through the cerebral aqueduct. This finding is an initial step in bridging the gap between ICP waveform morphology research and clinical practice.

  18. Hippocampal volume correlates with attenuated negative psychotic symptoms irrespective of antidepressant medication

    PubMed Central

    Bernasconi, Raffaele; Smieskova, Renata; Schmidt, André; Harrisberger, Fabienne; Raschle, Nora Maria; Lenz, Claudia; Walter, Anna; Simon, Andor; Riecher-Rössler, Anita; Radue, Ernst-Wilhelm; Lang, Undine E.; Fusar-Poli, Paolo; Borgwardt, Stefan J.

    2015-01-01

    Background Individuals with at-risk mental state for psychosis (ARMS) often suffer from depressive and anxiety symptoms, which are clinically similar to the negative symptomatology described for psychosis. Thus, many ARMS individuals are already being treated with antidepressant medication. Objectives To investigate clinical and structural differences between psychosis high-risk individuals with or without antidepressants. Methods We compared ARMS individuals currently receiving antidepressants (ARMS-AD; n = 18), ARMS individuals not receiving antidepressants (ARMS-nonAD; n = 31) and healthy subjects (HC; n = 24), in terms of brain structure abnormalities, using voxel-based morphometry. We also performed region of interest analysis for the hippocampus, anterior cingulate cortex, amygdala and precuneus. Results The ARMS-AD had higher ‘depression’ and lower ‘motor hyperactivity’ scores than the ARMS-nonAD. Compared to HC, there was significantly less GMV in the middle frontal gyrus in the whole ARMS cohort and in the superior frontal gyrus in the ARMS-AD subgroup. Compared to ARMS-nonAD, the ARMS-AD group showed more gray matter volume (GMV) in the left superior parietal lobe, but less GMV in the left hippocampus and the right precuneus. We found a significant negative correlation between attenuated negative symptoms and hippocampal volume in the whole ARMS cohort. Conclusion Reduced GMV in the hippocampus and precuneus is associated with short-term antidepressant medication and more severe depressive symptoms. Hippocampal volume is further negatively correlated with attenuated negative psychotic symptoms. Longitudinal studies are needed to distinguish whether hippocampal volume deficits in the ARMS are related to attenuated negative psychotic symptoms or to antidepressant action. PMID:26110110

  19. Correlation of local heat flux from inclined volume-heated pools in bubbly flow

    SciTech Connect

    Greene, G.A.; Abuaf, N.; Jones, O.C. Jr.

    1980-01-01

    Local and average heat transfer from volume-boiling pools in the two-phase bubbly flow regime to vertical and inclined flat boundaries were measured. The experimental technique and newly developed gold electroplated microthermocouples to make the measurements are described. A modification to the Boussinesq approximation for liquids is outlined which includes the effect of the average void fraction in a modified Rayleigh number. Heat transfer to vertical and inclined surfaces is correlated in a fashion similar to natural convection in the bubbly flow regime. These new correlations agreed in general with those based on average heat transfer data obtained by Gabor et al. The data from one reference, however, were found to lie significantly below the present data on an average as well as local basis.

  20. Holographic vector-wave femtosecond laser processing

    NASA Astrophysics Data System (ADS)

    Hayasaki, Yoshio; Hasegawa, Satoshi

    2016-03-01

    Arbitrary and variable beam shaping of femtosecond pulses by a computer-generated hologram (CGH) displayed on a spatial light modulator (SLM) have been applied to femtosecond laser processing. The holographic femtosecond laser processing has been widely used in many applications such as two-photon polymerization, optical waveguide fabrication, fabrication of volume phase gratings in polymers, and surface nanostructuring. A vector wave that has a spatial distribution of polarization states control of femtosecond pulses gives good performances for the femtosecond laser processing. In this paper, an in- system optimization of a CGH for massively-parallel femtosecond laser processing, a dynamic control of spatial spectral dispersion to improve the focal spot shape, and the holographic vector-wave femtosecond laser processing are demonstrated.

  1. The Holographic Entropy Cone

    SciTech Connect

    Bao, Ning; Nezami, Sepehr; Ooguri, Hirosi; Stoica, Bogdan; Sully, James; Walter, Michael

    2015-09-21

    We initiate a systematic enumeration and classification of entropy inequalities satisfied by the Ryu-Takayanagi formula for conformal field theory states with smooth holographic dual geometries. For 2, 3, and 4 regions, we prove that the strong subadditivity and the monogamy of mutual information give the complete set of inequalities. This is in contrast to the situation for generic quantum systems, where a complete set of entropy inequalities is not known for 4 or more regions. We also find an infinite new family of inequalities applicable to 5 or more regions. The set of all holographic entropy inequalities bounds the phase space of Ryu-Takayanagi entropies, defining the holographic entropy cone. We characterize this entropy cone by reducing geometries to minimal graph models that encode the possible cutting and gluing relations of minimal surfaces. We find that, for a fixed number of regions, there are only finitely many independent entropy inequalities. To establish new holographic entropy inequalities, we introduce a combinatorial proof technique that may also be of independent interest in Riemannian geometry and graph theory.

  2. The Holographic Entropy Cone

    DOE PAGESBeta

    Bao, Ning; Nezami, Sepehr; Ooguri, Hirosi; Stoica, Bogdan; Sully, James; Walter, Michael

    2015-09-21

    We initiate a systematic enumeration and classification of entropy inequalities satisfied by the Ryu-Takayanagi formula for conformal field theory states with smooth holographic dual geometries. For 2, 3, and 4 regions, we prove that the strong subadditivity and the monogamy of mutual information give the complete set of inequalities. This is in contrast to the situation for generic quantum systems, where a complete set of entropy inequalities is not known for 4 or more regions. We also find an infinite new family of inequalities applicable to 5 or more regions. The set of all holographic entropy inequalities bounds the phasemore » space of Ryu-Takayanagi entropies, defining the holographic entropy cone. We characterize this entropy cone by reducing geometries to minimal graph models that encode the possible cutting and gluing relations of minimal surfaces. We find that, for a fixed number of regions, there are only finitely many independent entropy inequalities. To establish new holographic entropy inequalities, we introduce a combinatorial proof technique that may also be of independent interest in Riemannian geometry and graph theory.« less

  3. Holographic recording medium

    NASA Technical Reports Server (NTRS)

    Gange, Robert Allen (Inventor)

    1977-01-01

    A holographic recording medium comprising a conductive substrate, a photoconductive layer and an electrically alterable layer of a linear, low molecular weight hydrocarbon polymer has improved fatigue resistance. An acrylic barrier layer can be interposed between the photoconductive and electrically alterable layers.

  4. Holographic lateral shear interferometer.

    PubMed

    Malacara, D; Mallick, S

    1976-11-01

    A new type of lateral shear holographic interferometer is described. It can be used to test lenses as well as spherical and aspherical surfaces. A null pattern with straight fringes can be obtained for an aspherical surface, provided one has a prototype that can be used for making the hologram.

  5. Bacterial spore heat resistance correlated with water content, wet density, and protoplast/sporoplast volume ratio.

    PubMed Central

    Beaman, T C; Greenamyre, J T; Corner, T R; Pankratz, H S; Gerhardt, P

    1982-01-01

    Five types of dormant Bacillus spores, between and within species, were selected representing a 600-fold range in moist-heat resistance determined as a D100 value. The wet and dry density and the solids and water content of the entire spore and isolated integument of each type were determined directly from gram masses of material, with correction for interstitial water. The ratio between the volume occupied by the protoplast (the structures bounded by the inner pericytoplasm membrane) and the volume occupied by the sporoplast (the structures bounded by the outer pericortex membrane) was calculated from measurements made on electron micrographs of medially thin-sectioned spores. Among the various spore types, an exponential increase in the heat resistance correlated directly with the wet density and inversely with the water content and with the protoplast/sporoplast volume ratio. Altogether with results supported a hypothesis that the extent of heat resistance is based in whole or in part on the extent of dehydration and diminution of the protoplast in the dormant spore, without implications about physiological mechanisms for attaining this state. Images PMID:6802802

  6. 3D measurements of live cells via digital holographic microscopy and terahertz spectroscopy

    NASA Astrophysics Data System (ADS)

    Park, Jun Yong; Oser, Dorian; Iapozzuto, Peter; Norbury, Sean; Mahajan, Supriya; Khmaladze, Alexander; Sharikova, Anna

    2016-03-01

    This is a study of the central nervous system (CNS) cells, including brain micro vascular endothelial cells (BMV) that constitute the blood brain barrier, and C6 glial cells that are the predominant cell in the brain. The cells are exposed to various chemicals by non-invasive, label-free methods. Digital holographic microscopy (DHM) is a technique that records an interference pattern between an object and reference waves, so that the computationally reconstructed holographic image contains both amplitude and phase information, and 3D images are obtained. The measurement of cell cultures by digital holographic microscopy yields information about cell death mechanisms, since these processes are correlated with individual cell volume. Our in-house DHM combines a visible (red) laser source with a conventional microscope base, and LabVIEW-run data processing. Terahertz spectral signatures are associated with structural changes in molecules and provide complementary information about cells. Both CNS cells BMV and C6 cells are treated with the drug "Methamphetamine" (METH), which induces apoptosis in neuronal cells and exhibits decrease in cell volume, a characteristic of cells undergoing apoptosis (induced cell death). METH can cause CNS cell death by cross-talk between mitochondria-, endoplasmic reticulum-, and receptor-mediated apoptotic events, all of which results in drug induced changes in neuroplasticity and significant neuropathology. Doxorubicin (DOX), a popular anticancer drug, is used as a control. We observe that METH treatment resulted in more pronounced cell volume shrinkage in both the BMV and C6 cells, as compared to DOX-induced cell apoptosis.

  7. Focal volume optics and experimental artifacts in confocal fluorescence correlation spectroscopy.

    PubMed Central

    Hess, Samuel T; Webb, Watt W

    2002-01-01

    Fluorescence correlation spectroscopy (FCS) can provide a wealth of information about biological and chemical systems on a broad range of time scales (<1 micros to >1 s). Numerical modeling of the FCS observation volume combined with measurements has revealed, however, that the standard assumption of a three-dimensional Gaussian FCS observation volume is not a valid approximation under many common measurement conditions. As a result, the FCS autocorrelation will contain significant, systematic artifacts that are most severe with confocal optics when using a large detector aperture and aperture-limited illumination. These optical artifacts manifest themselves in the fluorescence correlation as an apparent additional exponential component or diffusing species with significant (>30%) amplitude that can imply extraneous kinetics, shift the measured diffusion time by as much as approximately 80%, and cause the axial ratio to diverge. Artifacts can be minimized or virtually eliminated by using a small confocal detector aperture, underfilled objective back-aperture, or two-photon excitation. However, using a detector aperture that is smaller or larger than the optimal value (approximately 4.5 optical units) greatly reduces both the count rate per molecule and the signal-to-noise ratio. Thus, there is a tradeoff between optimizing signal-to-noise and reducing experimental artifacts in one-photon FCS. PMID:12324447

  8. Gray matter volume and executive functioning correlate with time since injury following mild traumatic brain injury.

    PubMed

    Killgore, William D S; Singh, Prabhjyot; Kipman, Maia; Pisner, Derek; Fridman, Andrew; Weber, Mareen

    2016-01-26

    Most people who sustain a mild traumatic brain injury (mTBI) will recover to baseline functioning within a period of several days to weeks. A substantial minority of patients, however, will show persistent symptoms and mild cognitive complaints for much longer. To more clearly delineate how the duration of time since injury (TSI) is associated with neuroplastic cortical volume changes and cognitive recovery, we employed voxel-based morphometry (VBM) and select neuropsychological measures in a cross-sectional sample of 26 patients with mTBI assessed at either two-weeks, one-month, three-months, six-months, or one-year post injury, and a sample of 12 healthy controls. Longer duration of TSI was associated with larger gray matter volume (GMV) within the ventromedial prefrontal cortex (vmPFC) and right fusiform gyrus, and better neurocognitive performance on measures of visuospatial design fluency and emotional functioning. In particular, volume within the vmPFC was positively correlated with design fluency and negatively correlated with symptoms of anxiety, whereas GMV of the fusiform gyrus was associated with greater design fluency and sustained visual psychomotor vigilance performance. Moreover, the larger GMV seen among the more chronic individuals was significantly greater than healthy controls, suggesting possible enlargement of these regions with time since injury. These findings are interpreted in light of burgeoning evidence suggesting that cortical regions often exhibit structural changes following experience or practice, and suggest that with greater time since an mTBI, the brain displays compensatory remodeling of cortical regions involved in emotional regulation, which may reduce distractibility during attention demanding visuo-motor tasks. PMID:26711488

  9. Holographic Optical Elements Using Polyvinyl Carbazole Holographic Material

    NASA Astrophysics Data System (ADS)

    Matsumoto, K.; Kuwayamo, T.; Taniguchi, N.

    1986-06-01

    We developed a new holographic material: polyvinyl carbazore material. The advantage or the material over conventional DCC material is that it has high durability against humidity and transparency. Some optical properties of the material and some applications are presented. We have already installed the holographic display element using polyvinyl carbazole in a commercialized 8mm movie camera. The letters "END" are displayed on an imaging plane of the finder system by using an image plane hologram. We also present the holographic lens of which aberration is well corrected at laser diode wavelength. We made this holographic lens using a new aberration correcting method.

  10. Correlation of right ventricular volume using axial angulated ventriculography to known right ventricular cast volumes in infants and children with congenital heart disease.

    PubMed

    Ino, T; Benson, L N; Mikailian, H; Freedom, R M; Rowe, R D

    1988-01-01

    To calculate right ventricular (RV) volumes from biplane cineangiography obtained in nonstandard views, regression equations were developed from RV casts of known volume. Volumes were calculated using Simpson's rule from casts ranging from 2 to 42 ml from 25 postmortem specimens with various congenital heart diseases. The casts were divided into 2 groups: group 1 (n = 15) with abnormal or group 2 (n = 10) with normal RV hemodynamic measurements. Biplane cinegrams were taken in the anterolateral, anterior and long axis oblique, hepatoclavicular and sitting up projections. The true volume of each cast was determined from its weight and specific gravity. Excellent correlations were obtained between measured and true volumes (r = 0.92 to 0.96) in all projections, although each projection overestimated the true volume (slope value less than 1). The regression equations obtained from group 1 were not statistically different from those in group 2 in any view. Although the application of different regression equations is required in measuring RV volumes by multiple angulated angiography, these regression equations appear not to be affected by the hemodynamic state of the ventricle. These results are important in assessing RV volume in pediatric patients with congenital heart disease using axial angulated ventriculography.

  11. Dynamic volume vs respiratory correlated 4DCT for motion assessment in radiation therapy simulation

    SciTech Connect

    Coolens, Catherine; Bracken, John; Driscoll, Brandon; Hope, Andrew; Jaffray, David

    2012-05-15

    Purpose: Conventional (i.e., respiratory-correlated) 4DCT exploits the repetitive nature of breathing to provide an estimate of motion; however, it has limitations due to binning artifacts and irregular breathing in actual patient breathing patterns. The aim of this work was to evaluate the accuracy and image quality of a dynamic volume, CT approach (4D{sub vol}) using a 320-slice CT scanner to minimize these limitations, wherein entire image volumes are acquired dynamically without couch movement. This will be compared to the conventional respiratory-correlated 4DCT approach (RCCT). Methods: 4D{sub vol} CT was performed and characterized on an in-house, programmable respiratory motion phantom containing multiple geometric and morphological ''tumor'' objects over a range of regular and irregular patient breathing traces obtained from 3D fluoroscopy and compared to RCCT. The accuracy of volumetric capture and breathing displacement were evaluated and compared with the ground truth values and with the results reported using RCCT. A motion model was investigated to validate the number of motion samples needed to obtain accurate motion probability density functions (PDF). The impact of 4D image quality on this accuracy was then investigated. Dose measurements using volumetric and conventional scan techniques were also performed and compared. Results: Both conventional and dynamic volume 4DCT methods were capable of estimating the programmed displacement of sinusoidal motion, but patient breathing is known to not be regular, and obvious differences were seen for realistic, irregular motion. The mean RCCT amplitude error averaged at 4 mm (max. 7.8 mm) whereas the 4D{sub vol} CT error stayed below 0.5 mm. Similarly, the average absolute volume error was lower with 4D{sub vol} CT. Under irregular breathing, the 4D{sub vol} CT method provides a close description of the motion PDF (cross-correlation 0.99) and is able to track each object, whereas the RCCT method results in a

  12. Assembling a holographic scene

    NASA Astrophysics Data System (ADS)

    Mrongovius, Martina

    2013-03-01

    A series of art projects that use multiplex holography as a medium to combine and spatially animate multiple photographic perspectives are presented. Through the process of image collection and compilation into holograms, several concepts are explored. The animate spatial qualities of multiplex holograms are used to express an urban gaze of moving through cites and the multiplicity of perceptual experience. A question of how we understand ourselves to be located and the complexity of this sense is also addressed. The ability to assemble multiple photographic views together into a scene is considered as a method to document the collective experience of event. How these holographic scenes are viewed is compared to the compositional activity, showing both how the holographic medium inspired the compositions and is used as a means of expression.

  13. The correlation between gray matter volume and perceived social support: a voxel-based morphometry study.

    PubMed

    Che, XianWei; Wei, DongTao; Li, WenFu; Li, HaiJiang; Qiao, Lei; Qiu, Jiang; Zhang, QingLin; Liu, YiJun

    2014-01-01

    Social support refers to interpersonal exchanges that include the combinations of aid, affirmation and affection. Perceived social support is a kind of subjective judgment of one's availability of social support. In spite of the importance of perceived social support to health, however, its neural substrate remains unknown. To address this question, voxel-based morphometry was employed to investigate the neural bases of individual differences in responses to the Perceived Social Support Scale (PSSS) in healthy volunteers (144 men and 203 women; mean age = 19.9; SD = 1.33, age range : 17-27). As a result, multiple regression analysis revealed that the PSSS scores were significantly and positively correlated with gray matter volume in a cluster that mainly included areas in posterior parts of posterior cingulate cortex, bilateral lingual cortex, left occipital lobe and cuneus. Highly-supported individuals had larger gray matter volume in these brain regions, implying a relatively high level of ability to engage in self-referential processes and social cognition. Our results provide a biological basis for exploring perceived social support particularly in relationship to various health parameters and outcomes.

  14. Holographic Plossl Retroreflectors

    NASA Technical Reports Server (NTRS)

    Waluschka, Eugene

    2006-01-01

    Holographic retroreflectors that function equivalently to Plossl eyepieces have been developed and used in free-space optical communication systems that utilize laser beams. Plossl eyepieces are well known among telescope designers. They have been adopted for use a retroreflectors and as focusing elements (for reception) and collimating elements (for transmission) in optical communication systems. A retro-reflector that incorporates a Plossl eyepiece is termed a cat's-eye retroreflector.

  15. Holographic subsonic flow visualization.

    PubMed

    Reinheimer, C J; Wiswall, C E; Schmiege, R A; Harris, R J; Dueker, J E

    1970-09-01

    A pulsed ruby laser holographic interferometer was used to detect density gradients in the airflow around an airfoil at subsonic speeds in a low speed wind tunnel. These experiments proved that vibration of the optical components or object between exposures of the interferometric hologram does not destroy the detection of density gradients but actually can aid in the flow visualization. The density gradients determined from the fringe pattern analysis are consistent with the anticipated flow pattern.

  16. Holographic Airborne Rotating Lidar Instrument Experiment (HARLIE)

    NASA Technical Reports Server (NTRS)

    Schwemmer, Geary K.

    1998-01-01

    Scanning holographic lidar receivers are currently in use in two operational lidar systems, PHASERS (Prototype Holographic Atmospheric Scanner for Environmental Remote Sensing) and now HARLIE (Holographic Airborne Rotating Lidar Instrument Experiment). These systems are based on volume phase holograms made in dichromated gelatin (DCG) sandwiched between 2 layers of high quality float glass. They have demonstrated the practical application of this technology to compact scanning lidar systems at 532 and 1064 nm wavelengths, the ability to withstand moderately high laser power and energy loading, sufficient optical quality for most direct detection systems, overall efficiencies rivaling conventional receivers, and the stability to last several years under typical lidar system environments. Their size and weight are approximately half of similar performing scanning systems using reflective optics. The cost of holographic systems will eventually be lower than the reflective optical systems depending on their degree of commercialization. There are a number of applications that require or can greatly benefit from a scanning capability. Several of these are airborne systems, which either use focal plane scanning, as in the Laser Vegetation Imaging System or use primary aperture scanning, as in the Airborne Oceanographic Lidar or the Large Aperture Scanning Airborne Lidar. The latter class requires a large clear aperture opening or window in the aircraft. This type of system can greatly benefit from the use of scanning transmission holograms of the HARLIE type because the clear aperture required is only about 25% larger than the collecting aperture as opposed to 200-300% larger for scan angles of 45 degrees off nadir.

  17. Digital Holographic Microscopy for Non-Invasive Monitoring of Cell Cycle Arrest in L929 Cells

    PubMed Central

    Falck Miniotis, Maria; Mukwaya, Anthonny; Gjörloff Wingren, Anette

    2014-01-01

    Digital holographic microscopy (DHM) has emerged as a powerful non-invasive tool for cell analysis. It has the capacity to analyse multiple parameters simultaneously, such as cell- number, confluence and phase volume. This is done while cells are still adhered and growing in their culture flask. The aim of this study was to investigate whether DHM was able to monitor drug-induced cell cycle arrest in cultured cells and thus provide a non-disruptive alternative to flow cytometry. DHM parameters from G1 and G2/M cell cycle arrested L929 mouse fibroblast cells were collected. Cell cycle arrest was verified with flow cytometry. This study shows that DHM is able to monitor phase volume changes corresponding to either a G1 or G2/M cell cycle arrest. G1-phase arrest with staurosporine correlated with a decrease in the average cell phase volume and G2/M-phase arrest with colcemid and etoposide correlated with an increase in the average cell phase volume. Importantly, DHM analysis of average cell phase volume was of comparable accuracy to flow cytometric measurement of cell cycle phase distribution as recorded following dose-dependent treatment with etoposide. Average cell phase volume changes in response to treatment with cell cycle arresting compounds could therefore be used as a DHM marker for monitoring cell cycle arrest in cultured mammalian cells. PMID:25208094

  18. Correlators of left charges and weak operators in finite volume chiral perturbation theory

    NASA Astrophysics Data System (ADS)

    Hernández, Pilar; Laine, Mikko

    2003-01-01

    We compute the two-point correlator between left-handed flavour charges, and the three-point correlator between two left-handed charges and one strangeness violating DeltaI = 3/2 weak operator, at next-to-leading order in finite volume SU(3)L × SU(3)R chiral perturbation theory, in the so-called epsilon-regime. Matching these results with the corresponding lattice measurements would in principle allow to extract the pion decay constant F, and the effective chiral theory parameter g27, which determines the Delta I = 3/2 amplitude of the weak decays K to pipi as well as the kaon mixing parameter BK in the chiral limit. We repeat the calculations in the replica formulation of quenched chiral perturbation theory, finding only mild modifications. In particular, a properly chosen ratio of the three-point and two-point functions is shown to be identical in the full and quenched theories at this order.

  19. White matter volume change and its correlation with symptom severity in patients with schizophrenia: a VBM-DARTEL study.

    PubMed

    Kim, Gwang-Won; Jeong, Gwang-Woo

    2015-12-16

    The aim of this study was to evaluate the white matter (WM) volume change and its correlation with symptom severity in patients with schizophrenia using voxel-based morphometry. A total of 20 patients with schizophrenia and 20 age-matched healthy controls participated in this study. MR image data were processed using SPM8 software with diffeomorphic anatomical registration through an exponentiated Lie algebra (DARTEL) algorithm. The patients with schizophrenia showed significant decreases (P=0.042) in the WM volumes of the temporal lobe and superior frontal gyrus compared with the healthy controls. The WM volumes of the middle temporal gyrus were negatively correlated with the scores of both the Positive Subscale (Pearson's ρ=-0.68, P=0.001) and the Negative Subscale (ρ=-0.71, P=0.0005) in the Positive and Negative Syndrome Scale. In addition, the scores of the General Psychopathology Subscale were negatively correlated with the WM volumes of the superior frontal gyrus (ρ=-0.68, P=0.0009). This study evaluated the WM volume of patients with schizophrenia compared with healthy controls using DARTEI-based voxel-based morphometry and also assessed the correlation of the localized WM volume changes with the Positive and Negative Syndrome Scale. These findings will be useful to understand the neuropathology associated with WM abnormality in schizophrenia. PMID:26485094

  20. Method and apparatus for holographic wavefront diagnostics

    DOEpatents

    Toeppen, John S.

    1995-01-01

    A wavefront diagnostic apparatus has an optic and a measuring system. The optic forms a holographic image in response to a beam of light striking a hologram formed on a surface of the optic. The measuring system detects the position of the array of holographic images and compares the positions of the array of holographic images to a reference holographic image.

  1. Method and apparatus for holographic wavefront diagnostics

    DOEpatents

    Toeppen, J.S.

    1995-04-25

    A wavefront diagnostic apparatus has an optic and a measuring system. The optic forms a holographic image in response to a beam of light striking a hologram formed on a surface of the optic. The measuring system detects the position of the array of holographic images and compares the positions of the array of holographic images to a reference holographic image. 3 figs.

  2. Laser addressed holographic memory system

    NASA Technical Reports Server (NTRS)

    Gange, R. A.; Wagle, E. M.; Steinmetz, C. C.

    1973-01-01

    Holographic recall and storage system uses red-lipid microcrystalline wax as storage medium. When laser beam strikes wax, its energy heats point of incidence enough to pass wax through transition temperature. Holograph image can then be written or erased in softened wax.

  3. Application of holographic optical techniques to bulk memory.

    NASA Technical Reports Server (NTRS)

    Anderson, L. K.

    1971-01-01

    Current efforts to exploit the spatial redundancy and built-in imaging of holographic optical techniques to provide high information densities without critical alignment and tight mechanical tolerances are reviewed. Read-write-erase in situ operation is possible but is presently impractical because of limitations in available recording media. As these are overcome, it should prove feasible to build holographic bulk memories with mechanically replaceable hologram plates featuring very fast (less than 2 microsec) random access to large (greater than 100 million bit) data blocks and very high throughput (greater than 500 Mbit/sec). Using volume holographic storage it may eventually be possible to realize random-access mass memories which require no mechanical motion and yet provide very high capacity.

  4. Digital holographic video for studies of plankton dynamics

    NASA Astrophysics Data System (ADS)

    Dyomin, V. V.; Olshukov, A. S.; Dzyuba, E. V.

    2011-01-01

    The procedure, capabilities, and applicability limits of digital holographic video for the determination of the velocity and reconstruction of the trajectory of motion of plankton species in the habitat are considered. Results of experimental investigations of zooplankton in laboratory conditions are presented. Two species that differ by the morphology and sizes are examined, including Epischura baicalensis for the trajectory construction and Daphnia magna for an experiment on dual-view hologram recording. The position of a plankton species in the examined volume is suggested to be determined based on the coordinates of the center of gravity of its holographic image. Preliminary results of recording of a dual-view digital holographic video of plankton species are discussed.

  5. Robust holographic storage system design.

    PubMed

    Watanabe, Takahiro; Watanabe, Minoru

    2011-11-21

    Demand is increasing daily for large data storage systems that are useful for applications in spacecraft, space satellites, and space robots, which are all exposed to radiation-rich space environment. As candidates for use in space embedded systems, holographic storage systems are promising because they can easily provided the demanded large-storage capability. Particularly, holographic storage systems, which have no rotation mechanism, are demanded because they are virtually maintenance-free. Although a holographic memory itself is an extremely robust device even in a space radiation environment, its associated lasers and drive circuit devices are vulnerable. Such vulnerabilities sometimes engendered severe problems that prevent reading of all contents of the holographic memory, which is a turn-off failure mode of a laser array. This paper therefore presents a proposal for a recovery method for the turn-off failure mode of a laser array on a holographic storage system, and describes results of an experimental demonstration.

  6. Dyslexia and voxel-based morphometry: correlations between five behavioural measures of dyslexia and gray and white matter volumes.

    PubMed

    Tamboer, Peter; Scholte, H Steven; Vorst, Harrie C M

    2015-10-01

    In voxel-based morphometry studies of dyslexia, the relation between causal theories of dyslexia and gray matter (GM) and white matter (WM) volume alterations is still under debate. Some alterations are consistently reported, but others failed to reach significance. We investigated GM alterations in a large sample of Dutch students (37 dyslexics and 57 non-dyslexics) with two analyses: group differences in local GM and total GM and WM volume and correlations between GM and WM volumes and five behavioural measures. We found no significant group differences after corrections for multiple comparisons although total WM volume was lower in the group of dyslexics when age was partialled out. We presented an overview of uncorrected clusters of voxels (p < 0.05, cluster size k > 200) with reduced or increased GM volume. We found four significant correlations between factors of dyslexia representing various behavioural measures and the clusters found in the first analysis. In the whole sample, a factor related to performances in spelling correlated negatively with GM volume in the left posterior cerebellum. Within the group of dyslexics, a factor related to performances in Dutch-English rhyme words correlated positively with GM volume in the left and right caudate nucleus and negatively with increased total WM volume. Most of our findings were in accordance with previous reports. A relatively new finding was the involvement of the caudate nucleus. We confirmed the multiple cognitive nature of dyslexia and suggested that experience greatly influences anatomical alterations depending on various subtypes of dyslexia, especially in a student sample.

  7. Holographic movie: the first step to holographic video

    NASA Astrophysics Data System (ADS)

    Higuchi, Kazuhito; Ishikawa, Jun; Hiyama, Shigeo

    1992-05-01

    Holographic movies can be seen as a tool to estimate the picture quality of moving holographic images as a step towards holographic television. With this in mind, we have developed an experimental holographic movie system and produced a short duration 3D movie. A number of dolls and moving objects were positioned within a background and illuminated with a He-Ne laser (632.8 nm). Conventional film-making techniques were used during holographic recording to create a more attractive sequence. The techniques included stop-motion, tracking, enhanced depth perception, up-shots, and overlaps. A series of 300 Fresnel type holograms was recorded on standard holographic films. An interesting technical point is that the film was 10 mm high by 200 mm wide. After developing, the films were sandwiched between two rigid acrylic drums (about 1 m in diameter). The drum is rotated and the films illuminated with the He-Ne laser. The display speed can be varied from 6 to 24 frames per second. The films are viewed through a window. Even though this prototype is relatively primitive the resulting holographic movie is quite effective. Several interesting effects were noted. For example, it was found that objects in the movie must not rapidly shift their depth because the human eye cannot track them is they do.

  8. Holographic interference filters

    NASA Astrophysics Data System (ADS)

    Diehl, Damon W.

    Holographic mirrors have wavelength-selection properties and thus qualify as a class of interference filters. Two theoretical methods for analyzing such structures are developed. The first method uses Hill's matrix method to yield closed-forms solutions in terms of the Floquet-Bloch waves within a periodic structure. A process is developed for implementing this solution method on a computer, using sparse-matrix memory allocation, numerical root-finding algorithms, and inverse-iteration techniques. It is demonstrated that Hill's matrix method is valid for the analysis of finite and multi-periodic problems. The second method of theoretical analysis is a transfer-matrix technique, which is herein termed thin-film decomposition. It is shown that the two methods of solution yield results that differ by, at worst, a fraction of a percent. Using both calculation techniques, a number of example problems are explored. Of key importance is the construction of a set of curves that are useful for the design and characterization of holographic interference filters. In addition to the theoretical development, methods are presented for the fabrication of holographic interference filters using DuPont HRF-800X001 photopolymer. Central to the exposure system is a frequency-stabilized, tunable dye laser. The types of filters fabricated include single-tone reflection filters, two types of multitone reflection filters, and reflection filters for infrared wavelengths. These filters feature index profiles that are not easily attainable through other fabrication methods. As a supplement to the body of the dissertation, the computer algorithms developed to implement Hill's matrix method and thin-film decomposition are also included as an appendix. Further appendices provide more information on Floquet's theorem and Hill's matrix method. A final appendix presents a design for an infrared laser spectrophotometer.

  9. Holographic model of hadronization.

    PubMed

    Evans, Nick; Tedder, Andrew

    2008-04-25

    We study hadronization of the final state in a particle-antiparticle annihilation using a holographic gravity dual description of QCD. At the point of hadronization we match the events to a simple (Gaussian) energy distribution in the five dimensional theory. The final state multiplicities are then modeled by calculating the overlap between the Gaussian and a set of functions in the fifth dimension which represent each hadron. We compare our results to those measured in e(+)e(-) collisions. Hadron production numbers over a range of 4 orders of magnitude are reproduced well. PMID:18518189

  10. Virtual holographic laboratory

    NASA Astrophysics Data System (ADS)

    Calvo, M. L.; Alieva, T.; Rodrigo, J. A.; Martínez-Matos, O.; Moreno, A.; Aliev, T.

    2007-06-01

    In this work we present a Virtual Holographic Laboratory for educational purposes. This project is edited on DVD support and it has been designed to be interactive: schemes, pictures, videos in order to clarify the theoretical description of the phenomena improving the understanding of its fundamental concepts. We believe that this project is helpful for undergraduate and graduate students in physics and engineering to obtain the solid knowledge about holography and to prepare for practical lessons on holography or partially substitute the lasts in the case of absence of appropriated technical base at a specific university level.

  11. Holographic twin Higgs model.

    PubMed

    Geller, Michael; Telem, Ofri

    2015-05-15

    We present the first realization of a "twin Higgs" model as a holographic composite Higgs model. Uniquely among composite Higgs models, the Higgs potential is protected by a new standard model (SM) singlet elementary "mirror" sector at the sigma model scale f and not by the composite states at m_{KK}, naturally allowing for m_{KK} beyond the LHC reach. As a result, naturalness in our model cannot be constrained by the LHC, but may be probed by precision Higgs measurements at future lepton colliders, and by direct searches for Kaluza-Klein excitations at a 100 TeV collider.

  12. Holographic effective field theories

    NASA Astrophysics Data System (ADS)

    Martucci, Luca; Zaffaroni, Alberto

    2016-06-01

    We derive the four-dimensional low-energy effective field theory governing the moduli space of strongly coupled superconformal quiver gauge theories associated with D3-branes at Calabi-Yau conical singularities in the holographic regime of validity. We use the dual supergravity description provided by warped resolved conical geometries with mobile D3-branes. Information on the baryonic directions of the moduli space is also obtained by using wrapped Euclidean D3-branes. We illustrate our general results by discussing in detail their application to the Klebanov-Witten model.

  13. Laser adaptive holographic hydrophone

    NASA Astrophysics Data System (ADS)

    Romashko, R. V.; Kulchin, Yu N.; Bezruk, M. N.; Ermolaev, S. A.

    2016-03-01

    A new type of a laser hydrophone based on dynamic holograms, formed in a photorefractive crystal, is proposed and studied. It is shown that the use of dynamic holograms makes it unnecessary to use complex optical schemes and systems for electronic stabilisation of the interferometer operating point. This essentially simplifies the scheme of the laser hydrophone preserving its high sensitivity, which offers the possibility to use it under a strong variation of the environment parameters. The laser adaptive holographic hydrophone implemented at present possesses the sensitivity at a level of 3.3 mV Pa-1 in the frequency range from 1 to 30 kHz.

  14. Holographic twin Higgs model.

    PubMed

    Geller, Michael; Telem, Ofri

    2015-05-15

    We present the first realization of a "twin Higgs" model as a holographic composite Higgs model. Uniquely among composite Higgs models, the Higgs potential is protected by a new standard model (SM) singlet elementary "mirror" sector at the sigma model scale f and not by the composite states at m_{KK}, naturally allowing for m_{KK} beyond the LHC reach. As a result, naturalness in our model cannot be constrained by the LHC, but may be probed by precision Higgs measurements at future lepton colliders, and by direct searches for Kaluza-Klein excitations at a 100 TeV collider. PMID:26024160

  15. Holographic Model of Hadronization

    SciTech Connect

    Evans, Nick; Tedder, Andrew

    2008-04-25

    We study hadronization of the final state in a particle-antiparticle annihilation using a holographic gravity dual description of QCD. At the point of hadronization we match the events to a simple (Gaussian) energy distribution in the five dimensional theory. The final state multiplicities are then modeled by calculating the overlap between the Gaussian and a set of functions in the fifth dimension which represent each hadron. We compare our results to those measured in e{sup +}e{sup -} collisions. Hadron production numbers over a range of 4 orders of magnitude are reproduced well.

  16. Holographic model of hadronization.

    PubMed

    Evans, Nick; Tedder, Andrew

    2008-04-25

    We study hadronization of the final state in a particle-antiparticle annihilation using a holographic gravity dual description of QCD. At the point of hadronization we match the events to a simple (Gaussian) energy distribution in the five dimensional theory. The final state multiplicities are then modeled by calculating the overlap between the Gaussian and a set of functions in the fifth dimension which represent each hadron. We compare our results to those measured in e(+)e(-) collisions. Hadron production numbers over a range of 4 orders of magnitude are reproduced well.

  17. Holographic quantum computing.

    PubMed

    Tordrup, Karl; Negretti, Antonio; Mølmer, Klaus

    2008-07-25

    We propose to use a single mesoscopic ensemble of trapped polar molecules for quantum computing. A "holographic quantum register" with hundreds of qubits is encoded in collective excitations with definite spatial phase variations. Each phase pattern is uniquely addressed by optical Raman processes with classical optical fields, while one- and two-qubit gates and qubit readout are accomplished by transferring the qubit states to a stripline microwave cavity field and a Cooper pair box where controllable two-level unitary dynamics and detection is governed by classical microwave fields.

  18. Digital color management in full-color holographic three-dimensional printer.

    PubMed

    Yang, Fei; Murakami, Yuri; Yamaguchi, Masahiro

    2012-07-01

    We propose a new method of color management for a full-color holographic, three-dimensional (3D) printer, which produces a volume reflection holographic stereogram using red, green, and blue three-color lasers. For natural color management in the holographic 3D printer, we characterize its color reproduction characteristics based on the spectral measurement of reproduced light. Then the color conversion formula, which comprises a one-dimensional lookup table and a 3×3 matrix, was derived from the measurement data. The color reproducibility was evaluated by printing a color chart hologram, and the average CIELAB ΔE=13.19 is fairly small.

  19. Characteristics of a dynamic holographic sensor for shape control of a large reflector

    NASA Technical Reports Server (NTRS)

    Welch, Sharon S.; Cox, David E.

    1991-01-01

    Design of a distributed holographic interferometric sensor for measuring the surface displacement of a large segmented reflector is proposed. The reflector's surface is illuminated by laser light of two wavelengths and volume holographic gratings are formed in photorefractive crystals of the wavefront returned from the surface. The sensor is based on holographic contouring with a multiple frequency source. It is shown that the most stringent requirement of temporal stability affects both the temporal resolution and the dynamic range. Principal factor which limit the sensor performance include the response time of photorefractive crystal, laser power required to write a hologram, and the size of photorefractive crystal.

  20. Power-law correlations in finance-related Google searches, and their cross-correlations with volatility and traded volume: Evidence from the Dow Jones Industrial components

    NASA Astrophysics Data System (ADS)

    Kristoufek, Ladislav

    2015-06-01

    We study power-law correlations properties of the Google search queries for Dow Jones Industrial Average (DJIA) component stocks. Examining the daily data of the searched terms with a combination of the rescaled range and rescaled variance tests together with the detrended fluctuation analysis, we show that the searches are in fact power-law correlated with Hurst exponents between 0.8 and 1.1. The general interest in the DJIA stocks is thus strongly persistent. We further reinvestigate the cross-correlation structure between the searches, traded volume and volatility of the component stocks using the detrended cross-correlation and detrending moving-average cross-correlation coefficients. Contrary to the universal power-law correlations structure of the related Google searches, the results suggest that there is no universal relationship between the online search queries and the analyzed financial measures. Even though we confirm positive correlation for a majority of pairs, there are several pairs with insignificant or even negative correlations. In addition, the correlations vary quite strongly across scales.

  1. Photopolymerizable nanocomposite photonic materials and their holographic applications in light and neutron optics

    PubMed Central

    Tomita, Yasuo; Hata, Eiji; Momose, Keisuke; Takayama, Shingo; Liu, Xiangming; Chikama, Katsumi; Klepp, Jürgen; Pruner, Christian; Fally, Martin

    2016-01-01

    We present an overview of recent investigations of photopolymerizable nanocomposite photonic materials in which, thanks to their high degree of material selectivity, recorded volume gratings possess high refractive index modulation amplitude and high mechanical/thermal stability at the same time, providing versatile applications in light and neutron optics. We discuss the mechanism of grating formation in holographically exposed nanocomposite materials, based on a model of the photopolymerization-driven mutual diffusion of monomer and nanoparticles. Experimental inspection of the recorded grating’s morphology by various physicochemical and optical methods is described. We then outline the holographic recording properties of volume gratings recorded in photopolymerizable nanocomposite materials consisting of inorganic/organic nanoparticles and monomers having various photopolymerization mechanisms. Finally, we show two examples of our holographic applications, holographic digital data storage and slow-neutron beam control.

  2. Photopolymerizable nanocomposite photonic materials and their holographic applications in light and neutron optics

    PubMed Central

    Tomita, Yasuo; Hata, Eiji; Momose, Keisuke; Takayama, Shingo; Liu, Xiangming; Chikama, Katsumi; Klepp, Jürgen; Pruner, Christian; Fally, Martin

    2016-01-01

    We present an overview of recent investigations of photopolymerizable nanocomposite photonic materials in which, thanks to their high degree of material selectivity, recorded volume gratings possess high refractive index modulation amplitude and high mechanical/thermal stability at the same time, providing versatile applications in light and neutron optics. We discuss the mechanism of grating formation in holographically exposed nanocomposite materials, based on a model of the photopolymerization-driven mutual diffusion of monomer and nanoparticles. Experimental inspection of the recorded grating’s morphology by various physicochemical and optical methods is described. We then outline the holographic recording properties of volume gratings recorded in photopolymerizable nanocomposite materials consisting of inorganic/organic nanoparticles and monomers having various photopolymerization mechanisms. Finally, we show two examples of our holographic applications, holographic digital data storage and slow-neutron beam control. PMID:27594769

  3. Two-step phase-shifting fluorescence incoherent holographic microscopy

    PubMed Central

    Qin, Wan; Yang, Xiaoqi; Li, Yingying; Peng, Xiang; Yao, Hai; Qu, Xinghua; Gao, Bruce Z.

    2014-01-01

    Abstract. Fluorescence holographic microscope (FINCHSCOPE) is a motionless fluorescence holographic imaging technique based on Fresnel incoherent correlation holography (FINCH) that shows promise in reconstructing three-dimensional fluorescence images of biological specimens with three holograms. We report a developing two-step phase-shifting method that reduces the required number of holograms from three to two. Using this method, we resolved microscopic fluorescent beads that were three-dimensionally distributed at different depths with two interferograms captured by a CCD camera. The method enables the FINCHSCOPE to work in conjunction with the frame-straddling technique and significantly enhance imaging speed. PMID:24972355

  4. Intellectual property in holographic interferometry

    NASA Astrophysics Data System (ADS)

    Reingand, Nadya; Hunt, David

    2006-08-01

    This paper presents an overview of patents and patent applications on holographic interferometry, and highlights the possibilities offered by patent searching and analysis. Thousands of patent documents relevant to holographic interferometry were uncovered by the study. The search was performed in the following databases: U.S. Patent Office, European Patent Office, Japanese Patent Office and Korean Patent Office for the time frame from 1971 through May 2006. The patent analysis unveils trends in patent temporal distribution, patent families formation, significant technological coverage within the market of system that employ holographic interferometry and other interesting insights.

  5. Conically scanned holographic lidar telescope

    NASA Technical Reports Server (NTRS)

    Schwemmer, Geary (Inventor)

    1993-01-01

    An optical scanning device utilizing a source of optical energy such as laser light backscattered from the earth's atmosphere or transmitted outward as in a lidar, a rotating holographic optical element having an axis of rotation perpendicular to the plane of its substrate, and having a stationary focus which may or may not be located on its axis of rotation, with the holographic optical element diffracting the source of optical energy at an angle to its rotation axis enabling a conical scanning area and a motor for supporting and rotating the rotating holographic optical element, is described.

  6. Holographic Labeling And Reading Machine For Authentication And Security Appications

    DOEpatents

    Weber, David C.; Trolinger, James D.

    1999-07-06

    A holographic security label and automated reading machine for marking and subsequently authenticating any object such as an identification badge, a pass, a ticket, a manufactured part, or a package is described. The security label is extremely difficult to copy or even to read by unauthorized persons. The system comprises a holographic security label that has been created with a coded reference wave, whose specification can be kept secret. The label contains information that can be extracted only with the coded reference wave, which is derived from a holographic key, which restricts access of the information to only the possessor of the key. A reading machine accesses the information contained in the label and compares it with data stored in the machine through the application of a joint transform correlator, which is also equipped with a reference hologram that adds additional security to the procedure.

  7. Engineering holographic graphene

    SciTech Connect

    Semenoff, Gordon W.

    2012-09-24

    We present a top-down string theory holographic model of strongly interacting relativistic 2 + 1-dimensional fermions, paying careful attention to the discrete symmetries of parity and time reversal invariance. Our construction is based on probe D7-branes in AdS{sub 5} Multiplication-Sign S{sup 5}, stabilized by internal fluxes. We find three solutions, a parity and time reversal invariant conformal field theory which can be viewed as a particular deformation of Coulomb interacting graphene, a parity and time reversal violating but gapless field theory and a system with a parity and time reversal violating charge gap. We show that the Chern-Simons-like electric response function, which is generated perturbatively at one-loop order by parity violating fermions and which is protected by a no-renormalization theorem at orders beyond one loop, indeed appears with the correctly quantized coefficient in the charge gapped theory. In the gapless parity violating solution, the Chern-Simons response function obtains quantum corrections which we compute in the holographic theory.

  8. New holographic overlays

    NASA Astrophysics Data System (ADS)

    Hopwood, Anthony I.

    1991-10-01

    This paper discusses a new type of holographic overlay, FLASHPRINT, which may be used in both security and packaging applications. Unlike the more common embossed holograms currently used, FLASHPRINT leads to reduced set-up costs and offers a simpler process. This reduces the long lead times characteristic of the existing technology and requires the customer to provide only two-dimensional artwork. The overlay material contains a covert 2-D image. The image may be switched on or off by simply tilting the overlay in a light source. The overlay is replayed in the 'on' position to reveal the encoded security message as a highly saturated gold colored image. This effect is operable for a wide range of lighting conditions and viewing geometries. In the 'off' position the overlay is substantially transparent. These features make the visual effect of the overlay attractive to incorporate into product design. They may be laminated over complex printed artwork such as labels and security passes without masking the printed message. When switched 'on' the image appears both sharp and more than seven times brighter than white paper. The image remains sharp and clear even in less favorable lighting conditions. Although the technique offers a low set-up cost for the customer, through its simplicity, it remains as technically demanding and difficult to counterfeit as any holographic process.

  9. Holographic Recordings in Dye/Polymer Systems For Engineering Applications

    NASA Astrophysics Data System (ADS)

    Lessard, Roger A.; Couture, Jean J.

    1990-04-01

    Since Gabor's first demonstration of reconstructed wavefronts, many holographic techniques provided interesting tools and applications. Presently the future of holography is strongly dependent upon new holographic recording thin films. Because of their excellent responses to high spatial frequency grating recordings (up to 6800 cycles/mm), photopolymers and photocrosslinking materials seem to be good candidates to overcome some limitations. Dichromated gelatin films demons-trated excellent properties for permanent recording grating applications like HOE construction but they are humidity sensitive and they need a chemical development. Today's holographic works need real-time like recording material and law cost organic materials as DYE/POLYMER systems offer some possibilities. We present a review of research works done in our holography laboratories of COPL at Universite Laval. Using an automated spatial frequency analyzer designed at COPL, DYE/POLYMER systems are characterized for transmission holography and also for applications involving real-time holography and four-wave mixing techniques. Also, most of our characterization studies consider volume polarization holograms. The second subject is devoted to polarization hologram recordings in thin colored polyvinyl alcohol films. Those AZO/WA solid films are erasable and can be used for many thousands duty cycles for polarization volume holograms. Holographic characterization studies are conducted in order to know best experimental conditions and applications that allow to use those films. Finally, sensitized PVA films will be discussed.

  10. Novel Aspects of Holographic Technologies and Applications Based on New Stationary and Dynamic Holographic Recording Media

    NASA Astrophysics Data System (ADS)

    Semenova, Irina

    2002-06-01

    This report results from a contract tasking of the Ioffe Institute as follows: Historically Russian holographic research laboratories developed many unique materials having no analogs in other countries. This effort leverages that expertise and investigates two aspects related to correction of distortion of laser communications signals: 1. Development of the technique for compensation of atmospheric distortions in laser communication systems by means of dynamic holograms. We expect that depending upon the chosen holographic medium the following operational characteristics are attainable: Duration of a write/read/erase cycle - 1.0 msecond; Quality of correction - 80%; Improvement of the signal to noise ratio - 90%. The device will be automatic, real-time and reliable. 2. Development of a new holographic material based on self-developing dichromated colloids, for recording of stationary volume holograms. This task will include measurement of the optical effects caused by photo induced structural changes and hopes to achieve a resolution of up to 5000 l/mm and sensitivity down to 100 mJ/cm2.

  11. SU-E-J-249: Correlation of Mean Lung Ventilation Value with Ratio of Total Lung Volumes

    SciTech Connect

    Yu, N; Qu, H; Xia, P

    2014-06-01

    Purpose: Lung ventilation function measured from 4D-CT and from breathing correlated CT images is a novel concept to incorporate the lung physiologic function into treatment planning of radiotherapy. The calculated ventilation functions may vary from different breathing patterns, affecting evaluation of the treatment plans. The purpose of this study is to correlate the mean lung ventilation value with the ratio of the total lung volumes obtained from the relevant CTs. Methods: A ventilation map was calculated from the variations of voxel-to-voxel CT densities from two breathing phases from either 4D-CT or breathing correlated CTs. An open source image registration tool of Plastimatch was used to deform the inhale phase images to the exhale phase images. To calculate the ventilation map inside lung, the whole lung was delineated and the tissue outside the lung was masked out. With a software tool developed in house, the 3D ventilation map was then converted in the DICOM format associated with the planning CT images. The ventilation map was analyzed on a clinical workstation. To correlate ventilation map thus calculated with lung volume change, the total lung volume change was compared the mean ventilation from our method. Results: Twenty two patients who underwent stereotactic body irradiation for lung cancer was selected for this retrospective study. For this group of patients, the ratio of lung volumes for the inhale (Vin ) and exhale phase (Vex ) was shown to be linearly related to the mean of the local ventilation (Vent), Vin/Vex=1.+0.49*Vent (R2=0.93, p<0.01). Conclusion: The total lung volume change is highly correlated with the mean of local ventilation. The mean of local ventilation may be useful to assess the patient's lung capacity.

  12. Detrended cross-correlations between returns, volatility, trading activity, and volume traded for the stock market companies

    NASA Astrophysics Data System (ADS)

    Rak, Rafał; Drożdż, Stanisław; Kwapień, Jarosław; Oświȩcimka, Paweł

    2015-11-01

    We consider a few quantities that characterize trading on a stock market in a fixed time interval: logarithmic returns, volatility, trading activity (i.e., the number of transactions), and volume traded. We search for the power-law cross-correlations among these quantities aggregated over different time units from 1 min to 10 min. Our study is based on empirical data from the American stock market consisting of tick-by-tick recordings of 31 stocks listed in Dow Jones Industrial Average during the years 2008-2011. Since all the considered quantities except the returns show strong daily patterns related to the variable trading activity in different parts of a day, which are the most evident in the autocorrelation function, we remove these patterns by detrending before we proceed further with our study. We apply the multifractal detrended cross-correlation analysis with sign preserving (MFCCA) and show that the strongest power-law cross-correlations exist between trading activity and volume traded, while the weakest ones exist (or even do not exist) between the returns and the remaining quantities. We also show that the strongest cross-correlations are carried by those parts of the signals that are characterized by large and medium variance. Our observation that the most convincing power-law cross-correlations occur between trading activity and volume traded reveals the existence of strong fractal-like coupling between these quantities.

  13. Adventures in Holographic Dimer Models

    SciTech Connect

    Kachru, Shamit; Karch, Andreas; Yaida, Sho; /Stanford U., Phys. Dept.

    2011-08-12

    We abstract the essential features of holographic dimer models, and develop several new applications of these models. Firstly, semi-holographically coupling free band fermions to holographic dimers, we uncover novel phase transitions between conventional Fermi liquids and non-Fermi liquids, accompanied by a change in the structure of the Fermi surface. Secondly, we make dimer vibrations propagate through the whole crystal by way of double trace deformations, obtaining nontrivial band structure. In a simple toy model, the topology of the band structure experiences an interesting reorganization as we vary the strength of the double trace deformations. Finally, we develop tools that would allow one to build, in a bottom-up fashion, a holographic avatar of the Hubbard model.

  14. Hyperspectral holographic Fourier-microscopy

    NASA Astrophysics Data System (ADS)

    Kalenkov, G. S.; Kalenkov, S. G.; Shtan'ko, A. E.

    2015-04-01

    A detailed theory of the method of holographic recording of hyperspectral wave fields is developed. New experimentally obtained hyperspectral holographic images of microscopic objects are presented. The possibilities of the method are demonstrated experimentally using the examples of urgent microscopy problems: speckle noise suppression, obtaining hyperspectral image of a microscopic object, as well as synthesis of a colour image and obtaining an optical profile of a phase object.

  15. Holographic Entanglement Entropy in NMG

    NASA Astrophysics Data System (ADS)

    Basanisi, Luca; Chakrabortty, Shankhadeep

    2016-09-01

    In this paper, we show that a higher derivative theory, such as New Massive Gravity, allows the existence of new entangling surfaces with non-zero extrinsic curvature. We perform the analysis for Lifshitz and Warped AdS spacetimes, revealing the role of the higher derivative contributions in the calculation of the holographic entanglement entropy. Finally, as an outcome of our holographic analysis we briefly comment on the dual boundary theory.

  16. Neuroanatomical correlates of the sense of control: Gray and white matter volumes associated with an internal locus of control.

    PubMed

    Hashimoto, Teruo; Takeuchi, Hikaru; Taki, Yasuyuki; Sekiguchi, Atsushi; Nouchi, Rui; Kotozaki, Yuka; Nakagawa, Seishu; Miyauchi, Carlos Makoto; Iizuka, Kunio; Yokoyama, Ryoichi; Shinada, Takamitsu; Yamamoto, Yuki; Hanawa, Sugiko; Araki, Tsuyoshi; Hashizume, Hiroshi; Kunitoki, Keiko; Kawashima, Ryuta

    2015-10-01

    A belief that effort is rewarded can develop incentive, achievement motivation, and self-efficacy. Individuals with such a belief attribute causes of events to themselves, not to external, uncontrollable factors, and are thus said to have an internal locus of control. An internal locus of control is a positive personality trait and has been thoroughly studied in applied psychology, but has not been widely examined in neuroscience. In the present study, correlations between locus of control assessment scores and brain volumes were examined in 777 healthy young adults using magnetic resonance imaging. A whole-brain multiple regression analysis with corrections for the effects of age, gender, and intelligence was conducted. Voxel-based morphometry analyses revealed that gray matter volumes in the anterior cingulate cortex, striatum, and anterior insula positively correlated with higher scores, which indicate an internal LOC. In addition, white matter volumes in the striatum showed significant correlations with an internal locus of control. These results suggest that cognitive, socioemotional, self-regulatory, and reward systems might be associated with internal control orientation. The finding of greater volumes in several brain regions in individuals with a stronger internal locus of control indicates that there is a neuroanatomical basis for the belief that one's efforts are rewarded.

  17. Engineering holographic phase diagrams

    NASA Astrophysics Data System (ADS)

    Chen, Jiunn-Wei; Dai, Shou-Huang; Maity, Debaprasad; Zhang, Yun-Long

    2016-10-01

    By introducing interacting scalar fields, we tried to engineer physically motivated holographic phase diagrams which may be interesting in the context of various known condensed matter systems. We introduce an additional scalar field in the bulk which provides a tunable parameter in the boundary theory. By exploiting the way the tuning parameter changes the effective masses of the bulk interacting scalar fields, desired phase diagrams can be engineered for the boundary order parameters dual to those scalar fields. We give a few examples of generating phase diagrams with phase boundaries which are strikingly similar to the known quantum phases at low temperature such as the superconducting phases. However, the important difference is that all the phases we have discussed are characterized by neutral order parameters. At the end, we discuss if there exists any emerging scaling symmetry associated with a quantum critical point hidden under the dome in this phase diagram.

  18. Holographic Recording Materials Development

    NASA Technical Reports Server (NTRS)

    Verber, C. M.; Schwerzel, R. E.; Perry, P. J.; Craig, R. A.

    1976-01-01

    Organic photorefractive materials were evaluated for application in a reversible holographic memory system. Representative indigo and thioindigo derivatives and several stilbene derivatives were studied as well as 15, 16-dialkyldihydropyrene derivatives the following goals were achieved: (1) the successful writing of phase holograms in a thioindigo/polymer gel system, (2) the successful writing and erasing of phase holograms in a variety of indigo/polymer gel and indigo/solid polymer systems, and (3) the identification of indigoid dyes and 15, 16-dialkyldihydropyrene derivatives as materials potentially suitable for utilization in an operational system. Photochemical studies of the stilbene, indigo, thioindigo, and dialkyldihydropyrene derivatives in solution and in a variety of polymer matrix materials were conducted with the goal of optimizing the photorefractive behavior of the chemical system as a whole. The spectroscopic properties required of optimal photorefractive materials were identified, and it was shown that both the indigoid dyes and the dialkyldihydropyrenes closely match the required properties.

  19. Striped holographic superconductor

    SciTech Connect

    Flauger, Raphael; Pajer, Enrico; Papanikolaou, Stefanos

    2011-03-15

    We study inhomogeneous solutions of a 3+1-dimensional Einstein-Maxwell-scalar theory. Our results provide a holographic model of superconductivity in the presence of a charge density wave sourced by a modulated chemical potential. We find that below a critical temperature T{sub c} superconducting stripes develop. We show that they are thermodynamically favored over the normal state by computing the grand canonical potential. We investigate the dependence of T{sub c} on the modulation's wave vector, which characterizes the inhomogeneity. We find that it is qualitatively similar to that expected for a weakly coupled Bardeen-Cooper-Schrieer theory, but we point out a quantitative difference. Finally, we use our solutions to compute the conductivity along the direction of the stripes.

  20. Stability of holographic superconductors

    SciTech Connect

    Kanno, Sugumi; Soda, Jiro

    2010-10-15

    We study the dynamical stability of holographic superconductors. We first classify perturbations around black hole background solutions into vector and scalar sectors by means of a 2-dimensional rotational symmetry. We prove the stability of the vector sector by explicitly constructing the positive definite Hamiltonian. To reveal a mechanism for the stabilization of a superconducting phase, we construct a quadratic action for the scalar sector. From the action, we see the stability of black holes near a critical point is determined by the equation of motion for a charged scalar field. We show the effective mass of the charged scalar field in hairy black holes is always above the Breitenlohner-Freedman bound near the critical point due to the backreaction of a gauge field. It implies the stability of the superconducting phase. We also argue that the stability continues away from the critical point.

  1. Kidney volume correlates with tumor diameter in renal cell carcinoma and is associated with histological poor prognostic features.

    PubMed

    Hayes, Brian D; Finn, Stephen P

    2014-02-01

    We aimed to correlate kidney volume (KV) in renal cell carcinoma nephrectomy specimens with tumor diameter (TD), macroscopic growth pattern, and histological features associated with poor prognosis. Histopathology reports, macroscopic specimen photographs, and selected glass slides were retrospectively reviewed. KV was approximated to the volume of an ellipsoid. A total of 273 specimens were identified with median KV 245 cm(3). Kidneys larger than this contained larger tumors (7.5 vs 4.5 cm). KV was significantly greater in tumors of high grade, involving perinephric fat, exhibiting venous invasion, and involving renal sinus. There was a robust linear correlation between KV and TD (r = 0.602) and a weaker correlation between kidney diameter (KD) and TD (r = 0.53). In pT1 tumors, KV (r = 0.40) also correlated better with TD than did KD (r = 0.27). By multiple regression analysis, both TD and venous invasion independently predicted both KD (R (2) = 38.27%) and KV (R (2) = 51.97%). KV and KD correlate well with TD and histopathological features of aggressiveness, although KD correlates better overall and in the pT1 subset.

  2. Photopolymerizable thiol-ene nanocomposite materials for holographic applications

    NASA Astrophysics Data System (ADS)

    Tomita, Yasuo; Hata, Eiji; Yasui, Satoru; Mitsube, Ken

    2011-06-01

    We describe an experimental investigation of the photopolymerization kinetics and volume holographic recording characteristics of silica nanoparticle-polymer nanocomposites using thiol-ene monomers capable of step-growth polymerization. We characterize the visible light curing kinetics of a thiol-ene monomer system consisting of secondary dithiol with high self-life stability and low odor and triene with rigid structure and high electron density by using real-time Fourier transform spectroscopy and photocalorimetry. In plane-wave volume holographic recording at a wavelength of 532 nm it is shown that while volume holograms recorded in the nanocomposites exhibit high transparency, their saturated refractive index modulation (Δnsat) and material sensitivity (S) are as large as 1x10-2 and 1615 cm/J, respectively. The polymerization shrinkage is reduced as low as 0.4% as a result of the late gelation in conversion. These values meet the acceptable values for holographic data storage media (i.e., 5x10-3, 500 cm/J and 0.5% for Δnsat, S and shrinkage, respectively). The improved thermal stability of volume holograms recorded in the nanocomposites is also confirmed experimentally.

  3. Compact Holographic Data Storage

    NASA Astrophysics Data System (ADS)

    Chao, T. H.; Reyes, G. F.; Zhou, H.

    2001-01-01

    NASA's future missions would require massive high-speed onboard data storage capability to Space Science missions. For Space Science, such as the Europa Lander mission, the onboard data storage requirements would be focused on maximizing the spacecraft's ability to survive fault conditions (i.e., no loss in stored science data when spacecraft enters the 'safe mode') and autonomously recover from them during NASA's long-life and deep space missions. This would require the development of non-volatile memory. In order to survive in the stringent environment during space exploration missions, onboard memory requirements would also include: (1) survive a high radiation environment (1 Mrad), (2) operate effectively and efficiently for a very long time (10 years), and (3) sustain at least a billion write cycles. Therefore, memory technologies requirements of NASA's Earth Science and Space Science missions are large capacity, non-volatility, high-transfer rate, high radiation resistance, high storage density, and high power efficiency. JPL, under current sponsorship from NASA Space Science and Earth Science Programs, is developing a high-density, nonvolatile and rad-hard Compact Holographic Data Storage (CHDS) system to enable large-capacity, high-speed, low power consumption, and read/write of data in a space environment. The entire read/write operation will be controlled with electrooptic mechanism without any moving parts. This CHDS will consist of laser diodes, photorefractive crystal, spatial light modulator, photodetector array, and I/O electronic interface. In operation, pages of information would be recorded and retrieved with random access and high-speed. The nonvolatile, rad-hard characteristics of the holographic memory will provide a revolutionary memory technology meeting the high radiation challenge facing the Europa Lander mission. Additional information is contained in the original extended abstract.

  4. Predictability and Market Efficiency in Agricultural Futures Markets: a Perspective from Price-Volume Correlation Based on Wavelet Coherency Analysis

    NASA Astrophysics Data System (ADS)

    He, Ling-Yun; Wen, Xing-Chun

    2015-12-01

    In this paper, we use a time-frequency domain technique, namely, wavelet squared coherency, to examine the associations between the trading volumes of three agricultural futures and three different forms of these futures' daily closing prices, i.e. prices, returns and volatilities, over the past several years. These agricultural futures markets are selected from China as a typical case of the emerging countries, and from the US as a representative of the developed economies. We investigate correlations and lead-lag relationships between the trading volumes and the prices to detect the predictability and efficiency of these futures markets. The results suggest that the information contained in the trading volumes of the three agricultural futures markets in China can be applied to predict the prices or returns, while that in US has extremely weak predictive power for prices or returns. We also conduct the wavelet analysis on the relationships between the volumes and returns or volatilities to examine the existence of the two "stylized facts" proposed by Karpoff [J. M. Karpoff, The relation between price changes and trading volume: A survey, J. Financ. Quant. Anal.22(1) (1987) 109-126]. Different markets in the two countries perform differently in reproducing the two stylized facts. As the wavelet tools can decode nonlinear regularities and hidden patterns behind price-volume relationship in time-frequency space, different from the conventional econometric framework, this paper offers a new perspective into the market predictability and efficiency.

  5. Correcting Correlations When Predicting Success in College. IR Applications. Volume 31

    ERIC Educational Resources Information Center

    Saupe, Joe L.; Eimers, Mardy T.

    2011-01-01

    Critics of testing for admission purposes cite the moderate correlations of admissions test scores with success in college. In response, this study applies formulas from classical measurement theory to observed correlations to correct for restricted variances in predictor and success variables. Estimates of the correlations in the population of…

  6. 3D holographic printer: fast printing approach.

    PubMed

    Morozov, Alexander V; Putilin, Andrey N; Kopenkin, Sergey S; Borodin, Yuriy P; Druzhin, Vladislav V; Dubynin, Sergey E; Dubinin, German B

    2014-02-10

    This article describes the general operation principles of devices for synthesized holographic images such as holographic printers. Special emphasis is placed on the printing speed. In addition, various methods to increase the printing process are described and compared.

  7. Direct correlation between free volume and dielectric constant in a fluorine-containing polyimide blend

    NASA Astrophysics Data System (ADS)

    Ramani, R.; Ramachandran, R.; Amarendra, G.; Alam, S.

    2015-06-01

    The dielectric constant of fluorinated polyimides and their blends is known to decrease with increase in free volume due to decrease in the number of polarizable groups per unit volume. Interestingly, we report here a polyimide which when blended with a fluoro- polymer showed a positive deviation of dielectric constant with free volume. In our experiment, we have used a blend of poly(ether imide) and poly(vinylidene fluorine-co-hexafluoropropylene) and the interaction between them was studied using FTIR, XRD, TGA and SEM. The blend was investigated by PALS, DB and DEA. Surprisingly, with the increase in the free volume content in this blend, the dielectric constant also increases. This change is attributed to additional space available for the polarizable groups to orient themselves to the applied electric field.

  8. Elastic stiffness characterization using three-dimensional full-field deformation obtained with optical coherence tomography and digital volume correlation.

    PubMed

    Fu, Jiawei; Pierron, Fabrice; Ruiz, Pablo D

    2013-12-01

    This paper presents a methodology for stiffness identification from depth-resolved three-dimensional (3-D) full-field deformation fields. These were obtained by performing digital volume correlation on optical coherence tomography volume reconstructions of silicone rubber phantoms. The effect of noise and reconstruction uncertainties on the performance of the correlation algorithm was first evaluated through stationary and rigid body translation tests to give an indication of the minimum strain that can be reliably measured. The phantoms were then tested under tension, and the 3-D deformation fields were used to identify the elastic constitutive parameters using a 3-D manually defined virtual fields method. The identification results for the cases of uniform and heterogeneous strain fields were compared with those calculated analytically through the constant uniaxial stress assumption, showing good agreement.

  9. Correlation of the Peach Springs Tuff, a large-volume Miocene ignimbrite sheet in California and Arizona ( USA).

    USGS Publications Warehouse

    Glazner, A.F.; Nielson, J.E.; Howard, K.A.; Miller, D.M.

    1986-01-01

    The Peach Springs Tuff is a distinctive early Miocene ignimbrite deposit that was first recognized in western Arizona. Recent field studies and phenocryst analyses indicate that adjacent outcrops of similar tuff in the central and eastern Mojave Desert may be correlative. This proposed correlation implies that outcrops of the tuff are scattered over an area of at least 35 000 km2 from the western Colorado Plateau to Barstow, California, and that the erupted volume, allowing for posteruption crustal extension, was at least several hundred cubic kilometres. Thus, the Peach Springs Tuff may be a regional stratigraphic marker, useful for determining regional paleogeography and the time and extent of Tertiary crustal extension. -Authors

  10. Holographic optical elements: Fabrication and testing

    NASA Technical Reports Server (NTRS)

    Zech, R. G.; Shareck, M.; Ralston, L. M.

    1974-01-01

    The basic properties and use of holographic optical elements were investigated to design and construct wide-angle, Fourier-transform holographic optical systems for use in a Bragg-effect optical memory. The performance characteristics are described along with the construction of the holographic system.

  11. Dermatoglyphic correlates of hippocampus volume: Evaluation of aberrant neurodevelopmental markers in antipsychotic-naïve schizophrenia.

    PubMed

    Kalmady, Sunil V; Shivakumar, Venkataram; Gautham, S; Arasappa, Rashmi; Jose, Dania A; Venkatasubramanian, Ganesan; Gangadhar, B N

    2015-10-30

    Schizophrenia is a disorder of aberrant neurodevelopment is marked by abnormalities in brain structure and dermatoglyphic traits. However, the link between these two (i.e. dermatoglyphic parameters and brain structure) which share ectodermal origin and common developmental window has not been explored extensively. The current study examined dermatoglyphic correlates of hippocampal volume in antipsychotic-naïve schizophrenia patients in comparison with matched healthy controls. Ridge counts and asymmetry measures for palmar inter-digital areas (a-b, b-c, c-d) were obtained using high resolution digital scans of palms from 89 schizophrenia patients [M:F=48:41] and 48 healthy controls [M:F=30:18]. Brain scans were obtained for subset of subjects including 26 antipsychotic-naïve patients [M:F=13:13] and 29 healthy controls [M:F=19:10] using 3 T-MRI. Hippocampal volume and palmar ridge counts were measured by blinded raters with good inter-rater reliability using valid methods. Directional asymmetry (DA) of b-c and bilateral hippocampal volume were significantly lower in patients than controls. Significant positive correlation was found between DA and ridge count of b-c with bilateral anterior hippocampal volume. Study demonstrates the utility of dermatoglyphic markers in identifying structural changes in the brain which may form the basis for neurodevelopmental pathogenesis in schizophrenia. PMID:26385539

  12. Dermatoglyphic correlates of hippocampus volume: Evaluation of aberrant neurodevelopmental markers in antipsychotic-naïve schizophrenia.

    PubMed

    Kalmady, Sunil V; Shivakumar, Venkataram; Gautham, S; Arasappa, Rashmi; Jose, Dania A; Venkatasubramanian, Ganesan; Gangadhar, B N

    2015-10-30

    Schizophrenia is a disorder of aberrant neurodevelopment is marked by abnormalities in brain structure and dermatoglyphic traits. However, the link between these two (i.e. dermatoglyphic parameters and brain structure) which share ectodermal origin and common developmental window has not been explored extensively. The current study examined dermatoglyphic correlates of hippocampal volume in antipsychotic-naïve schizophrenia patients in comparison with matched healthy controls. Ridge counts and asymmetry measures for palmar inter-digital areas (a-b, b-c, c-d) were obtained using high resolution digital scans of palms from 89 schizophrenia patients [M:F=48:41] and 48 healthy controls [M:F=30:18]. Brain scans were obtained for subset of subjects including 26 antipsychotic-naïve patients [M:F=13:13] and 29 healthy controls [M:F=19:10] using 3 T-MRI. Hippocampal volume and palmar ridge counts were measured by blinded raters with good inter-rater reliability using valid methods. Directional asymmetry (DA) of b-c and bilateral hippocampal volume were significantly lower in patients than controls. Significant positive correlation was found between DA and ridge count of b-c with bilateral anterior hippocampal volume. Study demonstrates the utility of dermatoglyphic markers in identifying structural changes in the brain which may form the basis for neurodevelopmental pathogenesis in schizophrenia.

  13. Holographic cinematography with the help of a pulse YAG laser

    NASA Astrophysics Data System (ADS)

    Smigielski, P.; Fagot, H.; Albe, F.

    1984-07-01

    Employing the rules of classical cinematography, holographic movies were produced on 35 mm films with the aid of a YAG laser which send pulses of 20 nsec with an energy of 30 mJ at a rate of repetition of 24 Hz. The experimental arrangements are given. The volume of the recording scene is 1 cu m. The coherence length of the laser is 1 m. Images of moving objects are given.

  14. Electrophysiological Correlates of Emotional Content and Volume Level in Spoken Word Processing

    PubMed Central

    Grass, Annika; Bayer, Mareike; Schacht, Annekathrin

    2016-01-01

    For visual stimuli of emotional content as pictures and written words, stimulus size has been shown to increase emotion effects in the early posterior negativity (EPN), a component of event-related potentials (ERPs) indexing attention allocation during visual sensory encoding. In the present study, we addressed the question whether this enhanced relevance of larger (visual) stimuli might generalize to the auditory domain and whether auditory emotion effects are modulated by volume. Therefore, subjects were listening to spoken words with emotional or neutral content, played at two different volume levels, while ERPs were recorded. Negative emotional content led to an increased frontal positivity and parieto-occipital negativity—a scalp distribution similar to the EPN—between ~370 and 530 ms. Importantly, this emotion-related ERP component was not modulated by differences in volume level, which impacted early auditory processing, as reflected in increased amplitudes of the N1 (80–130 ms) and P2 (130–265 ms) components as hypothesized. However, contrary to effects of stimulus size in the visual domain, volume level did not influence later ERP components. These findings indicate modality-specific and functionally independent processing triggered by emotional content of spoken words and volume level. PMID:27458359

  15. Induction of morphological changes in death-induced cancer cells monitored by holographic microscopy.

    PubMed

    El-Schich, Zahra; Mölder, Anna; Tassidis, Helena; Härkönen, Pirkko; Falck Miniotis, Maria; Gjörloff Wingren, Anette

    2015-03-01

    We are using the label-free technique of holographic microscopy to analyze cellular parameters including cell number, confluence, cellular volume and area directly in the cell culture environment. We show that death-induced cells can be distinguished from untreated counterparts by the use of holographic microscopy, and we demonstrate its capability for cell death assessment. Morphological analysis of two representative cell lines (L929 and DU145) was performed in the culture flasks without any prior cell detachment. The two cell lines were treated with the anti-tumour agent etoposide for 1-3days. Measurements by holographic microscopy showed significant differences in average cell number, confluence, volume and area when comparing etoposide-treated with untreated cells. The cell volume of the treated cell lines was initially increased at early time-points. By time, cells decreased in volume, especially when treated with high doses of etoposide. In conclusion, we have shown that holographic microscopy allows label-free and completely non-invasive morphological measurements of cell growth, viability and death. Future applications could include real-time monitoring of these holographic microscopy parameters in cells in response to clinically relevant compounds.

  16. Modelflow Estimates of Stroke Volume Do Not Correlate With Doppler Ultrasound Estimates During Upright Posture

    NASA Technical Reports Server (NTRS)

    Ferguson, Connor R.; Lee, Stuart M. C.; Stenger, Michael B.; Platts, Steven H.; Laurie, Steven S.

    2014-01-01

    Orthostatic intolerance affects 60-80% of astronauts returning from long-duration missions, representing a significant risk to completing mission-critical tasks. While likely multifactorial, a reduction in stroke volume (SV) represents one factor contributing to orthostatic intolerance during stand and head up tilt (HUT) tests. Current measures of SV during stand or HUT tests use Doppler ultrasound and require a trained operator and specialized equipment, restricting its use in the field. BeatScope (Finapres Medical Systems BV, The Netherlands) uses a modelflow algorithm to estimate SV from continuous blood pressure waveforms in supine subjects; however, evidence supporting the use of Modelflow to estimate SV in subjects completing stand or HUT tests remain scarce. Furthermore, because the blood pressure device is held extended at heart level during HUT tests, but allowed to rest at the side during stand tests, changes in the finger arterial pressure waveform resulting from arm positioning could alter modelflow estimated SV. The purpose of this project was to compare Doppler ultrasound and BeatScope estimations of SV to determine if BeatScope can be used during stand or HUT tests. Finger photoplethysmography was used to acquire arterial pressure waveforms corrected for hydrostatic finger-to-heart height using the Finometer (FM) and Portapres (PP) arterial pressure devices in 10 subjects (5 men and 5 women) during a stand test while simultaneous estimates of SV were collected using Doppler ultrasound. Measures were made after 5 minutes of supine rest and while subjects stood for 5 minutes. Next, SV estimates were reacquired while each arm was independently raised to heart level, a position similar to tilt testing. Supine SV estimates were not significantly different between all three devices (FM: 68+/-20, PP: 71+/-21, US: 73+/-21 ml/beat). Upon standing, the change in SV estimated by FM (-18+/-8 ml) was not different from PP (-21+/-12), but both were significantly

  17. Fourier holographic display for augmented reality using holographic optical element

    NASA Astrophysics Data System (ADS)

    Li, Gang; Lee, Dukho; Jeong, Youngmo; Lee, Byoungho

    2016-03-01

    A method for realizing a three-dimensional see-through augmented reality in Fourier holographic display is proposed. A holographic optical element (HOE) with the function of Fourier lens is adopted in the system. The Fourier hologram configuration causes the real scene located behind the lens to be distorted. In the proposed method, since the HOE is transparent and it functions as the lens just for Bragg matched condition, there is not any distortion when people observe the real scene through the lens HOE (LHOE). Furthermore, two optical characteristics of the recording material are measured for confirming the feasibility of using LHOE in the proposed see-through augmented reality holographic display. The results are verified experimentally.

  18. Holographic framework for eternal inflation

    SciTech Connect

    Freivogel, Ben; Sekino, Yasuhiro; Susskind, Leonard; Yeh, Chen-Pin

    2006-10-15

    In this paper we provide some circumstantial evidence for a holographic duality between bubble nucleation in an eternally inflating universe and a Euclidean conformal field theory (CFT). The holographic correspondence (which is different than Strominger's de Sitter (dS)/CFT duality) relates the decay of (3+1)-dimensional de Sitter space to a two-dimensional CFT. It is not associated with pure de Sitter space, but rather with Coleman-De Luccia bubble nucleation. Alternatively, it can be thought of as a holographic description of the open, infinite, Friedmann-Robertson-Walker (FRW) cosmology that results from such a bubble. The conjectured holographic representation is of a new type that combines holography with the Wheeler-DeWitt formalism to produce a Wheeler-DeWitt theory that lives on the spatial boundary of a k=-1 FRW cosmology. We also argue for a more ambitious interpretation of the Wheeler-DeWitt CFT as a holographic dual of the entire Landscape.

  19. Onboard utilization of ground control points for image correction. Volume 4: Correlation analysis software design

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The software utilized for image correction accuracy measurement is described. The correlation analysis program is written to allow the user various tools to analyze different correlation algorithms. The algorithms were tested using LANDSAT imagery in two different spectral bands. Three classification algorithms are implemented.

  20. Creatine Kinase Activity Weakly Correlates to Volume Completed Following Upper Body Resistance Exercise

    ERIC Educational Resources Information Center

    Machado, Marco; Willardson, Jeffrey M.; Silva, Dailson P.; Frigulha, Italo C.; Koch, Alexander J.; Souza, Sergio C.

    2012-01-01

    In the current study, we examined the relationship between serum creatine kinase (CK) activity following upper body resistance exercise with a 1- or 3-min rest between sets. Twenty men performed two sessions, each consisting of four sets with a 10-repetition maximum load. The results demonstrated significantly greater volume for the 3-min…

  1. Nonvolatile Rad-Hard Holographic Memory

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin; Zhou, Han-Ying; Reyes, George; Dragoi, Danut; Hanna, Jay

    2001-01-01

    We are investigating a nonvolatile radiation-hardened (rad-hard) holographic memory technology. Recently, a compact holographic data storage (CHDS) breadboard utilizing an innovative electro-optic scanner has been built and demonstrated for high-speed holographic data storage and retrieval. The successful integration of this holographic memory breadboard has paved the way for follow-on radiation resistance test of the photorefractive (PR) crystal, Fe:LiNbO3. We have also started the investigation of using two-photon PR crystals that are doubly doped with atoms of iron group (Ti, Cr, Mn, Cu) and of rare-earth group (Nd, Tb) for nonvolatile holographic recordings.

  2. Scanning holographic lidar telescope

    NASA Technical Reports Server (NTRS)

    Schwemmer, Geary K.; Wilkerson, Thomas D.

    1993-01-01

    We have developed a unique telescope for lidar using a holographic optical element (HOE) as the primary optic. The HOE diffracts 532 nm laser backscatter making a 43 deg angle with a normal to its surface to a focus located 130 cm along the normal. The field of view scans a circle as the HOE rotates about the normal. The detector assembly and baffling remain stationary, compared to conventional scanning lidars in which the entire telescope and detector assembly require steering, or which use a large flat steerable mirror in front of the telescope to do the pointing. The spectral bandpass of our HOE is 50 nm (FWHM). Light within that bandpass is spectrally dispersed at 0.6 nm/mm in the focal plane. An aperture stop reduces the bandpass of light reaching the detector from one direction to 1 nm while simultaneously reducing the field of view to 1 mrad. Wavelengths outside the 50 nm spectral bandpass pass undiffracted through HOE to be absorbed by a black backing. Thus, the HOE combines three functions into one optic: the scanning mirror, the focusing mirror, and a narrowband filter.

  3. Holographic characterization of protein aggregates

    NASA Astrophysics Data System (ADS)

    Wang, Chen; Zhong, Xiao; Ruffner, David; Stutt, Alexandra; Philips, Laura; Ward, Michael; Grier, David

    Holographic characterization directly measures the size distribution of subvisible protein aggregates in suspension and offers insights into their morphology. Based on holographic video microscopy, this analytical technique records and interprets holograms of individual aggregates in protein solutions as they flow down a microfluidic channel, without requiring labeling or other exceptional sample preparation. The hologram of an individual protein aggregate is analyzed in real time with the Lorenz-Mie theory of light scattering to measure that aggregate's size and optical properties. Detecting, counting and characterizing subvisible aggregates proceeds fast enough for time-resolved studies, and lends itself to tracking trends in protein aggregation arising from changing environmental factors. No other analytical technique provides such a wealth of particle-resolved characterization data in situ. Holographic characterization promises accelerated development of therapeutic protein formulations, improved process control during manufacturing, and streamlined quality assurance during storage and at the point of use. Mrsec and MRI program of the NSF, Spheryx Inc.

  4. Holographic films from carotenoid pigments

    NASA Astrophysics Data System (ADS)

    Toxqui-López, S.; Lecona-Sánchez, J. F.; Santacruz-Vázquez, C.; Olivares-Pérez, A.; Fuentes-Tapia, I.

    2014-02-01

    Carotenoids pigments presents in pineapple can be more than just natural dyes, which is one of the applications that now at day gives the chemical industry. In this research shown that can be used in implementing of holographic recording Films. Therefore we describe the technique how to obtain this kind of pigments trough spay drying of natural pineapple juice, which are then dissolved with water in a proportion of 0.1g to 1mL. The obtained sample is poured into glass substrates using the gravity method, after a drying of 24 hours in laboratory normal conditions the films are ready. The films are characterized by recording transmission holographic gratings (LSR 445 NL 445 nm) and measuring the diffraction efficiency holographic parameter. This recording material has good diffraction efficiency and environmental stability.

  5. Constraining holographic inflation with WMAP

    SciTech Connect

    Easther, Richard; Flauger, Raphael; McFadden, Paul; Skenderis, Kostas E-mail: Raphael.Flauger@yale.edu E-mail: K.Skenderis@uva.nl

    2011-09-01

    In a class of recently proposed models, the early universe is strongly coupled and described holographically by a three-dimensional, weakly coupled, super-renormalizable quantum field theory. This scenario leads to a power spectrum of scalar perturbations that differs from the usual empirical ΛCDM form and the predictions of generic models of single field, slow roll inflation. This spectrum is characterized by two parameters: an amplitude, and a parameter g related to the coupling constant of the dual theory. We estimate these parameters, using WMAP and other astrophysical data. We compute Bayesian evidence for both the holographic model and standard ΛCDM and find that their difference is not significant, although ΛCDM provides a somewhat better fit to the data. However, it appears that Planck will permit a definitive test of this holographic scenario.

  6. Volumetric quantitation by MRI in primary progressive multiple sclerosis: volumes of plaques and atrophy correlated with neurological disability.

    PubMed

    Ukkonen, M; Dastidar, P; Heinonen, T; Laasonen, E; Elovaara, I

    2003-11-01

    In primary progressive multiple sclerosis (PPMS) abnormalities in brain magnetic resonance imaging (MRI) differ from abnormalities in other subtypes of multiple sclerosis (MS). It was investigated whether the extent of brain and spinal cord MRI abnormalities is reflected in the neurological disability in PPMS. Focal and diffuse changes and atrophy in central nervous system (CNS) in patients with PPMS (n = 28) and healthy controls (n = 20) were assessed by semi-automatic MRI segmentation and volumetric analysis. The measurements were related to neurological disability as expressed by the expanded disability status scale (EDSS), the regional functional scoring system (RFSS), the arm index and the ambulation index. Plaques in T1- and/or T2-weighted images were seen in all brains, while spinal plaques were detected in 23 of 28 patients (82%). The total volumes of brain and spinal cord were significantly smaller in patients than in controls (P = 0.001 and 0.000, respectively). The volumes of T1 or T2 lesions in the brain correlated to the ambulation index (r = 0.51, P = 0.005 and r = 0.53, P = 0.004, respectively). No correlations were detected between MRI measurements and total EDSS score, but relative brain atrophy correlated inversely with the total RFSS scores, poor arm index and higher cerebral disturbances (r = -0.53, P = 0.004; r = -0.53, P = 0.004; and r = -0.52, P = 0.005, respectively). Although the number of spinal T2 lesions correlated with sensory disturbances (r = 0.60, P = 0.001), no correlations were found between EDSS subscores and spinal cord atrophy. These findings show that marked atrophy of brain and spinal cord detected by volumetric quantitation correlates with neurological disability. This observation indicates the importance of neurodegenerative events in PPMS. PMID:14641511

  7. Mapping soil deformation around plant roots using in vivo 4D X-ray Computed Tomography and Digital Volume Correlation.

    PubMed

    Keyes, S D; Gillard, F; Soper, N; Mavrogordato, M N; Sinclair, I; Roose, T

    2016-06-14

    The mechanical impedance of soils inhibits the growth of plant roots, often being the most significant physical limitation to root system development. Non-invasive imaging techniques have recently been used to investigate the development of root system architecture over time, but the relationship with soil deformation is usually neglected. Correlative mapping approaches parameterised using 2D and 3D image data have recently gained prominence for quantifying physical deformation in composite materials including fibre-reinforced polymers and trabecular bone. Digital Image Correlation (DIC) and Digital Volume Correlation (DVC) are computational techniques which use the inherent material texture of surfaces and volumes, captured using imaging techniques, to map full-field deformation components in samples during physical loading. Here we develop an experimental assay and methodology for four-dimensional, in vivo X-ray Computed Tomography (XCT) and apply a Digital Volume Correlation (DVC) approach to the data to quantify deformation. The method is validated for a field-derived soil under conditions of uniaxial compression, and a calibration study is used to quantify thresholds of displacement and strain measurement. The validated and calibrated approach is then demonstrated for an in vivo test case in which an extending maize root in field-derived soil was imaged hourly using XCT over a growth period of 19h. This allowed full-field soil deformation data and 3D root tip dynamics to be quantified in parallel for the first time. This fusion of methods paves the way for comparative studies of contrasting soils and plant genotypes, improving our understanding of the fundamental mechanical processes which influence root system development.

  8. Mapping soil deformation around plant roots using in vivo 4D X-ray Computed Tomography and Digital Volume Correlation.

    PubMed

    Keyes, S D; Gillard, F; Soper, N; Mavrogordato, M N; Sinclair, I; Roose, T

    2016-06-14

    The mechanical impedance of soils inhibits the growth of plant roots, often being the most significant physical limitation to root system development. Non-invasive imaging techniques have recently been used to investigate the development of root system architecture over time, but the relationship with soil deformation is usually neglected. Correlative mapping approaches parameterised using 2D and 3D image data have recently gained prominence for quantifying physical deformation in composite materials including fibre-reinforced polymers and trabecular bone. Digital Image Correlation (DIC) and Digital Volume Correlation (DVC) are computational techniques which use the inherent material texture of surfaces and volumes, captured using imaging techniques, to map full-field deformation components in samples during physical loading. Here we develop an experimental assay and methodology for four-dimensional, in vivo X-ray Computed Tomography (XCT) and apply a Digital Volume Correlation (DVC) approach to the data to quantify deformation. The method is validated for a field-derived soil under conditions of uniaxial compression, and a calibration study is used to quantify thresholds of displacement and strain measurement. The validated and calibrated approach is then demonstrated for an in vivo test case in which an extending maize root in field-derived soil was imaged hourly using XCT over a growth period of 19h. This allowed full-field soil deformation data and 3D root tip dynamics to be quantified in parallel for the first time. This fusion of methods paves the way for comparative studies of contrasting soils and plant genotypes, improving our understanding of the fundamental mechanical processes which influence root system development. PMID:27155747

  9. Holographic Photolysis for Multiple Cell Stimulation in Mouse Hippocampal Slices

    PubMed Central

    Papagiakoumou, Eirini; Ventalon, Cathie; Angulo, María Cecilia; Emiliani, Valentina

    2010-01-01

    Background Advanced light microscopy offers sensitive and non-invasive means to image neural activity and to control signaling with photolysable molecules and, recently, light-gated channels. These approaches require precise and yet flexible light excitation patterns. For synchronous stimulation of subsets of cells, they also require large excitation areas with millisecond and micrometric resolution. We have recently developed a new method for such optical control using a phase holographic modulation of optical wave-fronts, which minimizes power loss, enables rapid switching between excitation patterns, and allows a true 3D sculpting of the excitation volumes. In previous studies we have used holographic photololysis to control glutamate uncaging on single neuronal cells. Here, we extend the use of holographic photolysis for the excitation of multiple neurons and of glial cells. Methods/Principal Findings The system combines a liquid crystal device for holographic patterned photostimulation, high-resolution optical imaging, the HiLo microscopy, to define the stimulated regions and a conventional Ca2+ imaging system to detect neural activity. By means of electrophysiological recordings and calcium imaging in acute hippocampal slices, we show that the use of excitation patterns precisely tailored to the shape of multiple neuronal somata represents a very efficient way for the simultaneous excitation of a group of neurons. In addition, we demonstrate that fast shaped illumination patterns also induce reliable responses in single glial cells. Conclusions/Significance We show that the main advantage of holographic illumination is that it allows for an efficient excitation of multiple cells with a spatiotemporal resolution unachievable with other existing approaches. Although this paper focuses on the photoactivation of caged molecules, our approach will surely prove very efficient for other probes, such as light-gated channels, genetically encoded photoactivatable

  10. The underlying anatomical correlates of long-term meditation: larger hippocampal and frontal volumes of gray matter.

    PubMed

    Luders, Eileen; Toga, Arthur W; Lepore, Natasha; Gaser, Christian

    2009-04-15

    Although the systematic study of meditation is still in its infancy, research has provided evidence for meditation-induced improvements in psychological and physiological well-being. Moreover, meditation practice has been shown not only to benefit higher-order cognitive functions but also to alter brain activity. Nevertheless, little is known about possible links to brain structure. Using high-resolution MRI data of 44 subjects, we set out to examine the underlying anatomical correlates of long-term meditation with different regional specificity (i.e., global, regional, and local). For this purpose, we applied voxel-based morphometry in association with a recently validated automated parcellation approach. We detected significantly larger gray matter volumes in meditators in the right orbito-frontal cortex (as well as in the right thalamus and left inferior temporal gyrus when co-varying for age and/or lowering applied statistical thresholds). In addition, meditators showed significantly larger volumes of the right hippocampus. Both orbito-frontal and hippocampal regions have been implicated in emotional regulation and response control. Thus, larger volumes in these regions might account for meditators' singular abilities and habits to cultivate positive emotions, retain emotional stability, and engage in mindful behavior. We further suggest that these regional alterations in brain structures constitute part of the underlying neurological correlate of long-term meditation independent of a specific style and practice. Future longitudinal analyses are necessary to establish the presence and direction of a causal link between meditation practice and brain anatomy.

  11. Advances with holographic DESA emulsions

    NASA Astrophysics Data System (ADS)

    Dünkel, Lothar; Eichler, Jürgen; Schneeweiss, Claudia; Ackermann, Gerhard

    2006-02-01

    DESA emulsions represent layer systems based on ultra-fine grained silver halide (AgX) technology. The new layers have an excellent performance for holographic application. The technology has been presented repeatedly in recent years, including the emulsion characterization and topics of chemical and spectral sensitization. The paper gives a survey of actual results referring to panchromatic sensitization and other improvements like the application of silver halide sensitized gelatine (SHSG) procedure. These results are embedded into intensive collaborations with small and medium enterprises (SME's) to commercialize DESA layers. Predominant goals are innovative products with holographic components and layers providing as well as cost effectiveness and high quality.

  12. Computation of full-field displacements in a scaffold implant using digital volume correlation and finite element analysis.

    PubMed

    Madi, K; Tozzi, G; Zhang, Q H; Tong, J; Cossey, A; Au, A; Hollis, D; Hild, F

    2013-09-01

    Measurements of three-dimensional displacements in a scaffold implant under uniaxial compression have been obtained by two digital volume correlation (DVC) methods, and compared with those obtained from micro-finite element models. The DVC methods were based on two approaches, a local approach which registers independent small volumes and yields discontinuous displacement fields; and a global approach where the registration is performed on the whole volume of interest, leading to continuous displacement fields. A customised mini-compression device was used to perform in situ step-wise compression of the scaffold within a micro-computed tomography (μCT) chamber, and the data were collected at steps of interest. Displacement uncertainties, ranging from 0.006 to 0.02 voxel (i.e. 0.12-0.4 μm), with a strain uncertainty between 60 and 600 με, were obtained with a spatial resolution of 32 voxels using both approaches, although the global approach has lower systematic errors. Reduced displacement and strain uncertainties may be obtained using the global approach by increasing the element size; and using the local approach by increasing the number of intermediary sub-volumes. Good agreements between the results from the DVC measurements and the FE simulations were obtained in the primary loading direction as well as in the lateral directions. This study demonstrates that volumetric strain measurements can be obtained successfully using DVC, which may be a useful tool to investigate mechanical behaviour of porous implants.

  13. Spatial resolution and measurement uncertainty of strains in bone and bone-cement interface using digital volume correlation.

    PubMed

    Zhu, Ming-Liang; Zhang, Qing-Hang; Lupton, Colin; Tong, Jie

    2016-04-01

    The measurement uncertainty of strains has been assessed in a bone analogue (sawbone), bovine trabecular bone and bone-cement interface specimens under zero load using the Digital Volume Correlation (DVC) method. The effects of sub-volume size, sample constraint and preload on the measured strain uncertainty have been examined. There is generally a trade-off between the measurement uncertainty and the spatial resolution. Suitable sub-volume sizes have been be selected based on a compromise between the measurement uncertainty and the spatial resolution of the cases considered. A ratio of sub-volume size to a microstructure characteristic (Tb.Sp) was introduced to reflect a suitable spatial resolution, and the measurement uncertainty associated was assessed. Specifically, ratios between 1.6 and 4 appear to give rise to standard deviations in the measured strains between 166 and 620 με in all the cases considered, which would seem to suffice for strain analysis in pre as well as post yield loading regimes. A microscale finite element (μFE) model was built from the CT images of the sawbone, and the results from the μFE model and a continuum FE model were compared with those from the DVC. The strain results were found to differ significantly between the two methods at tissue level, consistent in trend with the results found in human bones, indicating mainly a limitation of the current DVC method in mapping strains at this level.

  14. Structure and Dimensions of Core-Shell Nanoparticles Comparable to the Confocal Volume Studied by Means of Fluorescence Correlation Spectroscopy.

    PubMed

    Gapinski, Jacek; Jarzębski, Maciej; Buitenhuis, Johan; Deptula, Tobiasz; Mazuryk, Jaroslaw; Patkowski, Adam

    2016-03-15

    In some applications the dye distribution within fluorescently labeled nanoparticles and its stability over long periods of time are important issues. In this article we study numerically and experimentally the applicability of fluorescence correlation spectroscopy (FCS) to resolve such questions. When the size of fluorescently labeled particles is comparable to or larger than the confocal volume, the effective confocal volume seen in FCS experiments is increasing. Such an effect has already been studied for uniformly labeled spherical particles. In this work we analyze the form of the FCS correlation functions (CFs) for core-labeled and shell-labeled core-shell particles. For shell-labeled particles an additional fast decay was found both in simulations and in experiments on custom-made surface-labeled particles. Universal scaling of FCS correlation times based on the squared ratio of the labeled part radius of gyration to the Gaussian radius of the beam profile was found. Recipes based on the analysis of simulated CFs, proposed for interpretation of experimental results, were successfully applied to the FCS results on suspensions of large core-labeled and surface-labeled particles.

  15. Mechanical durability of polymeric coatings studied by positron annihilation spectroscopy: correlation between cyclic loading and free volumes

    NASA Astrophysics Data System (ADS)

    Chen, H.; Peng, Q.; Huang, Y. Y.; Zhang, R.; Mallon, P. E.; Zhang, J.; Li, Y.; Wu, Y.; Richardson, J. R.; Sandreczki, T. C.; Jean, Y. C.; Suzuki, R.; Ohdaira, T.

    2002-06-01

    The mechanical durability of seven commercially polymeric coatings is investigated using slow positron beam techniques to monitor changes in sub-nanometer defects during the process of cyclic loading. Doppler broadened energy spectra and positron annihilation lifetime (PAL) measurements were performed as a function of the slow positron energy at different periods of cycling loading. The positron annihilation dada show that both S-defect parameter and o-positronium (Ps) lifetime decrease as the loading cycle increases. The results indicate a loss of free volumes due to the loss of mechanical durability by cyclic loading. A direct correlation between the loss of S-defect parameter and the period of loading cycle is observed. This is interpreted as that durability of polymeric coatings is controlled by the atomic level free volumes. It is shown that the slow positron beam is a very successful probe in detecting the very early stages of coating degradation due to mechanical processes.

  16. LCTV Holographic Imaging

    NASA Technical Reports Server (NTRS)

    Knopp, Jerome

    1996-01-01

    Astronauts are required to interface with complex systems that require sophisticated displays to communicate effectively. Lightweight, head-mounted real-time displays that present holographic images for comfortable viewing may be the ideal solution. We describe an implementation of a liquid crystal television (LCTV) as a spatial light modulator (SLM) for the display of holograms. The implementation required the solution of a complex set of problems. These include field calculations, determination of the LCTV-SLM complex transmittance characteristics and a precise knowledge of the signal mapping between the LCTV and frame grabbing board that controls it. Realizing the hologram is further complicated by the coupling that occurs between the phase and amplitude in the LCTV transmittance. A single drive signal (a gray level signal from a framegrabber) determines both amplitude and phase. Since they are not independently controllable (as is true in the ideal SLM) one must deal with the problem of optimizing (in some sense) the hologram based on this constraint. Solutions for the above problems have been found. An algorithm has been for field calculations that uses an efficient outer product formulation. Juday's MEDOF 7 (Minimum Euclidean Distance Optimal Filter) algorithm used for originally for filter calculations has been successfully adapted to handle metrics appropriate for holography. This has solved the problem of optimizing the hologram to the constraints imposed by coupling. Two laboratory methods have been developed for determining an accurate mapping of framegrabber pixels to LCTV pixels. A friendly software system has been developed that integrates the hologram calculation and realization process using a simple set of instructions. The computer code and all the laboratory measurement techniques determining SLM parameters have been proven with the production of a high quality test image.

  17. Design of a multiplexing grating for color holographic waveguide

    NASA Astrophysics Data System (ADS)

    Guo, Jingjing; Tu, Yan; Yang, Lanlan; Wang, Lili; Wang, Baoping

    2015-12-01

    Volume holographic gratings have been used in waveguide displays to implement full-color three-dimensional imaging. Among these, multiplexing gratings are advanced in low energy losses and simple manufacture technologies when used as couplers of color hologram waveguides. A multiplexing holographic grating is designed to realize a uniform red, green, and blue diffraction efficiency and eliminate stray light to the largest extent. Results indicate that the red, green, and blue light incident normal to the grating could be successfully in-coupled into the planar waveguide for total internal reflection with high peak diffraction efficiency, similar energy output, and little stray light. We also analyze the effect of the technical tolerance, including gating thickness, index modulation, grating period, slanted angle, and incident angle. This analysis could help to minimize the optical system and improve the color image quality of waveguide displays.

  18. Holographic diffraction gratings recording in organically modified silica gels

    NASA Astrophysics Data System (ADS)

    Cheben, P.; Belenguer, T.; Nuñez, A.; del Monte, F.; Levy, D.

    1996-11-01

    The silica gel-methyl methacrylate organically modified ceramic is proposed for recording of volume holograms. Both low-spatial-frequency (54 line pairs /mm-1 ) and high-spatial-frequency (1400 line pairs /mm-1 ) holographic gratings were successfully recorded in the medium by interference of two coherent beams of 351.1-nm wavelength. High diffraction efficiencies (93%) and extremely low absorption and scattering coefficients were measured during the holographic reconstruction by a 632.8-nm He-Ne beam. The optimum UV recording exposure was \\similar 3J cm -2 . A grating refractive-index modulation amplitude of 1.1 \\times 10-4 was achieved. Virtually no changes in diffraction efficiency were observed after thermal-heating, light-curing, and long-term-aging experiments.

  19. Dentin ablation by Ho: YAG laser: correlation of energy versus volume using stereophotogrammetry.

    PubMed

    Stevens, B H; Trowbridge, H O; Harrison, G; Silverton, S F

    1994-05-01

    The future use of lasers in endodontics is dependent upon predictable and consistent ablation of dentin. In this pilot study we used an Ho:YAG laser fiberoptic delivery system to apply laser energy to prepared tooth sections in vitro. Longitudinally sectioned single-rooted human teeth were subjected to single-energy pulses varying from 25 to 1750 mJ at a focal length of 1 mm. At different energy levels we observed changes in the dentin surface ranging from minute surface pitting to the formation of large craters. Scanning electron microscopy and stereophotogrammetry were used to determine the relationship between the amount of energy applied to dentin and the extent of dentin ablation. Dentin crater formation was quantified by determining surface area, depth, and volume of craters produced. Increases in laser energy were compared with increases in surface area, depth, and volume of craters produced within the range of 150 to 1200 mJ. The Ho:YAG laser fiberoptic delivery system used in this study provides an effective means of ablating dentin. Three-dimensional stereophotogrammetry may prove to be a useful method for further studies on the effects of laser energy on mineralized tissues.

  20. Dynamic holographic imaging of the beating human heart

    PubMed

    Hunziker; Smith; Scherrer-Crosbie; Liel-Cohen; Levine; Nesbitt; Benton; Picard

    1999-02-01

    Background--Currently, the reporting and archiving of echocardiographic data suffer from the difficulty of representing heart motion on printable 2-dimensional (2D) media. Methods and Results--We studied the capability of holography to integrate motion into 2D echocardiographic prints. Images of normal human hearts and of a variety of mitral valve function abnormalities (mitral valve prolapse, systolic anterior motion of the mitral leaflets, and obstruction of the mitral valve by a myxoma) were acquired digitally on standard echocardiographic machines. Images were processed into a data format suitable for holographic printing. Angularly multiplexed holograms were then printed on a prototype holographic "laser" printer, with integration of time in vertical parallax, so that heart motion became visible when the hologram was tilted up and down. The resulting holograms displayed the anatomy with the same resolution as the original acquisition and allowed detailed study of valve motion with side-by-side comparison of normal and abnormal findings. Comparison of standard echocardiographic measurements in original echo frames and corresponding hologram views showed an excellent correlation of both methods (P<0.0001, r2=0.979, mean bias=2.76 mm). In this feasibility study, both 2D and 3D holographic images were produced. The equipment needed to view these holograms consists of only a simple point-light source. Conclusions--Holographic representation of myocardial and valve motion from echocardiographic data is feasible and allows the printing on a 2D medium of the complete heart cycle. Combined with the recent development of online holographic printing, this novel technique has the potential to improve reporting, visualization, and archiving of echocardiographic imaging.

  1. Holographic microscopy in low coherence

    NASA Astrophysics Data System (ADS)

    Chmelík, Radim; Petráček, Jiří; Slabá, Michala; Kollárová, Věra; Slabý, Tomáš; Čolláková, Jana; Komrska, Jiří; Dostál, Zbyněk.; Veselý, Pavel

    2016-03-01

    Low coherence of the illumination substantially improves the quality of holographic and quantitative phase imaging (QPI) by elimination of the coherence noise and various artefacts and by improving the lateral resolution compared to the coherent holographic microscopy. Attributes of coherence-controlled holographic microscope (CCHM) designed and built as an off-axis holographic system allowing QPI within the range from complete coherent to incoherent illumination confirmed these expected advantages. Low coherence illumination also furnishes the coherence gating which constraints imaging of some spatial frequencies of an object axially thus forming an optical section in the wide sense. In this way the depth discrimination capability of the microscope is introduced at the price of restricting the axial interval of possible numerical refocusing. We describe theoretically these effects for the whole range of illumination coherence. We also show that the axial refocusing constraints can be overcome using advanced mode of imaging based on mutual lateral shift of reference and object image fields in CCHM. Lowering the spatial coherence of illumination means increasing its numerical aperture. We study how this change of the illumination geometry influences 3D objects QPI and especially the interpretation of live cells QPI in terms of the dry mass density measurement. In this way a strong dependence of the imaging process on the light coherence is demonstrated. The theoretical calculations and numerical simulations are supported by experimental data including a chance of time-lapse watching of live cells even in optically turbid milieu.

  2. Music holographic physiotherapy by laser

    NASA Astrophysics Data System (ADS)

    Liao, Changhuan

    1996-09-01

    Based on the relationship between music and nature, the paper compares laser and light with music sound on the principles of synergetics, describes music physically and objectively, and proposes a music holographic therapy by laser. Maybe it will have certain effects on mechanism study and clinical practice of the music therapy.

  3. Local shear stress and its correlation with local volume fraction in concentrated non-Brownian suspensions: lattice Boltzmann simulation.

    PubMed

    Lee, Young Ki; Ahn, Kyung Hyun; Lee, Seung Jong

    2014-12-01

    The local shear stress of non-Brownian suspensions was investigated using the lattice Boltzmann method coupled with the smoothed profile method. Previous studies have only focused on the bulk rheology of complex fluids because the local rheology of complex fluids was not accessible due to technical limitations. In this study, the local shear stress of two-dimensional solid particle suspensions in Couette flow was investigated with the method of planes to correlate non-Newtonian fluid behavior with the structural evolution of concentrated particle suspensions. Shear thickening was successfully captured for highly concentrated suspensions at high particle Reynolds number, and both the local rheology and local structure of the suspensions were analyzed. It was also found that the linear correlation between the local particle stress and local particle volume fraction was dramatically reduced during shear thickening. These results clearly show how the change in local structure of suspensions influences the local and bulk rheology of the suspensions. PMID:25615103

  4. Synaptic vesicle exocytosis in hippocampal synaptosomes correlates directly with total mitochondrial volume

    PubMed Central

    Ivannikov, Maxim V.; Sugimori, Mutsuyuki; Llinás, Rodolfo R.

    2012-01-01

    Synaptic plasticity in many regions of the central nervous system leads to the continuous adjustment of synaptic strength, which is essential for learning and memory. In this study, we show by visualizing synaptic vesicle release in mouse hippocampal synaptosomes that presynaptic mitochondria and specifically, their capacities for ATP production are essential determinants of synaptic vesicle exocytosis and its magnitude. Total internal reflection microscopy of FM1-43 loaded hippocampal synaptosomes showed that inhibition of mitochondrial oxidative phosphorylation reduces evoked synaptic release. This reduction was accompanied by a substantial drop in synaptosomal ATP levels. However, cytosolic calcium influx was not affected. Structural characterization of stimulated hippocampal synaptosomes revealed that higher total presynaptic mitochondrial volumes were consistently associated with higher levels of exocytosis. Thus, synaptic vesicle release is linked to the presynaptic ability to regenerate ATP, which itself is a utility of mitochondrial density and activity. PMID:22772899

  5. A Controlled Study on the Correlation between Tear Film Volume and Tear Film Stability in Diabetic Patients.

    PubMed

    Eissa, Iman M; Khalil, Noha M; El-Gendy, Heba A

    2016-01-01

    Purpose. To assess the tear film quantity and correlate it with the quality and stability of the tear film in diabetics and compare them to age matched controls. Introduction. Diabetes affects tear film parameters in multiple ways. Poor metabolic control and neuropathy are postulated factors. To further understand how diabetes affects tear film parameters this study was conducted. Subjects and Methods. Tear meniscus height was measured by anterior segment OCT, along with tear thinning time, a subtype of noninvasive tear break-up time, and blinking rate per minute which were all recorded for 22 diabetic patients. Correlations between these tear film parameters were studied and then compared to 16 age matched controls. Results. A statistically significant difference was found in blinking rate between the diabetic and the control group (P = 0.002), with higher blinking rate among diabetics. All tear film parameters were negatively correlated with duration of diabetes. A positive correlation was found between tear film volume and stability. Conclusion. Diabetes affects the tear film in various ways. Diabetics should be examined for dry eye signs even in absence of symptoms which may be masked by associated neuropathy. Duration of diabetes has an impact on tear film status.

  6. Universal properties of cold holographic matter

    NASA Astrophysics Data System (ADS)

    Jokela, Niko; Ramallo, Alfonso V.

    2015-07-01

    We study the collective excitations of holographic quantum liquids formed in the low energy theory living at the intersection of two sets of D-branes. The corresponding field theory dual is a supersymmetric Yang-Mills theory with massless matter hypermultiplets in the fundamental representation of the gauge group which generically live on a defect of the unflavored theory. Working in the quenched (probe) approximation, we focus on determining the universal properties of these systems. We analyze their thermodynamics, the speed of first sound, the diffusion constant, and the speed of zero sound. We study the influence of temperature, chemical potential, and magnetic field on these quantities, as well as on the corresponding collisionless/hydrodynamic crossover. We also generalize the alternative quantization for all conformally AdS4 cases and study the anyonic correlators.

  7. Free volume hole size of Cyanate ester resin/Epoxy resin interpenetrating networks and its correlations with physical properties

    NASA Astrophysics Data System (ADS)

    Zeng, Minfeng; Lu, Cuiyun; Wang, Baoyi; Qi, Chenze

    2010-09-01

    Cyanate ester (CE) resin was blended with epoxy resin (EP) at different mass ratios (CE/EP: 100/0, 90/10, 70/30, 50/50, 30/70, 10/90, and 0/100). The curing process of the blend system was characterized by Fourier transform infrared spectrometry (FTIR) and differential scanning calorimetry (DSC). Examination of the mechanical properties, thermal stability, and morphology of the blend systems showed that addition of epoxy resin resulted in improved toughness but a little sacrifice in thermal stability when compared with neat CE. The free volume size of the blend system determined by positron annihilation lifetime spectroscopy (PALS) decreased with the epoxy resin content, which is consistent with the chemical structure changes for the copolymerization between CE and EP. The crosslinking units of curing products (oxazoline, oxazolidinone, and polyether network) of the blends are all smaller in size than those of triazine ring structure from neat CE. Therefore, the free volume size of the blends decreases with increase of EP content. The correlations between the free volume properties and other physical properties (thermal stability and mechanical properties) have also been discussed.

  8. Post-traumatic stress symptoms correlate with smaller subgenual cingulate, caudate, and insula volumes in unmedicated combat veterans.

    PubMed

    Herringa, Ryan; Phillips, Mary; Almeida, Jorge; Insana, Salvatore; Germain, Anne

    2012-01-01

    Prior studies have examined differences in brain volume between patients with post-traumatic stress disorder (PTSD) and control subjects. Convergent findings include smaller hippocampus and medial prefrontal cortex volumes in PTSD. However, post-traumatic stress symptoms (PTSS) exist on a spectrum, and neural changes may occur beyond the diagnostic threshold of PTSD. We examined the relationship between PTSS and gray matter among combat-exposed U.S. military veterans. Structural brain magnetic resonance imaging (MRI) was obtained on 28 combat veterans from Operations Enduring and Iraqi Freedom. PTSS were assessed using the Clinician-Administered PTSD Scale (CAPS). Thirteen subjects met criteria for PTSD. Subjects were unmedicated, and free of major comorbid psychiatric disorders. Images were analyzed using voxel-based morphometry, and regressed against the total CAPS score and trauma load. Images were subsequently analyzed by diagnosis of PTSD vs. non-PTSD. CAPS scores were inversely correlated with volumes of the subgenual cingulate (sgACC), caudate, hypothalamus, insula, and left middle temporal gyrus (MTG). Group contrast revealed smaller sgACC, caudate, hypothalamus, left insula, left MTG, and right MFG in the PTSD group. PTSS are associated with abnormalities in limbic structures that may underlie the pathophysiology of PTSD. These abnormalities exist on a continuum with PTSS, beyond a diagnosis of PTSD.

  9. Cerebellar gray matter and lobular volumes correlate with core autism symptoms

    PubMed Central

    D'Mello, Anila M.; Crocetti, Deana; Mostofsky, Stewart H.; Stoodley, Catherine J.

    2015-01-01

    Neuroanatomical differences in the cerebellum are among the most consistent findings in autism spectrum disorder (ASD), but little is known about the relationship between cerebellar dysfunction and core ASD symptoms. The newly-emerging existence of cerebellar sensorimotor and cognitive subregions provides a new framework for interpreting the functional significance of cerebellar findings in ASD. Here we use two complementary analyses — whole-brain voxel-based morphometry (VBM) and the SUIT cerebellar atlas — to investigate cerebellar regional gray matter (GM) and volumetric lobular measurements in 35 children with ASD and 35 typically-developing (TD) children (mean age 10.4 ± 1.6 years; range 8–13 years). To examine the relationships between cerebellar structure and core ASD symptoms, correlations were calculated between scores on the Autism Diagnostic Observation Schedule (ADOS) and Autism Diagnostic Interview (ADI) and the VBM and volumetric data. Both VBM and the SUIT analyses revealed reduced GM in ASD children in cerebellar lobule VII (Crus I/II). The degree of regional and lobular gray matter reductions in different cerebellar subregions correlated with the severity of symptoms in social interaction, communication, and repetitive behaviors. Structural differences and behavioral correlations converged on right cerebellar Crus I/II, a region which shows structural and functional connectivity with fronto-parietal and default mode networks. These results emphasize the importance of the location within the cerebellum to the potential functional impact of structural differences in ASD, and suggest that GM differences in cerebellar right Crus I/II are associated with the core ASD profile. PMID:25844317

  10. Holographic dark energy in a cyclic universe

    NASA Astrophysics Data System (ADS)

    Zhang, Jingfei; Zhang, Xin; Liu, Hongya

    2007-11-01

    In this paper we study the cosmological evolution of the holographic dark energy in a cyclic universe, generalizing the model of holographic dark energy proposed by Li. The holographic dark energy with c<1 can realize a quintom behavior; namely, it evolves from a quintessence-like component to a phantom-like one. The holographic phantom energy density grows rapidly and dominates the late-time expanding phase, helping to realize a cyclic universe scenario in which the high energy regime is modified by the effects of quantum gravity, causing a turn-around (and a bounce) of the universe. The dynamical evolution of holographic dark energy in the regimes of low energy and high energy is governed by two differential equations, respectively. It is of importance to link the two regimes for this scenario. We propose a link condition giving rise to a complete picture of holographic evolution of a cyclic universe.

  11. The cosmic X-ray background-IRAS galaxy correlation and the local X-ray volume emissivity

    NASA Technical Reports Server (NTRS)

    Miyaji, Takamitsu; Lahav, Ofer; Jahoda, Keith; Boldt, Elihu

    1994-01-01

    We have cross-correlated the galaxies from the IRAS 2 Jy redshift survey sample and the 0.7 Jy projected sample with the all-sky cosmic X-ray background (CXB) map obtained from the High Energy Astronomy Observatory (HEAO) 1 A-2 experiment. We have detected a significant correlation signal between surface density of IRAS galaxies and the X-ray background intensity, with W(sub xg) = (mean value of ((delta I)(delta N)))/(mean value of I)(mean value of N)) of several times 10(exp -3). While this correlation signal has a significant implication for the contribution of the local universe to the hard (E greater than 2 keV) X-ray background, its interpretation is model-dependent. We have developed a formulation to model the cross-correlation between CXB surface brightness and galaxy counts. This includes the effects of source clustering and the X-ray-far-infrared luminosity correlation. Using an X-ray flux-limited sample of active galactic nuclei (AGNs), which has IRAS 60 micrometer measurements, we have estimated the contribution of the AGN component to the observed CXB-IRAS galaxy count correlations in order to see whether there is an excess component, i.e., contribution from low X-ray luminosity sources. We have applied both the analytical approach and Monte Carlo simulations for the estimations. Our estimate of the local X-ray volume emissivity in the 2-10 keV band is rho(sub x) approximately = (4.3 +/- 1.2) x 10(exp 38) h(sub 50) ergs/s/cu Mpc, consistent with the value expected from the luminosity function of AGNs alone. This sets a limit to the local volume emissivity from lower luminosity sources (e.g., star-forming galaxies, low-ionization nuclear emission-line regions (LINERs)) to rho(sub x) less than or approximately = 2 x 10(exp 38) h(sub 50) ergs/s/cu Mpc.

  12. Acoustic Treatment Design Scaling Methods. Volume 5; Analytical and Experimental Data Correlation

    NASA Technical Reports Server (NTRS)

    Chien, W. E.; Kraft, R. E.; Syed, A. A.

    1999-01-01

    The primary purpose of the study presented in this volume is to present the results and data analysis of in-duct transmission loss measurements. Transmission loss testing was performed on full-scale, 1/2-scale, and 115-scale treatment panel samples. The objective of the study was to compare predicted and measured transmission loss for full-scale and subscale panels in an attempt to evaluate the variations in suppression between full- and subscale panels which were ostensibly of equivalent design. Generally, the results indicated an unsatisfactory agreement between measurement and prediction, even for full-scale. This was attributable to difficulties encountered in obtaining sufficiently accurate test results, even with extraordinary care in calibrating the instrumentation and performing the test. Test difficulties precluded the ability to make measurements at frequencies high enough to be representative of subscale liners. It is concluded that transmission loss measurements without ducts and data acquisition facilities specifically designed to operate with the precision and complexity required for high subscale frequency ranges are inadequate for evaluation of subscale treatment effects.

  13. Tumor Volume Reduction Rate Measured by Magnetic Resonance Volumetry Correlated With Pathologic Tumor Response of Preoperative Chemoradiotherapy for Rectal Cancer

    SciTech Connect

    Yeo, Seung-Gu; Kim, Dae Yong; Kim, Tae Hyun; Jung, Kyung Hae; Hong, Yong Sang; Chang, Hee Jin; Park, Ji Won; Lim, Seok-Byung; Choi, Hyo Seong; Jeong, Seung-Yong

    2010-09-01

    Purpose: To determine whether the tumor volume reduction rate (TVRR) measured using three-dimensional region-of-interest magnetic resonance volumetry correlates with the pathologic tumor response after preoperative chemoradiotherapy (CRT) for locally advanced rectal cancer. Methods and Materials: The study included 405 patients with locally advanced rectal cancer (cT3-T4) who had undergone preoperative CRT and radical proctectomy. The tumor volume was measured using three-dimensional region-of-interest magnetic resonance volumetry before and after CRT but before surgery. We analyzed the correlation between the TVRR and the pathologic tumor response in terms of downstaging and tumor regression grade (TRG). Downstaging was defined as ypStage 0-I (ypT0-T2N0M0), and the TRG proposed by Dworak et al. was used. Results: The mean TVRR was 65.0% {+-} 22.3%. Downstaging and complete regression occurred in 167 (41.2%) and 58 (14.3%) patients, respectively. The TVRRs according to ypT classification (ypT0-T2 vs. ypT3-T4), ypN classification (ypN0 vs. ypN1-N2), downstaging (ypStage 0-I vs. ypStage II-III), good regression (TRG 3-4 vs. TRG 1-2), and complete regression (TRG 4 vs. TRG 1-3) were all significantly different (p <.05). When the TVRR was categorized into three groups (<60%, 60-80%, and >80%), the rates of ypT0-T2, ypN0, downstaging, and good regression were all significantly greater for patients with a TVRR of {>=}60%, as was the complete regression rate for patients with a TVRR >80% (p <.05). Conclusion: The TVRR measured using three-dimensional region-of-interest magnetic resonance volumetry correlated significantly with the pathologic tumor response in terms of downstaging and TRG after preoperative CRT for locally advanced rectal cancer.

  14. Investigation of uses of holographic optical elements

    NASA Technical Reports Server (NTRS)

    Zech, R. G.; Latta, J. N.

    1973-01-01

    The data represent a thorough study of the aberrations and imaging properties of holographic optical elements. Principle studies include (1) the indepth experimental investigation of single holographic optical elements, (2) the verification of the accuracy of the theoretical computer-based description of hologram behavior, (3) the computer-generation of interferograms that are characteristic of a prescribed aberrated imaging condition, (4) the experimental verification of wavelength optimization, (5) the experimental determination of the space bandwidth product of single holographic optical elements as a function of bending and field angle, and (6) the first experimental study of the aberration properties of holographic optical elements constructed in very thick (750 microns) recording media.

  15. Holographic projection with higher image quality.

    PubMed

    Qu, Weidong; Gu, Huarong; Tan, Qiaofeng

    2016-08-22

    The spatial resolution limited by the size of the spatial light modulator (SLM) in the holographic projection can hardly be increased, and speckle noise always appears to induce the degradation of image quality. In this paper, the holographic projection with higher image quality is presented. The spatial resolution of the reconstructed image is 2 times of that of the existing holographic projection, and speckles are suppressed well at the same time. Finally, the effectiveness of the holographic projection is verified in experiments. PMID:27557197

  16. Consistency relations and conservation of ζ in holographic inflation

    NASA Astrophysics Data System (ADS)

    Garriga, Jaume; Urakawa, Yuko

    2016-10-01

    It is well known that, in single clock inflation, the curvature perturbation ζ is constant in time on superhorizon scales. In the standard bulk description this follows quite simply from the local conservation of the energy momentum tensor in the bulk. On the other hand, in a holographic description, the constancy of the curvature perturbation must be related to the properties of the RG flow in the boundary theory. Here, we show that, in single clock holographic inflation, the time independence of correlators of ζ follows from the absence of the anomolous dimension of the energy momentum tensor in the boundary theory, and from the so-called consistency relations for vertex functions with a soft leg.

  17. Holographic Jet Quenching

    NASA Astrophysics Data System (ADS)

    Ficnar, Andrej

    In this dissertation we study the phenomenon of jet quenching in quark-gluon plasma using the AdS/CFT correspondence. We start with a weakly coupled, perturbative QCD approach to energy loss, and present a Monte Carlo code for computation of the DGLV radiative energy loss of quarks and gluons at an arbitrary order in opacity. We use the code to compute the radiated gluon distribution up to n=9 order in opacity, and compare it to the thin plasma (n=1) and the multiple soft scattering (n=infinity) approximations. We furthermore show that the gluon distribution at finite opacity depends in detail on the screening mass mu and the mean free path lambda. In the next part, we turn to the studies of how heavy quarks, represented as "trailing strings" in AdS/CFT, lose energy in a strongly coupled plasma. We study how the heavy quark energy loss gets modified in a "bottom-up" non-conformal holographic model, constructed to reproduce some properties of QCD at finite temperature and constrained by fitting the lattice gauge theory results. The energy loss of heavy quarks is found to be strongly sensitive to the medium properties. We use this model to compute the nuclear modification factor RAA of charm and bottom quarks in an expanding plasma with Glauber initial conditions, and comment on the range of validity of the model. The central part of this thesis is the energy loss of light quarks in a strongly coupled plasma. Using the standard model of "falling strings", we present an analytic derivation of the stopping distance of light quarks, previously available only through numerical simulations, and also apply it to the case of Gauss-Bonnet higher derivative gravity. We then present a general formula for computing the instantaneous energy loss in non-stationary string configurations. Application of this formula to the case of falling strings reveals interesting phenomenology, including a modified Bragg-like peak at late times and an approximately linear path dependence. Based

  18. Adjustable liquid aperture to eliminate undesirable light in holographic projection.

    PubMed

    Wang, Di; Liu, Chao; Li, Lei; Zhou, Xin; Wang, Qiong-Hua

    2016-02-01

    In this paper, we propose an adjustable liquid aperture to eliminate the undesirable light in a holographic projection. The aperture is based on hydrodynamic actuation. A chamber is formed with a cylindrical tube. A black droplet is filled in the sidewall of the cylinder tube and the outside space is the transparent oil which is immiscible with the black droplet. An ultrathin glass sheet is attached on the bottom substrate of the device and a black shading film is secured to the central area of the glass sheet. By changing the volume of the black droplet, the black droplet will move to the middle or sidewall due to hydrodynamic actuation, so the device can be used as an adjustable aperture. A divergent spherical wave and a solid lens are used to separate the focus planes of the reconstructed image and diffraction beams induced by the liquid crystal on silicon in the holographic projection. Then the aperture is used to eliminate the diffraction beams by adjusting the size of the liquid aperture and the holographic projection does not have undesirable light. PMID:26906784

  19. Adjustable liquid aperture to eliminate undesirable light in holographic projection.

    PubMed

    Wang, Di; Liu, Chao; Li, Lei; Zhou, Xin; Wang, Qiong-Hua

    2016-02-01

    In this paper, we propose an adjustable liquid aperture to eliminate the undesirable light in a holographic projection. The aperture is based on hydrodynamic actuation. A chamber is formed with a cylindrical tube. A black droplet is filled in the sidewall of the cylinder tube and the outside space is the transparent oil which is immiscible with the black droplet. An ultrathin glass sheet is attached on the bottom substrate of the device and a black shading film is secured to the central area of the glass sheet. By changing the volume of the black droplet, the black droplet will move to the middle or sidewall due to hydrodynamic actuation, so the device can be used as an adjustable aperture. A divergent spherical wave and a solid lens are used to separate the focus planes of the reconstructed image and diffraction beams induced by the liquid crystal on silicon in the holographic projection. Then the aperture is used to eliminate the diffraction beams by adjusting the size of the liquid aperture and the holographic projection does not have undesirable light.

  20. Holographic Fabry-Perot spectrometer.

    PubMed

    Martínez-Matos, O; Rodrigo, José A; Vaveliuk, P; Calvo, M L

    2011-02-15

    We propose a spectrum analyzer based on the properties of a hologram recorded with the field transmitted by a Fabry-Perot etalon. The spectral response of this holographic Fabry-Perot spectrometer (HFPS) is analytically investigated in the paraxial approximation and compared with a conventional Fabry-Perot etalon of similar characteristics. We demonstrate that the resolving power is twice increased and the free spectral range (FSR) is reduced to one-half. The proposed spectrometer could improve the operational performance of the etalon because it can exhibit high efficiency and it would be insensible to environmental conditions such as temperature and vibrations. Our analysis also extends to another variant of the HFPS based on holographic multiplexing of the transmitted field of a Fabry-Perot etalon. This device increases the FSR, keeping the same HFPS performance.

  1. Holographic quenches with a gap

    NASA Astrophysics Data System (ADS)

    da Silva, Emilia; Lopez, Esperanza; Mas, Javier; Serantes, Alexandre

    2016-06-01

    In order to holographically model quenches with a gapped final hamiltonian, we consider a gravity-scalar theory in anti-de Sitter space with an infrared hard wall. We allow a time dependent profile for the scalar field at the wall. This induces an energy exchange between bulk and wall and generates an oscillating scalar pulse. We argue that such backgrounds are the counterpart of quantum revivals in the dual field theory. We perform a qualitative comparison with the quench dynamics of the massive Schwinger model, which has been recently analyzed using tensor network techniques. Agreement is found provided the width of the oscillating scalar pulse is inversely linked to the energy density communicated by the quench. We propose this to be a general feature of holographic quenches.

  2. Medium consumption in holographic memories.

    PubMed

    Ayres, Mark R; McLeod, Robert R

    2009-07-01

    The dynamic range of holographic storage media is traditionally characterized in terms of M/#. However, this is a system parameter that assumes simple, uniform plane-wave holograms. Realistic architectures violate this assumption so that M/# measured with plane waves cannot be used to predict system diffraction efficiency. Thus, there currently is no systematic method predicting signal strength and medium consumption for holographic storage architectures a priori. We define a new material parameter, the modulation integral, M(I), and show how this may be used for dynamic range budgeting and diffraction efficiency prediction in complex storage systems. The method is illustrated by applying it to two architectures, collinear and angle polytopic, in order to estimate the M/# required for achieving a target storage density in the presence of empirical optical scatter noise.

  3. Advances in holographic particle velocimetry

    NASA Astrophysics Data System (ADS)

    Simmons, Scott; Meng, Hui; Hussain, Fazle; Liu, David

    1993-12-01

    Holographic particle velocimetry (HPV) is a promising technique for 3D flow velocity and hence vorticity measurements to study turbulence, coherent structures and vortex interactions. We discuss various aspects in the development of this technique ranging from hologram recording configurations such as in-line, off-axis and multibeam to data processing. Difficulties in implementation are analyzed and solutions are discussed. We also present preliminary measurement results in a 3D vortex flow using one of our prototype HPV systems.

  4. Holographic multiverse and conformal invariance

    SciTech Connect

    Garriga, Jaume; Vilenkin, Alexander E-mail: vilenkin@cosmos.phy.tufts.edu

    2009-11-01

    We consider a holographic description of the inflationary multiverse, according to which the wave function of the universe is interpreted as the generating functional for a lower dimensional Euclidean theory. We analyze a simple model where transitions between inflationary vacua occur through bubble nucleation, and the inflating part of spacetime consists of de Sitter regions separated by thin bubble walls. In this model, we present some evidence that the dual theory is conformally invariant in the UV.

  5. Sound modes in holographic superfluids

    SciTech Connect

    Herzog, Christopher P.; Yarom, Amos

    2009-11-15

    Superfluids support many different types of sound waves. We investigate the relation between the sound waves in a relativistic and a nonrelativistic superfluid by using hydrodynamics to calculate the various sound speeds. Then, using a particular holographic scalar gravity realization of a strongly interacting superfluid, we compute first, second, and fourth sound speeds as a function of the temperature. The relativistic low temperature results for second sound differ from Landau's well known prediction for the nonrelativistic, incompressible case.

  6. Holographic recording materials - A review

    NASA Technical Reports Server (NTRS)

    Kurtz, R. L.; Owen, R. B.

    1975-01-01

    Holographic recording materials in current use are examined along with a few of their applications. Some experimental media are also studied. No effort is made to rank the commercial materials, since satisfactory results can be obtained with any of them. The discussion covers silver halide plates and films, photoresists, thermoplastics, photopolymers, dichromated gelatin, photochromic materials, electrooptical crystals, styryl free radical film, and TEP film. A convenient summation of some material properties is presented in tabular form.

  7. Holographic superconductors with Weyl corrections

    NASA Astrophysics Data System (ADS)

    Momeni, Davood; Raza, Muhammad; Myrzakulov, Ratbay

    2016-10-01

    A quick review on the analytical aspects of holographic superconductors (HSCs) with Weyl corrections has been presented. Mainly, we focus on matching method and variational approaches. Different types of such HSC have been investigated — s-wave, p-wave and Stúckelberg ones. We also review the fundamental construction of a p-wave type, in which the non-Abelian gauge field is coupled to the Weyl tensor. The results are compared from numerics to analytical results.

  8. Quantifying uncertainty in soot volume fraction estimates using Bayesian inference of auto-correlated laser-induced incandescence measurements

    NASA Astrophysics Data System (ADS)

    Hadwin, Paul J.; Sipkens, T. A.; Thomson, K. A.; Liu, F.; Daun, K. J.

    2016-01-01

    Auto-correlated laser-induced incandescence (AC-LII) infers the soot volume fraction (SVF) of soot particles by comparing the spectral incandescence from laser-energized particles to the pyrometrically inferred peak soot temperature. This calculation requires detailed knowledge of model parameters such as the absorption function of soot, which may vary with combustion chemistry, soot age, and the internal structure of the soot. This work presents a Bayesian methodology to quantify such uncertainties. This technique treats the additional "nuisance" model parameters, including the soot absorption function, as stochastic variables and incorporates the current state of knowledge of these parameters into the inference process through maximum entropy priors. While standard AC-LII analysis provides a point estimate of the SVF, Bayesian techniques infer the posterior probability density, which will allow scientists and engineers to better assess the reliability of AC-LII inferred SVFs in the context of environmental regulations and competing diagnostics.

  9. Pattern-Recognition Processor Using Holographic Photopolymer

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin; Cammack, Kevin

    2006-01-01

    proposed joint-transform optical correlator (JTOC) would be capable of operating as a real-time pattern-recognition processor. The key correlation-filter reading/writing medium of this JTOC would be an updateable holographic photopolymer. The high-resolution, high-speed characteristics of this photopolymer would enable pattern-recognition processing to occur at a speed three orders of magnitude greater than that of state-of-the-art digital pattern-recognition processors. There are many potential applications in biometric personal identification (e.g., using images of fingerprints and faces) and nondestructive industrial inspection. In order to appreciate the advantages of the proposed JTOC, it is necessary to understand the principle of operation of a conventional JTOC. In a conventional JTOC (shown in the upper part of the figure), a collimated laser beam passes through two side-by-side spatial light modulators (SLMs). One SLM displays a real-time input image to be recognized. The other SLM displays a reference image from a digital memory. A Fourier-transform lens is placed at its focal distance from the SLM plane, and a charge-coupled device (CCD) image detector is placed at the back focal plane of the lens for use as a square-law recorder. Processing takes place in two stages. In the first stage, the CCD records the interference pattern between the Fourier transforms of the input and reference images, and the pattern is then digitized and saved in a buffer memory. In the second stage, the reference SLM is turned off and the interference pattern is fed back to the input SLM. The interference pattern thus becomes Fourier-transformed, yielding at the CCD an image representing the joint-transform correlation between the input and reference images. This image contains a sharp correlation peak when the input and reference images are matched. The drawbacks of a conventional JTOC are the following: The CCD has low spatial resolution and is not an ideal square

  10. RGB digital lensless holographic microscopy

    NASA Astrophysics Data System (ADS)

    Garcia-Sucerquia, Jorge

    2013-11-01

    The recent introduction of color digital lensless holographic microscopy (CDLHM) has shown the possibility of imaging microscopic specimens at full color without the need of lenses. Owing to the simplicity, robustness, and compactness of the digital lensless holographic microscopes (DLHM), they have been presented as the ideal candidates to being developed into portable holographic microscopes. However, in the case of CDLHM the utilization of three independent lasers hinders the portability option for this microscope. In this contribution an alternative to reduce the complexity of CDLHM aimed to recover the portability of this microscopy technology is presented. A super-bright white-light light-emitting diode (LED) is spectrally and spatially filtered to produce the needed illumination by CDLHM to work. CDLHM with LED illumination is used to image at full color a section of the head of a drosophila melanogaster fly (fruit fly). The LED-CDLHM method shows the capability of imaging objects of 2μm size in comparison with the micrometer resolution reported for LASER-CDLHM.

  11. Holographic Laser-Protective Eyewear

    NASA Astrophysics Data System (ADS)

    Tedesco, James M.

    1988-04-01

    Holographic filters in spectacle lenses, helmet visors and other types of substrates have been proposed for eye protection against visible lasers. Dyes and filter glasses, commonly used as laser protection at visible wavelengths, typically suffer from poor visual transmittance. Holographic filters offer potentially high visual transmittance due to a narrow spectral notch, but the angular dependence of the spectral notch position dictates a tradeoff between eye protection and visual transmittance. The relative merits of various exposure and substrate configurations for laser-protective eyewear are compared. Emphasis is placed on single-beam exposure, surface-conformal fringe structures in which the local Bragg angle is determined by the fringe spacing as opposed to the fringe tilt. This type of hologram is readily made free from flare or multiple images in transmission. Performance is evaluated in terms of visual transmittance versus eye protection, including retinal area and eye rotation. The relationship between angular and spectral response of holographic laser filters determines the exposure source for optimum performance to be roughly coincident with the center of eye rotation, regardless of the substrate geometry. Performance may be improved by locating the filters a greater distance from the eye. A more dramatic improvement in performance may be achieved by increasing the curvature of the substrate so that it is concentric with the eye.

  12. Ion-ion correlation, solvent excluded volume and pH effects on physicochemical properties of spherical oxide nanoparticles.

    PubMed

    Ovanesyan, Zaven; Aljzmi, Amal; Almusaynid, Manal; Khan, Asrar; Valderrama, Esteban; Nash, Kelly L; Marucho, Marcelo

    2016-01-15

    One major source of complexity in the implementation of nanoparticles in aqueous electrolytes arises from the strong influence that biological environments has on their physicochemical properties. A key parameter for understanding the molecular mechanisms governing the physicochemical properties of nanoparticles is the formation of the surface charge density. In this article, we present an efficient and accurate approach that combines a recently introduced classical solvation density functional theory for spherical electrical double layers with a surface complexation model to account for ion-ion correlation and excluded volume effects on the surface titration of spherical nanoparticles. We apply the proposed computational approach to account for the charge-regulated mechanisms on the surface chemistry of spherical silica (SiO2) nanoparticles. We analyze the effects of the nanoparticle size, as well as pH level and electrolyte concentration of the aqueous solution on the nanoparticle's surface charge density and Zeta potential. We validate our predictions for 580Å and 200Å nanoparticles immersed in acid, neutral and alkaline mono-valent aqueous electrolyte solutions against experimental data. Our results on mono-valent electrolyte show that the excluded volume and ion-ion correlations contribute significantly to the surface charge density and Zeta potential of the nanoparticle at high electrolyte concentration and pH levels, where the solvent crowding effects and electrostatic screening have shown a profound influence on the protonation/deprotonation reactions at the liquid/solute interface. The success of this approach in describing physicochemical properties of silica nanoparticles supports its broader application to study other spherical metal oxide nanoparticles.

  13. Multilayered poly(vinylidene fluoride) composite membranes with improved interfacial compatibility: correlating pervaporation performance with free volume properties.

    PubMed

    An, Quanfu; Chen, Jung-Tsai; De Guzman, Manuel; Hung, Wei-Song; Lee, Kueir-Rarn; Lai, Juin-Yih

    2011-09-01

    A spin-coating process integrated with an ozone-induced graft polymerization technique was applied in this study. The purpose was to improve the poor interfacial compatibility between a selective layer of poly(2-hydroxyethyl methacrylate) (PHEMA) and the surface of a poly(vinylidene fluoride) (PVDF) substrate. The composite membranes thus fabricated were tested for their pervaporation performance in dehydrating an ethyl acetate/water mixture. Furthermore, the composite membranes were characterized by field emission scanning electron microscopy (FE-SEM) for morphological change observation and by Fourier transform infrared spectroscopy equipped with attenuated total reflectance (ATR-FTIR) for surface chemical composition analysis. Effects of grafting density and spin-coating speed on pervaporation performance were examined. The composite membrane pervaporation performance was elucidated by means of free volume and depth profile data obtained with the use of a variable monoenergy slow positron beam (VMSPB). Results indicated that a smaller free volume was correlated with a higher pervaporation performance of a composite membrane consisting of a selective layer of spin-coated PHEMA on a PHEMA-grafted PVDF substrate (S-PHEMA/PHEMA-g-PVDF). The composite membrane depth profile illustrated that an S-PHEMA layer spin-coated at a higher revolutions per minute (rpm) was thinner and denser than that at a lower rpm.

  14. Development of full color holographic optical element recorded on aspherical substrate with photopolymer

    NASA Astrophysics Data System (ADS)

    Piao, Mei-Lan; Wu, Hui-Ying; Kim, Nam

    2014-11-01

    Holographic optical element (HOE) have classically been designed using grating theory, logically so, since an HOE is a grating produced on film by two interfering beams of coherent light. This paper describes the development of full color HOE recorded on aspherical substrate using a photopolymer. The reflection HOE was evaluated by measuring the diffraction efficiencies of holographic volume gratings recorded individually at 633 nm, 532 nm, and 473nm wavelengths. The spectral characterization of the HOE, recorded using a combined single beam, and recorded using sequential beam, was carried out. Practical methods for fabrication of high efficiency aspheric HOE by single layer photopolymer were developed.

  15. Monitoring by holographic radar systems

    NASA Astrophysics Data System (ADS)

    Catapano, Ilaria; Crocco, Lorenzo; Affinito, Antonio; Gennarelli, Gianluca; Soldovieri, Francesco

    2013-04-01

    Nowadays, radar technology represents a significant opportunity to collect useful information for the monitoring and conservation of critical infrastructures. Radar systems exploit the non-invasive interaction between the matter and the electromagnetic waves at microwave frequencies. Such an interaction allows obtaining images of the region under test from which one can infer the presence of potential anomalies such as deformations, cracks, water infiltrations, etc. This information turns out to be of primary importance in practical scenarios where the probed structure is in a poor state of preservation and renovation works must be planned. In this framework, the aim of this contribution is to describe the potentialities of the holographic radar Rascan 4/4000, a holographic radar developed by Remote Sensing Laboratory of Bauman Moscow State Technical University, as a non-destructive diagnostic tool capable to provide, in real-time, high resolution subsurface images of the sounded structure [1]. This radar provides holograms of hidden anomalies from the amplitude of the interference signal arising between the backscattered signal and a reference signal. The performance of the holographic radar is appraised by means of several experiments. Preliminary tests concerning the imaging below the floor and inside wood structures are carried out in controlled conditions at the Electromagnetic Diagnostic Laboratory of IREA-CNR. After, with reference to bridge monitoring for security aim, the results of a measurement campaign performed on the Musmeci bridge are presented [2]. Acknowledgments This research has been performed in the framework of the "Active and Passive Microwaves for Security and Subsurface imaging (AMISS)" EU 7th Framework Marie Curie Actions IRSES project (PIRSES-GA-2010-269157). REFERENCES [1] S. Ivashov, V. Razevig, I. Vasilyev, A. Zhuravlev, T. Bechtel, L. Capineri, The holographic principle in subsurface radar technology, International Symposium to

  16. Measuring local volume fraction, long-wavelength correlations, and fractionation in a phase-separating polydisperse fluid

    SciTech Connect

    Williamson, J. J.; Evans, R. M. L.

    2014-10-28

    We dynamically simulate fractionation (partitioning of particle species) during spinodal gas-liquid separation of a size-polydisperse colloid, using polydispersity up to ∼40% and a skewed parent size distribution. We introduce a novel coarse-grained Voronoi method to minimise size bias in measuring local volume fraction, along with a variety of spatial correlation functions which detect fractionation without requiring a clear distinction between the phases. These can be applied whether or not a system is phase separated, to determine structural correlations in particle size, and generalise easily to other kinds of polydispersity (charge, shape, etc.). We measure fractionation in both mean size and polydispersity between the phases, its direction differing between model interaction potentials which are identical in the monodisperse case. These qualitative features are predicted by a perturbative theory requiring only a monodisperse reference as input. The results show that intricate fractionation takes place almost from the start of phase separation, so can play a role even in nonequilibrium arrested states. The methods for characterisation of inhomogeneous polydisperse systems could in principle be applied to experiment as well as modelling.

  17. Measurement of temperature and temperature distribution in gaseous flames by digital speckle pattern shearing interferometry using holographic optical element

    NASA Astrophysics Data System (ADS)

    Kumar, Manoj; Shakher, Chandra

    2015-10-01

    Digital speckle pattern lateral shear interferometry (DSPSI) based on volume phase holographic grating for the measurement of temperature and temperature distribution in candle flames is presented. The DSPSI setup uses the volume phase holographic grating combined with ground glass to shear the wavefronts. The shear of the two wavefronts is controlled by the distance between volume phase holographic grating and the ground glass. The sheared wavefronts on the ground glass are imaged onto the CMOS detector by an imaging lens. Two specklegrams are recorded corresponding to the absence of the flame and the presence of the flame. The fringe pattern is observed by subtracting these two specklegrams. A single fringe pattern was used to extract phase by the application of Riesz transform and the monogenic signal. The measured values of the temperature of the candle flame by DSPSI is compared with that of R-type Platinum-Platinum Rhodium thermocouple and the results are well within experimental limits.

  18. High efficiency panchromatic photopolymer recording material for holographic data storage systems

    NASA Astrophysics Data System (ADS)

    Pramitha, Vayalamkuzhi; Das, Bhargab; Joseph, Joby; Joseph, Rani; Sreekumar, Krishnapillai; Kartha, Cheranellore Sudha

    2016-02-01

    Studies carried out to gauge the potential of a metal-ion doped panchromatic photopolymer recording material for application in real-time holographic data storage is presented. The photopolymer films are spin coated on glass plates to ensure better surface uniformity. Volume holographic transmission gratings with peak diffraction efficiency of 80% could be stored in the photopolymer films of 100 μm thickness. An efficiency of 70% is achievable even for gratings recorded with exposure energy as low as 10 mJ/cm2. A checkerboard pattern data page recorded in the photopolymer film using a defocused 4-f recording geometry could be reconstructed with good image quality. The experimental results illustrate the competency of the developed photopolymer for holographic data storage applications.

  19. Color holographic display with white light LED source and single phase only SLM.

    PubMed

    Kozacki, Tomasz; Chlipala, Maksymilian

    2016-02-01

    This work presents color holographic display, which is based on a single phase only spatial light modulator (SLM). In the display entire area of the SLM is illuminated by an on-axis white light beam generated by a single large LED. The holographic display fully utilizes SLM bandwidth and has capability of full-color, full frame rate imaging of outstanding quality. This is achieved through: (i) optimal use of the source coherence volume, (ii) application of the single white light LED source, (iii) a development of a novel concept of color multiplexing technique with color filter mask in Fourier plane of the SLM, (iv) and a complex coding with improved diffraction efficiency. Within experimental part of the paper we show single color, full-color holographic 2D and 3D images generated for reconstruction depth exceeding 10 cm. PMID:26906795

  20. Holographic brain: a good analogy gone bad

    NASA Astrophysics Data System (ADS)

    Caulfield, H. John

    2002-07-01

    One way of honoring the world's two greatest holographers is to remove from their field the association with the offbeat world of the holographic mind. Basing itself on analogical musings of two very creative scientists who were themselves not holographers, this 'field' of the holographic brain has strayed far from science and into the absurd. So much absurdity has been written by so many people that the one legitimate study of holographic principle in dolphins has been grouped too often with the nonsense. Here is taken most of the 'target statements' form one book. We could not bear to read them all this closely. We will attempt to determine what tidbit of fact led to the statements and to suggest alternative explanations when there is something to explain.

  1. Comparison of the results of refractometric measurements in the process of diffusion, obtained by means of the backgroundoriented schlieren method and the holographic interferometry method

    NASA Astrophysics Data System (ADS)

    Kraiskii, A. V.; Mironova, T. V.

    2015-08-01

    The results of the study of interdiffusion of two liquids, obtained using the holographic recording scheme with a nonstationary reference wave with the frequency linearly varying in space and time are compared with the results of correlation processing of digital photographs, made with a random background screen. The spatio-temporal behaviour of the signal in four basic representations ('space - temporal frequency', 'space - time', 'spatial frequency - temporal frequency' and 'spatial frequency - time') is found in the holographic experiment and calculated (in the appropriate coordinates) based on the background-oriented schlieren method. Practical coincidence of the results of the correlation analysis and the holographic double-exposure interferometry is demonstrated.

  2. Correlation between brain volume change and T2 relaxation time induced by dehydration and rehydration: implications for monitoring atrophy in clinical studies.

    PubMed

    Nakamura, Kunio; Brown, Robert A; Araujo, David; Narayanan, Sridar; Arnold, Douglas L

    2014-01-01

    Brain volume change measured from magnetic resonance imaging (MRI) provides a widely used and useful in vivo measure of irreversible tissue loss. These measurements, however, can be influenced by reversible factors such as shifts in brain water content. Given the strong effect of water on T2 relaxation, we investigated whether an estimate of T2 relaxation time would correlate with brain volume changes induced by physiologically manipulating hydration status. We used a clinically feasible estimate of T2 ("pseudo-T2") computed from a dual turbo spin-echo MRI sequence and correlated pseudo-T2 changes to percent brain volume changes in 12 healthy subjects after dehydration overnight (16-hour thirsting) and rehydration (drinking 1.5 L of water). We found that the brain volume significantly increased between the dehydrated and rehydrated states (mean brain volume change = 0.36%, p = 0.0001) but did not change significantly during the dehydration interval (mean brain volume change = 0.04%, p = 0.57). The changes in brain volume and pseudo-T2 significantly correlated with each other, with marginal and conditional correlations (R (2)) of 0.44 and 0.65, respectively. Our results show that pseudo-T2 may be used in conjunction with the measures of brain volume to distinguish reversible water fluctuations and irreversible brain tissue loss (atrophy) and to investigate disease mechanisms related to neuro-inflammation, e.g., in multiple sclerosis, where edema-related water fluctuations may occur with disease activity and anti-inflammatory treatment.

  3. 50 years of holographic interferometry

    NASA Astrophysics Data System (ADS)

    Stetson, Karl A.

    2015-01-01

    Fifty years ago, Robert L. Powell and I discovered holographic interferometry while working at the Radar Laboratory of the University of Michigan's Institute of Science and Technology. I have worked in this field for this entire time span, watched it grow from an unexplored technology to become a widespread industrial testing method, and I have contributed to these developments. In this paper, I will trace my history in this field from our discovery to my involvement in its theory and applications. I will conclude with a discussion of digital holography, which is currently replacing photographic holography for most research and industrial applications.

  4. Artist Projects at Holographics North

    NASA Astrophysics Data System (ADS)

    Perry, John, Dr

    2013-02-01

    The New York Times has declared the concept of holography in art as "laughably dated". And yet fine art remains one of the most durable applications of the medium. Holographics North Inc. has produced work for over 50 artists in 28 years. In many cases, new techniques and systems were required in order to implement the client's vision. The technical and conceptual challenges involved in several of these projects will be discussed, including photos of the work and the systems built to produce it. Among the artists addressed will be James Turrell, Michael Snow, Frank Stella, Michael Hayden, Harriet Casdin-Silver and Chris Levine.

  5. Moving through a multiplex holographic scene

    NASA Astrophysics Data System (ADS)

    Mrongovius, Martina

    2013-02-01

    This paper explores how movement can be used as a compositional element in installations of multiplex holograms. My holographic images are created from montages of hand-held video and photo-sequences. These spatially dynamic compositions are visually complex but anchored to landmarks and hints of the capturing process - such as the appearance of the photographer's shadow - to establish a sense of connection to the holographic scene. Moving around in front of the hologram, the viewer animates the holographic scene. A perception of motion then results from the viewer's bodily awareness of physical motion and the visual reading of dynamics within the scene or movement of perspective through a virtual suggestion of space. By linking and transforming the physical motion of the viewer with the visual animation, the viewer's bodily awareness - including proprioception, balance and orientation - play into the holographic composition. How multiplex holography can be a tool for exploring coupled, cross-referenced and transformed perceptions of movement is demonstrated with a number of holographic image installations. Through this process I expanded my creative composition practice to consider how dynamic and spatial scenes can be conveyed through the fragmented view of a multiplex hologram. This body of work was developed through an installation art practice and was the basis of my recently completed doctoral thesis: 'The Emergent Holographic Scene — compositions of movement and affect using multiplex holographic images'.

  6. Nonlinear bivariate dependency of price-volume relationships in agricultural commodity futures markets: A perspective from Multifractal Detrended Cross-Correlation Analysis

    NASA Astrophysics Data System (ADS)

    He, Ling-Yun; Chen, Shu-Peng

    2011-01-01

    Nonlinear dependency between characteristic financial and commodity market quantities (variables) is crucially important, especially between trading volume and market price. Studies on nonlinear dependency between price and volume can provide practical insights into market trading characteristics, as well as the theoretical understanding of market dynamics. Actually, nonlinear dependency and its underlying dynamical mechanisms between price and volume can help researchers and technical analysts in understanding the market dynamics by integrating the market variables, instead of investigating them in the current literature. Therefore, for investigating nonlinear dependency of price-volume relationships in agricultural commodity futures markets in China and the US, we perform a new statistical test to detect cross-correlations and apply a new methodology called Multifractal Detrended Cross-Correlation Analysis (MF-DCCA), which is an efficient algorithm to analyze two spatially or temporally correlated time series. We discuss theoretically the relationship between the bivariate cross-correlation exponent and the generalized Hurst exponents for time series of respective variables. We also perform an empirical study and find that there exists a power-law cross-correlation between them, and that multifractal features are significant in all the analyzed agricultural commodity futures markets.

  7. Holographic Quantum States

    SciTech Connect

    Osborne, Tobias J.; Eisert, Jens; Verstraete, Frank

    2010-12-31

    We show how continuous matrix product states of quantum fields can be described in terms of the dissipative nonequilibrium dynamics of a lower-dimensional auxiliary boundary field by demonstrating that the spatial correlation functions of the bulk field correspond to the temporal statistics of the boundary field. This equivalence (1) illustrates an intimate connection between the theory of continuous quantum measurement and quantum field theory, (2) gives an explicit construction of the boundary field allowing the extension of real-space renormalization group methods to arbitrary dimensional quantum field theories without the introduction of a lattice parameter, and (3) yields a novel interpretation of recent cavity QED experiments in terms of quantum field theory, and hence paves the way toward observing genuine quantum phase transitions in such zero-dimensional driven quantum systems.

  8. Acceleration and holographic studies on different types of dynamization of external fixators of the bones

    NASA Astrophysics Data System (ADS)

    Podbielska, Halina; Kasprzak, Henryk T.; Voloshin, Arkady S.; Pennig, Dietmar; von Bally, Gert

    1992-08-01

    The unilateral axially dynamic fixator (Orthofix) was mounted on a sheep tibial shaft. Three fixation modes: static, dynamic controlled, and dynamic free were examined by means of double exposure holographic interferometry. Simultaneously, the acceleration was measured by an accelerometer and displayed on the monitor together with loading characteristics. The first exposure was made before the acting force was applied to the tibia plateau. The second one after the moment when the acceleration wave started to propagate through the specimen. We stated that in the case of dynamization less torsion occurs at the fracture site. So far, we have not been able to determine any correlation between results of holographic and accelerometric measurements.

  9. Quantifying Bulk Electrode Strain and Material Displacement within Lithium Batteries via High‐Speed Operando Tomography and Digital Volume Correlation

    PubMed Central

    Finegan, Donal P.; Tudisco, Erika; Scheel, Mario; Robinson, James B.; Taiwo, Oluwadamilola O.; Eastwood, David S.; Lee, Peter D.; Di Michiel, Marco; Bay, Brian; Hall, Stephen A.; Hinds, Gareth; Brett, Dan J. L.

    2015-01-01

    Tracking the dynamic morphology of active materials during operation of lithium batteries is essential for identifying causes of performance loss. Digital volume correlation (DVC) is applied to high‐speed operando synchrotron X‐ray computed tomography of a commercial Li/MnO2 primary battery during discharge. Real‐time electrode material displacement is captured in 3D allowing degradation mechanisms such as delamination of the electrode from the current collector and electrode crack formation to be identified. Continuum DVC of consecutive images during discharge is used to quantify local displacements and strains in 3D throughout discharge, facilitating tracking of the progression of swelling due to lithiation within the electrode material in a commercial, spiral‐wound battery during normal operation. Displacement of the rigid current collector and cell materials contribute to severe electrode detachment and crack formation during discharge, which is monitored by a separate DVC approach. Use of time‐lapse X‐ray computed tomography coupled with DVC is thus demonstrated as an effective diagnostic technique to identify causes of performance loss within commercial lithium batteries; this novel approach is expected to guide the development of more effective commercial cell designs.

  10. Excluded volume and ion-ion correlation effects on the ionic atmosphere around B-DNA: Theory, simulations, and experiments

    NASA Astrophysics Data System (ADS)

    Ovanesyan, Zaven; Medasani, Bharat; Fenley, Marcia O.; Guerrero-García, Guillermo Iván; Olvera de la Cruz, Mónica; Marucho, Marcelo

    2014-12-01

    The ionic atmosphere around a nucleic acid regulates its stability in aqueous salt solutions. One major source of complexity in biological activities involving nucleic acids arises from the strong influence of the surrounding ions and water molecules on their structural and thermodynamic properties. Here, we implement a classical density functional theory for cylindrical polyelectrolytes embedded in aqueous electrolytes containing explicit (neutral hard sphere) water molecules at experimental solvent concentrations. Our approach allows us to include ion correlations as well as solvent and ion excluded volume effects for studying the structural and thermodynamic properties of highly charged cylindrical polyelectrolytes. Several models of size and charge asymmetric mixtures of aqueous electrolytes at physiological concentrations are studied. Our results are in good agreement with Monte Carlo simulations. Our numerical calculations display significant differences in the ion density profiles for the different aqueous electrolyte models studied. However, similar results regarding the excess number of ions adsorbed to the B-DNA molecule are predicted by our theoretical approach for different aqueous electrolyte models. These findings suggest that ion counting experimental data should not be used alone to validate the performance of aqueous DNA-electrolyte models.

  11. Excluded volume and ion-ion correlation effects on the ionic atmosphere around B-DNA: Theory, simulations, and experiments

    SciTech Connect

    Ovanesyan, Zaven; Marucho, Marcelo; Medasani, Bharat; Fenley, Marcia O.; Guerrero-García, Guillermo Iván; Olvera de la Cruz, Mónica

    2014-12-14

    The ionic atmosphere around a nucleic acid regulates its stability in aqueous salt solutions. One major source of complexity in biological activities involving nucleic acids arises from the strong influence of the surrounding ions and water molecules on their structural and thermodynamic properties. Here, we implement a classical density functional theory for cylindrical polyelectrolytes embedded in aqueous electrolytes containing explicit (neutral hard sphere) water molecules at experimental solvent concentrations. Our approach allows us to include ion correlations as well as solvent and ion excluded volume effects for studying the structural and thermodynamic properties of highly charged cylindrical polyelectrolytes. Several models of size and charge asymmetric mixtures of aqueous electrolytes at physiological concentrations are studied. Our results are in good agreement with Monte Carlo simulations. Our numerical calculations display significant differences in the ion density profiles for the different aqueous electrolyte models studied. However, similar results regarding the excess number of ions adsorbed to the B-DNA molecule are predicted by our theoretical approach for different aqueous electrolyte models. These findings suggest that ion counting experimental data should not be used alone to validate the performance of aqueous DNA-electrolyte models.

  12. Significant correlation between spleen volume and thrombocytopenia in liver transplant patients: a concept for predicting persistent thrombocytopenia.

    PubMed

    Ohira, Masahiro; Ishifuro, Minoru; Ide, Kentaro; Irei, Toshimitsu; Tashiro, Hirotaka; Itamoto, Toshiyuki; Ito, Katsuhide; Chayama, Kazuaki; Asahara, Toshimasa; Ohdan, Hideki

    2009-02-01

    Interferon (IFN) therapy with or without ribavirin treatment is well established as a standard antiviral treatment for hepatitis C virus (HCV)-infected patients. However, susceptibility to thrombocytopenia is a major obstacle for initiating or continuing this therapy, particularly in liver transplant (LTx) recipients with HCV. Studies have reported that splenectomy performed concurrently with LTx is a feasible strategy for conditioning patients for anti-HCV IFN therapy. However, the relationship between the severity of splenomegaly and alterations in the blood cytopenia in LTx recipients remains to be clarified. Here, we analyzed the relationship between spleen volume (SV) and thrombocytopenia in 45 patients who underwent LTx at Hiroshima University Hospital. The extent of pre-LTx splenomegaly [the SV to body surface area (BSA) ratio in an individual] was inversely correlated with both the post-LTx white blood cell count and platelet (PLT) count (P < 0.001). Furthermore, the PLT count of patients with thrombocytopenia (PLT count or= 400), persistent thrombocytopenia is predictable after LTx.

  13. Excluded volume and ion-ion correlation effects on the ionic atmosphere around B-DNA: theory, simulations, and experiments.

    PubMed

    Ovanesyan, Zaven; Medasani, Bharat; Fenley, Marcia O; Guerrero-García, Guillermo Iván; de la Cruz, Mónica Olvera; Marucho, Marcelo

    2014-12-14

    The ionic atmosphere around a nucleic acid regulates its stability in aqueous salt solutions. One major source of complexity in biological activities involving nucleic acids arises from the strong influence of the surrounding ions and water molecules on their structural and thermodynamic properties. Here, we implement a classical density functional theory for cylindrical polyelectrolytes embedded in aqueous electrolytes containing explicit (neutral hard sphere) water molecules at experimental solvent concentrations. Our approach allows us to include ion correlations as well as solvent and ion excluded volume effects for studying the structural and thermodynamic properties of highly charged cylindrical polyelectrolytes. Several models of size and charge asymmetric mixtures of aqueous electrolytes at physiological concentrations are studied. Our results are in good agreement with Monte Carlo simulations. Our numerical calculations display significant differences in the ion density profiles for the different aqueous electrolyte models studied. However, similar results regarding the excess number of ions adsorbed to the B-DNA molecule are predicted by our theoretical approach for different aqueous electrolyte models. These findings suggest that ion counting experimental data should not be used alone to validate the performance of aqueous DNA-electrolyte models. PMID:25494770

  14. Quantifying Bulk Electrode Strain and Material Displacement within Lithium Batteries via High‐Speed Operando Tomography and Digital Volume Correlation

    PubMed Central

    Finegan, Donal P.; Tudisco, Erika; Scheel, Mario; Robinson, James B.; Taiwo, Oluwadamilola O.; Eastwood, David S.; Lee, Peter D.; Di Michiel, Marco; Bay, Brian; Hall, Stephen A.; Hinds, Gareth; Brett, Dan J. L.

    2015-01-01

    Tracking the dynamic morphology of active materials during operation of lithium batteries is essential for identifying causes of performance loss. Digital volume correlation (DVC) is applied to high‐speed operando synchrotron X‐ray computed tomography of a commercial Li/MnO2 primary battery during discharge. Real‐time electrode material displacement is captured in 3D allowing degradation mechanisms such as delamination of the electrode from the current collector and electrode crack formation to be identified. Continuum DVC of consecutive images during discharge is used to quantify local displacements and strains in 3D throughout discharge, facilitating tracking of the progression of swelling due to lithiation within the electrode material in a commercial, spiral‐wound battery during normal operation. Displacement of the rigid current collector and cell materials contribute to severe electrode detachment and crack formation during discharge, which is monitored by a separate DVC approach. Use of time‐lapse X‐ray computed tomography coupled with DVC is thus demonstrated as an effective diagnostic technique to identify causes of performance loss within commercial lithium batteries; this novel approach is expected to guide the development of more effective commercial cell designs. PMID:27610334

  15. Adaptive holographic implementation of a neural network

    NASA Astrophysics Data System (ADS)

    Downie, John D.; Hine, Butler P., III; Reid, Max B.

    1990-07-01

    A holographic implementation for neural networks is proposed and demonstrated as an alternative to the optical matrix-vector multiplier architecture. In comparison, the holographic architecture makes more efficient use of the system space-bandwidth product for certain types of neural networks. The principal network component is a thermoplastic hologram, used to provide both interconnection weights and beam redirection. Given the updatable nature of this type of hologram, adaptivity or network learning is possible in the optical system. Two networks with fixed weights are experimentally implemented and verified, and for one of these examples we demonstrate the advantage of the holographic implementation with respect to the matrix-vector processor.

  16. Breast cancer detection by holographic interferometry

    NASA Astrophysics Data System (ADS)

    Woisetschlaeger, Jakob; Sheffer, Daniel B.; Mikati, H.; Somasundaram, Kavitha; Loughry, C. William; Chawla, Surendra K.; Wesolowski, Piotr J.

    1993-02-01

    The overall breast cancer mortality rate has remained unchanged the last 50 years. The most significant factor in the treatment is its early detection which will alter the mortality rate. In this investigation, the feasibility of holographic interferometry for the purpose of detecting breast cancer was examined. Optical setups were developed to enable the collection of holographic interferograms in vivo of asymptomatic breasts and those containing cancerous lesions. Different stressing concepts of holographic nondestructive testing and their applicability for the detection of breast cancer were tested.

  17. Intellectual property analysis of holographic materials business

    NASA Astrophysics Data System (ADS)

    Reingand, Nadya; Hunt, David

    2006-02-01

    The paper presents an overview of intellectual property in the field of holographic photosensitive materials and highlights the possibilities offered by patent searching and analysis. Thousands of patent documents relevant to holographic materials have been uncovered by the study. The search was performed in the following databases: U.S. Patent Office, European Patent Office, and Japanese Patent Office for the time frame of 1971 through November 2005. The patent analysis has unveiled trends in patent temporal distribution, leading IP portfolios, companies competition within the holographic materials market and other interesting insights.

  18. Holographically generated twisted nematic liquid crystal gratings

    SciTech Connect

    Choi, Hyunhee; Wu, J.W.; Chang, Hye Jeong; Park, Byoungchoo

    2006-01-09

    A reflection holographic method is introduced to fabricate an electro-optically tunable twisted nematic (TN) liquid crystal (LC) grating, forgoing the geometrical drawing. The photoisomerization process occurring on the LC alignment layers of an LC cell in the reflection holographic configuration gives a control over the twist angle, and the grating spacing is determined by the slant angle of reflection holographic configuration. The resulting diffraction grating is in a structure of a reverse TN LC, permitting a polarization-independent diffraction efficiency. The electro-optic tunability of the diffraction efficiency is also demonstrated.

  19. Holographic Methods in X-ray Crystallography

    1995-07-28

    The holographic method makes use of partially modeled electron density and experimentally-measured structure factor amplitudes to recover electron density corresponding to the unmodeled part of a crystal structure. This paper describes a fast algorithm that makes it possible to apply the holographic method to sizable crystallographic problems. The algorithm uses positivity constraints on the electron density, and can incorporate a target electron density, making it similar to solvent flattening. Using both synthetic and experimental data,more » we assess the potential for applying the holographic method to macromolecular x-ray crystallography.« less

  20. Holographic recording characteristics and applications of single-layer panchromatic dichromated gelatin material

    NASA Astrophysics Data System (ADS)

    Zhu, Jianhua; Xu, Min; Chen, Ligong; Guo, Yongkang; Guo, Lurong

    2005-09-01

    A high-quality single-layer panchromatic dichromated gelatin material is achieved successfully by employing new types of multi-color photosensitizers and photochemical promoters to conventional photo-crosslinking gelatin system. Its holographic recording characteristics such as spectral response, the photosensitivity of three primary colors, spectral selectivity of volume reflection hologram, angular and wavelength selectivity of volume transmission hologram, are studied in detail. Using red, green and blue lasers, namely three primary colors, the bright volume transmission and reflection holograms can be recorded on the panchromatic material at the exposure level of 30 mJ/cm2. Some preliminary results of space, angle and wavelength multiplexing holographic storage for storing multiple binary and grey-tone optical images, are also reported in this paper.

  1. Holographic spectrograph for space telescope

    NASA Astrophysics Data System (ADS)

    Ditto, Thomas D.; Lysenko, Sergiy; Crenshaw, Melissa

    2013-09-01

    A spectrograph is described which is made with dual Holographic Optical Elements (HOEs) which are identical and parallel to each other. Both optics are collimating transmission HOEs with focal points that are at equal and opposite distances from each other. The identical HOEs are formed by the interference of a plane wave parallel to the grating plane with an off-axis spherical wave originating in the near-field. In playback, a spectrum can be formed from a point source radiator placed at the position of the recording spherical wave. If played back at an arbitrary wavelength other than the recording wavelength, the image exhibits coma. This spectrograph is intended for an unusual configuration where many nearly monochromatic sources of known wavelengths are separately positioned relative to the first HOE. The special application is in a space telescope capable of resolving spectra from habitable planets within 10 pc. HOEs of this type could be fabricated on membrane substrates with a low areal mass and stowable on rolls for insertion into the second Lagrange point. The intended application is for a 50 x 10 meter class primary objective holographic space telescope with 50 x 10 m HOEs in the spectrograph. We present a computer model of the spectrograph.. Experimental results are compared with predictions from theory. A single HOE is shown to perform over a wider bandwidth and is demonstrated.

  2. Exploring holographic Composite Higgs models

    NASA Astrophysics Data System (ADS)

    Croon, Djuna; Dillon, Barry M.; Huber, Stephan J.; Sanz, Veronica

    2016-07-01

    Simple Composite Higgs models predict new vector-like fermions not too far from the electroweak scale, yet LHC limits are now sensitive to the TeV scale. Motivated by this tension, we explore the holographic dual of the minimal model, MCHM5, to try and alleviate this tension without increasing the fine-tuning in the Higgs potential. Interestingly, we find that lowering the UV cutoff in the 5D picture allows for heavier top partners and less fine-tuning. In the 4D dual this corresponds to increasing the number of "colours" N , thus increasing the decay constant of the Goldstone Higgs. This is essentially a `Little Randall-Sundrum Model', which are known to reduce some flavour and electroweak constraints. Furthermore, in anticipation of the ongoing efforts at the LHC to put bounds on the top Yukawa, we demonstrate that deviations from the SM can be suppressed or enhanced with respect to what is expected from mere symmetry arguments in 4D. We conclude that the 5D holographic realisation of the MCHM5 with a small UV cutoff is not in tension with the current experimental data.

  3. A Mach-Zender Holographic Microscope for Quantifying Bacterial Motility

    NASA Astrophysics Data System (ADS)

    Niraula, B.; Nadeau, J. L.; Serabyn, E.; Wallace, J. K.; Liewer, K.; Kuhn, J.; Graff, E.; Lindensmith, C.

    2014-12-01

    New microscopic techniques have revolutionized cell biology over the past two decades. However, there are still biological processes whose details elude us, especially those involving motility: e.g. feeding behavior of microorganisms in the ocean, or migration of cancer cells to form metastases. Imaging prokaryotes, which range in size from several hundred nm to a few microns, is especially challenging. An emerging technique to address these issues is Digital Holographic Microscopy (DHM). DHM is an imaging technique that uses the interference of light to record and reproduce three-dimensional magnified images of objects. This approach has several advantages over ordinary brightfield microscopy for fieldwork: a larger depth of field, hands-off operation, robustness regarding environmental conditions, and large sampling volumes with quantitative 3D records of motility behavior. Despite these promising features, real-time DHM was thought to be impractical for technological and computational reasons until recently, and there has so far been very limited application of DHM to biology. Most existing instruments are limited in performance by their particular (e.g. in-line, lens-less, phase-shifting) approach to holography. These limitations can be mitigated with an off-axis dual-path configuration. Here we describe the design and implementation of a design for a Mach-Zehnder-type holographic microscope with diffraction-limited lateral resolution, with intended applications in environmental microbiology. We have achieved sub-micron resolution and three-dimensional tracking of prokaryotic and eukaryotic test strains designed to represent different modes and speeds of microbial motility. Prokaryotes are Escherichia coli, Vibrio alginolyticus, and Bacillus subtilis. Each shows a characteristic motility pattern, as we illustrate in holographic videos in sample chambers 0.6 mm in depth. The ability to establish gradients of attractants with bacterial taxis towards the

  4. Noncontact dimensional measurement system using holographic scanning

    NASA Astrophysics Data System (ADS)

    Sagan, Stephen F.; Rosso, Robert S.; Rowe, David M.

    1997-07-01

    Holographic scanning systems have been used for years in point-of-sale bar code scanners and other low resolution applications. These simple scanning systems could not successfully provide the accuracy and precision required to measure, inspect and control the production of today's high tech optical fibers, medical extrusions and electrical cables. A new class of instruments for the precision measurement of industrial processes has been created by the development of systems with a unique combination of holographic optical elements that can compensate for the wavelength drift in laser diodes, the application of proprietary post-processing algorithms, and the advancements in replication methods to fabricate low cost holographic scanning discs. These systems have improved upon the performance of traditional polygon mirror scanners. This paper presents the optical configuration and design features that have been incorporated into a holographic scanning inspection system that provides higher productivity, increased product quality and lower production costs for many manufacturers.

  5. Modular digital holographic fringe data processing system

    NASA Technical Reports Server (NTRS)

    Downward, J. G.; Vavra, P. C.; Schebor, F. S.; Vest, C. M.

    1985-01-01

    A software architecture suitable for reducing holographic fringe data into useful engineering data is developed and tested. The results, along with a detailed description of the proposed architecture for a Modular Digital Fringe Analysis System, are presented.

  6. G-corrected holographic dark energy model

    NASA Astrophysics Data System (ADS)

    Malekjani, M.; Honari-Jafarpour, M.

    2013-08-01

    Here we investigate the holographic dark energy model in the framework of FRW cosmology where the Newtonian gravitational constant, G, is varying with cosmic time. Using the complementary astronomical data which support the time dependency of G, the evolutionary treatment of EoS parameter and energy density of dark energy model are calculated in the presence of time variation of G. It has been shown that in this case, the phantom regime can be achieved at the present time. We also calculate the evolution of G-corrected deceleration parameter for holographic dark energy model and show that the dependency of G on the comic time can influence on the transition epoch from decelerated expansion to the accelerated phase. Finally we perform the statefinder analysis for G-corrected holographic model and show that this model has a shorter distance from the observational point in s- r plane compare with original holographic dark energy model.

  7. Holographic Interferometry--A Laboratory Experiment.

    ERIC Educational Resources Information Center

    de Frutos, A. M.; de la Rosa, M. I.

    1988-01-01

    Explains the problem of analyzing a phase object, separating the contribution due to thickness variations and that due to refractive index variations. Discusses the design of an interferometer and some applications. Provides diagrams and pictures of holographic images. (YP)

  8. Unitarity and the holographic S-Matrix

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, A. Liam; Kaplan, Jared

    2012-10-01

    The bulk S-Matrix can be given a non-perturbative definition in terms of the flat space limit of AdS/CFT. We show that the unitarity of the S-Matrix, ie the optical theorem, can be derived by studying the behavior of the OPE and the conformal block decomposition in the flat space limit. When applied to perturbation theory in AdS, this gives a holographic derivation of the cutting rules for Feynman diagrams. To demonstrate these facts we introduce some new techniques for the analysis of conformal field theories. Chief among these is a method for conglomerating local primary operators {{{O}}_1} and {{{O}}_2} to extract the contribution of an individual primary {{{O}}_{{\\varDelta, ell }}} in their OPE. This provides a method for isolating the contribution of specific conformal blocks which we use to prove an important relation between certain conformal block coefficients and anomalous dimensions. These techniques make essential use of the simplifications that occur when CFT correlators are expressed in terms of a Mellin amplitude.

  9. Holographic zero sound at finite temperature

    NASA Astrophysics Data System (ADS)

    Davison, Richard A.; Starinets, Andrei O.

    2012-01-01

    We use gauge-gravity duality to study the temperature dependence of the zero sound mode and the fundamental matter diffusion mode in the strongly coupled N=4 SU(Nc) supersymmetric Yang-Mills theory with Nf N=2 hypermultiplets in the Nc≫1, Nc≫Nf limit, which is holographically realized via the D3/D7 brane system. In the high density limit μ≫T, three regimes can be identified in the behavior of these modes, analogous to the collisionless quantum, collisionless thermal, and hydrodynamic regimes of a Landau Fermi liquid. The transitions between the three regimes are characterized by the parameters T/μ and (T/μ)2, respectively, and in each of these regimes the modes have a distinctively different temperature and momentum dependence. The collisionless-hydrodynamic transition occurs when the zero sound poles of the density-density correlator in the complex frequency plane collide on the imaginary axis to produce a hydrodynamic diffusion pole. We observe that the properties characteristic of a Landau Fermi-liquid zero sound mode are present in the D3/D7 system despite the atypical T6/μ3 temperature scaling of the specific heat and an apparent lack of a directly identifiable Fermi surface.

  10. Unitarity and the Holographic S-Matrix

    SciTech Connect

    Fitzpatrick, A.Liam; Kaplan, Jared; /SLAC

    2012-08-28

    The bulk S-Matrix can be given a non-perturbative definition in terms of the flat space limit of AdS/CFT. We show that the unitarity of the S-Matrix, ie the optical theorem, can be derived by studying the behavior of the OPE and the conformal block decomposition in the flat space limit. When applied to perturbation theory in AdS, this gives a holographic derivation of the cutting rules for Feynman diagrams. To demonstrate these facts we introduce some new techniques for the analysis of conformal field theories. Chief among these is a method for conglomerating local primary operators O{sub 1} and O{sub 2} to extract the contribution of an individual primary O{sub {Delta},{ell}} in their OPE. This provides a method for isolating the contribution of specific conformal blocks which we use to prove an important relation between certain conformal block coefficients and anomalous dimensions. These techniques make essential use of the simplifications that occur when CFT correlators are expressed in terms of a Mellin amplitude.

  11. Analyticity and the Holographic S-Matrix

    SciTech Connect

    Fitzpatrick, A.Liam; Kaplan, Jared; /SLAC

    2012-04-03

    We derive a simple relation between the Mellin amplitude for AdS/CFT correlation functions and the bulk S-Matrix in the flat spacetime limit, proving a conjecture of Penedones. As a consequence of the Operator Product Expansion, the Mellin amplitude for any unitary CFT must be a meromorphic function with simple poles on the real axis. This provides a powerful and suggestive handle on the locality vis-a-vis analyticity properties of the S-Matrix. We begin to explore analyticity by showing how the familiar poles and branch cuts of scattering amplitudes arise from the holographic description. For this purpose we compute examples of Mellin amplitudes corresponding to 1-loop and 2-loop Witten diagrams in AdS. We also examine the flat spacetime limit of conformal blocks, implicitly relating the S-Matrix program to the Bootstrap program for CFTs. We use this connection to show how the existence of small black holes in AdS leads to a universal prediction for the conformal block decomposition of the dual CFT.

  12. Holographic Optical Elements as Scanning Lidar Telescopes

    NASA Technical Reports Server (NTRS)

    Schwemmer, Geary K.; Rallison, Richard D.; Wilkerson, Thomas D.; Guerra, David V.

    2003-01-01

    We have investigated and developed the use of holographic optical elements (HOE) and holographic transmission gratings for scanning lidar telescopes. By rotating a flat HOE in its own plane with the focal spot on the rotation axis, a very simple and compact conical scanning telescope is possible. We developed and tested transmission and reflection HOES for use with the first three harmonics of Nd:YAG lasers, and designed, built, and tested two lidar systems based on this technology.

  13. Holographic perfect shuffle permutation element for a miniaturized switching network

    NASA Astrophysics Data System (ADS)

    Kobolla, H.; Schmidt, J.; Gluch, E.; Schwider, J.

    1995-06-01

    A holographic perfect shuffle element with 80 channels for a miniaturized switching network is reported. An array of vertical-cavity, surface-emitting lasers is used as a transmitter. The whole permutation is carried out totally in glass. The 80 channels are permuted within a rectangle with a volume of 3 mm \\times 4 mm \\times 2 mm. Four planes of stacked volume holograms recorded in dichromated gelatin form this perfect shuffle element with an angular spectrum between 7 deg and 35 deg. Changes in the wavelength of the diode lasers to Delta lambda = +/-10 nm can be compensated with this setup. The overall efficiency per channel lies between 40% and 60%. When Fresnel reflections and absorption are taken into account, a transmission per hologram between 78% and 90% is achieved.

  14. Increasing the Accuracy of Volume and ADC Delineation for Heterogeneous Tumor on Diffusion-Weighted MRI: Correlation with PET/CT

    SciTech Connect

    Gong, Nan-Jie; Wong, Chun-Sing; Chu, Yiu-Ching; Guo, Hua; Huang, Bingsheng; Chan, Queenie

    2013-10-01

    Purpose: To improve the accuracy of volume and apparent diffusion coefficient (ADC) measurements in diffusion-weighted magnetic resonance imaging (MRI), we proposed a method based on thresholding both the b0 images and the ADC maps. Methods and Materials: In 21 heterogeneous lesions from patients with metastatic gastrointestinal stromal tumors (GIST), gross lesion were manually contoured, and corresponding volumes and ADCs were denoted as gross tumor volume (GTV) and gross ADC (ADC{sub g}), respectively. Using a k-means clustering algorithm, the probable high-cellularity tumor tissues were selected based on b0 images and ADC maps. ADC and volume of the tissues selected using the proposed method were denoted as thresholded ADC (ADC{sub thr}) and high-cellularity tumor volume (HCTV), respectively. The metabolic tumor volume (MTV) in positron emission tomography (PET)/computed tomography (CT) was measured using 40% maximum standard uptake value (SUV{sub max}) as the lower threshold, and corresponding mean SUV (SUV{sub mean}) was also measured. Results: HCTV had excellent concordance with MTV according to Pearson's correlation (r=0.984, P<.001) and linear regression (slope = 1.085, intercept = −4.731). In contrast, GTV overestimated the volume and differed significantly from MTV (P=.005). ADC{sub thr} correlated significantly and strongly with SUV{sub mean} (r=−0.807, P<.001) and SUV{sub max} (r=−0.843, P<.001); both were stronger than those of ADC{sub g}. Conclusions: The proposed lesion-adaptive semiautomatic method can help segment high-cellularity tissues that match hypermetabolic tissues in PET/CT and enables more accurate volume and ADC delineation on diffusion-weighted MR images of GIST.

  15. Improved experimental holographic movie to estimate picture quality for holographic television

    NASA Astrophysics Data System (ADS)

    Higuchi, Kazuhito; Ishikawa, Jun; Hiyama, Shigeo

    1993-09-01

    Holographic movies can be seen as a tool to estimate the picture quality of moving holographic images as a step towards holographic television. As a step towards the development of truly practical holographic movies, we have built an improved experimental holographic movie system and produced short duration holographic 3D films. In the improved system, various objects were positioned within a scene and illuminated with He-Ne lasers (632.8 nm). Conventional film-making techniques were adopted during the holographic recordings to create a more attractive sequence. These techniques included stop-motion, tracking, up-shots, overlaps, and pans. A series of Fresnel type frame holograms was recorded on perforated 35 mm holographic film. An interesting technical point is that the frame holograms were 12 mm high by 122 mm wide at maximum, and consisted of two diamond- shaped elemental holograms, one for the left eye and one for the right. Frame holograms were recorded diagonally at an angle of 10 degrees of the film to reduce the film driving length. After developing, the films were driven intermittently with a shutter, and the films were illuminated by the same type of laser as that used in the recording. The films were viewed through a pair of diamond-shaped windows, and the display speed could be varied from 8 to 16 frames per second.

  16. Humidity and temperature response of photopolymer-based holographic gratings

    NASA Astrophysics Data System (ADS)

    Mikulchyk, Tatsiana; Walshe, James; Cody, Dervil; Martin, Suzanne; Naydenova, Izabela

    2015-05-01

    Holographic sensors have significant potential in various applications ranging from in vitro diagnostics to optical security. They are capable of providing fast, real-time, reversible or irreversible, visual colorimetric or optical readouts. The main challenge in the development of holographic sensors is to improve their selectivity by functionalizing the holographic recording material and achieve a response to a specific analyte. This material should be permeable to the analyte and its properties should change under exposure to the analyte. This work explores the humidity and temperature response of volume phase gratings recorded in photopolymers containing acrylamide and diacetone acrylamide as monomers, and triethanolamine and N-phenylglycine as photoinitiators. Characterization of the humidity response of photopolymer-based gratings in the relative humidity (RH) range of 20-90 % was carried out by measuring the diffraction efficiency of slanted transmission gratings and the position of the maximum intensity in the spectral response of reflection gratings. A strong humidity dependence of the diffraction efficiency of diacetone acrylamide-based transmission gratings was observed at RH=20-90%. The humidity dependence of the spectral response of the reflection gratings showed that photopolymers containing triethanolamine are more hydrophilic than photopolymers containing N-phenylglycine. The temperature response of slanted transmission gratings was investigated in the temperature (T) range of 20-60 °C. Exposure of the photopolymer layers containing triethanolamine to elevated temperature showed that the observed Bragg angle shift was caused by layer shrinkage due to water evaporation. The application of a sealing technique allowed for the observation of the photopolymer layer swelling due to the layer's thermal expansion. The results demonstrate an effective approach to obtaining photopolymer-based gratings with tuneable temperature and humidity sensitivity.

  17. Holographic viscosity of fundamental matter.

    PubMed

    Mateos, David; Myers, Robert C; Thomson, Rowan M

    2007-03-01

    A holographic dual of a finite-temperature SU(Nc) gauge theory with a small number of flavors Nf or =1/4pi. Given the known results for the entropy density, the contribution of the fundamental matter eta fund is therefore enhanced at strong 't Hooft coupling lambda; for example, eta fund approximately lambda NcNfT3 in four dimensions. Other transport coefficients are analogously enhanced. These results hold with or without a baryon number chemical potential. PMID:17358523

  18. Moderate-resolution holographic spectrograph

    NASA Astrophysics Data System (ADS)

    Muslimov, E. R.; Pavlycheva, N. K.; Valyavin, G. G.; Fabrika, S. N.

    2016-07-01

    We present a new scheme of a moderate-resolution spectrograph based on a cascade of serial holographic gratings each of which produces an individual spectrum with a resolution of about 6000 and a bandwidth of 80 nm. The gratings ensure centering of each part of the spectrum they produce so as to provide uniform coverage of the broadest possible wavelength interval. In this study we manage to simultaneously cover the 430-680 nm interval without gaps using three gratings. Efficiency of the spectrograph optical system itself from the entrance slit to the CCD detector is typically of about 60% with a maximum of 75%. We discuss the advantages and drawbacks of the new spectrograph scheme as well as the astrophysical tasks for which the instrument can be used.

  19. Defect CFTs and holographic multiverse

    SciTech Connect

    Fiol, Bartomeu

    2010-07-01

    We investigate some aspects of a recent proposal for a holographic description of the multiverse. Specifically, we focus on the implications on the suggested duality of the fluctuations of a bubble separating two universes with different cosmological constants. We do so by considering a similar problem in a 2+1 CFT with a codimension one defect, obtained by an M5-brane probe embedding in AdS{sub 4} × S{sup 7}, and studying its spectrum of fluctuations. Our results suggest that the kind of behavior required by the spectrum of bubble fluctuations is not likely to take place in defect CFTs with an AdS dual, although it might be possible if the defect supports a non-unitary theory.

  20. Holographic Equilibration of Nonrelativistic Plasmas.

    PubMed

    Gürsoy, Umut; Jansen, Aron; Sybesma, Watse; Vandoren, Stefan

    2016-07-29

    We study far-from-equilibrium physics of strongly interacting plasmas at criticality and zero charge density for a wide range of dynamical scaling exponents z in d dimensions using holographic methods. In particular, we consider homogeneous isotropization of asymptotically Lifshitz black branes with full backreaction. We find stable evolution and equilibration times that exhibit small dependence of z and are of the order of the inverse temperature. Performing a quasinormal mode analysis, we find a corresponding narrow range of relaxation times, fully characterized by the fraction z/(d-1). For z≥d-1, equilibration is overdamped, whereas for z

  1. Excited Baryons in Holographic QCD

    SciTech Connect

    de Teramond, Guy F.; Brodsky, Stanley J.; /SLAC /Southern Denmark U., CP3-Origins

    2011-11-08

    The light-front holographic QCD approach is used to describe baryon spectroscopy and the systematics of nucleon transition form factors. Baryon spectroscopy and the excitation dynamics of nucleon resonances encoded in the nucleon transition form factors can provide fundamental insight into the strong-coupling dynamics of QCD. The transition from the hard-scattering perturbative domain to the non-perturbative region is sensitive to the detailed dynamics of confined quarks and gluons. Computations of such phenomena from first principles in QCD are clearly very challenging. The most successful theoretical approach thus far has been to quantize QCD on discrete lattices in Euclidean space-time; however, dynamical observables in Minkowski space-time, such as the time-like hadronic form factors are not amenable to Euclidean numerical lattice computations.

  2. Holographic correspondence in topological superconductors

    NASA Astrophysics Data System (ADS)

    Palumbo, Giandomenico; Pachos, Jiannis K.

    2016-09-01

    We analytically derive a compatible family of effective field theories that uniquely describe topological superconductors in 3D, their 2D boundary and their 1D defect lines. We start by deriving the topological field theory of a 3D topological superconductor in class DIII, which is consistent with its symmetries. Then we identify the effective theory of a 2D topological superconductor in class D living on the gapped boundary of the 3D system. By employing the holographic correspondence we derive the effective chiral conformal field theory that describes the gapless modes living on the defect lines or effective boundary of the class D topological superconductor. We demonstrate that the chiral central charge is given in terms of the 3D winding number of the bulk which by its turn is equal to the Chern number of its gapped boundary.

  3. 4D analysis of the microstructural evolution of Si-based electrodes during lithiation: Time-lapse X-ray imaging and digital volume correlation

    NASA Astrophysics Data System (ADS)

    Paz-Garcia, J. M.; Taiwo, O. O.; Tudisco, E.; Finegan, D. P.; Shearing, P. R.; Brett, D. J. L.; Hall, S. A.

    2016-07-01

    Silicon is a promising candidate to substitute or complement graphite as anode material in Li-ion batteries due, mainly, to its high energy density. However, the lithiation/delithiation processes of silicon particles are inherently related to drastic volume changes which, within a battery's physically constrained case, can induce significant deformation of the fundamental components of the battery that can eventually cause it to fail. In this work, we use non-destructive time-lapse X-ray imaging techniques to study the coupled electrochemo-mechanical phenomena in Li-ion batteries. We present X-ray computed tomography data acquired at different times during the first lithiation of custom-built silicon-lithium battery cells. Microstructural volume changes have been quantified using full 3D strain field measurements from digital volume correlation analysis. Furthermore, the extent of lithiation of silicon particles has been quantified in 3D from the grey-scale of the tomography images. Correlation of the volume expansion and grey-scale changes over the silicon-based electrode volume indicates that the process of lithiation is kinetically affected by the reaction at the Si/LixSi interface.

  4. Differences in cognitive ability and hippocampal volume between Alzheimer's disease, amnestic mild cognitive impairment, and healthy control groups, and their correlation.

    PubMed

    Choi, Mi-Hyun; Kim, Hyung-Sik; Gim, Seon-Young; Kim, Woo-Ram; Mun, Kyung-Ryul; Tack, Gye-Rae; Lee, Bongsoo; Choi, Young Chil; Kim, Hyun-Jun; Hong, Seung Hwa; Lim, Dae-Woon; Chung, Soon-Cheol

    2016-05-01

    The study investigated differences in cognitive ability and hippocampal volume between groups of patients with Alzheimer's disease (AD) and amnestic mild cognitive impairment (aMCI), and healthy control (HC) subjects, and explored the relationship between cognitive ability and hippocampal volume. Among the sub-tests of Korean version of the Consortium to Establish a Registry for Alzheimer's Disease (CERAD-K), the Boston naming test score decreased in the order HC, aMCI, and AD. The hippocampal volumes of subjects with AD and aMCI were relatively smaller than those of HC individuals. There were strongly positive correlations between hippocampal volume and the scores for the Boston naming test. Discriminant analysis identified the Boston naming test as having the highest level of discrimination among the variables used to differentiate the three groups (89.9%). In conclusion, the Boston naming test accurately differentiated the three groups and was correlated with hippocampal volume. These results will be helpful for choosing an accurate and economically feasible test method that efficiently differentiates the three groups.

  5. Quantitative investigation of red blood cell three-dimensional geometric and chemical changes in the storage lesion using digital holographic microscopy.

    PubMed

    Jaferzadeh, Keyvan; Moon, Inkyu

    2015-11-01

    Quantitative phase information obtained by digital holographic microscopy (DHM) can provide new insight into the functions and morphology of single red blood cells (RBCs). Since the functionality of a RBC is related to its three-dimensional (3-D) shape, quantitative 3-D geometric changes induced by storage time can help hematologists realize its optimal functionality period. We quantitatively investigate RBC 3-D geometric changes in the storage lesion using DHM. Our experimental results show that the substantial geometric transformation of the biconcave-shaped RBCs to the spherocyte occurs due to RBC storage lesion. This transformation leads to progressive loss of cell surface area, surface-to-volume ratio, and functionality of RBCs. Furthermore, our quantitative analysis shows that there are significant correlations between chemical and morphological properties of RBCs.

  6. Quantitative investigation of red blood cell three-dimensional geometric and chemical changes in the storage lesion using digital holographic microscopy.

    PubMed

    Jaferzadeh, Keyvan; Moon, Inkyu

    2015-11-01

    Quantitative phase information obtained by digital holographic microscopy (DHM) can provide new insight into the functions and morphology of single red blood cells (RBCs). Since the functionality of a RBC is related to its three-dimensional (3-D) shape, quantitative 3-D geometric changes induced by storage time can help hematologists realize its optimal functionality period. We quantitatively investigate RBC 3-D geometric changes in the storage lesion using DHM. Our experimental results show that the substantial geometric transformation of the biconcave-shaped RBCs to the spherocyte occurs due to RBC storage lesion. This transformation leads to progressive loss of cell surface area, surface-to-volume ratio, and functionality of RBCs. Furthermore, our quantitative analysis shows that there are significant correlations between chemical and morphological properties of RBCs. PMID:26502322

  7. Apoptotic markers in cultured fibroblasts correlate with brain metabolites and regional brain volume in antipsychotic-naive first-episode schizophrenia and healthy controls.

    PubMed

    Batalla, A; Bargalló, N; Gassó, P; Molina, O; Pareto, D; Mas, S; Roca, J M; Bernardo, M; Lafuente, A; Parellada, E

    2015-08-25

    Cultured fibroblasts from first-episode schizophrenia patients (FES) have shown increased susceptibility to apoptosis, which may be related to glutamate dysfunction and progressive neuroanatomical changes. Here we determine whether apoptotic markers obtained from cultured fibroblasts in FES and controls correlate with changes in brain glutamate and N-acetylaspartate (NAA) and regional brain volumes. Eleven antipsychotic-naive FES and seven age- and gender-matched controls underwent 3-Tesla magnetic resonance imaging scanning. Glutamate plus glutamine (Glx) and NAA levels were measured in the anterior cingulate (AC) and the left thalamus (LT). Hallmarks of apoptotic susceptibility (caspase-3-baseline activity, phosphatidylserine externalization and chromatin condensation) were measured in fibroblast cultures obtained from skin biopsies after inducing apoptosis with staurosporine (STS) at doses of 0.25 and 0.5 μM. Apoptotic biomarkers were correlated to brain metabolites and regional brain volume. FES and controls showed a negative correlation in the AC between Glx levels and percentages of cells with condensed chromatin (CC) after both apoptosis inductions (STS 0.5 μM: r = -0.90; P = 0.001; STS 0.25 μM: r = -0.73; P = 0.003), and between NAA and cells with CC (STS 0.5 μM induction r = -0.76; P = 0.002; STS 0.25 μM r = -0.62; P = 0.01). In addition, we found a negative correlation between percentages of cells with CC and regional brain volume in the right supratemporal cortex and post-central region (STS 0.25 and 0.5 μM; P < 0.05 family-wise error corrected (FWEc)). We reveal for the first time that peripheral markers of apoptotic susceptibility may correlate with brain metabolites, Glx and NAA, and regional brain volume in FES and controls, which is consistent with the neuroprogressive theories around the onset of the schizophrenia illness.

  8. Development of integral holographic motion pictures

    NASA Astrophysics Data System (ADS)

    Alexander, P.

    1995-02-01

    In 1985 Anne-Marie Christakis selected me to make the first pulse holographic feature-fiction movie. Up to that time, the process had only been used for laboratory tests. The running time for the movie was to be 1 minute 20 seconds. Apparently quite long compared with previous tests, but an extremely short time in which to tell a story. I chose the characters of Beauty and the Beast. A lot of time was spent in preparatory work: triple distilling the scenario to get it down to 80 seconds; paintings and masks, and I extracted the music from a suite I had already written in medieval style. The movie was made in 1986 in the laboratory of Professeur Smigielsky, which was located in the Franco-German Defense Research Establishment, at St. Louis in France. Prof. Smigielsky's staff operated all the equipment and Anne-Marie Christakis coordinated everything, as she had done throughout the project. As soon as we arrived at the laboratory, we were told not to look beyond a certain angle towards the laser, otherwise we could be blinded for life. With all that dangerous power however, it was only possible to illuminate a volume for the set of half a meter wide by half a meter deep by one third of a meter high. Such a set gives real meaning to the expression `cramp one's style.' The layout used was, in principle, the same as for making a simple hologram. A pulsed YAG laser was used and each pulse was synchronized with a new frame to be exposed in the camera. When the movie was finished, it was not very bright, and one had to look through a small aperture to view it.

  9. The Compact and Inexpensive "Arrowhead" Setup for Holographic Interferometry

    ERIC Educational Resources Information Center

    Ladera, Celso L.; Donoso, Guillermo

    2011-01-01

    Hologram recording and holographic interferometry are intrinsically sensitive to phase changes, and therefore both are easily perturbed by minuscule optical path perturbations. It is therefore very convenient to bank on holographic setups with a reduced number of optical components. Here we present a compact off-axis holographic setup that…

  10. NOTE Thyroid volume measurement in external beam radiotherapy patients using CT imaging: correlation with clinical and anthropometric characteristics

    NASA Astrophysics Data System (ADS)

    Veres, C.; Garsi, J. P.; Rubino, C.; Pouzoulet, F.; Bidault, F.; Chavaudra, J.; Bridier, A.; Ricard, M.; Ferreira, I.; Lefkopoulos, D.; de Vathaire, F.; Diallo, I.

    2010-11-01

    The aim of this study is to define criteria for accurate representation of the thyroid in human models used to represent external beam radiotherapy (EBRT) patients and evaluate the relationship between the volume of this organ and clinical and anthropometric characteristics. From CT images, we segmented the thyroid gland and calculated its volume for a population of 188 EBRT patients of both sexes, with ages ranging from 1 to 89 years. To evaluate uncertainties linked to measured volumes, experimental studies on the Livermore anthropomorphic phantom were performed. For our population of EBRT patients, we observed that in children, thyroid volume increased rapidly with age, from about 3 cm3 at 2 years to about 16 cm3 at 20. In adults, the mean thyroid gland volume was 23.5 ± 9 cm3 for males and 17.5 ± 8 cm3 for females. According to anthropometric parameters, the best fit for children was obtained by modeling the log of thyroid volume as a linear function of body surface area (BSA) (p < 0.0001) and age (p = 0.04) and for adults, as a linear function of BSA (p < 0.0001) and gender (p = 0.01). This work enabled us to demonstrate that BSA was the best indicator of thyroid volume for both males and females. These results should be taken into account when modeling the volume of the thyroid in human models used to represent EBRT patients for dosimetry in retrospective studies of the relationship between the estimated dose to the thyroid and long-term follow-up data on EBRT patients.

  11. Impact of the radiotherapy technique on the correlation between dose-volume histograms of the bladder wall defined on MRI imaging and dose-volume/surface histograms in prostate cancer patients

    NASA Astrophysics Data System (ADS)

    Maggio, Angelo; Carillo, Viviana; Cozzarini, Cesare; Perna, Lucia; Rancati, Tiziana; Valdagni, Riccardo; Gabriele, Pietro; Fiorino, Claudio

    2013-04-01

    The aim of this study was to evaluate the correlation between the ‘true’ absolute and relative dose-volume histograms (DVHs) of the bladder wall, dose-wall histogram (DWH) defined on MRI imaging and other surrogates of bladder dosimetry in prostate cancer patients, planned both with 3D-conformal and intensity-modulated radiation therapy (IMRT) techniques. For 17 prostate cancer patients, previously treated with radical intent, CT and MRI scans were acquired and matched. The contours of bladder walls were drawn by using MRI images. External bladder surfaces were then used to generate artificial bladder walls by performing automatic contractions of 5, 7 and 10 mm. For each patient a 3D conformal radiotherapy (3DCRT) and an IMRT treatment plan was generated with a prescription dose of 77.4 Gy (1.8 Gy/fr) and DVH of the whole bladder of the artificial walls (DVH-5/10) and dose-surface histograms (DSHs) were calculated and compared against the DWH in absolute and relative value, for both treatment planning techniques. A specific software (VODCA v. 4.4.0, MSS Inc.) was used for calculating the dose-volume/surface histogram. Correlation was quantified for selected dose-volume/surface parameters by the Spearman correlation coefficient. The agreement between %DWH and DVH5, DVH7 and DVH10 was found to be very good (maximum average deviations below 2%, SD < 5%): DVH5 showed the best agreement. The correlation was slightly better for absolute (R = 0.80-0.94) compared to relative (R = 0.66-0.92) histograms. The DSH was also found to be highly correlated with the DWH, although slightly higher deviations were generally found. The DVH was not a good surrogate of the DWH (R < 0.7 for most of parameters). When comparing the two treatment techniques, more pronounced differences between relative histograms were seen for IMRT with respect to 3DCRT (p < 0.0001).

  12. Holographic fluorescence microscopy with incoherent digital holographic adaptive optics.

    PubMed

    Jang, Changwon; Kim, Jonghyun; Clark, David C; Lee, Seungjae; Lee, Byoungho; Kim, Myung K

    2015-01-01

    Introduction of adaptive optics technology into astronomy and ophthalmology has made great contributions in these fields, allowing one to recover images blurred by atmospheric turbulence or aberrations of the eye. Similar adaptive optics improvement in microscopic imaging is also of interest to researchers using various techniques. Current technology of adaptive optics typically contains three key elements: a wavefront sensor, wavefront corrector, and controller. These hardware elements tend to be bulky, expensive, and limited in resolution, involving, for example, lenslet arrays for sensing or multiactuator deformable mirrors for correcting. We have previously introduced an alternate approach based on unique capabilities of digital holography, namely direct access to the phase profile of an optical field and the ability to numerically manipulate the phase profile. We have also demonstrated that direct access and compensation of the phase profile are possible not only with conventional coherent digital holography, but also with a new type of digital holography using incoherent light: selfinterference incoherent digital holography (SIDH). The SIDH generates a complex—i.e., amplitude plus phase—hologram from one or several interferograms acquired with incoherent light, such as LEDs, lamps, sunlight, or fluorescence. The complex point spread function can be measured using guide star illumination and it allows deterministic deconvolution of the full-field image. We present experimental demonstration of aberration compensation in holographic fluorescence microscopy using SIDH. Adaptive optics by SIDH provides new tools for improved cellular fluorescence microscopy through intact tissue layers or other types of aberrant media.

  13. Didactical Holographic Exhibit Including Holo TV (holographic Television)

    NASA Astrophysics Data System (ADS)

    Lunazzi, José J.; Magalhães, Daniel S. F.; Rivera, Noemí I. R.

    2008-04-01

    Our Institute of Physics exposes since 1980 didactical exhibitions of holography in Brazil where nice holograms are shown altogether with basic experiments of geometric and wave optics. This experiments lead to the understanding of the phenomenon of images of an ample way. Thousands of people have been present at them, in their majority of the Universidade Estadual de Campinas, where since 2002 they have taken the format of a course without formal evaluation. This way the exhibition has been divided in four modules, in each one of them are shown different holograms, experiments of optics and applications of diffractive images with white light developed in the Institute of Physics. The sequence of the learning through the modules begins with the geometric optics, later we explain the wave optics and finally holography. The phenomenon of the diffraction in daily elements is shown experimentally from the beginning. As well as the application of the holographic screens in white light: the television images that appear in front of the screen and the spectator can try to experience the reality illusion. Put something so exclusive (that only exists in the laboratory) to the public is a way to approximate the persons to an investigation in course. The vision of images that seem to be of holograms, but in movement, and size of until a square meter completes this exhibition of an exclusive way in the world.

  14. Holographic fluorescence microscopy with incoherent digital holographic adaptive optics.

    PubMed

    Jang, Changwon; Kim, Jonghyun; Clark, David C; Lee, Seungjae; Lee, Byoungho; Kim, Myung K

    2015-01-01

    Introduction of adaptive optics technology into astronomy and ophthalmology has made great contributions in these fields, allowing one to recover images blurred by atmospheric turbulence or aberrations of the eye. Similar adaptive optics improvement in microscopic imaging is also of interest to researchers using various techniques. Current technology of adaptive optics typically contains three key elements: a wavefront sensor, wavefront corrector, and controller. These hardware elements tend to be bulky, expensive, and limited in resolution, involving, for example, lenslet arrays for sensing or multiactuator deformable mirrors for correcting. We have previously introduced an alternate approach based on unique capabilities of digital holography, namely direct access to the phase profile of an optical field and the ability to numerically manipulate the phase profile. We have also demonstrated that direct access and compensation of the phase profile are possible not only with conventional coherent digital holography, but also with a new type of digital holography using incoherent light: selfinterference incoherent digital holography (SIDH). The SIDH generates a complex—i.e., amplitude plus phase—hologram from one or several interferograms acquired with incoherent light, such as LEDs, lamps, sunlight, or fluorescence. The complex point spread function can be measured using guide star illumination and it allows deterministic deconvolution of the full-field image. We present experimental demonstration of aberration compensation in holographic fluorescence microscopy using SIDH. Adaptive optics by SIDH provides new tools for improved cellular fluorescence microscopy through intact tissue layers or other types of aberrant media. PMID:26146767

  15. Holographic fluorescence microscopy with incoherent digital holographic adaptive optics

    NASA Astrophysics Data System (ADS)

    Jang, Changwon; Kim, Jonghyun; Clark, David C.; Lee, Seungjae; Lee, Byoungho; Kim, Myung K.

    2015-11-01

    Introduction of adaptive optics technology into astronomy and ophthalmology has made great contributions in these fields, allowing one to recover images blurred by atmospheric turbulence or aberrations of the eye. Similar adaptive optics improvement in microscopic imaging is also of interest to researchers using various techniques. Current technology of adaptive optics typically contains three key elements: a wavefront sensor, wavefront corrector, and controller. These hardware elements tend to be bulky, expensive, and limited in resolution, involving, for example, lenslet arrays for sensing or multiactuator deformable mirrors for correcting. We have previously introduced an alternate approach based on unique capabilities of digital holography, namely direct access to the phase profile of an optical field and the ability to numerically manipulate the phase profile. We have also demonstrated that direct access and compensation of the phase profile are possible not only with conventional coherent digital holography, but also with a new type of digital holography using incoherent light: self­interference incoherent digital holography (SIDH). The SIDH generates a complex-i.e., amplitude plus phase-hologram from one or several interferograms acquired with incoherent light, such as LEDs, lamps, sunlight, or fluorescence. The complex point spread function can be measured using guide star illumination and it allows deterministic deconvolution of the full-field image. We present experimental demonstration of aberration compensation in holographic fluorescence microscopy using SIDH. Adaptive optics by SIDH provides new tools for improved cellular fluorescence microscopy through intact tissue layers or other types of aberrant media.

  16. Inverse Mellin Transformation of Continuous Singular Value Decomposition: A Route to Holographic Renormalization

    NASA Astrophysics Data System (ADS)

    Matsueda, Hiroaki

    2016-11-01

    We examine holographic renormalization by singular value decomposition (SVD) of matrix data generated by a Monte Carlo snapshot of the two-dimensional (2D) classical Ising model at criticality. Taking the continuous limit of the SVD enables us to find the mathematical form of each SVD component by the inverse Mellin transformation as well as the power-law behavior of the SVD spectrum. We find that each SVD component is characterized by the two-point spin correlator with a finite correlation length. Then, the continuous limit of the decomposition index in the SVD corresponds to the inverse of the correlation length. These features strongly indicate that the SVD contains the same mathematical structure as the holographic renormalization.

  17. Does caval aorta index correlate with central venous pressure in intravascular volume assessment in patients undergoing endoscopic transuretheral resection of prostate?

    PubMed Central

    El-Baradey, GF; El-Shmaa, NS

    2016-01-01

    Background and Objective: Ultrasonography has been suggested as a useful noninvasive tool for intravascular volume assessment in critically ill-patients. Fluid absorption is an inevitable complication of transurethral resection of the prostate (TURP). However, there are few data comparing the caval aortic index with central venous pressure (CVP) measurement for intravascular volume assessment in patients undergoing TURP. Materials and Methods: This is a prospective observer blinded study carried out on 50 patients who underwent elective TURP. The primary outcome measure of our study was the correlation of the caval aorta (Ao) index with CVP, and the secondary outcome measures were the sensitivity and specificity of the caval Ao index. Results: There was a positive correlation of inferior vena cava/Ao (IVC/Ao) index to CVP (R = 0.9 and significant P = 0.001*). The sensitivity and specificity of the IVC/Ao index were measured to predict the CVP. A CVP ≤7 cm H2O correlated with IVC/Ao index 0.8 ± 0.3 mean ± standard deviation (SD) (sensitivity 0.93, specificity 0.66), a CVP of 8-12 cm H2O correlated with IVC/Ao index 1.5 ± 0.2 mean ± SD (sensitivity 0.96, specificity 0.42), and a CVP >12 cm H2O correlated with IVC/Ao index 1.8 ± 0.07 mean ± SD (sensitivity 0.93, specificity 0.58). Conclusion: Sonographic caval Ao index is useful for the evaluation of preoperative and intraoperative volume status, especially in major surgeries with marked fluid shift or blood loss and had the advantage of being noninvasive, safe, quick, and easy technique with no complications. PMID:27051368

  18. Off-axis holographic lens spectrum-splitting photovoltaic system for direct and diffuse solar energy conversion.

    PubMed

    Vorndran, Shelby D; Chrysler, Benjamin; Wheelwright, Brian; Angel, Roger; Holman, Zachary; Kostuk, Raymond

    2016-09-20

    This paper describes a high-efficiency, spectrum-splitting photovoltaic module that uses an off-axis volume holographic lens to focus and disperse incident solar illumination to a rectangular shaped high-bandgap indium gallium phosphide cell surrounded by strips of silicon cells. The holographic lens design allows efficient collection of both direct and diffuse illumination to maximize energy yield. We modeled the volume diffraction characteristics using rigorous coupled-wave analysis, and simulated system performance using nonsequential ray tracing and PV cell data from the literature. Under AM 1.5 illumination conditions the simulated module obtained a 30.6% conversion efficiency. This efficiency is a 19.7% relative improvement compared to the more efficient cell in the system (silicon). The module was also simulated under a typical meteorological year of direct and diffuse irradiance in Tucson, Arizona, and Seattle, Washington. Compared to a flat panel silicon module, the holographic spectrum splitting module obtained a relative improvement in energy yield of 17.1% in Tucson and 14.0% in Seattle. An experimental proof-of-concept volume holographic lens was also fabricated in dichromated gelatin to verify the main characteristics of the system. The lens obtained an average first-order diffraction efficiency of 85.4% across the aperture at 532 nm. PMID:27661578

  19. Off-axis holographic lens spectrum-splitting photovoltaic system for direct and diffuse solar energy conversion.

    PubMed

    Vorndran, Shelby D; Chrysler, Benjamin; Wheelwright, Brian; Angel, Roger; Holman, Zachary; Kostuk, Raymond

    2016-09-20

    This paper describes a high-efficiency, spectrum-splitting photovoltaic module that uses an off-axis volume holographic lens to focus and disperse incident solar illumination to a rectangular shaped high-bandgap indium gallium phosphide cell surrounded by strips of silicon cells. The holographic lens design allows efficient collection of both direct and diffuse illumination to maximize energy yield. We modeled the volume diffraction characteristics using rigorous coupled-wave analysis, and simulated system performance using nonsequential ray tracing and PV cell data from the literature. Under AM 1.5 illumination conditions the simulated module obtained a 30.6% conversion efficiency. This efficiency is a 19.7% relative improvement compared to the more efficient cell in the system (silicon). The module was also simulated under a typical meteorological year of direct and diffuse irradiance in Tucson, Arizona, and Seattle, Washington. Compared to a flat panel silicon module, the holographic spectrum splitting module obtained a relative improvement in energy yield of 17.1% in Tucson and 14.0% in Seattle. An experimental proof-of-concept volume holographic lens was also fabricated in dichromated gelatin to verify the main characteristics of the system. The lens obtained an average first-order diffraction efficiency of 85.4% across the aperture at 532 nm.

  20. Holography and the virtual patient: the holographic medical image

    NASA Astrophysics Data System (ADS)

    Ko, Kathryn; Erickson, Ronald R.; Webster, John M.

    1996-12-01

    Practical holographic systems utilizing the pulsed laser are finding potential applications in medicine. Exploiting both the hologram's true 3D image and holographic interferometry these techniques enhance the physician's vision beyond the 2D radiological imaging of even the best CT and MRI. The authors describe the use of pulsed laser holography as applied to the morphological specialties: anatomy, pathology, and surgery. The authors report on the Holographic Brain Anatomy Atlas for medical education; pathologic documentation with holography, and the use of holographic interferometry in surgical planning. The techniques are outlined and a discussion on the interpretation of holographic interferometry with living subjects is provided.

  1. Holographic confinement in inhomogeneous backgrounds

    NASA Astrophysics Data System (ADS)

    Marolf, Donald; Wien, Jason

    2016-08-01

    As noted by Witten, compactifying a d-dimensional holographic CFT on an S 1 gives a class of ( d - 1)-dimensional confining theories with gravity duals. The proto-typical bulk solution dual to the ground state is a double Wick rotation of the AdS d+1 Schwarzschild black hole known as the AdS soliton. We generalize such examples by allowing slow variations in the size of the S 1, and thus in the confinement scale. Coefficients governing the second order response of the system are computed for 3 ≤ d ≤ 8 using a derivative expansion closely related to the fluid-gravity correspondence. The primary physical results are that i) gauge-theory flux tubes tend to align orthogonal to gradients and along the eigenvector of the Hessian with the lowest eigenvalue, ii) flux tubes aligned orthogonal to gradients are attracted to gradients for d ≤ 6 but repelled by gradients for d ≥ 7, iii) flux tubes are repelled by regions where the second derivative along the tube is large and positive but are attracted to regions where the eigenvalues of the Hessian are large and positive in directions orthogonal to the tube, and iv) for d > 3, inhomogeneities act to raise the total energy of the confining vacuum above its zeroth order value.

  2. Holographic quenches and anomalous transport

    NASA Astrophysics Data System (ADS)

    Ammon, Martin; Grieninger, Sebastian; Jimenez-Alba, Amadeo; Macedo, Rodrigo P.; Melgar, Luis

    2016-09-01

    We study the response of the chiral magnetic effect due to continuous quenches induced by time dependent electric fields within holography. Concretely, we consider a holographic model with dual chiral anomaly and compute the electric current parallel to a constant, homogeneous magnetic field and a time dependent electric field in the probe approximation. We explicitly solve the PDEs by means of pseudospectral methods in spatial and time directions and study the transition to an universal "fast" quench response. Moreover, we compute the amplitudes, i.e., residues of the quasi normal modes, by solving the (ODE) Laplace transformed equations. We investigate the possibility of considering the asymptotic growth rate of the amplitudes as a well defined notion of initial time scale for linearized systems. Finally, we highlight the existence of Landau level resonances in the electrical conductivity parallel to a magnetic field at finite frequency and show explicitly that these only appear in presence of the anomaly. We show that the existence of these resonances induces, among others, a long-lived AC electric current once the electric field is switched off.

  3. Light-Front Holographic QCD

    SciTech Connect

    Brodsky, Stanley J.; de Teramond, Guy F.; /Costa Rica U.

    2012-02-16

    The relation between the hadronic short-distance constituent quark and gluon particle limit and the long-range confining domain is yet one of the most challenging aspects of particle physics due to the strong coupling nature of Quantum Chromodynamics, the fundamental theory of the strong interactions. The central question is how one can compute hadronic properties from first principles; i.e., directly from the QCD Lagrangian. The most successful theoretical approach thus far has been to quantize QCD on discrete lattices in Euclidean space-time. Lattice numerical results follow from computation of frame-dependent moments of distributions in Euclidean space and dynamical observables in Minkowski spacetime, such as the time-like hadronic form factors, are not amenable to Euclidean lattice computations. The Dyson-Schwinger methods have led to many important insights, such as the infrared fixed point behavior of the strong coupling constant, but in practice, the analyses are limited to ladder approximation in Landau gauge. Baryon spectroscopy and the excitation dynamics of nucleon resonances encoded in the nucleon transition form factors can provide fundamental insight into the strong-coupling dynamics of QCD. New theoretical tools are thus of primary interest for the interpretation of the results expected at the new mass scale and kinematic regions accessible to the JLab 12 GeV Upgrade Project. The AdS/CFT correspondence between gravity or string theory on a higher-dimensional anti-de Sitter (AdS) space and conformal field theories in physical space-time has led to a semiclassical approximation for strongly-coupled QCD, which provides physical insights into its nonperturbative dynamics. The correspondence is holographic in the sense that it determines a duality between theories in different number of space-time dimensions. This geometric approach leads in fact to a simple analytical and phenomenologically compelling nonperturbative approximation to the full light

  4. Correlation of In Vivo and In Vitro Methods in Measuring Choroidal Vascularization Volumes Using a Subretinal Injection Induced Choroidal Neovascularization Model

    PubMed Central

    Nie, Chuang; Zhang, Mao-Nian; Zhao, Hong-Wei; Olsen, Thomas D; Jackman, Kyle; Hu, Lian-Na; Ma, Wen-Ping; Chen, Xiao-Fei; Wang, Juan; Zhang, Ying; Gao, Tie-Shan; Uehara, Hiro; Ambati, Balamurali K; Luo, Ling

    2015-01-01

    Background: In vivo quantification of choroidal neovascularization (CNV) based on noninvasive optical coherence tomography (OCT) examination and in vitro choroidal flatmount immunohistochemistry stained of CNV currently were used to evaluate the process and severity of age-related macular degeneration (AMD) both in human and animal studies. This study aimed to investigate the correlation between these two methods in murine CNV models induced by subretinal injection. Methods: CNV was developed in 20 C57BL6/j mice by subretinal injection of adeno-associated viral delivery of a short hairpin RNA targeting sFLT-1 (AAV.shRNA.sFLT-1), as reported previously. After 4 weeks, CNV was imaged by OCT and fluorescence angiography. The scaling factors for each dimension, x, y, and z (μm/pixel) were recorded, and the corneal curvature standard was adjusted from human (7.7) to mice (1.4). The volume of each OCT image stack was calculated and then normalized by multiplying the number of voxels by the scaling factors for each dimension in Seg3D software (University of Utah Scientific Computing and Imaging Institute, available at http://www.sci.utah.edu/cibc-software/seg3d.html). Eighteen mice were prepared for choroidal flatmounts and stained by CD31. The CNV volumes were calculated using scanning laser confocal microscopy after immunohistochemistry staining. Two mice were stained by Hematoxylin and Eosin for observing the CNV morphology. Results: The CNV volume calculated using OCT was, on average, 2.6 times larger than the volume calculated using the laser confocal microscopy. The correlation statistical analysis showed OCT measuring of CNV correlated significantly with the in vitro method (R2 =0.448, P = 0.001, n = 18). The correlation coefficient for CNV quantification using OCT and confocal microscopy was 0.693 (n = 18, P = 0.001). Conclusions: There is a fair linear correlation on CNV volumes between in vivo and in vitro methods in CNV models induced by subretinal injection

  5. Holographic trace anomaly and local renormalization group

    NASA Astrophysics Data System (ADS)

    Rajagopal, Srivatsan; Stergiou, Andreas; Zhu, Yechao

    2015-11-01

    The Hamilton-Jacobi method in holography has produced important results both at a renormalization group (RG) fixed point and away from it. In this paper we use the Hamilton-Jacobi method to compute the holographic trace anomaly for four- and six-dimensional boundary conformal field theories (CFTs), assuming higher-derivative gravity and interactions of scalar fields in the bulk. The scalar field contributions to the anomaly appear in CFTs with exactly marginal operators. Moving away from the fixed point, we show that the Hamilton-Jacobi formalism provides a deep connection between the holographic and the local RG. We derive the local RG equation holographically, and verify explicitly that it satisfies Weyl consistency conditions stemming from the commutativity of Weyl scalings. We also consider massive scalar fields in the bulk corresponding to boundary relevant operators, and comment on their effects to the local RG equation.

  6. Dynamic holographic endoscopy--ex vivo investigations of malignant tumors in the human stomach.

    PubMed

    Avenhaus, Wolfgang; Kemper, Björn; Knoche, Sabine; Domagk, Dirk; Poremba, Christopher; von Bally, Gert; Domschke, Wolfram

    2005-01-01

    Laser holographic interferometry is based on the superimposition of the holograms of different motional states of an object on a single holographic storing medium. Using a combination of holographic interferometry and endoscopic imaging, we tried to detect areas of focally disturbed tissue elasticity in gastric cancer preparations. By connecting a mobile electronic speckle pattern interferometry (ESPI) camera system (light source: double frequency Nd:YAG laser, lambda = 532 nm) to different types of endoscopes, ex vivo experiments were performed on ten formalin fixed human stomachs, nine containing adenocarcinomas and one with a gastric lymphoma. Linking the endoscopic ESPI camera complex to a fast image processing system, the method of double pulse exposure image subtraction was applied at a video frame rate of 12.5 Hz. Speckle correlation patterns and corresponding phase difference distributions resulting from gastric wall deformation by gentle touch with a guide wire were analyzed. Tumor-free gastric areas showed high-contrast concentric fringes around the point of stimulation. In contrast, fringe patterns and filtered phase difference distributions corresponding to the areas of malignancy in all the cases were characterized by largely parallel lines, indicating that stimulation of rigid tumor tissue primarily led to tilting. Our ex vivo investigations of malignant gastric tumors show that the application of dynamic holographic endoscopy makes it possible to distinguish areas of malignancy from surrounding healthy tissue based on the differences in tissue elasticity. PMID:15726298

  7. Digital holographic-based cancellable biometric for personal authentication

    NASA Astrophysics Data System (ADS)

    Verma, Gaurav; Sinha, Aloka

    2016-05-01

    In this paper, we propose a new digital holographic-based cancellable biometric scheme for personal authentication and verification. The realization of cancellable biometric is presented by using an optoelectronic experimental approach, in which an optically recorded hologram of the fingerprint of a person is numerically reconstructed. Each reconstructed feature has its own perspective, which is utilized to generate user-specific fingerprint features by using a feature-extraction process. New representations of the user-specific fingerprint features can be obtained from the same hologram, by changing the reconstruction distance (d) by an amount Δd between the recording plane and the reconstruction plane. This parameter is the key to make the cancellable user-specific fingerprint features using a digital holographic technique, which allows us to choose different reconstruction distances when reissuing the user-specific fingerprint features in the event of compromise. We have shown theoretically that each user-specific fingerprint feature has a unique identity with a high discrimination ability, and the chances of a match between them are minimal. In this aspect, a recognition system has also been demonstrated using the fingerprint biometric of the enrolled person at a particular reconstruction distance. For the performance evaluation of a fingerprint recognition system—the false acceptance ratio, the false rejection ratio and the equal error rate are calculated using correlation. The obtained results show good discrimination ability between the genuine and the impostor populations with the highest recognition rate of 98.23%.

  8. Dyslexia and Voxel-Based Morphometry: Correlations between Five Behavioural Measures of Dyslexia and Gray and White Matter Volumes

    ERIC Educational Resources Information Center

    Tamboer, Peter; Scholte, H. Steven; Vorst, Harrie C. M.

    2015-01-01

    In voxel-based morphometry studies of dyslexia, the relation between causal theories of dyslexia and gray matter (GM) and white matter (WM) volume alterations is still under debate. Some alterations are consistently reported, but others failed to reach significance. We investigated GM alterations in a large sample of Dutch students (37 dyslexics…

  9. Three-dimensional spatiotemporal focusing of holographic patterns.

    PubMed

    Hernandez, Oscar; Papagiakoumou, Eirini; Tanese, Dimitrii; Fidelin, Kevin; Wyart, Claire; Emiliani, Valentina

    2016-01-01

    Two-photon excitation with temporally focused pulses can be combined with phase-modulation approaches, such as computer-generated holography and generalized phase contrast, to efficiently distribute light into two-dimensional, axially confined, user-defined shapes. Adding lens-phase modulations to 2D-phase holograms enables remote axial pattern displacement as well as simultaneous pattern generation in multiple distinct planes. However, the axial confinement linearly degrades with lateral shape area in previous reports where axially shifted holographic shapes were not temporally focused. Here we report an optical system using two spatial light modulators to independently control transverse- and axial-target light distribution. This approach enables simultaneous axial translation of single or multiple spatiotemporally focused patterns across the sample volume while achieving the axial confinement of temporal focusing. We use the system's capability to photoconvert tens of Kaede-expressing neurons with single-cell resolution in live zebrafish larvae. PMID:27306044

  10. Three-dimensional spatiotemporal focusing of holographic patterns

    PubMed Central

    Hernandez, Oscar; Papagiakoumou, Eirini; Tanese, Dimitrii; Fidelin, Kevin; Wyart, Claire; Emiliani, Valentina

    2016-01-01

    Two-photon excitation with temporally focused pulses can be combined with phase-modulation approaches, such as computer-generated holography and generalized phase contrast, to efficiently distribute light into two-dimensional, axially confined, user-defined shapes. Adding lens-phase modulations to 2D-phase holograms enables remote axial pattern displacement as well as simultaneous pattern generation in multiple distinct planes. However, the axial confinement linearly degrades with lateral shape area in previous reports where axially shifted holographic shapes were not temporally focused. Here we report an optical system using two spatial light modulators to independently control transverse- and axial-target light distribution. This approach enables simultaneous axial translation of single or multiple spatiotemporally focused patterns across the sample volume while achieving the axial confinement of temporal focusing. We use the system's capability to photoconvert tens of Kaede-expressing neurons with single-cell resolution in live zebrafish larvae. PMID:27306044

  11. Holographic memory module with ultra-high capacity and throughput

    SciTech Connect

    Vladimir A. Markov, Ph.D.

    2000-06-04

    High capacity, high transfer rate, random access memory systems are needed to archive and distribute the tremendous volume of digital information being generated, for example, the human genome mapping and online libraries. The development of multi-gigabit per second networks underscores the need for next-generation archival memory systems. During Phase I we conducted the theoretical analysis and accomplished experimental tests that validated the key aspects of the ultra-high density holographic data storage module with high transfer rate. We also inspected the secure nature of the encoding method and estimated the performance of full-scale system. Two basic architectures were considered, allowing for reversible compact solid-state configuration with limited capacity, and very large capacity write once read many memory system.

  12. Multiplexed holographic memory by use of fiber bundle referencing

    NASA Astrophysics Data System (ADS)

    Zhang, Jiasen; Aruga, Tadashi

    2005-04-01

    We propose a volume holographic storage technique, in which a fiber bundle is used to guide the reference beam. Multiplexing is implemented by changing the incident direction of the laser beam upon the fiber bundle in the reference arm. In the technique, we make the system more compact by using a wedge prism to change the direction of the laser beam. This method has a large accessible angular scanning range and a large geometric storage bandwidth. Multiple images are stored in a LiNbO3:Fe crystal with an angular separation of 0.05° between successive holograms using a wedge prism with a deviation angle of 8°. This method is useful as a new image storage technique because of its compactness and simplicity.

  13. Holographic optical system for aberration corrections in laser Doppler velocimetry

    NASA Technical Reports Server (NTRS)

    Kim, R. C.; Case, S. K.; Schock, H. J.

    1985-01-01

    An optical system containing multifaceted holographic optical elements (HOEs) has been developed to correct for aberrations introduced by nonflat windows in laser Doppler velocimetry. The multifacet aberration correction approach makes it possible to record on one plate many sets of adjacent HOEs that address different measurement volume locations. By using 5-mm-diameter facets, it is practical to place 10-20 sets of holograms on one 10 x 12.5-cm plate, so that the procedure of moving the entire optical system to examine different locations may not be necessary. The holograms are recorded in dichromated gelatin and therefore are nonabsorptive and suitable for use with high-power argon laser beams. Low f-number optics coupled with a 90-percent efficient distortion-correcting hologram in the collection side of the system yield high optical efficiency.

  14. Three-dimensional spatiotemporal focusing of holographic patterns

    NASA Astrophysics Data System (ADS)

    Hernandez, Oscar; Papagiakoumou, Eirini; Tanese, Dimitrii; Fidelin, Kevin; Wyart, Claire; Emiliani, Valentina

    2016-06-01

    Two-photon excitation with temporally focused pulses can be combined with phase-modulation approaches, such as computer-generated holography and generalized phase contrast, to efficiently distribute light into two-dimensional, axially confined, user-defined shapes. Adding lens-phase modulations to 2D-phase holograms enables remote axial pattern displacement as well as simultaneous pattern generation in multiple distinct planes. However, the axial confinement linearly degrades with lateral shape area in previous reports where axially shifted holographic shapes were not temporally focused. Here we report an optical system using two spatial light modulators to independently control transverse- and axial-target light distribution. This approach enables simultaneous axial translation of single or multiple spatiotemporally focused patterns across the sample volume while achieving the axial confinement of temporal focusing. We use the system's capability to photoconvert tens of Kaede-expressing neurons with single-cell resolution in live zebrafish larvae.

  15. Holographic fluorescence microscopy with incoherent digital holographic adaptive optics

    NASA Astrophysics Data System (ADS)

    Jang, Changwon; Kim, Jonghyun; Clark, David C.; Lee, Byoungho; Kim, Myung K.

    2015-03-01

    Introduction of adaptive optics technology into astronomy and ophthalmology has made great contributions in these fields, allowing one to recover images blurred by atmospheric turbulence or aberrations of the eye. Similar adaptive optics improvement in microscopic imaging is also of interest to researchers using various techniques. Current technology of adaptive optics typically contains three key elements: wavefront sensor, wavefront corrector and controller. These hardware elements tend to be bulky, expensive, and limited in resolution, involving, e.g., lenslet arrays for sensing or multi-acuator deformable mirrors for correcting. We have previously introduced an alternate approach to adaptive optics based on unique capabilities of digital holography, namely direct access to the phase profile of an optical field and the ability to numerically manipulate the phase profile. We have also demonstrated that direct access and compensation of the phase profile is possible not only with the conventional coherent type of digital holography, but also with a new type of digital holography using incoherent light: self-interference incoherent digital holography (SIDH). The SIDH generates complex - i.e. amplitude plus phase - hologram from one or several interferograms acquired with incoherent light, such as LEDs, lamps, sunlight, or fluorescence. The complex point spread function can be measured using a guide star illumination and it allows deterministic deconvolution of the full-field image. We present experimental demonstration of aberration compensation in holographic fluorescence microscopy using SIDH. The adaptive optics by SIDH provides new tools for improved cellular fluorescence microscopy through intact tissue layers or other types of aberrant media.

  16. Low holographic concentration effects on CIGS

    NASA Astrophysics Data System (ADS)

    Castillo, Jose E.; Russo, Juan M.; Zhang, Deming; Kostuk, Raymond K.; Rosenberg, Glenn A.

    2010-08-01

    We present the results of combining copper indium gallium (di)selenide (CIGS) photovoltaic cells with holographic planar concentrating film over a broad range of illumination levels. The film, originally designed for silicon bifacial solar applications worked well with the CIGS cells. The Voc, cell efficiency and fill factor reached full operating values at lower light levels; with a significant boost in performance being recorded. The holographic regions of the concentrator act as extended heat transfer surfaces, allowing the CIGS cells to operate at lower operational temperatures than they normally would in a traditional PV application.

  17. Digital holographic Michelson interferometer for nanometrology

    NASA Astrophysics Data System (ADS)

    Sevrygin, Alexander A.; Korotkov, V. I.; Pulkin, S. A.; Tursunov, I. M.; Venediktov, D. V.; Venediktov, V. Yu.; Volkov, O. V.

    2014-11-01

    The paper considers the dynamic holographic interferometry schemes with amplification (multiplication) of holographic fringes and with correction for distortions, imposed by the interferometer scheme elements. The use of digital microscope and of the matrix light modulator with direct addressing provides the completely digital closed-loop performance of the overall system for real-time evaluation of nano-scale objects size. Considered schemes were verified in the laboratory experiment, using the Michelson micro-interferometer, equipped by the USB-microscope and digital holography stage, equipped by the Holoeye spatial light modulator.

  18. Holographic interferometry: A user`s guide

    SciTech Connect

    Griggs, D.

    1993-10-01

    This manual describes the procedures and components necessary to produce a holographic interferogram of a flow field in the Sandia National Laboratories hypersonic wind tunnel. In contrast to classical interferometry, holographic interferometry records the amplitude and phase distribution of a lightwave passing through the flow field at some instant of time. This information can then be reconstructed outside the wind tunnel for visual analysis and digital processing, yielding precise characterizations of aerodynamic phenomena. The reconstruction and subsequent hologram image storage process is discussed, with particular attention paid to the digital image processor and the data reduction technique.

  19. Shape of mesons in holographic QCD

    SciTech Connect

    Torabian, Mahdi; Yee, Ho-Ung

    2009-10-15

    Based on the expectation that the constituent quark model may capture the right physics in the large N limit, we point out that the orbital angular momentum of the quark-antiquark pair inside light mesons of low spins in the constituent quark model may provide a clue for the holographic dual string model of large N QCD. Our discussion, relying on a few suggestive assumptions, leads to a necessity of world-sheet fermions in the bulk of dual strings that can incorporate intrinsic spins of fundamental QCD degrees of freedom. We also comment on the interesting issue of the size of mesons in holographic QCD.

  20. A computer test of holographic flavour dynamics

    NASA Astrophysics Data System (ADS)

    Filev, Veselin G.; O'Connor, Denjoe

    2016-05-01

    We perform computer simulations of the Berkooz-Douglas (BD) matrix model, holographically dual to the D0/D4-brane intersection. We generate the fundamental condensate versus bare mass curve of the theory both holographically and from simulations of the BD model. Our studies show excellent agreement of the two approaches in the deconfined phase of the theory and significant deviations in the confined phase. We argue the discrepancy in the confined phase is explained by the embedding of the D4-brane which yields stronger α' corrections to the condensate in this phase.

  1. Holographic currents and Chern-Simons terms

    SciTech Connect

    Clark, T. E.; Love, S. T.; Veldhuis, T. ter

    2010-11-15

    Holographic currents and their associated Ward identities are derived in the framework of gravity/gauge duality. Holographic improvements of the energy-momentum tensor and R-symmetry current which are consistent with the Ward identities are displayed. The effects of specific string loop corrections to the bulk action are included as four derivative effective Lagrangian terms and their contributions to the trace and R-symmetry anomalies of the boundary theory are determined. As an example, the construction is applied to the N=2 conformal supergravity which is taken to be dual to a boundary SU(N)xSU(N), N=1 superconformal field theory.

  2. Holographic entropy increases in quadratic curvature gravity

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Srijit; Sarkar, Sudipta; Wall, Aron C.

    2015-09-01

    Standard methods for calculating the black hole entropy beyond general relativity are ambiguous when the horizon is nonstationary. We fix these ambiguities in all quadratic curvature gravity theories, by demanding that the entropy be increasing at every time, for linear perturbations to a stationary black hole. Our result matches with the entropy formula found previously in holographic entanglement entropy calculations. We explicitly calculate the entropy increase for Vaidya-like solutions in Ricci-tensor gravity to show that (unlike the Wald entropy) the holographic entropy obeys a second law.

  3. Real-time wideband holographic surveillance system

    DOEpatents

    Sheen, David M.; Collins, H. Dale; Hall, Thomas E.; McMakin, Douglas L.; Gribble, R. Parks; Severtsen, Ronald H.; Prince, James M.; Reid, Larry D.

    1996-01-01

    A wideband holographic surveillance system including a transceiver for generating a plurality of electromagnetic waves; antenna for transmitting the electromagnetic waves toward a target at a plurality of predetermined positions in space; the transceiver also receiving and converting electromagnetic waves reflected from the target to electrical signals at a plurality of predetermined positions in space; a computer for processing the electrical signals to obtain signals corresponding to a holographic reconstruction of the target; and a display for displaying the processed information to determine nature of the target. The computer has instructions to apply a three dimensional backward wave algorithm.

  4. Real-time holographic surveillance system

    DOEpatents

    Collins, H.D.; McMakin, D.L.; Hall, T.E.; Gribble, R.P.

    1995-10-03

    A holographic surveillance system is disclosed including means for generating electromagnetic waves; means for transmitting the electromagnetic waves toward a target at a plurality of predetermined positions in space; means for receiving and converting electromagnetic waves reflected from the target to electrical signals at a plurality of predetermined positions in space; means for processing the electrical signals to obtain signals corresponding to a holographic reconstruction of the target; and means for displaying the processed information to determine nature of the target. The means for processing the electrical signals includes means for converting analog signals to digital signals followed by a computer means to apply a backward wave algorithm. 21 figs.

  5. Real-time wideband holographic surveillance system

    DOEpatents

    Sheen, D.M.; Collins, H.D.; Hall, T.E.; McMakin, D.L.; Gribble, R.P.; Severtsen, R.H.; Prince, J.M.; Reid, L.D.

    1996-09-17

    A wideband holographic surveillance system including a transceiver for generating a plurality of electromagnetic waves; antenna for transmitting the electromagnetic waves toward a target at a plurality of predetermined positions in space; the transceiver also receiving and converting electromagnetic waves reflected from the target to electrical signals at a plurality of predetermined positions in space; a computer for processing the electrical signals to obtain signals corresponding to a holographic reconstruction of the target; and a display for displaying the processed information to determine nature of the target. The computer has instructions to apply a three dimensional backward wave algorithm. 28 figs.

  6. Real-time holographic surveillance system

    DOEpatents

    Collins, H. Dale; McMakin, Douglas L.; Hall, Thomas E.; Gribble, R. Parks

    1995-01-01

    A holographic surveillance system including means for generating electromagnetic waves; means for transmitting the electromagnetic waves toward a target at a plurality of predetermined positions in space; means for receiving and converting electromagnetic waves reflected from the target to electrical signals at a plurality of predetermined positions in space; means for processing the electrical signals to obtain signals corresponding to a holographic reconstruction of the target; and means for displaying the processed information to determine nature of the target. The means for processing the electrical signals includes means for converting analog signals to digital signals followed by a computer means to apply a backward wave algorithm.

  7. Dose-Volume Parameters of the Corpora Cavernosa Do Not Correlate With Erectile Dysfunction After External Beam Radiotherapy for Prostate Cancer: Results From a Dose-Escalation Trial

    SciTech Connect

    Wielen, Gerard J. van der Hoogeman, Mischa S.; Dohle, Gert R.; Putten, Wim L.J. van; Incrocci, Luca

    2008-07-01

    Purpose: To analyze the correlation between dose-volume parameters of the corpora cavernosa and erectile dysfunction (ED) after external beam radiotherapy (EBRT) for prostate cancer. Methods and Materials: Between June 1997 and February 2003, a randomized dose-escalation trial comparing 68 Gy and 78 Gy was conducted. Patients at our institute were asked to participate in an additional part of the trial evaluating sexual function. After exclusion of patients with less than 2 years of follow-up, ED at baseline, or treatment with hormonal therapy, 96 patients were eligible. The proximal corpora cavernosa (crura), the superiormost 1-cm segment of the crura, and the penile bulb were contoured on the planning computed tomography scan and dose-volume parameters were calculated. Results: Two years after EBRT, 35 of the 96 patients had developed ED. No statistically significant correlations between ED 2 years after EBRT and dose-volume parameters of the crura, the superiormost 1-cm segment of the crura, or the penile bulb were found. The few patients using potency aids typically indicated to have ED. Conclusion: No correlation was found between ED after EBRT for prostate cancer and radiation dose to the crura or penile bulb. The present study is the largest study evaluating the correlation between ED and radiation dose to the corpora cavernosa after EBRT for prostate cancer. Until there is clear evidence that sparing the penile bulb or crura will reduce ED after EBRT, we advise to be careful in sparing these structures, especially when this involves reducing treatment margins.

  8. Changes in Hippocampal Volume are Correlated with Cell Loss but Not with Seizure Frequency in Two Chronic Models of Temporal Lobe Epilepsy.

    PubMed

    Polli, Roberson S; Malheiros, Jackeline M; Dos Santos, Renan; Hamani, Clement; Longo, Beatriz M; Tannús, Alberto; Mello, Luiz E; Covolan, Luciene

    2014-01-01

    Kainic acid (KA) or pilocarpine (PILO) have been used in rats to model human temporal lobe epilepsy (TLE) but the distribution and severity of structural lesions between these two models may differ. Magnetic resonance imaging (MRI) studies have used quantitative measurements of hippocampal T2 (T2HP) relaxation time and volume, but simultaneous comparative results have not been reported yet. The aim of this study was to compare the MRI T2HP and volume with histological data and frequency of seizures in both models. KA- and PILO-treated rats were imaged with a 2 T MRI scanner. T2HP and volume values were correlated with the number of cells, mossy fiber sprouting, and spontaneous recurrent seizures (SRS) frequency over the 9 months following status epilepticus (SE). Compared to controls, KA-treated rats had unaltered T2HP, pronounced reduction in hippocampal volume and concomitant cell reduction in granule cell layer, CA1 and CA3 at 3 months post SE. In contrast, hippocampal volume was unchanged in PILO-treated animals despite detectable increased T2HP and cell loss in granule cell layer, CA1 and CA3. In the following 6 months, MRI hippocampal volume remained stable with increase of T2HP signal in the KA-treated group. The number of CA1 and CA3 cells was smaller than age-matched CTL group. In contrast, PILO group had MRI volumetric reduction accompanied by reduction in the number of CA1 and CA3 cells. In this group, T2HP signal was unaltered at 6 or 9 months after status. Reductions in the number of cells were not progressive in both models. Notably, the SRS frequency was higher in PILO than in the KA model. The volumetry data correlated well with tissue damage in the epileptic brain, suggesting that MRI may be useful for tracking longitudinal hippocampal changes, allowing the assessment of individual variability and disease progression. Our results indicate that the temporal changes in hippocampal morphology are distinct for both models of TLE and that

  9. Changes in Hippocampal Volume are Correlated with Cell Loss but Not with Seizure Frequency in Two Chronic Models of Temporal Lobe Epilepsy

    PubMed Central

    Polli, Roberson S.; Malheiros, Jackeline M.; dos Santos, Renan; Hamani, Clement; Longo, Beatriz M.; Tannús, Alberto; Mello, Luiz E.; Covolan, Luciene

    2014-01-01

    Kainic acid (KA) or pilocarpine (PILO) have been used in rats to model human temporal lobe epilepsy (TLE) but the distribution and severity of structural lesions between these two models may differ. Magnetic resonance imaging (MRI) studies have used quantitative measurements of hippocampal T2 (T2HP) relaxation time and volume, but simultaneous comparative results have not been reported yet. The aim of this study was to compare the MRI T2HP and volume with histological data and frequency of seizures in both models. KA- and PILO-treated rats were imaged with a 2 T MRI scanner. T2HP and volume values were correlated with the number of cells, mossy fiber sprouting, and spontaneous recurrent seizures (SRS) frequency over the 9 months following status epilepticus (SE). Compared to controls, KA-treated rats had unaltered T2HP, pronounced reduction in hippocampal volume and concomitant cell reduction in granule cell layer, CA1 and CA3 at 3 months post SE. In contrast, hippocampal volume was unchanged in PILO-treated animals despite detectable increased T2HP and cell loss in granule cell layer, CA1 and CA3. In the following 6 months, MRI hippocampal volume remained stable with increase of T2HP signal in the KA-treated group. The number of CA1 and CA3 cells was smaller than age-matched CTL group. In contrast, PILO group had MRI volumetric reduction accompanied by reduction in the number of CA1 and CA3 cells. In this group, T2HP signal was unaltered at 6 or 9 months after status. Reductions in the number of cells were not progressive in both models. Notably, the SRS frequency was higher in PILO than in the KA model. The volumetry data correlated well with tissue damage in the epileptic brain, suggesting that MRI may be useful for tracking longitudinal hippocampal changes, allowing the assessment of individual variability and disease progression. Our results indicate that the temporal changes in hippocampal morphology are distinct for both models of TLE and that

  10. Planck constraints on holographic dark energy

    SciTech Connect

    Li, Miao; Zhang, Zhenhui; Li, Xiao-Dong; Ma, Yin-Zhe; Zhang, Xin E-mail: xiaodongli@kias.re.kr E-mail: zhangxin@mail.neu.edu.cn

    2013-09-01

    We perform a detailed investigation on the cosmological constraints on the holographic dark energy (HDE) model by using the Plank data. We find that HDE can provide a good fit to the Plank high-l (l ∼> 40) temperature power spectrum, while the discrepancy at l ≅ 20-40 found in the ΛCDM model remains unsolved in the HDE model. The Plank data alone can lead to strong and reliable constraint on the HDE parameter c. At the 68% confidence level (CL), we obtain c = 0.508 ± 0.207 with Plank+WP+lensing, favoring the present phantom behavior of HDE at the more than 2σ CL. By combining Plank+WP with the external astrophysical data sets, i.e. the BAO measurements from 6dFGS+SDSS DR7(R)+BOSS DR9, the direct Hubble constant measurement result (H{sub 0} = 73.8 ± 2.4 kms{sup −1}Mpc{sup −1}) from the HST, the SNLS3 supernovae data set, and Union2.1 supernovae data set, we get the 68% CL constraint results c = 0.484 ± 0.070, 0.474 ± 0.049, 0.594 ± 0.051, and 0.642 ± 0.066, respectively. The constraints can be improved by 2%-15% if we further add the Plank lensing data into the analysis. Compared with the WMAP-9 results, the Plank results reduce the error by 30%-60%, and prefer a phantom-like HDE at higher significant level. We also investigate the tension between different data sets. We find no evident tension when we combine Plank data with BAO and HST. Especially, we find that the strong correlation between Ω{sub m}h{sup 3} and dark energy parameters is helpful in relieving the tension between the Plank and HST measurements. The residual value of χ{sup 2}{sub Plank+WP+HST}−χ{sup 2}{sub Plank+WP} is 7.8 in the ΛCDM model, and is reduced to 1.0 or 0.3 if we switch the dark energy to w model or the holographic model. When we introduce supernovae data sets into the analysis, some tension appears. We find that the SNLS3 data set is in tension with all other data sets; for example, for the Plank+WP, WMAP-9 and BAO+HST, the corresponding Δχ{sup 2} is equal to 6

  11. Apoptotic markers in cultured fibroblasts correlate with brain metabolites and regional brain volume in antipsychotic-naive first-episode schizophrenia and healthy controls

    PubMed Central

    Batalla, A; Bargalló, N; Gassó, P; Molina, O; Pareto, D; Mas, S; Roca, J M; Bernardo, M; Lafuente, A; Parellada, E

    2015-01-01

    Cultured fibroblasts from first-episode schizophrenia patients (FES) have shown increased susceptibility to apoptosis, which may be related to glutamate dysfunction and progressive neuroanatomical changes. Here we determine whether apoptotic markers obtained from cultured fibroblasts in FES and controls correlate with changes in brain glutamate and N-acetylaspartate (NAA) and regional brain volumes. Eleven antipsychotic-naive FES and seven age- and gender-matched controls underwent 3-Tesla magnetic resonance imaging scanning. Glutamate plus glutamine (Glx) and NAA levels were measured in the anterior cingulate (AC) and the left thalamus (LT). Hallmarks of apoptotic susceptibility (caspase-3-baseline activity, phosphatidylserine externalization and chromatin condensation) were measured in fibroblast cultures obtained from skin biopsies after inducing apoptosis with staurosporine (STS) at doses of 0.25 and 0.5 μM. Apoptotic biomarkers were correlated to brain metabolites and regional brain volume. FES and controls showed a negative correlation in the AC between Glx levels and percentages of cells with condensed chromatin (CC) after both apoptosis inductions (STS 0.5 μM: r=−0.90; P=0.001; STS 0.25 μM: r=−0.73; P=0.003), and between NAA and cells with CC (STS 0.5 μM induction r=−0.76; P=0.002; STS 0.25 μM r=−0.62; P=0.01). In addition, we found a negative correlation between percentages of cells with CC and regional brain volume in the right supratemporal cortex and post-central region (STS 0.25 and 0.5 μM; P<0.05 family-wise error corrected (FWEc)). We reveal for the first time that peripheral markers of apoptotic susceptibility may correlate with brain metabolites, Glx and NAA, and regional brain volume in FES and controls, which is consistent with the neuroprogressive theories around the onset of the schizophrenia illness. PMID:26305477

  12. Experimental holographic movie to estimate picture quality for holographic television (III)

    NASA Astrophysics Data System (ADS)

    Higuchi, Kazuhito; Ishikawa, Jun; Hiyama, Shigeo

    1994-05-01

    Holographic movies can be seen as a tool to estimate the picture quality of moving holographic images as a step towards holographic television. The authors have previously developed two versions of an experimental holographic movie system, and this paper is a report on an improved version 3 of the system. The new version features a newly-developed recording system which utilizes a pulsed Nd:YAG laser with an injection seeder, and an automatic film driver unit which moves perforated 35 mm holographic film intermittently. The system is mounted on a dolly to which a hydraulic lifter is attached. A twin diamond-shaped hologram format, developed for an earlier version of the system, is adopted for the films. After the films are developed, they are driven intermittently with a shutter, illuminated by the LD pumped CW Nd:YAG laser, and viewed through twin diamond-shaped windows. This version 3 system makes it possible to record live scenes, including those of the human body, flowing liquids, smoke, etc., which was impossible in the version 1 and version 3 systems. As a consequence, the characteristics of holographic 3D images with motion can be studied over an area covered by both eyes, and the labor required of animators in taking holograms is greatly reduced.

  13. Off-axis digital holographic particle positioning based on polarization-sensitive wavefront curvature estimation.

    PubMed

    Öhman, Johan; Sjödahl, Mikael

    2016-09-20

    Poor axial resolution in holographic particle imaging applications makes particle positioning in 3D space more complex since the positions are not directly obtained. In this paper we estimate the axial position of micrometer particles by finding the location where the wavefront curvature from the scattered light becomes zero. By recording scattered light at 90° using off-axis holography, the complex amplitude of the light is obtained. By reconstruction of the imaged scene, a complex valued volume is produced. From this volume, phase gradients are calculated for each particle and used to estimate the wavefront curvature. From simulations it is found that the wavefront curvature became zero at the true axial position of the particle. We applied this metric to track an axial translation experimentally using a telecentric off-axis holographic imaging system with a lateral magnification of M=1.33. A silicon cube with molded particles inside was used as sample. Holographic recordings are performed both before and after a 100 μm axial translation. From the estimated positions, it was found that the mean displacement of particles between recordings was 105.0 μm with a standard deviation of 25.3 μm. PMID:27661575

  14. A holographic improvement to traditional Optical Array Probes

    NASA Astrophysics Data System (ADS)

    Fugal, Jacob; Borrmann, Stephan

    2015-04-01

    Optical Array Probes have been used to measure cloud droplets and ice crystals in the size range of ~10 µm up to ~1 cm for about the last four decades. In this type of instrument, particles are swept past a focused laser sheet imaged onto a linear diode array. The resulting image has a single spatial axis and a time axis and thereby has shadowgraphs of the particles swept through and can then infer their size and shape, and therefrom size distributions, liquid water content, ice water content, and so on. One weakness inherent in the method is the difficulty in measuring small particles (~10 to 200µm in size) which appear out of focus or are not detected at all, depending on how far from the focus of the laser sheet they appear in the sensitive region. Out-of-focus small particles appear as a diffraction rings or doughnuts making the particles appear large than they actually are. Also the region in which the instrument is sensitive to small particles or depth-of-focus region is difficult to estimate making number concentrations and size distributions difficult to measure. On the other hand, holographic sample volumes are well defined as the sensitive region spans the entire area in which particles appear and the particles appearing in the holograms are reconstructed to their focus position. I.e. there is no depth-of-focus problem and the particles are sized in their focus position. Current holographic cloud particle probes use two-dimensional cameras that take snapshots of cloud particles having two spatial dimensions. These probes have also been high-resolution which requires high-performance servers to do the reconstruction and particle finding meaning the results of the measurements come long after the holograms are made. Of great advantage might be a low-resolution holographic probe with a spatial axis and a time axis with real-time results. Shown is that simple modifications to existing optical array probes such as a collimated laser sheet and a grayscale

  15. Neural Correlates of Biased Responses: The Negative Method Effect in the Rosenberg Self-Esteem Scale Is Associated with Right Amygdala Volume.

    PubMed

    Wang, Yinan; Kong, Feng; Huang, Lijie; Liu, Jia

    2016-10-01

    Self-esteem is a widely studied construct in psychology that is typically measured by the Rosenberg Self-Esteem Scale (RSES). However, a series of cross-sectional and longitudinal studies have suggested that a simple and widely used unidimensional factor model does not provide an adequate explanation of RSES responses due to method effects. To identify the neural correlates of the method effect, we sought to determine whether and how method effects were associated with the RSES and investigate the neural basis of these effects. Two hundred and eighty Chinese college students (130 males; mean age = 22.64 years) completed the RSES and underwent magnetic resonance imaging (MRI). Behaviorally, method effects were linked to both positively and negatively worded items in the RSES. Neurally, the right amygdala volume negatively correlated with the negative method factor, while the hippocampal volume positively correlated with the general self-esteem factor in the RSES. The neural dissociation between the general self-esteem factor and negative method factor suggests that there are different neural mechanisms underlying them. The amygdala is involved in modulating negative affectivity; therefore, the current study sheds light on the nature of method effects that are related to self-report with a mix of positively and negatively worded items.

  16. Novel computational approach for studying ph effects, excluded volume and ion-ion correlations in electrical double layers around polyelectrolytes and nanoparticles

    NASA Astrophysics Data System (ADS)

    Ovanesyan, Zaven

    Highly charged cylindrical and spherical objects (macroions) are probably the simplest structures for modeling nucleic acids, proteins and nanoparticles. Their ubiquitous presence within biophysical systems ensures that Coulomb forces are among the most important interactions that regulate the behavior of these systems. In these systems, ions position themselves in a strongly correlated manner near the surface of a macroion and form electrical double layers (EDLs). These EDLs play an important role in many biophysical and biochemical processes. For instance, the macroion's net charge can change due to the binding of many multivalent ions to its surface. Thus, proper description of EDLs near the surface of a macroion may reveal a counter-intuitive charge inversion behavior, which can generate attraction between like-charged objects. This is relevant for the variety of fields such as self-assembly of DNA and RNA folding, as well as for protein aggregation and neurodegenerative diseases. Certainly, the key factors that contribute to these phenomena cannot be properly understood without an accurate solvation model. With recent advancements in computer technologies, the possibility to use computational tools for fundamental understanding of the role of EDLs around biomolecules and nanoparticles on their physical and chemical properties is becoming more feasible. Establishing the impact of the excluded volume and ion-ion correlations, ionic strength and pH of the electrolyte on the EDL around biomolecules and nanoparticles, and how changes in these properties consequently affect the Zeta potential and surface charge density are still not well understood. Thus, modeling and understanding the role of these properties on EDLs will provide more insights on the stability, adsorption, binding and function of biomolecules and nanoparticles. Existing mean-field theories such as Poisson Boltzmann (PB) often neglect the ion-ion correlations, solvent and ion excluded volume effects

  17. Novel computational approach for studying ph effects, excluded volume and ion-ion correlations in electrical double layers around polyelectrolytes and nanoparticles

    NASA Astrophysics Data System (ADS)

    Ovanesyan, Zaven

    Highly charged cylindrical and spherical objects (macroions) are probably the simplest structures for modeling nucleic acids, proteins and nanoparticles. Their ubiquitous presence within biophysical systems ensures that Coulomb forces are among the most important interactions that regulate the behavior of these systems. In these systems, ions position themselves in a strongly correlated manner near the surface of a macroion and form electrical double layers (EDLs). These EDLs play an important role in many biophysical and biochemical processes. For instance, the macroion's net charge can change due to the binding of many multivalent ions to its surface. Thus, proper description of EDLs near the surface of a macroion may reveal a counter-intuitive charge inversion behavior, which can generate attraction between like-charged objects. This is relevant for the variety of fields such as self-assembly of DNA and RNA folding, as well as for protein aggregation and neurodegenerative diseases. Certainly, the key factors that contribute to these phenomena cannot be properly understood without an accurate solvation model. With recent advancements in computer technologies, the possibility to use computational tools for fundamental understanding of the role of EDLs around biomolecules and nanoparticles on their physical and chemical properties is becoming more feasible. Establishing the impact of the excluded volume and ion-ion correlations, ionic strength and pH of the electrolyte on the EDL around biomolecules and nanoparticles, and how changes in these properties consequently affect the Zeta potential and surface charge density are still not well understood. Thus, modeling and understanding the role of these properties on EDLs will provide more insights on the stability, adsorption, binding and function of biomolecules and nanoparticles. Existing mean-field theories such as Poisson Boltzmann (PB) often neglect the ion-ion correlations, solvent and ion excluded volume effects

  18. Holographic flow visualization in rotating turbomachinery

    NASA Astrophysics Data System (ADS)

    Parker, R. J.; Reeves, M.

    1990-11-01

    Holographic flow visualization has found many applications in rotating turbomachinery. Applications in the design of aeroengine fans, automotive turbochargers, turbines, helicopter rotors, and advanced propfans are discussed. Work in ducted rotating flows and rotating free aerofoils is brought together and new developments in each field are revealed.

  19. Propagation phasor approach for holographic image reconstruction

    PubMed Central

    Luo, Wei; Zhang, Yibo; Göröcs, Zoltán; Feizi, Alborz; Ozcan, Aydogan

    2016-01-01

    To achieve high-resolution and wide field-of-view, digital holographic imaging techniques need to tackle two major challenges: phase recovery and spatial undersampling. Previously, these challenges were separately addressed using phase retrieval and pixel super-resolution algorithms, which utilize the diversity of different imaging parameters. Although existing holographic imaging methods can achieve large space-bandwidth-products by performing pixel super-resolution and phase retrieval sequentially, they require large amounts of data, which might be a limitation in high-speed or cost-effective imaging applications. Here we report a propagation phasor approach, which for the first time combines phase retrieval and pixel super-resolution into a unified mathematical framework and enables the synthesis of new holographic image reconstruction methods with significantly improved data efficiency. In this approach, twin image and spatial aliasing signals, along with other digital artifacts, are interpreted as noise terms that are modulated by phasors that analytically depend on the lateral displacement between hologram and sensor planes, sample-to-sensor distance, wavelength, and the illumination angle. Compared to previous holographic reconstruction techniques, this new framework results in five- to seven-fold reduced number of raw measurements, while still achieving a competitive resolution and space-bandwidth-product. We also demonstrated the success of this approach by imaging biological specimens including Papanicolaou and blood smears. PMID:26964671

  20. Testing and inspecting lens by holographic means

    DOEpatents

    Hildebrand, Bernard P.

    1976-01-01

    Processes for the accurate, rapid and inexpensive testing and inspecting of oncave and convex lens surfaces through holographic means requiring no beamsplitters, mirrors or overpower optics, and wherein a hologram formed in accordance with one aspect of the invention contains the entire interferometer and serves as both a master and illuminating source for both concave and said convex surfaces to be so tested.

  1. Propagation phasor approach for holographic image reconstruction

    NASA Astrophysics Data System (ADS)

    Luo, Wei; Zhang, Yibo; Göröcs, Zoltán; Feizi, Alborz; Ozcan, Aydogan

    2016-03-01

    To achieve high-resolution and wide field-of-view, digital holographic imaging techniques need to tackle two major challenges: phase recovery and spatial undersampling. Previously, these challenges were separately addressed using phase retrieval and pixel super-resolution algorithms, which utilize the diversity of different imaging parameters. Although existing holographic imaging methods can achieve large space-bandwidth-products by performing pixel super-resolution and phase retrieval sequentially, they require large amounts of data, which might be a limitation in high-speed or cost-effective imaging applications. Here we report a propagation phasor approach, which for the first time combines phase retrieval and pixel super-resolution into a unified mathematical framework and enables the synthesis of new holographic image reconstruction methods with significantly improved data efficiency. In this approach, twin image and spatial aliasing signals, along with other digital artifacts, are interpreted as noise terms that are modulated by phasors that analytically depend on the lateral displacement between hologram and sensor planes, sample-to-sensor distance, wavelength, and the illumination angle. Compared to previous holographic reconstruction techniques, this new framework results in five- to seven-fold reduced number of raw measurements, while still achieving a competitive resolution and space-bandwidth-product. We also demonstrated the success of this approach by imaging biological specimens including Papanicolaou and blood smears.

  2. Two color holographic interferometry for microgravity application

    NASA Technical Reports Server (NTRS)

    Trolinger, James D.; Weber, David C.

    1995-01-01

    Holographic interferometry is a primary candidate for determining temperature and concentration in crystal growth experiments designed for space. The method measures refractive index changes within the fluid of an experimental test cell resulting from temperature and/or concentration changes. When the refractive index changes are caused by simultaneous temperature and concentration changes, the contributions of the two effects cannot be separated by single wavelength interferometry. By using two wavelengths, however, two independent interferograms can provide the additional independent equation required to determine the two unknowns. There is no other technique available that provides this type of information. The primary objectives of this effort were to experimentally verify the mathematical theory of two color holographic interferometry (TCHI) and to determine the practical value of this technique for space application. In the foregoing study, the theory of TCHI has been tested experimentally over a range of interest for materials processing in space where measurements of temperature and concentration in a solution are required. New techniques were developed and applied to stretch the limits beyond what could be done with existing procedures. The study resulted in the production of one of the most advanced, enhanced sensitivity holographic interferometers in existence. The interferometric measurements made at MSFC represent what is believed to be the most accurate holographic interferometric measurements made in a fluid to date. The tests have provided an understanding of the limitations of the technique in practical use.

  3. Laser-actuated holographic storage device

    NASA Technical Reports Server (NTRS)

    Gange, R. A.; Nagle, E. M.; Steinmetz, C. C.

    1973-01-01

    Device permits automatic selection of one out of thousands of pages in holographic memory system by using laser beam. In typical operation for 2 to 3 C temperature interval, using dc power supply with no power regulation, holograms were successfully written and erased over 2- by 2-cm area, using 80-mW argon laser beam.

  4. The Holographic Brain: Implications for Training Design.

    ERIC Educational Resources Information Center

    Jones, James R.

    Without special training, most people predominantly process data in one of four ways. Few achieve a coveted whole brain state that integrates such important but separate brain functions as logic and intuition. With new training techniques that exploit the holographic properties of the brain, organizations may be able to tap powerful whole brain…

  5. Pattern recognition with magnonic holographic memory device

    SciTech Connect

    Kozhevnikov, A.; Dudko, G.; Filimonov, Y.; Gertz, F.; Khitun, A.

    2015-04-06

    In this work, we present experimental data demonstrating the possibility of using magnonic holographic devices for pattern recognition. The prototype eight-terminal device consists of a magnetic matrix with micro-antennas placed on the periphery of the matrix to excite and detect spin waves. The principle of operation is based on the effect of spin wave interference, which is similar to the operation of optical holographic devices. Input information is encoded in the phases of the spin waves generated on the edges of the magnonic matrix, while the output corresponds to the amplitude of the inductive voltage produced by the interfering spin waves on the other side of the matrix. The level of the output voltage depends on the combination of the input phases as well as on the internal structure of the magnonic matrix. Experimental data collected for several magnonic matrixes show the unique output signatures in which maxima and minima correspond to specific input phase patterns. Potentially, magnonic holographic devices may provide a higher storage density compare to optical counterparts due to a shorter wavelength and compatibility with conventional electronic devices. The challenges and shortcoming of the magnonic holographic devices are also discussed.

  6. Correlation of physical properties with molecular structure for some dicyclic hydrocarbons having high thermal-energy release per unit volume

    NASA Technical Reports Server (NTRS)

    Wise, P H; Serijan, K T; Goodman, I A

    1951-01-01

    As part of a program to study the correlation between molecular structure and physical properties of high-density hydrocarbons, the net heats of combustion, melting points, boiling points, densities, and kinematic viscosities of some hydrocarbons in the 2-n-alkylbiphenyl, 1,1-diphenylalkane, diphenylalkane, 1,1-dicyclohexylalkane, and dicyclohexylalkane series are presented.

  7. Data correlation and analysis of arc tunnel and wind tunnel tests of RSI joints and gaps. Volume 1: Technical report

    NASA Technical Reports Server (NTRS)

    Christensen, H. E.; Kipp, H. W.

    1974-01-01

    Heat transfer data measured in gaps typical of those under consideration for joints in space shuttle reusable surface insulation protection systems have been assimilated, analyzed and correlated. The data were obtained in four NASA facilities. Several types of gaps were investigated with emphasis on simple butt joints. Gap widths ranged from 0.07 to 0.7 cm and depths ranged from 1 to 6 cm. Laminar, transitional and turbulent boundary layer flows over the gap opening were investigated. Three-dimensional heating variations were observed within gaps in the absence of external flow pressure gradients. Heat transfer correlation equations were obtained for several of the tests. Thermal protection system performance with and without gaps was compared for a representative shuttle entry trajectory.

  8. Data correlation and analysis of arc tunnel and wind tunnel tests of RSI joints and gaps. Volume 2: Data base

    NASA Technical Reports Server (NTRS)

    Christensen, H. E.; Kipp, H. W.

    1974-01-01

    Wind tunnel tests were conducted to determine the aerodynamic heating created by gaps in the reusable surface insulation (RSI) thermal protection system (TPS) for the space shuttle. The effects of various parameters of the RSI on convective heating characteristics are described. The wind tunnel tests provided a data base for accurate assessment of gap heating. Analysis and correlation of the data provide methods for predicting heating in the RSI gaps on the space shuttle.

  9. Spherical roller bearing analysis. SKF computer program SPHERBEAN. Volume 3: Program correlation with full scale hardware tests

    NASA Technical Reports Server (NTRS)

    Kleckner, R. J.; Rosenlieb, J. W.; Dyba, G.

    1980-01-01

    The results of a series of full scale hardware tests comparing predictions of the SPHERBEAN computer program with measured data are presented. The SPHERBEAN program predicts the thermomechanical performance characteristics of high speed lubricated double row spherical roller bearings. The degree of correlation between performance predicted by SPHERBEAN and measured data is demonstrated. Experimental and calculated performance data is compared over a range in speed up to 19,400 rpm (0.8 MDN) under pure radial, pure axial, and combined loads.

  10. Chemical toxicity to environmental bacteria: Quantitative structure activity relationships and interspecies correlations and comparisons (Volumes I and II)

    SciTech Connect

    Blum, D.J.W.

    1989-01-01

    Toxicity data were collected for four groups of bacteria and a fish. These data were collected for four groups of bacteria and a fish. These data were used to compare and correlate the toxicities to different organisms, and to develop Quantitative Structure Activity Relationships (QSARs) correlating chemical structure with toxicity. Chemical toxicity to aerobic heterotrophic bacteria, Nitrosomonas, and methanogens were measured using serum bottle techniques in order to determine the concentration of chemical which caused 50% inhibition in microorganism's activity. Toxicity to Photobacteria phosphoreum (Microtox bacteria) and fathead minnows was also tested or data collected from the literature. Toxicants included chlorinated and other substituted benzenes and phenols, chlorinated alkanes, and a variety of additional compounds covering a range of chemical structures. Data were obtained for 50 to 130 chemicals per species. The sensitivity of the organism fell into two groups with Microtox bacteria, Nitrosomonas, and fathead minnows showing significantly greater sensitivity than aerobic heterotrophs and methanogens. Highly successful interspecies correlations were found between Microtox and each of the other species.

  11. Milk and dairy consumption correlates with cerebral cortical as well as cerebral white matter volume in healthy young adults.

    PubMed

    Darnai, Gergely; Plózer, Enikő; Perlaki, Gábor; Orsi, Gergely; Nagy, Szilvia Anett; Horváth, Réka; Schwarcz, Attila; Kovács, Norbert; Altbäcker, Anna; Janszky, József; Clemens, Zsófia

    2015-01-01

    The objective of this study was to investigate the relation between habitual milk and dairy consumption and brain morphology as assessed by magnetic resonance imaging (MRI) investigations in 119 young healthy university students. MRI measurements were performed on a Siemens Magnetom Trio Tim (3T) system while FreeSurfer software suite was used for volumetric segmentation. Dietary habits related to milk and dairy consumption were assessed by a structured questionnaire. Total cerebral cortex, total cerebral white matter, and total cerebral parenchyma were significantly related with cottage cheese and total protein intake from milk and dairy also when controlled for age and gender in the multivariate model. Our results indicate that dietary habits related with milk and dairy are proportionally associated with volumes of both cerebral cortex and cerebral white matter. PMID:26436708

  12. Correlation of preoperative ankle-brachial index and pulse volume recording with impaired saphenous vein incisional wound healing post coronary artery bypass surgery.

    PubMed

    Haraden, Jamie; Jaenicke, Connie

    2006-06-01

    Patients undergoing coronary artery bypass surgery have vascular disease and, subsequently, the risk for impaired healing of their saphenous vein graft site. The purpose of this study was to identify the correlation of the preoperative ankle-brachial index (ABI) and pulse volume recording (PVR) with impaired saphenous vein incisional wound healing post coronary artery bypass grafting. A prospective, correlational research design was used to study 271 male and female adults undergoing coronary artery bypass surgery in which the saphenous vein was used for grafting. Arterial insufficiency was assessed preoperatively using patient history, physical examination, ABI, and PVR. Wound status was assessed postoperatively using the validated ASEPSIS tool for inpatients. A modified ASEPSIS tool, the Wound Healing Self Score, was used for telephone follow-up post discharge. Abnormal ABI and PVR measurements were positively correlated with impaired saphenous vein incisional wound healing (r = 0.72, P < .0001). Both tests also independently predicted impaired healing. Incisional infection correlated with impaired healing (P < .0001). Other clinical variables, including diabetes, hypertension, venous disease, and alcohol and cigarette use, were not found to be statistically significant independent predictors of impaired healing. Routine histories and physical examinations alone are insufficient in predicting risk for impaired saphenous vein incisional wound healing. The addition of noninvasive screening for the presence of arterial insufficiency before coronary artery bypass grafting using ABI and PVR tests is one method of predicting the likelihood of impaired healing.

  13. Micro analysis of fringe field formed inside LDA measuring volume

    NASA Astrophysics Data System (ADS)

    Ghosh, Abhijit; Nirala, A. K.

    2016-05-01

    In the present study we propose a technique for micro analysis of fringe field formed inside laser Doppler anemometry (LDA) measuring volume. Detailed knowledge of the fringe field obtained by this technique allows beam quality, alignment and fringe uniformity to be evaluated with greater precision and may be helpful for selection of an appropriate optical element for LDA system operation. A complete characterization of fringes formed at the measurement volume using conventional, as well as holographic optical elements, is presented. Results indicate the qualitative, as well as quantitative, improvement of fringes formed at the measurement volume by holographic optical elements. Hence, use of holographic optical elements in LDA systems may be advantageous for improving accuracy in the measurement.

  14. 3D micro-scale deformations of wood in bending: synchrotron radiation muCT data analyzed with digital volume correlation.

    PubMed

    Forsberg, F; Mooser, R; Arnold, M; Hack, E; Wyss, P

    2008-12-01

    A micro-scale three-point-bending experiment with a wood specimen was carried out and monitored by synchrotron radiation micro-computed tomography. The full three-dimensional wood structure of the 1.57x3.42x0.75mm(3) specimen was reconstructed at cellular level in different loading states. Furthermore, the full three-dimensional deformation field of the loaded wood specimen was determined by digital volume correlation, applied to the reconstructed data at successive loading states. Results from two selected regions within the wood specimen are presented as continuous displacement and strain fields in both 2D and 3D. The applied combination of synchrotron radiation micro-computed tomography and digital volume correlation for the deformation analysis of wood under bending stress is a novel application in wood material science. The method offers the potential for the simultaneous observation of structural changes and quantified deformations during in situ micro-mechanical experiments. Moreover, the high spatial resolution allows studying the influence of anatomical features on the fracture behaviour of wood. Possible applications of this method range from bio-mechanical observations in fresh plant tissue to fracture mechanics aspects in structural timber. PMID:18804168

  15. 3D micro-scale deformations of wood in bending: synchrotron radiation muCT data analyzed with digital volume correlation.

    PubMed

    Forsberg, F; Mooser, R; Arnold, M; Hack, E; Wyss, P

    2008-12-01

    A micro-scale three-point-bending experiment with a wood specimen was carried out and monitored by synchrotron radiation micro-computed tomography. The full three-dimensional wood structure of the 1.57x3.42x0.75mm(3) specimen was reconstructed at cellular level in different loading states. Furthermore, the full three-dimensional deformation field of the loaded wood specimen was determined by digital volume correlation, applied to the reconstructed data at successive loading states. Results from two selected regions within the wood specimen are presented as continuous displacement and strain fields in both 2D and 3D. The applied combination of synchrotron radiation micro-computed tomography and digital volume correlation for the deformation analysis of wood under bending stress is a novel application in wood material science. The method offers the potential for the simultaneous observation of structural changes and quantified deformations during in situ micro-mechanical experiments. Moreover, the high spatial resolution allows studying the influence of anatomical features on the fracture behaviour of wood. Possible applications of this method range from bio-mechanical observations in fresh plant tissue to fracture mechanics aspects in structural timber.

  16. Holographic microscopy for 3D tracking of bacteria

    NASA Astrophysics Data System (ADS)

    Nadeau, Jay; Cho, Yong Bin; El-Kholy, Marwan; Bedrossian, Manuel; Rider, Stephanie; Lindensmith, Christian; Wallace, J. Kent

    2016-03-01

    Understanding when, how, and if bacteria swim is key to understanding critical ecological and biological processes, from carbon cycling to infection. Imaging motility by traditional light microscopy is limited by focus depth, requiring cells to be constrained in z. Holographic microscopy offers an instantaneous 3D snapshot of a large sample volume, and is therefore ideal in principle for quantifying unconstrained bacterial motility. However, resolving and tracking individual cells is difficult due to the low amplitude and phase contrast of the cells; the index of refraction of typical bacteria differs from that of water only at the second decimal place. In this work we present a combination of optical and sample-handling approaches to facilitating bacterial tracking by holographic phase imaging. The first is the design of the microscope, which is an off-axis design with the optics along a common path, which minimizes alignment issues while providing all of the advantages of off-axis holography. Second, we use anti-reflective coated etalon glass in the design of sample chambers, which reduce internal reflections. Improvement seen with the antireflective coating is seen primarily in phase imaging, and its quantification is presented here. Finally, dyes may be used to increase phase contrast according to the Kramers-Kronig relations. Results using three test strains are presented, illustrating the different types of bacterial motility characterized by an enteric organism (Escherichia coli), an environmental organism (Bacillus subtilis), and a marine organism (Vibrio alginolyticus). Data processing steps to increase the quality of the phase images and facilitate tracking are also discussed.

  17. Lensless multispectral digital in-line holographic microscope

    NASA Astrophysics Data System (ADS)

    Ryle, James P.; McDonnell, Susan; Sheridan, John T.

    2011-12-01

    An compact multispectral digital in-line holographic microscope (DIHM) is developed that emulates Gabor's original holographic principle. Using sources of varying spatial coherence (laser, LED), holographic images of objects, including optical fiber, latex microspheres, and cancer cells, are successfully captured and numerically processed. Quantitative measurement of cell locations and percentage confluence are estimated, and pseudocolor images are also presented. Phase profiles of weakly scattering cells are obtained from the DIHM and are compared to those produced by a commercially available off-axis digital holographic microscope.

  18. Violation of the holographic principle in the loop quantum gravity

    NASA Astrophysics Data System (ADS)

    Sargın, Ozan; Faizal, Mir

    2016-02-01

    In this paper, we analyze the holographic principle using loop quantum gravity (LQG). This will be done by using polymeric quantization for analysing Yurtsever's holographic bound on the entropy, which is obtained from local quantum field theories. As the polymeric quantization is the characteristic feature of loop quantum gravity, we will argue that this calculation will indicate the effect of loop quantum gravity on the holographic principle. Thus, we will be able to explicitly demonstrate the violation of the holographic principle in the loop quantum gravity.

  19. Impact of FDG-PET/CT on Radiotherapy Volume Delineation in Non-Small-Cell Lung Cancer and Correlation of Imaging Stage With Pathologic Findings

    SciTech Connect

    Faria, Sergio L. Menard, Sonia; Devic, Slobodan; Sirois, Christian; Souhami, Luis; Lisbona, Robert; Freeman, Carolyn R.

    2008-03-15

    Purpose: Fluorodeoxyglucose-positron emission tomography (FDG-PET)/computed tomography (CT) is more accurate than CT in determining the extent of non-small-cell lung cancer. We performed a study to evaluate the impact of FDG-PET/CT on the radiotherapy volume delineation compared with CT without using any mathematical algorithm and to correlate the findings with the pathologic examination findings. Methods and Materials: A total of 32 patients with proven non-small-cell lung cancer, pathologic specimens from the mediastinum and lung primary, and pretreatment chest CT and FDG-PET/CT scans were studied. For each patient, two data sets of theoretical gross tumor volumes were contoured. One set was determined using the chest CT only, and the second, done separately, was based on the co-registered FDG-PET/CT data. The disease stage of each patient was determined using the TNM staging system for three data sets: the CT scan only, FDG-PET/CT scan, and pathologic findings. Results: Pathologic examination altered the CT-determined stage in 22 (69%) of 32 patients and the PET-determined stage in 16 (50%) of 32 patients. The most significant alterations were related to the N stage. PET altered the TNM stage in 15 (44%) of 32 patients compared with CT alone, but only 7 of these 15 alterations were confirmed by the pathologic findings. With respect to contouring the tumor volume for radiotherapy, PET altered the contour in 18 (56%) of 32 cases compared with CT alone. Conclusion: The contour of the tumor volume of non-small-cell lung cancer patients with co-registered FDG-PET/CT resulted in >50% alterations compared with CT targeting, findings similar to those of other publications. However, the significance of this change is unknown. Furthermore, pathologic examination showed that PET is not always accurate and histologic examination should be obtained to confirm the findings of PET whenever possible.

  20. Right ventricular infarction: identification by hemodynamic measurements before and after volume loading and correlation with noninvasive techniques

    SciTech Connect

    Dell'Italia, L.J.; Starling, M.R.; Crawford, M.H.; Boros, B.L.; Chaudhuri, T.K.; O'Rourke, R.A.

    1984-11-01

    To evaluate the potential occurrence of right ventricular infarction, 53 patients with acute inferior transmural myocardial infarction were studied within 36 hours of symptoms by right heart catheterization, equilibrium radionuclide angiography and two-dimensional echocardiography. Technetium-99m pyrophosphate myocardial scintigraphy was performed 3 days after the onset of symptoms. The hemodynamic standard for right ventricular infarction was defined as both a right atrial pressure of 10 mm Hg or more and a right atrial/pulmonary artery wedge pressure ratio of 0.8 or more. Eight (15%) of the 53 patients had hemodynamic measurements at rest characteristic of right ventricular infarction, and 6 (11%) additional patients met these criteria after volume loading. Nineteen (37%) of the 51 patients who had radionuclide angiography had right ventricular dysfunction manifested by both a reduced right ventricular ejection fraction (less than 40%) and right ventricular regional wall motion abnormalities (akinesia or dyskinesia). An abnormal radionuclide angiogram was observed in 12 of 13 patients with hemodynamic measurements indicating right ventricular infarction. In 12 patients with an abnormal radionuclide angiographic study, right ventricular ejection fraction improved 6 to 12 weeks after infarction. Twenty-two (49%) of the 45 patients with adequate two-dimensional echocardiograms had a right ventricular regional wall motion abnormality. An abnormal two-dimensional echocardiogram was seen in 9 of 11 patients with hemodynamic measurements characteristic of right ventricular infarction. Technetium-99m pyrophosphate scintigraphy was positive for right ventricular infarction in 3 of 12 patients who had hemodynamic measurements indicating right ventricular infarction.

  1. Correlation between tumor size and blood volume in lung tumors: a prospective study on dual-energy gemstone spectral CT imaging.

    PubMed

    Aoki, Masahiko; Takai, Yoshihiro; Narita, Yuichiro; Hirose, Katsumi; Sato, Mariko; Akimoto, Hiroyoshi; Kawaguchi, Hideo; Hatayama, Yoshiomi; Miura, Hiroyuki; Ono, Shuichi

    2014-09-01

    The purpose of this study was to investigate the relationship between tumor size and blood volume for patients with lung tumors, using dual-energy computed tomography (DECT) and a gemstone spectral imaging (GSI) viewer. During the period from March 2011 to March 2013, 50 patients with 57 medically inoperable lung tumors underwent DECT before stereotactic body radiotherapy (SBRT) of 50-60 Gy in 5-6 fractions. DECT was taken for pretreatment evaluation. The region-of-interest for a given spatial placement of the tumors was set, and averages for CT value, water density and iodine density were compared with tumor size. The average values for iodine density in tumors of ≤ 2 cm, 2-3 cm, and >3 cm maximum diameter were 24.7, 19.6 and 16.0 (100 µg/cm(3)), respectively. The average value of the iodine density was significantly lower in larger tumors. No significant correlation was detected between tumor size and average CT value or between tumor size and average water density. Both the average water density and the average CT value were affected by the amount of air in the tumor, but the average iodine density was not affected by air in the tumor. The average water density and the average CT value were significantly correlated, but the average iodine density and the average CT value showed no significant correlation. The blood volume of tumors can be indicated by the average iodine density more accurately than it can by the average CT value. The average iodine density as assessed by DECT might be a non-invasive and quantitative assessment of the radio-resistance ascribable to the hypoxic cell population in a tumor.

  2. Characterization of drying paint coatings by dynamic speckle and holographic interferometry measurements.

    PubMed

    Budini, N; Mulone, C; Balducci, N; Vincitorio, F M; López, A J; Ramil, A

    2016-06-10

    In this work we implemented dynamic speckle and holographic interferometry techniques to characterize the drying process of solvent-based paint coatings. We propose a simple way to estimate drying time by measuring speckle activity and incrementally fitting experimental data through standard regression algorithms. This allowed us to predict drying time after about 20-30 min of paint application, which is fast compared to usual times required to reach the so-called tack-free state (≈2  h). In turn, we used holographic interferometry to map small thickness variations in the coating surface during drying. We also demonstrate that results obtained from both techniques correlate with each other, which allows us to improve the accuracy of the drying time estimation. PMID:27409029

  3. Cooling a Band Insulator with a Metal: Fermionic Superfluid in a Dimerized Holographic Lattice

    NASA Astrophysics Data System (ADS)

    Haldar, Arijit; Shenoy, Vijay B.

    A cold atomic realization of a quantum correlated state of many fermions on a lattice, eg. superfluid, has eluded experimental realization due to the entropy problem. Here we propose a route to realize such a state using holographic lattice and confining potentials. The potentials are designed to produces a band insulating state (low heat capacity) at the trap center, and a metallic state (high heat capacity) at the periphery. The metal ``cools'' the central band insulator by extracting out the excess entropy. The central band insulator can be turned into a superfluid by tuning an attractive interaction between the fermions. Crucially, the holographic lattice allows the emergent superfluid to have a high transition temperature - even twice that of the effective trap temperature. The scheme provides a promising route to a laboratory realization of a fermionic lattice superfluid, even while being adaptable to simulate other many body states. Reference: Scientific Reports 4, 6665 (2014). Work supported by CSIR, DST and DAE.

  4. Cooling a Band Insulator with a Metal: Fermionic Superfluid in a Dimerized Holographic Lattice

    PubMed Central

    Haldar, Arijit; Shenoy, Vijay B.

    2014-01-01

    A cold atomic realization of a quantum correlated state of many fermions on a lattice, eg. superfluid, has eluded experimental realization due to the entropy problem. Here we propose a route to realize such a state using holographic lattice and confining potentials. The potentials are designed to produces a band insulating state (low heat capacity) at the trap center, and a metallic state (high heat capacity) at the periphery. The metal “cools” the central band insulator by extracting out the excess entropy. The central band insulator can be turned into a superfluid by tuning an attractive interaction between the fermions. Crucially, the holographic lattice allows the emergent superfluid to have a high transition temperature – even twice that of the effective trap temperature. The scheme provides a promising route to a laboratory realization of a fermionic lattice superfluid, even while being adaptable to simulate other many body states. PMID:25324029

  5. Gaps, Pseudogaps, and the Nature of Charge in Holographic Fermion Models

    NASA Astrophysics Data System (ADS)

    Vanacore, Garrett; Phillips, Philip

    Building on prior holographic constructions of Fermi arcs and Mott physics, we investigate the landscape of gapped and gapless strongly-correlated phases resulting from bulk fermion interactions in gauge/gravity duality. We test a proposed connection between bulk chiral symmetry and gapless boundary states, and discuss implications for discrete symmetry breaking in pseudogapped systems like the cuprate superconductors. Numerical methods are used to treat gravitational backreaction of bulk fermions, allowing more rigorous investigation of the existence of holographic Fermi surfaces and their adherence to Luttinger's rule. We use these techniques to study deviations from Luttinger's rule in holography, testing a recent claim that momentum-deconfined charges are at the heart of the Mott state.

  6. Correlations among residual multiparticle entropy, local atomic-level pressure, free volume and the phase-ordering rule in several liquids.

    PubMed

    Cao, Qi-Long; Wang, Wei-Lu; Li, Y D; Liu, C S

    2011-01-28

    A modified Wang-Landau density-of-states sampling approach has been performed to calculate the excess entropy of liquid metals, Lennard-Jones (LJ) system and liquid Si under NVT conditions; and it is then the residual multiparticle entropy (S(RMPE)) is obtained by subtraction of the pair correlation entropy. The temperature dependence of S(RMPE) has been investigated along with the temperature dependence of the local atomic-level pressure and the pair correlation functions. Our results suggest that the temperature dependence of the pair correlation entropy is well described by T(-1) scaling while T(-0.4) scaling well describes the relationship between the excess entropy and temperature. For liquid metals and LJ system, the -S(RMPE) versus temperature curves show positive correlations and the -S(RMPE) of liquid Si is shown to have a negative correlation with temperature, the phase-ordering criterion (based on the S(RMPE)) for predicting freezing transition works in liquid metals and LJ but fails in liquid Si. The local atomic-level pressure scaled with the virial pressure (σ(al)/σ(av)) exhibits the much similar temperature dependence as -S(RMPE) for all studied systems, even though simple liquid metals and liquid Si exhibit opposite temperature dependence in both σ(al)/σ(av) and -S(RMPE). The further analysis shows that the competing properties of the two effects due to localization and free volume on the S(RMPE) exist in simple liquid metals and LJ system but disappear in liquid Si, which may be the critical reason of the failure of the phase-ordering criterion in liquid Si. PMID:21280749

  7. White and Gray Matter Volume Changes and Correlation with Visual Evoked Potential in Patients with Optic Neuritis: A Voxel-Based Morphometry Study

    PubMed Central

    Huang, Xin; Zhang, Qiang; Hu, Pei-Hong; Zhong, Yu-Lin; Zhang, Ying; Wei, Rong; Xu, Ting-Ting; Shao, Yi

    2016-01-01

    Background The aim of this study was to investigate potential morphological alterations of gray and white matter in patients with optic neuritis (ON) and their relationship with behavioral performance, using voxel-based morphometry (VBM). Material/Methods Twelve (4 males, 8 females) patients with ON and 12 (4 males, 8 females) age-, sex-, and education-matched healthy controls (HCs) underwent magnetic resonance imaging (MRI). Imaging data were analyzed using two-sample t tests to identify group differences in gray and white matter volume (GMV, WMV). Correlation analysis was used to explore relationships between observed GMV and WMV of different areas and visual evoked potential (VEP) in ON. Results Compared with HCs, ON patients had: significantly decreased GMV in the left postcentral gyrus, left inferior frontal gyrus, left anterior cingulate, left and right middle frontal gyrus, and right inferior parietal lobule; decreased WMV in the left middle frontal gyrus, right superior frontal gyrus, left precentral gyrus and right inferior parietal lobule; and increased WMV in the left fusiform gyrus and left inferior parietal lobule. VEP latency of the right eye in ON correlated positively with WMV signal value of the left fusiform gyrus (r=0.726, p=0.008), and negatively with GMV signal value of the right inferior parietal lobule (r=−0.611, p=0.035). Duration of ON correlated negatively with WMV signal value of the right superior frontal gyrus (r=−0.662, p=0.019), while best-corrected visual acuity (VA) of the right eye correlated negatively with WMV signal value of the left middle frontal gyrus (r=−0.704, p=0.011). Conclusions These results suggest significant brain involvement in ON, which may reflect the underlying pathologic mechanism. Correlational results demonstrate that VEP in ON is closely associated with WMV and GMV atrophy in many brain regions. PMID:27045330

  8. Dynamic in vivo analysis of drug induced actin cytoskeleton degradation by digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Schnekenburger, Juergen; Bredebusch, Ilona; Langehanenberg, Patrik; Domschke, Wolfram; von Bally, Gert; Kemper, Björn

    2007-07-01

    The actin cytoskeleton mediates a variety of crucial cellular functions as migration, intracellular transport, exocytosis, endocytosis and force generation. The highly dynamic actin fibers are therefore targets for several drugs and toxins. However the study of actin interfering processes by standard microscopy techniques fails in the detailed resolution of dynamic spatial alterations required for a deeper understanding of toxic effects. Here we applied digital holographic microscopy in the online functional analysis of the actin cytoskeleton disrupting marine toxin Latrunculin B. SEM and fluorescence microscopy showed rapid Latrunculin B induced alterations in cell morphology and actin fiber degradation in pancreas tumor cells. The dynamic digital holographic in vivo analysis of the drug dependent cellular processes demonstrated differences in the actin cytoskeleton stability of highly differentiated and dedifferentiated pancreas tumor cell lines. The spatial resolution of the morphological alterations revealed unequal changes in cell morphology. While cells with a low metastatic potential showed Latrunculin B induced cell collapse within 4 h the metastatic tumor cells were increased in cell volume indicating Latrunculin B effects also on cell water content. These data demonstrate that marker free, non-destructive online analysis of cellular morphology and dynamic spatial processes in living cells by digital holography offers new insights in actin dependent cellular mechanisms. Digital holographic microscopy was shown to be a versatile tool in the screening of toxic drug effects and cancer cell biology.

  9. HOMES Holographic Optical Method for Exoplanet Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ditto, Thomas D.; McGrew, Stephen P.

    2013-09-01

    A novel telescope architecture is proposed specifically for the purpose of taking spectra of exoplanets orbiting stars within 10 pc ("the neighborhood"). The primary objective and the secondary spectrograph are holographic optical elements (HOEs) formed on flat membrane substrates of low areal mass that can be transported on cylinder rolls that are compatible with the payload geometry of delivery vehicles. Ribbon-shaped HOEs of up to 100 x 10 meters are contemplated. Computer models are presented with these dimensions. The models predict resolving power better than 10 mas. Because the primary separates wavelengths, we consider coronagraphs that use the divide and conquer strategy of one wavelength at a time. After delivery at the second Lagrange point, the stowed membranes are unfurled into flat holographic optics positioned in a four part formation spanning 1 km of open space.

  10. Biometric Identification Using Holographic Radar Imaging Techniques

    SciTech Connect

    McMakin, Douglas L.; Sheen, David M.; Hall, Thomas E.; Kennedy, Mike O.; Foote, Harlan P.

    2007-04-01

    Pacific Northwest National Laboratory researchers have been at the forefront of developing innovative screening systems to enhance security and a novel imaging system to provide custom-fit clothing using holographic radar imaging techniques. First-of-a-kind cylindrical holographic imaging systems have been developed to screen people at security checkpoints for the detection of concealed, body worn, non-metallic threats such as plastic and liquid explosives, knifes and contraband. Another embodiment of this technology is capable of obtaining full sized body measurements in near real time without the person under surveillance removing their outer garments. Radar signals readily penetrate clothing and reflect off the water in skin. This full body measurement system is commercially available for best fitting ready to wear clothing, which was the first “biometric” application for this technology. One compelling feature of this technology for security biometric applications is that it can see effectively through disguises, appliances and body hair.

  11. Capability enhancement in compact digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Qu, Weijuan; Wen, Yongfu; Wang, Zhaomin; Yang, Fang; Asundi, Anand

    2015-03-01

    A compact reflection digital holographic microscopy (DHM) system integrated with the light source and optical interferometer is developed for 3D topographic characterization and real-time dynamic inspection for Microelectromechanical systems (MEMS). Capability enhancement methods in lateral resolution, axial resolving range and large field of view for the compact DHM system are presented. To enhance the lateral resolution, the numerical aperture of a reflection DHM system is analyzed and optimum designed. To enhance the axial resolving range, dual wavelengths are used to extend the measuring range. To enable the large field of view, stitching of the measurement results is developed in the user-friendly software. Results from surfaces structures on silicon wafer, micro-optics on fused silica and dynamic inspection of MEMS structures demonstrate applications of this compact reflection digital holographic microscope for technical inspection in material science.

  12. Hydroxyl density measurements with resonant holographic interferometry

    SciTech Connect

    Trolinger, J.D.; Hess, C.F.; Yip, B.; Battles, B.; Hanson, R.K. Stanford University, CA )

    1992-01-01

    This paper describes experimentation with a new type of flow diagnostics referred to as Resonant Holographic Interferometry Spectroscopy (RHIS). This technique combines the power of holography with the species selectivity of spectroscopy to provide three-dimensional images of the density profile of selected species in complex flows. The technique is particularly suitable to study mixing processes as well as to measure minor species in combustion processes. The method would allow the measurement of minor species in the presence of major species, as well as major species in a heterogeneous low pressure environment. Both experiments and modeling are being conducted to establish the feasibility of RHIS in measuring the hydroxyl concentrations in combustion processes. It is expected that in addition to the species concentration, the resonant holographic technique has the potential of providing temperature, pressure, and flow velocity. 28 refs.

  13. Note on zero temperature holographic superfluids

    NASA Astrophysics Data System (ADS)

    Guo, Minyong; Lan, Shanquan; Niu, Chao; Tian, Yu; Zhang, Hongbao

    2016-06-01

    In this note, we have addressed various issues on zero temperature holographic superfluids. First, inspired by our numerical evidence for the equality between the superfluid density and particle density, we provide an elegant analytic proof for this equality by a boost trick. Second, using not only the frequency domain analysis but also the time domain analysis from numerical relativity, we identify the hydrodynamic normal modes and calculate out the sound speed, which is shown to increase with the chemical potential and saturate to the value predicted by the conformal field theory in the large chemical potential limit. Third, the generic non-thermalization is demonstrated by the fully nonlinear time evolution from a non-equilibrium state for our zero temperature holographic superfluid. Furthermore, a conserved Noether charge is proposed in support of this behavior.

  14. Biometric identification using holographic radar imaging techniques

    NASA Astrophysics Data System (ADS)

    McMakin, Douglas L.; Sheen, David M.; Hall, Thomas E.; Kennedy, Mike O.; Foote, Harlen P.

    2007-04-01

    Pacific Northwest National Laboratory researchers have been at the forefront of developing innovative screening systems to enhance security and a novel imaging system to provide custom-fit clothing using holographic radar imaging techniques. First-of-a-kind cylindrical holographic imaging systems have been developed to screen people at security checkpoints for the detection of concealed, body worn, non-metallic threats such as plastic and liquid explosives, knifes and contraband. Another embodiment of this technology is capable of obtaining full sized body measurements in near real time without the person under surveillance removing their outer garments. Radar signals readily penetrate clothing and reflect off the water in skin. This full body measurement system is commercially available for best fitting ready to wear clothing, which was the first "biometric" application for this technology. One compelling feature of this technology for security biometric applications is that it can see effectively through disguises, appliances and body hair.

  15. Exploring unconventional capabilities of holographic tweezers

    NASA Astrophysics Data System (ADS)

    Hernandez, R. J.; Pagliusi, P.; Provenzano, C.; Cipparrone, G.

    2011-06-01

    We report an investigation of manipulation and trapping capabilities of polarization holographic tweezers. A polarization gradient connected with a modulation of the ellipticity shows an optical force related to the polarization of the light that can influence optically isotropic particles. While in the case of birefringent particles an unconventional trapping in circularly polarized fringes is observed. A liquid crystal emulsion has been adopted to investigate the capabilities of the holographic tweezers. The unusual trapping observed for rotating bipolar nematic droplets has suggested the involvement of the lift hydrodynamic force responsible of the Magnus effect, originating from the peculiar optical force field. We show that the Magnus force which is ignored in the common approach can contribute to unconventional optohydrodynamic trapping and manipulation.

  16. Holographic entanglement entropy in imbalanced superconductors

    NASA Astrophysics Data System (ADS)

    Dutta, Arghya; Modak, Sujoy Kumar

    2014-01-01

    We study the behavior of holographic entanglement entropy (HEE) for imbalanced holographic superconductors. We employ a numerical approach to consider the robust case of fully back-reacted gravity system. The hairy black hole solution is found by using our numerical scheme. Then it is used to compute the HEE for the superconducting case. The cases we study show that in presence of a mismatch between two chemical potentials, below the critical temperature, superconducting phase has a lower HEE in comparison to the AdS-Reissner-Nordström black hole phase. Interestingly, the effects of chemical imbalance are different in the contexts of black hole and superconducting phases. For black hole, HEE increases with increasing imbalance parameter while it behaves oppositely for the superconducting phase. The implications of these results are discussed.

  17. Transonic flow visualization using holographic interferometry

    NASA Technical Reports Server (NTRS)

    Bryanston-Cross, Peter J.

    1987-01-01

    An account is made of some of the applications of holographic interferometry to the visualization of transonic flows. In the case of the compressor shock visualization, the method is used regularly and has moved from being a research department invention to a design test tool. With the implementation of automatic processing and simple digitization systems, holographic vibrational analysis has also moved into routine nondestructive testing. The code verification interferograms were instructive, but the main turbomachinery interest is now in 3 dimensional flows. A major data interpretation effort will be required to compute tomographically the 3 dimensional flow around the leading or the trailing edges of a rotating blade row. The bolt on approach shows the potential application to current unsteady flows of interest. In particular that of the rotor passing and vortex interaction effects is experienced by the new generation of unducted fans. The turbocharger tests presents a new area for the application of holography.

  18. Development of 3D holographic endoscope

    NASA Astrophysics Data System (ADS)

    Özcan, Meriç; Önal Tayyar, Duygu

    2016-03-01

    Here we present the development of a 3D holographic endoscope with an interferometer built around a commercial rigid endoscope. We consider recording the holograms with coherent and incoherent light separately without compromising the white light imaging capacity of the endoscope. In coherent light based recording, reference wave required for the hologram is obtained in two different ways. First, as in the classical holography, splitting the laser beam before the object illumination, and secondly creating the reference beam from the object beam itself. This second method does not require path-length matching between the object wave and the reference wave, and it allows the usage of short coherence length light sources. For incoherent light based holographic recordings various interferometric configurations are considered. Experimental results on both illumination conditions are presented.

  19. Holographic Optical Storage Using Photorefractive Polymers

    NASA Technical Reports Server (NTRS)

    Hayden, L. Michael; Strutz, Shane J.; Harris, Kristi; Ayachitula, Rajani

    2000-01-01

    The task for this report is to perform the basic research and develop a prototype benchtop holographic optical storage system based on photochromic and/or photorefractive polymers so that both permanent and erasable images may be stored and retrieved in the same mixed polymer medium. The task consist of: assembly and setup of the benchtop holographic storage system, including lasers, optics, and other ancillary equipment in a laboratory setting; and research and development of a suitable polymer matrix that will allow practical storage and retrieval of digital data. This will necessitate molecular design of the matrices involved and subsequent physics test to verify the characteristics of the matrices provide practical storage and retrieval.

  20. Holographic models and the QCD trace anomaly

    SciTech Connect

    Jose L. Goity, Roberto C. Trinchero

    2012-08-01

    Five dimensional dilaton models are considered as possible holographic duals of the pure gauge QCD vacuum. In the framework of these models, the QCD trace anomaly equation is considered. Each quantity appearing in that equation is computed by holographic means. Two exact solutions for different dilaton potentials corresponding to perturbative and non-perturbative {beta}-functions are studied. It is shown that in the perturbative case, where the {beta}-function is the QCD one at leading order, the resulting space is not asymptotically AdS. In the non-perturbative case, the model considered presents confinement of static quarks and leads to a non-vanishing gluon condensate, although it does not correspond to an asymptotically free theory. In both cases analyses based on the trace anomaly and on Wilson loops are carried out.

  1. Holographic Associative Memory Employing Phase Conjugation

    NASA Astrophysics Data System (ADS)

    Soffer, B. H.; Marom, E.; Owechko, Y.; Dunning, G.

    1986-12-01

    The principle of information retrieval by association has been suggested as a basis for parallel computing and as the process by which human memory functions.1 Various associative processors have been proposed that use electronic or optical means. Optical schemes,2-7 in particular, those based on holographic principles,8'8' are well suited to associative processing because of their high parallelism and information throughput. Previous workers8 demonstrated that holographically stored images can be recalled by using relatively complicated reference images but did not utilize nonlinear feedback to reduce the large cross talk that results when multiple objects are stored and a partial or distorted input is used for retrieval. These earlier approaches were limited in their ability to reconstruct the output object faithfully from a partial input.

  2. Advanced Compact Holographic Data Storage System

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin; Zhou, Hanying; Reyes, George

    2000-01-01

    JPL, under current sponsorship from NASA Space Science and Earth Science Programs, is developing a high-density, nonvolatile and rad-hard Advanced Holographic Memory (AHM) system to enable large-capacity, high-speed, low power consumption, and read/write of data in a space environment. The entire read/write operation will be controlled with electro-optic mechanism without any moving parts. This CHDS will consist of laser diodes, photorefractive crystal, spatial light modulator, photodetector array, and I/O electronic interface. In operation, pages of information would be recorded and retrieved with random access and highspeed. The nonvolatile, rad-hard characteristics of the holographic memory will provide a revolutionary memory technology to enhance mission capabilities for all NASA's Earth Science Mission. In this paper, recent technology progress in developing this CHDS at JPL will be presented.

  3. Holographic renormalization and the electroweak precision parameters

    SciTech Connect

    Round, Mark

    2010-09-01

    We study the effects of holographic renormalization on an AdS/QCD inspired description of dynamical electroweak symmetry breaking. Our model is a 5D slice of AdS{sub 5} geometry containing a bulk scalar and SU(2)xSU(2) gauge fields. The scalar field obtains a vacuum expectation value (VEV) which represents a condensate that triggers electroweak symmetry breaking. Fermion fields are constrained to live on the UV brane and do not propagate in the bulk. The two-point functions are holographically renormalized through the addition of boundary counterterms. Measurable quantities are then expressed in terms of well-defined physical parameters, free from any spurious dependence on the UV cutoff. A complete study of the precision parameters is carried out and bounds on physical quantities derived. The large-N scaling of results is discussed.

  4. Reheating of the Universe as holographic thermalization

    NASA Astrophysics Data System (ADS)

    Kawai, Shinsuke; Nakayama, Yu

    2016-08-01

    Assuming gauge/gravity correspondence we study reheating of the Universe using its holographic dual. Inflaton decay and thermalisation of the decay products correspond to collapse of a spherical shell and formation of a blackhole in the dual anti-de Sitter (AdS) spacetime. The reheating temperature is computed as the Hawking temperature of the developed blackhole probed by a dynamical boundary, and is determined by the inflaton energy density and the AdS radius, with corrections from the dynamics of the shell collapse. For given initial energy density of the inflaton field the holographic model typically gives lower reheating temperature than the instant reheating scenario, while it is shown to be safely within phenomenological bounds.

  5. Interpixel grating noise in holographic memories

    NASA Astrophysics Data System (ADS)

    An, Xin; Panotopoulos, George; Psaltis, Demetri

    1998-11-01

    We have experimentally discovered that the Signal-to-Noise Ratio (SNR) of holograms initially remains constant as the number of holograms stored increases and drops significantly only after a large number of holograms are recorded. This suggests that in a large-scale memory, the limiting noise source is not crosstalk between holograms but holographic noise due to the prolonged exposure of the signal beam. We have carried out experiments to investigate the formation and influence of the inter-pixel grating noise and shown that it is a very important form of holographic noise. We also proposed and demonstrated the use of random-phase modulation in the signal to suppress the inter-pixel grating noise.

  6. Cold holographic matter in the Higgs branch

    NASA Astrophysics Data System (ADS)

    Itsios, Georgios; Jokela, Niko; Ramallo, Alfonso V.

    2015-07-01

    We study collective excitations of cold (2 + 1)-dimensional fundamental matter living on a defect of the four-dimensional N = 4 super Yang-Mills theory in the Higgs branch. This system is realized holographically as a D3-D5 brane intersection, in which the D5-brane is treated as a probe with a non-zero gauge flux across the internal part of its worldvolume. We study the holographic zero sound mode in the collisionless regime at low temperature and find a simple analytic result for its dispersion relation. We also find the diffusion constant of the system in the hydrodynamic regime at higher temperature. In both cases we study the dependence on the flux parameter which determines the amount of Higgs symmetry breaking. We also discuss the anyonization of this construction.

  7. Formation of temperature dependable holographic memory using holographic polymer-dispersed liquid crystal.

    PubMed

    Ogiwara, Akifumi; Watanabe, Minoru; Moriwaki, Retsu

    2013-04-01

    Grating devices using photosensitive organic materials play an important role in the development of optical and optoelectronic systems. High diffraction efficiency and polarization dependence achieved in a holographic polymer-dispersed liquid crystal (HPDLC) grating are expected to provide polarization controllable optical devices, such as the holographic memory for optically reconfigurable gate arrays (ORGAs). However, the optical property is affected by the thermal modulation around the transition temperature (T(ni)) that the liquid crystal (LC) changes from nematic to isotropic phases. The temperature dependence of the diffraction efficiency in HPDLC grating is discussed with two types of LC composites comprised of isotropic and LC diacrylate monomers. The holographic memory formed by the LC and LC diacrylate monomer performs precise reconstruction of the context information for ORGAs at high temperatures more than 150°C. PMID:23546276

  8. The Gray Matter Volume of the Amygdala Is Correlated with the Perception of Melodic Intervals: A Voxel-Based Morphometry Study

    PubMed Central

    Li, Xueting; Beuckelaer, Alain De; Guo, Jiahui; Ma, Feilong; Xu, Miao; Liu, Jia

    2014-01-01

    Music is not simply a series of organized pitches, rhythms, and timbres, it is capable of evoking emotions. In the present study, voxel-based morphometry (VBM) was employed to explore the neural basis that may link music to emotion. To do this, we identified the neuroanatomical correlates of the ability to extract pitch interval size in a music segment (i.e., interval perception) in a large population of healthy young adults (N = 264). Behaviorally, we found that interval perception was correlated with daily emotional experiences, indicating the intrinsic link between music and emotion. Neurally, and as expected, we found that interval perception was positively correlated with the gray matter volume (GMV) of the bilateral temporal cortex. More important, a larger GMV of the bilateral amygdala was associated with better interval perception, suggesting that the amygdala, which is the neural substrate of emotional processing, is also involved in music processing. In sum, our study provides one of first neuroanatomical evidence on the association between the amygdala and music, which contributes to our understanding of exactly how music evokes emotional responses. PMID:24923421

  9. Moduli spaces of cold holographic matter

    NASA Astrophysics Data System (ADS)

    Ammon, Martin; Jensen, Kristan; Kim, Keun-Young; Laia, João N.; O'Bannon, Andy

    2012-11-01

    We use holography to study (3 + 1)-dimensional {N}=4 supersymmetric Yang-Mills theory with gauge group SU( N c ), in the large- N c and large-coupling limits, coupled to a single massless ( n + 1)-dimensional hypermultiplet in the fundamental representation of SU( N c ), with n = 3, 2, 1. In particular, we study zero-temperature states with a nonzero baryon number charge density, which we call holographic matter. We demonstrate that a moduli space of such states exists in these theories, specifically a Higgs branch parameterized by the expectation values of scalar operators bilinear in the hypermultiplet scalars. At a generic point on the Higgs branch, the R-symmetry and gauge group are spontaneously broken to subgroups. Our holographic calculation consists of introducing a single probe D p-brane into AdS 5 × {{{S}}^5} , with p = 2 n + 1 = 7, 5, 3, introducing an electric flux of the D p-brane worldvolume U(1) gauge field, and then obtaining explicit solutions for the worldvolume fields dual to the scalar operators that parameterize the Higgs branch. In all three cases, we can express these solutions as non-singular self-dual U(1) instantons in a four-dimensional space with a metric determined by the electric flux. We speculate on the possibility that the existence of Higgs branches may point the way to a counting of the microstates producing a nonzero entropy in holographic matter. Additionally, we speculate on the possible classification of zero-temperature, nonzero-density states described holographically by probe D-branes with worldvolume electric flux.

  10. Quantitative roadmap of holographic media performance

    NASA Astrophysics Data System (ADS)

    Kowalski, Benjamin A.; McLeod, Robert R.

    2015-09-01

    For holographic photopolymer media, the "formula limit" concept enables facile calculation of the fraction of writing chemistry that is usefully patterned, and the fraction that is wasted. This provides a quantitative context to compare the performance of a diverse range of media formulations from the literature, using only information already reported in the original works. Finally, this analysis is extended to estimate the scope of achievable future performance improvements.

  11. Holographic dark energy from minimal supergravity

    NASA Astrophysics Data System (ADS)

    Landim, Ricardo C. G.

    2016-02-01

    We embed models of holographic dark energy (HDE) coupled to dark matter (DM) in minimal supergravity plus matter, with one chiral superfield. We analyze two cases. The first one has the Hubble radius as the infrared (IR) cutoff and the interaction between the two fluids is proportional to the energy density of the DE. The second case has the future event horizon as IR cutoff while the interaction is proportional to the energy density of both components of the dark sector.

  12. Using a portable holographic camera in cosmetology

    NASA Astrophysics Data System (ADS)

    Bakanas, R.; Gudaitis, G. A.; Zacharovas, S. J.; Ratcliffe, D. B.; Hirsch, S.; Frey, S.; Thelen, A.; Ladrière, N.; Hering, P.

    2006-07-01

    The HSF-MINI portable holographic camera is used to record holograms of the human face. The recorded holograms are analyzed using a unique three-dimensional measurement system that provides topometric data of the face with resolution less than or equal to 0.5 mm. The main advantages of this method over other, more traditional methods (such as laser triangulation and phase-measurement triangulation) are discussed.

  13. Holographic consequences of a no transmission principle

    NASA Astrophysics Data System (ADS)

    Engelhardt, Netta; Horowitz, Gary T.

    2016-01-01

    Two quantum field theories whose Hilbert spaces do not overlap cannot transmit a signal to one another. From this simple principle, we deduce some highly nontrivial consequences for holographic quantum gravity. These include: (i) certain cosmological bounces are forbidden, (ii) generic singularities inside black holes cannot be resolved, and (iii) traversable wormholes do not exist. At the classical level, this principle rules out certain types of naked singularities and suggests that new singularity theorems should exist.

  14. Holographic Helmet-Mounted Display Unit

    NASA Technical Reports Server (NTRS)

    Burley, James R., II; Larussa, Joseph A.

    1995-01-01

    Helmet-mounted display unit designed for use in testing innovative concepts for display of information to aircraft pilots. Operates in conjunction with computers generating graphical displays. Includes two ocular subunits containing miniature cathoderay tubes and optics providing 40 degrees vertical, 50 degrees horizontal field of view to each eye, with or without stereopsis. In future color application, each ocular subunit includes trichromatic holographic combiner tuned to red, green, and blue wavelengths of phosphors used in development of miniature color display devices.

  15. Holographic associative memory of biological systems

    NASA Astrophysics Data System (ADS)

    Gariaev, Peter P.; Chudin, Viktor I.; Komissarov, Gennady G.; Berezin, Andrey A.; Vasiliev, Anatoly A.

    1991-11-01

    We consider some specific problems and phenomena of morphogenetic information storage, reproduction, and transfer including phantom leaf effect and field-induced morphogenetic translations between different taxonomic units. Several experimental results are presented and their explanation is given using a new approach to morphogenesis which combines some physical models of holographic associative memory and the mathematical formalism of Fermi- Pasta-Ulam recurrence for solitary waves in deoxyribonucleic acid.

  16. Some aspects of holographic W-gravity

    NASA Astrophysics Data System (ADS)

    Li, Wei; Theisen, Stefan

    2015-08-01

    We use the Chern-Simons formulation of higher spin theories in three dimensions to study aspects of holographic W-gravity. Concepts which were useful in studies of pure bulk gravity theories, such as the Fefferman-Graham gauge and the residual gauge transformations, which induce Weyl transformations in the boundary theory and their higher spin generalizations, are reformulated in the Chern-Simons language. Flat connections that correspond to conformal and lightcone gauges in the boundary theory are considered.

  17. Holographic window for solar power generation

    NASA Astrophysics Data System (ADS)

    Kasezawa, Toshihiro; Horimai, Hideyoshi; Tabuchi, Hiroshi; Shimura, Tsutomu

    2016-08-01

    A new photovoltaic generation unit based on the application of holographic technologies called a Holo-Window is proposed in this work. The basic principle and the optical configuration used for the basic experimental unit are described. Suitable fabrication technology for a hologram with the broadband spectrum required to provide the appropriate sunlight capture capability is then discussed. Finally, a laboratory-prototype Holo-Window unit was developed and its performance was evaluated.

  18. Compact, holographic correction of aberrated telescopes.

    PubMed

    Andersen, G; Munch, J; Veitch, P

    1997-03-01

    We demonstrate a compact reflector telescope design that incorporates the holographic correction of a large, low-quality primary spherical mirror by using a laser beacon located at the center of curvature. The simple design makes use of conventional optics and is easily scalable to much larger apertures. Experimental results indicate diffraction-limited performance from a heavily aberrated 0.5-m-diameter spherical mirror.

  19. Chemical potential in the first law for holographic entanglement entropy

    NASA Astrophysics Data System (ADS)

    Kastor, David; Ray, Sourya; Traschen, Jennie

    2014-11-01

    Entanglement entropy in conformal field theories is known to satisfy a first law. For spherical entangling surfaces, this has been shown to follow via the AdS/CFT correspondence and the holographic prescription for entanglement entropy from the bulk first law for Killing horizons. The bulk first law can be extended to include variations in the cosmological constant Λ, which we established in earlier work. Here we show that this implies an extension of the boundary first law to include varying the number of degrees of freedom of the boundary CFT. The thermodynamic potential conjugate to Λ in the bulk is called the thermodynamic volume and has a simple geometric formula. In the boundary first law it plays the role of a chemical potential. For the bulk minimal surface Σ corresponding to a boundary sphere, the thermodynamic volume is found to be proportional to the area of Σ, in agreement with the variation of the known result for entanglement entropy of spheres. The dependence of the CFT chemical potential on the entanglement entropy and number of degrees of freedom is similar to how the thermodynamic chemical potential of an ideal gas depends on entropy and particle number.

  20. Holographic thermalization in a quark confining background

    SciTech Connect

    Ageev, D. S. Aref’eva, I. Ya.

    2015-03-15

    We study holographic thermalization of a strongly coupled theory inspired by two colliding shock waves in a vacuum confining background. Holographic thermalization means a black hole formation, in fact, a trapped surface formation. As the vacuum confining background, we considered the well-know bottom-up AdS/QCD model that provides the Cornell potential and reproduces the QCD β-function. We perturb the vacuum background by colliding domain shock waves that are assumed to be holographically dual to heavy ions collisions. Our main physical assumption is that we can make a restriction on the time of trapped surface formation, which results in a natural limitation on the size of the domain where the trapped surface is produced. This limits the intermediate domain where the main part of the entropy is produced. In this domain, we can use an intermediate vacuum background as an approximation to the full confining background. We find that the dependence of the multiplicity on energy for the intermediate background has an asymptotic expansion whose first term depends on energy as E{sup 1/3}, which is very similar to the experimental dependence of particle multiplicities on the colliding ion energy obtained from the RHIC and LHC. However, this first term, at the energies where the approximation of the confining metric by the intermediate background works, does not saturate the exact answer, and we have to take the nonleading terms into account.

  1. Holographic Flow Visualization at NASA Langley

    NASA Technical Reports Server (NTRS)

    Burner, A. W.; Goad, W. K.

    2005-01-01

    Holographic flow visualization systems at two NASA Langley facilities, a hypersonic blow-down tunnel using CF4 gas and an expansion tube with very short test time, are described. A pulsed ruby laser is used at a CF4 tunnel for single pulse holography, double pulse with several minutes between exposures, and dual plate holographic interferometry. Shadow-graph, schlieren, and interferograms are reconstructed from the holograms in a separate reconstruction lab. At the expansion tube the short run time of 200 microseconds requires precise triggering of its double pulsed ruby laser. With pulse separation, one pulse can occur before and one after flow is established to obtain fringe free background interferograms (perfect infinite fringe) or both pulses can occur during flow in order to study flow instabilities. Holograms are reconstructed at the expansion tube with an in-place setup which makes use of a high power CW Argon laser and common optics for both recording and reconstructing the holograms. The holographic systems at the CF4 tunnel and expansion tube are operated routinely for flow visualization by tunnel technicians. Typical flow visualization photographs from both facilities are presented.

  2. Stereo multiplexed holographic particle image velocimeter

    DOEpatents

    Adrian, R.J.; Barnhart, D.H.; Papen, G.A.

    1996-08-20

    A holographic particle image velocimeter employs stereoscopic recording of particle images, taken from two different perspectives and at two distinct points in time for each perspective, on a single holographic film plate. The different perspectives are provided by two optical assemblies, each including a collecting lens, a prism and a focusing lens. Collimated laser energy is pulsed through a fluid stream, with elements carried in the stream scattering light, some of which is collected by each collecting lens. The respective focusing lenses are configured to form images of the scattered light near the holographic plate. The particle images stored on the plate are reconstructed using the same optical assemblies employed in recording, by transferring the film plate and optical assemblies as a single integral unit to a reconstruction site. At the reconstruction site, reconstruction beams, phase conjugates of the reference beams used in recording the image, are directed to the plate, then selectively through either one of the optical assemblies, to form an image reflecting the chosen perspective at the two points in time. 13 figs.

  3. Stereo multiplexed holographic particle image velocimeter

    DOEpatents

    Adrian, Ronald J.; Barnhart, Donald H.; Papen, George A.

    1996-01-01

    A holographic particle image velocimeter employs stereoscopic recording of particle images, taken from two different perspectives and at two distinct points in time for each perspective, on a single holographic film plate. The different perspectives are provided by two optical assemblies, each including a collecting lens, a prism and a focusing lens. Collimated laser energy is pulsed through a fluid stream, with elements carried in the stream scattering light, some of which is collected by each collecting lens. The respective focusing lenses are configured to form images of the scattered light near the holographic plate. The particle images stored on the plate are reconstructed using the same optical assemblies employed in recording, by transferring the film plate and optical assemblies as a single integral unit to a reconstruction site. At the reconstruction site, reconstruction beams, phase conjugates of the reference beams used in recording the image, are directed to the plate, then selectively through either one of the optical assemblies, to form an image reflecting the chosen perspective at the two points in time.

  4. Holographic Optical Elements as Scanning Lidar Telescopes

    NASA Technical Reports Server (NTRS)

    Schwemmer, Geary K.; Rallison, Richard D.; Wilkerson, Thomas D.; Guerra, David V.

    2005-01-01

    We have developed and investigated the use of holographic optical elements (HOEs) and holographic transmission gratings for scanning lidar telescopes. For example, rotating a flat HOE in its own plane with the focal spot on the rotation axis makes a very simple and compact conical scanning telescope. We developed and tested transmission and reflection HOEs for use at the first three harmonic wavelengths of Nd:YAG lasers. The diffraction efficiency, diffraction angle, focal length, focal spot size and optical losses were measured for several HOEs and holographic gratings, and found to be suitable for use as lidar receiver telescopes, and in many cases could also serve as the final collimating and beam steering optic for the laser transmitter. Two lidar systems based on this technology have been designed, built, and successfully tested in atmospheric science applications. This technology will enable future spaceborne lidar missions by significantly lowering the size, weight, power requirement and cost of a large aperture, narrow field of view scanning telescope.

  5. Holographic Interferometry Applications In External Osteosynthesis

    NASA Astrophysics Data System (ADS)

    Jacquot, P.; Rastogi, P. K.; Pflug, L.

    1985-08-01

    In order to maintain fragments of fractured bones in a state of immobilization, the use of an external rigid frame has proved to be very advantageous. Confronted by contradictory requirements, the conception of external fixation has, however, been a difficult task. The present paper aims to show, through three examples of varied bearings, the interest of holographic interferometry in external osteosynthesis. The first example deals with the mechanical behavior of a key element of the fixation device the ball joint submitted to realistic loads. The last two examples compare two models of ball joints as to their characteristics of rigidity and of resistance to slipping. Whereas in the former case holographic interferometry primarily fulfills the function of a prelude to the modelization work, in the latter cases it serves to formulate an engineering diagnostic. The findings relate to the remarkable elastic behavior of the ball joint, to the effectiveness of a lightened bowl design, and to the fact that cousin models may behave quite differently as to their resistance to slipping rotations of the bar. In comparison with other experimental methods, holographic interferometry appears to be very competitive and result-oriented and, as such, is expected to multiply applications in similar evaluation tasks.

  6. Drawing Lines with Light in Holographic Space

    NASA Astrophysics Data System (ADS)

    Chang, Yin-Ren; Richardson, Martin

    2013-02-01

    This paper explores the dynamic and expressive possibilities of holographic art through a comparison of art history and technical media such as photography, film and holographic technologies. Examples of modern art and creative expression of time and motions are examined using the early 20th century art movement, Cubism, where subjects are portrayed to be seen simultaneously from different angles. Folding space is represented as subject matter as it can depict space from multiple points of time. The paper also investigates the way holographic art has explored time and space. The lenticular lens-based media reveal a more subjective poetic art in the form of the lyrical images and messages as spectators pass through time, or walk along with the piece of work through an interactive process. It is argued that photographic practice is another example of artistic representation in the form of aesthetic medium of time movement and as such shares a common ground with other dynamic expression that require time based interaction.

  7. Two color holographic interferometry for microgravity application

    NASA Technical Reports Server (NTRS)

    Trolinger, James D.

    1993-01-01

    Holographic interferometry is a primary candidate for the measurement of temperature and concentration in various crystal growth experiments destined for space. The method measures refractive index changes in the experiment test cell. A refractive index change can be caused by concentration changes, temperature changes, or a combination of temperature and concentration changes. If the refractive index changes are caused by temperature and concentration changes occurring simultaneously in the experiment test cell, the contributions by the two effects cannot be separated by conventional measurement methods. By using two wavelengths, two independent interferograms can be produced from the reconstruction of the hologram. The two interferograms will be different due to dispersion properties of fluid materials. These differences provide the additional information that allows the separation of simultaneously occurring temperature and concentration gradients. There is no other technique available that can provide this type of information. The primary objectives of this effort are to experimentally verify the mathematical theory of two color holographic interferometry and to determine the practical value of this technique for space application. To achieve these objectives, the accuracy and sensitivity of the technique must be determined for geometry's and materials that are relevant to the Materials Processing in the Space program of NASA. This will be achieved through the use of a specially designed two-color holographic interferometry breadboard optical system. In addition to experiments to achieve the primary goals, the breadboard will also provide inputs to the design of an optimum space flight system.

  8. Holographic sensors for diagnostics of solution components

    SciTech Connect

    Kraiskii, A V; Suitanov, T T; Postnikov, V A; Khamidulin, A V

    2010-02-28

    The properties of holographic sensors of two types are studied. The sensors are based on a three-dimensional polymer-network matrix of copolymers of acrylamide, acrylic acid (which are sensitive to the medium acidity and bivalent metal ions) and aminophenylboronic acid (sensitive to glucose). It is found that a change in the ionic composition of a solution results in changes in the distance between layers and in the diffraction efficiency of holograms. Variations in the shape of spectral lines, which are attributed to the inhomogeneity of a sensitive layer, and nonmonotonic changes in the emulsion thickness and diffraction efficiency were observed during transient processes. The composition of the components of a hydrogel medium is selected for systems which can be used as a base for glucose sensors with the mean holographic response in the region of physiological glucose concentration in model solutions achieving 40 nm/(mmol L{sup -1}). It is shown that the developed holographic sensors can be used for the visual and instrumental determination of the medium acidity, alcohol content, ionic strength, bivalent metal salts and the quality of water, in particular, for drinking. (laser applications and other topics in quantum electronics)

  9. A shape dynamical approach to holographic renormalization

    NASA Astrophysics Data System (ADS)

    Gomes, Henrique; Gryb, Sean; Koslowski, Tim; Mercati, Flavio; Smolin, Lee

    2015-01-01

    We provide a bottom-up argument to derive some known results from holographic renormalization using the classical bulk-bulk equivalence of General Relativity and Shape Dynamics, a theory with spatial conformal (Weyl) invariance. The purpose of this paper is twofold: (1) to advertise the simple classical mechanism, trading off gauge symmetries, that underlies the bulk-bulk equivalence of General Relativity and Shape Dynamics to readers interested in dualities of the type of AdS/conformal field theory (CFT); and (2) to highlight that this mechanism can be used to explain certain results of holographic renormalization, providing an alternative to the AdS/CFT conjecture for these cases. To make contact with the usual semiclassical AdS/CFT correspondence, we provide, in addition, a heuristic argument that makes it plausible that the classical equivalence between General Relativity and Shape Dynamics turns into a duality between radial evolution in gravity and the renormalization group flow of a CFT. We believe that Shape Dynamics provides a new perspective on gravity by giving conformal structure a primary role within the theory. It is hoped that this work provides the first steps toward understanding what this new perspective may be able to teach us about holographic dualities.

  10. Holographic flow visualization at NASA Langley

    NASA Technical Reports Server (NTRS)

    Burner, A. W.; Goad, W. K.

    1979-01-01

    Holographic flow visualization systems at two NASA Langley facilities, a hypersonic blow-down tunnel using CF4 gas and an expansion tube with very short test time, are described. A pulsed ruby laser is used at a CF4 tunnel for single pulse holography, double pulse with several minutes between exposures, and dual plate holographic interferometry. Shadowgraph, schlieren, and interferograms are reconstructed from the holograms in a separate reconstruction lab. At the expansion tube the short run time of 200 microseconds requires precise triggering of its double pulsed ruby laser. With double pulse capability of 20 to 1200 microseconds pulse separation, one pulse can occur before and one later after flow is established to obtain fringe free background interferograms (perfect infinite fringe) or both pulses can occur during flow in order to study flow instabilities. Holograms are reconstructed at the expansion tube with an in-place setup which makes use of a high power CW Argon laser and common optics for both recording and reconstructing the holograms. The holographic systems at the CF4 tunnel and expansion tube are operated routinely for flow visualization by tunnel technicians. Typical flow visualization photographs from both facilities are presented.

  11. Phase control during reconstruction of holographically recorded flow fields using real-time holographic interferometry

    NASA Technical Reports Server (NTRS)

    Burner, A. W.; Goad, W. K.

    1981-01-01

    A technique of phase control during reconstruction of holographic interferograms is demonstrated in which the recorded scene beam with disturbance present is made to interfere with the real-time scene beam after the disturbance is removed. The reference phase is adjusted during reconstruction by manipulating either the scene or reference beams. Comparisons are made between the present technique and the two-reference-beam and two-plate techniques, more commonly used for phase control during reconstruction of holographic interferograms for flow visualization.

  12. Digital inline holographic microscopy (DIHM) of weakly-scattering subjects.

    PubMed

    Giuliano, Camila B; Zhang, Rongjing; Wilson, Laurence G

    2014-01-01

    Weakly-scattering objects, such as small colloidal particles and most biological cells, are frequently encountered in microscopy. Indeed, a range of techniques have been developed to better visualize these phase objects; phase contrast and DIC are among the most popular methods for enhancing contrast. However, recording position and shape in the out-of-imaging-plane direction remains challenging. This report introduces a simple experimental method to accurately determine the location and geometry of objects in three dimensions, using digital inline holographic microscopy (DIHM). Broadly speaking, the accessible sample volume is defined by the camera sensor size in the lateral direction, and the illumination coherence in the axial direction. Typical sample volumes range from 200 µm x 200 µm x 200 µm using LED illumination, to 5 mm x 5 mm x 5 mm or larger using laser illumination. This illumination light is configured so that plane waves are incident on the sample. Objects in the sample volume then scatter light, which interferes with the unscattered light to form interference patterns perpendicular to the illumination direction. This image (the hologram) contains the depth information required for three-dimensional reconstruction, and can be captured on a standard imaging device such as a CMOS or CCD camera. The Rayleigh-Sommerfeld back propagation method is employed to numerically refocus microscope images, and a simple imaging heuristic based on the Gouy phase anomaly is used to identify scattering objects within the reconstructed volume. This simple but robust method results in an unambiguous, model-free measurement of the location and shape of objects in microscopic samples. PMID:24561665

  13. Digital Inline Holographic Microscopy (DIHM) of Weakly-scattering Subjects

    PubMed Central

    Giuliano, Camila B.; Zhang, Rongjing; Wilson, Laurence G.

    2014-01-01

    Weakly-scattering objects, such as small colloidal particles and most biological cells, are frequently encountered in microscopy. Indeed, a range of techniques have been developed to better visualize these phase objects; phase contrast and DIC are among the most popular methods for enhancing contrast. However, recording position and shape in the out-of-imaging-plane direction remains challenging. This report introduces a simple experimental method to accurately determine the location and geometry of objects in three dimensions, using digital inline holographic microscopy (DIHM). Broadly speaking, the accessible sample volume is defined by the camera sensor size in the lateral direction, and the illumination coherence in the axial direction. Typical sample volumes range from 200 µm x 200 µm x 200 µm using LED illumination, to 5 mm x 5 mm x 5 mm or larger using laser illumination. This illumination light is configured so that plane waves are incident on the sample. Objects in the sample volume then scatter light, which interferes with the unscattered light to form interference patterns perpendicular to the illumination direction. This image (the hologram) contains the depth information required for three-dimensional reconstruction, and can be captured on a standard imaging device such as a CMOS or CCD camera. The Rayleigh-Sommerfeld back propagation method is employed to numerically refocus microscope images, and a simple imaging heuristic based on the Gouy phase anomaly is used to identify scattering objects within the reconstructed volume. This simple but robust method results in an unambiguous, model-free measurement of the location and shape of objects in microscopic samples. PMID:24561665

  14. Correlation between mesopore volume of carbon supports and the immobilization of laccase from Trametes versicolor for the decolorization of Acid Orange 7.

    PubMed

    Ramírez-Montoya, Luis A; Hernández-Montoya, Virginia; Montes-Morán, Miguel A; Cervantes, Francisco J

    2015-10-01

    Immobilization of laccase from Trametes versicolor was carried out using carbon supports prepared from different lignocellulosic wastes. Enzymes were immobilized by physical adsorption. Taguchi methodology was selected for the design of experiments regarding the preparation of the carbon materials, which included the use of activating agents for the promotion of mesoporosity. A good correlation between the mesopore volumes of the carbon supports and the corresponding laccase loadings attained was observed. Specifically, the chemical activation of pecan nut shell with FeCl3 led to a highly mesoporous material that also behaved as the most efficient support for the immobilization of laccase. This particular laccase/carbon support system was used as biocatalyst for the decolorization of aqueous solutions containing Acid Orange 7. Mass spectrometry coupled to a liquid chromatograph allowed us to identify the products of the dye degradation.

  15. In situ 19F MRS measurement of RIF-1 tumor blood volume: corroboration by radioisotope-labeled [125I]-albumin and correlation to tumor size.

    PubMed

    Baldwin, N J; Wang, Y; Ng, T C

    1996-01-01

    Tumor blood volume (TBV) is an important factor in the metabolism of a tumor and in its response to therapy. Until recently, the only methods to determine TBV were highly invasive and many involved radioisotopes. In this study, a perfluorocarbon (PFC) emulsion, Oxypherol, was monitored by 19F magnetic resonance spectroscopy (MRS). TBVs as determined by 19F MRS of in situ and excised radiation-induced fibrosarcoma (RIF-1) tumors (n = 9), were strongly correlated with the TBV measured by a radioisotope labeled albumin method (slopes of 1.1 and 0.8 with R = 0.86 and 0.91, respectively, by linear regression). In general, the TBV as calculated from the in situ MRS measurements (n = 24) decreased from 28 to 5 ml/100 g tumor mass for tumors ranging in mass from 0.15 to 2 g. However, there was an indication of an initial increase of TBV in tumors smaller than 0.5 g.

  16. Correlation between mesopore volume of carbon supports and the immobilization of laccase from Trametes versicolor for the decolorization of Acid Orange 7.

    PubMed

    Ramírez-Montoya, Luis A; Hernández-Montoya, Virginia; Montes-Morán, Miguel A; Cervantes, Francisco J

    2015-10-01

    Immobilization of laccase from Trametes versicolor was carried out using carbon supports prepared from different lignocellulosic wastes. Enzymes were immobilized by physical adsorption. Taguchi methodology was selected for the design of experiments regarding the preparation of the carbon materials, which included the use of activating agents for the promotion of mesoporosity. A good correlation between the mesopore volumes of the carbon supports and the corresponding laccase loadings attained was observed. Specifically, the chemical activation of pecan nut shell with FeCl3 led to a highly mesoporous material that also behaved as the most efficient support for the immobilization of laccase. This particular laccase/carbon support system was used as biocatalyst for the decolorization of aqueous solutions containing Acid Orange 7. Mass spectrometry coupled to a liquid chromatograph allowed us to identify the products of the dye degradation. PMID:26241936

  17. Archaeal community structure in leachate and solid waste is correlated to methane generation and volume reduction during biodegradation of municipal solid waste.

    PubMed

    Fei, Xunchang; Zekkos, Dimitrios; Raskin, Lutgarde

    2015-02-01

    Duplicate carefully-characterized municipal solid waste (MSW) specimens were reconstituted with waste constituents obtained from a MSW landfill and biodegraded in large-scale landfill simulators for about a year. Repeatability and relationships between changes in physical, chemical, and microbial characteristics taking place during the biodegradation process were evaluated. Parameters such as rate of change of soluble chemical oxygen demand in the leachate (rsCOD), rate of methane generation (rCH4), rate of specimen volume reduction (rVt), DNA concentration in the leachate, and archaeal community structures in the leachate and solid waste were monitored during operation. The DNA concentration in the leachate was correlated to rCH4 and rVt. The rCH4 was related to rsCOD and rVt when waste biodegradation was intensive. The structures of archaeal communities in the leachate and solid waste of both simulators were very similar and Methanobacteriaceae were the dominant archaeal family throughout the testing period. Monitoring the chemical and microbial characteristics of the leachate was informative of the biodegradation process and volume reduction in the simulators, suggesting that leachate monitoring could be informative of the extent of biodegradation in a full-scale landfill.

  18. Noise exposure modulates cochlear inner hair cell ribbon volumes, correlating with changes in auditory measures in the FVB/nJ mouse

    PubMed Central

    Paquette, Stephen T.; Gilels, Felicia; White, Patricia M.

    2016-01-01

    Cochlear neuropathy resulting from unsafe noise exposure is a life altering condition that affects many people. This hearing dysfunction follows a conserved mechanism where inner hair cell synapses are lost, termed cochlear synaptopathy. Here we investigate cochlear synaptopathy in the FVB/nJ mouse strain as a prelude for the investigation of candidate genetic mutations for noise damage susceptibility. We used measurements of auditory brainstem response (ABR) and distortion product otoacoustic emissions (DPOAE) to assess hearing recovery in FVB/nJ mice exposed to two different noise levels. We also utilized confocal fluorescence microscopy in mapped whole mount cochlear tissue, in conjunction with deconvolution and three-dimensional modeling, to analyze numbers, volumes and positions of paired synaptic components. We find evidence for significant synapse reorganization in response to both synaptopathic and sub-synaptopathic noise exposures in FVB/nJ. Specifically, we find that the modulation in volume of very small synaptic ribbons correlates with the presence of reduced ABR peak one amplitudes in both levels of noise exposures. These experiments define the use of FVB/nJ mice for further genetic investigations into the mechanisms of noise damage. They further suggest that in the cochlea, neuronal-inner hair cell connections may dynamically reshape as part of the noise response. PMID:27162161

  19. Holographic instrumentation for monitoring crystal growth in space

    NASA Technical Reports Server (NTRS)

    Trolinger, James D.; Lal, Ravindra B.; Batra, Ashok K.

    1990-01-01

    Measurement requirements and candidates for measuring crystal growth in space are described, emphasizing holographic instrumentation. Existing instrumentation planned for the IML-1 Spaceflight is described along with advanced concepts for future application which incorporate diode lasers, fiber optics, and holographic optical elements. Particle image displacement velocimetry in crystal growth chambers is described.

  20. Three-dimensional display based on refreshable volume holograms in photochromic diarylethene polymer

    NASA Astrophysics Data System (ADS)

    Cao, Liangcai; Wang, Zheng; Li, Chengmingyue; Li, Cunpu; Zhang, Fushi; Jin, Guofan

    2015-03-01

    Holographic display is a promising technique for three-dimensional (3D) display because it has the ability to reconstruct both the intensity and wavefront of a 3D object. Real-time holographic display has been demonstrated in photorefractive polymers. It is expected to carry out dynamic 3D display by recording holograms into a volume holographic polymer due to its high-density storage capacity, good multiplexing property. In this work an updatable 3D display based on volume holographic polymer of photochromic diarylethene is proposed. The photochromic diarylethene polymer is a promising rewritable recording material for holograms with high resolution, fatigue resistance and quick responding of erasure. The computer-generated holograms carrying with wavefronts of 3D objects are written to the diarylethene polymer, and the recorded holograms in the polymer can be easily erased when exposed in ultraviolet light. The 3D scenes can be reconstructed for the write/erase cycles.