Modular container assembled from fiber reinforced thermoplastic sandwich panels
Donnelly, Mathew William; Kasoff, William Andrew; Mcculloch, Patrick Carl; Williams, Frederick Truman
2007-12-25
An improved, load bearing, modular design container structure assembled from thermoformed FRTP sandwich panels in which is utilized the unique core-skin edge configuration of the present invention in consideration of improved load bearing performance, improved useful load volume, reduced manufacturing costs, structural weight savings, impact and damage tolerance and repair and replace issues.
Li, Duo; Han, Fei; Wang, Shuai; Cheng, Fei; Sun, Qiang; Li, Wen-Cui
2013-03-01
Porous carbon materials with large pore volume are crucial in loading insulated sulfur with the purpose of achieving high performance for lithium-sulfur batteries. In our study, peapodlike mesoporous carbon with interconnected pore channels and large pore volume (4.69 cm(3) g(-1)) was synthesized and used as the matrix to fabricate carbon/sulfur (C/S) composite which served as attractive cathodes for lithium-sulfur batteries. Systematic investigation of the C/S composite reveals that the carbon matrix can hold a high but suitable sulfur loading of 84 wt %, which is beneficial for improving the bulk density in practical application. Such controllable sulfur-filling also effectively allows the volume expansion of active sulfur during Li(+) insertion. Moreover, the thin carbon walls (3-4 nm) of carbon matrix not only are able to shorten the pathway of Li(+) transfer and conduct electron to overcome the poor kinetics of sulfur cathode, but also are flexible to warrant structure stability. Importantly, the peapodlike carbon shell is beneficial to increase the electrical contact for improving electronic conductivity of active sulfur. Meanwhile, polymer modification with polypyrrole coating layer further restrains polysulfides dissolution and improves the cycle stability of carbon/sulfur composites.
NASA Technical Reports Server (NTRS)
Mickey, F. E.; Mcewan, A. J.; Ewing, E. G.; Huyler, W. C., Jr.; Khajeh-Nouri, B.
1970-01-01
An analysis was conducted with the objective of upgrading and improving the loads, stress, and performance prediction methods for Apollo spacecraft parachutes. The subjects considered were: (1) methods for a new theoretical approach to the parachute opening process, (2) new experimental-analytical techniques to improve the measurement of pressures, stresses, and strains in inflight parachutes, and (3) a numerical method for analyzing the dynamical behavior of rapidly loaded pilot chute risers.
Study of inducer load and stress, volume 2
NASA Technical Reports Server (NTRS)
1972-01-01
A program of analysis, design, fabrication and testing has been conducted to develop computer programs for predicting rocket engine turbopump inducer hydrodynamic loading, stress magnitude and distribution, and vibration characteristics. Methods of predicting blade loading, stress, and vibration characteristics were selected from a literature search and used as a basis for the computer programs. An inducer, representative of typical rocket engine inducers, was designed, fabricated, and tested with special instrumentation selected to provide measurements of blade surface pressures and stresses. Data from the tests were compared with predicted values and the computer programs were revised as required to improve correlation. For Volume 1 see N71-20403. For Volume 2 see N71-20404.
SWMM IMPROVEMENT FOR ANALYZING BMP/LTD PERFORMANCE
Pollution and treatment costs associated with wet weather flows (WWFs) have caused a need for reducing stormwater runoff volumes as well as loads. A number of strategies and best management practices (BMPs) are being used to mitigate runoff volumes and associated nonpoint source...
DOT National Transportation Integrated Search
2012-12-01
Traffic is one of the primary inputs in pavement design. Traditional pavement design procedures account for traffic using the equivalent single axle loads (ESALs) accumulated during the life of the pavement structure. This procedure is based on co...
Short-Term Effects of Different Loading Schemes in Fitness-Related Resistance Training.
Eifler, Christoph
2016-07-01
Eifler, C. Short-term effects of different loading schemes in fitness-related resistance training. J Strength Cond Res 30(7): 1880-1889, 2016-The purpose of this investigation was to analyze the short-term effects of different loading schemes in fitness-related resistance training and to identify the most effective loading method for advanced recreational athletes. The investigation was designed as a longitudinal field-test study. Two hundred healthy mature subjects with at least 12 months' experience in resistance training were randomized in 4 samples of 50 subjects each. Gender distribution was homogenous in all samples. Training effects were quantified by 10 repetition maximum (10RM) and 1 repetition maximum (1RM) testing (pre-post-test design). Over a period of 6 weeks, a standardized resistance training protocol with 3 training sessions per week was realized. Testing and training included 8 resistance training exercises in a standardized order. The following loading schemes were randomly matched to each sample: constant load (CL) with constant volume of repetitions, increasing load (IL) with decreasing volume of repetitions, decreasing load (DL) with increasing volume of repetitions, daily changing load (DCL), and volume of repetitions. For all loading schemes, significant strength gains (p < 0.001) could be noted for all resistance training exercises and both dependent variables (10RM, 1RM). In all cases, DCL obtained significantly higher strength gains (p < 0.001) than CL, IL, and DL. There were no significant differences in strength gains between CL, IL, and DL. The present data indicate that resistance training following DCL is more effective for advanced recreational athletes than CL, IL, or DL. Considering that DCL is widely unknown in fitness-related resistance training, the present data indicate, there is potential for improving resistance training in commercial fitness clubs.
Patil, Nitin S; Mendhe, Rakesh B; Sankar, Ajeet A; Iyer, Harish
2008-01-11
In preparative chromatography, often the solubility of the sample in the mobile phase is limited, making the mobile phase unsuitable as a solvent for preparation of load. Generally, solvents that have high solubility for the sample also have higher elution strengths than the mobile phase. Additionally, at high loading volumes, these strong sample solvents are known to adversely affect the band profiles leading to poor chromatographic performance. Here, we show that controlling the mobile phase strength during loading and post-load elution resulted in improved band profiles when the sample solvent was stronger than the mobile phase. Such an approach improves performance in preparative chromatography by allowing either higher sample loading or higher organic content in mobile phase (without loss of yield). Alternately, the approach can be used for improvement in performance by increase in yield or product purity.
NASA Astrophysics Data System (ADS)
Ningaraju, S.; Hegde, Vinayakaprasanna N.; Prakash, A. P. Gnana; Ravikumar, H. B.
2018-04-01
Polymer nanocomposites of Poly (styrene co-acrylonitrile)/Nickel Oxide (PSAN/NiO) have been prepared. The increased free volume sizes up to 0.4 wt% of NiO loading indicates overall reduction in packing density of polymer network. The decreased o-Ps lifetime (τ3) at higher concentration of NiO indicates improved interfacial interaction between the surface of NiO nanoparticles and side chain of PSAN polymer matrix. The increased AC/DC conductivity at lower wt% of NiO loading demonstrates increased number of electric charge carriers/mobile ions and their mobility. The increased dielectric constant and dielectric loss up to 0.4 wt% of NiO loading suggests the increased dipoles polarization.
Parametric evaluation of ball milling of SiC in water
NASA Technical Reports Server (NTRS)
Kiser, J. D.; Herbell, T. P.; Freedman, M. R.
1985-01-01
A statistically designed experiment was conducted to determine optimum conditions for ball milling alpha-SiC in water. The influence of pH adjustment, volume percent solids loading, and mill rotational speed on grinding effectiveness was examined. An equation defining the effect of those milling variables on specific surface area was obtained. The volume percent solids loading of the slurry had the greatest influence on the grinding effectiveness in terms of increase in specific surface area. As grinding effectiveness improved, mill and media wear also increased. Contamination was minimized by use of sintered alpha-SiC milling hardware.
Assuring Life in Composite Systems
NASA Technical Reports Server (NTRS)
Chamis, Christos c.
2008-01-01
A computational simulation method is presented to assure life in composite systems by using dynamic buckling of smart composite shells as an example. The combined use of composite mechanics, finite element computer codes, and probabilistic analysis enable the effective assessment of the dynamic buckling load of smart composite shells. A universal plot is generated to estimate the dynamic buckling load of composite shells at various load rates and probabilities. The shell structure is also evaluated with smart fibers embedded in the plies right below the outer plies. The results show that, on the average, the use of smart fibers improved the shell buckling resistance by about 9% at different probabilities and delayed the buckling occurrence time. The probabilistic sensitivities results indicate that uncertainties in the fiber volume ratio and ply thickness have major effects on the buckling load. The uncertainties in the electric field strength and smart material volume fraction have moderate effects and thereby in the assured life of the shell.
Probabilistic Dynamic Buckling of Smart Composite Shells
NASA Technical Reports Server (NTRS)
Abumeri, Galib H.; Chamis, Christos C.
2003-01-01
A computational simulation method is presented to evaluate the deterministic and nondeterministic dynamic buckling of smart composite shells. The combined use of composite mechanics, finite element computer codes, and probabilistic analysis enable the effective assessment of the dynamic buckling load of smart composite shells. A universal plot is generated to estimate the dynamic buckling load of composite shells at various load rates and probabilities. The shell structure is also evaluated with smart fibers embedded in the plies right below the outer plies. The results show that, on the average, the use of smart fibers improved the shell buckling resistance by about 10 percent at different probabilities and delayed the buckling occurrence time. The probabilistic sensitivities results indicate that uncertainties in the fiber volume ratio and ply thickness have major effects on the buckling load while uncertainties in the electric field strength and smart material volume fraction have moderate effects. For the specific shell considered in this evaluation, the use of smart composite material is not recommended because the shell buckling resistance can be improved by simply re-arranging the orientation of the outer plies, as shown in the dynamic buckling analysis results presented in this report.
Probabilistic Dynamic Buckling of Smart Composite Shells
NASA Technical Reports Server (NTRS)
Chamis, Christos C.; Abumeri, Galib H.
2007-01-01
A computational simulation method is presented to evaluate the deterministic and nondeterministic dynamic buckling of smart composite shells. The combined use of intraply hybrid composite mechanics, finite element computer codes, and probabilistic analysis enable the effective assessment of the dynamic buckling load of smart composite shells. A universal plot is generated to estimate the dynamic buckling load of composite shells at various load rates and probabilities. The shell structure is also evaluated with smart fibers embedded in the plies right next to the outer plies. The results show that, on the average, the use of smart fibers improved the shell buckling resistance by about 10% at different probabilities and delayed the buckling occurrence time. The probabilistic sensitivities results indicate that uncertainties in the fiber volume ratio and ply thickness have major effects on the buckling load while uncertainties in the electric field strength and smart material volume fraction have moderate effects. For the specific shell considered in this evaluation, the use of smart composite material is not recommended because the shell buckling resistance can be improved by simply re-arranging the orientation of the outer plies, as shown in the dynamic buckling analysis results presented in this report.
NASA Astrophysics Data System (ADS)
Nguyen, K. L.; Gabov, V. V.; Zadkov, D. A.; Le, T. B.
2018-03-01
This paper analyzes the processes of removing coal from the area of its dislodging and loading the disintegrated mass onto face conveyors by auger heads of shearer-loader machines. The loading process is assumed to consist of four subprocesses: dislodging coal, removal of the disintegrated mass by auger blades from the crushing area, passive transportation of the disintegrated mass, and forming the load flow on the bearing surface of a face conveyor. Each of the considered subprocesses is different in its physical nature, the number of factors influencing it, and can be complex or multifactor. Possibilities of improving the efficiency of loading coal onto a face conveyor are addressed. The selected criteria of loading efficiency are load rate, specific energy consumption, and coal size reduction. Efficiency is improved by reducing the resistance to movement of the disintegrated mass during loading by increasing the area of the loading window section and the volume of the loading area on the conveyor, as well as by coordination of intensity of flows related to the considered processes in local areas.
Chevalier, Yan; Santos, Inês; Müller, Peter E; Pietschmann, Matthias F
2016-06-14
Glenoid loosening is still a main complication for shoulder arthroplasty. We hypothesize that cement and bone stresses potentially leading to fixation failure are related not only to glenohumeral conformity, fixation design or eccentric loading, but also to bone volume fraction, cortical thickness and degree of anisotropy in the glenoid. In this study, periprosthetic bone and cement stresses were computed with micro finite element models of the replaced glenoid depicting realistic bone microstructure. These models were used to quantify potential effects of bone microstructural parameters under loading conditions simulating different levels of glenohumeral conformity and eccentric loading simulating glenohumeral instability. Results show that peak cement stresses were achieved near the cement-bone interface in all loading schemes. Higher stresses within trabecular bone tissue and cement mantle were obtained within specimens of lower bone volume fraction and in regions of low anisotropy, increasing with decreasing glenohumeral conformity and reaching their maxima below the keeled design when the load is shifted superiorly. Our analyses confirm the combined influences of eccentric load shifts with reduced bone volume fraction and anisotropy on increasing periprosthetic stresses. They finally suggest that improving fixation of glenoid replacements must reduce internal cement and bone tissue stresses, in particular in glenoids of low bone density and heterogeneity. Copyright © 2016 Elsevier Ltd. All rights reserved.
Does Stroke Volume Increase During an Incremental Exercise? A Systematic Review
Vieira, Stella S.; Lemes, Brunno; de T. C. de Carvalho, Paulo; N. de Lima, Rafael; S. Bocalini, Danilo; A. S. Junior, José; Arsa, Gisela; A. Casarin, Cezar; L. Andrade, Erinaldo; J. Serra, Andrey
2016-01-01
Introduction: Cardiac output increases during incremental-load exercise to meet metabolic skeletal muscle demand. This response requires a fast adjustment in heart rate and stroke volume. The heart rate is well known to increase linearly with exercise load; however, data for stroke volume during incremental-load exercise are unclear. Our objectives were to (a) review studies that have investigated stroke volume on incremental load exercise and (b) summarize the findings for stroke volume, primarily at maximal-exercise load. Methods: A comprehensive review of the Cochrane Library’s, Embase, Medline, SportDiscus, PubMed, and Web of Sci-ence databases was carried out for the years 1985 to the present. The search was performed between February and June 2014 to find studies evaluating changes in stroke volume during incremental-load exercise. Controlled and uncontrolled trials were evaluated for a quality score. Results: The stroke volume data in maximal-exercise load are inconsistent. There is evidence to hypothesis that stroke volume increases during maximal-exercise load, but other lines of evidence indicate that stroke volume reaches a plateau under these circumstances, or even decreases. Conclusion: The stroke volume are unclear, include contradictory evidence. Additional studies with standardized reporting for subjects (e.g., age, gender, physical fitness, and body position), exercise test protocols, and left ventricular function are required to clarify the characteristics of stroke volume during incremental maximal-exercise load. PMID:27347221
Load research manual. Volume 3. Load research for advanced technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brandenburg, L.; Clarkson, G.; Grund, Jr., C.
1980-11-01
This three-volume manual presents technical guidelines for electric utility load research. Special attention is given to issues raised by the load data reporting requirements of the Public Utility Regulatory Policies Act of 1978 and to problems faced by smaller utilities that are initiating load research programs. The manual includes guides to load research literature and glossaries of load research and statistical terms. In Volume 3, special load research procedures are presented for solar, wind, and cogeneration technologies.
Clothes Dryer Automatic Termination Evaluation
DOE Office of Scientific and Technical Information (OSTI.GOV)
TeGrotenhuis, Ward E.
Volume 2: Improved Sensor and Control Designs Many residential clothes dryers on the market today provide automatic cycles that are intended to stop when the clothes are dry, as determined by the final remaining moisture content (RMC). However, testing of automatic termination cycles has shown that many dryers are susceptible to over-drying of loads, leading to excess energy consumption. In particular, tests performed using the DOE Test Procedure in Appendix D2 of 10 CFR 430 subpart B have shown that as much as 62% of the energy used in a cycle may be from over-drying. Volume 1 of this reportmore » shows an average of 20% excess energy from over-drying when running automatic cycles with various load compositions and dryer settings. Consequently, improving automatic termination sensors and algorithms has the potential for substantial energy savings in the U.S.« less
Patel, Sulabh P.; Vaishya, Ravi; Patel, Ashaben; Agrahari, Vibhuti; Pal, Dhananjay; Mitra, Ashim K.
2016-01-01
This manuscript is focused on the development of pentablock (PB) copolymer based sustained release formulation for the treatment of posterior segment ocular diseases. We have successfully synthesized biodegradable and biocompatible PB copolymers for the preparation of nanoparticles (NPs) and thermosensitive gel. Achieving high drug loading with hydrophilic biotherapeutics (peptides /proteins) is a challenging task. Moreover, small intravitreal injection volume (≤100 μL) requires high loading to develop a long term (6 months) sustained release formulation. We have successfully investigated various formulation parameters to achieve maximum peptide/protein (octreotide, insulin, lysozyme, IgG-Fab, IgG, and catalase) loading in PB NPs. Improvement in drug loading can facilitate delivery of larger doses of therapeutic proteins via limited injection volume. A composite formulation comprised of NPs in gel system exhibited sustained release (without burst effect) of peptides and proteins, may serve as a platform technology for the treatment of posterior segment ocular diseases. PMID:26964498
Wolfand, Jordyn M; Bell, Colin D; Boehm, Alexandria B; Hogue, Terri S; Luthy, Richard G
2018-06-05
Stormwater best management practices (BMPs) are implemented to reduce microbial pollution in runoff, but their removal efficiencies differ. Enhanced BMPs, such as those with media amendments, can increase removal of fecal indicator bacteria (FIB) in runoff from 0.25-log 10 to above 3-log 10 ; however, their implications for watershed-scale management are poorly understood. In this work, a computational model was developed to simulate watershed-scale bacteria loading and BMP performance using the Ballona Creek Watershed (Los Angeles County, CA) as a case study. Over 1400 scenarios with varying BMP performance, percent watershed area treated, BMP treatment volume, and infiltrative capabilities were simulated. Incremental improvement of BMP performance by 0.25-log 10 , while keeping other scenario variables constant, reduces annual bacterial load at the outlet by a range of 0-29%. In addition, various simulated scenarios provide the same FIB load reduction; for example, 75% load reduction is achieved by diverting runoff from either 95% of the watershed area to 25 000 infiltrating BMPs with 0.5-log 10 removal or 75% of the watershed area to 75 000 infiltrating BMPs with 1.5-log 10 removal. Lastly, simulated infiltrating BMPs provide greater FIB reduction than noninfiltrating BMPs at the watershed scale. Results provide new insight on the trade-offs between BMP treatment volume, performance, and distribution.
[Information hygiene and regulation of information for vulnerable groups of the population].
Denisov, E I; Eremin, A L; Sivochalova, O V; Kurerov, N N
2014-01-01
Development of information society engenders the problem of hygienic regulation of information load for the population, first of all for vulnerable groups. There are presented international and Russian normative legal documents and experience in this area, there are described the negative effects of information (such as stress, depression, suicidal ideations). There are considered social-psychological characteristics of vulnerable groups that requires their best protection from loads of information, doing harm, particularly in terms of reproductive health, family relationships, children, etc. There was noted the desirability of improvement of sanitary, legislation on the regulation of the information load on the population, especially in vulnerable groups, in terms of optimization of parameters of the signal-carriers on volume, brightness and the adequacy of the volume and content of information in radio and television broadcasting, in an urban environment and at the plant to preserve the health and well-being of the population.
NASA Technical Reports Server (NTRS)
Simanonok, K. E.; Fortney, S. M.; Ford, S. R.; Charles, J. B.; Ward, D. F.
1994-01-01
Shuttle astronauts currently drink approximately a quart of water with eight salt tablets before reentry to restore lost body fluid and thereby reduce the likelihood of cardiovascular instability and syncope during reentry and after landing. However, the saline loading countermeasure is not entirely effective in restoring orthostatic tolerance to preflight levels. We tested the hypothesis that the effectiveness of this countermeasure could be improved with the use of a vasopressin analog, 1-deamino-8-D-arginine vasopressin (dDAVP). The rationale for this approach is that reducing urine formation with exogenous vasopressin should increase the magnitude and duration of the vascular volume expansion produced by the saline load, and in so doing improve orthostatic tolerance during reentry and postflight.
DOT National Transportation Integrated Search
2012-12-01
The recently developed mechanistic-empirical pavement design guide (MEPDG) requires a multitude of traffic : inputs to be defined for the design of pavement structures, including the initial two-way annual average daily truck : traffic (AADTT), direc...
ABSORPTION METHOD FOR SEPARATING METAL CATIONS
Tompkins, E.R.; Parker, G.W.
1959-03-10
An improved method is presented for the chromatographic separation of fission products wherein a substantial reduction in liquid volume is obtained. The process consists in contacting a solution containing fission products with a body of ion-exchange adsorbent to effect adsorption of fission product cations. The loaded exchange resin is then contacted with a small volume of a carboxylic acid eluant, thereby recovering the fission products. The fission product carrying eluate is acidified without increasing its volume to the volume of the original solution, and the acidified eluate is then used as a feed solution for a smaller body of ion-exchange resin effecting readsorption of the fission product cations.
Moir, Gavin L; Mergy, David; Witmer, Ca; Davis, Shala E
2011-06-01
The acute effects of manipulating the volume and load of back squats on subsequent countermovement vertical jump performance were investigated in the present study. Eleven National Collegiate Athletic Association division II female volleyball players performed 10 countermovement vertical jumps (CMJs) on a force platform 2 minutes after the last squat repetition of a high-load (HL) or high-volume (HV) squat protocol. Two minutes of rest was provided between each CMJ. The HL protocol culminated in the subjects having to perform 3 repetitions with a load equivalent to 90% 1 repetition maximum (1RM) back squat, whereas 12 repetitions with a load equivalent to 37% 1RM were performed in the HV protocol. During an initial familiarization session, knee angles were recorded during a series of CMJs, and these angles were used to control the depth of descent during all subsequent back squats. Jump height (JH) and vertical stiffness (VStiff) were calculated during each of the 10 CMJ, and the change in these variables after the 2 squat protocols was assessed using an analysis of variance model with repeated measures on 2 factors (Protocol [2-levels]; Time [2-levels]). There was no significant difference in JH after the HL and HV protocols (p > 0.05). A significant Protocol × Time interaction for VStiff resulted from the increase after the HL protocol being greater than that after the HV protocol (p = 0.03). The knee angles before the HL and HV protocols were significantly greater than those measured during the initial familiarization session (p = 0.001). Although neither squat protocol provided any benefit in improving JH, the heavy squat protocol produced greater increases in VStiff during the CMJ. Because of the increased VStiff caused by the HL protocol, volleyball coaches may consider using such protocols with their players to improve performance in jumps performed from a run such as the spike and on-court agility.
NASA Technical Reports Server (NTRS)
Srinivasan, R. S.; Simanonok, K. E.; Charles, J. B.
1994-01-01
Fluid loading (FL) before Shuttle reentry is a countermeasure currently in use by NASA to improve the orthostatic tolerance of astronauts during reentry and postflight. The fluid load consists of water and salt tablets equivalent to 32 oz (946 ml) of isotonic saline. However, the effectiveness of this countermeasure has been observed to decrease with the duration of spaceflight. The countermeasure's effectiveness may be improved by enhancing fluid retention using analogs of vasopressin such as lypressin (LVP) and desmopressin (dDAVP). In a computer simulation study reported previously, we attempted to assess the improvement in fluid retention obtained by the use of LVP administered before FL. The present study is concerned with the use of dDAVP. In a recent 24-hour, 6 degree head-down tilt (HDT) study involving seven men, dDAVP was found to improve orthostatic tolerance as assessed by both lower body negative pressure (LBNP) and stand tests. The treatment restored Luft's cumulative stress index (cumulative product of magnitude and duration of LBNP) to nearly pre-bedrest level. The heart rate was lower and stroke volume was marginally higher at the same LBNP levels with administration of dDAVP compared to placebo. Lower heart rates were also observed with dDAVP during stand test, despite the lower level of cardiovascular stress. These improvements were seen with only a small but significant increase in plasma volume of approximately 3 percent. This paper presents a computer simulation analysis of some of the results of this HDT study.
NASA Astrophysics Data System (ADS)
Li, S. H.; Zhu, W. C.; Niu, L. L.; Yu, M.; Chen, C. F.
2018-06-01
A split Hopkinson pressure bar apparatus driven by a pendulum hammer was used to perform uniaxial compression tests to examine the degradation process of green sandstone subjected to repetitive impact loading. The acoustic characteristics, dissipated energy, deformation characteristics, and microstructure evolution were investigated. The representative stress-strain curve can be broken into five stages that were characterized by changes in the axial strain response during impact loading. Both the ultrasonic wave velocity and cumulative dissipated energy exhibited obvious three-stage behavior with respect to the impact number. As the impact number increased, more than one peak was observed in the frequency spectra, and the relative weight of the peak frequency increased in the low-frequency range. According to the evolution of the ultrasonic wave velocity, the degradation process was divided into three stages. By comparing the intact stage I and early stage II microcrack development patterns, the initiation of new cracks and elongation of existing cracks were identified as the main degradation mechanisms. Furthermore, a slight increase in the number of cracks was observed, and microcrack lengths steadily increased. Moreover, due to the low level of microcrack damage, the deformation mechanism was mainly characterized by volume compression during impact loading. In late stage II, the main degradation mechanism was the elongation of existing cracks. Additionally, as microcracks accumulated in the rock samples, cracks were arranged parallel to the loading direction, which led to volume dilation. In stage III, microcracks continued to elongate nearly parallel to the loading direction and then linked to each other, which led to intense degradation in the rock samples. In this stage, rock sample deformation was mainly characterized by volume dilation during impact loading. Finally, rock samples were split into blocks with fractures oriented subparallel to the loading direction. These results can improve the understanding of the stability evaluations of rock structures subjected to repetitive impact loading.
Grahn, Dennis A; Cao, Vinh H; Nguyen, Christopher M; Liu, Mengyuan T; Heller, H Craig
2012-09-01
Body core cooling via the palm of a hand increases work volume during resistive exercise. We asked: (a) "Is there a correlation between elevated core temperatures and fatigue onset during resistive exercise?" and (b) "Does palm cooling between sets of resistive exercise affect strength and work volume training responses?" Core temperature was manipulated by 30-45 minutes of fixed load and duration treadmill exercise in the heat with or without palm cooling. Work volume was then assessed by 4 sets of fixed load bench press exercises. Core temperatures were reduced and work volumes increased after palm cooling (Control: Tes = 39.0 ± 0.1° C, 36 ± 7 reps vs. Cooling: Tes = 38.4 ± 0.2° C, 42 ± 7 reps, mean ± SD, n = 8, p < 0.001). In separate experiments, the impact of palm cooling on work volume and strength training responses were assessed. The participants completed biweekly bench press or pull-up exercises for multiple successive weeks. Palm cooling was applied for 3 minutes between sets of exercise. Over 3 weeks of bench press training, palm cooling increased work volume by 40% (vs. 13% with no treatment; n = 8, p < 0.05). Over 6 weeks of pull-up training, palm cooling increased work volume by 144% in pull-up experienced subjects (vs. 5% over 2 weeks with no treatment; n = 7, p < 0.001) and by 80% in pull-up naïve subjects (vs. 20% with no treatment; n = 11, p < 0.01). Strength (1 repetition maximum) increased 22% over 10 weeks of pyramid bench press training (4 weeks with no treatment followed by 6 weeks with palm cooling; n = 10, p < 0.001). These results verify previous observations about the effects of palm cooling on work volume, demonstrate a link between core temperature and fatigue onset during resistive exercise, and suggest a novel means for improving strength and work volume training responses.
Real-time volume rendering of 4D image using 3D texture mapping
NASA Astrophysics Data System (ADS)
Hwang, Jinwoo; Kim, June-Sic; Kim, Jae Seok; Kim, In Young; Kim, Sun Il
2001-05-01
Four dimensional image is 3D volume data that varies with time. It is used to express deforming or moving object in virtual surgery of 4D ultrasound. It is difficult to render 4D image by conventional ray-casting or shear-warp factorization methods because of their time-consuming rendering time or pre-processing stage whenever the volume data are changed. Even 3D texture mapping is used, repeated volume loading is also time-consuming in 4D image rendering. In this study, we propose a method to reduce data loading time using coherence between currently loaded volume and previously loaded volume in order to achieve real time rendering based on 3D texture mapping. Volume data are divided into small bricks and each brick being loaded is tested for similarity to one which was already loaded in memory. If the brick passed the test, it is defined as 3D texture by OpenGL functions. Later, the texture slices of the brick are mapped into polygons and blended by OpenGL blending functions. All bricks undergo this test. Continuously deforming fifty volumes are rendered in interactive time with SGI ONYX. Real-time volume rendering based on 3D texture mapping is currently available on PC.
DOT National Transportation Integrated Search
2017-11-01
Rail corridors often experience a wide variety of passenger and freight train loads, track geometry characteristics, and environmental conditions. These factors must be considered when developing an optimized concrete crosstie and fastening sys...
Manga, Mohamed S; York, David W
2017-09-12
Stirred cell membrane emulsification (SCME) has been employed to prepare concentrated Pickering oil in water emulsions solely stabilized by fumed silica nanoparticles. The optimal conditions under which highly stable and low-polydispersity concentrated emulsions using the SCME approach are highlighted. Optimization of the oil flux rates and the paddle stirrer speeds are critical to achieving control over the droplet size and size distribution. Investigating the influence of oil volume fraction highlights the criticality of the initial particle loading in the continuous phase on the final droplet size and polydispersity. At a particle loading of 4 wt %, both the droplet size and polydispersity increase with increasing of the oil volume fraction above 50%. As more interfacial area is produced, the number of particles available in the continuous phase diminishes, and coincidently a reduction in the kinetics of particle adsorption to the interface resulting in larger polydisperse droplets occurs. Increasing the particle loading to 10 wt % leads to significant improvements in both size and polydispersity with oil volume fractions as high as 70% produced with coefficient of variation values as low as ∼30% compared to ∼75% using conventional homogenization techniques.
Role of angiotensin in renal sympathetic activation in cirrhotic rats.
Voigt, M D; Jones, S Y; DiBona, G F
1999-08-01
Central nervous system (CNS) renin-angiotensin activity influences the basal level of renal sympathetic nerve activity (RSNA) and its reflex regulation. The effect of type 1 angiotensin II (ANG II)-receptor antagonist treatment (losartan) on cardiac baroreflex regulation of RSNA and renal sodium handling was examined in rats with cirrhosis due to common bile duct ligation (CBDL). Basal levels of heart rate, mean arterial pressure (MAP), RSNA, and urinary sodium excretion were not affected by intracerebroventricular administration of either losartan or vehicle to CBDL rats. After acute intravenous isotonic saline loading (10% body wt) in vehicle-treated CBDL rats, MAP was unchanged and the decrease in RSNA seen in normal rats did not occur. However, in losartan-treated CBDL rats, there were significant concurrent but transient decreases in MAP (-20 +/- 2 mmHg) and RSNA (-25 +/- 3%). The natriuretic response to acute volume loading in losartan-treated CBDL rats was significantly less than that in vehicle-treated CBDL rats only at those time points where there were significant decreases in MAP. Antagonism of CNS ANG II type 1 receptors augments the renal sympathoinhibitory response to acute volume loading in CBDL. However, the natriuretic response to the acute volume loading is not improved, likely due to the strong antinatriuretic influence of the concomitant marked decrease in MAP (renal perfusion pressure) mediated by widespread sympathetic withdrawal from the systemic vasculature.
Load research manual. Volume 1. Load research procedures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brandenburg, L.; Clarkson, G.; Grund, Jr., C.
1980-11-01
This three-volume manual presents technical guidelines for electric utility load research. Special attention is given to issues raised by the load data reporting requirements of the Public Utility Regulatory Policies Act of 1978 and to problems faced by smaller utilities that are initiating load research programs. In Volumes 1 and 2, procedures are suggested for determining data requirements for load research, establishing the size and customer composition of a load survey sample, selecting and using equipment to record customer electricity usage, processing data tapes from the recording equipment, and analyzing the data. Statistical techniques used in customer sampling are discussedmore » in detail. The costs of load research also are estimated, and ongoing load research programs at three utilities are described. The manual includes guides to load research literature and glossaries of load research and statistical terms.« less
Stauffer, R W; McCarter, M; Campbell, J L; Wheeler, L F
1987-11-01
Twenty-four first year United States Military Academy (USMA) men and women were studied to compare metabolic response differences in seven horizontal walking velocities, under three military load bearing conditions. The treadmill protocol consisted of walking or jogging on a horizontal treadmill surface for 3-min intervals at velocities of 3, 3.5, 4, 4.5, 5, 5.5, and 6 mph. The three military load bearing conditions weighed 5, 12, and 20 kg. Metabolic measurements taken at each speed in each of the military load bearing conditions were: minute volume, tidal volume, respiratory rate, absolute and relative to body weight oxygen consumption, and respiratory quotient. Two three-way analyses of variance for repeated measures tests with main effects of gender, military load, and speed revealed that USMA men and women metabolically respond to different military load bearing conditions; they metabolically respond to different walking and jogging velocities under military load bearing conditions; and they have identifiable and quantifiable metabolic response differences to military load bearing. This study was designed to improve USMA physical and military training programs by providing information to equally and uniformly administer the USMA Doctrine of Comparable Training to men and women alike; and additionally to clarify the "...minimal essential adjustments...required because of physiological differences between male and female individuals ..." portion of Public Law 94-106 providing for the admission of women to America's Service Academies.
Full scale phosphoric acid fuel cell stack technology development
NASA Technical Reports Server (NTRS)
Christner, L.; Faroque, M.
1984-01-01
The technology development for phosphoric acid fuel cells is summarized. The preparation, heat treatment, and characterization of carbon composites used as bipolar separator plates are described. Characterization included resistivity, porosity, and electrochemical corrosion. High density glassy carbon/graphite composites performed well in long-term fuel cell endurance tests. Platinum alloy cathode catalysts and low-loaded platinum electrodes were evaluated in 25 sq cm cells. Although the alloys displayed an initial improvement, some of this improvement diminished after a few thousand hours of testing. Low platinum loading (0.12 mg/sq cm anodes and 0.3 mg/sq cm cathodes) performed nearly as well as twice this loading. A selectively wetproofed anode backing paper was tested in a 5 by 15 inch three-cell stack. This material may provide for acid volume expansion, acid storage, and acid lateral distribution.
Load research manual. Volume 2. Fundamentals of implementing load research procedures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brandenburg, L.; Clarkson, G.; Grund, Jr., C.
This three-volume manual presents technical guidelines for electric utility load research. Special attention is given to issues raised by the load data reporting requirements of the Public Utility Regulatory Policies Act of 1978 and to problems faced by smaller utilities that are initiating load research programs. In Volumes 1 and 2, procedures are suggested for determining data requirements for load research, establishing the size and customer composition of a load survey sample, selecting and using equipment to record customer electricity usage, processing data tapes from the recording equipment, and analyzing the data. Statistical techniques used in customer sampling are discussedmore » in detail. The costs of load research also are estimated, and ongoing load research programs at three utilities are described. The manual includes guides to load research literature and glossaries of load research and statistical terms.« less
Torres-Torrelo, Julio; Rodríguez-Rosell, David; Mora-Custodio, Ricardo; Pareja-Blanco, Fernando; Yañez-García, Juan Manuel; González-Badillo, Juan José
2018-05-16
The purpose of this study was to compare the effects of 6 weeks resistance training (RT) with combined RT and loaded change of direction (CD) exercise on muscle strength and repeated sprint ability (RSA) in futsal players. Thirty-four players (age: 23.7±4.1 years; height: 1.77±0.06 m; body mass: 74.1±8.2 kg) were randomly assigned into three groups: full squat group (SG, n=12), combined full squat and CD group (S+CDG, n=12), and control group (CG, n=10). The RT for SG consisted of full squat with low-load (~45-60% 1RM) and low-volume (2-3 sets and 4-6 repetitions), whereas the S+CDG performed the same RT program combined with loaded CD (2-5 sets of 10 s). Estimated one-repetition maximum (1RM est ) and variables derived from RSA test including mean sprint time (RSA mean ), best sprint time (RSA best ), percent sprint decrement (S dec ), mean ground contact time (GCT mean ) and mean step length (SL) were selected as testing variables. Changes in sprint time and GCT in each sprint were also analysed. Both experimental groups showed significant (P<0.05-0.001) improvements for 1RM est , RSA best and first and second sprint time. In addition, S+CDG achieved significant (P<0.05-0.001) improvements in RSA mean, sprint time (from fifth to ninth sprint) and GCT (from third to eighth sprint). These results indicate that only 6 weeks of low-load and low-volume RT combined with CD in addition to routine futsal training is enough to improve RSA and strength performance simultaneously in futsal players. © Georg Thieme Verlag KG Stuttgart · New York.
Shaw, Andrew D; Raghunathan, Karthik; Peyerl, Fred W; Munson, Sibyl H; Paluszkiewicz, Scott M; Schermer, Carol R
2014-12-01
Recent data suggest that both elevated serum chloride levels and volume overload may be harmful during fluid resuscitation. The purpose of this study was to examine the relationship between the intravenous chloride load and in-hospital mortality among patients with systemic inflammatory response syndrome (SIRS), with and without adjustment for the crystalloid volume administered. We conducted a retrospective analysis of 109,836 patients ≥ 18 years old that met criteria for SIRS and received fluid resuscitation with crystalloids. We examined the association between changes in serum chloride concentration, the administered chloride load and fluid volume, and the 'volume-adjusted chloride load' and in-hospital mortality. In general, increases in the serum chloride concentration were associated with increased mortality. Mortality was lowest (3.7%) among patients with minimal increases in serum chloride concentration (0-10 mmol/L) and when the total administered chloride load was low (3.5% among patients receiving 100-200 mmol; P < 0.05 versus patients receiving ≥ 500 mmol). After controlling for crystalloid fluid volume, mortality was lowest (2.6%) when the volume-adjusted chloride load was 105-115 mmol/L. With adjustment for severity of illness, the odds of mortality increased (1.094, 95% CI 1.062, 1.127) with increasing volume-adjusted chloride load (≥ 105 mmol/L). Among patients with SIRS, a fluid resuscitation strategy employing lower chloride loads was associated with lower in-hospital mortality. This association was independent of the total fluid volume administered and remained significant after adjustment for severity of illness, supporting the hypothesis that crystalloids with lower chloride content may be preferable for managing patients with SIRS.
Ogilvie, R I; Zborowska-Sluis, D
1995-11-01
The relationship between stressed and total blood volume, total vascular capacitance, central blood volume, cardiac output (CO), and pulmonary capillary wedge pressure (Ppcw) was investigated in pacing-induced acute and chronic heart failure. Acute heart failure was induced in anesthetized splenectomized dogs by a volume load (20 mL/kg over 10 min) during rapid right ventricular pacing at 250 beats/min (RRVP) for 60 min. Chronic heart failure was induced by continuous RRVP for 2-6 weeks (average 24 +/- 2 days). Total vascular compliance and capacitance were calculated from the mean circulatory filling pressure (Pmcf) during transient circulatory arrest after acetylcholine at three different circulating volumes. Stressed blood volume was calculated as a product of compliance and Pmcf, with the total blood volume measured by a dye dilution. Central blood volume (CBV) and CO were measured by thermodilution. Central (heart and lung) vascular capacitance was estimated from the plot of Ppcw against CBV. Acute volume loading without RRVP increased capacitance and CO, whereas after volume loading with RRVP, capacitance and CO were unaltered from baseline. Chronic RRVP reduced capacitance and CO. All interventions, volume +/- RRVP or chronic RRVP, increased stressed and central blood volumes and Ppcw. Acute or chronic RRVP reduced central vascular capacitance. Cardiac output was increased when stressed and unstressed blood volumes increased proportionately as during volume loading alone. When CO was reduced and Ppcw increased, as during chronic RRVP or acute RRVP plus a volume load, stressed blood volume was increased and unstressed blood volume was decreased. Thus, interventions that reduced CO and increased Ppcw also increased stressed and reduced unstressed blood volume and total vascular capacitance.
Packer, Jonathan D.; Bedi, Asheesh; Fox, Alice J.; Gasinu, Selom; Imhauser, Carl W.; Stasiak, Mark; Deng, Xiang-Hua; Rodeo, Scott A.
2014-01-01
Background: We previously demonstrated, in a rat anterior cruciate ligament (ACL) graft reconstruction model, that the delayed application of low-magnitude-strain loading resulted in improved tendon-to-bone healing compared with that observed after immediate loading and after prolonged immobilization. The purpose of this study was to determine the effect of higher levels of strain loading on tendon-to-bone healing. Methods: ACL reconstruction was carried out in a rat model in three randomly assigned groups: high-strain daily loading beginning on either (1) postoperative day one (immediate-loading group; n = 7) or (2) postoperative day four (delayed-loading group; n = 11) or (3) after prolonged immobilization (immobilized group; n = 8). Animals were killed two weeks after surgery and micro-computed tomography (micro-CT) and biomechanical testing of the bone-tendon-bone complex were carried out. Results: The delayed-loading group had greater tissue mineral density than either the immediate-loading or immobilized group (mean [and standard deviation], 813.0 ± 24.9 mg/mL compared with 778.4 ± 32.6 mg/mL and 784.9 ± 26.4 mg/mL, respectively; p < 0.05). There was a trend toward greater bone volume per total volume fraction in both the immobilized and the delayed-loading group compared with the immediate-loading group (0.24 ± 0.03 and 0.23 ± 0.06 compared with 0.20 ± 0.05; p = 0.06). Trabecular thickness was greater in the immobilized group compared with the immediate-loading group (106.5 ± 23.0 μm compared with 72.6 ± 10.6 μm; p < 0.01). There were no significant differences in failure load or stiffness between the immobilized group and either high-strain cyclic-loading group. Conclusions: Immediate application of high-strain loading appears to have a detrimental effect on healing in this rat model. Any beneficial effects of delayed loading on the healing tendon-bone interface (after a brief period of immobilization) may be offset by the detrimental effects of excessive strain levels or by the detrimental effects of stress deprivation on the graft. Clinical Relevance: The timing and magnitude of mechanical load on a healing rat ACL reconstruction graft may have important implications for postoperative rehabilitation. Avoidance of exercises that cause high graft strain in the early postoperative period may lead to improved tendon-to-bone healing in humans. PMID:24806014
Yoshizaki, Yuta; Yuba, Eiji; Komatsu, Toshihiro; Udaka, Keiko; Harada, Atsushi; Kono, Kenji
2016-09-26
To establish peptide vaccine-based cancer immunotherapy, we investigated the improvement of antigenic peptides by encapsulation with pH-sensitive fusogenic polymer-modified liposomes for induction of antigen-specific immunity. The liposomes were prepared by modification of egg yolk phosphatidylcholine and l-dioleoyl phosphatidylethanolamine with 3-methyl-glutarylated hyperbranched poly(glycidol) (MGlu-HPG) and were loaded with antigenic peptides derived from ovalbumin (OVA) OVA-I (SIINFEKL), and OVA-II (PSISQAVHAAHAEINEAP β A), which bind, respectively, to major histocompatibility complex (MHC) class I and class II molecules on dendritic cell (DCs). The peptide-loaded liposomes were taken up efficiently by DCs. The peptides were delivered into their cytosol. Administration of OVA-I-loaded MGlu-HPG-modified liposomes to mice bearing OVA-expressing E.G7-OVA tumors induced the activation of OVA-specific CTLs much more efficiently than the administration of free OVA-I peptide did. Mice strongly rejected E.G7-OVA cells after immunization with OVA-I peptide-loaded MGlu-HPG liposomes, although mice treated with free OVA-I peptide only slightly rejected the cells. Furthermore, efficient suppression of tumor volume was observed when tumor-bearing mice were immunized with OVA-I-peptide-loaded liposomes. Immunization with OVA-II-loaded MGlu-HPG-modified liposomes exhibited much lower tumor-suppressive effects. Results indicate that MGlu-HPG liposomes might be useful for improvement of CTL-inducing peptides for efficient cancer immunotherapy.
Optimizing Preseason Training Loads in Australian Football.
Carey, David L; Crow, Justin; Ong, Kok-Leong; Blanch, Peter; Morris, Meg E; Dascombe, Ben J; Crossley, Kay M
2018-02-01
To investigate whether preseason training plans for Australian football can be computer generated using current training-load guidelines to optimize injury-risk reduction and performance improvement. A constrained optimization problem was defined for daily total and sprint distance, using the preseason schedule of an elite Australian football team as a template. Maximizing total training volume and maximizing Banister-model-projected performance were both considered optimization objectives. Cumulative workload and acute:chronic workload-ratio constraints were placed on training programs to reflect current guidelines on relative and absolute training loads for injury-risk reduction. Optimization software was then used to generate preseason training plans. The optimization framework was able to generate training plans that satisfied relative and absolute workload constraints. Increasing the off-season chronic training loads enabled the optimization algorithm to prescribe higher amounts of "safe" training and attain higher projected performance levels. Simulations showed that using a Banister-model objective led to plans that included a taper in training load prior to competition to minimize fatigue and maximize projected performance. In contrast, when the objective was to maximize total training volume, more frequent training was prescribed to accumulate as much load as possible. Feasible training plans that maximize projected performance and satisfy injury-risk constraints can be automatically generated by an optimization problem for Australian football. The optimization methods allow for individualized training-plan design and the ability to adapt to changing training objectives and different training-load metrics.
The application of improved flow diverter for first flush management.
Mrowiec, M
2010-01-01
The paper presents the investigations on first flush phenomenon based on the total suspended solids (TSS) concentration measurement during selected rainfalls at central part of Czestochowa (Poland) and also the hydrodynamic model of the catchment. The model allows to present the conception of first flush management using an improved flow diverter Septurn. Flow diverters used in the separate sewer systems create a hybrid system called "semi-separate" sewage system, which allows to treat the first flush volume in the waste water treatment plant (WWTP). Proposed construction of the flow diverter makes possible to capture significant part of the pollutant load (TSS) and simultaneously to reduce volume discharges to WWTPs during wet weather.
Chen, Huai; Zhu, Lijun; Wang, Jianzhong; Fan, Hongxia; Wang, Zhihuan
2017-07-01
This study focuses on detecting trends in annual runoff volume and sediment load in the Yangtze river-lake system. Times series of annual runoff volume and sediment load at 19 hydrological gauging stations for the period 1956-2013 were collected. Based on the Mann-Kendall test at the 1% significance level, annual sediment loads in the Yangtze River, the Dongting Lake and the Poyang Lake were detected with significantly descending trends. The power spectrum estimation indicated predominant oscillations with periods of 8 and 20 years are embedded in the runoff volume series, probably related to the El Niño Southern Oscillation (2-7 years) and Pacific Decadal Oscillation (20-30 years). Based on dominant components (capturing more than roughly 90% total energy) extracted by the proper orthogonal decomposition method, total change ratios of runoff volume and sediment load during the last 58 years were evaluated. For sediment load, the mean CRT value in the Yangtze River is about -65%, and those in the Dongting Lake and the Poyang Lake are -92.2% and -87.9% respectively. Particularly, the CRT value of the sediment load in the channel inflow of the Dongting Lake is even -99.7%. The Three Gorges Dam has intercepted a large amount of sediment load and decreased the sediment load downstream.
Chloride Content of Fluids Used for Large-Volume Resuscitation Is Associated With Reduced Survival.
Sen, Ayan; Keener, Christopher M; Sileanu, Florentina E; Foldes, Emily; Clermont, Gilles; Murugan, Raghavan; Kellum, John A
2017-02-01
We sought to investigate if the chloride content of fluids used in resuscitation was associated with short- and long-term outcomes. We identified patients who received large-volume fluid resuscitation, defined as greater than 60 mL/kg over a 24-hour period. Chloride load was determined for each patient based on the chloride ion concentration of the fluids they received during large-volume fluid resuscitation multiplied by the volume of fluids. We compared the development of hyperchloremic acidosis, acute kidney injury, and survival among those with higher and lower chloride loads. University Medical Center. Patients admitted to ICUs from 2000 to 2008. None. Among 4,710 patients receiving large-volume fluid resuscitation, hyperchloremic acidosis was documented in 523 (11%). Crude rates of hyperchloremic acidosis, acute kidney injury, and hospital mortality all increased significantly as chloride load increased (p < 0.001). However, chloride load was no longer associated with hyperchloremic acidosis or acute kidney injury after controlling for total fluids, age, and baseline severity. Conversely, each 100 mEq increase in chloride load was associated with a 5.5% increase in the hazard of death even after controlling for total fluid volume, age, and severity (p = 0.0015) over 1 year. Chloride load is associated with significant adverse effects on survival out to 1 year even after controlling for total fluid load, age, and baseline severity of illness. However, the relationship between chloride load and development of hyperchloremic acidosis or acute kidney injury is less clear, and further research is needed to elucidate the mechanisms underlying the adverse effects of chloride load on survival.
Yu, Yang; Wang, Sihan; Tang, Jiafu; Kaku, Ikou; Sun, Wei
2016-01-01
Productivity can be greatly improved by converting the traditional assembly line to a seru system, especially in the business environment with short product life cycles, uncertain product types and fluctuating production volumes. Line-seru conversion includes two decision processes, i.e., seru formation and seru load. For simplicity, however, previous studies focus on the seru formation with a given scheduling rule in seru load. We select ten scheduling rules usually used in seru load to investigate the influence of different scheduling rules on the performance of line-seru conversion. Moreover, we clarify the complexities of line-seru conversion for ten different scheduling rules from the theoretical perspective. In addition, multi-objective decisions are often used in line-seru conversion. To obtain Pareto-optimal solutions of multi-objective line-seru conversion, we develop two improved exact algorithms based on reducing time complexity and space complexity respectively. Compared with the enumeration based on non-dominated sorting to solve multi-objective problem, the two improved exact algorithms saves computation time greatly. Several numerical simulation experiments are performed to show the performance improvement brought by the two proposed exact algorithms.
NASA Technical Reports Server (NTRS)
Wohlen, R. L.
1976-01-01
A listing of the source deck of each dense FORMA subroutine is given to remove the 'black-box' aura of the subroutines so that the analyst may better understand the detail operations of each subroutine. The FORTRAN 4 programming language is used throughout.
77 FR 64249 - Track Safety Standards; Improving Rail Integrity
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-19
... specific problems. This is a result of high traffic volumes that load the rail and accelerate defect growth... influenced by tonnage. Rapid growth rates can also be associated with rail where high-tensile residual stresses are present in the railhead and in CWR in lower temperature ranges where the rail is in high...
Gulati, Shelly; Stubblefield, Ashley A; Hanlon, Jeremy S; Spier, Chelsea L; Stringfellow, William T
2014-03-01
Measuring the discharge of diffuse pollution from agricultural watersheds presents unique challenges. Flows in agricultural watersheds, particularly in Mediterranean climates, can be predominately irrigation runoff and exhibit large diurnal fluctuation in both volume and concentration. Flow and pollutant concentrations in these smaller watersheds dominated by human activity do not conform to a normal distribution and it is not clear if parametric methods are appropriate or accurate for load calculations. The objective of this study was to compare the accuracy of five load estimation methods to calculate pollutant loads from agricultural watersheds. Calculation of loads using results from discrete (grab) samples was compared with the true-load computed using in situ continuous monitoring measurements. A new method is introduced that uses a non-parametric measure of central tendency (the median) to calculate loads (median-load). The median-load method was compared to more commonly used parametric estimation methods which rely on using the mean as a measure of central tendency (mean-load and daily-load), a method that utilizes the total flow volume (volume-load), and a method that uses measure of flow at the time of sampling (instantaneous-load). Using measurements from ten watersheds in the San Joaquin Valley of California, the average percent error compared to the true-load for total dissolved solids (TDS) was 7.3% for the median-load, 6.9% for the mean-load, 6.9% for the volume-load, 16.9% for the instantaneous-load, and 18.7% for the daily-load methods of calculation. The results of this study show that parametric methods are surprisingly accurate, even for data that have starkly non-normal distributions and are highly skewed. Copyright © 2013 Elsevier Ltd. All rights reserved.
1975-08-01
side #I MOC0ede.V en.d 14119111Iy by 61leek number) Ths study examines factors relating to acconrmlish-ment of Navy ship work- ~ .loads in navtal and...concludes with recomnendations to improve the cost-effectiveness of performance of shipyard work and identifies several key areas for further study . Volume 2...documents related to subjects covered by this study . r• "I. . " r . SECURITY CO OF ° P Ova’" 0.... ......:i • #0 PAPER P-1 13 2 ACCOMPLISHING SHIPYARD WORK
Schreuder, Jan J; Castiglioni, Alessandro; Maisano, Francesco; Steendijk, Paul; Donelli, Andrea; Baan, Jan; Alfieri, Ottavio
2005-01-01
Surgical left ventricular restoration by means of endoventricular patch aneurysmectomy in patients with postinfarction aneurysm should result in acute improved left ventricular performance by decreasing mechanical dyssynchrony and increasing energy efficiency. Nine patients with left ventricular postinfarction aneurysm were studied intraoperatively before and after ventricular restoration with a conductance volume catheter to analyze pressure-volume relationships, energy efficiency, and mechanical dyssynchrony. The end-systolic elastance was used as a load-independent index of contractile state. Left ventricular energy efficiency was calculated from stroke work and total pressure-volume area. Segmental volume changes perpendicular to the long axis were used to calculate mechanical dyssynchrony. Statistical analysis was performed with the paired t test and least-squares linear regression. Endoventricular patch aneurysmectomy reduced end-diastolic volume by 37% (P < .001), with unchanged stroke volume. Systolic function improved, as derived from increased +dP/dt(max), by 42% (P < .03), peak ejection rate by 28% (P < .02), and ejection fraction by 16% (P < .0002). Early diastolic function improved, as shown by reduction of -dP/dt(max) by 34% (P < .006) and shortened tau by 30% (P < .001). Left ventricular end-systolic elastance increased from 1.2 +/- 0.6 to 2.2 +/- 1 mm Hg/mL (P < .001). Left ventricular energy efficiency increased by 36% (P < .002). Left ventricular mechanical dyssynchrony decreased during systole by 33% (P < .001) and during diastole by 20% (P < .005). Left ventricular restoration induced acute improvements in contractile state, energy efficiency, and relaxation, together with a decrease in left ventricular mechanical dyssynchrony.
Characteristics and Energy Use of Volume Servers in the United States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fuchs, H.; Shehabi, A.; Ganeshalingam, M.
Servers’ field energy use remains poorly understood, given heterogeneous computing loads, configurable hardware and software, and operation over a wide range of management practices. This paper explores various characteristics of 1- and 2-socket volume servers that affect energy consumption, and quantifies the difference in power demand between higher-performing SPEC and ENERGY STAR servers and our best understanding of a typical server operating today. We first establish general characteristics of the U.S. installed base of volume servers from existing IDC data and the literature, before presenting information on server hardware configurations from data collection events at a major online retail website.more » We then compare cumulative distribution functions of server idle power across three separate datasets and explain the differences between them via examination of the hardware characteristics to which power draw is most sensitive. We find that idle server power demand is significantly higher than ENERGY STAR benchmarks and the industry-released energy use documented in SPEC, and that SPEC server configurations—and likely the associated power-scaling trends—are atypical of volume servers. Next, we examine recent trends in server power draw among high-performing servers across their full load range to consider how representative these trends are of all volume servers before inputting weighted average idle power load values into a recently published model of national server energy use. Finally, we present results from two surveys of IT managers (n=216) and IT vendors (n=178) that illustrate the prevalence of more-efficient equipment and operational practices in server rooms and closets; these findings highlight opportunities to improve the energy efficiency of the U.S. server stock.« less
Estimating load weights with Huber's Cubic Volume formula: a field trial.
Dale R. Waddell
1989-01-01
Log weights were estimated from the product of Huber's cubic volume formula and green density. Tags showing estimated log weights were attached to logs in the field, and the weights were tallied into a single load weight as logs were assembled for aerial yarding. Accuracy of the estimated load weights was evaluated by comparing the predicted with the actual load...
Estimating total maximum daily loads with the Stochastic Empirical Loading and Dilution Model
Granato, Gregory; Jones, Susan Cheung
2017-01-01
The Massachusetts Department of Transportation (DOT) and the Rhode Island DOT are assessing and addressing roadway contributions to total maximum daily loads (TMDLs). Example analyses for total nitrogen, total phosphorus, suspended sediment, and total zinc in highway runoff were done by the U.S. Geological Survey in cooperation with FHWA to simulate long-term annual loads for TMDL analyses with the stochastic empirical loading and dilution model known as SELDM. Concentration statistics from 19 highway runoff monitoring sites in Massachusetts were used with precipitation statistics from 11 long-term monitoring sites to simulate long-term pavement yields (loads per unit area). Highway sites were stratified by traffic volume or surrounding land use to calculate concentration statistics for rural roads, low-volume highways, high-volume highways, and ultraurban highways. The median of the event mean concentration statistics in each traffic volume category was used to simulate annual yields from pavement for a 29- or 30-year period. Long-term average yields for total nitrogen, phosphorus, and zinc from rural roads are lower than yields from the other categories, but yields of sediment are higher than for the low-volume highways. The average yields of the selected water quality constituents from high-volume highways are 1.35 to 2.52 times the associated yields from low-volume highways. The average yields of the selected constituents from ultraurban highways are 1.52 to 3.46 times the associated yields from high-volume highways. Example simulations indicate that both concentration reduction and flow reduction by structural best management practices are crucial for reducing runoff yields.
Herbst, Daniel P
2014-09-01
Micropore filters are used during extracorporeal circulation to prevent gaseous and solid particles from entering the patient's systemic circulation. Although these devices improve patient safety, limitations in current designs have prompted the development of a new concept in micropore filtration. A prototype of the new design was made using 40-μm filter screens and compared against four commercially available filters for performance in pressure loss and gross air handling. Pre- and postfilter bubble counts for 5- and 10-mL bolus injections in an ex vivo test circuit were recorded using a Doppler ultrasound bubble counter. Statistical analysis of results for bubble volume reduction between test filters was performed with one-way repeated-measures analysis of variance using Bonferroni post hoc tests. Changes in filter performance with changes in microbubble load were also assessed with dependent t tests using the 5- and 10-mL bolus injections as the paired sample for each filter. Significance was set at p < .05. All filters in the test group were comparable in pressure loss performance, showing a range of 26-33 mmHg at a flow rate of 6 L/min. In gross air-handling studies, the prototype showed improved bubble volume reduction, reaching statistical significance with three of the four commercial filters. All test filters showed decreased performance in bubble volume reduction when the microbubble load was increased. Findings from this research support the underpinning theories of a sequential arterial-line filter design and suggest that improvements in microbubble filtration may be possible using this technique.
Herbst, Daniel P.
2014-01-01
Abstract: Micropore filters are used during extracorporeal circulation to prevent gaseous and solid particles from entering the patient’s systemic circulation. Although these devices improve patient safety, limitations in current designs have prompted the development of a new concept in micropore filtration. A prototype of the new design was made using 40-μm filter screens and compared against four commercially available filters for performance in pressure loss and gross air handling. Pre- and postfilter bubble counts for 5- and 10-mL bolus injections in an ex vivo test circuit were recorded using a Doppler ultrasound bubble counter. Statistical analysis of results for bubble volume reduction between test filters was performed with one-way repeated-measures analysis of variance using Bonferroni post hoc tests. Changes in filter performance with changes in microbubble load were also assessed with dependent t tests using the 5- and 10-mL bolus injections as the paired sample for each filter. Significance was set at p < .05. All filters in the test group were comparable in pressure loss performance, showing a range of 26–33 mmHg at a flow rate of 6 L/min. In gross air-handling studies, the prototype showed improved bubble volume reduction, reaching statistical significance with three of the four commercial filters. All test filters showed decreased performance in bubble volume reduction when the microbubble load was increased. Findings from this research support the underpinning theories of a sequential arterial-line filter design and suggest that improvements in microbubble filtration may be possible using this technique. PMID:26357790
Microfluidic-Based sample chips for radioactive solutions
Tripp, J. L.; Law, J. D.; Smith, T. E.; ...
2015-01-01
Historical nuclear fuel cycle process sampling techniques required sample volumes ranging in the tens of milliliters. The radiation levels experienced by analytical personnel and equipment, in addition to the waste volumes generated from analysis of these samples, have been significant. These sample volumes also impacted accountability inventories of required analytes during process operations. To mitigate radiation dose and other issues associated with the historically larger sample volumes, a microcapillary sample chip was chosen for further investigation. The ability to obtain microliter volume samples coupled with a remote automated means of sample loading, tracking, and transporting to the analytical instrument wouldmore » greatly improve analytical efficiency while reducing both personnel exposure and radioactive waste volumes. Sample chip testing was completed to determine the accuracy, repeatability, and issues associated with the use of microfluidic sample chips used to supply µL sample volumes of lanthanide analytes dissolved in nitric acid for introduction to an analytical instrument for elemental analysis.« less
Is there resetting of central venous pressure in microgravity?
NASA Technical Reports Server (NTRS)
Convertino, V. A.; Ludwig, D. A.; Elliott, J. J.; Wade, C. E.
2001-01-01
In the early phase of the Space Shuttle program, NASA flight surgeons implemented a fluid-loading countermeasure in which astronauts were instructed to ingest eight 1-g salt tablets with 960 ml of water approximately 2 hours prior to reentry from space. This fluid loading regimen was intended to enhance orthostatic tolerance by replacing circulating plasma volume reduced during the space mission. Unfortunately, fluid loading failed to replace plasma volume in groundbased experiments and has proven minimally effective as a countermeasure against post-spaceflight orthostatic intolerance. In addition to the reduction of plasma volume, central venous pressure (CVP) is reduced during exposure to actual and groundbased analogs of microgravity. In the present study, we hypothesized that the reduction in CVP due to exposure to microgravity represents a resetting of the CVP operating point to a lower threshold. A lower CVP 'setpoint' might explain the failure of fluid loading to restore plasma volume. In order to test this hypothesis, we conducted an investigation in which we administered an acute volume load (stimulus) and measured responses in CVP, plasma volume and renal functions. If our hypothesis is true, we would expect the elevation in CVP induced by saline infusion to return to its pre-infusion levels in both HDT and upright control conditions despite lower vascular volume during HDT. In contrast to previous experiments, our approach is novel in that it provides information on alterations in CVP and vascular volume during HDT that are necessary for interpretation of the proposed CVP operating point resetting hypothesis.
NASA Technical Reports Server (NTRS)
Dukhin, Y. O.; Zhukovskyy, L. Y.
1980-01-01
Hemodynamic and periopheral circulation indexes were recorded before, at the end of, and 5 days after 10 days of electrostimulation for 45 min daily, at rest and after a physical loading test. It was found that stroke and minute volume, cardiac output, and regional circulation improved and heart rate and peripheral resistance decreased. The functional state of the cardiac muscle and vascular tone are improved by electrostimulation of selected groups of skeletal muscles.
New method to improve dynamic stiffness of electro-hydraulic servo systems
NASA Astrophysics Data System (ADS)
Bai, Yanhong; Quan, Long
2013-09-01
Most current researches working on improving stiffness focus on the application of control theories. But controller in closed-loop hydraulic control system takes effect only after the controlled position is deviated, so the control action is lagged. Thus dynamic performance against force disturbance and dynamic load stiffness can’t be improved evidently by advanced control algorithms. In this paper, the elementary principle of maintaining piston position unchanged under sudden external force load change by charging additional oil is analyzed. On this basis, the conception of raising dynamic stiffness of electro hydraulic position servo system by flow feedforward compensation is put forward. And a scheme using double servo valves to realize flow feedforward compensation is presented, in which another fast response servo valve is added to the regular electro hydraulic servo system and specially utilized to compensate the compressed oil volume caused by load impact in time. The two valves are arranged in parallel to control the cylinder jointly. Furthermore, the model of flow compensation is derived, by which the product of the amplitude and width of the valve’s pulse command signal can be calculated. And determination rules of the amplitude and width of pulse signal are concluded by analysis and simulations. Using the proposed scheme, simulations and experiments at different positions with different force changes are conducted. The simulation and experimental results show that the system dynamic performance against load force impact is largely improved with decreased maximal dynamic position deviation and shortened settling time. That is, system dynamic load stiffness is evidently raised. This paper proposes a new method which can effectively improve the dynamic stiffness of electro-hydraulic servo systems.
NASA Technical Reports Server (NTRS)
Wohlen, R. L.
1976-01-01
A listing of the source deck of each finite element FORMA subroutine is given to remove the 'black-box' aura of the subroutines so that the analyst may better understand the detailed operations of each subroutine. The FORTRAN 4 programming language is used in all finite element FORMA subroutines.
Shahnazari, M; Lang, D H; Fosmire, G J; Sharkey, N A; Mitchell, A D; Leach, R M
2007-03-01
Genetic selection for rapid body growth in broiler chickens has resulted in adverse effects on the skeletal system exemplified by a higher rate of cortical fractures in leg bones. Strontium (Sr) has been reported to have beneficial effects on bone formation and strength. We supplemented the diet of 300-day-old chicks with increasing dosages of Sr (0%, 0.12%, or 0.24%) to study the capacity of the element to improve bone quality and mechanical integrity. Treatment with Sr increased cortical bone volume and reduced bone porosity as measured by micro-computed tomography. The higher level of Sr significantly reduced bone Ca content (34.7%) relative to controls (37.2%), suggesting that Sr replaced some of the Ca in bone. Material properties determined by the three-point bending test showed that bone in the Sr-treated groups withstood greater deformation prior to fracture. Load to failure and ultimate stress were similar across groups. Our results indicate that Sr treatment in rapidly growing chickens induced positive effects on bone volume but did not improve the breaking strength of long bones.
Design and Test of an Improved Crashworthiness Small Composite Airframe
NASA Technical Reports Server (NTRS)
Terry, James E.; Hooper, Steven J.; Nicholson, Mark
2002-01-01
The purpose of this small business innovative research (SBIR) program was to evaluate the feasibility of developing small composite airplanes with improved crashworthiness. A combination of analysis and half scale component tests were used to develop an energy absorbing airframe. Four full scale crash tests were conducted at the NASA Impact Dynamics Research Facility, two on a hard surface and two onto soft soil, replicating earlier NASA tests of production general aviation airplanes. Several seat designs and restraint systems including both an air bag and load limiting shoulder harnesses were tested. Tests showed that occupant loads were within survivable limits with the improved structural design and the proper combination of seats and restraint systems. There was no loss of cabin volume during the events. The analysis method developed provided design guidance but time did not allow extending the analysis to soft soil impact. This project demonstrated that survivability improvements are possible with modest weight penalties. The design methods can be readily applied by airplane designers using the examples in this report.
Huynh, Virginia C; Fuhr, Desi P; Byers, Bradley W; Selzler, Anne-Marie; Moore, Linn E; Stickland, Michael K
2018-04-11
Some patients with chronic obstructive pulmonary disease (COPD) fail to achieve health benefits with pulmonary rehabilitation (PR). Exercise intensity and load represent stimulus for adaptation but it is unclear whether inappropriate exercise intensity and/or load are affected by severity of COPD, which may affect health benefits. The purpose was to determine whether COPD severity and/or the severity of pulmonary limitation to exercise (PLE) impacted exercising intensity or load and whether resultant intensity/load affected health outcomes derived from PR. Patients with COPD (n = 58, age = 67 ± 7 y, forced expiratory volume in the first second of expiration [FEV1] % predicted = 52 ± 21%) were recruited upon referral to PR. Primary health outcomes evaluated were 6-min walk distance and St George's Respiratory Questionnaire. Patients were stratified for disease severity using Global Initiative for Obstructive Lung Disease (GOLD) staging and PLE severity by change in inspiratory capacity during exercise. Exercise intensity and load were calculated from daily exercise records. Participants achieved comparable training duration and load regardless of GOLD severity. Patients with more severe PLE achieved greater training duration (more severe: 546 ± 143 min., less severe: 451 ± 109 min., P = .036), and relative training load (more severe: 2200.8 ± 595.3 kcal, less severe: 1648.3 ± 597.8 kcal, P = .007). Greater overall training load was associated with greater improvements in 6-min walk distance (r = 0.24, P = .035). No significant relationships were observed between PLE, GOLD severity, training parameters, and St George's Respiratory Questionnaire response. Improvements in exercise tolerance can be explained by achieving greater training loads, demonstrating the importance of appropriate training load to maximize health outcomes in PR.
46 CFR 38.15-1 - Filling of tanks-TB/ALL.
Code of Federal Regulations, 2011 CFR
2011-10-01
... that there is an outage of at least 2 percent of the volume of the tank at the temperature..., the maximum volume to which a tank may be loaded is: V L=0.98d r V/d L where: V L=maximum volume to which tank may be loaded. V=volume of tank. d r=density of cargo at the temperature required for a cargo...
Crewther, Blair T; Cronin, John; Keogh, Justin W L
2008-11-01
This study examined the effect of volume, technique, and load upon single-repetition and total-repetition kinematics and kinetics during three loading schemes. Eleven recreationally trained males each performed a power (8 sets of 6 repetitions at 45% of one-repetition maximum [1RM], 3-minute rest periods, explosive and ballistic movements), hypertrophy (10 sets of 10 repetitions at 75% 1RM, 2-minute rest periods, controlled movements), and maximal strength (6 sets of 4 repetitions at 88% 1RM, 4-minute rest periods, explosive intent) scheme involving squats. Examination of repetition data showed that load intensity (% 1RM) generally had a direct effect on forces, contraction times, impulses, and work (i.e., increasing with load), whereas power varied across loads (p < 0.001). However, total-repetition forces, contraction times, impulses, work, and power were all greater in the hypertrophy scheme (p < 0.001), because of the greater number of repetitions performed (volume) as well as lifting technique. No differences in total forces were found between the equal-volume power and maximal strength schemes, but the former did produce greater total contraction times, work, and power (p < 0.001), which may also be attributed to repetition and technique differences. Total impulses were the only variable greater in the maximal strength scheme (p < 0.001). Thus, the interaction of load, volume, and technique plays an important role in determining the mechanical responses (stimuli) afforded by these workouts. These findings may explain disparities cited within research, regarding the effectiveness of different loading strategies for hypertrophy, maximal strength, and power adaptation.
NASA Astrophysics Data System (ADS)
Schneider, Johannes M.; Turowski, Jens M.; Rickenmann, Dieter; Hegglin, Ramon; Arrigo, Sabrina; Mao, Luca; Kirchner, James W.
2014-03-01
Bed load transport during storm events is both an agent of geomorphic change and a significant natural hazard in mountain regions. Thus, predicting bed load transport is a central challenge in fluvial geomorphology and natural hazard risk assessment. Bed load transport during storm events depends on the width and depth of bed scour, as well as the transport distances of individual sediment grains. We traced individual gravels in two steep mountain streams, the Erlenbach (Switzerland) and Rio Cordon (Italy), using magnetic and radio frequency identification tags, and measured their bed load transport rates using calibrated geophone bed load sensors in the Erlenbach and a bed load trap in the Rio Cordon. Tracer transport distances and bed load volumes exhibited approximate power law scaling with both the peak stream power and the cumulative stream energy of individual hydrologic events. Bed load volumes scaled much more steeply with peak stream power and cumulative stream energy than tracer transport distances did, and bed load volumes scaled as roughly the third power of transport distances. These observations imply that large bed load transport events become large primarily by scouring the bed deeper and wider, and only secondarily by transporting the mobilized sediment farther. Using the sediment continuity equation, we can estimate the mean effective thickness of the actively transported layer, averaged over the entire channel width and the duration of individual flow events. This active layer thickness also followed approximate power law scaling with peak stream power and cumulative stream energy and ranged up to 0.57 m in the Erlenbach, broadly consistent with independent measurements.
Improving the energy efficiency of telecommunication networks
NASA Astrophysics Data System (ADS)
Lange, Christoph; Gladisch, Andreas
2011-05-01
The energy consumption of telecommunication networks has gained increasing interest throughout the recent past: Besides its environmental implications it has been identified to be a major contributor to operational expenditures of network operators. Targeting at sustainable telecommunication networks, thus, it is important to find appropriate strategies for improving their energy efficiency before the background of rapidly increasing traffic volumes. Besides the obvious benefits of increasing energy efficiency of network elements by leveraging technology progress, load-adaptive network operation is a very promising option, i.e. using network resources only to an extent and for the time they are actually needed. In contrast, current network operation takes almost no advantage of the strongly time-variant behaviour of the network traffic load. Mechanisms for energy-aware load-adaptive network operation can be subdivided in techniques based on local autonomous or per-link decisions and in techniques relying on coordinated decisions incorporating information from several links. For the transformation from current network structures and operation paradigms towards energy-efficient and sustainable networks it will be essential to use energy-optimized network elements as well as including the overall energy consumption in network design and planning phases together with the energy-aware load-adaptive operation. In load-adaptive operation it will be important to establish the optimum balance between local and overarching power management concepts in telecommunication networks.
Retrospective Analysis of Inflight Exercise Loading and Physiological Outcomes
NASA Technical Reports Server (NTRS)
Ploutz-Snyder, L. L.; Buxton, R. E.; De Witt, J. K.; Guilliams, M. E.; Hanson, A. M.; Peters, B. T.; Pandorf, M. M. Scott; Sibonga, J. D.
2014-01-01
Astronauts perform exercise throughout their missions to counter the health declines that occur as a result of long-term exposure to weightlessness. Although all astronauts perform exercise during their missions, the specific prescriptions, and thus the mechanical loading, differs among individuals. For example, inflight ground reaction force data indicate that subject-specific differences exist in foot forces created when exercising on the second-generation treadmill (T2) [1]. The current exercise devices allow astronauts to complete prescriptions at higher intensities, resulting in greater benefits with increased efficiency. Although physiological outcomes have improved, the specific factors related to the increased benefits are unknown. In-flight exercise hardware collect data that allows for exploratory analyses to determine if specific performance factors relate to physiological outcomes. These analyses are vital for understanding which components of exercise are most critical for optimal human health and performance. The relationship between exercise performance variables and physiological changes during flight has yet to be fully investigated. Identifying the critical performance variables that relate to improved physiological outcomes is vital for creating current and future exercise prescriptions to optimize astronaut health. The specific aims of this project are: 1) To quantify the exercise-related mechanical loading experienced by crewmembers on T2 and ARED during their mission on ISS; 2) To explore relationships between exercise loading variables, bone, and muscle health changes during the mission; 3) To determine if specific mechanical loading variables are more critical than others in protecting physiology; 4) To develop methodology for operational use in monitoring accumulated training loads during crew exercise programs. This retrospective analysis, which is currently in progress, is being conducted using data from astronauts that have flown long-duration missions onboard the ISS and have had access to exercise on the T2 and the Advanced Resistive Exercise Device (ARED). The specific exercise prescriptions vary for each astronaut. General exercise summary metrics will be developed to quantify exercise intensities, volumes, and durations for each subject. Where available, ground reaction force data will be used to quantify mechanical loading experienced by each astronaut. These inflight exercise metrics will be investigated relative to changes in pre- to post-flight bone and muscle health to identify which specific variables are related with improved or degraded physiological outcomes. The information generated from this analysis will fill gaps related to typical bone loading characterization, exercise performance capability, exercise volume and efficiency, and importance of exercise hardware. In addition, methods for quantification of exercise loading for use in monitoring the exercise programs during future space missions will be explored with the intent to inform exercise scientists and trainers as to the critical aspects of inflight exercise prescriptions.
Haggag, Yusuf A; Osman, Mohamed A; El-Gizawy, Sanaa A; Goda, Ahmed E; Shamloula, Maha M; Faheem, Ahmed M; McCarron, Paul A
2018-05-29
Biodegradable PLGA nanoparticles, loaded with 5-fluorouracil (5FU), were prepared using a double emulsion method and characterised in terms of mean diameter, zeta potential, entrapment efficiency and in vitro release. Poly (vinyl alcohol) was used to modify both internal and external aqueous phases and shown have a significant effect on nanoparticulate size, encapsulation efficiency and the initial burst release. Addition of poly (ethylene glycol) to the particle matrix, as part of the polymeric backbone, improved significantly the encapsulation efficiency. 5FU-loaded NPs were spherical in shape and negatively charged with a size range of 185-350 nm. Biological evaluation was performed in vivo using a solid Ehrlich carcinoma (SEC) murine model. An optimised 5FU-loaded formulation containing PEG as part of a block copolymer induced a pronounced reduction in tumour volume and tumour weight, together with an improved percentage tumour growth inhibition. Drug-loaded nanoparticles showed no significant toxicity or associated changes on liver and kidney function in tested animals, whereas increased alanine aminotransferase, aspartate aminotransferase and serum creatinine were observed in animals treated with free 5FU. Histopathological examination demonstrated enhanced cytotoxic action of 5FU-loaded nanoparticles when compared to the free drug. Based on these findings, it was concluded that nano-encapsulation of 5FU using PEGylated PLGA improved encapsulation and sustained in vitro release. This leads to increased anti-tumour efficacy against SEC, with a reduction in adverse effects. Published by Elsevier Masson SAS.
Wolff, Christopher B; Green, David W
2014-12-01
The paper examines the effects of anaesthesia on circulatory physiology and their implications regarding improvement in perioperative anaesthetic management. Changes to current anaesthetic practice, recommended recently, such as the use of flow monitoring in high risk patients, are already beginning to have an impact in reducing complications but not mortality [1]. Better understanding of the patho-physiology should help improve management even further. Analysis of selected individual clinical trials has been used to illustrate particular areas of patho-physiology and how changes in practice have improved outcome. There is physiological support for the importance of achieving an appropriate rate of oxygen delivery (DO2), particularly following induction of anaesthesia. It is suggested that ensuring adequate DO2 during anaesthesia will avoid development of oxygen debt and hence obviate the need to induce a high, compensatory, DO2 in the post-operative period. In contrast to the usual assumptions underlying strategies requiring a global increase in blood flow [1] by a stroke volume near maximization strategy, blood flow control actually resides entirely at the tissues not at the heart. This is important as the starting point for understanding failed circulatory control as indicated by 'volume dependency'. Local adjustments in blood flow at each individual organ - auto-regulation - normally ensure the appropriate local rate of oxygen supply, i.e. local DO2. Inadequate blood volume leads to impairment of the regulation of blood flow, particularly in the individual tissues with least capable auto-regulatory capability. As demonstrated by many studies, inadequate blood flow first occurs in the gut, brain and kidney. The inadequate blood volume which occurs with induction of anaesthesia is not due to blood volume loss, but probably results from redistribution due to veno-dilation. The increase in venous capacity renders the existing blood volume inadequate to maintain venous return and pre-load. Blood volume shifted to the veins will, necessarily, also reduce the arterial volume. As a result stroke volume and cardiac output fall below normal with little or no change in peripheral resistance. The resulting pre-load dependency is often successfully treated with colloid infusion and, in some studies, 'inotropic' agents, particularly in the immediate post-operative phase. Treatment during the earliest stage of anaesthesia can avoid the build up of oxygen debt and may be supplemented by drugs which maintain or restore venous tone, such as phenylephrine; an alternative to volume expansion. Interpretation of circulatory patho-physiology during anaesthesia confirms the need to sustain appropriate oxygen delivery. It also supports reduction or even elimination of supplementary crystalloid maintenance infusion, supposedly to replace the "mythical" third space loss. As a rational evidence base for future research it should allow for further improvements in anaesthetic management. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.
Kawaguchi, A; Linde, L M; Imachi, T; Mizuno, H; Akutsu, H
1983-12-01
To estimate the left atrial volume (LAV) and pulmonary blood flow in patients with congenital heart disease (CHD), we employed two-dimensional echocardiography (TDE). The LAV was measured in dimensions other than those obtained in conventional M-mode echocardiography (M-mode echo). Mathematical and geometrical models for LAV calculation using the standard long-axis, short-axis and apical four-chamber planes were devised and found to be reliable in a preliminary study using porcine heart preparations, although length (10%), area (20%) and volume (38%) were significantly and consistently underestimated with echocardiography. Those models were then applied and correlated with angiocardiograms (ACG) in 25 consecutive patients with suspected CHD. In terms of the estimation of the absolute LAV, accuracy seemed commensurate with the number of the dimensions measured. The correlation between data obtained by TDE and ACG varied with changing hemodynamics such as cardiac cycle, absolute LAV and presence or absence of volume load. The left atrium was found to become spherical and progressively underestimated with TDE at ventricular endsystole, in larger LAV and with increased volume load. Since this tendency became less pronounced in measuring additional dimensions, reliable estimation of the absolute LAV and volume load was possible when 2 or 3 dimensions were measured. Among those calculation models depending on 2 or 3 dimensional measurements, there was only a small difference in terms of accuracy and predictability, although algorithm used varied from one model to another. This suggests that accurate cross-sectional area measurement is critically important for volume estimation rather than any particular algorithm involved. Cross-sectional area measurement by TDE integrated into a three dimensional equivalent allowed a reliable estimate of the LAV or volume load in a variety of hemodynamic situations where M-mode echo was not reliable.
Continuum topology optimization considering uncertainties in load locations based on the cloud model
NASA Astrophysics Data System (ADS)
Liu, Jie; Wen, Guilin
2018-06-01
Few researchers have paid attention to designing structures in consideration of uncertainties in the loading locations, which may significantly influence the structural performance. In this work, cloud models are employed to depict the uncertainties in the loading locations. A robust algorithm is developed in the context of minimizing the expectation of the structural compliance, while conforming to a material volume constraint. To guarantee optimal solutions, sufficient cloud drops are used, which in turn leads to low efficiency. An innovative strategy is then implemented to enormously improve the computational efficiency. A modified soft-kill bi-directional evolutionary structural optimization method using derived sensitivity numbers is used to output the robust novel configurations. Several numerical examples are presented to demonstrate the effectiveness and efficiency of the proposed algorithm.
Measurement of early age shrinkage of Virginia concrete mixtures.
DOT National Transportation Integrated Search
2008-01-01
Concrete volume changes throughout its service life. The total in-service volume change is the resultant of applied loads and shrinkage. When loaded, concrete undergoes an instantaneous elastic deformation and a slow inelastic deformation called cree...
Herbst, Daniel P.
2013-01-01
Abstract: Improvements in micropore arterial line filter designs used for extracorporeal circulation are still needed because microbubbles larger than the rated pore sizes are being detected beyond the filter outlet. Linked to principles governing the function of micropore filters, fluid pressures contained in extracorporeal circuits also influence the behavior of gas bubbles and the extent to which they are carried in a fluid flow. To better understand the relationship between pressure and microbubble behavior, two ex vivo test circuits with and without inline resistance were designed to assess changes in microbubble load with changes in pressure. Ultrasound Doppler probes were used to measure and compare the quality and quantity of microbubbles generated in each test circuit. Analysis of microbubble load was separated into two distinct phases, the time periods during and immediately after bubble generation. Although microbubble number decreased similarly in both test circuits, changes in microbubble volume were significant only in the test circuit with inline resistance. The test circuit with inline resistance also showed a decrease in the rate of volume transferred across each ultrasound Doppler probe and the microbubble number and size range measured in the postbubble generation period. The present research proposes that fluid pressures contained in extracorporeal circuits may be used to affect gases in solution as a possible method to improve microbubble filtration during extracorporeal circulation. PMID:23930378
Herbst, Daniel P
2013-06-01
Improvements in micropore arterial line filter designs used for extracorporeal circulation are still needed because microbubbles larger than the rated pore sizes are being detected beyond the filter outlet. Linked to principles governing the function of micropore filters, fluid pressures contained in extracorporeal circuits also influence the behavior of gas bubbles and the extent to which they are carried in a fluid flow. To better understand the relationship between pressure and microbubble behavior, two ex vivo test circuits with and without inline resistance were designed to assess changes in microbubble load with changes in pressure. Ultrasound Doppler probes were used to measure and compare the quality and quantity of microbubbles generated in each test circuit. Analysis of microbubble load was separated into two distinct phases, the time periods during and immediately after bubble generation. Although microbubble number decreased similarly in both test circuits, changes in microbubble volume were significant only in the test circuit with inline resistance. The test circuit with inline resistance also showed a decrease in the rate of volume transferred across each ultrasound Doppler probe and the microbubble number and size range measured in the postbubble generation period. The present research proposes that fluid pressures contained in extracorporeal circuits may be used to affect gases in solution as a possible method to improve microbubble filtration during extracorporeal circulation.
NASA Technical Reports Server (NTRS)
Quade, D. A.
1978-01-01
The pylon loading at the drop test vehicle and wing interface attack points is presented. The loads shown are determined using a stiffness method, which assumes the side stiffness of the forward hook guide and the fore and aft stiffness of each drag pin to be equal. The net effect of this assumption is that the forward hook guide reacts approximately 96% of the drop test vehicle yawing moment. For a comparison of these loads to previous X-15 analysis design loadings, see Volume 1 of this document.
Two-dimensional model of vocal fold vibration for sound synthesis of voice and soprano singing
NASA Astrophysics Data System (ADS)
Adachi, Seiji; Yu, Jason
2005-05-01
Voiced sounds were simulated with a computer model of the vocal fold composed of a single mass vibrating both parallel and perpendicular to the airflow. Similarities with the two-mass model are found in the amplitudes of the glottal area and the glottal volume flow velocity, the variation in the volume flow waveform with the vocal tract shape, and the dependence of the oscillation amplitude upon the average opening area of the glottis, among other similar features. A few dissimilarities are also found in the more symmetric glottal and volume flow waveforms in the rising and falling phases. The major improvement of the present model over the two-mass model is that it yields a smooth transition between oscillations with an inductive load and a capacitive load of the vocal tract with no sudden jumps in the vibration frequency. Self-excitation is possible both below and above the first formant frequency of the vocal tract. By taking advantage of the wider continuous frequency range, the two-dimensional model can successfully be applied to the sound synthesis of a high-pitched soprano singing, where the fundamental frequency sometimes exceeds the first formant frequency. .
Density and lithospheric structure at Tyrrhena Patera, Mars, from gravity and topography data
NASA Astrophysics Data System (ADS)
Grott, M.; Wieczorek, M. A.
2012-09-01
The Tyrrhena Patera highland volcano, Mars, is associated with a relatively well localized gravity anomaly and we have carried out a localized admittance analysis in the region to constrain the density of the volcanic load, the load thickness, and the elastic thickness at the time of load emplacement. The employed admittance model considers loading of an initially spherical surface, and surface as well as subsurface loading is taken into account. Our results indicate that the gravity and topography data available at Tyrrhena Patera is consistent with the absence of subsurface loading, but the presence of a small subsurface load cannot be ruled out. We obtain minimum load densities of 2960 kg m-3, minimum load thicknesses of 5 km, and minimum load volumes of 0.6 × 106 km3. Photogeological evidence suggests that pyroclastic deposits make up at most 30% of this volume, such that the bulk of Tyrrhena Patera is likely composed of competent basalt. Best fitting model parameters are a load density of 3343 kg m-3, a load thickness of 10.8 km, and a load volume of 1.7 × 106 km3. These relatively large load densities indicate that lava compositions are comparable to those at other martian volcanoes, and densities are comparable to those of the martian meteorites. The elastic thickness in the region is constrained to be smaller than 27.5 km at the time of loading, indicating surface heat flows in excess of 24 mW m-2.
NASA Technical Reports Server (NTRS)
Sadler, S. G.
1972-01-01
A mathematical model and computer program was implemented to study the main rotor free wake geometry effects on helicopter rotor blade air loads and response in steady maneuvers. Volume 1 (NASA CR-2110) contains the theoretical formulation and analysis of results. Volume 2 contains the computer program listing.
NASA Technical Reports Server (NTRS)
Miller, W. S.
1974-01-01
The cryogenic refrigerator thermal design calculations establish design approach and basic sizing of the machine's elements. After the basic design is defined, effort concentrates on matching the thermodynamic design with that of the heat transfer devices (heat exchangers and regenerators). Typically, the heat transfer device configurations and volumes are adjusted to improve their heat transfer and pressure drop characteristics. These adjustments imply that changes be made to the active displaced volumes, compensating for the influence of the heat transfer devices on the thermodynamic processes of the working fluid. Then, once the active volumes are changed, the heat transfer devices require adjustment to account for the variations in flows, pressure levels, and heat loads. This iterative process is continued until the thermodynamic cycle parameters match the design of the heat transfer devices. By examing several matched designs, a near-optimum refrigerator is selected.
NASA Astrophysics Data System (ADS)
Fu, Z. X.; Nasar, S. A.; Rosswurm, Mark
This paper presents the criteria in selecting the size of the tuning capacitor, and the cost tradeoff between magnet volume and tuning capacitor in a free piston Stirling engine power generation system. The permissible range of capacitor size corresponding to different magnet volume, in order to prevent magnet demagnetization and stabilize the operation of the system, is determined. Within the permissible range suitable capacitor size may be selected to compensate the inductive load of the system to improve the overall power factor. If the capacitor size is not in the permissible range, there would exist a danger of losing magnet strength, or unstable operation of the engine that would destroy the engine due to unbounded amplitude of piston oscillations. The theory developed is then applied to a practical system, and the cost tradeoff between magnet volume and capacitor is studied.
Analyzing the uncertainty of suspended sediment load prediction using sequential data assimilation
NASA Astrophysics Data System (ADS)
Leisenring, Marc; Moradkhani, Hamid
2012-10-01
SummaryA first step in understanding the impacts of sediment and controlling the sources of sediment is to quantify the mass loading. Since mass loading is the product of flow and concentration, the quantification of loads first requires the quantification of runoff volume. Using the National Weather Service's SNOW-17 and the Sacramento Soil Moisture Accounting (SAC-SMA) models, this study employed particle filter based Bayesian data assimilation methods to predict seasonal snow water equivalent (SWE) and runoff within a small watershed in the Lake Tahoe Basin located in California, USA. A procedure was developed to scale the variance multipliers (a.k.a hyperparameters) for model parameters and predictions based on the accuracy of the mean predictions relative to the ensemble spread. In addition, an online bias correction algorithm based on the lagged average bias was implemented to detect and correct for systematic bias in model forecasts prior to updating with the particle filter. Both of these methods significantly improved the performance of the particle filter without requiring excessively wide prediction bounds. The flow ensemble was linked to a non-linear regression model that was used to predict suspended sediment concentrations (SSCs) based on runoff rate and time of year. Runoff volumes and SSC were then combined to produce an ensemble of suspended sediment load estimates. Annual suspended sediment loads for the 5 years of simulation were finally computed along with 95% prediction intervals that account for uncertainty in both the SSC regression model and flow rate estimates. Understanding the uncertainty associated with annual suspended sediment load predictions is critical for making sound watershed management decisions aimed at maintaining the exceptional clarity of Lake Tahoe. The computational methods developed and applied in this research could assist with similar studies where it is important to quantify the predictive uncertainty of pollutant load estimates.
NASA Technical Reports Server (NTRS)
Quade, D. A.
1978-01-01
The airplane flutter and maneuver-gust load analysis results obtained during B-52B drop test vehicle configuration (with fins) evaluation are presented. These data are presented as supplementary data to that given in Volume 1 of this document. A brief mathematical description of airspeed notation and gust load factor criteria are provided as a help to the user. References are defined which provide mathematical description of the airplane flutter and load analysis techniques. Air-speed-load factor diagrams are provided for the airplane weight configurations reanalyzed for finned drop test vehicle configuration.
NASA Technical Reports Server (NTRS)
Quade, D. A.
1978-01-01
The pylon loading at the drop test vehicle and wing interface attach points is presented. The loads shown are determined using a stiffness method, which assumes the side stiffness of the foreward hook guide to be one-fourth of the fore and aft stiffness of each drag pin. The net effect of this assumption is that the forward hook guide reacts approximately 85% of the drop test vehicle yawing moment. For a comparison of these loads to previous X-15 analysis design loadings, see Volume 1 of this document.
Boocock, M; McNair, P; Cicuttini, F; Stuart, A; Sinclair, T
2009-07-01
To investigate the short-term effects of recreational running on the deformation of knee articular cartilage and to examine the relationship between changes in knee cartilage volume and biomechanical modulators of knee joint load. Twenty healthy volunteers participated in a two phase cross-sectional study. Session 1 involved Magnetic Resonance Imaging (MRI) of femoral and tibial cartilage volumes prior to and following a 30 min period of relaxed sitting, which was directly followed by a recreational run of 5000 steps. Subsequently, all participants undertook a laboratory study of their running gait to compare biomechanical derived measures of knee joint loading with changes in cartilage volume. Estimates of knee joint load were determined using a rigid-link segment, dynamic biomechanical model of the lower limbs and a simplified muscle model. Running resulted in significant deformation of the medial (5.3%, P<0.01) and lateral femoral cartilage (4.0%, P<0.05) and lateral aspect of the tibial cartilage (5.7%, P<0.01), with no significant differences between genders. Maximum compression stress was significantly correlated with percentage changes in lateral femoral cartilage volume (r(2)=0.456, P<0.05). No other biomechanical variables correlated with volume changes. Limited evidence was found linking biomechanical measures of knee joint loading and observed short-term deformation of knee articular cartilage volume following running. Further enhancement of knee muscle modelling and analysis of stress distribution across cartilage are needed if we are to fully understand the contribution of biomechanical factors to knee joint loading and the pathogenesis of knee osteoarthritis (OA).
DiBona, G F; Sawin, L L
1999-07-06
Long-term metoprolol therapy improves cardiac performance and decreases mortality in patients with chronic congestive heart failure (CHF). This study examined the effect of long-term metoprolol therapy on renal sodium handling in an experimental rat model of CHF. Rats with left coronary ligation and myocardial infarction-induced CHF were treated with metoprolol (1.5 mg. kg-1. h-1) or vehicle for 3 weeks by osmotic minipump. They were then evaluated for their ability to excrete a short-term sodium load (5% body weight isotonic saline infusion over 30 minutes) and a long-term sodium load (change from low- to high-sodium diet over 8 days). All CHF rats had left ventricular end-diastolic pressure >10 mm Hg, and heart weight/body weight ratios averaged 0.68+/-0.02% (versus control of approximately 0.40%). Compared with vehicle CHF rats (n=19), metoprolol CHF rats (n=18) had lower basal values of mean arterial pressure (122+/-3 versus 112+/-3 mm Hg) and heart rate (373+/-14 versus 315+/-9 bpm) and decreased heart rate responses to intravenous doses of isoproterenol. During short-term isotonic saline volume loading, metoprolol CHF rats excreted 54+/-4% more of the sodium load than vehicle CHF rats. During long-term dietary sodium loading, metoprolol CHF rats retained 28+/-3% less sodium than vehicle CHF rats. Metoprolol treatment of rats with CHF results in an improved ability to excrete both short- and long-term sodium loads.
Isolating Added Mass Load Components of CPAS Main Clusters
NASA Technical Reports Server (NTRS)
Ray, Eric S.
2017-01-01
The current simulation for the Capsule Parachute Assembly System (CPAS) lacks fidelity in representing added mass for the 116 ft Do ringsail Main parachute. The availability of 3-D models of inflating Main canopies allowed for better estimation the enclosed air volume as a function of time. This was combined with trajectory state information to estimate the components making up measured axial loads. A proof-of-concept for an alternate simulation algorithm was developed based on enclosed volume as the primary independent variable rather than drag area growth. Databases of volume growth and parachute drag area vs. volume were developed for several flight tests. Other state information was read directly from test data, rather than numerically propagated. The resulting simulated peak loads were close in timing and magnitude to the measured loads data. However, results are very sensitive to data curve fitting and may not be suitable for Monte Carlo simulations. It was assumed that apparent mass was either negligible or a small fraction of enclosed mass, with little difference in results.
Improving stability and strength characteristics of framed structures with nonlinear behavior
NASA Technical Reports Server (NTRS)
Pezeshk, Shahram
1990-01-01
In this paper an optimal design procedure is introduced to improve the overall performance of nonlinear framed structures. The design methodology presented here is a multiple-objective optimization procedure whose objective functions involve the buckling eigenvalues and eigenvectors of the structure. A constant volume with bounds on the design variables is used in conjunction with an optimality criterion approach. The method provides a general tool for solving complex design problems and generally leads to structures with better limit strength and stability. Many algorithms have been developed to improve the limit strength of structures. In most applications geometrically linear analysis is employed with the consequence that overall strength of the design is overestimated. Directly optimizing the limit load of the structure would require a full nonlinear analysis at each iteration which would be prohibitively expensive. The objective of this paper is to develop an algorithm that can improve the limit-load of geometrically nonlinear framed structures while avoiding the nonlinear analysis. One of the novelties of the new design methodology is its ability to efficiently model and design structures under multiple loading conditions. These loading conditions can be different factored loads or any kind of loads that can be applied to the structure simultaneously or independently. Attention is focused on optimal design of space framed structures. Three-dimensional design problems are more complicated to carry out, but they yield insight into real behavior of the structure and can help avoiding some of the problems that might appear in planar design procedure such as the need for out-of-plane buckling constraint. Although researchers in the field of structural engineering generally agree that optimum design of three-dimension building frames especially in the seismic regions would be beneficial, methods have been slow to emerge. Most of the research in this area has dealt with the optimization of truss and plane frame structures.
Hirotani, Shinichi; Masuyama, Tohru
2014-12-01
Sodium restriction has been believed to be indispensible to manage fluid overload during acute decompensated heart failure (ADHF). However, recently, it was reported that a change in aggression of sodium and water restriction did not affect the outcome of ADHF. In contrast, current data suggest that small amount of hypertonic saline solution with high-dose furosemide produces an improvement in haemodynamic and clinical parameters without any severe adverse effects. In this perspective, first, we are going to describe the effects of sodium loading on neurohormonal activation, body's sodium balance, and renal function in chronic heart failure and the efficacy of loop diuretics in ADHF. Then, we are going to explain the possible mechanisms by which sodium loading enhances the efficacy of loop diuretics and about the clinical conditions during which sodium loading should be avoided. © 2014 The Authors. ESC Heart Failure published by John Wiley & Sons Ltd on behalf of the European Society of Cardiology.
Strategy Guideline. Compact Air Distribution Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burdick, Arlan
2013-06-01
This guideline discusses the benefits and challenges of using a compact air distribution system to handle the reduced loads and reduced air volume needed to condition the space within an energy efficient home. The decision criteria for a compact air distribution system must be determined early in the whole-house design process, considering both supply and return air design. However, careful installation of a compact air distribution system can result in lower material costs from smaller equipment, shorter duct runs, and fewer outlets; increased installation efficiencies, including ease of fitting the system into conditioned space; lower loads on a better balancedmore » HVAC system, and overall improved energy efficiency of the home.« less
Jeffreys, Mark; De Ste Croix, Mark; Lloyd, Rhodri S; Oliver, Jon L; Hughes, Jonathan
2017-03-25
The purpose of this study was to identify the effectiveness of low and high volume plyometric loads on developing stretch shortening cycle capability in collegiate rugby players. A between- group repeated measures design was used. Thirty six subjects (age 20.3 ±1.6 yrs, mass 91.63 ±10.36kg, stature 182.03 ±5.24cm) were randomly assigned to one of three groups, a control group (CG), a low volume plyometric group (LPG) or a high volume plyometric group (HPG). Data were collected from a force plate, and measures of reactive strength index (RSI) and leg stiffness were calculated from jump height, contact time and flight time. A significant between group × time (F = 4.01, P <0.05) interaction effect for RSI was observed. Bonferroni post hoc analysis indicated that both the LPG training group (P = 0.002) and HPG training group (P = 0.009) were significantly higher than the control group. No significant interaction effect between time × group were observed for leg stiffness (F = 1.39, P = 0.25). The current study has demonstrated that it is possible to improve reactive strength capabilities via the use of a low volume plyometric program. The low volume program elicited the same performance improvement in RSI as a high volume program whilst undertaking a lower dose. This suggests that strength and conditioning coaches may be able to benefit from the ability to develop more time efficient and effective plyometric programs.
DOT National Transportation Integrated Search
2015-01-01
This report is the first of three volumes and presents interpretation of all experimental and numerical data and recommendations. In : total, 30 large scale reinforced concrete columns tests were conducted under a variety of loading conditions. Using...
1986-12-01
IS. SUPPLEMENTARY NOTfS This report is Volume II of six volumes which will eventually be published as a tri-service design manual and was sponsored by...CLASSIFICAT ION OF THIS PAGE(When Date Entered) TABLE OF CONTENTS PAGE INTRODUCTION 2-I Purpose 1 2-2 Objective 1 2 3 Background 1 2-4 Scope of Manual ...2 2-5 Format of Manual 3 VOLUME CONTENTS 2-6 General EXPLOSION EFFECTS 2-7 Effects of Explosive Output 4 BLAST LOADS 2-8 Blast Phenomena 5 2-8.1
Evaluation of Computational Method of High Reynolds Number Slurry Flow for Caverns Backfilling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bettin, Giorgia
2015-05-01
The abandonment of salt caverns used for brining or product storage poses a significant environmental and economic risk. Risk mitigation can in part be address ed by the process of backfilling which can improve the cavern geomechanical stability and reduce the risk o f fluid loss to the environment. This study evaluate s a currently available computational tool , Barracuda, to simulate such process es as slurry flow at high Reynolds number with high particle loading . Using Barracuda software, a parametric sequence of simu lations evaluated slurry flow at Re ynolds number up to 15000 and loading up tomore » 25%. Li mitations come into the long time required to run these simulation s due in particular to the mesh size requirement at the jet nozzle. This study has found that slurry - jet width and centerline velocities are functions of Re ynold s number and volume fractio n The solid phase was found to spread less than the water - phase with a spreading rate smaller than 1 , dependent on the volume fraction. Particle size distribution does seem to have a large influence on the jet flow development. This study constitutes a first step to understand the behavior of highly loaded slurries and their ultimate application to cavern backfilling.« less
Racette, Molly; Al saleh, Habib; Waller, Kenneth R; Bleedorn, Jason A; McCabe, Ronald P; Vanderby, Ray; Markel, Mark D; Brounts, Sabrina H; Block, Walter F; Muir, Peter
2016-03-01
Estimation of cranial cruciate ligament (CrCL) structural properties in client-owned dogs with incipient cruciate rupture would be advantageous. The objective of this study was to determine whether magnetic resonance imaging (MRI) measurement of normal CrCL volume in an ex-vivo canine model predicts structural properties. Stifles from eight dogs underwent 3.0 Tesla 3D MRI. CrCL volume and normalized median grayscale values were determined using 3D Fast Spin Echo (FSE) Cube and Vastly under-sampled Isotropic PRojection (VIPR)-alternative repetition time (aTR) sequences. Stifles were then mechanically tested. After joint laxity testing, CrCL structural properties were determined, including displacement at yield, yield load, load to failure, and stiffness. Yield load and load to failure (R(2)=0.56, P <0.01) were correlated with CrCL volume determined by VIPR-aTR. Yield load was also correlated with CrCL volume determined by 3D FSE Cube (R(2)=0.32, P <0.05). Structural properties were not related to median grayscale values. Joint laxity and CrCL stiffness were not related to MRI parameters, but displacement at yield load was related to CrCL volume for both sequences during testing (R(2)>0.57, P <0.005). In conclusion, 3D MRI offers a predictive method for estimating canine CrCL structural properties. 3D MRI may be useful for monitoring CrCL properties in clinical trials. Copyright © 2016 Elsevier Ltd. All rights reserved.
Reduced baroreflex sensitivity with volume loading in conscious dogs
NASA Technical Reports Server (NTRS)
Vatner, S. F.; Boettcher, D. H.; Heyndrickx, G. R.; Mcritchie, R. J.
1975-01-01
Results of studies of the Bainbridge reflex in intact conscious dogs are presented. They indicate that arterial baroreflex sensitivity is reduced progressively as atrial pressure is raised by volume loading; this observation explains how heart rate can rise markedly in the presence of an elevated arterial blood pressure.
Lactate response to different volume patterns of power clean.
Date, Anand S; Simonson, Shawn R; Ransdell, Lynda B; Gao, Yong
2013-03-01
The ability to metabolize or tolerate lactate and produce power simultaneously can be an important determinant of performance. Current training practices for improving lactate use include high-intensity aerobic activities or a combination of aerobic and resistance training. Excessive aerobic training may have undesired physiological adaptations (e.g., muscle loss, change in fiber types). The role of explosive power training in lactate production and use needs further clarification. We hypothesized that high-volume explosive power movements such as Olympic lifts can increase lactate production and overload lactate clearance. Hence, the purpose of this study was to assess lactate accumulation after the completion of 3 different volume patterns of power cleans. Ten male recreational athletes (age 24.22 ± 1.39 years) volunteered. Volume patterns consisted of 3 sets × 3 repetition maximum (3RM) (low volume [LV]), 3 sets × 6 reps at 80-85% of 3RM (midvolume [MV]), and 3 sets × 9 reps at 70-75% of 3RM (high volume [HV]). Rest period was identical at 2 minutes. Blood samples were collected immediately before and after each volume pattern. The HV resulted in the greatest lactate accumulation (7.43 ± 2.94 mmol·L) vs. (5.27 ± 2.48 and 4.03 ± 1.78 mmol·L in MV and LV, respectively). Mean relative increase in lactate was the highest in HV (356.34%). The findings indicate that lactate production in power cleans is largely associated with volume, determined by number of repetitions, load, and rest interval. High-volume explosive training may impose greater metabolic demands than low-volume explosive training and may improve ability to produce power in the presence of lactate. The role of explosive power training in overloading the lactate clearance mechanism should be examined further, especially for athletes of intermittent sport.
Interfacial characteristics of hybrid nanocomposite under thermomechanical loading
NASA Astrophysics Data System (ADS)
Choyal, Vijay; Kundalwal, Shailesh I.
2017-12-01
In this work, an improved shear lag model was developed to investigate the interfacial characteristics of three-phase hybrid nanocomposite which is reinforced with microscale fibers augmented with carbon nanotubes on their circumferential surfaces. The shear lag model accounts for (i) radial and axial deformations of different transversely isotropic constituents, (ii) thermomechanical loads on the representative volume element (RVE), and (iii) staggering effect of adjacent RVEs. The results from the current newly developed shear lag model are validated with the finite element simulations and found to be in good agreement. This study reveals that the reduction in the maximum value of the axial stress in the fiber and the interfacial shear stress along its length become more pronounced in the presence of applied thermomechanical loads on the staggered RVEs. The existence of shear tractions along the RVE length plays a significant role in the interfacial characteristics and cannot be ignored.
Experimental investigation of steel fiber-reinforced concrete beams under cyclic loading
NASA Astrophysics Data System (ADS)
Ranjbaran, Fariman; Rezayfar, Omid; Mirzababai, Rahmatollah
2018-03-01
An experimental study has been conducted to study the cyclic behavior of reinforced concrete beams in which steel fibers were added to the concrete mix. Seven similar geometrically specimens in full scale were studied under four- point bending test in the form of slow cyclic loading. One sample as a control specimen was made without steel fibers or 0% volume fraction (vf) and six other samples with 1, 2 and 4% vf of steel fibers in twin models. The maximum and ultimate resistance, ductility, degradation of loading and unloading stiffness, absorption and dissipation of energy and equivalent viscous damping were studied in this investigation and the effect of steel fibers on the cyclic behavior was compared with each other. Generally, the addition of steel fibers up to a certain limit value (vf = 2%) improves the cyclic behavior of reinforced concrete beams and results in the increase of maximum strength and ultimate displacement.
Proceedings of the American Power Conference. Volume 58-I
DOE Office of Scientific and Technical Information (OSTI.GOV)
McBride, A.E.
1996-10-01
This is volume 58-I of the proceedings of the American Power Conference, 1996, Technology for Competition and Globalization. The topics of the papers include power plant DC issues; cost of environmental compliance; advanced coal systems -- environmental performance; technology for competition in dispersed generation; superconductivity technologies for electric utility applications; power generation trends and challenges in China; aging in nuclear power plants; innovative and competitive repowering options; structural examinations, modifications and repairs; electric load forecasting; distribution planning; EMF effects; fuzzy logic and neural networks for power plant applications; electrokinetic decontamination of soils; integrated gasification combined cycle; advances in fusion; coolingmore » towers; relays; plant controls; flue gas desulfurization; waste product utilization; and improved technologies.« less
Elastic transducers incorporating finite-length optical paths
NASA Astrophysics Data System (ADS)
Peters, Kara J.; Washabaugh, Peter D.
1995-08-01
Frequently, when designing a structure to incorporate integrated sensors, one sacrifices the stiffness of the system to improve sensitivity. However, the use of interferometric displacement sensors that tessellate throughout the volume of a structure has the potential to allow the precision and range of the component measurement to scale with the geometry of the device rather than the maximum strain in the structure. The design of stiff structures that measure all six resultant-load components is described. In addition, an advanced torsion sensor and a linear acceleration transducer are also discussed. Finally, invariant paths are presented that allow the in situ integrity of a structural volume to be monitored with a single pair of displacement sensors.
Sakai, Akinori
2011-04-01
We developed a voluntarily climbing animal model to investigate the effect of skeletal loading on bone tissue. At the cross section of the mid-femur, climbing exercise increases outer diameter and area of cortical bone. The mechanical strength of the femur is increased. This change of cortical volume and structure is more marked in anti-gravity exercise, such as climbing and jumping, than aerobic exercise. At the bone marrow area, climbing exercise increases trabecular bone volume and osteoblast number, while it decreases fat volume and adipocyte number. Skeletal loading promotes differentiation from mesenchymal stem cells to osteoblasts and suppresses that to adipocytes by facilitating the signal through PTH÷PTHrP receptor.
Yue, Fu Leon; Karsten, Bettina; Larumbe-Zabala, Eneko; Seijo, Marcos; Naclerio, Fernando
2018-05-01
The present study compared the effects of 2 weekly-equalized volume and relative load interventions on body composition, strength, and power. Based on individual baseline maximal strength values, 18 recreationally trained men were pair-matched and consequently randomly assigned to one of the following experimental groups: a low volume per session with a high frequency (LV-HF, n = 9) group who trained for 4 days (Mondays, Tuesdays, Thursdays, and Fridays) or a high volume per session and low frequency (HV-LF, n = 9) group who trained for 2 days (Mondays and Thursdays). Both groups performed 2 different routines over 6 weeks. Participants were tested pre- and post- intervention for maximal strength, upper body power, fat-free mass, limb circumferences, and muscle thickness. Compared with baseline values, both groups increased their fat-free mass (HV-LF: +1.19 ± 1.94; LV-HF: +1.36 ± 1.06 kg, p < 0.05) and vastus medialis thickness (HV-LF: +2.18 ± 1.88, p < 0.01; LV-HF: +1.82 ± 2.43 mm, p < 0.05), but only the HV-LF group enhanced arm circumference (1.08 ± 1.47 cm, p < 0.05) and elbow flexors thickness (2.21 ± 2.81 mm, P < 0.01) values and decreased their fat mass (-2.41 ± 1.10, P < 0.01). Both groups improved (p < 0.01) the maximal loads lifted in the bench press (LV-HF: +0.14 ± 0.01; HV-LF: +0.14 ± 0.01 kg·body mass -1 ) and the squat (LV-HF: +0.14 ± 0.06; HV-LF: 0.17 ± 0.01 kg·body mass -1 ) exercises as well as in upper body power (LV-HF: +0.22 ± 0.25; HV-LF: +0.27 ± 0.22 W·body mass -1 ) Although both training strategies improved performance and lower body muscle mass, only the HV-LF protocol increased upper body hypertrophy and improved body composition.
DOT National Transportation Integrated Search
2015-01-01
This report is the third of three volumes and presents the numerical portion of the research project on the impacts of loading history on : the behavior of reinforced concrete bridge columns. Two independent finite element methods were utilized to ac...
Jafari, Samira; Maleki-Dizaji, Nasrin; Barar, Jaleh; Barzegar-Jalali, Mohammad; Rameshrad, Maryam; Adibkia, Khosro
2016-08-25
The objective of this study was to improve the therapeutic efficacy of methylprednisolone acetate (MPA) in the treatment of rheumatoid arthritis (RA) by incorporating the drug into the hydroxyapatite (HAp) nanoparticles. The nanoparticles were synthesized using a chemical precipitation technique and their size and morphology were evaluated by dynamic light scattering and scanning electron microscopy (SEM). The solid-state behavior of the nanoparticles was also characterized by operating X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC) and Fourier-transform infrared spectroscopy (FTIR). The Brunauer-Emmett-Teller and Barrett-Joyner-Halenda N2 adsorption/desorption analyses were also performed to determine the surface area, Vm (the volume of the N2 adsorbed on the one gram of the HAp when the monolayer is complete) and the pore size of the samples. Furthermore, the therapeutic efficacy of the prepared nanoformulation on the adjuvant induced arthritic rats was assessed. HAp mesoporous nanoparticles with a particle size of 70.45nm, pore size of 2.71nm and drug loading of 44.53% were obtained. The specific surface area of HAp as well as the Vm values were decreased after the drug loading process. The nanoformulation revealed the slower drug release profile compared to the pure drug. The MTT assay indicated that the MPA-loaded nanoparticles had a lower cytotoxic effect on NIH-3T3 and CAOV-4 cell lines compared to the pure drug. Interestingly, the in vivo study confirmed that the drug-loaded nanoparticles could considerably decrease the paw volume and normalize the hematological abnormalities in the arthritic rats. Copyright © 2016 Elsevier B.V. All rights reserved.
A comparison of methods to quantify the in-season training load of professional soccer players.
Scott, Brendan R; Lockie, Robert G; Knight, Timothy J; Clark, Andrew C; Janse de Jonge, Xanne A K
2013-03-01
To compare various measures of training load (TL) derived from physiological (heart rate [HR]), perceptual (rating of perceived exertion [RPE]), and physical (global positioning system [GPS] and accelerometer) data during in-season field-based training for professional soccer. Fifteen professional male soccer players (age 24.9 ± 5.4 y, body mass 77.6 ± 7.5 kg, height 181.1 ± 6.9 cm) were assessed in-season across 97 individual training sessions. Measures of external TL (total distance [TD], the volume of low-speed activity [LSA; <14.4 km/h], high-speed running [HSR; >14.4 km/h], very high-speed running [VHSR; >19.8 km/h], and player load), HR and session-RPE (sRPE) scores were recorded. Internal TL scores (HR-based and sRPE-based) were calculated, and their relationships with measures of external TL were quantified using Pearson product-moment correlations. Physical measures of TD, LSA volume, and player load provided large, significant (r = .71-.84; P < .01) correlations with the HR-based and sRPE-based methods. Volume of HSR and VHSR provided moderate to large, significant (r = .40-.67; P < .01) correlations with measures of internal TL. While the volume of HSR and VHSR provided significant relationships with internal TL, physical-performance measures of TD, LSA volume, and player load appear to be more acceptable indicators of external TL, due to the greater magnitude of their correlations with measures of internal TL.
NASA Astrophysics Data System (ADS)
Skarbek, R. M.; Savage, H. M.; Spiegelman, M. W.; Kelemen, P. B.; Yancopoulos, D.
2017-12-01
Deformation and cracking caused by reaction-driven volume increase is an important process in many geological settings, however the conditions controlling these processes are poorly understood. The interaction of rocks with reactive fluids can change permeability and reactive surface area, leading to a large variety of feedbacks. Gypsum is an ideal material to study these processes. It forms rapidly at room temperature via bassanite hydration, and is commonly used as an analogue for rocks in high-temperature, high-pressure conditions. We conducted uniaxial strain experiments to study the effects of applied axial load on deformation and fluid flow during the formation of gypsum from bassanite. While hydration of bassanite to gypsum involves a solid volume increase, gypsum exhibits significant creep compaction when in contact with water. These two volume changing processes occur simultaneously during fluid flow through bassanite. We cold-pressed bassanite powder to form cylinders 2.5 cm in height and 1.2 cm in diameter. Samples were compressed with a static axial load of 0.01 to 4 MPa. Water infiltrated initially unsaturated samples through the bottom face and the height of the samples was recorded as a measure of the total volume change. We also performed experiments on pure gypsum samples to constrain the amount of creep observed in tests on bassanite hydration. At axial loads < 0.15 MPa, volume increase due to the reaction dominates and samples exhibit monotonic expansion. At loads > 1 MPa, creep in the gypsum dominates and samples exhibit monotonic compaction. At intermediate loads, samples exhibit alternating phases of compaction and expansion due to the interplay of the two volume changing processes. We observed a change from net compaction to net expansion at an axial load of 0.250 MPa. We explain this behavior with a simple model that predicts the strain evolution, but does not take fluid flow into account. We also implement a 1D poro-visco-elastic model of the imbibition process that includes the reaction and gypsum creep. We use the results of these models, with models of the creep rate in gypsum, to estimate the temperature dependence of the axial load where total strain transitions from compaction to expansion. Our results have implications for the depth dependence of reaction induced volume changes in the Earth.
A generalized threshold model for computing bed load grain size distribution
NASA Astrophysics Data System (ADS)
Recking, Alain
2016-12-01
For morphodynamic studies, it is important to compute not only the transported volumes of bed load, but also the size of the transported material. A few bed load equations compute fractional transport (i.e., both the volume and grain size distribution), but many equations compute only the bulk transport (a volume) with no consideration of the transported grain sizes. To fill this gap, a method is proposed to compute the bed load grain size distribution separately to the bed load flux. The method is called the Generalized Threshold Model (GTM), because it extends the flow competence method for threshold of motion of the largest transported grain size to the full bed surface grain size distribution. This was achieved by replacing dimensional diameters with their size indices in the standard hiding function, which offers a useful framework for computation, carried out for each indices considered in the range [1, 100]. New functions are also proposed to account for partial transport. The method is very simple to implement and is sufficiently flexible to be tested in many environments. In addition to being a good complement to standard bulk bed load equations, it could also serve as a framework to assist in analyzing the physics of bed load transport in future research.
Constant load and constant volume response of municipal solid waste in simple shear.
Zekkos, Dimitrios; Fei, Xunchang
2017-05-01
Constant load and constant volume simple shear testing was conducted on relatively fresh municipal solid waste (MSW) from two landfills in the United States, one in Michigan and a second in Texas, at respective natural moisture content below field capacity. The results were assessed in terms of two failure strain criteria, at 10% and 30% shear strain, and two interpretations of effective friction angle. Overall, friction angle obtained assuming that the failure plane is horizontal and at 10% shear strain resulted in a conservative estimation of shear strength of MSW. Comparisons between constant volume and constant load simple shear testing results indicated significant differences in the shear response of MSW with the shear resistance in constant volume being lower than the shear resistance in constant load. The majority of specimens were nearly uncompacted during specimen preparation to reproduce the state of MSW in bioreactor landfills or in uncontrolled waste dumps. The specimens had identical percentage of <20mm material but the type of <20mm material was different. The <20mm fraction from Texas was finer and of high plasticity. MSW from Texas was overall weaker in both constant load and constant volume conditions compared to Michigan waste. The results of these tests suggest the possibility of significantly lower shear strength of MSW in bioreactor landfills where waste is placed with low compaction effort and constant volume, i.e., "undrained", conditions may occur. Compacted MSW specimens resulted in shear strength parameters that are higher than uncompacted specimens and closer to values reported in the literature. However, the normalized undrained shear strength in simple shear for uncompacted and compacted MSW was still higher than the normalized undrained shear strength reported in the literature for clayey and silty soils. Copyright © 2016 Elsevier Ltd. All rights reserved.
Weigh-in-motion (WIM) data for site-specific LRFR bridge load rating.
DOT National Transportation Integrated Search
2011-08-12
The live load factors in the Load and Resistant Factor Rating (LRFR) Manual are based on load data from Ontario : thought to be representative of traffic volumes nationwide. However, in accordance with the methodology for : developing site-specific l...
Liu, Yaoze; Theller, Lawrence O; Pijanowski, Bryan C; Engel, Bernard A
2016-05-15
The adverse impacts of urbanization and climate change on hydrology and water quality can be mitigated by applying green infrastructure practices. In this study, the impacts of land use change and climate change on hydrology and water quality in the 153.2 km(2) Trail Creek watershed located in northwest Indiana were estimated using the Long-Term Hydrologic Impact Assessment-Low Impact Development 2.1 (L-THIA-LID 2.1) model for the following environmental concerns: runoff volume, Total Suspended Solids (TSS), Total Phosphorous (TP), Total Kjeldahl Nitrogen (TKN), and Nitrate+Nitrite (NOx). Using a recent 2001 land use map and 2050 land use forecasts, we found that land use change resulted in increased runoff volume and pollutant loads (8.0% to 17.9% increase). Climate change reduced runoff and nonpoint source pollutant loads (5.6% to 10.2% reduction). The 2050 forecasted land use with current rainfall resulted in the largest runoff volume and pollutant loads. The optimal selection and placement of green infrastructure practices using L-THIA-LID 2.1 model were conducted. Costs of applying green infrastructure were estimated using the L-THIA-LID 2.1 model considering construction, maintenance, and opportunity costs. To attain the same runoff volume and pollutant loads as in 2001 land uses for 2050 land uses, the runoff volume, TSS, TP, TKN, and NOx for 2050 needed to be reduced by 10.8%, 14.4%, 13.1%, 15.2%, and 9.0%, respectively. The corresponding annual costs of implementing green infrastructure to achieve the goals were $2.1, $0.8, $1.6, $1.9, and $0.8 million, respectively. Annual costs of reducing 2050 runoff volume/pollutant loads were estimated, and results show green infrastructure annual cost greatly increased for larger reductions in runoff volume and pollutant loads. During optimization, the most cost-efficient green infrastructure practices were selected and implementation levels increased for greater reductions of runoff and nonpoint source pollutants. Copyright © 2016 Elsevier B.V. All rights reserved.
Wood, Chris M; Kajimura, Makiko; Mommsen, Thomas P; Walsh, Patrick J
2008-01-01
Experimental metabolic alkalosis is known to stimulate whole-animal urea production and active ion secretion by the rectal gland in the dogfish shark. Furthermore, recent evidence indicates that a marked alkaline tide (systemic metabolic alkalosis) follows feeding in this species and that the activities of the enzymes of the ornithine-urea cycle (OUC) for urea synthesis in skeletal muscle and liver and of energy metabolism and ion transport in the rectal gland are increased at this time. We therefore evaluated whether alkalosis and/or NaCl/volume loading (which also occurs with feeding) could serve as a signal for activation of these enzymes independent of nutrient loading. Fasted dogfish were infused for 20 h with either 500 mmol L(-1) NaHCO3 (alkalosis + volume expansion) or 500 mmol L(-1) NaCl (volume expansion alone), both isosmotic to dogfish plasma, at a rate of 3 mL kg(-1) h(-1). NaHCO3 infusion progressively raised arterial pH to 8.28 (control = 7.85) and plasma [HCO3-] to 20.8 mmol L(-1) (control = 4.5 mmol L(-1)) at 20 h, with unchanged arterial P(CO2), whereas NaCl/volume loading had no effect on blood acid-base status. Rectal gland Na+,K+-ATPase activity was increased 50% by NaCl loading and more than 100% by NaHCO3 loading, indicating stimulatory effects of both volume expansion and alkalosis. Rectal gland lactate dehydrogenase activity was elevated 25% by both treatments, indicating volume expansion effects only, whereas neither treatment increased the activities of the aerobic enzymes citrate synthase, NADP-isocitrate dehydrogenase, or the ketone body-utilizing enzyme beta-hydroxybutyrate dehydrogenase in the rectal gland or liver. The activity of ornithine-citrulline transcarbamoylase in skeletal muscle was doubled by NaHCO3 infusion, but neither treatment altered the activities of other OUC-related enzymes (glutamine synthetase, carbamoylphosphate synthetase III). We conclude that both the alkaline tide and salt loading/volume expansion act as signals to activate some but not all of the elevated metabolic pathways and ionoregulatory mechanisms needed during processing of a meal.
Internet traffic load balancing using dynamic hashing with flow volume
NASA Astrophysics Data System (ADS)
Jo, Ju-Yeon; Kim, Yoohwan; Chao, H. Jonathan; Merat, Francis L.
2002-07-01
Sending IP packets over multiple parallel links is in extensive use in today's Internet and its use is growing due to its scalability, reliability and cost-effectiveness. To maximize the efficiency of parallel links, load balancing is necessary among the links, but it may cause the problem of packet reordering. Since packet reordering impairs TCP performance, it is important to reduce the amount of reordering. Hashing offers a simple solution to keep the packet order by sending a flow over a unique link, but static hashing does not guarantee an even distribution of the traffic amount among the links, which could lead to packet loss under heavy load. Dynamic hashing offers some degree of load balancing but suffers from load fluctuations and excessive packet reordering. To overcome these shortcomings, we have enhanced the dynamic hashing algorithm to utilize the flow volume information in order to reassign only the appropriate flows. This new method, called dynamic hashing with flow volume (DHFV), eliminates unnecessary flow reassignments of small flows and achieves load balancing very quickly without load fluctuation by accurately predicting the amount of transferred load between the links. In this paper we provide the general framework of DHFV and address the challenges in implementing DHFV. We then introduce two algorithms of DHFV with different flow selection strategies and show their performances through simulation.
Gao, Xin; Zhu, Qiaoqiao; Gu, Weiyong
2015-02-26
The glycosaminoglycan (GAG) plays an important role in cartilaginous tissues to support and transmit mechanical loads. Many extracellular biophysical stimuli could affect GAG synthesis by cells. It has been hypothesized that the change of cell volume is a primary mechanism for cells to perceive the stimuli. Experimental studies have shown that the maximum synthesis rate of GAG is achieved at an optimal cell volume, larger or smaller than this level the GAG synthesis rate decreases. Based on the hypothesis and experimental findings in the literature, we proposed a mathematical model to quantitatively describe the cell volume dependent GAG synthesis rate in the cartilaginous tissues. Using this model, we investigated the effects of osmotic loading and mechanical loading on GAG synthesis rate. It is found our proposed mathematical model is able to well describe the change of GAG synthesis rate in isolated cells or in cartilage with variations of the osmotic loading or mechanical loading. This model is important for evaluating the GAG synthesis activity within cartilaginous tissues as well as understanding the role of mechanical loading in tissue growth or degeneration. It is also important for designing a bioreactor system with proper extracellular environment or mechanical loading for growing tissue at the maximum synthesis rate of the extracellular matrix. Copyright © 2015 Elsevier Ltd. All rights reserved.
Lee, Lik Chuan; Zhihong, Zhang; Hinson, Andrew; Guccione, Julius M.
2013-01-01
Injection of Algisyl-LVR, a treatment under clinical development, is intended to treat patients with dilated cardiomyopathy. This treatment was recently used for the first time in patients who had symptomatic heart failure. In all patients, cardiac function of the left ventricle (LV) improved significantly, as manifested by consistent reduction of the LV volume and wall stress. Here we describe this novel treatment procedure and the methods used to quantify its effects on LV wall stress and function. Algisyl-LVR is a biopolymer gel consisting of Na+-Alginate and Ca2+-Alginate. The treatment procedure was carried out by mixing these two components and then combining them into one syringe for intramyocardial injections. This mixture was injected at 10 to 19 locations mid-way between the base and apex of the LV free wall in patients. Magnetic resonance imaging (MRI), together with mathematical modeling, was used to quantify the effects of this treatment in patients before treatment and at various time points during recovery. The epicardial and endocardial surfaces were first digitized from the MR images to reconstruct the LV geometry at end-systole and at end-diastole. Left ventricular cavity volumes were then measured from these reconstructed surfaces. Mathematical models of the LV were created from these MRI-reconstructed surfaces to calculate regional myofiber stress. Each LV model was constructed so that 1) it deforms according to a previously validated stress-strain relationship of the myocardium, and 2) the predicted LV cavity volume from these models matches the corresponding MRI-measured volume at end-diastole and end-systole. Diastolic filling was simulated by loading the LV endocardial surface with a prescribed end-diastolic pressure. Systolic contraction was simulated by concurrently loading the endocardial surface with a prescribed end-systolic pressure and adding active contraction in the myofiber direction. Regional myofiber stress at end-diastole and end-systole was computed from the deformed LV based on the stress-strain relationship. PMID:23608998
Paoli, Antonio; Gentil, Paulo; Moro, Tatiana; Marcolin, Giuseppe; Bianco, Antonino
2017-01-01
The present study aimed to compare the effects of equal-volume resistance training performed with single-joint (SJ) or multi-joint exercises (MJ) on VO 2 max, muscle strength and body composition in physically active males. Thirty-six participants were divided in two groups: SJ group ( n = 18, 182.1 ± 5.2, 80.03 ± 2.78 kg, 23.5 ± 2.7 years) exercised with only SJ exercises (e.g., dumbbell fly, knee extension, etc.) and MJ group ( n = 18, 185.3 ± 3.6 cm, 80.69 ± 2.98 kg, 25.5 ± 3.8 years) with only MJ exercises (e.g., bench press, squat, etc.). The total work volume (repetitions × sets × load) was equated between groups. Training was performed three times a week for 8 weeks. Before and after the training period, participants were tested for VO 2 max, body composition, 1 RM on the bench press, knee extension and squat. Analysis of covariance (ANCOVA) was used to compare post training values between groups, using baseline values as covariates. According to the results, both groups decreased body fat and increased fat free mass with no difference between them. Whilst both groups significantly increased cardiorespiratory fitness and maximal strength, the improvements in MJ group were higher than for SJ in VO 2 max (5.1 and 12.5% for SJ and MJ), bench press 1 RM (8.1 and 10.9% for SJ and MJ), knee extension 1 RM (12.4 and 18.9% for SJ and MJ) and squat 1 RM (8.3 and 13.8% for SJ and MJ). In conclusion, when total work volume was equated, RT programs involving MJ exercises appear to be more efficient for improving muscle strength and maximal oxygen consumption than programs involving SJ exercises, but no differences were found for body composition.
Influence of Crystal Expansion/Contraction on Zeolite Membrane Permeation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sorenson, Stephanie G; Payzant, E Andrew; Noble, Richard D
X-ray diffraction was used to measure the unit cell parameters of B-ZSM-5, SAPO-34, and NaA zeolite powders as a function of adsorbate loading at 303 K, and in one case, at elevated temperatures. Most adsorbates expanded the zeolite crystals below saturation loading at 303 K: n-hexane and SF6 in B-ZSM-5, methanol and CO2 in SAPO-34, and methanol in NaA zeolite. As the loadings increased, the crystals expanded more. Changes in the unit cell volumes of B-ZSM-5 and SAPO-34 zeolite powders correlated with changes in permeation through zeolite membranes defects. When the zeolite crystals expanded or contracted upon adsorption, the defectmore » sizes decreased or increased. In B-ZSM-5 membranes, the fluxes through defects decreased dramatically when n-hexane or SF6 adsorbed. In contrast, i-butane adsorption at 303 K contracted B-ZSM-5 crystals at low loadings and expanded them at higher loadings. Correspondingly, the flux through B-ZSM-5 membrane defects increased at low i-butane loadings and decreased at high loading because the defects increased in size at low loading and decreased at high loadings. At 398 K and 473 K, n-hexane expanded the B-ZSM-5 unit cell more as the temperature increased from 303 to 473 K. The silicalite-1 and B-ZSM-5 unit cell volumes expanded similarly upon n-hexane adsorption at 303 K; boron substitution had little effect on volume expansion.« less
Flash NanoPrecipitation (FNP) for bioengineering nanoparticles to enhance the bioavailability
NASA Astrophysics Data System (ADS)
Feng, Jie; Zhang, Yingyue; McManus, Simone; Prud'Homme, Robert
2017-11-01
Nanoparticles for the delivery of therapeutics have been one of the successful areas in biomedical nanotechnology. Nanoparticles improve bioavailability by 1) the higher surface-to-volume ratios, enhancing dissolution rates, and 2) trapping drug molecules in higher energy, amorphous states for a higher solubility. However, conventional direct precipitation to prepare nanoparticles has the issues of low loading and encapsulation efficiency. Here we demonstrate a kinetically controlled and rapid-precipitation process called Flash NanoPrecipitation (FNP), to offer a multi-phase mixing platform for bioengineering nanoparticles. With the designed geometry in the micro-mixer, we can generate nanoparticles with a narrow size distribution, while maintaining high loading and encapsulation efficiency. By controlling the time scales in FNP, we can tune the nanoparticle size and the robustness of the process. Remarkably, the dissolution rates of the nanoparticles are significantly improved compared with crystalline drug powders. Furthermore, we investigate how to recover the drug-loaded nanoparticles from the aqueous dispersions. Regarding the maintenance of the bioavailability, we discuss the advantages and disadvantages of each drying process. These results suggest that FNP offers a versatile and scalable nano-fabrication platform for biomedical engineering.
Fey, David L.; Wirt, Laurie
2007-01-01
The largest sources of copper and zinc to the creek were from surface inflows from the adit, diffuse inflows from wetland areas, and leaching of dispersed mill tailings. Major instream processes included mixing between mining- and non-mining-impacted waters and the attenuation of iron, aluminum, manganese, and othermetals by precipitation or sorption. One year after the rerouting, the Zn and Cu loads in Leavenworth Creek from the adit discharge versus those from leaching of a large volume of dispersed mill tailings were approximately equal to, if not greater than, those before. The mine-waste dump does not appear to be a major source of metal loading. Any improvement that may have resulted from the elimination of adit flow across the dump was masked by higher adit discharge attributed to a larger snow pack. Although many mine remediation activities commonly proceed without prior scientific studies to identify the sources and pathways of metal transport, such strategies do not always translate to water-quality improvements in the stream. Assessment of sources and pathways to gain better understanding of the system is a necessary investment in the outcome of any successful remediation strategy.
Sinclair, S.; James, S.; Singer, M.
1997-01-01
OBJECTIVES: To assess whether intraoperative intravascular volume optimisation improves outcome and shortens hospital stay after repair of proximal femoral fracture. DESIGN: Prospective, randomised controlled trial comparing conventional intraoperative fluid management with repeated colloid fluid challenges monitored by oesophageal Doppler ultrasonography to maintain maximal stroke volume throughout the operative period. SETTING: Teaching hospital, London. SUBJECTS: 40 patients undergoing repair of proximal femoral fracture under general anaesthesia. INTERVENTIONS: Patients were randomly assigned to receive either conventional intraoperative fluid management (control patients) or additional repeated colloid fluid challenges with oesophageal Doppler ultrasonography used to maintain maximal stroke volume throughout the operative period (protocol patients). MAIN OUTCOME MEASURES: Time declared medically fit for hospital discharge, duration of hospital stay (in acute bed; in acute plus long stay bed), mortality, perioperative haemodynamic changes. RESULTS: Intraoperative intravascular fluid loading produced significantly greater changes in stroke volume (median 15 ml (95% confidence interval 10 to 21 ml)) and cardiac output (1.2 l/min (0.1 to 2.3 l/min)) than in the conventionally managed group (-5 ml (-10 to 1 ml) and -0.4 l/min (-1.0 to 0.2 l/min)) (P < 0.001 and P < 0.05, respectively). One protocol patient and two control patients died in hospital. In the survivors, postoperative recovery was significantly faster in the protocol patients, with shorter times to being declared medically fit for discharge (median 10 (9 to 15) days v 15 (11 to 40) days, P < 0.05) and a 39% reduction in hospital stay (12 (8 to 13) days v 20 (10 to 61) days, P < 0.05). CONCLUSIONS: Proximal femoral fracture repair constitutes surgery in a high risk population. Intraoperative intravascular volume loading to optimal stroke volume resulted in a more rapid postoperative recovery and a significantly reduced hospital stay. PMID:9361539
1984-08-01
is to " Nowo _ - . . .. ..... . , , . , . i’*.t’ "’" 36 determine the motion resistance, drawbar pull, torque, efficiency, and side force for a...Elastic-plastic soil deformation and normal load for hard soil 20 4 6-0 0Sikan I i I I I" 347 Literature (1) Wong, J.Y.:"An improved method for predicting
NASA Astrophysics Data System (ADS)
Al-Mayah, Adil; Moseley, Joanne; Hunter, Shannon; Brock, Kristy
2015-11-01
Biomechanical-based deformable image registration is conducted on the head and neck region. Patient specific 3D finite element models consisting of parotid glands (PG), submandibular glands (SG), tumor, vertebrae (VB), mandible, and external body are used to register pre-treatment MRI to post-treatment MR images to model the dose response using image data of five patients. The images are registered using combinations of vertebrae and mandible alignments, and surface projection of the external body as boundary conditions. In addition, the dose response is simulated by applying a new loading technique in the form of a dose-induced shrinkage using the dose-volume relationship. The dose-induced load is applied as dose-induced shrinkage of the tumor and four salivary glands. The Dice Similarity Coefficient (DSC) is calculated for the four salivary glands, and tumor to calculate the volume overlap of the structures after deformable registration. A substantial improvement in the registration is found by including the dose-induced shrinkage. The greatest registration improvement is found in the four glands where the average DSC increases from 0.53, 0.55, 0.32, and 0.37 to 0.68, 0.68, 0.51, and 0.49 in the left PG, right PG, left SG, and right SG, respectively by using bony alignment of vertebrae and mandible (M), body (B) surface projection and dose (D) (VB+M+B+D).
Investigation on dynamic performance of concrete column crumb rubber steel and fiber concrete
NASA Astrophysics Data System (ADS)
Siti Nurul Nureda, M. Z.; Mariyana, A. K.; Khiyon, M. Iqbal; Rahman, M. S. Abdul; Nurizaty, Z.
2017-11-01
In general the Normal Concrete (NC) are by quasi-brittle failure, where, the nearly complete loss of loading capacity, once failure is initiated especially under dynamic loadings. The significance of this study is to improve the damping properties of concrete structure by utilization of the recycled materials from waste tires to be used in concrete as structural materials that improve seismic performance. In this study, the concrete containing 10% of fine crumb rubber and 1 % volume fraction of steel fiber from waste tires is use to investigate the dynamic performance (natural frequency and damping ratio).A small scale column were fabricated from Treated Crumb Rubber and Steel Fiber Concrete (TCRSFC) and NC were cast and cured for 28 days to investigate the dynamic performance. Based on analysis, dynamic modulus, damping ratio and natural frequency of TCRSFC has improved considerably by 5.18%, 109% and 10.94% when compared with NC. The TCRSFC producing concrete with the desired properties as well as to introduce the huge potential as dynamic resistance structure from severe damage especially prevention on catastrophic failure.
Mujika, Iñigo; Chaouachi, Anis; Chamari, Karim
2010-06-01
A marked reduction in the training load in the lead-up to major competitions allows athletes to reduce the fatigue induced by intense training and improve competition performance. This tapered training phase is based on the reduction in training volume while maintaining pretaper training intensity and frequency. In parallel to training load reductions, nutritional strategies characterised by lowered energy intakes need to be implemented to match lowered energy expenditure. The Ramadan intermittent fast imposes constrained nutritional practices on Muslim athletes, inducing a shift to a greater reliance on fat oxidation to meet energy needs and a possible increase in protein breakdown. The training load is often reduced during Ramadan to match the absence of energy and fluid intake during daylight, which implies a risk of losing training induced adaptations. Should coaches and athletes decide to reduce the training load during Ramadan, the key role of training intensity in retaining training induced adaptations should be kept in mind. However, experienced elite Muslim athletes are able to maintain their usual training load during this month of intermittent fasting without decrements in measures of fitness and with only minor adverse effects.
Huang, Yuanxing; Cui, Chenchen; Zhang, Daofang; Li, Liang; Pan, Ding
2015-01-01
Iron-loaded activated carbon was prepared and used as catalyst in heterogeneous catalytic ozonation of dibutyl phthalate (DBP). The catalytic activity of iron-loaded activated carbon was investigated under various conditions and the mechanisms of DBP removal were deduced. Characterization of catalyst indicated that the iron loaded on activated carbon was mainly in the form of goethite, which reduced its surface area, pore volume and pore diameter. The presence of metals on activated carbon positively contributed to its catalytic activity in ozonation of DBP. Iron loading content of 15% and initial water pH of 8 achieved highest DBP removal among all the tried conditions. Catalyst dosage of 10 mg L(-1) led to approximately 25% of increase in DBP (initial concentration 2 mg L(-1)) removal in 60 min as compared with ozone alone, and when catalyst dosage increased to 100 mg L(-1), the DBP removal was further improved by 46%. Based on a comparison of reaction rates for direct and indirect transformation of DBP, the increased removal of DBP in this study likely occurred via transformation of ozone into hydroxyl radicals on the catalyst surface. Copyright © 2014 Elsevier Ltd. All rights reserved.
Load research manual. Volume 3: Load research for advanced technologies
NASA Astrophysics Data System (ADS)
1980-11-01
Technical guidelines for electric utility load research are presented. Special attention is given to issues raised by the load reporting requirements of the Public Utility Regulatory Policies Act of 1978 and to problems faced by smaller utilities that are initiating load research programs. The manual includes guides to load research literature and glossaries of load research and statistical terms. Special load research procedures are presented for solar, wind, and cogeneration technologies.
Janssen, I; Steele, J R; Munro, B J; Brown, N A T
2015-06-01
Patellar tendinopathy is the most common knee injury incurred in volleyball, with its prevalence in elite athletes more than three times that of their sub-elite counterparts. The purpose of this study was to determine whether patellar tendinopathy risk factors differed between elite and sub-elite male volleyball players. Nine elite and nine sub-elite male volleyball players performed a lateral stop-jump block movement. Maximum vertical jump, training history, muscle extensibility and strength, three-dimensional landing kinematics (250 Hz), along with lower limb neuromuscular activation patterns (1500 Hz), and patellar tendon loading were collected during each trial. Multivariate analyses of variance (P < 0.05) assessed for between-group differences in risk factors or patellar tendon loading. Significant interaction effects were further evaluated using post-hoc univariate analysis of variance tests. Landing kinematics, neuromuscular activation patterns, patellar tendon loading, and most of the previously identified risk factors did not differ between the elite and sub-elite players. However, elite players participated in a higher training volume and had less quadriceps extensibility than sub-elite players. Therefore, high training volume is likely the primary contributor to the injury discrepancy between elite and sub-elite volleyball players. Interventions designed to reduce landing frequency and improve quadriceps extensibility are recommended to reduce patellar tendinopathy prevalence in volleyball players. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Using Micro-Synchrophasor Data for Advanced Distribution Grid Planning and Operations Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stewart, Emma; Kiliccote, Sila; McParland, Charles
2014-07-01
This report reviews the potential for distribution-grid phase-angle data that will be available from new micro-synchrophasors (µPMUs) to be utilized in existing distribution-grid planning and operations analysis. This data could augment the current diagnostic capabilities of grid analysis software, used in both planning and operations for applications such as fault location, and provide data for more accurate modeling of the distribution system. µPMUs are new distribution-grid sensors that will advance measurement and diagnostic capabilities and provide improved visibility of the distribution grid, enabling analysis of the grid’s increasingly complex loads that include features such as large volumes of distributed generation.more » Large volumes of DG leads to concerns on continued reliable operation of the grid, due to changing power flow characteristics and active generation, with its own protection and control capabilities. Using µPMU data on change in voltage phase angle between two points in conjunction with new and existing distribution-grid planning and operational tools is expected to enable model validation, state estimation, fault location, and renewable resource/load characterization. Our findings include: data measurement is outstripping the processing capabilities of planning and operational tools; not every tool can visualize a voltage phase-angle measurement to the degree of accuracy measured by advanced sensors, and the degree of accuracy in measurement required for the distribution grid is not defined; solving methods cannot handle the high volumes of data generated by modern sensors, so new models and solving methods (such as graph trace analysis) are needed; standardization of sensor-data communications platforms in planning and applications tools would allow integration of different vendors’ sensors and advanced measurement devices. In addition, data from advanced sources such as µPMUs could be used to validate models to improve/ensure accuracy, providing information on normally estimated values such as underground conductor impedance, and characterization of complex loads. Although the input of high-fidelity data to existing tools will be challenging, µPMU data on phase angle (as well as other data from advanced sensors) will be useful for basic operational decisions that are based on a trend of changing data.« less
NASA Astrophysics Data System (ADS)
Shajil, N.; Srinivasan, S. M.; Santhanam, M.
2012-04-01
Fibers can play a major role in post cracking behavior of concrete members, because of their ability to bridge cracks and distribute the stress across the crack. Addition of steel fibers in mortar and concrete can improve toughness of the structural member and impart significant energy dissipation through slow pull out. However, steel fibers undergo plastic deformation at low strain levels, and cannot regain their shape upon unloading. This is a major disadvantage in strong cyclic loading conditions, such as those caused by earthquakes, where self-centering ability of the fibers is a desired characteristic in addition to ductility of the reinforced cement concrete. Fibers made from an alternative material such as shape memory alloy (SMA) could offer a scope for re-centering, thus improving performance especially after a severe loading has occurred. In this study, the load-deformation characteristics of SMA fiber reinforced cement mortar beams under cyclic loading conditions were investigated to assess the re-centering performance. This study involved experiments on prismatic members, and related analysis for the assessment and prediction of re-centering. The performances of NiTi fiber reinforced mortars are compared with mortars with same volume fraction of steel fibers. Since re-entrant corners and beam columns joints are prone to failure during a strong ground motion, a study was conducted to determine the behavior of these reinforced with NiTi fiber. Comparison is made with the results of steel fiber reinforced cases. NiTi fibers showed significantly improved re-centering and energy dissipation characteristics compared to the steel fibers.
Disintegration impact on sludge digestion process.
Dauknys, Regimantas; Rimeika, Mindaugas; Jankeliūnaitė, Eglė; Mažeikienė, Aušra
2016-11-01
The anaerobic sludge digestion is a widely used method for sludge stabilization in wastewater treatment plant. This process can be improved by applying the sludge disintegration methods. As the sludge disintegration is not investigated enough, an analysis of how the application of thermal hydrolysis affects the sludge digestion process based on full-scale data was conducted. The results showed that the maximum volatile suspended solids (VSS) destruction reached the value of 65% independently on the application of thermal hydrolysis. The average VSS destruction increased by 14% when thermal hydrolysis was applied. In order to have the maximum VSS reduction and biogas production, it is recommended to keep the maximum defined VSS loading of 5.7 kg VSS/m(3)/d when the thermal hydrolysis is applied and to keep the VSS loading between 2.1-2.4 kg VSS/m(3)/d when the disintegration of sludge is not applied. The application of thermal hydrolysis leads to an approximately 2.5 times higher VSS loading maintenance comparing VSS loading without the disintegration; therefore, digesters with 1.8 times smaller volume is required.
Combination microwave ovens: an innovative design strategy.
Tinga, Wayne R; Eke, Ken
2012-01-01
Reducing the sensitivity of microwave oven heating and cooking performance to load volume, load placement and load properties has been a long-standing challenge for microwave and microwave-convection oven designers. Conventional design problem and solution methods are reviewed to provide greater insight into the challenge and optimum operation of a microwave oven after which a new strategy is introduced. In this methodology, a special load isolating and energy modulating device called a transducer-exciter is used containing an iris, a launch box, a phase, amplitude and frequency modulator and a coupling plate designed to provide spatially distributed coupling to the oven. This system, when applied to a combined microwave-convection oven, gives astounding performance improvements to all kinds of baked and roasted foods including sensitive items such as cakes and pastries, with the only compromise being a reasonable reduction in the maximum available microwave power. Large and small metal utensils can be used in the oven with minimal or no performance penalty on energy uniformity and cooking results. Cooking times are greatly reduced from those in conventional ovens while maintaining excellent cooking performance.
46 CFR 151.45-6 - Maximum amount of cargo.
Code of Federal Regulations, 2010 CFR
2010-10-01
... insulated, or 115 °F if uninsulated. If specific filling densities are designated in Subpart 151.50 of this...=Maximum volume to which tank may be loaded. V =Volume of tank. d r=Density of cargo at the temperature required for a cargo vapor pressure equal to the relief valve setting. d L=Density of cargo at the loading...
46 CFR 151.45-6 - Maximum amount of cargo.
Code of Federal Regulations, 2011 CFR
2011-10-01
... insulated, or 115 °F if uninsulated. If specific filling densities are designated in Subpart 151.50 of this...=Maximum volume to which tank may be loaded. V =Volume of tank. d r=Density of cargo at the temperature required for a cargo vapor pressure equal to the relief valve setting. d L=Density of cargo at the loading...
46 CFR 151.45-6 - Maximum amount of cargo.
Code of Federal Regulations, 2014 CFR
2014-10-01
... insulated, or 115 °F if uninsulated. If specific filling densities are designated in Subpart 151.50 of this...=Maximum volume to which tank may be loaded. V =Volume of tank. d r=Density of cargo at the temperature required for a cargo vapor pressure equal to the relief valve setting. d L=Density of cargo at the loading...
46 CFR 151.45-6 - Maximum amount of cargo.
Code of Federal Regulations, 2013 CFR
2013-10-01
... insulated, or 115 °F if uninsulated. If specific filling densities are designated in Subpart 151.50 of this...=Maximum volume to which tank may be loaded. V =Volume of tank. d r=Density of cargo at the temperature required for a cargo vapor pressure equal to the relief valve setting. d L=Density of cargo at the loading...
Cognitive correlates of white matter lesion load and brain atrophy
Dong, Chuanhui; Nabizadeh, Nooshin; Caunca, Michelle; Cheung, Ying Kuen; Rundek, Tatjana; Elkind, Mitchell S.V.; DeCarli, Charles; Sacco, Ralph L.; Stern, Yaakov
2015-01-01
Objective: We investigated white matter lesion load and global and regional brain volumes in relation to domain-specific cognitive performance in the stroke-free Northern Manhattan Study (NOMAS) population. Methods: We quantified white matter hyperintensity volume (WMHV), total cerebral volume (TCV), and total lateral ventricular (TLV) volume, as well as hippocampal and cortical gray matter (GM) lobar volumes in a subgroup. We used general linear models to examine MRI markers in relation to domain-specific cognitive performance, adjusting for key covariates. Results: MRI and cognitive data were available for 1,163 participants (mean age 70 ± 9 years; 60% women; 66% Hispanic, 17% black, 15% white). Across the entire sample, those with greater WMHV had worse processing speed. Those with larger TLV volume did worse on episodic memory, processing speed, and semantic memory tasks, and TCV did not explain domain-specific variability in cognitive performance independent of other measures. Age was an effect modifier, and stratified analysis showed that TCV and WMHV explained variability in some domains above age 70. Smaller hippocampal volume was associated with worse performance across domains, even after adjusting for APOE ε4 and vascular risk factors, whereas smaller frontal lobe volumes were only associated with worse executive function. Conclusions: In this racially/ethnically diverse, community-based sample, white matter lesion load was inversely associated with cognitive performance, independent of brain atrophy. Lateral ventricular, hippocampal, and lobar GM volumes explained domain-specific variability in cognitive performance. PMID:26156514
Experimental investigation of the mass flow gain factor in a draft tube with cavitation vortex rope
NASA Astrophysics Data System (ADS)
Landry, C.; Favrel, A.; Müller, A.; Yamamoto, K.; Alligné, S.; Avellan, F.
2017-04-01
At off-design operating operations, cavitating flow is often observed in hydraulic machines. The presence of a cavitation vortex rope may induce draft tube surge and electrical power swings at part load and full load operations. The stability analysis of these operating conditions requires a numerical pipe model taking into account the complexity of the two-phase flow. Among the hydroacoustic parameters describing the cavitating draft tube flow in the numerical model, the mass flow gain factor, representing the mass excitation source expressed as the rate of change of the cavitation volume as a function of the discharge, remains difficult to model. This paper presents a quasi-static method to estimate the mass flow gain factor in the draft tube for a given cavitation vortex rope volume in the case of a reduced scale physical model of a ν = 0.27 Francis turbine. The methodology is based on an experimental identification of the natural frequency of the test rig hydraulic system for different Thoma numbers. With the identification of the natural frequency, it is possible to model the wave speed, the cavitation compliance and the volume of the cavitation vortex rope. By applying this new methodology for different discharge values, it becomes possible to identify the mass flow gain factor and improve the accuracy of the system stability analysis.
[Influence of green roof application on water quantity and quality in urban region].
Wang, Shu-Min; Li, Xing-Yang; Zhang, Jun-Hua; Yu, Hui; Hao, You-Zhi; Yang, Wan-Yi
2014-07-01
Green roof is widely used in advanced stormwater management as a major measure now. Taking Huxi catchment in Chongqing University as the study area, the relationships between green roof installation with runoff volume and water quality in urban region were investigated. The results showed that roof greening in the urban region contributed to reducing the runoff volume and pollution load. In addition, the spatial distribution and area of green roof also had effects on the runoff water quality. With the conditions that the roof area was 25% of the total watershed area, rainfall duration was 15 min and rainfall intensity was 14.8 mm x h(-1), the peak runoff and total runoff volume were reduced by 5.3% and 31%, the pollution loads of total suspended solid (TSS), total phosphorus (TP) and total nitrogen (TN) decreased by 40.0%, 31.6% and 29.8%, their peak concentrations decreased by 21.0%, 16.0% and -12.2%, and the EMCs (event mean concentrations) were cut down by 13.1%, 0.9% and -1.7%, respectively, when all impervious roofs were greened in the research area. With the increase of roof greening rate, the reduction rates of TSS and TP concentrations increased, while the reduction rate of TN concentration decreased on the whole. Much more improvement could be obtained with the use of green roofs near the outlet of the watershed.
Dielectric properties of Ni-coated BaTiO/sub 3-/PMMA composite.
Park, Jung Min; Lee, Hee Young; Kim, Jeong-Joo; Park, Eun Tae; Chung, Yul-Kyo
2008-05-01
Dielectric properties of Ni-coated BaTiO(3)-PMMA (polymethyl methacrylate) composite were studied from an embedded capacitor application viewpoint. Volume loading of up to 50% was attempted, and the results were compared with uncoated BaTiO(3)-PMMA composite. Ni-coating on BaTiO(3) powder was found to greatly improve the dielectric properties of the composite, especially the dielectric constant value. K values of about 100 with temperature-stable X7E characteristics were realized.
V/STOL tilt rotor aircraft study. Volume 7: Tilt rotor flight control program feedback studies
NASA Technical Reports Server (NTRS)
Alexander, H. R.; Eason, W.; Gillmore, K.; Morris, J.; Spittle, R.
1973-01-01
An exploratory study has been made of the use of feedback control in tilt rotor aircraft. This has included the use of swashplate cyclic and collective controls and direct lift control. Various sensor and feedback systems are evaluated in relation to blade loads alleviation, improvement in flying qualities, and modal suppression. Recommendations are made regarding additional analytical and wind tunnel investigations and development of feedback systems in the full scale flight vehicle. Estimated costs and schedules are given.
Continuous Passive Sampling of Solutes from Agricultural Subsurface Drainage Tubes
NASA Astrophysics Data System (ADS)
Lindblad Vendelboe, Anders; de Jonge, Hubert; Rozemeijer, Joachim; Wollesen de Jonge, Lis
2015-04-01
Agricultural subsurface tube drain systems play an important role in water and solute transport. One study, focusing on lowland agricultural catchments, showed that subsurface tube drainage contributed up to 80% of the annual discharge and 90% of the annual NO3 load from agricultural fields to the receiving water bodies. Knowledge of e.g. nutrient loads and drainage volumes, based on measurements and modelling, are important for adequate water quality management. Despite the importance of tube drain transport of solutes, monitoring data are scarce. This scarcity is a result of the existing monitoring techniques for flow and contaminant load from tube drains being expensive and labor-extensive. The study presented here aimed at developing a cheap, simple, and robust method to monitor solute loads from tube drains. The method is based on the newly developed Flowcap, which can be attached to existing tube drain outlets and can measure total flow, contaminant load and flow-averaged concentrations of solutes in the drainage. The Flowcap builds on the existing Sorbicell principle, a passive sampling system that measures average concentrations over longer periods of time (days to months) for various compounds. The Sorbicell consists of two compartments permeable to water. One compartment contains an adsorbent and one contains a tracer. When water passes through the Sorbicell the compound of interest is absorbed while a tracer is released. Using the tracer loss to calculate the volume of water that has passed the Sorbicell it is possible to calculate the average concentration of the compound. When mounting Sorbicells in the Flowcap, a flow-proportional part of the drainage is sampled from the main stream. To accommodate the wide range of drainage flow rates two Flowcaps with different capacities were tested in the laboratory: one with a capacity of 25 L min-1 (Q25) and one with a capacity of 256 L min-1 (Q256). In addition, Sorbicells with two different hydraulic resistances were tested, again to accommodate a large range of potential drainage flows rates. The experiment was continued until the Sorbicell's capacity was exhausted, which gave experimentation times from 6 to 34 days, while continuously changing the drainage flow rate to simulate field drainage conditions, and to test the range of the Flowcap. The laboratory testing yielded a very good linear correlation between drainage flow rates and Sorbicell sampling rates, giving r = 0.99 for both the Q25 and the Q256 Flowcap. The Sorbicells in this experiment were designed to measure NO3, but the Flowcap can be used with any Sorbicell and thus be used to measure any compound of interest. The Flowcap does not need housing, electricity, or maintenance and continuously register drainage volumes and contaminant loads for periods up to one month. This, in addition to the low cost of the monitoring system, enables large-scale monitoring of contaminant loads via tube drains, giving valuable data for the improvement of contaminant transport models. Further, these data will help select and evaluate the different mitigation option to improve water quality.
Low cortical iron and high entorhinal cortex volume promote cognitive functioning in the oldest-old.
van Bergen, Jiri M G; Li, Xu; Quevenco, Frances C; Gietl, Anton F; Treyer, Valerie; Leh, Sandra E; Meyer, Rafael; Buck, Alfred; Kaufmann, Philipp A; Nitsch, Roger M; van Zijl, Peter C M; Hock, Christoph; Unschuld, Paul G
2018-04-01
The aging brain is characterized by an increased presence of neurodegenerative and vascular pathologies. However, there is substantial variation regarding the relationship between an individual's pathological burden and resulting cognitive impairment. To identify correlates of preserved cognitive functioning at highest age, the relationship between β-amyloid plaque load, presence of small vessel cerebrovascular disease (SVCD), iron-burden, and brain atrophy was investigated. Eighty cognitively unimpaired participants (44 oldest-old, aged 85-96 years; 36 younger-old, aged 55-80 years) were scanned by integrated positron emission tomography-magnetic resonance imaging for assessing beta regional amyloid plaque load (18F-flutemetamol), white matter hyperintensities as an indicator of SVCD (fluid-attenuated inversion recovery-magnetic resonance imaging), and iron load (quantitative susceptibility mapping). For the oldest-old group, lower cortical volume, increased β-amyloid plaque load, prevalence of SVCD, and lower cognitive performance in the normal range were found. However, compared to normal-old, cortical iron burden was lower in the oldest-old. Moreover, only in the oldest-old, entorhinal cortex volume positively correlated with β-amyloid plaque load. Our data thus indicate that the co-occurrence of aging-associated neuropathologies with reduced quantitative susceptibility mapping measures of cortical iron load constitutes a lower vulnerability to cognitive loss. Copyright © 2017 Elsevier Inc. All rights reserved.
Grisbrook, Tiffany L; Gittings, Paul M; Wood, Fiona M; Edgar, Dale W
2017-02-01
Session-rating of perceived exertion (RPE) is a method frequently utilised in exercise and sports science to quantify training load of an entire aerobic exercise session. It has also been demonstrated that session-RPE is a valid and reliable method to quantify training load during resistance exercise, in healthy and athletic populations. This study aimed to investigate the effectiveness of session-RPE as a method to quantify exercise intensity during resistance training in patients with acute burns. Twenty burns patients (mean age=31.65 (±10.09) years), with a mean TBSA of 16.4% (range=6-40%) were recruited for this study. Patients were randomly allocated to the resistance training (n=10) or control group (n=10). All patients completed a four week resistance training programme. Training load (session-RPE×session duration), resistance training session-volume and pre-exercise pain were recorded for each exercise session. The influence of; age, gender, %TBSA, exercise group (resistance training vs. control), pre-exercise pain, resistance training history and session-volume on training load were analysed using a multilevel mixed-effects linear regression. Session-volume did not influence training load in the final regression model, however training load was significantly greater in the resistance training group, compared with the control group (p<0.001). Pre-exercise pain significantly influenced training load, where increasing pain was associated with a higher session-RPE (p=0.004). Further research is indicated to determine the exact relationship between pain, resistance training history, exercise intensity and session-RPE and training load before it can be used as a method to monitor and prescribe resistance training load in acute burns patients. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.
NASA Technical Reports Server (NTRS)
Morscher, Gregory N.; Yun, Hee Mann; DiCarlo, James A.
2007-01-01
The tensile mechanical properties of ceramic matrix composites (CMC) in directions off the primary axes of the reinforcing fibers are important for architectural design of CMC components that are subjected to multi-axial stress states. In this study, 2D-woven melt-infiltrated (MI) SiC/SiC composite panels with balanced fiber content in the 0 degree and 90 degree directions were tensile loaded in-plane in the 0 degree direction and at 45 degree to this direction. In addition, a 2D triaxially-braided MI composite panel with balanced fiber content in the plus or minus 67 degree bias directions and reduced fiber content in the axial direction was tensile loaded perpendicular to the axial direction tows (i.e., 23 degrees from the bias fibers). Stress-strain behavior, acoustic emission, and optical microscopy were used to quantify stress-dependent matrix cracking and ultimate strength in the panels. It was observed that both off-axis loaded panels displayed higher composite onset stresses for through-thickness matrix cracking than the 2D-woven 0/90 panels loaded in the primary 0 degree direction. These improvements for off-axis cracking strength can in part be attributed to higher effective fiber fractions in the loading direction, which in turn reduces internal stresses on critical matrix flaws for a given composite stress. Also for the 0/90 panel loaded in the 45 degree direction, an improved distribution of matrix flaws existed due to the absence of fiber tows perpendicular to the loading direction. In addition, for the +67/0/-67 braided panel, the axial tows perpendicular to the loading direction were not only low in volume fraction, but were also were well separated from one another. Both off-axis oriented panels also showed relatively good ultimate tensile strength when compared to other off-axis oriented composites in the literature, both on an absolute strength basis as well as when normalized by the average fiber strength within the composites. Initial implications are discussed for constituent and architecture design to improve the directional cracking of SiC/SiC CMC components with MI matrices.
The effect of filler loading and morphology on the mechanical properties of contemporary composites.
Kim, Kyo-Han; Ong, Joo L; Okuno, Osamu
2002-06-01
Little information exists regarding the filler morphology and loading of composites with respect to their effects on selected mechanical properties and fracture toughness. The objectives of this study were to: (1) classify commercial composites according to filler morphology, (2) evaluate the influence of filler morphology on filler loading, and (3) evaluate the effect of filler morphology and loading on the hardness, flexural strength, flexural modulus, and fracture toughness of contemporary composites. Field emission scanning electron microscopy/energy dispersive spectroscopy was used to classify 3 specimens from each of 14 commercial composites into 4 groups according to filler morphology. The specimens (each 5 x 2.5 x 15 mm) were derived from the fractured remnants after the fracture toughness test. Filler weight content was determined by the standard ash method, and the volume content was calculated using the weight percentage and density of the filler and matrix components. Microhardness was measured with a Vickers hardness tester, and flexural strength and modulus were measured with a universal testing machine. A 3-point bending test (ASTM E-399) was used to determine the fracture toughness of each composite. Data were compared with analysis of variance followed by Duncan's multiple range test, both at the P<.05 level of significance. The composites were classified into 4 categories according to filler morphology: prepolymerized, irregular-shaped, both prepolymerized and irregular-shaped, and round particles. Filler loading was influenced by filler morphology. Composites containing prepolymerized filler particles had the lowest filler content (25% to 51% of filler volume), whereas composites containing round particles had the highest filler content (59% to 60% of filler volume). The mechanical properties of the composites were related to their filler content. Composites with the highest filler by volume exhibited the highest flexural strength (120 to 129 MPa), flexural modulus (12 to 15 GPa), and hardness (101 to 117 VHN). Fracture toughness was also affected by filler volume, but maximum toughness was found at a threshold level of approximately 55% filler volume. Within the limitations of this study, the commercial composites tested could be classified by their filler morphology. This property influenced filler loading. Both filler morphology and filler loading influenced flexural strength, flexural modulus, hardness, and fracture toughness.
NASA Technical Reports Server (NTRS)
Jagodnik, K. M.; Thompson, W. K.; Gallo, C. A.; DeWitt, J. K.; Funk, J. H.; Funk, N. W.; Perusek, G. P.; Sheehan, C. C.; Lewandowski, B. E.
2016-01-01
During long-duration spaceflight missions, astronauts exposure to microgravity without adequate countermeasures can result in losses of muscular strength and endurance, as well as loss of bone mass. As a countermeasure to this challenge, astronauts engage in resistive exercise during spaceflight to maintain their musculoskeletal function. The Hybrid Ultimate Lifting Kit (HULK) has been designed as a prototype exercise device for an exploration-class vehicle; the HULK features a much smaller footprint than previous devices such as the Advanced Resistive Exercise Device (ARED) on the International Space Station (ISS), which makes the HULK suitable for extended spaceflight missions in vehicles with limited volume. As current ISS exercise countermeasure equipment represents an improvement over previous generations of such devices, the ARED is being employed as a benchmark of functional performance. This project involves the development of a biomechanical model of the deadlift exercise, and is novel in that it is the first exercise analyzed in this context to include the upper limbs in the loading path, in contrast to the squat, single-leg squat, and heel raise exercises also being modeled by our team. OpenSim software is employed to develop these biomechanical models of humans performing resistive exercises to assess and improve the new exercise device designs. Analyses include determining differences in joint and muscle forces when using different loading strategies with the device, comparing and contrasting with the ARED benchmark, and determining whether the loading is sufficient to maintain musculoskeletal health. During data collection, the number of repetitions, load, cadence, stance, and grip width are controlled in order to facilitate comparisons between loading configurations. To date, data have been collected for two human subjects performing the deadlift exercise on the HULK device using two different loading conditions. Recorded data include motion capture, electromyography (EMG), ground reaction forces, device load cell data, photos and videos, and anthropometric data. Work is ongoing to perform biomechanical analyses including inverse kinematics and inverse dynamics to compare different versions of the deadlift model in order to determine which provides an appropriate level of detail to study this exercise. This work is supported by the National Space Biomedical Research Institute through NCC 9-58.
Oranchuk, Dustin J; Robinson, Tracey L; Switaj, Zachary J; Drinkwater, Eric J
2017-04-15
Weightlifting movements have high skill demands and require expert coaching. Loaded jumps have a comparably lower skill demand, but may be similarly effective for improving explosive performance. The purpose of this study was to compare vertical jump performance, isometric force, and rate of force development (RFD) following a ten-week intervention employing the hang high-pull (hang-pull) or trap-bar jump squat (jump-squat). Eighteen NCAA Division II swimmers (8 males, 10 females) with at least one year of resistance training experience volunteered to participate. Testing included the squat jump (SJ), countermovement jump (CMJ) and the isometric mid-thigh pull (IMTP). Vertical ground reaction forces were analyzed to obtain jump height and relative peak power. Relative peak force, peak RFD and relative force at five time bands were obtained from the IMTP. Subjects were randomly assigned to either a hang-pull (n = 9) or jump-squat (n = 9) training group and completed a ten-week, volume-equated, periodized training program. While there was a significant main effect of training for both groups, no statistically significant between-group differences were found (p ≥ 0.17) for any of the dependent variables. However, medium effect sizes in favor of the jump-squat training group were seen in SJ height (d = 0.56) and SJ peak power (d = 0.69). Loaded jumps seem equally effective as weightlifting derivatives for improving lower-body power in experienced athletes. Since loaded jumps require less skill and less coaching expertise than weightlifting, loaded jumps should be considered where coaching complex movements is difficult.
Evaluating the performance of a retrofitted stormwater wet pond for treatment of urban runoff.
Schwartz, Daniel; Sample, David J; Grizzard, Thomas J
2017-06-01
This paper describes the performance of a retrofitted stormwater retention pond (Ashby Pond) in Northern Virginia, USA. Retrofitting is a common practice which involves modifying existing structures and/or urban landscapes to improve water quality treatment, often compromising standards to meet budgetary and site constraints. Ashby Pond is located in a highly developed headwater watershed of the Potomac River and the Chesapeake Bay. A total maximum daily load (TMDL) was imposed on the Bay watershed by the US Environmental Protection Agency in 2010 due to excessive sediment and nutrient loadings leading to eutrophication of the estuary. As a result of the TMDL, reducing nutrient and sediment discharged loads has become the key objective of many stormwater programs in the Bay watershed. The Ashby Pond retrofit project included dredging of accumulated sediment to increase storage, construction of an outlet structure to control flows, and repairs to the dam. Due to space limitations, pond volume was less than ideal. Despite this shortcoming, Ashby Pond provided statistically significant reductions of phosphorus, nitrogen, and suspended sediments. Compared to the treatment credited to retention ponds built to current state standards, the retrofitted pond provided less phosphorus but more nitrogen reduction. Retrofitting the existing stock of ponds in a watershed to at least partially meet current design standards could be a straightforward way for communities to attain downstream water quality goals, as these improvements represent reductions in baseline loads, whereas new ponds in new urban developments simply limit future load increases or maintain the status quo.
Hastings, Jeffrey L.; Krainski, Felix; Snell, Peter G.; Pacini, Eric L.; Jain, Manish; Bhella, Paul S.; Shibata, Shigeki; Fu, Qi; Palmer, M. Dean
2012-01-01
This study examined the effectiveness of a short-duration but high-intensity exercise countermeasure in combination with a novel oral volume load in preventing bed rest deconditioning and orthostatic intolerance. Bed rest reduces work capacity and orthostatic tolerance due in part to cardiac atrophy and decreased stroke volume. Twenty seven healthy subjects completed 5 wk of −6 degree head down bed rest. Eighteen were randomized to daily rowing ergometry and biweekly strength training while nine remained sedentary. Measurements included cardiac mass, invasive pressure-volume relations, maximal upright exercise capacity, and orthostatic tolerance. Before post-bed rest orthostatic tolerance and exercise testing, nine exercise subjects were given 2 days of fludrocortisone and increased salt. Sedentary bed rest led to cardiac atrophy (125 ± 23 vs. 115 ± 20 g; P < 0.001); however, exercise preserved cardiac mass (128 ± 38 vs. 137 ± 34 g; P = 0.002). Exercise training preserved left ventricular chamber compliance, whereas sedentary bed rest increased stiffness (180 ± 170%, P = 0.032). Orthostatic tolerance was preserved only when exercise was combined with volume loading (−10 ± 22%, P = 0.169) but not with exercise (−14 ± 43%, P = 0.047) or sedentary bed rest (−24 ± 26%, P = 0.035) alone. Rowing and supplemental strength training prevent cardiovascular deconditioning during prolonged bed rest. When combined with an oral volume load, orthostatic tolerance is also preserved. This combined countermeasure may be an ideal strategy for prolonged spaceflight, or patients with orthostatic intolerance. PMID:22345434
Nkiwane, Karen S; Pötter, Richard; Tanderup, Kari; Federico, Mario; Lindegaard, Jacob C; Kirisits, Christian
2013-01-01
Three-dimensional evaluation and comparison of target and organs at risk (OARs) doses from two traditional standard source loading patterns in the frame of MRI-guided cervical cancer brachytherapy for various clinical scenarios based on patient data collected in a multicenter trial setting. Two nonoptimized three-dimensional MRI-based treatment plans, Plan 1 (tandem and vaginal loading) and Plan 2 (tandem loading only), were generated for 134 patients from seven centers participating in the EMBRACE study. Both plans were normalized to point A (Pt. A). Target and OAR doses were evaluated in terms of minimum dose to 90% of the high-risk clinical target volume (HRCTV D90) grouped by tumor stage and minimum dose to the most exposed 2cm³ of the OARs volume. An HRCTV D90 ≥ Pt. A was achieved in 82% and 44% of the patients with Plans 1 and 2, respectively. Median HRCTV D90 with Plans 1 and 2 was 120% and 90% of Pt. A dose, respectively. Both plans had optimal dose coverage in 88% of Stage IB tumors; however, the tandem-only plan resulted in about 50% of dose reduction to the vagina and rectum. For Stages IIB and IIIB, Plan 1 had on average 35% better target coverage but with significant doses to OARs. Standard tandem loading alone results in good target coverage in most Stage IB tumors without violating OAR dose constraints. For Stage IIB tumors, standard vaginal loading improves the therapeutic window, however needs optimization to fulfill the dose prescription for target and OAR. In Stage IIIB, even optimized vaginal loading often does not fulfill the needs for dose prescription. The significant dose variation across various clinical scenarios for both target and OARs indicates the need for image-guided brachytherapy for optimal dose adaptation both for limited and advanced diseases. Copyright © 2013 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.
Evaluation of Geosynthetic-Reinforced Flexible Pavements using Static Plate Load Tests
DOT National Transportation Integrated Search
2010-01-01
This study focuses on the response of full-scale geogrid-reinforced flexible pavements to static surface loading. Specifically, static plate load (SPL) tests were performed on a low-volume, asphalt pavement frontage road in Eastern Arkansas, USA (the...
Lochmüller, E M; Miller, P; Bürklein, D; Wehr, U; Rambeck, W; Eckstein, F
2000-01-01
The objective of this study was to directly compare in situ femoral dual-energy X-ray absorptiometry (DXA) and in vitro chemical analysis (ash weight and calcium) with mechanical failure loads of the proximal femur, and to determine the influence of bone size (volume) and density on mechanical failure and DXA-derived areal bone mineral density (BMD, in g/cm2). We performed femoral DXA in 52 fixed cadavers (age 82.1 +/- 9.7 years; 30 male, 22 female) with intact skin and soft tissues. The femora were then excised, mechanically loaded to failure in a stance phase configuration, their volume measured with a water displacement method (proximal neck to lesser trochanter), and the ash weight and calcium content of this region determined by chemical analysis. The correlation coefficient between the bone mineral content (measured in situ with DXA) and the ash weight was r = 0.87 (standard error of the estimate = 16%), the ash weight allowing for a better prediction of femoral failure loads (r = 0.78; p < 0.01) than DXA (r = 0.67; p < 0.01). The femoral volume (r = 0.61; p < 0.01), but not the volumetric bone density (r = 0.26), was significantly associated with the failure load. The femoral bone volume had a significant impact (r = 0.35; p < 0.01) on the areal BMD (DXA), and only 63% of the variability of bone volume could be predicted (based on the basis of body height, weight and femoral projectional bone area. The results suggest that accuracy errors of femoral DXA limit the prediction of mechanical failure loads, and that the influence of bone size on areal BMD cannot be fully corrected by accounting for body height, weight and projected femoral area.
Impaired acid neutralization in the duodenum in pancreatic insufficiency.
Dutta, S K; Russell, R M; Iber, F L
1979-10-01
The influence of severe exocrine pancreatic disease on the acid-neutralizing capacity of the duodenum was studied in five patients with pancreatic insufficiency (PI) and six control subjects using duodenal perfusion-marker technique. Hydrochloric acid (0.1 N containing 1% PEG) was infused at constant rates (1.2, 4.5 and 7.0 ml/min) into the duodenum just distal to the duodenal bulb. Samples were aspirated from the tip of the duodenal perfusion tube located at the ligament of Treitz. All samples were analyzed for volume, pH, titrable acidity, PEG and [14C]PEG (gastric marker) determination. Patients with PI demonstrated significantly diminished ability to neutralize various acid loads as compared to controls who virtually completely neutralized acid loads in the range of maximal gastric acid secretion. Exogenous secretin did not significantly improve percent acid neutralized in PI. These data clearly indicate that patients with PI have significantly impaired ability to neutralize even small loads of acid in the duodenum.
Thermo-viscoelastic analysis of composite materials, volume 1
NASA Technical Reports Server (NTRS)
Lin, K. Y.; Hwang, I. H.
1988-01-01
Advanced composite materials, especially graphite/epoxy, are being applied to aircraft structures in order to improve performance and save weight. An important consideration in composite design is the residual strength of a structure containing holes, delaminations, or interlaminar damage when subjected to compressive loads. Recent studies have revealed the importance of viscoelastic effects in polymer-based composites. The viscoelastic effect is particularly significant at elevated temperature/moisture conditions since the matrix material is strongly affected by the environment. The solution of viscoelastic problems in composites was limited to special cases which can be solved by classical lamination theory. A finite element procedure is presented for calculating time-dependent stresses and strains in composite structures with general configurations and complicated boundary conditions. Using this procedure the in-plane and interlaminar stress distributions and histories in notched and unnotched composites were obtained for mechanical and thermal loads. Both two-dimensional and three-dimensional viscoelastic problems are analyzed. The effects of layup orientation and load spectrum on creep response and stress relaxation were also studied.
Morton, Sarah; Chan, Otto; King, John; Perry, David; Crisp, Tom; Maffulli, Nicola; Morrissey, Dylan
2014-04-01
the aim was to quantify the effect of a novel high volume-image guided injection (HVIGI) technique for recalcitrant patellar tendinopathy (PT). twenty patients (8 prospective; 12 retrospective) with ultrasonographically confirmed proximal PT were recruited. A HVIGI under ultra-sound guidance of 10 ml 0.5% Bupivacaine, 25 mg Hydrocortisone and 30 ml normal saline at the interface of the patellar tendon and Hoffa's fat pad was administered. A standardised eccentric loading rehabilitation protocol was prescribed. the VISA-P score improved from 45.0 to 64.0 (p<0.01) for all subjects, likely to be clinically significant. There was no statistically significant difference between the increase in the retrospective group of 19.9 (± 23.5) and the prospective of 16.4 (± 11.3) p = 0.7262.5% of prospective subjects agreed that they had significantly improved, with 37.5% returning to sport within 12 weeks. HVIGI should be considered in the management of recalcitrant PT. Randomised controlled trials are warranted.
A Hydrostatic Bearing Test System for Measuring Bearing Load Using Magnetic-Fluid Lubricants.
Weng, Huei Chu; Chen, Lu-Yu
2016-05-01
This paper conducts a study on the design of a hydrostatic bearing test system. It involves the determination of viscous properties of magnetic-fluid lubricants. The load of a hydrostatic thrust bearing using a water-based magnetite nanofluid of varying volume flow rate is measured under an applied external induction field via the test system. Results reveal that the presence of nanoparticles in a carrier liquid would cause an enhanced bearing load. Such an effect could be further magnified by increasing the lubricant volume flow rate or the external induction field strength.
Muscle volume, strength, endurance, and exercise loads during 6-month missions in space.
Gopalakrishnan, Raghavan; Genc, Kerim O; Rice, Andrea J; Lee, Stuart M C; Evans, Harlan J; Maender, Christian C; Ilaslan, Hakan; Cavanagh, Peter R
2010-02-01
Decrements in muscular strength during long-duration missions in space could be mission-critical during construction and exploration activities. The purpose of this study was to quantify changes in muscle volume, strength, and endurance of crewmembers on the International Space Station (ISS) in the context of new measurements of loading during exercise countermeasures. Strength and muscle volumes were measured from four male ISS crewmembers (49.5 +/- 4.7 yr, 179.3 +/- 7.1 cm, 85.2 +/- 10.4 kg) before and after long-duration spaceflight (181 +/- 15 d). Preflight and in-flight measurements of forces between foot and shoe allowed comparisons of loading from 1-g exercise and exercise countermeasures on ISS. Muscle volume change was greater in the calf (-10 to 16%) than the thigh (-4% to -7%), but there was no change in the upper arm (+0.4 to -0.8%). Isometric and isokinetic strength changes at the knee (range -10.4 to -24.1%), ankle (range -4 to -22.3%), and elbow (range -7.5 to -16.7%) were observed. Although there was an overall postflight decline in total work (-14%) during the endurance test, an increase in postflight resistance to fatigue was observed. The peak in-shoe forces during running and cycling on ISS were approximately 46% and 50% lower compared to 1-g values. Muscle volume and strength were decreased in the lower extremities of crewmembers during long-duration spaceflight on ISS despite the use of exercise countermeasures. in-flight countermeasures were insufficient to replicate the daily mechanical loading experienced by the crewmembers before flight. Future exercise protocols need careful assessment both in terms of intensity and duration to maximize the "dose" of exercise and to increase loads compared to the measured levels.
2013-01-01
Background The end-systolic pressure-volume relationship is often considered as a load-independent property of the heart and, for this reason, is widely used as an index of ventricular contractility. However, many criticisms have been expressed against this index and the underlying time-varying elastance theory: first, it does not consider the phenomena underlying contraction and second, the end-systolic pressure volume relationship has been experimentally shown to be load-dependent. Methods In place of the time-varying elastance theory, a microscopic model of sarcomere contraction is used to infer the pressure generated by the contraction of the left ventricle, considered as a spherical assembling of sarcomere units. The left ventricle model is inserted into a closed-loop model of the cardiovascular system. Finally, parameters of the modified cardiovascular system model are identified to reproduce the hemodynamics of a normal dog. Results Experiments that have proven the limitations of the time-varying elastance theory are reproduced with our model: (1) preload reductions, (2) afterload increases, (3) the same experiments with increased ventricular contractility, (4) isovolumic contractions and (5) flow-clamps. All experiments simulated with the model generate different end-systolic pressure-volume relationships, showing that this relationship is actually load-dependent. Furthermore, we show that the results of our simulations are in good agreement with experiments. Conclusions We implemented a multi-scale model of the cardiovascular system, in which ventricular contraction is described by a detailed sarcomere model. Using this model, we successfully reproduced a number of experiments that have shown the failing points of the time-varying elastance theory. In particular, the developed multi-scale model of the cardiovascular system can capture the load-dependence of the end-systolic pressure-volume relationship. PMID:23363818
Turunen, Siru M.; Han, Sang Kuy; Herzog, Walter; Korhonen, Rami K.
2013-01-01
The aim of this study was to investigate if the experimentally detected altered chondrocyte volumetric behavior in early osteoarthritis can be explained by changes in the extracellular and pericellular matrix properties of cartilage. Based on our own experimental tests and the literature, the structural and mechanical parameters for normal and osteoarthritic cartilage were implemented into a multiscale fibril-reinforced poroelastic swelling model. Model simulations were compared with experimentally observed cell volume changes in mechanically loaded cartilage, obtained from anterior cruciate ligament transected rabbit knees. We found that the cell volume increased by 7% in the osteoarthritic cartilage model following mechanical loading of the tissue. In contrast, the cell volume decreased by 4% in normal cartilage model. These findings were consistent with the experimental results. Increased local transversal tissue strain due to the reduced collagen fibril stiffness accompanied with the reduced fixed charge density of the pericellular matrix could increase the cell volume up to 12%. These findings suggest that the increase in the cell volume in mechanically loaded osteoarthritic cartilage is primarily explained by the reduction in the pericellular fixed charge density, while the superficial collagen fibril stiffness is suggested to contribute secondarily to the cell volume behavior. PMID:23634175
Jafari, Samira; Maleki-Dizaji, Nasrin; Barar, Jaleh; Barzegar-Jalali, Mohammad; Rameshrad, Maryam; Adibkia, Khosro
2016-04-01
The current study was aimed to investigate the anti-inflammatory effect of triamcinolone acetonide-loaded hydroxyapatite (TA-loaded HAp) nanocomposites in the arthritic rat model. The HAp nanocomposites were synthesized through a chemical precipitation method and the drug was subsequently incorporated into the nanocomposites using an impregnation method. The physicochemical properties as well as cytotoxicity of the prepared nanoformulation were examined as well. To evaluate the therapeutic efficacy of the prepared nanoformulation, the various parameters such as paw volume, haematological parameters and histological studies were assessed in the arthritic rats. The nanocomposites with the particle size of 70.45 nm, pore size of 2.71 nm and drug loading of 41.94% were obtained in this study. The specific surface area (aBET) as well as the volume of nitrogen adsorbed on one gram of HAp to complete the monolayer adsorption (Vm) were decreased after the drug loading process. The prepared nanoformulation revealed the slower drug release profile compared to the pure drug. Furthermore, the obtained data from MTT assay showed that the TA-loaded nanocomposites had a lower cytotoxic effect on NIH-3T3 and CAOV-4 cell lines as compared to the pure drug. Furthermore, TA-loaded HAp nanocomposites demonstrated favorable effects on the paw volume as well as the haematological and histopathological abnormalities in the adjuvant-induced arthritic rats. Therefore, TA-loaded HAp nanocomposites are potentially suggested for treatment of rheumatoid arthritis after further required evaluations. Copyright © 2015 Elsevier B.V. All rights reserved.
Trees and Streets as Drivers of Urban Stormwater Nutrient Pollution.
Janke, Benjamin D; Finlay, Jacques C; Hobbie, Sarah E
2017-09-05
Expansion of tree cover is a major management goal in cities because of the substantial benefits provided to people, and potentially to water quality through reduction of stormwater volume by interception. However, few studies have addressed the full range of potential impacts of trees on urban runoff, which includes deposition of nutrient-rich leaf litter onto streets connected to storm drains. We analyzed the influence of trees on stormwater nitrogen and phosphorus export across 19 urban watersheds in Minneapolis-St. Paul, MN, U.S.A., and at the scale of individual streets within one residential watershed. Stormwater nutrient concentrations were highly variable across watersheds and strongly related to tree canopy over streets, especially for phosphorus. Stormwater nutrient loads were primarily related to road density, the dominant control over runoff volume. Street canopy exerted opposing effects on loading, where elevated nutrient concentrations from trees near roads outweighed the weak influence of trees on runoff reduction. These results demonstrate that vegetation near streets contributes substantially to stormwater nutrient pollution, and therefore to eutrophication of urban surface waters. Urban landscape design and management that account for trees as nutrient pollution sources could improve water quality outcomes, while allowing cities to enjoy the myriad benefits of urban forests.
Soilemezi, Eleni; Tsagourias, Matthew; Talias, Michael A; Soteriades, Elpidoforos S; Makrakis, Vasilios; Zakynthinos, Epaminondas; Matamis, Dimitrios
2013-04-01
Diaphragmatic breathing patterns under resistive loading remain poorly documented. To our knowledge, this is the first study assessing diaphragmatic motion under conditions of inspiratory resistive loading with the use of sonography. We assessed diaphragmatic motion during inspiratory resistive loading in 40 healthy volunteers using M-mode sonography. In phase I of the study, sonography was performed during normal quiet breathing without respiratory loading. In phase II, sonography was performed after application of a nose clip and connection of the subjects to a pneumotachograph through a mouth piece. In phase III, the participants were assessed while subjected to inspiratory resistive loading of 50 cm H(2)O/L/s. Compared with baseline, the application of a mouth piece and nose clip induced a significant increase in diaphragmatic excursion (from 1.7 to 2.3 cm, P < 0.001) and a decrease in respiratory rate (from 13.4 to 12.2, P < 0.01). Inspiratory resistive loading induced a further decrease in respiratory rate (from 12.2 to 8.0, P < 0.01) and a decrease in diaphragmatic velocity contraction (from 1.2 to 0.8 cm/s, P < 0.01), and also an increase in tidal volume (from 795 to 904 mL, P < 0.01); diaphragmatic excursion, however, did not change significantly. Inspiratory resistive loading induced significant changes in diaphragmatic contraction pattern, which mainly consisted of decreased velocity of diaphragmatic displacement with no change in diaphragmatic excursion. Tidal volume, increased significantly; the increase in tidal volume, along with the unchanged diaphragmatic excursion, provides sonographic evidence of increased recruitment of extradiaphragmatic muscles under inspiratory resistive loading. © 2013 The Authors. Respirology © 2013 Asian Pacific Society of Respirology.
Late-Onset Alzheimer's Disease Polygenic Risk Profile Score Predicts Hippocampal Function.
Xiao, Ena; Chen, Qiang; Goldman, Aaron L; Tan, Hao Yang; Healy, Kaitlin; Zoltick, Brad; Das, Saumitra; Kolachana, Bhaskar; Callicott, Joseph H; Dickinson, Dwight; Berman, Karen F; Weinberger, Daniel R; Mattay, Venkata S
2017-11-01
We explored the cumulative effect of several late-onset Alzheimer's disease (LOAD) risk loci using a polygenic risk profile score (RPS) approach on measures of hippocampal function, cognition, and brain morphometry. In a sample of 231 healthy control subjects (19-55 years of age), we used an RPS to study the effect of several LOAD risk loci reported in a recent meta-analysis on hippocampal function (determined by its engagement with blood oxygen level-dependent functional magnetic resonance imaging during episodic memory) and several cognitive metrics. We also studied effects on brain morphometry in an overlapping sample of 280 subjects. There was almost no significant association of LOAD-RPS with cognitive or morphometric measures. However, there was a significant negative relationship between LOAD-RPS and hippocampal function (familywise error [small volume correction-hippocampal region of interest] p < .05). There were also similar associations for risk score based on APOE haplotype, and for a combined LOAD-RPS + APOE haplotype risk profile score (p < .05 familywise error [small volume correction-hippocampal region of interest]). Of the 29 individual single nucleotide polymorphisms used in calculating LOAD-RPS, variants in CLU, PICALM, BCL3, PVRL2, and RELB showed strong effects (p < .05 familywise error [small volume correction-hippocampal region of interest]) on hippocampal function, though none survived further correction for the number of single nucleotide polymorphisms tested. There is a cumulative deleterious effect of LOAD risk genes on hippocampal function even in healthy volunteers. The effect of LOAD-RPS on hippocampal function in the relative absence of any effect on cognitive and morphometric measures is consistent with the reported temporal characteristics of LOAD biomarkers with the earlier manifestation of synaptic dysfunction before morphometric and cognitive changes. Copyright © 2017 Society of Biological Psychiatry. All rights reserved.
Weight and volume variation in truckloads of logs hauled in the central Appalachians
Floyd G. Timson
1974-01-01
Variation in volume and weight was found among loaded log trucks even when such factors as truck type, logging job, and driver influence were eliminated. A load range of 10,000 pounds or 1,000 board feet was commonplace for the same truck, driver, and cutting site. Differences in log size, shape, weight, and species caused a major share of this variation. Yet,...
Prediction of a Densely Loaded Particle-Laden Jet using a Euler-Lagrange Dense Spray Model
NASA Astrophysics Data System (ADS)
Pakseresht, Pedram; Apte, Sourabh V.
2017-11-01
Modeling of a dense spray regime using an Euler-Lagrange discrete-element approach is challenging because of local high volume loading. A subgrid cluster of droplets can lead to locally high void fractions for the disperse phase. Under these conditions, spatio-temporal changes in the carrier phase volume fractions, which are commonly neglected in spray simulations in an Euler-Lagrange two-way coupling model, could become important. Accounting for the carrier phase volume fraction variations, leads to zero-Mach number, variable density governing equations. Using pressure-based solvers, this gives rise to a source term in the pressure Poisson equation and a non-divergence free velocity field. To test the validity and predictive capability of such an approach, a round jet laden with solid particles is investigated using Direct Numerical Simulation and compared with available experimental data for different loadings. Various volume fractions spanning from dilute to dense regimes are investigated with and without taking into account the volume displacement effects. The predictions of the two approaches are compared and analyzed to investigate the effectiveness of the dense spray model. Financial support was provided by National Aeronautics and Space Administration (NASA).
Park, Daeryong; Roesner, Larry A
2012-12-15
This study examined pollutant loads released to receiving water from a typical urban watershed in the Los Angeles (LA) Basin of California by applying a best management practice (BMP) performance model that includes uncertainty. This BMP performance model uses the k-C model and incorporates uncertainty analysis and the first-order second-moment (FOSM) method to assess the effectiveness of BMPs for removing stormwater pollutants. Uncertainties were considered for the influent event mean concentration (EMC) and the aerial removal rate constant of the k-C model. The storage treatment overflow and runoff model (STORM) was used to simulate the flow volume from watershed, the bypass flow volume and the flow volume that passes through the BMP. Detention basins and total suspended solids (TSS) were chosen as representatives of stormwater BMP and pollutant, respectively. This paper applies load frequency curves (LFCs), which replace the exceedance percentage with an exceedance frequency as an alternative to load duration curves (LDCs), to evaluate the effectiveness of BMPs. An evaluation method based on uncertainty analysis is suggested because it applies a water quality standard exceedance based on frequency and magnitude. As a result, the incorporation of uncertainty in the estimates of pollutant loads can assist stormwater managers in determining the degree of total daily maximum load (TMDL) compliance that could be expected from a given BMP in a watershed. Copyright © 2012 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Shanhui; Tong, Chaohui; Zhu, Yuejin, E-mail: zhuyuejin@nbu.edu.cn
The complex microstructures of drug particle/ABA star triblock copolymer in dilute solutions have been investigated by a theoretical approach which combines the self-consistent field theory and the hybrid particle-field theory. Simulation results reveal that, when the volume fraction of drug particles is smaller than the saturation concentration, the drug particle encapsulation efficiency is 100%, and micelle loading capacity increases with increasing particle volume fraction. When the volume fraction of drug particles is equal to the saturation concentration, the micelles attain the biggest size, and micelle loading capacity reaches a maximum value which is independent of the copolymer volume fraction. Whenmore » the volume fraction of drug particles is more than the saturation concentration, drug particle encapsulation efficiency decreases with increasing volume fraction of drug particles. Furthermore, it is found that the saturation concentration scales linearly with the copolymer volume fraction. The above simulation results are in good agreement with experimental results.« less
Vaara, Jani P; Kokko, Juha; Isoranta, Manne; Kyröläinen, Heikki
2015-11-01
A high volume of military training has been shown to compromise muscle strength development. We examined effects of added low-volume resistance training during special military training (ST) period, which took place after basic training period. Male conscripts (n = 25) were assigned to standardized ST with added resistance training group (TG, n = 13) and group with standardized ST only (control) (CG, n = 12). Standardized ST with added resistance training group performed 2 resistance training sessions per week for 8 weeks: hypertrophic strength (weeks 1-3), maximal strength (weeks 4-6) and power training (weeks 7-8). Maximal strength tests, load carriage performance (3.2 km, 27 kg), and hormone concentrations were measured before and after ST (mean ± SD). Both groups improved similarly in their load carriage performance time (TG: 1,162 ± 116 seconds vs. 1,047 ± 81 seconds; CG: 1,142 ± 95 seconds vs. 1,035 ± 81 seconds) (p < 0.001) but decreased maximal strength of the lower extremities (TG: 5,250 ± 1,110 N vs. 4,290 ± 720 N; CG: 5,170 ± 1,050 N vs. 4,330 ± 1,230 N) and back muscles (TG: 4,290 ± 990 N vs. 3,570 ± 48 N; CG: 3,920 ± 72 N vs. 3,410 ± 53 N) (p ≤ 0.05). Maximal strength of the upper extremities improved in CG (1,040 ± 200 N vs. 1,140 ± 200 N) (p ≤ 0.05) but not in TG. Maximal strength of the abdominal muscles improved in TG (3,260 ± 510 N vs. 3,740 ± 75 N) (p ≤ 0.05) but not in CG. Testosterone concentration increased in CG (15.2 ± 3.6 nmol·L⁻¹ vs. 21.6 ± 5.0 nmol·L⁻¹) (p < 0.01) but not in TG (18.6 ± 4.3 nmol·L⁻¹ vs. 19.5 ± 9.4 nmol·L⁻¹). In conclusion, interference with strength gains might be related to the high volume of aerobic activities and too low volume of resistance training during ST. To develop strength characteristics, careful periodization and individualization should be adopted in ST.
Singleton, W G; Collins, A M; Bienemann, A S; Killick-Cole, C L; Haynes, H R; Asby, D J; Butts, C P; Wyatt, M J; Barua, N U; Gill, S S
2017-01-01
The pan-histone deacetylase inhibitor panobinostat is a potential therapy for malignant glioma, but it is water insoluble and does not cross the blood-brain barrier when administered systemically. In this article, we describe the in vitro and in vivo efficacy of a novel water-soluble nano-micellar formulation of panobinostat designed for administration by convection enhanced delivery (CED). The in vitro efficacy of panobinostat-loaded nano-micelles against rat F98, human U87-MG and M059K glioma cells and against patient-derived glioma stem cells was measured using a cell viability assay. Nano-micelle distribution in rat brain was analyzed following acute CED using rhodamine-labeled nano-micelles, and toxicity was assayed using immunofluorescent microscopy and synaptophysin enzyme-linked immunosorbent assay. We compared the survival of the bioluminescent syngenic F98/Fischer344 rat glioblastoma model treated by acute CED of panobinostat-loaded nano-micelles with that of untreated and vehicle-only-treated controls. Nano-micellar panobinostat is cytotoxic to rat and human glioma cells in vitro in a dose-dependent manner following short-time exposure to drug. Fluorescent rhodamine-labelled nano-micelles distribute with a volume of infusion/volume of distribution (Vi/Vd) ratio of four and five respectively after administration by CED. Administration was not associated with any toxicity when compared to controls. CED of panobinostat-loaded nano-micelles was associated with significantly improved survival when compared to controls (n=8 per group; log-rank test, P <0.001). One hundred percent of treated animals survived the 60-day experimental period and had tumour response on post-mortem histological examination. CED of nano-micellar panobinostat represents a potential novel therapeutic option for malignant glioma and warrants translation into the clinic.
Load research manual. Volume 2: Fundamentals of implementing load research procedures
NASA Astrophysics Data System (ADS)
1980-11-01
This manual will assist electric utilities and state regulatory authorities in investigating customer electricity demand as part of cost-of-service studies, rate design, marketing research, system design, load forecasting, rate reform analysis, and load management research. Load research procedures are described in detail. Research programs at three utilities are compared: Carolina Power and Light Company, Long Island Lighting Company, and Southern California Edison Company. A load research bibliography and glossaries of load research and statistical terms are also included.
Alteration of functional loads after tongue volume reduction.
Ye, W; Duan, Y Z; Liu, Z J
2013-11-01
An earlier study revealed that the patterns of biomechanical loads on bones around the tongue altered significantly right after tongue volume reduction surgery. The current study was to examine whether these alterations persist or vanish over time post-surgery. Five sibling pairs of 12-week-old Yucatan minipigs were used. For each pair, one had surgery reducing tongue volume by about 15% (reduction) while the other had same incisions without tissue removal (sham). All animals were raised for 4 weeks after surgery. Three rosette strain gauges were placed on the bone surfaces of pre-maxilla (PM), mandibular incisor (MI), and mandibular molar (MM); two single-element gauges were placed across the pre-maxilla-maxillar suture (PMS) and mandibular symphysis (MSP), and two pressure transducers were placed on the bone surfaces of hard palate (PAL) and mandibular body (MAN). These bone strains and pressures were recorded during natural mastication. Overall amount of all loads increased significantly as compared to those in previous study in all animals. Instead of decreased loads in reduction animals as seen in that study, shear strains at PM, MI, and MM, tensile strains at PMS, and pressure at MAN were significantly higher in reduction than sham animals. Compared to the sham, strain dominance shifted at PM, MI, and MM and orientation of tensile strain altered at MI in reduction animals. A healed volume-reduced tongue may change loading regime significantly by elevating loading and altering strain-dominant pattern and orientation on its surrounding structures, and these changes are more remarkable in mandibular than maxillary sites. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Sedimentation within the batture lands of the middle Mississippi River, USA
NASA Astrophysics Data System (ADS)
Remo, J. W.; Ryherd, J. K.
2017-12-01
The suspended sediment load of the Mississippi River has continued to decline after the construction of several hundred large dams within the basin during the mid-20th century. Previous investigators have attributed the post-dam decline in suspended sediment loads to improvements in soil conservation practices and dredging. However, the role batture lands (areas between the river channel and levee) play as potential sinks for suspend sediments has largely been overlooked. In this study, we explored the rates and volume of sedimentation within the batture lands along the middle Mississippi River (MMR; between the confluence of the Missouri and Ohio Rivers). We assessed sedimentation rates using three approaches: 1) comparison of historical to modern elevation data in order to estimate long-term (>100-years) sedimentation rates; 2) estimation of medium- to short-term (<50-years) sedimentation rates using dendrogeomorphological methods; and 3) geomorphic change detection software (GCDS) to estimate short-term sedimentation rates (12 years). We also used GCDS to estimate the volume of sedimentation within the batture lands between 1998 and 2011. Comparison of long- to short-term sedimentation rates suggests up to a 400% increase in batture land sedimentation rates (from 6.2 to 25.4 mm y-1) despite a substantial decrease in the suspended sediment load (>70%). The increase in MMR batture land sedimentation rates are attributed to three mechanisms: 1) the above average frequency and duration of low-magnitude floods (≤5-year flood) during the short-term assessment periods, which allowed for more suspended sediment to be transported into and deposited within, the batture lands; 2) the construction of levees which substantially reduced ( 75%) floodplain areas available for storage of overbank deposits; and 3) river engineering which has reduced bank erosion allowing sediment to be stored for longer periods of time in the batture lands. The estimated batture land sediment volumes were 5.0% of the suspended load at St. Louis. This substantial storage of sediment ( 9.0 Mt y-1) along the MMR suggests batture lands are an important sink for suspended sediments. Deposition within these areas is contributing to the decrease in the suspended sediment load along this and likely other segments of the Mississippi River.
Ahmed, Awais; Sohi, Rajneet; Roohi, Rakhshan; Jois, Markandeya; Raedts, Peter; Aarons, Sharon R
2018-06-01
Feed nitrogen (N) intakes in Australian grazing systems average 545 g cow -1 day -1 , indicating that urinary N is likely to be the dominant form excreted. Grazing animals spend disproportionate amounts of time in places on dairy farms where N accumulation is likely to occur. We attached to grazing cows sensors that measure urine volume and N concentration, as well as global positioning systems sensors used to monitor the times the cows spent in different places on a farm and the location of urination events. The cows were monitored for up to 72 h in each of two seasons. More urination events and greater urine volumes per event were recorded in spring 2014 (3.1 L) compared with winter 2015 (1.4 L), most likely influenced by environmental conditions and the greater spring rainfall observed. Mean (range) N concentration (0.71%; 0.02 to 1.52%) and N load (12.8 g cow -1 event -1 ; 0.3 to 64.5 g cow -1 event -1 ) did not differ over the two monitoring periods. However, mean (range) daily N load was greater in spring (277 g cow -1 day -1 ; 200 to 346 g cow -1 day -1 ) than in winter (90 g cow -1 day -1 ; 44 to 116 g cow -1 day -1 ) due to the influence of urine volume. Relatively greater time was spent in paddocks overnight (13.3 h) than in paddocks between morning and evening milking (6.4 h), compared with the mean numbers of urinations in these places (6.4 and 3.8 respectively). The mean N load deposited overnight in paddocks (89.6 g cow -1 ) was more than twice that deposited in paddocks during the day (43.8 g cow -1 ), due to the greater N load per event overnight, and was more closely linked to the relative difference in time spent in paddocks than in the number of urination events. These data suggest that routinely holding cows in the same paddocks overnight will lead to high urinary N depositions, increasing the potential for N losses from these places. Further research using this technology is required to acquire farm and environment specific urinary data to improve N management. Copyright © 2018 Elsevier Ltd. All rights reserved.
The Behaviour of Palm Oil Fibre Block Masonry Prism under Eccentric Compressive Loading
NASA Astrophysics Data System (ADS)
Mokhtar, Mardiha; Kolop, Roslan; Baizura Hamid, Nor; Kaamin, Masiri; Farhan Rosdi, Mohd; Ngadiman, Norhayati; Sahat, Suhaila
2017-08-01
Dry-stacked masonry offers great benefits in constructing masonry buildings. Several examples from previous research show that dry masonry is reasonable alternative to the traditional building system. By addition of fibre, the ductility and the propagation of cracking will be improved. This study investigates the dry stack oil palm fibre block prisms which were subjected to eccentricity compression loads. These concrete blocks were cast using a single mould with suitable fibre-cement composition namely 1:4 (cement: sand) and 0.40 water to the cement ratio based on cement weight. Prisms test using 400 (length) × 150 (width) × 510 (height) mm specimen was carried under eccentric load. There were forty eight (48) prisms built with different configurations based on their volume of fibre. In this study, one types of grout were used namely the fine grout of mix 1:3:2 (cement: sand: aggregate (5mm maximum). Based on the test performed, the failure mechanism and influencing parameters were discussed. From compressive strength test result, it shows that the strength of concrete block decreased with the increase of fibre used. Although the control sample has the higher strength compared to concrete with EFB, it can be seen from mode failure of masonry prism that fibre could extend the cracking time. These results show that the oil palm fibre blocks can improve the failure behaviour and suitable to be used as load bearing wall construction in Malaysia.
Instream wood loads in montane forest streams of the Colorado Front Range, USA
NASA Astrophysics Data System (ADS)
Jackson, Karen J.; Wohl, Ellen
2015-04-01
Although several studies examine instream wood loads and associated geomorphic effects in streams of subalpine forests in the U.S. Southern Rocky Mountains, little is known of instream wood loads in lower elevation, montane forests of the region. We compare instream wood loads and geomorphic effects between streams draining montane forest stands of differing age (old growth versus younger) and disturbance history (healthy versus infested by mountain pine beetles). We examined forest stand characteristics, instream wood load, channel geometry, pool volume, and sediment storage in 33 pool-riffle or plane-bed stream reaches with objectives of determining whether (i) instream wood and geomorphic effects differed significantly among old-growth, younger, healthy, and beetle-infested forest stands and (ii) wood loads correlated with valley and channel characteristics. Wood loads were standardized to drainage area, stream gradient, reach length, bankfull width, and floodplain area. Streams flowing through old-growth forests had significantly larger wood loads and logjam volumes (pairwise t-tests), as well as logjam frequencies (Kruskal-Wallis test), residual pool volume, and fine sediment storage around wood than streams flowing through younger forests. Wood loads in streams draining beetle-infested forest did not differ significantly from those in healthy forest stands, but best subset regression models indicated that elevation, stand age, and beetle infestation were the best predictors of wood loads in channels and on floodplains, suggesting that beetle infestation is affecting instream wood characteristics. Wood loads are larger than values from subalpine streams in the same region and jams are larger and more closely spaced. We interpret these differences to reflect greater wood piece mobility in subalpine zone streams. Stand age appears to exert the dominant influence on instream wood characteristics within pool-riffle streams in the study area rather than beetle infestation, although this may reflect the relatively recent nature (< 10 years) of the infestation.
Melguizo, Consolación; Cabeza, Laura; Prados, Jose; Ortiz, Raúl; Caba, Octavio; Rama, Ana R; Delgado, Ángel V; Arias, José L
2015-01-01
Doxorubicin (Dox) is widely used for the combined chemotherapy of solid tumors. However, the use of these drug associations in lung cancer has low antitumor efficacy. To improve its efficacious delivery and activity in lung adenocarcinoma cells, we developed a biodegradable and noncytotoxic nanoplatform based on biodegradable poly(butylcyanoacrylate) (PBCA). The reproducible formulation method was based on an anionic polymerization process of the PBCA monomer, with the antitumor drug being entrapped within the nanoparticle (NP) matrix during its formation. Improved drug-entrapment efficiencies and sustained (biphasic) drug-release properties were made possible by taking advantage of the synthesis conditions (drug, monomer, and surfactant-agent concentrations). Dox-loaded NPs significantly enhanced cellular uptake of the drug in the A549 and LL/2 lung cancer cell lines, leading to a significant improvement of the drug’s antitumoral activity. In vivo studies demonstrated that Dox-loaded NPs clearly reduced tumor volumes and increased mouse-survival rates compared to the free drug. These results demonstrated that PBCA NPs may be used to optimize the antitumor activity of Dox, thus exhibiting a potential application in chemotherapy against lung adenocarcinoma. PMID:26715840
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Garrett N.; Russell, Renee L.; Peterson, Reid A.
This report summarizes the work performed to evaluate multiple, cesium loading, and elution cycles for small columns containing SRF resin using a simple, high-level waste (HLW) simulant. Cesium ion exchange loading and elution curves were generated for a nominal 5 M Na, 2.4E-05 M Cs, 0.115 M Al loading solution traced with 134Cs followed by elution with variable HNO3 (0.02, 0.07, 0.15, 0.23, and 0.28 M) containing variable CsNO3 (5.0E-09, 5.0E-08, and 5.0E-07 M) and traced with 137Cs. The ion exchange system consisted of a pump, tubing, process solutions, and a single, small ({approx}15.7 mL) bed of SRF resin withmore » a water-jacketed column for temperature-control. The columns were loaded with approximately 250 bed volumes (BVs) of feed solution at 45 C and at 1.5 to 12 BV per hour (0.15 to 1.2 cm/min). The columns were then eluted with 29+ BVs of HNO3 processed at 25 C and at 1.4 BV/h. The two independent tracers allowed analysis of the on-column cesium interaction between the loading and elution solutions. The objective of these tests was to improve the correlation between the spent resin cesium content and cesium leached out of the resin in subsequent loading cycles (cesium leakage) to help establish acid strength and purity requirements.« less
Leopold, Christian; Augustin, Till; Schwebler, Thomas; Lehmann, Jonas; Liebig, Wilfried V; Fiedler, Bodo
2017-11-15
The influence of nanoparticle morphology and filler content on the mechanical and electrical properties of carbon nanoparticle modified epoxy is investigated regarding small volumes. Three types of particles, representing spherical, tubular and layered morphologies are used. A clear size effect of increasing true failure strength with decreasing volume is found for neat and carbon black modified epoxy. Carbon nanotube (CNT) modified epoxy exhibits high potential for strength increase, but dispersion and purity are critical. In few layer graphene modified epoxy, particles are larger than statistically distributed defects and initiate cracks, counteracting any size effect. Different toughness increasing mechanisms on the nano- and micro-scale depending on particle morphology are discussed based on scanning electron microscopy images. Electrical percolation thresholds in the small volume fibres are significantly higher compared to bulk volume, with CNT being found to be the most suitable morphology to form electrical conductive paths. Good correlation between electrical resistance change and stress strain behaviour under tensile loads is observed. The results show the possibility to detect internal damage in small volumes by measuring electrical resistance and therefore indicate to the high potential for using CNT modified polymers in fibre reinforced plastics as a multifunctional, self-monitoring material with improved mechanical properties. Copyright © 2017. Published by Elsevier Inc.
Strategy Guideline: Compact Air Distribution Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burdick, A.
2013-06-01
This Strategy Guideline discusses the benefits and challenges of using a compact air distribution system to handle the reduced loads and reduced air volume needed to condition the space within an energy efficient home. Traditional systems sized by 'rule of thumb' (i.e., 1 ton of cooling per 400 ft2 of floor space) that 'wash' the exterior walls with conditioned air from floor registers cannot provide appropriate air mixing and moisture removal in low-load homes. A compact air distribution system locates the HVAC equipment centrally with shorter ducts run to interior walls, and ceiling supply outlets throw the air toward themore » exterior walls along the ceiling plane; alternatively, high sidewall supply outlets throw the air toward the exterior walls. Potential drawbacks include resistance from installing contractors or code officials who are unfamiliar with compact air distribution systems, as well as a lack of availability of low-cost high sidewall or ceiling supply outlets to meet the low air volumes with good throw characteristics. The decision criteria for a compact air distribution system must be determined early in the whole-house design process, considering both supply and return air design. However, careful installation of a compact air distribution system can result in lower material costs from smaller equipment, shorter duct runs, and fewer outlets; increased installation efficiencies, including ease of fitting the system into conditioned space; lower loads on a better balanced HVAC system, and overall improved energy efficiency of the home.« less
Ground Vehicle System Integration (GVSI) and Design Optimization Model.
1996-07-30
number of stowed kills Same basic load lasts longer range Gun/ammo parameters impact system weight, under - armor volume requirements Round volume...internal volume is reduced, the model assumes that the crew’s ability to operate while under armor will be impaired. If the size of a vehicle crew is...changing swept volume will alter under armor volume requirements for the total system; if system volume is fixed, changing swept volume will
Cellular pressure and volume regulation and implications for cell mechanics
NASA Astrophysics Data System (ADS)
Jiang, Hongyuan; Sun, Sean
2013-03-01
In eukaryotic cells, small changes in cell volume can serve as important signals for cell proliferation, death and migration. Volume and shape regulation also directly impacts the mechanics of the cell and multi-cellular tissues. Recent experiments found that during mitosis, eukaryotic cells establish a preferred steady volume and pressure, and the steady volume and pressure can robustly adapt to large osmotic shocks. Here we develop a mathematical model of cellular pressure and volume regulation, incorporating essential elements such as water permeation, mechano-sensitive channels, active ion pumps and active stresses in the actomyosin cortex. The model can fully explain the available experimental data, and predicts the cellular volume and pressure for several models of cell cortical mechanics. Furthermore, we show that when cells are subjected to an externally applied load, such as in an AFM indentation experiment, active regulation of volume and pressure leads to complex cellular response. We found the cell stiffness highly depends on the loading rate, which indicates the transport of water and ions might contribute to the observed viscoelasticity of cells.
Jack Lewis; Sylvia R. Mori; Elizabeth T. Keppeler; Robert R. Ziemer
2001-01-01
Abstract - Models are fit to 11 years of storm peak flows, flow volumes, and suspended sediment loads on a network of 14 stream gaging stations in the North Fork Caspar Creek, a 473-ha coastal watershed bearing a second-growth forest of redwood and Douglas-fir. For the first 4 years of monitoring, the watershed was in a relatively undisturbed state, having last been...
Method and apparatus for testing surface characteristics of a material
NASA Technical Reports Server (NTRS)
Johnson, David L. (Inventor); Kersker, Karl D. (Inventor); Stratton, Troy C. (Inventor); Richardson, David E. (Inventor)
2006-01-01
A method, apparatus and system for testing characteristics of a material sample is provided. The system includes an apparatus configured to house the material test sample while defining a sealed volume against a surface of the material test sample. A source of pressurized fluid is in communication with, and configured to pressurize, the sealed volume. A load applying apparatus is configured to apply a defined load to the material sample while the sealed volume is monitored for leakage of the pressurized fluid. Thus, the inducement of surface defects such as microcracking and crazing may be detected and their effects analyzed for a given material. The material test samples may include laminar structures formed of, for example, carbon cloth phenolic, glass cloth phenolic, silica cloth phenolic materials or carbon-carbon materials. In one embodiment the system may be configured to analyze the material test sample while an across-ply loading is applied thereto.
Kwiatek, Monika A; Menne, Dieter; Steingoetter, Andreas; Goetze, Oliver; Forras-Kaufman, Zsofia; Kaufman, Elad; Fruehauf, Heiko; Boesiger, Peter; Fried, Michael; Schwizer, Werner; Fox, Mark R
2009-11-01
This study assessed the effects of meal volume (MV) and calorie load (CL) on gastric function. MRI and a minimally invasive fiber-optic recording system (FORS) provided simultaneous measurement of gastric volume and pressure changes during gastric filling and emptying of a liquid nutrient meal in physiological conditions. The gastric response to 12 iso-osmolar MV-CL combinations of a multinutrient drink (MV: 200, 400, 600, 800 ml; CL: 200, 300, 400 kcal) was tested in 16 healthy subjects according to a factorial design. Total gastric volume (TGV) and gastric content volume (GCV = MV + secretion) were measured by MRI during nasogastric meal infusion and gastric emptying over 60 min. Intragastric pressure was assessed at 1 Hz by FORS. The dynamic change in postprandial gastric volumes was described by a validated three-component linear exponential model. The stomach expanded with MV, but the ratio of GCV:MV at t(0) diminished with increasing MV (P < 0.01). Postprandial changes in TGV followed those of GCV. Intragastric pressure increased with MV, and this effect was augmented further by CL (P = 0.02); however, the absolute pressure rise was <4 mmHg. A further postprandial increase of gastric volumes was observed early on before any subsequent volume decrease. This "early" increase in GCV was greater for smaller than larger MV (P < 0.01), indicating faster initial gastric emptying of larger MV. In contrast, volume change during filling and in the early postprandial period were unaffected by CL. In the later postprandial period, gastric emptying rate continued to be more rapid with high MVs (P < 0.001); however, at any given volume, gastric emptying was slowed by higher CL (P < 0.001). GCV half-emptying time decreased with CL at 18 +/- 6 min for each additional 100-kcal load (P < 0.001). These findings indicate that gastric wall stress (passive strain and active tone) provides the driving force for gastric emptying, but distal resistance to gastric outflow regulates further passage of nutrients. The distinct early phase of gastric emptying with relatively rapid, uncontrolled passage of nutrients into the small bowel, modulated by meal volume but not nutrient composition, ensures that the delivery of nutrients in the later postprandial period is related to the overall calorie load of the meal.
NASA Technical Reports Server (NTRS)
Phillips, M. A.
1973-01-01
Results are presented of an analysis which compares the performance predictions of a thermal model of a multi-panel modular radiator system with thermal vacuum test data. Comparisons between measured and predicted individual panel outlet temperatures and pressure drops and system outlet temperatures have been made over the full range of heat loads, environments and plumbing arrangements expected for the shuttle radiators. Both two sided and one sided radiation have been included. The model predictions show excellent agreement with the test data for the maximum design conditions of high load and hot environment. Predictions under minimum design conditions of low load-cold environments indicate good agreement with the measured data, but evaluation of low load predictions should consider the possibility of parallel flow instabilities due to main system freezing. Performance predictions under intermediate conditions in which the majority of the flow is not in either the main or prime system are adequate although model improvements in this area may be desired. The primary modeling objective of providing an analytical technique for performance predictions of a multi-panel radiator system under the design conditions has been met.
Controlled release of agrochemicals intercalated into montmorillonite interlayer space.
Wanyika, Harrison
2014-01-01
Periodic application of agrochemicals has led to high cost of production and serious environmental pollution. In this study, the ability of montmorillonite (MMT) clay to act as a controlled release carrier for model agrochemical molecules has been investigated. Urea was loaded into MMT by a simple immersion technique while loading of metalaxyl was achieved by a rotary evaporation method. The successful incorporation of the agrochemicals into the interlayer space of MMT was confirmed by several techniques, such as, significant expansion of the interlayer space, reduction of Barrett-Joyner-Halenda (BJH) pore volumes and Brunauer-Emmett-Teller (BET) surface areas, and appearance of urea and metalaxyl characteristic bands on the Fourier-transform infrared spectra of the urea loaded montmorillonite (UMMT) and metalaxyl loaded montmorillonite (RMMT) complexes. Controlled release of the trapped molecules from the matrix was done in water and in the soil. The results reveal slow and sustained release behaviour for UMMT for a period of 10 days in soil. For a period of 30 days, MMT delayed the release of metalaxyl in soil by more than 6 times. It is evident that MMT could be used to improve the efficiency of urea and metalaxyl delivery in the soil.
Controlled Release of Agrochemicals Intercalated into Montmorillonite Interlayer Space
2014-01-01
Periodic application of agrochemicals has led to high cost of production and serious environmental pollution. In this study, the ability of montmorillonite (MMT) clay to act as a controlled release carrier for model agrochemical molecules has been investigated. Urea was loaded into MMT by a simple immersion technique while loading of metalaxyl was achieved by a rotary evaporation method. The successful incorporation of the agrochemicals into the interlayer space of MMT was confirmed by several techniques, such as, significant expansion of the interlayer space, reduction of Barrett-Joyner-Halenda (BJH) pore volumes and Brunauer-Emmett-Teller (BET) surface areas, and appearance of urea and metalaxyl characteristic bands on the Fourier-transform infrared spectra of the urea loaded montmorillonite (UMMT) and metalaxyl loaded montmorillonite (RMMT) complexes. Controlled release of the trapped molecules from the matrix was done in water and in the soil. The results reveal slow and sustained release behaviour for UMMT for a period of 10 days in soil. For a period of 30 days, MMT delayed the release of metalaxyl in soil by more than 6 times. It is evident that MMT could be used to improve the efficiency of urea and metalaxyl delivery in the soil. PMID:24696655
Load Bearing Equipment for Bone and Muscle
NASA Technical Reports Server (NTRS)
Shackelford, Linda; Griffith, Bryan
2015-01-01
Resistance exercise on ISS has proven effective in maintaining bone mineral density and muscle mass. Exploration missions require exercise with similar high loads using equipment with less mass and volume and greater safety and reliability than resistance exercise equipment used on ISS (iRED, ARED, FWED). Load Bearing Equipment (LBE) uses each exercising person to create and control the load to the partner.
Robert E. Vihnanek; Cameron S. Balog; Clinton S. Wright; Roger D. Ottmar; Jeffrey W. Kelly
2009-01-01
Two series of single and stereo photographs display a range of natural conditions and fuel loadings in post-hurricane forests in the southeastern United States. Each group of photos includes inventory information summarizing vegetation composition, structure and loading, woody material loading and density by size class, forest floor loading, and various site...
1989-03-01
comparison between the two. Tyre self-excited vibration can be caused by lack of uniforuity and/or out-of-balance. The authors suggest that driving ... safety is best described by the ’Dynamic Load Factor’ which relates the ainimum rolling dynamic load to the static tyre load. Dynamic Load Factors are
The Analysis for Energy Consumption of Marine Air Conditioning System Based on VAV and VWV
NASA Astrophysics Data System (ADS)
Xu, Sai Feng; Yang, Xing Lin; Le, Zou Ying
2018-06-01
For ocean-going vessels sailing in different areas on the sea, the change of external environment factors will cause frequent changes in load, traditional ship air-conditioning system is usually designed with a fixed cooling capacity, this design method causes serious waste of resources. A new type of sea-based air conditioning system is proposed in this paper, which uses the sea-based source heat pump system, combined with variable air volume, variable water technology. The multifunctional cabins' dynamic loads for a ship navigating in a typical Eurasian route were calculated based on Simulink. The model can predict changes in full voyage load. Based on the simulation model, the effects of variable air volume and variable water volume on the energy consumption of the air-conditioning system are analyzed. The results show that: When the VAV is coupled with the VWV, the energy saving rate is 23.2%. Therefore, the application of variable air volume and variable water technology to marine air conditioning systems can achieve economical and energy saving advantages.
Study of Abrasive Wear Volume Map for PTFE and PTFE Composites
NASA Astrophysics Data System (ADS)
Unal, H.; Sen, U.; Mimaroglu, A.
2007-11-01
The potential of this work is based on consideration of wear volume map for the evaluation of abrasive wear performance of polytetrafluoroethylene (PTFE) and PTFE composites. The fillers used in the composite are 25% bronze, 35% graphite and 17% glass fibre glass (GFR). The influence of filler materials, abrasion surface roughness and applied load values on abrasive wear performance of PTFE and PTFE composites were studied and evaluated. Experimental abrasive wear tests were carried out at atmospheric condition on pin-on-disc wear tribometer. Tests were performed under 4, 6, 8 and 10 N load values, travelling speed of 1 m/sec and abrasion surface roughness values of 5, 20 and 45 µm. Wear volume maps were obtained and the results showed that the lowest wear volume rate for PTFE is reached using GFR filler. Furthermore, the results also showed that the higher is the applied load and the roughness of the abrasion surface, the higher is the wear rate. Finally it is also concluded that abrasive wear process mechanism include ploughing and cutting mechanisms.
NASA Astrophysics Data System (ADS)
Zhang, Mi; Guan, Zhidong; Wang, Xiaodong; Du, Shanyi
2017-10-01
Kink band is a typical phenomenon for composites under longitudinal compression. In this paper, theoretical analysis and finite element simulation were conducted to analyze kink angle as well as compressive strength of composites. Kink angle was considered to be an important character throughout longitudinal compression process. Three factors including plastic matrix, initial fiber misalignment and rotation due to loading were considered for theoretical analysis. Besides, the relationship between kink angle and fiber volume fraction was improved and optimized by theoretical derivation. In addition, finite element models considering fiber stochastic strength and Drucker-Prager constitutive model for matrix were conducted in ABAQUS to analyze kink band formation process, which corresponded with the experimental results. Through simulation, the loading and failure procedure can be evidently divided into three stages: elastic stage, softening stage, and fiber break stage. It also shows that kink band is a result of fiber misalignment and plastic matrix. Different values of initial fiber misalignment angle, wavelength and fiber volume fraction were considered to explore the effects on compressive strength and kink angle. Results show that compressive strength increases with the decreasing of initial fiber misalignment angle, the decreasing of initial fiber misalignment wavelength and the increasing of fiber volume fraction, while kink angle decreases in these situations. Orthogonal array in statistics was also built to distinguish the effect degree of these factors. It indicates that initial fiber misalignment angle has the largest impact on compressive strength and kink angle.
High Efficiency, High Performance Clothes Dryer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peter Pescatore; Phil Carbone
This program covered the development of two separate products; an electric heat pump clothes dryer and a modulating gas dryer. These development efforts were independent of one another and are presented in this report in two separate volumes. Volume 1 details the Heat Pump Dryer Development while Volume 2 details the Modulating Gas Dryer Development. In both product development efforts, the intent was to develop high efficiency, high performance designs that would be attractive to US consumers. Working with Whirlpool Corporation as our commercial partner, TIAX applied this approach of satisfying consumer needs throughout the Product Development Process for bothmore » dryer designs. Heat pump clothes dryers have been in existence for years, especially in Europe, but have not been able to penetrate the market. This has been especially true in the US market where no volume production heat pump dryers are available. The issue has typically been around two key areas: cost and performance. Cost is a given in that a heat pump clothes dryer has numerous additional components associated with it. While heat pump dryers have been able to achieve significant energy savings compared to standard electric resistance dryers (over 50% in some cases), designs to date have been hampered by excessively long dry times, a major market driver in the US. The development work done on the heat pump dryer over the course of this program led to a demonstration dryer that delivered the following performance characteristics: (1) 40-50% energy savings on large loads with 35 F lower fabric temperatures and similar dry times; (2) 10-30 F reduction in fabric temperature for delicate loads with up to 50% energy savings and 30-40% time savings; (3) Improved fabric temperature uniformity; and (4) Robust performance across a range of vent restrictions. For the gas dryer development, the concept developed was one of modulating the gas flow to the dryer throughout the dry cycle. Through heat modulation in a gas dryer, significant time and energy savings, combined with dramatically reduced fabric temperatures, was achieved in a cost-effective manner. The key design factor lay in developing a system that matches the heat input to the dryer with the fabrics ability to absorb it. The development work done on the modulating gas dryer over the course of this program led to a demonstration dryer that delivered the following performance characteristics: (1) Up to 25% reduction in energy consumption for small and medium loads; (2) Up to 35% time savings for large loads with 10-15% energy reduction and no adverse effect on cloth temperatures; (3) Reduced fabric temperatures, dry times and 18% energy reduction for delicate loads; and, (4) Robust performance across a range of vent restrictions.« less
1977-10-01
and higher limitimW speeds in release or jettison- of stores reduced aircraft weight and improved structural integrity-by reducing carriage loads...should endeavour tot piece the weapons as far aft a possible to reduce the loss of Dy -minimis the extent to which stores are placed below the aircraft...centr of gravity to reduce the loss of lv try to minimise changes in aircraft inertias, which memos getting the stores as close as possible to the
Hellard, Philippe; Scordia, Charlotte; Avalos, Marta; Mujika, Inigo; Pyne, David B
2017-10-01
Periodization of swim training in the final training phases prior to competition and its effect on performance have been poorly described. We modeled the relationships between the final 11 weeks of training and competition performance in 138 elite sprint, middle-distance, and long-distance swimmers over 20 competitive seasons. Total training load (TTL), strength training (ST), and low- to medium-intensity and high-intensity training variables were monitored. Training loads were scaled as a percentage of the maximal volume measured at each intensity level. Four training periods (meso-cycles) were defined: the taper (weeks 1 to 2 before competition), short-term (weeks 3 to 5), medium-term (weeks 6 to 8), and long-term (weeks 9 to 11). Mixed-effects models were used to analyze the association between training loads in each training meso-cycle and end-of-season major competition performance. For sprinters, a 10% increase between ∼20% and 70% of the TTL in medium- and long-term meso-cycles was associated with 0.07 s and 0.20 s faster performance in the 50 m and 100 m events, respectively (p < 0.01). For middle-distance swimmers, a higher TTL in short-, medium-, and long-term training yielded faster competition performance (e.g., a 10% increase in TTL was associated with improvements of 0.1-1.0 s in 200 m events and 0.3-1.6 s in 400 m freestyle, p < 0.01). For sprinters, a 60%-70% maximal ST load 6-8 weeks before competition induced the largest positive effects on performance (p < 0.01). An increase in TTL during the medium- and long-term preparation (6-11 weeks to competition) was associated with improved performance. Periodization plans should be adapted to the specialty of swimmers.
2015-01-01
A hybrid microchip/capillary electrophoresis (CE) system was developed to allow unbiased and lossless sample loading and high-throughput repeated injections. This new hybrid CE system consists of a poly(dimethylsiloxane) (PDMS) microchip sample injector featuring a pneumatic microvalve that separates a sample introduction channel from a short sample loading channel, and a fused-silica capillary separation column that connects seamlessly to the sample loading channel. The sample introduction channel is pressurized such that when the pneumatic microvalve opens briefly, a variable-volume sample plug is introduced into the loading channel. A high voltage for CE separation is continuously applied across the loading channel and the fused-silica capillary separation column. Analytes are rapidly separated in the fused-silica capillary, and following separation, high-sensitivity MS detection is accomplished via a sheathless CE/ESI-MS interface. The performance evaluation of the complete CE/ESI-MS platform demonstrated that reproducible sample injection with well controlled sample plug volumes could be achieved by using the PDMS microchip injector. The absence of band broadening from microchip to capillary indicated a minimum dead volume at the junction. The capabilities of the new CE/ESI-MS platform in performing high-throughput and quantitative sample analyses were demonstrated by the repeated sample injection without interrupting an ongoing separation and a linear dependence of the total analyte ion abundance on the sample plug volume using a mixture of peptide standards. The separation efficiency of the new platform was also evaluated systematically at different sample injection times, flow rates, and CE separation voltages. PMID:24865952
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelly, Ryan T.; Wang, Chenchen; Rausch, Sarah J.
2014-07-01
A hybrid microchip/capillary CE system was developed to allow unbiased and lossless sample loading and high throughput repeated injections. This new hybrid CE system consists of a polydimethylsiloxane (PDMS) microchip sample injector featuring a pneumatic microvalve that separates a sample introduction channel from a short sample loading channel and a fused silica capillary separation column that connects seamlessly to the sample loading channel. The sample introduction channel is pressurized such that when the pneumatic microvalve opens briefly, a variable-volume sample plug is introduced into the loading channel. A high voltage for CE separation is continuously applied across the loading channelmore » and the fused silica capillary separation column. Analytes are rapidly separated in the fused silica capillary with high resolution. High sensitivity MS detection after CE separation is accomplished via a sheathless CE/ESI-MS interface. The performance evaluation of the complete CE/ESI-MS platform demonstrated that reproducible sample injection with well controlled sample plug volumes could be achieved by using the PDMS microchip injector. The absence of band broadening from microchip to capillary indicated a minimum dead volume at the junction. The capabilities of the new CE/ESI-MS platform in performing high throughput and quantitative sample analyses were demonstrated by the repeated sample injection without interrupting an ongoing separation and a good linear dependence of the total analyte ion abundance on the sample plug volume using a mixture of peptide standards. The separation efficiency of the new platform was also evaluated systematically at different sample injection times, flow rates and CE separation voltages.« less
Effects of Imbalanced Muscle Loading on Hip Joint Development and Maturation
Ford, Caleb A.; Nowlan, Niamh C.; Thomopoulos, Stavros; Killian, Megan L.
2017-01-01
The mechanical loading environment influences the development and maturation of joints. In this study, the influence of imbalanced muscular loading on joint development was studied using localized chemical denervation of hip stabilizing muscle groups in neonatal mice. It was hypothesized that imbalanced muscle loading, targeting either gluteal muscles or quadriceps muscles, would lead to bilateral hip joint asymmetry, as measured by acetabular coverage, femoral head volume and bone morphometry, and femoral-acetabular shape. The contralateral hip joints as well as age-matched, uninjected mice were used as controls. Altered bone development was analyzed using micro-computed tomography, histology, and image registration techniques at postnatal days (P) 28, 56, and 120. This study found that unilateral muscle unloading led to reduced acetabular coverage of the femoral head, lower total volume, lower bone volume ratio, and lower mineral density, at all three time points. Histologically, the femoral head was smaller in unloaded hips, with thinner triradiate cartilage at P28 and thinner cortical bone at P120 compared to contralateral hips. Morphological shape changes were evident in unloaded hips at P56. Unloaded hips had lower trabecular thickness and increased trabecular spacing of the femoral head compared to contralateral hips. The present study suggests that decreased muscle loading of the hip leads to altered bone and joint shape and growth during postnatal maturation. Statement of Clinical Significance: Adaptations from altered muscle loading during postnatal growth investigated in this study have implications on developmental hip disorders that result from asymmetric loading, such as patients with limb-length inequality or dysplasia. PMID:27391299
Shock Isolation Elements Testing for High Input Loadings. Volume II. Foam Shock Isolation Elements.
SHOCK ABSORBERS ), (*GUIDED MISSILE SILOS, SHOCK ABSORBERS ), (*EXPANDED PLASTICS, (*SHOCK(MECHANICS), REDUCTION), TEST METHODS, SHOCK WAVES, STRAIN(MECHANICS), LOADS(FORCES), MATHEMATICAL MODELS, NUCLEAR EXPLOSIONS, HARDENING.
van den Bosch, Sven; Vogel, Wouter V; Raaijmakers, Cornelis P; Dijkema, Tim; Terhaard, Chris H J; Al-Mamgani, Abrahim; Kaanders, Johannes H A M
2018-05-03
Diagnostic imaging continues to evolve, and now has unprecedented accuracy for detecting small nodal metastasis. This influences the tumor load in elective target volumes and subsequently has consequences for the radiotherapy dose required to control disease in these volumes. Small metastases that used to remain subclinical and were included in elective volumes, will nowadays be detected and included in high-dose volumes. Consequentially, high-dose volumes will more often contain low-volume disease. These target volume transformations lead to changes in the tumor burden in elective and "gross" tumor volumes with implications for the radiotherapy dose prescribed to these volumes. For head and neck tumors, nodal staging has evolved from mere palpation to combinations of high-resolution imaging modalities. A traditional nodal gross tumor volume in the neck typically had a minimum diameter of 10-15 mm, while nowadays much smaller tumor deposits are detected in lymph nodes. However, the current dose levels for elective nodal irradiation were empirically determined in the 1950s, and have not changed since. In this report the radiobiological consequences of target volume transformation caused by modern imaging of the neck are evaluated, and theoretically derived reductions of dose in radiotherapy for head and neck cancer are proposed. The concept of target volume transformation and subsequent strategies for dose adaptation applies to many other tumor types as well. Awareness of this concept may result in new strategies for target definition and selection of dose levels with the aim to provide optimal tumor control with less toxicity. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
A three degree of freedom manipulator used for store separation wind tunnel test
NASA Astrophysics Data System (ADS)
Wei, R.; Che, B.-H.; Sun, C.-B.; Zhang, J.; Lu, Y.-Q.
2018-06-01
A three degree of freedom manipulator is presented, which is used for store separation wind tunnel test. It is a kind of mechatronics product, have small volume and large moment of torque. The paper researched the design principle of wind tunnel test equipment, also introduced the transmission principle design, physical design, control system design, drive element selection calculation and verification, dynamics computation and static structural computation of the manipulator. To satisfy the design principle of wind tunnel test equipment, some optimization design are made include optimizes the structure of drive element and cable, fairing configuration, overall dimension so that to make the device more suitable for the wind tunnel test. Some tests are made to verify the parameters of the manipulator. The results show that the device improves the load from 100 Nm to 250 Nm, control accuracy from 0.1°to 0.05°in pitch and yaw, also improves load from 10 Nm to 20 Nm, control accuracy from 0.1°to 0.05°in roll.
Von Guerard, Paul; Weiss, W.B.
1995-01-01
The U.S. Environmental Protection Agency requires that municipalities that have a population of 100,000 or greater obtain National Pollutant Discharge Elimination System permits to characterize the quality of their storm runoff. In 1992, the U.S. Geological Survey, in cooperation with the Colorado Springs City Engineering Division, began a study to characterize the water quality of storm runoff and to evaluate procedures for the estimation of storm-runoff loads, volume and event-mean concentrations for selected properties and constituents. Precipitation, streamflow, and water-quality data were collected during 1992 at five sites in Colorado Springs. Thirty-five samples were collected, seven at each of the five sites. At each site, three samples were collected for permitting purposes; two of the samples were collected during rainfall runoff, and one sample was collected during snowmelt runoff. Four additional samples were collected at each site to obtain a large enough sample size to estimate storm-runoff loads, volume, and event-mean concentrations for selected properties and constituents using linear-regression procedures developed using data from the Nationwide Urban Runoff Program (NURP). Storm-water samples were analyzed for as many as 186 properties and constituents. The constituents measured include total-recoverable metals, vola-tile-organic compounds, acid-base/neutral organic compounds, and pesticides. Storm runoff sampled had large concentrations of chemical oxygen demand and 5-day biochemical oxygen demand. Chemical oxygen demand ranged from 100 to 830 milligrams per liter, and 5.-day biochemical oxygen demand ranged from 14 to 260 milligrams per liter. Total-organic carbon concentrations ranged from 18 to 240 milligrams per liter. The total-recoverable metals lead and zinc had the largest concentrations of the total-recoverable metals analyzed. Concentrations of lead ranged from 23 to 350 micrograms per liter, and concentrations of zinc ranged from 110 to 1,400 micrograms per liter. The data for 30 storms representing rainfall runoff from 5 drainage basins were used to develop single-storm local-regression models. The response variables, storm-runoff loads, volume, and event-mean concentrations were modeled using explanatory variables for climatic, physical, and land-use characteristics. The r2 for models that use ordinary least-squares regression ranged from 0.57 to 0.86 for storm-runoff loads and volume and from 0.25 to 0.63 for storm-runoff event-mean concentrations. Except for cadmium, standard errors of estimate ranged from 43 to 115 percent for storm- runoff loads and volume and from 35 to 66 percent for storm-runoff event-mean concentrations. Eleven of the 30 concentrations collected during rainfall runoff for total-recoverable cadmium were censored (less than) concentrations. Ordinary least-squares regression should not be used with censored data; however, censored data can be included with uncensored data using tobit regression. Standard errors of estimate for storm-runoff load and event-mean concentration for total-recoverable cadmium, computed using tobit regression, are 247 and 171 percent. Estimates from single-storm regional-regression models, developed from the Nationwide Urban Runoff Program data base, were compared with observed storm-runoff loads, volume, and event-mean concentrations determined from samples collected in the study area. Single-storm regional-regression models tended to overestimate storm-runoff loads, volume, and event-mean con-centrations. Therefore, single-storm local- and regional-regression models were combined using model-adjustment procedures to take advantage of the strengths of both models while minimizing the deficiencies of each model. Procedures were used to develop single-stormregression equations that were adjusted using local data and estimates from single-storm regional-regression equations. Single-storm regression models developed using model- adjustment proce
Roger D. Ottmar; Robert E. Vihnanek; Clinton S. Wright
2007-01-01
Two series of single and stereo photographs display a range of natural conditions and fuel loadings in sagebrush with grass and ponderosa pinejuniper types in central Montana. Each group of photos includes inventory information summarizing vegetation composition, structure, and loading; woody material loading and density by size class; forest floor depth and loading;...
NASA Technical Reports Server (NTRS)
Mulhall, B. D. L.
1980-01-01
The results of the analysis of the external environment of the FBI Fingerprint Identification Division are presented. Possible trends in the future environment of the Division that may have an effect on the work load were projected to determine if future work load will lie within the capability range of the proposed new system, AIDS 3. Two working models of the environment were developed, the internal and external model, and from these scenarios the projection of possible future work load volume and mixture was developed. Possible drivers of work load change were identified and assessed for upper and lower bounds of effects. Data used for the study were derived from historical information, analysis of the current situation and from interviews with various agencies who are users of or stakeholders in the present system.
Empirical relations between large wood transport and catchment characteristics
NASA Astrophysics Data System (ADS)
Steeb, Nicolas; Rickenmann, Dieter; Rickli, Christian; Badoux, Alexandre
2017-04-01
The transport of vast amounts of large wood (LW) in water courses can considerably aggravate hazardous situations during flood events, and often strongly affects resulting flood damage. Large wood recruitment and transport are controlled by various factors which are difficult to assess and the prediction of transported LW volumes is difficult. Such information are, however, important for engineers and river managers to adequately dimension retention structures or to identify critical stream cross-sections. In this context, empirical formulas have been developed to estimate the volume of transported LW during a flood event (Rickenmann, 1997; Steeb et al., 2017). The data base of existing empirical wood load equations is, however, limited. The objective of the present study is to test and refine existing empirical equations, and to derive new relationships to reveal trends in wood loading. Data have been collected for flood events with LW occurrence in Swiss catchments of various sizes. This extended data set allows us to derive statistically more significant results. LW volumes were found to be related to catchment and transport characteristics, such as catchment size, forested area, forested stream length, water discharge, sediment load, or Melton ratio. Both the potential wood load and the fraction that is effectively mobilized during a flood event (effective wood load) are estimated. The difference of potential and effective wood load allows us to derive typical reduction coefficients that can be used to refine spatially explicit GIS models for potential LW recruitment.
Exercise Equipment: Neutral Buoyancy
NASA Technical Reports Server (NTRS)
Shackelford, Linda; Valle, Paul
2016-01-01
Load Bearing Equipment for Neutral Buoyancy (LBE-NB) is an exercise frame that holds two exercising subjects in position as they apply counter forces to each other for lower extremity and spine loading resistance exercises. Resistance exercise prevents bone loss on ISS, but the ISS equipment is too massive for use in exploration craft. Integrating the human into the load directing, load generating, and motion control functions of the exercise equipment generates safe exercise loads with less equipment mass and volume.
Crack Growth Analysis for Arbitrary Spectrum Loading. Volume 1. Results and Discussion
1974-10-01
amplitude growth without previous load history effects) the crack growth increments were increased. Many of the specimens were fitted with the Amsler...absolute magnitude of the maximum load.) Further, if S is defined as a function of the previous load history , then c h9 Equation (19) will predict...crack growth interaction effects. It remains then, to define S as a function of stress ratio and previous load history , and anyc other pertinent
Metals handbook. Volume 12: Fractography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1987-01-01
ASM International has published this handbook in response to the growing interest in the science of fractography, the result of improved methods of preparing specimens, advances in photographic techniques and equipment, refinement of the scanning electron microscope, and the introduction of quantitative fractography. The book covers all aspects of fracture examination and interpretation, including electron and quantitative fractography. The text is accompanied by line drawings, graphs, and photographic illustrations of fracture surfaces and microstructural features. Articles explain and illustrate the principal modes of fracture and the effects of loading history, environment, and materials quality on fracture appearance. An atlas ofmore » fractographs constitutes the second half of the volume and contains more than 1300 fractographs, including a collection of ferrous and nonferrous alloy parts. Supplemental illustrations of failed metal-matrix composites, resin-matrix composites, polymers, and electronic materials are provided.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Newman, Justin A.; Schmitt, Paul D.; Toth, Scott J.
Here in this paper we demonstrate the use of second harmonic generation (SHG) microscopy-guided synchrotron powder X-ray diffraction (PXRD) for the detection of trace crystalline active pharmaceutical ingredients in a common polymer blend. The combined instrument is capable of detecting 100 ppm crystalline ritonavir in an amorphous hydroxypropyl methylcellulose matrix with a high signal-to-noise ratio (>5000). The high spatial resolution afforded by SHG microscopy allows for the use of a minibeam collimator to reduce the total volume of material probed by synchrotron PXRD. The reduction in probed volume results in reduced background from amorphous material. The ability to detect lowmore » crystalline loading has the potential to improve measurements in the formulation pipeline for pharmaceutical solid dispersions, for which even trace quantities of crystalline active ingredients can negatively impact the stability and bioavailability of the final drug product.« less
Sheng, Zhao Min; Hong, Cheng Yang; Dai, Xian You; Chang, Cheng Kang; Chen, Jian Bin; Liu, Yan
2015-04-01
We demonstrate a new sulfur (S)-doping templated approach to fabricate highly nanoporous graphitic nanocages (GNCs) by air-oxidizing the templates in the graphitic shells to create nanopores. Sulfur can be introduced, when Fe@C core-shell nanoparticles are prepared and then S-doped GNCs can be obtained by removing their ferrous cores. Due to removing S-template, both the specific surface area (from 540 to 850 m2 g(-1)) and the mesopore volume (from 0.44 to 0.9 cm3 g(-1)) of the graphitic nanocages have sharply risen. Its high specific surface area improves catalyst loading to provide more reaction electro-active sites while its high mesopore volume pro- motes molecule diffusion across the nanocages, making it an excellent material to support Pt/Ru catalysts for direct methanol fuel cells.
Training Strategies to Improve Muscle Power: Is Olympic-style Weightlifting Relevant?
Helland, Christian; Hole, Eirik; Iversen, Erik; Olsson, Monica Charlotte; Seynnes, Olivier; Solberg, Paul Andre; Paulsen, Gøran
2017-04-01
This efficacy study investigated the effects of 1) Olympic-style weightlifting (OWL), 2) motorized strength and power training (MSPT), and 3) free weight strength and power training (FSPT) on muscle power. Thirty-nine young athletes (20 ± 3 yr; ice hockey, volleyball, and badminton) were randomized into the three training groups. All groups participated in two to three sessions per week for 8 wk. The MSPT and FSPT groups trained using squats (two legs and single leg) with high force and high power, whereas the OWL group trained using clean and snatch exercises. MSPT was conducted as slow-speed isokinetic strength training and isotonic power training with augmented eccentric load, controlled by a computerized robotic engine system. FSPT used free weights. The training volume (sum of repetitions × kg) was similar between all three groups. Vertical jumping capabilities were assessed by countermovement jump (CMJ), squat jump (SJ), drop jump (DJ), and loaded CMJ (10-80 kg). Sprinting capacity was assessed in a 30-m sprint. Secondary variables were squat one-repetition maximum (1RM), body composition, quadriceps thickness, and architecture. OWL resulted in trivial improvements and inferior gains compared with FSPT and MSPT for CMJ, SJ, DJ, and 1RM. MSPT demonstrated small but robust effects on SJ, DJ, loaded CMJ, and 1RM (3%-13%). MSPT was superior to FSPT in improving 30-m sprint performance. FSPT and MSPT, but not OWL, demonstrated increased thickness in the vastus lateralis and rectus femoris (4%-7%). MSPT was time-efficient and equally or more effective than FSPT training in improving vertical jumping and sprinting performance. OWL was generally ineffective and inferior to the two other interventions.
Chesapeake Bay Hypoxic Volume Forecasts and Results
Evans, Mary Anne; Scavia, Donald
2013-01-01
Given the average Jan-May 2013 total nitrogen load of 162,028 kg/day, this summer's hypoxia volume forecast is 6.1 km3, slightly smaller than average size for the period of record and almost the same as 2012. The late July 2013 measured volume was 6.92 km3.
Traffic load spectra development for the 2002 AASHTO design guide.
DOT National Transportation Integrated Search
2004-12-30
Accurate knowledge of traffic volumes and loading is essential to structural pavement design and performance. : Underestimation of design traffic can result in premature pavement failures and excessive rehabilitation costs. : Overestimation can resul...
Poisson's Ratio of a Hyperelastic Foam Under Quasi-static and Dynamic Loading
Sanborn, Brett; Song, Bo
2018-06-03
Poisson's ratio is a material constant representing compressibility of material volume. However, when soft, hyperelastic materials such as silicone foam are subjected to large deformation into densification, the Poisson's ratio may rather significantly change, which warrants careful consideration in modeling and simulation of impact/shock mitigation scenarios where foams are used as isolators. The evolution of Poisson's ratio of silicone foam materials has not yet been characterized, particularly under dynamic loading. In this study, radial and axial measurements of specimen strain are conducted simultaneously during quasi-static and dynamic compression tests to determine the Poisson's ratio of silicone foam. The Poisson's ratiomore » of silicone foam exhibited a transition from compressible to nearly incompressible at a threshold strain that coincided with the onset of densification in the material. Poisson's ratio as a function of engineering strain was different at quasi-static and dynamic rates. Here, the Poisson's ratio behavior is presented and can be used to improve constitutive modeling of silicone foams subjected to a broad range of mechanical loading.« less
Poisson's Ratio of a Hyperelastic Foam Under Quasi-static and Dynamic Loading
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanborn, Brett; Song, Bo
Poisson's ratio is a material constant representing compressibility of material volume. However, when soft, hyperelastic materials such as silicone foam are subjected to large deformation into densification, the Poisson's ratio may rather significantly change, which warrants careful consideration in modeling and simulation of impact/shock mitigation scenarios where foams are used as isolators. The evolution of Poisson's ratio of silicone foam materials has not yet been characterized, particularly under dynamic loading. In this study, radial and axial measurements of specimen strain are conducted simultaneously during quasi-static and dynamic compression tests to determine the Poisson's ratio of silicone foam. The Poisson's ratiomore » of silicone foam exhibited a transition from compressible to nearly incompressible at a threshold strain that coincided with the onset of densification in the material. Poisson's ratio as a function of engineering strain was different at quasi-static and dynamic rates. Here, the Poisson's ratio behavior is presented and can be used to improve constitutive modeling of silicone foams subjected to a broad range of mechanical loading.« less
Liu, Xianshu; Ding, Jie; Ren, Nanqi; Tong, Qingyue; Zhang, Luyan
2016-01-01
In this study, the high-production-volume chemical benzothiazole (BTH) from synthetic water was fully degraded into less toxic intermediates of simple organic acids using an up-flow internal circulation microbial electrolysis reactor (UICMER) under the hydraulic retention time (HRT) of 24 h. The bioelectrochemical system was operated at 25 ± 2 °C and continuous-flow mode. The BTH loading rate varied during experiments from 20 g·m−3·day−1 to 110 g·m−3·day−1. BTH and soluble COD (Chemical Oxygen Demand) removal efficiency reached 80% to 90% under all BTH loading rates. Bioluminescence based Shewanella oneidensis strain MR-1 ecotoxicity testing demonstrated that toxicity was largely decreased compared to the BTH wastewater influent and effluent of two control experiments. The results indicated that MEC (Microbial Electrolysis Cell) was useful and reliable for improving BTH wastewater treatment efficiency, enabling the microbiological reactor to more easily respond to the requirements of higher loading rate, which is meaningful for economic and efficient operation in future scale-up. PMID:27999421
Liu, Xianshu; Ding, Jie; Ren, Nanqi; Tong, Qingyue; Zhang, Luyan
2016-12-20
In this study, the high-production-volume chemical benzothiazole (BTH) from synthetic water was fully degraded into less toxic intermediates of simple organic acids using an up-flow internal circulation microbial electrolysis reactor (UICMER) under the hydraulic retention time (HRT) of 24 h. The bioelectrochemical system was operated at 25 ± 2 °C and continuous-flow mode. The BTH loading rate varied during experiments from 20 g·m -3 ·day -1 to 110 g·m -3 ·day -1 . BTH and soluble COD (Chemical Oxygen Demand) removal efficiency reached 80% to 90% under all BTH loading rates. Bioluminescence based Shewanella oneidensis strain MR-1 ecotoxicity testing demonstrated that toxicity was largely decreased compared to the BTH wastewater influent and effluent of two control experiments. The results indicated that MEC (Microbial Electrolysis Cell) was useful and reliable for improving BTH wastewater treatment efficiency, enabling the microbiological reactor to more easily respond to the requirements of higher loading rate, which is meaningful for economic and efficient operation in future scale-up.
NASA Astrophysics Data System (ADS)
Chen, Cen; Yang, Wei; Wang, Dan-Tong; Chen, Chao-Long; Zhuang, Qing-Ye; Kong, Xiang-Dong
2014-12-01
To improve the anti-tumor activity of hydrophobic drug curcumin, we prepared curcumin-loaded PLGA nanoparticles (PLGA-Cur NPs) through a modified spontaneous emulsification solvent diffusion (modified-SESD) method. The influence of main preparation parameters was investigated, such as the volume ratio of binary organic solvents and the concentration of surfactant. Results indicated that the synthesized regular spherical PLGA NPs with the average diameter of 189.7 nm exhibited relatively higher yield (58.9%), drug loading (11.0% (w/w)) and encapsulation efficiency (33.5%), and also a controllable drug release profile. In order to evaluate the in vitro cytotoxicity of the prepared NPs, MTT assay was conducted, and results showed that the NPs could effectively inhibit HL60 and HepG2 cells with lower IC50 values compared with free curcumin. Furthermore, confocal microscopy together with flow cytometry analysis proved the enhanced apoptosis-inducing ability of PLGA-Cur NPs. Polymeric NP formulations are potential to be used for hydrophobic drug delivery systems in cancer therapy.
NASA Technical Reports Server (NTRS)
Leyland, Jane Anne
2001-01-01
Given the predicted growth in air transportation, the potential exists for significant market niches for rotary wing subsonic vehicles. Technological advances which optimise rotorcraft aeromechanical behaviour can contribute significantly to both their commercial and military development, acceptance, and sales. Examples of the optimisation of rotorcraft aeromechanical behaviour which are of interest include the minimisation of vibration and/or loads. The reduction of rotorcraft vibration and loads is an important means to extend the useful life of the vehicle and to improve its ride quality. Although vibration reduction can be accomplished by using passive dampers and/or tuned masses, active closed-loop control has the potential to reduce vibration and loads throughout a.wider flight regime whilst requiring less additional weight to the aircraft man that obtained by using passive methads. It is ernphasised that the analysis described herein is applicable to all those rotorcraft aeromechanical behaviour optimisation problems for which the relationship between the harmonic control vector and the measurement vector can be adequately described by a neural-network model.
Enabling aqueous processing for crack-free thick electrodes
Du, Zhijia; Rollag, K. M.; Li, J.; ...
2017-04-14
Aqueous processing of thick electrodes for Li-ion cells promises to increase energy density due to increased volume fraction of active materials, and to reduce cost due to the elimination of the toxic solvents. Here in this paper this work reports the processing and characterization of aqueous processed electrodes with high areal loading and associated full pouch cell performance. Cracking of the electrode coatings becomes a critical issue for aqueous processing of the positive electrode as areal loading increases above 20–25 mg/cm 2 (~4 mAh/cm 2). Crack initiation and propagation, which was observed during drying via optical microscopy, is related tomore » the build-up of capillary pressure during the drying process. The surface tension of water was reduced by the addition of isopropyl alcohol (IPA), which led to improved wettability and decreased capillary pressure during drying. The critical thickness (areal loading) without cracking increased gradually with increasing IPA content. The electrochemical performance was evaluated in pouch cells. Electrodes processed with water/IPA (80/20 wt%) mixture exhibited good structural integrity with good rate performance and cycling performance.« less
NASA Technical Reports Server (NTRS)
Jordan, J.; Shannon, J. R.; Black, B. K.; Paranjape, S. Y.; Barwise, J.; Robertson, D.
1998-01-01
Patients with idiopathic orthostatic intolerance (IOI) exhibit symptoms suggestive of cerebral hypoperfusion and an excessive decrease in cerebral blood flow associated with standing despite sustained systemic blood pressure. In 9 patients (8 women and 1 man aged 22 to 48 years) with IOI, we tested the hypothesis that volume loading (2000 cc normal saline) and alpha-adrenoreceptor agonism improve systemic hemodynamics and cerebral perfusion and that the decrease in cerebral blood flow with head-up tilt (HUT) could be attenuated by alpha-adrenoreceptor blockade with phentolamine. At 5 minutes of HUT, volume loading (-20+/-3.2 bpm) and phenylephrine (-18+/-3.4 bpm) significantly reduced upright heart rate compared with placebo; the effect was diminished at the end of HUT. Phentolamine substantially increased upright heart rate at 5 minutes (20+/-3.7 bpm) and at the end of HUT (14+/-5 bpm). With placebo, mean cerebral blood flow velocity decreased by 33+/-6% at the end of HUT. This decrease in cerebral blood flow with HUT was attenuated by all 3 interventions. We conclude that in patients with IOI, HUT causes a substantial decrease in cerebrovascular blood flow velocity. The decrease in blood flow velocity with HUT can be attenuated with interventions that improve systemic hemodynamics and therefore decrease reflex sympathetic activation. Moreover, alpha-adrenoreceptor blockade also blunts the decrease in cerebral blood flow with HUT but at the price of deteriorated systemic hemodynamics. These observations may suggest that in patients with IOI, excessive sympathetic activity contributes to the paradoxical decrease in cerebral blood flow with upright posture.
Sugiyama, Toshihiro; Price, Joanna S; Lanyon, Lance E
2010-02-01
In order to validate whether bones' functional adaptation to mechanical loading is a local phenomenon, we randomly assigned 21 female C57BL/6 mice at 19 weeks of age to one of three equal numbered groups. All groups were treated with isoflurane anesthesia three times a week for 2 weeks (approximately 7 min/day). During each anaesthetic period, the right tibiae/fibulae in the DYNAMIC+STATIC group were subjected to a peak dynamic load of 11.5 N (40 cycles with 10-s intervals between cycles) superimposed upon a static "pre-load" of 2.0 N. This total load of 13.5 N engendered peak longitudinal strains of approximately 1400 microstrain on the medial surface of the tibia at a middle/proximal site. The right tibiae/fibulae in the STATIC group received the static "pre-load" alone while the NOLOAD group received no artificial loading. After 2 weeks, the animals were sacrificed and both tibiae, fibulae, femora, ulnae and radii analyzed by three-dimensional high-resolution (5 mum) micro-computed tomography (microCT). In the DYNAMIC+STATIC group, the proximal trabecular percent bone volume and cortical bone volume at the proximal and middle levels of the right tibiae as well as the cortical bone volume at the middle level of the right fibulae were markedly greater than the left. In contrast, the left bones in the DYNAMIC+STATIC group showed no differences compared to the left or right bones in the NOLOAD or STATIC group. These microCT data were confirmed by two-dimensional examination of fluorochrome labels in bone sections which showed the predominantly woven nature of the new bone formed in the loaded bones. We conclude that the adaptive response in both cortical and trabecular regions of bones subjected to short periods of dynamic loading, even when this response is sufficiently vigorous to stimulate woven bone formation, is confined to the loaded bones and does not involve changes in other bones that are adjacent, contra-lateral or remote to them. (c) 2009 Elsevier Inc. All rights reserved.
Increased Soluble Phosphorus Loads to Lake Erie: Unintended Consequences of Conservation Practices?
Jarvie, Helen P; Johnson, Laura T; Sharpley, Andrew N; Smith, Douglas R; Baker, David B; Bruulsema, Tom W; Confesor, Remegio
2017-01-01
Cumulative daily load time series show that the early 2000s marked a step-change increase in riverine soluble reactive phosphorus (SRP) loads entering the Western Lake Erie Basin from three major tributaries: the Maumee, Sandusky, and Raisin Rivers. These elevated SRP loads have been sustained over the last 12 yr. Empirical regression models were used to estimate the contributions from (i) increased runoff from changing weather and precipitation patterns and (ii) increased SRP delivery (the combined effects of increased source availability and/or increased transport efficiency of labile phosphorus [P] fractions). Approximately 65% of the SRP load increase after 2002 was attributable to increased SRP delivery, with higher runoff volumes accounting for the remaining 35%. Increased SRP delivery occurred concomitantly with declining watershed P budgets. However, within these watersheds, there have been long-term, largescale changes in land management: reduced tillage to minimize erosion and particulate P loss, and increased tile drainage to improve field operations and profitability. These practices can inadvertently increase labile P fractions at the soil surface and transmission of soluble P via subsurface drainage. Our findings suggest that changes in agricultural practices, including some conservation practices designed to reduce erosion and particulate P transport, may have had unintended, cumulative, and converging impacts contributing to the increased SRP loads, reaching a critical threshold around 2002. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
NASA Astrophysics Data System (ADS)
Jeong, Tae-Gyung; Chun, Jinyong; Cho, Byung-Won; Lee, Jinwoo; Kim, Yong-Tae
2017-02-01
The porous carbon matrix is widely recognized to be a promising sulfur reservoir to improve the cycle life by suppressing the polysulfide dissolution in lithium sulfur batteries (LSB). Herein, we synthesized mesocellular carbon foam (MSUF-C) with bimodal mesopore (4 and 30 nm) and large pore volume (1.72 cm2/g) using MSUF silica as a template and employed it as both the sulfur reservoir and the conductive agent in the sulfur cathode. Sulfur was uniformly infiltrated into MSUF-C pores by a chemical solution deposition method (MSUF-C/S CSD) and the amount of sulfur loading was achieved as high as 73% thanks to the large pore volume with the CSD approach. MSUF-C/S CSD showed a high capacity (889 mAh/g after 100 cycles at 0.2 C), an improved rate capability (879 mAh/g at 1C and 420 mAh/g at 2C), and a good capacity retention with a fade rate of 0.16% per cycle over 100 cycles.
Jeong, Tae-Gyung; Chun, Jinyong; Cho, Byung-Won; Lee, Jinwoo; Kim, Yong-Tae
2017-01-01
The porous carbon matrix is widely recognized to be a promising sulfur reservoir to improve the cycle life by suppressing the polysulfide dissolution in lithium sulfur batteries (LSB). Herein, we synthesized mesocellular carbon foam (MSUF-C) with bimodal mesopore (4 and 30 nm) and large pore volume (1.72 cm2/g) using MSUF silica as a template and employed it as both the sulfur reservoir and the conductive agent in the sulfur cathode. Sulfur was uniformly infiltrated into MSUF-C pores by a chemical solution deposition method (MSUF-C/S CSD) and the amount of sulfur loading was achieved as high as 73% thanks to the large pore volume with the CSD approach. MSUF-C/S CSD showed a high capacity (889 mAh/g after 100 cycles at 0.2 C), an improved rate capability (879 mAh/g at 1C and 420 mAh/g at 2C), and a good capacity retention with a fade rate of 0.16% per cycle over 100 cycles. PMID:28165041
NASA Astrophysics Data System (ADS)
He, Nana; Zhang, Xiaolong; Zhao, Juanjuan; Zhao, Huilan; Qiang, Yan
2017-07-01
While the popular thin layer scanning technology of spiral CT has helped to improve diagnoses of lung diseases, the large volumes of scanning images produced by the technology also dramatically increase the load of physicians in lesion detection. Computer-aided diagnosis techniques like lesions segmentation in thin CT sequences have been developed to address this issue, but it remains a challenge to achieve high segmentation efficiency and accuracy without much involvement of human manual intervention. In this paper, we present our research on automated segmentation of lung parenchyma with an improved geodesic active contour model that is geodesic active contour model based on similarity (GACBS). Combining spectral clustering algorithm based on Nystrom (SCN) with GACBS, this algorithm first extracts key image slices, then uses these slices to generate an initial contour of pulmonary parenchyma of un-segmented slices with an interpolation algorithm, and finally segments lung parenchyma of un-segmented slices. Experimental results show that the segmentation results generated by our method are close to what manual segmentation can produce, with an average volume overlap ratio of 91.48%.
Topology optimization of 3D shell structures with porous infill
NASA Astrophysics Data System (ADS)
Clausen, Anders; Andreassen, Erik; Sigmund, Ole
2017-08-01
This paper presents a 3D topology optimization approach for designing shell structures with a porous or void interior. It is shown that the resulting structures are significantly more robust towards load perturbations than completely solid structures optimized under the same conditions. The study indicates that the potential benefit of using porous structures is higher for lower total volume fractions. Compared to earlier work dealing with 2D topology optimization, we found several new effects in 3D problems. Most notably, the opportunity for designing closed shells significantly improves the performance of porous structures due to the sandwich effect. Furthermore, the paper introduces improved filter boundary conditions to ensure a completely uniform coating thickness at the design domain boundary.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, C.F.; Taylor, T. Jr; Kallin, R.L.
A major area for improving the efficiency of spark ignition and diesel engines is a reduction of frictional losses. Existing literature on engine friction was used as a basis for estimating possible gains in engine fuel economy which look promising within the constraints of modern practice. The means considered include reduction in oil viscosity, increase in bearing and piston clearances, possible changes in piston and valve gear design, and reduction of pumping losses. Estimates indicate potential fuel consumption improvements of 3 to 4% for Otto-Cycle at wide open throttle, 7 to 9% for Otto-Cycle at road load, 4 to 5%more » for diesel at wide open throttle, and 6% for diesel at road-load. Much larger gains at road load could be obtained by using a stratified charge system which requires no air throttling. A literature search on techniques for measuring engine friction under firing conditions was also performed and various concepts employing Pressure-Volume Indicator Diagrams were assessed. Balanced pressure and direct pressure measurement in concert with instantaneous measurement of piston position provide the most reliable and repeatable assessment of engine efficiency. Pressure measurements in the range of 1/2 to 1% are achievable with digital processing techniques reducing dramatically the time and effort to generate P-V Indicator Diagrams.« less
NASA Technical Reports Server (NTRS)
1973-01-01
This user's manual describes the FORTRAN IV computer program developed to compute the total vertical load, normal concentrated pressure loads, and the center of pressure of typical SRB water impact slapdown pressure distributions specified in the baseline configuration. The program prepares the concentrated pressure load information in punched card format suitable for input to the STAGS computer program. In addition, the program prepares for STAGS input the inertia reacting loads to the slapdown pressure distributions.
Expert Systems on Multiprocessor Architectures. Volume 3. Technical Reports
1991-06-01
choice of load balancing vs. load sharing 1141. While load balancing strives to keep all sites equally loaded, load sharing merely tries to prevent ...unnecessary idleness. Loo. balancing is appropriate to object- oriented real- time systems because * real-time systems ne ,l to prevent long waits for...oetavir ConClass siy51cr Iz a n ubjeU rephitation ’-enare ir order wo prevent a partic=Lar abiec:;ram heing (ntrlu ~lel Ar iic]en:f etautaan ire chanw
Improved flaw detection and characterization with difference thermography
NASA Astrophysics Data System (ADS)
Winfree, William P.; Zalameda, Joseph N.; Howell, Patricia A.
2011-05-01
Flaw detection and characterization with thermographic techniques in graphite polymer composites is often limited by localized variations in the thermographic response. Variations in properties such as acceptable porosity, variations in fiber volume content and surface polymer thickness result in variations in the thermal response that in general cause significant variations in the initial thermal response. These variations result in a noise floor that increases the difficulty of detecting and characterizing deeper flaws. The paper investigates comparing thermographic responses taken before and after a change in state in a composite to improve the detection of subsurface flaws. A method is presented for registration of the responses before finding the difference. A significant improvement in the detectability is achieved by comparing the differences in response. Examples of changes in state due to application of a load and impact are presented.
Improved Flaw Detection and Characterization with Difference Thermography
NASA Technical Reports Server (NTRS)
Winfree, William P.; Zalameda, Joseph N.; Howell, Patricia A.
2011-01-01
Flaw detection and characterization with thermographic techniques in graphite polymer composites is often limited by localized variations in the thermographic response. Variations in properties such as acceptable porosity, variations in fiber volume content and surface polymer thickness result in variations in the thermal response that in general cause significant variations in the initial thermal response. These variations result in a noise floor that increases the difficulty of detecting and characterizing deeper flaws. The paper investigates comparing thermographic responses taken before and after a change in state in a composite to improve the detection of subsurface flaws. A method is presented for registration of the responses before finding the difference. A significant improvement in the detectability is achieved by comparing the differences in response. Examples of changes in state due to application of a load and impact are presented.
Urinary free cortisol and cortisone excretion in healthy individuals: influence of water loading.
Fenske, Martin
2006-11-01
The influence of water loading on urinary excretion of free cortisol and cortisone was investigated in healthy men. The results were as follows: water loading tests (intake of 0.25-1.5 L) in a single individual showed that a water load of 1.5 L reliably increased the excretion of urine, free cortisol and cortisone (p < 0.01). Regression analyses gave significant correlations of urine volume with free cortisol and free cortisone, and of free cortisol and free cortisone. Corresponding results were obtained when water loading tests were performed in males who ingested 1.5 L of water (n = 8): the excretion of urine, free cortisol and free cortisone were significantly augmented; correlated was urine volume with free cortisol and free cortisone, and free cortisol with free cortisone. In a third set of tests, volunteers collected one 5 h urine (10:00-15:00 h) after the intake of 3 x 0.1 or 0.5 L at 11:00, 12:00 and 14:00 h. Excretion of urine, free cortisol and free cortisone in males of the low water loading group (3 x 0.1 L) was 0.59 mL/min, and 8.2 or 15.0 microg/5 h; corresponding values in individuals ingesting 3 x 0.5 L of water were 1.5 mL/min (p < 0.01), 12.3 microg/5 h (p > 0.05) and 26.3 microg/5 h (p < 0.02). In summary, urinary free cortisol and cortisone excretion in healthy men depends on urine volume, especially during water diuresis. Thus, interpretation of free cortisol and especially of free cortisone excretion is only possible if subjects strictly control their fluid intake and if urine volume is considered an important pre-analytical parameter-otherwise, interpretation of urinary free cortisol results is difficult and of urinary free cortisone data remains tenuous at best.
Improved cardiac filling facilitates the postprandial elevation of stroke volume in Python regius.
Enok, Sanne; Leite, Gabriella S P C; Leite, Cléo A C; Gesser, Hans; Hedrick, Michael S; Wang, Tobias
2016-10-01
To accommodate the pronounced metabolic response to digestion, pythons increase heart rate and elevate stroke volume, where the latter has been ascribed to a massive and fast cardiac hypertrophy. However, numerous recent studies show that heart mass rarely increases, even upon ingestion of large meals, and we therefore explored the possibility that a rise in mean circulatory filling pressure (MCFP) serves to elevate venous pressure and cardiac filling during digestion. To this end, we measured blood flows and pressures in anaesthetized Python regius The anaesthetized snakes exhibited the archetypal tachycardia as well as a rise in both venous pressure and MCFP that fully account for the approximate doubling of stroke volume. There was no rise in blood volume and the elevated MCFP must therefore stem from increased vascular tone, possibly by means of increased sympathetic tone on the veins. Furthermore, although both venous pressure and MCFP increased during volume loading, there was no evidence that postprandial hearts were endowed with an additional capacity to elevate stroke volume. In vitro measurements of force development of paced ventricular strips also failed to reveal signs of increased contractility, but the postprandial hearts had higher activities of cytochrome oxidase and pyruvate kinase, which probably serves to sustain the rise in cardiac work during digestion. © 2016. Published by The Company of Biologists Ltd.
Use of a turbine in a breath-by-breath computer-based respiratory measurement system.
Venkateswaran, R S; Gallagher, R R
1997-01-01
The Computer-Based Respiratory Measurement System (CBRMS) is capable of analyzing individual breaths to monitor the kinetics of oxygen uptake, carbon dioxide production, tidal volumes, pulmonary ventilation, and other respiratory parameters during rest, exercise, and recovery. Respiratory gas volumes are measured by a calibrated turbine transducer while the respiratory gas concentrations are measured by a calibrated, fast-responding medical gas analyzer. To improve accuracy of the results, the inspiratory volumes and gas concentrations are measured and not assumed to be equal to expiratory volumes or ambient concentrations respectively. The respiratory gas volumes and concentration signals are digitized and stored in arrays. The gas volumes are converted to flow signals by software differentiation. These digitized data arrays are stored as files in a personal computer. Time alignment of the flow and gas concentration signals is performed at each breath for maximum accuracy in analysis. For system verification, data were obtained under resting conditions and under constant load exercises at 50 W, 100 W, and 150 W. These workloads were performed by a healthy, male subject on a bicycle ergometer. A strong correlation existed between the CBRMS steady-state results and the standard end-expirate bag collection technique. Thus, there is reason to believe that the CBRMS is capable of calculating respiratory transient responses accurately, a significant contribution to an understanding of total respiratory system function.
NASA Technical Reports Server (NTRS)
Glaab, Patricia C.
2012-01-01
The first phase of this study investigated the amount of time a flight can be delayed or expedited within the Terminal Airspace using only speed changes. The Arrival Capacity Calculator analysis tool was used to predict the time adjustment envelope for standard descent arrivals and then for CDA arrivals. Results ranged from 0.77 to 5.38 minutes. STAR routes were configured for the ACES simulation, and a validation of the ACC results was conducted comparing the maximum predicted time adjustments to those seen in ACES. The final phase investigated full runway-to-runway trajectories using ACES. The radial distance used by the arrival scheduler was incrementally increased from 50 to 150 nautical miles (nmi). The increased Planning Horizon radii allowed the arrival scheduler to arrange, path stretch, and speed-adjust flights to more fully load the arrival stream. The average throughput for the high volume portion of the day increased from 30 aircraft per runway for the 50 nmi radius to 40 aircraft per runway for the 150 nmi radius for a traffic set representative of high volume 2018. The recommended radius for the arrival scheduler s Planning Horizon was found to be 130 nmi, which allowed more than 95% loading of the arrival stream.
Experimental multiphysical characterization of an SMA driven, camber morphing owl wing section
NASA Astrophysics Data System (ADS)
Stroud, Hannah R.; Leal, Pedro B. C.; Hartl, Darren J.
2018-03-01
In the context of aerospace engineering, morphing structures are useful in their ability to change the outer mold line (OML) while improving or maintaining certain aerodynamic performance metrics. Skin-based morphing is of particular interest in that it minimizes installation volume. Shape memory alloys (SMAs) have a high force to volume ratio that makes them a suitable choice for skin-based morphing. Because the thermomechanical properties of SMAs are coupled, strain can be generated via a temperature variation; this phenomenon is used as the actuation method. Therefore, it is necessary to determine the interaction of the system not only with aerodynamic loads, but with thermal loads as well. This paper describes the wind tunnel testing and in situ thermomechanical analysis of an SMA actuated, avian inspired morphing wing. The morphing wing is embedded with two SMA composite actuators and consists of a foam core enveloped in a fiberglass-epoxy composite. As the SMA wire is heated, the actuator contracts, morphing the wing from the original owl OML to a highly cambered, high lift OML. Configuration characteristics are analyzed in situ using simultaneous three dimensional digital image correlation (DIC) and infrared thermography, thereby coupling strain and thermal measurements. This method of testing allows for the nonintrusive, multiphysical data acquisition of each actuator separately and the system as a whole.
Bone Loss from High Repetitive High Force Loading is Prevented by Ibuprofen Treatment
Jain, Nisha X.; Barr-Gillespie, Ann E.; Clark, Brian D.; Kietrys, David M.; Wade, Christine K.; Litvin, Judith; Popoff, Steven N.; Barbe, Mary F.
2014-01-01
We examined roles of loading and inflammation on forearm bones in a rat model of upper extremity overuse. Trabecular structure in distal radius and ulna was examined in three groups of young adult rats: 1) 5% food-restricted that underwent an initial training period of 10 min/day for 5 weeks to learn the repetitive task (TRHF); 2) rats that underwent the same training before performing a high repetition high force task, 2 hours/day for 12 weeks (HRHF); and 3) food-restricted only (FRC). Subsets were treated with oral ibuprofen (IBU). TRHF rats had increased trabecular bone volume and numbers, osteoblasts, and serum osteocalcin, indicative of bone adaptation. HRHF rats had constant muscle pulling forces, showed limited signs of bone adaptation, but many signs of bone resorption, including decreased trabecular bone volume and bone mineral density, increased osteoclasts and bone inflammatory cytokines, and reduced median nerve conduction velocity (15%). HRHF+IBU rats showed no trabecular resorptive changes, no increased osteoclasts or bone inflammatory cytokines, no nerve inflammation, preserved nerve conduction, and increased muscle voluntary pulling forces. Ibuprofen treatment preserved trabecular bone quality by reducing osteoclasts and bone inflammatory cytokines, and improving muscle pulling forces on bones as a result of reduced nerve inflammation. PMID:24583543
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goodson, J.O.
This is the first of three volumes which document the historical development of the first US compressed-air energy storage (CAES) Power-generation facility. Volume 1 is a background report and presents a chronicle of the development of the CAES facility from the early interest in CAES until inception of engineering/construction on August 11, 1988. The 110 MW - 26 hr CAES plant is owned and operated by Alabama Electric Cooperative, Inc. (AEC) of Andalusia, Alabama. The plant is the first CAES plant in the United States and the world's first CAES facility incorporating a recuperator to improve efficiency. The plant suppliesmore » competitively priced peaking power to the AEC owner members. The economics of CAES-produced power is attractive because the energy-intensive air-compression mode is powered by relatively inexpensive base-load power external to the CAES plant. The compressed-air energy is stored underground until needed, and during the power-production mode, the only fuel required is that to heat the compressed air to expander-inlet temperature. The project development for AEC's CAES plant involved much planning and preliminary design work. Specifically, this included load and generation-planning studies, power-supply selections, conceptual designs, project administration, air-storage cavern and turbomachinery specifications and design, contract requirements, environmental and licensing issues, and construction planning.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goodson, J.O.
This is the first of three volumes which document the historical development of the first US compressed-air energy storage (CAES) Power-generation facility. Volume 1 is a background report and presents a chronicle of the development of the CAES facility from the early interest in CAES until inception of engineering/construction on August 11, 1988. The 110 MW - 26 hr CAES plant is owned and operated by Alabama Electric Cooperative, Inc. (AEC) of Andalusia, Alabama. The plant is the first CAES plant in the United States and the world`s first CAES facility incorporating a recuperator to improve efficiency. The plant suppliesmore » competitively priced peaking power to the AEC owner members. The economics of CAES-produced power is attractive because the energy-intensive air-compression mode is powered by relatively inexpensive base-load power external to the CAES plant. The compressed-air energy is stored underground until needed, and during the power-production mode, the only fuel required is that to heat the compressed air to expander-inlet temperature. The project development for AEC`s CAES plant involved much planning and preliminary design work. Specifically, this included load and generation-planning studies, power-supply selections, conceptual designs, project administration, air-storage cavern and turbomachinery specifications and design, contract requirements, environmental and licensing issues, and construction planning.« less
Dental cutting behaviour of mica-based and apatite-based machinable glass-ceramics.
Taira, M; Wakasa, K; Yamaki, M; Matsui, A
1990-09-01
Some recently developed industrial ceramics have excellent machinability properties. The objective of this study was to evaluate the dental cutting behaviour of two machinable glass-ceramics, mica-containing Macor-M and apatite- and diopside-containing Bioram-M, and to compare them with the cutting behaviour of a composite resin typodont tooth enamel and bovine enamel. Weight-load cutting tests were conducted, using a diamond point driven by an air-turbine handpiece, While the transverse load applied on the point was varied, the handpiece speed during cutting and the volume of removal upon cutting were measured. In general, an increase in the applied load caused a decrease in cutting speed and an increase in cutting volume. However, the intensity of this trend was found to differ between four workpieces. Cutting Macor-M resulted in the second-most reduced cutting speed and the maximum cutting volume. Cutting Bioram-M gave the least reduced cutting speed and the minimum cutting volume. It was suggested that two machinable glass-ceramics could be employed as typodont teeth. This study may also contribute to the development of new restorative dental ceramic materials, prepared by machining.
Effects of imbalanced muscle loading on hip joint development and maturation.
Ford, Caleb A; Nowlan, Niamh C; Thomopoulos, Stavros; Killian, Megan L
2017-05-01
The mechanical loading environment influences the development and maturation of joints. In this study, the influence of imbalanced muscular loading on joint development was studied using localized chemical denervation of hip stabilizing muscle groups in neonatal mice. It was hypothesized that imbalanced muscle loading, targeting either gluteal muscles or quadriceps muscles, would lead to bilateral hip joint asymmetry, as measured by acetabular coverage, femoral head volume and bone morphometry, and femoral-acetabular shape. The contralateral hip joints as well as age-matched, uninjected mice were used as controls. Altered bone development was analyzed using micro-computed tomography, histology, and image registration techniques at postnatal days (P) 28, 56, and 120. This study found that unilateral muscle unloading led to reduced acetabular coverage of the femoral head, lower total volume, lower bone volume ratio, and lower mineral density, at all three time points. Histologically, the femoral head was smaller in unloaded hips, with thinner triradiate cartilage at P28 and thinner cortical bone at P120 compared to contralateral hips. Morphological shape changes were evident in unloaded hips at P56. Unloaded hips had lower trabecular thickness and increased trabecular spacing of the femoral head compared to contralateral hips. The present study suggests that decreased muscle loading of the hip leads to altered bone and joint shape and growth during postnatal maturation. Statement of Clinical Significance: Adaptations from altered muscle loading during postnatal growth investigated in this study have implications on developmental hip disorders that result from asymmetric loading, such as patients with limb-length inequality or dysplasia. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1128-1136, 2017. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
High solid loading aqueous base metal/ceramic feedstock for injection molding
NASA Astrophysics Data System (ADS)
Behi, Mohammad
2001-07-01
Increasing volume fraction of metal powder in feedstock provided lower shrinkage. Reduction of the shrinkage results in better dimensional precision. The rheology of the feedstock material plays an important role to allowing larger volume fractions of the metal powder to be incorporated in the feedstock formulations. The viscosity of the feedstock mainly depends on the binder viscosity, powder volume fraction and characteristics of metal powder. Aqueous polysaccharide agar was used as a baseline binder system for this study. The effect of several gel-strengthening additives on 1.5wt% and 2wt% agar gel was evaluated. A new gel-strengthening additive was found to be the most effective among the others. The effect of other additives such as glucose, sucrose and fructose on viscosity of baseline binder and feedstock was investigated. Two new agar based binder compositions were developed. The use of these new binder formulations significantly improved the volume fraction of the metal powder, the stability of the feedstock, and reduced the final shrinkage of the molded articles. Two types of 17-4PH stainless steel metal powders, one gas atomized and, the other water atomized, were used for this research.
Woods, Paul F.
1982-01-01
Limnological data collected at Lake Koocanusa were used to investigate the relationship of nutrient loadings, primary productivity, and trophic state of the reservoir during 1972-80. The reservoir, on the Kootenai River, was impounded by Libby Dam on March 21, 1972. Manipulation of the 7.16-cubic-kilometer reservoir for flood control, its primary function, created large fluctuations in reservoir volume and produced annual lake-filling times that ranged from 0.14 to 0.66 year. Loadings of nitrogen and phosphorus prior to and following impoundment of Lake Koocanusa were found to be large enough to predict eutrophic conditions. Beginning in 1976, total phosphorus loadings, but not total nitrogen loadings, were substantially reduced following improvements in waste-water treatment at a fertilizer plant located upstream from the reservoir. The closure of Libby Dam substantially reduced loadings of nitrogen and phosphorus downstream from Lake Koocanusa. On the average, the reservoir retained 63 percent of its influent loading of total phosphorus and 25 percent of its influent loading of total nitrogen. Daily areal and volumetric primary productivity varied widely in each year at four sampled limnological stations. During the 9 years studied, daily areal primary productivity, in milligrams of carbon fixed per square meter, ranged from 0.4 to 420.0; the mean of the 313 sampled days was 128.5. Annual areal primary productivity ranged from 23.2 to 38.5 grams of carbon fixed per square meter and thereby categorized Lake Koocanusa as oligotrophic. The relationship of annual areal primary productivity and 12 selected environmental variables was determined by multiple regression analysis. One of the models that was derived used two variables-annual euphotic zone depth and annual areal phosphorus loading-and accounted for 62.0 percent of the variation in annual areal primary productivity. The distribution of chlorophyll a within the water column indicated that, on the average, more than one-half of the phytoplankton in the reservoir was beneath the euphotic zone. These results support the hypothesis that the reservoir's weak thermal structure had allowed circulation of phytoplankton out of the euphotic zone. The trophic state of Lake Koocanusa was categorized as eutrophic when based on the relationship of the nutrient loadings and the reservoir's ratio of mean depth to hydraulic-residence time. This result conflicted with the oligotrophic ranking the reservoir received based on its areal primary productivity. The discrepancy in trophic state was attributed mainly to the failure of nutrient loading models to adequately account for physical processes within reservoirs. Part of the nutrient loading that entered Lake Koocanusa was unavailable to phytoplankton because the nutrients were carried beneath the euphotic zone by large volumes of interflow and underflow. Another part of the nutrient loading was adsorbed to suspended sediment and removed from the water column. Thus, phytoplankton primary productivity was controlled not only by nutrients, but also by other limno logical processes.
NASA Astrophysics Data System (ADS)
Meng, Rui; Cheong, Kang Hao; Bao, Wei; Wong, Kelvin Kian Loong; Wang, Lu; Xie, Neng-gang
2018-06-01
This article attempts to evaluate the safety and economic performance of an arch dam under the action of static loads. The geometric description of a crown cantilever section and the horizontal arch ring is presented. A three-objective optimization model of arch dam shape is established based on the arch dam volume, maximum principal tensile stress and total strain energy. The evolutionary game method is then applied to obtain the optimal solution. In the evolutionary game technique, a novel and more efficient exploration method of the game players' strategy space, named the 'sorting partition method under the threshold limit', is presented, with the game profit functions constructed according to both competitive and cooperative behaviour. By way of example, three optimization goals have all shown improvements over the initial solutions. In particular, the evolutionary game method has potentially faster convergence. This demonstrates the preliminary proof of principle of the evolutionary game method.
Image processing system for the measurement of timber truck loads
NASA Astrophysics Data System (ADS)
Carvalho, Fernando D.; Correia, Bento A. B.; Davies, Roger; Rodrigues, Fernando C.; Freitas, Jose C. A.
1993-01-01
The paper industry uses wood as its raw material. To know the quantity of wood in the pile of sawn tree trunks, every truck load entering the plant is measured to determine its volume. The objective of this procedure is to know the solid volume of wood stocked in the plant. Weighing the tree trunks has its own problems, due to their high capacity for absorbing water. Image processing techniques were used to evaluate the volume of a truck load of logs of wood. The system is based on a PC equipped with an image processing board using data flow processors. Three cameras allow image acquisition of the sides and rear of the truck. The lateral images contain information about the sectional area of the logs, and the rear image contains information about the length of the logs. The machine vision system and the implemented algorithms are described. The results being obtained with the industrial prototype that is now installed in a paper mill are also presented.
NASA Technical Reports Server (NTRS)
Dewberry, B.
2000-01-01
Electrical impedance spectrometry involves measurement of the complex resistance of a load at multiple frequencies. With this information in the form of impedance magnitude and phase, or resistance and reactance, basic structure or function of the load can be estimated. The "load" targeted for measurement and estimation in this study consisted of the water-bearing tissues of the human calf. It was proposed and verified that by measuring the electrical impedance of the human calf and fitting this data to a model of fluid compartments, the lumped-model volume of intracellular and extracellular spaces could be estimated, By performing this estimation over time, the volume dynamics during application of stimuli which affect the direction of gravity can be viewed. The resulting data can form a basis for further modeling and verification of cardiovascular and compartmental modeling of fluid reactions to microgravity as well as countermeasures to the headward shift of fluid during head-down tilt or spaceflight.
Traffic load spectra development for the 2002 AASHTO pavement design guide
DOT National Transportation Integrated Search
2004-12-30
Accurate knowledge of traffic volumes and loading is essential to structural pavement design and performance. Underestimation of design traffic can result in premature pavement failures and excessive rehabilitation costs. Overestimation can result in...
NASA Astrophysics Data System (ADS)
Benage, M. C.; Dufek, J.; Mothes, P. A.
2016-07-01
The entrainment of air into pyroclastic density currents (PDCs) impacts the dynamics and thermal history of these highly mobile currents. However, direct measurement of entrainment in PDCs is hampered due to hazardous conditions and opaqueness of these flows. We combine three-dimensional multiphase Eulerian-Eulerian-Lagrangian calculations with proxies of thermal conditions preserved in deposits to quantify air entrainment in PDCs at Tungurahua volcano, Ecuador. We conclude that small-volume PDCs develop a particle concentration gradient that results in disparate thermal characteristics for the concentrated bed load (>600 to ~800 K) and the overlying dilute suspended load (~300-600 K). The dilute suspended load has effective entrainment coefficients 2-3 times larger than the bed load. This investigation reveals a dichotomy in entrainment and thermal history between two regions in the current and provides a mechanism to interpret the depositional thermal characteristics of small-volume but frequently occurring PDCs.
Abdomino-phrenic dyssynergia in patients with abdominal bloating and distension.
Villoria, Albert; Azpiroz, Fernando; Burri, Emanuel; Cisternas, Daniel; Soldevilla, Alfredo; Malagelada, Juan-R
2011-05-01
The abdomen normally accommodates intra-abdominal volume increments. Patients complaining of abdominal distension exhibit abnormal accommodation of colonic gas loads (defective contraction and excessive protrusion of the anterior wall). However, abdominal imaging demonstrated diaphragmatic descent during spontaneous episodes of bloating in patients with functional gut disorders. We aimed to establish the role of the diaphragm in abdominal distension. In 20 patients complaining of abdominal bloating and 15 healthy subjects, we increased the volume of the abdominal cavity with a colonic gas load, while measuring abdominal girth and electromyographic activity of the anterior abdominal muscles and of the diaphragm. In healthy subjects, the colonic gas load increased girth, relaxed the diaphragm, and increased anterior wall tone. With the same gas load, patients developed significantly more abdominal distension; this was associated with paradoxical contraction of the diaphragm and relaxation of the internal oblique muscle. In this experimental provocation model, abnormal accommodation of the diaphragm is involved in abdominal distension.
Assessing water quality of the Chesapeake Bay by the impact of sea level rise and warming
NASA Astrophysics Data System (ADS)
Wang, P.; Linker, L.; Wang, H.; Bhatt, G.; Yactayo, G.; Hinson, K.; Tian, R.
2017-08-01
The influence of sea level rise and warming on circulation and water quality of the Chesapeake Bay under projected climate conditions in 2050 were estimated by computer simulation. Four estuarine circulation scenarios in the estuary were run using the same watershed load in 1991-2000 period. They are, 1) the Base Scenario, which represents the current climate condition, 2) a Sea Level Rise Scenario, 3) a Warming Scenario, and 4) a combined Sea Level Rise and Warming Scenario. With a 1.6-1.9°C increase in monthly air temperatures in the Warming Scenario, water temperature in the Bay is estimated to increase by 0.8-1°C. Summer average anoxic volume is estimated to increase 1.4 percent compared to the Base Scenario, because of an increase in algal blooms in the spring and summer, promotion of oxygen consumptive processes, and an increase of stratification. However, a 0.5-meter Sea Level Rise Scenario results in a 12 percent reduction of anoxic volume. This is mainly due to increased estuarine circulation that promotes oxygen-rich sea water intrusion in lower layers. The combined Sea Level Rise and Warming Scenario results in a 10.8 percent reduction of anoxic volume. Global warming increases precipitation and consequently increases nutrient loads from the watershed by approximately 5-7 percent. A scenario that used a 10 percent increase in watershed loads and current estuarine circulation patterns yielded a 19 percent increase in summer anoxic volume, while a scenario that used a 10 percent increase in watershed loads and modified estuarine circulation patterns by the aforementioned sea level rise and warming yielded a 6 percent increase in summer anoxic volume. Impacts on phytoplankton, sediments, and water clarity were also analysed.
Regier, Penny J; Smeak, Daniel D; Coleman, Kristin; McGilvray, Kirk C
2015-08-01
To compare volumes of square knots and Aberdeen knots in vitro and evaluate security of these knot types when used as buried terminal knots for continuous intradermal wound closures in canine cadavers. Experimental study. 24 surgically closed, full-thickness, 4-cm, epidermal wounds in 4 canine cadavers and 80 knots tied in vitro. Continuous intradermal closures were performed with 4-0 polyglyconate and completed with a buried knot technique. Surgeon (intern or experienced surgeon) and termination knot type (4-throw square knot or 2 + 1 Aberdeen knot; 12 each) were randomly assigned. Closed wounds were excised, and a servohydraulic machine applied tensile load perpendicular to the long axis of the suture line. A load-displacement curve was generated for each sample; maximum load, displacement, stiffness, and mode of construct failure were recorded. Volumes of 2 + 1 Aberdeen (n = 40) and 4-throw square knots (40) tied on a suture board were measured on the basis of a cylindrical model. Aberdeen knots had a mean smaller volume (0.00045 mm(3)) than did square knots (0.003838 mm(3)). Maximum load and displacement did not differ between construct types. Mean stiffness of Aberdeen knot constructs was greater than that of square knots. The 2 + 1 Aberdeen knot had a smaller volume than the 4-throw square knot and was as secure. Although both knots may be reliably used in a clinical setting as the termination knot at the end of a continuous intradermal line, the authors advocate use of the Aberdeen terminal knot on the basis of ease of burying the smaller knot.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daily, Michael D.; Olsen, Brett N.; Schlesinger, Paul H.
In mammalian cells cholesterol is essential for membrane function, but in excess can be cytototoxic. The cellular response to acute cholesterol loading involves biophysical-based mechanisms that regulate cholesterol levels, through modulation of the “activity” or accessibility of cholesterol to extra-membrane acceptors. Experiments and united atom (UA) simulations show that at high concentrations of cholesterol, lipid bilayers thin significantly and cholesterol availability to external acceptors increases substantially. Such cholesterol activation is critical to its trafficking within cells. Here we aim to reduce the computational cost to enable simulation of large and complex systems involved in cholesterol regulation, such as those includingmore » oxysterols and cholesterol-sensing proteins. To accomplish this, we have modified the published MARTINI coarse-grained force field to improve its predictions of cholesterol-induced changes in both macroscopic and microscopic properties of membranes. Most notably, MARTINI fails to capture both the (macroscopic) area condensation and membrane thickening seen at less than 30% cholesterol and the thinning seen above 40% cholesterol. The thinning at high concentration is critical to cholesterol activation. Microscopic properties of interest include cholesterol-cholesterol radial distribution functions (RDFs), tilt angle, and accessible surface area. First, we develop an “angle-corrected” model wherein we modify the coarse-grained bond angle potentials based on atomistic simulations. This modification significantly improves prediction of macroscopic properties, most notably the thickening/thinning behavior, and also slightly improves microscopic property prediction relative to MARTINI. Second, we add to the angle correction a “volume correction” by also adjusting phospholipid bond lengths to achieve a more accurate volume per molecule. The angle + volume correction substantially further improves the quantitative agreement of the macroscopic properties (area per molecule and thickness) with united atom simulations. However, this improvement also reduces the accuracy of microscopic predictions like radial distribution functions and cholesterol tilt below that of either MARTINI or the angle-corrected model. Thus, while both of our forcefield corrections improve MARTINI, the combined angle and volume correction should be used for problems involving sterol effects on the overall structure of the membrane, while our angle-corrected model should be used in cases where the properties of individual lipid and sterol models are critically important.« less
Bed load transport in gravel-bed rivers
Jeffrey J. Barry
2007-01-01
Bed load transport is a fundamental physical process in alluvial rivers, building and maintaining a channel geometry that reflects both the quantity and timing of water and the volume and caliber of sediment delivered from the watershed. A variety of formulae have been developed to predict bed load transport in gravel-bed rivers, but testing of the equations in natural...
Distributed shared memory for roaming large volumes.
Castanié, Laurent; Mion, Christophe; Cavin, Xavier; Lévy, Bruno
2006-01-01
We present a cluster-based volume rendering system for roaming very large volumes. This system allows to move a gigabyte-sized probe inside a total volume of several tens or hundreds of gigabytes in real-time. While the size of the probe is limited by the total amount of texture memory on the cluster, the size of the total data set has no theoretical limit. The cluster is used as a distributed graphics processing unit that both aggregates graphics power and graphics memory. A hardware-accelerated volume renderer runs in parallel on the cluster nodes and the final image compositing is implemented using a pipelined sort-last rendering algorithm. Meanwhile, volume bricking and volume paging allow efficient data caching. On each rendering node, a distributed hierarchical cache system implements a global software-based distributed shared memory on the cluster. In case of a cache miss, this system first checks page residency on the other cluster nodes instead of directly accessing local disks. Using two Gigabit Ethernet network interfaces per node, we accelerate data fetching by a factor of 4 compared to directly accessing local disks. The system also implements asynchronous disk access and texture loading, which makes it possible to overlap data loading, volume slicing and rendering for optimal volume roaming.
Wear of two pit and fissure sealants in contact with primary teeth
Galo, Rodrigo; Contente, Marta Maria Martins Giamatei; Borsatto, Maria Cristina
2014-01-01
Objectives: Wear simulations may provide an indication of the clinical performance of pit-and-fissure sealants when associated with primary teeth as counterbody, restricting the involved variables. The aim of this study was to evaluate wear of dental materials used as pit-and-fissure sealants in contact with primary teeth. Materials and Methods: A resinous sealant (Fluroshield®) and a resin-modified glass ionomer cement (Vitremer®) were selected in a post-plate design, using as counterbody primary tooth pins (4 × 4 × 2 mm) at 3 and 10 N vertical load, 1 Hz frequency, 900 wear cycles in artificial saliva (n = 15). Attrition coefficient values were obtained and the material and primary tooth volumes were analyzed. Data were analyzed statistically by ANOVA and Duncan's test (P < 0.05). Results: Fluroshield® presented the highest attrition coefficient values for the 3 N but these values decreased significantly for the 10 N load. The means for volume loss (3 mm) of the different samples after the wear test were not statistically different for the materials. The volume loss values for the primary teeth were statistically different and there was an increase in volume loss with the increase of the load applied in the wear tests. Conclusions: Differences were also observed with regard to the surface deformation characteristics. The wear rates of primary tooth enamel vary according to the type of material and the load applied during mastication. PMID:24966777
40 CFR 125.67 - Increase in effluent volume or amount of pollutants discharged.
Code of Federal Regulations, 2014 CFR
2014-07-01
... AGENCY (CONTINUED) WATER PROGRAMS CRITERIA AND STANDARDS FOR THE NATIONAL POLLUTANT DISCHARGE ELIMINATION... projections of effluent volume and mass loadings for any pollutants to which the modification applies in 5...
Strange, Charlie; Herth, Felix J F; Kovitz, Kevin L; McLennan, Geoffrey; Ernst, Armin; Goldin, Jonathan; Noppen, Marc; Criner, Gerard J; Sciurba, Frank C
2007-07-03
Lung volume reduction surgery is effective at improving lung function, quality of life, and mortality in carefully selected individuals with advanced emphysema. Recently, less invasive bronchoscopic approaches have been designed to utilize these principles while avoiding the associated perioperative risks. The Endobronchial Valve for Emphysema PalliatioN Trial (VENT) posits that occlusion of a single pulmonary lobe through bronchoscopically placed Zephyr endobronchial valves will effect significant improvements in lung function and exercise tolerance with an acceptable risk profile in advanced emphysema. The trial design posted on Clinical trials.gov, on August 10, 2005 proposed an enrollment of 270 subjects. Inclusion criteria included: diagnosis of emphysema with forced expiratory volume in one second (FEV1) < 45% of predicted, hyperinflation (total lung capacity measured by body plethysmography > 100%; residual volume > 150% predicted), and heterogeneous emphysema defined using a quantitative chest computed tomography algorithm. Following standardized pulmonary rehabilitation, patients were randomized 2:1 to receive unilateral lobar placement of endobronchial valves plus optimal medical management or optimal medical management alone. The co-primary endpoint was the mean percent change in FEV1 and six minute walk distance at 180 days. Secondary end-points included mean percent change in St. George's Respiratory Questionnaire score and the mean absolute changes in the maximal work load measured by cycle ergometry, dyspnea (mMRC) score, and total oxygen use per day. Per patient response rates in clinically significant improvement/maintenance of FEV1 and six minute walk distance and technical success rates of valve placement were recorded. Apriori response predictors based on quantitative CT and lung physiology were defined. If endobronchial valves improve FEV1 and health status with an acceptable safety profile in advanced emphysema, they would offer a novel intervention for this progressive and debilitating disease. ClinicalTrials.gov: NCT00129584.
NASA Astrophysics Data System (ADS)
Ha, Jeong Won; Seong, Baek Seok; Jeong, Hi Won; Choi, Yoon Suk; Kang, Namhyun
2015-02-01
Inconel X-750 is a Ni-based precipitation-hardened superalloy typically used in springs designed for high-temperature applications such as the hold-down springs in nuclear power plants. γ‧ is a major precipitate in X-750 alloys which affects the strength, creep resistance, and stress relaxation properties of the spring. In this study, a solution-treated X-750 wire coiled into a spring was used that was aged at various temperatures and submitted to stress relaxation tests with and without loading. Small angle neutron scattering was employed to quantify the size and volume fraction of γ‧ phase in the springs as a function of the aging temperature and the application of a load during stress relaxation. The volume fraction of γ‧ precipitates increased in the specimen aged at 732 °C following stress relaxation at 500 °C for 300 h. However, the mean size of the precipitates in the samples was not affected by stress relaxation. The specimen aged at the lower temperature (620 °C) contained a smaller γ‧ volume fraction and gained a smaller fraction of γ‧ during stress relaxation compared with the sample aged at the higher temperature (732 °C). The smaller increase in the γ‧ volume fraction for the sample aged at 620 °C was associated with a larger increase in the M23C6 secondary carbide content during relaxation. The Cr depletion zone around the secondary carbides raises the solubility of γ‧ thereby decreasing the volume fraction of γ‧ precipitates in Inconel X-750. In terms of stress relaxation, a larger increase in the γ‧ volume fraction was measured with loading rather than without. This is probably associated with the dislocation accumulation generated under loading that facilitate the nucleation and growth of heterogeneous γ‧ phase due to enhanced diffusion.
Dynamic Response of Reinforced Soil Systems. Volume 2. Appendices
1993-03-01
by a burster slab. These protection measures are costly, time consuming to construct, and sensitive to multiple strikes. Soil has been used to...load--deflection behavior of the reinforced soi I Dynamic puilout tests were then performed using the same parameters as the static tests. A standard...system was capable cf loading the sample in just a few micro-seconds to simulate a blast load. Dynamic load-deflection behavior was characterized and
Nano-Indentation of Aluminium Reinforced Metallic Glass Composites: A Molecular Dynamics Study
NASA Astrophysics Data System (ADS)
Yadav, D.; Gupta, P.; Yedla, N.
2018-03-01
Molecular dynamics (MD) simulations are performed for nanoindentation on metal (Al)-metallic glass (Cu50Zr50) reinforced composites to investigate the mechanical properties and the effects of volume percentage on behavior of the load-displacement curves. The interaction among Al-Cu-Zr is modelled using a EAM (Embedded Atom Method) potential. Simulation box size of 100 Å (x) × 100 Å (y) × 100 Å (z) is modelled for investigating the properties of the sintered models by altering the volume percentage on the scale of 5%-20%. Nanoindentation is done along y-direction with a spherical diamond indenter at temperature of 300 K with constant indentation speed of 100 m/s. NVT ensemble is used with a timestep of 0.002 ps. Investigations on the effect of volume percentage show that as volume percentage of Metallic Glass (MG) increases, the corresponding Load required to penetrate inside the sample also increases. As a result of this Hardness also increase as volume percentage varies from 5% to 20%.
DOT National Transportation Integrated Search
2015-01-01
This report is the second of three volumes and presents detailed data and test summaries of the experimental portion of the work. In total : 30 large scale reinforced concrete bridge columns are reported in this volume. Recommendations for design and...
Chesapeake Bay hypoxic volume forecasts and results
Scavia, Donald; Evans, Mary Anne
2013-01-01
The 2013 Forecast - Given the average Jan-May 2013 total nitrogen load of 162,028 kg/day, this summer’s hypoxia volume forecast is 6.1 km3, slightly smaller than average size for the period of record and almost the same as 2012. The late July 2013 measured volume was 6.92 km3.
Determining volume sensitive waters in Beaufort County, SC tidal creeks
Andrew Tweel; Denise Sanger; Anne Blair; John Leffler
2016-01-01
Non-point source pollution from stormwater runoff associated with large-scale land use changes threatens the integrity of ecologically and economically valuable estuarine ecosystems. Beaufort County, SC implemented volume-based stormwater regulations on the rationale that if volume discharge is controlled, contaminant loading will also be controlled.
Determination of the critical micelle concentration in simulations of surfactant systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santos, Andrew P.; Panagiotopoulos, Athanassios Z., E-mail: azp@princeton.edu
Alternative methods for determining the critical micelle concentration (cmc) are investigated using canonical and grand canonical Monte Carlo simulations of a lattice surfactant model. A common measure of the cmc is the “free” (unassociated) surfactant concentration in the presence of micellar aggregates. Many prior simulations of micellizing systems have observed a decrease in the free surfactant concentration with overall surfactant loading for both ionic and nonionic surfactants, contrary to theoretical expectations from mass-action models of aggregation. In the present study, we investigate a simple lattice nonionic surfactant model in implicit solvent, for which highly reproducible simulations are possible in bothmore » the canonical (NVT) and grand canonical (μVT) ensembles. We confirm the previously observed decrease of free surfactant concentration at higher overall loadings and propose an algorithm for the precise calculation of the excluded volume and effective concentration of unassociated surfactant molecules in the accessible volume of the solution. We find that the cmc can be obtained by correcting the free surfactant concentration for volume exclusion effects resulting from the presence of micellar aggregates. We also develop an improved method for determination of the cmc based on the maximum in curvature for the osmotic pressure curve determined from μVT simulations. Excellent agreement in cmc and other micellar properties between NVT and μVT simulations of different system sizes is observed. The methodological developments in this work are broadly applicable to simulations of aggregating systems using any type of surfactant model (atomistic/coarse grained) or solvent description (explicit/implicit)« less
Meng, Fan-Tao; Zhang, Wan-Zhong; Ma, Guang-Hui; Su, Zhi-Guo
2003-08-01
Methoxypoly(ethylene glycol)-b-poly-DL-lactide (PELA) microcapsules containing bovine hemoglobin (bHb) were prepared by a W/O/W double emulsion-solvent diffusion process. bHb solution was used as the internal aqueous phase, PELA/organic solvent as the oil phase, and polyvinyl alcohol (PVA) solution as the external aqueous phase. This W/O/W double emulsion was added into a large volume of water (solidification solution) to allow organic solvent to diffuse into water. The optimum preparative condition for PELA microcapsules loaded with bovine hemoglobin was investigated. It was found that homogenization rate, type of organic solvent, and volume of the solidification solution influenced the activity of bovine hemoglobin encapsulated. When the homogenization rate was lower than 9000 rpm and ethyl acetate was used as the organic solvent, there was no significant influence on the activity of hemoglobin. High homogenization rate as 12 000 rpm decreased the P50 and Hill coefficient. Increasing the volume of solidification solution had an effect of improving the activity of microencapsulated hemoglobin. The composition of the PELA had the most important influence on the success of encapsulation. Microcapsules fabricated by PELA with MPEG2k block (molecular weight of MPEG block: 2000) achieved a high entrapment efficiency of 90%, better than PL A homopolymer and PELA with MPEG5k blocks. Hemoglobin microcapsules with native loading oxygen activity (P50 = 26.0 mmHg, Hill coefficient = 2.4), mean size of about 10 microm, and high entrapment efficiency (ca. 93%) were obtained at the optimum condition.
ESTIMATING URBAN WET WEATHER POLLUTANT LOADING
This paper presents procedures for estimating pollutant loads emanating from wet-weather flow discharge in urban watersheds. Equations are presented for: annual volume of litter and floatables; the quantity of sand from highway runoff; the quantity of dust-and-dirt accumulation ...
Fang, Baizeng; Kim, Jung Ho; Kim, Minsik; Kim, Minwoo; Yu, Jong-Sung
2009-03-07
Hierarchical nanostructured spherical carbon with hollow macroporous core in combination with mesoporous shell has been explored to support Pt cathode catalyst with high metal loading in proton exchange membrane fuel cell (PEMFC). The hollow core-mesoporous shell carbon (HCMSC) has unique structural characteristics such as large specific surface area and mesoporous volume, ensuring uniform dispersion of the supported high loading (60 wt%) Pt nanoparticles with small particle size, and well-developed three-dimensionally interconnected hierarchical porosity network, facilitating fast mass transport. The HCMSC-supported Pt(60 wt%) cathode catalyst has demonstrated markedly enhanced catalytic activity toward oxygen reduction and greatly improved PEMFC polarization performance compared with carbon black Vulcan XC-72 (VC)-supported ones. Furthermore, the HCMSC-supported Pt(40 wt%) or Pt(60 wt%) outperforms the HCMSC-supported Pt(20 wt%) even at a low catalyst loading of 0.2 mg Pt cm(-2) in the cathode, which is completely different from the VC-supported Pt catalysts. The capability of supporting high loading Pt is supposed to accelerate the commercialization of PEMFC due to the anticipated significant reduction in the amount of catalyst support required, diffusion layer thickness and fabricating cost of the supported Pt catalyst electrode.
Huang, Yan; Van Dessel, Jeroen; Liang, Xin; Depypere, Maarten; Zhong, Weijian; Ma, Guowu; Lambrichts, Ivo; Maes, Frederik; Jacobs, Reinhilde
2014-12-01
To develop a method for characterizing trabecular bone microarchitecture using cone beam computed tomography (CBCT) and to evaluate trabecular bone changes after rehabilitation using immediate versus delayed implant protocols. Six mongrel dogs randomly received 27 titanium implants in the maxillary incisor or mandibular premolar areas, following one of four protocols: (1) normal extraction socket healing; (2) immediate implant placement and immediate loading; (3) delayed implant placement and delayed loading; (4) delayed implant placement and immediate loading. The animals were euthanized at 8 weeks, and block biopsies were scanned using high resolution CBCT. Standard bone structural variables were assessed in coronal, middle, and apical levels. Coronal and middle regions had more compact, more platelike, and thicker trabeculae. Protocols (2), (3), and (4) had significantly higher values (p < 0.001) than protocol (1) for bone surface density, bone surface volume ratio, and connectivity density, while significantly lower values (p < 0.001) were found for trabecular separation and fractal dimension. However, protocols (2), (3), and (4) did not show significantly different bone remodeling. Compared with normal extraction healing, the implant protocols have an improved bone structural integration. Results do not suggest a different bone remodeling pattern when a delayed versus an immediate implant protocol is used. © 2013 Wiley Periodicals, Inc.
Kobes, Joseph E; Daryaei, Iman; Howison, Christine M; Bontrager, Jordan G; Sirianni, Rachael W; Meuillet, Emmanuelle J; Pagel, Mark D
2016-09-01
This research study sought to improve the treatment of pancreatic cancer by improving the drug delivery of a promising AKT/PDK1 inhibitor, PHT-427, in poly(lactic-co-glycolic) acid (PLGA) nanoparticles. PHT-427 was encapsulated in single-emulsion and double-emulsion PLGA nanoparticles (SE-PLGA-427 and DE-PLGA-427). The drug release rate was evaluated to assess the effect of the second PLGA layer of DE-PLGA-427. Ex vivo cryo-imaging and drug extraction from ex vivo organs was used to assess the whole-body biodistribution in an orthotopic model of MIA PaCa-2 pancreatic cancer. Anatomical magnetic resonance imaging (MRI) was used to noninvasively assess the effects of 4 weeks of nanoparticle drug treatment on tumor size, and diffusion-weighted MRI longitudinally assessed changes in tumor cellularity. DE-PLGA-427 showed delayed drug release and longer drug retention in the pancreas relative to SE-PLGA-427. Diffusion-weighted MRI indicated a consistent decrease in cellularity during drug treatment with both types of drug-loaded nanoparticles. Both SE- and DE-PLGA-427 showed a 6-fold and 4-fold reduction in tumor volume relative to untreated tumors and an elimination of primary pancreatic tumor in 68% of the mice. These results indicated that the PLGA nanoparticles improved drug delivery of PHT-427 to pancreatic tumors, which improved the treatment of MIA PaCa-2 pancreatic cancer.
Kobes, Joseph E.; Daryaei, Iman; Howison, Christine M.; Bontrager, Jordan G.; Sirianni, Rachael W.; Meuillet, Emmanuelle J.; Pagel, Mark D.
2015-01-01
Objectives This research study sought to improve the treatment of pancreatic cancer by improving the drug delivery of a promising AKT/PDK1 inhibitor, PHT-427, in poly(lactic-co-glycolic) acid (PLGA) nanoparticles. Methods PHT-427 was encapsulated in single-emulsion and double-emulsion PLGA nanoparticles (SE- and DE-PLGA-427). The drug release rate was evaluated to assess the effect of the second PLGA layer of DE-PLGA-427. Ex vivo cryo-imaging and drug extraction from ex vivo organs was used to assess the whole body biodistribution in an orthotopic model of MiaPaCa-2 pancreatic cancer. Anatomical MRI was used to noninvasively assess the effects of four weeks of nanoparticle-drug treatment on tumor size, and diffusion-weighted MRI longitudinally assessed changes in tumor cellularity. Results DE-PLGA-427 showed delayed drug release and longer drug retention in the pancreas relative to SE-PLGA-427. Diffusion-weighted MRI indicated a consistent decrease in cellularity during drug treatment with both types of drug-loaded nanoparticles. Both SE- and DE-PLGA-427 showed a 6-fold and 4-fold reduction in tumor volume relative to untreated tumors, and an elimination of primary pancreatic tumor in 68% of the mice. Conclusions These results indicated that the PLGA nanoparticles improved drug delivery of PHT-427 to pancreatic tumors, which improved the treatment of Mia PaCa-2 pancreatic cancer. PMID:26918875
Jamema, Swamidas V; Kirisits, Christian; Mahantshetty, Umesh; Trnkova, Petra; Deshpande, Deepak D; Shrivastava, Shyam K; Pötter, Richard
2010-12-01
Comparison of inverse planning with the standard clinical plan and with the manually optimized plan based on dose-volume parameters and loading patterns. Twenty-eight patients who underwent MRI based HDR brachytherapy for cervix cancer were selected for this study. Three plans were calculated for each patient: (1) standard loading, (2) manual optimized, and (3) inverse optimized. Dosimetric outcomes from these plans were compared based on dose-volume parameters. The ratio of Total Reference Air Kerma of ovoid to tandem (TRAK(O/T)) was used to compare the loading patterns. The volume of HR CTV ranged from 9-68 cc with a mean of 41(±16.2) cc. Mean V100 for standard, manual optimized and inverse plans was found to be not significant (p=0.35, 0.38, 0.4). Dose to bladder (7.8±1.6 Gy) and sigmoid (5.6±1.4 Gy) was high for standard plans; Manual optimization reduced the dose to bladder (7.1±1.7 Gy p=0.006) and sigmoid (4.5±1.0 Gy p=0.005) without compromising the HR CTV coverage. The inverse plan resulted in a significant reduction to bladder dose (6.5±1.4 Gy, p=0.002). TRAK was found to be 0.49(±0.02), 0.44(±0.04) and 0.40(±0.04) cGy m(-2) for the standard loading, manual optimized and inverse plans, respectively. It was observed that TRAK(O/T) was 0.82(±0.05), 1.7(±1.04) and 1.41(±0.93) for standard loading, manual optimized and inverse plans, respectively, while this ratio was 1 for the traditional loading pattern. Inverse planning offers good sparing of critical structures without compromising the target coverage. The average loading pattern of the whole patient cohort deviates from the standard Fletcher loading pattern. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Wohlen, R. L.
1976-01-01
Techniques are presented for the solution of structural dynamic systems on an electronic digital computer using FORMA (FORTRAN Matrix Analysis). FORMA is a library of subroutines coded in FORTRAN 4 for the efficient solution of structural dynamics problems. These subroutines are in the form of building blocks that can be put together to solve a large variety of structural dynamics problems. The obvious advantage of the building block approach is that programming and checkout time are limited to that required for putting the blocks together in the proper order.
Strategy for Alternative Occupant Volume Testing
DOT National Transportation Integrated Search
2009-10-20
This paper describes plans for a series of quasi-static : compression tests of rail passenger equipment. These tests are : designed to evaluate the strength of the occupant volume under : static loading conditions. The research plan includes a detail...
NASA Technical Reports Server (NTRS)
Anderson, L. R.; Miller, R. D.
1979-01-01
The LOADS computer program L218 which calculates dynamic load coefficient matrices utilizing the force summation method is described. The load equations are derived for a flight vehicle in straight and level flight and excited by gusts and/or control motions. In addition, sensor equations are calculated for use with an active control system. The load coefficient matrices are calculated for the following types of loads: (1) translational and rotational accelerations, velocities, and displacements; (2) panel aerodynamic forces; (3) net panel forces; and (4) shears, bending moments, and torsions.
Experimental Study of Damage Evolution in Circular Stirrup-Confined Concrete
Li, Zuohua; Peng, Zhihan; Teng, Jun; Wang, Ying
2016-01-01
This paper presents an experimental study on circular stirrup-confined concrete specimens under uniaxial and monotonic load. The effects of stirrup volume ratio, stirrup yield strength and concrete strength on damage evolution of stirrup-confined concrete were investigated. The experimental results showed that the strength and ductility of concrete are improved by appropriate arrangement of the stirrup confinement. Firstly, the concrete damage evolution can be relatively restrained with the increase of the stirrup volume ratio. Secondly, higher stirrup yield strength usually causes larger confining pressures and slower concrete damage evolution. In contrast, higher concrete strength leads to higher brittleness, which accelerates the concrete damage evolution. A plastic strain expression is obtained through curve fitting, and a damage evolution equation for circular stirrup-confined concrete is proposed by introducing a confinement factor (C) based on the experimental data. The comparison results demonstrate that the proposed damage evolution model can accurately describe the experimental results. PMID:28773402
Experimental Study of Damage Evolution in Circular Stirrup-Confined Concrete.
Li, Zuohua; Peng, Zhihan; Teng, Jun; Wang, Ying
2016-04-08
This paper presents an experimental study on circular stirrup-confined concrete specimens under uniaxial and monotonic load. The effects of stirrup volume ratio, stirrup yield strength and concrete strength on damage evolution of stirrup-confined concrete were investigated. The experimental results showed that the strength and ductility of concrete are improved by appropriate arrangement of the stirrup confinement. Firstly, the concrete damage evolution can be relatively restrained with the increase of the stirrup volume ratio. Secondly, higher stirrup yield strength usually causes larger confining pressures and slower concrete damage evolution. In contrast, higher concrete strength leads to higher brittleness, which accelerates the concrete damage evolution. A plastic strain expression is obtained through curve fitting, and a damage evolution equation for circular stirrup-confined concrete is proposed by introducing a confinement factor ( C ) based on the experimental data. The comparison results demonstrate that the proposed damage evolution model can accurately describe the experimental results.
Parts per Million Powder X-ray Diffraction
Newman, Justin A.; Schmitt, Paul D.; Toth, Scott J.; ...
2015-10-14
Here in this paper we demonstrate the use of second harmonic generation (SHG) microscopy-guided synchrotron powder X-ray diffraction (PXRD) for the detection of trace crystalline active pharmaceutical ingredients in a common polymer blend. The combined instrument is capable of detecting 100 ppm crystalline ritonavir in an amorphous hydroxypropyl methylcellulose matrix with a high signal-to-noise ratio (>5000). The high spatial resolution afforded by SHG microscopy allows for the use of a minibeam collimator to reduce the total volume of material probed by synchrotron PXRD. The reduction in probed volume results in reduced background from amorphous material. The ability to detect lowmore » crystalline loading has the potential to improve measurements in the formulation pipeline for pharmaceutical solid dispersions, for which even trace quantities of crystalline active ingredients can negatively impact the stability and bioavailability of the final drug product.« less
Encyclopedia of Explosives and Related Items. Volume 8
1978-01-01
up", becoming hard and making Alcohol(b), % 20 ± 2 19 ± 2 a reliable joint . Shellac is used to coat cavities Shellac(c) % 18±2 - to be loaded with...P 380 Effect of Loading Pressure on Initiator Sensitivity ...................... P 382 Stab Primer Data...Injection Loading Operation Schematic .............................. P 64 Continuous Explosive Column for Use with Zuni Weapon ................... P 64
Roger D. Ottmar; Robert E. Vihnanek; Clinton S. Wright; Geoffrey B. Seymour
2007-01-01
A series of single and stereo photographs display a range of natural conditions and fuel loadings in evergreen and deciduous oak/juniper woodland and savannah ecosystems in southern Arizona and New Mexico. This group of photos includes inventory data summarizing vegetation composition, structure, and loading; woody material loading and density by size class; forest...
NASA Technical Reports Server (NTRS)
Rackiewicz, J. J.
1977-01-01
Small scale combined load fatigue tests were conducted on six artificially and six naturally weathered test specimens. The test specimen material was unidirectionally oriented A-S graphite - woven glass scrim epoxy resin laminate.
NASA Astrophysics Data System (ADS)
Burk, Laurel M.; Lee, Yueh Z.; Heathcote, Samuel; Wang, Ko-han; Kim, William Y.; Lu, Jianping; Zhou, Otto
2011-03-01
Current optical imaging techniques can successfully measure tumor load in murine models of lung carcinoma but lack structural detail. We demonstrate that respiratory gated micro-CT imaging of such models gives information about structure and correlates with tumor load measurements by optical methods. Four mice with multifocal, Kras-induced tumors expressing firefly luciferase were imaged against four controls using both optical imaging and respiratory gated micro-CT. CT images of anesthetized animals were acquired with a custom CNT-based system using 30 ms x-ray pulses during peak inspiration; respiration motion was tracked with a pressure sensor beneath each animal's abdomen. Optical imaging based on the Luc+ signal correlating with tumor load was performed on a Xenogen IVIS Kinetix. Micro-CT images were post-processed using Osirix, measuring lung volume with region growing. Diameters of the largest three tumors were measured. Relationships between tumor size, lung volumes, and optical signal were compared. CT images and optical signals were obtained for all animals at two time points. In all lobes of the Kras+ mice in all images, tumors were visible; the smallest to be readily identified measured approximately 300 microns diameter. CT-derived tumor volumes and optical signals related linearly, with r=0.94 for all animals. When derived for only tumor bearing animals, r=0.3. The trend of each individual animal's optical signal tracked correctly based on the CT volumes. Interestingly, lung volumes also correlated positively with optical imaging data and tumor volume burden, suggesting active remodeling.
Singleton, WG; Collins, AM; Bienemann, AS; Killick-Cole, CL; Haynes, HR; Asby, DJ; Butts, CP; Wyatt, MJ; Barua, NU; Gill, SS
2017-01-01
Background The pan-histone deacetylase inhibitor panobinostat is a potential therapy for malignant glioma, but it is water insoluble and does not cross the blood–brain barrier when administered systemically. In this article, we describe the in vitro and in vivo efficacy of a novel water-soluble nano-micellar formulation of panobinostat designed for administration by convection enhanced delivery (CED). Materials and methods The in vitro efficacy of panobinostat-loaded nano-micelles against rat F98, human U87-MG and M059K glioma cells and against patient-derived glioma stem cells was measured using a cell viability assay. Nano-micelle distribution in rat brain was analyzed following acute CED using rhodamine-labeled nano-micelles, and toxicity was assayed using immunofluorescent microscopy and synaptophysin enzyme-linked immunosorbent assay. We compared the survival of the bioluminescent syngenic F98/Fischer344 rat glioblastoma model treated by acute CED of panobinostat-loaded nano-micelles with that of untreated and vehicle-only-treated controls. Results Nano-micellar panobinostat is cytotoxic to rat and human glioma cells in vitro in a dose-dependent manner following short-time exposure to drug. Fluorescent rhodamine-labelled nano-micelles distribute with a volume of infusion/volume of distribution (Vi/Vd) ratio of four and five respectively after administration by CED. Administration was not associated with any toxicity when compared to controls. CED of panobinostat-loaded nano-micelles was associated with significantly improved survival when compared to controls (n=8 per group; log-rank test, P<0.001). One hundred percent of treated animals survived the 60-day experimental period and had tumour response on post-mortem histological examination. Conclusion CED of nano-micellar panobinostat represents a potential novel therapeutic option for malignant glioma and warrants translation into the clinic. PMID:28260886
Qiu, Jiali; Shen, Zhenyao; Wei, Guoyuan; Wang, Guobo; Xie, Hui; Lv, Guanping
2018-03-01
The assessment of peak flow rate, total runoff volume, and pollutant loads during rainfall process are very important for the watershed management and the ecological restoration of aquatic environment. Real-time measurements of rainfall-runoff and pollutant loads are always the most reliable approach but are difficult to carry out at all desired location in the watersheds considering the large consumption of material and financial resources. An integrated environmental modeling approach for the estimation of flash streamflow that combines the various hydrological and quality processes during rainstorms within the agricultural watersheds is essential to develop targeted management strategies for the endangered drinking water. This study applied the Hydrological Simulation Program-Fortran (HSPF) to simulate the spatial and temporal variation in hydrological processes and pollutant transport processes during rainstorm events in the Miyun Reservoir watershed, a drinking water resource area in Beijing. The model performance indicators ensured the acceptable applicability of the HSPF model to simulate flow and pollutant loads in the studied watershed and to establish a relationship between land use and the parameter values. The proportion of soil and land use was then identified as the influencing factors of the pollution intensities. The results indicated that the flush concentrations were much higher than those observed during normal flow periods and considerably exceeded the limits of Class III Environmental Quality Standards for Surface Water (GB3838-2002) for the secondary protection zones of the drinking water resource in China. Agricultural land and leached cinnamon soils were identified as the key sources of sediment, nutrients, and fecal coliforms. Precipitation volume was identified as a driving factor that determined the amount of runoff and pollutant loads during rainfall processes. These results are useful to improve the streamflow predictions, provide useful information for the identification of highly polluted areas, and aid the development of integrated watershed management system in the drinking water resource area.
Rodríguez-Rosell, David; Torres-Torrelo, Julio; Franco-Márquez, Felipe; González-Suárez, José Manuel; González-Badillo, Juan José
2017-07-01
The purpose of this study was to compare the effects of combined light-load maximal lifting velocity weight training (WT) and plyometric training (PT) with WT alone on strength, jump and sprint performance in semiprofessional soccer players. Experimental, pre-post tests measures. Thirty adult soccer players were randomly assigned into three groups: WT alone (FSG, n=10), WT combined to jump and sprint exercises (COM, n=10) and control group (CG, n=10). WT consisted of full squat with low load (∼45-60% 1RM) and low volume (4-6 repetitions). Training program was performed twice a week for 6 weeks of competitive season in addition to 4 soccer sessions a week. Sprint time in 10 and 20m, jump height (CMJ), estimated one-repetition maximum (1RM est ) and velocity developed against different absolute loads in full squat were measured before and after training period. Both experimental groups showed significant improvements in 1RM est (17.4-13.4%; p<0.001), CMJ (7.1-5.2%; p<0.001), sprint time (3.6-0.7%; p<0.05-0.001) and force-velocity relationships (16.9-6.1%; p<0.05-0.001), whereas no significant gains were found in CG. No significant differences were found between FSG and COM. Despite FSG resulted of greater increases in strength variables than COM, this may not translate into superior improvements in the sport-related performance. In fact, COM showed higher efficacy of transfer of strength gains to sprint ability. Therefore, these findings suggest that a combined WT and PT program could represent a more efficient method for improving activities which involve acceleration, deceleration and jumps compared to WT alone. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
First flush of storm runoff pollution from an urban catchment in China.
Li, Li-Qing; Yin, Cheng-Qing; He, Qing-Ci; Kong, Ling-Li
2007-01-01
Storm runoff pollution process was investigated in an urban catchment with an area of 1.3 km2 in Wuhan City of China. The results indicate that the pollutant concentration peaks preceded the flow peaks in all of 8 monitored storm events. The intervals between pollution peak and flow peak were shorter in the rain events with higher intensity in the initial period than those with lower intensity. The fractions of pollution load transported by the first 30% of runoff volume (FF30) were 52.2%-72.1% for total suspended solids (TSS), 53.0%-65.3% for chemical oxygen demand (COD), 40.4%-50.6% for total nitrogen (TN), and 45.8%-63.2% for total phosphorus (TP), respectively. Runoff pollution was positively related to non-raining days before the rainfall. Intercepting the first 30% of runoff volume can remove 62.4% of TSS load, 59.4% of COD load, 46.8% of TN load, and 54.1% of TP load, respectively, according to all the storm events. It is suggested that controlling the first flush is a critical measure in reduction of urban stormwater pollution.
Aziz, Anne-Laure; Giusiano, Bernard; Joubert, Sven; Duprat, Lauréline; Didic, Mira; Gueriot, Claude; Koric, Lejla; Boucraut, José; Felician, Olivier; Ranjeva, Jean-Philippe; Guedj, Eric; Ceccaldi, Mathieu
2017-06-01
Neuroimaging biomarkers differ between patients with early-onset Alzheimer's disease (EOAD) and late-onset Alzheimer's disease (LOAD). Whether these changes reflect cognitive heterogeneity or differences in disease severity is still unknown. This study aimed at investigating changes in neuroimaging biomarkers, according to the age of onset of the disease, in mild amnestic Alzheimer's disease patients with positive amyloid biomarkers in cerebrospinal fluid. Both patient groups were impaired on tasks assessing verbal and visual recognition memory. EOAD patients showed greater executive and linguistic deficits, while LOAD patients showed greater semantic memory impairment. In EOAD and LOAD, hypometabolism involved the bilateral temporoparietal junction and the posterior cingulate cortex. In EOAD, atrophy was widespread, including frontotemporoparietal areas, whereas it was limited to temporal regions in LOAD. Atrophic volumes were greater in EOAD than in LOAD. Hypometabolic volumes were similar in the 2 groups. Greater extent of atrophy in EOAD, despite similar extent of hypometabolism, could reflect different underlying pathophysiological processes, different glucose-based compensatory mechanisms or distinct level of premorbid atrophic lesions. Copyright © 2017 Elsevier Inc. All rights reserved.
Tiberi, Gianluigi; Fontana, Nunzia; Costagli, Mauro; Stara, Riccardo; Biagi, Laura; Symms, Mark Roger; Monorchio, Agostino; Retico, Alessandra; Cosottini, Mirco; Tosetti, Michela
2015-07-01
Local specific absorption rate (SAR) evaluation in ultra high field (UHF) magnetic resonance (MR) systems is a major concern. In fact, at UHF, radiofrequency (RF) field inhomogeneity generates hot-spots that could cause localized tissue heating. Unfortunately, local SAR measurements are not available in present MR systems; thus, electromagnetic simulations must be performed for RF fields and SAR analysis. In this study, we used three-dimensional full-wave numerical electromagnetic simulations to investigate the dependence of local SAR at 7.0 T with respect to subject size in two different scenarios: surface coil loaded by adult and child calves and quadrature volume coil loaded by adult and child heads. In the surface coil scenario, maximum local SAR decreased with decreasing load size, provided that the RF magnetic fields for the different load sizes were scaled to achieve the same slice average value. On the contrary, in the volume coil scenario, maximum local SAR was up to 15% higher in children than in adults. © 2015 Wiley Periodicals, Inc.
Burd, Nicholas A.; West, Daniel W. D.; Staples, Aaron W.; Atherton, Philip J.; Baker, Jeff M.; Moore, Daniel R.; Holwerda, Andrew M.; Parise, Gianni; Rennie, Michael J.; Baker, Steven K.; Phillips, Stuart M.
2010-01-01
Background We aimed to determine the effect of resistance exercise intensity (% 1 repetition maximum—1RM) and volume on muscle protein synthesis, anabolic signaling, and myogenic gene expression. Methodology/Principal Findings Fifteen men (21±1 years; BMI = 24.1±0.8 kg/m2) performed 4 sets of unilateral leg extension exercise at different exercise loads and/or volumes: 90% of repetition maximum (1RM) until volitional failure (90FAIL), 30% 1RM work-matched to 90%FAIL (30WM), or 30% 1RM performed until volitional failure (30FAIL). Infusion of [ring-13C6] phenylalanine with biopsies was used to measure rates of mixed (MIX), myofibrillar (MYO), and sarcoplasmic (SARC) protein synthesis at rest, and 4 h and 24 h after exercise. Exercise at 30WM induced a significant increase above rest in MIX (121%) and MYO (87%) protein synthesis at 4 h post-exercise and but at 24 h in the MIX only. The increase in the rate of protein synthesis in MIX and MYO at 4 h post-exercise with 90FAIL and 30FAIL was greater than 30WM, with no difference between these conditions; however, MYO remained elevated (199%) above rest at 24 h only in 30FAIL. There was a significant increase in AktSer473 at 24h in all conditions (P = 0.023) and mTORSer2448 phosphorylation at 4 h post-exercise (P = 0.025). Phosporylation of Erk1/2Tyr202/204, p70S6KThr389, and 4E-BP1Thr37/46 increased significantly (P<0.05) only in the 30FAIL condition at 4 h post-exercise, whereas, 4E-BP1Thr37/46 phosphorylation was greater 24 h after exercise than at rest in both 90FAIL (237%) and 30FAIL (312%) conditions. Pax7 mRNA expression increased at 24 h post-exercise (P = 0.02) regardless of condition. The mRNA expression of MyoD and myogenin were consistently elevated in the 30FAIL condition. Conclusions/Significance These results suggest that low-load high volume resistance exercise is more effective in inducing acute muscle anabolism than high-load low volume or work matched resistance exercise modes. PMID:20711498
Wear behavior of pressable lithium disilicate glass ceramic.
Peng, Zhongxiao; Izzat Abdul Rahman, Muhammad; Zhang, Yu; Yin, Ling
2016-07-01
This article reports effects of surface preparation and contact loads on abrasive wear properties of highly aesthetic and high-strength pressable lithium disilicate glass-ceramics (LDGC). Abrasive wear testing was performed using a pin-on-disk device in which LDGC disks prepared with different surface finishes were against alumina pins at different contact loads. Coefficients of friction and wear volumes were measured as functions of initial surface finishes and contact loads. Wear-induced surface morphology changes in both LDGC disks and alumina pins were characterized using three-dimensional laser scanning microscopy, scanning electron microscopy, and energy dispersive X-ray spectroscopy. The results show that initial surface finishes of LDGC specimens and contact loads significantly affected the friction coefficients, wear volumes and wear-induced surface roughness changes of the material. Both wear volumes and friction coefficients of LDGC increased as the load increased while surface roughness effects were complicated. For rough LDGC surfaces, three-body wear was dominant while for fine LDGC surfaces, two-body abrasive wear played a key role. Delamination, plastic deformation, and brittle fracture were observed on worn LDGC surfaces. The adhesion of LDGC matrix materials to alumina pins was also discovered. This research has advanced our understanding of the abrasive wear behavior of LDGC and will provide guidelines for better utilization and preparation of the material for long-term success in dental restorations. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 968-978, 2016. © 2015 Wiley Periodicals, Inc.
The effect of Tricresyl-Phosphate (TCP) as an additive on wear of Iron (Fe)
NASA Technical Reports Server (NTRS)
Ghose, Hiren M.; Ferrante, John; Honecy, Frank C.
1987-01-01
The effect of tricresyl phosphate (TCP) as an antiwear additive in lubricant trimethyol propane triheptanoate (TMPTH) was investigated. The objective was to examine step loading wear by use of surface analysis, wetting, and chemical bonding changes in the lubricant. The investigation consisted of steploading wear studies by a pin or disk tribometer, the effects on wear related to wetting by contact angle and surface tension measurements of various liquid systems, the chemical bonding changes between lubricant and TCP chromatographic analysis, and by determining the reaction between the TCP and metal surfaces through wear scar analysis by Auger emission spectroscopy (AES). The steploading curve for the base fluid alone shows rapid increase of wear rate with load. The steploading curve for the base fluid in presence of 4.25 percent by volume TCP under dry air purge has shown a great reduction of wear rate with all loads studied. It has also been found that the addition of 4.25 percent by volume TCP plus 0.33 percent by volume water to the base lubricant under N2 purge also greatly reduces the wear rate with all loads studied. AES surface analysis reveals a phosphate type wear resistant film, which greatly increases load-bearing capacity, formed on the iron disk. Preliminary chromatographic studies suggest that this film forms either because of ester oxidation or TCP degradation. Wetting studies show direct correlation between the spreading coefficient and the wear rate.
Slave finite elements for nonlinear analysis of engine structures, volume 1
NASA Technical Reports Server (NTRS)
Gellin, S.
1991-01-01
A 336 degrees of freedom slave finite element processing capability to analyze engine structures under severe thermomechanical loading is presented. Description of the theoretical development and demonstration of that element is presented in this volume.
Fartaria, Mário João; OʼBrien, Kieran; Şorega, Alexandra; Bonnier, Guillaume; Roche, Alexis; Falkovskiy, Pavel; Krueger, Gunnar; Kober, Tobias; Bach Cuadra, Meritxell; Granziera, Cristina
2017-05-01
The aim of this study was to study focal cerebellar pathology in early stages of multiple sclerosis (MS) using ultra-high-field magnetization-prepared 2 inversion-contrast rapid gradient-echo (7T MP2RAGE). Twenty early-stage relapsing-remitting MS patients underwent an MP2RAGE acquisition at 7 T magnetic resonance imaging (MRI) (images acquired at 2 different resolutions: 0.58 × 0.58 × 0.58 mm, 7T_0.58, and 0.75 × 0.75 × 0.90 mm, 7T_0.75) and 3 T MRI (1.0 × 1.0 × 1.2 mm, 3T_1.0). Total cerebellar lesion load and volume and mean cerebellar lesion volume were compared across images using a Wilcoxon signed-rank test. Mean T1 relaxation times in lesions and normal-appearing tissue as well as contrast-to-noise ratio (CNR) measurements were also compared using a Wilcoxon signed-rank test. A multivariate analysis was applied to assess the contribution of MRI metrics to clinical performance in MS patients. Both 7T_0.58 and 7T_0.75 MP2RAGE showed significantly higher lesion load compared with 3T_1.0 MP2RAGE (P < 0.001). Plaques that were judged as leukocortical in 7T_0.75 and 3T_1.0 MP2RAGEs were instead identified as WM lesions in 7T_0.58 MP2RAGE. Cortical lesion CNR was significantly higher in MP2RAGEs at 7 T than at 3 T. Total lesion load as well as total and mean lesion volume obtained at both 7 T and 3 T MP2RAGE significantly predicted attention (P < 0.05, adjusted R = 0.5), verbal fluency (P < 0.01, adjusted R = 0.6), and motor performance (P = 0.01, adjusted R = 0.7). This study demonstrates the value of 7 T MP2RAGE to study the cerebellum in early MS patients. 7T_0.58 MP2RAGE provides a more accurate anatomical description of white and gray matter pathology compared with 7T_0.75 and 3T_1.0 MP2RAGE, likely due to the improved spatial resolution, lower partial volume effects, and higher CNR.
Load and resistance factor rating (LRFR) in New York State : volume II.
DOT National Transportation Integrated Search
2011-09-01
This report develops a Load and Resistance Factor Rating (NYS-LRFR) methodology : for New York bridges. The methodology is applicable for the rating of existing : bridges, the posting of under-strength bridges, and checking Permit trucks. The : propo...
Load and resistance factor rating (LRFR) in NYS : volume II final report.
DOT National Transportation Integrated Search
2011-09-01
This report develops a Load and Resistance Factor Rating (NYS-LRFR) methodology for New York bridges. The methodology is applicable for the rating of existing bridges, the posting of under-strength bridges, and checking Permit trucks. The proposed LR...
Load and resistance factor rating (LRFR) in NYS : volume I final report.
DOT National Transportation Integrated Search
2011-09-01
This report develops a Load and Resistance Factor Rating (NYS-LRFR) methodology for New York bridges. The methodology is applicable for the rating of existing bridges, the posting of under-strength bridges, and checking Permit trucks. The proposed LR...
Load and resistance factor rating (LRFR) in New York State : volume I.
DOT National Transportation Integrated Search
2011-09-01
This report develops a Load and Resistance Factor Rating (NYS-LRFR) methodology : for New York bridges. The methodology is applicable for the rating of existing : bridges, the posting of under-strength bridges, and checking Permit trucks. The : propo...
Effect of environmental factors on pavement deterioration : Final report, Volume II of II
DOT National Transportation Integrated Search
1988-11-01
A computerized model for the determination of pavement deterioration responsibilities due to load and non-load related factors was developed. The model is based on predicted pavement performance and the relationship of pavement performance to a quant...
Effect of environmental factors on pavement deterioration : Final report, Volume I of II.
DOT National Transportation Integrated Search
1988-11-01
A computerized model for the determination of pavement deterioration responsibilities due to load and non-load related factors was developed. The model is based on predicted pavement performance and the relationship of pavement performance to a quant...
Curvilinear steel elements in load-bearing structures of high-rise building spatial frames
NASA Astrophysics Data System (ADS)
Ibragimov, Alexander; Danilov, Alexander
2018-03-01
The application of curvilinear elements in load-bearing metal structures of high-rise buildings supposes ensuring of their bearing capacity and serviceability. There may exist a great variety of shapes and orientations of such structural elements. In particular, it may be various flat curves of an open or closed oval profile such as circular or parabolic arch or ellipse. The considered approach implies creating vast internal volumes without loss in the load-bearing capacity of the frame. The basic concept makes possible a wide variety of layout and design solutions. The presence of free internal spaces of large volume in "skyscraper" type buildings contributes to resolving a great number of problems, including those of communicative nature. The calculation results confirm the basic assumptions.
NASA Astrophysics Data System (ADS)
Lee, Hae-Jeong; Soles, Christopher L.; Liu, Da-Wei; Bauer, Barry J.; Lin, Eric K.; Wu, Wen-Li; Gallagher, Michael
2006-09-01
Methylsilsesquioxane (MSQ) based porous low-k dielectric films are characterized by x-ray porosimetry (XRP) to determine their pore size distribution, average density, wall density, and porosity. By varying the porogen content from 1% to 30% by mass, the porosity changes from 12% to 34% by volume, indicating that the base MSQ matrix material contains approximately 10% by volume inherent microporosity. The wall density of this matrix material is measured to be 1.33-1.35g/cm3, independent of porosity. The average pore radii determined from the XRP adsorption isotherms increase from 6to27Å with increased porogen loadings. Small angle neutron scattering measurements confirm these XRP average pore radii for the films with porogen loading higher than 10% by mass.
Stability of astaxanthin-loaded nanostructured lipid carriers in beverage systems.
Tamjidi, Fardin; Shahedi, Mohammad; Varshosaz, Jaleh; Nasirpour, Ali
2018-01-01
Nanostructured lipid carriers (NLCs) offer many potential benefits for incorporating lipophilic molecules into clear to opaque food systems. This study examined the stability of astaxanthin-loaded NLCs (Ax-NLCs) in model (solutions with 0 or 12% sucrose; pH 3, 7), semi-actual (whey) and actual (non-alcoholic beer) beverages during 30-60 days storage at 6 or 20 °C. Ax-NLCs (Z-average size: 94 nm), containing α-tocopherol and EDTA as antioxidants, were stabilised with Tween 80 and lecithin, and mixed with the aforementioned beverages at the volume ratio of 3:97. The presence of sucrose, improved the physical stability of Ax-NLCs in acidic model beverage. No astaxanthin loss and particle size growth were observed for Ax-NLCs-added whey. Carbonation and/or thermal pasteurisation of NLCs-added beer led to a major increase in its particles size and astaxanthin loss. Stability of Ax-NLCs in non-pasteurised CO 2 -free beer improved at low storage temperature. The organoleptic quality of NLCs-added beers was still acceptable. These results indicate that NLCs containing hydrophobic nutraceuticals have potential to be used for functional beverages/foods development. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Yosep; Choi, Junhyun; Tong, Meiping, E-mail: tongmeiping@iee.pku.edu.cn
2014-04-01
Millimeter-sized spherical silica foams (SSFs) with hierarchical multi-modal pore structure featuring high specific surface area and ordered mesoporous frameworks were successfully prepared using aqueous agar addition, foaming and drop-in-oil processes. The pore-related properties of the prepared spherical silica (SSs) and SSFs were systematically characterized by field emission-scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), small-angle X-ray diffraction (SAXRD), Hg intrusion porosimetry, and N{sub 2} adsorption–desorption isotherm measurements. Improvements in the BET surface area and total pore volume were observed at 504 m{sup 2} g{sup −1} and 5.45 cm{sup 3} g{sup −1}, respectively, after an agar addition and foaming process. Despitemore » the increase in the BET surface area, the mesopore wall thickness and the pore size of the mesopores generated from the block copolymer with agar addition were unchanged based on the SAXRD, TEM, and BJH methods. The SSFs prepared in the present study were confirmed to have improved BET surface area and micropore volume through the agar loading, and to exhibit interconnected 3-dimensional network macropore structure leading to the enhancement of total porosity and BET surface area via the foaming process. - Highlights: • Millimeter-sized spherical silica foams (SSFs) are successfully prepared. • SSFs exhibit high BET surface area and ordered hierarchical pore structure. • Agar addition improves BET surface area and micropore volume of SSFs. • Foaming process generates interconnected 3-D network macropore structure of SSFs.« less
NASA Astrophysics Data System (ADS)
Bao, J.; Wang, L.
2009-12-01
Wastewater from diosgenin manufacture is dark brown (3,500 ~4,000 times of the chroma) and acidic(pH=0.8~1.5)with high concentration of organic matter(COD=25,000~38,000 mg/L)and poor biodegradability(BOD5/COD= 0.25~0.30). It is highly toxic to biota due to the water-soluble saponin, tannins and pectin. Therefore removal of the organic matter is of great importance before the discharge of the wastewater into the environment. Here we presented a set of data from a demonstration project in Hubei province, P R China with an improved technics. This technics, focusing on the treatment of diosgenin wastewater, included hydrolytic acidification, internal electrolysis, neutralization, aerating-improved Up-flow Anaerobic Sludge Bed (UASB) and bio-contact oxidation treatment in sequence to remove the organic matter. After 60 days of starting-up, the water quality from hydrolytic acidification reactor was greatly improved. The effluent became clear, indicating the obvious removal of suspended solids in the water; the ratio of BOD/COD increased to 0.44, suggesting an significant increase of biodegradability; the content of volatile fatty acid (VFA) increased from 22.6 mmol/L to 86.8 mmol/L and the volume loading of COD reached 9.48 kg COD/(m3d). Basically at this stage the removal efficiency of COD was stabilized at 25%. Further treatment was conducted on the effluent from hydrolytic acidification reactor through the Improved UASB Reactor after the internal electrolysis and neutralization. The Improved UASB Reactor can start up at room temperature with an influent of 1,500 mg/L COD and inflow rate of 50(m3/d). Then, temperature was increased gradually to 38 oC (± 2 oC) to optimize the growth of the mesophilic anaerobes in the reactor. The content of VFA of the effluent was controlled below 8 mmol/L to guarantee the pH in the range of 6.8~7.2. After 150 days of debugging, the COD of the influent to UASB increased to 9,600 mg/L, hydraulic retaining time (HRT) was around 70 hrs , the volume loading and the removal efficiency of COD reached 3.42 kg COD/(m3.d) and 75% respectively. Bio-contact oxidation process dealt with the effluent from the Improved UASB at room temperature. The HRT was 54 hrs and dissolved oxygen was controlled between 2 to 4 mg/L. Currently, the COD volume loading reached 1.05 kg COD/(m3.d) and the removal efficiency of COD was over 90%. The total removal efficiencies of COD and color were over 99% and 98% respectively in the overall process. The pH, color and COD content of the final effluent were 7, about 200 mg/L and 50 times of the chroma respectively. All these indexes met the criteria of “The National Discharge Standard of Industry Water Pollutants for Sapogenin”(GB 20425-2006). This work was supported by National Key Technologies R&D Program No. 2006BAB04A14-2), the Hubei Provincial Science and Technology Department (No. 2006AA305A05) and Wuhan Science and Technology Bureau (20066002101).
Prophylaxis against the systemic hypotension induced by propofol during rapid-sequence intubation.
el-Beheiry, H; Kim, J; Milne, B; Seegobin, R
1995-10-01
The objective of this study was to determine the effectiveness of two prophylactic approaches against the anticipated hypotension induced by propofol during rapid-sequence intubation. Thirty-six male or female nonpremedicated ASA class I-II patients aged 21-60 yr undergoing elective outpatient surgery were included in the study. Patients were randomly allocated to receive pre-induction ephedrine sulphate (70 micrograms x kg(-1)iv), pre-induction volume loading (12 ml x kg(-1) Ringer's lactate) or no treatment. Rapid-sequence intubation with cricoid pressure was then performed with propofol (2.5 mg. x kg(-1)) and succinylcholine (1.5 mg x kg(-1). The lungs were subsequently ventilated with 0.25-0.5% isoflurane in a 2:1 N2O/O2 mixture. Vecuronium was given once neuromuscular function had recovered from the succinylcholine. Heart rate and systemic arterial blood pressure were measured non-invasively before induction, after propofol administration and every minute for ten minutes after intubation. Pre-induction volume loading prevented the hypotension observed before surgical stimulation in control and ephedrine groups. Moreover, pre-induction volume loading was not associated with increases in heart rate after intubation as was ephedrine administration. The intubating conditions were excellent to satisfactory in most patients and the overall incidence of adverse events during intubation was mainly due to pain during injection of propofol. The present study showed that preoperative volume loading is more efficacious than pre-induction administration of ephedrine sulphate in maintaining haemodynamic stability during rapid-sequence induction with propofol and succinylcholine. In addition, propofol in combination with succinylcholine provides excellent conditions for rapid-sequence intubation.
Santander, Julian E; Tsapatsis, Michael; Auerbach, Scott M
2013-04-16
We have constructed and applied an algorithm to simulate the behavior of zeolite frameworks during liquid adsorption. We applied this approach to compute the adsorption isotherms of furfural-water and hydroxymethyl furfural (HMF)-water mixtures adsorbing in silicalite zeolite at 300 K for comparison with experimental data. We modeled these adsorption processes under two different statistical mechanical ensembles: the grand canonical (V-Nz-μg-T or GC) ensemble keeping volume fixed, and the P-Nz-μg-T (osmotic) ensemble allowing volume to fluctuate. To optimize accuracy and efficiency, we compared pure Monte Carlo (MC) sampling to hybrid MC-molecular dynamics (MD) simulations. For the external furfural-water and HMF-water phases, we assumed the ideal solution approximation and employed a combination of tabulated data and extended ensemble simulations for computing solvation free energies. We found that MC sampling in the V-Nz-μg-T ensemble (i.e., standard GCMC) does a poor job of reproducing both the Henry's law regime and the saturation loadings of these systems. Hybrid MC-MD sampling of the V-Nz-μg-T ensemble, which includes framework vibrations at fixed total volume, provides better results in the Henry's law region, but this approach still does not reproduce experimental saturation loadings. Pure MC sampling of the osmotic ensemble was found to approach experimental saturation loadings more closely, whereas hybrid MC-MD sampling of the osmotic ensemble quantitatively reproduces such loadings because the MC-MD approach naturally allows for locally anisotropic volume changes wherein some pores expand whereas others contract.
Non-enzymatic glycation alters microdamage formation in human cancellous bone⋆
Tang, S.Y.; Vashishth, D.
2015-01-01
Introduction The accumulation of advanced glycation end-products (AGEs) in bone has been suggested to adversely affect the fracture resistance of bone with aging, diabetes, and pharmacological treatments. The formation of AGEs increases crosslinking in the organic matrix of bone but it is unknown how elevated levels of AGEs affect the mechanisms of fracture resistance such as microdamage formation. Methods Human tibial cancellous bone cores were subjected to non-enzymatic glycation (NEG) by in vitro ribosylation and were mechanically loaded to pre- (0.6%) and post- (1.1%) yield apparent level strains. Loaded specimens were stained with lead–uranyl acetate and subjected to microCT-based 3D quantification and characterization of microdamage as either diffuse damage and linear microcracks. Damaged volume per bone volume (DV/BV) and damaged surface per damaged volume (DS/DV) ratios were used to quantify the volume and morphology of the detected microdamage, respectively. Results In vitro ribosylation increased the microdamage morphology parameter (DS/DV) under both pre-(p<0.05; +51%) and post-yield loading (p<0.001; +38%), indicating that the alteration of bone matrix by NEG caused the formation of crack-like microdamage morphologies. Under post-yield loading, the NEG-mediated increase in DS/DV was coupled with the reductions in microdamage formation (DV/BV; p<0.001) and toughness (p<0.001). Discussion Using a novel microCT technique to characterize and quantify microdamage, this study shows that the accumulation of AGEs in the bone matrix significantly alters the quantity and morphology of microdamage production and results in reduced fracture resistance. PMID:19747573
Li, Qiaoya; Li, Hongyang; He, Chengjun; Jing, Zhouhong; Liu, Changan; Xie, Juan; Ma, Wenwen; Deng, Huisheng
2017-11-21
This study aimed to investigate the therapeutic effects of 5-fluorouracil (5-FU)-loaded nanobubbles irradiated with low-intensity, low-frequency ultrasound in nude mice with hepatocellular carcinoma (HCC). A transplanted tumor model of HCC in nude mice was established in 40 mice, which were then randomly divided equally into four groups: group A (saline), group B (5-FU-loaded nanobubbles), group C (5-FU-loaded nanobubbles with non-low-frequency ultrasound), and group D (5-FU-loaded nanobubbles with low-frequency ultrasound). The tumor size in each mouse was observed via ultrasound before and after the treatments. Inhibition of the tumor growth in each group was compared, and survival curves were generated. Tumor tissues were removed to determine the apoptotic index using the TUNEL method and quantitative analysis. Tumor tissues with CD34-positive microvessels were observed by immunohistochemistry, and the tumor microvessel densities were calculated. The growth rate of the tumor volumes in group D was significantly slower than that in the other groups, while the tumor inhibition rates and apoptotic index in group D were significantly higher than those of the other groups. The number of microvessels staining positive for CD34 was decreased in group D. Therefore, group D presented the most significant inhibitory effects. Therefore, 5-FU-loaded nanobubbles subjected to irradiation with low-frequency ultrasound could further improve drug targeting and effectively inhibit the growth of transplanted tumors, which is expected to become an ideal drug carrier and targeted drug delivery system for the treatment of HCC in the future.
MOD-1 Wind Turbine Generator Analysis and Design Report, Volume 2
NASA Technical Reports Server (NTRS)
1979-01-01
The MOD-1 detail design is appended. The supporting analyses presented include a parametric system trade study, a verification of the computer codes used for rotor loads analysis, a metal blade study, and a definition of the design loads at each principal wind turbine generator interface for critical loading conditions. Shipping and assembly requirements, composite blade development, and electrical stability are also discussed.
Clinton S. Wright; Robert E. Vihnanek
2014-01-01
Four series of photographs display a range of natural conditions and fuel loadings for grassland, shrubland, oak-bay woodland, and eucalyptus forest ecosystems on the eastern slopes of the San Francisco Bay area of California. Each group of photos includes inventory information summarizing vegetation composition, structure, and loading; woody material loading and...
Kelmendi-Doko, Arta; Rubin, J Peter; Klett, Katarina; Mahoney, Christopher; Wang, Sheri; Marra, Kacey G
2017-01-01
Current materials used for adipose tissue reconstruction have critical shortcomings such as suboptimal volume retention, donor-site morbidity, and poor biocompatibility. The aim of this study was to examine a controlled delivery system of dexamethasone to generate stable adipose tissue when mixed with disaggregated human fat in an athymic mouse model for 6 months. The hypothesis that the continued release of dexamethasone from polymeric microspheres would enhance both adipogenesis and angiogenesis more significantly when compared to the single-walled microsphere model, resulting in long-term adipose volume retention, was tested. Dexamethasone was encapsulated within single-walled poly(lactic-co-glycolic acid) microspheres (Dex SW MS) and compared to dexamethasone encapsulated in a poly(lactic-co-glycolic acid) core surrounded by a shell of poly-l-lactide. The double-walled polymer microsphere system in the second model was developed to create a more sustainable drug delivery process. Dexamethasone-loaded poly(lactic-co-glycolic acid) microspheres (Dex SW MS) and dexamethasone-loaded poly(lactic-co-glycolic acid)/poly-l-lactide double-walled microspheres (Dex DW MS) were prepared using single and double emulsion/solvent techniques. In vitro release kinetics were determined. Two doses of each type of microsphere were examined; 50 and 27 mg of Dex MS and Dex DW MS were mixed with 0.3 mL of human lipoaspirate. Additionally, 50 mg of empty MS and lipoaspirate-only controls were examined. Samples were analyzed grossly and histologically after 6 months in vivo. Mass and volume were measured; dexamethasone microsphere-containing samples demonstrated greater adipose tissue retention compared to the control group. Histological analysis, including hematoxylin and eosin and CD31 staining, indicated increased vascularization (p < 0.05) within the Dex MS-containing samples. Controlled delivery of adipogenic factors, such as dexamethasone via polymer microspheres, significantly affects adipose tissue retention by maintaining healthy tissue formation and vascularization. Dex DW MS provide an improved model to former Dex SW MS, resulting in notably longer release time and, consequently, larger volumes of adipose retained in vivo. The use of microspheres, specifically double-walled, as vehicles for controlled drug delivery of adipogenic factors therefore present a clinically relevant model of adipose retention that has the potential to greatly improve soft tissue repair. PMID:29051810
NASA Astrophysics Data System (ADS)
Cheng, Xin-Bing; Liu, Jin-Liang; Zhang, Hong-Bo; Feng, Jia-Huai; Qian, Bao-Liang
2010-07-01
The Blumlein pulse forming line (BPFL) consisting of an inner coaxial pulse forming line (PFL) and an outer coaxial PFL is widely used in the field of pulsed power, especially for intense electron-beam accelerators (IEBA). The output voltage waveform determines the quality and characteristics of the output beam current of the IEBA. Comparing with the conventional BPFL, an IEBA based on a helical type BPFL can increase the duration of the output voltage in the same geometrical volume. However, for the helical type BPFL, the voltage waveform on a matched load may be distorted which influences the electron-beam quality. In this paper, an IEBA based on helical type BPFL is studied theoretically. Based on telegrapher equations of the BPFL, a formula for the output voltage of IEBA is obtained when the transition section is taken into account, where the transition section is between the middle cylinder of BPFL and the load. From the theoretical analysis, it is found that the wave impedance and transit time of the transition section influence considerably the main pulse voltage waveform at the load, a step is formed in front of the main pulse, and a sharp spike is also formed at the end of the main pulse. In order to get a well-shaped square waveform at the load and to improve the electron-beam quality of such an accelerator, the wave impedance of the transition section should be equal to that of the inner PFL of helical type BPFL and the transit time of the transition section should be designed as short as possible. Experiments performed on an IEBA with the helical type BPFL show reasonable agreement with theoretical analysis.
Mahon, Marrita M; Cox, I Jane; Dina, Roberto; Soutter, W Patrick; McIndoe, G Angus; Williams, Andreanna D; deSouza, Nandita M
2004-03-01
To compare in vivo (1)H magnetic resonance (MR) spectra of preinvasive and invasive cervical lesions with ex vivo magic angle spinning (MAS) spectra of intact biopsies from the same subjects and to establish the effects of tumor load in the tissue sampled on the findings. A total of 51 subjects (nine with normal cervix, 10 with cervical intraepithelial neoplasia [CIN], and 32 with cervical cancer) underwent endovaginal MR at 1.5 T. Single-voxel (3.4 cm(3)) (1)H MR spectra were acquired and voxel tumor load was calculated (tumor volume within voxel as a percentage of voxel volume). Resonances from triglycerides -CH(2) and -CH(3) and choline-containing compounds (Cho) were correlated with voxel tumor load. Biopsies analyzed by (1)H MAS-MR spectroscopy (MRS) had metabolite levels correlated with tumor load in the sample at histology. In vivo studies detected Cho in normal, CIN, and cancer patients with no significant differences in levels (P = 0.93); levels were independent of voxel tumor load. Triglyceride -CH(2) and -CH(3) signals in-phase with Cho were present in 77% and 29%, respectively, of cancer subjects (but not in normal women or those with CIN), but did not correlate with voxel tumor load. Ex vivo cancer biopsies showed levels of triglycerides -CH(2) and -CH(3) and of Cho that were significantly greater than in normal or CIN biopsies (P < 0.05); levels were independent of the tumor load in the sample. The presence of -CH(2) in vivo predicted the presence of cancer with a sensitivity and specificity of 77.4% and 93.8% respectively, positive (PPV) and negative (NPV) predictive values were 96% and 68.2%; for -CH(2) ex vivo, sensitivity was 100%; specificity, 69%; PPV, 82%; and NPV, 100%. Elevated lipid levels are detected by MRS in vivo and ex vivo in cervical cancer and are independent of tumor load in the volume of tissue sampled. Copyright 2004 Wiley-Liss, Inc.
1974-06-01
stiffness, lb-in. I Integer used to designate wing strip number 2 I Airplanw pitching moment of inertia, slug ft 2 I Airplane yawing moment of inertia...slug ft J Integer used to designated wing-loading distribution, i.e., J-l, loading due to angle of attack J=2> loading due to flap deflection J-3...moment at intersection of load reference line and body interface station (for vertical tail), in.-lb Integer used to designate type of wing airload
1980-07-01
Arnold. Some further insight into the problem is obtained here, however, when it is demonstrated that highly optimized structural designs may...aircraft of this type are normally designed to withstand loads up to 1.5 times the maximum limit load (load factor 8.0 to 8.67), the structure should...on the wing, for example, give rise to concentrated drag and chordwise loadings as does the recoil from firing wing mounted gun systems . The drag on
Thaw weakening and load restriction practices on low volume roads
DOT National Transportation Integrated Search
2000-06-01
Low volume roads subjected to seasonal freezing are highly susceptible to damage from traffic during midwinter and spring thaws. Such traffic-induced damage can be minimized by a variety of design methods; however, most are not economically feasible....
Evaluation of Occupant Volume Strength in Conventional Passenger Railroad Equipment
DOT National Transportation Integrated Search
2008-09-24
To ensure a level of occupant volume protection, passenger : railway equipment operating on mainline railroads in the : United States must be designed to resist an 800,000-lb : compressive load applied statically along the line of draft. An : alterna...
Abdulmajeed, Aous A; Närhi, Timo O; Vallittu, Pekka K; Lassila, Lippo V
2011-04-01
This study was designed to evaluate the effect of an increase of fiber-density on some mechanical properties of higher volume fiber-reinforced composite (FRC). Five groups of FRC with increased fiber-density were fabricated and two additional groups were prepared by adding silanated barium-silicate glass fillers (0.7 μm) to the FRC. The unidirectional E-glass fiber rovings were impregnated with light-polymerizable bisGMA-TEGDMA (50-50%) resin. The fibers were pulled through a cylindrical mold with an opening diameter of 4.2mm, light cured for 40s and post-cured at elevated temperature. The cylindrical specimens (n=12) were conditioned at room temperature for 2 days before testing with the three-point bending test (Lloyd Instruments Ltd.) adapted to ISO 10477. Fiber-density was analyzed by combustion and gravimetric analyzes. ANOVA analysis revealed that by increasing the vol.% fraction of E-glass fibers from 51.7% to 61.7% there was a change of 27% (p<0.05) in the modulus of elasticity, 34% (p<0.05) in the toughness, and 15% (p<0.05) in the load bearing capacity, while there was only 8% (p<0.05) increase in the flexural strength although it was statistically insignificant. The addition of particulate fillers did not improve the mechanical properties. This study showed that the properties of FRC could be improved by increasing fibervolume fraction. Modulus of elasticity, toughness, and load bearing capacity seem to follow the law of ratio of quantity of fibers and volume of the polymer matrix more precisely than flexural strength when high fiber-density is used. Copyright © 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Kato, Nobusuke; Kawaguchi, Akira T; Kishida, Akio; Yamaoka, Tetsuji
2013-07-01
Although static cardiomyoplasty prevents the left ventricle (LV) from dilatation, it may interfere with diastolic relaxation, or cause restriction. We developed a synthetic net with dual elasticity and tested its effect late after myocardial infarction in the rat. LV pressure-volume relationships (PVR) were successively analyzed before, after intravenous volume load, and 10 minutes after occlusion of the left anterior descending artery. Rats were then randomized into groups receiving synthetic net wrapping around the heart (NET+, n = 8) and only partially behind LV (NET-, n = 9), and they underwent the same PVR studies 6 weeks later. End-diastolic and end-systolic PVR were defined, and LV size and function were compared under standardized loading conditions. Although there was no difference in Day 0, increase in LV end-diastolic and end-systolic volumes were significantly attenuated in NET+ rats 6 weeks later when there was a significant correlation between LV volumes by PVR estimation and actual measurements, with significant differences in both measures between the groups: NET+ < NET-. The presence or absence of net did not show restrictive hemodynamics under acute volume load. Static cardiomyoplasty using a synthetic elastic net significantly attenuated LV dilatation and dysfunction without restriction late after myocardial infarction in the rat. © 2013, Copyright the Authors. Artificial Organs © 2013, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Kim, Y J; Jones, M; Shiota, T; Tsujino, H; Qin, J X; Bauer, F; Sitges, M; Kwan, J; Cardon, L A; Zetts, A D; Thomas, J D
2002-10-01
To evaluate the load dependence of effective regurgitant orifice area (ROA) in an animal model of chronic aortic regurgitation. Eight sheep were studied 10-20 weeks after the surgical creation of aortic regurgitation. After baseline studies, 500 ml of blood, angiotensin II, and nitroprusside were infused sequentially. Electromagnetic flow meters were used as reference standards to determine aortic regurgitation volume. The time-velocity integral was acquired using the continuous wave Doppler method. Baseline aortic regurgitant volume varied from 8 ml (regurgitant fraction 28%) to 29 ml (59%), with a mean (SD) value of 17 (8) ml; mean ROA was 0.15 (0.05) cm2. During angiotensin II infusion, aortic regurgitation volume (20 (8) ml) and mean diastolic aortoventricular pressure gradient (62 (18) mm Hg) increased by 26 (16)% and 48 (64)%, respectively (p < 0.01 for both). ROA did not change (0.16 (0.06) cm(2), p = 0.15). During nitroprusside infusion, aortic regurgitant volume (13 (7) ml, p = 0.05) and diastolic pressure gradient (25 (13) mm Hg, p < 0.05) decreased. ROA did not change (0.15 (0.05) cm2). When analysing 32 stages together, aortic regurgitant volume (r = 0.78, p < 0.01) and regurgitant fraction (r = 0.55, p < 0.01) correlated well with ROA. However, diastolic pressure gradient (r = 0.28) was not significantly correlated with ROA. In an animal model of chronic aortic regurgitation, ROA did not change with load alterations.
1991-12-01
ei a. "h:2 ;.::,e :v a :ei.w co±’eague. CAct. Alien Andrews. SAF. who s*_ese_ . zne tere in mod i: at:ons ch he m i emen tec tha nabed "he :CT -L work...program by entering: SET COMMAND SYS $SYSTEM:SAVE85 i0. Load the LOAD85 program by entering: SET COMMAND SYS $SYSTEM:LOAD85 11. Connect the VT340 with the...SYSINT CUROFF 4. Load the LOAD85 program by entering: SET COMMAND SYS $SYSTEM:LOAD85 5. Display the image to be printed on the screen by entering: LOAD85
Yang, Rongbing; Nam, Kihoon; Kim, Sung Wan; Turkson, James; Zou, Ye; Zuo, Yi Y; Haware, Rahul V; Chougule, Mahavir B
2017-01-03
Desired characteristics of nanocarriers are crucial to explore its therapeutic potential. This investigation aimed to develop tunable bioresponsive newly synthesized unique arginine grafted poly(cystaminebis(acrylamide)-diaminohexane) [ABP] polymeric matrix based nanocarriers by using L9 Taguchi factorial design, desirability function, and multivariate method. The selected formulation and process parameters were ABP concentration, acetone concentration, the volume ratio of acetone to ABP solution, and drug concentration. The measured nanocarrier characteristics were particle size, polydispersity index, zeta potential, and percentage drug loading. Experimental validation of nanocarrier characteristics computed from initially developed predictive model showed nonsignificant differences (p > 0.05). The multivariate modeling based optimized cationic nanocarrier formulation of <100 nm loaded with hydrophilic acetaminophen was readapted for a hydrophobic etoposide loading without significant changes (p > 0.05) except for improved loading percentage. This is the first study focusing on ABP polymeric matrix based nanocarrier development. Nanocarrier particle size was stable in PBS 7.4 for 48 h. The increase of zeta potential at lower pH 6.4, compared to the physiological pH, showed possible endosomal escape capability. The glutathione triggered release at the physiological conditions indicated the competence of cytosolic targeting delivery of the loaded drug from bioresponsive nanocarriers. In conclusion, this unique systematic approach provides rational evaluation and prediction of a tunable bioresponsive ABP based matrix nanocarrier, which was built on selected limited number of smart experimentation.
NASA Technical Reports Server (NTRS)
Dearing, Stella; Ruebsamen, Dale
2016-01-01
This paper describes the design of a passive isolation system using D-struts (Registered TradeMark) to isolate an optical payload from aircraft-borne jitter with challenging stroke per volume requirements. It discusses the use of viscoelastic-coated D-struts® that meet the customer performance and outgassing specification, NASA-1124. The result was a relatively soft isolation system, (where the first mode was 13 Hz), with each individual strut capable of withstanding loads on the order of magnitude of 623 N (140 lbf), weighing less than 910 g (2 lbm), fitting in a volume 5.1 cm (2 inches) in diameter and 12-cm (4.7-inches) long and capable of performing up to 1000 Hz without nonlinearities.
Instrumentation for the Characterization of Inflatable Structures
NASA Technical Reports Server (NTRS)
Swanson, Gregory T.; Cassell, Alan M.; Johnson, R. Keith
2012-01-01
Current entry, descent, and landing technologies are not practical for heavy payloads due to mass and volume constraints dictated by limitations imposed by launch vehicle fairings. Therefore, new technologies are now being explored to provide a mass- and volume-efficient solution for heavy payload capabilities, including Inflatable Aerodynamic Decelerators (IAD) [1]. Consideration of IADs for space applications has prompted the development of instrumentation systems for integration with flexible structures to characterize system response to flight-like environment testing. This development opportunity faces many challenges specific to inflatable structures in extreme environments, including but not limited to physical flexibility, packaging, temperature, structural integration and data acquisition [2]. In the spring of 2012, two large scale Hypersonic Inflatable Aerodynamic Decelerators (HIAD) will be tested in the National Full-Scale Aerodynamics Complex s 40 by 80 wind tunnel at NASA Ames Research Center. The test series will characterize the performance of a 3.0 m and 6.0 m HIAD at various angles of attack and levels of inflation during flight-like loading. To analyze the performance of these inflatable test articles as they undergo aerodynamic loading, many instrumentation systems have been researched and developed. These systems will utilize new experimental sensing systems developed by the HIAD ground test campaign instrumentation team, in addition to traditional wind tunnel sensing techniques in an effort to improve test article characterization and model validation. During the 2012 test series the instrumentation systems will target inflatable aeroshell static and dynamic deformation, structural strap loading, surface pressure distribution, localized skin deflection, and torus inflation pressure. This paper will offer an overview of inflatable structure instrumentation, and provide detail into the design and implementation of the sensors systems that will be utilized during the 2012 HIAD ground test campaign.
Cun, Dongmei; Jensen, Ditte Krohn; Maltesen, Morten Jonas; Bunker, Matthew; Whiteside, Paul; Scurr, David; Foged, Camilla; Nielsen, Hanne Mørck
2011-01-01
Poly(DL-lactide-co-glycolide acid) (PLGA) is an attractive polymer for delivery of biopharmaceuticals owing to its biocompatibility, biodegradability and outstanding controlled release characteristics. The purpose of this study was to understand and define optimal parameters for preparation of small interfering RNA (siRNA)-loaded PLGA nanoparticles by the double emulsion solvent evaporation method and characterize their properties. The experiments were performed according to a 2(5-1) fractional factorial design based on five independent variables: The volume ratio between the inner water phase and the oil phase, the PLGA concentration, the sonication time, the siRNA load and the amount of acetylated bovine serum albumin (Ac-BSA) in the inner water phase added to stabilize the primary emulsion. The effects on the siRNA encapsulation efficiency and the particle size were investigated. The most important factors for obtaining an encapsulation efficiency as high as 70% were the PLGA concentration and the volume ratio whereas the size was mainly affected by the PLGA concentration. The viscosity of the oil phase was increased at high PLGA concentration, which explains the improved encapsulation by stabilization of the primary emulsion and reduction of siRNA leakage to the outer water phase. Addition of Ac-BSA increased the encapsulation efficiency at low PLGA concentrations. The PLGA matrix protected siRNA against nuclease degradation, provided a burst release of surface-localized siRNA followed by a triphasic sustained release for two months. These results enable careful understanding and definition of optimal process parameters for preparation of PLGA nanoparticles encapsulating high amounts of siRNA with immediate and long-term sustained release properties. Copyright © 2010 Elsevier B.V. All rights reserved.
Pawar, Smita; Shevalkar, Ganesh; Vavia, Pradeep
2016-09-01
Efficacy of anticancer drug is limited due to non-selectivity and toxicities allied with the drug; therefore the heart of the present work is to formulate drug delivery systems targeted selectively towards cancer cells with minimal toxicity to normal cells. Targeted drug delivery system of doxorubicin (DOX)-loaded niosomes using synthesized N-lauryl glucosamine (NLG) as a targeting ligand. NLG-anchored DOX niosomes were developed using ethanol injection method. Developed niosomes had particle size <150 nm and high entrapment efficiency ∼90%. In vivo pharmacokinetics exhibited long circulating nature of targeted niosomes with improved bioavailability, which significantly reduced CL and Vd than DOX solution and non-targeted niosomes (35 fold and 2.5 fold, respectively). Tissue-distribution study and enzymatic assays revealed higher concentration of DOX solution in heart while no toxicity to major organs with developed targeted niosomes was observed. Solid skin melanoma tumor model in mice manifested the commendable targeting potential of targeted niosomes with significant reduction in tumor volume and high % survival rate without drop in body weight in comparison with DOX solution and non-targeted niosomes of DOX. The glucosamine-anchored DOX-loaded targeted niosomes showed its potential in cancer targeted drug therapy with reduced toxicity. Abbreviations ALT alanine transaminase CL clearance CPK creatinine phosphokinase DOX doxorubicin EDC.HCL ethyl carbidimide hydrochloride GLUT glucose transporter GSH glutathione S-transferase LDH lactate dehydrogenase LHRH luteinizing hormone-releasing hormone MDA malonaldehyde NHS N-hydroxy succinimide NLG N-lauryl glucosamine NTAR DoxNio non-targeted doxorubicin niosomes PBS phosphate buffer saline RGD argynyl glycyl aspartic acid SGOT serum glutamate oxaloacetate transaminase SGPT serum glutamate pyruvate transaminase SOD superoxide dismutase TAR DoxNio targeted doxorubicin niosomes Vd volume of distribution.
NASA Astrophysics Data System (ADS)
de Lima, A. M. G.; Rade, D. A.; Lacerda, H. B.; Araújo, C. A.
2015-06-01
It has been demonstrated by many authors that the internal damping mechanism of the viscoelastic materials offers many possibilities for practical engineering applications. However, in traditional procedures of analysis and design of viscoelastic dampers subjected to cyclic loadings, uniform, constant temperature is generally assumed and do not take into account the self-heating phenomenon. Moreover, for viscoelastic materials subjected to dynamic loadings superimposed on static preloads, such as engine mounts, these procedures can lead to poor designs or even severe failures since the energy dissipated within the volume of the material leads to temperature rises. In this paper, a hybrid numerical-experimental investigation of effects of the static preloads on the self-heating phenomenon in viscoelastic dampers subjected to harmonic loadings is reported. After presenting the theoretical foundations, the numerical and experimental results obtained in terms of the temperature evolutions at different points within the volume of the viscoelastic material for various static preloads are compared, and the main features of the methodology are discussed.
NASA Astrophysics Data System (ADS)
Ruchkinova, O.; Shchuckin, I.
2017-06-01
Its proved, that phytofilters are environmental friendly solution of problem of purification of surface plate from urbanized territories. Phytofilters answer the nowadays purposes to systems of purification of land drainage. The main problem of it is restrictions, connecter with its use in the conditions of cold temperature. Manufactured a technology and mechanism, which provide a whole-year purification of surface plate and its storage. Experimentally stated optimal makeup of filtering load: peat, zeolite and sand in per cent of volume, which provides defined hydraulic characteristics. Stated sorbate and ion-selective volume of complex filtering load of ordered composition in dynamic conditions. Estimated dependences of exit concentrations of oil products and heavy metals on temperature by filtering through complex filtering load of ordered composition. Defined effectiveness of purification at phytofiltering installation. Fixed an influence of embryophytes on process of phytogeneration and capacity of filtering load. Recommended swamp iris, mace reed and reed grass. Manufactured phytofilter calculation methodology. Calculated economic effect from use of phytofiltration technology in comparison with traditional block-modular installations.
NASA Astrophysics Data System (ADS)
Cretcher, C. K.; Rountredd, R. C.
1980-11-01
Customer Load Management Systems, using off-peak storage and control at the residences, are analyzed to determine their potential for capacity and energy savings by the electric utility. Areas broadly representative of utilities in the regions around Washington, DC and Albuquerque, NM were of interest. Near optimum tank volumes were determined for both service areas, and charging duration/off-time were identified as having the greatest influence on tank performance. The impacts on utility operations and corresponding utility/customer economics were determined in terms of delta demands used to estimate the utilities' generating capacity differences between the conventional load management, (CLM) direct solar with load management (DSLM), and electric resistive systems. Energy differences are also determined. These capacity and energy deltas are translated into changes in utility costs due to penetration of the CLM or DSLM systems into electric resistive markets in the snapshot years of 1990 and 2000.
McKenzie, Donald J.; Irwin, G.A.
1983-01-01
Runoff from a heavily-traveled, 1.43-acre bridge section of Interstate-95 in Miami, Florida, was comprehensively monitored for both quality and quantity during five selected storms between November 1979 and May 1981. For most water-quality parameters, 6 to 11 samples were collected during each of the 5 runoff events. Concentrations of most parameters in the runoff were quite variable both during individual storm events and among the five storm events; however, the ranges in parameter concentration were about the same magnitude report for numerous other highway and urban drainages. Data were normalized to estimate the average, discharge-weighted parameter loads per storm per acre of bridge surface and results suggested that the most significant factor influencing stormwater loads was parameter concentration. Rainfall intensity and runoff volume, however, influenced rates of loading. The total number of antecedent dry days and traffic volume did not appear to be conspicously related to either runoff concentrations or loads. (USGS)
Marano, Francesca; Frairia, Roberto; Rinella, Letizia; Argenziano, Monica; Bussolati, Benedetta; Grange, Cristina; Mastrocola, Raffaella; Castellano, Isabella; Berta, Laura; Cavalli, Roberta; Catalano, Maria Graziella
2017-06-01
Anaplastic thyroid cancer is one of the most lethal diseases, and a curative therapy does not exist. Doxorubicin, the only drug approved for anaplastic thyroid cancer treatment, has a very low response rate and causes numerous side effects among which cardiotoxicity is the most prominent. Thus, doxorubicin delivery to the tumor site could be an import goal aimed to improve the drug efficacy and to reduce its systemic side effects. We recently reported that, in human anaplastic thyroid cancer cell lines, combining doxorubicin-loaded nanobubbles with extracorporeal shock waves, acoustic waves used in lithotripsy and orthopedics without side effects, increased the intracellular drug content and in vitro cytotoxicity. In the present study, we tested the efficacy of this treatment on a human anaplastic thyroid cancer xenograft mouse model. After 21 days, the combined treatment determined the greatest drug accumulation in tumors with consequent reduction of tumor volume and weight, and an extension of the tumor doubling time. Mechanistically, the treatment induced tumor apoptosis and decreased cell proliferation. Finally, although doxorubicin caused the increase of fibrosis markers and oxidative stress in animal hearts, loading doxorubicin into nanobubbles avoided these effects preventing heart damage. The improvement of doxorubicin anti-tumor effects together with the prevention of heart damage suggests that the combination of doxorubicin-loaded nanobubbles with extracorporeal shock waves might be a promising drug delivery system for anaplastic thyroid cancer treatment. © 2017 Society for Endocrinology.
Malchow, Berend; Hasan, Alkomiet; Schneider-Axmann, Thomas; Jatzko, Alexander; Gruber, Oliver; Schmitt, Andrea; Falkai, Peter; Wobrock, Thomas
2013-11-01
Schizophrenia is a severe neuropsychiatric disorder with familial loading as heritable risk factor and cannabis abuse as the most relevant environmental risk factor up to date. Cannabis abuse has been related to an earlier onset of the disease and persisting cannabis consumption is associated with reduced symptom improvement. However, the underlying morphological and biochemical brain alterations due to these risk factors as well as the effects of gene-environmental interaction are still unclear. In this magnetic resonance imaging (MRI) study in 47 first-episode schizophrenia patients and 30 healthy control subjects, we investigated effects of previous cannabis abuse and increased familial risk on subcortical brain regions such as hippocampus, amygdala, caudate nucleus, putamen, thalamus and subsegments of the corpus callosum (CC). In a subsequent single-volume (1)H-magnetic resonance spectroscopy study, we investigated spectra in the left hippocampus and putamen to detect metabolic alterations. Compared to healthy controls, schizophrenia patients displayed decreased volumes of the left hippocampus, bilateral amygdala and caudate nucleus as well as an increased area of the midsagittal CC1 segment of the corpus callosum. Patients fulfilling the criteria for cannabis abuse at admission showed an increased area of the CC2 segment compared to those who did not fulfill the criteria. Patients with a family history of schizophrenia combined with previous cannabis abuse showed lower volumes of the bilateral caudate nucleus compared to all other patients, implicating an interaction between the genetic background and cannabis abuse as environmental factor. Patients with cannabis abuse also had higher ratios of N-acetyl aspartate/choline in the left putamen, suggesting a possible neuroprotective effect in this area. However, antipsychotic medication prior to MRI acquisition and gender effects may have influenced our results. Future longitudinal studies in first-episode patients with quantification of cannabis abuse and assessment of schizophrenia risk genes are warranted.
Scale Model Simulation of Enhanced Geothermal Reservoir Creation
NASA Astrophysics Data System (ADS)
Gutierrez, M.; Frash, L.; Hampton, J.
2012-12-01
Geothermal energy technology has successfully provided a means of generating stable base load electricity for many years. However, implementation has been spatially limited to limited availability of high quality traditional hydro-thermal resources possessing the combination of a shallow high heat flow anomaly and an aquifer with sufficient permeability and continuous fluid recharge. Enhanced Geothermal Systems (EGS) has been proposed as a potential solution to enable additional energy production from the non-conventional hydro-thermal resources. Hydraulic fracturing is considered the primary means of creating functional EGS reservoirs at sites where the permeability of the rock is too limited to allow cost effective heat recovery. EGS reservoir creation requires improved fracturing methodology, rheologically controllable fracturing fluids, and temperature hardened proppants. Although large fracture volumes (several cubic km) have been created in the field, circulating fluid through these full volumes and maintaining fracture volumes have proven difficult. Stimulation technology and methodology as used in the oil and gas industry for sedimentary formations are well developed; however, they have not sufficiently been demonstrated for EGS reservoir creation. Insufficient data and measurements under geothermal conditions make it difficult to directly translate experience from the oil and gas industries to EGS applications. To demonstrate the feasibility of EGS reservoir creation and subsequent geothermal energy production, and to improve the understanding of hydraulic and propping in EGS reservoirs, a heated true-triaxial load cell with a high pressure fluid injection system was developed to simulate an EGS system from stimulation to production. This apparatus is capable of loading a 30x30x30 cubic cm rock sample with independent principal stresses up to 13 MPa while simultaneously providing heating up to 180 degree C. Multiple orientated boreholes of 5 to 10 mm diameter may be drilled into the sample while at reservoir conditions. This allows for simulation of borehole damage as well as injector-producer schemes. Dual 70 MPa syringe pumps set to flow rates between 10 nL/min and 60 mL/min injecting into a partially cased borehole allow for fully contained fracturing treatments. A six sensor acoustic emission (AE) array is used for geometric fracture location estimation during intercept borehole drilling operations. Hydraulic sensors and a thermocouple array allow for additional monitoring and data collection as relevant to computer model validation as well as field test comparisons. The results from preliminary tests inside and outside of the cell demonstrate the functionality of the equipment while also providing some novel data on the propagation and flow characteristics of hydraulic fractures themselves.
Creatine supplementation during pulmonary rehabilitation in chronic obstructive pulmonary disease.
Fuld, J P; Kilduff, L P; Neder, J A; Pitsiladis, Y; Lean, M E J; Ward, S A; Cotton, M M
2005-07-01
Skeletal muscle wasting and dysfunction are strong independent predictors of mortality in patients with chronic obstructive pulmonary disease (COPD). Creatine nutritional supplementation produces increased muscle mass and exercise performance in health. A controlled study was performed to look for similar effects in 38 patients with COPD. Thirty eight patients with COPD (mean (SD) forced expiratory volume in 1 second (FEV(1)) 46 (15)% predicted) were randomised to receive placebo (glucose polymer 40.7 g) or creatine (creatine monohydrate 5.7 g, glucose 35 g) supplements in a double blind trial. After 2 weeks loading (one dose three times daily), patients participated in an outpatient pulmonary rehabilitation programme combined with maintenance (once daily) supplementation. Pulmonary function, body composition, and exercise performance (peripheral muscle strength and endurance, shuttle walking, cycle ergometry) took place at baseline (n = 38), post loading (n = 36), and post rehabilitation (n = 25). No difference was found in whole body exercise performance between the groups: for example, incremental shuttle walk distance mean -23.1 m (95% CI -71.7 to 25.5) post loading and -21.5 m (95% CI -90.6 to 47.7) post rehabilitation. Creatine increased fat-free mass by 1.09 kg (95% CI 0.43 to 1.74) post loading and 1.62 kg (95% CI 0.47 to 2.77) post rehabilitation. Peripheral muscle performance improved: knee extensor strength 4.2 N.m (95% CI 1.4 to 7.1) and endurance 411.1 J (95% CI 129.9 to 692.4) post loading, knee extensor strength 7.3 N.m (95% CI 0.69 to 13.92) and endurance 854.3 J (95% CI 131.3 to 1577.4) post rehabilitation. Creatine improved health status between baseline and post rehabilitation (St George's Respiratory Questionnaire total score -7.7 (95% CI -14.9 to -0.5)). Creatine supplementation led to increases in fat-free mass, peripheral muscle strength and endurance, health status, but not exercise capacity. Creatine may constitute a new ergogenic treatment in COPD.
Influence of occlusal loading on peri-implant clinical parameters. A pilot study
Pellicer-Chover, Hilario; Viña-Almunia, José; Romero-Millán, Javier; Peñarrocha-Oltra, David; Peñarrocha-Diago, María
2014-01-01
Objectives: To investigate the relation between occlusal loading and peri-implant clinical parameters (probing depth, bleeding on probing, gingival retraction, width of keratinized mucosa, and crevicular fluid volume) in patients with implant-supported complete fixed prostheses in both arches. Material and Methods: This clinical study took place at the University of Valencia (Spain) dental clinic. It included patients attending the clinic for regular check-ups during at least 12 months after rehabilitation of both arches with implant-supported complete fixed ceramo-metallic prostheses. One study implant and one control implant were established for each patient using the T-Scan®III computerized system (Tesco, South Boston, USA). The maxillary implant closest to the point of maximum occlusal loading was taken as the study implant and the farthest (with least loading) as the control. Occlusal forces were registered with the T-Scan® III and then occlusal adjustment was performed to distribute occlusal forces correctly. Peri-implant clinical parameters were analyzed in both implants before and two and twelve months after occlusal adjustment. Results: Before occlusal adjustment, study group implants presented a higher mean volume of crevicular fluid (51.3±7.4 UP) than the control group (25.8±5.5 UP), with statistically significant difference. Two months after occlusal adjustment, there were no significant differences between groups (24.6±3.8 UP and 26±4.5 UP respectively) (p=0.977). After twelve months, no significant differences were found between groups (24.4±11.1 UP and 22.5±8.9 UP respectively) (p=0.323). For the other clinical parameters, no significant differences were identified between study and control implants at any of the study times (p>0.05). Conclusions: Study group implants receiving higher occlusal loading presented significantly higher volumes of crevicular fluid than control implants. Crevicular fluid volumes were similar in both groups two and twelve months after occlusal adjustment. Key words:Occlusal loading, crevicular fluid, peri-implant clinical parameters, T-Scan®. PMID:24316708
Bazyler, Caleb D; Mizuguchi, Satoshi; Harrison, Alex P; Sato, Kimitake; Kavanaugh, Ashley A; DeWeese, Brad H; Stone, Michael H
2017-10-01
The purpose of this study was to examine the effects of an overreach and taper on measures of muscle architecture, jumping, and throwing performance in Division I collegiate throwers preparing for conference championships. Six collegiate track and field throwers (3 hammer, 2 discus, 1 javelin) trained for 12 weeks using a block-periodization model culminating with a 1-week overreach followed by a 3-week taper (ORT). Session rating of perceived exertion training load (RPETL) and strength training volume-load times bar displacement (VLd) were recorded weekly. Athletes were tested pre-ORT and post-ORT on measures of vastus lateralis architecture, unloaded and loaded squat and countermovement jump performance, underhand and overhead throwing performance, and competition throwing performance. There was a statistical reduction in weight training VLd/session (d = 1.21, p ≤ 0.05) and RPETL/session (d = 0.9, p ≤ 0.05) between the in-season and ORT training phases. Five of 6 athletes improved overhead throw and competition throwing performance after the ORT (d = 0.50, p ≤ 0.05). Vastus lateralis muscle thickness statistically increased after the in-season training phase (d = 0.28, p ≤ 0.05) but did not change after the ORT. Unloaded countermovement jump peak force and relative peak power improved significantly after the ORT (d = 0.59, p ≤ 0.05, d = 0.31, p ≤ 0.05, respectively). These findings demonstrate that an overreaching week followed by a 3-week taper is an effective means of improving explosive ability and throwing performance in collegiate track and field throwers despite the absence of detectable changes in muscle architecture.
Meso-Scale Modeling of Spall in a Heterogeneous Two-Phase Material
DOE Office of Scientific and Technical Information (OSTI.GOV)
Springer, Harry Keo
2008-07-11
The influence of the heterogeneous second-phase particle structure and applied loading conditions on the ductile spall response of a model two-phase material was investigated. Quantitative metallography, three-dimensional (3D) meso-scale simulations (MSS), and small-scale spall experiments provided the foundation for this study. Nodular ductile iron (NDI) was selected as the model two-phase material for this study because it contains a large and readily identifiable second- phase particle population. Second-phase particles serve as the primary void nucleation sites in NDI and are, therefore, central to its ductile spall response. A mathematical model was developed for the NDI second-phase volume fraction that accountedmore » for the non-uniform particle size and spacing distributions within the framework of a length-scale dependent Gaussian probability distribution function (PDF). This model was based on novel multiscale sampling measurements. A methodology was also developed for the computer generation of representative particle structures based on their mathematical description, enabling 3D MSS. MSS were used to investigate the effects of second-phase particle volume fraction and particle size, loading conditions, and physical domain size of simulation on the ductile spall response of a model two-phase material. MSS results reinforce existing model predictions, where the spall strength metric (SSM) logarithmically decreases with increasing particle volume fraction. While SSM predictions are nearly independent of applied load conditions at lower loading rates, which is consistent with previous studies, loading dependencies are observed at higher loading rates. There is also a logarithmic decrease in SSM for increasing (initial) void size, as well. A model was developed to account for the effects of loading rate, particle size, matrix sound-speed, and, in the NDI-specific case, the probabilistic particle volume fraction model. Small-scale spall experiments were designed and executed for the purpose of validating closely-coupled 3D MSS. While the spall strength is nearly independent of specimen thickness, the fragment morphology varies widely. Detailed MSS demonstrate that the interactions between the tensile release waves are altered by specimen thickness and that these interactions are primarily responsible for fragment formation. MSS also provided insights on the regional amplification of damage, which enables the development of predictive void evolution models.« less
Vertical Graphene Growth on SiO Microparticles for Stable Lithium Ion Battery Anodes.
Shi, Liurong; Pang, Chunlei; Chen, Shulin; Wang, Mingzhan; Wang, Kexin; Tan, Zhenjun; Gao, Peng; Ren, Jianguo; Huang, Youyuan; Peng, Hailin; Liu, Zhongfan
2017-06-14
Silicon-based materials are considered as strong candidates to next-generation lithium ion battery anodes because of their ultrahigh specific capacities. However, the pulverization and delamination of electrochemical active materials originated from the huge volume expansion (>300%) of silicon during the lithiation process results in rapid capacity fade, especially in high mass loading electrodes. Here we demonstrate that direct chemical vapor deposition (CVD) growth of vertical graphene nanosheets on commercial SiO microparticles can provide a stable conducting network via interconnected vertical graphene encapsulation during lithiation, thus remarkably improving the cycling stability in high mass loading SiO anodes. The vertical graphene encapsulated SiO (d-SiO@vG) anode exhibits a high capacity of 1600 mA h/g and a retention up to 93% after 100 cycles at a high areal mass loading of 1.5 mg/cm 2 . Furthermore, 5 wt % d-SiO@vG as additives increased the energy density of traditional graphite/NCA 18650 cell by ∼15%. We believe that the results strongly imply the important role of CVD-grown vertical graphene encapsulation in promoting the commercial application of silicon-based anodes.
Recent advances in high-pressure freezing: equipment- and specimen-loading methods.
McDonald, Kent L; Morphew, Mary; Verkade, Paul; Müller-Reichert, Thomas
2007-01-01
This chapter is an update of material first published by McDonald in the first volume of this book. Here, we discuss the improvements in the technology and the methodology of high-pressure freezing (HPF) since that article was published. First, we cover the latest innovation in HPF, the Leica EM PACT2. This machine differs significantly from the BAL-TEC HPM 010 high-pressure freezer, which was the main subject of the former chapter. The EM PACT2 is a smaller, portable machine and has an optional attachment, the Rapid Transfer System (RTS). This RTS permits easy and reproducible loading of the sample and allows one to do correlative light and electron microscopy with high time resolution. We also place more emphasis in this article on the details of specimen loading for HPF, which is considered the most critical phase of the whole process. Detailed procedures are described for how to high-pressure freeze cells in suspension, cells attached to substrates, tissue samples, or whole organisms smaller than 300 microm, and tissues or organisms greater than 300 microm in size. We finish the article with a brief discussion of freeze substitution and recommend some sample protocols for this procedure.
Markovic, Stacey; Belz, Jodi; Kumar, Rajiv; Cormack, Robert A; Sridhar, Srinivas; Niedre, Mark
2016-01-01
Drug loaded implants are a new, versatile technology platform to deliver a localized payload of drugs for various disease models. One example is the implantable nanoplatform for chemo-radiation therapy where inert brachytherapy spacers are replaced by spacers doped with nanoparticles (NPs) loaded with chemotherapeutics and placed directly at the disease site for long-term localized drug delivery. However, it is difficult to directly validate and optimize the diffusion of these doped NPs in in vivo systems. To better study this drug release and diffusion, we developed a custom macroscopic fluorescence imaging system to visualize and quantify fluorescent NP diffusion from spacers in vivo. To validate the platform, we studied the release of free fluorophores, and 30 nm and 200 nm NPs conjugated with the same fluorophores as a model drug, in agar gel phantoms in vitro and in mice in vivo. Our data verified that the diffusion volume was NP size-dependent in all cases. Our near-infrared imaging system provides a method by which NP diffusion from implantable nanoplatform for chemo-radiation therapy spacers can be systematically optimized (eg, particle size or charge) thereby improving treatment efficacy of the platform.
Thermo-mechanical properties of high aspect ratio silica nanofiber filled epoxy composites
NASA Astrophysics Data System (ADS)
Ren, Liyun
The optimization of thermo-mechanical properties of polymer composites at low filler loadings is of great interest in both engineering and scientific fields. There have been several studies on high aspect ratio fillers as novel reinforcement phase for polymeric materials. However, facile synthesis method of high aspect ratio nanofillers is limited. In this study, a scalable synthesis method of high aspect ratio silica nanofibers is going to be presented. I will also demonstrate that the inclusion of high aspect ratio silica nanofibers in epoxy results in a significant improvement of epoxy thermo-mechanical properties at low filler loadings. With silica nanofiber concentration of 2.8% by volume, the Young's modulus, ultimate tensile strength and fracture toughness of epoxy increased ~23, ~28 and ~50%, respectively, compared to unfilled epoxy. At silica nanofiber volume concentration of 8.77%, the thermal expansion coefficient decreased by ˜40% and the thermal conductivity was improved by ˜95% at room temperature. In the current study, the influence of nano-sized silica filler aspect ratio on mechanical and thermal behavior of epoxy nanocomposites were studied by comparing silica nanofibers to spherical silica nanoparticles (with aspect ratio of one) at various filler loadings. The significant reinforcement of composite stiffness is attributed to the variation of the local stress state in epoxy due to the high aspect ratio of the silica nanofiber and the introduction of a tremendous amount of interfacial area between the nanofillers and the epoxy matrix. The fracture mechanisms of silica nanofiber filled epoxy were also investigated. The existence of high aspect ratio silica nanofiber promotes fracture energy dissipation by crack deflection, crack pinning as well as debonding with fiber pull-out leading to enhanced fracture toughness. High aspect ratio fillers also provide significant reduction of photon scattering due to formation of a continuous fiber network within the composite. The resulting silica nanofiber filled epoxy would be widely applicable as underfill and encapsulant in advanced electronic packaging industry because of its electrically insulating, low cost and ease of processability.
NASA Astrophysics Data System (ADS)
Bharath, J.; Joladarashi, Sharnappa; Biradar, Srikumar; Kumar, P. Naveen
2018-04-01
Interply hybrid laminates contain plies made of two or more different composite systems. Hybrid composites have unique features that can be used to meet specified design requirements in a more cost-effective way than nonhybrid composites. They offer many advantages over conventional composites including balanced strength and stiffness, enhanced bending and membrane mechanical properties, balanced thermal distortion stability, improved fatigue/impact resistance, improved fracture toughness and crack arresting properties, reduced weight and cost. In this paper an interply hybrid laminate composite containing Cenosphere reinforced polymer composite core and glass fiber reinforced polymer composite skin is analysied and effect of volume fraction of filler on frequency and load v/s deflection of hybrid composite are studied. Cenosphere reinforced polymer composite has increased specific strength, specific stiffness, specific density, savings in cost and weight. Glass fiber reinforced polymer composite has higher torsional rigidity when compared to metals. These laminate composites are fabricated to meet several structural applications and hence there is a need to study their vibration and deflection properties. Experimental investigation starts with fabrication of interply hybrid composite with cores of cenosphere reinforced epoxy composite volume fractions of CE 15, CE 25, CE15_UC as per ASTM E756-05C, and glasss fiber reinforced epoxy skin, cast product of required dimension by selecting glass fibre of proper thickness which is currently 0.25mm E-glass bidirectional woven glass fabric having density 2500kg/m3, in standard from cast parts of size 230mmX230mmX5mm in an Aluminum mould. Modal analysis of cantilever beam is performed to study the variation of natural frequency with strain gauge and the commercially available Lab-VIEW software and deflection in each of the cases by optical Laser Displacement Measurement Sensor to perform Load versus Deflection Analysis. Young's Modulus values obtained from deflection equation of cantilever beam with different respective load versus deflection values are compared and validated with value obtained using first mode of natural frequency equation of cantilever beam.
Krüger, Antonio; Baroud, Gamal; Noriega, David; Figiel, Jens; Dorschel, Christine; Ruchholtz, Steffen; Oberkircher, Ludwig
2013-08-01
Two different procedures, used for percutaneous augmentation of vertebral compression fractures were compared, with respect to height restoration and maintenance after cyclic loading. Additionally the impact of the cement volume used was investigated. Wedge compression fractures were created in 36 human cadavaric vertebrae (T10-L3). Twenty-seven vertebrae were treated with the SpineJack® with different cement volumes (maximum, intermediate, and no cement), and 9 vertebrae were treated with Balloon Kyphoplasty. Vertebral heights were measured pre- and postfracture as well as after treatment and loading. Cyclic loading was performed with 10,000cycles (1Hz, 100-600N). The average anterior height after restoration was 85.56% for Kyphoplasty; 96.20% for SpineJack® no cement; 93.44% for SpineJack® maximum and 96% for the SpineJack® intermediate group. The average central height after restoration was 93.89% for Kyphoplasty; 100.20% for SpineJack® no cement; 99.56% for SpineJack® maximum and 101.13% for the SpineJack® intermediate group. The average anterior height after cyclic loading was 85.33 % for Kyphoplasty; 87.30% in the SpineJack® no cement, 92% in the SpineJack® maximum and 87% in the SpineJack® intermediate group. The average central height after cyclic loading was 92% for Kyphoplasty; 93.80% in the SpineJack® no cement; 98.56% in the SpineJack® maximum and 94.25% in the SpineJack® intermediate group. Height restoration was significantly better for the SpineJack® group compared to Kyphoplasty. Height maintenance was dependent on the cement volume used. The group with the SpineJack® without cement nevertheless showed better results in height maintenance, yet the statistical significance could not be demonstrated. Copyright © 2013 Elsevier Ltd. All rights reserved.
Accuracy of tidal volume delivered by home mechanical ventilation during mouthpiece ventilation
Prigent, Helene; Falaize, Line; Leroux, Karl; Santos, Dante; Vaugier, Isabelle; Orlikowski, David; Lofaso, Frederic
2016-01-01
The aim of our study was to evaluate efficacy and reliability of currently available ventilators for mouthpiece ventilation (MPV). Five life-support home ventilators were assessed in a bench test using different settings simulating the specificities of MPV, such as intermittent circuit disconnection and presence of continuous leaks. The intermittent disconnection of the circuit caused relevant swings in the delivered tidal volume (VT), showing a VT overshoot during the disconnection periods and a VT decrease when the interface was reconnected to the test lung. The five ventilators showed substantial differences in the number of respiratory cycles necessary to reach a stable VT in the volume-controlled setting, ranging from 1.3 ± 0.6 to 7.3 ± 1.2 cycles. These differences were less accentuated in the volume-assisted setting (MPV-dedicated mode, when available). Our data show large differences in the capacity of the different ventilators to deal with the rapidly changing respiratory load features that characterize MPV, which can be further accentuated according to the used ventilator setting. The dedicated MPV modes allow improvement in the performance of ventilators only in some defined situations. This has practical consequences for the choice of the ventilator to be used for MPV in a specific patient. PMID:27146811
[Objectification of the training effect of sports therapy for wheelchair users].
Koch, I; Schlegel, M; Pirrwitz, A; Jaschke, B; Schlegel, K
1983-12-01
The effects of an additional six-weeks training program were investigated ergometrically and in practice in 10 paraplegics. In order to develop stamina, strength and coordinative abilities, the load components were varied by increasing training frequency, expanding load range and increasing stimuli density. It was possible to show a significant increase in the general physical capacity. The performance parameters of paraplegics were compared with those of wheelchair-bound sports competitors and able-bodied persons. It was possible to improve the capacity of skeletal muscles and bring it closer to that of competitive athletes and able-bodied persons. Trained paraplegics as well as competitive athletes both display to the same extent a conspicuously poorer cardiovascular capacity in relation to able-bodied persons. The reason for this is believed to lie in the extensive muscular and vascular deficiency due to the particular disablement and the poorer venous return resulting from the latter. It points to a reduced overall blood volume and a relatively small heart volume. These investigations are being continued. The findings of sports medicine necessarily require that continuous training take place with relatively high intensity for the purpose of producing a circulatory effect. On the other hand, a basic stamina training must ensure that the indicated capacity reserves of skeletal muscles are developed. The multifaceted possibilities for training within the framework of sport for the disabled are presented.
Tandukar, M; Uemura, S; Ohashi, A; Harada, H
2006-01-01
A "fourth generation" down-flow hanging sponge (DHS) Reactor has been developed and proposed as an improved variant of post-treatment system for UASB treating domestic wastewater. This paper evaluates the potential of the proposed combination of UASB and DHS as a sewage treatment system, especially for developing countries. A pilot-scale UASB (1.15 m3) and DHS (0.38 m3; volume of sponge) was installed in a municipal sewage treatment site and constantly monitored for 2 years. UASB was operated at an HRT of 6 h corresponding to an organic load of 2.15 kg-COD/m3 per day. Subsequently, the organic load in DHS was 2.35 kg-COD/m3 per day, operated at an HRT of 2 h. Organic removal by the whole system was satisfactory, accomplishing 96% of unfiltered BOD removal and 91% of unfiltered COD removal. However, nitrification decreased from 56% during the startup period to 28% afterwards. Investigation on DHS sludge was made by quantifying it and evaluating oxygen uptake rates with various substrates. Average concentration of trapped biomass was 26 g-VSS/L of sponge volume, increasing the SRT of the system to 100-125 d. Removal of coliforms obtained was 3-4 log10 with the final count of 10(3) to 10(4) MPN/100 ml in DHS effluent.
NASA Astrophysics Data System (ADS)
Ren, Siming; Huang, Jinxia; Cui, Mingjun; Pu, Jibin; Wang, Liping
2017-04-01
With the development of surface treatment technology, an increasing number of bearings, seals, dynamic friction drive or even biomedical devices involve a textured surface to improve lubrication and anti-wear. The present investigation has been conducted in order to evaluate the friction and wear behaviours of textured polyaryl-ether-ether-ketone (PEEK) coated with a graphite-like carbon (GLC) film sliding against stainless steel pin in biological medium. Compared with pure PEEK, the PEEK coated with GLC film shows excellent tribological performance with a low friction of 0.08 and long lifetime (wear volumes are about 3.78 × 10-4 mm3 for un-textured one and 2.60 × 10-4 mm3 for textured GLC film after 36,000 s of sliding) under physiological saline solution. In particular, the GLC film with appropriate dimple area density is effective to improve friction reduction and wear resistance properties of PEEK substrate under biological solution, which is attributed to the entrapment of wear debris in the dimples to inhibit the graphitization and the fluid dynamic pressure effect derived from the texture surface to increase the thickness in elastohydrodynamic lubrication (EHL) film during sliding motions. Moreover, the friction coefficient of GLC film under physiological saline solution decreases with the increase in the applied load. With the increasing applied load, the texture surface is responsible for accounting the improved wear resistance and a much lower graphitization of the GLC film during whole test.
Li, Dongya; Wan, Jinquan; Ma, Yongwen; Wang, Yan; Huang, Mingzhi; Chen, Yangmei
2015-01-01
Fast urbanization and industrialization in developing countries result in significant stormwater runoff pollution, due to drastic changes in land-use, from rural to urban. A three-year study on the stormwater runoff pollutant loading distributions of industrial, parking lot and mixed commercial and residential catchments was conducted in the Tongsha reservoir watershed of Dongguan city, a typical, rapidly industrialized urban area in China. This study presents the changes in concentration during rainfall events, event mean concentrations (EMCs) and event pollution loads per unit area (EPLs). The first flush criterion, namely the mass first flush ratio (MFFn), was used to identify the first flush effects. The impacts of rainfall and catchment characterization on EMCs and pollutant loads percentage transported by the first 40% of runoff volume (FF40) were evaluated. The results indicated that the pollutant wash-off process of runoff during the rainfall events has significant temporal and spatial variations. The mean rainfall intensity (I), the impervious rate (IMR) and max 5-min intensity (Imax5) are the critical parameters of EMCs, while Imax5, antecedent dry days (ADD) and rainfall depth (RD) are the critical parameters of FF40. Intercepting the first 40% of runoff volume can remove 55% of TSS load, 53% of COD load, 58% of TN load, and 61% of TP load, respectively, according to all the storm events. These results may be helpful in mitigating stormwater runoff pollution for many other urban areas in developing countries.
Estimation of Local Bone Loads for the Volume of Interest.
Kim, Jung Jin; Kim, Youkyung; Jang, In Gwun
2016-07-01
Computational bone remodeling simulations have recently received significant attention with the aid of state-of-the-art high-resolution imaging modalities. They have been performed using localized finite element (FE) models rather than full FE models due to the excessive computational costs of full FE models. However, these localized bone remodeling simulations remain to be investigated in more depth. In particular, applying simplified loading conditions (e.g., uniform and unidirectional loads) to localized FE models have a severe limitation in a reliable subject-specific assessment. In order to effectively determine the physiological local bone loads for the volume of interest (VOI), this paper proposes a novel method of estimating the local loads when the global musculoskeletal loads are given. The proposed method is verified for the three VOI in a proximal femur in terms of force equilibrium, displacement field, and strain energy density (SED) distribution. The effect of the global load deviation on the local load estimation is also investigated by perturbing a hip joint contact force (HCF) in the femoral head. Deviation in force magnitude exhibits the greatest absolute changes in a SED distribution due to its own greatest deviation, whereas angular deviation perpendicular to a HCF provides the greatest relative change. With further in vivo force measurements and high-resolution clinical imaging modalities, the proposed method will contribute to the development of reliable patient-specific localized FE models, which can provide enhanced computational efficiency for iterative computing processes such as bone remodeling simulations.
Li, Dongya; Wan, Jinquan; Ma, Yongwen; Wang, Yan; Huang, Mingzhi; Chen, Yangmei
2015-01-01
Fast urbanization and industrialization in developing countries result in significant stormwater runoff pollution, due to drastic changes in land-use, from rural to urban. A three-year study on the stormwater runoff pollutant loading distributions of industrial, parking lot and mixed commercial and residential catchments was conducted in the Tongsha reservoir watershed of Dongguan city, a typical, rapidly industrialized urban area in China. This study presents the changes in concentration during rainfall events, event mean concentrations (EMCs) and event pollution loads per unit area (EPLs). The first flush criterion, namely the mass first flush ratio (MFFn), was used to identify the first flush effects. The impacts of rainfall and catchment characterization on EMCs and pollutant loads percentage transported by the first 40% of runoff volume (FF40) were evaluated. The results indicated that the pollutant wash-off process of runoff during the rainfall events has significant temporal and spatial variations. The mean rainfall intensity (I), the impervious rate (IMR) and max 5-min intensity (Imax5) are the critical parameters of EMCs, while Imax5, antecedent dry days (ADD) and rainfall depth (RD) are the critical parameters of FF40. Intercepting the first 40% of runoff volume can remove 55% of TSS load, 53% of COD load, 58% of TN load, and 61% of TP load, respectively, according to all the storm events. These results may be helpful in mitigating stormwater runoff pollution for many other urban areas in developing countries. PMID:25774922
Accelerated and enhanced bone formation on novel simvastatin-loaded porous titanium oxide surfaces.
Nyan, Myat; Hao, Jia; Miyahara, Takayuki; Noritake, Kanako; Rodriguez, Reena; Kasugai, Shohei
2014-10-01
With increasing application of dental implants in poor-quality bones, the need for implant surfaces ensuring accelerated osseointegration and enhanced peri-implant bone regeneration is increased. A study was performed to evaluate the osseointegration and bone formation on novel simvastatin-loaded porous titanium oxide surface. Titanium screws were treated by micro-arc oxidation to form porous oxide surface and 25 or 50 μg of simvastatin was loaded. The nontreated control, micro-arc oxidized, and simvastatin-loaded titanium screws were surgically implanted into the proximal tibia of 16-week-old male Wistar rats (n = 36). Peri-implant bone volume, bone-implant contact, and mineral apposition rates were measured at 2 and 4 weeks. Data were analyzed by one-way analysis of variance followed by Tukey's post hoc test. New bone was formed directly on the implant surface in the bone marrow cavity in simvastatin-loaded groups since 2 weeks. Bone-implant contact values were significantly higher in simvastatin-loaded groups than control and micro-arc oxidized groups at both time points (p < .05). Peri-implant bone volume and mineral apposition rate of simvastatin-loaded groups were significantly higher than control and micro-arc oxidized groups at 2 weeks (p < .05). These data suggested that simvastatin-loaded porous titanium oxide surface provides faster osseointegration and peri-implant bone formation and it would be potentially applicable in poor-quality bones. © 2013 Wiley Periodicals, Inc.
Kanda, Hirotsugu; Hirasaki, Yuji; Iida, Takafumi; Kanao-Kanda, Megumi; Toyama, Yuki; Kunisawa, Takayuki; Iwasaki, Hiroshi
2015-01-01
Purpose The aim of this study was to investigate fluid loading-induced changes in left ventricular end-diastolic volume (LVEDV) and stroke volume variability (SVV) in patients with end-stage renal disease (ESRD) using real-time three-dimensional transesophageal echocardiography and the Vigileo-FloTrac system. Patients and methods After obtaining ethics committee approval and informed consent, 28 patients undergoing peripheral vascular procedures were studied. Fourteen patients with ESRD on hemodialysis (HD) were assigned to the HD group and 14 patients without ESRD were assigned to the control group. Institutional standardized general anesthesia was provided in both groups. SVV was measured using the Vigileo-FloTrac system. Simultaneously, a full-volume three-dimensional transesophageal echocardiography dataset was acquired to measure LVEDV, left ventricular end-systolic volume, and left ventricular ejection fraction. Measurements were obtained before and after loading 500 mL hydroxyethyl starch over 30 minutes in both groups. Results In the control group, intravenous colloid infusion was associated with a significant decrease in SVV (13.8%±2.6% to 6.5%±2.6%, P<0.001) and a significant increase in LVEDV (83.6±23.4 mL to 96.1±28.8 mL, P<0.001). While SVV significantly decreased after infusion in the HD group (16.2%±6.0% to 6.2%±2.8%, P<0.001), there was no significant change in LVEDV. Conclusion Our preliminary data suggest that fluid responsiveness can be assessed not by LVEDV but also by SVV due to underlying cardiovascular pathophysiology in patients with ESRD. PMID:26527879
1982-04-01
the gas particulate filter system MODULE L: OPERATE THE M250 BRENADE LAUNCHER 1L. Load the grenade launcher 2L. Unload the grenade launcher MODULE M...k Initia~ng Stimulus: Thei (11rdLr from the T.C. to load the M250 .p grenade launcher. J ACTION Loader will: 1L. Load the grenade launcher. 2L. Unload
DOT National Transportation Integrated Search
1998-05-01
In Order to determine equivalent static pressures for fatigue loads on cantilevered highway support structures a : cantilevered Variable Message Sign(VMS) located along Interstate westbound at mile marker 48.5 in northern : New Jersey was continuousl...
DOT National Transportation Integrated Search
1998-04-01
In Order to determine equivalent static pressures for fatigue loads on cantilevered highway support structures a : cantilevered Variable Message Sign(VMS) located along Interstate westbound at mile marker 48.5 in northern : New Jersey was continuousl...
Harano, Ken-Ichi; Nakamura, Jun
2016-06-01
When honeybee foragers leave the nest, they receive nectar from nest mates for use as fuel for flight or as binding material to build pollen loads. We examined whether the concentration of nectar carried from the nest changes with the need for sugar. We found that pollen foragers had more-concentrated nectar (61.8 %) than nectar foragers (43.8 %). Further analysis revealed that the sugar concentration of the crop load increased significantly with waggle duration, an indicator of food-source distance, in both groups of foragers. Crop volume also increased with waggle duration. The results support our argument that foragers use concentrated nectar when the need for sugar is high and suggest that they precisely adjust the amount of sugar in the crop by altering both volume and nectar concentrations. We also investigated the impact of the area where foragers receive nectar on the crop load concentration at departure. Although nectar and pollen foragers tend to load nectar at different areas in the nest, area did not have a significant effect on crop load concentration. Departing foragers showed an average of 2.2 momentary (<1 s) begging trophallactic contacts before leaving the nest. They might be rejecting nectar with inappropriate concentrations during these contacts.
Alpha Air Sample Counting Efficiency Versus Dust Loading: Evaluation of a Large Data Set
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hogue, M. G.; Gause-Lott, S. M.; Owensby, B. N.
Dust loading on air sample filters is known to cause a loss of efficiency for direct counting of alpha activity on the filters, but the amount of dust loading and the correction factor needed to account for attenuated alpha particles is difficult to assess. In this paper, correction factors are developed by statistical analysis of a large database of air sample results for a uranium and plutonium processing facility at the Savannah River Site. As is typically the case, dust-loading data is not directly available, but sample volume is found to be a reasonable proxy measure; the amount of dustmore » loading is inferred by a combination of the derived correction factors and a Monte Carlo model. The technique compares the distribution of activity ratios [beta/(beta + alpha)] by volume and applies a range of correction factors on the raw alpha count rate. The best-fit results with this method are compared with MCNP modeling of activity uniformly deposited in the dust and analytical laboratory results of digested filters. Finally, a linear fit is proposed to evenly-deposited alpha activity collected on filters with dust loading over a range of about 2 mg cm -2 to 1,000 mg cm -2.« less
Alpha Air Sample Counting Efficiency Versus Dust Loading: Evaluation of a Large Data Set
Hogue, M. G.; Gause-Lott, S. M.; Owensby, B. N.; ...
2018-03-03
Dust loading on air sample filters is known to cause a loss of efficiency for direct counting of alpha activity on the filters, but the amount of dust loading and the correction factor needed to account for attenuated alpha particles is difficult to assess. In this paper, correction factors are developed by statistical analysis of a large database of air sample results for a uranium and plutonium processing facility at the Savannah River Site. As is typically the case, dust-loading data is not directly available, but sample volume is found to be a reasonable proxy measure; the amount of dustmore » loading is inferred by a combination of the derived correction factors and a Monte Carlo model. The technique compares the distribution of activity ratios [beta/(beta + alpha)] by volume and applies a range of correction factors on the raw alpha count rate. The best-fit results with this method are compared with MCNP modeling of activity uniformly deposited in the dust and analytical laboratory results of digested filters. Finally, a linear fit is proposed to evenly-deposited alpha activity collected on filters with dust loading over a range of about 2 mg cm -2 to 1,000 mg cm -2.« less
Stormwater Management in Urban Areas of South Korea
NASA Astrophysics Data System (ADS)
Memon, S. A.; Raja, O. S.; Kandhro, B.; Salim, I.; Lee, C.-H.
2018-03-01
In early start of monitoring, a pathway for high runoff volumes and peak flows during rainfall period towards downstream of a waterbody was provided from storm sewer network, but later on it was realized to deal with stormwater quantity and quality to develop new approaches and management techniques. In early 90’s NPS pollution issue was highlighted in korea, but only limited studies were conceded out up to the year 2000, however reasonably huge numbers of studies were directed for environmental science. After the recognition of NPS, Ministry of Environment in 1998 has introduced NPS as a major contributor in total maximum daily load management system (TPLMS) and waterbodies impairment, which is one of the guidelines of widespread water improvement strategies for main rivers. It contains a number of agendas that intention is to improve, maintain or restore the water quality in national water systems. It can be potted that stormwater management has evolved during the decades as of understanding with its impacts and it has been evolved from focusing on flood control to now incorporating control for volume, erosion and water quality, which is theoretically based on a watershed concept.
Transceiver-Phased Arrays for Human Brain Studies at 7 T
2013-01-01
The paper describes technological advances in high-field (7 T) transceiver-phased arrays developed for magnetic resonance imaging of the human brain. The first part of this work describes an 8-element inductively decoupled split elliptical transceiver-phased array with selectable geometry, which provides an easy and efficient way of compensating for changes in mutual inductive coupling associated with difference in loading due to variability in head shape and size. The second part of the work describes a double-row 16-element (2 × 8) transceiver array to extend the homogeneous transmit B1 profile in the longitudinal direction. Multiplexing eight transmit channels between the two rows of the array provides homogeneous excitation over the entire volume. The final section describes design and construction of a double-tuned 31P/1H 16-element (8 at each frequency) array. The array improves transmission efficiency and B1 homogeneity at 1H frequency in comparison with 31P/1H quadrature transverse electromagnetic volume coil. For 31P studies, the array also improves transmission efficiency (38%), signal-to-noise ratio (SNR) for central brain locations (20%) and provides substantially greater SNR (up to 400%) for peripheral locations. PMID:23516332
NASA Astrophysics Data System (ADS)
Rakhmangulov, Aleksandr; Muravev, Dmitri; Mishkurov, Pavel
2016-11-01
The issue of operative data reception on location and movement of railcars is significant the constantly growing requirements of the provision of timely and safe transportation. The technical solution for efficiency improvement of data collection on rail rolling stock is the implementation of an identification system. Nowadays, there are several such systems, distinguished in working principle. In the authors' opinion, the most promising for rail transportation is the RFID technology, proposing the equipping of the railway tracks by the stationary points of data reading (RFID readers) from the onboard sensors on the railcars. However, regardless of a specific type and manufacturer of these systems, their implementation is affiliated with the significant financing costs for large, industrial, rail transport systems, owning the extensive network of special railway tracks with a large number of stations and loading areas. To reduce the investment costs for creation, the identification system of rolling stock on the special railway tracks of industrial enterprises has developed the method based on the idea of priority installation of the RFID readers on railway hauls, where rail traffic volumes are uneven in structure and power, parameters of which is difficult or impossible to predict on the basis of existing data in an information system. To select the optimal locations of RFID readers, the mathematical model of the staged installation of such readers has developed depending on the non-uniformity value of rail traffic volumes, passing through the specific railway hauls. As a result of that approach, installation of the numerous RFID readers at all station tracks and loading areas of industrial railway stations might be not necessary,which reduces the total cost of the rolling stock identification and the implementation of the method for optimal management of transportation process.
Sloots, Cornelius E J; Felt-Bersma, Richelle J F; Meuwissen, Stephan G M; Kuipers, Ernst J
2003-03-01
The gastrocolonic response consists of a prompt increase in colonic tone after a meal. With a barostat and a high compliant air-filled bag, it is possible to measure rectal tone by recording changes in volume at a constant intrabag pressure. The aim of this study was to evaluate the gastrorectal response in males and females as well as the effect of different caloric loads on the gastrorectal response. In 33 volunteers a barostat procedure during basal conditions and after a 600-kcal meal was performed. In 26 volunteers the procedure was repeated with a 1000-kcal meal. A meal response was defined as a decrease in volume of more than 10%. Phasic volume events (PVE) were defined as a 10% decrease in volume of 15-60 sec duration. After a 600-kcal meal, the decrease in volume after 1 hr was 28 +/- 7% (mean +/- SEM, P < 0.001). A meal response was found in 64% of the subjects. Parous females had a diminished meal response compared with nulliparous females (2 +/- 5% and 48 +/- 11%, P < 0.001). After the 600-kcal meal, PVEs increased from 3 to 10/hr (P = 0.001). In the 26 subjects, volume decrease was 40 +/- 9% after the 1000-kcal meal and 20 +/- 7% after the 600-kcal meal (P = 0.28). In the high-calorie meal, 18 subjects (69%) had a response versus 14 (54%) in the low-calorie meal (NS). Enhancing the caloric load of the meal did not increase the amounts of PVEs. In conclusion, a gastrorectal response occurs in 64% of the healthy subjects after a 600-kcal meal. The gastrorectal response can be measured to a similar extent in men and nulliparous women; however, the response is significantly impaired in parous women. This is possibly due to neurogenic damage during childbirth. Increasing the caloric load did not increase the gastrorectal response. Therefore, to study gastrorectal meal response with the barostat, a meal of 600-kcal is sufficient and a correction for parity should be made when results are compared.
High speed turboprop aeroacoustic study (single rotation). Volume 1: Model development
NASA Technical Reports Server (NTRS)
Whitfield, C. E.; Gliebe, P. R.; Mani, R.; Mungur, P.
1989-01-01
A frequency-domain noncompact-source theory for the steady loading and volume-displacement (thickness) noise of high speed propellers has been developed and programmed. Both near field and far field effects have been considered. The code utilizes blade surface pressure distributions obtained from three-dimensional nonlinear aerodynamic flow field analysis programs as input for evaluating the steady loading noise. Simplified mathematical models of the velocity fields induced at the propeller disk by nearby wing and fuselage surfaces and by angle-of-attack operation have been developed to provide estimates of the unsteady loading imposed on the propeller by these potential field type interactions. These unsteady blade loadings have been coupled to a chordwise compact propeller unsteady loading noise model to provide predictions of unsteady loading noise caused by these installation effects. Finally, an analysis to estimate the corrections to be applied to the free-field noise predictions in order to arrive at the measurable fuselage sound pressure levels has been formulated and programmed. This analysis considers the effects of fuselage surface reflection and diffraction together with surface boundary layer refraction. The steady loading and thickness model and the unsteady loading model have been verified using NASA-supplied data for the SR-2 and SR-3 model propfans. In addition, the steady loading and thickness model has been compared with data from the SR-6 model propfan. These theoretical models have been employed in the evaluation of the SR-7 powered Gulfstream aircraft in terms of noise characteristics at representative takeoff, cruise, and approach operating conditions. In all cases, agreement between theory and experiment is encouraging.
Dynamic Loading Experiments In The Massive Exoplanet Regime
NASA Astrophysics Data System (ADS)
Swift, Damian; Hicks, D.; Eggert, J.; Milathianaki, D.; Rothman, S.; Rosen, P.; Collins, G.
2010-10-01
Exoplanets have been detected with masses and radii suggesting rocky and hydrogen-rich compositions up to 10 times the mass of the Earth and Jupiter, in similar volumes. The formation and evolution of such bodies, and the distribution and properties of brown dwarfs which are an important component of galactic structures, depend on the equation of state (EOS) and chemistry of constituent matter at pressures 2-200 TPa for Fe-rich and hydrogenic matter respectively. Electronic structure calculations can predict these properties, but experimental measurements are crucial to investigate their accuracy in this regime. Hohlraum-driven configurations at the National Ignition Facility can induce planar ramp or shock loading to 30 TPa, over volumes sufficient to enable percent accuracy in EOS measurements. We are designing configurations using convergent ramp and shock loading for EOS experiments to pressures in excess of 100 TPa.
Influence of Fe loadings on desulfurization performance of activated carbon treated by nitric acid.
Guo, Jia-Xiu; Shu, Song; Liu, Xiao-Li; Wang, Xue-Jiao; Yin, Hua-Qiang; Chu, Ying-Hao
2017-02-01
A series of Fe supported on activated carbon treated by nitric acid are prepared by incipient wetness impregnation with ultrasonic assistance and characterized by N 2 adsorption-desorption, X-ray diffraction, Fourier transform infrared spectrum and X-ray photoelectron spectroscopy. It has shown that Fe loadings significantly influence the desulfurization activity. Fe/NAC5 exhibits an excellent removal ability of SO 2 , corresponding to breakthrough sulfur capacity of 323 mg/g. With the increasing Fe loadings, the generated Fe 3 O 4 and Fe 2 SiO 4 increase, but Fe 2 (SO 4 ) 3 is observed after desulfurization. Fe/NAC1 has a Brunauer-Emmett-Teller (BET) surface area of 925 m 2 /g with micropore surface area of 843 m 2 /g and total pore volume of 0.562 cm 3 /g including a micropore volume of 0.300 cm 3 /g. With the increasing Fe loadings, BET surface area and micropore volume decrease, and those of Fe/NAC10 decrease to 706 m 2 /g and 0.249 cm 3 /g. The Fe loadings influence the pore-size distribution, and SO 2 adsorption mainly reacts in micropores at about 0.70 nm. C=O and C-O are observed for all samples before SO 2 removal. After desulfurization, the C-O stretching is still detected, but the C=O stretching vibration of carbonyl groups disappears. The stretching of S-O or S=O in sulfate is observed at 592 cm -1 for the used sample, proving that the existence of [Formula: see text].
Wu, Chengtie; Miron, Richard; Sculean, Anton; Kaskel, Stefan; Doert, Thomas; Schulze, Renate; Zhang, Yufeng
2011-10-01
Boron is one of the trace elements in the human body which plays an important role in bone growth. Porous mesopore bioactive glass (MBG) scaffolds are proposed as potential bone regeneration materials due to their excellent bioactivity and drug-delivery ability. The aims of the present study were to develop boron-containing MBG (B-MBG) scaffolds by sol-gel method and to evaluate the effect of boron on the physiochemistry of B-MBG scaffolds and the response of osteoblasts to these scaffolds. Furthermore, the effect of dexamethasone (DEX) delivery in B-MBG scaffold system was investigated on the proliferation, differentiation and bone-related gene expression of osteoblasts. The composition, microstructure and mesopore properties (specific surface area, nano-pore volume and nano-pore distribution) of B-MBG scaffolds have been characterized. The effect of boron contents and large-pore porosity on the loading and release of DEX in B-MBG scaffolds were also investigated. The results have shown that the incorporation of boron into MBG scaffolds slightly decreases the specific surface area and pore volume, but maintains well-ordered mesopore structure and high surface area and nano-pore volume compared to non-mesopore bioactive glass. Boron contents in MBG scaffolds did not influence the nano-pore size distribution or the loading and release of DEX. B-MBG scaffolds have the ability to maintain a sustained release of DEX in a long-term span. Incorporating boron into MBG glass scaffolds led to a controllable release of boron ions and significantly improved the proliferation and bone-related gene expression (Col I and Runx2) of osteoblasts. Furthermore, the sustained release of DEX from B-MBG scaffolds significantly enhanced alkaline phosphatase (ALP) activity and gene expressions (Col I, Runx2, ALP and BSP) of osteoblasts. These results suggest that boron plays an important role in enhancing osteoblast proliferation in B-MBG scaffold system and DEX-loaded B-MBG scaffolds show great potential as a release system to enhance osteogenic property for bone tissue engineering application. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.
Design of Large Stone Asphalt Mixes for Low-Volume Roads Using Six-Inch Diameter Marshall Specimens
DOT National Transportation Integrated Search
1991-01-01
Premature rutting of road pavements constructed for hauling coal and logs is common. Although these roads carry low volumes of traffic, they are subjected to heavy and channelized wheel loads. Unfortunately, conventional asphalt mixes containing aggr...
NASA Astrophysics Data System (ADS)
Chue, Ching-Hwei
A method was developed for predicting the behavior of mechanical joints in launch vehicles with particular emphasis placed on how the combined effects of loading, geometry, and materials could be optimized in terms of structure instability and/or integrity. What was considered to be essential is the fluctuation of the volume energy density with time in the structure. The peaks and valleys of the volume energy density function will be associated with failure by fracture and/or yielding while the distance between their local and global stationary values govern the structure instability. The Solid Rocket Booster (SRB) of the space shuttle was analyzed under axisymmetric and non-axisymmetric loadings. A semi-analytical finite element program was developed for solving the case of non-axisymmetric loading. Following a dynamic stress analysis, contours of the volume energy density in the structure were obtained as a function of time. The magnitudes and locations of these stationary values were then calculated locally and globally and related to possible failure by fracture. In the case of axisymmetric flight, the local and global instability behavior do not change appreciably. Fluctuations in the energy density and the dynamic stability length parameter become appreciable when the non-axisymmetric loads are considered. The magnitude of the energy in the shell structure is sensitive to alterations in the gas pressure induced by the solid propellant.
Nootropic effect of meadowsweet (Filipendula vulgaris) extracts.
Shilova, I V; Suslov, N I
2015-03-01
The effects of the extracts of the aboveground parts of Filipendula vulgaris Moench on the behavior and memory of mice after hypoxic injury and their physical performance in the open-field test were studied using the models of hypoxia in a sealed volume, conditioned passive avoidance response (CPAR), and forced swimming with a load. The extracts improved animal resistance to hypoxia, normalized orientation and exploration activities, promoted CPAR retention after hypoxic injury, and increased physical performance. Aqueous extract of meadowsweet had the most pronounced effect that corresponded to the effect of the reference drug piracetam. These effects were probably caused by modulation of hippocampal activity.
Rodríguez-Rosell, David; Franco-Márquez, Felipe; Mora-Custodio, Ricardo; González-Badillo, Juan José
2017-09-01
Rodríguez-Rosell, D, Franco-Márquez, F, Mora-Custodio, R, and González-Badillo, JJ. Effect of high-speed strength training on physical performance in young soccer players of different ages. J Strength Cond Res 31(9): 2498-2508, 2017-The aim of the present study was to compare the effectiveness of low-load, low-volume weight training combined with plyometrics on strength, sprint, and jump performance in soccer players of different ages. Eighty-six soccer players from the same academy were categorized into 3 groups by age (under 13 years, U13, n = 30; under 15, U15, n = 28; and under 17, U17, n = 28) and then randomly assigned into 2 subgroups: a strength training group (STG) and a control group (CG). The strength training program was performed twice a week for 6 weeks and consisted of full squats (load: 45-60% 1 repetition maximum; volume: 3 set of 8-4 repetitions), jumps, and straight line sprint exercises. After training intervention, the STGs showed significant improvements in maximal strength (7.5-54.5%; p < 0.001), jump height (5.7-12.5%; p <0.01-0.001), and sprint time (-3.7 to -1.2%; p ≤0.05-0.001), whereas no significant gains were found for any variable in the CGs. Comparison between experimental groups resulted in a greater magnitude of change for U13 compared with U15 (effect sizes [ES]: 0.10-0.53) and U17 (ES: 0.14-1.41) soccer players in most variables, whereas U15 showed higher improvements in jump and strength parameters than U17 (ES: 0.25-0.90) soccer players. Thus, although our results indicates that a combined weight training and plyometrics program may be effective in eliciting gains in strength, jump, and sprint in soccer players of different ages, the training program used appears to be generally less effective as the age of the soccer players increased. Therefore, it appears that training characteristics (mainly volume, intensity, and type of exercise) should be modified in relation to maturity status and initial strength level.
Susilo, Monica E; Bell, Brett J; Roeder, Blayne A; Voytik-Harbin, Sherry L; Kokini, Klod; Nauman, Eric A
2013-03-01
Mechanical signals are important factors in determining cell fate. Therefore, insights as to how mechanical signals are transferred between the cell and its surrounding three-dimensional collagen fibril network will provide a basis for designing the optimum extracellular matrix (ECM) microenvironment for tissue regeneration. Previously we described a cellular solid model to predict fibril microstructure-mechanical relationships of reconstituted collagen matrices due to unidirectional loads (Acta Biomater 2010;6:1471-86). The model consisted of representative volume elements made up of an interconnected network of flexible struts. The present study extends this work by adapting the model to account for microstructural anisotropy of the collagen fibrils and a biaxial loading environment. The model was calibrated based on uniaxial tensile data and used to predict the equibiaxial tensile stress-stretch relationship. Modifications to the model significantly improved its predictive capacity for equibiaxial loading data. With a comparable fibril length (model 5.9-8μm, measured 7.5μm) and appropriate fibril anisotropy the anisotropic model provides a better representation of the collagen fibril microstructure. Such models are important tools for tissue engineering because they facilitate prediction of microstructure-mechanical relationships for collagen matrices over a wide range of microstructures and provide a framework for predicting cell-ECM interactions. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Shi, Ya-jun; Shi, Jun-hui; Chen, Shi-bin; Yang, Ming
2015-07-01
Based on the demand of nasal drug delivery high drug loadings, using the unique phase transfer of solute, integrating the phospholipid complex preparation and submicron emulsion molding process of Scutellariae Radix extract, the study obtained the preparation of the high drug loadings submicron emulsion of Scutellariae Radix extract. In the study of drug solution dispersion method, the uniformity of drug dispersed as the evaluation index, the traditional mixing method, grinding, homogenate and solute phase transfer technology were investigated, and the solute phase transfer technology was adopted in the last. With the adoption of new technology, the drug loading capacity reached 1.33% (phospholipid complex was 4%). The drug loading capacity was improved significantly. The transfer of solute method and timing were studied as follows,join the oil phase when the volume of phospholipid complex anhydrous ethanol solution remaining 30%, the solute phase transfer was completed with the continued recycling of anhydrous ethanol. After drug dissolved away to oil phase, the preparation technology of colostrum was determined with the evaluation index of emulsion droplet form. The particle size of submicron emulsion, PDI and stability parameters were used as evaluation index, orthogonal methodology were adopted to optimize the submicron emulsion ingredient and main influential factors of high pressure homogenization technology. The optimized preparation technology of Scutellariae Radix extract nasal submicron emulsion is practical and stable.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Location Uniform average permeability 10 (a−c) Machinery Space 85+____ v 35(b) Volume Forward of Machinery Space 95−__ v 35(b) Volume Aft of Machinery Space 95−___ v For each location specified in this table— a=volume below the margin line of all spaces that, in the full load condition, normally contain no cargo...
Code of Federal Regulations, 2013 CFR
2013-10-01
... Location Uniform average permeability 10 (a−c) Machinery Space 85+____ v 35(b) Volume Forward of Machinery Space 95−__ v 35(b) Volume Aft of Machinery Space 95−___ v For each location specified in this table— a=volume below the margin line of all spaces that, in the full load condition, normally contain no cargo...
Code of Federal Regulations, 2014 CFR
2014-10-01
... Location Uniform average permeability 10 (a−c) Machinery Space 85+____ v 35(b) Volume Forward of Machinery Space 95−__ v 35(b) Volume Aft of Machinery Space 95−___ v For each location specified in this table— a=volume below the margin line of all spaces that, in the full load condition, normally contain no cargo...
Code of Federal Regulations, 2012 CFR
2012-10-01
... Location Uniform average permeability 10 (a−c) Machinery Space 85+____ v 35(b) Volume Forward of Machinery Space 95−__ v 35(b) Volume Aft of Machinery Space 95−___ v For each location specified in this table— a=volume below the margin line of all spaces that, in the full load condition, normally contain no cargo...
The adjusting factor method for weight-scaling truckloads of mixed hardwood sawlogs
Edward L. Adams
1976-01-01
A new method of weight-scaling truckloads of mixed hardwood sawlogs systematically adjusts for changes in the weight/volume ratio of logs coming into a sawmill. It uses a conversion factor based on the running average of weight/volume ratios of randomly selected sample loads. A test of the method indicated that over a period of time the weight-scaled volume should...
Assessment of the Uniqueness of Wind Tunnel Strain-Gage Balance Load Predictions
NASA Technical Reports Server (NTRS)
Ulbrich, N.
2016-01-01
A new test was developed to assess the uniqueness of wind tunnel strain-gage balance load predictions that are obtained from regression models of calibration data. The test helps balance users to gain confidence in load predictions of non-traditional balance designs. It also makes it possible to better evaluate load predictions of traditional balances that are not used as originally intended. The test works for both the Iterative and Non-Iterative Methods that are used in the aerospace testing community for the prediction of balance loads. It is based on the hypothesis that the total number of independently applied balance load components must always match the total number of independently measured bridge outputs or bridge output combinations. This hypothesis is supported by a control volume analysis of the inputs and outputs of a strain-gage balance. It is concluded from the control volume analysis that the loads and bridge outputs of a balance calibration data set must separately be tested for linear independence because it cannot always be guaranteed that a linearly independent load component set will result in linearly independent bridge output measurements. Simple linear math models for the loads and bridge outputs in combination with the variance inflation factor are used to test for linear independence. A highly unique and reversible mapping between the applied load component set and the measured bridge output set is guaranteed to exist if the maximum variance inflation factor of both sets is less than the literature recommended threshold of five. Data from the calibration of a six{component force balance is used to illustrate the application of the new test to real-world data.
One approach to developing criteria for nitrogen (N) in coastal waters has been to determine quantitative relationships between N loading and ecological effects (e.g., hypoxia) in coastal estuaries. Although this approach has met with some success, data obtained from field sites ...
DOT National Transportation Integrated Search
2012-03-01
The inadequacy of many existing roads due to rapid growth in traffic volume provides a motivation for exploring alternatives to : existing methods of constructing and rehabilitating roads. The use of geosynthetics to stabilize and reinforce paved and...
High power density microbial fuel cell with flexible 3D graphene-nickel foam as anode
NASA Astrophysics Data System (ADS)
Wang, Hanyu; Wang, Gongming; Ling, Yichuan; Qian, Fang; Song, Yang; Lu, Xihong; Chen, Shaowei; Tong, Yexiang; Li, Yat
2013-10-01
The structure and electrical conductivity of anode play a significant role in the power generation of microbial fuel cells (MFCs). In this study, we developed a three-dimensional (3D) reduced graphene oxide-nickel (denoted as rGO-Ni) foam as an anode for MFC through controlled deposition of rGO sheets onto the nickel foam substrate. The loading amount of rGO sheets and electrode surface area can be controlled by the number of rGO loading cycles. 3D rGO-Ni foam anode provides not only a large accessible surface area for microbial colonization and electron mediators, but also a uniform macro-porous scaffold for effective mass diffusion of the culture medium. Significantly, at a steady state of the power generation, the MFC device with flexible rGO-Ni electrodes produced an optimal volumetric power density of 661 W m-3 calculated based on the volume of anode material, or 27 W m-3 based on the volume of the anode chamber. These values are substantially higher than that of plain nickel foam, and other conventional carbon based electrodes (e.g., carbon cloth, carbon felt, and carbon paper) measured in the same conditions. To our knowledge, this is the highest volumetric power density reported for mL-scale MFC device with a pure strain of Shewanella oneidensis MR-1. We also demonstrated that the MFC device can be operated effectively in a batch-mode at least for a week. These new 3D rGO-Ni electrodes show great promise for improving the power generation of MFC devices.The structure and electrical conductivity of anode play a significant role in the power generation of microbial fuel cells (MFCs). In this study, we developed a three-dimensional (3D) reduced graphene oxide-nickel (denoted as rGO-Ni) foam as an anode for MFC through controlled deposition of rGO sheets onto the nickel foam substrate. The loading amount of rGO sheets and electrode surface area can be controlled by the number of rGO loading cycles. 3D rGO-Ni foam anode provides not only a large accessible surface area for microbial colonization and electron mediators, but also a uniform macro-porous scaffold for effective mass diffusion of the culture medium. Significantly, at a steady state of the power generation, the MFC device with flexible rGO-Ni electrodes produced an optimal volumetric power density of 661 W m-3 calculated based on the volume of anode material, or 27 W m-3 based on the volume of the anode chamber. These values are substantially higher than that of plain nickel foam, and other conventional carbon based electrodes (e.g., carbon cloth, carbon felt, and carbon paper) measured in the same conditions. To our knowledge, this is the highest volumetric power density reported for mL-scale MFC device with a pure strain of Shewanella oneidensis MR-1. We also demonstrated that the MFC device can be operated effectively in a batch-mode at least for a week. These new 3D rGO-Ni electrodes show great promise for improving the power generation of MFC devices. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr03487a
1985-06-01
packed column, with low liquid loading (2. 0 mm ID, 4% liquid phase loading on diatomaceous earth *) 0.3 Medium bore analytical packed column, with...moderate liquid loading (4. 5 mm ID, 8%16 liquid phase loading on diatomaceous earth *) 3.0 -3 * diatomaceous earth density 0.24 gm cm 12 associated with the...hydrocarbon fuels. Certain injector inserts have contained packed chromatographic media, e.g., stationary phases coated onto diatomaceous earth . This type
A displacement pump procedure to load extracts for automated gel permeation chromatography.
Daft, J; Hopper, M; Hensley, D; Sisk, R
1990-01-01
Automated gel permeation chromatography (GPC) effectively separates lipids from pesticides in sample extracts that contain fat. Using a large syringe to load sample extracts manually onto GPC models having 5 mL holding loops is awkward, slow, and potentially hazardous. Loading with a small-volume displacement pump, however, is convenient and fast (ca 1 loop every 20 s). And more importantly, the analyst is not exposed to toxic organic vapors because the loading pump and its connecting lines do not leak in the way that a syringe does.
Cardiopulmonary responses to acute hypoxia, head-down tilt and fluid loading in anesthetized dogs
NASA Technical Reports Server (NTRS)
Loeppky, J. A.; Scotto, P.; Riedel, C.; Avasthi, P.; Koshukosky, V.; Chick, T. W.
1991-01-01
Cardiopulmonary responses to acute hypoxia (HY), fluid loading by saline infusion (FL), and head-down tilt (HD) of mechanically ventilated anesthetized dogs were investigated by measuring thermodynamics and pulmonary gas exchange. It was found that HD decreased the total respiratory compliance both during HY and normoxia (NO) and that the reduction in compliance by FL was twice as large as by HD. Superimposing HD on HY doubled the increase in vascular resistance due to HY alone. In the systemic circulation, HD lowered the resistance to below NO levels. There was a significant positive correlation between the changes in blood volume and in pulmonary artery pressure for experimental transitions, suggesting that a shift in blood volume from systemic to pulmonary circulations and changes in the total blood volume may contribute substantially to these apparent changes in resistance.
NASA Technical Reports Server (NTRS)
Hargens, A. R.; Ballard, R. E.; Boda, W. L.; Ertl, A. C.; Schneider, S. M.; Hutchinson, K. J.; Lee, S. M.; Murthy, G.; Putcha, L.; Watenpaugh, D. E.
1999-01-01
Calculations suggest that exercise in space to date has lacked sufficient loads to maintain musculoskeletal mass. Lower body negative pressure (LBNP) produces a force at the feet equal to the product of the LBNP and body cross-sectional area at the waist. Supine exercise within 50-60 mm Hg LBNP improves tolerance to LBNP and produces forces similar to those occurring during upright posture on Earth. Thus, exercise within LBNP may help prevent deconditioning of astronauts by stressing tissues of the lower body in a manner similar to gravity and also, may provide a safe and effective alternative to centrifugation in terms of cost, mass, volume, and power usage. We hypothesize that supine treadmill exercise during LBNP at one body weight (50-60 mm Hg LBNP) will provide cardiovascular and musculoskeletal loads similar to those experienced while upright in lg. Also, daily supine treadmill running in a LBNP chamber will maintain aerobic fitness, orthostatic tolerance, and musculoskeletal structure and function during bed rest (simulated microgravity).
[Is Herceptin(®) (trastuzumab) by subcutaneous a mini revolution? Pharmaco-economic study].
Lieutenant, Vincent; Toulza, Émilie; Pommier, Martine; Lortal-Canguilhem, Barbara
2015-03-01
Herceptin(®) injected by intravenous (IV) is one of the key treatment of breast cancer HER2+. The improvement of galenic form allowed a new way of administration, the sub-cutaneous way (SC), authorized by EMEA in 2013. This new way enables a 5-minute infusion, a fixed dose and a fixed volume of preparation. On 2012, saving-time and financial impacts were calculated by extrapolation of the IV way in a cancer treatment center. The study showed a preparing time-saving of 7.5min/loading dose and of 6.5min/maintenance dose, and a nurse time-saving of 4.5min/loading dose and 4.25min/maintenance dose. Moreover, it can be added a saving of consumable of 13,31€ per injection in case of monotherapy. The SC leads to a new adaptation and reorganization in the preparation of monoclonal antibodies and day hospitals. Copyright © 2015 Société Française du Cancer. Published by Elsevier Masson SAS. All rights reserved.
Ionic cross-linked polyether and silica gel mixed matrix membranes for CO 2 separation from flue gas
Sekizkardes, Ali K.; Zhou, Xu; Nulwala, Hunaid B.; ...
2017-09-22
Mixed matrix membranes (MMMs) were prepared by incorporating 10 wt%, 20 wt% and 30 wt% silica gel filler particles into novel ionic cross-linked polyether (IXPE) polymers. Porous silica gel has the advantage of high surface area that can increase the free volume and permeability in a polymer film while also being commercially available and low cost. The MMMs featured high chemical and thermal stability as well as a modest improvement in storage modulus. These features are due to the excellent interfacial interaction between silica gel filler particles and the polymer matrix. Increasing the loading of silica gel particles in MMMsmore » resulted in higher permeability up to 120 Barrer for CO 2, which is about 40% higher than the neat polymer matrix. Finally, most importantly, the MMMs maintained a very high CO 2/N 2 selectivity performance of around 41 for all particle loadings that were tested.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crawford, Andrew M.; Kurecka, Patrick; Yim, Tsz Kwan
An X-ray fluorescence flow cytometer that can determine the total metal content of single cells has been developed. Capillary action or pressure was used to load cells into hydrophilic or hydrophobic capillaries, respectively. Once loaded, the cells were transported at a fixed vertical velocity past a focused X-ray beam. X-ray fluorescence was then used to determine the mass of metal in each cell. By making single-cell measurements, the population heterogeneity for metals in the µ M to m M concentration range on fL sample volumes can be directly measured, a measurement that is difficult using most analytical methods. This approachmore » has been used to determine the metal composition of 936 individual bovine red blood cells (bRBC), 31 individual 3T3 mouse fibroblasts (NIH3T3) and 18 Saccharomyces cerevisiae (yeast) cells with an average measurement frequency of ~4 cells min –1. These data show evidence for surprisingly broad metal distributions. Lastly, details of the device design, data analysis and opportunities for further sensitivity improvement are described.« less
Improved atom number with a dual color magneto—optical trap
NASA Astrophysics Data System (ADS)
Cao, Qiang; Luo, Xin-Yu; Gao, Kui-Yi; Wang, Xiao-Rui; Chen, Dong-Min; Wang, Ru-Quan
2012-04-01
We demonstrate a novel dual color magneto—optical trap (MOT), which uses two sets of overlapping laser beams to cool and trap 87Rb atoms. The volume of cold cloud in the dual color MOT is strongly dependent on the frequency difference of the laser beams and can be significantly larger than that in the normal MOT with single frequency MOT beams. Our experiment shows that the dual color MOT has the same loading rate as the normal MOT, but much longer loading time, leading to threefold increase in the number of trapped atoms. This indicates that the larger number is caused by reduced light induced loss. The dual color MOT is very useful in experiments where both high vacuum level and large atom number are required, such as single chamber quantum memory and Bose—Einstein condensation (BEC) experiments. Compared to the popular dark spontaneous-force optical trap (dark SPOT) technique, our approach is technically simpler and more suitable to low power laser systems.
DOT National Transportation Integrated Search
2008-05-31
To ensure a level of occupant volume protection, passenger railway : equipment operating on mainline railroads in the United States must currently be : designed to resist an 800,000 pound compressive load applied statically to the : underframe. An al...
DOT National Transportation Integrated Search
2001-06-01
Volume 3 documents the development of a micromechanics fracture and healing model for asphalt : concrete. This model can be used to calculate the density and growth of microcracks during repeated direct : tensile controlled-strain loading. The model ...
Dean Stull
2016-05-24
Experimental results from several studies exploring the impact of pH and acid volume on the stripping of rare earth elements (REEs) loaded onto ligand-based media via an active column. The REEs in this experiment were loaded onto the media through exposure to a simulated geothermal brine with known mineral concentrations. The data include the experiment results, rare earth element concentrations, and the experimental parameters varied.
Bilello, Michel; Doshi, Jimit; Nabavizadeh, S. Ali; Toledo, Jon B.; Erus, Guray; Xie, Sharon X.; Trojanowski, John Q.; Han, Xiaoyan; Davatzikos, Christos
2015-01-01
Background Vascular risk factors are increasingly recognized as risks factors for Alzheimer’s disease (AD) and early conversion from mild cognitive impairment (MCI) to dementia. While neuroimaging research in AD has focused on brain atrophy, metabolic function or amyloid deposition, little attention has been paid to the effect of cerebrovascular disease to cognitive decline. Objective To investigate the correlation of brain atrophy and white matter lesions with cognitive decline in AD, MCI, and control subjects. Methods Patients with AD and MCI, and healthy subjects were included in this study. Subjects had a baseline MRI scan, and baseline and follow-up neuropsychological battery (CERAD). Regional volumes were measured, and white matter lesion segmentation was performed. Correlations between rate of CERAD score decline and white matter lesion load and brain structure volume were evaluated. In addition, voxel-based correlations between baseline CERAD scores and atrophy and white matter lesion measures were computed. Results CERAD rate of decline was most significantly associated with lesion loads located in the fornices. Several temporal lobe ROI volumes were significantly associated with CERAD decline. Voxel-based analysis demonstrated strong correlation between baseline CERAD scores and atrophy measures in the anterior temporal lobes. Correlation of baseline CERAD scores with white matter lesion volumes achieved significance in multilobar subcortical white matter. Conclusion Both baseline and declines in CERAD scores correlate with white matter lesion load and gray matter atrophy. Results of this study highlight the dominant effect of volume loss, and underscore the importance of small vessel disease as a contributor to cognitive decline in the elderly. PMID:26402108
Bilello, Michel; Doshi, Jimit; Nabavizadeh, S Ali; Toledo, Jon B; Erus, Guray; Xie, Sharon X; Trojanowski, John Q; Han, Xiaoyan; Davatzikos, Christos
2015-01-01
Vascular risk factors are increasingly recognized as risks factors for Alzheimer's disease (AD) and early conversion from mild cognitive impairment (MCI) to dementia. While neuroimaging research in AD has focused on brain atrophy, metabolic function, or amyloid deposition, little attention has been paid to the effect of cerebrovascular disease to cognitive decline. To investigate the correlation of brain atrophy and white matter lesions with cognitive decline in AD, MCI, and control subjects. Patients with AD and MCI, and healthy subjects were included in this study. Subjects had a baseline MRI scan, and baseline and follow-up neuropsychological battery (CERAD). Regional volumes were measured, and white matter lesion segmentation was performed. Correlations between rate of CERAD score decline and white matter lesion load and brain structure volume were evaluated. In addition, voxel-based correlations between baseline CERAD scores and atrophy and white matter lesion measures were computed. CERAD rate of decline was most significantly associated with lesion loads located in the fornices. Several temporal lobe ROI volumes were significantly associated with CERAD decline. Voxel-based analysis demonstrated strong correlation between baseline CERAD scores and atrophy measures in the anterior temporal lobes. Correlation of baseline CERAD scores with white matter lesion volumes achieved significance in multilobar subcortical white matter. Both baseline and declines in CERAD scores correlate with white matter lesion load and gray matter atrophy. Results of this study highlight the dominant effect of volume loss, and underscore the importance of small vessel disease as a contributor to cognitive decline in the elderly.
Analysis of field test data on residential heating and cooling
NASA Astrophysics Data System (ADS)
Talbert, S. G.
1980-12-01
The computer program using field site data collected on 48 homes located in six cities in different climatic regions of the United States is discussed. In addition, a User's Guide was prepared for the computer program which is contained in a separate two-volume document entitled User's Guide for REAP: Residential Energy Analysis Program. Feasibility studies were conducted pertaining to potential improvements for REAP, including: the addition of an oil-furnace model; improving the infiltration subroutine; adding active and/or passive solar subroutines; incorporating a thermal energy storage model; and providing dual HVAC systems (e.g., heat pump-gas furnace). The purpose of REAP is to enable building designers and energy analysts to evaluate how such factors as building design, weather conditions, internal heat loads, and HVAC equipment performance, influence the energy requirements of residential buildings.
Shear induced alignment of short nanofibers in 3D printed polymer composites.
Yunus, Doruk Erdem; Shi, Wentao; Sohrabi, Salman; Liu, Yaling
2016-12-09
3D printing of composite materials offers an opportunity to combine the desired properties of composite materials with the flexibility of additive manufacturing in geometric shape and complexity. In this paper, the shear-induced alignment of aluminum oxide nanowires during stereolithography printing was utilized to fabricate a nanowire reinforced polymer composite. To align the fibers, a lateral oscillation mechanism was implemented and combined with wall pattern printing technique to generate shear flow in both vertical and horizontal directions. A series of specimens were fabricated for testing the composite material's tensile strength. The results showed that mechanical properties of the composite were improved by reinforcement of nanofibers through shear induced alignment. The improvement of tensile strength was approximately ∼28% by aligning the nanowires at 5 wt% (∼1.5% volume fraction) loading of aluminum oxide nanowires.
A 3 kbar hydrogen-compatible gas loader for Paris-Edinburgh presses
NASA Astrophysics Data System (ADS)
Klotz, S.; Philippe, J.; Bull, C. L.; Loveday, J. S.; Nelmes, R. J.
2013-03-01
We present a device which allows compressed gases to be loaded into large volume opposed anvils used for high pressure neutron scattering in the multi-10 GPa range. The gases are initially loaded into clamps which can then be inserted into VX-Paris-Edinburgh load frames. The system is compatible with all inert gases as well as hydrogen and permits loading pressures of up to 3 kbar for which most gases have densities close to that of the liquid at ambient pressure. The device should have applications for the study of simple molecular solids as well as for loading gases as pressure-transmitting media.
Evaldi, R.D.; Moore, B.L.
1994-01-01
Linear regression models are presented for estimating storm-runoff volumes, and mean con- centrations and loads of selected constituents in storm runoff from urban watersheds of Jefferson County, Kentucky. Constituents modeled include dissolved oxygen, biochemical and chemical oxygen demand, total and suspended solids, volatile residue, nitrogen, phosphorus and phosphate, calcium, magnesium, barium, copper, iron, lead, and zinc. Model estimations are a function of drainage area, percentage of impervious area, climatological data, and land uses. Estimation models are based on runoff volumes, and concen- trations and loads of constituents in runoff measured at 6 stormwater outfalls and 25 streams in Jefferson County.
NASA Technical Reports Server (NTRS)
Gentz, Steven J.; Ordway, David O.; Parsons, David S.; Garrison, Craig M.; Rodgers, C. Steven; Collins, Brian W.
2015-01-01
The NASA Engineering and Safety Center (NESC) received a request to develop an analysis model based on both frequency response and wave propagation analyses for predicting shock response spectrum (SRS) on composite materials subjected to pyroshock loading. The model would account for near-field environment (approximately 9 inches from the source) dominated by direct wave propagation, mid-field environment (approximately 2 feet from the source) characterized by wave propagation and structural resonances, and far-field environment dominated by lower frequency bending waves in the structure. This document contains appendices to the Volume I report.
A scenario and forecast model for Gulf of Mexico hypoxic area and volume
Scavia, Donald; Evans, Mary Anne; Obenour, Daniel R.
2013-01-01
For almost three decades, the relative size of the hypoxic region on the Louisiana-Texas continental shelf has drawn scientific and policy attention. During that time, both simple and complex models have been used to explore hypoxia dynamics and to provide management guidance relating the size of the hypoxic zone to key drivers. Throughout much of that development, analyses had to accommodate an apparent change in hypoxic sensitivity to loads and often cull observations due to anomalous meteorological conditions. Here, we describe an adaptation of our earlier, simple biophysical model, calibrated to revised hypoxic area estimates and new hypoxic volume estimates through Bayesian estimation. This application eliminates the need to cull observations and provides revised hypoxic extent estimates with uncertainties, corresponding to different nutrient loading reduction scenarios. We compare guidance from this model application, suggesting an approximately 62% nutrient loading reduction is required to reduce Gulf hypoxia to the Action Plan goal of 5,000 km2, to that of previous applications. In addition, we describe for the first time, the corresponding response of hypoxic volume. We also analyze model results to test for increasing system sensitivity to hypoxia formation, but find no strong evidence of such change.
A Bivariate return period for levee failure monitoring
NASA Astrophysics Data System (ADS)
Isola, M.; Caporali, E.
2017-12-01
Levee breaches are strongly linked with the interaction processes among water, soil and structure, thus many are the factors that affect the breach development. One of the main is the hydraulic load, characterized by intensity and duration, i.e. by the flood event hydrograph. On the magnitude of the hydraulic load is based the levee design, generally without considering the fatigue failure due to the load duration. Moreover, many are the cases in which the levee breach are characterized by flood of magnitude lower than the design one. In order to implement the strategies of flood risk management, we built here a procedure based on a multivariate statistical analysis of flood peak and volume together with the analysis of the past levee failure events. Particularly, in order to define the probability of occurrence of the hydraulic load on a levee, a bivariate copula model is used to obtain the bivariate joint distribution of flood peak and volume. Flood peak is the expression of the load magnitude, while the volume is the expression of the stress over time. We consider the annual flood peak and the relative volume. The volume is given by the hydrograph area between the beginning and the end of event. The beginning of the event is identified as an abrupt rise of the discharge by more than 20%. The end is identified as the point from which the receding limb is characterized by the baseflow, using a nonlinear reservoir algorithm as baseflow separation technique. By this, with the aim to define warning thresholds we consider the past levee failure events and the relative bivariate return period (BTr) compared with the estimation of a traditional univariate model. The discharge data of 30 hydrometric stations of Arno River in Tuscany, Italy, in the period 1995-2016 are analysed. The database of levee failure events, considering for each event the location as well as the failure mode, is also created. The events were registered in the period 2000-2014 by EEA-Europe Environment Agency, the Italian Civil Protection and ISPRA (the Italian National Institute for Environmental Protection and Research). Only two levee failures events occurred in the sub-basin of Era River have been detected and analysed. The estimated return period with the univariate model of flood peak is greater than 2 and 5 years while the BTr is greater of 25 and 30 years respectively.
Chang, Fangfang; Qu, Jiuhui; Liu, Ruiping; Zhao, Xu; Lei, Pengju
2010-01-01
A treatment unit packed by granular adsorbent of Fe-Mn binary oxide incorporated into diatomite (FMBO(1:1)-diatomite) was studied to remove arsenic from anaerobic groundwater without any pre-treatment or post-treatment. The raw anaerobic groundwater containing 35-45 microg/L of arsenic was collected from suburb of Beijing. Arsenic (III) constituted roughly 60%-80% of the total arsenic content. Approximately 7,000 bed volumes (ratio of effluent volume to adsorbent volume) treated water with arsenic concentration below 10 microg/L were produced in the operation period of four months. The regeneration of FMBO (1:1)-diatomite had been operated for 15 times. In the first stage, the regeneration process significantly improved the adsorption capacity of FMBO (1:1)-diatomite. With increased loading amount of Fe-Mn binary oxide, the adsorption capacity for arsenic decreased 20%-40%. Iron and manganese in anaerobic groundwater were oxidized and adsorptive filtrated by FMBO (1:1)-diatomite efficiently. The final concentrations of iron and manganese in effluents were nearly zero. The continued safe performance of the treatment units proved that adsorbent FMBO (1:1)-diatomite had high oxidation ability and exhibited strong adsorptive filtration.
Compaction-Based Deformable Terrain Model as an Interface for Real-Time Vehicle Dynamics Simulations
2013-04-16
to vehicular loads, and the resulting visco-elastic-plastic stress/strain on the affected soil volume. Pedo transfer functions allow for the...resulting visco-elastic-plastic stress/strain on the affected soil volume. Pedo transfer functions allow for the calculation of the soil mechanics model
30 CFR 36.26 - Composition of exhaust gas.
Code of Federal Regulations, 2010 CFR
2010-07-01
... immediately at full load and speed. The preliminary liquid-fuel-injection rate shall be such that the exhaust... adverse conditions disclosed by preliminary tests. (b) Final engine adjustment. The liquid fuel supply to... percent, by volume, of carbon monoxide or 0.20 percent, by volume, of oxides of nitrogen (calculated as...
A Biological Model of the Effects of Toxic Substances
1991-11-29
in the local vacinity of the neuron through a micropipette (60) and the response of the neuron to the potentially irritant chemicals is recorded. 10...load micropipettes with small volumes of solution (ə.0 jl) and then pressure inject minute volumes (picoliters) in the vacinity of the cell under
DOT National Transportation Integrated Search
2001-06-01
Volume 3 documents the development of a micromechanics fracture and healing model for asphalt concrete. This model can be used to calculate the density and growth of microcracks during repeated direct tensile controlled-strain loading. The model is b...
A 63 K phase change unit integrating with pulse tube cryocoolers
NASA Astrophysics Data System (ADS)
Chunhui, Kong; Liubiao, Chen; Sixue, Liu; Yuan, Zhou; Junjie, Wang
2017-02-01
This article presents the design and computer model results of an integrated cooler system which consists of a single stage pulse tube cryocooler integrated with a small amount of a phase change material. A cryogenic thermal switch was used to thermally connect the phase change unit to the cold end of the cryocooler. During heat load operation, the cryogenic thermal switch is turned off to avoid vibrations. The phase change unit absorbs heat loads by melting a substance in a constant pressure-temperature-volume process. Once the substance has been melted, the cryogenic thermal turned on, the cryocooler can then refreeze the material. Advantages of this type of cooler are no vibrations during sensor operations; the ability to absorb increased heat loads; potentially longer system lifetime; and a lower mass, volume and cost. A numerical model was constructed from derived thermodynamic relationships for the cooling/heating and freezing/melting processes.
Adaptive engine injection for emissions reduction
Reitz, Rolf D. : Sun, Yong
2008-12-16
NOx and soot emissions from internal combustion engines, and in particular compression ignition (diesel) engines, are reduced by varying fuel injection timing, fuel injection pressure, and injected fuel volume between low and greater engine loads. At low loads, fuel is injected during one or more low-pressure injections occurring at low injection pressures between the start of the intake stroke and approximately 40 degrees before top dead center during the compression stroke. At higher loads, similar injections are used early in each combustion cycle, in addition to later injections which preferably occur between about 90 degrees before top dead center during the compression stroke, and about 90 degrees after top dead center during the expansion stroke (and which most preferably begin at or closely adjacent the end of the compression stroke). These later injections have higher injection pressure, and also lower injected fuel volume, than the earlier injections.
Numerical model for an epoxy beam reinforced with superelastic shape memory alloy wires
NASA Astrophysics Data System (ADS)
Viet, N. V.; Zaki, W.; Umer, R.
2018-03-01
We present a numerical solution for a smart composite beam consisting of an epoxy matrix reinforced with unidirectional superelastic shape memory alloy (SMA) fibers with uniform circular cross section. The beam is loaded by a tip load, which is then removed resulting in shape recovery due to superelasticity of the SMA wires. The analysis is carried out considering a representative volume element (RVE) of the beam consisting of one SMA wire embedded in epoxy. The analytical model is developed for a superelastic SMA/epoxy composite beam subjected to a complete loading cycle in bending. Using the proposed model, the moment-curvature profile, martensite volume fraction variation, and axial stress are determined. The results are validated against three-dimensional finite element analysis (3D FEA) for the same conditions. The proposed work is a contribution toward better understanding of the bending behavior of superelastic SMA-reinforced composites.
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Fox, Dennis S.; Miller, Robert A.; Ghosn, Louis J.; Kalluri, Sreeramesh
2004-01-01
The development of advanced high performance constant-volume-combustion-cycle engines (CVCCE) requires robust design of the engine components that are capable of enduring harsh combustion environments under high frequency thermal and mechanical fatigue conditions. In this study, a simulated engine test rig has been established to evaluate thermal fatigue behavior of a candidate engine combustor material, Haynes 188, under superimposed CO2 laser surface impulsive thermal loads (30 to 100 Hz) in conjunction with the mechanical fatigue loads (10 Hz). The mechanical high cycle fatigue (HCF) testing of some laser pre-exposed specimens has also been conducted under a frequency of 100 Hz to determine the laser surface damage effect. The test results have indicated that material surface oxidation and creep-enhanced fatigue is an important mechanism for the surface crack initiation and propagation under the simulated CVCCE engine conditions.
A gas-loading system for LANL two-stage gas guns
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gibson, Lloyd Lee; Bartram, Brian Douglas; Dattelbaum, Dana Mcgraw
A novel gas loading system was designed for the specific application of remotely loading high purity gases into targets for gas-gun driven plate impact experiments. The high purity gases are loaded into well-defined target configurations to obtain Hugoniot states in the gas phase at greater than ambient pressures.The small volume of the gas samples is challenging, as slight changing in the ambient temperature result in measurable pressure changes. Therefore, the ability to load a gas gun target and continually monitor the sample pressure prior to firing provides the most stable and reliable target fielding approach. We present the design andmore » evaluation of a gas loading system built for the LANL 50 mm bore two-stage light gas gun. Targets for the gun are made of 6061 Al or OFHC Cu, and assembled to form a gas containment cell with a volume of approximately 1.38 cc. The compatibility of materials was a major consideration in the design of the system, particularly for its use with corrosive gases. Piping and valves are stainless steel with wetted seals made from Kalrez® and Teflon®. Preliminary testing was completed to ensure proper flow rate and that the proper safety controls were in place. The system has been used to successfully load Ar, Kr, Xe, and anhydrous ammonia with purities of up to 99.999 percent. The design of the system and example data from the plate impact experiments will be shown.« less
Time Course of Peri-Implant Bone Regeneration around Loaded and Unloaded Implants in a Rat Model
Jariwala, Shailly H.; Wee, Hwabok; Roush, Evan P.; Whitcomb, Tiffany L.; Murter, Christopher; Kozlansky, Gery; Lakhtakia, Akhlesh; Kunselman, Allen R.; Donahue, Henry J.; Armstrong, April D.; Lewis, Gregory S.
2018-01-01
The time-course of cancellous bone regeneration surrounding mechanically loaded implants affects implant fixation, and is relevant to determining optimal rehabilitation protocols following orthopaedic surgeries. We investigated the influence of controlled mechanical loading of titanium-coated polyether-ether ketone (PEEK) implants on osseointegration using time-lapsed, non-invasive, in vivo micro-computed tomography (micro-CT) scans. Implants were inserted into proximal tibial metaphyses of both limbs of eight female Sprague-Dawley rats. External cyclic loading (60 μm or 100 μm displacement, 1 Hz, 60 seconds) was applied every other day for 14 days to one implant in each rat, while implants in contralateral limbs served as the unloaded controls. Hind limbs were imaged with high-resolution micro-CT (12.5 μm voxel size) at 2, 5, 9, and 12 days post-surgery. Trabecular changes over time were detected by 3D image registration allowing for measurements of bone-formation rate (BFR) and bone-resorption rate (BRR). At day 9, mean %BV/TV for loaded and unloaded limbs were 35.5 ± 10.0 % and 37.2 ± 10.0 %, respectively, and demonstrated significant increases in bone volume compared to day 2. BRR increased significantly after day 9. No significant differences between bone volumes, BFR, and BRR were detected due to implant loading. Although not reaching significance (p = 0.16), an average 119 % increase in pull-out strength was measured in the loaded implants. PMID:27381807
A gas-loading system for LANL two-stage gas guns
NASA Astrophysics Data System (ADS)
Gibson, L. L.; Bartram, B. D.; Dattelbaum, D. M.; Lang, J. M.; Morris, J. S.
2017-01-01
A novel gas loading system was designed for the specific application of remotely loading high purity gases into targets for gas-gun driven plate impact experiments. The high purity gases are loaded into well-defined target configurations to obtain Hugoniot states in the gas phase at greater than ambient pressures. The small volume of the gas samples is challenging, as slight changing in the ambient temperature result in measurable pressure changes. Therefore, the ability to load a gas gun target and continually monitor the sample pressure prior to firing provides the most stable and reliable target fielding approach. We present the design and evaluation of a gas loading system built for the LANL 50 mm bore two-stage light gas gun. Targets for the gun are made of 6061 Al or OFHC Cu, and assembled to form a gas containment cell with a volume of approximately 1.38 cc. The compatibility of materials was a major consideration in the design of the system, particularly for its use with corrosive gases. Piping and valves are stainless steel with wetted seals made from Kalrez® and Teflon®. Preliminary testing was completed to ensure proper flow rate and that the proper safety controls were in place. The system has been used to successfully load Ar, Kr, Xe, and anhydrous ammonia with purities of up to 99.999 percent. The design of the system and example data from the plate impact experiments will be shown.
Kovochich, Michael; Fung, Ernest S; Donovan, Ellen; Unice, Kenneth M; Paustenbach, Dennis J; Finley, Brent L
2018-04-01
Advantages of second-generation metal-on-metal (MoM) hip implants include low volumetric wear rates and the release of nanosized wear particles that are chemically inert and readily cleared from local tissue. In some patients, edge loading conditions occur, which result in higher volumetric wear. The objective of this study was to characterize the size, morphology, and chemistry of wear particles released from MoM hip implants during normal (40° angle) and edge-loading (65° angle with microseparation) conditions. The mean primary particle size by volume under normal wear was 35 nm (range: 9-152 nm) compared with 95 nm (range: 6-573 nm) under edge-loading conditions. Hydrodynamic diameter analysis by volume showed that particles from normal wear were in the nano- (<100 nm) to submicron (<1000 nm) size range, whereas edge-loading conditions generated particles that ranged from <100 nm up to 3000-6000 nm in size. Particles isolated from normal wear were primarily chromium (98.5%) and round to oval in shape. Edge-loading conditions generated more elongated particles (4.5%) (aspect ratio ≥ 2.5) and more CoCr alloy particles (9.3%) compared with normal wear conditions (1.3% CoCr particles). By total mass, edge-loading particles contained approximately 640-fold more cobalt than normal wear particles. Our findings suggest that high wear conditions are a potential risk factor for adverse local tissue effects in MoM patients who experience edge loading. This study is the first to characterize both the physical and chemical characteristics of MoM wear particles collected under normal and edge-loading conditions. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 986-996, 2018. © 2017 Wiley Periodicals, Inc.
1989-08-01
thermal pulse loadings. The work couples a Green’s function integration technique for transient thermal stresses with the well-known influence ... function approach for calculating stress intensity factors. A total of seven most commonly used crack models were investigated in this study. A computer
NASA Technical Reports Server (NTRS)
Sadler, S. G.
1972-01-01
A mathematical model and computer program were implemented to study the main rotor free wake geometry effects on helicopter rotor blade air loads and response in steady maneuvers. The theoretical formulation and analysis of results are presented.
Runoff and phosphorus loads from two Iowa fields with and without applied manure, 2000-2011
USDA-ARS?s Scientific Manuscript database
Understanding the dynamics of field-edge runoff water quality and responses to changes in management practices and climate through monitoring will probably require decade-duration data sets. This study compared runoff volumes and phosphorus loads from two fields in central Iowa, where the glacial la...
43 CFR 29.6 - Financing, accounting, and audit.
Code of Federal Regulations, 2010 CFR
2010-10-01
... each Permittee within a reasonable time as to the date of the tanker loadings and the volumes of TAPS oil loaded. The Permittee will send an invoice for transportation charges for TAPS oil (which includes... to vessels, the amount of fees charged and collected, and the Owners of TAPS oil from whom such fees...
Global nutrient cycles have been altered by use of fossil fuels and fertilizers resulting in increases in nutrient loads to aquatic systems. In the United States, excess nutrients have been repeatedly reported as the primary cause of lake water quality impairments. Setting nutr...
NASA Technical Reports Server (NTRS)
Mallasch, Paul G.
1993-01-01
This volume contains the complete software system documentation for the Federal Communications Commission (FCC) Transponder Loading Data Conversion Software (FIX-FCC). This software was written to facilitate the formatting and conversion of FCC Transponder Occupancy (Loading) Data before it is loaded into the NASA Geosynchronous Satellite Orbital Statistics Database System (GSOSTATS). The information that FCC supplies NASA is in report form and must be converted into a form readable by the database management software used in the GSOSTATS application. Both the User's Guide and Software Maintenance Manual are contained in this document. This volume of documentation passed an independent quality assurance review and certification by the Product Assurance and Security Office of the Planning Research Corporation (PRC). The manuals were reviewed for format, content, and readability. The Software Management and Assurance Program (SMAP) life cycle and documentation standards were used in the development of this document. Accordingly, these standards were used in the review. Refer to the System/Software Test/Product Assurance Report for the Geosynchronous Satellite Orbital Statistics Database System (GSOSTATS) for additional information.
Bearing Capacity Assessment on low Volume Roads
NASA Astrophysics Data System (ADS)
Zariņš, A.
2015-11-01
A large part of Latvian road network consists of low traffic volume roads and in particular of roads without hard pavement. Unbounded pavements shows serious problems in the form of rutting and other deformations, which finally lead to weak serviceability and damage of the road structure after intensive exploitation periods. Traditionally, these problems have been associated with heavy goods transport, overloaded vehicles and their impact. To find the specific damaging factors causing road pavement deformations and evaluate their prevention possibilities, and establish conditions that will allow doing it, the study was carried out. The tire pressure has been set as the main factor of load. Two different tire pressures have been used in tests and their impacts were compared. The comparison was done using deflection measurements with LWD together with dielectric constant measurements in a road structure using percometer. Measurements were taken in the upper pavement structure layers at different depths during full-scale loading and in different moisture/temperature conditions. Advisable load intensity and load factors for heavy traffic according to road conditions were set based on the study results.
Effect of provider volume on the accuracy of hospital report cards: a Monte Carlo study.
Austin, Peter C; Reeves, Mathew J
2014-03-01
Hospital report cards, in which outcomes after the provision of medical or surgical care are compared across healthcare providers, are being published with increasing frequency. However, the accuracy of such comparisons is controversial, especially when case volumes are small. The objective was to determine the relationship between hospital case volume and the accuracy of hospital report cards. Monte Carlo simulations were used to examine the influence of hospital case volume on the accuracy of hospital report cards in a setting in which true hospital performance was known with certainty, and perfect risk-adjustment was feasible. The parameters used to generate the simulated data sets were obtained from empirical analyses of data on patients hospitalized with acute myocardial infarction in Ontario, Canada, in which the overall 30-day mortality rate was 11.1%. We found that provider volume had a strong effect on the accuracy of hospital report cards. However, provider volume had to be >300 before ≥70% of hospitals were correctly classified. Furthermore, hospital volume had to be >1000 before ≥80% of hospitals were correctly classified. Producers and users of hospital report cards need to be aware that, even when perfect risk adjustment is possible, the accuracy of hospital report cards is, at best, modest for small to medium-sized case loads (i.e., 100-300). Hospital report cards displayed high degrees of accuracy only when provider volumes exceeded the typical annual hospital case load for many cardiovascular conditions and procedures.
NASA Technical Reports Server (NTRS)
Miller, R. D.; Anderson, L. R.
1979-01-01
The LOADS program L218, a digital computer program that calculates dynamic load coefficient matrices utilizing the force summation method, is described. The load equations are derived for a flight vehicle in straight and level flight and excited by gusts and/or control motions. In addition, sensor equations are calculated for use with an active control system. The load coefficient matrices are calculated for the following types of loads: translational and rotational accelerations, velocities, and displacements; panel aerodynamic forces; net panel forces; shears and moments. Program usage and a brief description of the analysis used are presented. A description of the design and structure of the program to aid those who will maintain and/or modify the program in the future is included.
Mechanical Properties and Shear Strengthening Capacity of High Volume Fly Ash-Cementitious Composite
NASA Astrophysics Data System (ADS)
Joseph, Aswin K.; Anand, K. B.
2018-02-01
This paper discusses development of Poly Vinyl Alcohol (PVA) fibre reinforced cementitious composites taking into account environmental sustainability. Composites with fly ash to cement ratios from 0 to 3 are investigated in this study. The mechanical properties of HVFA-cement composite are discussed in this paper at PVA fiber volume fraction maintained at 1% of total volume of composite. The optimum replacement of cement with fly ash was found to be 75%, i.e. fly ash to cement ratio (FA/C) of 3. The increase in fiber content from 1% to 2% showed better mechanical performance. A strain capacity of 2.38% was obtained for FA/C ratio of 3 with 2% volume fraction of fiber. With the objective of evaluating the performance of cementitious composites as a strengthening material in reinforced concrete beams, the beams deficient in shear capacity were strengthened with optimal mix having 2% volume fraction of fiber as the strengthening material and tested under four-point load. The reinforced concrete beams designed as shear deficient were loaded to failure and retrofitted with the composite in order to assess the efficiency as a repair material under shear.
Prophylactic augmentation of the proximal femur: an investigation of two techniques.
Raas, Christoph; Hofmann-Fliri, Ladina; Hörmann, Romed; Schmoelz, Werner
2016-03-01
Osteoporotic hip fractures are an increasing problem in an ageing population. They result in high morbidity, mortality and high socioeconomic costs. For patients with poor bone quality, prophylactic augmentation of the proximal femur might be an option for fracture prevention. In two groups of paired human femora the potential of limited polymethyl-methacrylate (PMMA) augmentation (11-15 ml) in a V-shape pattern and the insertion of a proximal femur nail antirotation (PFNA) blade were investigated. The testing was carried out pair wise simulating the single leg stand. The untreated femur in each pair served as control. An axial load was applied until failure. Load displacement parameters and temperature increase during the augmentation process were recorded. In the PMMA group no significant difference was found between the augmented and non-augmented specimen concerning load to failure (p = 0.35) and energy to failure (p = 0.9). A median temperature increase of 9.5 °C was observed in the augmented specimen. A significant correlation was found between the amount of applied PMMA and the temperature increase (Cor. Coef. = 0.82, p = 0.042). In the PFNA group, a significant decrease of load to failure and a non-significant decrease of energy to failure were observed (p = 0.037 and p = 0.075). Limited V-shaped PMMA augmentation and PFNA blade insertion did not show any improvement in failure load or energy to failure. Volumes of up to 15 ml PMMA did not cause a critical surface temperature increase.
Impact of backpack load on ventilatory function among 9-12 year old Saudi girls.
Al-Katheri, Abeer E
2013-12-01
To explore the backpack load as a percentile of body weight (BW) and its impact on ventilatory function including tidal volume (Vt), vital capacity (VC), forced vital capacity (FVC), forced expiratory volume in one second (FEV1), FEV1/FVC, peak expiratory flow (PEF), and maximum voluntary ventilation (MVV) among 9-12 year old Saudi girls. This is a prospective, experimental study of 91 Saudi girls aged between 9-12 years from primary schools in Riyadh, Saudi Arabia. The study took place in King Saud University, Riyadh, Saudi Arabia between April 2012 and May 2012. Ventilatory function was measured under 2 conditions: a free standing position without carrying a backpack, and while carrying a backpack. The backpack load observed was 13.8% of the BW, which is greater than the recommended limit (10% BW). All values of ventilatory function were significantly reduced after carrying the backpack (p<0.001) with the exception of FEV1/FVC (p>0.178). The reduction was observed even with the lowest backpack load (7.4% BW). A significant reduction was reported for most of the ventilatory function parameters while carrying the backpack. This reduction was apparent even with the least backpack load (7.4% BW) carried by the participants. This study recommends that the upper safe limit of backpack load carried by Saudi girls aged 9-12 years should be less than 7.4% of BW.
Effect of Cyclic Thermo-Mechanical Loads on Fatigue Reliability in Polymer Matrix Composites
NASA Technical Reports Server (NTRS)
Shah, A. R.; Murthy, P. L. N.; Chamis, C. C.
1996-01-01
A methodology to compute probabilistic fatigue life of polymer matrix laminated composites has been developed and demonstrated. Matrix degradation effects caused by long term environmental exposure and mechanical/thermal cyclic loads are accounted for in the simulation process. A unified time-temperature-stress dependent multi-factor interaction relationship developed at NASA Lewis Research Center has been used to model the degradation/aging of material properties due to cyclic loads. The fast probability integration method is used to compute probabilistic distribution of response. Sensitivities of fatigue life reliability to uncertainties in the primitive random variables (e.g., constituent properties, fiber volume ratio, void volume ratio, ply thickness, etc.) computed and their significance in the reliability- based design for maximum life is discussed. The effect of variation in the thermal cyclic loads on the fatigue reliability for a (0/+/- 45/90)(sub s) graphite/epoxy laminate with a ply thickness of 0.127 mm, with respect to impending failure modes has been studied. The results show that, at low mechanical cyclic loads and low thermal cyclic amplitudes, fatigue life for 0.999 reliability is most sensitive to matrix compressive strength, matrix modulus, thermal expansion coefficient, and ply thickness. Whereas at high mechanical cyclic loads and high thermal cyclic amplitudes, fatigue life at 0.999 reliability is more sensitive to the shear strength of matrix, longitudinal fiber modulus, matrix modulus, and ply thickness.
Magnetic and Dielectric Property Studies in Fe- and NiFe-Based Polymer Nanocomposites
NASA Astrophysics Data System (ADS)
Sharma, Himani; Jain, Shubham; Raj, Pulugurtha Markondeya; Murali, K. P.; Tummala, Rao
2015-10-01
Metal-polymer composites were investigated for their microwave properties in the frequency range of 30-1000 MHz to assess their application as inductor cores and electromagnetic isolation shield structures. NiFe and Fe nanoparticles were dispersed in epoxy as nanocomposites, in different volume fractions. The permittivity, permeability, and loss tangents of the composites were measured with an impedance analyzer and correlated with the magnetic properties of the particle such as saturation magnetization and field anisotropy. Fe-epoxy showed lower magnetic permeability but improved frequency stability, compared to the NiFe-epoxy composites of the same volume loading. This is attributed to the differences in nanoparticle's structure such as effective metal core size and particle-porosity distribution in the polymer matrix. The dielectric properties of the nanocomposites were also characterized from 30 MHz to 1000 MHz. The instabilities in the dielectric constant and loss tangent were related to the interfacial polarization relaxation of the particles and the dielectric relaxation of the surface oxides.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Wei-Yang; Korellis, John S.; Lee, Kenneth L.
2006-08-01
Honeycomb is a structure that consists of two-dimensional regular arrays of open cells. High-density aluminum honeycomb has been used in weapon assemblies to mitigate shock and protect payload because of its excellent crush properties. In order to use honeycomb efficiently and to certify the payload is protected by the honeycomb under various loading conditions, a validated honeycomb crush model is required and the mechanical properties of the honeycombs need to be fully characterized. Volume I of this report documents an experimental study of the crush behavior of high-density honeycombs. Two sets of honeycombs were included in this investigation: commercial grademore » for initial exploratory experiments, and weapon grade, which satisfied B61 specifications. This investigation also includes developing proper experimental methods for crush characterization, conducting discovery experiments to explore crush behaviors for model improvement, and identifying experimental and material uncertainties.« less
Potential contributions of mature prairie and turfgrass to phosphorus in urban runoff.
Steinke, K; Kussow, W R; Stier, J C
2013-07-01
Urban vegetative plantings are considered desirable to mitigate and filter stormwater runoff and nonpoint-source pollution. Phosphorus fertilization of turfgrass may enhance P in urban runoff; however, the amount of P from nonfertilized, native vegetation that could potentially replace some turf is not known. This study was conducted to measure the relative contributions of nonfertilized, native prairie vegetation and fertilized turfgrass to runoff water and P loads. Six replicates of side-by-side mature urban prairie and turfgrass were monitored for mean annual runoff volumes and P loads, biomass production, vegetative nutrient composition, and changes in soil moisture. Vegetation type did not significantly affect seasonal or annual runoff volumes or P loads. The mean annual total P loads of 0.46 kg ha for prairie and 0.28 kg ha for turfgrass were significant and comparable to those reported by other researchers when studied separately. Total P concentrations in runoff water from prairie and turf vegetation were above USEPA limits, averaging 1.86 and 1.63 mg L, respectively, over 2 yr. Averaged across 2 yr, 78% of runoff P was collected when the soil was frozen. Biomass P reductions over the period of November to April were strongly related to quantities of runoff total P from frozen soil ( = 0.874). Phosphorus losses from urban areas appeared to be primarily correlated with runoff depth, not vegetation type, because correlation coefficients revealed 86 and 45% of the Year 1 and Year 2 total P loads were directly accounted for by runoff volumes. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
The Post-Dam System. Volume 4. Relational Data Base Management System (RDBMS)
1992-10-01
15 THEN LOAD item FROM b15.mat ENDIF IF vfle EQ 16 THEN LOAD item FROM b16 .mat ENDIF IF vfle EQ 17 THEN LOAD item FROM b17.mat ENDIF IF vfle EQ 18...vple EQ 16 THEN LOAD reqet FROM bl6 .eqp ENDIF IF vple EQ 17 THEN LOAD reqet FROM bl7.eqp ENDIF IF vple EQ 18 THEN LOAD reqet FROM bl8.eqp ENDIF IF vple...b3.out ENDIF IF tWle EQ 14 THEN TYPE b14.out ENDIF IF tWle EQ 15 THEN 70 TYPE bIS.out ENDIF IF tfle EQ 16 THEN TYPE b16 .out ENDIF IF tfle EQ 17 THEN
Inkjet Printing of Drug-Loaded Mesoporous Silica Nanoparticles-A Platform for Drug Development.
Wickström, Henrika; Hilgert, Ellen; Nyman, Johan O; Desai, Diti; Şen Karaman, Didem; de Beer, Thomas; Sandler, Niklas; Rosenholm, Jessica M
2017-11-21
Mesoporous silica nanoparticles (MSNs) have shown great potential in improving drug delivery of poorly water soluble (BCS class II, IV) and poorly permeable (BCS class III, IV) drugs, as well as facilitating successful delivery of unstable compounds. The nanoparticle technology would allow improved treatment by reducing adverse reactions of currently approved drugs and possibly reintroducing previously discarded compounds from the drug development pipeline. This study aims to highlight important aspects in mesoporous silica nanoparticle (MSN) ink formulation development for digital inkjet printing technology and to advice on choosing a method (2D/3D) for nanoparticle print deposit characterization. The results show that both unfunctionalized and polyethyeleneimine (PEI) surface functionalized MSNs, as well as drug-free and drug-loaded MSN-PEI suspensions, can be successfully inkjet-printed. Furthermore, the model BCS class IV drug remained incorporated in the MSNs and the suspension remained physically stable during the processing time and steps. This proof-of-concept study suggests that inkjet printing technology would be a flexible deposition method of pharmaceutical MSN suspensions to generate patterns according to predefined designs. The concept could be utilized as a versatile drug screening platform in the future due to the possibility of accurately depositing controlled volumes of MSN suspensions on various materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoeschele, Marc; Weitzel, Elizabeth; Backman, Christine
This project completed a modeling evaluation of a hybrid gas water heater that combines a reduced capacity tankless unit with a downsized storage tank. This product would meet a significant market need by providing a higher efficiency gas water heater solution for retrofit applications while maintaining compatibility with the 1/2 inch gas lines and standard B vents found in most homes. The TRNSYS simulation tool was used to model a base case 0.60 EF atmospheric gas storage water, a 0.82 EF non-condensing gas tankless water heater, an existing (high capacity) hybrid unit on the market, and an alternative hybrid unitmore » with lower storage volume and reduced gas input requirements. Simulations were completed under a 'peak day' sizing scenario with 183 gpd hot water loads in a Minnesota winter climate case. Full-year simulations were then completed in three climates (ranging from Phoenix to Minneapolis) for three hot water load scenarios (36, 57, and 96 gpd). Model projections indicate that the alternative hybrid offers an average 4.5% efficiency improvement relative to the 0.60 EF gas storage unit across all scenarios modeled. The alternative hybrid water heater evaluated does show promise, but the current low cost of natural gas across much of the country and the relatively small incremental efficiency improvement poses challenges in initially building a market demand for the product.« less
NASA Astrophysics Data System (ADS)
Skripnyak, Vladimir A.; Skripnyak, Natalia V.; Skripnyak, Evgeniya G.; Skripnyak, Vladimir V.
2017-01-01
Inelastic deformation and damage at the mesoscale level of ultrafine grained (UFG) light alloys with distribution of grain size were investigated in wide loading conditions by experimental and computer simulation methods. The computational multiscale models of representative volume element (RVE) with the unimodal and bimodal grain size distributions were developed using the data of structure researches aluminum and magnesium UFG alloys. The critical fracture stress of UFG alloys on mesoscale level depends on relative volumes of coarse grains. Microcracks nucleation at quasi-static and dynamic loading is associated with strain localization in UFG partial volumes with bimodal grain size distribution. Microcracks arise in the vicinity of coarse and ultrafine grains boundaries. It is revealed that the occurrence of bimodal grain size distributions causes the increasing of UFG alloys ductility, but decreasing of the tensile strength.
Load-based approaches for modelling visual clarity in streams at regional scale.
Elliott, A H; Davies-Colley, R J; Parshotam, A; Ballantine, D
2013-01-01
Reduction of visual clarity in streams by diffuse sources of fine sediment is a cause of water quality impairment in New Zealand and internationally. In this paper we introduce the concept of a load of optical cross section (LOCS), which can be used for load-based management of light-attenuating substances and for water quality models that are based on mass accounting. In this approach, the beam attenuation coefficient (units of m(-1)) is estimated from the inverse of the visual clarity (units of m) measured with a black disc. This beam attenuation coefficient can also be considered as an optical cross section (OCS) per volume of water, analogous to a concentration. The instantaneous 'flux' of cross section is obtained from the attenuation coefficient multiplied by the water discharge, and this can be accumulated over time to give an accumulated 'load' of cross section (LOCS). Moreover, OCS is a conservative quantity, in the sense that the OCS of two combined water volumes is the sum of the OCS of the individual water volumes (barring effects such as coagulation, settling, or sorption). The LOCS can be calculated for a water quality station using rating curve methods applied to measured time series of visual clarity and flow. This approach was applied to the sites in New Zealand's National Rivers Water Quality Network (NRWQN). Although the attenuation coefficient follows roughly a power relation with flow at some sites, more flexible loess rating curves are required at other sites. The hybrid mechanistic-statistical catchment model SPARROW (SPAtially Referenced Regressions On Watershed attributes), which is based on a mass balance for mean annual load, was then applied to the NRWQN dataset. Preliminary results from this model are presented, highlighting the importance of factors related to erosion, such as rainfall, slope, hardness of catchment rock types, and the influence of pastoral development on the load of optical cross section.
Preparation of H3PW12O40/MCM-48 and its photocatalytic degradation of pesticides.
Liu, Xia; Li, Yan-zhou; Gan, Qiang; Feng, Chang-gen
2014-08-01
A composite catalyst H3PW12O40/MCM-48 was prepared by loading photocatalyst phosphotungstic acid H3PW12O40 (HPW) to molecular sieve MCM-48 by impregnation method, and its structure was characterized by Fourier transform infrared (FT-IR) spectra, small angle X-ray diffraction (XRD) patterns, nitrogen adsorption analysis and High-resolution transmission electron microscopy (HRTEM) analysis. Photocatalytic degradation activities of HPW/MCM-48 against pesticides imidacloprid and paraquat were evaluated under UV radiation (365 nm). The results show that HPW/MCM-48 maintains the mesoprous molecular sieve structure of MCM-48 and the Keggin structure of HPW, while the BET surface area is 793.35 m2 x g(-1), pore volume is 1.46 cm3 x g(-1), average pore diameter is 2.76 nm, suggesting loading HPW on MCM-48 is a considerable way to improve its surface area. After 14 h UV irradiation (365 nm), 57.38% imidacloprid and 63.79% paraquat were degraded by 20 mg HPW/MCM-48 catalyst, while HPW and blank group degraded the two pesticides at the degradation rate of about 25% and 5%, respectively. Implying loading on MCM-48 could greaterly improve the degradation activity of HPW. The reslut of degradation kinetics show that, the degradation process of HPW/MCM-48 fits first order kinetics equation. The rate constant Ka of HPW/MCM-48 toward imidacloprid and paraquat are 0.089 h and 0.117 h, with the half-life t(1/2) of 7.8 h and 5.9 h, respectively.
The proprioceptive reflex control of the intercostal muscles during their voluntary activation
Davis, J. Newsom; Sears, T. A.
1970-01-01
1. A quantitative study has been made of the reflex effects of sudden changes in mechanical load on contracting human intercostal muscles during willed breathing movements involving the chest wall. Averaging techniques were applied to recordings of electromyogram (EMG) and lung volume, and to other parameters of breathing. 2. Load changes were effected for brief periods (10-150 msec) at any predetermined lung volume by sudden connexion of the airway to a pressure source variable between ± 80 cm H2O so that respiratory movement could be either assisted or opposed. In some experiments airway resistance was suddenly reduced by porting from a high to a low resistance external airway. 3. Contracting inspiratory and expiratory intercostal muscles showed a `silent period' with unloading which is attributed to the sudden withdrawal from intercostal motoneurones of monosynaptic excitation of muscle spindle origin. 4. For both inspiratory and expiratory intercostal muscles the typical immediate effect of an increase in load was an inhibitory response (IR) with a latency of about 22 msec followed by an excitatory response (ER) with a latency of 50-60 msec. 5. It was established using brief duration stimuli (< 40 msec) that the IR depended on mechanical events associated with the onset of stimulation, whereas stimuli greater than 40 msec in duration were required to evoke the ER. 6. For constant expiratory flow rate and a constant load, the ER of expiratory intercostal muscles increased as lung volume decreased within the limits set by maximal activation of the motoneurone pool as residual volume was approached. 7. The ER to a constant load increased directly with the expiratory flow rate at which the load applied, also within limits set by maximal activation of the motoneurone pool. 8. For a given load, the ER during phonation was greater than that occurring at a similar expiratory flow rate without phonation when the resistance of the phonating larynx was mimicked by an external airway resistance. 9. It is argued that the IR is due to autogenetic inhibition arising from tendon organs and that the ER is due to autogenetic excitation arising from intercostal muscle spindles. 10. The initial dominance of inhibition in this dual proprioceptive reflex control was not predicted by the servo theory. It is proposed that the reflex pathways subserving autogenetic inhibition are under a centrifugal control which determines in relation to previous experience (learning) the conditions under which autogenetic facilitation is allowed. PMID:5499805
Structural Flight Loads Simulation Capability. Volume I.
1980-11-01
actuators. Load cells sense the resulting loads and give the console operator a positive readout of the loads being applied. The operator’s console...qialn StesSa We Elmn 57. .......... C ’D D .... .. .-- --- -.. ... . ..114 .. ETF’ ’IFEFI,--EIJT :_I’F3L- EL4 ?O cl l c...3.20. (concluded). 127 ra E j214 CbC ob) C-H ea) 4p U) ’-4 r4 128 EL4 UA f r c www aw r. 0 ag 0 . 0 mo > 4-) 0 .4-) en 010 44 1*5 1 I .IA U * . a) Z
Wang, Donglin; Yang, Kun; Zhou, Yin
2016-03-20
Measuring the refractive index and volume of liquid under high pressure simultaneously is a big challenge. This paper proposed an alternative solution by combing optical coherence tomography with microscopy. An experiment for a feasibility study was carried out on polydimethylsiloxane liquid in a diamond anvil cell. The refractive index of the sample increased dramatically with pressure loaded, and the curve of pressure volume was also obtained.
NASA Astrophysics Data System (ADS)
Volkov, E. P.; Prokhorov, V. B.; Arkhipov, A. M.; Chernov, S. L.; Kirichkov, V. S.; Kaverin, A. A.
2017-11-01
MPEI conducts researches on physical and mathematical models of furnace chambers for improvement of power-generation equipment fuel combustion efficiency and ecological safety. Results of these researches are general principles of furnace aerodynamics arrangement for straight-flow burners and various fuels. It has been shown, that staged combustion arrangement with early heating and igniting with torch distribution in all furnace volume allows to obtain low carbon in fly ash and nitrogen oxide emission and also to improve boiler operation reliability with expand load adjustment range. For solid fuel combustion efficiency improvement it is practical to use high-placed and strongly down-tilted straight-flow burners, which increases high-temperature zone residence time for fuel particles. In some cases, for this combustion scheme it is possible to avoid slag-tap removal (STR) combustion and to use Dry-bottom ash removal (DBAR) combustion with tolerable carbon in fly ash level. It is worth noting that boilers with STR have very high nitrogen oxide emission levels (1200-1800 mg/m3) and narrow load adjustment range, which is determined by liquid slag output stability, so most industrially-developed countries don’t use this technology. Final decision about overhaul of boiler unit is made with regard to physical and mathematical modeling results for furnace and zonal thermal calculations for furnace and boiler as a whole. Overhaul of boilers to provide staged combustion and straight-flow burners and nozzles allows ensuring regulatory nitrogen oxide emission levels and corresponding best available technology criteria, which is especially relevant due to changes in Russian environmental regulation.
Influences of Hydrological Regime on Runoff Quality and Pollutant Loadings in Tropical Urban Areas
NASA Astrophysics Data System (ADS)
Chow, M.; Yusop, Z.
2011-12-01
Experience in many developed countries suggests that non point source (NPS) pollution is still the main contributor to pollutant loadings into water bodies in urban areas. However, the mechanism of NPS pollutant transport and the influences of hydrologic regime on the pollutant loading are still unclear. Understanding these interactions will be useful for improving design criteria and strategies for controlling NPS pollution in urban areas. This issue is also extremely relevant in tropical environment because its rainfall and the runoff generation processes are so different from the temperate regions where most of the studies on NPS pollutant have been carried out. In this regard, an intensive study to investigate the extent of this pollution was carried out in Skudai, Johor, Malaysia. Three small catchments, each represents commercial, residential and industrial land use were selected. Stormwater samples and flow rate data were collected at these catchments over 52 storm events from year 2008 to 2009. Samples were analyzed for ten water quality constituents including total suspended solids, 5-day biochemical oxygen demand, chemical oxygen demand, oil and grease, nitrate nitrogen, nitrite nitrogen, ammonia nitrogen, soluble phosphorus, total phosphorus and zinc. Quality of stormwater runoff is estimated using Event Mean Concentration (EMC) value. The storm characteristics analyzed included rainfall depth, rainfall duration, mean intensity, max 5 minutes intensity, antecedent dry day, runoff volume and peak flow. Correlation coefficients were determined between storm parameters and EMCs for the residential, commercial and industrial catchments. Except for the antecedent storm mean intensity and antecedent dry days, the other rainfall and runoff variables were negatively correlated with EMCs of most pollutants. This study reinforced the earlier findings on the importance of antecedent dry days for causing greater EMC values with exceptions for oil and grease, nitrate nitrogen, total phosphorus and zinc. There is no positive correlation between rainfall intensity and EMC of constituents in all the studied catchments. In contrast, the pollutant loadings are influenced primarily by the rainfall and runoff characteristics. Rainfall depth, mean intensity, max 5 minute intensity, runoff volume and peak flow were positively correlated with the loadings of most of the constituents. Antecedent storm mean intensity and antecedent dry days seemed to be less important for estimating the pollutant loadings. Such study should be further conducted for acquiring a long term monitoring data related to storm runoff quality during rainfall, in order to have a better understanding on NPS pollution in urban areas.
Iwase, Satoshi
2005-01-01
To test the effectiveness of centrifuge-induced artificial gravity with ergometric exercise, 12 healthy young men (20.7 +/- 1.9 yr) were exposed to simulated microgravity for 14 days of -6 degrees head-down bedrest. Half the subjects were randomly selected and loaded 1.2 G artificial gravity with 60 W (four out of six subjects) or 40 W (two out of six subjects) of ergometric workload on days 1, 2, 3, 5, 7, 9, 11, 12, 13, 14 (CM group). The rest of the subjects served as the control. Anti-G score, defined as the G-load x running time to the endpoint, was significantly elongated by the load of the centrifuge-ergometer. Plasma volume loss was suppressed (-5.0 +/- 2.4 vs. -16.4 +/- 1.9%), and fluid volume shift was prevented by the countermeasure load. Elevated heart rate and muscle sympathetic nerve activity after bedrest were counteracted, and exaggerated response to head-up tilt was also suppressed. Centrifuge-induced artificial gravity with exercise is effective in preventing cardiovascular deconditioning due to microgravity exposure, however, an effective and appropriate regimen (magnitude of G-load and exercise workload) should be determined in future studies. c2005 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Iwase, Satoshi
2005-07-01
To test the effectiveness of centrifuge-induced artificial gravity with ergometric exercise, 12 healthy young men (20.7±1.9yr) were exposed to simulated microgravity for 14 days of -6∘ head-down bedrest. Half the subjects were randomly selected and loaded 1.2 G artificial gravity with 60 W (four out of six subjects) or 40 W (two out of six subjects) of ergometric workload on days 1,2,3,5,7,9,11,12,13,14 (CM group). The rest of the subjects served as the control. Anti-G score, defined as the G-load×running time to the endpoint, was significantly elongated by the load of the centrifuge-ergometer. Plasma volume loss was suppressed ( -5.0±2.4 vs. -16.4±1.9%), and fluid volume shift was prevented by the countermeasure load. Elevated heart rate and muscle sympathetic nerve activity after bedrest were counteracted, and exaggerated response to head-up tilt was also suppressed. Centrifuge-induced artificial gravity with exercise is effective in preventing cardiovascular deconditioning due to microgravity exposure, however, an effective and appropriate regimen (magnitude of G-load and exercise workload) should be determined in future studies.
Effect of resin on impact damage tolerance of graphite/epoxy laminates
NASA Technical Reports Server (NTRS)
Williams, J. G.; Rhodes, M. D.
1982-01-01
Twenty-four different epoxy resin systems were evaluated by a variety of test techniques to identify materials that exhibited improved impact damage tolerance in graphite/epoxy composite laminates. Forty-eight-ply composite panels of five of the material systems were able to sustain 100 m/s impact by a 1.27-cm-diameter aluminum projectile while statically loaded to strains of 0.005. Of the five materials with the highest tolerance to impact, two had elastomeric additives, two had thermoplastic additives, and one had a vinyl modifier; all the five systems used bisphenol A as the base resin. An evaluation of test results shows that the laminate damage tolerance is largely determined by the resin tensile properties, and that improvements in laminate damage tolerance are not necessarily made at the expense of room-temperature mechanical properties. The results also suggest that a resin volume fraction of 40 percent or greater may be required to permit the plastic flow between fibers necessary for improved damage tolerance.
Sanyal, Arnav; Keaveny, Tony M.
2013-01-01
The biaxial failure behavior of the human trabecular bone, which has potential relevance both for fall and gait loading conditions, is not well understood, particularly for low-density bone, which can display considerable mechanical anisotropy. Addressing this issue, we investigated the biaxial normal strength behavior and the underlying failure mechanisms for human trabecular bone displaying a wide range of bone volume fraction (0.06–0.34) and elastic anisotropy. Micro-computer tomography (CT)-based nonlinear finite element analysis was used to simulate biaxial failure in 15 specimens (5 mm cubes), spanning the complete biaxial normal stress failure space in the axial-transverse plane. The specimens, treated as approximately transversely isotropic, were loaded in the principal material orientation. We found that the biaxial stress yield surface was well characterized by the superposition of two ellipses—one each for yield failure in the longitudinal and transverse loading directions—and the size, shape, and orientation of which depended on bone volume fraction and elastic anisotropy. However, when normalized by the uniaxial tensile and compressive strengths in the longitudinal and transverse directions, all of which depended on bone volume fraction, microarchitecture, and mechanical anisotropy, the resulting normalized biaxial strength behavior was well described by a single pair of (longitudinal and transverse) ellipses, with little interspecimen variation. Taken together, these results indicate that the role of bone volume fraction, microarchitecture, and mechanical anisotropy is mostly accounted for in determining the uniaxial strength behavior and the effect of these parameters on the axial-transverse biaxial normal strength behavior per se is minor. PMID:24121715
Development of a linear compressor for compact 2 K Gifford- McMahon cryocoolers
NASA Astrophysics Data System (ADS)
Hiratsuka, Y.
2015-12-01
Recently, a new, compact Gifford-McMahon (GM) cryocooler for cooling superconducting single photon detectors (SSPD) has been developed at Sumitomo Heavy Industries, Ltd. (SHI) [1, 2]. The objective is to reduce the total height of the expander by 33% relative to the existing RDK-101 GM expander and to reduce the total volume of the compressor unit by 50% relative to the existing CNA-11 compressor. In addition, considering the targeted cooling application, we set the design temperature targets of the first and the second stages to 1 W and 20 mW of heat load at 60 K and 2.3 K, respectively. Although optimization of the internal components is one way to miniaturize the volume of the compressor unit, major design changes are required because the volume of the adsorber and the oil separator is almost the same as the volume of the compressor capsule. Thus, one approach is to develop a non-lubricated compressor, such as a valved linear compressor. An experimental unit of a valved linear compressor was designed and built, and preliminary experiments were conducted. Under no-load condition, a low temperature of 2.19 K has been achieved. With 1 W and 14 mW heat load, the temperature is 48 K at the first stage and 2.3 K at the second stage, with an input power of about 1.2 KW. The detailed experimental results will be discussed in this paper.
Cost-effective approach to ethanol production and optimization by response surface methodology.
Uncu, Oya Nihan; Cekmecelioglu, Deniz
2011-04-01
Food wastes disposed from residential and industrial kitchens have gained attention as a substrate in microbial fermentations to reduce product costs. In this study, the potential of simultaneously hydrolyzing and subsequently fermenting the mixed carbohydrate components of kitchen wastes were assessed and the effects of solid load, inoculum volume of baker's yeast, and fermentation time on ethanol production were evaluated by response surface methodology (RSM). The enzymatic hydrolysis process was complete within 6h. Fermentation experiments were conducted at pH 4.5, a temperature of 30°C, and agitated at 150 rpm without adding the traditional fermentation nutrients. The statistical analysis of the model developed by RSM suggested that linear effects of solid load, inoculum volume, and fermentation time and the quadratic effects of inoculum volume and fermentation time were significant (P<0.05). The verification experiments indicated that the developed model could be successfully used to predict ethanol concentration at >90% accuracy. An optimum ethanol concentration of 32.2g/l giving a yield of 0.40g/g, comparable to yields reported to date, was suggested by the model with 20% solid load, 8.9% inoculum volume, and 58.8h of fermentation. The results indicated that the production costs can be lowered to a large extent by using kitchen wastes having multiple carbohydrate components and eliminating the use of traditional fermentation nutrients from the recipe. Copyright © 2010 Elsevier Ltd. All rights reserved.
Cardiovascular Performance with E. coli Challenges in a Canine Model of Human Sepsis
1988-01-01
most severe peritonitis with volume loading. However, in response to volume, the the largest third space fluid loss (i.e., such animals should...in ESVI represent a greater third space loss from peritoneal in- in infected dogs, i.e., a decrease in contractility. Further- flammation and/or a
Geographic Origins of Students, Fall 1989. Volume II.
ERIC Educational Resources Information Center
State Univ. of New York, Albany. Central Staff Office of Institutional Research.
The results of the annual survey of the geographic origins, or permanent residence, of students attending institutions of the State University of New York (SUNY) during the fall 1989 term are presented in three volumes. Student data elements in the report include student level, student load, student history (first-time/transfer), and permanent…
Assessment of the Derivative-Moment Transformation method for unsteady-load estimation
NASA Astrophysics Data System (ADS)
Mohebbian, Ali; Rival, David
2011-11-01
It is often difficult, if not impossible, to measure the aerodynamic or hydrodynamic forces on a moving body. For this reason, a classical control-volume technique is typically applied to extract the unsteady forces instead. However, measuring the acceleration term within the volume of interest using PIV can be limited by optical access, reflections as well as shadows. Therefore in this study an alternative approach, termed the Derivative-Moment Transformation (DMT) method, is introduced and tested on a synthetic data set produced using numerical simulations. The test case involves the unsteady loading of a flat plate in a two-dimensional, laminar periodic gust. The results suggest that the DMT method can accurately predict the acceleration term so long as appropriate spatial and temporal resolutions are maintained. The major deficiency was found to be the determination of pressure in the wake. The effect of control-volume size was investigated suggesting that smaller domains work best by minimizing the associated error with the pressure field. When increasing the control-volume size, the number of calculations necessary for the pressure-gradient integration increases, in turn substantially increasing the error propagation.
NASA Astrophysics Data System (ADS)
Patro, Nagaraju M.; Devi, Kshama; Pai, Roopa S.; Suresh, Sarasija
2013-12-01
We investigated the bioavailability, efficacy, and toxicity of doxorubicin-loaded solid lipid nanoparticles (DOX-SLNs) prepared by a simple modified double-emulsification method. A 3-factor, 3-level Box-Behnken statistical design was adopted in the optimization of DOX-SLN formulation considering dependent factors particle size and entrapment efficiency. Optimized SLN formulation composed of lipid (2 %) consisting of soya lecithin and Precirol ATO 5 (1:3) with Pluronic F68 (0.3 %) resulted in 217.36 ± 3.31 nm particle size and 59.45 ± 1.75 % entrapment efficiency. DOX-SLN exhibited significant enhancement ( p < 0.05) in bioavailability as compared with free DOX in Sprague-Dawley (SD) rats. DOX-SLN exhibited higher peak plasma concentration (6.761 ± 0.08 vs. 2.412 ± 0.04 μg/ml), increased AUC (61.368 ± 3.54 vs. 5.812 ± 0.49 μg/ml h), decreased clearance (36 ± 0.01 vs. 619 ± 0.005 mL/h kg), and volume of distribution (733 ± 0.092 vs. 2,064 ± 0.061 mL/kg) when compared to free DOX. The collective results of cardiac and kidney enzyme assay, antioxidant enzyme levels, hematological parameters, effect on body weight and tumor volume, tumor necrosis factor-α level, histopathological examination, and survival analysis confirmed the improved efficacy and safety profile of DOX-SLN in 7,12-dimethyl benzanthracene-induced breast cancer in SD rats.
Ballesteros, M; Boldt, J; Zickmann, B; Knothe, C; Hempelmann, G
1995-01-01
To describe the changes in cardiac function after administration of three different solutions infused after anesthetic induction. Thirty-six patients scheduled for elective aortocoronary bypass surgery were randomly distributed into three groups. Over a period of 25 min after anesthetic induction, 12 received 10 ml/kg of Ringer solution (low dose crystalloid group), 12 received 20 ml/kg of Ringer solution (high dose crystalloid group), and 12 received 10 ml/kg of Ringer solution with 10 ml/kg of hydroxi-ethyl-almidon solution 450,000 D, 0.7 substitution grade (group C-HEA). Minute volume, systemic and pulmonary pressures, osmolality of blood and urine, and plasma and urine sodium concentrations were measured before and after infusion of the assigned liquid. In spite of the volume infused, low dose crystalloid group showed a high incidence of oliguria, increased urinary osmolality and decreased sodium in urine. Cardiac and systolic indices and left ventricular work load remained stable after infusion of the assigned liquid in low and high dose crystalloid groups, whereas they increased significantly ion group C-HEA (+23%, +16% and +20%). Administration of restricted doses of crystalloids after anesthetic induction favors the retention of water and sodium. Higher doses of crystalloids weaken this effect. However, neither of these two regimens leads to a more effective cardiac work load. A combination of crystalloids and colloids administered immediately after anesthetic induction temporarily improves cardiac performance during surgery.
Left ventricle changes early after breath-holding in deep water in elite apnea divers.
Pingitore, Alessandro; Gemignani, Angelo; Menicucci, Danilo; Passera, Mirko; Frassi, Francesca; Marabotti, Claudio; Piarulli, Andrea; Benassi, Antonio; L'Abbate, Antonio; Bedini, Remo
2010-01-01
To study by ultrasounds cardiac morphology and function early after breath-hold diving in deep water in elite athletes. Fifteen healthy male divers (age 28 +/- 3 years) were studied using Doppler-echocardiography, immediately before (basal condition, BC) and two minutes after breath-hold diving (40 meters, acute post-apnea condition, APAC). Each subject performed a series of three consecutive breath-hold dives (20-30 and 40 m depth). End-diastolic left ventricular (LV) diameter (EDD) and end-diastolic LV volume (EDV) increased significantly (p < 0.01). Stroke volume (SV), cardiac index (CI), septal and posterior systolic wall-thickening (SWT) also significantly increased after diving (p < 0.01). No wall motion abnormalities were detected, and wall motion score index was unchanged between BC and APAC. Doppler mitral E wave increased significantly (p < 0.01), whereas the A wave was unchanged. Systemic vascular resistance (SVR) decreased significantly after diving (p < 0.05). In the factor analysis, filtering out the absolute values smaller than 0.7 in the loading matrix, it resulted that factor I consists of EDV, posterior SWT, SV and CI, factor II of diastolic blood pressure, waves A and E and factor III of heart rate and SVR. Systo-diastolic functions were improved in the early period after deep breath-hold diving due to favorable changes in loading conditions relative to pre-diving, namely the recruitment of left ventricular preload reserve and the reduction in afterload.
An improved method for determining force balance calibration accuracy
NASA Technical Reports Server (NTRS)
Ferris, Alice T.
1993-01-01
The results of an improved statistical method used at Langley Research Center for determining and stating the accuracy of a force balance calibration are presented. The application of the method for initial loads, initial load determination, auxiliary loads, primary loads, and proof loads is described. The data analysis is briefly addressed.
Description of plastic deformation of structural materials in triaxial loading
NASA Astrophysics Data System (ADS)
Lagzdins, A.; Zilaucs, A.
2008-03-01
A model of nonassociated plasticity is put forward for initially isotropic materials deforming with residual changes in volume under the action of triaxial normal stresses. The model is based on novel plastic loading and plastic potential functions, which define closed, convex, every where smooth surfaces in the 6D space of symmetric second-rank stress tensors. By way of example, the plastic deformation of a cylindrical concrete specimen wrapped with a CFRP tape and loaded in axial compression is described.
Effectiveness of the Saline Load Test in Diagnosis of Traumatic Elbow Arthrotomies
2011-11-01
load test for the knee, using 80 knees in patients undergoing elective knee arthroscopy . A fixed volume of 60 mL of saline was injected while observing... Arthroscopy . 1990;6:100–103. 10. Voit GA, Irvine G, Beals RK. Saline load test for penetration of periarticular lacerations. J Bone Joint Surg Br. 1996;78:732...318. 12. Plancher KD, Shariff KB. Basics of elbow arthroscopy : setup, portals, and technique. Tech Orthop. 2006;21:239–249. 13. Marvel JE, Marsh HO
Army Logistician. Volume 34, Issue 6, November-December 2002
2002-12-01
management from Pennsylvania State University. He is a graduate of the Infantry Officer Basic Course, the Airborne and Ranger Schools, the...it was estimated that, with an Air Force crew to help load the planes, the airfield could sustain a flow of 20 or more C–5 Galaxy transports a day...Transportation Office to cre- ate air load plans. The load plans identified a require- ment for 19 C–5 Galaxy transports to deploy the equip- ment and 5
Apparatus for blending small particles
Bradley, R.A.; Reese, C.R.; Sease, J.D.
1975-08-26
An apparatus is described for blending small particles and uniformly loading the blended particles in a receptacle. Measured volumes of various particles are simultaneously fed into a funnel to accomplish radial blending and then directed onto the apex of a conical splitter which collects the blended particles in a multiplicity of equal subvolumes. Thereafter the apparatus sequentially discharges the subvolumes for loading in a receptacle. A system for blending nuclear fuel particles and loading them into fuel rod molds is described in a preferred embodiment. (auth)
1983-10-01
broken piles in a concentrated area . As a result, the relieving platform is unsupported and in this are loading should be restricted to 50 psf until...concentration of damaged piles occurs on Section A near Drydock No. 4 and until repairs are made, loading should be restricted to 100 psf in this area . The...a concentrated area . As a result, the relieving platform is unsup- * ported and in this area loading should be restricted to 50 psf until repairs
Gemcitabine-loaded albumin nanospheres (GEM-ANPs) inhibit PANC-1 cells in vitro and in vivo
NASA Astrophysics Data System (ADS)
Li, Ji; Di, Yang; Jin, Chen; Fu, Deliang; Yang, Feng; Jiang, Yongjian; Yao, Lie; Hao, Sijie; Wang, Xiaoyi; Subedi, Sabin; Ni, Quanxing
2013-04-01
With the development of nanotechnology, special attention has been given to the nanomaterial application in tumor treatment. Here, a modified desolvation-cross-linking method was successfully applied to fabricate gemcitabine-loaded albumin nanospheres (GEM-ANPs), with 110 and 406 nm of mean diameter, respectively. The aim of this study was to assess the drug distribution, side effects, and antitumor activity of GEM-ANPs in vivo. The metabolic viability and flow cytometry analysis revealed that both GEM-ANPs, especially 406-nm GEM-ANPs, could effectively inhibit the metabolism and proliferation and promote the apoptosis of human pancreatic carcinoma (PANC-1) in vitro. Intravenous injection of 406-nm GEM-ANPs exhibited a significant increase of gemcitabine in the pancreas, liver, and spleen of Sprague-Dawley rats ( p < 0.05). Moreover, no signs of toxic side effects analyzed by blood parameter changes were observed after 3 weeks of administration although a high dose (200 mg/kg) of GEM-ANPs were used. Additionally, in PANC-1-induced tumor mice, intravenous injection of 406-nm GEM-ANPs also could effectively reduce the tumor volume by comparison with free gemcitabine. With these findings, albumin nanosphere-loading approach might be efficacious to improve the antitumor activity of gemcitabine, and the efficacy is associated with the size of GEM-ANPs.
Li, Jing; Wang, Hongyu; Yang, Baixue; Xu, Lu; Zheng, Nan; Chen, Hongtao; Li, Sanming
2016-01-01
In the present work, control-release microcapsule of famotidine (FMT) loaded biomimetic synthesized mesoporous silica nanoparticles (B-MSNs) was developed, and controlled release effect and stomach adhesion of this formulation in vitro were mainly investigated. B-MSN was previously synthesized and it was amorphous mesoporous nanoparticles with helical channels. Cytotoxicity of B-MSN was studied using human breast cancer cells (MCF-7) and the result indicated that cytotoxicity of B-MSN can be neglected. After loading FMT into B-MSN, specific surface area, pore volume and pore diameter of B-MSN were obviously reduced. In vitro dissolution test showed that B-MSN had the ability to slow down FMT release for 15 min. In order to prolong controlled release effect and remained the advantage of B-MSN (improve drug stability due to its rigid silica framework), the combined application of control-release microcapsule (using cellulose and hydroxypropyl methylcellulose K15M as excipients) with B-MSN was designed. It was obvious that newly designed formulation significantly controlled FMT release with Fickian diffusion mechanism and showed enhanced stomach adhesion in vitro, which has significant value in widening the application of B-MSN in formulation design. Copyright © 2015 Elsevier B.V. All rights reserved.
Reduction of solids and nutrient loss from agricultural land by tailwater recovery systems
Omer, A.R.; Miranda, Leandro E.; Moore, M. T.; Krutz, L. J.; Prince Czarnecki, J. M.; Kröger, R.; Baker, B. H.; Hogue, J.; Allen, P. J.
2018-01-01
Best management practices are being implemented throughout the Lower Mississippi River Alluvial Valley with the aim of alleviating pressures placed on downstream aquatic systems by sediment and nutrient losses from agricultural land; however, research evaluating the performance of tailwater recovery (TWR) systems, an increasingly important practice, is limited. This study evaluated the ability of TWR systems to retain sediment and nutrients draining from agricultural landscapes. Composite flow-based samples were collected during flow events (precipitation or irrigation) over a two-year period in six TWR systems. Performance was evaluated by comparing concentrations and loads in water entering TWR systems (i.e., runoff or influent) from agricultural fields to water overflow exiting TWR systems (effluent). Tailwater recovery systems did not reduce concentrations of solids and nutrients, but did reduce loads of solids, phosphorus (P), and nitrogen (N) by 43%, 32%, and 44%, respectively. Annual mean load reductions were 1,142 kg solids, 0.7 kg of P, and 3.8 kg of N. Performance of TWR systems was influenced by effluent volume, system fullness, time since the previous event, and capacity of the TWR system. Mechanistically, TWR systems retain runoff on the agricultural landscape, thereby reducing the amount of sediment and nutrients entering downstream waterbodies. System performance can be improved through manipulation of influential parameters.
Energy density and rate limitations in structural composite supercapacitors
NASA Astrophysics Data System (ADS)
Snyder, J. F.; Gienger, E.; Wetzel, E. D.; Xu, K.
2012-06-01
The weight and volume of conventional energy storage technologies greatly limits their performance in mobile platforms. Traditional research efforts target improvements in energy density to reduce device size and mass. Enabling a device to perform additional functions, such as bearing mechanical load, is an alternative approach as long as the total mass efficiency exceeds that of the individual materials it replaces. Our research focuses on structural composites that function as batteries and supercapacitors. These multifunctional devices could be used to replace conventional structural components, such as vehicle frame elements, to provide significant system-level weight reductions and extend mission times. Our approach is to design structural properties directly into the electrolyte and electrode materials. Solid polymer electrolyte materials bind the system and transfer load to the fibers while conducting ions between the electrodes. Carbon fiber electrodes provide a route towards optimizing both energy storage and load-bearing capabilities, and may also obviate the need for a separate current collector. The components are being integrated using scalable, cost-effective composite processing techniques that are amenable to complex part shapes. Practical considerations of energy density and rate behavior are described here as they relate to materials used. Our results highlight the viability as well as the challenges of this multifunctional approach towards energy storage.
Polypyrrole electrodes doped with sulfanilic acid azochromotrop for electrochemical supercapacitors
NASA Astrophysics Data System (ADS)
Chen, S.; Zhitomirsky, I.
2013-12-01
In this work we demonstrate the feasibility of deposition of polypyrrole (PPy) films by electropolymerization on stainless steel substrates and fabrication of PPy powders by chemical polymerization using sulfanilic acid azochromotrop (SPADNS) as a new anionic dopant. The problem of low adhesion of PPy films to stainless steel substrates is addressed by the use of SPADNS, which exhibits chelating properties, promoting film formation. The use of fine particles, prepared by the chemical polymerization method, allows impregnation of Ni foams and fabrication of porous electrodes with high materials loading for electrochemical supercapacitors (ES). PPy films and Ni foam based PPy electrodes show capacitive behaviour in Na2SO4 electrolyte. The electron microscopy studies, impedance spectroscopy data and analysis of the SPADNS structure provide an insight into the factors, controlling capacitive behaviour. The Ni foam based electrodes offer advantages of improved capacitive behaviour at high materials loadings and good cycling stability. The area normalized and volume normalized specific capacitances are as high as 5.43 F cm-2 and 93.6 F cm-3, respectively, for materials loading of 35.4 mg cm-2. The capacitance retention of Ni foam based electrodes is 91.5% after 1000 cycles. The Ni foam based PPy electrodes are promising for application in ES.
1968-1973: A Trend Analysis. Student Development Report, Volume 11, No. 5, 1973-74.
ERIC Educational Resources Information Center
Bryer, James
Colorado State University Counseling Center (UCC) direct service activities over the last five years were reviewed. The variables examined were: number of clients seen, client load by quarter, number of interviews per client, clients' type of problem, sex, class, college and marital status. Results indicated that UCC doubled its client load during…
46 CFR 38.15-1 - Filling of tanks-TB/ALL.
Code of Federal Regulations, 2010 CFR
2010-10-01
... which tank may be loaded. V=volume of tank. d r=density of cargo at the temperature required for a cargo vapor pressure equal to the relief valve setting. d L=density of cargo at the loading temperature and pressure. (b) Nonrefrigerated tanks shall be filled so that their filling densities shall not exceed the...
46 CFR 38.15-1 - Filling of tanks-TB/ALL.
Code of Federal Regulations, 2013 CFR
2013-10-01
... which tank may be loaded. V=volume of tank. d r=density of cargo at the temperature required for a cargo vapor pressure equal to the relief valve setting. d L=density of cargo at the loading temperature and pressure. (b) Nonrefrigerated tanks shall be filled so that their filling densities shall not exceed the...
46 CFR 38.15-1 - Filling of tanks-TB/ALL.
Code of Federal Regulations, 2014 CFR
2014-10-01
... which tank may be loaded. V=volume of tank. d r=density of cargo at the temperature required for a cargo vapor pressure equal to the relief valve setting. d L=density of cargo at the loading temperature and pressure. (b) Nonrefrigerated tanks shall be filled so that their filling densities shall not exceed the...
46 CFR 38.15-1 - Filling of tanks-TB/ALL.
Code of Federal Regulations, 2012 CFR
2012-10-01
... which tank may be loaded. V=volume of tank. d r=density of cargo at the temperature required for a cargo vapor pressure equal to the relief valve setting. d L=density of cargo at the loading temperature and pressure. (b) Nonrefrigerated tanks shall be filled so that their filling densities shall not exceed the...
An apparatus for altering the mechanical load of the respiratory system.
Younes, M; Bilan, D; Jung, D; Kroker, H
1987-06-01
We describe an apparatus for altering the mechanical load against which the respiratory muscles operate in humans. A closed system incorporates a rolling seal spirometer. The spirometer piston shaft is coupled to a fast-responding linear actuator that develops force in proportion to desired command signals. The command signal may be flow (resistive loading or unloading), volume (elastic loading or unloading), constant voltage (continuous positive or negative pressure), or any external function. Combinations of loads can be applied. Logic circuits permit application of the load at specific times during the respiratory cycle, and the magnitude of the loads is continuously adjustable. Maximum pressure output is +/- 20 cmH2O. The apparatus permits loading or unloading over a range of ventilation extending from resting levels to those observed during high levels of exercise (over 100 l/min). In response to a square-wave input, pressure rises exponentially with a time constant of 20 ms.
NASA Astrophysics Data System (ADS)
Vachon, Pierre-Luc
Composite laminates have strong in-plane mechanical properties, but they are generally weaker through their thickness. This specificity makes the laminates prone to delamination, particularly under low-velocity impact loads. Consequently numerous research efforts have been dedicated to developing interlaminar reinforcing methods, such as transverse stitching. The present project proposes the use of the stitching technique combined with a special stitching thread made of superelastic TiNi alloy. This technology is intended to improve the delamination toughness in composite laminates loaded in bending. In the first part of this study a numerical model was developed for analyzing composite structures. The 3-D finite element model was built with the ANSYS commercial software using 20-node solid and 8-node shell elements. The progressive damage modeling technique was used, allowing the prediction of delamination propagation in a laminate submitted to various loading modes. The model was validated for a plate under quasi-static traction load, and it was then used to simulate three-point bending tests. Secondly, carbon/epoxy composite panels were fabricated, with each panel containing unstitched and stitched specimens. Two different materials were used for the stitching thread: superelastic TiNi wires and Kevlar threads as a reference. Some stitched specimens were cut in slices in order to make some observations of the internal stitch using an optical microscope. Standardized low-velocity impact tests and compression after impact tests were carried out on stitched and unstitched specimens (ASTM D7136 and D7137). The Kevlar reinforcements have shown great performance in reducing the delaminated zone after impact, as well as in improving the residual compression strength. The TiNi reinforcements provided encouraging results during the impact tests, though being less effective than the Kevlar threads. During the compression after impact tests, only a slight difference could be measured between the TiNi-stitched and the unstitched specimens. Then the bending performance of the specimens was quantified experimentally by calculating the energy required to create a unit volume of damaged material (Gv, J/mm3). This metric is similar to the Strain Energy Release Rate (SERR) commonly used in studies on delamination. According to the experimental results, the damage resistance in three-point bending was not improved by the Kevlar reinforcements, despite the reduced damaged zone after the impact test. Indeed, when the strain energy in bending is relativized to the induced damaged volume during propagation, it turns out that the TiNi reinforcements are more effective than the Kevlar's for improving the damage resistance. Finally, the numerical study on the behavior of both types of stitched reinforcements allowed identifying subtle differences between those. Indeed, both stitching threads (TiNi and Kevlar) promoted the interlaminar propagation of the delamination during simulation of the bending test, with this behavior being less pronounced for the TiNi-stitched plate. However the Kevlar threads seemed more effective for stopping this propagation in the zones between the stitches. Keywords: composite materials, stitching, numerical model, shape memory alloy, three-point bending, low-velocity impact, ultrasound imaging.
Nootropic Effects of Filipendula Vulgaris Moench Water Extract Fractions.
Shilova, I V; Suslov, N I; Amelchenko, V P
2015-07-01
Nootropic activity of water extract fractions from aerial parts of Filipendula vulgaris Moench was demonstrated on the models of hermetic volume hypoxia, conditioned passive avoidance response, open field test, and forced swimming with a load. The fractions stimulated hypoxic resistance, normalized orientation and exploratory behavior, improved conditioned response reproduction during testing after hypoxic injury, and increased exercise tolerance. Fractionation of the extract led to dissociation of the effect components, which suggests that individual constituents have specific characteristics. Ethylacetate fraction exhibited most pronounced nootropic activity and was superior to plant extract by some characteristics. The detected effects seemed to be caused by modulation of the hippocampus activity the under the effects of phenol and triterpene compounds.
High-Energy-Density Electrolytic Capacitors
NASA Technical Reports Server (NTRS)
Yen, Shiao-Ping S.; Lewis, Carol R.
1993-01-01
Reductions in weight and volume make new application possible. Supercapacitors and improved ultracapacitors advanced electrolytic capacitors developed for use as electric-load-leveling devices in such applications as electric vehicle propulsion systems, portable power tools, and low-voltage pulsed power supplies. One primary advantage: offer power densities much higher than storage batteries. Capacitors used in pulse mode, with short charge and discharge times. Derived from commercially available ultracapacitors. Made of lightweight materials; incorporate electrode/electrolyte material systems capable of operation at voltages higher than previous electrode/electrolyte systems. By use of innovative designs and manufacturing processes, made in wide range of rated capacitances and in rated operating potentials ranging from few to several hundred volts.
The role of mesopores in MTBE removal with granular activated carbon.
Redding, Adam M; Cannon, Fred S
2014-06-01
This activated carbon research appraised how pore size and empty-bed contact time influenced the removal of methyl tert-butyl ether (MTBE) at part-per-billion (ppb) concentrations when MTBE was the sole organic impurity. The study compared six granular activated carbons (GACs) from three parent sources; these GACs contained a range of pore volume distributions and had uniform slurry pHs of 9.7-10.4 (i.e. the carbons' bulk surface chemistries were basic). Several of these activated carbons had been specifically tailored for enhanced sorption of trace organic compounds. In these tests, MTBE was spiked into deionized-distilled water (∼pH 7); MTBE loading was measured by isotherms and by rapid small-scale column tests (RSSCTs) that simulated full-scale empty-bed contact times of 7, 14, and 28 min. The results showed that both ultra-fine micropores and small-diameter mesopores were important for MTBE adsorption. Specifically, full MTBE loading during RSSCTs bore a strong correlation (R(2) = 0.94) to the product (mL/g × mL/g) of pore volume ≤4.06 Å wide and pore volume between ∼22 Å and ∼59 Å wide. This correlation was greater than for the product of any other pore volume combinations. Also, this product exhibited a stronger correlation than for just one or the other of these two pore ranges. This multiplicative relationship implied that both of these pore sizes were important for the optimum GAC performance of these six carbons (i.e. favorable mass transfer coupled with favorable sorption). The authors also compared MTBE mass loading during RSSCTs (μg MTBE/g GAC) to isotherm capacity (μg MTBE/g GAC). This RSSCT loading "efficiency" ranged from 28% to 96% for the six GACs; this efficiency correlated most strongly to pores that were 14-200 Å wide (R(2) = 0.94). This correlation indicated that only those carbons with a sufficient volume of 14-200 Å pores could adsorb MTBE to the extent that would be predicted from isotherm data. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Parke, L.; Hooper, I. R.; Hicken, R. J.; Dancer, C. E. J.; Grant, P. S.; Youngs, I. J.; Sambles, J. R.; Hibbins, A. P.
2013-10-01
A cold-pressing technique has been developed for fabricating composites composed of a polytetrafluoroethylene-polymer matrix and a wide range of volume-fractions of MnZn-ferrite filler (0%-80%). The electromagnetic properties at centimetre wavelengths of all prepared composites exhibited good reproducibility, with the most heavily loaded composites possessing simultaneously high permittivity (180 ± 10) and permeability (23 ± 2). The natural logarithm of both the relative complex permittivity and permeability shows an approximately linear dependence with the volume fraction of ferrite. Thus, this simple method allows for the manufacture of bespoke materials required in the design and construction of devices based on the principles of transformation optics.
The effect of a water load on cutaneous water loss in man
Allen, Judith A.; Roddie, I. C.
1973-01-01
1. Ingestion of 1 l. water at 37° C had no effect on the rate of water loss from forearm and hand skin although ingestion of a similar volume at 16° C significantly decreased the rate. 2. Ingestion of 1 l. water at 37° C had no physiologically significant effect on the expiratory minute volume. 3. Ingestion of 500 ml. water at 37° C caused small increases in total body weight loss in environmental temperatures of 29 and 40° C. 4. It is concluded that neither cutaneous nor respiratory water loss play an important part in the excretion of a water load in man. PMID:4766216
Moo, Eng Kuan; Abusara, Ziad; Abu Osman, Noor Azuan; Pingguan-Murphy, Belinda; Herzog, Walter
2013-08-09
Morphological studies of live connective tissue cells are imperative to helping understand cellular responses to mechanical stimuli. However, photobleaching is a constant problem to accurate and reliable live cell fluorescent imaging, and various image thresholding methods have been adopted to account for photobleaching effects. Previous studies showed that dual photon excitation (DPE) techniques are superior over conventional one photon excitation (OPE) confocal techniques in minimizing photobleaching. In this study, we investigated the effects of photobleaching resulting from OPE and DPE on morphology of in situ articular cartilage chondrocytes across repeat laser exposures. Additionally, we compared the effectiveness of three commonly-used image thresholding methods in accounting for photobleaching effects, with and without tissue loading through compression. In general, photobleaching leads to an apparent volume reduction for subsequent image scans. Performing seven consecutive scans of chondrocytes in unloaded cartilage, we found that the apparent cell volume loss caused by DPE microscopy is much smaller than that observed using OPE microscopy. Applying scan-specific image thresholds did not prevent the photobleaching-induced volume loss, and volume reductions were non-uniform over the seven repeat scans. During cartilage loading through compression, cell fluorescence increased and, depending on the thresholding method used, led to different volume changes. Therefore, different conclusions on cell volume changes may be drawn during tissue compression, depending on the image thresholding methods used. In conclusion, our findings confirm that photobleaching directly affects cell morphology measurements, and that DPE causes less photobleaching artifacts than OPE for uncompressed cells. When cells are compressed during tissue loading, a complicated interplay between photobleaching effects and compression-induced fluorescence increase may lead to interpretations in cell responses to mechanical stimuli that depend on the microscopic approach and the thresholding methods used and may result in contradictory interpretations. Copyright © 2013 Elsevier Ltd. All rights reserved.
Nitrate and phosphorus transport through subsurface drains under free and controlled drainage.
Saadat, Samaneh; Bowling, Laura; Frankenberger, Jane; Kladivko, Eileen
2018-05-28
Controlled drainage (CD) is a structural conservation practice in which the drainage outlet is managed in order to reduce drain flow volume and nutrient loads to water bodies. The goal of this study was to evaluate the potential of CD to improve water quality for two different seasons and levels of outlet control, using ten years of data collected from an agricultural drained field in eastern Indiana with two sets of paired plots. The Rank Sum test was used to quantify the impact of CD on cumulative annual drain flow and nitrate-N and phosphorus loads. CD plots had a statistically significant (at 5% level) lower annual drain flow (eastern pair: 39%; western pair: 25%) and nitrate load (eastern pair: 43%; western pair: 26%) compared to free draining (FD) plots, while annual soluble reactive phosphorus (SRP) and total phosphorus (TP) loads were not significantly different. An ANCOVA model was used to evaluate the impact of CD on daily drain flow, nitrate-N, SRP and TP concentrations and loads during the two different periods of control. The average percent reduction of daily drain flow was 68% in the eastern pair and 58% in the western pair during controlled drainage at the higher outlet level (winter) and 64% and 58% at the lower outlet level (summer) in the eastern and western pairs, respectively. Nitrate load reduction was similar to drain flow reduction, while the effect of CD on SRP and TP loads was not significant except for the increase in SRP in one pair. These results from a decade-long field monitoring and two different statistical methods enhance our knowledge about water quality impacts of CD system and support this management practice as a reliable system for reducing nitrate loss through subsurface drains, mainly caused by flow reduction. Copyright © 2018 Elsevier Ltd. All rights reserved.
Chen, Chunmao; Yao, Xianyang; Li, Qing X; Wang, Qinghong; Liang, Jiahao; Zhang, Simin; Ming, Jie; Liu, Zhiyuan; Deng, Jingmin; Yoza, Brandon A
2018-08-01
Phenols are industrially generated intermediate chemicals found in wastewaters that are considered a class of environmental priority pollutants. Up-flow anaerobic sludge blanket (UASB) reactors are used for phenolic wastewater treatment and exhibit high volume loading capability, favorable granule settling, and tolerance to impact loads. Use of support materials can promote biological productivity and accelerate start-up period of UASB. In the present study, turf soil was used as a support material in a mesophilic UASB reactor for the removal of phenols in wastewater. During sludge acclimatization (45-96 days), COD and phenols in the treatments were both reduced by 97%, whereas these contents in the controls were decreased by 81% and 75%, respectively. The phenol load threshold for the turf soil UASB reactor was greater (1200 mg/L, the equivalent of COD 3000 mg/L) in comparison with the control UASB reactor (900 mg/L, the equivalent of COD 2250 mg/L) and the turf soil UASB reactor was also more resistant to shock loading. Improved sludge settling, shear resistance, and higher biological activity occurred with the turf soil UASB reactor due to the formation of large granular sludge (0.6 mm or larger) in higher relative percentages. Granular sludge size was further enhanced by the colonization of filamentous bacteria on the irregular surface of the turf soil. Copyright © 2018 Elsevier Ltd. All rights reserved.
Fidalgo, Adriana de O; Kleinert, Astrid de M P
2010-01-01
We describe the environment effects on the amount and quality of resources collected by Melipona rufiventris Lepeletier in the Atlantic Forest at Ubatuba city, São Paulo state, Brazil (44º48'W, 23º22'S). Bees carrying pollen and/or nectar were captured at nest entrances during 5 min every hour, from sunrise to sunset, once a month. Pollen loads were counted and saved for acetolysis. Nectar was collected, the volume was determined and the total dissolved solids were determined by refractometer. Air temperature, relative humidity and light intensity were also registered. The number of pollen loads reached its maximum value between 70% and 90% of relative humidity and 18ºC and 23ºC; for nectar loads this range was broader, 50-90% and 20-30ºC. The number of pollen loads increased as relative humidity rose (rs = 0.401; P < 0.01) and high temperatures had a strong negative influence on the number of pollen loads collected (rs = -0.228; P < 0.01). The number of nectar loads positively correlated with temperature (rs = 0.244; P < 0.01) and light intensity (rs = 0.414; P < 0.01). The percentage of total dissolved solids (TDS) on nectar loads positively correlated with temperature and light intensity (rs = 0.361; P < 0.01 and rs = 0.245; P < 0.01), negatively correlated with relative humidity (rs = -0.629; P < 0.01), and it increased along the day. Most nectar loads had TDS between 11% and 30%, with an average of 24.7%. The volume measures did not show any pattern. Important pollen sources were Sapindaceae, Anacardiaceae, Rubiaceae, Arecaceae, Solanaceae and Myrtaceae; nectar sources were Sapindaceae, Fabaceae, Rubiaceae, Arecaceae and Solanaceae.
Willoughby, T.C.
1995-01-01
Northwestern Indiana is one of the most heavily industrialized and largest steel-producing areas in the United States. High temperature processes, such as fossil-fuel combustion and steel production, release contaminants to the atmosphere that may result in wet deposition being a major contributor to major ion and trace-metal loadings in north- western Indiana and Lake Michigan. A wet-deposition collection site was established at the Gary (Indiana) Regional Airport in June 1992 to monitor the chemical quality of wet deposition. Weekly samples were collected at this site from June 30, 1992, through August 31, 1993, and were analyzed for pH, specific conductance, and selected major ions and trace metals. Forty-eight samples collected during the study were of sufficient volumes for some of the determinations to be performed. Median constituent concentrations were determined for samples collected during warm weather and cold weather (November 1 through March 31). Median concentrations were substituted for missing values from samples with insufficient volumes for analysis of all the constituents of interest. Constituent concentrations were converted to weekly loadings. Two values were calculated to provide a range for the weekly loading for samples with measured concentrations of constituents less than the method reporting limit. The minimum weekly loading was computed by substituting zero for the constituent concentration; the maximum weekly loading was computed by substituting the method reporting limit for the concentration. If all of the sample concentrations measured were greater than the method reporting limit, an annual loading value was computed. The annual loadings could be used to assist in estimating the contribution of wet deposition to the total annual constituent loadings in the Grand Calumet River in northwestern Indiana.
Christen, Patrik; Schulte, Friederike A.; Zwahlen, Alexander; van Rietbergen, Bert; Boutroy, Stephanie; Melton, L. Joseph; Amin, Shreyasee; Khosla, Sundeep; Goldhahn, Jörg; Müller, Ralph
2016-01-01
A bone loading estimation algorithm was previously developed that provides in vivo loading conditions required for in vivo bone remodelling simulations. The algorithm derives a bone's loading history from its microstructure as assessed by high-resolution (HR) computed tomography (CT). This reverse engineering approach showed accurate and realistic results based on micro-CT and HR-peripheral quantitative CT images. However, its voxel size dependency, reproducibility and sensitivity still need to be investigated, which is the purpose of this study. Voxel size dependency was tested on cadaveric distal radii with micro-CT images scanned at 25 µm and downscaled to 50, 61, 75, 82, 100, 125 and 150 µm. Reproducibility was calculated with repeated in vitro as well as in vivo HR-pQCT measurements at 82 µm. Sensitivity was defined using HR-pQCT images from women with fracture versus non-fracture, and low versus high bone volume fraction, expecting similar and different loading histories, respectively. Our results indicate that the algorithm is voxel size independent within an average (maximum) error of 8.2% (32.9%) at 61 µm, but that the dependency increases considerably at voxel sizes bigger than 82 µm. In vitro and in vivo reproducibility are up to 4.5% and 10.2%, respectively, which is comparable to other in vitro studies and slightly higher than in other in vivo studies. Subjects with different bone volume fraction were clearly distinguished but not subjects with and without fracture. This is in agreement with bone adapting to customary loading but not to fall loads. We conclude that the in vivo bone loading estimation algorithm provides reproducible, sensitive and fairly voxel size independent results at up to 82 µm, but that smaller voxel sizes would be advantageous. PMID:26790999
Mamai, Wadaka; Bimbile-Somda, Nanwintoum S; Maiga, Hamidou; Juarez, José Guillermo; Muosa, Zaynab A I; Ali, Adel Barakat; Lees, Rosemary Susan; Gilles, Jeremie R L
2017-01-24
Anopheles arabiensis is one of the major malaria vectors that put millions of people in endemic countries at risk. Mass-rearing of this mosquito is crucial for strategies that use sterile insect technique to suppress vector populations. The sterile insect technique (SIT) package for this mosquito species is being developed by the Insect Pest Control Subprogramme of the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture. To improve mass-rearing outcomes for An. arabiensis, the question of whether the egg production by females would be affected by the size of the adult holding cages, the source of the blood meal and the total number of pupae that could be loaded into the cages was addressed and finally the impact of adding additional pupae to the cage daily to maintain adult numbers on egg productivity assessed. Mass production cages of two different volumes, two different sources of blood meal (bovine and porcine) and two different population densities (cages originally loaded with either 15,000 or 20,000 pupae) were tested and evaluated on the basis of eggs produced/cage or per female. Males and females pupae with a ratio of 1:1 were added to the cages at day 1 and 2 of pupation. The emerging adults had constant access to 5% sugar solution and blood fed via the Hemotek membrane feeding system. Eggs were collected either twice a week or daily. A generalized linear model was used to identify factors which gave significantly higher egg production. Neither cage volume nor blood meal source affected egg production per cage or per female. However, increasing population density to 20,000 pupae had a negative effect on eggs produced per cage and per female. Although high density negatively impacted egg production, adding 1000 daily additional pupae compensating for daily mortality resulted in a substantial increase in egg production. Moreover, in all tests the first and the third egg batches collected were significantly higher than others eggs batches. With the equipment and protocols described here and routinely used at the Insect Pest Control Laboratory (IPCL), it was possible to produce up to 120,000 eggs/cage/day. These results demonstrated that 15,000 is the optimal number of pupae to be loaded into the Anopheles Mass production cages. Under this condition, an average of 40 eggs per female was obtained for five gonotrophic cycles. However, an improvement in egg production can be achieved by daily addition, to the original 15,000 pupae, of one thousand pupae a day. Interestingly, feeding females with bovine or porcine blood using both large and small versions of the mass production cage did not affect egg productivity.
Saboktakin, Amin; Saboktakin, Mohammad Reza
2015-01-01
An 1,4-cis polybutadiene rubber/carboxymethyl starch (CMS)-based silica aerogel nanocomposites as a insulation material was developed that will provide superior thermal insulation properties, flexibility, toughness, durability of the parent polymer, yet with the low density and superior insulation properties associated with the aerogels. In this study, reinforced 1,4-cis polybutadiene-CMS-silica aerogel nanocomposites were prepared from a silica aerogel with a surface area 710 m(2) g(-1), a pore size of 25.3 nm and a pore volume of 4.7 cm(3) g(-1). The tensile properties and dynamic mechanical properties of 1,4-cis polybutadiene/CMS nanocomposites were systematically enhanced at low silica loading. Similar improvements in tensile modulus and strength have been observed for 1,4-cis polybutadiene/CMS mesoporous silica aerogel nanocomposites. Copyright © 2014 Elsevier B.V. All rights reserved.
Leanergy(TM): how lean manufacturing can improve energy efficiency.
Riche, Jean-Pierre
2013-01-01
Energy efficiency has become a competitive issue for industrial companies. The evolution of energy prices and regulation will make this issue even more important in the future. For several years, the energy-intensive chemical industry has been implementing corrective actions. Helped by the absorption of base load energy consumption by larger production volumes, specific energy consumption (KWh per production unit) has been significantly reduced in recent years. However, most plants have reached the end of their first action plan based on improving the utilities performance. The Leanergy(TM) method developed by the consultancy company Okavango-energy, is a structured approach based on lean manufacturing which widens the scope of saving sources to process and operations. Starting from the analysis of actual production requirements, Okavango is able to adjust consumption to minimum requirements and so remove any energy consumption that does not contribute to the added value creation.
A Double-Sided Linear Primary Permanent Magnet Vernier Machine
2015-01-01
The purpose of this paper is to present a new double-sided linear primary permanent magnet (PM) vernier (DSLPPMV) machine, which can offer high thrust force, low detent force, and improved power factor. Both PMs and windings of the proposed machine are on the short translator, while the long stator is designed as a double-sided simple iron core with salient teeth so that it is very robust to transmit high thrust force. The key of this new machine is the introduction of double stator and the elimination of translator yoke, so that the inductance and the volume of the machine can be reduced. Hence, the proposed machine offers improved power factor and thrust force density. The electromagnetic performances of the proposed machine are analyzed including flux, no-load EMF, thrust force density, and inductance. Based on using the finite element analysis, the characteristics and performances of the proposed machine are assessed. PMID:25874250
A double-sided linear primary permanent magnet vernier machine.
Du, Yi; Zou, Chunhua; Liu, Xianxing
2015-01-01
The purpose of this paper is to present a new double-sided linear primary permanent magnet (PM) vernier (DSLPPMV) machine, which can offer high thrust force, low detent force, and improved power factor. Both PMs and windings of the proposed machine are on the short translator, while the long stator is designed as a double-sided simple iron core with salient teeth so that it is very robust to transmit high thrust force. The key of this new machine is the introduction of double stator and the elimination of translator yoke, so that the inductance and the volume of the machine can be reduced. Hence, the proposed machine offers improved power factor and thrust force density. The electromagnetic performances of the proposed machine are analyzed including flux, no-load EMF, thrust force density, and inductance. Based on using the finite element analysis, the characteristics and performances of the proposed machine are assessed.
NASA Astrophysics Data System (ADS)
Suntako, R.
2018-01-01
Zinc oxide (ZnO) is widely used in rubber industry as a cure activator for rubber vulcanization. In this work, comparison of cure characteristic, mechanical properties, thermal conductivity and volume swell testing in oil no.1 and oil no.3 between natural rubber (NR) filled synthesized ZnO nanoparticles (sZnO) by precipitation method and NR filled conventional ZnO (cZnO). The particle size of sZnO is 41.50 nm and specific area of 27.92 m2/g, the particle size of cZnO is 312.92 nm and specific surface area of 1.35 m2/g. It has been found that NR filled sZnO not only improves rubber mechanical properties, volume swell testing but also improves thermal conductivity and better than NR filled cZnO. Thermal conductivity of NR filled sZnO increases by 10.34%, 12.90% and 20.00%, respectively when compared with NR filled cZnO in same loading content (various concentrations of ZnO at 5, 8 and 10 parts per hundred parts of rubber). This is due to small particle size and large specific surface area of sZnO which lead to an increase in crosslinking in rubber chain and enhance heat transfer performance.
Mathematical modelling of bone adaptation of the metacarpal subchondral bone in racehorses.
Hitchens, Peta L; Pivonka, Peter; Malekipour, Fatemeh; Whitton, R Chris
2018-06-01
In Thoroughbred racehorses, fractures of the distal limb are commonly catastrophic. Most of these fractures occur due to the accumulation of fatigue damage from repetitive loading, as evidenced by microdamage at the predilection sites for fracture. Adaptation of the bone in response to training loads is important for fatigue resistance. In order to better understand the mechanism of subchondral bone adaptation to its loading environment, we utilised a square root function defining the relationship between bone volume fraction [Formula: see text] and specific surface [Formula: see text] of the subchondral bone of the lateral condyles of the third metacarpal bone (MCIII) of the racehorse, and using this equation, developed a mathematical model of subchondral bone that adapts to loading conditions observed in vivo. The model is expressed as an ordinary differential equation incorporating a formation rate that is dependent on strain energy density. The loading conditions applied to a selected subchondral region, i.e. volume of interest, were estimated based on joint contact forces sustained by racehorses in training. For each of the initial conditions of [Formula: see text] we found no difference between subsequent homoeostatic [Formula: see text] at any given loading condition, but the time to reach equilibrium differed by initial [Formula: see text] and loading condition. We found that the observed values for [Formula: see text] from the mathematical model output were a good approximation to the existing data for racehorses in training or at rest. This model provides the basis for understanding the effect of changes to training strategies that may reduce the risk of racehorse injury.
Engine System Loads Development for the Fastrac 60K Flight Engine
NASA Technical Reports Server (NTRS)
Frady, Greg; Christensen, Eric R.; Mims, Katherine; Harris, Don; Parks, Russell; Brunty, Joseph
2000-01-01
Early implementation of structural dynamics finite element analyses for calculation of design loads is considered common design practice for high volume manufacturing industries such as automotive and aeronautical industries. However, with the rarity of rocket engine development programs starts, these tools are relatively new to the design of rocket engines. In the new Fastrac engine program, the focus has been to reduce the cost to weight ratio; current structural dynamics analysis practices were tailored in order to meet both production and structural design goals. Perturbation of rocket engine design parameters resulted in a number of Fastrac load cycles necessary to characterize the impact due to mass and stiffness changes. Evolution of loads and load extraction methodologies, parametric considerations and a discussion of load path sensitivities are discussed.
NASA Astrophysics Data System (ADS)
Abramski, Marcin
2017-10-01
Porous concrete is commonly used in civil engineering due to its good thermal insulation properties in comparison with normal concrete and high compression strength in comparison with other building materials. Reducing of the concrete density can be obviously obtained by using lightweight aggregate (e.g. pumice). The concrete density can be further minimized by using specially graded coarse aggregate and little-to-no fine aggregates. In this way a large number of air voids arise. The aggregate particles are coated by a cement paste and bonded together with it just in contact points. Such an extremely porous concrete, called ‘lightweight aggregate concrete with open structure’ (LAC), is used in some German plants to produce prefabricated wall components. They are used mainly in hall buildings, e.g. supermarkets. The need of improving thermal insulation properties was an inspiration for the prefabrication plant managers, engineers and a scientific staff of the Technical University of Kaiserslautern / Germany to realise an interesting project. Its aim was to reduce the heat transfer coefficient for the wall components. Three different wall structure types were designed and compared in full-scale laboratory tests with originally produced wall components in terms of load-carrying capacity and stiffness. The load was applied perpendicularly to the wall plane. As the components are not originally used for load-bearing walls, but for curtain walls only, the wind load is the main load for them. The wall components were tested in horizontal position and the load was applied vertically. Totally twelve wall components 8.00 × 2.00 × 0.25m (three for every series) were produced in the prefabrication plant and tested in the University of Kaiserslautern laboratory. The designed and tested components differed from each other in the amount of expanded polystyrene (EPS), which was placed in the plant inside the wall structure. The minimal amount of it was designed in the original wall component type. Besides, two improved types of prefabricated wall had built-in steel lattice girders. The failure mode was the same for all the tested components: diagonal cracks occurred on the sides of each component due to their insufficient shear-force-capacity. The span deflection was measured during all the tests by means of LVDTs. Load-carrying capacities obtained in the tests were for all wall structure types similar and much higher (many times) than internal forces (i.e. bending moments and shear forces) calculated for a wind load acting on a typical hall building according to the German codes. An increased amount of EPS (up to 30 per cent in volume) did not influence significantly the wall structural strength. The use of the steel lattice girders caused some technological problems and led to a quality loss of the produced components. The future use of the lattice girders would require a change in the production process: it would have to be more labour consuming.
Maté-Muñoz, José Luis; Lougedo, Juan H; Garnacho-Castaño, Manuel V; Veiga-Herreros, Pablo; Lozano-Estevan, María Del Carmen; García-Fernández, Pablo; de Jesús, Fernando; Guodemar-Pérez, Jesús; San Juan, Alejandro F; Domínguez, Raúl
2018-01-01
β-Alanine (BA) is a non-essential amino acid that has been shown to enhance exercise performance. The purpose of this investigation was to determine if BA supplementation improved the adaptive response to five weeks of a resistance training program. Thirty healthy, strength-trained individuals were randomly assigned to the experimental groups placebo (PLA) or BA. Over 5 weeks of strength training, subjects in BA took 6.4 g/day of BA as 8 × 800 mg doses each at least 1.5 h apart. The training program consisted of 3 sessions per week in which three different leg exercises were conducted as a circuit (back squat, barbell step ups and loaded jumping lunges). The program started with 3 sets of 40 s of work per exercise and rest periods between sets of 120 s in the first week. This training volume was then gradually built up to 5 sets of 20 s work/60 s rest in the fifth week. The work load during the program was set by one of the authors according to the individual's perceived effort the previous week. The variables measured were average velocity, peak velocity, average power, peak power, and load in kg in a back squat, incremental load, one-repetition maximum (1RM) test. In addition, during the rest period, jump ability (jump height and power) was assessed on a force platform. To compare data, a general linear model with repeated measures two-way analysis of variance was used. Significantly greater training improvements were observed in the BA group versus PLA group ( p = 0.045) in the variables average power at 1RM (BA: 42.65%, 95% CI, 432.33, 522.52 VS. PLA: 21.07%, 95% CI, 384.77, 482.19) and average power at maximum power output ( p = 0.037) (BA: 20.17%, 95% CI, 637.82, 751.90 VS. PLA; 10.74%, 95% CI, 628.31, 751.53). The pre- to post training average power gain produced at 1RM in BA could be explained by a greater maximal strength gain, or load lifted at 1RM ( p = 0.014) (24 kg, 95% CI, 19.45, 28.41 VS. 16 kg, 95% CI, 10.58, 20.25) and in the number of sets executed ( p = 0.025) in the incremental load test (BA: 2.79 sets, 95% CI, 2.08, 3.49 VS. PLA: 1.58 sets, 95% CI, 0.82, 2.34). β-Alanine supplementation was effective at increasing power output when lifting loads equivalent to the individual's maximal strength or when working at maximum power output. The improvement observed at 1RM was explained by a greater load lifted, or strength gain, in response to training in the participants who took this supplement.
NASA Astrophysics Data System (ADS)
Lee, H. B.; Ong, B. B.; Katta, M.; Yvon, C.; Lu, L.; Zakri, R.; Patel, N.
2018-03-01
Subretinal hyper-reflective material (SHRM) seen on optical coherence tomography (OCT) is thought to be a collection of fibrous tissues and vascular networks that are identified in age-related macular degeneration (ARMD). We have carried out a retrospective analysis of 91 OCT scans of neovascular ARMD subtypes including classic and occult choroidal neovascularization (CNV) and retinal angiomatous proliferation (RAP). All three subtypes received ranibizumab, an anti-vascular endothelial growth factor (Anti-VEGF) intravitreal injections on an as-needed basis following the loading doses. Volumes of SHRM were calculated using caliper measurements of maximal height and length of SHRM seen on OCT. The ellipsoid formula derived from tumour models was used to calculate the volume. It was found that occult CNV and RAP have larger SHRM volumes than those of classic CNV. SHRM volumes reduced overall following loading doses of Anti-VEGF injections at 4 months in all three subtypes. However, a rebound increase in volume was noticed in both occult CNV and RAP cohort at 12 months despite the initial, steeper reductions in the subtypes. These findings were consistent with the data seen in volume measurement using Topcon's automated segmentation algorithm in a smaller cohort of patients. We propose that SHRM should be used as a potential biomarker to quantify both disease progression and prognosis of neovascular ARMD alongside other conventional methods.
Association of allostatic load with brain structure and cognitive ability in later life
Booth, Tom; Royle, Natalie A.; Corley, Janie; Gow, Alan J.; Valdés Hernández, Maria del C.; Muñoz Maniega, Susana; Ritchie, Stuart J.; Bastin, Mark E.; Starr, John M.; Wardlaw, Joanna M.; Deary, Ian J.
2015-01-01
Allostatic load (AL) has been proposed as a general framework for understanding the cumulative effects of life stress on individuals. Despite growing interest in AL, limited research has been conducted on aging samples. We consider the association of AL (operationalized by a range of inflammatory, cardiovascular, and metabolic measures) with a range of brain volume measurements and cognitive ability in a large cohort sample of older adults (n = 658, mean age = 72.5 years, standard deviation = 0.7) using structural equation modeling. AL was significantly inversely associated with total brain volume (range of standardized β = −0.16 to −0.20) and white-matter volume (−0.35 to −0.36) and positively with hippocampal volume (0.10–0.15) but not gray-matter volume (0.04). AL was also significantly inversely associated with general cognitive ability (range β = −0.13 to −0.20), processing speed (−0.20 to −0.22), and knowledge (−0.18 to −0.20) but not memory or nonverbal reasoning. The associations of AL with cognitive abilities were not mediated by these brain volume measures. AL did not predict cognitive change from age 11 to approximately age 73. The findings suggest a link between AL and later life brain health and cognitive functioning. PMID:25659881
An assessment of ultra fine grained 316L stainless steel for implant applications.
Muley, Sachin Vijay; Vidvans, Amey N; Chaudhari, Gajanan P; Udainiya, Sumit
2016-01-01
Ultra fine-grained metals obtained by severe plastic deformation exhibit higher specific strength that is useful for many applications and show promise for use as body implants. This work studied the microstructural evolution, mechanical and sliding wear behavior and corrosion behavior of 316L stainless steel warm multi axially forged at 600°C. Microstructural evolution studied using electron backscatter diffraction technique and transmission electron microscopy confirmed the formation of ultra fine-grained structure. Average grain size reduced from 30μm to 0.86μm after nine strain steps. A combination of Hall-Petch strengthening and strain hardening increased the hardness. Improved sliding wear resistance is attributed to a transition from micro cutting to wedge-forming mode of abrasive wear. Load-bearing orthopedic implants often fail from pitting initiated corrosion fatigue. Potentiodynamic tests, cyclic polarization, and FeCl3 immersion tests revealed enhanced pitting resistance of forged steel that is confirmed by Mott-Schottky analysis. This is ascribed to an increase in the grain boundary volume, and homogenization of pit inducing impurities and non-metallic phases due to severe deformation, which influenced the passive film properties. These model studies on 316L steel demonstrate that severely deformed ultra fine-grained metals have potential to deliver improved implant performance. This model study on 316L steel demonstrates that severely deformed ultra fine-grained (UFG) metals have potential to deliver improved load-bearing implant performance. It is as interesting as is unclear as to how such severely deformed UFG material behaves electrochemically in the corrosive body fluids. This work is on studying the inter-relationship between structure, and mechanical, wear, and corrosion behavior of warm multiaxially forged (MAFed) UFG 316L stainless steel. Warm MAF is a bulk processing method capable of yielding large volume of UFG material and is an easily readily adaptable technique in industry. It can be a promising alternative to the expensive metallic alloys available for implant applications. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Halloran, B. P.; Bikle, D. D.; Harris, J.; Tanner, S.; Curren, T.; Morey-Holton, E.
1997-01-01
To determine whether the acute inhibition of bone formation and deficit in bone mineral induced by skeletal unloading can be prevented, we studied the effects of intermittent parathyroid hormone (PTH) administration (8 micrograms/100 g/day) on growing rats submitted to 8 days of skeletal unloading. Loss of weight bearing decreased periosteal bone formation by 34 and 51% at the tibiofibular junction and tibial midshaft, respectively, and reduced the normal gain in tibial mass by 35%. Treatment with PTH of normally loaded and unloaded animals increased mRNA for osteocalcin (+58 and +148%, respectively), cancellous bone volume in the proximal tibia (+41 and +42%, respectively), and bone formation at the tibiofibular junction (+27 and +27%, respectively). Formation was also stimulated at the midshaft in unloaded (+47%, p < 0.05), but not loaded animals (-3%, NS). Although cancellous bone volume was preserved in PTH-treated, unloaded animals, PTH did not restore periosteal bone formation to normal nor prevent the deficit in overall tibial mass induced by unloading. We conclude that the effects of PTH on bone formation are region specific and load dependent. PTH can prevent the decrease in cancellous bone volume and reduce the decrement in cortical bone formation induced by loss of weight bearing.
Segmented surface coil resonator for in vivo EPR applications at 1.1GHz.
Petryakov, Sergey; Samouilov, Alexandre; Chzhan-Roytenberg, Michael; Kesselring, Eric; Sun, Ziqi; Zweier, Jay L
2009-05-01
A four-loop segmented surface coil resonator (SSCR) with electronic frequency and coupling adjustments was constructed with 18mm aperture and loading capability suitable for in vivo Electron Paramagnetic Resonance (EPR) spectroscopy and imaging applications at L-band. Increased sample volume and loading capability were achieved by employing a multi-loop three-dimensional surface coil structure. Symmetrical design of the resonator with coupling to each loop resulted in high homogeneity of RF magnetic field. Parallel loops were coupled to the feeder cable via balancing circuitry containing varactor diodes for electronic coupling and tuning over a wide range of loading conditions. Manually adjusted high Q trimmer capacitors were used for initial tuning with subsequent tuning electronically controlled using varactor diodes. This design provides transparency and homogeneity of magnetic field modulation in the sample volume, while matching components are shielded to minimize interference with modulation and ambient RF fields. It can accommodate lossy samples up to 90% of its aperture with high homogeneity of RF and modulation magnetic fields and can function as a surface loop or a slice volume resonator. Along with an outer coaxial NMR surface coil, the SSCR enabled EPR/NMR co-imaging of paramagnetic probes in living rats to a depth of 20mm.
Modelling the behaviour of steel fibre reinforced precast beam-to-column connection
NASA Astrophysics Data System (ADS)
Chai, C. E.; Sarbini, NN; Ibrahim, I. S.; Ma, C. K.; Tajol Anuar, M. Z.
2017-11-01
The numerical behaviour of steel fibre reinforced concrete (SFRC) corbels reinforced with different fibre volume ratio subjected to vertical incremental load is presented in this paper. Precast concrete structures had become popular in the construction field, which offer a faster, neater, safer, easier and cheaper construction work. The construction components are prefabricated in controlled environment under strict supervision before being erected on site. However, precast beam-column connections are prone to failure due to the brittle properties of concrete. Finite element analysis (FEA) is adopted due to the nonlinear behaviour of concrete and SFRC. The key objective of this research is to develop a reliable nonlinear FEA model to represent the behaviour of reinforced concrete corbel. The developed model is validated with experimental data from previous researches. Then, the validated FEA model is used to predict the behaviour of SFRC corbel reinforced with different fibre volume ratio by changing the material parameters. The results show that the addition of steel fibre (SF) increases the load carrying capacity, ductility, stiffness, and changed the failure mode of corbel from brittle bending-shear to flexural ductile. On the other hand, the increasing of SF volume ratio also leads to increased load carrying capacity, ductility, and stiffness of corbel.