Sample records for volume local structural

  1. Weak correlations between local density and dynamics near the glass transition.

    PubMed

    Conrad, J C; Starr, F W; Weitz, D A

    2005-11-17

    We perform experiments on two different dense colloidal suspensions with confocal microscopy to probe the relationship between local structure and dynamics near the glass transition. We calculate the Voronoi volume for our particles and show that this quantity is not a universal probe of glassy structure for all colloidal suspensions. We correlate the Voronoi volume to displacement and find that these quantities are only weakly correlated. We observe qualitatively similar results in a simulation of a polymer melt. These results suggest that the Voronoi volume does not predict dynamical behavior in experimental colloidal suspensions; a purely structural approach based on local single particle volume likely cannot describe the colloidal glass transition.

  2. Local structure of percolating gels at very low volume fractions

    NASA Astrophysics Data System (ADS)

    Griffiths, Samuel; Turci, Francesco; Royall, C. Patrick

    2017-01-01

    The formation of colloidal gels is strongly dependent on the volume fraction of the system and the strength of the interactions between the colloids. Here we explore very dilute solutions by the means of numerical simulations and show that, in the absence of hydrodynamic interactions and for sufficiently strong interactions, percolating colloidal gels can be realised at very low values of the volume fraction. Characterising the structure of the network of the arrested material we find that, when reducing the volume fraction, the gels are dominated by low-energy local structures, analogous to the isolated clusters of the interaction potential. Changing the strength of the interaction allows us to tune the compactness of the gel as characterised by the fractal dimension, with low interaction strength favouring more chain-like structures.

  3. Correlations between ventricular enlargement and gray and white matter volumes of cortex, thalamus, striatum, and internal capsule in schizophrenia.

    PubMed

    Horga, Guillermo; Bernacer, Javier; Dusi, Nicola; Entis, Jonathan; Chu, Kingwai; Hazlett, Erin A; Haznedar, M Mehmet; Kemether, Eileen; Byne, William; Buchsbaum, Monte S

    2011-10-01

    Ventricular enlargement is one of the most consistent abnormal structural brain findings in schizophrenia and has been used to infer brain shrinkage. However, whether ventricular enlargement is related to local overlying cortex and/or adjacent subcortical structures or whether it is related to brain volume change globally has not been assessed. We systematically assessed interrelations of ventricular volumes with gray and white matter volumes of 40 Brodmann areas (BAs), the thalamus and its medial dorsal nucleus and pulvinar, the internal capsule, caudate and putamen. We acquired structural MRI ( patients with schizophrenia (n = 64) and healthy controls (n = 56)) and diffusion tensor fractional anisotropy (FA) (untreated schizophrenia n = 19, controls n = 32). Volumes were assessed by manual tracing of central structures and a semi-automated parcellation of BAs. Patients with schizophrenia had increased ventricular size associated with decreased cortical gray matter volumes widely across the brain; a similar but less pronounced pattern was seen in normal controls; local correlations (e.g. temporal horn with temporal lobe volume) were not appreciably higher than non-local correlations (e.g. temporal horn with prefrontal volume). White matter regions adjacent to the ventricles similarly did not reveal strong regional relationships. FA and center of mass of the anterior limb of the internal capsule also appeared differentially influenced by ventricular volume but findings were similarly not regional. Taken together, these findings indicate that ventricular enlargement is globally interrelated with gray matter volume diminution but not directly correlated with volume loss in the immediately adjacent caudate, putamen, or internal capsule.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nigro, Valentina, E-mail: nigro@fis.uniroma3.it; Bruni, Fabio; Ricci, Maria Antonietta

    The temperature dependence of the local intra-particle structure of colloidal microgel particles, composed of interpenetrated polymer networks, has been investigated by small-angle neutron scattering at different pH and concentrations, in the range (299÷315) K, where a volume phase transition from a swollen to a shrunken state takes place. Data are well described by a theoretical model that takes into account the presence of both interpenetrated polymer networks and cross-linkers. Two different behaviors are found across the volume phase transition. At neutral pH and T ≈ 307 K, a sharp change of the local structure from a water rich open inhomogeneousmore » interpenetrated polymer network to a homogeneous porous solid-like structure after expelling water is observed. Differently, at acidic pH, the local structure changes almost continuously. These findings demonstrate that a fine control of the pH of the system allows to tune the sharpness of the volume-phase transition.« less

  5. Local shear stress and its correlation with local volume fraction in concentrated non-Brownian suspensions: Lattice Boltzmann simulation

    NASA Astrophysics Data System (ADS)

    Lee, Young Ki; Ahn, Kyung Hyun; Lee, Seung Jong

    2014-12-01

    The local shear stress of non-Brownian suspensions was investigated using the lattice Boltzmann method coupled with the smoothed profile method. Previous studies have only focused on the bulk rheology of complex fluids because the local rheology of complex fluids was not accessible due to technical limitations. In this study, the local shear stress of two-dimensional solid particle suspensions in Couette flow was investigated with the method of planes to correlate non-Newtonian fluid behavior with the structural evolution of concentrated particle suspensions. Shear thickening was successfully captured for highly concentrated suspensions at high particle Reynolds number, and both the local rheology and local structure of the suspensions were analyzed. It was also found that the linear correlation between the local particle stress and local particle volume fraction was dramatically reduced during shear thickening. These results clearly show how the change in local structure of suspensions influences the local and bulk rheology of the suspensions.

  6. Relationships between residue Voronoi volume and sequence conservation in proteins.

    PubMed

    Liu, Jen-Wei; Cheng, Chih-Wen; Lin, Yu-Feng; Chen, Shao-Yu; Hwang, Jenn-Kang; Yen, Shih-Chung

    2018-02-01

    Functional and biophysical constraints can cause different levels of sequence conservation in proteins. Previously, structural properties, e.g., relative solvent accessibility (RSA) and packing density of the weighted contact number (WCN), have been found to be related to protein sequence conservation (CS). The Voronoi volume has recently been recognized as a new structural property of the local protein structural environment reflecting CS. However, for surface residues, it is sensitive to water molecules surrounding the protein structure. Herein, we present a simple structural determinant termed the relative space of Voronoi volume (RSV); it uses the Voronoi volume and the van der Waals volume of particular residues to quantify the local structural environment. RSV (range, 0-1) is defined as (Voronoi volume-van der Waals volume)/Voronoi volume of the target residue. The concept of RSV describes the extent of available space for every protein residue. RSV and Voronoi profiles with and without water molecules (RSVw, RSV, VOw, and VO) were compared for 554 non-homologous proteins. RSV (without water) showed better Pearson's correlations with CS than did RSVw, VO, or VOw values. The mean correlation coefficient between RSV and CS was 0.51, which is comparable to the correlation between RSA and CS (0.49) and that between WCN and CS (0.56). RSV is a robust structural descriptor with and without water molecules and can quantitatively reflect evolutionary information in a single protein structure. Therefore, it may represent a practical structural determinant to study protein sequence, structure, and function relationships. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. JiTTree: A Just-in-Time Compiled Sparse GPU Volume Data Structure.

    PubMed

    Labschütz, Matthias; Bruckner, Stefan; Gröller, M Eduard; Hadwiger, Markus; Rautek, Peter

    2016-01-01

    Sparse volume data structures enable the efficient representation of large but sparse volumes in GPU memory for computation and visualization. However, the choice of a specific data structure for a given data set depends on several factors, such as the memory budget, the sparsity of the data, and data access patterns. In general, there is no single optimal sparse data structure, but a set of several candidates with individual strengths and drawbacks. One solution to this problem are hybrid data structures which locally adapt themselves to the sparsity. However, they typically suffer from increased traversal overhead which limits their utility in many applications. This paper presents JiTTree, a novel sparse hybrid volume data structure that uses just-in-time compilation to overcome these problems. By combining multiple sparse data structures and reducing traversal overhead we leverage their individual advantages. We demonstrate that hybrid data structures adapt well to a large range of data sets. They are especially superior to other sparse data structures for data sets that locally vary in sparsity. Possible optimization criteria are memory, performance and a combination thereof. Through just-in-time (JIT) compilation, JiTTree reduces the traversal overhead of the resulting optimal data structure. As a result, our hybrid volume data structure enables efficient computations on the GPU, while being superior in terms of memory usage when compared to non-hybrid data structures.

  8. Contraction rate, flow modification and bed layering impact on scour at the elliptical guide banks

    NASA Astrophysics Data System (ADS)

    Gjunsburgs, B.; Jaudzems, G.; Bizane, M.; Bulankina, V.

    2017-10-01

    Flow contraction by the bridge crossing structures, intakes, embankments, piers, abutments and guide banks leads to general scour and the local scour in the vicinity of the structures. Local scour is depending on flow, river bed and structures parameters and correct understanding of the impact of each parameter can reduce failure possibility of the structures. The paper explores hydraulic contraction, the discharge redistribution between channel and floodplain during the flood, local flow modification and river bed layering on depth, width and volume of scour hole near the elliptical guide banks on low-land rivers. Experiments in a flume, our method for scour calculation and computer modelling results confirm a considerable impact of the contraction rate of the flow, the discharge redistribution between channel and floodplain, the local velocity, backwater and river bed layering on the depth, width, and volume of scour hole in steady and unsteady flow, under clear water condition. With increase of the contraction rate of the flow, the discharge redistribution between channel and floodplain, the local velocity, backwater values, the scour depth increases. At the same contraction rate, but at a different Fr number, the scour depth is different: with increase in the Fr number, the local velocity, backwater, scour depth, width, and volume is increasing. Acceptance of the geometrical contraction of the flow, approach velocity and top sand layer of the river bed for scour depth calculation as accepted now, may be the reason of the structures failure and human life losses.

  9. Crystal structure optimisation using an auxiliary equation of state

    NASA Astrophysics Data System (ADS)

    Jackson, Adam J.; Skelton, Jonathan M.; Hendon, Christopher H.; Butler, Keith T.; Walsh, Aron

    2015-11-01

    Standard procedures for local crystal-structure optimisation involve numerous energy and force calculations. It is common to calculate an energy-volume curve, fitting an equation of state around the equilibrium cell volume. This is a computationally intensive process, in particular, for low-symmetry crystal structures where each isochoric optimisation involves energy minimisation over many degrees of freedom. Such procedures can be prohibitive for non-local exchange-correlation functionals or other "beyond" density functional theory electronic structure techniques, particularly where analytical gradients are not available. We present a simple approach for efficient optimisation of crystal structures based on a known equation of state. The equilibrium volume can be predicted from one single-point calculation and refined with successive calculations if required. The approach is validated for PbS, PbTe, ZnS, and ZnTe using nine density functionals and applied to the quaternary semiconductor Cu2ZnSnS4 and the magnetic metal-organic framework HKUST-1.

  10. 49 CFR 238.415 - Rollover strength.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... side frame. The allowable stress in the structural members of the occupied volumes for this condition shall be one-half yield or one-half the critical buckling stress, whichever is less. Minor localized... framing. The allowable stress in the structural members of the occupied volumes for this condition shall...

  11. 49 CFR 238.415 - Rollover strength.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... side frame. The allowable stress in the structural members of the occupied volumes for this condition shall be one-half yield or one-half the critical buckling stress, whichever is less. Minor localized... framing. The allowable stress in the structural members of the occupied volumes for this condition shall...

  12. 49 CFR 238.415 - Rollover strength.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... side frame. The allowable stress in the structural members of the occupied volumes for this condition shall be one-half yield or one-half the critical buckling stress, whichever is less. Minor localized... framing. The allowable stress in the structural members of the occupied volumes for this condition shall...

  13. 49 CFR 238.415 - Rollover strength.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... side frame. The allowable stress in the structural members of the occupied volumes for this condition shall be one-half yield or one-half the critical buckling stress, whichever is less. Minor localized... framing. The allowable stress in the structural members of the occupied volumes for this condition shall...

  14. 49 CFR 238.415 - Rollover strength.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... side frame. The allowable stress in the structural members of the occupied volumes for this condition shall be one-half yield or one-half the critical buckling stress, whichever is less. Minor localized... framing. The allowable stress in the structural members of the occupied volumes for this condition shall...

  15. Variation in orbitofrontal cortex volume: relation to sex, emotion regulation and affect.

    PubMed

    Welborn, B Locke; Papademetris, Xenophon; Reis, Deidre L; Rajeevan, Nallakkandi; Bloise, Suzanne M; Gray, Jeremy R

    2009-12-01

    Sex differences in brain structure have been examined extensively but are not completely understood, especially in relation to possible functional correlates. Our two aims in this study were to investigate sex differences in brain structure, and to investigate a possible relation between orbitofrontal cortex subregions and affective individual differences. We used tensor-based morphometry to estimate local brain volume from MPRAGE images in 117 healthy right-handed adults (58 female), age 18-40 years. We entered estimates of local brain volume as the dependent variable in a GLM, controlling for age, intelligence and whole-brain volume. Men had larger left planum temporale. Women had larger ventromedial prefrontal cortex (vmPFC), right lateral orbitofrontal (rlOFC), cerebellum, and bilateral basal ganglia and nearby white matter. vmPFC but not rlOFC volume covaried with self-reported emotion regulation strategies (reappraisal, suppression), expressivity of positive emotions (but not of negative), strength of emotional impulses, and cognitive but not somatic anxiety. vmPFC volume statistically mediated sex differences in emotion suppression. The results confirm prior reports of sex differences in orbitofrontal cortex structure, and are the first to show that normal variation in vmPFC volume is systematically related to emotion regulation and affective individual differences.

  16. Development of automated extraction method of biliary tract from abdominal CT volumes based on local intensity structure analysis

    NASA Astrophysics Data System (ADS)

    Koga, Kusuto; Hayashi, Yuichiro; Hirose, Tomoaki; Oda, Masahiro; Kitasaka, Takayuki; Igami, Tsuyoshi; Nagino, Masato; Mori, Kensaku

    2014-03-01

    In this paper, we propose an automated biliary tract extraction method from abdominal CT volumes. The biliary tract is the path by which bile is transported from liver to the duodenum. No extraction method have been reported for the automated extraction of the biliary tract from common contrast CT volumes. Our method consists of three steps including: (1) extraction of extrahepatic bile duct (EHBD) candidate regions, (2) extraction of intrahepatic bile duct (IHBD) candidate regions, and (3) combination of these candidate regions. The IHBD has linear structures and intensities of the IHBD are low in CT volumes. We use a dark linear structure enhancement (DLSE) filter based on a local intensity structure analysis method using the eigenvalues of the Hessian matrix for the IHBD candidate region extraction. The EHBD region is extracted using a thresholding process and a connected component analysis. In the combination process, we connect the IHBD candidate regions to each EHBD candidate region and select a bile duct region from the connected candidate regions. We applied the proposed method to 22 cases of CT volumes. An average Dice coefficient of extraction result was 66.7%.

  17. Stability of mechanical joints in launching vehicles: Local and global stationary values of energy density

    NASA Astrophysics Data System (ADS)

    Chue, Ching-Hwei

    A method was developed for predicting the behavior of mechanical joints in launch vehicles with particular emphasis placed on how the combined effects of loading, geometry, and materials could be optimized in terms of structure instability and/or integrity. What was considered to be essential is the fluctuation of the volume energy density with time in the structure. The peaks and valleys of the volume energy density function will be associated with failure by fracture and/or yielding while the distance between their local and global stationary values govern the structure instability. The Solid Rocket Booster (SRB) of the space shuttle was analyzed under axisymmetric and non-axisymmetric loadings. A semi-analytical finite element program was developed for solving the case of non-axisymmetric loading. Following a dynamic stress analysis, contours of the volume energy density in the structure were obtained as a function of time. The magnitudes and locations of these stationary values were then calculated locally and globally and related to possible failure by fracture. In the case of axisymmetric flight, the local and global instability behavior do not change appreciably. Fluctuations in the energy density and the dynamic stability length parameter become appreciable when the non-axisymmetric loads are considered. The magnitude of the energy in the shell structure is sensitive to alterations in the gas pressure induced by the solid propellant.

  18. Magnetic structure and local lattice distortion in giant negative thermal expansion material Mn3Cu1-xGexN

    NASA Astrophysics Data System (ADS)

    Iikubo, S.; Kodama, K.; Takenaka, K.; Takagi, H.; Shamoto, S.

    2010-11-01

    Magnetic and local structures in an antiperovskite system, Mn3Cu1-xGexN, with a giant negative thermal expansion have been studied by neutron powder diffraction measurement. We discuss (1) an importance of an averaged cubic crystal structure and a ΓG5g antiferromagnetic spin structure for the large magneto-volume effect (MVE) in this itinerant electron system, (2) an unique role of a local lattice distortion well described by the low temperature tetragonal structure of Mn3GeN for the broadening of MVE.

  19. Dilatancy of Shear Transformations in a Colloidal Glass

    NASA Astrophysics Data System (ADS)

    Lu, Y. Z.; Jiang, M. Q.; Lu, X.; Qin, Z. X.; Huang, Y. J.; Shen, J.

    2018-01-01

    Shear transformations, as fundamental rearrangement events operating in local regions, hold the key of plastic flow of amorphous solids. Despite their importance, the dynamic features of shear transformations are far from clear, which is the focus of the present study. Here, we use a colloidal glass under shear as the prototype to directly observe the shear-transformation events in real space. By tracing the colloidal-particle rearrangements, we quantitatively determine two basic properties of shear transformations: local shear strain and dilatation (or free volume). It is revealed that the local free volume undergoes a significantly temporary increase prior to shear transformations, eventually leading to a jump of local shear strain. We clearly demonstrate that shear transformations have no memory of the initial free volume of local regions. Instead, their emergence strongly depends on the dilatancy ability of these local regions, i.e., the dynamic creation of free volume. More specifically, the particles processing the high dilatancy ability directly participate in subsequent shear transformations. These results experimentally enrich Argon's statement about the dilatancy nature of shear transformations and also shed insight into the structural origin of amorphous plasticity.

  20. Local Lattice Distortion in the Giant Negative Thermal Expansion Material Mn3Cu1-xGexN

    NASA Astrophysics Data System (ADS)

    Iikubo, S.; Kodama, K.; Takenaka, K.; Takagi, H.; Takigawa, M.; Shamoto, S.

    2008-11-01

    Giant negative thermal expansion is achieved in antiperovskite manganese nitrides when the sharp volume change associated with magnetic ordering is broadened by substitution. In this Letter, we address the unique role of the ‘‘magic” element, Ge, for such broadening in Mn3Cu1-xGexN. We present evidence for a local lattice distortion well described by the low-temperature tetragonal (T4) structure of Mn3GeN for a range of x, where the overall structure remains cubic. This structural instability shows a strong correlation with the broadness of the growth of the ordered magnetic moment and, hence, is considered to trigger the broadening of the volume change.

  1. Early changes in brain structure correlate with language outcomes in children with neonatal encephalopathy.

    PubMed

    Shapiro, Kevin A; Kim, Hosung; Mandelli, Maria Luisa; Rogers, Elizabeth E; Gano, Dawn; Ferriero, Donna M; Barkovich, A James; Gorno-Tempini, Maria Luisa; Glass, Hannah C; Xu, Duan

    2017-01-01

    Global patterns of brain injury correlate with motor, cognitive, and language outcomes in survivors of neonatal encephalopathy (NE). However, it is still unclear whether local changes in brain structure predict specific deficits. We therefore examined whether differences in brain structure at 6 months of age are associated with neurodevelopmental outcomes in this population. We enrolled 32 children with NE, performed structural brain MR imaging at 6 months, and assessed neurodevelopmental outcomes at 30 months. All subjects underwent T1-weighted imaging at 3 T using a 3D IR-SPGR sequence. Images were normalized in intensity and nonlinearly registered to a template constructed specifically for this population, creating a deformation field map. We then used deformation based morphometry (DBM) to correlate variation in the local volume of gray and white matter with composite scores on the Bayley Scales of Infant and Toddler Development (Bayley-III) at 30 months. Our general linear model included gestational age, sex, birth weight, and treatment with hypothermia as covariates. Regional brain volume was significantly associated with language scores, particularly in perisylvian cortical regions including the left supramarginal gyrus, posterior superior and middle temporal gyri, and right insula, as well as inferior frontoparietal subcortical white matter. We did not find significant correlations between regional brain volume and motor or cognitive scale scores. We conclude that, in children with a history of NE, local changes in the volume of perisylvian gray and white matter at 6 months are correlated with language outcome at 30 months. Quantitative measures of brain volume on early MRI may help identify infants at risk for poor language outcomes.

  2. Differentiating prenatal exposure to methamphetamine and alcohol versus alcohol and not methamphetamine using tensor based brain morphometry and discriminant analysis

    PubMed Central

    Sowell, Elizabeth R.; Leow, Alex D.; Bookheimer, Susan Y.; Smith, Lynne M.; O’Connor, Mary J.; Kan, Eric; Rosso, Carly; Houston, Suzanne; Dinov, Ivo D.; Thompson, Paul M.

    2010-01-01

    Here we investigate the effects of prenatal exposure to methamphetamine (MA) on local brain volume using magnetic resonance imaging. Because many who use MA during pregnancy also use alcohol, a known teratogen, we examined whether local brain volumes differed among 61 children (ages 5 to 15), 21 with prenatal MA exposure, 18 with concomitant prenatal alcohol exposure (the MAA group), 13 with heavy prenatal alcohol but not MA exposure (ALC group), and 27 unexposed controls (CON group). Volume reductions were observed in both exposure groups relative to controls in striatal and thalamic regions bilaterally, and right prefrontal and left occipitoparietal cortices. Striatal volume reductions were more severe in the MAA group than in the ALC group, and within the MAA group, a negative correlation between full-scale IQ (FSIQ) scores and caudate volume was observed. Limbic structures including the anterior and posterior cingulate, the inferior frontal gyrus (IFG) and ventral and lateral temporal lobes bilaterally were increased in volume in both exposure groups. Further, cingulate and right IFG volume increases were more pronounced in the MAA than ALC group. Discriminant function analyses using local volume measurements and FSIQ were used to predict group membership, yielding factor scores that correctly classified 72% of participants in jackknife analyses. These findings suggest that striatal and limbic structures, known to be sites of neurotoxicity in adult MA abusers, may be more vulnerable to prenatal MA exposure than alcohol exposure, and that more severe striatal damage is associated with more severe cognitive deficit. PMID:20237258

  3. Direct observation of nucleation in the bulk of an opaque sample

    DOE PAGES

    Xu, Chaoling; Zhang, Yubin; Godfrey, Andrew; ...

    2017-02-14

    Remarkably little is known about the physical phenomena leading to nucleation of new perfect crystals within deformed metals during annealing, in particular how and where volumes with nearly perfect lattices evolve from structures filled with dislocations, and how local variations at the micrometer length scale affect this nucleation process. We present here the first experimental measurements that relate directly nucleation of recrystallization to the local deformation microstructure in the bulk of a sample of cold rolled aluminum, further deformed locally by a hardness indentation. White beam differential aperture X-ray microscopy is used for the measurements, allowing us to map amore » selected gauge volume in the bulk of the sample in the deformed state, then anneal the sample and map the exact same gauge volume in the annealed state. It is found that nuclei develop at sites of high stored energy and they have crystallographic orientations from those present in the deformed state. Accordingly we suggest that for each nucleus the embryonic volume arises from a structural element contained within the voxels identified with the same orientation. In conclusion, possible nucleation mechanisms are discussed and the growth potentials of the nuclei are also analyzed and discussed.« less

  4. Direct observation of nucleation in the bulk of an opaque sample.

    PubMed

    Xu, Chaoling; Zhang, Yubin; Godfrey, Andrew; Wu, Guilin; Liu, Wenjun; Tischler, Jonathan Z; Liu, Qing; Juul Jensen, Dorte

    2017-02-14

    Remarkably little is known about the physical phenomena leading to nucleation of new perfect crystals within deformed metals during annealing, in particular how and where volumes with nearly perfect lattices evolve from structures filled with dislocations, and how local variations at the micrometer length scale affect this nucleation process. We present here the first experimental measurements that relate directly nucleation of recrystallization to the local deformation microstructure in the bulk of a sample of cold rolled aluminum, further deformed locally by a hardness indentation. White beam differential aperture X-ray microscopy is used for the measurements, allowing us to map a selected gauge volume in the bulk of the sample in the deformed state, then anneal the sample and map the exact same gauge volume in the annealed state. It is found that nuclei develop at sites of high stored energy and they have crystallographic orientations from those present in the deformed state. Accordingly we suggest that for each nucleus the embryonic volume arises from a structural element contained within the voxels identified with the same orientation. Possible nucleation mechanisms are discussed and the growth potentials of the nuclei are also analyzed and discussed.

  5. Diffusion and related transport mechanisms in brain tissue

    NASA Astrophysics Data System (ADS)

    Nicholson, Charles

    2001-07-01

    Diffusion plays a crucial role in brain function. The spaces between cells can be likened to the water phase of a foam and many substances move within this complicated region. Diffusion in this interstitial space can be accurately modelled with appropriate modifications of classical equations and quantified from measurements based on novel micro-techniques. Besides delivering glucose and oxygen from the vascular system to brain cells, diffusion also moves informational substances between cells, a process known as volume transmission. Deviations from expected results reveal how local uptake, degradation or bulk flow may modify the transport of molecules. Diffusion is also essential to many therapies that deliver drugs to the brain. The diffusion-generated concentration distributions of well-chosen molecules also reveal the structure of brain tissue. This structure is represented by the volume fraction (void space) and the tortuosity (hindrance to diffusion imposed by local boundaries or local viscosity). Analysis of these parameters also reveals how the local geometry of the brain changes with time or under pathological conditions. Theoretical and experimental approaches borrow from classical diffusion theory and from porous media concepts. Earlier studies were based on radiotracers but the recent methods use a point-source paradigm coupled with micro-sensors or optical imaging of macromolecules labelled with fluorescent tags. These concepts and methods are likely to be applicable elsewhere to measure diffusion properties in very small volumes of highly structured but delicate material.

  6. Geometrical analysis of woven fabric microstructure based on micron-resolution computed tomography data

    NASA Astrophysics Data System (ADS)

    Krieger, Helga; Seide, Gunnar; Gries, Thomas; Stapleton, Scott E.

    2018-04-01

    The global mechanical properties of textiles such as elasticity and strength, as well as transport properties such as permeability depend strongly on the microstructure of the textile. Textiles are heterogeneous structures with highly anisotropic material properties, including local fiber orientation and local fiber volume fraction. In this paper, an algorithm is presented to generate a virtual 3D-model of a woven fabric architecture with information about the local fiber orientation and the local fiber volume fraction. The geometric data of the woven fabric impregnated with resin was obtained by micron-resolution computed tomography (μCT). The volumetric μCT-scan was discretized into cells and the microstructure of each cell was analyzed and homogenized. Furthermore, the discretized data was used to calculate the local permeability tensors of each cell. An example application of the analyzed data is the simulation of the resin flow through a woven fabric based on the determined local permeability tensors and on Darcy's law. The presented algorithm is an automated and robust method of going from μCT-scans to structural or flow models.

  7. Converging evidence for abnormalities of the prefrontal cortex and evaluation of midsagittal structures in pediatric PTSD: an MRI study

    PubMed Central

    Carrion, Victor G.; Weems, Carl F.; Watson, Christa; Eliez, Stephan; Menon, Vinod; Reiss, Allan L.

    2009-01-01

    Objective Volumetric imaging research has shown abnormal brain morphology in posttraumatic stress disorder (PTSD) when compared to controls. We present results on a study of brain morphology in the prefrontal cortex (PFC) and midline structures, via indices of gray matter volume and density, in pediatric PTSD. We hypothesized that both methods would demonstrate aberrant morphology in the PFC. Further, we hypothesized aberrant brainstem anatomy and reduced corpus collosum volume in children with PTSD. Methods Twenty-four children (aged 7-14) with history of interpersonal trauma and 24 age, and gender matched controls underwent structural magnetic resonance imaging. Images of the PFC and midline brain structures were first analyzed using volumetric image analysis. The PFC data were then compared with whole-brain voxel-based techniques using statistical parametric mapping (SPM). Results The PTSD group showed significant increased gray matter volume in the right and left inferior and superior quadrants of the prefrontal cortex and smaller gray matter volume in pons, and posterior vermis areas by volumetric image analysis. The voxel-byvoxel group comparisons demonstrated increased gray matter density mostly localized to ventral PFC as compared to the control group. Conclusions Abnormal frontal lobe morphology, as revealed by separate-complementary image analysis methods, and reduced pons and posterior vermis areas are associated with pediatric PTSD. Voxel-based morphometry may help to corroborate and further localize data obtained by volume of interest methods in PTSD. PMID:19349151

  8. Scan-based volume animation driven by locally adaptive articulated registrations.

    PubMed

    Rhee, Taehyun; Lewis, J P; Neumann, Ulrich; Nayak, Krishna S

    2011-03-01

    This paper describes a complete system to create anatomically accurate example-based volume deformation and animation of articulated body regions, starting from multiple in vivo volume scans of a specific individual. In order to solve the correspondence problem across volume scans, a template volume is registered to each sample. The wide range of pose variations is first approximated by volume blend deformation (VBD), providing proper initialization of the articulated subject in different poses. A novel registration method is presented to efficiently reduce the computation cost while avoiding strong local minima inherent in complex articulated body volume registration. The algorithm highly constrains the degrees of freedom and search space involved in the nonlinear optimization, using hierarchical volume structures and locally constrained deformation based on the biharmonic clamped spline. Our registration step establishes a correspondence across scans, allowing a data-driven deformation approach in the volume domain. The results provide an occlusion-free person-specific 3D human body model, asymptotically accurate inner tissue deformations, and realistic volume animation of articulated movements driven by standard joint control estimated from the actual skeleton. Our approach also addresses the practical issues arising in using scans from living subjects. The robustness of our algorithms is tested by their applications on the hand, probably the most complex articulated region in the body, and the knee, a frequent subject area for medical imaging due to injuries. © 2011 IEEE

  9. The Effect of Fiber Strength Stochastics and Local Fiber Volume Fraction on Multiscale Progressive Failure of Composites

    NASA Technical Reports Server (NTRS)

    Ricks, Trenton M.; Lacy, Jr., Thomas E.; Bednarcyk, Brett A.; Arnold, Steven M.

    2013-01-01

    Continuous fiber unidirectional polymer matrix composites (PMCs) can exhibit significant local variations in fiber volume fraction as a result of processing conditions that can lead to further local differences in material properties and failure behavior. In this work, the coupled effects of both local variations in fiber volume fraction and the empirically-based statistical distribution of fiber strengths on the predicted longitudinal modulus and local tensile strength of a unidirectional AS4 carbon fiber/ Hercules 3502 epoxy composite were investigated using the special purpose NASA Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC); local effective composite properties were obtained by homogenizing the material behavior over repeating units cells (RUCs). The predicted effective longitudinal modulus was relatively insensitive to small (8%) variations in local fiber volume fraction. The composite tensile strength, however, was highly dependent on the local distribution in fiber strengths. The RUC-averaged constitutive response can be used to characterize lower length scale material behavior within a multiscale analysis framework that couples the NASA code FEAMAC and the ABAQUS finite element solver. Such an approach can be effectively used to analyze the progressive failure of PMC structures whose failure initiates at the RUC level. Consideration of the effect of local variations in constituent properties and morphologies on progressive failure of PMCs is a central aspect of the application of Integrated Computational Materials Engineering (ICME) principles for composite materials.

  10. A voxel-based investigation of brain structure in male adolescents with autistic spectrum disorder.

    PubMed

    Waiter, Gordon D; Williams, Justin H G; Murray, Alison D; Gilchrist, Anne; Perrett, David I; Whiten, Andrew

    2004-06-01

    Autistic spectrum disorder (ASD) has been associated with abnormal neuroanatomy in many imaging and neuropathological studies. Both global brain volume differences and differences in the size of specific neural structures have been reported. Here, we report a voxel-based morphometric whole brain analysis, using a group specific template, on 16 individuals of normal intelligence with autistic spectrum disorder (ASD), and a group of 16 age-, sex- and IQ-matched controls. Total grey matter volume was increased in the ASD group relative to the control group, with local volume increases in the right fusiform gyrus, the right temporo-occipital region and the left frontal pole extending to the medial frontal cortex. A local decrease in grey matter volume was found in the right thalamus. A decrease in global white matter volume in the ASD group did not reach significance. We found the increase in grey matter volume in ASD subjects was greatest in those areas recognised for their role in social cognition, particularly face recognition (right fusiform gyrus), mental state attribution: 'theory of mind' (anterior cingulate and superior temporal sulcus) and perception of eye gaze (superior temporal gyrus). The picture as a whole may reflect an abnormally functioning social cognitive neural network. We suggest that increased grey matter volume may play a pivotal role in the aetiology of the autistic syndrome.

  11. Cortical and subcortical atrophy in Alzheimer disease: parallel atrophy of thalamus and hippocampus.

    PubMed

    Štěpán-Buksakowska, Irena; Szabó, Nikoletta; Hořínek, Daniel; Tóth, Eszter; Hort, Jakub; Warner, Joshua; Charvát, František; Vécsei, László; Roček, Miloslav; Kincses, Zsigmond T

    2014-01-01

    Brain atrophy is a key imaging hallmark of Alzheimer disease (AD). In this study, we carried out an integrative evaluation of AD-related atrophy. Twelve patients with AD and 13 healthy controls were enrolled. We conducted a cross-sectional analysis of total brain tissue volumes with SIENAX. Localized gray matter atrophy was identified with optimized voxel-wise morphometry (FSL-VBM), and subcortical atrophy was evaluated by active shape model implemented in FMRIB's Integrated Registration Segmentation Toolkit. SIENAX analysis demonstrated total brain atrophy in AD patients; voxel-based morphometry analysis showed atrophy in the bilateral mediotemporal regions and in the posterior brain regions. In addition, regarding the diminished volumes of thalami and hippocampi in AD patients, subsequent vertex analysis of the segmented structures indicated shrinkage of the bilateral anterior thalami and the left medial hippocampus. Interestingly, the volume of the thalami and hippocampi were highly correlated with the volume of the thalami and amygdalae on both sides in AD patients, but not in healthy controls. This complex structural information proved useful in the detailed interpretation of AD-related neurodegenerative process, as the multilevel approach showed both global and local atrophy on cortical and subcortical levels. Most importantly, our results raise the possibility that subcortical structure atrophy is not independent in AD patients.

  12. Local-structure change rendered by electronic localization-delocalization transition in cerium-based metallic glasses

    NASA Astrophysics Data System (ADS)

    Luo, Qiang; Schwarz, Björn; Swarbrick, Janine C.; Bednarčik, Jozef; Zhu, Yingcai; Tang, Meibo; Zheng, Lirong; Li, Ran; Shen, Jun; Eckert, Jürgen

    2018-02-01

    With increasing temperature, metallic glasses (MGs) undergo first glass transition without pronounced structural change and then crystallization with distinct variation in structure and properties. The present study shows a structural change of short-range order induced by an electron-delocalization transition, along with an unusual large-volume shrinkage in Ce-based MGs. An f -electron localization-delocalization transition with thermal hysteresis is observed from the temperature dependence of x-ray absorption spectroscopy and resonant inelastic x-ray scattering spectra, indicating an inheritance of the 4 f configuration of pure Ce. However, the delocalization transition becomes broadened due to the local structural heterogeneity and related fluctuation of 4 f levels in the Ce-based MGs. The amorphous structure regulated 4 f delocalization of Ce leads to bond shortening and abnormal structure change of the topological and chemical short-range orders. Due to the hierarchical bonding nature, the structure should change in a similar manner on different length scales (but not isostructurally like the Ce metal) in Ce-based MGs.

  13. Automatic segmentation of airway tree based on local intensity filter and machine learning technique in 3D chest CT volume.

    PubMed

    Meng, Qier; Kitasaka, Takayuki; Nimura, Yukitaka; Oda, Masahiro; Ueno, Junji; Mori, Kensaku

    2017-02-01

    Airway segmentation plays an important role in analyzing chest computed tomography (CT) volumes for computerized lung cancer detection, emphysema diagnosis and pre- and intra-operative bronchoscope navigation. However, obtaining a complete 3D airway tree structure from a CT volume is quite a challenging task. Several researchers have proposed automated airway segmentation algorithms basically based on region growing and machine learning techniques. However, these methods fail to detect the peripheral bronchial branches, which results in a large amount of leakage. This paper presents a novel approach for more accurate extraction of the complex airway tree. This proposed segmentation method is composed of three steps. First, Hessian analysis is utilized to enhance the tube-like structure in CT volumes; then, an adaptive multiscale cavity enhancement filter is employed to detect the cavity-like structure with different radii. In the second step, support vector machine learning will be utilized to remove the false positive (FP) regions from the result obtained in the previous step. Finally, the graph-cut algorithm is used to refine the candidate voxels to form an integrated airway tree. A test dataset including 50 standard-dose chest CT volumes was used for evaluating our proposed method. The average extraction rate was about 79.1 % with the significantly decreased FP rate. A new method of airway segmentation based on local intensity structure and machine learning technique was developed. The method was shown to be feasible for airway segmentation in a computer-aided diagnosis system for a lung and bronchoscope guidance system.

  14. Minimizing Cache Misses Using Minimum-Surface Bodies

    NASA Technical Reports Server (NTRS)

    Frumkin, Michael; VanderWijngaart, Rob; Biegel, Bryan (Technical Monitor)

    2002-01-01

    A number of known techniques for improving cache performance in scientific computations involve the reordering of the iteration space. Some of these reorderings can be considered as coverings of the iteration space with the sets having good surface-to-volume ratio. Use of such sets reduces the number of cache misses in computations of local operators having the iteration space as a domain. First, we derive lower bounds which any algorithm must suffer while computing a local operator on a grid. Then we explore coverings of iteration spaces represented by structured and unstructured grids which allow us to approach these lower bounds. For structured grids we introduce a covering by successive minima tiles of the interference lattice of the grid. We show that the covering has low surface-to-volume ratio and present a computer experiment showing actual reduction of the cache misses achieved by using these tiles. For planar unstructured grids we show existence of a covering which reduces the number of cache misses to the level of structured grids. On the other hand, we present a triangulation of a 3-dimensional cube such that any local operator on the corresponding grid has significantly larger number of cache misses than a similar operator on a structured grid.

  15. Local structure controls the nonaffine shear and bulk moduli of disordered solids

    NASA Astrophysics Data System (ADS)

    Schlegel, M.; Brujic, J.; Terentjev, E. M.; Zaccone, A.

    2016-01-01

    Paradigmatic model systems, which are used to study the mechanical response of matter, are random networks of point-atoms, random sphere packings, or simple crystal lattices; all of these models assume central-force interactions between particles/atoms. Each of these models differs in the spatial arrangement and the correlations among particles. In turn, this is reflected in the widely different behaviours of the shear (G) and compression (K) elastic moduli. The relation between the macroscopic elasticity as encoded in G, K and their ratio, and the microscopic lattice structure/order, is not understood. We provide a quantitative analytical connection between the local orientational order and the elasticity in model amorphous solids with different internal microstructure, focusing on the two opposite limits of packings (strong excluded-volume) and networks (no excluded-volume). The theory predicts that, in packings, the local orientational order due to excluded-volume causes less nonaffinity (less softness or larger stiffness) under compression than under shear. This leads to lower values of G/K, a well-documented phenomenon which was lacking a microscopic explanation. The theory also provides an excellent one-parameter description of the elasticity of compressed emulsions in comparison with experimental data over a broad range of packing fractions.

  16. DESAP 1: A structural design program with stress and displacement constraints. Volume 1: Theoretical and user's manual

    NASA Technical Reports Server (NTRS)

    Kiusalaas, J.; Reddy, G. B.

    1977-01-01

    A finite element program is presented for computer-automated, minimum weight design of elastic structures with constraints on stresses (including local instability criteria) and displacements. Volume 1 of the report contains the theoretical and user's manual of the program. Sample problems and the listing of the program are included in Volumes 2 and 3. The element subroutines are organized so as to facilitate additions and changes by the user. As a result, a relatively minor programming effort would be required to make DESAP 1 into a special purpose program to handle the user's specific design requirements and failure criteria.

  17. Universal structural parameter to quantitatively predict metallic glass properties

    DOE PAGES

    Ding, Jun; Cheng, Yong-Qiang; Sheng, Howard; ...

    2016-12-12

    Quantitatively correlating the amorphous structure in metallic glasses (MGs) with their physical properties has been a long-sought goal. Here we introduce flexibility volume' as a universal indicator, to bridge the structural state the MG is in with its properties, on both atomic and macroscopic levels. The flexibility volume combines static atomic volume with dynamics information via atomic vibrations that probe local configurational space and interaction between neighbouring atoms. We demonstrate that flexibility volume is a physically appropriate parameter that can quantitatively predict the shear modulus, which is at the heart of many key properties of MGs. Moreover, the new parametermore » correlates strongly with atomic packing topology, and also with the activation energy for thermally activated relaxation and the propensity for stress-driven shear transformations. These correlations are expected to be robust across a very wide range of MG compositions, processing conditions and length scales.« less

  18. Novel genetic loci associated with hippocampal volume.

    PubMed

    Hibar, Derrek P; Adams, Hieab H H; Jahanshad, Neda; Chauhan, Ganesh; Stein, Jason L; Hofer, Edith; Renteria, Miguel E; Bis, Joshua C; Arias-Vasquez, Alejandro; Ikram, M Kamran; Desrivières, Sylvane; Vernooij, Meike W; Abramovic, Lucija; Alhusaini, Saud; Amin, Najaf; Andersson, Micael; Arfanakis, Konstantinos; Aribisala, Benjamin S; Armstrong, Nicola J; Athanasiu, Lavinia; Axelsson, Tomas; Beecham, Ashley H; Beiser, Alexa; Bernard, Manon; Blanton, Susan H; Bohlken, Marc M; Boks, Marco P; Bralten, Janita; Brickman, Adam M; Carmichael, Owen; Chakravarty, M Mallar; Chen, Qiang; Ching, Christopher R K; Chouraki, Vincent; Cuellar-Partida, Gabriel; Crivello, Fabrice; Den Braber, Anouk; Doan, Nhat Trung; Ehrlich, Stefan; Giddaluru, Sudheer; Goldman, Aaron L; Gottesman, Rebecca F; Grimm, Oliver; Griswold, Michael E; Guadalupe, Tulio; Gutman, Boris A; Hass, Johanna; Haukvik, Unn K; Hoehn, David; Holmes, Avram J; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Jørgensen, Kjetil N; Karbalai, Nazanin; Kasperaviciute, Dalia; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H; Liewald, David C M; Lopez, Lorna M; Luciano, Michelle; Macare, Christine; Marquand, Andre F; Matarin, Mar; Mather, Karen A; Mattheisen, Manuel; McKay, David R; Milaneschi, Yuri; Muñoz Maniega, Susana; Nho, Kwangsik; Nugent, Allison C; Nyquist, Paul; Loohuis, Loes M Olde; Oosterlaan, Jaap; Papmeyer, Martina; Pirpamer, Lukas; Pütz, Benno; Ramasamy, Adaikalavan; Richards, Jennifer S; Risacher, Shannon L; Roiz-Santiañez, Roberto; Rommelse, Nanda; Ropele, Stefan; Rose, Emma J; Royle, Natalie A; Rundek, Tatjana; Sämann, Philipp G; Saremi, Arvin; Satizabal, Claudia L; Schmaal, Lianne; Schork, Andrew J; Shen, Li; Shin, Jean; Shumskaya, Elena; Smith, Albert V; Sprooten, Emma; Strike, Lachlan T; Teumer, Alexander; Tordesillas-Gutierrez, Diana; Toro, Roberto; Trabzuni, Daniah; Trompet, Stella; Vaidya, Dhananjay; Van der Grond, Jeroen; Van der Lee, Sven J; Van der Meer, Dennis; Van Donkelaar, Marjolein M J; Van Eijk, Kristel R; Van Erp, Theo G M; Van Rooij, Daan; Walton, Esther; Westlye, Lars T; Whelan, Christopher D; Windham, Beverly G; Winkler, Anderson M; Wittfeld, Katharina; Woldehawariat, Girma; Wolf, Christiane; Wolfers, Thomas; Yanek, Lisa R; Yang, Jingyun; Zijdenbos, Alex; Zwiers, Marcel P; Agartz, Ingrid; Almasy, Laura; Ames, David; Amouyel, Philippe; Andreassen, Ole A; Arepalli, Sampath; Assareh, Amelia A; Barral, Sandra; Bastin, Mark E; Becker, Diane M; Becker, James T; Bennett, David A; Blangero, John; van Bokhoven, Hans; Boomsma, Dorret I; Brodaty, Henry; Brouwer, Rachel M; Brunner, Han G; Buckner, Randy L; Buitelaar, Jan K; Bulayeva, Kazima B; Cahn, Wiepke; Calhoun, Vince D; Cannon, Dara M; Cavalleri, Gianpiero L; Cheng, Ching-Yu; Cichon, Sven; Cookson, Mark R; Corvin, Aiden; Crespo-Facorro, Benedicto; Curran, Joanne E; Czisch, Michael; Dale, Anders M; Davies, Gareth E; De Craen, Anton J M; De Geus, Eco J C; De Jager, Philip L; De Zubicaray, Greig I; Deary, Ian J; Debette, Stéphanie; DeCarli, Charles; Delanty, Norman; Depondt, Chantal; DeStefano, Anita; Dillman, Allissa; Djurovic, Srdjan; Donohoe, Gary; Drevets, Wayne C; Duggirala, Ravi; Dyer, Thomas D; Enzinger, Christian; Erk, Susanne; Espeseth, Thomas; Fedko, Iryna O; Fernández, Guillén; Ferrucci, Luigi; Fisher, Simon E; Fleischman, Debra A; Ford, Ian; Fornage, Myriam; Foroud, Tatiana M; Fox, Peter T; Francks, Clyde; Fukunaga, Masaki; Gibbs, J Raphael; Glahn, David C; Gollub, Randy L; Göring, Harald H H; Green, Robert C; Gruber, Oliver; Gudnason, Vilmundur; Guelfi, Sebastian; Håberg, Asta K; Hansell, Narelle K; Hardy, John; Hartman, Catharina A; Hashimoto, Ryota; Hegenscheid, Katrin; Heinz, Andreas; Le Hellard, Stephanie; Hernandez, Dena G; Heslenfeld, Dirk J; Ho, Beng-Choon; Hoekstra, Pieter J; Hoffmann, Wolfgang; Hofman, Albert; Holsboer, Florian; Homuth, Georg; Hosten, Norbert; Hottenga, Jouke-Jan; Huentelman, Matthew; Hulshoff Pol, Hilleke E; Ikeda, Masashi; Jack, Clifford R; Jenkinson, Mark; Johnson, Robert; Jönsson, Erik G; Jukema, J Wouter; Kahn, René S; Kanai, Ryota; Kloszewska, Iwona; Knopman, David S; Kochunov, Peter; Kwok, John B; Lawrie, Stephen M; Lemaître, Hervé; Liu, Xinmin; Longo, Dan L; Lopez, Oscar L; Lovestone, Simon; Martinez, Oliver; Martinot, Jean-Luc; Mattay, Venkata S; McDonald, Colm; McIntosh, Andrew M; McMahon, Francis J; McMahon, Katie L; Mecocci, Patrizia; Melle, Ingrid; Meyer-Lindenberg, Andreas; Mohnke, Sebastian; Montgomery, Grant W; Morris, Derek W; Mosley, Thomas H; Mühleisen, Thomas W; Müller-Myhsok, Bertram; Nalls, Michael A; Nauck, Matthias; Nichols, Thomas E; Niessen, Wiro J; Nöthen, Markus M; Nyberg, Lars; Ohi, Kazutaka; Olvera, Rene L; Ophoff, Roel A; Pandolfo, Massimo; Paus, Tomas; Pausova, Zdenka; Penninx, Brenda W J H; Pike, G Bruce; Potkin, Steven G; Psaty, Bruce M; Reppermund, Simone; Rietschel, Marcella; Roffman, Joshua L; Romanczuk-Seiferth, Nina; Rotter, Jerome I; Ryten, Mina; Sacco, Ralph L; Sachdev, Perminder S; Saykin, Andrew J; Schmidt, Reinhold; Schmidt, Helena; Schofield, Peter R; Sigursson, Sigurdur; Simmons, Andrew; Singleton, Andrew; Sisodiya, Sanjay M; Smith, Colin; Smoller, Jordan W; Soininen, Hilkka; Steen, Vidar M; Stott, David J; Sussmann, Jessika E; Thalamuthu, Anbupalam; Toga, Arthur W; Traynor, Bryan J; Troncoso, Juan; Tsolaki, Magda; Tzourio, Christophe; Uitterlinden, Andre G; Hernández, Maria C Valdés; Van der Brug, Marcel; van der Lugt, Aad; van der Wee, Nic J A; Van Haren, Neeltje E M; van 't Ent, Dennis; Van Tol, Marie-Jose; Vardarajan, Badri N; Vellas, Bruno; Veltman, Dick J; Völzke, Henry; Walter, Henrik; Wardlaw, Joanna M; Wassink, Thomas H; Weale, Michael E; Weinberger, Daniel R; Weiner, Michael W; Wen, Wei; Westman, Eric; White, Tonya; Wong, Tien Y; Wright, Clinton B; Zielke, Ronald H; Zonderman, Alan B; Martin, Nicholas G; Van Duijn, Cornelia M; Wright, Margaret J; Longstreth, W T; Schumann, Gunter; Grabe, Hans J; Franke, Barbara; Launer, Lenore J; Medland, Sarah E; Seshadri, Sudha; Thompson, Paul M; Ikram, M Arfan

    2017-01-18

    The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (r g =-0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness.

  19. Novel genetic loci associated with hippocampal volume

    PubMed Central

    Hibar, Derrek P.; Adams, Hieab H. H.; Jahanshad, Neda; Chauhan, Ganesh; Stein, Jason L.; Hofer, Edith; Renteria, Miguel E.; Bis, Joshua C.; Arias-Vasquez, Alejandro; Ikram, M. Kamran; Desrivières, Sylvane; Vernooij, Meike W.; Abramovic, Lucija; Alhusaini, Saud; Amin, Najaf; Andersson, Micael; Arfanakis, Konstantinos; Aribisala, Benjamin S.; Armstrong, Nicola J.; Athanasiu, Lavinia; Axelsson, Tomas; Beecham, Ashley H.; Beiser, Alexa; Bernard, Manon; Blanton, Susan H.; Bohlken, Marc M.; Boks, Marco P.; Bralten, Janita; Brickman, Adam M.; Carmichael, Owen; Chakravarty, M. Mallar; Chen, Qiang; Ching, Christopher R. K.; Chouraki, Vincent; Cuellar-Partida, Gabriel; Crivello, Fabrice; Den Braber, Anouk; Doan, Nhat Trung; Ehrlich, Stefan; Giddaluru, Sudheer; Goldman, Aaron L.; Gottesman, Rebecca F.; Grimm, Oliver; Griswold, Michael E.; Guadalupe, Tulio; Gutman, Boris A.; Hass, Johanna; Haukvik, Unn K.; Hoehn, David; Holmes, Avram J.; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Jørgensen, Kjetil N.; Karbalai, Nazanin; Kasperaviciute, Dalia; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H.; Liewald, David C. M.; Lopez, Lorna M.; Luciano, Michelle; Macare, Christine; Marquand, Andre F.; Matarin, Mar; Mather, Karen A.; Mattheisen, Manuel; McKay, David R.; Milaneschi, Yuri; Muñoz Maniega, Susana; Nho, Kwangsik; Nugent, Allison C.; Nyquist, Paul; Loohuis, Loes M. Olde; Oosterlaan, Jaap; Papmeyer, Martina; Pirpamer, Lukas; Pütz, Benno; Ramasamy, Adaikalavan; Richards, Jennifer S.; Risacher, Shannon L.; Roiz-Santiañez, Roberto; Rommelse, Nanda; Ropele, Stefan; Rose, Emma J.; Royle, Natalie A.; Rundek, Tatjana; Sämann, Philipp G.; Saremi, Arvin; Satizabal, Claudia L.; Schmaal, Lianne; Schork, Andrew J.; Shen, Li; Shin, Jean; Shumskaya, Elena; Smith, Albert V.; Sprooten, Emma; Strike, Lachlan T.; Teumer, Alexander; Tordesillas-Gutierrez, Diana; Toro, Roberto; Trabzuni, Daniah; Trompet, Stella; Vaidya, Dhananjay; Van der Grond, Jeroen; Van der Lee, Sven J.; Van der Meer, Dennis; Van Donkelaar, Marjolein M. J.; Van Eijk, Kristel R.; Van Erp, Theo G. M.; Van Rooij, Daan; Walton, Esther; Westlye, Lars T.; Whelan, Christopher D.; Windham, Beverly G.; Winkler, Anderson M.; Wittfeld, Katharina; Woldehawariat, Girma; Wolf, Christiane; Wolfers, Thomas; Yanek, Lisa R.; Yang, Jingyun; Zijdenbos, Alex; Zwiers, Marcel P.; Agartz, Ingrid; Almasy, Laura; Ames, David; Amouyel, Philippe; Andreassen, Ole A.; Arepalli, Sampath; Assareh, Amelia A.; Barral, Sandra; Bastin, Mark E.; Becker, Diane M.; Becker, James T.; Bennett, David A.; Blangero, John; van Bokhoven, Hans; Boomsma, Dorret I.; Brodaty, Henry; Brouwer, Rachel M.; Brunner, Han G.; Buckner, Randy L.; Buitelaar, Jan K.; Bulayeva, Kazima B.; Cahn, Wiepke; Calhoun, Vince D.; Cannon, Dara M.; Cavalleri, Gianpiero L.; Cheng, Ching-Yu; Cichon, Sven; Cookson, Mark R.; Corvin, Aiden; Crespo-Facorro, Benedicto; Curran, Joanne E.; Czisch, Michael; Dale, Anders M.; Davies, Gareth E.; De Craen, Anton J. M.; De Geus, Eco J. C.; De Jager, Philip L.; De Zubicaray, Greig I.; Deary, Ian J.; Debette, Stéphanie; DeCarli, Charles; Delanty, Norman; Depondt, Chantal; DeStefano, Anita; Dillman, Allissa; Djurovic, Srdjan; Donohoe, Gary; Drevets, Wayne C.; Duggirala, Ravi; Dyer, Thomas D.; Enzinger, Christian; Erk, Susanne; Espeseth, Thomas; Fedko, Iryna O.; Fernández, Guillén; Ferrucci, Luigi; Fisher, Simon E.; Fleischman, Debra A.; Ford, Ian; Fornage, Myriam; Foroud, Tatiana M.; Fox, Peter T.; Francks, Clyde; Fukunaga, Masaki; Gibbs, J. Raphael; Glahn, David C.; Gollub, Randy L.; Göring, Harald H. H.; Green, Robert C.; Gruber, Oliver; Gudnason, Vilmundur; Guelfi, Sebastian; Håberg, Asta K.; Hansell, Narelle K.; Hardy, John; Hartman, Catharina A.; Hashimoto, Ryota; Hegenscheid, Katrin; Heinz, Andreas; Le Hellard, Stephanie; Hernandez, Dena G.; Heslenfeld, Dirk J.; Ho, Beng-Choon; Hoekstra, Pieter J.; Hoffmann, Wolfgang; Hofman, Albert; Holsboer, Florian; Homuth, Georg; Hosten, Norbert; Hottenga, Jouke-Jan; Huentelman, Matthew; Pol, Hilleke E. Hulshoff; Ikeda, Masashi; Jack Jr, Clifford R.; Jenkinson, Mark; Johnson, Robert; Jönsson, Erik G.; Jukema, J. Wouter; Kahn, René S.; Kanai, Ryota; Kloszewska, Iwona; Knopman, David S.; Kochunov, Peter; Kwok, John B.; Lawrie, Stephen M.; Lemaître, Hervé; Liu, Xinmin; Longo, Dan L.; Lopez, Oscar L.; Lovestone, Simon; Martinez, Oliver; Martinot, Jean-Luc; Mattay, Venkata S.; McDonald, Colm; McIntosh, Andrew M.; McMahon, Francis J.; McMahon, Katie L.; Mecocci, Patrizia; Melle, Ingrid; Meyer-Lindenberg, Andreas; Mohnke, Sebastian; Montgomery, Grant W.; Morris, Derek W.; Mosley, Thomas H.; Mühleisen, Thomas W.; Müller-Myhsok, Bertram; Nalls, Michael A.; Nauck, Matthias; Nichols, Thomas E.; Niessen, Wiro J.; Nöthen, Markus M.; Nyberg, Lars; Ohi, Kazutaka; Olvera, Rene L.; Ophoff, Roel A.; Pandolfo, Massimo; Paus, Tomas; Pausova, Zdenka; Penninx, Brenda W. J. H.; Pike, G. Bruce; Potkin, Steven G.; Psaty, Bruce M.; Reppermund, Simone; Rietschel, Marcella; Roffman, Joshua L.; Romanczuk-Seiferth, Nina; Rotter, Jerome I.; Ryten, Mina; Sacco, Ralph L.; Sachdev, Perminder S.; Saykin, Andrew J.; Schmidt, Reinhold; Schmidt, Helena; Schofield, Peter R.; Sigursson, Sigurdur; Simmons, Andrew; Singleton, Andrew; Sisodiya, Sanjay M.; Smith, Colin; Smoller, Jordan W.; Soininen, Hilkka; Steen, Vidar M.; Stott, David J.; Sussmann, Jessika E.; Thalamuthu, Anbupalam; Toga, Arthur W.; Traynor, Bryan J.; Troncoso, Juan; Tsolaki, Magda; Tzourio, Christophe; Uitterlinden, Andre G.; Hernández, Maria C. Valdés; Van der Brug, Marcel; van der Lugt, Aad; van der Wee, Nic J. A.; Van Haren, Neeltje E. M.; van 't Ent, Dennis; Van Tol, Marie-Jose; Vardarajan, Badri N.; Vellas, Bruno; Veltman, Dick J.; Völzke, Henry; Walter, Henrik; Wardlaw, Joanna M.; Wassink, Thomas H.; Weale, Michael E.; Weinberger, Daniel R.; Weiner, Michael W.; Wen, Wei; Westman, Eric; White, Tonya; Wong, Tien Y.; Wright, Clinton B.; Zielke, Ronald H.; Zonderman, Alan B.; Martin, Nicholas G.; Van Duijn, Cornelia M.; Wright, Margaret J.; Longstreth, W. T.; Schumann, Gunter; Grabe, Hans J.; Franke, Barbara; Launer, Lenore J.; Medland, Sarah E.; Seshadri, Sudha; Thompson, Paul M.; Ikram, M. Arfan

    2017-01-01

    The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (rg=−0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness. PMID:28098162

  20. Local Structure and Ion Transport in Glassy Poly(ethylene oxide styrene) Copolymers

    NASA Astrophysics Data System (ADS)

    Yang, Han-Chang; Mays, Jimmy; Sokolov, Alexei P.; Winey, Karen I.

    2014-03-01

    Polymer electrolytes have attracted attention for a wide variety of applications in energy production such as lithium-ion batteries and fuel cells. The concept of free volume provides important information about ion mobility and chain dynamics in the polymer matrix. Researchers have recently demonstrated that ion transport in glassy polymer can be improved by designing a system with high free volume. We have studied the effect of temperature and humidity on the intermolecular correlations of poly(ethylene oxide styrene-block-styrene) (PEOSt- b-St) block copolymer and poly(ethylene oxide styrene) (PEOSt) homopolymer using in situ multi-angle x-ray scattering across a wide range of scattering angles (q = 0.007-1.5 Å-1) . An increase in backbone-to-backbone distance is observed, indicating an increase in free volume between different polymer main chains. Structural characterization of the polymer segments will be discussed together with conductivity and dielectric results to better understand the ion transport mechanism in the local environment of the polymer system. Department of Chemistry, University of Tennessee.

  1. Quantification of micro-CT images of textile reinforcements

    NASA Astrophysics Data System (ADS)

    Straumit, Ilya; Lomov, Stepan V.; Wevers, Martine

    2017-10-01

    VoxTex software (KU Leuven) employs 3D image processing, which use the local directionality information, retrieved using analysis of local structure tensor. The processing results in a voxel 3D array, with each voxel carrying information on (1) material type (matrix; yarn/ply, with identification of the yarn/ply in the reinforcement architecture; void) and (2) fibre direction for fibrous yarns/plies. The knowledge of the material phase volume and known characterisation of the textile structure allows assigning to the voxels (3) fibre volume fraction. This basic voxel model can be further used for different type of the material analysis: Internal geometry and characterisation of defects; permeability; micromechanics; mesoFE voxel models. Apart from the voxel based analysis, approaches to reconstruction of the yarn paths are presented.

  2. Experimental and Computational Investigations of Strain Localization in Metallic Glasses

    NASA Astrophysics Data System (ADS)

    Bharathula, Ashwini

    Metallic glasses are metallic alloy systems with disordered atomic structure. Due to their unique amorphous structure, they exhibit an extraordinary set of properties that are ideal for a wide variety of applications ranging from electrical transformers, armor-piercing projectiles, sporting goods and fuel cells to precision gears for micromotors. In particular, owing to their exceptional mechanical properties like near-theoretical strength (1--3 GPa), large elastic strain range (2--3%), and unusual formability above the glass transition temperature, metallic glasses have tremendous potential in structural applications. Unfortunately, their unique structure also gives rise to significant limitations, such as limited ductility at room temperature due to rapid localization of plastic flow in shear bands. However, when the test volumes approach the size of a shear band nucleus (˜50--500 nm), it is believed that shear band formation and propagation can be constrained, leading to enhanced plasticity and failure strength. This study investigates the phenomenon of strain localization using both experimental and computational techniques. On the experimental front, sample size effects on strength, plasticity and deformation modes were explored in a Zr-based bulk metallic glass via micron- and sub-micron scale compression testing. Specimens with diameters ranging from 200 nm to a few microns were fabricated using Focused Ion Beam technique and were tested under uniaxial compression in a nanoindentation set-up with a flat punch tip. Effect of extrinsic factors like specimen geometry and machine stiffness on deformation behavior was discussed. Shear banding was shown to be more stable at this length scale than in macro-scale testing because of a smaller specimen to load frame stiffness ratio. It was found that as the specimen size is reduced to below 300 nm, the deformation mode changes from being discrete and inhomogeneous to more continuous flow including both localized and non-localized contributions at low strains. Moreover, the magnitude of strain bursts was found to decrease with decrease in specimen size. Furthermore, Weibull statistical analysis was performed to investigate the effect of specimen size on yield strength in this metallic glass. It was revealed that the dispersion in strengths increases dramatically with decrease in sample size, attributed to the size distribution of the defects responsible for shear banding. The findings are crucial in designing systems which promote plasticity in metallic glasses by suppressing the shear-band instability and also in direct application of these materials for structural purposes as small components in micro- and nano-scale systems. On the computational front, Molecular Dynamics (MD) simulations have been employed to generate Zr-Cu metallic glass structures. In order to analyze and better understand and visualize the concepts of "free" volume and flow defects in metallic glasses, an electron density model was developed as an upgrade to the traditional hard sphere approaches. Simple tension and shear modes of deformation were simulated using MD in Zr-Cu system, and role of open volume in deformation was studied using the electron density model. In uniaxial tension simulations, effect of temperature and deformation rate is examined, and the process of accumulation of free volume to the point of catastrophic failure is visualized using the Electron Density model. In shear simulations, we find that the as-quenched glass structures undergo homogeneous deformation and do not exhibit any strain localization. However, it is found that by incorporating a cylindrical void in the glass structure as a source of "free" volume, it is possible to induce strain localization. It was found that a critical void diameter of 8A was required to successfully initialize strain localization in this system.

  3. Lateral extrusion of a thermally weakened pluton overburden (Campiglia Marittima, Tuscany)

    NASA Astrophysics Data System (ADS)

    Vezzoni, Simone; Rocchi, Sergio; Dini, Andrea

    2017-10-01

    The ascent and emplacement of magmas in the upper crust modify the local pre-existing thermal and rheological settings. Such changes have important effects in producing anomalous structures, mass extrusion, rock fracturing, and in some conditions, hydrothermal mineralizations. In the Campiglia Marittima area, detailed field mapping led to the reconstruction of a local deformation history that overlaps, chronologically and spatially, with regional extension. This local deformation was triggered at the Miocene-Pliocene boundary by the intrusion of a monzogranitic pluton beneath a carbonate sedimentary sequence. The emplacement of the pluton produced a perturbation in the rheological behaviour of the carbonate host rocks, producing transient ductile conditions in the very shallow crust. The carbonate rocks were thermally weakened and flowed laterally, accumulating downslope of the pluton roof, mainly toward the east. As the thermal anomaly was decaying, the brittle-ductile boundary moved progressively back towards the pluton, and large tension gash-shaped volumes of fractured marble were generated. These fractured volumes were exploited by rising hydrothermal fluids generating sigmoidal skarn bodies and ore shoots. This work presents the Campiglia Marittima case study as a prime example of structural interference between regional extensional structures and local, lateral mass extrusion in a transient ductile rheological regime triggered by pluton emplacement.

  4. Lateral extrusion of a thermally weakened pluton overburden (Campiglia Marittima, Tuscany)

    NASA Astrophysics Data System (ADS)

    Vezzoni, Simone; Rocchi, Sergio; Dini, Andrea

    2018-06-01

    The ascent and emplacement of magmas in the upper crust modify the local pre-existing thermal and rheological settings. Such changes have important effects in producing anomalous structures, mass extrusion, rock fracturing, and in some conditions, hydrothermal mineralizations. In the Campiglia Marittima area, detailed field mapping led to the reconstruction of a local deformation history that overlaps, chronologically and spatially, with regional extension. This local deformation was triggered at the Miocene-Pliocene boundary by the intrusion of a monzogranitic pluton beneath a carbonate sedimentary sequence. The emplacement of the pluton produced a perturbation in the rheological behaviour of the carbonate host rocks, producing transient ductile conditions in the very shallow crust. The carbonate rocks were thermally weakened and flowed laterally, accumulating downslope of the pluton roof, mainly toward the east. As the thermal anomaly was decaying, the brittle-ductile boundary moved progressively back towards the pluton, and large tension gash-shaped volumes of fractured marble were generated. These fractured volumes were exploited by rising hydrothermal fluids generating sigmoidal skarn bodies and ore shoots. This work presents the Campiglia Marittima case study as a prime example of structural interference between regional extensional structures and local, lateral mass extrusion in a transient ductile rheological regime triggered by pluton emplacement.

  5. Fast and robust segmentation of the striatum using deep convolutional neural networks.

    PubMed

    Choi, Hongyoon; Jin, Kyong Hwan

    2016-12-01

    Automated segmentation of brain structures is an important task in structural and functional image analysis. We developed a fast and accurate method for the striatum segmentation using deep convolutional neural networks (CNN). T1 magnetic resonance (MR) images were used for our CNN-based segmentation, which require neither image feature extraction nor nonlinear transformation. We employed two serial CNN, Global and Local CNN: The Global CNN determined approximate locations of the striatum. It performed a regression of input MR images fitted to smoothed segmentation maps of the striatum. From the output volume of Global CNN, cropped MR volumes which included the striatum were extracted. The cropped MR volumes and the output volumes of Global CNN were used for inputs of Local CNN. Local CNN predicted the accurate label of all voxels. Segmentation results were compared with a widely used segmentation method, FreeSurfer. Our method showed higher Dice Similarity Coefficient (DSC) (0.893±0.017 vs. 0.786±0.015) and precision score (0.905±0.018 vs. 0.690±0.022) than FreeSurfer-based striatum segmentation (p=0.06). Our approach was also tested using another independent dataset, which showed high DSC (0.826±0.038) comparable with that of FreeSurfer. Comparison with existing method Segmentation performance of our proposed method was comparable with that of FreeSurfer. The running time of our approach was approximately three seconds. We suggested a fast and accurate deep CNN-based segmentation for small brain structures which can be widely applied to brain image analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Patch-based automatic retinal vessel segmentation in global and local structural context.

    PubMed

    Cao, Shuoying; Bharath, Anil A; Parker, Kim H; Ng, Jeffrey

    2012-01-01

    In this paper, we extend our published work [1] and propose an automated system to segment retinal vessel bed in digital fundus images with enough adaptability to analyze images from fluorescein angiography. This approach takes into account both the global and local context and enables both vessel segmentation and microvascular centreline extraction. These tools should allow researchers and clinicians to estimate and assess vessel diameter, capillary blood volume and microvascular topology for early stage disease detection, monitoring and treatment. Global vessel bed segmentation is achieved by combining phase-invariant orientation fields with neighbourhood pixel intensities in a patch-based feature vector for supervised learning. This approach is evaluated against benchmarks on the DRIVE database [2]. Local microvascular centrelines within Regions-of-Interest (ROIs) are segmented by linking the phase-invariant orientation measures with phase-selective local structure features. Our global and local structural segmentation can be used to assess both pathological structural alterations and microemboli occurrence in non-invasive clinical settings in a longitudinal study.

  7. Nanoscale volume confinement and fluorescence enhancement with double nanohole aperture

    PubMed Central

    Regmi, Raju; Al Balushi, Ahmed A.; Rigneault, Hervé; Gordon, Reuven; Wenger, Jérôme

    2015-01-01

    Diffraction ultimately limits the fluorescence collected from a single molecule, and sets an upper limit to the maximum concentration to isolate a single molecule in the detection volume. To overcome these limitations, we introduce here the use of a double nanohole structure with 25 nm gap, and report enhanced detection of single fluorescent molecules in concentrated solutions exceeding 20 micromolar. The nanometer gap concentrates the light into an apex volume down to 70 zeptoliter (10−21 L), 7000-fold below the diffraction-limited confocal volume. Using fluorescence correlation spectroscopy and time-correlated photon counting, we measure fluorescence enhancement up to 100-fold, together with local density of optical states (LDOS) enhancement of 30-fold. The distinctive features of double nanoholes combining high local field enhancement, efficient background screening and relative nanofabrication simplicity offer new strategies for real time investigation of biochemical events with single molecule resolution at high concentrations. PMID:26511149

  8. Configuration optimization of space structures

    NASA Technical Reports Server (NTRS)

    Felippa, Carlos; Crivelli, Luis A.; Vandenbelt, David

    1991-01-01

    The objective is to develop a computer aid for the conceptual/initial design of aerospace structures, allowing configurations and shape to be apriori design variables. The topics are presented in viewgraph form and include the following: Kikuchi's homogenization method; a classical shape design problem; homogenization method steps; a 3D mechanical component design example; forming a homogenized finite element; a 2D optimization problem; treatment of volume inequality constraint; algorithms for the volume inequality constraint; object function derivatives--taking advantage of design locality; stiffness variations; variations of potential; and schematics of the optimization problem.

  9. Localized atrophy of the thalamus and slowed cognitive processing speed in MS patients.

    PubMed

    Bergsland, Niels; Zivadinov, Robert; Dwyer, Michael G; Weinstock-Guttman, Bianca; Benedict, Ralph Hb

    2016-09-01

    Deep gray matter (DGM) atrophy is common in multiple sclerosis (MS), but no studies have investigated surface-based structure changes over time with respect to healthy controls (HCs). Moreover, the relationship between cognition and the spatio-temporal evolution of DGM atrophy is poorly understood. To explore DGM structural differences between MS and HCs over time in relation to neuropsychological (NP) outcomes. The participants were 44 relapsing-remitting and 20 secondary progressive MS patients and 22 HCs. All were scanned using 3T magnetic resonance imaging (MRI) at baseline and 3-year follow-up. NP examination emphasized consensus standard tests of processing speed and memory. We performed both volumetric and shape analysis of DGM structures and assessed their relationships with cognition. Compared to HCs, MS patients presented with significantly smaller DGM volumes. For the thalamus and caudate, differences in shape were mostly localized along the lateral ventricles. NP outcomes were related to both volume and shape of the DGM structures. Over 3 years, decreased cognitive processing speed was related to localized atrophy on the anterior and superior surface of the left thalamus. These findings highlight the role of atrophy in the anterior nucleus of the thalamus and its relation to cognitive decline in MS. © The Author(s), 2015.

  10. SU-E-T-170: Characterization of the Location, Extent, and Proximity to Critical Structures of Target Volumes Provides Detail for Improved Outcome Predictions Among Pancreatic Cancer Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Z; Moore, J; Rosati, L

    Purpose: In radiotherapy, size, location and proximity of the target to critical structures influence treatment decisions. It has been shown that proximity of the target predicts dosimetric sparing of critical structures. In addition to dosimetry, precise location of disease has further implications such as tumor invasion, or proximity to major arteries that inhibit surgery. Knowledge of which patients can be converted to surgical candidates by radiation may have high impact on future treat/no-treat decisions. We propose a method to improve our characterization of the location of pancreatic cancer and treatment volume extent with respect to nearby arteries with the goalmore » of developing features to improve clinical predictions and decisions. Methods: Oncospace is a local learning health system that systematically captures clinical outcomes and all aspects of radiotherapy treatment plans, including overlap volume histograms (OVH) – a measure of spatial relationships between two structures. Minimum and maximum distances of PTV and OARs based on OVH, PTV volume, anatomic location by ICD-9 code, and surgical outcome were queried. Normalized distance to center from the left and right kidney was calculated to indicate tumor location and laterality. Distance to critical arteries (celiac, superior mesenteric, common hepatic) is validated by surgical status (borderline resectable, locally advanced converted to resectable). Results: There were 205 pancreas stereotactic body radiotherapy patients treated from 2009–2015 queried. Location/laterality of tumor based on kidney OVH show strong trends between location by OVH and by ICD-9. Compared to the locally advanced group, the borderline resectable group showed larger geometrical distance from critical arteries (p=0.03). Conclusion: Our platform enabled analysis of shape/size-location relationships. These data suggest that PTV volume and attention to distance between PTVs and surrounding OARs and major arteries may be promising for improving characterization of treatment anatomy that can refine our ability for outcome predictions and decision making. Elekta, Toshiba.« less

  11. Scaling Theory of Entanglement at the Many-Body Localization Transition.

    PubMed

    Dumitrescu, Philipp T; Vasseur, Romain; Potter, Andrew C

    2017-09-15

    We study the universal properties of eigenstate entanglement entropy across the transition between many-body localized (MBL) and thermal phases. We develop an improved real space renormalization group approach that enables numerical simulation of large system sizes and systematic extrapolation to the infinite system size limit. For systems smaller than the correlation length, the average entanglement follows a subthermal volume law, whose coefficient is a universal scaling function. The full distribution of entanglement follows a universal scaling form, and exhibits a bimodal structure that produces universal subleading power-law corrections to the leading volume law. For systems larger than the correlation length, the short interval entanglement exhibits a discontinuous jump at the transition from fully thermal volume law on the thermal side, to pure area law on the MBL side.

  12. Exact finite volume expectation values of local operators in excited states

    NASA Astrophysics Data System (ADS)

    Pozsgay, B.; Szécsényi, I. M.; Takács, G.

    2015-04-01

    We present a conjecture for the exact expression of finite volume expectation values in excited states in integrable quantum field theories, which is an extension of an earlier conjecture to the case of general diagonal factorized scattering with bound states and a nontrivial bootstrap structure. The conjectured expression is a spectral expansion which uses the exact form factors and the excited state thermodynamic Bethe Ansatz as building blocks. The conjecture is proven for the case of the trace of the energy-moment tensor. Concerning its validity for more general operators, we provide numerical evidence using the truncated conformal space approach. It is found that the expansion fails to be well-defined for small values of the volume in cases when the singularity structure of the TBA equations undergoes a non-trivial rearrangement under some critical value of the volume. Despite these shortcomings, the conjectured expression is expected to be valid for all volumes for most of the excited states, and as an expansion above the critical volume for the rest.

  13. Using Minimum-Surface Bodies for Iteration Space Partitioning

    NASA Technical Reports Server (NTRS)

    Frumlin, Michael; VanderWijngaart, Rob F.; Biegel, Bryan (Technical Monitor)

    2001-01-01

    A number of known techniques for improving cache performance in scientific computations involve the reordering of the iteration space. Some of these reorderings can be considered as coverings of the iteration space with the sets having good surface-to-volume ratio. Use of such sets reduces the number of cache misses in computations of local operators having the iteration space as a domain. We study coverings of iteration spaces represented by structured and unstructured grids. For structured grids we introduce a covering based on successive minima tiles of the interference lattice of the grid. We show that the covering has good surface-to-volume ratio and present a computer experiment showing actual reduction of the cache misses achieved by using these tiles. For unstructured grids no cache efficient covering can be guaranteed. We present a triangulation of a 3-dimensional cube such that any local operator on the corresponding grid has significantly larger number of cache misses than a similar operator on a structured grid.

  14. Understanding cage effects in imidazolium ionic liquids by 129Xe NMR: MD simulations and relativistic DFT calculations.

    PubMed

    Saielli, Giacomo; Bagno, Alessandro; Castiglione, Franca; Simonutti, Roberto; Mauri, Michele; Mele, Andrea

    2014-12-04

    (129)Xe NMR has been recently employed to probe the local structure of ionic liquids (ILs). However, no theoretical investigation has been yet reported addressing the problem of the dependence of the chemical shift of xenon on the cage structure of the IL. Therefore, we present here a study of the chemical shift of (129)Xe in two ionic liquids, [bmim][Cl] and [bmim][PF6], by a combination of classical MD simulations and relativistic DFT calculations of the xenon shielding constant. The bulk structure of the two ILs is investigated by means of the radial distribution functions, paying special attention to the local structure, volume, and charge distribution of the cage surrounding the xenon atom. Relativistic DFT calculations, based on the ZORA formalism, on clusters extracted from the trajectory files of the two systems, yield an average relative chemical shift in good agreement with the experimental data. Our results demonstrate the importance of the cage volume and the average charge surrounding the xenon nucleus in the IL cage as the factors determining the effective shielding.

  15. A discriminative structural similarity measure and its application to video-volume registration for endoscope three-dimensional motion tracking.

    PubMed

    Luo, Xiongbiao; Mori, Kensaku

    2014-06-01

    Endoscope 3-D motion tracking, which seeks to synchronize pre- and intra-operative images in endoscopic interventions, is usually performed as video-volume registration that optimizes the similarity between endoscopic video and pre-operative images. The tracking performance, in turn, depends significantly on whether a similarity measure can successfully characterize the difference between video sequences and volume rendering images driven by pre-operative images. The paper proposes a discriminative structural similarity measure, which uses the degradation of structural information and takes image correlation or structure, luminance, and contrast into consideration, to boost video-volume registration. By applying the proposed similarity measure to endoscope tracking, it was demonstrated to be more accurate and robust than several available similarity measures, e.g., local normalized cross correlation, normalized mutual information, modified mean square error, or normalized sum squared difference. Based on clinical data evaluation, the tracking error was reduced significantly from at least 14.6 mm to 4.5 mm. The processing time was accelerated more than 30 frames per second using graphics processing unit.

  16. Unique strain history during ejection in canine left ventricle.

    PubMed

    Douglas, A S; Rodriguez, E K; O'Dell, W; Hunter, W C

    1991-05-01

    Understanding the relationship between structure and function in the heart requires a knowledge of the connection between the local behavior of the myocardium (e.g., shortening) and the pumping action of the left ventricle. We asked the question, how do changes in preload and afterload affect the relationship between local myocardial deformation and ventricular volume? To study this, a set of small radiopaque beads was implanted in approximately 1 cm3 of the isolated canine heart left ventricular free wall. Using biplane cineradiography, we tracked the motion of these markers through various cardiac cycles (controlling pre- and afterload) using the relative motion of six markers to quantify the local three dimensional Lagrangian strain. Two different reference states (used to define the strains) were considered. First, we used the configuration of the heart at end diastole for that particular cardiac cycle to define the individual strains (which gave the local "shortening fraction") and the ejection fraction. Second, we used a single reference state for all cardiac cycles i.e., the end-diastolic state at maximum volume, to define absolute strains (which gave local fractional length) and the volume fraction. The individual strain versus ejection fraction trajectories were dependent on preload and afterload. For any one heart, however, each component of absolute strain was more tightly correlated to volume fraction. Around each linear regression, the individual measurements of absolute strain scattered with standard errors that averaged less than 7% of their range. Thus the canine hearts examined had a preferred kinematic (shape) history during ejection, different from the kinematics of filling and independent or pre-or afterload and of stroke volume.

  17. Three-dimensional analysis of anisotropic spatially reinforced structures

    NASA Technical Reports Server (NTRS)

    Bogdanovich, Alexander E.

    1993-01-01

    The material-adaptive three-dimensional analysis of inhomogeneous structures based on the meso-volume concept and application of deficient spline functions for displacement approximations is proposed. The general methodology is demonstrated on the example of a brick-type mosaic parallelepiped arbitrarily composed of anisotropic meso-volumes. A partition of each meso-volume into sub-elements, application of deficient spline functions for a local approximation of displacements and, finally, the use of the variational principle allows one to obtain displacements, strains, and stresses at anypoint within the structural part. All of the necessary external and internal boundary conditions (including the conditions of continuity of transverse stresses at interfaces between adjacent meso-volumes) can be satisfied with requisite accuracy by increasing the density of the sub-element mesh. The application of the methodology to textile composite materials is described. Several numerical examples for woven and braided rectangular composite plates and stiffened panels under transverse bending are considered. Some typical effects of stress concentrations due to the material inhomogeneities are demonstrated.

  18. Interactive 3D visualization of structural changes in the brain of a person with corticobasal syndrome

    PubMed Central

    Hänel, Claudia; Pieperhoff, Peter; Hentschel, Bernd; Amunts, Katrin; Kuhlen, Torsten

    2014-01-01

    The visualization of the progression of brain tissue loss in neurodegenerative diseases like corticobasal syndrome (CBS) can provide not only information about the localization and distribution of the volume loss, but also helps to understand the course and the causes of this neurodegenerative disorder. The visualization of such medical imaging data is often based on 2D sections, because they show both internal and external structures in one image. Spatial information, however, is lost. 3D visualization of imaging data is capable to solve this problem, but it faces the difficulty that more internally located structures may be occluded by structures near the surface. Here, we present an application with two designs for the 3D visualization of the human brain to address these challenges. In the first design, brain anatomy is displayed semi-transparently; it is supplemented by an anatomical section and cortical areas for spatial orientation, and the volumetric data of volume loss. The second design is guided by the principle of importance-driven volume rendering: A direct line-of-sight to the relevant structures in the deeper parts of the brain is provided by cutting out a frustum-like piece of brain tissue. The application was developed to run in both, standard desktop environments and in immersive virtual reality environments with stereoscopic viewing for improving the depth perception. We conclude, that the presented application facilitates the perception of the extent of brain degeneration with respect to its localization and affected regions. PMID:24847243

  19. Effects of Long-Term Treatment on Brain Volume in Patients with Obstructive Sleep Apnea Syndrome

    PubMed Central

    Kim, Hosung; Joo, Eun Yeon; Suh, Sooyeon; Kim, Jae-Hun; Kim, Sung Tae; Hong, Seung Bong

    2015-01-01

    We assessed structural brain damage in obstructive sleep apnea syndrome (OSA) patients (21 males) and the effects of long-term continuous positive airway pressure (CPAP) treatment (18.2 ± 12.4 months; 8-44 months) on brain structures and investigated the relationship between severity of OSA and effects of treatment. Using deformation-based morphometry to measure local volume changes, we identified widespread neocortical and cerebellar atrophy in untreated patients compared to controls (59 males; Cohen's D = 0.6; FDR < 0.05). Analysis of longitudinally scanned magnetic resonance imaging (MRI) scans both before and after treatment showed increased brain volume following treatment (FDR < 0.05). Volume increase was correlated with longer treatment in the cortical areas that largely overlapped with the initial atrophy. The areas overlying the hippocampal dentate gyrus and the cerebellar dentate nucleus displayed a volume increase after treatment. Patients with very severe OSA (AHI > 64) presented with prefrontal atrophy and displayed an additional volume increase in this area following treatment. Higher impairment of working memory in patients prior to treatment correlated with prefrontal volume increase after treatment. The large overlap between the initial brain damage and the extent of recovery after treatment suggests partial recovery of non-permanent structural damage. Volume increases in the dentate gyrus and the dentate nucleus possibly likely indicate compensatory neurogenesis in response to diminishing oxidative stress. Such changes in other brain structures may explain gliosis, dendritic volume increase, or inflammation. This study provides neuroimaging evidence that revealed the positive effects of long-term CPAP treatment in patients with OSA. PMID:26503297

  20. A 3D Hermite-based multiscale local active contour method with elliptical shape constraints for segmentation of cardiac MR and CT volumes.

    PubMed

    Barba-J, Leiner; Escalante-Ramírez, Boris; Vallejo Venegas, Enrique; Arámbula Cosío, Fernando

    2018-05-01

    Analysis of cardiac images is a fundamental task to diagnose heart problems. Left ventricle (LV) is one of the most important heart structures used for cardiac evaluation. In this work, we propose a novel 3D hierarchical multiscale segmentation method based on a local active contour (AC) model and the Hermite transform (HT) for LV analysis in cardiac magnetic resonance (MR) and computed tomography (CT) volumes in short axis view. Features such as directional edges, texture, and intensities are analyzed using the multiscale HT space. A local AC model is configured using the HT coefficients and geometrical constraints. The endocardial and epicardial boundaries are used for evaluation. Segmentation of the endocardium is controlled using elliptical shape constraints. The final endocardial shape is used to define the geometrical constraints for segmentation of the epicardium. We follow the assumption that epicardial and endocardial shapes are similar in volumes with short axis view. An initialization scheme based on a fuzzy C-means algorithm and mathematical morphology was designed. The algorithm performance was evaluated using cardiac MR and CT volumes in short axis view demonstrating the feasibility of the proposed method.

  1. Temporal complexity in emission from Anderson localized lasers

    NASA Astrophysics Data System (ADS)

    Kumar, Randhir; Balasubrahmaniyam, M.; Alee, K. Shadak; Mujumdar, Sushil

    2017-12-01

    Anderson localization lasers exploit resonant cavities formed due to structural disorder. The inherent randomness in the structure of these cavities realizes a probability distribution in all cavity parameters such as quality factors, mode volumes, mode structures, and so on, implying resultant statistical fluctuations in the temporal behavior. Here we provide direct experimental measurements of temporal width distributions of Anderson localization lasing pulses in intrinsically and extrinsically disordered coupled-microresonator arrays. We first illustrate signature exponential decays in the spatial intensity distributions of the lasing modes that quantify their localized character, and then measure the temporal width distributions of the pulsed emission over several configurations. We observe a dependence of temporal widths on the disorder strength, wherein the widths show a single-peaked, left-skewed distribution in extrinsic disorder and a dual-peaked distribution in intrinsic disorder. We propose a model based on coupled rate equations for an emitter and an Anderson cavity with a random mode structure, which gives excellent quantitative and qualitative agreement with the experimental observations. The experimental and theoretical analyses bring to the fore the temporal complexity in Anderson-localization-based lasing systems.

  2. Two-order-parameter description of liquid Al under five different pressures

    NASA Astrophysics Data System (ADS)

    Li, Y. D.; Hao, Qing-Hai; Cao, Qi-Long; Liu, C. S.

    2008-11-01

    In the present work, using the glue potential, the constant pressure molecular-dynamics simulations of liquid Al under five various pressures and a systematic analysis of the local atomic structures have been performed in order to test the two-order-parameter model proposed by Tanaka [Phys. Rev. Lett. 80, 5750 (1998)] originally for explaining the unusual behaviors of liquid water. The temperature dependence of the bond order parameter Q6 in liquid Al under five different pressures can be well fitted by the functional expression (Q6)/(1-Q6)=Q60exp((ΔE-PΔV)/(kBT)) which produces the energy gain ΔE and the volume change upon the formation of a locally favored structure: ΔE=0.025eV and ΔV=-0.27(Å)3 . ΔE is nearly equal to the difference between the average bond energy of the other type I bonds and the average bond energy of 1551 bonds (characterizing the icosahedronlike local structure); ΔV could be explained as the average volume occupied by one atom in icosahedra minus that occupied by one atom in other structures. With the obtained ΔE and ΔV , it is satisfactorily explained that the density of liquid Al displays a much weaker nonlinear dependence on temperature under lower pressures. So it is demonstrated that the behavior of liquid Al can be well described by the two-order-parameter model.

  3. Mott Transition of MnO under Pressure: A Comparison of Correlated Band Theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kasinathan, Deepa; Kunes, Jan; Koepernik, K

    The electronic structure, magnetic moment, and volume collapse of MnO under pressure are obtained from four different correlated band theory methods; local density approximation+Hubbard U (LDA+U), pseudopotential self-interaction correction (pseudo-SIC), the hybrid functional (combined local exchange plus Hartree-Fock exchange), and the local spin density SIC (SIC-LSD) method. Each method treats correlation among the five Mn 3d orbitals (per spin), including their hybridization with three O 2p orbitals in the valence bands and their changes with pressure. The focus is on comparison of the methods for rock salt MnO (neglecting the observed transition to the NiAs structure in the 90-100 GPamore » range). Each method predicts a first-order volume collapse, but with variation in the predicted volume and critical pressure. Accompanying the volume collapse is a moment collapse, which for all methods is from high-spin to low-spin ((5/2){yields}(1/2)), not to nonmagnetic as the simplest scenario would have. The specific manner in which the transition occurs varies considerably among the methods: pseudo-SIC and SIC-LSD give insulator-to-metal, while LDA+U gives insulator-to-insulator and the hybrid method gives an insulator-to-semimetal transition. Projected densities of states above and below the transition are presented for each of the methods and used to analyze the character of each transition. In some cases the rhombohedral symmetry of the antiferromagnetically ordered phase clearly influences the character of the transition.« less

  4. Local atomic and magnetic structure of dilute magnetic semiconductor (Ba ,K ) (Zn,Mn ) 2As2

    NASA Astrophysics Data System (ADS)

    Frandsen, Benjamin A.; Gong, Zizhou; Terban, Maxwell W.; Banerjee, Soham; Chen, Bijuan; Jin, Changqing; Feygenson, Mikhail; Uemura, Yasutomo J.; Billinge, Simon J. L.

    2016-09-01

    We have studied the atomic and magnetic structure of the dilute ferromagnetic semiconductor system (Ba ,K )(Zn ,Mn )2As2 through atomic and magnetic pair distribution function analysis of temperature-dependent x-ray and neutron total scattering data. We detected a change in curvature of the temperature-dependent unit cell volume of the average tetragonal crystallographic structure at a temperature coinciding with the onset of ferromagnetic order. We also observed the existence of a well-defined local orthorhombic structure on a short length scale of ≲5 Å , resulting in a rather asymmetrical local environment of the Mn and As ions. Finally, the magnetic PDF revealed ferromagnetic alignment of Mn spins along the crystallographic c axis, with robust nearest-neighbor ferromagnetic correlations that exist even above the ferromagnetic ordering temperature. We discuss these results in the context of other experiments and theoretical studies on this system.

  5. Partial volume correction of magnetic resonance spectroscopic imaging

    NASA Astrophysics Data System (ADS)

    Lu, Yao; Wu, Dee; Magnotta, Vincent A.

    2007-03-01

    The ability to study the biochemical composition of the brain is becoming important to better understand neurodegenerative and neurodevelopmental disorders. Magnetic Resonance Spectroscopy (MRS) can non-invasively provide quantification of brain metabolites in localized regions. The reliability of MRS is limited in part due to partial volume artifacts. This results from the relatively large voxels that are required to acquire sufficient signal-to-noise ratios for the studies. Partial volume artifacts result when a MRS voxel contains a mixture of tissue types. Concentrations of metabolites vary from tissue to tissue. When a voxel contains a heterogeneous tissue composition, the spectroscopic signal acquired from this voxel will consist of the signal from different tissues making reliable measurements difficult. We have developed a novel tool for the estimation of partial volume tissue composition within MRS voxels thus allowing for the correction of partial volume artifacts. In addition, the tool can localize MR spectra to anatomical regions of interest. The tool uses tissue classification information acquired as part of a structural MR scan for the same subject. The tissue classification information is co-registered with the spectroscopic data. The user can quantify the partial volume composition of each voxel and use this information as covariates for metabolite concentrations.

  6. Local cost structures and the economics of robot assisted radical prostatectomy.

    PubMed

    Scales, Charles D; Jones, Peter J; Eisenstein, Eric L; Preminger, Glenn M; Albala, David M

    2005-12-01

    Robot assisted prostatectomy (RAP) is more costly than traditional radical retropubic prostatectomy (RRP) under the cost structures at certain hospitals. However, this finding may not be the case in all care settings. We investigated the sensitivity of RAP and RRP inpatient costs to variations in length of stay (LOS), local hospitalization costs and robotic case volume in the specialist and generalist settings. We developed a model of RAP vs RRP costs in the specialist and generalist settings using published data on operative time and LOS, and cost data from our academic medical center. All inpatient cost centers were included, namely surgery costs, professional fees, postoperative care, robotic equipment and service. Extensive 1 and 2-way sensitivity analyses were performed. Our base case model demonstrated a cost premium for RAP vs RRP of USD $783 and $195 in the specialist and generalist settings, respectively. Sensitivity analysis of our model assumptions demonstrated that RAP could achieve cost equivalence with RRP at a surgical volume of 10 cases weekly. If case volume increased to 14 cases weekly, RAP would be less expensive than RRP in some practice settings in which RAP LOS was less than 1.5 days. The inpatient costs of robotic assisted prostatectomy are volume dependent and cost equivalence with generalist radical retropubic prostatectomy is possible at higher volume RAP specialty centers. While RAP may be cost competitive with RRP at high cost hospitals or high volume RAP specialist centers, this procedure would exist at a cost premium to RRP in other practice settings.

  7. Development of flexible pavement database for local calibration of MEPDG : volume 1.

    DOT National Transportation Integrated Search

    2011-06-01

    The new mechanistic-empirical pavement design guide (MEPDG), based on the National Cooperative Highway : Research Program (NCHRP) study 1-37A, replaces the widely used but more empirical 1993 AASHTO Guide : for Design of Pavement Structures. The MEPD...

  8. Development of Secondary Route Bridge Design Plan Guides

    DOT National Transportation Integrated Search

    2018-03-03

    The objective of this study is to develop a set of bridge plan guides for low-volume traffic roads. The purpose of the plans is to facilitate construction of new structures suitable for local agencies. The designs are to specifically address common l...

  9. Pressure vessel fracture, fatigue, and life management: PVP-Volume 233

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhandari, S.; Milella, P.P.; Pennell, W.E.

    1992-01-01

    This volume contains papers relating to the structural integrity assessment of pressure vessels and piping, with special emphasis on the effects of aging. The papers are organized in the following five areas: (1) pressure vessel life management; (2) fracture characterization using local and dual-parameter approaches; (3) stratification and thermal fatigue; (4) creep, fatigue, and fracture; and (5) integrated approach to integrity assessment of pressure components. Separate abstracts were prepared for 39 papers in this conference.

  10. Structural neuroplasticity in the sensorimotor network of professional female ballet dancers.

    PubMed

    Hänggi, Jürgen; Koeneke, Susan; Bezzola, Ladina; Jäncke, Lutz

    2010-08-01

    Evidence suggests that motor, sensory, and cognitive training modulates brain structures involved in a specific practice. Functional neuroimaging revealed key brain structures involved in dancing such as the putamen and the premotor cortex. Intensive ballet dance training was expected to modulate the structures of the sensorimotor network, for example, the putamen, premotor cortex, supplementary motor area (SMA), and the corticospinal tracts. We investigated gray (GM) and white matter (WM) volumes, fractional anisotropy (FA), and mean diffusivity (MD) using magnetic resonance-based morphometry and diffusion tensor imaging in 10 professional female ballet dancers compared with 10 nondancers. In dancers compared with nondancers, decreased GM volumes were observed in the left premotor cortex, SMA, putamen, and superior frontal gyrus, and decreased WM volumes in both corticospinal tracts, both internal capsules, corpus callosum, and left anterior cingulum. FA was lower in the WM underlying the dancers' left and right premotor cortex. There were no significant differences in MD between the groups. Age of dance commencement was negatively correlated with GM and WM volume in the right premotor cortex and internal capsule, respectively, and positively correlated with WM volume in the left precentral gyrus and corpus callosum. Results were not influenced by the significantly lower body mass index of the dancers. The present findings complement the results of functional imaging studies in experts that revealed reduced neural activity in skilled compared with nonskilled subjects. Reductions in brain activity are accompanied by local decreases in GM and WM volumes and decreased FA. 2009 Wiley-Liss, Inc.

  11. ESTRO ACROP guidelines for target volume definition in the treatment of locally advanced non-small cell lung cancer.

    PubMed

    Nestle, Ursula; De Ruysscher, Dirk; Ricardi, Umberto; Geets, Xavier; Belderbos, Jose; Pöttgen, Christoph; Dziadiuszko, Rafal; Peeters, Stephanie; Lievens, Yolande; Hurkmans, Coen; Slotman, Ben; Ramella, Sara; Faivre-Finn, Corinne; McDonald, Fiona; Manapov, Farkhad; Putora, Paul Martin; LePéchoux, Cécile; Van Houtte, Paul

    2018-04-01

    Radiotherapy (RT) plays a major role in the curative treatment of locally advanced non-small cell lung cancer (NSCLC). Therefore, the ACROP committee was asked by the ESTRO to provide recommendations on target volume delineation for standard clinical scenarios in definitive (chemo)radiotherapy (RT) and adjuvant RT for locally advanced NSCLC. The guidelines given here are a result of the evaluation of a structured questionnaire followed by a consensus discussion, voting and writing procedure within the committee. Hence, we provide advice for methods and time-points of diagnostics and imaging before the start of treatment planning and for the mandatory and optional imaging to be used for planning itself. Concerning target volumes, recommendations are given for GTV delineation of primary tumour and lymph nodes followed by issues related to the delineation of CTVs for definitive and adjuvant radiotherapy. In the context of PTV delineation, recommendations about the management of geometric uncertainties and target motion are given. We further provide our opinions on normal tissue delineation and organisational and responsibility questions in the process of target volume delineation. This guideline intends to contribute to the standardisation and optimisation of the process of RT treatment planning for clinical practice and prospective studies. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Tendency to occupy a statistically dominant spatial state of the flow as a driving force for turbulent transition.

    PubMed

    Chekmarev, Sergei F

    2013-03-01

    The transition from laminar to turbulent fluid motion occurring at large Reynolds numbers is generally associated with the instability of the laminar flow. On the other hand, since the turbulent flow characteristically appears in the form of spatially localized structures (e.g., eddies) filling the flow field, a tendency to occupy such a structured state of the flow cannot be ruled out as a driving force for turbulent transition. To examine this possibility, we propose a simple analytical model that treats the flow as a collection of localized spatial structures, each of which consists of elementary cells in which the behavior of the particles (atoms or molecules) is uncorrelated. This allows us to introduce the Reynolds number, associating it with the ratio between the total phase volume for the system and that for the elementary cell. Using the principle of maximum entropy to calculate the most probable size distribution of the localized structures, we show that as the Reynolds number increases, the elementary cells group into the localized structures, which successfully explains turbulent transition and some other general properties of turbulent flows. An important feature of the present model is that a bridge between the spatial-statistical description of the flow and hydrodynamic equations is established. We show that the basic assumptions underlying the model, i.e., that the particles are indistinguishable and elementary volumes of phase space exist in which the state of the particles is uncertain, are involved in the derivation of the Navier-Stokes equation. Taking into account that the model captures essential features of turbulent flows, this suggests that the driving force for the turbulent transition is basically the same as in the present model, i.e., the tendency of the system to occupy a statistically dominant state plays a key role. The instability of the flow at high Reynolds numbers can then be a mechanism to initiate structural rearrangement of the flow to find this state.

  13. Lighting design for globally illuminated volume rendering.

    PubMed

    Zhang, Yubo; Ma, Kwan-Liu

    2013-12-01

    With the evolution of graphics hardware, high quality global illumination becomes available for real-time volume rendering. Compared to local illumination, global illumination can produce realistic shading effects which are closer to real world scenes, and has proven useful for enhancing volume data visualization to enable better depth and shape perception. However, setting up optimal lighting could be a nontrivial task for average users. There were lighting design works for volume visualization but they did not consider global light transportation. In this paper, we present a lighting design method for volume visualization employing global illumination. The resulting system takes into account view and transfer-function dependent content of the volume data to automatically generate an optimized three-point lighting environment. Our method fully exploits the back light which is not used by previous volume visualization systems. By also including global shadow and multiple scattering, our lighting system can effectively enhance the depth and shape perception of volumetric features of interest. In addition, we propose an automatic tone mapping operator which recovers visual details from overexposed areas while maintaining sufficient contrast in the dark areas. We show that our method is effective for visualizing volume datasets with complex structures. The structural information is more clearly and correctly presented under the automatically generated light sources.

  14. Photoinduced local heating in silica photonic crystals for fast and reversible switching.

    PubMed

    Gallego-Gómez, Francisco; Blanco, Alvaro; López, Cefe

    2012-12-04

    Fast and reversible photonic-bandgap tunability is achieved in silica artificial opals by local heating. The effect is fully reversible as heat rapidly dissipates through the non-irradiated structure without active cooling and water is readsorbed. The performance is strongly enhanced by decreasing the photoirradiated opal volume, allowing bandgap shifts of 12 nm and response times of 20 ms. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Structural and dynamical properties of liquid Al-Au alloys

    NASA Astrophysics Data System (ADS)

    Peng, H. L.; Voigtmann, Th.; Kolland, G.; Kobatake, H.; Brillo, J.

    2015-11-01

    We investigate temperature- and composition-dependent structural and dynamical properties of Al-Au melts. Experiments are performed to obtain accurate density and viscosity data. The system shows a strong negative excess volume, similar to other Al-based binary alloys. We develop a molecular-dynamics (MD) model of the melt based on the embedded-atom method (EAM), gauged against the available experimental liquid-state data. A rescaling of previous EAM potentials for solid-state Au and Al improves the quantitative agreement with experimental data in the melt. In the MD simulation, the admixture of Au to Al can be interpreted as causing a local compression of the less dense Al system, driven by less soft Au-Au interactions. This local compression provides a microscopic mechanism explaining the strong negative excess volume of the melt. We further discuss the concentration dependence of self- and interdiffusion and viscosity in the MD model. Al atoms are more mobile than Au, and their increased mobility is linked to a lower viscosity of the melt.

  16. Localization of deformations within the amygdala in individuals with psychopathy.

    PubMed

    Yang, Yaling; Raine, Adrian; Narr, Katherine L; Colletti, Patrick; Toga, Arthur W

    2009-09-01

    Despite the repeated findings of impaired fear conditioning and affective recognition in psychopathic individuals, there has been a paucity of brain imaging research on the amygdala and no evidence suggesting which regions within the amygdala may be structurally compromised in individuals with psychopathy. To detect global and regional anatomical abnormalities in the amygdala in individuals with psychopathy. Cross-sectional design using structural magnetic resonance imaging. Participants were recruited from high-risk communities (temporary employment agencies) in the Los Angeles, California, area and underwent imaging at a hospital research facility at the University of Southern California. Twenty-seven psychopathic individuals as defined by the Hare Psychopathy Checklist-Revised and 32 normal controls matched on age, sex, and ethnicity. Amygdala volumes were examined using traditional volumetric analyses and surface-based mesh modeling methods were used to localize regional surface deformations. Individuals with psychopathy showed significant bilateral volume reductions in the amygdala compared with controls (left, 17.1%; right, 18.9%). Surface deformations were localized in regions in the approximate vicinity of the basolateral, lateral, cortical, and central nuclei of the amygdala. Significant correlations were found between reduced amygdala volumes and increased total and facet psychopathy scores, with correlations strongest for the affective and interpersonal facets of psychopathy. Results provide the first evidence, to our knowledge, of focal amygdala abnormalities in psychopathic individuals and corroborate findings from previous lesion studies. Findings support prior hypotheses of amygdala deficits in individuals with psychopathy and indicate that amygdala abnormalities contribute to emotional and behavioral symptoms of psychopathy.

  17. Local atomic and magnetic structure of dilute magnetic semiconductor ( Ba , K ) ( Zn , Mn ) 2 As 2

    DOE PAGES

    Frandsen, Benjamin A.; Gong, Zizhou; Terban, Maxwell W.; ...

    2016-09-06

    We studied the atomic and magnetic structure of the dilute ferromagnetic semiconductor system (Ba,K)(Zn,Mn) 2As 2 through atomic and magnetic pair distribution function analysis of temperature-dependent x-ray and neutron total scattering data. Furthermore, we detected a change in curvature of the temperature-dependent unit cell volume of the average tetragonal crystallographic structure at a temperature coinciding with the onset of ferromagnetic order. We also observed the existence of a well-defined local orthorhombic structure on a short length scale of ≲5Å, resulting in a rather asymmetrical local environment of the Mn and As ions. Finally, the magnetic PDF revealed ferromagnetic alignment ofmore » Mn spins along the crystallographic c axis, with robust nearest-neighbor ferromagnetic correlations that exist even above the ferromagnetic ordering temperature. Finally, we discuss these results in the context of other experiments and theoretical studies on this system.« less

  18. Cardiomyocyte Ca2+ handling and structure is regulated by degree and duration of mechanical load variation.

    PubMed

    Ibrahim, Michael; Kukadia, Punam; Siedlecka, Urszula; Cartledge, James E; Navaratnarajah, Manoraj; Tokar, Sergiy; Van Doorn, Carin; Tsang, Victor T; Gorelik, Julia; Yacoub, Magdi H; Terracciano, Cesare M

    2012-12-01

    Cardiac transverse (t)-tubules are altered during disease and may be regulated by stretch-sensitive molecules. The relationship between variations in the degree and duration of load and t-tubule structure remains unknown, as well as its implications for local Ca(2+)-induced Ca(2+) release (CICR). Rat hearts were studied after 4 or 8 weeks of moderate mechanical unloading [using heterotopic abdominal heart-lung transplantation (HAHLT)] and 6 or 10 weeks of pressure overloading using thoracic aortic constriction. CICR, cell and t-tubule structure were assessed using confocal-microscopy, patch-clamping and scanning ion conductance microscopy. Moderate unloading was compared with severe unloading [using heart-only transplantation (HAHT)]. Mechanical unloading reduced cardiomyocyte volume in a time-dependent manner. Ca(2+) release synchronicity was reduced at 8 weeks moderate unloading only. Ca(2+) sparks increased in frequency and duration at 8 weeks of moderate unloading, which also induced t-tubule disorganization. Overloading increased cardiomyocyte volume and disrupted t-tubule morphology at 10 weeks but not 6 weeks. Moderate mechanical unloading for 4 weeks had milder effects compared with severe mechanical unloading (37% reduction in cell volume at 4 weeks compared to 56% reduction after severe mechanical unloading) and did not cause depression and delay of the Ca(2+) transient, increased Ca(2+) spark frequency or impaired t-tubule and cell surface structure. These data suggest that variations in chronic mechanical load influence local CICR and t-tubule structure in a time- and degree-dependent manner, and that physiological states of increased and reduced cell size, without pathological changes are possible. © 2012 The Authors Journal of Cellular and Molecular Medicine © 2012 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.

  19. A survey of surface structures and subsurface developments for lunar bases

    NASA Technical Reports Server (NTRS)

    Hypes, Warren D.; Wright, Robert L.

    1990-01-01

    Concepts proposed for lunar-base structures and shelters include those fabricated on earth, fabricated locally using lunar materials, and developed from subsurface features. Early bases may rely on evolutionary growth using Space Station modules and nodes covered with regolith for protection against thermal and radiative stresses. Expandable/inflatable shelters used alone on the surface or in conjunction with subselene (beneath the lunar surface) features and spent portions of the Space Shuttle's fuel tanks offer early alternatives. More mature lunar bases may need larger volumes provided by erectable buildings, hybrid inflatable/rigid spheres, modular concrete buildings using locally derived cement, or larger subselene developments.

  20. Shape preferred orientation of iron grains compatible with Earth's uppermost inner core hemisphericity

    NASA Astrophysics Data System (ADS)

    Calvet, Marie; Margerin, Ludovic

    2018-01-01

    Constraining the possible patterns of iron fabrics in the Earth's Uppermost Inner Core (UIC) is key to unravel the mechanisms controlling its growth and dynamics. In the framework of crystalline micro-structures composed of ellipsoidal, aligned grains, we discuss possible textural models of UIC compatible with observations of P-wave attenuation and velocity dispersion. Using recent results from multiple scattering theory in textured heterogeneous materials, we compute the P-wave phase velocity and scattering attenuation as a function of grain volume, shape, and orientation wrt to the propagation direction of seismic P-waves. Assuming no variations of the grain volume between the Eastern and Western hemisphere, we show that two families of texture are compatible with the degree-one structure of the inner core as revealed by the positive correlation between seismic velocity and attenuation. (1) Strong flattening of grains parallel to the Inner Core Boundary in the Western hemisphere and weak anisometry in the Eastern hemisphere. (2) Strong radial elongation of grains in the Western hemisphere and again weak anisometry in the Eastern hemisphere. Both textures can quantitatively explain the seismic data in a limited range of grain volumes. Furthermore, the velocity and attenuation anisotropy locally observed under Africa demands that the grains be locally elongated in the direction of Earth's meridians. Our study demonstrates that the hemispherical seismic structure of UIC can be entirely explained by changes in the shape and orientation of grains, thereby offering an alternative to changes in grain volumes. In the future, our theoretical toolbox could be used to systematically test the compatibility of textures predicted by geodynamical models with seismic observations.

  1. Mapping the Regional Influence of Genetics on Brain Structure Variability - A Tensor-Based Morphometry Study

    PubMed Central

    Brun, Caroline; Leporé, Natasha; Pennec, Xavier; Lee, Agatha D.; Barysheva, Marina; Madsen, Sarah K.; Avedissian, Christina; Chou, Yi-Yu; de Zubicaray, Greig I.; McMahon, Katie; Wright, Margaret; Toga, Arthur W.; Thompson, Paul M.

    2010-01-01

    Genetic and environmental factors influence brain structure and function profoundly The search for heritable anatomical features and their influencing genes would be accelerated with detailed 3D maps showing the degree to which brain morphometry is genetically determined. As part of an MRI study that will scan 1150 twins, we applied Tensor-Based Morphometry to compute morphometric differences in 23 pairs of identical twins and 23 pairs of same-sex fraternal twins (mean age: 23.8 ± 1.8 SD years). All 92 twins’ 3D brain MRI scans were nonlinearly registered to a common space using a Riemannian fluid-based warping approach to compute volumetric differences across subjects. A multi-template method was used to improve volume quantification. Vector fields driving each subject’s anatomy onto the common template were analyzed to create maps of local volumetric excesses and deficits relative to the standard template. Using a new structural equation modeling method, we computed the voxelwise proportion of variance in volumes attributable to additive (A) or dominant (D) genetic factors versus shared environmental (C) or unique environmental factors (E). The method was also applied to various anatomical regions of interest (ROIs). As hypothesized, the overall volumes of the brain, basal ganglia, thalamus, and each lobe were under strong genetic control; local white matter volumes were mostly controlled by common environment. After adjusting for individual differences in overall brain scale, genetic influences were still relatively high in the corpus callosum and in early-maturing brain regions such as the occipital lobes, while environmental influences were greater in frontal brain regions which have a more protracted maturational time-course. PMID:19446645

  2. Analyzing structural variations along strike in a deep-water thrust belt

    NASA Astrophysics Data System (ADS)

    Totake, Yukitsugu; Butler, Robert W. H.; Bond, Clare E.; Aziz, Aznan

    2018-03-01

    We characterize a deep-water fold-thrust arrays imaged by a high-resolution 3D seismic dataset in the offshore NW Borneo, Malaysia, to understand the kinematics behind spatial arrangement of structural variations throughout the fold-thrust system. The seismic volume used covers two sub-parallel fold trains associated with a series of fore-thrusts and back-thrusts. We measured fault heave, shortening value, fold geometries (forelimb dip, interlimb angle and crest depth) along strike in individual fold trains. Heave plot on strike projection allows to identify individual thrust segments showing semi-elliptical to triangular to bimodal patterns, and linkages of these segments. The linkage sites are marked by local minima in cumulative heave. These local heave minima are compensated by additional structures, such as small imbricate thrusts and tight folds indicated by large forelimb dip and small interlimb angle. Complementary profiles of the shortening amount for the two fold trains result in smoother gradient of total shortening across the structures. We interpret this reflects kinematic interaction between two fold-thrust trains. This type of along-strike variation analysis provides comprehensive understanding of a fold-thrust system and may provide an interpretative strategy for inferring the presence of complex multiple faults in less well-imaged parts of seismic volumes.

  3. Cesium under pressure: First-principles calculation of the bcc-to-fcc phase transition

    NASA Astrophysics Data System (ADS)

    Carlesi, S.; Franchini, A.; Bortolani, V.; Martinelli, S.

    1999-05-01

    In this paper we present the ab initio calculation of the structural properties of cesium under pressure. The calculation of the total energy is done in the local-density approximation of density-functional theory, using a nonlocal pseudopotential including the nonlinear core corrections proposed by Louie et al. The calculation of the pressure-volume diagram for both bcc and fcc structures allows us to prove that the transition from bcc to fcc structure is a first-order transition.

  4. Local bone graft harvesting and volumes in posterolateral lumbar fusion: a technical report.

    PubMed

    Carragee, Eugene J; Comer, Garet C; Smith, Micah W

    2011-06-01

    In lumbar surgery, local bone graft is often harvested and used in posterolateral fusion procedures. The volume of local bone graft available for posterolateral fusion has not been determined in North American patients. Some authors have described this as minimal, but others have suggested the volume was sufficient to be reliably used as a stand-alone bone graft substitute for single-level fusion. To describe the technique used and determine the volume of local bone graft available in a cohort of patients undergoing single-level primary posterolateral fusion by the authors harvesting technique. Technical description and cohort report. Consecutive patients undergoing lumbar posterolateral fusion with or without instrumentation for degenerative processes. Local bone graft volume. Consecutive patients undergoing lumbar posterolateral fusion with or without instrumentation for degenerative processes of were studied. Local bone graft was harvested by a standard method in each patient and the volume measured by a standard procedure. Twenty-five patients were studied, and of these 11 (44%) had a previous decompression. The mean volume of local bone graft harvested was measured to be 25 cc (range, 12-36 cc). Local bone graft was augmented by iliac crest bone in six of 25 patients (24%) if the posterolateral fusion bed was not well packed with local bone alone. There was a trend to greater local bone graft volumes in men and in patients without previous decompression. Large volumes of local bone can be harvested during posterolateral lumbar fusion surgery. Even in patients with previous decompression the volume harvested is similar to that reported harvested from the posterior iliac crest for single-level fusion. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Surface dynamics and mechanics in liquid crystal polymer coatings

    NASA Astrophysics Data System (ADS)

    Liu, Danqing; Broer, Dirk J.

    2015-03-01

    Based on liquid crystal networks we developed `smart' coatings with responsive surface topographies. Either by prepatterning or by the formation of self-organized structures they can be switched on and off in a pre-designed manner. Here we provide an overview of our methods to generate coatings that form surface structures upon the actuation by light. The coating oscillates between a flat surface and a surface with pre-designed 3D micro-patterns by modulating a light source. With recent developments in solid state lighting, light is an attractive trigger medium as it can be integrated in a device for local control or can be used remotely for flood or localized exposure. The basic principle of formation of surface topographies is based on the change of molecular organization in ordered liquid crystal polymer networks. The change in order leads to anisotropic dimensional changes with contraction along the director and expansion to the two perpendicular directions and an increase in volume by the formation of free volume. These two effects work in concert to provide local expansion and contraction in the coating steered by the local direction of molecular orientation. The surface deformation, expressed as the height difference between the activated regions and the non-activated regions divided by the initial film thickness, is of the order of 20%. Switching occurs immediately when the light is switched `on' and `off' and takes several tens of seconds.

  6. Volume collapse phase transitions in cerium-praseodymium alloys under high pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perreault, Christopher S.; Velisavljevic, Nenad; Samudrala, Gopi K.

    Cerium-12at%Praseodymium(Ce 0.88Pr 0.12) and Ce-50at%Praseodymium(Ce 0.50Pr 0.50) alloy samples that contain a random solid-solution of Ce (4f1 (J=5/2)) and Pr (4f2 (J=4)) localized f-states have been studied by angle dispersive x-ray diffraction in a diamond anvil cell to a pressure of 65 GPa and 150 GPa respectively using a synchrotron source. Ce 0.88Pr 0.12 alloy crystallizes in a face-centered cubic (γ-phase) structure at ambient conditions, while Ce 0.50Pr 0.50 alloy crystallizes in the double hexagonal close packed (dhcp) structure at ambient conditions. Two distinct volume collapse transitions are observed in Ce 0.88Pr 0.12 alloy at 1.5 GPa and 18 GPamore » with volume change of 8.5% and 3% respectively. In contrast, Ce 0.50Pr 0.50 alloy shows only a single volume collapse of 5.6% at 20 GPa on phase transformation to α-Uranium structure under high pressure. Electrical transport measurements under high pressure show anomalies in electrical resistance at phase transitions for both compositions of this alloy.« less

  7. Volume collapse phase transitions in cerium-praseodymium alloys under high pressure

    DOE PAGES

    Perreault, Christopher S.; Velisavljevic, Nenad; Samudrala, Gopi K.; ...

    2018-06-08

    Cerium-12at%Praseodymium(Ce 0.88Pr 0.12) and Ce-50at%Praseodymium(Ce 0.50Pr 0.50) alloy samples that contain a random solid-solution of Ce (4f1 (J=5/2)) and Pr (4f2 (J=4)) localized f-states have been studied by angle dispersive x-ray diffraction in a diamond anvil cell to a pressure of 65 GPa and 150 GPa respectively using a synchrotron source. Ce 0.88Pr 0.12 alloy crystallizes in a face-centered cubic (γ-phase) structure at ambient conditions, while Ce 0.50Pr 0.50 alloy crystallizes in the double hexagonal close packed (dhcp) structure at ambient conditions. Two distinct volume collapse transitions are observed in Ce 0.88Pr 0.12 alloy at 1.5 GPa and 18 GPamore » with volume change of 8.5% and 3% respectively. In contrast, Ce 0.50Pr 0.50 alloy shows only a single volume collapse of 5.6% at 20 GPa on phase transformation to α-Uranium structure under high pressure. Electrical transport measurements under high pressure show anomalies in electrical resistance at phase transitions for both compositions of this alloy.« less

  8. Quantifying Glacier Volume Change Using UAV-Derived Imagery and Structure from Motion Photogrammetry

    NASA Astrophysics Data System (ADS)

    Decker, C. R.; La Frenierre, J.

    2017-12-01

    Glaciers in the Tropical Andes, like those worldwide, are experiencing rapid ice volume loss due to climate change. Tropical areas are of significant interest in glacier studies because they are especially sensitive to climate change. Quantifying the rate of ice volume loss is important given their sensitivity to climate change and the importance of glacier meltwater for downstream human use. Past studies have found shrinking ice surfaces areas, but finding the actual rate of volume loss gives more information about how glaciers are reacting to climate change as well as the direct hydrological effects of ice volume loss. In this study we determined the rate of ice volume loss for a debris covered section of the Reschreiter Glacier and a portion of the clean ice tongue of the Hans Meyer Glacier on Volcán Chimborazo in Ecuador. Traditional geodetic approaches of measuring ice volume change, including the use of satellite-derived digital elevation models and airborne LIDAR, are difficult in this case due to the small size of Chimborazo's glaciers, frequently cloudy conditions, and limited local resources. Instead, we obtained imagery with an Unmanned Aerial Vehicle (UAV) and processed this imagery using Structure from Motion photogrammetry. Our results are used to evaluate the role of elevation and debris cover as Chimborazo's glaciers respond to climate change.

  9. Human brain structure predicts individual differences in preconscious evaluation of facial dominance and trustworthiness

    PubMed Central

    Kanai, Ryota; Bahrami, Bahador; Rees, Geraint

    2015-01-01

    Social cues conveyed by the human face, such as eye gaze direction, are evaluated even before they are consciously perceived. While there is substantial individual variability in such evaluation, its neural basis is unknown. Here we asked whether individual differences in preconscious evaluation of social face traits were associated with local variability in brain structure. Adult human participants (n = 36) monocularly viewed faces varying in dominance and trustworthiness, which were suppressed from awareness by a dynamic noise pattern shown to the other eye. The time taken for faces to emerge from suppression and become visible (t2e) was used as a measure of potency in competing for visual awareness. Both dominant and untrustworthy faces resulted in slower t2e than neutral faces, with substantial individual variability in these effects. Individual differences in t2e were correlated with gray matter volume in right insula for dominant faces, and with gray matter volume in medial prefrontal cortex, right temporoparietal junction and bilateral fusiform face area for untrustworthy faces. Thus, individual differences in preconscious social processing can be predicted from local brain structure, and separable correlates for facial dominance and untrustworthiness suggest distinct mechanisms of preconscious processing. PMID:25193945

  10. A coarse-to-fine approach for pericardial effusion localization and segmentation in chest CT scans

    NASA Astrophysics Data System (ADS)

    Liu, Jiamin; Chellamuthu, Karthik; Lu, Le; Bagheri, Mohammadhadi; Summers, Ronald M.

    2018-02-01

    Pericardial effusion on CT scans demonstrates very high shape and volume variability and very low contrast to adjacent structures. This inhibits traditional automated segmentation methods from achieving high accuracies. Deep neural networks have been widely used for image segmentation in CT scans. In this work, we present a two-stage method for pericardial effusion localization and segmentation. For the first step, we localize the pericardial area from the entire CT volume, providing a reliable bounding box for the more refined segmentation step. A coarse-scaled holistically-nested convolutional networks (HNN) model is trained on entire CT volume. The resulting HNN per-pixel probability maps are then threshold to produce a bounding box covering the pericardial area. For the second step, a fine-scaled HNN model is trained only on the bounding box region for effusion segmentation to reduce the background distraction. Quantitative evaluation is performed on a dataset of 25 CT scans of patient (1206 images) with pericardial effusion. The segmentation accuracy of our two-stage method, measured by Dice Similarity Coefficient (DSC), is 75.59+/-12.04%, which is significantly better than the segmentation accuracy (62.74+/-15.20%) of only using the coarse-scaled HNN model.

  11. A comparison of three methods of setting prescribing budgets, using data derived from defined daily dose analyses of historic patterns of use.

    PubMed Central

    Maxwell, M; Howie, J G; Pryde, C J

    1998-01-01

    BACKGROUND: Prescribing matters (particularly budget setting and research into prescribing variation between doctors) have been handicapped by the absence of credible measures of the volume of drugs prescribed. AIM: To use the defined daily dose (DDD) method to study variation in the volume and cost of drugs prescribed across the seven main British National Formulary (BNF) chapters with a view to comparing different methods of setting prescribing budgets. METHOD: Study of one year of prescribing statistics from all 129 general practices in Lothian, covering 808,059 patients: analyses of prescribing statistics for 1995 to define volume and cost/volume of prescribing for one year for 10 groups of practices defined by the age and deprivation status of their patients, for seven BNF chapters; creation of prescribing budgets for 1996 for each individual practice based on the use of target volume and cost statistics; comparison of 1996 DDD-based budgets with those set using the conventional historical approach; and comparison of DDD-based budgets with budgets set using a capitation-based formula derived from local cost/patient information. RESULTS: The volume of drugs prescribed was affected by the age structure of the practices in BNF Chapters 1 (gastrointestinal), 2 (cardiovascular), and 6 (endocrine), and by deprivation structure for BNF Chapters 3 (respiratory) and 4 (central nervous system). Costs per DDD in the major BNF chapters were largely independent of age, deprivation structure, or fundholding status. Capitation and DDD-based budgets were similar to each other, but both differed substantially from historic budgets. One practice in seven gained or lost more than 100,000 Pounds per annum using DDD or capitation budgets compared with historic budgets. The DDD-based budget, but not the capitation-based budget, can be used to set volume-specific prescribing targets. CONCLUSIONS: DDD-based and capitation-based prescribing budgets can be set using a simple explanatory model and generalizable methods. In this study, both differed substantially from historic budgets. DDD budgets could be created to accommodate new prescribing strategies and raised or lowered to reflect local intentions to alter overall prescribing volume or cost targets. We recommend that future work on setting budgets and researching prescribing variations should be based on DDD statistics. PMID:10024703

  12. Bone remodelling: its local regulation and the emergence of bone fragility.

    PubMed

    Martin, T John; Seeman, Ego

    2008-10-01

    Bone modelling prevents the occurrence of damage by adapting bone structure - and hence bone strength - to its loading circumstances. Bone remodelling removes damage, when it inevitably occurs, in order to maintain bone strength. This cellular machinery is successful during growth, but fails during advancing age because of the development of a negative balance between the volumes of bone resorbed and formed during remodelling by the basic multicellular unit (BMU), high rates of remodelling during midlife in women and late in life in both sexes, and a decline in periosteal bone formation. together resulting in bone loss and structural decay each time a remodelling event occurs. The two steps in remodelling - resorption of a volume of bone by osteoclasts and formation of a comparable volume by osteoblasts - are sequential, but the regulatory events leading to these two fully differentiated functions are not. Reparative remodelling is initiated by damage producing osteocyte apoptosis, which signals the location of damage via the osteocyte canalicular system to endosteal lining cells which forms the canopy of a bone-remodelling compartment (BRC). Within the BRC, local recruitment of osteoblast precursors from the lining cells, the marrow and circulation, direct contact with osteoclast precursors, osteoclastogenesis and molecular cross-talk between precursors, mature cells, cells of the immune system, and products of the resorbed matrix, titrate the birth, work and lifespan of the cells of this multicellular remodelling machinery to either remove or form a net volume of bone appropriate to the mechanical requirements.

  13. Automatic selection of landmarks in T1-weighted head MRI with regression forests for image registration initialization

    NASA Astrophysics Data System (ADS)

    Wang, Jianing; Liu, Yuan; Noble, Jack H.; Dawant, Benoit M.

    2017-02-01

    Medical image registration establishes a correspondence between images of biological structures and it is at the core of many applications. Commonly used deformable image registration methods are dependent on a good preregistration initialization. The initialization can be performed by localizing homologous landmarks and calculating a point-based transformation between the images. The selection of landmarks is however important. In this work, we present a learning-based method to automatically find a set of robust landmarks in 3D MR image volumes of the head to initialize non-rigid transformations. To validate our method, these selected landmarks are localized in unknown image volumes and they are used to compute a smoothing thin-plate splines transformation that registers the atlas to the volumes. The transformed atlas image is then used as the preregistration initialization of an intensity-based non-rigid registration algorithm. We show that the registration accuracy of this algorithm is statistically significantly improved when using the presented registration initialization over a standard intensity-based affine registration.

  14. Determining Quiescent Colloidal Suspension Viscosities Using the Green-Kubo Relation and Image-Based Stress Measurements

    NASA Astrophysics Data System (ADS)

    Lin, Neil Y. C.; Bierbaum, Matthew; Cohen, Itai

    2017-09-01

    By combining confocal microscopy and stress assessment from local structural anisotropy, we directly measure stresses in 3D quiescent colloidal liquids. Our noninvasive and nonperturbative method allows us to measure forces ≲50 fN with a small and tunable probing volume, enabling us to resolve the stress fluctuations arising from particle thermal motions. We use the Green-Kubo relation to relate these measured stress fluctuations to the bulk Brownian viscosity at different volume fractions, comparing against simulations and conventional rheometry measurements. We find that the Green-Kubo analysis gives excellent agreement with these prior results, suggesting that similar methods could be applied to investigations of local flow properties in many poorly understood far-from-equilibrium systems, including suspensions that are glassy, strongly sheared, or highly confined.

  15. Localized Arm Volume Index: A New Method for Body Type-Corrected Evaluation of Localized Arm Lymphedematous Volume Change.

    PubMed

    Yamamoto, Takumi; Yamamoto, Nana; Yoshimatsu, Hidehiko

    2017-10-01

    Volume measurement is a common evaluation for upper extremity lymphedema. However, volume comparison between different patients with different body types may be inappropriate, and it is difficult to evaluate localized limb volume change using arm volume. Localized arm volumes (Vk, k = 1-5) and localized arm volume indices (LAVIk) at 5 points (1, upper arm; 2, elbow; 3, forearm; 4, wrist; 5, hand) of 106 arms of 53 examinees with no arm edema were calculated based on physical measurements (arm circumferences and lengths and body mass index [BMI]). Interrater and intrarater reliabilities of LAVIk were assessed, and Vk and LAVIk were compared between lower BMI (BMI, <22 kg/m) group and higher BMI (BMI, ≥22 kg/m) group. Interrater and intrarater reliabilities of LAVIk were all high (all, r > 0.98). Between lower and higher BMI groups, significant differences were observed in all Vk (V1 [P = 6.8 × 10], V2 [P = 3.1 × 10], V3 [P = 1.1 × 10], V4 [P = 8.3 × 10], and V5 [P = 3.0 × 10]). Regarding localized arm volume index (LAVI) between groups, significant differences were seen in LAVI1 (P = 9.7 × 10) and LAVI5 (P = 1.2 × 10); there was no significant difference in LAVI2 (P = 0.60), LAVI3 (P = 0.61), or LAVI4 (P = 0.22). Localized arm volume index is a convenient and highly reproducible method for evaluation of localized arm volume change, which is less affected by body physique compared with arm volumetry.

  16. Aircraft wing structural design optimization based on automated finite element modelling and ground structure approach

    NASA Astrophysics Data System (ADS)

    Yang, Weizhu; Yue, Zhufeng; Li, Lei; Wang, Peiyan

    2016-01-01

    An optimization procedure combining an automated finite element modelling (AFEM) technique with a ground structure approach (GSA) is proposed for structural layout and sizing design of aircraft wings. The AFEM technique, based on CATIA VBA scripting and PCL programming, is used to generate models automatically considering the arrangement of inner systems. GSA is used for local structural topology optimization. The design procedure is applied to a high-aspect-ratio wing. The arrangement of the integral fuel tank, landing gear and control surfaces is considered. For the landing gear region, a non-conventional initial structural layout is adopted. The positions of components, the number of ribs and local topology in the wing box and landing gear region are optimized to obtain a minimum structural weight. Constraints include tank volume, strength, buckling and aeroelastic parameters. The results show that the combined approach leads to a greater weight saving, i.e. 26.5%, compared with three additional optimizations based on individual design approaches.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Highland, M. J.; Hruszkewycz, S. O.; Fong, D. D.

    Here, we report on the synthesis, stability, and local structure of In 2O 3 thin films grown via rf-magnetron sputtering and characterized by in-situ x-ray scattering and focused x-ray nanodiffraction. We find that In 2O 3 deposited onto (001)-oriented single crystal yttria-stabilized zirconia substrates adopts a Stranski–Krastanov growth mode at a temperature of 850°C, resulting in epitaxial, truncated square pyramids with (111) side walls. We find that at this temperature, the pyramids evaporate unless they are stabilized by a low flux of In 2O 3 from the magnetron source. Lastly, we also find that the internal lattice structure of onemore » such pyramid is made up of differently strained volumes, revealing local structural heterogeneity that may impact the properties of In 2O 3 nanostructures and films.« less

  18. Local spin density functional investigations of a manganite with perovskite-type derived structures

    NASA Astrophysics Data System (ADS)

    Matar, S. F.; Studer, F.; Siberchicot, B.; Subramanian, M. A.; Demazeau, G.; Etourneau, J.

    1998-11-01

    The electronic and magnetic structures of the perovskite CaMnO3 are self-consistently calculated assuming two crystal structures at the same formula unit volume within the local spin density functional theory and the augmented spherical wave (ASW) method. From the comparisons of energy differences between the different magnetic states the ground state configuration is an insulator with G-type ordering. This result together with the magnitudes of the magnetic moments are in agreement with experiment. The influence of mixing between Mn and O is found spin dependent from the analysis of the crystal orbital overlap population (COOP) which enable to describe the chemical bond. The calculations underline a feature of a half metallic ferromagnet which could be connected with the colossal magnetoresistance (CMR) property of related compounds.

  19. Myosin light chain kinase and Src control membrane dynamics in volume recovery from cell swelling

    PubMed Central

    Barfod, Elisabeth T.; Moore, Ann L.; Van de Graaf, Benjamin G.; Lidofsky, Steven D.

    2011-01-01

     The expansion of the plasma membrane, which occurs during osmotic swelling of epithelia, must be retrieved for volume recovery, but the mechanisms are unknown. Here we have identified myosin light chain kinase (MLCK) as a regulator of membrane internalization in response to osmotic swelling in a model liver cell line. On hypotonic exposure, we found that there was time-dependent phosphorylation of the MLCK substrate myosin II regulatory light chain. At the sides of the cell, MLCK and myosin II localized to swelling-induced membrane blebs with actin just before retraction, and MLCK inhibition led to persistent blebbing and attenuated cell volume recovery. At the base of the cell, MLCK also localized to dynamic actin-coated rings and patches upon swelling, which were associated with uptake of the membrane marker FM4-64X, consistent with sites of membrane internalization. Hypotonic exposure evoked increased biochemical association of the cell volume regulator Src with MLCK and with the endocytosis regulators cortactin and dynamin, which colocalized within these structures. Inhibition of either Src or MLCK led to altered patch and ring lifetimes, consistent with the concept that Src and MLCK form a swelling-induced protein complex that regulates volume recovery through membrane turnover and compensatory endocytosis under osmotic stress. PMID:21209319

  20. Speed and convergence properties of gradient algorithms for optimization of IMRT.

    PubMed

    Zhang, Xiaodong; Liu, Helen; Wang, Xiaochun; Dong, Lei; Wu, Qiuwen; Mohan, Radhe

    2004-05-01

    Gradient algorithms are the most commonly employed search methods in the routine optimization of IMRT plans. It is well known that local minima can exist for dose-volume-based and biology-based objective functions. The purpose of this paper is to compare the relative speed of different gradient algorithms, to investigate the strategies for accelerating the optimization process, to assess the validity of these strategies, and to study the convergence properties of these algorithms for dose-volume and biological objective functions. With these aims in mind, we implemented Newton's, conjugate gradient (CG), and the steepest decent (SD) algorithms for dose-volume- and EUD-based objective functions. Our implementation of Newton's algorithm approximates the second derivative matrix (Hessian) by its diagonal. The standard SD algorithm and the CG algorithm with "line minimization" were also implemented. In addition, we investigated the use of a variation of the CG algorithm, called the "scaled conjugate gradient" (SCG) algorithm. To accelerate the optimization process, we investigated the validity of the use of a "hybrid optimization" strategy, in which approximations to calculated dose distributions are used during most of the iterations. Published studies have indicated that getting trapped in local minima is not a significant problem. To investigate this issue further, we first obtained, by trial and error, and starting with uniform intensity distributions, the parameters of the dose-volume- or EUD-based objective functions which produced IMRT plans that satisfied the clinical requirements. Using the resulting optimized intensity distributions as the initial guess, we investigated the possibility of getting trapped in a local minimum. For most of the results presented, we used a lung cancer case. To illustrate the generality of our methods, the results for a prostate case are also presented. For both dose-volume and EUD based objective functions, Newton's method far outperforms other algorithms in terms of speed. The SCG algorithm, which avoids expensive "line minimization," can speed up the standard CG algorithm by at least a factor of 2. For the same initial conditions, all algorithms converge essentially to the same plan. However, we demonstrate that for any of the algorithms studied, starting with previously optimized intensity distributions as the initial guess but for different objective function parameters, the solution frequently gets trapped in local minima. We found that the initial intensity distribution obtained from IMRT optimization utilizing objective function parameters, which favor a specific anatomic structure, would lead to a local minimum corresponding to that structure. Our results indicate that from among the gradient algorithms tested, Newton's method appears to be the fastest by far. Different gradient algorithms have the same convergence properties for dose-volume- and EUD-based objective functions. The hybrid dose calculation strategy is valid and can significantly accelerate the optimization process. The degree of acceleration achieved depends on the type of optimization problem being addressed (e.g., IMRT optimization, intensity modulated beam configuration optimization, or objective function parameter optimization). Under special conditions, gradient algorithms will get trapped in local minima, and reoptimization, starting with the results of previous optimization, will lead to solutions that are generally not significantly different from the local minimum.

  1. Importance of extended spatial coverage for quantitative susceptibility mapping of iron-rich deep gray matter.

    PubMed

    Elkady, Ahmed M; Sun, Hongfu; Wilman, Alan H

    2016-05-01

    Quantitative Susceptibility Mapping (QSM) is an emerging area of brain research with clear application to brain iron studies in deep gray matter. However, acquisition of standard whole brain QSM can be time-consuming. One means to reduce scan time is to use a focal acquisition restricted only to the regions of interest such as deep gray matter. However, the non-local dipole field necessary for QSM reconstruction extends far beyond the structure of interest. We demonstrate the practical implications of these non-local fields on the choice of brain volume for QSM. In an illustrative numerical simulation and then in human brain experiments, we examine the effect on QSM of volume reduction in each dimension. For the globus pallidus, as an example of iron-rich deep gray matter, we demonstrate that substantial errors can arise even when the field-of-view far exceeds the physical structural boundaries. Thus, QSM reconstruction requires a non-local field-of-view prescription to ensure minimal errors. An axial QSM acquisition, centered on the globus pallidus, should encompass at least 76mm in the superior-inferior direction to conserve susceptibility values from the globus pallidus. This dimension exceeds the physical coronal extent of this structure by at least five-fold. As QSM sees wider use in the neuroscience community, its unique requirement for an extended field-of-view needs to be considered. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Radical-Driven Silicon Surface Passivation for Organic-Inorganic Hybrid Photovoltaics

    NASA Astrophysics Data System (ADS)

    Chandra, Nitish

    The advent of metamaterials has increased the complexity of possible light-matter interactions, creating gaps in knowledge and violating various commonly used approximations and rendering some common mathematical frameworks incomplete. Our forward scattering experiments on metallic shells and cavities have created a need for a rigorous geometry-based analysis of scattering problems and more rigorous current distribution descriptions in the volume of the scattering object. In order to build an accurate understanding of these interactions, we have revisited the fundamentals of Maxwell's equations, electromagnetic potentials and boundary conditions to build a bottom-up geometry-based analysis of scattering. Individual structures or meta-atoms can be designed to localize the incident electromagnetic radiation in order to create a change in local constitutive parameters and possible nonlinear responses. Hence, in next generation engineered materials, an accurate determination of current distribution on the surface and in the structure's volume play an important role in describing and designing desired properties. Multipole expansions of the exact current distribution determined using principles of differential geometry provides an elegant way to study these local interactions of meta-atoms. The dynamics of the interactions can be studied using the behavior of the polarization and magnetization densities generated by localized current densities interacting with the electromagnetic potentials associated with the incident waves. The multipole method combined with propagation of electromagnetic potentials can be used to predict a large variety of linear and nonlinear physical phenomena. This has been demonstrated in experiments that enable the analog detection of sources placed at subwavelength separation by using time reversal of observed signals. Time reversal is accomplished by reversing the direction of the magnetic dipole in bianisotropic metasurfaces while simultaneously providing a method to reduce the losses often observed when light interacts with meta-structures.

  3. The Roots of Urban Discontent: Public Policy, Municipal Institutions, and the Ghetto.

    ERIC Educational Resources Information Center

    Rossi, Peter H.; And Others

    The central concern of this volume is to examine the interrelationships between three levels of urban social structure: (1) local public policy-makers, comprised of elected public officials, the heads of major municipal departments, and "civic notables," or persons who play important roles in urban civic life; (2) "institutional agents," or…

  4. Anomalous subcortical morphology in boys, but not girls, with ADHD compared to typically developing controls and correlates with emotion dysregulation

    PubMed Central

    Crocetti, Deana; Mostofsky, Stewart H.; Miller, Michael I.; Rosch, Keri S.

    2017-01-01

    There has been limited investigation of volume and shape difference in subcortical structures in children with ADHD and a paucity of examination of the influence of sex on these findings. The objective of this study was to examine morphology (volume and shape) of subcortical structures and their association with emotion dysregulation (ED) in girls and boys with ADHD as compared to their typically-developing (TD) counterparts. Participants included 218 children ages 8-12 years old with and without DSM-IV ADHD. Structural magnetic resonance images were obtained, and shape analyses were conducted using large deformation diffeomorphic metric mapping (LDDMM). Compared to TD boys, boys with ADHD showed reduced volumes in the bilateral globus pallidus and amygdala. There were no volumetric differences in any structure between ADHD and TD girls. Shape analysis revealed localized compressions within the globus pallidus, putamen and amygdala in ADHD boys relative to TD boys, as well as significant correlations between increased ED and unique subregion expansion in right globus pallidus, putamen, and right amygdala. Our findings suggest a sexually dimorphic pattern of differences in subcortical structures in children with ADHD compared to TD children, and a possible neurobiological mechanism by which boys with ADHD demonstrate increased difficulties with ED. PMID:28104573

  5. The hippocampi of children with chromosome 22q11.2 deletion syndrome have localized anterior alterations that predict severity of anxiety.

    PubMed

    Scott, Julia A; Goodrich-Hunsaker, Naomi; Kalish, Kristopher; Lee, Aaron; Hunsaker, Michael R; Schumann, Cynthia M; Carmichael, Owen T; Simon, Tony J

    2016-04-01

    Individuals with 22q11.2 deletion syndrome (22q11.2DS) have an elevated risk for schizophrenia, which increases with history of childhood anxiety. Altered hippocampal morphology is a common neuroanatomical feature of 22q11.2DS and idiopathic schizophrenia. Relating hippocampal structure in children with 22q11.2DS to anxiety and impaired cognitive ability could lead to hippocampus-based characterization of psychosis-proneness in this at-risk population. We measured hippocampal volume using a semiautomated approach on MRIs collected from typically developing children and children with 22q11.2DS. We then analyzed hippocampal morphology with Localized Components Analysis. We tested the modulating roles of diagnostic group, hippocampal volume, sex and age on local hippocampal shape components. Lastly, volume and shape components were tested as covariates of IQ and anxiety. We included 48 typically developing children and 69 children with 22q11.2DS in our study. Hippocampal volume was reduced bilaterally in children with 22q11.2DS, and these children showed greater variation in the shape of the anterior hippocampus than typically developing children. Children with 22q11.2DS had greater inward deformation of the anterior hippocampus than typically developing children. Greater inward deformation of the anterior hippocampus was associated with greater severity of anxiety, specifically fear of physical injury, within the 22q11.2DS group. Shape alterations are not specific to hippocampal subfields. Alterations in the structure of the anterior hippocampus likely affect function and may impact limbic circuitry. We suggest these alterations potentially contribute to anxiety symptoms in individuals with 22q11.2DS through modulatory pathways. Altered hippocampal morphology may be uniquely linked to anxiety risk factors for schizophrenia, which could be a powerful neuroanatomical marker of schizophrenia risk and hence protection.

  6. A Thermo-Optic Propagation Modeling Capability.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schrader, Karl; Akau, Ron

    2014-10-01

    A new theoretical basis is derived for tracing optical rays within a finite-element (FE) volume. The ray-trajectory equations are cast into the local element coordinate frame and the full finite-element interpolation is used to determine instantaneous index gradient for the ray-path integral equation. The FE methodology (FEM) is also used to interpolate local surface deformations and the surface normal vector for computing the refraction angle when launching rays into the volume, and again when rays exit the medium. The method is implemented in the Matlab(TM) environment and compared to closed- form gradient index models. A software architecture is also developedmore » for implementing the algorithms in the Zemax(TM) commercial ray-trace application. A controlled thermal environment was constructed in the laboratory, and measured data was collected to validate the structural, thermal, and optical modeling methods.« less

  7. 3D implicit modeling of the Sishen Mine: new resolution of the geometry and origin of Fe mineralization

    NASA Astrophysics Data System (ADS)

    Stoch, B.; Anthonissen, C. J.; McCall, M.-J.; Basson, I. J.; Deacon, J.; Cloete, E.; Botha, J.; Britz, J.; Strydom, M.; Nel, D.; Bester, M.

    2017-12-01

    The Sishen deposit is one of the largest iron ore concentrations in current production. Hematite mineralization occurs along a strike length of 14 km, with a width of 3.2 km and a maximum vertical extent of 400 m below the original surface. The 986-Mt reserve incorporates a suite of individual orebodies, beneath a locally preserved tectonized unconformity, with a wide range of geometries, depths, and orientations. Fully constrained, implicit 3D modeling of the entire mining volume (> 70 km3), was undertaken to the original, pre-mining topography. The model incorporates 5287 mapping points and > 21,000 drillholes and provides exceptional insight into the original configuration of ore and its relationship to contacts, unconformities, and structures in the enclosing country rock. The bulk of ore occurs to the west of a strike-extensive, partially inverted normal fault (Sloep Fault), within an asymmetrical synclinal structure on its western flank. This linear, N-S distribution of deep, thick ore is punctuated by palaeosinkholes, wherein base-of-ore dips of greater than 45°, are concentrically arranged. Localized ore volumes also occur along faults and in fault-bounded, downthrown blocks, to the north of NW-SE- and NE-SW-trending strike-slip faults that show relatively minor uplift to the south, probably due to the Lomanian Namaqua-Natal Orogeny. The revised model demonstrates the proximity of ore to a tectonized unconformity and highlights the structural control on ore volumes, implying that Fe mineralization at Sishen cannot be exclusively attributed to supergene enrichment and concentric palaeosinkhole formation.

  8. Cortical and subcortical abnormalities in youths with conduct disorder and elevated callous-unemotional traits.

    PubMed

    Wallace, Gregory L; White, Stuart F; Robustelli, Briana; Sinclair, Stephen; Hwang, Soonjo; Martin, Alex; Blair, R James R

    2014-04-01

    Although there is growing evidence of brain abnormalities among individuals with conduct disorder (CD), the structural neuroimaging literature is mixed and frequently aggregates cortical volume rather than differentiating cortical thickness from surface area. The current study assesses CD-related differences in cortical thickness, surface area, and gyrification as well as volume differences in subcortical structures critical to neurodevelopmental models of CD (amygdala; striatum) in a carefully characterized sample. We also examined whether group structural differences were related to severity of callous-unemotional (CU) traits in the CD sample. Participants were 49 community adolescents aged 10 to 18 years, 22 with CD and 27 healthy comparison youth. Structural MRI was collected and the FreeSurfer image analysis suite was used to provide measures of cortical thickness, surface area, and local gyrification as well as subcortical (amygdala and striatum) volumes. Youths with CD showed reduced cortical thickness in the superior temporal cortex. There were also indications of reduced gyrification in the ventromedial frontal cortex, particularly for youths with CD without comorbid attention-deficit/hyperactivity disorder. There were no group differences in cortical surface area. However, youths with CD also showed reduced amygdala and striatum (putamen and pallidum) volumes. Right temporal cortical thickness was significantly inversely related to severity of CU traits. Youths with CD show reduced cortical thickness within superior temporal regions, some indication of reduced gyrification within ventromedial frontal cortex and reduced amygdala and striatum (putamen and pallidum) volumes. These results are discussed with reference to neurobiological models of CD. Published by Elsevier Inc.

  9. Computerized organ localization in abdominal CT volume with context-driven generalized Hough transform

    NASA Astrophysics Data System (ADS)

    Liu, Jing; Li, Qiang

    2014-03-01

    Fast localization of organs is a key step in computer-aided detection of lesions and in image guided radiation therapy. We developed a context-driven Generalized Hough Transform (GHT) for robust localization of organ-of-interests (OOIs) in a CT volume. Conventional GHT locates the center of an organ by looking-up center locations of pre-learned organs with "matching" edges. It often suffers from mislocalization because "similar" edges in vicinity may attract the prelearned organs towards wrong places. The proposed method not only uses information from organ's own shape but also takes advantage of nearby "similar" edge structures. First, multiple GHT co-existing look-up tables (cLUT) were constructed from a set of training shapes of different organs. Each cLUT represented the spatial relationship between the center of the OOI and the shape of a co-existing organ. Second, the OOI center in a test image was determined using GHT with each cLUT separately. Third, the final localization of OOI was based on weighted combination of the centers obtained in the second stage. The training set consisted of 10 CT volumes with manually segmented OOIs including liver, spleen and kidneys. The method was tested on a set of 25 abdominal CT scans. Context-driven GHT correctly located all OOIs in the test image and gave localization errors of 19.5±9.0, 12.8±7.3, 9.4±4.6 and 8.6±4.1 mm for liver, spleen, left and right kidney respectively. Conventional GHT mis-located 8 out of 100 organs and its localization errors were 26.0±32.6, 14.1±10.6, 30.1±42.6 and 23.6±39.7mm for liver, spleen, left and right kidney respectively.

  10. Imaging of Hydrogel Microsphere Structure and Foreign Body Response Based on Endogenous X-Ray Phase Contrast

    DOE PAGES

    Appel, Alyssa A.; Ibarra, Veronica; Somo, Sami I.; ...

    2016-10-31

    Transplantation of functional islets encapsulated in stable biomaterials has the potential to cure Type I diabetes. However, the success of these materials requires the ability to understand their stability in vivo. Imaging techniques that enable monitoring of biomaterial performance are critical to further development in the field. In this study, we demonstrate for the first time that X-ray phase contrast (XPC) imaging techniques enable 3D imaging and evaluation of islet volume, alginate hydrogel structure and local soft tissue response. Islets were encapsulated in alginate systems prepared in methods used in clinical trials and implanted in a rodent omentum pouch modelmore » as a treatment for type I diabetes. Microbeads were imaged with XPC prior to implantation and following implantation into an omentum pouch. Islets could be identified within alginate beads and the islet volume quantified. Omental adipose tissue could be distinguished from inflammatory regions resulting from implanted beads. Individual beads and the local encapsulation response were visualized and quantifiable. Measurements were in agreement with histology. The 3D structure of the microbeads could be characterized with XPC and failed beads could also be identified. These results point to the substantial potential of XPC as a tool for imaging biomaterials in small animal models.« less

  11. Imaging of Hydrogel Microsphere Structure and Foreign Body Response Based on Endogenous X-Ray Phase Contrast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Appel, Alyssa A.; Ibarra, Veronica; Somo, Sami I.

    Transplantation of functional islets encapsulated in stable biomaterials has the potential to cure Type I diabetes. However, the success of these materials requires the ability to understand their stability in vivo. Imaging techniques that enable monitoring of biomaterial performance are critical to further development in the field. In this study, we demonstrate for the first time that X-ray phase contrast (XPC) imaging techniques enable 3D imaging and evaluation of islet volume, alginate hydrogel structure and local soft tissue response. Islets were encapsulated in alginate systems prepared in methods used in clinical trials and implanted in a rodent omentum pouch modelmore » as a treatment for type I diabetes. Microbeads were imaged with XPC prior to implantation and following implantation into an omentum pouch. Islets could be identified within alginate beads and the islet volume quantified. Omental adipose tissue could be distinguished from inflammatory regions resulting from implanted beads. Individual beads and the local encapsulation response were visualized and quantifiable. Measurements were in agreement with histology. The 3D structure of the microbeads could be characterized with XPC and failed beads could also be identified. These results point to the substantial potential of XPC as a tool for imaging biomaterials in small animal models.« less

  12. The structure and statistics of interstellar turbulence

    NASA Astrophysics Data System (ADS)

    Kritsuk, A. G.; Ustyugov, S. D.; Norman, M. L.

    2017-06-01

    We explore the structure and statistics of multiphase, magnetized ISM turbulence in the local Milky Way by means of driven periodic box numerical MHD simulations. Using the higher order-accurate piecewise-parabolic method on a local stencil (PPML), we carry out a small parameter survey varying the mean magnetic field strength and density while fixing the rms velocity to observed values. We quantify numerous characteristics of the transient and steady-state turbulence, including its thermodynamics and phase structure, kinetic and magnetic energy power spectra, structure functions, and distribution functions of density, column density, pressure, and magnetic field strength. The simulations reproduce many observables of the local ISM, including molecular clouds, such as the ratio of turbulent to mean magnetic field at 100 pc scale, the mass and volume fractions of thermally stable Hi, the lognormal distribution of column densities, the mass-weighted distribution of thermal pressure, and the linewidth-size relationship for molecular clouds. Our models predict the shape of magnetic field probability density functions (PDFs), which are strongly non-Gaussian, and the relative alignment of magnetic field and density structures. Finally, our models show how the observed low rates of star formation per free-fall time are controlled by the multiphase thermodynamics and large-scale turbulence.

  13. Interfraction Displacement of Primary Tumor and Involved Lymph Nodes Relative to Anatomic Landmarks in Image Guided Radiation Therapy of Locally Advanced Lung Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jan, Nuzhat; Balik, Salim; Hugo, Geoffrey D.

    Purpose: To analyze primary tumor (PT) and lymph node (LN) position changes relative to each other and relative to anatomic landmarks during conventionally fractionated radiation therapy for patients with locally advanced lung cancer. Methods and Materials: In 12 patients with locally advanced non-small cell lung cancer PT, LN, carina, and 1 thoracic vertebra were manually contoured on weekly 4-dimensional fan-beam CT scans. Systematic and random interfraction displacements of all contoured structures were identified in the 3 cardinal directions, and resulting setup margins were calculated. Time trends and the effect of volume changes on displacements were analyzed. Results: Three-dimensional displacement vectorsmore » and systematic/random interfraction displacements were smaller for carina than for vertebra both for PT and LN. For PT, mean (SD) 3-dimensional displacement vectors with carina-based alignment were 7 (4) mm versus 9 (5) mm with bony anatomy (P<.0001). For LN, smaller displacements were found with carina- (5 [3] mm, P<.0001) and vertebra-based (6 [3] mm, P=.002) alignment compared with using PT for setup (8 [5] mm). Primary tumor and LN displacements relative to bone and carina were independent (P>.05). Displacements between PT and bone (P=.04) and between PT and LN (P=.01) were significantly correlated with PT volume regression. Displacements between LN and carina were correlated with LN volume change (P=.03). Conclusions: Carina-based setup results in a more reproducible PT and LN alignment than bony anatomy setup. Considering the independence of PT and LN displacement and the impact of volume regression on displacements over time, repeated CT imaging even with PT-based alignment is recommended in locally advanced disease.« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Highland, M. J.; Hruszkewycz, S. O.; Fong, D. D.

    We report on the synthesis, stability, and local structure of In2O3 thin films grown via rf-magnetron sputtering and characterized by in-situ x-ray scattering and focused x-ray nanodiffraction. We find that In2O3 deposited onto (0 0 1)-oriented single crystal yttria-stabilized zirconia substrates adopts a Stranski-Krastanov growth mode at a temperature of 850 degrees C, resulting in epitaxial, truncated square pyramids with (1 1 1) side walls. We find that at this temperature, the pyramids evaporate unless they are stabilized by a low flux of In2O3 from the magnetron source. We also find that the internal lattice structure of one such pyramidmore » is made up of differently strained volumes, revealing local structural heterogeneity that may impact the properties of In2O3 nanostructures and films.« less

  15. Development of impact design methods for ceramic gas turbine components

    NASA Technical Reports Server (NTRS)

    Song, J.; Cuccio, J.; Kington, H.

    1990-01-01

    Impact damage prediction methods are being developed to aid in the design of ceramic gas turbine engine components with improved impact resistance. Two impact damage modes were characterized: local, near the impact site, and structural, usually fast fracture away from the impact site. Local damage to Si3N4 impacted by Si3N4 spherical projectiles consists of ring and/or radial cracks around the impact point. In a mechanistic model being developed, impact damage is characterized as microcrack nucleation and propagation. The extent of damage is measured as volume fraction of microcracks. Model capability is demonstrated by simulating late impact tests. Structural failure is caused by tensile stress during impact exceeding material strength. The EPIC3 code was successfully used to predict blade structural failures in different size particle impacts on radial and axial blades.

  16. Hunting Faint Dwarf Galaxies in the Field Using Integrated Light Surveys

    NASA Astrophysics Data System (ADS)

    Danieli, Shany; van Dokkum, Pieter; Conroy, Charlie

    2018-03-01

    We discuss the approach of searching the lowest mass dwarf galaxies, ≲ {10}6 {M}ȯ , in the general field, using integrated light surveys. By exploring the limiting surface brightness-spatial resolution (μ eff,lim‑θ) parameter space, we suggest that faint field dwarfs in the Local Volume, between 3 and 10 Mpc, are expected to be detected very effectively and in large numbers using integrated light photometric surveys, complementary to the classical star counts method. We use a sample of dwarf galaxies in the Local Group to construct relations between their photometric and structural parameters, M *–μ eff,V and M *–R eff. We use these relations, along with assumed functional forms for the halo mass function and the stellar mass–halo mass (SMHM) relation, to calculate the lowest detectable stellar masses in the Local Volume and the expected number of galaxies as a function of the limiting surface brightness and spatial resolution. The number of detected galaxies depends mostly on the limiting surface brightness for distances >3 Mpc, while spatial resolution starts to play a role for galaxies at distances >8 Mpc. Surveys with μ eff,lim ∼ 30 mag arcsec‑2 should be able to detect galaxies with stellar masses down to ∼104 M ⊙ in the Local Volume. Depending on the form of the SMHM relation, the expected number of dwarf galaxies with distances between 3 and 10 Mpc is 0.04–0.35 per square degree, assuming a limiting surface brightness of ∼29–30 mag arcsec‑2 and a spatial resolution <4″. We plan to search for a population of low-mass dwarf galaxies in the field by performing a blank wide field photometric survey with the Dragonfly Telephoto Array, an imaging system optimized for the detection of extended ultra low surface brightness structures.

  17. Nanometer-scale mapping of irreversible electrochemical nucleation processes on solid Li-ion electrolytes

    NASA Astrophysics Data System (ADS)

    Kumar, Amit; Arruda, Thomas M.; Tselev, Alexander; Ivanov, Ilia N.; Lawton, Jamie S.; Zawodzinski, Thomas A.; Butyaev, Oleg; Zayats, Sergey; Jesse, Stephen; Kalinin, Sergei V.

    2013-04-01

    Electrochemical processes associated with changes in structure, connectivity or composition typically proceed via new phase nucleation with subsequent growth of nuclei. Understanding and controlling reactions requires the elucidation and control of nucleation mechanisms. However, factors controlling nucleation kinetics, including the interplay between local mechanical conditions, microstructure and local ionic profile remain inaccessible. Furthermore, the tendency of current probing techniques to interfere with the original microstructure prevents a systematic evaluation of the correlation between the microstructure and local electrochemical reactivity. In this work, the spatial variability of irreversible nucleation processes of Li on a Li-ion conductive glass-ceramics surface is studied with ~30 nm resolution. An increased nucleation rate at the boundaries between the crystalline AlPO4 phase and amorphous matrix is observed and attributed to Li segregation. This study opens a pathway for probing mechanisms at the level of single structural defects and elucidation of electrochemical activities in nanoscale volumes.

  18. Nanometer-scale mapping of irreversible electrochemical nucleation processes on solid Li-ion electrolytes.

    PubMed

    Kumar, Amit; Arruda, Thomas M; Tselev, Alexander; Ivanov, Ilia N; Lawton, Jamie S; Zawodzinski, Thomas A; Butyaev, Oleg; Zayats, Sergey; Jesse, Stephen; Kalinin, Sergei V

    2013-01-01

    Electrochemical processes associated with changes in structure, connectivity or composition typically proceed via new phase nucleation with subsequent growth of nuclei. Understanding and controlling reactions requires the elucidation and control of nucleation mechanisms. However, factors controlling nucleation kinetics, including the interplay between local mechanical conditions, microstructure and local ionic profile remain inaccessible. Furthermore, the tendency of current probing techniques to interfere with the original microstructure prevents a systematic evaluation of the correlation between the microstructure and local electrochemical reactivity. In this work, the spatial variability of irreversible nucleation processes of Li on a Li-ion conductive glass-ceramics surface is studied with ~30 nm resolution. An increased nucleation rate at the boundaries between the crystalline AlPO4 phase and amorphous matrix is observed and attributed to Li segregation. This study opens a pathway for probing mechanisms at the level of single structural defects and elucidation of electrochemical activities in nanoscale volumes.

  19. Nanometer-scale mapping of irreversible electrochemical nucleation processes on solid Li-ion electrolytes

    PubMed Central

    Kumar, Amit; Arruda, Thomas M.; Tselev, Alexander; Ivanov, Ilia N.; Lawton, Jamie S.; Zawodzinski, Thomas A.; Butyaev, Oleg; Zayats, Sergey; Jesse, Stephen; Kalinin, Sergei V.

    2013-01-01

    Electrochemical processes associated with changes in structure, connectivity or composition typically proceed via new phase nucleation with subsequent growth of nuclei. Understanding and controlling reactions requires the elucidation and control of nucleation mechanisms. However, factors controlling nucleation kinetics, including the interplay between local mechanical conditions, microstructure and local ionic profile remain inaccessible. Furthermore, the tendency of current probing techniques to interfere with the original microstructure prevents a systematic evaluation of the correlation between the microstructure and local electrochemical reactivity. In this work, the spatial variability of irreversible nucleation processes of Li on a Li-ion conductive glass-ceramics surface is studied with ~30 nm resolution. An increased nucleation rate at the boundaries between the crystalline AlPO4 phase and amorphous matrix is observed and attributed to Li segregation. This study opens a pathway for probing mechanisms at the level of single structural defects and elucidation of electrochemical activities in nanoscale volumes. PMID:23563856

  20. Irritable Bowel Syndrome in female patients is associated with alterations in structural brain networks

    PubMed Central

    Labus, Jennifer; Dinov, Ivo D.; Jiang, Zhiguo; Ashe-McNalley, Cody; Zamanyan, Alen; Shi, Yonggang; Hong, Jui-Yang; Gupta, Arpana; Tillisch, Kirsten; Ebrat, Bahar; Hobel, Sam; Gutman, Boris A.; Joshi, Shantanu; Thompson, Paul M.; Toga, Arthur W.; Mayer, Emeran A.

    2014-01-01

    Alterations in gray matter (GM) density/ volume and cortical thickness (CT) have been demonstrated in small and heterogeneous samples of subjects with different chronic pain syndromes, including irritable bowel syndrome (IBS). Aggregating across 7 structural neuroimaging studies conducted at UCLA between August 2006 and April 2011, we examined group differences in regional GM volume in 201 predominantly premenopausal female subjects (82 IBS, mean age: 32 ± 10 SD, 119 Healthy Controls [HCs], 30± 10 SD). Applying graph theoretical methods and controlling for total brain volume, global and regional properties of large-scale structural brain networks were compared between IBS and HC groups. Relative to HCs, the IBS group had lower volumes in bilateral superior frontal gyrus, bilateral insula, bilateral amygdala, bilateral hippocampus, bilateral middle orbital frontal gyrus, left cingulate, left gyrus rectus, brainstem, and left putamen. Higher volume was found for the left postcentral gyrus. Group differences were no longer significant for most regions when controlling for Early Trauma Inventory global score with the exception of the right amygdala and the left post central gyrus. No group differences were found for measures of global and local network organization. Compared to HCs, the right cingulate gyrus and right thalamus were identified as significantly more critical for information flow. Regions involved in endogenous pain modulation and central sensory amplification were identified as network hubs in IBS. Overall, evidence for central alterations in IBS was found in the form of regional GM volume differences and altered global and regional properties of brain volumetric networks. PMID:24076048

  1. Virtual file system on NoSQL for processing high volumes of HL7 messages.

    PubMed

    Kimura, Eizen; Ishihara, Ken

    2015-01-01

    The Standardized Structured Medical Information Exchange (SS-MIX) is intended to be the standard repository for HL7 messages that depend on a local file system. However, its scalability is limited. We implemented a virtual file system using NoSQL to incorporate modern computing technology into SS-MIX and allow the system to integrate local patient IDs from different healthcare systems into a universal system. We discuss its implementation using the database MongoDB and describe its performance in a case study.

  2. 3D Myocardial Elastography In Vivo.

    PubMed

    Papadacci, Clement; Bunting, Ethan A; Wan, Elaine Y; Nauleau, Pierre; Konofagou, Elisa E

    2017-02-01

    Strain evaluation is of major interest in clinical cardiology as it can quantify the cardiac function. Myocardial elastography, a radio-frequency (RF)-based cross-correlation method, has been developed to evaluate the local strain distribution in the heart in vivo. However, inhomogeneities such as RF ablation lesions or infarction require a three-dimensional approach to be measured accurately. In addition, acquisitions at high volume rate are essential to evaluate the cardiac strain in three dimensions. Conventional focused transmit schemes using 2D matrix arrays, trade off sufficient volume rate for beam density or sector size to image rapid moving structure such as the heart, which lowers accuracy and precision in the strain estimation. In this study, we developed 3D myocardial elastography at high volume rates using diverging wave transmits to evaluate the local axial strain distribution in three dimensions in three open-chest canines before and after radio-frequency ablation. Acquisitions were performed with a 2.5 MHz 2D matrix array fully programmable used to emit 2000 diverging waves at 2000 volumes/s. Incremental displacements and strains enabled the visualization of rapid events during the QRS complex along with the different phases of the cardiac cycle in entire volumes. Cumulative displacement and strain volumes depict high contrast between non-ablated and ablated myocardium at the lesion location, mapping the tissue coagulation. 3D myocardial strain elastography could thus become an important technique to measure the regional strain distribution in three dimensions in humans.

  3. Larger Gray Matter Volume in the Basal Ganglia of Heavy Cannabis Users Detected by Voxel-Based Morphometry and Subcortical Volumetric Analysis.

    PubMed

    Moreno-Alcázar, Ana; Gonzalvo, Begoña; Canales-Rodríguez, Erick J; Blanco, Laura; Bachiller, Diana; Romaguera, Anna; Monté-Rubio, Gemma C; Roncero, Carlos; McKenna, Peter J; Pomarol-Clotet, Edith

    2018-01-01

    Background: Structural imaging studies of cannabis users have found evidence of both cortical and subcortical volume reductions, especially in cannabinoid receptor-rich regions such as the hippocampus and amygdala. However, the findings have not been consistent. In the present study, we examined a sample of adult heavy cannabis users without other substance abuse to determine whether long-term use is associated with brain structural changes, especially in the subcortical regions. Method: We compared the gray matter volume of 14 long-term, heavy cannabis users with non-using controls. To provide robust findings, we conducted two separate studies using two different MRI techniques. Each study used the same sample of cannabis users and a different control group, respectively. Both control groups were independent of each other. First, whole-brain voxel-based morphometry (VBM) was used to compare the cannabis users against 28 matched controls (HC1 group). Second, a volumetric analysis of subcortical regions was performed to assess differences between the cannabis users and a sample of 100 matched controls (HC2 group) obtained from a local database of healthy volunteers. Results: The VBM study revealed that, compared to the control group HC1, the cannabis users did not show cortical differences nor smaller volume in any subcortical structure but showed a cluster ( p < 0.001) of larger GM volume in the basal ganglia, involving the caudate, putamen, pallidum, and nucleus accumbens, bilaterally. The subcortical volumetric analysis revealed that, compared to the control group HC2, the cannabis users showed significantly larger volumes in the putamen ( p = 0.001) and pallidum ( p = 0.0015). Subtle trends, only significant at the uncorrected level, were also found in the caudate ( p = 0.05) and nucleus accumbens ( p = 0.047). Conclusions: This study does not support previous findings of hippocampal and/or amygdala structural changes in long-term, heavy cannabis users. It does, however, provide evidence of basal ganglia volume increases.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Y M; Bush, K; Han, B

    Purpose: Accurate and fast dose calculation is a prerequisite of precision radiation therapy in modern photon and particle therapy. While Monte Carlo (MC) dose calculation provides high dosimetric accuracy, the drastically increased computational time hinders its routine use. Deterministic dose calculation methods are fast, but problematic in the presence of tissue density inhomogeneity. We leverage the useful features of deterministic methods and MC to develop a hybrid dose calculation platform with autonomous utilization of MC and deterministic calculation depending on the local geometry, for optimal accuracy and speed. Methods: Our platform utilizes a Geant4 based “localized Monte Carlo” (LMC) methodmore » that isolates MC dose calculations only to volumes that have potential for dosimetric inaccuracy. In our approach, additional structures are created encompassing heterogeneous volumes. Deterministic methods calculate dose and energy fluence up to the volume surfaces, where the energy fluence distribution is sampled into discrete histories and transported using MC. Histories exiting the volume are converted back into energy fluence, and transported deterministically. By matching boundary conditions at both interfaces, deterministic dose calculation account for dose perturbations “downstream” of localized heterogeneities. Hybrid dose calculation was performed for water and anthropomorphic phantoms. Results: We achieved <1% agreement between deterministic and MC calculations in the water benchmark for photon and proton beams, and dose differences of 2%–15% could be observed in heterogeneous phantoms. The saving in computational time (a factor ∼4–7 compared to a full Monte Carlo dose calculation) was found to be approximately proportional to the volume of the heterogeneous region. Conclusion: Our hybrid dose calculation approach takes advantage of the computational efficiency of deterministic method and accuracy of MC, providing a practical tool for high performance dose calculation in modern RT. The approach is generalizable to all modalities where heterogeneities play a large role, notably particle therapy.« less

  5. In vivo delineation of subdivisions of the human amygdaloid complex in a high-resolution group template

    PubMed Central

    Tyszka, J. Michael; Pauli, Wolfgang M.

    2016-01-01

    The nuclei of the human amygdala remain difficult to distinguish in individual subject structural magnetic resonance images. However, interpretation of the amygdala’s role in whole brain networks requires accurate localization of functional activity to a particular nucleus or subgroup of nuclei. To address this, we constructed high spatial resolution, three-dimensional templates, using joint high accuracy diffeomorphic registration of T1- and T2-weighted structural images from 168 typical adults between 22 and 35 years old released by the Human Connectome Project. Several internuclear boundaries are clearly visible in these templates, which would otherwise be impossible to delineate in individual subject data. A probabilistic atlas of major nuclei and nuclear groups was constructed in this template space and mapped back to individual spaces by inversion of the individual diffeomorphisms. Group level analyses revealed a slight (approximately 2%) bias towards larger total amygdala and nuclear volumes in the right hemisphere. No substantial sex or age differences were found in amygdala volumes normalized to total intracranial volume, or subdivision volumes normalized to amygdala volume. The current delineation provides a finer parcellation of the amygdala with more accurate external boundary definition than current histology-based atlases when used in conjunction with high accuracy registration methods, such as diffeomorphic warping. These templates and delineation are intended to be an open and evolving resource for future functional and structural imaging studies of the human amygdala. PMID:27354150

  6. Ensembles of physical states and random quantum circuits on graphs

    NASA Astrophysics Data System (ADS)

    Hamma, Alioscia; Santra, Siddhartha; Zanardi, Paolo

    2012-11-01

    In this paper we continue and extend the investigations of the ensembles of random physical states introduced in Hamma [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.109.040502 109, 040502 (2012)]. These ensembles are constructed by finite-length random quantum circuits (RQC) acting on the (hyper)edges of an underlying (hyper)graph structure. The latter encodes for the locality structure associated with finite-time quantum evolutions generated by physical, i.e., local, Hamiltonians. Our goal is to analyze physical properties of typical states in these ensembles; in particular here we focus on proxies of quantum entanglement as purity and α-Renyi entropies. The problem is formulated in terms of matrix elements of superoperators which depend on the graph structure, choice of probability measure over the local unitaries, and circuit length. In the α=2 case these superoperators act on a restricted multiqubit space generated by permutation operators associated to the subsets of vertices of the graph. For permutationally invariant interactions the dynamics can be further restricted to an exponentially smaller subspace. We consider different families of RQCs and study their typical entanglement properties for finite time as well as their asymptotic behavior. We find that area law holds in average and that the volume law is a typical property (that is, it holds in average and the fluctuations around the average are vanishing for the large system) of physical states. The area law arises when the evolution time is O(1) with respect to the size L of the system, while the volume law arises as is typical when the evolution time scales like O(L).

  7. Global and regional alterations of hippocampal anatomy in long-term meditation practitioners.

    PubMed

    Luders, Eileen; Thompson, Paul M; Kurth, Florian; Hong, Jui-Yang; Phillips, Owen R; Wang, Yalin; Gutman, Boris A; Chou, Yi-Yu; Narr, Katherine L; Toga, Arthur W

    2013-12-01

    Studies linking meditation and brain structure are still relatively sparse, but the hippocampus is consistently implicated as one of the structures altered in meditation practitioners. To explore hippocampal features in the framework of meditation, we analyzed high-resolution structural magnetic resonance imaging data from 30 long-term meditators and 30 controls, closely matched for sex, age, and handedness. Hippocampal formations were manually traced following established protocols. In addition to calculating left and right hippocampal volumes (global measures), regional variations in surface morphology were determined by measuring radial distances from the hippocampal core to spatially matched surface points (local measures). Left and right hippocampal volumes were larger in meditators than in controls, significantly so for the left hippocampus. The presence and direction of this global effect was confirmed locally by mapping the exact spatial locations of the group differences. Altogether, radial distances were larger in meditators compared to controls, with up to 15% difference. These local effects were observed in several hippocampal regions in the left and right hemisphere though achieved significance primarily in the left hippocampal head. Larger hippocampal dimensions in long-term meditators may constitute part of the underlying neurological substrate for cognitive skills, mental capacities, and/or personal traits associated with the practice of meditation. Alternatively, given that meditation positively affects autonomic regulation and immune activity, altered hippocampal dimensions may be one result of meditation-induced stress reduction. However, given the cross-sectional design, the lack of individual stress measures, and the limited resolution of brain data, the exact underlying neuronal mechanisms remain to be established. Copyright © 2012 Wiley Periodicals, Inc.

  8. Global and Regional Alterations of Hippocampal Anatomy in Long-Term Meditation Practitioners

    PubMed Central

    Luders, Eileen; Thompson, Paul M.; Kurth, Florian; Hong, Jui-Yang; Phillips, Owen R.; Wang, Yalin; Gutman, Boris A.; Chou, Yi-Yu; Narr, Katherine L.; Toga, Arthur W.

    2014-01-01

    Studies linking meditation and brain structure are still relatively sparse, but the hippocampus is consistently implicated as one of the structures altered in meditation practitioners. To explore hippocampal features in the framework of meditation, we analyzed high-resolution structural magnetic resonance imaging data from 30 long-term meditators and 30 controls, closely matched for sex, age, and handedness. Hippocampal formations were manually traced following established protocols. In addition to calculating left and right hippocampal volumes (global measures), regional variations in surface morphology were determined by measuring radial distances from the hippocampal core to spatially matched surface points (local measures). Left and right hippocampal volumes were larger in meditators than in controls, significantly so for the left hippocampus. The presence and direction of this global effect was confirmed locally by mapping the exact spatial locations of the group differences. Altogether, radial distances were larger in meditators compared to controls, with up to 15% difference. These local effects were observed in several hippocampal regions in the left and right hemisphere though achieved significance primarily in the left hippocampal head. Larger hippocampal dimensions in long-term meditators may constitute part of the underlying neurological substrate for cognitive skills, mental capacities, and/or personal traits associated with the practice of meditation. Alternatively, given that meditation positively affects autonomic regulation and immune activity, altered hippocampal dimensions may be one result of meditation-induced stress reduction. However, given the cross-sectional design, the lack of individual stress measures, and the limited resolution of brain data, the exact underlying neuronal mechanisms remain to be established. PMID:22815233

  9. Dosimetric comparison of deep inspiration breath hold and free breathing technique in stereotactic body radiotherapy for localized lung tumor using Flattening Filter Free beam

    NASA Astrophysics Data System (ADS)

    Mani, Karthick Raj; Bhuiyan, Md. Anisuzzaman; Alam, Md. Mahbub; Ahmed, Sharif; Sumon, Mostafa Aziz; Sengupta, Ashim Kumar; Rahman, Md. Shakilur; Azharul Islam, Md. S. M.

    2018-03-01

    Aim: To compare the dosimetric advantage of stereotactic body radiotherapy (SBRT) for localized lung tumor between deep inspiration breath hold technique and free breathing technique. Materials and methods: We retrospectively included ten previously treated lung tumor patients in this dosimetric study. All the ten patients underwent CT simulation using 4D-CT free breathing (FB) and deep inspiration breath hold (DIBH) techniques. Plans were created using three coplanar full modulated arc using 6 MV flattening filter free (FFF) bream with a dose rate of 1400 MU/min. Same dose constraints for the target and the critical structures for a particular patient were used during the plan optimization process in DIBH and FB datasets. We intend to deliver 50 Gy in 5 fractions for all the patients. For standardization, all the plans were normalized at target mean of the planning target volume (PTV). Doses to the critical structures and targets were recorded from the dose volume histogram for evaluation. Results: The mean right and left lung volumes were inflated by 1.55 and 1.60 times in DIBH scans compared to the FB scans. The mean internal target volume (ITV) increased in the FB datasets by 1.45 times compared to the DIBH data sets. The mean dose followed by standard deviation (x¯ ± σx¯) of ipsilateral lung for DIBH-SBRT and FB-SBRT plans were 7.48 ± 3.57 (Gy) and 10.23 ± 4.58 (Gy) respectively, with a mean reduction of 36.84% in DIBH-SBRT plans. Ipsilateral lung were reduced to 36.84% in DIBH plans compared to FB plans. Conclusion: Significant dose reduction in ipsilateral lung due to the lung inflation and target motion restriction in DIBH-SBRT plans were observed compare to FB-SBRT. DIBH-SBRT plans demonstrate superior dose reduction to the normal tissues and other critical structures.

  10. Images of turbulent, absorbing-emitting atmospheres and their application to windshear detection

    NASA Astrophysics Data System (ADS)

    Watt, David W.; Philbrick, Daniel A.

    1991-03-01

    The simulation of images generated by thermally-radiating, optically- thick turbulent media are discussed and the time-dependent evolution of these images is modeled. This characteristics of these images are particularly applicable to the atmosphere in the 13-15 mm band and their behavior may have application in detecting aviation hazards. The image is generated by volumetric thermal emission by atmospheric constituents within the field-of-view of the detector. The structure of the turbulent temperature field and the attenuating properties of the atmosphere interact with the field-of-view's geometry to produce a localized region which dominates the optical flow of the image. The simulations discussed in this paper model the time-dependent behavior of images generated by atmospheric flows viewed from an airborne platform. The images ar modelled by (1) generating a random field of temperature fluctuations have the proper spatial structure, (2) adding these fluctuation to the baseline temperature field of the atmospheric event, (3) accumulating the image on the detector from radiation emitted in the imaging volume, (4) allowing the individual radiating points within the imaging volume to move with the local velocity, (5) recalculating the thermal field and generating a new image. This approach was used to simulate the images generated by the temperature and velocity fields of a windshear. The simulation generated pais of images separated by a small time interval. These image paris were analyzed by image cross-correlation. The displacement of the cross-correlation peak was used to infer the velocity at the localized region. The localized region was found to depend weakly on the shape of the velocity profile. Prediction of the localized region, the effects of imaging from a moving platform, alternative image analysis schemes, and possible application to aviation hazards are discussed.

  11. Comparison of gray matter volume and thickness for analysis of cortical changes in Alzheimer's disease

    NASA Astrophysics Data System (ADS)

    Liu, Jiachao; Li, Ziyi; Chen, Kewei; Yao, Li; Wang, Zhiqun; Li, Kunchen; Guo, Xiaojuan

    2011-03-01

    Gray matter volume and cortical thickness are two indices of concern in brain structure magnetic resonance imaging research. Gray matter volume reflects mixed-measurement information of cerebral cortex, while cortical thickness reflects only the information of distance between inner surface and outer surface of cerebral cortex. Using Scaled Subprofile Modeling based on Principal Component Analysis (SSM_PCA) and Pearson's Correlation Analysis, this study further provided quantitative comparisons and depicted both global relevance and local relevance to comprehensively investigate morphometrical abnormalities in cerebral cortex in Alzheimer's disease (AD). Thirteen patients with AD and thirteen age- and gender-matched healthy controls were included in this study. Results showed that factor scores from the first 8 principal components accounted for ~53.38% of the total variance for gray matter volume, and ~50.18% for cortical thickness. Factor scores from the fifth principal component showed significant correlation. In addition, gray matter voxel-based volume was closely related to cortical thickness alterations in most cortical cortex, especially, in some typical abnormal brain regions such as insula and the parahippocampal gyrus in AD. These findings suggest that these two measurements are effective indices for understanding the neuropathology in AD. Studies using both gray matter volume and cortical thickness can separate the causes of the discrepancy, provide complementary information and carry out a comprehensive description of the morphological changes of brain structure.

  12. Chemically sensitive free-volume study of amorphization of Cu60Zr40 induced by cold rolling and folding

    NASA Astrophysics Data System (ADS)

    Puff, Werner; Rabitsch, Herbert; Wilde, Gerhard; Dinda, Guru P.; Würschum, Roland

    2007-06-01

    With the aim to contribute to a microscopical understanding of the processes of solid-state amorphization, the chemically sensitive technique of background—reduced Doppler broadening of positron-electron annihilation radiation in combination with positron lifetime spectroscopy and microstructural characterization is applied to a free volume study of the amorphization of Cu60Zr40 induced by consecutive folding and rolling. Starting from the constituent pure metal foils, a nanosale multilayer structure of elemental layers and amorphous interlayers develops in an intermediate state of folding and rolling, where free volumes with a Zr-rich environment occur presumably located in the hetero-interfaces between the various layers or in grain boundaries of the Cu layers. After complete intermixing and amorphization, the local chemical environment of the free volumes reflects the average chemical alloy composition. In contrast to other processes of amorphization, free volumes of the size of few missing atoms occur in the rolling-induced amorphous state. Self-consistent results from three different methods for analyzing the Doppler broadening spectra, i.e., S-W-parameter correlation, multicomponent fit, and the shape of ratio curves, demonstrate the potential of the background-reduced Doppler technique for chemically sensitive characterization of structurally complex materials on an atomic scale.

  13. Li-Ion Localization and Energetics as a Function of Anode Structure.

    PubMed

    McNutt, Nicholas W; McDonnell, Marshall; Rios, Orlando; Keffer, David J

    2017-03-01

    In this work, we study the effect of carbon composite anode structure on the localization and energetics of Li-ions. A computational molecular dynamics study is combined with experimental results from neutron scattering experiments to understand the effect of composite density, crystallite size, volume fraction of crystalline carbon, and ion loading on the nature of ion storage in novel, lignin-derived composite materials. In a recent work, we demonstrated that these carbon composites display a fundamentally different mechanism for Li-ion storage than traditional graphitic anodes. The edges of the crystalline and amorphous fragments of aromatic carbon that exist in these composites are terminated by hydrogen atoms, which play a crucial role in adsorption. In this work, we demonstrate how differences in composite structure due to changes in the processing conditions alter the type and extent of the interface between the amorphous and crystalline domains, thus impacting the nature of Li-ion storage. The effects of structural properties are evaluated using a suite of pair distribution functions as well as an original technique to extract archetypal structures, in the form of three-dimensional atomic density distributions, from highly disordered systems. The energetics of Li-ion binding are understood by relating changes in the energy and charge distributions to changes in structural properties. The distribution of Li-ion energies reveals that some structures lead to greater chemisorption, while others have greater physisorption. Carbon composites with a high volume fraction of small crystallites demonstrate the highest ion storage capacity because of the high interfacial area between the crystalline and amorphous domains. At these interfaces, stable H atoms, terminating the graphitic crystallites, provide favorable sites for reversible Li adsorption.

  14. Mechanical, electronic and thermodynamic properties of full Heusler compounds Fe2VX(X = Al, Ga)

    NASA Astrophysics Data System (ADS)

    Khalfa, M.; Khachai, H.; Chiker, F.; Baki, N.; Bougherara, K.; Yakoubi, A.; Murtaza, G.; Harmel, M.; Abu-Jafar, M. S.; Omran, S. Bin; Khenata, R.

    2015-11-01

    The electronic structure, mechanical and thermodynamic properties of Fe2VX, (with X = Al and Ga), have been studied self consistently by employing state-of-the-art full-potential linearized approach of augmented plane wave plus local orbitals (FP-LAPW + lo) method. The exchange-correlation potential is treated with the local density and generalized gradient approximations (LDA and GGA). Our predicted ground state properties such as lattice constants, bulk modulus and elastic constants appear more accurate when we employed the GGA rather than the LDA, and these results are in very good agreement with the available experimental and theoretical data. Further, thermodynamic properties of Fe2VAl and Fe2VGa are predicted with pressure and temperature in the ranges of 0-40 GPa and 0-1500 K using the quasi-harmonic Debye model. We have obtained successfully the variations of the heat capacities, primitive cell volume and volume expansion coefficient.

  15. Advanced Nanoindentation Testing for Studying Strain-Rate Sensitivity and Activation Volume

    NASA Astrophysics Data System (ADS)

    Maier-Kiener, Verena; Durst, Karsten

    2017-11-01

    Nanoindentation became a versatile tool for testing local mechanical properties beyond hardness and modulus. By adapting standard nanoindentation test methods, simple protocols capable of probing thermally activated deformation processes can be accomplished. Abrupt strain-rate changes within one indentation allow determining the strain-rate dependency of hardness at various indentation depths. For probing lower strain-rates and excluding thermal drift influences, long-term creep experiments can be performed by using the dynamic contact stiffness for determining the true contact area. From both procedures hardness and strain-rate, and consequently strain-rate sensitivity and activation volume can be reliably deducted within one indentation, permitting information on the locally acting thermally activated deformation mechanism. This review will first discuss various testing protocols including possible challenges and improvements. Second, it will focus on different examples showing the direct influence of crystal structure and/or microstructure on the underlying deformation behavior in pure and highly alloyed material systems.

  16. Modeling of Mixing Behavior in a Combined Blowing Steelmaking Converter with a Filter-Based Euler-Lagrange Model

    NASA Astrophysics Data System (ADS)

    Li, Mingming; Li, Lin; Li, Qiang; Zou, Zongshu

    2018-05-01

    A filter-based Euler-Lagrange multiphase flow model is used to study the mixing behavior in a combined blowing steelmaking converter. The Euler-based volume of fluid approach is employed to simulate the top blowing, while the Lagrange-based discrete phase model that embeds the local volume change of rising bubbles for the bottom blowing. A filter-based turbulence method based on the local meshing resolution is proposed aiming to improve the modeling of turbulent eddy viscosities. The model validity is verified through comparison with physical experiments in terms of mixing curves and mixing times. The effects of the bottom gas flow rate on bath flow and mixing behavior are investigated and the inherent reasons for the mixing result are clarified in terms of the characteristics of bottom-blowing plumes, the interaction between plumes and top-blowing jets, and the change of bath flow structure.

  17. Application of single-shot spiral scanning for volume localization.

    PubMed

    Ra, J B; Rim, C Y; Cho, Z H

    1991-02-01

    A new technique using a spiral scan single-shot RF pulse for localized volume selection has been developed and its experimental results are presented. This technique employs an additional radial-gradient coil in conjunction with the oscillating gradients for the spiral scan to localize the 3D volume. The short selection time in this technique minimizes both signal contamination from unwanted regions and signal attenuation due to T2 decay. We provide both the theoretical background of the technique and the experimental results obtained from a phantom as well as a human volunteer. The proposed method appears simple and accurate in localizing a volume which would be used as either fast imaging or localized spectroscopy.

  18. Structural and electronic properties of GaAs and GaP semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rani, Anita; Kumar, Ranjan

    2015-05-15

    The Structural and Electronic properties of Zinc Blende phase of GaAs and GaP compounds are studied using self consistent SIESTA-code, pseudopotentials and Density Functional Theory (DFT) in Local Density Approximation (LDA). The Lattice Constant, Equillibrium Volume, Cohesive Energy per pair, Compressibility and Band Gap are calculated. The band gaps calcultated with DFT using LDA is smaller than the experimental values. The P-V data fitted to third order Birch Murnaghan equation of state provide the Bulk Modulus and its pressure derivatives. Our Structural and Electronic properties estimations are in agreement with available experimental and theoretical data.

  19. [The Application of Magnetic Resonance Imaging in Alzheimer's Disease].

    PubMed

    Matsuda, Hiroshi

    2017-07-01

    In Alzheimer's disease (AD), magnetic resonance imaging (MRI) is essential for early diagnosis, differential diagnosis, and evaluation of disease progression. In structural MRI, the automatic diagnosis of atrophy by computers, even when it is not visually noticeable, is possible in daily clinical practice. Furthermore, subfield volumetric measurements of the medial temporal structures, as well as longitudinal volume measurements with high accuracy, have been developed and are useful for calculating the needed sample size in clinical trials. In addition to detecting local atrophy, graph theory has been applied to structural MRI for evaluation of alterations of the brain networks potentially affected in AD.

  20. X-ray microtomography analysis of soil structure deformation caused by centrifugation

    NASA Astrophysics Data System (ADS)

    Schlüter, Steffen; Leuther, Frederic; Vogler, Steffen; Vogel, Hans-Jörg

    2016-04-01

    Centrifugation provides a fast method to measure soil water retention curves over a wide moisture range. However, deformation of soil structure may occur at high angular velocities in the centrifuge. The objective of this study was to capture these changes in soil structure with X-ray microtomography and to measure local deformations via digital volume correlation. Two samples were investigated that differ in texture and rock content. A detailed analysis of the pore space reveals an interplay between shrinkage due to drying and soil compaction due to compression. Macroporosity increases at moderate angular velocity because of crack formation due to moisture release. At higher angular velocities, corresponding to capillary pressure of <-100kPa, macroporosity decreases again because of structure deformation due to compression. While volume changes due to swelling clay minerals are immanent to any drying process, the compaction of soil is a specific drawback of the centrifugation method. A new protocol for digital volume correlation was developed to analyze the spatial heterogeneity of deformation. In both samples the displacement of soil constituents is highest in the top part of the sample and exhibits high lateral variability explained by the spatial distribution of macropores in the sample. Centrifugation should therefore only be applied after the completion of all other hydraulic or thermal experiments, or any other analysis that depends on the integrity of soil structure.

  1. X-ray microtomography analysis of soil structure deformation caused by centrifugation

    NASA Astrophysics Data System (ADS)

    Schlüter, S.; Leuther, F.; Vogler, S.; Vogel, H.-J.

    2016-01-01

    Centrifugation provides a fast method to measure soil water retention curves over a wide moisture range. However, deformation of soil structure may occur at high angular velocities in the centrifuge. The objective of this study was to capture these changes in soil structure with X-ray microtomography and to measure local deformations via digital volume correlation. Two samples were investigated that differ in texture and rock content. A detailed analysis of the pore space reveals an interplay between shrinkage due to drying and soil compaction due to compression. Macroporosity increases at moderate angular velocity because of crack formation due to moisture release. At higher angular velocities, corresponding to capillary pressure of ψ < -100 kPa, macroporosity decreases again because of structure deformation due to compression. While volume changes due to swelling clay minerals are immanent in any drying process, the compaction of soil is a specific drawback of the centrifugation method. A new protocol for digital volume correlation was developed to analyze the spatial heterogeneity of deformation. In both samples the displacement of soil constituents is highest in the top part of the sample and exhibits high lateral variability explained by the spatial distribution of macropores in the sample. Centrifugation should therefore only be applied after the completion of all other hydraulic or thermal experiments, or any other analysis that depends on the integrity of soil structure.

  2. Subcortical volumetric changes across the adult lifespan: subregional thalamic atrophy accounts for age-related sensorimotor performance declines.

    PubMed

    Serbruyns, Leen; Leunissen, Inge; Huysmans, Toon; Cuypers, Koen; Meesen, Raf L; van Ruitenbeek, Peter; Sijbers, Jan; Swinnen, Stephan P

    2015-04-01

    Even though declines in sensorimotor performance during healthy aging have been documented extensively, its underlying neural mechanisms remain unclear. Here, we explored whether age-related subcortical atrophy plays a role in sensorimotor performance declines, and particularly during bimanual manipulative performance (Purdue Pegboard Test). The thalamus, putamen, caudate and pallidum of 91 participants across the adult lifespan (ages 20-79 years) were automatically segmented. In addition to studying age-related changes in the global volume of each subcortical structure, local deformations within these structures, indicative of subregional volume changes, were assessed by means of recently developed shape analyses. Results showed widespread age-related global and subregional atrophy, as well as some notable subregional expansion. Even though global atrophy failed to explain the observed performance declines with aging, shape analyses indicated that atrophy in left and right thalamic subregions, specifically subserving connectivity with the premotor, primary motor and somatosensory cortical areas, mediated the relation between aging and performance decline. It is concluded that subregional volume assessment by means of shape analyses offers a sensitive tool with high anatomical resolution in the search for specific age-related associations between brain structure and behavior. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Ultrasound assessment of cranial spread during caudal blockade in children: the effect of different volumes of local anaesthetics.

    PubMed

    Brenner, L; Marhofer, P; Kettner, S C; Willschke, H; Machata, A-M; Al-Zoraigi, U; Lundblad, M; Lönnqvist, P A

    2011-08-01

    Despite the large amount of literature on caudal anaesthesia in children, the issue of volume of local anaesthetics and cranial spread is still not settled. Thus, the aim of the present prospective randomized study was to evaluate the cranial spread of caudally administered local anaesthetics in children by means of real-time ultrasound, with a special focus on the effects of using different volumes of local anaesthetics. Seventy-five children, 1 month to 6 yr, undergoing inguinal hernia repair or more distal surgery were randomized to receive a caudal block with 0.7, 1.0, or 1.3 ml kg(-1) ropivacaine. The cranial spread of the local anaesthetic within the spinal canal was assessed by real-time ultrasound scanning; the absolute cranial segmental level and the cranial level relative to the conus medullaris were determined. All the blocks were judged to be clinically successful. A significant correlation was found between the injected volume and the cranial level reached by the local anaesthetic both with regards to the absolute cranial segmental level and the cranial level relative to the conus medullaris. The main finding of the present study was positive, but numerically small correlation between injected volumes of local anaesthetic and the cranial spread of caudally administered local anaesthetics. Therefore, the prediction of the cranial spread of local anaesthetic, depending on the injected volume of the local anaesthetic, was not possible. EudraCT Number: 2008-007627-40.

  4. The Suppression of Star Formation in Low-Mass Galaxies Caused by the Reionization of their Local Patch

    NASA Astrophysics Data System (ADS)

    Dawoodbhoy, Taha; Shapiro, Paul R.; Choi, Jun-Hwan; Ocvirk, Pierre; Gillet, Nicolas; Aubert, Dominique; Iliev, Ilian T.; Teyssier, Romain; Yepes, Gustavo; Sullivan, David; Knebe, Alexander; Gottloeber, Stefan; D'Aloisio, Anson; Park, Hyunbae; Hoffman, Yehuda; Stranex, Timothy

    2017-01-01

    The first stars and galaxies released enough ionizing radiation into the intergalactic medium (IGM) to ionize almost all the hydrogen atoms there by redshift z ~ 6. This process was "patchy" --- ionized zones grew in size over time until they overlapped to finish reionization.The photoheating associated with reionization caused a negative feedback on the galactic sources of reionization that suppressed star formation in low-mass galactic halos, especially those below 109 M⊙. To establish the causal connection between reionization and this suppression, we analyze the results of CoDa ("Cosmic Dawn"), the first fully-coupled radiation-hydrodynamical simulation of reionization and galaxy formation in the Local Universe, in a volume large enough to model reionization globally but with enough resolving power to follow all the atomic-cooling galactic halos in that volume. A 90 Mpc box was simulated from a constrained realization of primordial fluctuations, chosen to reproduce present-day features of the Local Group, including the Milky Way and M31, and the local universe beyond, including the Virgo cluster, with 40963 N-body particles for the dark matter and 40963 cells for the atomic gas and ionizing radiation. We use these results to show that the star formation rate in haloes below 109 M⊙ in different patches of the universe declined when each patch was reionized. Star formation in much more massive haloes continued, however. As a result, the earliest patches to develop structure and reionize ultimately produced more stars than they needed to reionize themselves, exporting their starlight to help reionize the regions that developed structure late.

  5. The Suppression of Star Formation in Low-Mass Galaxies Caused by the Reionization of their Local Patch

    NASA Astrophysics Data System (ADS)

    Dawoodbhoy, Taha; Shapiro, Paul R.; Choi, Jun-Hwan; Ocvirk, Pierre; Gillet, Nicolas; Aubert, Dominique; Iliev, Ilian T.; Teyssier, Romain; Yepes, Gustavo; Sullivan, David; Knebe, Alexander; Gottloeber, Stefan; D'Aloisio, Anson; Park, Hyunbae; Hoffman, Yehuda; Stranex, Timothy

    2017-06-01

    The first stars and galaxies released enough ionizing radiation into the intergalactic medium (IGM) to ionize almost all the hydrogen atoms there by redshift z ~ 6. This process was "patchy" --- ionized zones grew in size over time until they overlapped to finish reionization. The photoheating associated with reionization caused a negative feedback on the galactic sources of reionization that suppressed star formation in low-mass galactic halos, especially those below 109 M⊙. To establish the causal connection between reionization and this suppression, we analyze the results of CoDa ("Cosmic Dawn"), the first fully-coupled radiation-hydrodynamical simulation of reionization and galaxy formation in the Local Universe, in a volume large enough to model reionization globally but with enough resolving power to follow all the atomic-cooling galactic halos in that volume. A 90 Mpc box was simulated from a constrained realization of primordial fluctuations, chosen to reproduce present-day features of the Local Group, including the Milky Way and M31, and the local universe beyond, including the Virgo cluster, with 40963 N-body particles for the dark matter and 40963 cells for the atomic gas and ionizing radiation. We use these results to show that the star formation rate in haloes below 109 M⊙ in different patches of the universe declined when each patch was reionized. Star formation in much more massive haloes continued, however. As a result, the earliest patches to develop structure and reionize ultimately produced more stars than they needed to reionize themselves, exporting their starlight to help reionize the regions that developed structure late.

  6. Role of internal demagnetizing field for the dynamics of a surface-modulated magnonic crystal

    NASA Astrophysics Data System (ADS)

    Langer, M.; Röder, F.; Gallardo, R. A.; Schneider, T.; Stienen, S.; Gatel, C.; Hübner, R.; Bischoff, L.; Lenz, K.; Lindner, J.; Landeros, P.; Fassbender, J.

    2017-05-01

    This work aims to demonstrate and understand the key role of local demagnetizing fields in hybrid structures consisting of a continuous thin film with a stripe modulation on top. To understand the complex spin dynamics of these structures, the magnonic crystal was reconstructed in two different ways—performing micromagnetic simulations based on the structural shape as well as based on the internal demagnetizing field, which both are mapped on the nanoscale using electron holography. The simulations yield the frequency-field dependence as well as the angular dependence revealing the governing role of the internal field landscape around the backward-volume geometry. Simple rules for the propagation vector and the mode localization are formulated in order to explain the calculated mode profiles. Treating internal demagnetizing fields equivalent to anisotropies, the complex angle-dependent spin-wave behavior is described for an in-plane rotation of the external field.

  7. Oxygen Tuned Local Structure and Phase-Change Performance of Germanium Telluride.

    PubMed

    Zhou, Xilin; Du, Yonghua; Behera, Jitendra K; Wu, Liangcai; Song, Zhitang; Simpson, Robert E

    2016-08-10

    The effect of oxygen on the local structure of Ge atoms in GeTe-O materials has been investigated. Oxygen leads to a significant modification to the vibrational modes of Ge octahedra, which results from a decrease in its coordination. We find that a defective octahedral Ge network is the crucial fingerprint for rapid and reversible structural transitions in GeTe-based phase change materials. The appearance of oxide Raman modes confirms phase separation into GeO and TeO at high level O doping. Counterintuitively, despite the increase in crystallization temperature of oxygen doped GeTe-O phase change materials, when GeTe-O materials are used in electrical phase change memory cells, the electrical switching energy is lower than the pure GeTe material. This switching energy reduction is ascribed to the smaller change in volume, and therefore smaller enthalpy change, for the oxygen doped GeTe materials.

  8. In-situ Synchrotron X-ray Studies of the Microstructure and Stability of In 2O 3 Epitaxial Films

    DOE PAGES

    Highland, M. J.; Hruszkewycz, S. O.; Fong, D. D.; ...

    2017-10-16

    Here, we report on the synthesis, stability, and local structure of In 2O 3 thin films grown via rf-magnetron sputtering and characterized by in-situ x-ray scattering and focused x-ray nanodiffraction. We find that In 2O 3 deposited onto (001)-oriented single crystal yttria-stabilized zirconia substrates adopts a Stranski–Krastanov growth mode at a temperature of 850°C, resulting in epitaxial, truncated square pyramids with (111) side walls. We find that at this temperature, the pyramids evaporate unless they are stabilized by a low flux of In 2O 3 from the magnetron source. Lastly, we also find that the internal lattice structure of onemore » such pyramid is made up of differently strained volumes, revealing local structural heterogeneity that may impact the properties of In 2O 3 nanostructures and films.« less

  9. A concept of volume rendering guided search process to analyze medical data set.

    PubMed

    Zhou, Jianlong; Xiao, Chun; Wang, Zhiyan; Takatsuka, Masahiro

    2008-03-01

    This paper firstly presents an approach of parallel coordinates based parameter control panel (PCP). The PCP is used to control parameters of focal region-based volume rendering (FRVR) during data analysis. It uses a parallel coordinates style interface. Different rendering parameters represented with nodes on each axis, and renditions based on related parameters are connected using polylines to show dependencies between renditions and parameters. Based on the PCP, a concept of volume rendering guided search process is proposed. The search pipeline is divided into four phases. Different parameters of FRVR are recorded and modulated in the PCP during search phases. The concept shows that volume visualization could play the role of guiding a search process in the rendition space to help users to efficiently find local structures of interest. The usability of the proposed approach is evaluated to show its effectiveness.

  10. Three dimensional image correlation of CT, MR, and PET studies in radiotherapy treatment planning of brain tumors.

    PubMed

    Schad, L R; Boesecke, R; Schlegel, W; Hartmann, G H; Sturm, V; Strauss, L G; Lorenz, W J

    1987-01-01

    A treatment planning system for stereotactic convergent beam irradiation of deeply localized brain tumors is reported. The treatment technique consists of several moving field irradiations in noncoplanar planes at a linear accelerator facility. Using collimated narrow beams, a high concentration of dose within small volumes with a dose gradient of 10-15%/mm was obtained. The dose calculation was based on geometrical information of multiplanar CT or magnetic resonance (MR) imaging data. The patient's head was fixed in a stereotactic localization system, which is usable at CT, MR, and positron emission tomography (PET) installations. Special computer programs for correction of the geometrical MR distortions allowed a precise correlation of the different imaging modalities. The therapist can use combinations of CT, MR, and PET data for defining target volume. For instance, the superior soft tissue contrast of MR coupled with the metabolic features of PET may be a useful addition in the radiation treatment planning process. Furthermore, other features such as calculated dose distribution to critical structures can also be transferred from one set of imaging data to another and can be displayed as three-dimensional shaded structures.

  11. Vessel segmentation in 3D spectral OCT scans of the retina

    NASA Astrophysics Data System (ADS)

    Niemeijer, Meindert; Garvin, Mona K.; van Ginneken, Bram; Sonka, Milan; Abràmoff, Michael D.

    2008-03-01

    The latest generation of spectral optical coherence tomography (OCT) scanners is able to image 3D cross-sectional volumes of the retina at a high resolution and high speed. These scans offer a detailed view of the structure of the retina. Automated segmentation of the vessels in these volumes may lead to more objective diagnosis of retinal vascular disease including hypertensive retinopathy, retinopathy of prematurity. Additionally, vessel segmentation can allow color fundus images to be registered to these 3D volumes, possibly leading to a better understanding of the structure and localization of retinal structures and lesions. In this paper we present a method for automatically segmenting the vessels in a 3D OCT volume. First, the retina is automatically segmented into multiple layers, using simultaneous segmentation of their boundary surfaces in 3D. Next, a 2D projection of the vessels is produced by only using information from certain segmented layers. Finally, a supervised, pixel classification based vessel segmentation approach is applied to the projection image. We compared the influence of two methods for the projection on the performance of the vessel segmentation on 10 optic nerve head centered 3D OCT scans. The method was trained on 5 independent scans. Using ROC analysis, our proposed vessel segmentation system obtains an area under the curve of 0.970 when compared with the segmentation of a human observer.

  12. 7 CFR 1924.104 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... to the local public body for use with local climate, soil, gradient, and volume and character of... public body for use with local climate, soil, gradient, and volume and character of traffic. Subdivision...

  13. 7 CFR 1924.104 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... to the local public body for use with local climate, soil, gradient, and volume and character of... public body for use with local climate, soil, gradient, and volume and character of traffic. Subdivision...

  14. 7 CFR 1924.104 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... to the local public body for use with local climate, soil, gradient, and volume and character of... public body for use with local climate, soil, gradient, and volume and character of traffic. Subdivision...

  15. 7 CFR 1924.104 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... to the local public body for use with local climate, soil, gradient, and volume and character of... public body for use with local climate, soil, gradient, and volume and character of traffic. Subdivision...

  16. 7 CFR 1924.104 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... to the local public body for use with local climate, soil, gradient, and volume and character of... public body for use with local climate, soil, gradient, and volume and character of traffic. Subdivision...

  17. Improvement of the Correlative AFM and ToF-SIMS Approach Using an Empirical Sputter Model for 3D Chemical Characterization.

    PubMed

    Terlier, T; Lee, J; Lee, K; Lee, Y

    2018-02-06

    Technological progress has spurred the development of increasingly sophisticated analytical devices. The full characterization of structures in terms of sample volume and composition is now highly complex. Here, a highly improved solution for 3D characterization of samples, based on an advanced method for 3D data correction, is proposed. Traditionally, secondary ion mass spectrometry (SIMS) provides the chemical distribution of sample surfaces. Combining successive sputtering with 2D surface projections enables a 3D volume rendering to be generated. However, surface topography can distort the volume rendering by necessitating the projection of a nonflat surface onto a planar image. Moreover, the sputtering is highly dependent on the probed material. Local variation of composition affects the sputter yield and the beam-induced roughness, which in turn alters the 3D render. To circumvent these drawbacks, the correlation of atomic force microscopy (AFM) with SIMS has been proposed in previous studies as a solution for the 3D chemical characterization. To extend the applicability of this approach, we have developed a methodology using AFM-time-of-flight (ToF)-SIMS combined with an empirical sputter model, "dynamic-model-based volume correction", to universally correct 3D structures. First, the simulation of 3D structures highlighted the great advantages of this new approach compared with classical methods. Then, we explored the applicability of this new correction to two types of samples, a patterned metallic multilayer and a diblock copolymer film presenting surface asperities. In both cases, the dynamic-model-based volume correction produced an accurate 3D reconstruction of the sample volume and composition. The combination of AFM-SIMS with the dynamic-model-based volume correction improves the understanding of the surface characteristics. Beyond the useful 3D chemical information provided by dynamic-model-based volume correction, the approach permits us to enhance the correlation of chemical information from spectroscopic techniques with the physical properties obtained by AFM.

  18. Atypical nucleus accumbens morphology in psychopathy: another limbic piece in the puzzle.

    PubMed

    Boccardi, Marina; Bocchetta, Martina; Aronen, Hannu J; Repo-Tiihonen, Eila; Vaurio, Olli; Thompson, Paul M; Tiihonen, Jari; Frisoni, Giovanni B

    2013-01-01

    Psychopathy has been associated with increased putamen and striatum volumes. The nucleus accumbens - a key structure in reversal learning, less effective in psychopathy - has not yet received specific attention. Moreover, basal ganglia morphology has never been explored. We examined the morphology of the caudate, putamen and accumbens, manually segmented from magnetic resonance images of 26 offenders (age: 32.5 ± 8.4) with medium-high psychopathy (mean PCL-R=30 ± 5) and 25 healthy controls (age: 34.6 ± 10.8). Local differences were statistically modeled using a surface-based radial distance mapping method (p<0.05; multiple comparisons correction through permutation tests). In psychopathy, the caudate and putamen had normal global volume, but different morphology, significant after correction for multiple comparisons, for the right dorsal putamen (permutation test: p=0.02). The volume of the nucleus accumbens was 13% smaller in psychopathy (p corrected for multiple comparisons <0.006). The atypical morphology consisted of predominant anterior hypotrophy bilaterally (10-30%). Caudate and putamen local morphology displayed negative correlation with the lifestyle factor of the PCL-R (permutation test: p=0.05 and 0.03). From these data, psychopathy appears to be associated with an atypical striatal morphology, with highly significant global and local differences of the accumbens. This is consistent with the clinical syndrome and with theories of limbic involvement. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Accuracy Analysis for Finite-Volume Discretization Schemes on Irregular Grids

    NASA Technical Reports Server (NTRS)

    Diskin, Boris; Thomas, James L.

    2010-01-01

    A new computational analysis tool, downscaling test, is introduced and applied for studying the convergence rates of truncation and discretization errors of nite-volume discretization schemes on general irregular (e.g., unstructured) grids. The study shows that the design-order convergence of discretization errors can be achieved even when truncation errors exhibit a lower-order convergence or, in some cases, do not converge at all. The downscaling test is a general, efficient, accurate, and practical tool, enabling straightforward extension of verification and validation to general unstructured grid formulations. It also allows separate analysis of the interior, boundaries, and singularities that could be useful even in structured-grid settings. There are several new findings arising from the use of the downscaling test analysis. It is shown that the discretization accuracy of a common node-centered nite-volume scheme, known to be second-order accurate for inviscid equations on triangular grids, degenerates to first order for mixed grids. Alternative node-centered schemes are presented and demonstrated to provide second and third order accuracies on general mixed grids. The local accuracy deterioration at intersections of tangency and in flow/outflow boundaries is demonstrated using the DS tests tailored to examining the local behavior of the boundary conditions. The discretization-error order reduction within inviscid stagnation regions is demonstrated. The accuracy deterioration is local, affecting mainly the velocity components, but applies to any order scheme.

  20. Irritable bowel syndrome in female patients is associated with alterations in structural brain networks.

    PubMed

    Labus, Jennifer S; Dinov, Ivo D; Jiang, Zhiguo; Ashe-McNalley, Cody; Zamanyan, Alen; Shi, Yonggang; Hong, Jui-Yang; Gupta, Arpana; Tillisch, Kirsten; Ebrat, Bahar; Hobel, Sam; Gutman, Boris A; Joshi, Shantanu; Thompson, Paul M; Toga, Arthur W; Mayer, Emeran A

    2014-01-01

    Alterations in gray matter (GM) density/volume and cortical thickness (CT) have been demonstrated in small and heterogeneous samples of subjects with differing chronic pain syndromes, including irritable bowel syndrome (IBS). Aggregating across 7 structural neuroimaging studies conducted at University of California, Los Angeles, Los Angeles, CA, USA, between August 2006 and April 2011, we examined group differences in regional GM volume in 201 predominantly premenopausal female subjects (82 IBS, mean age: 32±10 SD, 119 healthy controls [HCs], 30±10 SD). Applying graph theoretical methods and controlling for total brain volume, global and regional properties of large-scale structural brain networks were compared between the group with IBS and the HC group. Relative to HCs, the IBS group had lower volumes in the bilateral superior frontal gyrus, bilateral insula, bilateral amygdala, bilateral hippocampus, bilateral middle orbital frontal gyrus, left cingulate, left gyrus rectus, brainstem, and left putamen. Higher volume was found in the left postcentral gyrus. Group differences were no longer significant for most regions when controlling for the Early Trauma Inventory global score, with the exception of the right amygdala and the left postcentral gyrus. No group differences were found for measures of global and local network organization. Compared to HCs, in patients with IBS, the right cingulate gyrus and right thalamus were identified as being significantly more critical for information flow. Regions involved in endogenous pain modulation and central sensory amplification were identified as network hubs in IBS. Overall, evidence for central alterations in patients with IBS was found in the form of regional GM volume differences and altered global and regional properties of brain volumetric networks. Copyright © 2013 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  1. Real time control of a combined sewer system using radar-measured precipitation--results of the pilot study.

    PubMed

    Petruck, A; Holtmeier, E; Redder, A; Teichgräber, B

    2003-01-01

    Emschergenossenschaft and Lippeverband have developed a method to use radar-measured precipitation as an input for a real-time control of a combined sewer system containing several overflow structures. Two real-time control strategies have been developed and tested, one is solely volume-based, the other is volume and pollution-based. The system has been implemented in a pilot study in Gelsenkirchen, Germany. During the project the system was optimised and is now in constant operation. It was found, that the volume of combined sewage overflow could be reduced by 5 per cent per year. This was also found in simulations carried out in similar catchment areas. Most of the potential of improvement can already be achieved by local pollution-based control strategies.

  2. [Distribution of virtual water of crops in Beijing].

    PubMed

    Wang, Hong-Rui; Dong, Yan-Yan; Wang, Jun-Hong; Wang, Yan; Han, Zhao-Xing

    2007-11-01

    Virtual water content of grains and vegetables in Beijing's districts is calculated and analyzed for many years by irrigating water quota method, which is compared with the distribution and exploitation of groundwater in Beijing. The results indicate the virtual water content of grains shows a downward trend in all the districts, but the grain production in Yanqing district brings great pressure to the local groundwater. Secondly, the virtual water content of vegetables shows an upward trend in Shunyi District, Daxing district and Pinggu District and is accounting for more and more gradually. Thirdly, the total virtual water volume of grains is decreasing, and the total virtual water volume of vegetables is increasing and the total virtual water volume of crops in Beijing is reducing in recent years, which corresponds with the structural adjustment of policies.

  3. Local structural relaxation around Co2+ along the hardystonite-Co-åkermanite melilite solid solution

    NASA Astrophysics Data System (ADS)

    Ardit, Matteo; Cruciani, Giuseppe; Dondi, Michele

    2012-10-01

    Six pure compounds belonging to the hardystonite (Ca2ZnSi2O7)-Co-åkermanite (Ca2CoSi2O7) solid solution were investigated by the combined application of X-ray powder diffraction and electronic absorption spectroscopy. Structural refinements of the XRPD data revealed a negative excess volume of mixing due to the single isovalent substitution of Co for Zn in the tetrahedral site. In agreement with the diffraction data, deconvolution of the optical spectra showed a progressive decreasing of the crystal field strength parameter 10 Dq moving toward the Co-åkermanite end-member, meaning that the local cobalt-oxygen bond distance, < {{Co}}{-}{{O}}rangle^{{local}} , increased along the join with the amount of cobalt. The calculated structural relaxation coefficient around the fourfold coordinated Co2+ in the Ca2(Zn1- x Co x )Si2O7 join was ɛ = 0.69, very far from the one predicted by the Vegard's law ( ɛ = 0) and at variance with ɛ = 0.47 previously found for tetrahedrally coordinated Co2+ in gahnite-Co-aluminate spinel solid solution. This difference is consistent with the largest constraints existing on the spinel structure, based on cubic closest packing, compared to the more flexible layered melilite structure.

  4. Structures and mechanical behaviors of Zr55Cu35Al10 bulk amorphous alloys at ambient and cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Fan, Cang; Liaw, P. K.; Haas, V.; Wall, J. J.; Choo, H.; Inoue, A.; Liu, C. T.

    2006-07-01

    Based on a systematic study of pair distribution functions, carried out at cryogenic and ambient temperatures, on as-cast and crystallized ternary Zr-based bulk amorphous alloys (BAAs), we found that the atoms in BAAs are inhomogenously distributed at a local atomic level. They exist as different clusters with significantly shorter bond lengths than their crystallized counterpart structures—intermetallic compounds, and these structures exist stably in the amorphous state. This results in additional free volume, which is about ˜7% larger than that measured by the Archimedes method. The compressive strength measured at ˜77K was found to be ˜16% larger than that measured at 298K . In this study, an amorphous structural model is proposed, in which strongly bonded clusters acting as units are randomly distributed and strongly correlated to one another, as the free volume forms between clusters. Simulations with reverse Monte Carlo were performed by combining icosehadral and cubic structures as the initial structures for the BAA. The simulations show results consistent with our model. An attempt has been made to connect the relationship between amorphous structures and their mechanical properties.

  5. Right hemisphere grey matter structure and language outcomes in chronic left hemisphere stroke

    PubMed Central

    Xing, Shihui; Lacey, Elizabeth H.; Skipper-Kallal, Laura M.; Jiang, Xiong; Harris-Love, Michelle L.; Zeng, Jinsheng

    2016-01-01

    The neural mechanisms underlying recovery of language after left hemisphere stroke remain elusive. Although older evidence suggested that right hemisphere language homologues compensate for damage in left hemisphere language areas, the current prevailing theory suggests that right hemisphere engagement is ineffective or even maladaptive. Using a novel combination of support vector regression-based lesion-symptom mapping and voxel-based morphometry, we aimed to determine whether local grey matter volume in the right hemisphere independently contributes to aphasia outcomes after chronic left hemisphere stroke. Thirty-two left hemisphere stroke survivors with aphasia underwent language assessment with the Western Aphasia Battery-Revised and tests of other cognitive domains. High-resolution T1-weighted images were obtained in aphasia patients and 30 demographically matched healthy controls. Support vector regression-based multivariate lesion-symptom mapping was used to identify critical language areas in the left hemisphere and then to quantify each stroke survivor’s lesion burden in these areas. After controlling for these direct effects of the stroke on language, voxel-based morphometry was then used to determine whether local grey matter volumes in the right hemisphere explained additional variance in language outcomes. In brain areas in which grey matter volumes related to language outcomes, we then compared grey matter volumes in patients and healthy controls to assess post-stroke plasticity. Lesion–symptom mapping showed that specific left hemisphere regions related to different language abilities. After controlling for lesion burden in these areas, lesion size, and demographic factors, grey matter volumes in parts of the right temporoparietal cortex positively related to spontaneous speech, naming, and repetition scores. Examining whether domain general cognitive functions might explain these relationships, partial correlations demonstrated that grey matter volumes in these clusters related to verbal working memory capacity, but not other cognitive functions. Further, grey matter volumes in these areas were greater in stroke survivors than healthy control subjects. To confirm this result, 10 chronic left hemisphere stroke survivors with no history of aphasia were identified. Grey matter volumes in right temporoparietal clusters were greater in stroke survivors with aphasia compared to those without history of aphasia. These findings suggest that the grey matter structure of right hemisphere posterior dorsal stream language homologues independently contributes to language production abilities in chronic left hemisphere stroke, and that these areas may undergo hypertrophy after a stroke causing aphasia. PMID:26521078

  6. Four-chamber heart modeling and automatic segmentation for 3-D cardiac CT volumes using marginal space learning and steerable features.

    PubMed

    Zheng, Yefeng; Barbu, Adrian; Georgescu, Bogdan; Scheuering, Michael; Comaniciu, Dorin

    2008-11-01

    We propose an automatic four-chamber heart segmentation system for the quantitative functional analysis of the heart from cardiac computed tomography (CT) volumes. Two topics are discussed: heart modeling and automatic model fitting to an unseen volume. Heart modeling is a nontrivial task since the heart is a complex nonrigid organ. The model must be anatomically accurate, allow manual editing, and provide sufficient information to guide automatic detection and segmentation. Unlike previous work, we explicitly represent important landmarks (such as the valves and the ventricular septum cusps) among the control points of the model. The control points can be detected reliably to guide the automatic model fitting process. Using this model, we develop an efficient and robust approach for automatic heart chamber segmentation in 3-D CT volumes. We formulate the segmentation as a two-step learning problem: anatomical structure localization and boundary delineation. In both steps, we exploit the recent advances in learning discriminative models. A novel algorithm, marginal space learning (MSL), is introduced to solve the 9-D similarity transformation search problem for localizing the heart chambers. After determining the pose of the heart chambers, we estimate the 3-D shape through learning-based boundary delineation. The proposed method has been extensively tested on the largest dataset (with 323 volumes from 137 patients) ever reported in the literature. To the best of our knowledge, our system is the fastest with a speed of 4.0 s per volume (on a dual-core 3.2-GHz processor) for the automatic segmentation of all four chambers.

  7. A multiscale MDCT image-based breathing lung model with time-varying regional ventilation

    PubMed Central

    Yin, Youbing; Choi, Jiwoong; Hoffman, Eric A.; Tawhai, Merryn H.; Lin, Ching-Long

    2012-01-01

    A novel algorithm is presented that links local structural variables (regional ventilation and deforming central airways) to global function (total lung volume) in the lung over three imaged lung volumes, to derive a breathing lung model for computational fluid dynamics simulation. The algorithm constitutes the core of an integrative, image-based computational framework for subject-specific simulation of the breathing lung. For the first time, the algorithm is applied to three multi-detector row computed tomography (MDCT) volumetric lung images of the same individual. A key technique in linking global and local variables over multiple images is an in-house mass-preserving image registration method. Throughout breathing cycles, cubic interpolation is employed to ensure C1 continuity in constructing time-varying regional ventilation at the whole lung level, flow rate fractions exiting the terminal airways, and airway deformation. The imaged exit airway flow rate fractions are derived from regional ventilation with the aid of a three-dimensional (3D) and one-dimensional (1D) coupled airway tree that connects the airways to the alveolar tissue. An in-house parallel large-eddy simulation (LES) technique is adopted to capture turbulent-transitional-laminar flows in both normal and deep breathing conditions. The results obtained by the proposed algorithm when using three lung volume images are compared with those using only one or two volume images. The three-volume-based lung model produces physiologically-consistent time-varying pressure and ventilation distribution. The one-volume-based lung model under-predicts pressure drop and yields un-physiological lobar ventilation. The two-volume-based model can account for airway deformation and non-uniform regional ventilation to some extent, but does not capture the non-linear features of the lung. PMID:23794749

  8. Rain Volume Estimation over Areas Using Satellite and Radar Data

    NASA Technical Reports Server (NTRS)

    Doneaud, A. A.; Miller, J. R., Jr.; Johnson, L. R.; Vonderhaar, T. H.; Laybe, P.

    1984-01-01

    The application of satellite data to a recently developed radar technique used to estimate convective rain volumes over areas on a dry environment (the northern Great Plains) is discussed. The area time integral technique (ATI) provides a means of estimating total rain volumes over fixed and floating target areas of the order of 1,000 to 100,000 km(2) for clusters lasting 40 min. The basis of the method is the existence of a strong correlation between the area coverage integrated over the lifetime of the storm (ATI) and the rain volume. One key element in this technique is that it does not require the consideration of the structure of the radar intensities inside the area coverage to generate rain volumes, but only considers the rain event per se. This fact might reduce or eliminate some sources of error in applying the technique to satellite data. The second key element is that the ATI once determined can be converted to total rain volume by using a constant factor (average rain rate) for a given locale.

  9. Localization of the interband transitions in the bulk of the Brillouin zone of III–V compound crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sobolev, V. V., E-mail: sobolev@uni.udm.ru; Perevoshchikov, D. A.

    2016-05-15

    The localization of the transitions in the bulk of the Brillouin zone that form the main structures in the spectra of the imaginary part of the permittivity in the range up to ~7 eV for III–V semiconductors (AlSb, GaSb, InSb, and InAs) is determined using electron density functional theory. It is established that intense transitions occur not only in the vicinity of the high-symmetry axes of the Brillouin zone, but also in some specific large volumes of the irreducible part of the Brillouin zone.

  10. Method for generating a mesh representation of a region characterized by a trunk and a branch thereon

    DOEpatents

    Shepherd, Jason [Albuquerque, NM; Mitchell, Scott A [Albuquerque, NM; Jankovich, Steven R [Anaheim, CA; Benzley, Steven E [Provo, UT

    2007-05-15

    The present invention provides a meshing method, called grafting, that lifts the prior art constraint on abutting surfaces, including surfaces that are linking, source/target, or other types of surfaces of the trunk volume. The grafting method locally modifies the structured mesh of the linking surfaces allowing the mesh to conform to additional surface features. Thus, the grafting method can provide a transition between multiple sweep directions extending sweeping algorithms to 23/4-D solids. The method is also suitable for use with non-sweepable volumes; the method provides a transition between meshes generated by methods other than sweeping as well.

  11. Electronic Structure of Actinides under Pressure

    NASA Astrophysics Data System (ADS)

    Johansson, Borje

    2006-03-01

    The series of heavy radioactive elements known as the actinides all have similar elemental properties. However, when the volume per atom in the condensed phase is illustrated as a function of atomic number, perhaps the most dramatic anomaly in the periodic table becomes apparent. The atomic volume of americium is almost 50% larger than it is for the preceding element plutonium. For the element after americium, curium, the atomic volume is very close to that of americium. The same holds also for the next elements berkelium and californium. Accordingly from americium and onwards the actinides behave very similar to the corresponding rare-earth elements - a second lanthanide series of metallic elements can be identified. This view is strongly supported by the fact that all these elements adopt the dhcp structure, a structure typical for the lanthanides. The reason for this behavior is found in the behavior of the 5f electrons. For the earlier actinides, up to and including plutonium, the 5f electrons form metallic states and contribute most significantly to the bonding. In Np and Pu they even dominate the bonding, while all of a sudden they become localized in Am, very much like the 4f electrons in the lanthanide series, and contribute no longer to the cohesion. This withdrawal of 5f bonding gives rise to the large volume expansion between plutonium and americium. This difference between the light and heavy actinide suggests that it would be most worthwhile to strongly compress the transplutonium elements, thereby forcing the individual 5f electron wave functions into strong contact with each other (overlap). Recently high pressure experiments have been performed for americium and curium and dramatic crystal structure changes have been observed. These results and other high pressure data will be discussed in relation to the basic electronic structure of these elements.

  12. Lattice Boltzmann simulation of shear-induced particle migration in plane Couette-Poiseuille flow: Local ordering of suspension

    NASA Astrophysics Data System (ADS)

    Chun, Byoungjin; Kwon, Ilyoung; Jung, Hyun Wook; Hyun, Jae Chun

    2017-12-01

    The shear-induced migration of concentrated non-Brownian monodisperse suspensions in combined plane Couette-Poiseuille (C-P) flows is studied using a lattice Boltzmann simulation. The simulations are mainly performed for a particle volume fraction of ϕbulk = 0.4 and H/a = 44.3, 23.3, where H and a denote the channel height and radius of suspended particles, respectively. The simulation method is validated in two simple flows, plane Poiseuille and plane Couette flows. In the Poiseuille flow, particles migrate to the mid-plane of the channel where the local concentration is close to the limit of random-close-packing, and a random structure is also observed at the plane. In the Couette flow, the particle distribution remains in the initial uniform distribution. In the combined C-P flows, the behaviors of migration are categorized into three groups, namely, Poiseuille-dominant, Couette-dominant, and intermediate regimes, based on the value of a characteristic force, G, where G denotes the relative magnitude of the body force (P) against the wall-driving force (C). With respect to the Poiseuille-dominant regime, the location of the maximum concentration is shifted from the mid-plane to the lower wall moving in the same direction as the external body force, when G decreases. With respect to the Couette-dominant regime, the behavior is similar to that of a simple shear flow with the exception that a slightly higher concentration of particles is observed near the lower wall. However, with respect to the intermediate value of G, several layers of highly ordered particles are unexpectedly observed near the lower wall where the plane of maximum concentration is located. The locally ordered structure is mainly due to the lateral migration of particles and wall confinement. The suspended particles migrate toward a vanishingly small shear rate at the wall, and they are consequently layered into highly ordered two-dimensional structures at the high local volume fraction.

  13. The Evolving Market Structure of the U.S. Residential Solar PV Installation Industry, 2000-2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    OShaughnessy, Eric J.

    This study uses data on over 900,000 solar PV installations to summarize the evolving market structure of the U.S. residential solar PV installation industry. Over 8,000 companies have installed residential PV systems in the United States. The vast majority of these installers are small local companies. At the same time, a subset of national-scale high-volume PV installation companies hold high market shares. This study examines the factors behind these trends in market concentration, including the role of customer financing options.

  14. Classification and Lateralization of Temporal Lobe Epilepsies with and without Hippocampal Atrophy Based on Whole-Brain Automatic MRI Segmentation

    PubMed Central

    Keihaninejad, Shiva; Heckemann, Rolf A.; Gousias, Ioannis S.; Hajnal, Joseph V.; Duncan, John S.; Aljabar, Paul; Rueckert, Daniel; Hammers, Alexander

    2012-01-01

    Brain images contain information suitable for automatically sorting subjects into categories such as healthy controls and patients. We sought to identify morphometric criteria for distinguishing controls (n = 28) from patients with unilateral temporal lobe epilepsy (TLE), 60 with and 20 without hippocampal atrophy (TLE-HA and TLE-N, respectively), and for determining the presumed side of seizure onset. The framework employs multi-atlas segmentation to estimate the volumes of 83 brain structures. A kernel-based separability criterion was then used to identify structures whose volumes discriminate between the groups. Next, we applied support vector machines (SVM) to the selected set for classification on the basis of volumes. We also computed pairwise similarities between all subjects and used spectral analysis to convert these into per-subject features. SVM was again applied to these feature data. After training on a subgroup, all TLE-HA patients were correctly distinguished from controls, achieving an accuracy of 96 ± 2% in both classification schemes. For TLE-N patients, the accuracy was 86 ± 2% based on structural volumes and 91 ± 3% using spectral analysis. Structures discriminating between patients and controls were mainly localized ipsilaterally to the presumed seizure focus. For the TLE-HA group, they were mainly in the temporal lobe; for the TLE-N group they included orbitofrontal regions, as well as the ipsilateral substantia nigra. Correct lateralization of the presumed seizure onset zone was achieved using hippocampi and parahippocampal gyri in all TLE-HA patients using either classification scheme; in the TLE-N patients, lateralization was accurate based on structural volumes in 86 ± 4%, and in 94 ± 4% with the spectral analysis approach. Unilateral TLE has imaging features that can be identified automatically, even when they are invisible to human experts. Such morphometric image features may serve as classification and lateralization criteria. The technique also detects unsuspected distinguishing features like the substantia nigra, warranting further study. PMID:22523539

  15. Estimating intracranial volume using intracranial area in healthy children and those with childhood status epilepticus

    PubMed Central

    Piper, Rory J; Yoong, Michael M; Pujar, Suresh; Chin, Richard F

    2014-01-01

    Background Correcting volumetric measurements of brain structures for intracranial volume (ICV) is important in comparing volumes across subjects with different ICV. The aim of this study was to investigate whether intracranial area (ICA) reliably predicts actual ICV in a healthy pediatric cohort and in children with convulsive status epilepticus (CSE). Methods T1-weighted volumetric MRI was performed on 20 healthy children (control group), 10 with CSE with structurally normal MRI (CSE/MR-), and 12 with CSE with structurally abnormal MRI (CSE/MR+). ICA, using a mid-sagittal slice, and the actual ICV were measured. Results A high Spearman correlation was found between the ICA and ICV measurements in the control (r = 0.96; P < 0.0001), CSE/MR− (r = 0.93; P = 0.0003), and CSE/MR+ (r = 0.94; P < 0.0001) groups. On comparison of predicted and actual ICV, there was no significant difference in the CSE/MR− group (P = 0.77). However, the comparison between predicted and actual ICV was significantly different in the CSE/MR+ (P = 0.001) group. Our Bland–Altman plot showed that the ICA method consistently overestimated ICV in children in the CSE/MR+ group, especially in those with small ICV or widespread structural abnormalities. Conclusions After further validation, ICA measurement may be a reliable alternative to measuring actual ICV when correcting volume measurements for ICV, even in children with localized MRI abnormalities. Caution should be applied when the method is used in children with small ICV and those with multilobar brain pathology. PMID:25365798

  16. Drone based structural mapping at Holuhraun indicates fault reactivation and complexity

    NASA Astrophysics Data System (ADS)

    Mueller, Daniel; Walter, Thomas R.; Steinke, Bastian; Witt, Tanja; Schoepa, Anne; Duerig, Tobi; Gudmundsson, Magnus T.

    2016-04-01

    Accompanied by an intense seismic swarm in August 2014, a dike laterally formed, starting under Icelands Vatnajökull glacier, propagating over a distance of more than 45 km within only two weeks, leading to the largest eruption by volume since the 1783-84 Laki eruption. Along its propagation path, the dike caused intense surface displacements up to meters. Based on seismicity, GPS and InSAR, the propagation has already been analysed and described as segmented lateral dike growth. We now focus on few smaller regions of the dike. We consider the Terrasar-X tandem digital elevation map and aerial photos and find localized zones where structural fissures formed and curved. At these localized, regions we performed a field campaign in summer 2015, applying the close range remote sensing techniques Structure from Motion (SfM) and Terrestrial Laser Scanning (TLS). Over 4 TLS scan were collected, along with over 5,000 aerial images. Point clouds from SfM and TLS are merged and compared, and local structural lineaments analysed. As a result, we obtained an unprecedentedly high-resolution digital elevation map. With this map, we analyse the structural expression of the fissure eruption at the surface and improve understanding on the conditions that influenced the magma propagation path. We elaborate scenarios that lead to complexities of the surface structures and the link to the underlying dike intrusion.

  17. TU-G-BRA-05: Predicting Volume Change of the Tumor and Critical Structures Throughout Radiation Therapy by CT-CBCT Registration with Local Intensity Correction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, S; Robinson, A; Kiess, A

    2015-06-15

    Purpose: The purpose of this study is to develop an accurate and effective technique to predict and monitor volume changes of the tumor and organs at risk (OARs) from daily cone-beam CTs (CBCTs). Methods: While CBCT is typically used to minimize the patient setup error, its poor image quality impedes accurate monitoring of daily anatomical changes in radiotherapy. Reconstruction artifacts in CBCT often cause undesirable errors in registration-based contour propagation from the planning CT, a conventional way to estimate anatomical changes. To improve the registration and segmentation accuracy, we developed a new deformable image registration (DIR) that iteratively corrects CBCTmore » intensities using slice-based histogram matching during the registration process. Three popular DIR algorithms (hierarchical B-spline, demons, optical flow) augmented by the intensity correction were implemented on a graphics processing unit for efficient computation, and their performances were evaluated on six head and neck (HN) cancer cases. Four trained scientists manually contoured nodal gross tumor volume (GTV) on the planning CT and every other fraction CBCTs for each case, to which the propagated GTV contours by DIR were compared. The performance was also compared with commercial software, VelocityAI (Varian Medical Systems Inc.). Results: Manual contouring showed significant variations, [-76, +141]% from the mean of all four sets of contours. The volume differences (mean±std in cc) between the average manual segmentation and four automatic segmentations are 3.70±2.30(B-spline), 1.25±1.78(demons), 0.93±1.14(optical flow), and 4.39±3.86 (VelocityAI). In comparison to the average volume of the manual segmentations, the proposed approach significantly reduced the estimation error by 9%(B-spline), 38%(demons), and 51%(optical flow) over the conventional mutual information based method (VelocityAI). Conclusion: The proposed CT-CBCT registration with local CBCT intensity correction can accurately predict the tumor volume change with reduced errors. Although demonstrated only on HN nodal GTVs, the results imply improved accuracy for other critical structures. This work was supported by NIH/NCI under grant R42CA137886.« less

  18. Concurrent optimization of material spatial distribution and material anisotropy repartition for two-dimensional structures

    NASA Astrophysics Data System (ADS)

    Ranaivomiarana, Narindra; Irisarri, François-Xavier; Bettebghor, Dimitri; Desmorat, Boris

    2018-04-01

    An optimization methodology to find concurrently material spatial distribution and material anisotropy repartition is proposed for orthotropic, linear and elastic two-dimensional membrane structures. The shape of the structure is parameterized by a density variable that determines the presence or absence of material. The polar method is used to parameterize a general orthotropic material by its elasticity tensor invariants by change of frame. A global structural stiffness maximization problem written as a compliance minimization problem is treated, and a volume constraint is applied. The compliance minimization can be put into a double minimization of complementary energy. An extension of the alternate directions algorithm is proposed to solve the double minimization problem. The algorithm iterates between local minimizations in each element of the structure and global minimizations. Thanks to the polar method, the local minimizations are solved explicitly providing analytical solutions. The global minimizations are performed with finite element calculations. The method is shown to be straightforward and efficient. Concurrent optimization of density and anisotropy distribution of a cantilever beam and a bridge are presented.

  19. Topology and geometry of the dark matter web

    NASA Astrophysics Data System (ADS)

    Ramachandra, Nesar; Shandarin, Sergei

    2017-01-01

    Topological connections in the single-streaming voids and multi-streaming filaments and walls reveal a cosmic web structure different from traditional mass density fields. A single void structure not only percolates the multi-stream field in all the directions, but also occupies over 99 per cent of all the single-streaming regions. Sub-grid analyses on scales smaller than simulation resolution reveal tiny pockets of voids that are isolated by membranes of the structure. For the multi-streaming excursion sets, the percolating structure is much thinner than the filaments in over-density excursion approach. We also introduce, for the first time, a framework to detect dark matter haloes in multi-stream fields. Closed compact regions hosting local maxima of the multi-stream field are detected using local geometrical conditions and properties of the Lagrangian sub-manifold. All the halo particles are guaranteed to be completely outside void regions of the Universe. Majority of the halo candidates are embedded in the largest structure that percolates the entire volume. The University of Kansas FY 2017 Competition General Research Fund, GRF Award 2301155.

  20. Simulating Cosmic Reionization and Its Observable Consequences

    NASA Astrophysics Data System (ADS)

    Shapiro, Paul

    2017-01-01

    I summarize recent progress in modelling the epoch of reionization by large- scale simulations of cosmic structure formation, radiative transfer and their interplay, which trace the ionization fronts that swept across the IGM, to predict observable signatures. Reionization by starlight from early galaxies affected their evolution, impacting reionization, itself, and imprinting the galaxies with a memory of reionization. Star formation suppression, e.g., may explain the observed underabundance of Local Group dwarfs relative to N-body predictions for Cold Dark Matter. I describe CoDa (''Cosmic Dawn''), the first fully-coupled radiation-hydrodynamical simulation of reionization and galaxy formation in the Local Universe, in a volume large enough to model reionization globally but with enough resolving power to follow all the atomic-cooling galactic halos in that volume. A 90 Mpc box was simulated from a constrained realization of primordial fluctuations, chosen to reproduce present-day features of the Local Group, including the Milky Way and M31, and the local universe beyond, including the Virgo cluster. The new RAMSES-CUDATON hybrid CPU-GPU code took 11 days to perform this simulation on the Titan supercomputer at Oak Ridge National Laboratory, with 4096-cubed N-body particles for the dark matter and 4096-cubed cells for the atomic gas and ionizing radiation.

  1. Eddy current correction in volume-localized MR spectroscopy

    NASA Technical Reports Server (NTRS)

    Lin, C.; Wendt, R. E. 3rd; Evans, H. J.; Rowe, R. M.; Hedrick, T. D.; LeBlanc, A. D.

    1994-01-01

    The quality of volume-localized magnetic resonance spectroscopy is affected by eddy currents caused by gradient switching. Eddy currents can be reduced with improved gradient systems; however, it has been suggested that the distortion due to eddy currents can be compensated for during postprocessing with a single-frequency reference signal. The authors propose modifying current techniques for acquiring the single-frequency reference signal by using relaxation weighting to reduce interference from components that cannot be eliminated by digital filtering alone. Additional sequences with T1 or T2 weighting for reference signal acquisition are shown to have the same eddy current characteristics as the original signal without relaxation weighting. The authors also studied a new eddy current correction method that does not require a single-frequency reference signal. This method uses two free induction decays (FIDs) collected from the same volume with two sequences with opposite gradients. Phase errors caused by eddy currents are opposite in these two FIDs and can be canceled completely by combining the FIDs. These methods were tested in a phantom. Eddy current distortions were corrected, allowing quantitative measurement of structures such as the -CH = CH- component, which is otherwise undetectable.

  2. Centripetal myosin redistribution in thrombin-stimulated platelets. Relationship to platelet Factor 4 secretion.

    PubMed

    Painter, R G; Ginsberg, M H

    1984-11-01

    We have examined the F-actin and myosin distribution in resting and thrombin-activated platelets by double label immunofluorescence microscopy. In resting, discoid platelets, F-actin and myosin staining was distributed in a diffuse pattern throughout the interior of the cell with slight accentuation at the cell periphery. In contrast, platelet factor 4 antigen (PF4) was more centrally localized in a fine punctate distribution which is consistent with its localization in alpha-granules. Within 5 sec after thrombin stimulation both F-actin and myosin staining were increased at the periphery of the now spherical platelets. Subsequently, a myosin-containing spherical structure decreased in diameter closely surrounding a phase-dense central zone. In contrast, F-actin staining continued to be accentuated at the cell periphery and was prominent in filopodia and blebs. As previously shown, PF4 staining was localized after 30 sec within large intracellular masses that corresponded to closed vacuolar structures at the ultrastructural level. Morphometric analysis of electron micrographs showed that formation of these vacuolar structures kinetically paralleled alpha-granule disappearance and preceded PF4 release. These PF4-containing structures translocated to the cell periphery after 1-3 min, where they appeared to fuse with the plasma membrane. Ultrastructural analysis of thin sections showed that the myosin-rich spherical structure spatially and temporally correlated with a band of microfilaments that closely surrounded the organelle-rich central zone of the cell. Morphometric analysis of these micrographs showed that the absolute volume of this central zone decreased with time after thrombin addition, showing a significant change after 15 sec and reaching a maximum value after 3-5 min. Changes in the volume of this compartment kinetically preceded PF4 release. On the basis of these data, we propose that an actomyosin contractile force is generated which centripetally redistributes the myosinrich structure and organelle zone. Conceivably this inward force may not only accelerate granule-granule fusion to form intracellular secretory vacuoles, but may also provide aid in their extrusion toward the platelet plasma membrane.

  3. Intensity-Modulated Radiation Therapy With Concurrent Chemotherapy as Preoperative Treatment for Localized Gastric Adenocarcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakravarty, Twisha; Crane, Christopher H.; Ajani, Jaffer A.

    2012-06-01

    Purpose: The goal of this study was to evaluate dosimetric parameters, acute toxicity, pathologic response, and local control in patients treated with preoperative intensity-modulated radiation therapy (IMRT) and concurrent chemotherapy for localized gastric adenocarcinoma. Methods: Between November 2007 and April 2010, 25 patients with localized gastric adenocarcinoma were treated with induction chemotherapy, followed by preoperative IMRT and concurrent chemotherapy and, finally, surgical resection. The median radiation therapy dose was 45 Gy. Concurrent chemotherapy was 5-fluorouracil and oxaliplatin in 18 patients, capecitabine in 3, and other regimens in 4. Subsequently, resection was performed with total gastrectomy in 13 patients, subtotal gastrectomymore » in 7, and other surgeries in 5. Results: Target coverage, expressed as the ratio of the minimum dose received by 99% of the planning target volume to the prescribed dose, was a median of 0.97 (range, 0.92-1.01). The median V{sub 30} (percentage of volume receiving at least 30 Gy) for the liver was 26%; the median V{sub 20} (percentage of volume receiving at least 20 Gy) for the right and left kidneys was 14% and 24%, respectively; and the median V{sub 40} (percentage of volume receiving at least 40 Gy) for the heart was 18%. Grade 3 acute toxicity developed in 14 patients (56%), including dehydration in 10, nausea in 8, and anorexia in 5. Grade 4 acute toxicity did not develop in any patient. There were no significant differences in the rates of acute toxicity, hospitalization, or feeding tube use in comparison to those in a group of 50 patients treated with preoperative three-dimensional conformal radiation therapy with concurrent chemotherapy. R0 resection was obtained in 20 patients (80%), and pathologic complete response occurred in 5 (20%). Conclusions: Preoperative IMRT for gastric adenocarcinoma was well tolerated, accomplished excellent target coverage and normal structure sparing, and led to appropriate pathologic outcomes.« less

  4. Electron-beam-induced topographical, chemical, and structural patterning of amorphous titanium oxide films.

    PubMed

    Kern, P; Müller, Y; Patscheider, J; Michler, J

    2006-11-30

    Electrolytically deposited amorphous TiO2 films on steel are remarkably sensitive to electron beam (e-beam) irradiation at moderate energies at 20 keV, resulting in controlled local oxide reduction and crystallization, opening the possibility for local topographical, chemical, and structural modifications within a biocompatible, amorphous, and semiconducting matrix. The sensitivity is shown to vary significantly with the annealing temperature of as-deposited films. Well-defined irradiation conditions in terms of probe current IP (5 microA) and beam size were achieved with an electron probe microanalyzer. As shown by atomic force and optical microscopy, micro-Raman spectroscopy, wavelength-dispersive X-ray (WDX), and Auger analyses, e-beam exposure below 1 Acm-2 immediately leads to electron-stimulated oxygen desorption, resulting in a well-defined volume loss primarily limited to the irradiated zone under the electron probe and in a blue color shift in this zone because of the presence of Ti2O3. Irradiation at 5 Acm(-2) (IP = 5 microA) results in local crystallization into anatase phase within 1 s of exposure and in reduction to TiO after an extended exposure of 60 s. Further reduction to the metallic state could be observed after 60 s of exposure at approximately 160 Acm(-2). The local reduction could be qualitatively sensed with WDX analysis and Auger line scans. An estimation of the film temperature in the beam center indicates that crystallization occurs at less than 150 degrees C, well below the atmospheric crystallization temperature of the present films. The high e-beam sensitivity in combination with the well-defined volume loss from oxygen desorption allows for precise electron lithographic topographical patterning of the present oxides. Irradiation effects leading to the observed reduction and crystallization phenomena under moderate electron energies are discussed.

  5. Disrupted subject-specific gray matter network properties and cognitive dysfunction in type 1 diabetes patients with and without proliferative retinopathy.

    PubMed

    van Duinkerken, Eelco; Ijzerman, Richard G; Klein, Martin; Moll, Annette C; Snoek, Frank J; Scheltens, Philip; Pouwels, Petra J W; Barkhof, Frederik; Diamant, Michaela; Tijms, Betty M

    2016-03-01

    Type 1 diabetes mellitus (T1DM) patients, especially with concomitant microvascular disease, such as proliferative retinopathy, have an increased risk of cognitive deficits. Local cortical gray matter volume reductions only partially explain these cognitive dysfunctions, possibly because volume reductions do not take into account the complex connectivity structure of the brain. This study aimed to identify gray matter network alterations in relation to cognition in T1DM. We investigated if subject-specific structural gray matter network properties, constructed from T1-weighted MRI scans, were different between T1DM patients with (n = 51) and without (n = 53) proliferative retinopathy versus controls (n = 49), and were associated to cognitive decrements and fractional anisotropy, as measured by voxel-based TBSS. Global normalized and local (45 bilateral anatomical regions) clustering coefficient and path length were assessed. These network properties measure how the organization of connections in a network differs from that of randomly connected networks. Global gray matter network topology was more randomly organized in both T1DM patient groups versus controls, with the largest effects seen in patients with proliferative retinopathy. Lower local path length values were widely distributed throughout the brain. Lower local clustering was observed in the middle frontal, postcentral, and occipital areas. Complex network topology explained up to 20% of the variance of cognitive decrements, beyond other predictors. Exploratory analyses showed that lower fractional anisotropy was associated with a more random gray matter network organization. T1DM and proliferative retinopathy affect cortical network organization that may consequently contribute to clinically relevant changes in cognitive functioning in these patients. © 2015 Wiley Periodicals, Inc.

  6. Structural brain abnormalities in Cushing's syndrome.

    PubMed

    Bauduin, Stephanie E E C; van der Wee, Nic J A; van der Werff, Steven J A

    2018-05-08

    Alongside various physical symptoms, patients with Cushing's disease and Cushing's syndrome display a wide variety of neuropsychiatric and cognitive symptoms, which are indicative of involvement of the central nervous system. The aim of this review is to provide an overview of the structural brain abnormalities that are associated with Cushing's disease and Cushing's syndrome and their relation to behavioral and cognitive symptomatology. In this review, we discuss the gray matter structural abnormalities found in patients with active Cushing's disease and Cushing's syndrome, the reversibility and persistence of these changes and the white matter structural changes related to Cushing's syndrome. Recent findings are of particular interest because they provide more detailed information on localization of the structural changes as well as possible insights into the underlying biological processes. Active Cushing's disease and Cushing's syndrome is related to volume reductions of the hippocampus and in a prefrontal region involving the anterior cingulate cortex (ACC) and medial frontal gyrus (MFG). Whilst there are indications that the reductions in hippocampal volume are partially reversible, the changes in the ACC and MFG appear to be more persistent. In contrast to the volumetric findings, changes in white matter connectivity are typically widespread involving multiple tracts.

  7. High-pressure protein crystallography of hen egg-white lysozyme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamada, Hiroyuki; Nagae, Takayuki; Watanabe, Nobuhisa, E-mail: nobuhisa@nagoya-u.jp

    The crystal structure of hen egg-white lysozyme (HEWL) was analyzed under pressures of up to 950 MPa. The high pressure modified the conformation of the molecule and induced a novel phase transition in the tetragonal crystal of HEWL. Crystal structures of hen egg-white lysozyme (HEWL) determined under pressures ranging from ambient pressure to 950 MPa are presented. From 0.1 to 710 MPa, the molecular and internal cavity volumes are monotonically compressed. However, from 710 to 890 MPa the internal cavity volume remains almost constant. Moreover, as the pressure increases to 950 MPa, the tetragonal crystal of HEWL undergoes a phasemore » transition from P4{sub 3}2{sub 1}2 to P4{sub 3}. Under high pressure, the crystal structure of the enzyme undergoes several local and global changes accompanied by changes in hydration structure. For example, water molecules penetrate into an internal cavity neighbouring the active site and induce an alternate conformation of one of the catalytic residues, Glu35. These phenomena have not been detected by conventional X-ray crystal structure analysis and might play an important role in the catalytic activity of HEWL.« less

  8. [Does a sector resection of the breast cure nodal mastopathy?].

    PubMed

    Li, L A; Martyniuk, V V

    1998-01-01

    Results of the clinico-morphological investigation of 265 patients with localized mastopathy who were submitted to sectorial resection showed that in the margins of the operative wound there were morphological signs of mastopathy in 252 (95.1%) patients. The results obtained confirm the opinion that structural alterations of the tissues known to be the essential feature of fibroadenomatosis can not be local, they are of diffuse character. So, the sectorial resection performed for localized mastopathy can not be radical and is of no therapeutic significance. The indication to surgical intervention must be determined not so much by the necessary treatment as by the real risk of hypo-diagnosis of breast cancer. So, there is no need to fulfil the sectorial resection for localized mastopathy. It is enough to make operation of less volume (excision biopsy).

  9. Very preterm adolescents show gender-dependent alteration of the structural brain correlates of spelling abilities.

    PubMed

    Scott, Fiona E; Mechelli, Andrea; Allin, Matthew P; Walshe, Muriel; Rifkin, Larry; Murray, Robin M; Nosarti, Chiara

    2011-07-01

    Individuals born very preterm (VPT) are at risk of neurodevelopmental damage and of adverse educational outcomes in childhood and adolescence. The present study used voxel-based morphometry to investigate the association between grey matter and white matter volume and measures of language and executive functioning in VPT born adolescents and term-born controls by gender. VPT individuals (N=218) and controls (N=127) underwent neuropsychological assessment and MRI at age 14-15 as part of a longitudinal study. Differential associations were found between spelling scores and frontal regional grey matter volume when group (VPT and control) and gender (males and females) were investigated. A main effect of group demonstrated a weaker association in VPT adolescents relative to controls between grey matter volume in the left medial and right superior frontal gyri and spelling scores. A main effect of gender revealed spelling scores to be correlated with grey matter volume in the right superior frontal gyrus in females to a greater extent than in males. Furthermore, a significant interaction between group and gender was detected in two regions. Spelling scores showed a stronger association with grey matter volume in a cluster with local maxima in the left medial frontal cortex extending to the caudate nucleus in VPT females than in control females and a weaker association in VPT males compared to control males. In addition, spelling scores showed a stronger association with grey matter volume in left middle frontal gyrus in VPT males compared to control males and a weaker association in VPT females than in control females. When group and gender were investigated, there were no statistically different correlations between structural brain volumes and performance on reading and executive function tests. These data demonstrate that the typical structure-function relationship in respect to spelling abilities appears to be altered in individuals born preterm and the processes underpinning this divergence may be subject to gender-specific influences. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Nanocomposites in Multifuntional Structures for Spacecraft Platforms

    NASA Astrophysics Data System (ADS)

    Marcos, J.; Mendizabal, M.; Elizetxea, C.; Florez, S.; Atxaga, G.; Del Olmo, E.

    2012-07-01

    The integration of functionalities as electrical, thermal, power or radiation shielding inside carrier electronic boxes, solar panels or platform structures allows reducing weight, volume, and harness for spacecraft. The multifunctional structures represent an advanced design approach for space components and subsystems. The development of such multifunctional structures aims the re-engineering traditional metallic structures by composites in space, which request to provide specific solutions for thermal conductivity, EMI-EMC, radiation shielding and integration. The use of nanomaterials as CNF and nano-adds to reinforce composite structures allows obtaining local solutions for improving electrical conductivity, thermal conductivity and radiation shielding. The paper summarises the results obtained in of three investigations conducted by Tecnalia based on carbon nanofillers for improving electro-thermal characteristics of spacecraft platform, electronic substrates and electronics boxes respectively.

  11. Structural optimization: Status and promise

    NASA Astrophysics Data System (ADS)

    Kamat, Manohar P.

    Chapters contained in this book include fundamental concepts of optimum design, mathematical programming methods for constrained optimization, function approximations, approximate reanalysis methods, dual mathematical programming methods for constrained optimization, a generalized optimality criteria method, and a tutorial and survey of multicriteria optimization in engineering. Also included are chapters on the compromise decision support problem and the adaptive linear programming algorithm, sensitivity analyses of discrete and distributed systems, the design sensitivity analysis of nonlinear structures, optimization by decomposition, mixed elements in shape sensitivity analysis of structures based on local criteria, and optimization of stiffened cylindrical shells subjected to destabilizing loads. Other chapters are on applications to fixed-wing aircraft and spacecraft, integrated optimum structural and control design, modeling concurrency in the design of composite structures, and tools for structural optimization. (No individual items are abstracted in this volume)

  12. Structural and functional cerebral correlates of hypnotic suggestibility.

    PubMed

    Huber, Alexa; Lui, Fausta; Duzzi, Davide; Pagnoni, Giuseppe; Porro, Carlo Adolfo

    2014-01-01

    Little is known about the neural bases of hypnotic suggestibility, a cognitive trait referring to the tendency to respond to hypnotic suggestions. In the present magnetic resonance imaging study, we performed regression analyses to assess hypnotic suggestibility-related differences in local gray matter volume, using voxel-based morphometry, and in waking resting state functional connectivity of 10 resting state networks, in 37 healthy women. Hypnotic suggestibility was positively correlated with gray matter volume in portions of the left superior and medial frontal gyri, roughly overlapping with the supplementary and pre-supplementary motor area, and negatively correlated with gray matter volume in the left superior temporal gyrus and insula. In the functional connectivity analysis, hypnotic suggestibility was positively correlated with functional connectivity between medial posterior areas, including bilateral posterior cingulate cortex and precuneus, and both the lateral visual network and the left fronto-parietal network; a positive correlation was also found with functional connectivity between the executive-control network and a right postcentral/parietal area. In contrast, hypnotic suggestibility was negatively correlated with functional connectivity between the right fronto-parietal network and the right lateral thalamus. These findings demonstrate for the first time a correlation between hypnotic suggestibility, the structural features of specific cortical regions, and the functional connectivity during the normal resting state of brain structures involved in imagery and self-monitoring activity.

  13. Drug-like density: a method of quantifying the "bindability" of a protein target based on a very large set of pockets and drug-like ligands from the Protein Data Bank.

    PubMed

    Sheridan, Robert P; Maiorov, Vladimir N; Holloway, M Katharine; Cornell, Wendy D; Gao, Ying-Duo

    2010-11-22

    One approach to estimating the "chemical tractability" of a candidate protein target where we know the atomic resolution structure is to examine the physical properties of potential binding sites. A number of other workers have addressed this issue. We characterize ~290,000 "pockets" from ~42,000 protein crystal structures in terms of a three parameter "pocket space": volume, buriedness, and hydrophobicity. A metric DLID (drug-like density) measures how likely a pocket is to bind a drug-like molecule. This is calculated from the count of other pockets in its local neighborhood in pocket space that contain drug-like cocrystallized ligands and the count of total pockets in the neighborhood. Surprisingly, despite being defined locally, a global trend in DLID can be predicted by a simple linear regression on log(volume), buriedness, and hydrophobicity. Two levels of simplification are necessary to relate the DLID of individual pockets to "targets": taking the best DLID per Protein Data Bank (PDB) entry (because any given crystal structure can have many pockets), and taking the median DLID over all PDB entries for the same target (because different crystal structures of the same protein can vary because of artifacts and real conformational changes). We can show that median DLIDs for targets that are detectably homologous in sequence are reasonably similar and that median DLIDs correlate with the "druggability" estimate of Cheng et al. (Nature Biotechnology 2007, 25, 71-75).

  14. Impact of cholesterol on voids in phospholipid membranes

    NASA Astrophysics Data System (ADS)

    Falck, Emma; Patra, Michael; Karttunen, Mikko; Hyvönen, Marja T.; Vattulainen, Ilpo

    2004-12-01

    Free volume pockets or voids are important to many biological processes in cell membranes. Free volume fluctuations are a prerequisite for diffusion of lipids and other macromolecules in lipid bilayers. Permeation of small solutes across a membrane, as well as diffusion of solutes in the membrane interior are further examples of phenomena where voids and their properties play a central role. Cholesterol has been suggested to change the structure and function of membranes by altering their free volume properties. We study the effect of cholesterol on the properties of voids in dipalmitoylphosphatidylcholine (DPPC) bilayers by means of atomistic molecular dynamics simulations. We find that an increasing cholesterol concentration reduces the total amount of free volume in a bilayer. The effect of cholesterol on individual voids is most prominent in the region where the steroid ring structures of cholesterol molecules are located. Here a growing cholesterol content reduces the number of voids, completely removing voids of the size of a cholesterol molecule. The voids also become more elongated. The broad orientational distribution of voids observed in pure DPPC is, with a 30% molar concentration of cholesterol, replaced by a distribution where orientation along the bilayer normal is favored. Our results suggest that instead of being uniformly distributed to the whole bilayer, these effects are localized to the close vicinity of cholesterol molecules.

  15. Anosmia leads to a loss of gray matter in cortical brain areas.

    PubMed

    Bitter, Thomas; Gudziol, Hilmar; Burmeister, Hartmut Peter; Mentzel, Hans-Joachim; Guntinas-Lichius, Orlando; Gaser, Christian

    2010-06-01

    Chronic olfactory disorders, including the complete loss of the sense of smell (anosmia), are common. Using voxel-based morphometry (VBM) in magnetic resonance imaging (MRI), structural changes in the cerebral gray matter (GM) of a group of patients with anosmia compared with a normosmic, healthy control group were evaluated. Patients with anosmia presented a significant decrease of GM volume mainly in the nucleus accumbens with adjacent subcallosal gyrus, in the medial prefrontal cortex (MPC) including the middle and anterior cingulate cortices, and in the dorsolateral prefrontal cortex (dlPFC). These areas are part of the limbic loop of the basal ganglia and except the dlPFC secondary olfactory areas. They also play an important role in many neurological diseases. Furthermore, volume decreases in smaller areas like the piriform cortex, insular cortex, orbitofrontal cortex, hippocampus, parahippocampal gyrus, supramarginal gyrus, and cerebellum could be seen. Longer disease duration was associated with a stronger atrophy in the described areas. No local increases in the GM volume could be observed. A comparison with results of an additionally executed functional MRI study on olfaction in healthy subjects was performed to evaluate the significance of the observed atrophy areas in cerebral olfactory processing. To our knowledge, this is the first study on persisting structural changes in cortical GM volume after complete olfactory loss.

  16. Automatic detection of lung vessel bifurcation in thoracic CT images

    NASA Astrophysics Data System (ADS)

    Maduskar, Pragnya; Vikal, Siddharth; Devarakota, Pandu

    2011-03-01

    Computer-aided diagnosis (CAD) systems for detection of lung nodules have been an active topic of research for last few years. It is desirable that a CAD system should generate very low false positives (FPs) while maintaining high sensitivity. This work aims to reduce the number of false positives occurring at vessel bifurcation point. FPs occur quite frequently on vessel branching point due to its shape which can appear locally spherical due to the intrinsic geometry of intersecting tubular vessel structures combined with partial volume effects and soft tissue attenuation appearance surrounded by parenchyma. We propose a model-based technique for detection of vessel branching points using skeletonization, followed by branch-point analysis. First we perform vessel structure enhancement using a multi-scale Hessian filter to accurately segment tubular structures of various sizes followed by thresholding to get binary vessel structure segmentation [6]. A modified Reebgraph [7] is applied next to extract the critical points of structure and these are joined by a nearest neighbor criterion to obtain complete skeletal model of vessel structure. Finally, the skeletal model is traversed to identify branch points, and extract metrics including individual branch length, number of branches and angle between various branches. Results on 80 sub-volumes consisting of 60 actual vessel-branching and 20 solitary solid nodules show that the algorithm identified correctly vessel branching points for 57 sub-volumes (95% sensitivity) and misclassified 2 nodules as vessel branch. Thus, this technique has potential in explicit identification of vessel branching points for general vessel analysis, and could be useful in false positive reduction in a lung CAD system.

  17. Breast surgery techniques: preoperative bracketing wire localization by surgeons.

    PubMed

    Burkholder, Hans C; Witherspoon, Laura E; Burns, R Phillip; Horn, Jeffrey S; Biderman, Michael D

    2007-06-01

    With the development of expertise in image guidance for breast surgery, many surgeons now perform preoperative wire localization themselves. Use of a single wire versus multiple wires to bracket a radiographic breast abnormality has previously been described, although benefits of this technique based on clinical outcomes such as margin status, tissue volume removed, and re-excision rates have not been established. This study is a retrospective analysis of wire-localized breast biopsies performed by 14 surgeons over 29 months; stereotactic and ultrasound guidance were used. During this time, 489 wire localizations were done, of which 159 used multiple wires. Two hundred eleven of these biopsies were done for malignant disease, 86 using multiple wires. After controlling for tumor node metastases stage, single and multiple wire placements were compared using endpoints of margin status, need for re-excision, and total volume of tissue removed. Neither margin status nor re-excision was related to the number of wires placed. However, the number of wires placed was significantly related to the total volume of tissue removed. Use of more than one localizing wire was associated with greater volume of tissue removal (measured in centimeters cubed) in benign disease (46 vs 25, P < 0.001), equivalent volumes in stage 0 disease (73 vs 67), less volume in stage 1 disease (113 vs 164), and less volume in stages 2 through 4 (158 vs 207, P = 0.03). Outcomes based on surgeon case volume during the study period demonstrated that low- (1-40), medium- (41-80), and high-volume (>80) surgeons did not differ in the type or stage of breast pathology treated. Surgeons with high case volumes were more likely to place multiple localizing wires (P < 0.001) and were more likely to do a breast-conserving procedure if re-excision was performed (P < 0.018). Surgeons with low case volumes were more likely to perform a re-excision (P < 0.025). Surgeon experience has a positive impact on quality outcome measures such as performance of a definitive procedure at the time of initial surgery and use of breast-conserving procedures at the time of re-excision. Multiple wire localization can be used to significantly reduce the volume of breast tissue removed in malignant disease without sacrificing margin status or increasing the need for future re-excision.

  18. Electronic structure of metals and semiconductors: bulk, surface, and interface properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Louie, S.G.S.

    1976-09-01

    A theoretical study of the electronic structure of various metals and semiconductors is presented with the emphasis on understanding the properties of these materials when they are subjected to extreme conditions and in various different configurations. Among the bulk systems studied, the properties of cesium under high pressure are discussed in terms of the electronic structure calculated at various cell volumes using the pseudopotential method. Local fields or umklapp processes in semiconductors are studied within the random phase approximation (RPA). Specifically the dielectric response matrix epsilon/sub GG'/ (q = 0,omega) is evaluated numerically to determine the effects of local-field correctionsmore » in the optical spectrum of Si. Also, some comments on the excitonic mechanism of superconductivity are presented and the role of local fields is discussed. The pseudo-potential method is next extended to calculate the electronic structure of a transition metal Nb. The calculation is performed self-consistently with the use of a non-local ionic potential determined from atomic spectra. Finally the theory of the superconducting transition temperature T/sub c/ is discussed in the strong-coupling formulation of the BCS theory. The Eliashberg equations in the Matsubara representation are solved analytically and a general T/sub c/ equation is obtained. A new method is developed using pseudopotentials in a self-consistent manner to describe non-periodic systems. The method is applicable to localized configurations such as molecules, surfaces, impurities, vacancies, finite chains of atoms, adsorbates, and solid interfaces. Specific applications to surfaces, metal-semiconductor interfaces and vacancies are presented.« less

  19. Real-time three-dimensional ultrasound-assisted axillary plexus block defines soft tissue planes.

    PubMed

    Clendenen, Steven R; Riutort, Kevin; Ladlie, Beth L; Robards, Christopher; Franco, Carlo D; Greengrass, Roy A

    2009-04-01

    Two-dimensional (2D) ultrasound is commonly used for regional block of the axillary brachial plexus. In this technical case report, we described a real-time three-dimensional (3D) ultrasound-guided axillary block. The difference between 2D and 3D ultrasound is similar to the difference between plain radiograph and computer tomography. Unlike 2D ultrasound that captures a planar image, 3D ultrasound technology acquires a 3D volume of information that enables multiple planes of view by manipulating the image without movement of the ultrasound probe. Observation of the brachial plexus in cross-section demonstrated distinct linear hyperechoic tissue structures (loose connective tissue) that initially inhibited the flow of the local anesthesia. After completion of the injection, we were able to visualize the influence of arterial pulsation on the spread of the local anesthesia. Possible advantages of this novel technology over current 2D methods are wider image volume and the capability to manipulate the planes of the image without moving the probe.

  20. Intranasal Localizability of Odorants: Influence of Stimulus Volume

    PubMed Central

    Frasnelli, J.; Berg, J.; Huang, G.; Doty, R.L.

    2011-01-01

    When an odorant is presented to one side of the nose and air to the other, the ability to localize which side received the odorant depends upon trigeminal nerve stimulation. It has been shown that performance on this lateralization task increases as stimulus concentration increases. In this study, we determined the influences of stimulus volume and sex on the ability to localize each of 8 odorants presented at neat concentrations: anethole, geraniol, limonene, linalool, menthol, methyl salicyclate, phenyl ethanol, and vanillin. At a low stimulus volume (11 mL), only menthol was localized at an above-chance level. At a high stimulus volume (21 mL), above-chance localization occurred for all odorants except vanillin. Women were significantly better than men in localizing menthol. Stimuli rated as most intense were those that were most readily localized. The detection performance measures, as well as rated intensity values, significantly correlated with earlier findings of the trigeminal detectability of odorants presented to anosmic and normosmic subjects. This study suggests that differences in stimulus volume may explain some discrepant findings within the trigeminal chemosensory literature and supports the concept that vanillin may be a “relatively pure” olfactory stimulus. PMID:21310764

  1. Intranasal localizability of odorants: influence of stimulus volume.

    PubMed

    Frasnelli, J; Hummel, T; Berg, J; Huang, G; Doty, R L

    2011-05-01

    When an odorant is presented to one side of the nose and air to the other, the ability to localize which side received the odorant depends upon trigeminal nerve stimulation. It has been shown that performance on this lateralization task increases as stimulus concentration increases. In this study, we determined the influences of stimulus volume and sex on the ability to localize each of 8 odorants presented at neat concentrations: anethole, geraniol, limonene, linalool, menthol, methyl salicylate, phenyl ethanol, and vanillin. At a low stimulus volume (11 mL), only menthol was localized at an above-chance level. At a high stimulus volume (21 mL), above-chance localization occurred for all odorants except vanillin. Women were significantly better than men in localizing menthol. Stimuli rated as most intense were those that were most readily localized. The detection performance measures, as well as rated intensity values, significantly correlated with earlier findings of the trigeminal detectability of odorants presented to anosmic and normosmic subjects. This study suggests that differences in stimulus volume may explain some discrepant findings within the trigeminal chemosensory literature and supports the concept that vanillin may be a "relatively pure" olfactory stimulus.

  2. Principles of Considering the Effect of the Limited Volume of a System on Its Thermodynamic State

    NASA Astrophysics Data System (ADS)

    Tovbin, Yu. K.

    2018-01-01

    The features of a system with a finite volume that affect its thermodynamic state are considered in comparison to describing small bodies in macroscopic phases. Equations for unary and pair distribution functions are obtained using difference derivatives of a discrete statistical sum. The structure of the equation for the free energy of a system consisting of an ensemble of volume-limited regions with different sizes and a full set of equations describing a macroscopic polydisperse system are discussed. It is found that the equations can be applied to molecular adsorption on small faces of microcrystals, to bound and isolated pores of a polydisperse material, and to describe the spinodal decomposition of a fluid in brief periods of time and high supersaturations of the bulk phase when each local region functions the same on average. It is shown that as the size of a system diminishes, corrections must be introduced for the finiteness of the system volume and fluctuations of the unary and pair distribution functions.

  3. [Preoperative imaging/operation planning for liver surgery].

    PubMed

    Schoening, W N; Denecke, T; Neumann, U P

    2015-12-01

    The currently established standard for planning liver surgery is multistage contrast media-enhanced multidetector computed tomography (CM-CT), which as a rule enables an appropriate resection planning, e.g. a precise identification and localization of primary and secondary liver tumors as well as the anatomical relation to extrahepatic and/or intrahepatic vascular and biliary structures. Furthermore, CM-CT enables the measurement of tumor volume, total liver volume and residual liver volume after resection. Under the condition of normal liver function a residual liver volume of 25 % is nowadays considered sufficient and safe. Recent studies in patients with liver metastases of colorectal cancer showed a clear staging advantage of contrast media-enhanced magnetic resonance imaging (CM-MRI) versus CM-CT. In addition, most recent data showed that the use of liver-specific MRI contrast media further increases the sensitivity and specificity of detection of liver metastases. This imaging technology seems to lead closer to the ideal "one stop shopping" diagnostic tool in preoperative planning of liver resection.

  4. Estimation of combined sewer overflow discharge: a software sensor approach based on local water level measurements.

    PubMed

    Ahm, Malte; Thorndahl, Søren; Nielsen, Jesper E; Rasmussen, Michael R

    2016-12-01

    Combined sewer overflow (CSO) structures are constructed to effectively discharge excess water during heavy rainfall, to protect the urban drainage system from hydraulic overload. Consequently, most CSO structures are not constructed according to basic hydraulic principles for ideal measurement weirs. It can, therefore, be a challenge to quantify the discharges from CSOs. Quantification of CSO discharges are important in relation to the increased environmental awareness of the receiving water bodies. Furthermore, CSO discharge quantification is essential for closing the rainfall-runoff mass-balance in combined sewer catchments. A closed mass-balance is an advantage for calibration of all urban drainage models based on mass-balance principles. This study presents three different software sensor concepts based on local water level sensors, which can be used to estimate CSO discharge volumes from hydraulic complex CSO structures. The three concepts were tested and verified under real practical conditions. All three concepts were accurate when compared to electromagnetic flow measurements.

  5. Self-diffusion Coefficient and Structure of Binary n-Alkane Mixtures at the Liquid-Vapor Interfaces.

    PubMed

    Chilukoti, Hari Krishna; Kikugawa, Gota; Ohara, Taku

    2015-10-15

    The self-diffusion coefficient and molecular-scale structure of several binary n-alkane liquid mixtures in the liquid-vapor interface regions have been examined using molecular dynamics simulations. It was observed that in hexane-tetracosane mixture hexane molecules are accumulated in the liquid-vapor interface region and the accumulation intensity decreases with increase in a molar fraction of hexane in the examined range. Molecular alignment and configuration in the interface region of the liquid mixture change with a molar fraction of hexane. The self-diffusion coefficient in the direction parallel to the interface of both tetracosane and hexane in their binary mixture increases in the interface region. It was found that the self-diffusion coefficient of both tetracosane and hexane in their binary mixture is considerably higher in the vapor side of the interface region as the molar fraction of hexane goes lower, which is mostly due to the increase in local free volume caused by the local structure of the liquid in the interface region.

  6. Three dimensional images of geothermal systems: local earthquake P-wave velocity tomography at the Hengill and Krafla geothermal areas, Iceland, and The Geysers, California

    USGS Publications Warehouse

    Julian, B.R.; Prisk, A.; Foulger, G.R.; Evans, J.R.; ,

    1993-01-01

    Local earthquake tomography - the use of earthquake signals to form a 3-dimensional structural image - is now a mature geophysical analysis method, particularly suited to the study of geothermal reservoirs, which are often seismically active and severely laterally inhomogeneous. Studies have been conducted of the Hengill (Iceland), Krafla (Iceland) and The Geysers (California) geothermal areas. All three systems are exploited for electricity and/or heat production, and all are highly seismically active. Tomographic studies of volumes a few km in dimension were conducted for each area using the method of Thurber (1983).

  7. Combining 3d Volume and Mesh Models for Representing Complicated Heritage Buildings

    NASA Astrophysics Data System (ADS)

    Tsai, F.; Chang, H.; Lin, Y.-W.

    2017-08-01

    This study developed a simple but effective strategy to combine 3D volume and mesh models for representing complicated heritage buildings and structures. The idea is to seamlessly integrate 3D parametric or polyhedral models and mesh-based digital surfaces to generate a hybrid 3D model that can take advantages of both modeling methods. The proposed hybrid model generation framework is separated into three phases. Firstly, after acquiring or generating 3D point clouds of the target, these 3D points are partitioned into different groups. Secondly, a parametric or polyhedral model of each group is generated based on plane and surface fitting algorithms to represent the basic structure of that region. A "bare-bones" model of the target can subsequently be constructed by connecting all 3D volume element models. In the third phase, the constructed bare-bones model is used as a mask to remove points enclosed by the bare-bones model from the original point clouds. The remaining points are then connected to form 3D surface mesh patches. The boundary points of each surface patch are identified and these boundary points are projected onto the surfaces of the bare-bones model. Finally, new meshes are created to connect the projected points and original mesh boundaries to integrate the mesh surfaces with the 3D volume model. The proposed method was applied to an open-source point cloud data set and point clouds of a local historical structure. Preliminary results indicated that the reconstructed hybrid models using the proposed method can retain both fundamental 3D volume characteristics and accurate geometric appearance with fine details. The reconstructed hybrid models can also be used to represent targets in different levels of detail according to user and system requirements in different applications.

  8. Calibration and evaluation of a magnetically tracked ICE probe for guidance of left atrial ablation therapy

    NASA Astrophysics Data System (ADS)

    Linte, Cristian A.; Rettmann, Maryam E.; Dilger, Ben; Gunawan, Mia S.; Arunachalam, Shivaram P.; Holmes, David R., III; Packer, Douglas L.; Robb, Richard A.

    2012-02-01

    The novel prototype system for advanced visualization for image-guided left atrial ablation therapy developed in our laboratory permits ready integration of multiple imaging modalities, surgical instrument tracking, interventional devices and electro-physiologic data. This technology allows subject-specific procedure planning and guidance using 3D dynamic, patient-specific models of the patient's heart, augmented with real-time intracardiac echocardiography (ICE). In order for the 2D ICE images to provide intuitive visualization for accurate catheter to surgical target navigation, the transducer must be tracked, so that the acquired images can be appropriately presented with respect to the patient-specific anatomy. Here we present the implementation of a previously developed ultrasound calibration technique for a magnetically tracked ICE transducer, along with a series of evaluation methods to ensure accurate imaging and faithful representation of the imaged structures. Using an engineering-designed phantom, target localization accuracy is assessed by comparing known target locations with their transformed locations inferred from the tracked US images. In addition, the 3D volume reconstruction accuracy is also estimated by comparing a truth volume to that reconstructed from sequential 2D US images. Clinically emulating validation studies are conducted using a patient-specific left atrial phantom. Target localization error of clinically-relevant surgical targets represented by nylon fiducials implanted within the endocardial wall of the phantom was assessed. Our studies have demonstrated 2.4 +/- 0.8 mm target localization error in the engineering-designed evaluation phantoms, 94.8 +/- 4.6 % volume reconstruction accuracy, and 3.1 +/- 1.2 mm target localization error in the left atrial-mimicking phantom. These results are consistent with those disseminated in the literature and also with the accuracy constraints imposed by the employed technology and the clinical application.

  9. Impulsive-antisocial psychopathic traits linked to increased volume and functional connectivity within prefrontal cortex

    PubMed Central

    Korponay, Cole; Pujara, Maia; Deming, Philip; Philippi, Carissa; Decety, Jean; Kosson, David S.; Kiehl, Kent A.

    2017-01-01

    Abstract Psychopathy is a personality disorder characterized by callous lack of empathy, impulsive antisocial behavior, and criminal recidivism. Studies of brain structure and function in psychopathy have frequently identified abnormalities in the prefrontal cortex. However, findings have not yet converged to yield a clear relationship between specific subregions of prefrontal cortex and particular psychopathic traits. We performed a multimodal neuroimaging study of prefrontal cortex volume and functional connectivity in psychopathy, using a sample of adult male prison inmates (N = 124). We conducted volumetric analyses in prefrontal subregions, and subsequently assessed resting-state functional connectivity in areas where volume was related to psychopathy severity. We found that overall psychopathy severity and Factor 2 scores (which index the impulsive/antisocial traits of psychopathy) were associated with larger prefrontal subregion volumes, particularly in the medial orbitofrontal cortex and dorsolateral prefrontal cortex. Furthermore, Factor 2 scores were also positively correlated with functional connectivity between several areas of the prefrontal cortex. The results were not attributable to age, race, IQ, substance use history, or brain volume. Collectively, these findings provide evidence for co-localized increases in prefrontal cortex volume and intra-prefrontal functional connectivity in relation to impulsive/antisocial psychopathic traits. PMID:28402565

  10. Volumetric analysis of medial temporal lobe structures in brain development from childhood to adolescence.

    PubMed

    Hu, Shiyan; Pruessner, Jens C; Coupé, Pierrick; Collins, D Louis

    2013-07-01

    Puberty is an important stage of development as a child's sexual and physical characteristics mature because of hormonal changes. To better understand puberty-related effects on brain development, we investigated the magnetic resonance imaging (MRI) data of 306 subjects from 4 to 18 years of age. Subjects were grouped into before and during puberty groups according to their sexual maturity levels measured by the puberty scores. An appearance model-based automatic segmentation method with patch-based local refinement was employed to segment the MRI data and extract the volumes of medial temporal lobe (MTL) structures including the amygdala (AG), the hippocampus (HC), the entorhinal/perirhinal cortex (EPC), and the parahippocampal cortex (PHC). Our analysis showed age-related volumetric changes for the AG, HC, right EPC, and left PHC but only before puberty. After onset of puberty, these volumetric changes then correlate more with sexual maturity level, as measured by the puberty score. When normalized for brain volume, the volumes of the right HC decrease for boys; the volumes of the left HC increase for girls; and the volumes of the left and right PHC decrease for boys. These findings suggest that the rising levels of testosterone in boys and estrogen in girls might have opposite effects, especially for the HC and the PHC. Our findings on sex-specific and sexual maturity-related volumes may be useful in better understanding the MTL developmental differences and related learning, memory, and emotion differences between boys and girls during puberty. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Seismic Study of the Dynamics of the Solar Subsurface from SoHO Observations

    NASA Technical Reports Server (NTRS)

    Korzennik, Sylvain G.; Wagner, William J. (Technical Monitor)

    2001-01-01

    In collaboration with Dr. Baudin, we have developed and refined the new observational methodology for local helioseismology known as time-distance analysis. Global helioseismology study the solar oscillations as a superposition of resonant modes, whose properties (mode frequencies) reflect the global structure of the sun (sound speed stratification, rotation rate, etc). In contrast, local helioseismology look at the solar oscillations as wave packets whose propagation will be affected by perturbations of the media sampled. These local perturbations (sound speed or velocity flows) will modify the propagation time, that in turn can be used as a diagnostic tool for a given region. From a data reduction perspective, the processing of solar dopplergrams that result in time-distance maps, i.e. propagation times as a function of distance between bounces at the surface, is radically different from the methodology used for global mode analysis. We have, in a first step, further develop the programs needed to carry out such analysis. We have then applied them to NMI data set, and explore the trade-off between various averaging and filtering approaches - steps required to improve the signal-to-noise ratio of correlation maps - and the resulting stability and precision of the fitted propagation times. While excessive averaging (whether over space, propagation distance, or time) will reduce the diagnostic potential of the method, insufficient averaging lead to unstable fits, or uncertainties so large as to hide the information we seek. In a second phase, we have developed the analysis methodology required to infer local properties from perturbation in time propagation. Namely, we have developed time-distance inversion techniques, with an emphasis on inferences of velocity flows from time anomalies. Note also that during the period covered by this grant, all the investigators on this proposal (i.e., Drs. Baudin, Eff-Darwich, Korzennik, and Noyes) took part in the organization of the SOHO 6 /GONG 99 Workshop: Structure and Dynamics of the Interior of the Sun and Sunlike Stars, held on June 1-4 1999 at the Boston Park Plaza Hotel in Boston, Massachusetts, USA. it was very well attended by more than 160 participants from 26 countries from all over the world. The proceedings were published in two volumes as ESA SP-418, with Sessions I-III in Volume 1, and Sessions IV-VI in Volume 2 (1,000 pages in total). The complete contents are also included in digital form on a CD-ROM included with Volume 1. This CD-ROM also contains additional multi-media material that complements some of the contributions.

  12. Micromechanics-based magneto-elastic constitutive modeling of particulate composites

    NASA Astrophysics Data System (ADS)

    Yin, Huiming

    Modified Green's functions are derived for three situations: a magnetic field caused by a local magnetization, a displacement field caused by a local body force and a displacement field caused by a local prescribed eigenstrain. Based on these functions, an explicit solution is derived for two magnetic particles embedded in the infinite medium under external magnetic and mechanical loading. A general solution for numerable magnetic particles embedded in an infinite domain is then provided in integral form. Two-phase composites containing spherical magnetic particles of the same size are considered for three kinds of microstructures. With chain-structured composites, particle interactions in the same chain are considered and a transversely isotropic effective elasticity is obtained. For periodic composites, an eight-particle interaction model is developed and provides a cubic symmetric effective elasticity. In the random composite, pair-wise particle interactions are integrated from all possible positions and an isotropic effective property is reached. This method is further extended to functionally graded composites. Magneto-mechanical behavior is studied for the chain-structured composite and the random composite. Effective magnetic permeability, effective magnetostriction and field-dependent effective elasticity are investigated. It is seen that the chain-structured composite is more sensitive to the magnetic field than the random composite; a composite consisting of only 5% of chain-structured particles can provide a larger magnetostriction and a larger change of effective elasticity than an equivalent composite consisting of 30% of random dispersed particles. Moreover, the effective shear modulus of the chain-structured composite rapidly increases with the magnetic field, while that for the random composite decreases. An effective hyperelastic constitutive model is further developed for a magnetostrictive particle-filled elastomer, which is sampled by using a network of body-centered cubic lattices of particles connected by macromolecular chains. The proposed hyperelastic model is able to characterize overall nonlinear elastic stress-stretch relations of the composites under general three-dimensional loading. It is seen that the effective strain energy density is proportional to the length of stretched chains in unit volume and volume fraction of particles.

  13. Bottle Characteristics of Topical International Glaucoma Medications versus Local Brands in Saudi Arabia

    PubMed Central

    Al-Jumaian, Nasser; Malik, Rizwan; Khandekar, Rajiv; Al-Humaidan, Abdullah; Al-Madany, Rana; Al-Qahtani, Reham; Altowairqi, Ahmed; Al-Theeb, Abdulwahab; Zaman, Babar; Al-Djasim, Leyla; Craven, E. Randy; Edward, Deepak P.

    2016-01-01

    WHAT IS KNOWN AND OBJECTIVE: Physical bottle characteristics differ of brand name topical glaucoma medications and local generic equivalents. This study compares the bottle characteristics of international topical glaucoma brands versus local brands from the Kingdom of Saudi Arabia. METHODS: Data were collected on bottle drum volume, drop volume, bottle squeezability, bottle tip diameter, labels and instructions, cap color coding, and clarity of the drug label. Density-based calculations of drops in bottle volume were assessed using an analytic balance. Bottle tip diameter was measured using 0.05 mm Vernier calipers. A Likert scale-based questionnaire was used to evaluate the subjective opinions of patients on bottle squeezability, clarity of usage and storage instructions, and the consistency of the cap color coding. RESULTS: The volumes of international brands were statistically significantly higher than the local brands (P < 0.001). A number of drops per bottle and tip diameter were comparable between the international local brands. Cap color coding was inconsistent for international and local brands. Patients were dissatisfied with the label font size. Patients reported that the international and local brands were similar in terms of the ease of opening the bottle, instilling a drop, and the clarity of the instructions; but the local brands were subjectively easier to squeeze than international brands. WHAT IS NEW AND CONCLUSIONS: This is the first study to compare bottle characteristics of local Saudi Arabia brands with international brands. The bottle characteristics and patient feedback were similar between the local and international topical glaucoma medications. However, there were differences between the local and international brands in drug volume, bottle squeezability. Hence, patient compliance and drop dosage may differ based on the origin of manufacture. PMID:27994392

  14. Right hemisphere grey matter structure and language outcomes in chronic left hemisphere stroke.

    PubMed

    Xing, Shihui; Lacey, Elizabeth H; Skipper-Kallal, Laura M; Jiang, Xiong; Harris-Love, Michelle L; Zeng, Jinsheng; Turkeltaub, Peter E

    2016-01-01

    The neural mechanisms underlying recovery of language after left hemisphere stroke remain elusive. Although older evidence suggested that right hemisphere language homologues compensate for damage in left hemisphere language areas, the current prevailing theory suggests that right hemisphere engagement is ineffective or even maladaptive. Using a novel combination of support vector regression-based lesion-symptom mapping and voxel-based morphometry, we aimed to determine whether local grey matter volume in the right hemisphere independently contributes to aphasia outcomes after chronic left hemisphere stroke. Thirty-two left hemisphere stroke survivors with aphasia underwent language assessment with the Western Aphasia Battery-Revised and tests of other cognitive domains. High-resolution T1-weighted images were obtained in aphasia patients and 30 demographically matched healthy controls. Support vector regression-based multivariate lesion-symptom mapping was used to identify critical language areas in the left hemisphere and then to quantify each stroke survivor's lesion burden in these areas. After controlling for these direct effects of the stroke on language, voxel-based morphometry was then used to determine whether local grey matter volumes in the right hemisphere explained additional variance in language outcomes. In brain areas in which grey matter volumes related to language outcomes, we then compared grey matter volumes in patients and healthy controls to assess post-stroke plasticity. Lesion-symptom mapping showed that specific left hemisphere regions related to different language abilities. After controlling for lesion burden in these areas, lesion size, and demographic factors, grey matter volumes in parts of the right temporoparietal cortex positively related to spontaneous speech, naming, and repetition scores. Examining whether domain general cognitive functions might explain these relationships, partial correlations demonstrated that grey matter volumes in these clusters related to verbal working memory capacity, but not other cognitive functions. Further, grey matter volumes in these areas were greater in stroke survivors than healthy control subjects. To confirm this result, 10 chronic left hemisphere stroke survivors with no history of aphasia were identified. Grey matter volumes in right temporoparietal clusters were greater in stroke survivors with aphasia compared to those without history of aphasia. These findings suggest that the grey matter structure of right hemisphere posterior dorsal stream language homologues independently contributes to language production abilities in chronic left hemisphere stroke, and that these areas may undergo hypertrophy after a stroke causing aphasia. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Production and delivery of a fluid mixture to an annular volume of a wellbore

    DOEpatents

    Hermes, Robert E [Los Alamos, NM; Bland, Ronald Gene [Houston, TX; Foley, Ron Lee [Magnolia, TX; Bloys, James B [Katy, TX; Gonzalez, Manuel E [Kingwood, NM; Daniel, John M [Germantown, TN; Robinson, Ian M [Guisborough, GB; Carpenter, Robert B [Tomball, TX

    2012-01-24

    The methods described herein generally relate to preparing and delivering a fluid mixture to a confined volume, specifically an annular volume located between two concentrically oriented casing strings within a hydrocarbon fluid producing well. The fluid mixtures disclosed herein are useful in controlling pressure in localized volumes. The fluid mixtures comprise at least one polymerizable monomer and at least one inhibitor. The processes and methods disclosed herein allow the fluid mixture to be stored, shipped and/or injected into localized volumes, for example, an annular volume defined by concentric well casing strings.

  16. Single-nanotube tracking reveals the nanoscale organization of the extracellular space in the live brain

    NASA Astrophysics Data System (ADS)

    Godin, Antoine G.; Varela, Juan A.; Gao, Zhenghong; Danné, Noémie; Dupuis, Julien P.; Lounis, Brahim; Groc, Laurent; Cognet, Laurent

    2017-03-01

    The brain is a dynamic structure with the extracellular space (ECS) taking up almost a quarter of its volume. Signalling molecules, neurotransmitters and nutrients transit via the ECS, which constitutes a key microenvironment for cellular communication and the clearance of toxic metabolites. The spatial organization of the ECS varies during sleep, development and aging and is probably altered in neuropsychiatric and degenerative diseases, as inferred from electron microscopy and macroscopic biophysical investigations. Here we show an approach to directly observe the local ECS structures and rheology in brain tissue using super-resolution imaging. We inject single-walled carbon nanotubes into rat cerebroventricles and follow the near-infrared emission of individual nanotubes as they diffuse inside the ECS for tens of minutes in acute slices. Because of the interplay between the nanotube geometry and the ECS local environment, we can extract information about the dimensions and local viscosity of the ECS. We find a striking diversity of ECS dimensions down to 40 nm, and as well as of local viscosity values. Moreover, by chemically altering the extracellular matrix of the brains of live animals before nanotube injection, we reveal that the rheological properties of the ECS are affected, but these alterations are local and inhomogeneous at the nanoscale.

  17. Multipoint entanglement in disordered systems

    NASA Astrophysics Data System (ADS)

    Magán, Javier M.; Paganelli, Simone; Oganesyan, Vadim

    2017-02-01

    We develop an approach to characterize excited states of disordered many-body systems using spatially resolved structures of entanglement. We show that the behavior of the mutual information (MI) between two parties of a many-body system can signal a qualitative difference between thermal and localized phases - MI is finite in insulators while it approaches zero in the thermodynamic limit in the ergodic phase. Related quantities, such as the recently introduced Codification Volume (CV), are shown to be suitable to quantify the correlation length of the system. These ideas are illustrated using prototypical non-interacting wavefunctions of localized and extended particles and then applied to characterize states of strongly excited interacting spin chains. We especially focus on evolution of spatial structure of quantum information between high temperature diffusive and many-body localized (MBL) phases believed to exist in these models. We study MI as a function of disorder strength both averaged over the eigenstates and in time-evolved product states drawn from continuously deformed family of initial states realizable experimentally. As expected, spectral and time-evolved averages coincide inside the ergodic phase and differ significantly outside. We also highlight dispersion among the initial states within the localized phase - some of these show considerable generation and delocalization of quantum information.

  18. Volume and structural relaxation in compressed sodium borate glass.

    PubMed

    Svenson, Mouritz N; Youngman, Randall E; Yue, Yuanzheng; Rzoska, Sylwester J; Bockowski, Michal; Jensen, Lars R; Smedskjaer, Morten M

    2016-11-21

    The structure and properties of glass can be modified through compression near the glass transition temperature (T g ), and such modified structure and properties can be maintained at ambient temperature and pressure. However, once the compressed glass undergoes annealing near T g at ambient pressure, the modified structure and properties will relax. The challenging question is how the property relaxation is correlated with both the local and the medium-range structural relaxation. In this paper, we answer this question by studying the volume (density) and structural relaxation of a sodium borate glass that has first been pressure-quenched from its T g at 1 GPa, and then annealed at ambient pressure under different temperature-time conditions. Using 11 B MAS NMR and Raman spectroscopy, we find that the pressure-induced densification of the glass is accompanied by a conversion of six-membered rings into non-ring trigonal boron (B III ) units, i.e. a structural change in medium-range order, and an increase in the fraction of tetrahedral boron (B IV ), i.e. a structural change in short-range order. These pressure-induced structural conversions are reversible during ambient pressure annealing near T g , but exhibit a dependence on the annealing temperature, e.g. the ring/non-ring B III ratio stabilizes at different values depending on the applied annealing temperature. We find that conversions between structural units cannot account for the pressure-induced densification, and instead we suggest the packing of structural units as the main densification mechanism.

  19. Radiotherapy treatment planning: benefits of CT-MR image registration and fusion in tumor volume delineation.

    PubMed

    Djan, Igor; Petrović, Borislava; Erak, Marko; Nikolić, Ivan; Lucić, Silvija

    2013-08-01

    Development of imaging techniques, computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET), made great impact on radiotherapy treatment planning by improving the localization of target volumes. Improved localization allows better local control of tumor volumes, but also minimizes geographical misses. Mutual information is obtained by registration and fusion of images achieved manually or automatically. The aim of this study was to validate the CT-MRI image fusion method and compare delineation obtained by CT versus CT-MRI image fusion. The image fusion software (XIO CMS 4.50.0) was applied to delineate 16 patients. The patients were scanned on CT and MRI in the treatment position within an immobilization device before the initial treatment. The gross tumor volume (GTV) and clinical target volume (CTV) were delineated on CT alone and on CT+MRI images consecutively and image fusion was obtained. Image fusion showed that CTV delineated on a CT image study set is mainly inadequate for treatment planning, in comparison with CTV delineated on CT-MRI fused image study set. Fusion of different modalities enables the most accurate target volume delineation. This study shows that registration and image fusion allows precise target localization in terms of GTV and CTV and local disease control.

  20. Localized hippocampus measures are associated with Alzheimer pathology and cognition independent of total hippocampal volume.

    PubMed

    Carmichael, Owen; Xie, Jing; Fletcher, Evan; Singh, Baljeet; DeCarli, Charles

    2012-06-01

    Hippocampal injury in the Alzheimer's disease (AD) pathological process is region-specific and magnetic resonance imaging (MRI)-based measures of localized hippocampus (HP) atrophy are known to detect region-specific changes associated with clinical AD, but it is unclear whether these measures provide information that is independent of that already provided by measures of total HP volume. Therefore, this study assessed the strength of association between localized HP atrophy measures and AD-related measures including cerebrospinal fluid (CSF) amyloid beta and tau concentrations, and cognitive performance, in statistical models that also included total HP volume as a covariate. A computational technique termed localized components analysis (LoCA) was used to identify 7 independent patterns of HP atrophy among 390 semiautomatically delineated HP from baseline magnetic resonance imaging of participants in the Alzheimer's Disease Neuroimaging Initiative (ADNI). Among cognitively normal participants, multiple measures of localized HP atrophy were significantly associated with CSF amyloid concentration, while total HP volume was not. In addition, among all participants, localized HP atrophy measures and total HP volume were both independently and additively associated with CSF tau concentration, performance on numerous neuropsychological tests, and discrimination between normal, mild cognitive impairment (MCI), and AD clinical diagnostic groups. Together, these results suggest that regional measures of hippocampal atrophy provided by localized components analysis may be more sensitive than total HP volume to the effects of AD pathology burden among cognitively normal individuals and may provide information about HP regions whose deficits may have especially profound cognitive consequences throughout the AD clinical course. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Marginal space learning for efficient detection of 2D/3D anatomical structures in medical images.

    PubMed

    Zheng, Yefeng; Georgescu, Bogdan; Comaniciu, Dorin

    2009-01-01

    Recently, marginal space learning (MSL) was proposed as a generic approach for automatic detection of 3D anatomical structures in many medical imaging modalities [1]. To accurately localize a 3D object, we need to estimate nine pose parameters (three for position, three for orientation, and three for anisotropic scaling). Instead of exhaustively searching the original nine-dimensional pose parameter space, only low-dimensional marginal spaces are searched in MSL to improve the detection speed. In this paper, we apply MSL to 2D object detection and perform a thorough comparison between MSL and the alternative full space learning (FSL) approach. Experiments on left ventricle detection in 2D MRI images show MSL outperforms FSL in both speed and accuracy. In addition, we propose two novel techniques, constrained MSL and nonrigid MSL, to further improve the efficiency and accuracy. In many real applications, a strong correlation may exist among pose parameters in the same marginal spaces. For example, a large object may have large scaling values along all directions. Constrained MSL exploits this correlation for further speed-up. The original MSL only estimates the rigid transformation of an object in the image, therefore cannot accurately localize a nonrigid object under a large deformation. The proposed nonrigid MSL directly estimates the nonrigid deformation parameters to improve the localization accuracy. The comparison experiments on liver detection in 226 abdominal CT volumes demonstrate the effectiveness of the proposed methods. Our system takes less than a second to accurately detect the liver in a volume.

  2. Heterogeneity and anisotropy in the lithospheric mantle

    NASA Astrophysics Data System (ADS)

    Tommasi, Andréa; Vauchez, Alain

    2015-10-01

    The lithospheric mantle is intrinsically heterogeneous and anisotropic. These two properties govern the repartition of deformation, controlling intraplate strain localization and development of new plate boundaries. Geophysical and geological observations provide clues on the types, ranges, and characteristic length scales of heterogeneity and anisotropy in the lithospheric mantle. Seismic tomography points to variations in geothermal gradient and hence in rheological behavior at scales of hundreds of km. Seismic anisotropy data substantiate anisotropic physical properties consistent at scales of tens to hundreds of km. Receiver functions imply lateral and vertical heterogeneity at scales < 10 km, which might record gradients in composition or anisotropy. Observations on naturally deformed peridotites establish that compositional heterogeneity and Crystal Preferred Orientations (CPOs) are ubiquitous from the mm to the km scales. These data allow discussing the processes that produce/destroy heterogeneity and anisotropy and constraining the time scales over which they are active. This analysis highlights: (i) the role of deformation and reactive percolation of melts and fluids in producing compositional and structural heterogeneity and the feedbacks between these processes, (ii) the weak mechanical effect of mineralogical variations, and (iii) the low volumes of fine-grained microstructures and difficulty to preserve them. In contrast, olivine CPO and the resulting anisotropy of mechanical and thermal properties are only modified by deformation. Based on this analysis, we propose that strain localization at the plate scale is, at first order, controlled by large-scale variations in thermal structure and in CPO-induced anisotropy. In cold parts of the lithospheric mantle, grain size reduction may contribute to strain localization, but the low volume of fine-grained domains limits this effect.

  3. Influence of grain size distribution on the mechanical behavior of light alloys in wide range of strain rates

    NASA Astrophysics Data System (ADS)

    Skripnyak, Vladimir A.; Skripnyak, Natalia V.; Skripnyak, Evgeniya G.; Skripnyak, Vladimir V.

    2017-01-01

    Inelastic deformation and damage at the mesoscale level of ultrafine grained (UFG) light alloys with distribution of grain size were investigated in wide loading conditions by experimental and computer simulation methods. The computational multiscale models of representative volume element (RVE) with the unimodal and bimodal grain size distributions were developed using the data of structure researches aluminum and magnesium UFG alloys. The critical fracture stress of UFG alloys on mesoscale level depends on relative volumes of coarse grains. Microcracks nucleation at quasi-static and dynamic loading is associated with strain localization in UFG partial volumes with bimodal grain size distribution. Microcracks arise in the vicinity of coarse and ultrafine grains boundaries. It is revealed that the occurrence of bimodal grain size distributions causes the increasing of UFG alloys ductility, but decreasing of the tensile strength.

  4. Strategic Requirements for the Army to the Year 2000. Volume III. The Americas.

    DTIC Science & Technology

    1982-11-01

    will continue to experience a host of common problems and structural debilities. Even with high levels of external financial assistance, local economies...further drive up the foreign debt (already at about $60 billion) and will test the risk-taking limits of the O international financial community...provide both material ana financial support. Finally, the role of the traditional regional powers will have atrected and been atrected in varying ways

  5. Structural Properties of a Sheared Dense Emulsion

    NASA Astrophysics Data System (ADS)

    Dutta, S. K.; Knowlton, E. D.; Blair, D. L.

    2011-03-01

    The flow of a compressed emulsion above its yield point can be described by a velocity profile in addition to a rearrangement of individual droplets on top of this time averaged motion. Using a confocal microscope, we have tracked the droplets of an oil-in-water emulsion as they are sheared in a rheometer. When the applied stress is large, the velocity profile shows a nearly affine deformation, while there is strong strain localization close to yield. The crossover between these two behaviors occurs at higher shear rates as the volume fraction of the droplets is increased. At shorter length scales, rearrangement events are heterogeneously distributed, reflecting the disordered packing of the emulsion droplets. This characterization is a step towards linking bulk viscoelastic properties to local structural relaxation as the system leaves the jammed state. This work is funded by the NSF through Grant DMR 0847490.

  6. Optical and mechanical design of a "zipper" photonic crystal optomechanical cavity.

    PubMed

    Chan, Jasper; Eichenfield, Matt; Camacho, Ryan; Painter, Oskar

    2009-03-02

    Design of a doubly-clamped beam structure capable of localizing mechanical and optical energy at the nanoscale is presented. The optical design is based upon photonic crystal concepts in which patterning of a nanoscale-cross-section beam can result in strong optical localization to an effective optical mode volume of 0.2 cubic wavelengths ( (lambdac)(3)). By placing two identical nanobeams within the near field of each other, strong optomechanical coupling can be realized for differential motion between the beams. Current designs for thin film silicon nitride beams at a wavelength of lambda?= 1.5 microm indicate that such structures can simultaneously realize an optical Q-factor of 7x10(6), motional mass m(u) approximately 40 picograms, mechanical mode frequency Omega(M)/2pi approximately 170 MHz, and an optomechanical coupling factor (g(OM) identical with domega(c)/dx = omega(c)/L(OM)) with effective length L(OM) approximately lambda= 1.5 microm.

  7. Effect of Al-doped YCrO3 on structural, electronic and magnetic properties

    NASA Astrophysics Data System (ADS)

    Durán, A.; Verdín, E.; Conde, A.; Escamilla, R.

    2018-05-01

    Structural, dielectric and magnetic properties were investigated in the YCr1-xAlxO3 with 0 < x < 0.5 compositions. XRD and XPS studies show that the partial substitution of the Al3+ ion decreases the cell volume of the orthorhombic structure without changes in the oxidation state of the Cr3+ ions. We discuss two mechanisms that could have a significant influence on the magnetic properties. The first is related to local deformation occurring for x < 0.1 of Al content and the second is related to change of the electronic structure. The local deformation is controlled by the inclination of the octahedrons and the octahedral distortion having a strong effect on the TN and the coercive field at low Al concentrations. On the other hand, the decreasing of the magnetization values (Mr and Hc) is ascribed to changes in the electronic structure, which is confirmed by a decreasing of the contribution of Cr 3d states at Fermi level due to increasing Al3+ content. Thus, we analyzed and discussed that both mechanisms influence the electronic properties of the YCr1-xAlxO3 solid solution.

  8. Dissociation of local and global skeletal muscle oxygen transport metrics in type 2 diabetes.

    PubMed

    Mason McClatchey, P; Bauer, Timothy A; Regensteiner, Judith G; Schauer, Irene E; Huebschmann, Amy G; Reusch, Jane E B

    2017-08-01

    Exercise capacity is impaired in type 2 diabetes, and this impairment predicts excess morbidity and mortality. This defect appears to involve excess skeletal muscle deoxygenation, but the underlying mechanisms remain unclear. We hypothesized that reduced blood flow, reduced local recruitment of blood volume/hematocrit, or both contribute to excess skeletal muscle deoxygenation in type 2 diabetes. In patients with (n=23) and without (n=18) type 2 diabetes, we recorded maximal reactive hyperemic leg blood flow, peak oxygen utilization during cycling ergometer exercise (VO 2peak ), and near-infrared spectroscopy-derived measures of exercise-induced changes in skeletal muscle oxygenation and blood volume/hematocrit. We observed a significant increase (p<0.05) in skeletal muscle deoxygenation in type 2 diabetes despite similar blood flow and recruitment of local blood volume/hematocrit. Within the control group skeletal muscle deoxygenation, local recruitment of microvascular blood volume/hematocrit, blood flow, and VO 2peak are all mutually correlated. None of these correlations were preserved in type 2 diabetes. These results suggest that in type 2 diabetes 1) skeletal muscle oxygenation is impaired, 2) this impairment may occur independently of bulk blood flow or local recruitment of blood volume/hematocrit, and 3) local and global metrics of oxygen transport are dissociated. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Seismic Structures in the Earth's Inner Core Below Southeastern Asia

    NASA Astrophysics Data System (ADS)

    Krasnoshchekov, Dmitry; Kaazik, Petr; Kozlovskaya, Elena; Ovtchinnikov, Vladimir

    2016-05-01

    Documenting seismic heterogeneities in the Earth's inner core (IC) is important in terms of getting an insight into its history and dynamics. A valuable means for studying properties and spatial structure of such heterogeneities is provided by measurements of body waves refracted in the vicinity of the inner core boundary (ICB). Here, we investigate eastern hemisphere of the solid core by means of PKPBC-PKPDF differential travel times that sample depths from 140 to 360 km below its boundary. We study 292 polar and 133 equatorial residuals measured over the traces that probe roughly the same volume of the IC in both planes. Equatorial residuals show slight spatial variations in the sampled IC volume mostly below the level of 0.5 %, whereas polar residuals are up to three times as big, direction dependent and can exhibit higher local variations. The measurements reveal fast changes in seismic velocity within a restricted volume of the IC. We interpret the observations in terms of anisotropy and check against several anisotropy models few of which have been found capable of fitting the residuals scatter. We particularly quantify the model where a dipping discontinuity separates fully isotropic roof of the IC from its anisotropic body, whereas the depth of isotropy-anisotropy transition increases in southeast direction from 190 km below Southeastern Asia (off the coast of China) to 350 km beneath Australia. Another acceptable model cast in terms of localized anisotropic heterogeneities is valid if 33 largest polar measurements over the rays sampling a small volume below Southeastern Asia and the rest of polar data are treated separately. This model envisages almost isotropic eastern hemisphere of the IC at least down to the depth of 360 km below the ICB and constrains the anisotropic volume only to the ranges of North latitudes from 18° to 23°, East longitudes from 125° to 135° and depths exceeding 170 km. The anisotropy strength in either model is about 2 %. Further effective pursuit of the models presents challenges in terms of resolution and coverage and basically requires a significant dataset extension.

  10. Cerium; crystal structure and position in the periodic table.

    PubMed

    Johansson, Börje; Luo, Wei; Li, Sa; Ahuja, Rajeev

    2014-09-17

    The properties of the cerium metal have intrigued physicists and chemists for many decades. In particular a lot of attention has been directed towards its high pressure behavior, where an isostructural volume collapse (γ phase → α phase) has been observed. Two main models of the electronic aspect of this transformation have been proposed; one where the 4f electron undergoes a change from being localized into an itinerant metallic state, and one where the focus is on the interaction between the 4f electron and the conduction electrons, often referred to as the Kondo volume collapse model. However, over the years it has been repeatedly questioned whether the cerium collapse really is isostructural. Most recently, detailed experiments have been able to remove this worrisome uncertainty. Therefore the isostructural aspect of the α-γ transition has now to be seriously addressed in the theoretical modeling, something which has been very much neglected. A study of this fundamental characteristic of the cerium volume collapse is made in present paper and we show that the localized [rlhar2 ] delocalized 4f electron picture provides an adequate description of this unique behavior. This agreement makes it possible to suggest that an appropriate crossroad position for cerium in The Periodic Table.

  11. Effects of local irradiation combined with sunitinib on early remodeling, mitochondria, and oxidative stress in the rat heart

    PubMed Central

    Sridharan, Vijayalakshmi; Thomas, Chanice J.; Cao, Maohua; Melnyk, Stepan B.; Pavliv, Oleksandra; Joseph, Jacob; Singh, Sharda P.; Sharma, Sunil; Moros, Eduardo G.; Boerma, Marjan

    2016-01-01

    Background and Purpose Thoracic (chemo)radiation therapy is increasingly administered with tyrosine kinase inhibitors (TKI). While TKI have adverse effects on the heart, it is unknown whether combination with other cancer therapies causes enhanced toxicity. We used an animal model to investigate whether radiation and sunitinib interact in their effects on the heart. Material and Methods Male Sprague-Dawley rats received local heart irradiation (9 Gy per day, 5 days). Oral sunitinib (8 or 15 mg/kg bodyweight per day) started on day 1 of irradiation and continued for 2 weeks. Cardiac function was examined with echocardiography. Cardiac remodeling, cell death, left ventricular (LV) oxidative stress markers, mitochondrial morphology and membrane permeability transition pore (mPTP) opening were assessed. Results Cardiac diameter, stroke volume, and LV volume, mass and anterior wall thickness increased in time, but only in the vehicle group. Sunitinib reduced LV inner diameter and volume in systole, which were counteracted by radiation. Sunitinib and radiation showed enhanced effects on mitochondrial morphology and mPTP opening, but not on cardiac troponin I, mast cell numbers or markers of oxidative stress. Conclusions This study found no early enhanced effects of radiation and sunitinib on cardiac function or structure. Long-term effects remain to be determined. PMID:27072940

  12. Cerium; Crystal Structure and Position in The Periodic Table

    PubMed Central

    Johansson, Börje; Luo, Wei; Li, Sa; Ahuja, Rajeev

    2014-01-01

    The properties of the cerium metal have intrigued physicists and chemists for many decades. In particular a lot of attention has been directed towards its high pressure behavior, where an isostructural volume collapse (γ phase → α phase) has been observed. Two main models of the electronic aspect of this transformation have been proposed; one where the 4f electron undergoes a change from being localized into an itinerant metallic state, and one where the focus is on the interaction between the 4f electron and the conduction electrons, often referred to as the Kondo volume collapse model. However, over the years it has been repeatedly questioned whether the cerium collapse really is isostructural. Most recently, detailed experiments have been able to remove this worrisome uncertainty. Therefore the isostructural aspect of the α-γ transition has now to be seriously addressed in the theoretical modeling, something which has been very much neglected. A study of this fundamental characteristic of the cerium volume collapse is made in present paper and we show that the localized ⇌ delocalized 4f electron picture provides an adequate description of this unique behavior. This agreement makes it possible to suggest that an appropriate crossroad position for cerium in The Periodic Table. PMID:25227991

  13. Magneto-elastic modeling of composites containing chain-structured magnetostrictive particles

    NASA Astrophysics Data System (ADS)

    Yin, H. M.; Sun, L. Z.; Chen, J. S.

    2006-05-01

    Magneto-elastic behavior is investigated for two-phase composites containing chain-structured magnetostrictive particles under both magnetic and mechanical loading. To derive the local magnetic and elastic fields, three modified Green's functions are derived and explicitly integrated for the infinite domain containing a spherical inclusion with a prescribed magnetization, body force, and eigenstrain. A representative volume element containing a chain of infinite particles is introduced to solve averaged magnetic and elastic fields in the particles and the matrix. Effective magnetostriction of composites is derived by considering the particle's magnetostriction and the magnetic interaction force. It is shown that there exists an optimal choice of the Young's modulus of the matrix and the volume fraction of the particles to achieve the maximum effective magnetostriction. A transversely isotropic effective elasticity is derived at the infinitesimal deformation. Disregarding the interaction term, this model provides the same effective elasticity as Mori-Tanaka's model. Comparisons of model results with the experimental data and other models show the efficacy of the model and suggest that the particle interactions have a considerable effect on the effective magneto-elastic properties of composites even for a low particle volume fraction.

  14. Calculation of Local Volume Factors for Relascope Cruising

    Treesearch

    Charles B. Briscoe

    1957-01-01

    In these days of climbing stumpage prices it is frequently desirable to attain more precision from a relascope cruise than is possible using ready-made volume factors. Like any factors made to be approximately applicalble over a wide range of conditions, volume factors may give very misleading results under certain local condition. For this reason it is desirable to...

  15. Local fluctuations of the signed traded volumes and the dependencies of demands: a copula analysis

    NASA Astrophysics Data System (ADS)

    Wang, Shanshan; Guhr, Thomas

    2018-03-01

    We investigate how the local fluctuations of the signed traded volumes affect the dependence of demands between stocks. We analyze the empirical dependence of demands using copulas and show that they are well described by a bivariate K copula density function. We find that large local fluctuations strongly increase the positive dependence but lower slightly the negative one in the copula density. This interesting feature is due to cross-correlations of volume imbalances between stocks. Also, we explore the asymmetries of tail dependencies of the copula density, which are moderate for the negative dependencies but strong for the positive ones. For the latter, we reveal that large local fluctuations of the signed traded volumes trigger stronger dependencies of demands than of supplies, probably indicating a bull market with persistent raising of prices.

  16. Structural interpretation from horizontal seismic sections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, A.R.

    1983-03-01

    The interpreter of a 3D survey must use a data volume. Horizontal slices through a data volume, called Seiscrop sections, have unique properties and structural interpretation from them is fast, convenient, and effective. An event on a Seiscrop section displays local strike, a property which permits direct contouring of a structural surface without any timing and posting. The width of an event on a Seiscrop section is a composition of the frequency of the data and the structural dip. Event terminations indicate faults or other discontinuities when they are transverse to structural strike. Faults parallel to structural strike are muchmore » less evident on a single Seiscrop section but become apparent with the relative movement of events from section to section. In practical mapping, we normally contour one fault block before proceeding to the next with the correlation between them being established from the vertical sections. With dual polarity variable area displays, the interpreter can perceive five amplitude levels and normally picks the edge of a trough. With color amplitude Seiscrop sections, it is possible to pick on the crest of any event. With color phase sections the interpreter can pick at any arbitrary but consistent point on the seismic waveform. Subtle structural features are commonly revealed on horizontal sections which may never have been noticed if working from vertical sections alone.« less

  17. Chemical and physical insight on the local properties of the phosphides XSiP2 (X = Be, Mg, Cd, Zn and Hg) under pressure: from first principles calculations

    NASA Astrophysics Data System (ADS)

    Ouahrani, Tarik

    2013-09-01

    Local properties of the XSiP2 (X = Be, Mg, Cd, Zn and Hg) compounds are revisited through the partition of static thermodynamic properties under pressure. We pay attention to the metallization that occurs when the investigated compounds undergo a phase transition from chalcopyrite to the NaCl structure. Electron localization function analysis shows that the local valence basin attractors values decrease as a function of pressure. As the pressure increases, the tetragonal distortion ( c/ a) diminishes while the degree of ionicity enhances. In addition, by means of atom in molecule approach, atomic-like local compressibility and pressures are analyzed. We found that the basins volumes of the investigated compounds in the NaCl phase have lower compressibilities than those in the chalcopyrite phase. According to the predicted core-valence basins, the phosphorus cation is found to be the more affected by the hydrostatic pressure.

  18. Generalized localization model of relaxation in glass-forming liquids

    PubMed Central

    Cicerone, Marcus T.; Zhong, Qin; Tyagi, Madhusudan

    2012-01-01

    Glassy solidification is characterized by two essential phenomena: localization of the solidifying material’s constituent particles and a precipitous increase in its structural relaxation time τ. Determining how these two phenomena relate is key to understanding glass formation. Leporini and coworkers have recently argued that τ universally depends on a localization length-scale (the Debye-Waller factor) in a way that depends only upon the value of at the glass transition. Here we find that this ‘universal’ model does not accurately describe τ in several simulated and experimental glass-forming materials. We develop a new localization model of solidification, building upon the classical Hall-Wolynes and free volume models of glass formation, that accurately relates τ to in all systems considered. This new relationship is based on a consideration of the the anisotropic nature of particle localization. The model also indicates the presence of a particle delocalization transition at high temperatures associated with the onset of glass formation. PMID:23393495

  19. Structural and Functional Cerebral Correlates of Hypnotic Suggestibility

    PubMed Central

    Huber, Alexa; Lui, Fausta; Duzzi, Davide; Pagnoni, Giuseppe; Porro, Carlo Adolfo

    2014-01-01

    Little is known about the neural bases of hypnotic suggestibility, a cognitive trait referring to the tendency to respond to hypnotic suggestions. In the present magnetic resonance imaging study, we performed regression analyses to assess hypnotic suggestibility-related differences in local gray matter volume, using voxel-based morphometry, and in waking resting state functional connectivity of 10 resting state networks, in 37 healthy women. Hypnotic suggestibility was positively correlated with gray matter volume in portions of the left superior and medial frontal gyri, roughly overlapping with the supplementary and pre-supplementary motor area, and negatively correlated with gray matter volume in the left superior temporal gyrus and insula. In the functional connectivity analysis, hypnotic suggestibility was positively correlated with functional connectivity between medial posterior areas, including bilateral posterior cingulate cortex and precuneus, and both the lateral visual network and the left fronto-parietal network; a positive correlation was also found with functional connectivity between the executive-control network and a right postcentral/parietal area. In contrast, hypnotic suggestibility was negatively correlated with functional connectivity between the right fronto-parietal network and the right lateral thalamus. These findings demonstrate for the first time a correlation between hypnotic suggestibility, the structural features of specific cortical regions, and the functional connectivity during the normal resting state of brain structures involved in imagery and self-monitoring activity. PMID:24671130

  20. Deterministic modeling of the impact of underground structures on urban groundwater temperature.

    PubMed

    Attard, Guillaume; Rossier, Yvan; Winiarski, Thierry; Eisenlohr, Laurent

    2016-12-01

    Underground structures have a major influence on groundwater temperature and have a major contribution on the anthropogenic heat fluxes into urban aquifers. Groundwater temperature is crucial for resource management as it can provide operational sustainability indicators for groundwater quality and geothermal energy. Here, a three dimensional heat transport modeling approach was conducted to quantify the thermally affected zone (TAZ, i.e. increase in temperature of more than +0.5°C) caused by two common underground structures: (1) an impervious structure and (2) a draining structure. These design techniques consist in (1) ballasting the underground structure in order to resist hydrostatic pressure, or (2) draining the groundwater under the structure in order to remove the hydrostatic pressure. The volume of the TAZ caused by these underground structures was shown to range from 14 to 20 times the volume of the underground structure. Additionally, the cumulative impact of underground structures was assessed under average thermal conditions at the scale of the greater Lyon area (France). The heat island effect caused by underground structures was highlighted in the business center of the city. Increase in temperature of more than +4.5°C were locally put in evidence. The annual heat flow from underground structures to the urban aquifer was computed deterministically and represents 4.5GW·h. Considering these impacts, the TAZ of deep underground structures should be taken into account in the geothermal potential mapping. Finally, the amount of heat energy provided should be used as an indicator of heating potential in these areas. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Skeletonization applied to magnetic resonance angiography images

    NASA Astrophysics Data System (ADS)

    Nystroem, Ingela

    1998-06-01

    When interpreting and analyzing magnetic resonance angiography images, the 3D overall tree structure and the thickness of the blood vessels are of interest. This shape information may be easier to obtain from the skeleton of the blood vessels. Skeletonization of digital volume objects denotes either reduction to a 2D structure consisting of 3D surfaces, and curves, or reduction to a 1D structure consisting of 3D curves only. Thin elongated objects, such as blood vessels, are well suited for reduction to curve skeletons. Our results indicate that the tree structure of the vascular system is well represented by the skeleton. Positions for possible artery stenoses may be identified by locating local minima in curve skeletons, where the skeletal voxels are labeled with the distance to the original background.

  2. Ventricular enlargement in schizophrenia related to volume reduction of the thalamus, striatum, and superior temporal cortex.

    PubMed

    Gaser, Christian; Nenadic, Igor; Buchsbaum, Bradley R; Hazlett, Erin A; Buchsbaum, Monte S

    2004-01-01

    Enlargement of the lateral ventricles is among the most frequently reported macroscopic brain structural changes in schizophrenia, although variable in extent and localization. The authors investigated whether ventricular enlargement is related to regionally specific volume loss. High-resolution magnetic resonance imaging scans from 39 patients with schizophrenia were analyzed with deformation-based morphometry, a voxel-wise whole brain morphometric technique. Significant negative correlations with the ventricle-brain ratio were found for voxels in the left and right thalamus and posterior putamen and in the left superior temporal gyrus and insula. Thalamic shrinkage, especially of medial nuclei and the adjacent striatum and insular cortex, appear to be important contributors to ventricular enlargement in schizophrenia.

  3. Crystallization kinetics of the Cu{sub 50}Zr{sub 50} metallic glass under isothermal conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Qian; Jian, Zengyun, E-mail: jianzengyun@xatu.edu.cn; Xu, Junfeng

    2016-12-15

    Amorphous structure of the melt-spun Cu{sub 50}Zr{sub 50} amorphous alloy ribbons were confirmed by X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HR-TEM). Isothermal crystallization kinetics of these alloy ribbons were investigated using differential scanning calorimetry (DSC). Besides, Arrhenius and Johnson-Mehl-Avrami (JMA) equations were utilized to obtain the isothermal crystallization kinetic parameters. As shown in the results, the local activation energy E{sub α} decreases by a large margin at the crystallized volume fraction α<0.1, which proves that crystallization process is increasingly easy. In addition, the local activation energy E{sub α} is basically constant at 0.1

  4. Distributed mean curvature on a discrete manifold for Regge calculus

    NASA Astrophysics Data System (ADS)

    Conboye, Rory; Miller, Warner A.; Ray, Shannon

    2015-09-01

    The integrated mean curvature of a simplicial manifold is well understood in both Regge Calculus and Discrete Differential Geometry. However, a well motivated pointwise definition of curvature requires a careful choice of the volume over which to uniformly distribute the local integrated curvature. We show that hybrid cells formed using both the simplicial lattice and its circumcentric dual emerge as a remarkably natural structure for the distribution of this local integrated curvature. These hybrid cells form a complete tessellation of the simplicial manifold, contain a geometric orthonormal basis, and are also shown to give a pointwise mean curvature with a natural interpretation as the fractional rate of change of the normal vector.

  5. Automatic segmentation of solitary pulmonary nodules based on local intensity structure analysis and 3D neighborhood features in 3D chest CT images

    NASA Astrophysics Data System (ADS)

    Chen, Bin; Kitasaka, Takayuki; Honma, Hirotoshi; Takabatake, Hirotsugu; Mori, Masaki; Natori, Hiroshi; Mori, Kensaku

    2012-03-01

    This paper presents a solitary pulmonary nodule (SPN) segmentation method based on local intensity structure analysis and neighborhood feature analysis in chest CT images. Automated segmentation of SPNs is desirable for a chest computer-aided detection/diagnosis (CAS) system since a SPN may indicate early stage of lung cancer. Due to the similar intensities of SPNs and other chest structures such as blood vessels, many false positives (FPs) are generated by nodule detection methods. To reduce such FPs, we introduce two features that analyze the relation between each segmented nodule candidate and it neighborhood region. The proposed method utilizes a blob-like structure enhancement (BSE) filter based on Hessian analysis to augment the blob-like structures as initial nodule candidates. Then a fine segmentation is performed to segment much more accurate region of each nodule candidate. FP reduction is mainly addressed by investigating two neighborhood features based on volume ratio and eigenvector of Hessian that are calculates from the neighborhood region of each nodule candidate. We evaluated the proposed method by using 40 chest CT images, include 20 standard-dose CT images that we randomly chosen from a local database and 20 low-dose CT images that were randomly chosen from a public database: LIDC. The experimental results revealed that the average TP rate of proposed method was 93.6% with 12.3 FPs/case.

  6. Implantable magnetic nanocomposites for the localized treatment of breast cancer

    NASA Astrophysics Data System (ADS)

    Kan-Dapaah, Kwabena; Rahbar, Nima; Soboyejo, Wole

    2014-12-01

    This paper explores the potential of implantable magnetic nanocomposites for the localized treatment of breast cancer via hyperthermia. Magnetite (Fe3O4)-reinforced polydimethylsiloxane composites were fabricated and characterized to determine their structural, magnetic, and thermal properties. The thermal properties and degree of optimization were shown to be strongly dependent on material properties of magnetic nanoparticles (MNPs). The in-vivo temperature profiles and thermal doses were investigated by the use of a 3D finite element method (FEM) model to simulate the heating of breast tissue. Heat generation was calculated using the linear response theory model. The 3D FEM model was used to investigate the effects of MNP volume fraction, nanocomposite geometry, and treatment parameters on thermal profiles. The implications of the results were then discussed for the development of implantable devices for the localized treatment of breast cancer.

  7. Individualized Gaussian process-based prediction and detection of local and global gray matter abnormalities in elderly subjects.

    PubMed

    Ziegler, G; Ridgway, G R; Dahnke, R; Gaser, C

    2014-08-15

    Structural imaging based on MRI is an integral component of the clinical assessment of patients with potential dementia. We here propose an individualized Gaussian process-based inference scheme for clinical decision support in healthy and pathological aging elderly subjects using MRI. The approach aims at quantitative and transparent support for clinicians who aim to detect structural abnormalities in patients at risk of Alzheimer's disease or other types of dementia. Firstly, we introduce a generative model incorporating our knowledge about normative decline of local and global gray matter volume across the brain in elderly. By supposing smooth structural trajectories the models account for the general course of age-related structural decline as well as late-life accelerated loss. Considering healthy subjects' demography and global brain parameters as informative about normal brain aging variability affords individualized predictions in single cases. Using Gaussian process models as a normative reference, we predict new subjects' brain scans and quantify the local gray matter abnormalities in terms of Normative Probability Maps (NPM) and global z-scores. By integrating the observed expectation error and the predictive uncertainty, the local maps and global scores exploit the advantages of Bayesian inference for clinical decisions and provide a valuable extension of diagnostic information about pathological aging. We validate the approach in simulated data and real MRI data. We train the GP framework using 1238 healthy subjects with ages 18-94 years, and predict in 415 independent test subjects diagnosed as healthy controls, Mild Cognitive Impairment and Alzheimer's disease. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Individualized Gaussian process-based prediction and detection of local and global gray matter abnormalities in elderly subjects

    PubMed Central

    Ziegler, G.; Ridgway, G.R.; Dahnke, R.; Gaser, C.

    2014-01-01

    Structural imaging based on MRI is an integral component of the clinical assessment of patients with potential dementia. We here propose an individualized Gaussian process-based inference scheme for clinical decision support in healthy and pathological aging elderly subjects using MRI. The approach aims at quantitative and transparent support for clinicians who aim to detect structural abnormalities in patients at risk of Alzheimer's disease or other types of dementia. Firstly, we introduce a generative model incorporating our knowledge about normative decline of local and global gray matter volume across the brain in elderly. By supposing smooth structural trajectories the models account for the general course of age-related structural decline as well as late-life accelerated loss. Considering healthy subjects' demography and global brain parameters as informative about normal brain aging variability affords individualized predictions in single cases. Using Gaussian process models as a normative reference, we predict new subjects' brain scans and quantify the local gray matter abnormalities in terms of Normative Probability Maps (NPM) and global z-scores. By integrating the observed expectation error and the predictive uncertainty, the local maps and global scores exploit the advantages of Bayesian inference for clinical decisions and provide a valuable extension of diagnostic information about pathological aging. We validate the approach in simulated data and real MRI data. We train the GP framework using 1238 healthy subjects with ages 18–94 years, and predict in 415 independent test subjects diagnosed as healthy controls, Mild Cognitive Impairment and Alzheimer's disease. PMID:24742919

  9. Effect of brain structure, brain function, and brain connectivity on relapse in alcohol-dependent patients.

    PubMed

    Beck, Anne; Wüstenberg, Torsten; Genauck, Alexander; Wrase, Jana; Schlagenhauf, Florian; Smolka, Michael N; Mann, Karl; Heinz, Andreas

    2012-08-01

    In alcohol-dependent patients, brain atrophy and functional brain activation elicited by alcohol-associated stimuli may predict relapse. However, to date, the interaction between both factors has not been studied. To determine whether results from structural and functional magnetic resonance imaging are associated with relapse in detoxified alcohol-dependent patients. A cue-reactivity functional magnetic resonance experiment with alcohol-associated and neutral stimuli. After a follow-up period of 3 months, the group of 46 detoxified alcohol-dependent patients was subdivided into 16 abstainers and 30 relapsers. Faculty for Clinical Medicine Mannheim at the University of Heidelberg, Germany. A total of 46 detoxified alcohol-dependent patients and 46 age- and sex-matched healthy control subjects Local gray matter volume, local stimulus-related functional magnetic resonance imaging activation, joint analyses of structural and functional data with Biological Parametric Mapping, and connectivity analyses adopting the psychophysiological interaction approach. Subsequent relapsers showed pronounced atrophy in the bilateral orbitofrontal cortex and in the right medial prefrontal and anterior cingulate cortex, compared with healthy controls and patients who remained abstinent. The local gray matter volume-corrected brain response elicited by alcohol-associated vs neutral stimuli in the left medial prefrontal cortex was enhanced for subsequent relapsers, whereas abstainers displayed an increased neural response in the midbrain (the ventral tegmental area extending into the subthalamic nucleus) and ventral striatum. For alcohol-associated vs neutral stimuli in abstainers compared with relapsers, the analyses of the psychophysiological interaction showed a stronger functional connectivity between the midbrain and the left amygdala and between the midbrain and the left orbitofrontal cortex. Subsequent relapsers displayed increased brain atrophy in brain areas associated with error monitoring and behavioral control. Correcting for gray matter reductions, we found that, in these patients, alcohol-related cues elicited increased activation in brain areas associated with attentional bias toward these cues and that, in patients who remained abstinent, increased activation and connectivity were observed in brain areas associated with processing of salient or aversive stimuli.

  10. Local Control and Toxicity in a Large Cohort of Central Lung Tumors Treated With Stereotactic Body Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Modh, Ankit; Rimner, Andreas; Williams, Eric

    2014-12-01

    Purpose: Stereotactic body radiation therapy (SBRT) in central lung tumors has been associated with higher rates of severe toxicity. We sought to evaluate toxicity and local control in a large cohort and to identify predictive dosimetric parameters. Methods and Materials: We identified patients who received SBRT for central tumors according to either of 2 definitions. Local failure (LF) was estimated using a competing risks model, and multivariate analysis (MVA) was used to assess factors associated with LF. We reviewed patient toxicity and applied Cox proportional hazard analysis and log-rank tests to assess whether dose-volume metrics of normal structures correlated with pulmonarymore » toxicity. Results: One hundred twenty-five patients received SBRT for non-small cell lung cancer (n=103) or metastatic lesions (n=22), using intensity modulated radiation therapy. The most common dose was 45 Gy in 5 fractions. Median follow-up was 17.4 months. Incidence of toxicity ≥ grade 3 was 8.0%, including 5.6% pulmonary toxicity. Sixteen patients (12.8%) experienced esophageal toxicity ≥ grade 2, including 50% of patients in whom PTV overlapped the esophagus. There were 2 treatment-related deaths. Among patients receiving biologically effective dose (BED) ≥80 Gy (n=108), 2-year LF was 21%. On MVA, gross tumor volume (GTV) was significantly associated with LF. None of the studied dose-volume metrics of the lungs, heart, proximal bronchial tree (PBT), or 2 cm expansion of the PBT (“no-fly-zone” [NFZ]) correlated with pulmonary toxicity ≥grade 2. There were no differences in pulmonary toxicity between central tumors located inside the NFZ and those outside the NFZ but with planning target volume (PTV) intersecting the mediastinum. Conclusions: Using moderate doses, SBRT for central lung tumors achieves acceptable local control with low rates of severe toxicity. Dosimetric analysis showed no significant correlation between dose to the lungs, heart, or NFZ and severe pulmonary toxicity. Esophageal toxicity may be an underappreciated risk, particularly when PTV overlaps the esophagus.« less

  11. Integration of Quartz Crystal Microbalance-Dissipation and Reflection-Mode Localized Surface Plasmon Resonance Sensors for Biomacromolecular Interaction Analysis.

    PubMed

    Ferhan, Abdul Rahim; Jackman, Joshua A; Cho, Nam-Joon

    2016-12-20

    The combination of label-free, surface-sensitive measurement techniques based on different physical principles enables detailed characterization of biomacromolecular interactions at solid-liquid interfaces. To date, most combined measurement systems have involved experimental techniques with similar probing volumes, whereas the potential of utilizing techniques with different surface sensitivities remains largely unexplored, especially for data interpretation. Herein, we report a combined measurement approach that integrates a conventional quartz crystal microbalance-dissipation (QCM-D) setup with a reflection-mode localized surface plasmon (LSPR) sensor. Using this platform, we investigate vesicle adsorption on a titanium oxide-coated sensing substrate along with the amphipathic, α-helical (AH) peptide-induced structural transformation of surface-adsorbed lipid vesicles into a supported lipid bilayer (SLB) as a model biomacromolecular interaction. While the QCM-D and LSPR signals both detected mass uptake arising from vesicle adsorption, tracking the AH peptide-induced structural transformation revealed more complex measurement responses based on the different surface sensitivities of the two techniques. In particular, the LSPR signal recorded an increase in optical mass near the sensor surface which indicated SLB formation, whereas the QCM-D signals detected a significant loss in net acoustic mass due to excess lipid and coupled solvent leaving the probing volume. Importantly, these measurement capabilities allowed us to temporally distinguish the process of SLB formation at the sensor surface from the overall structural transformation process. Looking forward, these label-free measurement capabilities to simultaneously probe adsorbates at multiple length scales will provide new insights into complex biomacromolecular interactions.

  12. First-principle simulations of electronic structure in semicrystalline polyethylene

    NASA Astrophysics Data System (ADS)

    Moyassari, A.; Unge, M.; Hedenqvist, M. S.; Gedde, U. W.; Nilsson, F.

    2017-05-01

    In order to increase our fundamental knowledge about high-voltage cable insulation materials, realistic polyethylene (PE) structures, generated with a novel molecular modeling strategy, have been analyzed using first principle electronic structure simulations. The PE structures were constructed by first generating atomistic PE configurations with an off-lattice Monte Carlo method and then equilibrating the structures at the desired temperature and pressure using molecular dynamics simulations. Semicrystalline, fully crystalline and fully amorphous PE, in some cases including crosslinks and short-chain branches, were analyzed. The modeled PE had a structure in agreement with established experimental data. Linear-scaling density functional theory (LS-DFT) was used to examine the electronic structure (e.g., spatial distribution of molecular orbitals, bandgaps and mobility edges) on all the materials, whereas conventional DFT was used to validate the LS-DFT results on small systems. When hybrid functionals were used, the simulated bandgaps were close to the experimental values. The localization of valence and conduction band states was demonstrated. The localized states in the conduction band were primarily found in the free volume (result of gauche conformations) present in the amorphous regions. For branched and crosslinked structures, the localized electronic states closest to the valence band edge were positioned at branches and crosslinks, respectively. At 0 K, the activation energy for transport was lower for holes than for electrons. However, at room temperature, the effective activation energy was very low (˜0.1 eV) for both holes and electrons, which indicates that the mobility will be relatively high even below the mobility edges and suggests that charge carriers can be hot carriers above the mobility edges in the presence of a high electrical field.

  13. A laser tomographic investigation of liquid fuel sprays

    NASA Technical Reports Server (NTRS)

    Yule, A. J.; Ahseng, C.; Felton, P.; Ungut, A.; Chigier, N. A.

    1980-01-01

    A light scattering technique is combined with a tomographic transformation to convert line of sight integrated data, measured in sprays, to measurements of droplet size and concentration in volume elements within the spray. The technique is developed and assessed by systematic experiments in axisymmetric sprays generated by twin-fluid atomisers. The good agreement found shows that, provided certain conditions are satisfied by the local spray structure, the technique provides information on spray structure, similar in detail and extent to that derived by photography, but with reduced experimental time. The technique is applied to an investigation of a kerosene spray vaporizing in a hot gas stream.

  14. Enhancing microscopic cascading contributions to higher-order nonlinear-optical responses through forced geometric constraints

    NASA Astrophysics Data System (ADS)

    Dawson, Nathan J.; Andrews, James H.; Crescimanno, Michael

    2012-10-01

    We review a model that was developed to take into account all possible microscopic cascading schemes in a single species system out to the fifth order using a self-consistent field approach. This model was designed to study the effects of boundaries in mesoscopic systems with constrained boundaries. These geometric constraints on the macroscopic structure show how the higher-ordered susceptibilities are manipulated by increasing the surface to volume ratio, while the microscopic structure influences the local field from all other molecules in the system. In addition to the review, we discuss methods of modeling real systems of molecules, where efforts are currently underway.

  15. Origins of hole traps in hydrogenated nanocrystalline and amorphous silicon revealed through machine learning

    NASA Astrophysics Data System (ADS)

    Mueller, Tim; Johlin, Eric; Grossman, Jeffrey C.

    2014-03-01

    Genetic programming is used to identify the structural features most strongly associated with hole traps in hydrogenated nanocrystalline silicon with very low crystalline volume fraction. The genetic programming algorithm reveals that hole traps are most strongly associated with local structures within the amorphous region in which a single hydrogen atom is bound to two silicon atoms (bridge bonds), near fivefold coordinated silicon (floating bonds), or where there is a particularly dense cluster of many silicon atoms. Based on these results, we propose a mechanism by which deep hole traps associated with bridge bonds may contribute to the Staebler-Wronski effect.

  16. Conceptual model of the uppermost principal aquifer systems in the Williston and Powder River structural basins, United States and Canada

    USGS Publications Warehouse

    Long, Andrew J.; Aurand, Katherine R.; Bednar, Jennifer M.; Davis, Kyle W.; McKaskey, Jonathan D.R.G.; Thamke, Joanna N.

    2014-01-01

    The three uppermost principal aquifer systems of the Northern Great Plains—the glacial, lower Tertiary, and Upper Cretaceous aquifer systems—are described in this report and provide water for irrigation, mining, public and domestic supply, livestock, and industrial uses. These aquifer systems primarily are present in two nationally important fossil-fuelproducing areas: the Williston and Powder River structural basins in the United States and Canada. The glacial aquifer system is contained within glacial deposits that overlie the lower Tertiary and Upper Cretaceous aquifer systems in the northeastern part of the Williston structural basin. Productive sand and gravel aquifers exist within this aquifer system. The Upper Cretaceous aquifer system is contained within bedrock lithostratigraphic units as deep as 2,850 and 8,500 feet below land surface in the Williston and Powder River structural basins, respectively. Petroleum extraction from much deeper formations, such as the Bakken Formation, is rapidly increasing because of recently improved hydraulic fracturing methods that require large volumes of relatively freshwater from shallow aquifers or surface water. Extraction of coalbed natural gas from within the lower Tertiary aquifer system requires removal of large volumes of groundwater to allow degasification. Recognizing the importance of understanding water resources in these energy-rich basins, the U.S. Geological Survey (USGS) Groundwater Resources Program (http://water.usgs.gov/ogw/gwrp/) began a groundwater study of the Williston and Powder River structural basins in 2011 to quantify this groundwater resource, the results of which are described in this report. The overall objective of this study was to characterize, quantify, and provide an improved conceptual understanding of the three uppermost and principal aquifer systems in energy-resource areas of the Northern Great Plains to assist in groundwater-resource management for multiple uses. The study area includes parts of Montana, North Dakota, South Dakota, and Wyoming in the United States and Manitoba and Saskatchewan in Canada. The glacial aquifer system is contained within glacial drift consisting primarily of till, with smaller amounts of glacial outwash sand and gravel deposits. The lower Tertiary and Upper Cretaceous aquifer systems are contained within several formations of the Tertiary and Cretaceous geologic systems, which are hydraulically separated from underlying aquifers by a basal confining unit. The lower Tertiary and Upper Cretaceous aquifer systems each were divided into three hydrogeologic units that correspond to one or more lithostratigraphic units. The period prior to 1960 is defined as the predevelopment period when little groundwater was extracted. From 1960 through 1990, numerous flowing wells were installed near the Yellowstone, Little Missouri and Knife Rivers, resulting in local groundwater declines. Recently developed technologies for the extraction of petroleum resources, which largely have been applied in the study area since about 2005, require millions of gallons of water for construction of each well, with additional water needed for long-term operation; therefore, the potential for an increase in groundwater extraction is high. In this study, groundwater recharge and discharge components were estimated for the period 1981–2005. Groundwater recharge primarily occurs from infiltration of rainfall and snowmelt (precipitation recharge) and infiltration of streams into the ground (stream infiltration). Total estimated recharge to the Williston and Powder River control volumes is 4,560 and 1,500 cubic feet per second, respectively. Estimated precipitation recharge is 26 and 15 percent of total recharge for the Williston and Powder River control volumes, respectively. Estimated stream infiltration is 71 and 80 percent of total recharge for the Williston and Powder River control volumes, respectively. Groundwater discharge primarily is to streams and springs and is estimated to be about 97 and 92 percent of total discharge for the Williston and Powder River control volumes, respectively. Most of the remaining discharge results from pumped and flowing wells. Groundwater flow in the Williston structural basin generally is from the west and southwest toward the east, where discharge to streams occurs. Locally, in the uppermost hydrogeologic units, groundwater generally is unconfined and flows from topographically high to low areas, where discharge to streams occurs. Groundwater flow in the Powder River structural basin generally is toward the north, with local variations, particularly in the upper Fort Union aquifer, where flow is toward streams.

  17. The influence of inspiratory effort and emphysema on pulmonary nodule volumetry reproducibility.

    PubMed

    Moser, J B; Mak, S M; McNulty, W H; Padley, S; Nair, A; Shah, P L; Devaraj, A

    2017-11-01

    To evaluate the impact of inspiratory effort and emphysema on reproducibility of pulmonary nodule volumetry. Eighty-eight nodules in 24 patients with emphysema were studied retrospectively. All patients had undergone volumetric inspiratory and end-expiratory thoracic computed tomography (CT) for consideration of bronchoscopic lung volume reduction. Inspiratory and expiratory nodule volumes were measured using commercially available software. Local emphysema extent was established by analysing a segmentation area extended circumferentially around each nodule (quantified as percent of lung with density of -950 HU or less). Lung volumes were established using the same software. Differences in inspiratory and expiratory nodule volumes were illustrated using the Bland-Altman test. The influences of percentage reduction in lung volume at expiration, local emphysema extent, and nodule size on nodule volume variability were tested with multiple linear regression. The majority of nodules (59/88 [67%]) showed an increased volume at expiration. Mean difference in nodule volume between expiration and inspiration was +7.5% (95% confidence interval: -24.1, 39.1%). No relationships were demonstrated between nodule volume variability and emphysema extent, degree of expiration, or nodule size. Expiration causes a modest increase in volumetry-derived nodule volumes; however, the effect is unpredictable. Local emphysema extent had no significant effect on volume variability in the present cohort. Copyright © 2017 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  18. Simulation of fiber Bragg grating sensor for rebar corrosion

    NASA Astrophysics Data System (ADS)

    Geng, Jiang; Wu, Jin; Zhao, Xinming

    2009-07-01

    It is world widely concerned in the durability of reinforced concrete structures. Corrosion of rebar is one of the most important factors which can affect the durability of the concrete structures, and may result in damage to the structures in the form of expansion, cracking and eventually spalling of the cover concrete. In addition, the structural damage may be due to loss of bond between reinforcement and concrete and reduction of reinforcement cross-sectional area, and finally it may cause structure failure. With the advantages of linear reaction, small volume, high anti-erosion capability and automatic signal transmission, the smart sensors made of fiber bragg grating (FBG) to monitor strain, stress, temperature and local crack have got wide application in buildings, bridges and tunnels. FBG can be adhered to the surface of the structure, and also can be embedded into the inner of the structures when the project is being under construction to realize the real-time health monitoring. Based on volume expansion, the fiber bragg grating sensor for rebar corrosion is designed. The corrosion status of the structure can be obtained from the information provided by sensors. With the aid of the finite element software ANSYS, the simulation of the corrosion sensor was carried in this paper. The relationship between corrosion ratio and the shift of wavelength was established. According to the results of the simulation, there were differences between simulated results and measured results. The reason of the differences was also studied in this paper.

  19. The anterior hippocampus supports a coarse, global environmental representation and the posterior hippocampus supports fine-grained, local environmental representations.

    PubMed

    Evensmoen, Hallvard Røe; Lehn, Hanne; Xu, Jian; Witter, Menno P; Nadel, Lynn; Håberg, Asta K

    2013-11-01

    Representing an environment globally, in a coarse way, and locally, in a fine-grained way, are two fundamental aspects of how our brain interprets the world that surrounds us. The neural correlates of these representations have not been explicated in humans. In this study we used fMRI to investigate these correlates and to explore a possible functional segregation in the hippocampus and parietal cortex. We hypothesized that processing a coarse, global environmental representation engages anterior parts of these regions, whereas processing fine-grained, local environmental information engages posterior parts. Participants learned a virtual environment and then had to find their way during fMRI. After scanning, we assessed strategies used and representations stored. Activation in the hippocampal head (anterior) was related to the multiple distance and global direction judgments and to the use of a coarse, global environmental representation during navigation. Activation in the hippocampal tail (posterior) was related to both local and global direction judgments and to using strategies like number of turns. A structural shape analysis showed that the use of a coarse, global environmental representation was related to larger right hippocampal head volume and smaller right hippocampal tail volume. In the inferior parietal cortex, a similar functional segregation was observed, with global routes represented anteriorly and fine-grained route information such as number of turns represented posteriorly. In conclusion, moving from the anterior to the posterior hippocampus and inferior parietal cortex reflects a shift from processing coarse global environmental representations to processing fine-grained, local environmental representations.

  20. Superficial Collagen Fibril Modulus and Pericellular Fixed Charge Density Modulate Chondrocyte Volumetric Behaviour in Early Osteoarthritis

    PubMed Central

    Turunen, Siru M.; Han, Sang Kuy; Herzog, Walter; Korhonen, Rami K.

    2013-01-01

    The aim of this study was to investigate if the experimentally detected altered chondrocyte volumetric behavior in early osteoarthritis can be explained by changes in the extracellular and pericellular matrix properties of cartilage. Based on our own experimental tests and the literature, the structural and mechanical parameters for normal and osteoarthritic cartilage were implemented into a multiscale fibril-reinforced poroelastic swelling model. Model simulations were compared with experimentally observed cell volume changes in mechanically loaded cartilage, obtained from anterior cruciate ligament transected rabbit knees. We found that the cell volume increased by 7% in the osteoarthritic cartilage model following mechanical loading of the tissue. In contrast, the cell volume decreased by 4% in normal cartilage model. These findings were consistent with the experimental results. Increased local transversal tissue strain due to the reduced collagen fibril stiffness accompanied with the reduced fixed charge density of the pericellular matrix could increase the cell volume up to 12%. These findings suggest that the increase in the cell volume in mechanically loaded osteoarthritic cartilage is primarily explained by the reduction in the pericellular fixed charge density, while the superficial collagen fibril stiffness is suggested to contribute secondarily to the cell volume behavior. PMID:23634175

  1. Impulsive-antisocial psychopathic traits linked to increased volume and functional connectivity within prefrontal cortex.

    PubMed

    Korponay, Cole; Pujara, Maia; Deming, Philip; Philippi, Carissa; Decety, Jean; Kosson, David S; Kiehl, Kent A; Koenigs, Michael

    2017-07-01

    Psychopathy is a personality disorder characterized by callous lack of empathy, impulsive antisocial behavior, and criminal recidivism. Studies of brain structure and function in psychopathy have frequently identified abnormalities in the prefrontal cortex. However, findings have not yet converged to yield a clear relationship between specific subregions of prefrontal cortex and particular psychopathic traits. We performed a multimodal neuroimaging study of prefrontal cortex volume and functional connectivity in psychopathy, using a sample of adult male prison inmates (N = 124). We conducted volumetric analyses in prefrontal subregions, and subsequently assessed resting-state functional connectivity in areas where volume was related to psychopathy severity. We found that overall psychopathy severity and Factor 2 scores (which index the impulsive/antisocial traits of psychopathy) were associated with larger prefrontal subregion volumes, particularly in the medial orbitofrontal cortex and dorsolateral prefrontal cortex. Furthermore, Factor 2 scores were also positively correlated with functional connectivity between several areas of the prefrontal cortex. The results were not attributable to age, race, IQ, substance use history, or brain volume. Collectively, these findings provide evidence for co-localized increases in prefrontal cortex volume and intra-prefrontal functional connectivity in relation to impulsive/antisocial psychopathic traits. © The Author (2017). Published by Oxford University Press.

  2. Collective behavior of bulk nanobubbles produced by alternating polarity electrolysis.

    PubMed

    Postnikov, Alexander V; Uvarov, Ilia V; Penkov, Nikita V; Svetovoy, Vitaly B

    2017-12-21

    Nanobubbles in liquids are mysterious gaseous objects with exceptional stability. They promise a wide range of applications, but their production is not well controlled and localized. Alternating polarity electrolysis of water is a tool that can control the production of bulk nanobubbles in space and time without generating larger bubbles. Using the schlieren technique, the detailed three-dimensional structure of a dense cloud of nanobubbles above the electrodes is visualized. It is demonstrated that the thermal effects produce a different schlieren pattern and have different dynamics. A localized volume enriched with nanobubbles can be separated from the parent cloud and exists on its own. This volume demonstrates buoyancy, from which the concentration of nanobubbles is estimated as 2 × 10 18 m -3 . This concentration is smaller than that in the parent cloud. Dynamic light scattering shows that the average size of nanobubbles during the process is 60-80 nm. The bubbles are observed 15 minutes after switching off the electrical pulses but their size is shifted to larger values of about 250 nm. Thus, an efficient way to generate and control nanobubbles is proposed.

  3. Toward an Accurate Theoretical Framework for Describing Ensembles for Proteins under Strongly Denaturing Conditions

    PubMed Central

    Tran, Hoang T.; Pappu, Rohit V.

    2006-01-01

    Our focus is on an appropriate theoretical framework for describing highly denatured proteins. In high concentrations of denaturants, proteins behave like polymers in a good solvent and ensembles for denatured proteins can be modeled by ignoring all interactions except excluded volume (EV) effects. To assay conformational preferences of highly denatured proteins, we quantify a variety of properties for EV-limit ensembles of 23 two-state proteins. We find that modeled denatured proteins can be best described as follows. Average shapes are consistent with prolate ellipsoids. Ensembles are characterized by large correlated fluctuations. Sequence-specific conformational preferences are restricted to local length scales that span five to nine residues. Beyond local length scales, chain properties follow well-defined power laws that are expected for generic polymers in the EV limit. The average available volume is filled inefficiently, and cavities of all sizes are found within the interiors of denatured proteins. All properties characterized from simulated ensembles match predictions from rigorous field theories. We use our results to resolve between conflicting proposals for structure in ensembles for highly denatured states. PMID:16766618

  4. Improved estimates of partial volume coefficients from noisy brain MRI using spatial context.

    PubMed

    Manjón, José V; Tohka, Jussi; Robles, Montserrat

    2010-11-01

    This paper addresses the problem of accurate voxel-level estimation of tissue proportions in the human brain magnetic resonance imaging (MRI). Due to the finite resolution of acquisition systems, MRI voxels can contain contributions from more than a single tissue type. The voxel-level estimation of this fractional content is known as partial volume coefficient estimation. In the present work, two new methods to calculate the partial volume coefficients under noisy conditions are introduced and compared with current similar methods. Concretely, a novel Markov Random Field model allowing sharp transitions between partial volume coefficients of neighbouring voxels and an advanced non-local means filtering technique are proposed to reduce the errors due to random noise in the partial volume coefficient estimation. In addition, a comparison was made to find out how the different methodologies affect the measurement of the brain tissue type volumes. Based on the obtained results, the main conclusions are that (1) both Markov Random Field modelling and non-local means filtering improved the partial volume coefficient estimation results, and (2) non-local means filtering was the better of the two strategies for partial volume coefficient estimation. Copyright 2010 Elsevier Inc. All rights reserved.

  5. Effects of Hormone Therapy on Brain Volumes Changes of Postmenopausal Women Revealed by Optimally-Discriminative Voxel-Based Morphometry

    PubMed Central

    Zhang, Tianhao; Casanova, Ramon; Resnick, Susan M.; Manson, JoAnn E.; Baker, Laura D.; Padual, Claudia B.; Kuller, Lewis H.; Bryan, R. Nick; Espeland, Mark A.; Davatzikos, Christos

    2016-01-01

    Backgrounds The Women's Health Initiative Memory Study Magnetic Resonance Imaging (WHIMS-MRI) provides an opportunity to evaluate how menopausal hormone therapy (HT) affects the structure of older women’s brains. Our earlier work based on region of interest (ROI) analysis demonstrated potential structural changes underlying adverse effects of HT on cognition. However, the ROI-based analysis is limited in statistical power and precision, and cannot provide fine-grained mapping of whole-brain changes. Methods We aimed to identify local structural differences between HT and placebo groups from WHIMS-MRI in a whole-brain refined level, by using a novel method, named Optimally-Discriminative Voxel-Based Analysis (ODVBA). ODVBA is a recently proposed imaging pattern analysis approach for group comparisons utilizing a spatially adaptive analysis scheme to accurately locate areas of group differences, thereby providing superior sensitivity and specificity to detect the structural brain changes over conventional methods. Results Women assigned to HT treatments had significant Gray Matter (GM) losses compared to the placebo groups in the anterior cingulate and the adjacent medial frontal gyrus, and the orbitofrontal cortex, which persisted after multiple comparison corrections. There were no regions where HT was significantly associated with larger volumes compared to placebo, although a trend of marginal significance was found in the posterior cingulate cortical area. The CEE-Alone and CEE+MPA groups, although compared with different placebo controls, demonstrated similar effects according to the spatial patterns of structural changes. Conclusions HT had adverse effects on GM volumes and risk for cognitive impairment and dementia in older women. These findings advanced our understanding of the neurobiological underpinnings of HT effects. PMID:26974440

  6. Abnormal subcortical nuclei shapes in patients with type 2 diabetes mellitus.

    PubMed

    Chen, Ji; Zhang, Junxiang; Liu, Xuebing; Wang, Xiaoyang; Xu, Xiangjin; Li, Hui; Cao, Bo; Yang, Yanqiu; Lu, Jingjing; Chen, Ziqian

    2017-10-01

    Type 2 diabetes mellitus (T2DM) increases the risk of brain atrophy and dementia. We aimed to elucidate deep grey matter (GM) structural abnormalities and their relationships with T2DM cognitive deficits by combining region of interest (ROI)-based volumetry, voxel-based morphometry (VBM) and shape analysis. We recruited 23 T2DM patients and 24 age-matched healthy controls to undergo T1-weighted structural MRI scanning. Images were analysed using the three aforementioned methods to obtain deep GM structural shapes and volumes. Biochemical and cognitive assessments were made and were correlated with the resulting metrics. Shape analysis revealed that T2DM is associated with focal atrophy in the bilateral caudate head and dorso-medial part of the thalamus. ROI-based volumetry only detected thalamic volume reduction in T2DM when compared to the controls. No significant between-group differences were found by VBM. Furthermore, a worse performance of cognitive processing speed correlated with more severe GM atrophy in the bilateral dorso-medial part of the thalamus. Also, the GM volume in the bilateral dorso-medial part of the thalamus changed negatively with HbA 1c . Shape analysis is sensitive in identifying T2DM deep GM structural abnormalities and their relationships with cognitive impairments, which may greatly assist in clarifying the neural substrate of T2DM cognitive dysfunction. • Type 2 diabetes mellitus is accompanied with brain atrophy and cognitive dysfunction • Deep grey matter structures are essential for multiple cognitive processes • Shape analysis revealed local atrophy in the dorso-medial thalamus and caudatum in patients • Dorso-medial thalamic atrophy correlated to cognitive processing speed slowing and high HbA1c. • Shape analysis has advantages in unraveling neural substrates of diabetic cognitive deficits.

  7. Failure of cement hydrates: freeze-thaw and fracture

    NASA Astrophysics Data System (ADS)

    Ioannidou, Katerina; Del Gado, Emanuela; Ulm, Franz-Josef; Pellenq, Roland

    Mechanical and viscoelastic behavior of concrete crucially depends on cement hydrates, the ``glue'' of cement. Even more than the atomistic structure, the mesoscale amorphous texture of cement hydrates over hundreds of nanometers plays a crucial role for material properties. We use simulations that combine information of the nano-scale building units of cement hydrates and on their effective interactions, obtained from atomistic simulations and experiments, into a statistical physics framework for aggregating nanoparticles.Our mesoscale model was able to reconcile different experimental results ranging from small-angle neutron scattering, SEM, adsorption/desorption of N2, and water to nanoindentation and gain the new fundamental insights into the microscopic origin of the properties measured. Our results suggest that heterogeneities developed during the early stages of hydration persist in the structure of C-S-H, impacting the rheological and mechanical performance of the hardened cement paste. In this talk I discuss recent investigation on failure mechanism at the mesoscale of hardened cement paste such as freeze-thaw and fracture. Using correlations between local volume fractions and local stress we provide a link between structural and mechanical heterogeneities during the failure mechanisms.

  8. Structural Connectivity Networks of Transgender People

    PubMed Central

    Hahn, Andreas; Kranz, Georg S.; Küblböck, Martin; Kaufmann, Ulrike; Ganger, Sebastian; Hummer, Allan; Seiger, Rene; Spies, Marie; Winkler, Dietmar; Kasper, Siegfried; Windischberger, Christian; Swaab, Dick F.; Lanzenberger, Rupert

    2015-01-01

    Although previous investigations of transsexual people have focused on regional brain alterations, evaluations on a network level, especially those structural in nature, are largely missing. Therefore, we investigated the structural connectome of 23 female-to-male (FtM) and 21 male-to-female (MtF) transgender patients before hormone therapy as compared with 25 female and 25 male healthy controls. Graph theoretical analysis of whole-brain probabilistic tractography networks (adjusted for differences in intracranial volume) showed decreased hemispheric connectivity ratios of subcortical/limbic areas for both transgender groups. Subsequent analysis revealed that this finding was driven by increased interhemispheric lobar connectivity weights (LCWs) in MtF transsexuals and decreased intrahemispheric LCWs in FtM patients. This was further reflected on a regional level, where the MtF group showed mostly increased local efficiencies and FtM patients decreased values. Importantly, these parameters separated each patient group from the remaining subjects for the majority of significant findings. This work complements previously established regional alterations with important findings of structural connectivity. Specifically, our data suggest that network parameters may reflect unique characteristics of transgender patients, whereas local physiological aspects have been shown to represent the transition from the biological sex to the actual gender identity. PMID:25217469

  9. Cortical Composition Hierarchy Driven by Spine Proportion Economical Maximization or Wire Volume Minimization

    PubMed Central

    Karbowski, Jan

    2015-01-01

    The structure and quantitative composition of the cerebral cortex are interrelated with its computational capacity. Empirical data analyzed here indicate a certain hierarchy in local cortical composition. Specifically, neural wire, i.e., axons and dendrites take each about 1/3 of cortical space, spines and glia/astrocytes occupy each about (1/3)2, and capillaries around (1/3)4. Moreover, data analysis across species reveals that these fractions are roughly brain size independent, which suggests that they could be in some sense optimal and thus important for brain function. Is there any principle that sets them in this invariant way? This study first builds a model of local circuit in which neural wire, spines, astrocytes, and capillaries are mutually coupled elements and are treated within a single mathematical framework. Next, various forms of wire minimization rule (wire length, surface area, volume, or conduction delays) are analyzed, of which, only minimization of wire volume provides realistic results that are very close to the empirical cortical fractions. As an alternative, a new principle called “spine economy maximization” is proposed and investigated, which is associated with maximization of spine proportion in the cortex per spine size that yields equally good but more robust results. Additionally, a combination of wire cost and spine economy notions is considered as a meta-principle, and it is found that this proposition gives only marginally better results than either pure wire volume minimization or pure spine economy maximization, but only if spine economy component dominates. However, such a combined meta-principle yields much better results than the constraints related solely to minimization of wire length, wire surface area, and conduction delays. Interestingly, the type of spine size distribution also plays a role, and better agreement with the data is achieved for distributions with long tails. In sum, these results suggest that for the efficiency of local circuits wire volume may be more primary variable than wire length or temporal delays, and moreover, the new spine economy principle may be important for brain evolutionary design in a broader context. PMID:26436731

  10. Empirical investigation of optimal severance taxation in Alabama. Volume II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leathers, C.G.; Zumpano, L.V.

    1980-10-01

    The research develops a theoretical and empirical foundation for the analysis of severance taxation in Alabama. Primary emphasis was directed to delineating an optimal severance tax structure for the state of Alabama and, in the process, assess the economic and fiscal consequences of current severance tax usage. The legal and economic basis and justification for severance taxation, the amounts and distribution of severance tax revenues currently generated, the administration of the tax, and severance tax practices prevailing in other states were compared in Volume I. These data, findings, and quantitative analyses were used to ascertain the fiscal and economic effectsmore » of changes in the structure and utilization of severance taxation in Alabama. The actual and potential productivity of severance taxation in Alamama is discussed. The analysis estimates the state's severance tax revenue capacity relative to the nation and to regional neighbors. The analysis is followed by an intrastate fiscal examination of the state and local tax system. In the process, the relative revenue contribution of severance taxes to state and local revenues is quantified, as well as comparing the revenue capacity and utilization of severance taxes to other state and local levies. An examination is made of the question of who actually pays the severance taxes by an analysis of the shifting and incidence characteristics of taxes on natural resources. Serious doubt is raised that states can, under normal economic circumstances, export a large portion of the severance tax burden to out-of-state users. According to the analytical results of the study, profit margins will be affected; therefore, higher severance taxes should only be imposed after rational assessment of the consequences on business incentives and employment in the extractive inudstries, especially coal.« less

  11. Geometric k-nearest neighbor estimation of entropy and mutual information

    NASA Astrophysics Data System (ADS)

    Lord, Warren M.; Sun, Jie; Bollt, Erik M.

    2018-03-01

    Nonparametric estimation of mutual information is used in a wide range of scientific problems to quantify dependence between variables. The k-nearest neighbor (knn) methods are consistent, and therefore expected to work well for a large sample size. These methods use geometrically regular local volume elements. This practice allows maximum localization of the volume elements, but can also induce a bias due to a poor description of the local geometry of the underlying probability measure. We introduce a new class of knn estimators that we call geometric knn estimators (g-knn), which use more complex local volume elements to better model the local geometry of the probability measures. As an example of this class of estimators, we develop a g-knn estimator of entropy and mutual information based on elliptical volume elements, capturing the local stretching and compression common to a wide range of dynamical system attractors. A series of numerical examples in which the thickness of the underlying distribution and the sample sizes are varied suggest that local geometry is a source of problems for knn methods such as the Kraskov-Stögbauer-Grassberger estimator when local geometric effects cannot be removed by global preprocessing of the data. The g-knn method performs well despite the manipulation of the local geometry. In addition, the examples suggest that the g-knn estimators can be of particular relevance to applications in which the system is large, but the data size is limited.

  12. Local weather is associated with rates of online searches for musculoskeletal pain symptoms.

    PubMed

    Telfer, Scott; Obradovich, Nick

    2017-01-01

    Weather conditions are commonly believed to influence musculoskeletal pain, however the evidence for this is mixed. This study aimed to examine the relationship between local meteorological conditions and online search trends for terms related to knee pain, hip pain, and arthritis. Five years of relative online search volumes for these terms were obtained for the 50 most populous cities in the contiguous United States, along with corresponding local weather data for temperature, relative humidity, barometric pressure, and precipitation. Methods from the climate econometrics literature were used to assess the casual impact of these meteorological variables on the relative volumes of searches for pain. For temperatures between -5°C and 30°C, search volumes for hip pain increased by 12 index points, and knee pain increased by 18 index points. Precipitation had a negative effect on search volumes for these terms. At temperatures >30°C, search volumes for arthritis related pain decreased by 7 index points. These patterns were not seen for pain searches unrelated to the musculoskeletal system. In summary, selected local weather conditions are significantly associated with online search volumes for specific musculoskeletal pain symptoms. We believe the predominate driver for this to be the relative changes in physical activity levels associated with meteorological conditions.

  13. Nanostructured Na2Ti9O19 for Hybrid Sodium-Ion Capacitors with Excellent Rate Capability.

    PubMed

    Bhat, Swetha S M; Babu, Binson; Feygenson, Mikhail; Neuefeind, Joerg C; Shaijumon, M M

    2018-01-10

    Herein, we report a new Na-insertion electrode material, Na 2 Ti 9 O 19 , as a potential candidate for Na-ion hybrid capacitors. We study the structural properties of nanostructured Na 2 Ti 9 O 19 , synthesized by a hydrothermal technique, upon electrochemical cycling vs Na. Average and local structures of Na 2 Ti 9 O 19 are elucidated from neutron Rietveld refinement and pair distribution function (PDF), respectively, to investigate the initial discharge and charge events. Rietveld refinement reveals electrochemical cycling of Na 2 Ti 9 O 19 is driven by single-phase solid solution reaction during (de)sodiation without any major structural deterioration, keeping the average structure intact. Unit cell volume and lattice evolution on discharge process is inherently related to TiO 6 distortion and Na ion perturbations, while the PDF reveals the deviation in the local structure after sodiation. Raman spectroscopy and X-ray photoelectron spectroscopy studies further corroborate the average and local structural behavior derived from neutron diffraction measurements. Also, Na 2 Ti 9 O 19 shows excellent Na-ion kinetics with a capacitve nature of 86% at 1.0 mV s -1 , indicating that the material is a good anode candidate for a sodium-ion hybrid capacitor. A full cell hybrid Na-ion capacitor is fabricated by using Na 2 Ti 9 O 19 as anode and activated porous carbon as cathode, which exhibits excellent electrochemical properties, with a maximum energy density of 54 Wh kg -1 and a maximum power density of 5 kW kg -1 . Both structural insights and electrochemical investigation suggest that Na 2 Ti 9 O 19 is a promising negative electrode for sodium-ion batteries and hybrid capacitors.

  14. Hierarchical pictorial structures for simultaneously localizing multiple organs in volumetric pre-scan CT

    NASA Astrophysics Data System (ADS)

    Montillo, Albert; Song, Qi; Das, Bipul; Yin, Zhye

    2015-03-01

    Parsing volumetric computed tomography (CT) into 10 or more salient organs simultaneously is a challenging task with many applications such as personalized scan planning and dose reporting. In the clinic, pre-scan data can come in the form of very low dose volumes acquired just prior to the primary scan or from an existing primary scan. To localize organs in such diverse data, we propose a new learning based framework that we call hierarchical pictorial structures (HPS) which builds multiple levels of models in a tree-like hierarchy that mirrors the natural decomposition of human anatomy from gross structures to finer structures. Each node of our hierarchical model learns (1) the local appearance and shape of structures, and (2) a generative global model that learns probabilistic, structural arrangement. Our main contribution is twofold. First we embed the pictorial structures approach in a hierarchical framework which reduces test time image interpretation and allows for the incorporation of additional geometric constraints that robustly guide model fitting in the presence of noise. Second we guide our HPS framework with the probabilistic cost maps extracted using random decision forests using volumetric 3D HOG features which makes our model fast to train and fast to apply to novel test data and posses a high degree of invariance to shape distortion and imaging artifacts. All steps require approximate 3 mins to compute and all organs are located with suitably high accuracy for our clinical applications such as personalized scan planning for radiation dose reduction. We assess our method using a database of volumetric CT scans from 81 subjects with widely varying age and pathology and with simulated ultra-low dose cadaver pre-scan data.

  15. Topology of genetic associations between regional gray matter volume and intellectual ability: Evidence for a high capacity network.

    PubMed

    Bohlken, Marc M; Brouwer, Rachel M; Mandl, René C W; Hedman, Anna M; van den Heuvel, Martijn P; van Haren, Neeltje E M; Kahn, René S; Hulshoff Pol, Hilleke E

    2016-01-01

    Intelligence is associated with a network of distributed gray matter areas including the frontal and parietal higher association cortices and primary processing areas of the temporal and occipital lobes. Efficient information transfer between gray matter regions implicated in intelligence is thought to be critical for this trait to emerge. Genetic factors implicated in intelligence and gray matter may promote a high capacity for information transfer. Whether these genetic factors act globally or on local gray matter areas separately is not known. Brain maps of phenotypic and genetic associations between gray matter volume and intelligence were made using structural equation modeling of 3T MRI T1-weighted scans acquired in 167 adult twins of the newly acquired U-TWIN cohort. Subsequently, structural connectivity analyses (DTI) were performed to test the hypothesis that gray matter regions associated with intellectual ability form a densely connected core. Gray matter regions associated with intellectual ability were situated in the right prefrontal, bilateral temporal, bilateral parietal, right occipital and subcortical regions. Regions implicated in intelligence had high structural connectivity density compared to 10,000 reference networks (p=0.031). The genetic association with intelligence was for 39% explained by a genetic source unique to these regions (independent of total brain volume), this source specifically implicated the right supramarginal gyrus. Using a twin design, we show that intelligence is genetically represented in a spatially distributed and densely connected network of gray matter regions providing a high capacity infrastructure. Although genes for intelligence have overlap with those for total brain volume, we present evidence that there are genes for intelligence that act specifically on the subset of brain areas that form an efficient brain network. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Excessive interatrial adiposity is associated with left atrial remodeling, augmented contractile performance in asymptomatic population.

    PubMed

    Lai, Yau-Huei; Yun, Chun-Ho; Su, Cheng-Huang; Yang, Fei-Shih; Yeh, Hung-I; Hou, Charles Jia-Yin; Wu, Tung-Hsin; Cury, Ricardo C; Bezerra, Hiram G; Hung, Chung-Lieh

    2016-03-01

    Pericardial adipose tissue had been shown to exert local effects on adjacent cardiac structures. Data regarding the mechanistic link between such measures and left atrial (LA) structural/functional remodeling, a clinical hallmark of early stage heart failure (HF) and atrial fibrillation (AF) incidence, in asymptomatic population remain largely unexplored. This retrospective analysis includes 356 subjects free from significant valvular disorders, atrial fibrillation, or clinical HF. Regional adipose tissue including pericardial and periaortic fat volumes, interatrial septal (IAS), and left atrioventricular groove (AVG) fat thickness were all measured by multidetector computed tomography (MDCT) (Aquarius 3D Workstation, TeraRecon, San Mateo, CA, USA). We measured LA volumes, booster performance, reservoir capacity as well as conduit function, and analyzed their association with adiposity measures. All four adiposity measures were positively associated with greater LA volumes (all P < 0.05), while IAS and AVG fat were also related to larger LA kinetic energy and worse reservoir capacity (both P < 0.01). In multivariate models, IAS fat thickness remained independently associated with larger LA volumes, increased LA kinetic energy and ejection force (β-coef: 0.17 & 0.15, both P < 0.05), and impaired LA reservoir and conduit function (β-coef: -0.20 & -0.12, both P < 0.05) after adjusting for clinical variables. Accumulated visceral adiposity, especially interatrial fat depots, was associated with certain LA structural/functional remodeling characterized by impaired LA reservoir and conduit function though augmented kinetic energy and ejection performance. Our data suggested that interatrial fat burden may be associated with certain detrimental LA functions with compensatory LA adaptation in an asymptomatic population. © 2016 The authors.

  17. Structural brain correlates of executive engagement in working memory: children's inter-individual differences are reflected in the anterior insular cortex.

    PubMed

    Rossi, Sandrine; Lubin, Amélie; Simon, Grégory; Lanoë, Céline; Poirel, Nicolas; Cachia, Arnaud; Pineau, Arlette; Houdé, Olivier

    2013-06-01

    Although the development of executive functions has been extensively investigated at a neurofunctional level, studies of the structural relationships between executive functions and brain anatomy are still scarce. Based on our previous meta-analysis of functional neuroimaging studies examining executive functions in children (Houdé, Rossi, Lubin, and Joliot, (2010). Developmental Science, 13, 876-885), we investigated six a priori regions of interest: the left anterior insular cortex (AIC), the left and the right supplementary motor areas, the right middle and superior frontal gyri, and the left precentral gyrus. Structural magnetic resonance imaging scans were acquired from 22 to 10-year-old children. Local gray matter volumes, assessed automatically using a standard voxel-based morphometry approach, were correlated with executive and storage working memory capacities evaluated using backward and forward digit span tasks, respectively. We found an association between smaller gray matter volume--i.e., an index of neural maturation--in the left AIC and high backward memory span while gray matter volumes in the a priori selected regions of interest were not linked with forward memory span. These results were corroborated by a whole-brain a priori free analysis that revealed a significant negative correlation in the frontal and prefrontal regions, including the left AIC, with the backward memory span, and in the right inferior parietal lobe, with the forward memory span. Taken together, these results suggest a distinct and specific association between regional gray matter volume and the executive component vs. the storage component of working memory. Moreover, they support a key role for the AIC in the executive network of children. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Nonlinear Frequency Conversion in III-V Semiconductor Photonic Crystals

    DTIC Science & Technology

    2012-03-01

    nanocavities, by localizing light into sub-cubic optical wavelength volumes with long photon storage times, can greatly enhance the efficiency of...dissertation shows how optical nanocavities, by localizing light into sub-cubic optical wavelength volumes with long photon storage times, can greatly...8.2.3 Lithographic localization of molecules to cavity region . . . . . 86 8.2.4 Low temperature spectroscopy of DNQDI . . . . . . . . . . . 89 8.2.5

  19. United States Air Force Summer Research Program 1991. Graduate Student Research Program (GSRP) Reports. Volume 9. Wright Laboratory

    DTIC Science & Technology

    1992-01-09

    Materials 22 Deply of Laminated Panels with Perforation due to Impact John Lair 23 Actuator Location and Optimal Control Design for Flexible Structures...procedure is the focusing and alignment of the UV souce. Though the output of a vapor lamp is nonuniform ., intensity peaks can be smoothed by expanding the...surface, localized surface heatig may occur. Secondly, the output of a mercury vapor lame is nonuniform , requiring diffusion tc obtain a more- uniform

  20. Observational database for studies of nearby universe

    NASA Astrophysics Data System (ADS)

    Kaisina, E. I.; Makarov, D. I.; Karachentsev, I. D.; Kaisin, S. S.

    2012-01-01

    We present the description of a database of galaxies of the Local Volume (LVG), located within 10 Mpc around the Milky Way. It contains more than 800 objects. Based on an analysis of functional capabilities, we used the PostgreSQL DBMS as a management system for our LVG database. Applying semantic modelling methods, we developed a physical ER-model of the database. We describe the developed architecture of the database table structure, and the implemented web-access, available at http://www.sao.ru/lv/lvgdb.

  1. A monolithic Lagrangian approach for fluid-structure interaction problems

    NASA Astrophysics Data System (ADS)

    Ryzhakov, P. B.; Rossi, R.; Idelsohn, S. R.; Oñate, E.

    2010-11-01

    Current work presents a monolithic method for the solution of fluid-structure interaction problems involving flexible structures and free-surface flows. The technique presented is based upon the utilization of a Lagrangian description for both the fluid and the structure. A linear displacement-pressure interpolation pair is used for the fluid whereas the structure utilizes a standard displacement-based formulation. A slight fluid compressibility is assumed that allows to relate the mechanical pressure to the local volume variation. The method described features a global pressure condensation which in turn enables the definition of a purely displacement-based linear system of equations. A matrix-free technique is used for the solution of such linear system, leading to an efficient implementation. The result is a robust method which allows dealing with FSI problems involving arbitrary variations in the shape of the fluid domain. The method is completely free of spurious added-mass effects.

  2. Stability of Lobed Balloons

    NASA Technical Reports Server (NTRS)

    Ball, Danny (Technical Monitor); Pagitz, M.; Pellegrino, Xu S.

    2004-01-01

    This paper presents a computational study of the stability of simple lobed balloon structures. Two approaches are presented, one based on a wrinkled material model and one based on a variable Poisson s ratio model that eliminates compressive stresses iteratively. The first approach is used to investigate the stability of both a single isotensoid and a stack of four isotensoids, for perturbations of in.nitesimally small amplitude. It is found that both structures are stable for global deformation modes, but unstable for local modes at su.ciently large pressure. Both structures are stable if an isotropic model is assumed. The second approach is used to investigate the stability of the isotensoid stack for large shape perturbations, taking into account contact between di.erent surfaces. For this structure a distorted, stable configuration is found. It is also found that the volume enclosed by this con.guration is smaller than that enclosed by the undistorted structure.

  3. Jurassic magmatism in Dronning Maud Land: synthesis of results of the MAMOG project

    USGS Publications Warehouse

    Leat, P.T.; Curtis, M.L.; Riley, T.R.; Ferraccioli, F.

    2007-01-01

    The Jurassic Karoo large igneous province (LIP) of Antarctica, and its conjugate margin in southern Africa, is critical for investigating important questions about the relationship of basaltic LIPs to mantle plumes. Detailed aerogeophysical, structural, anisotropy of magnetic susceptibility (AMS), geochronological and geochemical investigations completed under the British Antarctic Survey’s MAMOG project have provided some of the answers. Across most of the area, magma volumes were small compared to those in southern Africa. Jurassic dikes intruding the Archean craton are sparse and the Jutulstraumen trough, a Jurassic rift, is interpreted, from aerogeophysical data, as largely amagmatic. The largest volumes of magma were emplaced along the margin of the craton and close to the Africa-Antarctica rift. Although dikes were emplaced by both vertical and horizontal flow, overwhelmingly magmas in Dronning Maud Land were locally derived, and not emplaced laterally from distant sources. Basaltic magmatism was protracted in Dronning Maud Land (several dike emplacement episodes between ~206 and 175 Ma), and the small magma volumes resulted in highly diverse magma compositions, including picrites and ferropicrites interpreted to have been derived from hot mantle in a mantle plume. The protracted magmatism before the locally ~177 Ma flood lava eruptions, and evidence for a radiating dike swarm, favor a model of mantle plume incubation for 20-30 million years before flood lava eruption.

  4. Self-aligned nanoforest in silicon nanowire for sensitive conductance modulation.

    PubMed

    Seol, Myeong-Lok; Ahn, Jae-Hyuk; Choi, Ji-Min; Choi, Sung-Jin; Choi, Yang-Kyu

    2012-11-14

    A self-aligned and localized nanoforest structure is constructed in a top-down fabricated silicon nanowire (SiNW). The surface-to-volume ratio (SVR) of the SiNW is enhanced due to the local nanoforest formation. The conductance modulation property of the SiNWs, which is an important characteristic in sensor and charge transfer based applications, can be largely enhanced. For the selective modification of the channel region, localized Joule-heating and subsequent metal-assisted chemical etching (mac-etch) are employed. The nanoforest is formed only in the channel region without misalignment due to the self-aligned process of Joule-heating. The modified SiNW is applied to a porphyrin-silicon hybrid device to verify the enhanced conductance modulation. The charge transfer efficiency between the porphyrin and the SiNW, which is caused by external optical excitation, is clearly increased compared to the initial SiNW. The effect of the local nanoforest formation is enhanced when longer etching times and larger widths are used.

  5. Actinide electronic structure and atomic forces

    NASA Astrophysics Data System (ADS)

    Albers, R. C.; Rudin, Sven P.; Trinkle, Dallas R.; Jones, M. D.

    2000-07-01

    We have developed a new method[1] of fitting tight-binding parameterizations based on functional forms developed at the Naval Research Laboratory.[2] We have applied these methods to actinide metals and report our success using them (see below). The fitting procedure uses first-principles local-density-approximation (LDA) linear augmented plane-wave (LAPW) band structure techniques[3] to first calculate an electronic-structure band structure and total energy for fcc, bcc, and simple cubic crystal structures for the actinide of interest. The tight-binding parameterization is then chosen to fit the detailed energy eigenvalues of the bands along symmetry directions, and the symmetry of the parameterization is constrained to agree with the correct symmetry of the LDA band structure at each eigenvalue and k-vector that is fit to. By fitting to a range of different volumes and the three different crystal structures, we find that the resulting parameterization is robust and appears to accurately calculate other crystal structures and properties of interest.

  6. Performance of chip seals using local and minimally processed aggregates for preservation of low traffic volume roadways.

    DOT National Transportation Integrated Search

    2013-07-01

    This report documents the performance of two low traffic volume experimental chip seals constructed using : locally available, minimally processed sand and gravel aggregates after four winters of service. The projects : were constructed by CDOT maint...

  7. Impacts of future climate change on urban flood volumes in Hohhot in northern China: benefits of climate change mitigation and adaptations

    NASA Astrophysics Data System (ADS)

    Zhou, Qianqian; Leng, Guoyong; Huang, Maoyi

    2018-01-01

    As China becomes increasingly urbanised, flooding has become a regular occurrence in its major cities. Assessing the effects of future climate change on urban flood volumes is crucial to informing better management of such disasters given the severity of the devastating impacts of flooding (e.g. the 2016 flooding events across China). Although recent studies have investigated the impacts of future climate change on urban flooding, the effects of both climate change mitigation and adaptation have rarely been accounted for together in a consistent framework. In this study, we assess the benefits of mitigating climate change by reducing greenhouse gas (GHG) emissions and locally adapting to climate change by modifying drainage systems to reduce urban flooding under various climate change scenarios through a case study conducted in northern China. The urban drainage model - Storm Water Management Model - was used to simulate urban flood volumes using current and two adapted drainage systems (i.e. pipe enlargement and low-impact development, LID), driven by bias-corrected meteorological forcing from five general circulation models in the Coupled Model Intercomparison Project Phase 5 archive. Results indicate that urban flood volume is projected to increase by 52 % over 2020-2040 compared to the volume in 1971-2000 under the business-as-usual scenario (i.e. Representative Concentration Pathway (RCP) 8.5). The magnitudes of urban flood volumes are found to increase nonlinearly with changes in precipitation intensity. On average, the projected flood volume under RCP 2.6 is 13 % less than that under RCP 8.5, demonstrating the benefits of global-scale climate change mitigation efforts in reducing local urban flood volumes. Comparison of reduced flood volumes between climate change mitigation and local adaptation (by improving drainage systems) scenarios suggests that local adaptation is more effective than climate change mitigation in reducing future flood volumes. This has broad implications for the research community relative to drainage system design and modelling in a changing environment. This study highlights the importance of accounting for local adaptation when coping with future urban floods.

  8. The value of magnetoencephalography for seizure-onset zone localization in magnetic resonance imaging-negative partial epilepsy

    PubMed Central

    Bouet, Romain; Delpuech, Claude; Ryvlin, Philippe; Isnard, Jean; Guenot, Marc; Bertrand, Olivier; Hammers, Alexander; Mauguière, François

    2013-01-01

    Surgical treatment of epilepsy is a challenge for patients with non-contributive brain magnetic resonance imaging. However, surgery is feasible if the seizure-onset zone is precisely delineated through intracranial electroencephalography recording. We recently described a method, volumetric imaging of epileptic spikes, to delineate the spiking volume of patients with focal epilepsy using magnetoencephalography. We postulated that the extent of the spiking volume delineated with volumetric imaging of epileptic spikes could predict the localizability of the seizure-onset zone by intracranial electroencephalography investigation and outcome of surgical treatment. Twenty-one patients with non-contributive magnetic resonance imaging findings were included. All patients underwent intracerebral electroencephalography investigation through stereotactically implanted depth electrodes (stereo-electroencephalography) and magnetoencephalography with delineation of the spiking volume using volumetric imaging of epileptic spikes. We evaluated the spatial congruence between the spiking volume determined by magnetoencephalography and the localization of the seizure-onset zone determined by stereo-electroencephalography. We also evaluated the outcome of stereo-electroencephalography and surgical treatment according to the extent of the spiking volume (focal, lateralized but non-focal or non-lateralized). For all patients, we found a spatial overlap between the seizure-onset zone and the spiking volume. For patients with a focal spiking volume, the seizure-onset zone defined by stereo-electroencephalography was clearly localized in all cases and most patients (6/7, 86%) had a good surgical outcome. Conversely, stereo-electroencephalography failed to delineate a seizure-onset zone in 57% of patients with a lateralized spiking volume, and in the two patients with bilateral spiking volume. Four of the 12 patients with non-focal spiking volumes were operated upon, none became seizure-free. As a whole, patients having focal magnetoencephalography results with volumetric imaging of epileptic spikes are good surgical candidates and the implantation strategy should incorporate volumetric imaging of epileptic spikes results. On the contrary, patients with non-focal magnetoencephalography results are less likely to have a localized seizure-onset zone and stereo electroencephalography is not advised unless clear localizing information is provided by other presurgical investigation methods. PMID:24014520

  9. Impacts of future climate change on urban flood volumes in Hohhot in northern China: benefits of climate change mitigation and adaptations

    DOE PAGES

    Zhou, Qianqian; Leng, Guoyong; Huang, Maoyi

    2018-01-15

    As China becomes increasingly urbanised, flooding has become a regular occurrence in its major cities. Assessing the effects of future climate change on urban flood volumes is crucial to informing better management of such disasters given the severity of the devastating impacts of flooding (e.g. the 2016 flooding events across China). Although recent studies have investigated the impacts of future climate change on urban flooding, the effects of both climate change mitigation and adaptation have rarely been accounted for together in a consistent framework. In this study, we assess the benefits of mitigating climate change by reducing greenhouse gas (GHG)more » emissions and locally adapting to climate change by modifying drainage systems to reduce urban flooding under various climate change scenarios through a case study conducted in northern China. The urban drainage model – Storm Water Management Model – was used to simulate urban flood volumes using current and two adapted drainage systems (i.e. pipe enlargement and low-impact development, LID), driven by bias-corrected meteorological forcing from five general circulation models in the Coupled Model Intercomparison Project Phase 5 archive. Results indicate that urban flood volume is projected to increase by 52 % over 2020–2040 compared to the volume in 1971–2000 under the business-as-usual scenario (i.e. Representative Concentration Pathway (RCP) 8.5). The magnitudes of urban flood volumes are found to increase nonlinearly with changes in precipitation intensity. On average, the projected flood volume under RCP 2.6 is 13 % less than that under RCP 8.5, demonstrating the benefits of global-scale climate change mitigation efforts in reducing local urban flood volumes. Comparison of reduced flood volumes between climate change mitigation and local adaptation (by improving drainage systems) scenarios suggests that local adaptation is more effective than climate change mitigation in reducing future flood volumes. This has broad implications for the research community relative to drainage system design and modelling in a changing environment. Furthermore, this study highlights the importance of accounting for local adaptation when coping with future urban floods.« less

  10. The value of magnetoencephalography for seizure-onset zone localization in magnetic resonance imaging-negative partial epilepsy.

    PubMed

    Jung, Julien; Bouet, Romain; Delpuech, Claude; Ryvlin, Philippe; Isnard, Jean; Guenot, Marc; Bertrand, Olivier; Hammers, Alexander; Mauguière, François

    2013-10-01

    Surgical treatment of epilepsy is a challenge for patients with non-contributive brain magnetic resonance imaging. However, surgery is feasible if the seizure-onset zone is precisely delineated through intracranial electroencephalography recording. We recently described a method, volumetric imaging of epileptic spikes, to delineate the spiking volume of patients with focal epilepsy using magnetoencephalography. We postulated that the extent of the spiking volume delineated with volumetric imaging of epileptic spikes could predict the localizability of the seizure-onset zone by intracranial electroencephalography investigation and outcome of surgical treatment. Twenty-one patients with non-contributive magnetic resonance imaging findings were included. All patients underwent intracerebral electroencephalography investigation through stereotactically implanted depth electrodes (stereo-electroencephalography) and magnetoencephalography with delineation of the spiking volume using volumetric imaging of epileptic spikes. We evaluated the spatial congruence between the spiking volume determined by magnetoencephalography and the localization of the seizure-onset zone determined by stereo-electroencephalography. We also evaluated the outcome of stereo-electroencephalography and surgical treatment according to the extent of the spiking volume (focal, lateralized but non-focal or non-lateralized). For all patients, we found a spatial overlap between the seizure-onset zone and the spiking volume. For patients with a focal spiking volume, the seizure-onset zone defined by stereo-electroencephalography was clearly localized in all cases and most patients (6/7, 86%) had a good surgical outcome. Conversely, stereo-electroencephalography failed to delineate a seizure-onset zone in 57% of patients with a lateralized spiking volume, and in the two patients with bilateral spiking volume. Four of the 12 patients with non-focal spiking volumes were operated upon, none became seizure-free. As a whole, patients having focal magnetoencephalography results with volumetric imaging of epileptic spikes are good surgical candidates and the implantation strategy should incorporate volumetric imaging of epileptic spikes results. On the contrary, patients with non-focal magnetoencephalography results are less likely to have a localized seizure-onset zone and stereo electroencephalography is not advised unless clear localizing information is provided by other presurgical investigation methods.

  11. Impacts of future climate change on urban flood volumes in Hohhot in northern China: benefits of climate change mitigation and adaptations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Qianqian; Leng, Guoyong; Huang, Maoyi

    As China becomes increasingly urbanised, flooding has become a regular occurrence in its major cities. Assessing the effects of future climate change on urban flood volumes is crucial to informing better management of such disasters given the severity of the devastating impacts of flooding (e.g. the 2016 flooding events across China). Although recent studies have investigated the impacts of future climate change on urban flooding, the effects of both climate change mitigation and adaptation have rarely been accounted for together in a consistent framework. In this study, we assess the benefits of mitigating climate change by reducing greenhouse gas (GHG)more » emissions and locally adapting to climate change by modifying drainage systems to reduce urban flooding under various climate change scenarios through a case study conducted in northern China. The urban drainage model – Storm Water Management Model – was used to simulate urban flood volumes using current and two adapted drainage systems (i.e. pipe enlargement and low-impact development, LID), driven by bias-corrected meteorological forcing from five general circulation models in the Coupled Model Intercomparison Project Phase 5 archive. Results indicate that urban flood volume is projected to increase by 52 % over 2020–2040 compared to the volume in 1971–2000 under the business-as-usual scenario (i.e. Representative Concentration Pathway (RCP) 8.5). The magnitudes of urban flood volumes are found to increase nonlinearly with changes in precipitation intensity. On average, the projected flood volume under RCP 2.6 is 13 % less than that under RCP 8.5, demonstrating the benefits of global-scale climate change mitigation efforts in reducing local urban flood volumes. Comparison of reduced flood volumes between climate change mitigation and local adaptation (by improving drainage systems) scenarios suggests that local adaptation is more effective than climate change mitigation in reducing future flood volumes. This has broad implications for the research community relative to drainage system design and modelling in a changing environment. Furthermore, this study highlights the importance of accounting for local adaptation when coping with future urban floods.« less

  12. An automated landmark-based elastic registration technique for large deformation recovery from 4-D CT lung images

    NASA Astrophysics Data System (ADS)

    Negahdar, Mohammadreza; Zacarias, Albert; Milam, Rebecca A.; Dunlap, Neal; Woo, Shiao Y.; Amini, Amir A.

    2012-03-01

    The treatment plan evaluation for lung cancer patients involves pre-treatment and post-treatment volume CT imaging of the lung. However, treatment of the tumor volume lung results in structural changes to the lung during the course of treatment. In order to register the pre-treatment volume to post-treatment volume, there is a need to find robust and homologous features which are not affected by the radiation treatment along with a smooth deformation field. Since airways are well-distributed in the entire lung, in this paper, we propose use of airway tree bifurcations for registration of the pre-treatment volume to the post-treatment volume. A dedicated and automated algorithm has been developed that finds corresponding airway bifurcations in both images. To derive the 3-D deformation field, a B-spline transformation model guided by mutual information similarity metric was used to guarantee the smoothness of the transformation while combining global information from bifurcation points. Therefore, the approach combines both global statistical intensity information with local image feature information. Since during normal breathing, the lung undergoes large nonlinear deformations, it is expected that the proposed method would also be applicable to large deformation registration between maximum inhale and maximum exhale images in the same subject. The method has been evaluated by registering 3-D CT volumes at maximum exhale data to all the other temporal volumes in the POPI-model data.

  13. Ray Casting of Large Multi-Resolution Volume Datasets

    NASA Astrophysics Data System (ADS)

    Lux, C.; Fröhlich, B.

    2009-04-01

    High quality volume visualization through ray casting on graphics processing units (GPU) has become an important approach for many application domains. We present a GPU-based, multi-resolution ray casting technique for the interactive visualization of massive volume data sets commonly found in the oil and gas industry. Large volume data sets are represented as a multi-resolution hierarchy based on an octree data structure. The original volume data is decomposed into small bricks of a fixed size acting as the leaf nodes of the octree. These nodes are the highest resolution of the volume. Coarser resolutions are represented through inner nodes of the hierarchy which are generated by down sampling eight neighboring nodes on a finer level. Due to limited memory resources of current desktop workstations and graphics hardware only a limited working set of bricks can be locally maintained for a frame to be displayed. This working set is chosen to represent the whole volume at different local resolution levels depending on the current viewer position, transfer function and distinct areas of interest. During runtime the working set of bricks is maintained in CPU- and GPU memory and is adaptively updated by asynchronously fetching data from external sources like hard drives or a network. The CPU memory hereby acts as a secondary level cache for these sources from which the GPU representation is updated. Our volume ray casting algorithm is based on a 3D texture-atlas in GPU memory. This texture-atlas contains the complete working set of bricks of the current multi-resolution representation of the volume. This enables the volume ray casting algorithm to access the whole working set of bricks through only a single 3D texture. For traversing rays through the volume, information about the locations and resolution levels of visited bricks are required for correct compositing computations. We encode this information into a small 3D index texture which represents the current octree subdivision on its finest level and spatially organizes the bricked data. This approach allows us to render a bricked multi-resolution volume data set utilizing only a single rendering pass with no loss of compositing precision. In contrast most state-of-the art volume rendering systems handle the bricked data as individual 3D textures, which are rendered one at a time while the results are composited into a lower precision frame buffer. Furthermore, our method enables us to integrate advanced volume rendering techniques like empty-space skipping, adaptive sampling and preintegrated transfer functions in a very straightforward manner with virtually no extra costs. Our interactive volume ray tracing implementation allows high quality visualizations of massive volume data sets of tens of Gigabytes in size on standard desktop workstations.

  14. Probing the Dusty Stellar Populations of the Local Volume Galaxies with JWST/MIRI

    NASA Astrophysics Data System (ADS)

    Jones, Olivia C.; Meixner, Margaret; Justtanont, Kay; Glasse, Alistair

    2017-05-01

    The Mid-Infrared Instrument (MIRI) for the James Webb Space Telescope (JWST) will revolutionize our understanding of infrared stellar populations in the Local Volume. Using the rich Spitzer-IRS spectroscopic data set and spectral classifications from the Surveying the Agents of Galaxy Evolution (SAGE)-Spectroscopic survey of more than 1000 objects in the Magellanic Clouds, the Grid of Red Supergiant and Asymptotic Giant Branch Star Model (grams), and the grid of YSO models by Robitaille et al., we calculate the expected flux densities and colors in the MIRI broadband filters for prominent infrared stellar populations. We use these fluxes to explore the JWST/MIRI colors and magnitudes for composite stellar population studies of Local Volume galaxies. MIRI color classification schemes are presented; these diagrams provide a powerful means of identifying young stellar objects, evolved stars, and extragalactic background galaxies in Local Volume galaxies with a high degree of confidence. Finally, we examine which filter combinations are best for selecting populations of sources based on their JWST colors.

  15. The potential influence of regionalization strategies on delivery of care for elective total joint arthroplasty.

    PubMed

    Dy, Christopher J; Marx, Robert G; Ghomrawi, Hassan M K; Pan, Ting Jung; Westrich, Geoffrey H; Lyman, Stephen

    2015-01-01

    Regionalization of total joint arthroplasty (TJA) to high volume hospitals (HVHs) may affect access to care and complication risk. Using administrative data, 2,560,314 patients who underwent primary total hip or knee arthroplasty from 1991 to 2006 were categorized by whether an HVH (>200 annual TJAs) was available locally. Associations among patient characteristics, hospital utilization, and in-hospital complications were estimated using regression modeling. The complication risk was higher (Odds Ratio 1.18 [95% CI: 1.16, 1.20]) if patients went to a local low volume hospital. Black and Medicaid patients were more likely to utilize the local low volume hospital than a local HVH. Utilizing a local HVH is associated with lower complication risks. However, patients from vulnerable groups were less likely to utilize these patterns. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Localization, correlation, and visualization of electroencephalographic surface electrodes and brain anatomy in epilepsy studies

    NASA Astrophysics Data System (ADS)

    Brinkmann, Benjamin H.; O'Brien, Terence J.; Robb, Richard A.; Sharbrough, Frank W.

    1997-05-01

    Advances in neuroimaging have enhanced the clinician's ability to localize the epileptogenic zone in focal epilepsy, but 20-50 percent of these cases still remain unlocalized. Many sophisticated modalities have been used to study epilepsy, but scalp electrode recorded electroencephalography is particularly useful due to its noninvasive nature and excellent temporal resolution. This study is aimed at specific locations of scalp electrode EEG information for correlation with anatomical structures in the brain. 3D position localizing devices commonly used in virtual reality systems are used to digitize the coordinates of scalp electrodes in a standard clinical configuration. The electrode coordinates are registered with a high- resolution MRI dataset using a robust surface matching algorithm. Volume rendering can then be used to visualize the electrodes and electrode potentials interpolated over the scalp. The accuracy of the coordinate registration is assessed quantitatively with a realistic head phantom.

  17. A local time stepping algorithm for GPU-accelerated 2D shallow water models

    NASA Astrophysics Data System (ADS)

    Dazzi, Susanna; Vacondio, Renato; Dal Palù, Alessandro; Mignosa, Paolo

    2018-01-01

    In the simulation of flooding events, mesh refinement is often required to capture local bathymetric features and/or to detail areas of interest; however, if an explicit finite volume scheme is adopted, the presence of small cells in the domain can restrict the allowable time step due to the stability condition, thus reducing the computational efficiency. With the aim of overcoming this problem, the paper proposes the application of a Local Time Stepping (LTS) strategy to a GPU-accelerated 2D shallow water numerical model able to handle non-uniform structured meshes. The algorithm is specifically designed to exploit the computational capability of GPUs, minimizing the overheads associated with the LTS implementation. The results of theoretical and field-scale test cases show that the LTS model guarantees appreciable reductions in the execution time compared to the traditional Global Time Stepping strategy, without compromising the solution accuracy.

  18. Asymptotic behaviour of two-point functions in multi-species models

    NASA Astrophysics Data System (ADS)

    Kozlowski, Karol K.; Ragoucy, Eric

    2016-05-01

    We extract the long-distance asymptotic behaviour of two-point correlation functions in massless quantum integrable models containing multi-species excitations. For such a purpose, we extend to these models the method of a large-distance regime re-summation of the form factor expansion of correlation functions. The key feature of our analysis is a technical hypothesis on the large-volume behaviour of the form factors of local operators in such models. We check the validity of this hypothesis on the example of the SU (3)-invariant XXX magnet by means of the determinant representations for the form factors of local operators in this model. Our approach confirms the structure of the critical exponents obtained previously for numerous models solvable by the nested Bethe Ansatz.

  19. Superior local conductivity in self-organized nanodots on indium-tin-oxide films induced by femtosecond laser pulses.

    PubMed

    Wang, Chih; Wang, Hsuan-I; Tang, Wei-Tsung; Luo, Chih-Wei; Kobayashi, Takayoshi; Leu, Jihperng

    2011-11-21

    Large-area surface ripple structures of indium-tin-oxide films, composed of self-organized nanodots, were induced by femtosecond laser pulses, without scanning. The multi-periodic spacing (~800 nm, ~400 nm and ~200 nm) was observed in the laser-induced ripple of ITO films. The local conductivity of ITO films is significantly higher, by approximately 30 times, than that of the as-deposited ITO films, due to the formation of these nanodots. Such a significant change can be ascribed to the formation of indium metal-like clusters, which appear as budges of ~5 nm height, due to an effective volume increase after breaking the In-O to form In-In bonding. © 2011 Optical Society of America

  20. Liposuction: Anaesthesia challenges

    PubMed Central

    Sood, Jayashree; Jayaraman, Lakshmi; Sethi, Nitin

    2011-01-01

    Liposuction is one of the most popular treatment modalities in aesthetic surgery with certain unique anaesthetic considerations. Liposuction is often performed as an office procedure. There are four main types of liposuction techniques based on the volume of infiltration or wetting solution injected, viz dry, wet, superwet, and tumescent technique. The tumescent technique is one of the most common liposuction techniques in which large volumes of dilute local anaesthetic (wetting solution) are injected into the fat to facilitate anaesthesia and decrease blood loss. The amount of lignocaine injected may be very large, approximately 35-55 mg/kg, raising concerns regarding local anaesthetic toxicity. Liposuction can be of two types according to the volume of solution aspirated: High volume (>4,000 ml aspirated) or low volume (<4,000 ml aspirated). While small volume liposuction may be done under local/monitored anaesthesia care, large-volume liposuction requires general anaesthesia. As a large volume of wetting solution is injected into the subcutaneous tissue, the intraoperative fluid management has to be carefully titrated along with haemodynamic monitoring and temperature control. Assessment of blood loss is difficult, as it is mixed with the aspirated fat. Since most obese patients opt for liposuction as a quick method to lose weight, all concerns related to obesity need to be addressed in a preoperative evaluation. PMID:21808392

  1. Data Summarization in the Node by Parameters (DSNP): Local Data Fusion in an IoT Environment.

    PubMed

    Maschi, Luis F C; Pinto, Alex S R; Meneguette, Rodolfo I; Baldassin, Alexandro

    2018-03-07

    With the advent of the Internet of Things, billions of objects or devices are inserted into the global computer network, generating and processing data at a volume never imagined before. This paper proposes a way to collect and process local data through a data fusion technology called summarization. The main feature of the proposal is the local data fusion, through parameters provided by the application, ensuring the quality of data collected by the sensor node. In the evaluation, the sensor node was compared when performing the data summary with another that performed a continuous recording of the collected data. Two sets of nodes were created, one with a sensor node that analyzed the luminosity of the room, which in this case obtained a reduction of 97% in the volume of data generated, and another set that analyzed the temperature of the room, obtaining a reduction of 80% in the data volume. Through these tests, it has been proven that the local data fusion at the node can be used to reduce the volume of data generated, consequently decreasing the volume of messages generated by IoT environments.

  2. Three-dimensional Characterization of Resorption Cavity Size and Location in Human Vertebral Trabecular Bone

    PubMed Central

    Goff, M.G.; Slyfield, C.R.; Kummari, S.R.; Tkachenko, E.V.; Fischer, S. E.; Yi, Y.H.; Jekir, M.; Keaveny, T.M.; Hernandez, C.J.

    2012-01-01

    The number and size of resorption cavities in cancellous bone are believed to influence rates of bone loss, local tissue stress and strain and potentially whole bone strength. Traditional two-dimensional approaches to measuring resorption cavities in cancellous bone report the percent of the bone surface covered by cavities or osteoclasts, but cannot measure cavity number or size. Here we use three-dimensional imaging (voxel size 0.7 × 0.7 × 5.0 μm) to characterize resorption cavity location, number and size in human vertebral cancellous bone from nine elderly donors (7 male, 2 female, ages 47–80 years). Cavities were 30.10 ± 8.56 μm in maximum depth, 80.60 ± 22.23 *103 μm2 in surface area and 614.16 ± 311.93 *103 μm3 in volume (mean ± SD). The average number of cavities per unit tissue volume (N.Cv/TV) was 1.25 ± 0.77 mm−3. The ratio of maximum cavity depth to local trabecular thickness was 30.46 ± 7.03 % and maximum cavity depth was greater on thicker trabeculae (p < 0.05, r2 = 0.14). Half of the resorption cavities were located entirely on nodes (the intersection of two or more trabeculae) within the trabecular structure. Cavities that were not entirely on nodes were predominately on plate-like trabeculae oriented in the cranial-caudal (longitudinal) direction. Cavities on plate-like trabeculae were larger in maximum cavity depth, cavity surface area and cavity volume than cavities on rod-like trabeculae (p < 0.05). We conclude from these findings that cavity size and location are related to local trabecular microarchitecture. PMID:22507299

  3. A representation of an NTCP function for local complication mechanisms

    NASA Astrophysics Data System (ADS)

    Alber, M.; Nüsslin, F.

    2001-02-01

    A mathematical formalism was tailored for the description of mechanisms complicating radiation therapy with a predominantly local component. The functional representation of an NTCP function was developed based on the notion that it has to be robust against population averages in order to be applicable to experimental data. The model was required to be invariant under scaling operations of the dose and the irradiated volume. The NTCP function was derived from the model assumptions that the complication is a consequence of local tissue damage and that the probability of local damage in a small reference volume is independent of the neighbouring volumes. The performance of the model was demonstrated with an animal model which has been published previously (Powers et al 1998 Radiother. Oncol. 46 297-306).

  4. Communication Environments for Local Networks.

    DTIC Science & Technology

    1982-12-01

    San Francisco, February-March 1979, pp.272.275. [Frank 75] Frank, H., I. Gitman , and R. Van Slyke, "Packet radio system - Network * -considerations...34 in AFIPS Conference Proceedings, Volume 44: National Computer Conference, Anaheim, Calif., May 1975, pp. 217-231. [Frank 76a] Frank, H., I. Gitman ...Local, Regional and Larger Scale Integrated Networks, Volume 2, 4 February 1976. [Frank 76b] Frank, H., I. Gitman , and R. Van Slyke, Local and Regional

  5. Semiautomatic approaches to account for 3-D distortion of the electric field from local, near-surface structures in 3-D resistivity inversions of 3-D regional magnetotelluric data

    USGS Publications Warehouse

    Rodriguez, Brian D.

    2017-03-31

    This report summarizes the results of three-dimensional (3-D) resistivity inversion simulations that were performed to account for local 3-D distortion of the electric field in the presence of 3-D regional structure, without any a priori information on the actual 3-D distribution of the known subsurface geology. The methodology used a 3-D geologic model to create a 3-D resistivity forward (“known”) model that depicted the subsurface resistivity structure expected for the input geologic configuration. The calculated magnetotelluric response of the modeled resistivity structure was assumed to represent observed magnetotelluric data and was subsequently used as input into a 3-D resistivity inverse model that used an iterative 3-D algorithm to estimate 3-D distortions without any a priori geologic information. A publicly available inversion code, WSINV3DMT, was used for all of the simulated inversions, initially using the default parameters, and subsequently using adjusted inversion parameters. A semiautomatic approach of accounting for the static shift using various selections of the highest frequencies and initial models was also tested. The resulting 3-D resistivity inversion simulation was compared to the “known” model and the results evaluated. The inversion approach that produced the lowest misfit to the various local 3-D distortions was an inversion that employed an initial model volume resistivity that was nearest to the maximum resistivities in the near-surface layer.

  6. Direct Density Functional Energy Minimization using an Tetrahedral Finite Element Grid

    NASA Astrophysics Data System (ADS)

    Vaught, A.; Schmidt, K. E.; Chizmeshya, A. V. G.

    1998-03-01

    We describe an O(N) (N proportional to volume) technique for solving electronic structure problems using the finite element method (FEM). A real--space tetrahedral grid is used as a basis to represent the electronic density, of a free or periodic system and Poisson's equation is solved as a boundary value problem. Nuclear cusps are treated using a local grid consisting of radial elements. These features facilitate the implementation of complicated energy functionals and permit a direct (constrained) energy minimization with respect to the density. We demonstrate the usefulness of the scheme by calculating the binding trends and polarizabilities of a number of atoms and molecules using a number of recently proposed non--local, orbital--free kinetic energy functionals^1,2. Scaling behavior, computational efficiency and the generalization to band--structure will also be discussed. indent 0 pt øbeylines øbeyspaces skip 0 pt ^1 P. Garcia-Gonzalez, J.E. Alvarellos and E. Chacon, Phys. Rev. B 54, 1897 (1996). ^2 A. J. Thakkar, Phys.Rev.B 46, 6920 (1992).

  7. Phase Diagram and Electronic Structure of Praseodymium and Plutonium

    DOE PAGES

    Lanatà, Nicola; Yao, Yongxin; Wang, Cai-Zhuang; ...

    2015-01-29

    We develop a new implementation of the Gutzwiller approximation in combination with the local density approximation, which enables us to study complex 4f and 5f systems beyond the reach of previous approaches. We calculate from first principles the zero-temperature phase diagram and electronic structure of Pr and Pu, finding good agreement with the experiments. Our study of Pr indicates that its pressure-induced volume-collapse transition would not occur without change of lattice structure—contrarily to Ce. Our study of Pu shows that the most important effect originating the differentiation between the equilibrium densities of its allotropes is the competition between the Peierlsmore » effect and the Madelung interaction and not the dependence of the electron correlations on the lattice structure.« less

  8. Seismic structure beneath Mt Vesuvius from receiver function analysis and local earthquakes tomography: evidences for location and geometry of the magma chamber

    NASA Astrophysics Data System (ADS)

    Agostinetti, N. Piana; Chiarabba, C.

    2008-12-01

    The recognition and localization of magmatic fluids are pre-requisites for evaluating the volcano hazard of the highly urbanized area of Mt Vesuvius. Here we show evidence and constraints for the volumetric estimation of magmatic fluids underneath this sleeping volcano. We use Receiver Functions for teleseismic data recorded at a temporary broad-band station installed on the volcano to constrain the S-wave velocity structure in the crust. Receiver Functions are analysed and inverted using the Neighbourhood Algorithm approach. The 1-D S-velocity profile is jointly interpreted and discussed with a new Vp and Vp/Vs image obtained by applying double difference tomographic techniques to local earthquakes. Seismologic data define the geometry of an axial, cylindrical high Vp, high Vs body consisting of a shallow solidified materials, probably the remnants of the caldera, and ultramafic rocks paving the crustal magma chamber. Between these two anomalies, we find a small region where the shear wave velocity drops, revealing the presence of magma at relatively shallow depths. The volume of fluids (30 km3) is sufficient to contribute future explosive eruptions.

  9. Interactive graphic editing tools in bioluminescent imaging simulation

    NASA Astrophysics Data System (ADS)

    Li, Hui; Tian, Jie; Luo, Jie; Wang, Ge; Cong, Wenxiang

    2005-04-01

    It is a challenging task to accurately describe complicated biological tissues and bioluminescent sources in bioluminescent imaging simulation. Several graphic editing tools have been developed to efficiently model each part of the bioluminescent simulation environment and to interactively correct or improve the initial models of anatomical structures or bioluminescent sources. There are two major types of graphic editing tools: non-interactive tools and interactive tools. Geometric building blocks (i.e. regular geometric graphics and superquadrics) are applied as non-interactive tools. To a certain extent, complicated anatomical structures and bioluminescent sources can be approximately modeled by combining a sufficient large number of geometric building blocks with Boolean operators. However, those models are too simple to describe the local features and fine changes in 2D/3D irregular contours. Therefore, interactive graphic editing tools have been developed to facilitate the local modifications of any initial surface model. With initial models composed of geometric building blocks, interactive spline mode is applied to conveniently perform dragging and compressing operations on 2D/3D local surface of biological tissues and bioluminescent sources inside the region/volume of interest. Several applications of the interactive graphic editing tools will be presented in this article.

  10. A review of the processes by which ultrasound is generated through the interaction of ionizing radiation and irradiated materials: some possible applications.

    PubMed

    Baily, N A

    1992-01-01

    The production of acoustic waves following the absorption of energy deposited by ionizing radiation, with a consequent production of localized thermal spikes has been confirmed by a number of papers published in the physics literature. This paper reviews the basic theory and presents most of the supporting experimental data. Some of the experimental methods used and the results obtained are summarized. In addition to the rather straightforward and routine use of acoustic phenomena produced by ionizing radiation for the detection and measurements of such radiation, there are some special applications that appear to be especially attractive for medical physics. Some of these are unique to ionizing radiation in that the amplitude of the ultrasound wave is proportional to the energy deposited in small volumes at localized sites of these interactions, while others derive from methodologies already in use with nonionizing radiations. The detection and measurement of this ultrasonic radiation could possibly lead to methods for the study of such fundamental phenomenon as track structure, precision localization of therapeutic treatment beams, and even the possible imaging of internal anatomic structures to provide on-line portal images.

  11. The association of antipsychotic medication and lithium with brain measures in patients with bipolar disorder.

    PubMed

    Abramovic, Lucija; Boks, Marco P M; Vreeker, Annabel; Bouter, Diandra C; Kruiper, Caitlyn; Verkooijen, Sanne; van Bergen, Annet H; Ophoff, Roel A; Kahn, René S; van Haren, Neeltje E M

    2016-11-01

    There is evidence that brain structure is abnormal in patients with bipolar disorder. Lithium intake appears to ׳normalise׳ global and local brain volumes, but effects of antipsychotic medication on brain volume or cortical thickness are less clear. Here, we aim to disentangle disease-specific brain deviations from those induced by antipsychotic medication and lithium intake using a large homogeneous sample of patients with bipolar disorder type I. Magnetic resonance imaging brain scans were obtained from 266 patients and 171 control subjects. Subcortical volumes and global and focal cortical measures (volume, thickness, and surface area) were compared between patients and controls. In patients, the association between lithium and antipsychotic medication intake and global, subcortical and cortical measures was investigated. Patients showed significantly larger lateral and third ventricles, smaller total brain, caudate nucleus, and pallidum volumes and thinner cortex in some small clusters in frontal, parietal and cingulate regions as compared with controls. Lithium-free patients had significantly smaller total brain, thalamus, putamen, pallidum, hippocampus and accumbens volumes compared to patients on lithium. In patients, use of antipsychotic medication was related to larger third ventricle and smaller hippocampus and supramarginal cortex volume. Patients with bipolar disorder show abnormalities in total brain, subcortical, and ventricle volume, particularly in the nucleus caudate and pallidum. Abnormalities in cortical thickness were scattered and clusters were relatively small. Lithium-free patients showed more pronounced abnormalities as compared with those on lithium. The associations between antipsychotic medication and brain volume are subtle and less pronounced than those of lithium. Copyright © 2016 Elsevier B.V. and ECNP. All rights reserved.

  12. Simple shearing flow of dry soap foams with tetrahedrally close-packed structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reinelt, Douglas A.; Kraynik, Andrew M.

    2000-05-01

    The microrheology of dry soap foams subjected to quasistatic, simple shearing flow is analyzed. Two different monodisperse foams with tetrahedrally close-packed (TCP) structure are examined: Weaire-Phelan (A15) and Friauf-Laves (C15). The elastic-plastic response is evaluated by using the Surface Evolver to calculate foam structures that minimize total surface area at each value of strain. The foam geometry and macroscopic stress are piecewise continuous functions of strain. The stress scales as T/V{sup 1/3}, where T is surface tension and V is cell volume. Each discontinuity corresponds to large changes in foam geometry and topology that restore equilibrium to unstable configurations thatmore » violate Plateau's laws. The instabilities occur when the length of an edge on a polyhedral foam cell vanishes. The length can tend to zero smoothly or abruptly with strain. The abrupt case occurs when a small increase in strain changes the energy profile in the neighborhood of a foam structure from a local minimum to a saddle point, which can lead to symmetry-breaking bifurcations. In general, the new structure associated with each stable solution branch results from an avalanche of local topology changes called T1 transitions. Each T1 cascade produces different cell neighbors, reduces surface energy, and provides an irreversible, film-level mechanism for plastic yield behavior. Stress-strain curves and average stresses are evaluated by examining foam orientations that admit strain-periodic behavior. For some orientations, the deformation cycle includes Kelvin cells instead of the original TCP structure; but the foam does not remain perfectly ordered. Bifurcations during subsequent T1 cascades lead to disorder and can even cause strain localization. (c) 2000 Society of Rheology.« less

  13. 18 CFR 281.206 - Priority 1 reclassification.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... entitlements” means, with respect to a particular interstate pipeline. (1) In the case of a direct sale customer, the volume of natural gas such direct sale customer is entitled to receive for high-priority uses...; (2) In the case of a local distribution company, the volume of natural gas which such local...

  14. CTIC Cablebooks. Volume 2: A Guide for Local Policy.

    ERIC Educational Resources Information Center

    Jesuale, Nancy, Ed.; And Others

    The second in a two-part series, this volume presents 13 chapters discussing many of the most pressing cable policy issues facing local government, describing alternative policy options, and suggesting regulatory procedures successfully used by decision makers in the United States. Topics covered are (1) "The Rationale for Regulation,"…

  15. Is the impact of eutrophication on phytoplankton diversity dependent on lake volume/ecosystem size?

    USGS Publications Warehouse

    Baho, Didier L.; Drakare, Stina; Johnson, Richard K.; Allen, Craig R.; Angeler, David G.

    2017-01-01

    Research focusing on biodiversity responses to the interactions of ecosystem size and anthropogenic stressors are based mainly on correlative gradient studies, and may therefore confound size-stress relationships due to spatial context and differences in local habitat features across ecosystems. We investigated how local factors related to anthropogenic stressors (e.g.,eutrophication) interact with ecosystem size to influence species diversity. In this study, constructed lake mesocosms (with two contrasting volumes: 1020 (shallow mesocosms) and 2150 (deep mesocosms) litres) were used to simulate ecosystems of different size and manipulated nutrient levels to simulate mesotrophic and hypertrophic conditions. Using a factorial design, we assessed how the interaction between ecosystem size and nutrients influences phytoplankton diversity. We assessed community metrics (richness, diversity, evenness and total biovolumes) and multivariate community structure over a growing season (May to early November 2011). Different community structures were found between deep and shallow mescosoms with nutrient enrichment: Cyanobacteria dominated in the deep and Charophyta in the shallow mesocosms. In contrast, phytoplankton communities were more similar to each other in the low nutrient treatments; only Chlorophyta had generally a higher biovolume in the shallow compared to the deep mesocosms. These results suggest that ecosystem size is not only a determinant of species diversity, but that it can mediate the influence of anthropogenic effects on biodiversity. Such interactions increase the uncertainty of global change outcomes, and should therefore not be ignored in risk/impact assessment and management.

  16. Failure Patterns in Patients with Esophageal Cancer Treated with Definitive Chemoradiation

    PubMed Central

    Welsh, James; Settle, Stephen H.; Amini, Arya; Xiao, Lianchun; Suzuki, Akihiro; Hayashi, Yuki; Hofstetter, Wayne; Komaki, Ritsuko; Liao, Zhongxing; Ajani, Jaffer A.

    2012-01-01

    Purpose Local failure after definitive chemoradiation therapy for unresectable esophageal cancer remains problematic. Little is known about the failure pattern based on modern day radiation treatment volumes. We hypothesized that most local failures would be within the gross tumor volume (GTV), where the bulk of the tumor burden resides. Methods and Materials We reviewed treatment volumes for 239 patients who underwent definitive chemoradiation therapy and compared this information with failure patterns on follow-up positron emission (PET). Failures were categorized as within the GTV, the larger clinical target volume (CTV, which encompasses microscopic disease), or the still larger planning target volume (PTV, which encompasses setup variability) or outside the radiation field. Results At a median follow-up time of 52.6 months (95% CI: 46.1 – 56.7 months), 119 patients (50%) had experienced local failure, 114 (48%) had distant failure, and 74 (31%) had no evidence of failure. Of all local failures, 107 (90%) were in the GTV, 27 (23%) in the CTV; and 14 (12%) in the PTV. In multivariate analysis, GTV failure was associated with tumor status (T3/T4 vs. T1/T2: OR=6.35, p value =0.002), change in standardized uptake value on PET before and after treatment (decrease >52%: OR=0.368, p value = 0.003) and tumor length (>8 cm: 4.08, p value = 0.009). Conclusions Most local failures after definitive chemoradiation for unresectable esophageal cancer occur in the GTV. Future therapeutic strategies should focus on enhancing local control. PMID:22565611

  17. Nanowire-Intensified Metal-Enhanced Fluorescence in Hybrid Polymer-Plasmonic Electrospun Filaments.

    PubMed

    Camposeo, Andrea; Jurga, Radoslaw; Moffa, Maria; Portone, Alberto; Cardarelli, Francesco; Della Sala, Fabio; Ciracì, Cristian; Pisignano, Dario

    2018-05-01

    Hybrid polymer-plasmonic nanostructures might combine high enhancement of localized fields from metal nanoparticles with light confinement and long-range transport in subwavelength dielectric structures. Here, the complex behavior of fluorophores coupling to Au nanoparticles within polymer nanowires, which features localized metal-enhanced fluorescence (MEF) with unique characteristics compared to conventional structures, is reported. The intensification effect when the particle is placed in the organic filaments is remarkably higher with respect to thin films of comparable thickness, thus highlighting a specific, nanowire-related enhancement of MEF effects. A dependence on the confinement volume in the dielectric nanowire is also indicated, with MEF significantly increasing upon reduction of the wire diameter. These findings are rationalized by finite element simulations, predicting a position-dependent enhancement of the quantum yield of fluorophores embedded in the fibers. Calculation of the ensemble-averaged fluorescence enhancement unveils the possibility of strongly enhancing the overall emission intensity for structures with size twice the diameter of the embedded metal particles. These new, hybrid fluorescent systems with localized enhanced emission, and the general nanowire-enhanced MEF effects associated to them, are highly relevant for developing nanoscale light-emitting devices with high efficiency and intercoupled through nanofiber networks, highly sensitive optical sensors, and novel laser architectures. © 2018 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA Weinheim.

  18. Embrittlement and Flow Localization in Reactor Structural Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xianglin Wu; Xiao Pan; James Stubbins

    2006-10-06

    Many reactor components and structural members are made from metal alloys due, in large part, to their strength and ability to resist brittle fracture by plastic deformation. However, brittle fracture can occur when structural material cannot undergo extensive, or even limited, plastic deformation due to irradiation exposure. Certain irradiation conditions lead to the development of a damage microstructure where plastic flow is limited to very small volumes or regions of material, as opposed to the general plastic flow in unexposed materials. This process is referred to as flow localization or plastic instability. The true stress at the onset of neckingmore » is a constant regardless of the irradiation level. It is called 'critical stress' and this critical stress has strong temperature dependence. Interrupted tensile testes of 316L SS have been performed to investigate the microstructure evolution and competing mechanism between mechanic twinning and planar slip which are believed to be the controlling mechanism for flow localization. Deformation twinning is the major contribution of strain hardening and good ductility for low temperatures, and the activation of twinning system is determined by the critical twinning stress. Phases transform and texture analyses are also discussed in this study. Finite element analysis is carried out to complement the microstructural analysis and for the prediction of materaials performance with and without stress concentration and irradiation.« less

  19. Reducing Mg Acceptor Activation-Energy in Al0.83Ga0.17N Disorder Alloy Substituted by Nanoscale (AlN)5/(GaN)1 Superlattice Using MgGa δ-Doping: Mg Local-Structure Effect

    NASA Astrophysics Data System (ADS)

    Zhong, Hong-Xia; Shi, Jun-Jie; Zhang, Min; Jiang, Xin-He; Huang, Pu; Ding, Yi-Min

    2014-10-01

    Improving p-type doping efficiency in Al-rich AlGaN alloys is a worldwide problem for the realization of AlGaN-based deep ultraviolet optoelectronic devices. In order to solve this problem, we calculate Mg acceptor activation energy and investigate its relationship with Mg local structure in nanoscale (AlN)5/(GaN)1 superlattice (SL), a substitution for Al0.83Ga0.17N disorder alloy, using first-principles calculations. A universal picture to reduce acceptor activation energy in wide-gap semiconductors is given for the first time. By reducing the volume of the acceptor local structure slightly, its activation energy can be decreased remarkably. Our results show that Mg acceptor activation energy can be reduced significantly from 0.44 eV in Al0.83Ga0.17N disorder alloy to 0.26 eV, very close to the Mg acceptor activation energy in GaN, and a high hole concentration in the order of 1019 cm-3 can be obtained in (AlN)5/(GaN)1 SL by MgGa δ-doping owing to GaN-monolayer modulation. We thus open up a new way to reduce Mg acceptor activation energy and increase hole concentration in Al-rich AlGaN.

  20. Reducing Mg acceptor activation-energy in Al(0.83)Ga(0.17)N disorder alloy substituted by nanoscale (AlN)₅/(GaN)₁ superlattice using Mg(Ga) δ-doping: Mg local-structure effect.

    PubMed

    Zhong, Hong-xia; Shi, Jun-jie; Zhang, Min; Jiang, Xin-he; Huang, Pu; Ding, Yi-min

    2014-10-23

    Improving p-type doping efficiency in Al-rich AlGaN alloys is a worldwide problem for the realization of AlGaN-based deep ultraviolet optoelectronic devices. In order to solve this problem, we calculate Mg acceptor activation energy and investigate its relationship with Mg local structure in nanoscale (AlN)5/(GaN)1 superlattice (SL), a substitution for Al(0.83)Ga(0.17)N disorder alloy, using first-principles calculations. A universal picture to reduce acceptor activation energy in wide-gap semiconductors is given for the first time. By reducing the volume of the acceptor local structure slightly, its activation energy can be decreased remarkably. Our results show that Mg acceptor activation energy can be reduced significantly from 0.44 eV in Al(0.83)Ga(0.17)N disorder alloy to 0.26 eV, very close to the Mg acceptor activation energy in GaN, and a high hole concentration in the order of 10(19) cm(-3) can be obtained in (AlN)5/(GaN)1 SL by Mg(Ga) δ-doping owing to GaN-monolayer modulation. We thus open up a new way to reduce Mg acceptor activation energy and increase hole concentration in Al-rich AlGaN.

  1. Subcortical volume and cortical surface architecture in women with acute and remitted anorexia nervosa: An exploratory neuroimaging study.

    PubMed

    Miles, Amy E; Voineskos, Aristotle N; French, Leon; Kaplan, Allan S

    2018-07-01

    Anorexia nervosa (AN) is a highly heritable psychiatric disorder characterized by starvation and emaciation and associated with changes in brain structure. The precise nature of these changes remains unclear, as does their developmental time course and capacity for reversal with weight-restoration. In this comprehensive neuroimaging study, we sought to characterize these changes by measuring subcortical volume and cortical surface architecture in women with acute and remitted AN. Structural magnetic resonance imaging data was acquired from underweight women with a current diagnosis of AN (acAN: n = 23), weight-recovered women with a past diagnosis of AN (recAN: n = 24), and female controls (HC: n = 24). Subcortical segmentation and cortical surface reconstruction were performed with FreeSurfer 6.0.0, and group differences in regional volume and vertex-wise, cortex-wide thickness, surface area, and local gyrification index (LGI), a measure of folding, were tested with separate univariate analyses of covariance. Mean hippocampal and thalamic volumes were significantly reduced in acAN participants, as was mean cortical thickness in four frontal and temporal clusters. Mean LGI was significantly reduced in acAN and recAN participants in five frontal and parietal clusters. No significant group differences in cortical surface area were detected. Reductions in subcortical volume, cortical thickness, and right postcentral LGI were unique to women with acute AN, indicating state-dependence and pointing towards cellular remodeling and sulcal widening as consequences of disease manifestation. Reductions in bilateral frontal LGI were observed in women with acute and remitted AN, suggesting a role of atypical neurodevelopment in disease vulnerability. Copyright © 2018. Published by Elsevier Ltd.

  2. Molecular simulation of dispersion and mechanical stability of organically modified layered silicates in polymer matrices

    NASA Astrophysics Data System (ADS)

    Fu, Yao-Tsung

    The experimental analysis of nanometer-scale separation processes and mechanical properties at buried interfaces in nanocomposites has remained difficult. We have employed molecular dynamics simulation in relation to available experimental data to alleviate such limitations and gain insight into the dispersion and mechanical stability of organically modified layered silicates in hydrophobic polymer matrices. We analyzed cleavage energies of various organically modified silicates as a function of the cation exchange capacity, surfactant head group chemistry, and chain length using MD simulations with the PCFF-PHYLLOSILICATE force field. The range of the cleavage energy is between 25 and 210 mJ/m2 upon the molecular structures and packing of surfactants. As a function of chain length, the cleavage energy indicates local minima for interlayer structures comprised of loosely packed layers of alkyl chains and local maxima for interlayer structures comprised of densely packed layers of alkyl chains between the layers. In addition, the distribution of cationic head groups between the layers in the equilibrium state determines whether large increases in cleavage energy due to Coulomb attraction. We have also examined mechanical bending and failure mechanisms of layered silicates on the nanometer scale using molecular dynamics simulation in comparison to a library of TEM data of polymer nanocomposites. We investigated the energy of single clay lamellae as a function of bending radius and different cation density. The layer energy increases particularly for bending radii below 20 nm and is largely independent of cation exchange capacity. The analysis of TEM images of agglomerated and exfoliated aluminosilicates of different CEC in polymer matrices at small volume fractions showed bending radii in excess of 100 nm due to free volumes in the polymer matrix. At a volume fraction >5%, however, bent clay layers were found with bending radii <20 nm and kinks as a failure mechanism in good agreement with simulation results. We have examined thermal conductivity of organically modified layered silicates using molecular dynamics simulation in comparison to experimental results by laser measurement. The thermal conductivity slightly increased from 0.08 to 0.14 Wm-1K-1 with increasing chain length, related to the gallery spacing and interlayer density of the organic material.

  3. Large-scale cortical volume correlation networks reveal disrupted small world patterns in Parkinson's disease.

    PubMed

    Wu, Qiong; Gao, Yang; Liu, Ai-Shi; Xie, Li-Zhi; Qian, Long; Yang, Xiao-Guang

    2018-01-01

    To date, the most frequently reported neuroimaging biomarkers in Parkinson's disease (PD) are direct brain imaging measurements focusing on local disrupted regions. However, the notion that PD is related to abnormal functional and structural connectivity has received support in the past few years. Here, we employed graph theory to analyze the structural co-variance networks derived from 50 PD patients and 48 normal controls (NC). Then, the small world properties of brain networks were assessed in the structural networks that were constructed based on cortical volume data. Our results showed that both the PD and NC groups had a small world architecture in brain structural networks. However, the PD patients had a higher characteristic path length and clustering coefficients compared with the NC group. With regard to the nodal centrality, 11 regions, including 3 association cortices, 5 paralimbic cortices, and 3 subcortical regions were identified as hubs in the PD group. In contrast, 10 regions, including 7 association cortical regions, 2 paralimbic cortical regions, and the primary motor cortex region, were identified as hubs. Moreover, the regional centrality was profoundly affected in PD patients, including decreased nodal centrality in the right inferior occipital gyrus and the middle temporal gyrus and increased nodal centrality in the right amygdala, the left caudate and the superior temporal gyrus. In addition, the structural cortical network of PD showed reduced topological stability for targeted attacks. Together, this study shows that the coordinated patterns of cortical volume network are widely altered in PD patients with a decrease in the efficiency of parallel information processing. These changes provide structural evidence to support the concept that the core pathophysiology of PD is associated with disruptive alterations in the coordination of large-scale brain networks that underlie high-level cognition. Copyright © 2017. Published by Elsevier B.V.

  4. The impact of ADHD persistence, recent cannabis use, and age of regular cannabis use onset on subcortical volume and cortical thickness in young adults.

    PubMed

    Lisdahl, Krista M; Tamm, Leanne; Epstein, Jeffery N; Jernigan, Terry; Molina, Brooke S G; Hinshaw, Stephen P; Swanson, James M; Newman, Erik; Kelly, Clare; Bjork, James M

    2016-04-01

    Both Attention Deficit Hyperactivity Disorder (ADHD) and chronic cannabis (CAN) use have been associated with brain structural abnormalities, although little is known about the effects of both in young adults. Participants included: those with a childhood diagnosis of ADHD who were CAN users (ADHD_CAN; n=37) and non-users (NU) (ADHD_NU; n=44) and a local normative comparison group (LNCG) who did (LNCG_CAN; n=18) and did not (LNCG_NU; n=21) use CAN regularly. Multiple regressions and MANCOVAs were used to examine the independent and interactive effects of a childhood ADHD diagnosis and CAN group status and age of onset (CUO) on subcortical volumes and cortical thickness. After controlling for age, gender, total brain volume, nicotine use, and past-year binge drinking, childhood ADHD diagnosis did not predict brain structure; however, persistence of ADHD was associated with smaller left precentral/postcentral cortical thickness. Compared to all non-users, CAN users had decreased cortical thickness in right hemisphere superior frontal sulcus, anterior cingulate, and isthmus of cingulate gyrus regions and left hemisphere superior frontal sulcus and precentral gyrus regions. Early cannabis use age of onset (CUO) in those with ADHD predicted greater right hemisphere superior frontal and postcentral cortical thickness. Young adults with persistent ADHD demonstrated brain structure abnormalities in regions underlying motor control, working memory and inhibitory control. Further, CAN use was linked with abnormal brain structure in regions with high concentrations of cannabinoid receptors. Additional large-scale longitudinal studies are needed to clarify how substance use impacts neurodevelopment in youth with and without ADHD. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. A Structural Magnetic Resonance Imaging Study in Transgender Persons on Cross-Sex Hormone Therapy.

    PubMed

    Mueller, Sven C; Landré, Lionel; Wierckx, Katrien; T'Sjoen, Guy

    2017-01-01

    To date, research findings are inconsistent about whether the neuroanatomy in transgender persons resembles that of their natal sex or their gender identity. Moreover, few studies have examined the effects of long-term cross-sex hormonal treatment on neuroanatomy in this cohort. The purpose of the present study was to examine neuroanatomical differences in transgender persons after prolonged cross-sex hormone therapy. Eighteen transgender men (female-to-male), 17 transgender women (male-to-female), 30 nontransgender men (natal men), and 27 nontransgender women (natal women) completed a high-resolution structural magnetic resonance imaging scan at 3 T. Eligibility criteria for transgender persons were gender-affirming surgery and at least 2 years of cross-sex hormone therapy. Exclusion criteria for nontransgender persons were presence of psychiatric or neurological disorders. The mean neuroanatomical volume for the amygdala, putamen, and corpus callosum differed between transgender women and natal women but not between transgender women and natal men. Differences between transgender men and natal men were found in several brain structures, including the medial temporal lobe structures and cerebellum. Differences between transgender men and natal women were found in the medial temporal lobe, nucleus accumbens, and 3rd ventricle. Sexual dimorphism between nontransgender men and women included larger cerebellar volumes and a smaller anterior corpus callosum in natal men than in natal women. The results remained stable after correcting for additional factors including age, total intracranial volume, anxiety, and depressive symptoms. Neuroanatomical differences were region specific between transgender persons and their natal sex as well as their gender identity, raising the possibility of a localized influence of sex hormones on neuroanatomy. © 2016 S. Karger AG, Basel.

  6. The Impact of ADHD Persistence, Recent Cannabis Use, and Age of Regular Cannabis Use Onset on Subcortical Volume and Cortical Thickness in Young Adults

    PubMed Central

    Lisdahl, Krista M.; Tamm, Leanne; Epstein, Jeffery N.; Jernigan, Terry; Molina, Brooke S.G.; Hinshaw, Stephen P.; Swanson, James M.; Newman, Erik; Kelly, Clare; Bjork, James M.

    2017-01-01

    Background Both Attention Deficit Hyperactivity Disorder (ADHD) and chronic cannabis (CAN) use have been associated with brain structural abnormalities, although little is known about the effects of both in young adults. Methods Participants included: those with a childhood diagnosis of ADHD who were CAN users (ADHD_CAN; n=37) and non-users (NU) (ADHD_NU; n=44) and a local normative comparison group (LNCG) who did (LNCG_CAN; n=18) and did not (LNCG_NU; n=21) use CAN regularly. Multiple regressions and MANCOVAs were used to examine the independent and interactive effects of a childhood ADHD diagnosis and CAN group status and age of onset (CUO) on subcortical volumes and cortical thickness. Results After controlling for age, gender, total brain volume, nicotine use, and past-year binge drinking, childhood ADHD diagnosis did not predict brain structure; however, persistence of ADHD was associated with smaller left precentral/postcentral cortical thickness. Compared to all non-users, CAN users had decreased cortical thickness in right hemisphere superior frontal sulcus, anterior cingulate, and isthmus of cingulate gyrus regions and left hemisphere superior frontal sulcus and precentral gyrus regions. Early cannabis use age of onset (CUO) in those with ADHD predicted greater right hemisphere superior frontal and postcentral cortical thickness. Discussion Young adults with persistent ADHD demonstrated brain structure abnormalities in regions underlying motor control, working memory and inhibitory control. Further, CAN use was linked with abnormal brain structure in regions with high concentrations of cannabinoid receptors. Additional large-scale longitudinal studies are needed to clarify how substance use impacts neurodevelopment in youth with and without ADHD. PMID:26897585

  7. Diverse responses of different structured forest to drought in Southwest China through remotely sensed data

    NASA Astrophysics Data System (ADS)

    Xu, Peipei; Zhou, Tao; Zhao, Xiang; Luo, Hui; Gao, Shan; Li, Zheng; Cao, Leyao

    2018-07-01

    Global climate change leads to gradual increases in the frequency, intensity, and duration of extreme drought events. Human activities such as afforestation and deforestation have led to spatial variation in forest structure, causing forests to exhibit an age-spatial structure relationship. Thus, it is of great importance to accurately evaluate the effects of drought stress on forest ecosystems with different forest age structures. Because the spatial heterogeneity varies with drought stress intensity, forest age, there are still a lot of uncertainties in current studies. In this study, based on the field measurement, and the proxy index of stand age (based on forest canopy height from LiDAR and stock volume from inventory) at the regional scale, we analyzed the different drought responses of forest ecosystems with various forest ages across different scales in Yunnan province, southwest China from 2001 to 2014. At the local scale, significant differences in the effects of drought stress were found among forests with various ages, suggesting that older forests suffer more under drought stress than younger forests. At the regional scale, the investigation statistics of forest damage indicated a maximum damage ratio in the forest with tall trees (>32 m), whereas damage was minimal in the forest with short trees (<25 m). The stock volume of the forest exhibited the same pattern, that is, the forest damage ratio increased as the stock volume increased. These data demonstrate that the responses of forest drought could be affected by forest age. Under drought stress, older forests show greater vulnerability and risk of damage, which will require special attention for forest managers, as well as improved risk assessments, in the context of future climate change.

  8. The Large Local Hole in the Galaxy Distribution: The 2MASS Galaxy Angular Power Spectrum

    NASA Astrophysics Data System (ADS)

    Frith, W. J.; Outram, P. J.; Shanks, T.

    2005-06-01

    We present new evidence for a large deficiency in the local galaxy distribution situated in the ˜4000 deg2 APM survey area. We use models guided by the 2dF Galaxy Redshift Survey (2dFGRS) n(z) as a probe of the underlying large-scale structure. We first check the usefulness of this technique by comparing the 2dFGRS n(z) model prediction with the K-band and B-band number counts extracted from the 2MASS and 2dFGRS parent catalogues over the 2dFGRS Northern and Southern declination strips, before turning to a comparison with the APM counts. We find that the APM counts in both the B and K-bands indicate a deficiency in the local galaxy distribution of ˜30% to z ≈ 0.1 over the entire APM survey area. We examine the implied significance of such a large local hole, considering several possible forms for the real-space correlation function. We find that such a deficiency in the APM survey area indicates an excess of power at large scales over what is expected from the correlation function observed in 2dFGRS correlation function or predicted from ΛCDM Hubble Volume mock catalogues. In order to check further the clustering at large scales in the 2MASS data, we have calculated the angular power spectrum for 2MASS galaxies. Although in the linear regime (l<30), ΛCDM models can give a good fit to the 2MASS angular power spectrum, over a wider range (l<100) the power spectrum from Hubble Volume mock catalogues suggests that scale-dependent bias may be needed for ΛCDM to fit. However, the modest increase in large-scale power observed in the 2MASS angular power spectrum is still not enough to explain the local hole. If the APM survey area really is 25% deficient in galaxies out to z≈0.1, explanations for the disagreement with observed galaxy clustering statistics include the possibilities that the galaxy clustering is non-Gaussian on large scales or that the 2MASS volume is still too small to represent a `fair sample' of the Universe. Extending the 2dFGRS redshift survey over the whole APM area would resolve many of the remaining questions about the existence and interpretation of this local hole.

  9. Magnetic nanoparticles through organometallic synthesis: evolution of the magnetic properties from isolated nanoparticles to organised nanostructures.

    PubMed

    Dumestre, Fréderic; Martinez, Susana; Zitoun, David; Fromen, Marie-Claire; Casanove, Marie-José; Lecante, Pierre; Respaud, Marc; Serres, Arnaud; Benfield, Robert E; Amiens, Catherine; Chaudret, Bruno

    2004-01-01

    Co and NiFe nanoparticles (2.7 to 3.3 nm mean diameter) of narrow size distribution have been obtained through the decomposition of organometallic precursors in organic solutions of long alkyl chain ligands, namely oleic acid and hexadecylamine. Materials of various volume fractions were produced. The particles have been structurally characterised by WAXS. Both adopt the bulk structure: HCP in the case of cobalt; a mixture of FCC and BCC for NiFe. Their aptitude to self-assemble either on flat supports or in bulk solid state has been investigated by means of TEM and SAXS. This study suggests the crystallisation of the nanoparticles upon solvent evaporation, especially a local FCC arrangement was observed for the NiFe material. Magnetic measurements (SQUID) confirm this tendency. The blocking temperature depends on the metal volume fraction, i.e. on the anisotropy generated by the dipolar couplings (Ki). We show that, for dense samples, the particles of high intrinsic anisotropy, Ku, (Co) still display an individual behaviour while the soft ones (NiFe) display a collective behaviour.

  10. A semi-analytical description of protein folding that incorporates detailed geometrical information

    PubMed Central

    Suzuki, Yoko; Noel, Jeffrey K.; Onuchic, José N.

    2011-01-01

    Much has been done to study the interplay between geometric and energetic effects on the protein folding energy landscape. Numerical techniques such as molecular dynamics simulations are able to maintain a precise geometrical representation of the protein. Analytical approaches, however, often focus on the energetic aspects of folding, including geometrical information only in an average way. Here, we investigate a semi-analytical expression of folding that explicitly includes geometrical effects. We consider a Hamiltonian corresponding to a Gaussian filament with structure-based interactions. The model captures local features of protein folding often averaged over by mean-field theories, for example, loop contact formation and excluded volume. We explore the thermodynamics and folding mechanisms of beta-hairpin and alpha-helical structures as functions of temperature and Q, the fraction of native contacts formed. Excluded volume is shown to be an important component of a protein Hamiltonian, since it both dominates the cooperativity of the folding transition and alters folding mechanisms. Understanding geometrical effects in analytical formulae will help illuminate the consequences of the approximations required for the study of larger proteins. PMID:21721664

  11. Matter Lagrangian of particles and fluids

    NASA Astrophysics Data System (ADS)

    Avelino, P. P.; Sousa, L.

    2018-03-01

    We consider a model where particles are described as localized concentrations of energy, with fixed rest mass and structure, which are not significantly affected by their self-induced gravitational field. We show that the volume average of the on-shell matter Lagrangian Lm describing such particles, in the proper frame, is equal to the volume average of the trace T of the energy-momentum tensor in the same frame, independently of the particle's structure and constitution. Since both Lm and T are scalars, and thus independent of the reference frame, this result is also applicable to collections of moving particles and, in particular, to those which can be described by a perfect fluid. Our results are expected to be particularly relevant in the case of modified theories of gravity with nonminimal coupling to matter where the matter Lagrangian appears explicitly in the equations of motion of the gravitational and matter fields, such as f (R ,Lm) and f (R ,T ) gravity. In particular, they indicate that, in this context, f (R ,Lm) theories may be regarded as a subclass of f (R ,T ) gravity.

  12. Predictors of Individual Tumor Local Control After Stereotactic Radiosurgery for Non-Small Cell Lung Cancer Brain Metastases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garsa, Adam A.; Badiyan, Shahed N.; DeWees, Todd

    2014-10-01

    Purpose: To evaluate local control rates and predictors of individual tumor local control for brain metastases from non-small cell lung cancer (NSCLC) treated with stereotactic radiosurgery (SRS). Methods and Materials: Between June 1998 and May 2011, 401 brain metastases in 228 patients were treated with Gamma Knife single-fraction SRS. Local failure was defined as an increase in lesion size after SRS. Local control was estimated using the Kaplan-Meier method. The Cox proportional hazards model was used for univariate and multivariate analysis. Receiver operating characteristic analysis was used to identify an optimal cutpoint for conformality index relative to local control. Amore » P value <.05 was considered statistically significant. Results: Median age was 60 years (range, 27-84 years). There were 66 cerebellar metastases (16%) and 335 supratentorial metastases (84%). The median prescription dose was 20 Gy (range, 14-24 Gy). Median overall survival from time of SRS was 12.1 months. The estimated local control at 12 months was 74%. On multivariate analysis, cerebellar location (hazard ratio [HR] 1.94, P=.009), larger tumor volume (HR 1.09, P<.001), and lower conformality (HR 0.700, P=.044) were significant independent predictors of local failure. Conformality index cutpoints of 1.4-1.9 were predictive of local control, whereas a cutpoint of 1.75 was the most predictive (P=.001). The adjusted Kaplan-Meier 1-year local control for conformality index ≥1.75 was 84% versus 69% for conformality index <1.75, controlling for tumor volume and location. The 1-year adjusted local control for cerebellar lesions was 60%, compared with 77% for supratentorial lesions, controlling for tumor volume and conformality index. Conclusions: Cerebellar tumor location, lower conformality index, and larger tumor volume were significant independent predictors of local failure after SRS for brain metastases from NSCLC. These results warrant further investigation in a prospective setting.« less

  13. 3D Pathology Volumetric Technique: A Method for Calculating Breast Tumour Volume from Whole-Mount Serial Section Images

    PubMed Central

    Clarke, G. M.; Murray, M.; Holloway, C. M. B.; Liu, K.; Zubovits, J. T.; Yaffe, M. J.

    2012-01-01

    Tumour size, most commonly measured by maximum linear extent, remains a strong predictor of survival in breast cancer. Tumour volume, proportional to the number of tumour cells, may be a more accurate surrogate for size. We describe a novel “3D pathology volumetric technique” for lumpectomies and compare it with 2D measurements. Volume renderings and total tumour volume are computed from digitized whole-mount serial sections using custom software tools. Results are presented for two lumpectomy specimens selected for tumour features which may challenge accurate measurement of tumour burden with conventional, sampling-based pathology: (1) an infiltrative pattern admixed with normal breast elements; (2) a localized invasive mass separated from the in situ component by benign tissue. Spatial relationships between key features (tumour foci, close or involved margins) are clearly visualized in volume renderings. Invasive tumour burden can be underestimated using conventional pathology, compared to the volumetric technique (infiltrative pattern: 30% underestimation; localized mass: 3% underestimation for invasive tumour, 44% for in situ component). Tumour volume approximated from 2D measurements (i.e., maximum linear extent), assuming elliptical geometry, was seen to overestimate volume compared to the 3D volumetric calculation (by a factor of 7x for the infiltrative pattern; 1.5x for the localized invasive mass). PMID:23320179

  14. Local volume tables for Pacific madrone, tanoak, and California black oak in north-central California

    Treesearch

    Philip M. McDonald

    1983-01-01

    Local volume tables for Pacific madrone (Arbutus menziesii Pursh), tanoak (Lithocarpus densifiorus [Hook. & Am.] Rehd.), and California black oak (Quercus kelloggii Newb.), developed from data recorded by an optical dendrometer, are presented by 1-inch diameter classes in the range of 3 to 30 inches. Cubic...

  15. Jammed elastic shells - a 3D experimental soft frictionless granular system

    NASA Astrophysics Data System (ADS)

    Jose, Jissy; Blab, Gerhard A.; van Blaaderen, Alfons; Imhof, Arnout

    2015-03-01

    We present a new experimental system of monodisperse, soft, frictionless, fluorescent labelled elastic shells for the characterization of structure, universal scaling laws and force networks in 3D jammed matter. The interesting fact about these elastic shells is that they can reversibly deform and therefore serve as sensors of local stress in jammed matter. Similar to other soft particles, like emulsion droplets and bubbles in foam, the shells can be packed to volume fractions close to unity, which allows us to characterize the contact force distribution and universal scaling laws as a function of volume fraction, and to compare them with theoretical predictions and numerical simulations. However, our shells, unlike other soft particles, deform rather differently at large stresses. They deform without conserving their inner volume, by forming dimples at contact regions. At each contact one of the shells buckled with a dimple and the other remained spherical, closely resembling overlapping spheres. We conducted 3D quantitative analysis using confocal microscopy and image analysis routines specially developed for these particles. In addition, we analysed the randomness of the process of dimpling, which was found to be volume fraction dependent.

  16. Probing the Dusty Stellar Populations of the Local Volume Galaxies with JWST /MIRI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Olivia C.; Meixner, Margaret; Justtanont, Kay

    The Mid-Infrared Instrument (MIRI) for the James Webb Space Telescope ( JWST ) will revolutionize our understanding of infrared stellar populations in the Local Volume. Using the rich Spitzer -IRS spectroscopic data set and spectral classifications from the Surveying the Agents of Galaxy Evolution (SAGE)–Spectroscopic survey of more than 1000 objects in the Magellanic Clouds, the Grid of Red Supergiant and Asymptotic Giant Branch Star Model (grams), and the grid of YSO models by Robitaille et al., we calculate the expected flux densities and colors in the MIRI broadband filters for prominent infrared stellar populations. We use these fluxes tomore » explore the JWST /MIRI colors and magnitudes for composite stellar population studies of Local Volume galaxies. MIRI color classification schemes are presented; these diagrams provide a powerful means of identifying young stellar objects, evolved stars, and extragalactic background galaxies in Local Volume galaxies with a high degree of confidence. Finally, we examine which filter combinations are best for selecting populations of sources based on their JWST colors.« less

  17. Evaluation of the effect of localized skin cooling on nasal airway volume by acoustic rhinometry.

    PubMed

    Yamagiwa, M; Hilberg, O; Pedersen, O F; Lundqvist, G R

    1990-04-01

    Ten healthy subjects (four men and six women) were subjected to localized skin cooling by submersion for 5 min of both feet and, in another experiment, one hand and forearm into ice-cold water. Repeated measurements of nasal cavity volumes by a new method, acoustic rhinometry, showed characteristic patterns ranging from marked increases in volumes lasting the entire exposure period to transient monophasic or biphasic responses to no change at all. The pattern in individual subjects was reproducible with the two methods of cooling, and it could be characterized by five types when related to baseline measurements during the preexposure period. Because of large minute-to-minute variations, probably determined by local differences and fluctuations in blood flow in tissues through the nose, evaluation of induced changes in the nasal cavity volume cannot be based on single measurements as has frequently been done in the past by using rhinomanometry as the experimental method. The mechanisms behind the characteristic patterns in immediate human nasal response to local skin cooling challenge remains to be explored.

  18. Can we use lower volume of local anesthetic for infraclavicular brachial plexus nerve block under ultrasound guidance in children?

    PubMed

    Ince, Ilker; Aksoy, Mehmet; Dostbil, Aysenur; Tuncer, Kutsi

    2017-09-01

    To determine if the infraclavicular brachial plexus block can be applied with lower volume of local anesthetic. Randomised, double-blinded clinical trial. 60 patients aged 5-15years with ASA I-II who underwent emergent or elective arm, forearm or hand operations were included in the study. Patients were divided into two groups randomly; standard volume local anesthetic administered group (Group S, n=30) and low volume anesthetic administered group (Group L, n=30). Postoperative pain scores, sensory and motor block durations were noted. Pain scores (Wong-Baker Face Scale) were evaluated and the results were detected to be similar at all times (30min, 1, 2, 4, 8, 12, 24h). Durations of motor block were 168(±16) minutes and 268(±15) minutes in Group L and Group S respectively and the difference was statistically significant (p<0.001). Durations of sensory block were 385(±26) and 402(±39) in Group L and Group S respectively and no statistically significant difference was detected (p=0.064). Similar block success, postoperative sensory block durations and pain scores could be obtained during infraclavicular brachial plexus in pediatric patients with lower local anesthetic volumes. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Heterogeneities of 67P nucleus seen by CONSERT in the vicinity of Abydos

    NASA Astrophysics Data System (ADS)

    Ciarletti, Valerie; Lasue, Jéremie; Hérique, Alain; Kofman, Wlodek; Levasseur-Regourd, Anny-Chantal; Lemmonier, Florentin; Guiffaut, Christophe; Plettemeier, Dirk

    2016-04-01

    Since their arrival at comet 67P in August 2014, a number of instruments onboard Rosetta's main spacecraft and Philae lander have been observing the surface of the nucleus and have revealed details of amazing structures. This information was complemented by information about the nucleus internal structure collected by the CONSERT (Comet Nucleus Sounding Experiment by Radiowave Transmission) experiment in order to constrain the nucleus formation and evolution. The CONSERT experiment is a bistatic radar with receivers and transmitters on-board both Rosetta's main spacecraft and Philae lander. The instrument makes use of electromagnetic waves at 90 MHz that propagated, during the First Science Sequence, between Philae and Rosetta through the small lobe of 67P over distances ranging from approximately 200 to 800 m depending on the spacecraft location. The data used here have been collected at depths that reach a maximum of about one hundred of meters nucleus in the vicinity of Abydos. The data collected by CONSERT provide an estimate of the permittivity mean value and information about its spatial variability inside the sounded volume. Thanks to the 10 MHz frequency bandwidth of the signal used by the instrument a spatial resolution around 10m is obtained inside the sounded volume of the nucleus. In this paper, we specifically focus on local variations in the nucleus subsurface permittivity. A number of electromagnetic simulations corresponding to the CONSERT operations have been performed for a variety of subsurface permittivity models. The effect of local vertical and horizontal large scale variations as well as smaller scale random fractal structure of the permittivity values around the landing site will be presented and discussed in comparison with CONSERT's experimental data collected in the same configurations. Possible interpretations of the results will be presented as well as potential consequences for the nucleus structure in connection with observations made available by other instruments.

  20. The vibro-acoustic response and analysis of a full-scale aircraft fuselage section for interior noise reduction.

    PubMed

    Herdic, Peter C; Houston, Brian H; Marcus, Martin H; Williams, Earl G; Baz, Amr M

    2005-06-01

    The surface and interior response of a Cessna Citation fuselage section under three different forcing functions (10-1000 Hz) is evaluated through spatially dense scanning measurements. Spatial Fourier analysis reveals that a point force applied to the stiffener grid provides a rich wavenumber response over a broad frequency range. The surface motion data show global structural modes (approximately < 150 Hz), superposition of global and local intrapanel responses (approximately 150-450 Hz), and intrapanel motion alone (approximately > 450 Hz). Some evidence of Bloch wave motion is observed, revealing classical stop/pass bands associated with stiffener periodicity. The interior response (approximately < 150 Hz) is dominated by global structural modes that force the interior cavity. Local intrapanel responses (approximately > 150 Hz) of the fuselage provide a broadband volume velocity source that strongly excites a high density of interior modes. Mode coupling between the structural response and the interior modes appears to be negligible due to a lack of frequency proximity and mismatches in the spatial distribution. A high degree-of-freedom finite element model of the fuselage section was developed as a predictive tool. The calculated response is in good agreement with the experimental result, yielding a general model development methodology for accurate prediction of structures with moderate to high complexity.

  1. Molecular View of CO2 Capture by Polyethylenimine: Role of Structural and Dynamical Heterogeneity.

    PubMed

    Sharma, Pragati; Chakrabarty, Suman; Roy, Sudip; Kumar, Rajnish

    2018-05-01

    The molecular thermodynamics and kinetics of CO 2 sorption in Polyethylenimine (PEI) melt have been investigated systematically using GCMC and MD simulations. We elucidate presence of significant structural and dynamic heterogeneity associated with the overall absorption process. CO 2 adsorption in a PEI membrane shows a distinct two-stage process of a rapid CO 2 adsorption at the interfaces (hundreds of picoseconds) followed by a significantly slower diffusion limited release toward the interior bulk regions of PEI melt (hundreds of nanoseconds to microseconds). The spatial heterogeneity of local structural features of the PEI chains lead to significantly heterogeneous absorption characterized by clustering and trapping of CO 2 molecules that then lead to subdiffusive motion of CO 2 . In the complex interplay of interaction and entropy, the latter emerges out to be the major determining factor with significantly higher solubility of CO 2 near the interfaces despite having lower density of binding amine groups. Regions having higher free-volume (entropically favorable) viz. interfaces, pores and loops demonstrate higher CO 2 capture ability. Various local structural features of PEI conformations, for example, inter- and intrachain loops, pores of different radii, and di- or tricoordinated pores are explored for their effects on the varying CO 2 adsorption abilities.

  2. Measuring local volume fraction, long-wavelength correlations, and fractionation in a phase-separating polydisperse fluid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williamson, J. J., E-mail: johnjosephwilliamson@gmail.com; Evans, R. M. L.

    We dynamically simulate fractionation (partitioning of particle species) during spinodal gas-liquid separation of a size-polydisperse colloid, using polydispersity up to ∼40% and a skewed parent size distribution. We introduce a novel coarse-grained Voronoi method to minimise size bias in measuring local volume fraction, along with a variety of spatial correlation functions which detect fractionation without requiring a clear distinction between the phases. These can be applied whether or not a system is phase separated, to determine structural correlations in particle size, and generalise easily to other kinds of polydispersity (charge, shape, etc.). We measure fractionation in both mean size andmore » polydispersity between the phases, its direction differing between model interaction potentials which are identical in the monodisperse case. These qualitative features are predicted by a perturbative theory requiring only a monodisperse reference as input. The results show that intricate fractionation takes place almost from the start of phase separation, so can play a role even in nonequilibrium arrested states. The methods for characterisation of inhomogeneous polydisperse systems could in principle be applied to experiment as well as modelling.« less

  3. Volume monogamy of quantum steering ellipsoids for multiqubit systems

    NASA Astrophysics Data System (ADS)

    Cheng, Shuming; Milne, Antony; Hall, Michael J. W.; Wiseman, Howard M.

    2016-10-01

    The quantum steering ellipsoid can be used to visualize 2-qubit states, and thus provides a generalization of the Bloch picture for the single qubit. Recently, a monogamy relation for the volumes of steering ellipsoids has been derived for pure 3-qubit states and shown to be stronger than the celebrated Coffman-Kundu-Wootters inequality. We first demonstrate the close connection between this volume monogamy relation and the classification of pure 3-qubit states under stochastic local operations and classical communication. We then show that this monogamy relation does not hold for general mixed 3-qubit states and derive a weaker monogamy relation that does hold for such states. We also prove a volume monogamy relation for pure 4-qubit states (further conjectured to hold for the mixed case), and generalize our 3-qubit inequality to n qubits. Finally, we study the effect of noise on the quantum steering ellipsoid and find that the volume of any 2-qubit state is nonincreasing when the state is exposed to arbitrary local noise. This implies that any volume monogamy relation for a given class of multiqubit states remains valid under the addition of local noise. We investigate this quantitatively for the experimentally relevant example of isotropic noise.

  4. Simulating the interaction of the heliosphere with the local interstellar medium: MHD results from a finite volume approach, first bidimensional results

    NASA Technical Reports Server (NTRS)

    Chanteur, G.; Khanfir, R.

    1995-01-01

    We have designed a full compressible MHD code working on unstructured meshes in order to be able to compute accurately sharp structures embedded in large scale simulations. The code is based on a finite volume method making use of a kinetic flux splitting. A bidimensional version of the code has been used to simulate the interaction of a moving interstellar medium, magnetized or unmagnetized with a rotating and magnetized heliopspheric plasma source. Being aware that these computations are not realistic due to the restriction to two dimensions, we present it to demonstrate the ability of this new code to handle this problem. An axisymetric version, now under development, will be operational in a few months. Ultimately we plan to run a full 3d version.

  5. Synergistic Effects among the Structure, Martensite Transformation and Shear Band in a Shape Memory Alloy-Metallic Glass Composite

    NASA Astrophysics Data System (ADS)

    Zhang, Xudong; Ren, Junqiang; Ding, Xiangdong

    2018-05-01

    In this work, we use the finite element method to investigate the free volume evolution, as well as the martensite transformation effect and its connection with the pretreatment strain, in a shape memory alloy-metallic glass composite. Our simulation results show that the martensite phase transformation can enhance the blocking effect while relieving the free volume localization. The synergistic effect among the martensite transformation effect, blocking effect, and shear band interaction in the composite is responsible for the tensile plasticity and work-hardening capability. In addition, we design a Sierpinski carpet-like fractal microstructure so that the composite exhibits improved tensile performance as a result of the enhanced synergistic effect. However, the tensile performance of the composite deteriorates with increasing pretreatment strain since the martensite transformation effect is weakened.

  6. Ultra-sensitive pressure dependence of bandgap of rutile-GeO2 revealed by many body perturbation theory.

    PubMed

    Samanta, Atanu; Jain, Manish; Singh, Abhishek K

    2015-08-14

    The reported values of bandgap of rutile GeO2 calculated by the standard density functional theory within local-density approximation (LDA)/generalized gradient approximation (GGA) show a wide variation (∼2 eV), whose origin remains unresolved. Here, we investigate the reasons for this variation by studying the electronic structure of rutile-GeO2 using many-body perturbation theory within the GW framework. The bandgap as well as valence bandwidth at Γ-point of rutile phase shows a strong dependence on volume change, which is independent of bandgap underestimation problem of LDA/GGA. This strong dependence originates from a change in hybridization among O-p and Ge-(s and p) orbitals. Furthermore, the parabolic nature of first conduction band along X-Γ-M direction changes towards a linear dispersion with volume expansion.

  7. Changes in subcortical shape and cognitive function in patients with chronic insomnia.

    PubMed

    Koo, Dae Lim; Shin, Jeong-Hyeon; Lim, Jae-Sung; Seong, Joon-Kyung; Joo, Eun Yeon

    2017-07-01

    The aim of this study was to examine morphological changes in subcortical structures via surface-based analysis and to correlate local shape changes with cognitive function. We analyzed subcortical brain morphology and compared the shape changes with clinical and neuropsychological features in patients with chronic insomnia. Hippocampal atrophy was associated with higher Pittsburgh Sleep Quality Index scores (r = -0.4, p = 0.0408) and higher arousal indices (r = -0.4, p = 0.0332). Local volume loss of the putamen was associated with higher arousal indices (r = -0.5, p = 0.0416). Atrophic change of subcortical structures including the hippocampus, amygdala, basal ganglia, and thalamus, correlated negatively with verbal fluency, frontal function, verbal memory, and visual memory, respectively, in these patients (|r| ≥ 0.3, p < 0.05). This study shows that sleep quality and fragmentation are closely related to atrophic changes in hippocampus and putamen. In addition, atrophic changes in global subcortical structures are associated with impaired cognitive function in patients with chronic insomnia. Copyright © 2017. Published by Elsevier B.V.

  8. Multi-functional layered structure having structural and radiation shielding attributes

    NASA Technical Reports Server (NTRS)

    Kaul, Raj K. (Inventor); Barghouty, Abdulnasser Fakhri (Inventor); Penn, Benjamin G. (Inventor); Hulcher, Anthony Bruce (Inventor)

    2010-01-01

    A cosmic and solar radiation shielding structure that also has structural attributes is comprised of three layers. The first layer is 30-42 percent by volume of ultra-high molecular weight (UHMW) polyethylene fibers, 18-30 percent by volume of graphite fibers, and a remaining percent by volume of an epoxy resin matrix. The second layer is approximately 68 percent by volume of UHMW polyethylene fibers and a remaining percent by volume of a polyethylene matrix. The third layer is a ceramic material.

  9. Light-sheet fluorescence imaging to localize cardiac lineage and protein distribution

    PubMed Central

    Ding, Yichen; Lee, Juhyun; Ma, Jianguo; Sung, Kevin; Yokota, Tomohiro; Singh, Neha; Dooraghi, Mojdeh; Abiri, Parinaz; Wang, Yibin; Kulkarni, Rajan P.; Nakano, Atsushi; Nguyen, Thao P.; Fei, Peng; Hsiai, Tzung K.

    2017-01-01

    Light-sheet fluorescence microscopy (LSFM) serves to advance developmental research and regenerative medicine. Coupled with the paralleled advances in fluorescence-friendly tissue clearing technique, our cardiac LSFM enables dual-sided illumination to rapidly uncover the architecture of murine hearts over 10 by 10 by 10 mm3 in volume; thereby allowing for localizing progenitor differentiation to the cardiomyocyte lineage and AAV9-mediated expression of exogenous transmembrane potassium channels with high contrast and resolution. Without the steps of stitching image columns, pivoting the light-sheet and sectioning the heart mechanically, we establish a holistic strategy for 3-dimentional reconstruction of the “digital murine heart” to assess aberrant cardiac structures as well as the spatial distribution of the cardiac lineages in neonates and ion-channels in adults. PMID:28165052

  10. Arrested diatreme development: Standing Rocks East, Hopi Buttes, Navajo Nation, USA

    NASA Astrophysics Data System (ADS)

    Lefebvre, Nathalie S.; White, James D. L.; Kjarsgaard, Bruce A.

    2016-01-01

    Maar-diatreme volcanoes, defined by their relatively large pyroclastic debris-filled subsurface structures and craters that cut into the pre-eruptive land surface, are typically found in small-volume mafic to ultramafic monogenetic volcanic fields. Diatremes are associated with strong explosions throughout most of their development, focused along feeder dikes and generally attributed to magma-water interaction, or high magmatic volatiles. Detailed mapping of the magnificently exposed Standing Rocks East (SRE) diatreme shows evidence of additional eruptive complexity, and offers new insights into how the plumbing and vent structures of small-volume volcanoes evolve during an eruption. SRE is part of a larger, basanitic volcanic complex that includes several diatremes formed along a series of irregular, offset NW-SE trending dikes exposed 300 m below the pre-eruptive land surface. Its similarly oriented elliptical-shaped diatreme structure comprises predominantly country rock lithic-rich breccia of coarse inhomogeneously mixed wall-rock blocks sourced from above and below the current surface, plus sparse juvenile material. Domains of pyroclastic deposits crosscut the country rock breccia deposits, and the best exposed is the NW massif rising 35 m above the current erosional surface. It represents a cross-section of an evolving crater floor, and comprises matrix-rich lapilli tuff and spatter deposits cut by irregularly distributed dikes, some with very complex textures. The most significant deposit, in terms of volume, is an unbedded lapilli tuff that is poorly sorted and has a well-mixed population of wall-rock and juvenile clast varieties, thus resembling deposits typical of diatremes. It is overlain by and locally intercalated with spatter deposits, and this irregular contact demarcates the base of what was during eruption an uneven, evolving crater floor. The generally massive, variably welded spatter deposits constitute mostly lapilli-sized juvenile clasts with fluidal, folded-over shapes and ropy surfaces, subordinate thermally altered wall-rock and variegated domains of lapilli tuff. SRE shows a progressive transition from fissure to diatreme, and overall evolution from more explosive to weakly explosive eruption styles recorded at the conduit-crater transition. Diatreme development was initiated by deep-quarrying explosive eruptions along a fissure to form the country rock-rich breccia. Only parts of the fissure remained active as magma feeding the highly explosive eruptions along the fissure localized into discrete point sources forming the matrix-rich lapilli tuff deposits. These superimposed deposits record the passage of multiple debris-jets and subvertical fallback from shallow cratering arising from explosions triggered by magma-water interaction at numerous, discrete sites. However, instead of continuing to build a well-formed diatreme, the system switched to weak spattering with intermittent explosive activity and near-surface dike emplacement into the unconsolidated anisotropic, pyroclastic debris of the crater floor. Dominant spatter from strombolian-style bursts accumulated on the topographically varied, evolving unstable syn-eruptive crater floor, and led to local failure and remobilization. This study demonstrates how the combination of fissure behavior and sensitivity of the shallow plumbing system to local conditions during an eruption can lead to a decrease in eruptive footprint within the diatreme structure, and an overall decrease in explosivity resulting in the arrested development of an immature diatreme.

  11. Proceedings of the International Conference on Recent Advances in Structural Dynamics (3rd) Held in Southampton, England on 18-22 July 1988. Volume 1

    DTIC Science & Technology

    1988-07-01

    a v 3 , a a p and when the terms of order x /R are neglected with respect to unity, the strain measures reduce to the ones associated with CST...500) 0.8 0.6 0.4 - 0.2 -, 40 60 80 100 120 WAVE NUMBER, X 40 Fig. 3 Variation of phase and group velocities * • fh wave number for a ... of a . A8 "*\\ ; 5 CALCULATION OF LOCALIZATION EFFECTS FOR A BEAM ON SIMPLE SUPPORTS

  12. Substantiation Data for Advanced Beaded and Tubular Structural Panels. Volume 3: Testing

    NASA Technical Reports Server (NTRS)

    Hedges, P. C.; Greene, B. E.

    1974-01-01

    The test program is described, which was conducted to provide the necessary experimental data to verify the design and analysis methods developed for beaded and tubular panels. Test results are summarized and presented for all local buckling and full size panel tests. Selected representative test data from each of these tests is presented in detail. The results of this program established a valid analysis and design procedure for circular tube panels. Test results from three other configurations show deformational modes which are not adequately accounted for in the present analyses.

  13. Local-Rapid Evaluation of Atmospheric Conditions (L-REAC) System, Design and Development Volume 5 (Mobile L-REAC System Proof of Concept and Four Feasibility Studies)

    DTIC Science & Technology

    2012-12-01

    List of Symbols, Abbreviations, and Acronyms 52 Distribution List 56 v List of Figures Figure 1. 1994 EPA/NOAA wind tunnel results show the...Atmospheric Administration (NOAA) wind tunnel study. Six of the seven features are shown in figure 1: fetch flow, velocity acceleration, velocity deficit...Figure 1. 1994 EPA/NOAA wind tunnel results show the airflow pattern around a single structure. Streamline flow is from left to right. The “canyon

  14. Structural phase transition and phonon instability in Cu 12Sb 4S 13

    DOE PAGES

    May, Andrew F.; Delaire, Olivier A.; Niedziela, Jennifer L.; ...

    2016-02-08

    In this study, a structural phase transition has been discovered in the synthetic tetrahedrite Cu 12Sb 4S 13 at approximately 88 K. Upon cooling, the material transforms from its known cubic symmetry to a tetragonal unit cell that is characterized by an in-plane ordering that leads to a doubling of the unit cell volume. Specific heat capacity measurements demonstrate a hysteresis of more than two degrees in the associated anomaly. A similar hysteresis was observed in powder x-ray diffraction measurements, which also indicate a coexistence of the two phases, and together these results suggest a first-order transition. This structural transitionmore » coincides with a recently-reported metal-insulator transition, and the structural instability is related to the very low thermal conductivity κ in these materials. Inelastic neutron scattering was used to measure the phonon density of states in Cu 12Sb 4S 13 and Cu 10Zn 2Sb 4S 13, both of which possess a localized, low-energy phonon mode associated with strongly anharmonic copper displacements that suppress κ. In Cu 12Sb 4S 13, signatures of the phase transition are observed in the temperature dependence of the localized mode, which disappears at the structural transition. In contrast, in the cubic Zn-doped material, the mode is at slightly higher-energy but observable for all temperatures, though it softens upon cooling.« less

  15. The role of porous matrix in water flow regulation within a karst unsaturated zone: an integrated hydrogeophysical approach

    NASA Astrophysics Data System (ADS)

    Carrière, Simon D.; Chalikakis, Konstantinos; Danquigny, Charles; Davi, Hendrik; Mazzilli, Naomi; Ollivier, Chloé; Emblanch, Christophe

    2016-11-01

    Some portions of the porous rock matrix in the karst unsaturated zone (UZ) can contain large volumes of water and play a major role in water flow regulation. The essential results are presented of a local-scale study conducted in 2011 and 2012 above the Low Noise Underground Laboratory (LSBB - Laboratoire Souterrain à Bas Bruit) at Rustrel, southeastern France. Previous research revealed the geological structure and water-related features of the study site and illustrated the feasibility of specific hydrogeophysical measurements. In this study, the focus is on hydrodynamics at the seasonal and event timescales. Magnetic resonance sounding (MRS) measured a high water content (more than 10 %) in a large volume of rock. This large volume of water cannot be stored in fractures and conduits within the UZ. MRS was also used to measure the seasonal variation of water stored in the karst UZ. A process-based model was developed to simulate the effect of vegetation on groundwater recharge dynamics. In addition, electrical resistivity tomography (ERT) monitoring was used to assess preferential water pathways during a rain event. This study demonstrates the major influence of water flow within the porous rock matrix on the UZ hydrogeological functioning at both the local (LSBB) and regional (Fontaine de Vaucluse) scales. By taking into account the role of the porous matrix in water flow regulation, these findings may significantly improve karst groundwater hydrodynamic modelling, exploitation, and sustainable management.

  16. Density and lithospheric structure at Tyrrhena Patera, Mars, from gravity and topography data

    NASA Astrophysics Data System (ADS)

    Grott, M.; Wieczorek, M. A.

    2012-09-01

    The Tyrrhena Patera highland volcano, Mars, is associated with a relatively well localized gravity anomaly and we have carried out a localized admittance analysis in the region to constrain the density of the volcanic load, the load thickness, and the elastic thickness at the time of load emplacement. The employed admittance model considers loading of an initially spherical surface, and surface as well as subsurface loading is taken into account. Our results indicate that the gravity and topography data available at Tyrrhena Patera is consistent with the absence of subsurface loading, but the presence of a small subsurface load cannot be ruled out. We obtain minimum load densities of 2960 kg m-3, minimum load thicknesses of 5 km, and minimum load volumes of 0.6 × 106 km3. Photogeological evidence suggests that pyroclastic deposits make up at most 30% of this volume, such that the bulk of Tyrrhena Patera is likely composed of competent basalt. Best fitting model parameters are a load density of 3343 kg m-3, a load thickness of 10.8 km, and a load volume of 1.7 × 106 km3. These relatively large load densities indicate that lava compositions are comparable to those at other martian volcanoes, and densities are comparable to those of the martian meteorites. The elastic thickness in the region is constrained to be smaller than 27.5 km at the time of loading, indicating surface heat flows in excess of 24 mW m-2.

  17. Validating automatic semantic annotation of anatomy in DICOM CT images

    NASA Astrophysics Data System (ADS)

    Pathak, Sayan D.; Criminisi, Antonio; Shotton, Jamie; White, Steve; Robertson, Duncan; Sparks, Bobbi; Munasinghe, Indeera; Siddiqui, Khan

    2011-03-01

    In the current health-care environment, the time available for physicians to browse patients' scans is shrinking due to the rapid increase in the sheer number of images. This is further aggravated by mounting pressure to become more productive in the face of decreasing reimbursement. Hence, there is an urgent need to deliver technology which enables faster and effortless navigation through sub-volume image visualizations. Annotating image regions with semantic labels such as those derived from the RADLEX ontology can vastly enhance image navigation and sub-volume visualization. This paper uses random regression forests for efficient, automatic detection and localization of anatomical structures within DICOM 3D CT scans. A regression forest is a collection of decision trees which are trained to achieve direct mapping from voxels to organ location and size in a single pass. This paper focuses on comparing automated labeling with expert-annotated ground-truth results on a database of 50 highly variable CT scans. Initial investigations show that regression forest derived localization errors are smaller and more robust than those achieved by state-of-the-art global registration approaches. The simplicity of the algorithm's context-rich visual features yield typical runtimes of less than 10 seconds for a 5123 voxel DICOM CT series on a single-threaded, single-core machine running multiple trees; each tree taking less than a second. Furthermore, qualitative evaluation demonstrates that using the detected organs' locations as index into the image volume improves the efficiency of the navigational workflow in all the CT studies.

  18. A coupling strategy for nonlocal and local diffusion models with mixed volume constraints and boundary conditions

    DOE PAGES

    D'Elia, Marta; Perego, Mauro; Bochev, Pavel B.; ...

    2015-12-21

    We develop and analyze an optimization-based method for the coupling of nonlocal and local diffusion problems with mixed volume constraints and boundary conditions. The approach formulates the coupling as a control problem where the states are the solutions of the nonlocal and local equations, the objective is to minimize their mismatch on the overlap of the nonlocal and local domains, and the controls are virtual volume constraints and boundary conditions. When some assumptions on the kernel functions hold, we prove that the resulting optimization problem is well-posed and discuss its implementation using Sandia’s agile software components toolkit. As a result,more » the latter provides the groundwork for the development of engineering analysis tools, while numerical results for nonlocal diffusion in three-dimensions illustrate key properties of the optimization-based coupling method.« less

  19. GASFLOW: A Computational Fluid Dynamics Code for Gases, Aerosols, and Combustion, Volume 3: Assessment Manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Müller, C.; Hughes, E. D.; Niederauer, G. F.

    1998-10-01

    Los Alamos National Laboratory (LANL) and Forschungszentrum Karlsruhe (FzK) are developing GASFLOW, a three-dimensional (3D) fluid dynamics field code as a best- estimate tool to characterize local phenomena within a flow field. Examples of 3D phenomena include circulation patterns; flow stratification; hydrogen distribution mixing and stratification; combustion and flame propagation; effects of noncondensable gas distribution on local condensation and evaporation; and aerosol entrainment, transport, and deposition. An analysis with GASFLOW will result in a prediction of the gas composition and discrete particle distribution in space and time throughout the facility and the resulting pressure and temperature loadings on the wallsmore » and internal structures with or without combustion. A major application of GASFLOW is for predicting the transport, mixing, and combustion of hydrogen and other gases in nuclear reactor containment and other facilities. It has been applied to situations involving transporting and distributing combustible gas mixtures. It has been used to study gas dynamic behavior in low-speed, buoyancy-driven flows, as well as sonic flows or diffusion dominated flows; and during chemically reacting flows, including deflagrations. The effects of controlling such mixtures by safety systems can be analyzed. The code version described in this manual is designated GASFLOW 2.1, which combines previous versions of the United States Nuclear Regulatory Commission code HMS (for Hydrogen Mixing Studies) and the Department of Energy and FzK versions of GASFLOW. The code was written in standard Fortran 90. This manual comprises three volumes. Volume I describes the governing physical equations and computational model. Volume II describes how to use the code to set up a model geometry, specify gas species and material properties, define initial and boundary conditions, and specify different outputs, especially graphical displays. Sample problems are included. Volume III contains some of the assessments performed by LANL and FzK« less

  20. Volume-of-Change Cone-Beam CT for Image-Guided Surgery

    PubMed Central

    Lee, Junghoon; Stayman, J. Webster; Otake, Yoshito; Schafer, Sebastian; Zbijewski, Wojciech; Khanna, A. Jay; Prince, Jerry L.; Siewerdsen, Jeffrey H.

    2012-01-01

    C-arm cone-beam CT (CBCT) can provide intraoperative 3D imaging capability for surgical guidance, but workflow and radiation dose are the significant barriers to broad utilization. One main reason is that each 3D image acquisition requires a complete scan with a full radiation dose to present a completely new 3D image every time. In this paper, we propose to utilize patient-specific CT or CBCT as prior knowledge to accurately reconstruct the aspects of the region that have changed by the surgical procedure from only a sparse set of x-rays. The proposed methods consist of a 3D-2D registration between the prior volume and a sparse set of intraoperative x-rays, creating digitally reconstructed radiographs (DRR) from the registered prior volume, computing difference images by subtracting DRRs from the intraoperative x-rays, a penalized likelihood reconstruction of the volume of change (VOC) from the difference images, and finally a fusion of VOC reconstruction with the prior volume to visualize the entire surgical field. When the surgical changes are local and relatively small, the VOC reconstruction involves only a small volume size and a small number of projections, allowing less computation and lower radiation dose than is needed to reconstruct the entire surgical field. We applied this approach to sacroplasty phantom data obtained from a CBCT test bench and vertebroplasty data with a fresh cadaver acquired from a C-arm CBCT system with a flat-panel detector (FPD). The VOCs were reconstructed from varying number of images (10–66 images) and compared to the CBCT ground truth using four different metrics (mean squared error, correlation coefficient, structural similarity index, and perceptual difference model). The results show promising reconstruction quality with structural similarity to the ground truth close to 1 even when only 15–20 images were used, allowing dose reduction by the factor of 10–20. PMID:22801026

  1. Volume-of-change cone-beam CT for image-guided surgery

    NASA Astrophysics Data System (ADS)

    Lee, Junghoon; Webster Stayman, J.; Otake, Yoshito; Schafer, Sebastian; Zbijewski, Wojciech; Khanna, A. Jay; Prince, Jerry L.; Siewerdsen, Jeffrey H.

    2012-08-01

    C-arm cone-beam CT (CBCT) can provide intraoperative 3D imaging capability for surgical guidance, but workflow and radiation dose are the significant barriers to broad utilization. One main reason is that each 3D image acquisition requires a complete scan with a full radiation dose to present a completely new 3D image every time. In this paper, we propose to utilize patient-specific CT or CBCT as prior knowledge to accurately reconstruct the aspects of the region that have changed by the surgical procedure from only a sparse set of x-rays. The proposed methods consist of a 3D-2D registration between the prior volume and a sparse set of intraoperative x-rays, creating digitally reconstructed radiographs (DRRs) from the registered prior volume, computing difference images by subtracting DRRs from the intraoperative x-rays, a penalized likelihood reconstruction of the volume of change (VOC) from the difference images, and finally a fusion of VOC reconstruction with the prior volume to visualize the entire surgical field. When the surgical changes are local and relatively small, the VOC reconstruction involves only a small volume size and a small number of projections, allowing less computation and lower radiation dose than is needed to reconstruct the entire surgical field. We applied this approach to sacroplasty phantom data obtained from a CBCT test bench and vertebroplasty data with a fresh cadaver acquired from a C-arm CBCT system with a flat-panel detector. The VOCs were reconstructed from a varying number of images (10-66 images) and compared to the CBCT ground truth using four different metrics (mean squared error, correlation coefficient, structural similarity index and perceptual difference model). The results show promising reconstruction quality with structural similarity to the ground truth close to 1 even when only 15-20 images were used, allowing dose reduction by the factor of 10-20.

  2. Dosimetric comparison of standard three-dimensional conformal radiotherapy followed by intensity-modulated radiotherapy boost schedule (sequential IMRT plan) with simultaneous integrated boost-IMRT (SIB IMRT) treatment plan in patients with localized carcinoma prostate.

    PubMed

    Bansal, A; Kapoor, R; Singh, S K; Kumar, N; Oinam, A S; Sharma, S C

    2012-07-01

    DOSIMETERIC AND RADIOBIOLOGICAL COMPARISON OF TWO RADIATION SCHEDULES IN LOCALIZED CARCINOMA PROSTATE: Standard Three-Dimensional Conformal Radiotherapy (3DCRT) followed by Intensity Modulated Radiotherapy (IMRT) boost (sequential-IMRT) with Simultaneous Integrated Boost IMRT (SIB-IMRT). Thirty patients were enrolled. In all, the target consisted of PTV P + SV (Prostate and seminal vesicles) and PTV LN (lymph nodes) where PTV refers to planning target volume and the critical structures included: bladder, rectum and small bowel. All patients were treated with sequential-IMRT plan, but for dosimetric comparison, SIB-IMRT plan was also created. The prescription dose to PTV P + SV was 74 Gy in both strategies but with different dose per fraction, however, the dose to PTV LN was 50 Gy delivered in 25 fractions over 5 weeks for sequential-IMRT and 54 Gy delivered in 27 fractions over 5.5 weeks for SIB-IMRT. The treatment plans were compared in terms of dose-volume histograms. Also, Tumor Control Probability (TCP) and Normal Tissue Complication Probability (NTCP) obtained with the two plans were compared. The volume of rectum receiving 70 Gy or more (V > 70 Gy) was reduced to 18.23% with SIB-IMRT from 22.81% with sequential-IMRT. SIB-IMRT reduced the mean doses to both bladder and rectum by 13% and 17%, respectively, as compared to sequential-IMRT. NTCP of 0.86 ± 0.75% and 0.01 ± 0.02% for the bladder, 5.87 ± 2.58% and 4.31 ± 2.61% for the rectum and 8.83 ± 7.08% and 8.25 ± 7.98% for the bowel was seen with sequential-IMRT and SIB-IMRT plans respectively. For equal PTV coverage, SIB-IMRT markedly reduced doses to critical structures, therefore should be considered as the strategy for dose escalation. SIB-IMRT achieves lesser NTCP than sequential-IMRT.

  3. TEM-nanoindentation studies of semiconducting structures.

    PubMed

    Le Bourhis, E; Patriarche, G

    2007-01-01

    This paper reviews the application of nanoindentation coupled with transmission electron microscopy (TEM) to investigations of the plastic behaviour of semiconducting structures and its implication for device design. Instrumented nanoindentation has been developed to extract the mechanical behaviour of small volumes scaled to those encountered in semiconductor heterostructures. We illustrate that TEM is a powerful complementary tool for the study of local plasticity induced by nanoindentation. TEM-nanoindentation allows for detailed understanding of the plastic deformation in semiconducting structures and opens practical routes for improvement of devices. Performances of heterostructures are deteriously affected by dislocations that relax the lattice mismatched layers. Different ways to obtain compliant substructures are being developed in order to concentrate the plastic relaxation underneath the heterostructure. Such approaches allow for mechanical design of micro- and opto-electronic devices to be considered throughout the fabrication process.

  4. Unusual inhomogeneous microstructures in charge glass state of PbCrO3

    NASA Astrophysics Data System (ADS)

    Kurushima, Kosuke; Tsukasaki, Hirofumi; Ogata, Takahiro; Sakai, Yuki; Azuma, Masaki; Ishii, Yui; Mori, Shigeo

    2018-05-01

    We investigated the microstructures and local structures of perovskite PbCrO3, which shows a metal-to-insulator transition and a 9.8% volume collapse, by electron diffraction, high-resolution transmission electron microscopy (TEM), and high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM). It is revealed that the charge glass state is characterized by the unique coexistence of the crystalline state with a cubic symmetry on average and the noncrystalline state. HAADF-STEM observation at atomic resolution revealed that Pb ions were displaced from the ideal A site position of the cubic perovskite structure, which gives rise to characteristic diffuse scatterings around the fundamental Bragg reflections. These structural inhomogeneities are crucial to the understanding of the unique physical properties in the charge glass state of PbCrO3.

  5. Evolution of the cosmic web

    NASA Astrophysics Data System (ADS)

    Cautun, Marius; van de Weygaert, Rien; Jones, Bernard J. T.; Frenk, Carlos S.

    2014-07-01

    The cosmic web is the largest scale manifestation of the anisotropic gravitational collapse of matter. It represents the transitional stage between linear and non-linear structures and contains easily accessible information about the early phases of structure formation processes. Here we investigate the characteristics and the time evolution of morphological components. Our analysis involves the application of the NEXUS Multiscale Morphology Filter technique, predominantly its NEXUS+ version, to high resolution and large volume cosmological simulations. We quantify the cosmic web components in terms of their mass and volume content, their density distribution and halo populations. We employ new analysis techniques to determine the spatial extent of filaments and sheets, like their total length and local width. This analysis identifies clusters and filaments as the most prominent components of the web. In contrast, while voids and sheets take most of the volume, they correspond to underdense environments and are devoid of group-sized and more massive haloes. At early times the cosmos is dominated by tenuous filaments and sheets, which, during subsequent evolution, merge together, such that the present-day web is dominated by fewer, but much more massive, structures. The analysis of the mass transport between environments clearly shows how matter flows from voids into walls, and then via filaments into cluster regions, which form the nodes of the cosmic web. We also study the properties of individual filamentary branches, to find long, almost straight, filaments extending to distances larger than 100 h-1 Mpc. These constitute the bridges between massive clusters, which seem to form along approximatively straight lines.

  6. Simple shearing flow of dry soap foams with TCP structure[Tetrahedrally Close-Packed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    REINELT,DOUGLAS A.; KRAYNIK,ANDREW M.

    2000-02-16

    The microrheology of dry soap foams subjected to large, quasistatic, simple shearing deformations is analyzed. Two different monodisperse foams with tetrahedrally close-packed (TCP) structure are examined: Weaire-Phelan (A15) and Friauf-Laves (C15). The elastic-plastic response is evaluated by calculating foam structures that minimize total surface area at each value of strain. The minimal surfaces are computed with the Surface Evolver program developed by Brakke. The foam geometry and macroscopic stress are piecewise continuous functions of strain. The stress scales as T/V{sup 1/3} where T is surface tension and V is cell volume. Each discontinuity corresponds to large changes in foam geometrymore » and topology that restore equilibrium to unstable configurations that violate Plateau's laws. The instabilities occur when the length of an edge on a polyhedral foam cell vanishes. The length can tend to zero smoothly or abruptly with strain. The abrupt case occurs when a small increase in strain changes the energy profile in the neighborhood of a foam structure from a local minimum to a saddle point, which can lead to symmetry-breaking bifurcations. In general, the new foam topology associated with each stable solution branch results from a cascade of local topology changes called T1 transitions. Each T1 cascade produces different cell neighbors, reduces surface energy, and provides an irreversible, film-level mechanism for plastic yield behavior. Stress-strain curves and average stresses are evaluated by examining foam orientations that admit strain-periodic behavior. For some orientations, the deformation cycle includes Kelvin cells instead of the original TCP structure; but the foam does not remain perfectly ordered. Bifurcations during subsequent T1 cascades lead to disorder and can even cause strain localization.« less

  7. Outside-bark form class volume tables for some southern Appalachian species

    Treesearch

    Jesse H. Buell

    1942-01-01

    Board-foot volume tables applicable to restricted localities are in continual demand. Pulic foresters need local tables for use on lands under their supervision or for helping farmers and other owners of small woodlands to prepae forest management plans. Privatr foresteres need tables which wil give dependable results in a wide variety of stands.

  8. Is it Worth the Effort? Novel Insights into Obesity-Associated Alterations in Cost-Benefit Decision-Making

    PubMed Central

    Mathar, David; Horstmann, Annette; Pleger, Burkhard; Villringer, Arno; Neumann, Jane

    2016-01-01

    Cost-benefit decision-making entails the process of evaluating potential actions according to the trade-off between the expected reward (benefit) and the anticipated effort (costs). Recent research revealed that dopaminergic transmission within the fronto-striatal circuitry strongly modulates cost-benefit decision-making. Alterations within the dopaminergic fronto-striatal system have been associated with obesity, but little is known about cost-benefit decision-making differences in obese compared with lean individuals. With a newly developed experimental task we investigate obesity-associated alterations in cost-benefit decision-making, utilizing physical effort by handgrip-force exertion and both food and non-food rewards. We relate our behavioral findings to alterations in local gray matter volume assessed by structural MRI. Obese compared with lean subjects were less willing to engage in physical effort in particular for high-caloric sweet snack food. Further, self-reported body dissatisfaction negatively correlated with the willingness to invest effort for sweet snacks in obese men. On a structural level, obesity was associated with reductions in gray matter volume in bilateral prefrontal cortex. Nucleus accumbens volume positively correlated with task induced implicit food craving. Our results challenge the common notion that obese individuals are willing to work harder to obtain high-caloric food and emphasize the need for further exploration of the underlying neural mechanisms regarding cost-benefit decision-making differences in obesity. PMID:26793079

  9. Fatigue Is Associated With Global and Regional Thalamic Morphometry in Veterans With a History of Mild Traumatic Brain Injury.

    PubMed

    Clark, Alexandra L; Sorg, Scott F; Holiday, Kelsey; Bigler, Erin D; Bangen, Katherine J; Evangelista, Nicole D; Bondi, Mark W; Schiehser, Dawn M; Delano-Wood, Lisa

    2018-01-30

    Fatigue is a complex, multidimensional phenomenon that commonly occurs following traumatic brain injury (TBI). The thalamus-a structure vulnerable to both primary and secondary injuries in TBI-is thought to play a pivotal role in the manifestation of fatigue. We explored how neuroimaging markers of local and global thalamic morphometry relate to the subjective experience of fatigue post-TBI. Sixty-three Veterans with a history of mild TBI underwent structural magnetic resonance imaging and completed questionnaires related to fatigue and psychiatric symptoms. FMRIB's Software (FSL) was utilized to obtain whole brain and thalamic volume estimates, as well as to perform regional thalamic morphometry analyses. Independent of age, sex, intracranial volume, posttraumatic stress disorder, and depressive symptoms, greater levels of self-reported fatigue were significantly associated with decreased right (P = .026) and left (P = .046) thalamic volumes. Regional morphometry analyses revealed that fatigue was significantly associated with reductions in the anterior and dorsomedial aspects of the right thalamic body (P < .05). Similar trends were observed for the left thalamic body (P < .10). Both global and regional thalamic morphometric changes are associated with the subjective experience of fatigue in Veterans with a history of mild TBI. These findings support a theory in which disruption of thalamocorticostriatal circuitry may result in the manifestation of fatigue in individuals with a history of neurotrauma.

  10. Is it Worth the Effort? Novel Insights into Obesity-Associated Alterations in Cost-Benefit Decision-Making.

    PubMed

    Mathar, David; Horstmann, Annette; Pleger, Burkhard; Villringer, Arno; Neumann, Jane

    2015-01-01

    Cost-benefit decision-making entails the process of evaluating potential actions according to the trade-off between the expected reward (benefit) and the anticipated effort (costs). Recent research revealed that dopaminergic transmission within the fronto-striatal circuitry strongly modulates cost-benefit decision-making. Alterations within the dopaminergic fronto-striatal system have been associated with obesity, but little is known about cost-benefit decision-making differences in obese compared with lean individuals. With a newly developed experimental task we investigate obesity-associated alterations in cost-benefit decision-making, utilizing physical effort by handgrip-force exertion and both food and non-food rewards. We relate our behavioral findings to alterations in local gray matter volume assessed by structural MRI. Obese compared with lean subjects were less willing to engage in physical effort in particular for high-caloric sweet snack food. Further, self-reported body dissatisfaction negatively correlated with the willingness to invest effort for sweet snacks in obese men. On a structural level, obesity was associated with reductions in gray matter volume in bilateral prefrontal cortex. Nucleus accumbens volume positively correlated with task induced implicit food craving. Our results challenge the common notion that obese individuals are willing to work harder to obtain high-caloric food and emphasize the need for further exploration of the underlying neural mechanisms regarding cost-benefit decision-making differences in obesity.

  11. Decrease in electrical resistivity on depletion of islands of mobility during aging of a bulk metal glass

    NASA Astrophysics Data System (ADS)

    Aji, Daisman P. B.; Johari, G. P.

    2018-04-01

    The effect of structural relaxation on electrical resistivity, ρglass, of strain-free Zr46.75Ti8.25Cu7.5Ni10Be27.5 bulk metallic glass was studied during isothermal aging at several temperatures, Tas. Since cooling of a liquid metal increases its resistivity ρliq, one expects ρglass to increase on aging toward ρliq at T = Ta. Instead, ρglass decreased non-exponentially with the aging time. The activation energy of aging kinetics is 189 kJ mol-1, which is higher than the activation energy of the Johari-Goldstein (JG) relaxation. After considering the sample's contraction, phase separation, and crystallization as possible causes of the decrease in ρglass, we attribute the decrease to depletion of islands of atomic mobility, soft spots, or static heterogeneity. Vibrations of the atoms in these local (loosely packed) regions and in the region's interfacial area contribute to electron scattering. As these deplete on aging, the contribution decreases and ρglass decreases, with a concomitant decrease in macroscopic volume, enthalpy, and entropy (V, H, and S). Local regions of faster mobility also decrease on cooling as V, H, and S of a liquid decrease, but structure fluctuations dominate electron scattering of a liquid metal and ρliq increases effectively according to the Ziman-Nagel theory for a homogenously disordered structure. Whether depletion of such local regions initiates the structural relaxation of a glass, or vice versa, may be resolved by finding a glass that physically ages but shows no JG relaxation.

  12. Joint Estimation of Effective Brain Wave Activation Modes Using EEG/MEG Sensor Arrays and Multimodal MRI Volumes.

    PubMed

    Galinsky, Vitaly L; Martinez, Antigona; Paulus, Martin P; Frank, Lawrence R

    2018-04-13

    In this letter, we present a new method for integration of sensor-based multifrequency bands of electroencephalography and magnetoencephalography data sets into a voxel-based structural-temporal magnetic resonance imaging analysis by utilizing the general joint estimation using entropy regularization (JESTER) framework. This allows enhancement of the spatial-temporal localization of brain function and the ability to relate it to morphological features and structural connectivity. This method has broad implications for both basic neuroscience research and clinical neuroscience focused on identifying disease-relevant biomarkers by enhancing the spatial-temporal resolution of the estimates derived from current neuroimaging modalities, thereby providing a better picture of the normal human brain in basic neuroimaging experiments and variations associated with disease states.

  13. [The brain in stereotaxic coordinates (a textbook for colleges)].

    PubMed

    Budantsev, A Iu; Kisliuk, O S; Shul'govskiĭ, V V; Rykunov, D S; Iarkov, A V

    1993-01-01

    The present textbook is directed forward students of universities and medical colleges, young scientists and practicing doctors dealing with stereotaxic method. The Paxinos and Watson stereotaxic rat brain atlas (1982) is the basis of the textbook. The atlas has been transformed into computer educational program and seven laboratory works: insertion of the electrode into brain, microelectrophoresis, microinjection of drugs into brain, electrolytic destruction in the brain structures, local brain superfusion. The laboratory works are compiled so that they allow not only to study practical use of the stereotaxic method but to model simple problems involving stereotaxic surgery in the deep structures of brain. The textbook is intended for carrying by IBM PC/AT computers. The volume of the textbook is 1.7 Mbytes.

  14. Effect of microstructure on the elasto-viscoplastic deformation of dual phase titanium structures

    NASA Astrophysics Data System (ADS)

    Ozturk, Tugce; Rollett, Anthony D.

    2018-02-01

    The present study is devoted to the creation of a process-structure-property database for dual phase titanium alloys, through a synthetic microstructure generation method and a mesh-free fast Fourier transform based micromechanical model that operates on a discretized image of the microstructure. A sensitivity analysis is performed as a precursor to determine the statistically representative volume element size for creating 3D synthetic microstructures based on additively manufactured Ti-6Al-4V characteristics, which are further modified to expand the database for features of interest, e.g., lath thickness. Sets of titanium hardening parameters are extracted from literature, and The relative effect of the chosen microstructural features is quantified through comparisons of average and local field distributions.

  15. Large diameter lasing tube cooling arrangement

    DOEpatents

    Hall, Jerome P [Livermore, CA; Alger, Terry W [Tracy, CA; Anderson, Andrew T [Livermore, CA; Arnold, Phillip A [Livermore, CA

    2004-05-18

    A cooling structure (16) for use inside a ceramic cylindrical tube (11) of a metal vapor laser (10) to cool the plasma in the tube (11), the cooling structure (16) comprising a plurality of circular metal members (17, 31) and mounting members (18, 34) that position the metal members (17, 31) coaxially in the tube (11) to form an annular lasing volume, with the metal members (17, 31) being axially spaced from each other along the length of the tube (11) to prevent the metal members from shorting out the current flow through the plasma in the tube (11) and to provide spaces through which the heat from localized hot spots in the plasma may radiate to the other side of the tube (11).

  16. Large Diameter Lasing Tube Cooling Arrangement

    DOEpatents

    Hall, Jerome P.; Alger, Terry W.; Anderson, Andrew T.; Arnold, Philip A.

    2004-05-18

    A cooling structure (16) for use inside a ceramic cylindrical tube (11) of a metal vapor laser (10) to cool the plasma in the tube (11), the cooling structure (16) comprising a plurality of circular metal members (17,31) and mounting members (18, 34) that position the metal members (17,31) coaxially in the tube (11) to form an annular lasing volume, with the metal members (17, 31) being axially spaced from each other along the length of the tube (11) to prevent the metal members from shorting out the current flow through the plasma in the tube (11) and to provide spaces through which the heat from localized hot spots in the plasma may radiate to the other side of the tube (11).

  17. Weighting factors for computing the relation between tree volume and d.b.h. in the Pacific Northwest.

    Treesearch

    Donald R. Gedney; Floyd A. Johnson

    1959-01-01

    Timber cruising is frequently made easier through use of local volume tables based on d.b.h. alone. These tables are made by establishing the relation between volume and d.b.h. from measurements (including height) made on sample trees in the stand. The sample-tree measurements are converted to volumes through use of standard volume tables, and a volume-diameter curve...

  18. Model-based Approaches for the Determination of Lipid Bilayer Structure from Small-Angle Neutron and X-ray Scattering Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heberle, Frederick A; Pan, Jianjun; Standaert, Robert F

    2012-01-01

    Some of our recent work has resulted in the detailed structures of fully hydrated, fluid phase phosphatidylcholine (PC) and phosphatidylglycerol (PG) bilayers. These structures were obtained from the joint refinement of small-angle neutron and X-ray data using the scattering density profile (SDP) models developed by Ku erka et al. (Ku erka et al. 2012; Ku erka et al. 2008). In this review, we first discuss models for the standalone analysis of neutron or X-ray scattering data from bilayers, and assess the strengths and weaknesses inherent in these models. In particular, it is recognized that standalone data do not contain enoughmore » information to fully resolve the structure of inherently disordered fluid bilayers, and therefore may not provide a robust determination of bilayer structural parameters, including the much sought after area per lipid. We then discuss the development of matter density-based models (including the SDP model) that allow for the joint refinement of different contrast neutron and X-ray data sets, as well as the implementation of local volume conservation in the unit cell (i.e., ideal packing). Such models provide natural definitions of bilayer thicknesses (most importantly the hydrophobic and Luzzati thicknesses) in terms of Gibbs dividing surfaces, and thus allow for the robust determination of lipid areas through equivalent slab relationships between bilayer thickness and lipid volume. In the final section of this review, we discuss some of the significant findings/features pertaining to structures of PC and PG bilayers as determined from SDP model analyses.« less

  19. Mechanistic Fluid Transport Model to Estimate Gastrointestinal Fluid Volume and Its Dynamic Change Over Time.

    PubMed

    Yu, Alex; Jackson, Trachette; Tsume, Yasuhiro; Koenigsknecht, Mark; Wysocki, Jeffrey; Marciani, Luca; Amidon, Gordon L; Frances, Ann; Baker, Jason R; Hasler, William; Wen, Bo; Pai, Amit; Sun, Duxin

    2017-11-01

    Gastrointestinal (GI) fluid volume and its dynamic change are integral to study drug disintegration, dissolution, transit, and absorption. However, key questions regarding the local volume and its absorption, secretion, and transit remain unanswered. The dynamic fluid compartment absorption and transit (DFCAT) model is proposed to estimate in vivo GI volume and GI fluid transport based on magnetic resonance imaging (MRI) quantified fluid volume. The model was validated using GI local concentration of phenol red in human GI tract, which was directly measured by human GI intubation study after oral dosing of non-absorbable phenol red. The measured local GI concentration of phenol red ranged from 0.05 to 168 μg/mL (stomach), to 563 μg/mL (duodenum), to 202 μg/mL (proximal jejunum), and to 478 μg/mL (distal jejunum). The DFCAT model characterized observed MRI fluid volume and its dynamic changes from 275 to 46.5 mL in stomach (from 0 to 30 min) with mucus layer volume of 40 mL. The volumes of the 30 small intestine compartments were characterized by a max of 14.98 mL to a min of 0.26 mL (0-120 min) and a mucus layer volume of 5 mL per compartment. Regional fluid volumes over 0 to 120 min ranged from 5.6 to 20.38 mL in the proximal small intestine, 36.4 to 44.08 mL in distal small intestine, and from 42 to 64.46 mL in total small intestine. The DFCAT model can be applied to predict drug dissolution and absorption in the human GI tract with future improvements.

  20. Concordance cosmology without dark energy

    NASA Astrophysics Data System (ADS)

    Rácz, Gábor; Dobos, László; Beck, Róbert; Szapudi, István; Csabai, István

    2017-07-01

    According to the separate universe conjecture, spherically symmetric sub-regions in an isotropic universe behave like mini-universes with their own cosmological parameters. This is an excellent approximation in both Newtonian and general relativistic theories. We estimate local expansion rates for a large number of such regions, and use a scale parameter calculated from the volume-averaged increments of local scale parameters at each time step in an otherwise standard cosmological N-body simulation. The particle mass, corresponding to a coarse graining scale, is an adjustable parameter. This mean field approximation neglects tidal forces and boundary effects, but it is the first step towards a non-perturbative statistical estimation of the effect of non-linear evolution of structure on the expansion rate. Using our algorithm, a simulation with an initial Ωm = 1 Einstein-de Sitter setting closely tracks the expansion and structure growth history of the Λ cold dark matter (ΛCDM) cosmology. Due to small but characteristic differences, our model can be distinguished from the ΛCDM model by future precision observations. Moreover, our model can resolve the emerging tension between local Hubble constant measurements and the Planck best-fitting cosmology. Further improvements to the simulation are necessary to investigate light propagation and confirm full consistency with cosmic microwave background observations.

  1. The relationship between air layers and evaporative resistance of male Chinese ethnic clothing.

    PubMed

    Wang, Faming; Peng, Hui; Shi, Wen

    2016-09-01

    In this study, the air layer distribution and evaporative resistances of 39 sets of male Chinese ethnic clothing were investigated using a sweating thermal manikin and the three-dimensional (3D) body scanning technique. Relationships between the evaporative resistance and air layers (i.e., air gap thickness and air volume) were explored. The results demonstrated that the clothing total evaporative resistance increases with the increasing air gap size/air volume, but the rate of increase gradually decreases as the mean air gap size or the total air volume becomes larger. The clothing total evaporative resistance reaches its maximum when the average air gap size and the total air volume are 41.6 mm and 69.9 dm(3), respectively. Similar general trends were also found between local mean air gap size and clothing local evaporative resistance at different body parts. However, different body parts show varied rates of increase and decrease in the local evaporative resistance. The research findings provide a comprehensive database for predicting overall and local human thermal comfort while wearing male Chinese ethnic clothing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Aerospace Structures Technology Damping Design Guide. Volume 1. Technology Review

    DTIC Science & Technology

    1985-12-01

    AFWAL-TR-84-3089 Volume I AEROSPACE STRUCTURES TECHNOLOGY I DAMPING DESIGN GUIDE VOLUME I - TECHNOLOGY REVIEW J. SOOVERE LOCKHEED CALIFORNIA COMPANY...3089 Volume I AEROSPACE STRUCTURES TECHNOLOGY DAMPING DESIGN GUIDE VOLUME I - TECHNOLOGY REVIEW J. SOOVERE LOCKMD CALIFORNIA COMPANY P.O. BOX 551 BURBANK...PATTERSON AIR FORCE BASE, OHIO 454t33I I ft NOTICE When Government drawings, specifications, or other data are used for any purpose other than in

  3. Reliability of tanoak volume equations when applied to different areas

    Treesearch

    Norman H. Pillsbury; Philip M. McDonald; Victor Simon

    1995-01-01

    Tree volume equations for tanoak (Lithocarpus densiflorus) were developed for seven stands throughout its natural range and compared by a volume prediction and a parameter difference method. The objective was to test if volume estimates from a species growing in a local, relatively uniform habitat could be applied more widely. Results indicated...

  4. Tuning the Spin-Alignment of Interstitial Electrons in Two-Dimensional Y2C Electride via Chemical Pressure.

    PubMed

    Park, Jongho; Hwang, Jae-Yeol; Lee, Kyu Hyoung; Kim, Seong-Gon; Lee, Kimoon; Kim, Sung Wng

    2017-12-06

    We report that the spin-alignment of interstitial anionic electrons (IAEs) in two-dimensional (2D) interlayer spacing can be tuned by chemical pressure that controls the magnetic properties of 2D electrides. It was clarified from the isovalent Sc substitution on the Y site in the 2D Y 2 C electride that the localization degree of IAEs at the interlayer becomes stronger as the unit cell volume and c-axis lattice parameter were systematically reduced by increasing the Sc contents, thus eventually enhancing superparamagnetic behavior originated from the increase in ferromagnetic particle concentration. It was also found that the spin-aligned localized IAEs dominated the electrical conduction of heavily Sc-substituted Y 2 C electride. These results indicate that the physcial properties of 2D electrides can be tailored by adjusting the localization of IAEs at interlayer spacing via structural modification that controls the spin instability as found in three-dimensional elemental electrides of pressurized potassium metals.

  5. Spectral method for the static electric potential of a charge density in a composite medium

    NASA Astrophysics Data System (ADS)

    Bergman, David J.; Farhi, Asaf

    2018-04-01

    A spectral representation for the static electric potential field in a two-constituent composite medium is presented. A theory is developed for calculating the quasistatic eigenstates of Maxwell's equations for such a composite. The local physical potential field produced in the system by a given source charge density is expanded in this set of orthogonal eigenstates for any position r. The source charges can be located anywhere, i.e., inside any of the constituents. This is shown to work even if the eigenfunctions are normalized in an infinite volume. If the microstructure consists of a cluster of separate inclusions in a uniform host medium, then the quasistatic eigenstates of all the separate isolated inclusions can be used to calculate the eigenstates of the total structure as well as the local potential field. Once the eigenstates are known for a given host and a given microstructure, then calculation of the local field only involves calculating three-dimensional integrals of known functions and solving sets of linear algebraic equations.

  6. Integral radiation dose to normal structures with conformal external beam radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aoyama, Hidefumi; Westerly, David Clark; Mackie, Thomas Rockwell

    2006-03-01

    Background: This study was designed to evaluate the integral dose (ID) received by normal tissue from intensity-modulated radiotherapy (IMRT) for prostate cancer. Methods and Materials: Twenty-five radiation treatment plans including IMRT using a conventional linac with both 6 MV (6MV-IMRT) and 20 MV (20MV-IMRT), as well as three-dimensional conformal radiotherapy (3DCRT) using 6 MV (6MV-3DCRT) and 20 MV (20MV-3DCRT) and IMRT using tomotherapy (6MV) (Tomo-IMRT), were created for 5 patients with localized prostate cancer. The ID (mean dose x tissue volume) received by normal tissue (NTID) was calculated from dose-volume histograms. Results: The 6MV-IMRT resulted in 5.0% lower NTID thanmore » 6MV-3DCRT; 20 MV beam plans resulted in 7.7%-11.2% lower NTID than 6MV-3DCRT. Tomo-IMRT NTID was comparable to 6MV-IMRT. Compared with 6MV-3DCRT, 6MV-IMRT reduced IDs to the rectal wall and penile bulb by 6.1% and 2.7%, respectively. Tomo-IMRT further reduced these IDs by 11.9% and 16.5%, respectively. The 20 MV did not reduce IDs to those structures. Conclusions: The difference in NTID between 3DCRT and IMRT is small. The 20 MV plans somewhat reduced NTID compared with 6 MV plans. The advantage of tomotherapy over conventional IMRT and 3DCRT for localized prostate cancer was demonstrated in regard to dose sparing of rectal wall and penile bulb while slightly decreasing NTID as compared with 6MV-3DCRT.« less

  7. Proton Radiotherapy for Childhood Ependymoma: Initial Clinical Outcomes and Dose Comparisons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacDonald, Shannon M.; Safai, Sairos; Trofimov, Alexei

    2008-07-15

    Purpose: To report preliminary clinical outcomes for pediatric patients treated with proton beam radiation for intracranial ependymoma and compare the dose distributions of intensity-modulated radiation therapy with photons (IMRT), three-dimensional conformal proton radiation, and intensity-modulated proton radiation therapy (IMPT) for representative patients. Methods and Materials: All children with intracranial ependymoma confined to the supratentorial or infratentorial brain treated at the Francis H. Burr Proton Facility and Harvard Cyclotron between November 2000 and March 2006 were included in this study. Seventeen patients were treated with protons. Proton, IMRT, and IMPT plans were generated with similar clinical constraints for representative infratentorial andmore » supratentorial ependymoma cases. Tumor and normal tissue dose-volume histograms were calculated and compared. Results: At a median follow-up of 26 months from the start date of radiation therapy, local control, progression-free survival, and overall survival rates were 86%, 80%, and 89%, respectively. Subtotal resection was significantly associated with decreased local control (p = 0.016). Similar tumor volume coverage was achieved with IMPT, proton therapy, and IMRT. Substantial normal tissue sparing was seen with proton therapy compared with IMRT. Use of IMPT will allow for additional sparing of some critical structures. Conclusions: Preliminary disease control with proton therapy compares favorably with the literature. Dosimetric comparisons show the advantage of proton radiation compared with IMRT in the treatment of ependymoma. Further sparing of normal structures appears possible with IMPT. Superior dose distributions were accomplished with fewer beam angles with the use of protons and IMPT.« less

  8. A 2D modeling approach for fluid propagation during FE-forming simulation of continuously reinforced composites in wet compression moulding

    NASA Astrophysics Data System (ADS)

    Poppe, Christian; Dörr, Dominik; Henning, Frank; Kärger, Luise

    2018-05-01

    Wet compression moulding (WCM) provides large-scale production potential for continuously fiber reinforced components as a promising alternative to resin transfer moulding (RTM). Lower cycle times are possible due to parallelization of the process steps draping, infiltration and curing during moulding (viscous draping). Experimental and theoretical investigations indicate a strong mutual dependency between the physical mechanisms, which occur during draping and mould filling (fluid-structure-interaction). Thus, key process parameters, like fiber orientation, fiber volume fraction, cavity pressure and the amount and viscosity of the resin are physically coupled. To enable time and cost efficient product and process development throughout all design stages, accurate process simulation tools are desirable. Separated draping and mould filling simulation models, as appropriate for the sequential RTM-process, cannot be applied for the WCM process due to the above outlined physical couplings. Within this study, a two-dimensional Darcy-Propagation-Element (DPE-2D) based on a finite element formulation with additional control volumes (FE/CV) is presented, verified and applied to forming simulation of a generic geometry, as a first step towards a fluid-structure-interaction model taking into account simultaneous resin infiltration and draping. The model is implemented in the commercial FE-Solver Abaqus by means of several user subroutines considering simultaneous draping and 2D-infiltration mechanisms. Darcy's equation is solved with respect to a local fiber orientation. Furthermore, the material model can access the local fluid domain properties to update the mechanical forming material parameter, which enables further investigations on the coupled physical mechanisms.

  9. Morphological Alterations in the Thalamus, Striatum, and Pallidum in Autism Spectrum Disorder

    PubMed Central

    Schuetze, Manuela; Park, Min Tae M; Cho, Ivy YK; MacMaster, Frank P; Chakravarty, M Mallar; Bray, Signe L

    2016-01-01

    Autism spectrum disorder (ASD) is a common neurodevelopmental disorder with cognitive, motor, and emotional symptoms. The thalamus and basal ganglia form circuits with the cortex supporting all three of these behavioral domains. Abnormalities in the structure of subcortical regions may suggest atypical development of these networks, with implications for understanding the neural basis of ASD symptoms. Findings from previous volumetric studies have been inconsistent. Here, using advanced surface-based methodology, we investigated localized differences in shape and surface area in the basal ganglia and thalamus in ASD, using T1-weighted anatomical images from the Autism Brain Imaging Data Exchange (373 male participants aged 7–35 years with ASD and 384 typically developing). We modeled effects of diagnosis, age, and their interaction on volume, shape, and surface area. In participants with ASD, we found expanded surface area in the right posterior thalamus corresponding to the pulvinar nucleus, and a more concave shape in the left mediodorsal nucleus. The shape of both caudal putamen and pallidum showed a relatively steeper increase in concavity with age in ASD. Within ASD participants, restricted, repetitive behaviors were positively associated with surface area in bilateral globus pallidus. We found no differences in overall volume, suggesting that surface-based approaches have greater sensitivity to detect localized differences in subcortical structure. This work adds to a growing body of literature implicating corticobasal ganglia-thalamic circuits in the pathophysiology of ASD. These circuits subserve a range of cognitive, emotional, and motor functions, and may have a broad role in the complex symptom profile in ASD. PMID:27125303

  10. Reducing Mg Acceptor Activation-Energy in Al0.83Ga0.17N Disorder Alloy Substituted by Nanoscale (AlN)5/(GaN)1 Superlattice Using MgGa δ-Doping: Mg Local-Structure Effect

    PubMed Central

    Zhong, Hong-xia; Shi, Jun-jie; Zhang, Min; Jiang, Xin-he; Huang, Pu; Ding, Yi-min

    2014-01-01

    Improving p-type doping efficiency in Al-rich AlGaN alloys is a worldwide problem for the realization of AlGaN-based deep ultraviolet optoelectronic devices. In order to solve this problem, we calculate Mg acceptor activation energy and investigate its relationship with Mg local structure in nanoscale (AlN)5/(GaN)1 superlattice (SL), a substitution for Al0.83Ga0.17N disorder alloy, using first-principles calculations. A universal picture to reduce acceptor activation energy in wide-gap semiconductors is given for the first time. By reducing the volume of the acceptor local structure slightly, its activation energy can be decreased remarkably. Our results show that Mg acceptor activation energy can be reduced significantly from 0.44 eV in Al0.83Ga0.17N disorder alloy to 0.26 eV, very close to the Mg acceptor activation energy in GaN, and a high hole concentration in the order of 1019 cm−3 can be obtained in (AlN)5/(GaN)1 SL by MgGa δ-doping owing to GaN-monolayer modulation. We thus open up a new way to reduce Mg acceptor activation energy and increase hole concentration in Al-rich AlGaN. PMID:25338639

  11. Striatal abnormalities in trichotillomania: a multi-site MRI analysis.

    PubMed

    Isobe, Masanori; Redden, Sarah A; Keuthen, Nancy J; Stein, Dan J; Lochner, Christine; Grant, Jon E; Chamberlain, Samuel R

    2018-01-01

    Trichotillomania (hair-pulling disorder) is characterized by the repetitive pulling out of one's own hair, and is classified as an Obsessive-Compulsive Related Disorder. Abnormalities of the ventral and dorsal striatum have been implicated in disease models of trichotillomania, based on translational research, but direct evidence is lacking. The aim of this study was to elucidate subcortical morphometric abnormalities, including localized curvature changes, in trichotillomania. De-identified MRI scans were pooled by contacting authors of previous peer-reviewed studies that examined brain structure in adult patients with trichotillomania, following an extensive literature search. Group differences on subcortical volumes of interest were explored (t-tests) and localized differences in subcortical structure morphology were quantified using permutation testing. The pooled sample comprised N=68 individuals with trichotillomania and N=41 healthy controls. Groups were well-matched in terms of age, gender, and educational levels. Significant volumetric reductions were found in trichotillomania patients versus controls in right amygdala and left putamen. Localized shape deformities were found in bilateral nucleus accumbens, bilateral amygdala, right caudate and right putamen. Structural abnormalities of subcortical regions involved in affect regulation, inhibitory control, and habit generation, play a key role in the pathophysiology of trichotillomania. Trichotillomania may constitute a useful model through which to better understand other compulsive symptoms. These findings may account for why certain medications appear effective for trichotillomania, namely those modulating subcortical dopamine and glutamatergic function. Future work should study the state versus trait nature of these changes, and the impact of treatment.

  12. The Somma Vesuvius stress field induced by regional tectonics: evidences from seismological and mesostructural data

    NASA Astrophysics Data System (ADS)

    Bianco, F.; Castellano, M.; Milano, G.; Ventura, G.; Vilardo, G.

    1998-06-01

    A detailed structural and geophysical study of the Somma-Vesuvius volcanic complex was carried out by integrating mesostructural measurements, focal mechanisms and shear-wave splitting analysis. Fault-slip and focal mechanism analysis indicate that the volcano is affected by NW-SE-, NE-SW-trending oblique-slip faults and by E-W-trending normal faults. Magma chamber(s) responsible for plinian/sub-plinian eruptions (i.e. A.D. 79 and 1631) formed inside the area bounded by E-W-trending normal faults. The post-1631 fissural eruptions (i.e. 1794 and 1861) occurred along the main oblique-slip fault segments. The movements of the Vesuvius faults are mainly related to the regional stress field. A local stress field superposed to the regional one is also present but evidences of magma or gravity induced stresses are lacking. The local stress field acts inside the caldera area being related to fault reactivation processes. The present-day Vesuvius seismic activity is due to both regional and local stress fields. Shear-wave splitting analysis reveals an anisotropic volume due to stress induced cracks NW-SE aligned by faulting processes. Since the depth extent of the anisotropic volume is at least 6 km b.s.l., we deduce the NW-SE-trending oblique-slip fault system represents the main discontinuity on which lies the volcano. This discontinuity is responsible for the morphological lowering of the edifice in its southwestern side.

  13. Origins of R2∗ and white matter

    PubMed Central

    Rudko, David A.; Klassen, L. Martyn; de Chickera, Sonali N.; Gati, Joseph S.; Dekaban, Gregory A.; Menon, Ravi S.

    2014-01-01

    Estimates of the apparent transverse relaxation rate () can be used to quantify important properties of biological tissue. Surprisingly, the mechanism of dependence on tissue orientation is not well understood. The primary goal of this paper was to characterize orientation dependence of in gray and white matter and relate it to independent measurements of two other susceptibility based parameters: the local Larmor frequency shift (fL) and quantitative volume magnetic susceptibility (Δχ). Through this comparative analysis we calculated scaling relations quantifying (reversible contribution to the transverse relaxation rate from local field inhomogeneities) in a voxel given measurements of the local Larmor frequency shift. is a measure of both perturber geometry and density and is related to tissue microstructure. Additionally, two methods (the Generalized Lorentzian model and iterative dipole inversion) for calculating Δχ were compared in gray and white matter. The value of Δχ derived from fitting the Generalized Lorentzian model was then connected to the observed orientation dependence using image-registered optical density measurements from histochemical staining. Our results demonstrate that the and fL of white and cortical gray matter are well described by a sinusoidal dependence on the orientation of the tissue and a linear dependence on the volume fraction of myelin in the tissue. In deep brain gray matter structures, where there is no obvious symmetry axis, and fL have no orientation dependence but retain a linear dependence on tissue iron concentration and hence Δχ. PMID:24374633

  14. Volume-controlled Ventilation Does Not Prevent Injurious Inflation during Spontaneous Effort.

    PubMed

    Yoshida, Takeshi; Nakahashi, Susumu; Nakamura, Maria Aparecida Miyuki; Koyama, Yukiko; Roldan, Rollin; Torsani, Vinicius; De Santis, Roberta R; Gomes, Susimeire; Uchiyama, Akinori; Amato, Marcelo B P; Kavanagh, Brian P; Fujino, Yuji

    2017-09-01

    Spontaneous breathing during mechanical ventilation increases transpulmonary pressure and Vt, and worsens lung injury. Intuitively, controlling Vt and transpulmonary pressure might limit injury caused by added spontaneous effort. To test the hypothesis that, during spontaneous effort in injured lungs, limitation of Vt and transpulmonary pressure by volume-controlled ventilation results in less injurious patterns of inflation. Dynamic computed tomography was used to determine patterns of regional inflation in rabbits with injured lungs during volume-controlled or pressure-controlled ventilation. Transpulmonary pressure was estimated by using esophageal balloon manometry [Pl(es)] with and without spontaneous effort. Local dependent lung stress was estimated as the swing (inspiratory change) in transpulmonary pressure measured by intrapleural manometry in dependent lung and was compared with the swing in Pl(es). Electrical impedance tomography was performed to evaluate the inflation pattern in a larger animal (pig) and in a patient with acute respiratory distress syndrome. Spontaneous breathing in injured lungs increased Pl(es) during pressure-controlled (but not volume-controlled) ventilation, but the pattern of dependent lung inflation was the same in both modes. In volume-controlled ventilation, spontaneous effort caused greater inflation and tidal recruitment of dorsal regions (greater than twofold) compared with during muscle paralysis, despite the same Vt and Pl(es). This was caused by higher local dependent lung stress (measured by intrapleural manometry). In injured lungs, esophageal manometry underestimated local dependent pleural pressure changes during spontaneous effort. Limitation of Vt and Pl(es) by volume-controlled ventilation could not eliminate harm caused by spontaneous breathing unless the level of spontaneous effort was lowered and local dependent lung stress was reduced.

  15. Role of environmental and antibiotic stress on Staphylococcus epidermidis biofilm microstructure.

    PubMed

    Stewart, Elizabeth J; Satorius, Ashley E; Younger, John G; Solomon, Michael J

    2013-06-11

    Cellular clustering and separation of Staphylococcus epidermidis surface adherent biofilms were found to depend significantly on both antibiotic and environmental stress present during growth under steady flow. Image analysis techniques common to colloidal science were applied to image volumes acquired with high-resolution confocal laser scanning microscopy to extract spatial positions of individual bacteria in volumes of size ~30 × 30 × 15 μm(3). The local number density, cluster distribution, and radial distribution function were determined at each condition by analyzing the statistics of the bacterial spatial positions. Environmental stressors of high osmotic pressure (776 mM NaCl) and sublethal antibiotic dose (1.9 μg/mL vancomycin) decreased the average bacterial local number density 10-fold. Device-associated bacterial biofilms are frequently exposed to these environmental and antibiotic stressors while undergoing flow in the bloodstream. Characteristic density phenotypes associated with low, medium, and high local number densities were identified in unstressed S. epidermidis biofilms, while stressed biofilms contained medium- and low-density phenotypes. All biofilms exhibited clustering at length scales commensurate with cell division (~1.0 μm). However, density phenotypes differed in cellular connectivity at the scale of ~6 μm. On this scale, nearly all cells in the high- and medium-density phenotypes were connected into a single cluster with a structure characteristic of a densely packed disordered fluid. However, in the low-density phenotype, the number of clusters was greater, equal to 4% of the total number of cells, and structures were fractal in nature with d(f) =1.7 ± 0.1. The work advances the understanding of biofilm growth, informs the development of predictive models of transport and mechanical properties of biofilms, and provides a method for quantifying the kinetics of bacterial surface colonization as well as biofilm fracture and fragmentation.

  16. 3D PATTERN OF BRAIN ABNORMALITIES IN FRAGILE X SYNDROME VISUALIZED USING TENSOR-BASED MORPHOMETRY

    PubMed Central

    Lee, Agatha D.; Leow, Alex D.; Lu, Allen; Reiss, Allan L.; Hall, Scott; Chiang, Ming-Chang; Toga, Arthur W.; Thompson, Paul M.

    2007-01-01

    Fragile X syndrome (FraX), a genetic neurodevelopmental disorder, results in impaired cognition with particular deficits in executive function and visuo-spatial skills. Here we report the first detailed 3D maps of the effects of the Fragile X mutation on brain structure, using tensor-based morphometry. TBM visualizes structural brain deficits automatically, without time-consuming specification of regions-of-interest. We compared 36 subjects with FraX (age: 14.66+/−1.58SD, 18 females/18 males), and 33 age-matched healthy controls (age: 14.67+/−2.2SD, 17 females/16 males), using high-dimensional elastic image registration. All 69 subjects' 3D T1-weighted brain MRIs were spatially deformed to match a high-resolution single-subject average MRI scan in ICBM space, whose geometry was optimized to produce a minimal deformation target. Maps of the local Jacobian determinant (expansion factor) were computed from the deformation fields. Statistical maps showed increased caudate (10% higher; p=0.001) and lateral ventricle volumes (19% higher; p=0.003), and trend-level parietal and temporal white matter excesses (10% higher locally; p=0.04). In affected females, volume abnormalities correlated with reduction in systemically measured levels of the fragile X mental retardation protein (FMRP; Spearman's r<−0.5 locally). Decreased FMRP correlated with ventricular expansion (p=0.042; permutation test), and anterior cingulate tissue reductions (p=0.0026; permutation test) supporting theories that FMRP is required for normal dendritic pruning in fronto-striatal-limbic pathways. No sex differences were found; findings were confirmed using traditional volumetric measures in regions of interest. Deficit patterns were replicated using Lie group statistics optimized for tensor-valued data. Investigation of how these anomalies emerge over time will accelerate our understanding of FraX and its treatment. PMID:17161622

  17. Influence of a depletion interaction on dynamical heterogeneity in a dense quasi-two-dimensional colloid liquid.

    PubMed

    Ho, Hau My; Cui, Bianxiao; Repel, Stephen; Lin, Binhua; Rice, Stuart A

    2004-11-01

    We report the results of digital video microscopy studies of the large particle displacements in a quasi-two-dimensional binary mixture of large (L) and small (S) colloid particles with diameter ratio sigma(L)/sigma(S)=4.65, as a function of the large and small colloid particle densities. As in the case of the one-component quasi-two-dimensional colloid system, the binary mixtures exhibit structural and dynamical heterogeneity. The distribution of large particle displacements over the time scale examined provides evidence for (at least) two different mechanisms of motion, one associated with particles in locally ordered regions and the other associated with particles in locally disordered regions. When rhoL*=Npisigma(L) (2)/4A< or =0.35, the addition of small colloid particles leads to a monotonic decrease in the large particle diffusion coefficient with increasing small particle volume fraction. When rhoL* > or =0.35 the addition of small colloid particles to a dense system of large colloid particles at first leads to an increase in the large particle diffusion coefficient, which is then followed by the expected decrease of the large particle diffusion coefficient with increasing small colloid particle volume fraction. The mode coupling theory of the ideal glass transition in three-dimensional systems makes a qualitative prediction that agrees with the initial increase in the large particle diffusion coefficient with increasing small particle density. Nevertheless, because the structural and dynamical heterogeneities of the quasi-two-dimensional colloid liquid occur within the field of equilibrium states, and the fluctuations generate locally ordered domains rather than just disordered regions of higher and lower density, it is suggested that mode coupling theory does not account for all classes of relevant fluctuations in a quasi-two-dimensional liquid. (c) 2004 American Institute of Physics.

  18. Local D3/D7 μ-SPLIT SUSY, 125 GeV Higgs and Large Volume Ricci-Flat Swiss-Cheese Metrics:. a Brief Review

    NASA Astrophysics Data System (ADS)

    Misra, Aalok

    In this paper, we review briefly recent progress made in realizing local(ized around a mobile spacetime filling D3-brane in) D3/D7 μ-split Supersymmetry in (the large volume limit of Type IIB) String Theory (compactified on Swiss-Cheese Calabi-Yau orientifolds) as well as obtaining a 125 GeV (light) Higgs in the same setup. We also discuss obtaining the geometric Kähler potential (and hence the Ricci-flat metric) for the Swiss-Cheese Calabi-Yau in the large volume limit using the Donaldson's algorithm and intuition from GLSM-based calculations — we present new results for Swiss-Cheese Calabi-Yau (used in the setup) metrics at points finitely away from the "big" divisor.

  19. A computer simulation of free-volume distributions and related structural properties in a model lipid bilayer.

    PubMed Central

    Xiang, T X

    1993-01-01

    A novel combined approach of molecular dynamics (MD) and Monte Carlo simulations is developed to calculate various free-volume distributions as a function of position in a lipid bilayer membrane at 323 K. The model bilayer consists of 2 x 100 chain molecules with each chain molecule having 15 carbon segments and one head group and subject to forces restricting bond stretching, bending, and torsional motions. At a surface density of 30 A2/chain molecule, the probability density of finding effective free volume available to spherical permeants displays a distribution with two exponential components. Both pre-exponential factors, p1 and p2, remain roughly constant in the highly ordered chain region with average values of 0.012 and 0.00039 A-3, respectively, and increase to 0.049 and 0.0067 A-3 at the mid-plane. The first characteristic cavity size V1 is only weakly dependent on position in the bilayer interior with an average value of 3.4 A3, while the second characteristic cavity size V2 varies more dramatically from a plateau value of 12.9 A3 in the highly ordered chain region to 9.0 A3 in the center of the bilayer. The mean cavity shape is described in terms of a probability distribution for the angle at which the test permeant is in contact with one of and does not overlap with anyone of the chain segments in the bilayer. The results show that (a) free volume is elongated in the highly ordered chain region with its long axis normal to the bilayer interface approaching spherical symmetry in the center of the bilayer and (b) small free volume is more elongated than large free volume. The order and conformational structures relevant to the free-volume distributions are also examined. It is found that both overall and internal motions have comparable contributions to local disorder and couple strongly with each other, and the occurrence of kink defects has higher probability than predicted from an independent-transition model. Images FIGURE 1 PMID:8241390

  20. Bladder accumulated dose in image-guided high-dose-rate brachytherapy for locally advanced cervical cancer and its relation to urinary toxicity

    NASA Astrophysics Data System (ADS)

    Zakariaee, Roja; Hamarneh, Ghassan; Brown, Colin J.; Gaudet, Marc; Aquino-Parsons, Christina; Spadinger, Ingrid

    2016-12-01

    The purpose of this study was to estimate locally accumulated dose to the bladder in multi-fraction high-dose-date (HDR) image-guided intracavitary brachytherapy (IG-ICBT) for cervical cancer, and study the locally-accumulated dose parameters as predictors of late urinary toxicity. A retrospective study of 60 cervical cancer patients who received five HDR IG-ICBT sessions was performed. The bladder outer and inner surfaces were segmented for all sessions and a bladder-wall contour point-set was created in MATLAB. The bladder-wall point-sets for each patient were registered using a deformable point-set registration toolbox called coherent point drift (CPD), and the fraction doses were accumulated. Various dosimetric and volumetric parameters were calculated using the registered doses, including r{{\\text{D}}n \\text{c{{\\text{m}}\\text{3}}}} (minimum dose to the most exposed n-cm3 volume of bladder wall), r V n Gy (wall volume receiving at least m Gy), and r\\text{EQD}{{2}n \\text{c{{\\text{m}}\\text{3}}}} (minimum equivalent biologically weighted dose to the most exposed n-cm3 of bladder wall), where n  =  1/2/5/10 and m  =  3/5/10. Minimum dose to contiguous 1 and 2 cm3 hot-spot volumes was also calculated. The unregistered dose volume histogram (DVH)-summed equivalent of r{{\\text{D}}n \\text{c{{\\text{m}}3}}} and r\\text{EQD}{{2}n \\text{c{{\\text{m}}3}}} parameters (i.e. s{{\\text{D}}n \\text{c{{\\text{m}}\\text{3}}}} and s\\text{EQD}{{2}n \\text{c{{\\text{m}}3}}} ) were determined for comparison. Late urinary toxicity was assessed using the LENT-SOMA scale, with toxicity Grade 0-1 categorized as Controls and Grade 2-4 as Cases. A two-sample t-test was used to identify the differences between the means of Control and Case groups for all parameters. A binomial logistic regression was also performed between the registered dose parameters and toxicity grouping. Seventeen patients were in the Case and 43 patients in the Control group. Contiguous values were on average 16 and 18% smaller than parameters for 1 and 2 cm3 volumes, respectively. Contiguous values were on average 26 and 27% smaller than parameters. The only statistically significant finding for Case versus Control based on both methods of analysis was observed for r V3 Gy (p  =  0.01). DVH-summed parameters based on unregistered structure volumes overestimated the bladder dose in our patients, particularly when contiguous high dose volumes were considered. The bladder-wall volume receiving at least 3 Gy of accumulated dose may be a parameter of interest in further investigations of Grade 2+  urinary toxicity.

  1. Local structure in anisotropic systems determined by molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Komolkin, Andrei V.; Maliniak, Arnold

    In the present communication we describe the investigation of local structure using a new visualization technique. The approach is based on two-dimensional pair correlation functions derived from a molecular dynamics computer simulation. We have used this method to analyse a trajectory produced in a simulation of a nematic liquid crystal of 4-n-pentyl-4'-cyanobiphenyl (5CB) (Komolkin et al., 1994, J. chem. Phys., 101, 4103). The molecule is assumed to have cylindrical symmetry, and the liquid crystalline phase is treated as uniaxial. The pair correlation functions or cylindrical distribution functions (CDFs) are calculated in the molecular (m) and laboratory (l) frames, gm2(z1 2, d1 2) and g12(Z1 2, D1 2). Anisotropic molecular organization in the liquid crystal is reflected in laboratory frame CDFs. The molecular excluded volume is determined and the effect of the fast motion in the alkyl chain is observed. The intramolecular distributions are included in the CDFs and indicate the size of the motional amplitude in the chain. Absence of long range order was confirmed, a feature typical for a nematic liquid crystal.

  2. Husimi function and phase-space analysis of bilayer quantum Hall systems at ν = 2/λ

    NASA Astrophysics Data System (ADS)

    Calixto, M.; Peón-Nieto, C.

    2018-05-01

    We propose localization measures in phase space of the ground state of bilayer quantum Hall systems at fractional filling factors , to characterize the three quantum phases (shortly denoted by spin, canted and ppin) for arbitrary -isospin λ. We use a coherent state (Bargmann) representation of quantum states, as holomorphic functions in the 8-dimensional Grassmannian phase-space (a higher-dimensional generalization of the Haldane’s 2-dimensional sphere ). We quantify the localization (inverse volume) of the ground state wave function in phase-space throughout the phase diagram (i.e. as a function of Zeeman, tunneling, layer distance, etc, control parameters) with the Husimi function second moment, a kind of inverse participation ratio that behaves as an order parameter. Then we visualize the different ground state structure in phase space of the three quantum phases, the canted phase displaying a much higher delocalization (a Schrödinger cat structure) than the spin and ppin phases, where the ground state is highly coherent. We find a good agreement between analytic (variational) and numeric diagonalization results.

  3. Optical effects in artificial opals infiltrated with gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Comoretto, Davide; Morandi, Valentina; Marabelli, Franco; Amendola, Vincenzo; Meneghetti, Moreno

    2006-04-01

    Polystyrene artificial opals are directly grown with embedded gold nanoparticles (NpAu) in their interstices. Reflectance spectra of samples having different sphere diameters and nanoparticles load clearly show a red shift of the photonic band gap as well as a reduction of its width without showing direct evidence of NpAu absorption. The case of transmission spectra is instead more complicated: here, overlapped to a broad NpAu absorption, a structure having unusual lineshape is detected. The infiltration of opal with NpAu removes the polarization dependence of the photonic band structure observed in bare opals. The lineshape of the absorption spectra suggest a spatial localization of the electromagnetic field in the volume where NpAu are confined thus enhancing its local intensity. This effect seems to be effective to stimulate optical nonlinearities of NpAu. Nanosecond transient absorption measurements on NpAu infiltrated opals indicate that a variation of transmission of about 10% is observed. Since this effect takes place within the pump pulse and since NpAu photoluminescence has been subtracted to the signal, we attribute it to an optical switching process.

  4. Tribological Properties of AlSi12-Al₂O₃ Interpenetrating Composite Layers in Comparison with Unreinforced Matrix Alloy.

    PubMed

    Dolata, Anna Janina

    2017-09-06

    Alumina-Aluminum composites with interpenetrating network structures are a new class of advanced materials with potentially better properties than composites reinforced by particles or fibers. Local casting reinforcement was proposed to take into account problems with the machinability of this type of materials and the shaping of the finished products. The centrifugal infiltration process fabricated composite castings in the form of locally reinforced shafts. The main objective of the research presented in this work was to compare the tribological properties (friction coefficient, wear resistance) of AlSi12/Al₂O₃ interpenetrating composite layers with unreinforced AlSi12 matrix areas. Profilometric tests enabled both quantitative and qualitative analyses of the wear trace that formed on investigated surfaces. It has been shown that interpenetrating composite layers are characterized by lower and more stable coefficients of friction (μ), as well as higher wear resistance than unreinforced matrix areas. At the present stage, the study confirmed that the tribological properties of the composite layers depend on the spatial structure of the ceramic reinforcement, and primarily the volume and size of alumina foam cells.

  5. Whiskers growth and self-healing in Ti-based metallic glasses during ion irradiation

    NASA Astrophysics Data System (ADS)

    Zhang, Kun; Hu, Zheng; Zhao, Ziqiang; Wei, Bingchen; Li, Yansen; Wei, Yuhang

    2018-04-01

    Ti-based metallic glasses were subjected to a 20 MeV Cl4+ ion radiation under liquid-nitrogen cooling. Their responses, as well as effects of the electronic excitation and nucleus-nucleus collision were evaluated. The collision cascade during irradiation typically changes the structure by increasing the liquid-like zone/cluster, or the content of the free volume. However, along the ion incident depth, the structure change is inhomogeneous. Numerous whiskers appear and aggregate on the side of the irradiation surface, which are several micrometers away from the edge. This corresponds with the maximum collision depth obtained by the Monte Carlo simulation, where nuclear loss plays a dominant role. Moreover, the liquid-like zone continually forms, which add to the whiskers growth and subsequent self-healing. Results suggest that the irradiation-induced local shear stress combines with the well-localized liquid-like zone results in the observed phenomena. This study demonstrates that metallic glasses have high morphological instability under ion irradiation, which assets can pave new paths for their further applications.

  6. Age-related differences in the structural complexity of subcortical and ventricular structures.

    PubMed

    Madan, Christopher R; Kensinger, Elizabeth A

    2017-02-01

    It has been well established that the volume of several subcortical structures decreases in relation to age. Different metrics of cortical structure (e.g., volume, thickness, surface area, and gyrification) have been shown to index distinct characteristics of interindividual differences; thus, it is important to consider the relation of age to multiple structural measures. Here, we compare age-related differences in subcortical and ventricular volume to those differences revealed with a measure of structural complexity, quantified as fractal dimensionality. Across 3 large data sets, totaling nearly 900 individuals across the adult lifespan (aged 18-94 years), we found greater age-related differences in complexity than volume for the subcortical structures, particularly in the caudate and thalamus. The structural complexity of ventricular structures was not more strongly related to age than volume. These results demonstrate that considering shape-related characteristics improves sensitivity to detect age-related differences in subcortical structures. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Yeast Droplets

    NASA Astrophysics Data System (ADS)

    Nguyen, Baochi; Upadhyaya, Arpita; van Oudenaarden, Alexander; Brenner, Michael

    2002-11-01

    It is well known that the Young's law and surface tension govern the shape of liquid droplets on solid surfaces. Here we address through experiments and theory the shape of growing aggregates of yeast on agar substrates, and assess whether these ideas still hold. Experiments are carried out on Baker's yeast, with different levels of expressions of an adhesive protein governing cell-cell and cell-substrate adhesion. Changing either the agar concentration or the expression of this protein modifies the local contact angle of a yeast droplet. When the colony is small, the shape is a spherical cap with the contact angle obeying Young's law. However, above a critical volume this structure is unstable, and the droplet becomes nonspherical. We present a theoretical model where this instability is caused by bulk elastic effects. The model predicts that the transition depends on both volume and contact angle, in a manner quantitatively consistent with our experiments.

  8. Ultra-sensitive pressure dependence of bandgap of rutile-GeO{sub 2} revealed by many body perturbation theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samanta, Atanu; Singh, Abhishek K.; Jain, Manish

    2015-08-14

    The reported values of bandgap of rutile GeO{sub 2} calculated by the standard density functional theory within local-density approximation (LDA)/generalized gradient approximation (GGA) show a wide variation (∼2 eV), whose origin remains unresolved. Here, we investigate the reasons for this variation by studying the electronic structure of rutile-GeO{sub 2} using many-body perturbation theory within the GW framework. The bandgap as well as valence bandwidth at Γ-point of rutile phase shows a strong dependence on volume change, which is independent of bandgap underestimation problem of LDA/GGA. This strong dependence originates from a change in hybridization among O-p and Ge-(s and p)more » orbitals. Furthermore, the parabolic nature of first conduction band along X-Γ-M direction changes towards a linear dispersion with volume expansion.« less

  9. Space station data system analysis/architecture study. Task 2: Options development, DR-5. Volume 2: Design options

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The primary objective of Task 2 is the development of an information base that will support the conduct of trade studies and provide sufficient data to make key design/programmatic decisions. This includes: (1) the establishment of option categories that are most likely to influence Space Station Data System (SSDS) definition; (2) the identification of preferred options in each category; and (3) the characterization of these options with respect to performance attributes, constraints, cost and risk. This volume contains the options development for the design category. This category comprises alternative structures, configurations and techniques that can be used to develop designs that are responsive to the SSDS requirements. The specific areas discussed are software, including data base management and distributed operating systems; system architecture, including fault tolerance and system growth/automation/autonomy and system interfaces; time management; and system security/privacy. Also discussed are space communications and local area networking.

  10. Asynchronous discrete event schemes for PDEs

    NASA Astrophysics Data System (ADS)

    Stone, D.; Geiger, S.; Lord, G. J.

    2017-08-01

    A new class of asynchronous discrete-event simulation schemes for advection-diffusion-reaction equations is introduced, based on the principle of allowing quanta of mass to pass through faces of a (regular, structured) Cartesian finite volume grid. The timescales of these events are linked to the flux on the face. The resulting schemes are self-adaptive, and local in both time and space. Experiments are performed on realistic physical systems related to porous media flow applications, including a large 3D advection diffusion equation and advection diffusion reaction systems. The results are compared to highly accurate reference solutions where the temporal evolution is computed with exponential integrator schemes using the same finite volume discretisation. This allows a reliable estimation of the solution error. Our results indicate a first order convergence of the error as a control parameter is decreased, and we outline a framework for analysis.

  11. Local amygdala structural differences with 3T MRI in patients with Alzheimer disease

    PubMed Central

    Cavedo, E.; Boccardi, M.; Ganzola, R.; Canu, E.; Beltramello, A.; Caltagirone, C.; Thompson, P.M.

    2011-01-01

    Objective: Histologic studies show that the amygdala is affected by Alzheimer disease (AD) pathology, and its medial aspect is the most involved. We aimed to assess in vivo local structural differences in the amygdala of patients with AD using high-field MRI. Methods: A total of 19 patients with AD (mean age 76, SD 6 years, mean Mini-Mental State Examination score [MMSE] 13, SD 4) and 19 healthy elderly controls (age 74, SD 5, MMSE 29, SD 1) were enrolled. The radial atrophy mapping technique was used to reconstruct the 3-dimensional surface of the amygdala. Maps of surface tissue loss in patients with AD vs controls were computed and statistically tested with permutation tests thresholded at p < 0.05, to correct for multiple comparisons. A digital atlas of the amygdalar nuclei was used to infer which nuclei were involved. Results: Both amygdalar volumes were significantly smaller in patients with AD (right 1,508 mm3, SD 418; left 1,646, SD 419) than controls (right 2,129 mm3, SD 316; left 2,077, SD 376; p < 0.002). In the dorsomedial part, significant local tissue loss (20%–30%) was mapped in the medial and central nuclei. Ventrally, the lateral nucleus (La) and the basolateral ventral medial nucleus (BLVM) were also involved (20%–30% loss). Conclusions: We found in vivo local structural differences in the amygdala of patients with AD. The nuclei involved have known connections to the hippocampus (BLVM, La) and olfactory system (medial nucleus) and with cholinergic pathways (central nucleus). This pattern is consistent with the known pathophysiology of neural systems affected by AD. PMID:21339500

  12. VP-Nets : Efficient automatic localization of key brain structures in 3D fetal neurosonography.

    PubMed

    Huang, Ruobing; Xie, Weidi; Alison Noble, J

    2018-04-23

    Three-dimensional (3D) fetal neurosonography is used clinically to detect cerebral abnormalities and to assess growth in the developing brain. However, manual identification of key brain structures in 3D ultrasound images requires expertise to perform and even then is tedious. Inspired by how sonographers view and interact with volumes during real-time clinical scanning, we propose an efficient automatic method to simultaneously localize multiple brain structures in 3D fetal neurosonography. The proposed View-based Projection Networks (VP-Nets), uses three view-based Convolutional Neural Networks (CNNs), to simplify 3D localizations by directly predicting 2D projections of the key structures onto three anatomical views. While designed for efficient use of data and GPU memory, the proposed VP-Nets allows for full-resolution 3D prediction. We investigated parameters that influence the performance of VP-Nets, e.g. depth and number of feature channels. Moreover, we demonstrate that the model can pinpoint the structure in 3D space by visualizing the trained VP-Nets, despite only 2D supervision being provided for a single stream during training. For comparison, we implemented two other baseline solutions based on Random Forest and 3D U-Nets. In the reported experiments, VP-Nets consistently outperformed other methods on localization. To test the importance of loss function, two identical models are trained with binary corss-entropy and dice coefficient loss respectively. Our best VP-Net model achieved prediction center deviation: 1.8 ± 1.4 mm, size difference: 1.9 ± 1.5 mm, and 3D Intersection Over Union (IOU): 63.2 ± 14.7% when compared to the ground truth. To make the whole pipeline intervention free, we also implement a skull-stripping tool using 3D CNN, which achieves high segmentation accuracy. As a result, the proposed processing pipeline takes a raw ultrasound brain image as input, and output a skull-stripped image with five detected key brain structures. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. The Triglav Glacier (South-Eastern Alps, Slovenia): Volume Estimation, Internal Characterization and 2000-2013 Temporal Evolution by Means of Ground Penetrating Radar Measurements

    NASA Astrophysics Data System (ADS)

    Del Gobbo, Costanza; Colucci, Renato R.; Forte, Emanuele; Triglav Čekada, Michaela; Zorn, Matija

    2016-08-01

    It is well known that small glaciers of mid latitudes and especially those located at low altitude respond suddenly to climate changes both on local and global scale. For this reason their monitoring as well as evaluation of their extension and volume is essential. We present a ground penetrating radar (GPR) dataset acquired on September 23 and 24, 2013 on the Triglav glacier to identify layers with different characteristics (snow, firn, ice, debris) within the glacier and to define the extension and volume of the actual ice. Computing integrated and interpolated 3D using the whole GPR dataset, we estimate that at the moment of data acquisition the ice area was 3800 m2 and the ice volume 7400 m3. Its average thickness was 1.95 m while its maximum thickness was slightly more than 5 m. Here we compare the results with a previous GPR survey acquired in 2000. A critical review of the historical data to find the general trend and to forecast a possible evolution is also presented. Between 2000 and 2013, we observed relevant changes in the internal distribution of the different units (snow, firn, ice) and the ice volume reduced from about 35,000 m3 to about 7400 m3. Such result can be achieved only using multiple GPR surveys, which allow not only to assess the volume occupied by a glacial body, but also to image its internal structure and the actual ice volume. In fact, by applying one of the widely used empirical volume-area relations to infer the geometrical parameters of the glacier, a relevant underestimation of ice-loss would be achieved.

  14. Robust adaptive 3-D segmentation of vessel laminae from fluorescence confocal microscope images and parallel GPU implementation.

    PubMed

    Narayanaswamy, Arunachalam; Dwarakapuram, Saritha; Bjornsson, Christopher S; Cutler, Barbara M; Shain, William; Roysam, Badrinath

    2010-03-01

    This paper presents robust 3-D algorithms to segment vasculature that is imaged by labeling laminae, rather than the lumenal volume. The signal is weak, sparse, noisy, nonuniform, low-contrast, and exhibits gaps and spectral artifacts, so adaptive thresholding and Hessian filtering based methods are not effective. The structure deviates from a tubular geometry, so tracing algorithms are not effective. We propose a four step approach. The first step detects candidate voxels using a robust hypothesis test based on a model that assumes Poisson noise and locally planar geometry. The second step performs an adaptive region growth to extract weakly labeled and fine vessels while rejecting spectral artifacts. To enable interactive visualization and estimation of features such as statistical confidence, local curvature, local thickness, and local normal, we perform the third step. In the third step, we construct an accurate mesh representation using marching tetrahedra, volume-preserving smoothing, and adaptive decimation algorithms. To enable topological analysis and efficient validation, we describe a method to estimate vessel centerlines using a ray casting and vote accumulation algorithm which forms the final step of our algorithm. Our algorithm lends itself to parallel processing, and yielded an 8 x speedup on a graphics processor (GPU). On synthetic data, our meshes had average error per face (EPF) values of (0.1-1.6) voxels per mesh face for peak signal-to-noise ratios from (110-28 dB). Separately, the error from decimating the mesh to less than 1% of its original size, the EPF was less than 1 voxel/face. When validated on real datasets, the average recall and precision values were found to be 94.66% and 94.84%, respectively.

  15. Crustal P-Wave Speed Structure Under Mount St. Helens From Local Earthquake Tomography

    NASA Astrophysics Data System (ADS)

    Waite, G. P.; Moran, S. C.

    2006-12-01

    We used local earthquake data to model the P-wave speed structure of Mount St. Helens with the aim of improving our understanding of the active magmatic system. Our study used new data recorded by a dense array of 19 broadband seismographs that were deployed during the current eruption together with permanent network data recorded since the May 18, 1980 eruption. Most earthquakes around Mount St. Helens during the last 25 years were clustered in a narrow vertical column beneath the volcano from the surface to a depth of about 10 km. Earthquakes also occurred in a well-defined zone extending to the NNW from the volcano known as the St. Helens Seismic Zone (SHZ). During the current eruption, earthquakes have been confined to within 3 km of the surface beneath the crater floor. These earthquakes apparently radiate little shear-wave energy and the shear arrivals are usually contaminated by surface waves. Thus, we focused on developing an improved P- wave speed model. We used two data sources: (1) the short-period, vertical-component Pacific Northwest Seismograph Network and (2) new data recorded on a temporary array between June 2005 and February 2006. We first solved for a minimum one-dimensional model, incorporating the Moho depth found during an earlier wide-aperture refraction study. The three-dimensional model was solved simultaneously with hypocenter locations using the computer code SIMULPS14, extended for full three-dimensional ray shooting. We modified the code to force raypaths to remain below the ground surface. We began with large grid spacing and progressed to smaller grid spacing where the earthquakes and stations were denser. In this way we achieve a 40 km by 40 km regional model as well as a 10 km by 10 km fine-scale model directly beneath Mount St. Helens. The large-scale model is consistent with mapped geology and other geophysical data in the vicinity of Mount St. Helens. For example, there is a zone of relatively low velocities (-2% to -5% lower than background model) from 3 to at least 10 km depth extending NNW from the volcano parallel to the SHZ. The low-wave- speed zone coincides with a linear magnetic low, the western edge of a magnetotelluric conductive anomaly, and a localized gravity low. The coincidence of the volcano and these anomalies indicates this preexisting zone of weakness may control the location of Mount St. Helens, as has been suggested by previous investigators. Prominent high-wave-speed anomalies (+3% to +6% relative to background) on either side of this zone are due to plutons, which are also imaged with other geophysical data. Fine-scale modeling of the upper crust directly beneath Mount St. Helens reveals subtle structures not seen in the larger-scale model. The key structure is a cylindrical volume with speeds almost 10% slower than the background model extending from 6 to at least 10 km depth. The vertical, cylindrical volume of earthquakes, which reaches from the surface to more than 10 km depth, splits around this low-wave-speed volume creating an aseismic zone coincident with the low P-wave speeds. We interpret this volume as a melt-rich reservoir surrounded by hot rock.

  16. Scaling relations between bone volume and bone structure as found using 3D µCT images of the trabecular bone taken from different skeletal sites

    NASA Astrophysics Data System (ADS)

    Raeth, Christoph; Müller, Dirk; Sidorenko, Irina; Monetti, Roberto; Eckstein, Felix; Matsuura, Maiko; Lochmüller, Eva-Maria; Zysset, Philippe K.; Bauer, Jan

    2010-03-01

    According to Wolff's law bone remodels in response to the mechanical stresses it experiences so as to produce a minimal-weight structure that is adapted to its applied stresses. Here, we investigate the relations between bone volume and structure for the trabecular bone using 3D μCT images taken from different skeletal sites in vitro, namely from the distal radii (96 specimens), thoracic (73 specimens) and lumbar vertebrae (78 specimens). We determine the local structure of the trabecular network by calculating isotropic and anisotropic scaling indices (α, αz). These measures have been proven to be able to discriminate rod- from sheet-like structures and to quantify the alignment of structures with respect to a preferential direction as given by the direction of the external force. Comparing global structure measures derived from the scaling indices (mean, standard deviation) with the bone mass (BV/TV) we find that all correlations obey very accurately power laws with scaling exponents of 0.14, 0.12, 0.15 (<α>~), -0.2, -017, -0.17 (σ(αz)), 0.09, 0.05, 0.07 (<~αz>~) and -0.20, -0.11 ,-0.13 (σ(αz)) distal radius, thoracic vertebra and lumbar vertebra respectively. Thus, these relations turn out to be site-independent, albeit the mechanical stresses to which the bones of the forearm and the spine are exposed, are quite different. The similar alignment might not be in agreement with a universal validity of Wolff's law. On the other hand, such universal power law relations may allow to develop additional diagnostic means to better assess healthy and osteoporotic bone.

  17. SU-E-I-91: Reproducibility in Prescribed Dose in AEC CT Scans Due to Table Height, Patient Size, and Localizer Acquisition Order

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winslow, J; Hurwitz, L; Christianson, O

    2014-06-01

    Purpose: In CT scanners, the automatic exposure control (AEC) tube current prescription depends on the acquired prescan localizer image(s). The purpose of this study was to quantify the effect that table height, patient size, and localizer acquisition order may have on the reproducibility in prescribed dose. Methods: Three phantoms were used for this study: the Mercury Phantom (comprises three tapered and four uniform regions of polyethylene 16, 23, 30, and 37 cm in diameter), acrylic sheets, and an adult anthropomorphic phantom. Phantoms were positioned per clinical protocol by our chief CT technologist or broader symmetry. Using a GE Discovery CT750HDmore » scanner, a lateral (LAT) and posterior-anterior (PA) localizer was acquired for each phantom at different table heights. AEC scan acquisitions were prescribed for each combination of phantom, localizer orientation, and table height; the displayed volume CTDI was recorded for each. Results were analyzed versus table height. Results: For the two largest Mercury Phantom section scans based on the PA localizer, the percent change in volume CTDI from ideal were at least 20% lower and 35% greater for table heights 4 cm above and 4 cm below proper centering, respectively. For scans based on the LAT localizer, the percent change in volume CTDI from ideal were no greater than 12% different for 4 cm differences in table height. The properly centered PA and LAT localizer-based volume CTDI values were within 13% of each other. Conclusion: Since uncertainty in vertical patient positioning is inherently greater than lateral positioning and because the variability in dose exceeds any dose penalties incurred, the LAT localizer should be used to precisely and reproducibly deliver the intended amount of radiation prescribed by CT protocols. CT protocols can be adjusted to minimize the expected change in average patient dose.« less

  18. Micro-Raman study of isotope substitution in YBa2Cu183O6.2 during local laser annealing

    NASA Astrophysics Data System (ADS)

    Ivanov, V. G.; Iliev, M. N.; Thomsen, C.

    1995-11-01

    The local laser heating of YBa2Cu183O6.2 in air was used to study the oxygen diffusion and oxygen ordering in sample volumes of the order of a few μm3. Raman microprobe at points corresponding to different annealing temperatures was applied to monitor both the stages of substitution of 16O for 18O at different oxygen sites and the structural changes in the basal [Cu(1)-O(1)] planes occurring during the oxygen in-diffusion. The population of the O(1) sites initially results in the formation of short Cu(1)-O(1) fragments which later conjunct into long chains. The results can be applied for a better understanding of oxygen reordering processes in YBa2Cu3O7-δ during thermal treatment.

  19. Electric Double-Layer Structure in Primitive Model Electrolytes. Comparing Molecular Dynamics with Local-Density Approximations

    DOE PAGES

    Giera, Brian; Lawrence Livermore National Lab.; Henson, Neil; ...

    2015-02-27

    We evaluate the accuracy of local-density approximations (LDAs) using explicit molecular dynamics simulations of binary electrolytes comprised of equisized ions in an implicit solvent. The Bikerman LDA, which considers ions to occupy a lattice, poorly captures excluded volume interactions between primitive model ions. Instead, LDAs based on the Carnahan–Starling (CS) hard-sphere equation of state capture simulated values of ideal and excess chemical potential profiles extremely well, as is the relationship between surface charge density and electrostatic potential. Excellent agreement between the EDL capacitances predicted by CS-LDAs and computed in molecular simulations is found even in systems where ion correlations drivemore » strong density and free charge oscillations within the EDL, despite the inability of LDAs to capture the oscillations in the detailed EDL profiles.« less

  20. Heterogeneous structure and surface tension effects on mechanical response in pulmonary acinus: A finite element analysis.

    PubMed

    Koshiyama, Kenichiro; Nishimoto, Keisuke; Ii, Satoshi; Sera, Toshihiro; Wada, Shigeo

    2018-01-20

    The pulmonary acinus is a dead-end microstructure that consists of ducts and alveoli. High-resolution micro-CT imaging has recently provided detailed anatomical information of a complete in vivo acinus, but relating its mechanical response with its detailed acinar structure remains challenging. This study aimed to investigate the mechanical response of acinar tissue in a whole acinus for static inflation using computational approaches. We performed finite element analysis of a whole acinus for static inflation. The acinar structure model was generated based on micro-CT images of an intact acinus. A continuum mechanics model of the lung parenchyma was used for acinar tissue material model, and surface tension effects were explicitly included. An anisotropic mechanical field analysis based on a stretch tensor was combined with a curvature-based local structure analysis. The airspace of the acinus exhibited nonspherical deformation as a result of the anisotropic deformation of acinar tissue. A strain hotspot occurred at the ridge-shaped region caused by a rod-like deformation of acinar tissue on the ridge. The local structure becomes bowl-shaped for inflation and, without surface tension effects, the surface of the bowl-shaped region primarily experiences isotropic deformation. Surface tension effects suppressed the increase in airspace volume and inner surface area, while facilitating anisotropic deformation on the alveolar surface. In the lungs, the heterogeneous acinar structure and surface tension induce anisotropic deformation at the acinar and alveolar scales. Further research is needed on structural variation of acini, inter-acini connectivity, or dynamic behavior to understand multiscale lung mechanics. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Extraction of membrane structure in eyeball from MR volumes

    NASA Astrophysics Data System (ADS)

    Oda, Masahiro; Kin, Taichi; Mori, Kensaku

    2017-03-01

    This paper presents an accurate extraction method of spherical shaped membrane structures in the eyeball from MR volumes. In ophthalmic surgery, operation field is limited to a small region. Patient specific surgical simulation is useful to reduce complications. Understanding of tissue structure in the eyeball of a patient is required to achieve patient specific surgical simulations. Previous extraction methods of tissue structure in the eyeball use optical coherence tomography (OCT) images. Although OCT images have high resolution, imaging regions are limited to very small. Global structure extraction of the eyeball is difficult from OCT images. We propose an extraction method of spherical shaped membrane structures including the sclerotic coat, choroid, and retina. This method is applied to a T2 weighted MR volume of the head region. MR volume can capture tissue structure of whole eyeball. Because we use MR volumes, out method extracts whole membrane structures in the eyeball. We roughly extract membrane structures by applying a sheet structure enhancement filter. The rough extraction result includes parts of the membrane structures. Then, we apply the Hough transform to extract a sphere structure from the voxels set of the rough extraction result. The Hough transform finds a sphere structure from the rough extraction result. An experimental result using a T2 weighted MR volume of the head region showed that the proposed method can extract spherical shaped membrane structures accurately.

  2. Local breast density assessment using reacquired mammographic images.

    PubMed

    García, Eloy; Diaz, Oliver; Martí, Robert; Diez, Yago; Gubern-Mérida, Albert; Sentís, Melcior; Martí, Joan; Oliver, Arnau

    2017-08-01

    The aim of this paper is to evaluate the spatial glandular volumetric tissue distribution as well as the density measures provided by Volpara™ using a dataset composed of repeated pairs of mammograms, where each pair was acquired in a short time frame and in a slightly changed position of the breast. We conducted a retrospective analysis of 99 pairs of repeatedly acquired full-field digital mammograms from 99 different patients. The commercial software Volpara™ Density Maps (Volpara Solutions, Wellington, New Zealand) is used to estimate both the global and the local glandular tissue distribution in each image. The global measures provided by Volpara™, such as breast volume, volume of glandular tissue, and volumetric breast density are compared between the two acquisitions. The evaluation of the local glandular information is performed using histogram similarity metrics, such as intersection and correlation, and local measures, such as statistics from the difference image and local gradient correlation measures. Global measures showed a high correlation (breast volume R=0.99, volume of glandular tissue R=0.94, and volumetric breast density R=0.96) regardless the anode/filter material. Similarly, histogram intersection and correlation metric showed that, for each pair, the images share a high degree of information. Regarding the local distribution of glandular tissue, small changes in the angle of view do not yield significant differences in the glandular pattern, whilst changes in the breast thickness between both acquisition affect the spatial parenchymal distribution. This study indicates that Volpara™ Density Maps is reliable in estimating the local glandular tissue distribution and can be used for its assessment and follow-up. Volpara™ Density Maps is robust to small variations of the acquisition angle and to the beam energy, although divergences arise due to different breast compression conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. On the assessments of arabinoxylan localization and enzymatic modifications for enhanced protein networking and its structural impact on rye dough and bread.

    PubMed

    Döring, Clemens; Hussein, Mohamed A; Jekle, Mario; Becker, Thomas

    2017-08-15

    For rye dough structure, it is hypothesised that the presence of arabinoxylan hinders the proteins from forming a coherent network. This hypothesis was investigated using fluorescent-stained antibodies that bind to the arabinoxylan chains. Image analysis proves that the arabinoxylan surrounds the proteins, negatively affecting protein networking. Further, it is hypothesised that the dosing of xylanase and transglutaminase has a positive impact on rye dough and bread characteristics; the findings in this study evidenced that this increases the protein network by up to 38% accompanied by a higher volume rise of 10.67%, compared to standard rye dough. These outcomes combine a product-oriented and physiochemical design of a recipe, targeting structural and functional relationships, and demonstrate a successful methodology for enhancing rye bread quality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Ancient Astronomical Hieroglyphs of the Armenian Highland and their Echo in Architectural Structures

    NASA Astrophysics Data System (ADS)

    Ter-Gulanyan, Ani

    2014-10-01

    The credo-spiritual structure formed as a result of astronomical knowledge in the Armenian Highland and recognition of the universe, with its symbolistic signs - which, in our opinion, were expressed in particular by astronomic horoscope hieroglyphs - have had their worship and spiritual speculative feedback both in architecture and in different other arts, especially in symbolic jewelry. A visible link is noticed between the shift of constellations and the civilization development phases. Identification of archeological sources gives the ground to conclude that Armenia has been one of the centers of astronomy. The astronomical signs, having a local origin and having formed ancient astronomical-worship, spiritual-credo structure, have found the feedback of its developments also in other biospheres with respective unique manifestations, in both ancient pagan church architecture and the Christian church architecture, both as a volume form and as a spiritual ideology, with its credosymbolistic signs.

  5. Bilingualism tunes the anterior cingulate cortex for conflict monitoring.

    PubMed

    Abutalebi, Jubin; Della Rosa, Pasquale Anthony; Green, David W; Hernandez, Mireia; Scifo, Paola; Keim, Roland; Cappa, Stefano F; Costa, Albert

    2012-09-01

    Monitoring and controlling 2 language systems is fundamental to language use in bilinguals. Here, we reveal in a combined functional (event-related functional magnetic resonance imaging) and structural neuroimaging (voxel-based morphometry) study that dorsal anterior cingulate cortex (ACC), a structure tightly bound to domain-general executive control functions, is a common locus for language control and resolving nonverbal conflict. We also show an experience-dependent effect in the same region: Bilinguals use this structure more efficiently than monolinguals to monitor nonlinguistic cognitive conflicts. They adapted better to conflicting situations showing less ACC activity while outperforming monolinguals. Importantly, for bilinguals, brain activity in the ACC, as well as behavioral measures, also correlated positively with local gray matter volume. These results suggest that early learning and lifelong practice of 2 languages exert a strong impact upon human neocortical development. The bilingual brain adapts better to resolve cognitive conflicts in domain-general cognitive tasks.

  6. Computational investigations of the band structure, and thermodynamic and optical features of thorium-based oxide ThGeO4 using the full-potential linearized augmented plane-wave plus local orbital approach

    NASA Astrophysics Data System (ADS)

    Chiker, F.; Khachai, H.; Mathieu, C.; Bin-Omran, S.; Kada, Belkacem; Sun, Xiao-Wei; Sandeep; Rai, D. P.; Khenata, R.

    2018-05-01

    In this study, first-principles investigations were performed using the full-potential linearized augmented plane-wave method of the structural and optoelectronic properties of thorium germinate (ThGeO4), a high-K dielectric material. Under ambient conditions, the structural properties calculated for ThGeO4 in the zircon phase were in excellent agreement with the available experimental data. Furthermore, using the modified Becke -Johnson correction method, the calculated band gaps and optical constants accurately described this compound. Finally, the thermal properties were predicted over a temperature range of 0-700 K and pressures up to 11 GPa using the quasi-harmonic Debye model, where the variations in the heat capacity, primitive cell volume, and thermal expansion coefficients were determined successfully.

  7. Theoretical investigation of structural, mechanical and electronic properties of GaAs1-xNx alloys under ambient and high pressure

    NASA Astrophysics Data System (ADS)

    Li, Jian; Han, Xiuxun; Dong, Chen; Fan, Changzeng

    2017-12-01

    Using first-principles total energy calculations, we have studied the structural, mechanical and electronic properties of GaAs1-xNx ternary semiconductor alloys with the zinc-blende crystal structure over the whole nitrogen concentration range (with x from 0 to 1) within density functional theory (DFT) framework. To obtain the ideal band gap, we employ the semi-empirical approach called local density approximation plus the multi-orbital mean-field Hubbard model (LDA+U). The calculated results illustrate the varying lattice constants and band gap in GaAs1-xNx alloys as functions of the nitrogen concentration x. According to the pressure dependence of the lattice constants and volume, the higher N concentration alloy exhibits the better anti-compressibility. In addition, an increasing band gap is predicted under 20 GPa pressure for GaAs1-xNx alloys.

  8. Mass-independent area (or entropy) and thermodynamic volume products in conformal gravity

    NASA Astrophysics Data System (ADS)

    Pradhan, Parthapratim

    2017-06-01

    In this work, we investigate the thermodynamic properties of conformal gravity in four dimensions. We compute the area (or entropy) functional relation for this black hole (BH). We consider both de Sitter (dS) and anti-de Sitter (AdS) cases. We derive the Cosmic-Censorship-Inequality which is an important relation in general relativity that relates the total mass of a spacetime to the area of all the BH horizons. Local thermodynamic stability is studied by computing the specific heat. The second-order phase transition occurs at a certain condition. Various types of second-order phase structure have been given for various values of a and the cosmological constant Λ in the Appendix. When a = 0, one obtains the result of Schwarzschild-dS and Schwarzschild-AdS cases. In the limit aM ≪ 1, one obtains the result of Grumiller spacetime, where a is nontrivial Rindler parameter or Rindler acceleration and M is the mass parameter. The thermodynamic volume functional relation is derived in the extended phase space, where the cosmological constant is treated as a thermodynamic pressure and its conjugate variable as a thermodynamic volume. The mass-independent area (or entropy) functional relation and thermodynamic volume functional relation that we have derived could turn out to be a universal quantity.

  9. Using Anisotropic 3D Minkowski Functionals for Trabecular Bone Characterization and Biomechanical Strength Prediction in Proximal Femur Specimens

    PubMed Central

    Nagarajan, Mahesh B.; De, Titas; Lochmüller, Eva-Maria; Eckstein, Felix; Wismüller, Axel

    2017-01-01

    The ability of Anisotropic Minkowski Functionals (AMFs) to capture local anisotropy while evaluating topological properties of the underlying gray-level structures has been previously demonstrated. We evaluate the ability of this approach to characterize local structure properties of trabecular bone micro-architecture in ex vivo proximal femur specimens, as visualized on multi-detector CT, for purposes of biomechanical bone strength prediction. To this end, volumetric AMFs were computed locally for each voxel of volumes of interest (VOI) extracted from the femoral head of 146 specimens. The local anisotropy captured by such AMFs was quantified using a fractional anisotropy measure; the magnitude and direction of anisotropy at every pixel was stored in histograms that served as a feature vectors that characterized the VOIs. A linear multi-regression analysis algorithm was used to predict the failure load (FL) from the feature sets; the predicted FL was compared to the true FL determined through biomechanical testing. The prediction performance was measured by the root mean square error (RMSE) for each feature set. The best prediction performance was obtained from the fractional anisotropy histogram of AMF Euler Characteristic (RMSE = 1.01 ± 0.13), which was significantly better than MDCT-derived mean BMD (RMSE = 1.12 ± 0.16, p<0.05). We conclude that such anisotropic Minkowski Functionals can capture valuable information regarding regional trabecular bone quality and contribute to improved bone strength prediction, which is important for improving the clinical assessment of osteoporotic fracture risk. PMID:29170581

  10. Origin of Tumor Recurrence After Intensity Modulated Radiation Therapy for Oropharyngeal Squamous Cell Carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raktoe, Sawan A.S.; Dehnad, Homan, E-mail: h.dehnad@umcutrecht.nl; Raaijmakers, Cornelis P.J.

    Purpose: To model locoregional recurrences of oropharyngeal squamous cell carcinomas (OSCC) treated with primary intensity modulated radiation therapy (IMRT) in order to find the origins from which recurrences grow and relate their location to original target volume borders. Methods and Materials: This was a retrospective analysis of OSCC treated with primary IMRT between January 2002 and December 2009. Locoregional recurrence volumes were delineated on diagnostic scans and coregistered rigidly with treatment planning computed tomography scans. Each recurrence was analyzed with two methods. First, overlapping volumes of a recurrence and original target were measured ('volumetric approach') and assessed as 'in-field', 'marginal',more » or 'out-field'. Then, the center of mass (COM) of a recurrence volume was assumed as the origin from where a recurrence expanded, the COM location was compared with original target volume borders and assessed as 'in-field', 'marginal', or 'out-field'. Results: One hundred thirty-one OSCC were assessed. For all patients alive at the end of follow-up, the mean follow-up time was 40 months (range, 12-83 months); 2 patients were lost to follow-up. The locoregional recurrence rate was 27%. Of all recurrences, 51% were local, 23% were regional, and 26% had both local and regional recurrences. Of all recurrences, 74% had imaging available for assessment. Regarding volumetric analysis of local recurrences, 15% were in-field gross tumor volume (GTV), and 65% were in-field clinical tumor volume (CTV). Using the COM approach, we found that 70% of local recurrences were in-field GTV and 90% were in-field CTV. Of the regional recurrences, 25% were volumetrically in-field GTV, and using the COM approach, we found 54% were in-field GTV. The COM of local out-field CTV recurrences were maximally 16 mm outside CTV borders, whereas for regional recurrences, this was 17 mm. Conclusions: The COM model is practical and specific for recurrence assessment. Most recurrences originated in the GTV. This suggests radioresistance in certain tumor parts.« less

  11. A homogenization-based quasi-discrete method for the fracture of heterogeneous materials

    NASA Astrophysics Data System (ADS)

    Berke, P. Z.; Peerlings, R. H. J.; Massart, T. J.; Geers, M. G. D.

    2014-05-01

    The understanding and the prediction of the failure behaviour of materials with pronounced microstructural effects is of crucial importance. This paper presents a novel computational methodology for the handling of fracture on the basis of the microscale behaviour. The basic principles presented here allow the incorporation of an adaptive discretization scheme of the structure as a function of the evolution of strain localization in the underlying microstructure. The proposed quasi-discrete methodology bridges two scales: the scale of the material microstructure, modelled with a continuum type description; and the structural scale, where a discrete description of the material is adopted. The damaging material at the structural scale is divided into unit volumes, called cells, which are represented as a discrete network of points. The scale transition is inspired by computational homogenization techniques; however it does not rely on classical averaging theorems. The structural discrete equilibrium problem is formulated in terms of the underlying fine scale computations. Particular boundary conditions are developed on the scale of the material microstructure to address damage localization problems. The performance of this quasi-discrete method with the enhanced boundary conditions is assessed using different computational test cases. The predictions of the quasi-discrete scheme agree well with reference solutions obtained through direct numerical simulations, both in terms of crack patterns and load versus displacement responses.

  12. Segmentation of knee MRI using structure enhanced local phase filtering

    NASA Astrophysics Data System (ADS)

    Lim, Mikhiel; Hacihaliloglu, Ilker

    2016-03-01

    The segmentation of bone surfaces from magnetic resonance imaging (MRI) data has applications in the quanti- tative measurement of knee osteoarthritis, surgery planning for patient specific total knee arthroplasty and its subsequent fabrication of artificial implants. However, due to the problems associated with MRI imaging such as low contrast between bone and surrounding tissues, noise, bias fields, and the partial volume effect, segmentation of bone surfaces continues to be a challenging operation. In this paper, a new framework is presented for the enhancement of knee MRI scans prior to segmentation in order to obtain high contrast bone images. During the first stage, a new contrast enhanced relative total variation (RTV) regularization method is used in order to remove textural noise from the bone structures and surrounding soft tissue interface. This salient bone edge information is further enhanced using a sparse gradient counting method based on L0 gradient minimization, which globally controls how many non-zero gradients are resulted in order to approximate prominent bone structures in a structure-sparsity-management manner. The last stage of the framework involves incorporation of local phase bone boundary information in order to provide an intensity invariant enhancement of contrast between the bone and surrounding soft tissue. The enhanced images are segmented using a fast random walker algorithm. Validation against expert segmentation was performed on 10 clinical knee MRI images, and achieved a mean dice similarity coefficient (DSC) of 0.975.

  13. Quantitative Characterization of Molecular Similarity Spaces: Tools for Computational Toxicology

    DTIC Science & Technology

    2000-01-20

    numbers for hydrogen-filled molecular structure, hydrogen-suppressed molecular structure, and van der Waals volume. Van der Waals...relative covalent radii Geometrical Vw van der Waals volume 3DW 3-D Wiener number for the hydrogen-suppressed geometric distance matrix...molecular structure, and van der Waals volume. Van der Waals volume, Vw (Bondi 1964). was calculated using Sybyl 6.1 from Tripos As- sociates. Inc

  14. Definitive Radiotherapy for T1-T2 Squamous Cell Carcinoma of Pyriform Sinus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rabbani, Anna; Amdur, Robert J.; Mancuso, Anthony A.

    2008-10-01

    Purpose: To report the long-term results after definitive radiotherapy (RT) for T1-T2 pyriform sinus squamous cell carcinoma. Patients and Methods: The data from 123 patients with T1-T2 pyriform sinus squamous cell carcinoma treated with RT with or without neck dissection between November 1964 and June 2003 were analyzed. The median follow-up for all patients was 3.2 years, and the median follow-up for living patients was 10.7 years. Results: The 5-year local control, locoregional control, freedom from distant metastasis, cause-specific survival, and overall survival rate was 85%, 70%, 75%, 61%, and 35%, respectively. The ultimate local control rate, including successful salvagemore » of RT failure, for T1 and T2 cancer patients was 96% and 94%, respectively. The overall local control rate with a functional larynx was 83%. Pretreatment computed tomography tumor volume data were available for 55 patients. The median computed tomography tumor volume was 4.2 cm{sup 3} (range, 0-22.4). Local control was worse for patients with a tumor volume >6.5 cm{sup 3} compared with those with a smaller tumor volume. Of the 123 patients, 16% developed moderate to severe acute (2%), late (9%), or postoperative (5%) complications. Conclusions: Local control with larynx preservation after definitive RT for T1-T2 pyriform sinus squamous cell carcinoma likely results in local control and survival similar to that after total laryngectomy or larynx-conserving surgery. Two-thirds of our living patients retained a functional larynx.« less

  15. Bio-inspired heterogeneous composites for broadband vibration mitigation.

    PubMed

    Chen, Yanyu; Wang, Lifeng

    2015-12-08

    Structural biological materials have developed heterogeneous and hierarchical architectures that are responsible for the outstanding performance to provide protection against environmental threats including static and dynamic loading. Inspired by this observation, this research aims to develop new material and structural concepts for broadband vibration mitigation. The proposed composite materials possess a two-layered heterogeneous architecture where both layers consist of high-volume platelet-shape reinforcements and low-volume matrix, similar to the well-known "brick and mortar" microstructure of biological composites. Using finite element method, we numerically demonstrated that broadband wave attenuation zones can be achieved by tailoring the geometric features of the heterogeneous architecture. We reveal that the resulting broadband attenuation zones are gained by directly superimposing the attenuation zones in each constituent layer. This mechanism is further confirmed by the investigation into the phonon dispersion relation of each layer. Importantly, the broadband wave attenuation capability will be maintained when the mineral platelet orientation is locally manipulated, yet a contrast between the mineral platelet concentrations of the two constituent layers is essential. The findings of this work will provide new opportunities to design heterogeneous composites for broadband vibration mitigation and impact resistance under mechanically challenging environmental conditions.

  16. Effect of pressure on high Karlovitz number lean turbulent premixed hydrogen-enriched methane-air flames using LES

    NASA Astrophysics Data System (ADS)

    Cicoria, David; Chan, C. K.

    2017-07-01

    Large eddy simulation (LES) is employed to investigate the effect of pressure on lean CH4-H2-air turbulent premixed flames at high Karlovitz number for mixtures up to 60% of hydrogen in volume. The subfilter combustion term representing the interaction between turbulence and chemistry is modelled using the PaSR model, along with complex chemistry using a skeletal mechanism based on GRI-MECH3.0. The influence of pressure at high turbulence levels is studied by means of the local flame structure, and the assessment of species formation inside the flame. Results show that the ratio of turbulent flame thickness to laminar flame thickness δt/δu increases faster with pressure, and increases with the fraction of hydrogen in the mixture, leading to higher ratio of turbulent to laminar flame speed. The flame displays smaller structures and higher degree of wrinkling at higher pressure. Final species of CO2 and H2O formation is almost independent of pressure. For intermediate species CO and OH, an increase in pressure at constant volume fraction of hydrogen β leads to a decrease of emission of these species.

  17. Unveiling the mystery of déjà vu: the structural anatomy of déjà vu.

    PubMed

    Brázdil, Milan; Mareček, Radek; Urbánek, Tomáš; Kašpárek, Tomáš; Mikl, Michal; Rektor, Ivan; Zeman, Adam

    2012-10-01

    Déjà vu (DV) is a widespread, fascinating and mysterious human experience. It occurs both in health and in disease, notably as an aura of temporal lobe epilepsy. This feeling of inappropriate familiarity has attracted interest from psychologists and neuroscientists for over a century, but still there is no widely agreed explanation for the phenomenon of non-pathological DV. Here we investigated differences in brain morphology between healthy subjects with and without DV using a novel multivariate neuroimaging technique, Source-Based Morphometry. The analysis revealed a set of cortical (predominantly mesiotemporal) and subcortical regions in which there was significantly less gray matter in subjects reporting DV. In these regions gray matter volume was inversely correlated with the frequency of DV. Our results demonstrate a structural correlate of DV in healthy individuals for the first time and support a neurological explanation for the phenomenon. We hypothesis that the observed local gray matter decrease in subjects experiencing DV reflects an alteration of hippocampal function and postnatal neurogenesis with resulting changes of volume in remote brain regions. Copyright © 2012 Elsevier Srl. All rights reserved.

  18. Bio-inspired heterogeneous composites for broadband vibration mitigation

    NASA Astrophysics Data System (ADS)

    Chen, Yanyu; Wang, Lifeng

    2015-12-01

    Structural biological materials have developed heterogeneous and hierarchical architectures that are responsible for the outstanding performance to provide protection against environmental threats including static and dynamic loading. Inspired by this observation, this research aims to develop new material and structural concepts for broadband vibration mitigation. The proposed composite materials possess a two-layered heterogeneous architecture where both layers consist of high-volume platelet-shape reinforcements and low-volume matrix, similar to the well-known “brick and mortar” microstructure of biological composites. Using finite element method, we numerically demonstrated that broadband wave attenuation zones can be achieved by tailoring the geometric features of the heterogeneous architecture. We reveal that the resulting broadband attenuation zones are gained by directly superimposing the attenuation zones in each constituent layer. This mechanism is further confirmed by the investigation into the phonon dispersion relation of each layer. Importantly, the broadband wave attenuation capability will be maintained when the mineral platelet orientation is locally manipulated, yet a contrast between the mineral platelet concentrations of the two constituent layers is essential. The findings of this work will provide new opportunities to design heterogeneous composites for broadband vibration mitigation and impact resistance under mechanically challenging environmental conditions.

  19. Watching individual molecules flex within lipid membranes using SERS

    NASA Astrophysics Data System (ADS)

    Taylor, Richard W.; Benz, Felix; Sigle, Daniel O.; Bowman, Richard W.; Bao, Peng; Roth, Johannes S.; Heath, George R.; Evans, Stephen D.; Baumberg, Jeremy J.

    2014-08-01

    Interrogating individual molecules within bio-membranes is key to deepening our understanding of biological processes essential for life. Using Raman spectroscopy to map molecular vibrations is ideal to non-destructively `fingerprint' biomolecules for dynamic information on their molecular structure, composition and conformation. Such tag-free tracking of molecules within lipid bio-membranes can directly connect structure and function. In this paper, stable co-assembly with gold nano-components in a `nanoparticle-on-mirror' geometry strongly enhances the local optical field and reduces the volume probed to a few nm3, enabling repeated measurements for many tens of minutes on the same molecules. The intense gap plasmons are assembled around model bio-membranes providing molecular identification of the diffusing lipids. Our experiments clearly evidence measurement of individual lipids flexing through telltale rapid correlated vibrational shifts and intensity fluctuations in the Raman spectrum. These track molecules that undergo bending and conformational changes within the probe volume, through their interactions with the environment. This technique allows for in situ high-speed single-molecule investigations of the molecules embedded within lipid bio-membranes. It thus offers a new way to investigate the hidden dynamics of cell membranes important to a myriad of life processes.

  20. Hybrid mesh finite volume CFD code for studying heat transfer in a forward-facing step

    NASA Astrophysics Data System (ADS)

    Jayakumar, J. S.; Kumar, Inder; Eswaran, V.

    2010-12-01

    Computational fluid dynamics (CFD) methods employ two types of grid: structured and unstructured. Developing the solver and data structures for a finite-volume solver is easier than for unstructured grids. But real-life problems are too complicated to be fitted flexibly by structured grids. Therefore, unstructured grids are widely used for solving real-life problems. However, using only one type of unstructured element consumes a lot of computational time because the number of elements cannot be controlled. Hence, a hybrid grid that contains mixed elements, such as the use of hexahedral elements along with tetrahedral and pyramidal elements, gives the user control over the number of elements in the domain, and thus only the domain that requires a finer grid is meshed finer and not the entire domain. This work aims to develop such a finite-volume hybrid grid solver capable of handling turbulence flows and conjugate heat transfer. It has been extended to solving flow involving separation and subsequent reattachment occurring due to sudden expansion or contraction. A significant effect of mixing high- and low-enthalpy fluid occurs in the reattached regions of these devices. This makes the study of the backward-facing and forward-facing step with heat transfer an important field of research. The problem of the forward-facing step with conjugate heat transfer was taken up and solved for turbulence flow using a two-equation model of k-ω. The variation in the flow profile and heat transfer behavior has been studied with the variation in Re and solid to fluid thermal conductivity ratios. The results for the variation in local Nusselt number, interface temperature and skin friction factor are presented.

  1. Confocal Raman Microscopy for In-situ Measurement of Phospholipid-Water Partitioning into Model Phospholipid Bilayers within Individual Chromatographic Particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kitt, Jay P.; Bryce, David A.; Minteer, Shelley D.

    The phospholipid-water partition coefficient is a commonly measured parameter that correlates with drug efficacy, small-molecule toxicity, and accumulation of molecules in biological systems in the environment. Despite the utility of this parameter, methods for measuring phospholipid-water partition coefficients are limited. This is due to the difficulty of making quantitative measurements in vesicle membranes or supported phospholipid bilayers, both of which are small-volume phases that challenge the sensitivity of many analytical techniques. In this paper, we employ in-situ confocal Raman microscopy to probe the partitioning of a model membrane-active compound, 2-(4-isobutylphenyl) propionic acid or ibuprofen, into both hybrid- and supported-phospholipid bilayersmore » deposited on the pore walls of individual chromatographic particles. The large surface-area-to-volume ratio of chromatographic silica allows interrogation of a significant lipid bilayer area within a very small volume. The local phospholipid concentration within a confocal probe volume inside the particle can be as high as 0.5 M, which overcomes the sensitivity limitations of making measurements in the limited membrane areas of single vesicles or planar supported bilayers. Quantitative determination of ibuprofen partitioning is achieved by using the phospholipid acyl-chains of the within-particle bilayer as an internal standard. This approach is tested for measurements of pH-dependent partitioning of ibuprofen into both hybrid-lipid and supported-lipid bilayers within silica particles, and the results are compared with octanol-water partitioning and with partitioning into individual optically-trapped phospholipid vesicle membranes. Finally and additionally, the impact of ibuprofen partitioning on bilayer structure is evaluated for both within-particle model membranes and compared with the structural impacts of partitioning into vesicle lipid bilayers.« less

  2. Confocal Raman Microscopy for In-situ Measurement of Phospholipid-Water Partitioning into Model Phospholipid Bilayers within Individual Chromatographic Particles

    DOE PAGES

    Kitt, Jay P.; Bryce, David A.; Minteer, Shelley D.; ...

    2018-05-14

    The phospholipid-water partition coefficient is a commonly measured parameter that correlates with drug efficacy, small-molecule toxicity, and accumulation of molecules in biological systems in the environment. Despite the utility of this parameter, methods for measuring phospholipid-water partition coefficients are limited. This is due to the difficulty of making quantitative measurements in vesicle membranes or supported phospholipid bilayers, both of which are small-volume phases that challenge the sensitivity of many analytical techniques. In this paper, we employ in-situ confocal Raman microscopy to probe the partitioning of a model membrane-active compound, 2-(4-isobutylphenyl) propionic acid or ibuprofen, into both hybrid- and supported-phospholipid bilayersmore » deposited on the pore walls of individual chromatographic particles. The large surface-area-to-volume ratio of chromatographic silica allows interrogation of a significant lipid bilayer area within a very small volume. The local phospholipid concentration within a confocal probe volume inside the particle can be as high as 0.5 M, which overcomes the sensitivity limitations of making measurements in the limited membrane areas of single vesicles or planar supported bilayers. Quantitative determination of ibuprofen partitioning is achieved by using the phospholipid acyl-chains of the within-particle bilayer as an internal standard. This approach is tested for measurements of pH-dependent partitioning of ibuprofen into both hybrid-lipid and supported-lipid bilayers within silica particles, and the results are compared with octanol-water partitioning and with partitioning into individual optically-trapped phospholipid vesicle membranes. Finally and additionally, the impact of ibuprofen partitioning on bilayer structure is evaluated for both within-particle model membranes and compared with the structural impacts of partitioning into vesicle lipid bilayers.« less

  3. Electrostatic, elastic and hydration-dependent interactions in dermis influencing volume exclusion and macromolecular transport.

    PubMed

    Øien, Alf H; Wiig, Helge

    2016-07-07

    Interstitial exclusion refers to the limitation of space available for plasma proteins and other macromolecules based on collagen and negatively charged glycosaminoglycans (GAGs) in the interstitial space. It is of particular importance to interstitial fluid and plasma volume regulation. Here we present a novel mechanical and mathematical model of the dynamic interactions of structural elements within the interstitium of the dermis at the microscopic level that may explain volume exclusion of charged and neutral macroparticles. At this level, the interstitium is considered to consist of elements called extracellular matrix (ECM) cells, again containing two main interacting structural components on a fluid background including anions and cations setting up osmotic forces: one smaller GAG component, having an intrinsic expansive electric force, and one bigger collagen component, having an intrinsic elastic force. Because of size differences, the GAG component interacts with a fraction of the collagen component only at normal hydration. This fraction, however, increases with rising hydration as a consequence of the modeled form of the interaction force between the GAGs and collagen. Collagen is locally displaced at variable degrees as hydration changes. Two models of GAGs are considered, having largely different geometries which demands different, but related, forms of GAG-collagen interaction forces. The effects of variable fixed charges on GAGs and of GAG density in tissue are evaluated taking into account observed volume exclusion properties of charged macromolecules as a function of tissue hydration. The presented models may improve our biophysical understanding of acting forces influencing tissue fluid dynamics. Such knowledge is significant when evaluating the transport of electrically charged and neutral macromolecules into and through the interstitium, and therefore to drug uptake and the therapeutic effects of macromolecular agents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Confocal Raman Microscopy for in Situ Measurement of Phospholipid-Water Partitioning into Model Phospholipid Bilayers within Individual Chromatographic Particles.

    PubMed

    Kitt, Jay P; Bryce, David A; Minteer, Shelley D; Harris, Joel M

    2018-06-05

    The phospholipid-water partition coefficient is a commonly measured parameter that correlates with drug efficacy, small-molecule toxicity, and accumulation of molecules in biological systems in the environment. Despite the utility of this parameter, methods for measuring phospholipid-water partition coefficients are limited. This is due to the difficulty of making quantitative measurements in vesicle membranes or supported phospholipid bilayers, both of which are small-volume phases that challenge the sensitivity of many analytical techniques. In this work, we employ in situ confocal Raman microscopy to probe the partitioning of a model membrane-active compound, 2-(4-isobutylphenyl) propionic acid or ibuprofen, into both hybrid- and supported-phospholipid bilayers deposited on the pore walls of individual chromatographic particles. The large surface-area-to-volume ratio of chromatographic silica allows interrogation of a significant lipid bilayer area within a very small volume. The local phospholipid concentration within a confocal probe volume inside the particle can be as high as 0.5 M, which overcomes the sensitivity limitations of making measurements in the limited membrane areas of single vesicles or planar supported bilayers. Quantitative determination of ibuprofen partitioning is achieved by using the phospholipid acyl-chains of the within-particle bilayer as an internal standard. This approach is tested for measurements of pH-dependent partitioning of ibuprofen into both hybrid-lipid and supported-lipid bilayers within silica particles, and the results are compared with octanol-water partitioning and with partitioning into individual optically trapped phospholipid vesicle membranes. Additionally, the impact of ibuprofen partitioning on bilayer structure is evaluated for both within-particle model membranes and compared with the structural impacts of partitioning into vesicle lipid bilayers.

  5. Photon dynamics in tissue imaging

    NASA Astrophysics Data System (ADS)

    Chance, Britton; Haselgrove, John C.; Wang, NaiGuang; Maris, Michael B.; Sevick-Muraca, Eva M.

    1991-11-01

    The emerging need for a fast, safe economical approach to global and localized measures of desaturation of hemoglobin with oxygen (HbO2) in the human brain motivates further research on time-resolved spectroscopy in four areas of study. (1) To afford quantization of hemoglobin saturation through time-resolved spectroscopy in the time domain (TD) and in the frequency domain (FD). Evaluation of dual-wavelength TD and FD spectrometers for determining quantitatively hemoglobin desaturation and blood-volume changes by calculations that are insensitive to mutual interference is proposed. The diffusion equation, as it applies especially to TD studies, and the absorption ((mu) a) and scattering ((mu) s) coefficients provide their independent determination from the late and early respective portions of the kinetics of the emergent photons in response to a short input pulse (50-100 psec). (2) The identification of the photon-pathlength change due to the arterial pulse in the brain tissue by FD methods with Fourier transformation affords an opportunity to employ principles of pulse oximetry to vessels localized deep within the brain tissue. (3) Localization of desaturation of hemoglobin in portions of the brain can be achieved through dual-wavelength scanning of the input/output optical fibers across the head for an X-Y coordinate and varying the distance between input and output ((rho) ) or the time delay in data acquisition to afford an in-depth Z scan. Localizations of shed blood, which have an effective concentration of over 10 times that of capillary-bed blood, are identified by X, Y, Z scans using only a single wavelength. (4) Independent measurements of absorption ((mu) a) and scattering ((mu) s) coefficients, particularly by TD techniques, affords structural mapping of the brain, which can be used to diagnose brain tumor and neuronal degeneration. Two experimental systems are used to critically evaluate these studies; the first, a hemoglobin/lipid/yeast model in which intermittent oxygenation gives saturation/desaturation effects and addition of hemoglobin simulates increased blood volume. These models can be global or may contain localized ''black'' absorbers simulating brain bleeds or model-stroke volumes in which oxygenation/deoxygenation simulates normoxia/hypoxia. Secondly, animal brains are used to model the following changes in vivo: global or localized hypoxia, brain bleeding, and hematomas by epidural blood injection, and physiological changes by epilepsy. Neuronal degeneration causing scattering effects is modeled by injection, epidurally or into the animal model brain, highly scattering material such as polystyrene spheres. The proposal envisages a basic science study of photon migration in the brain with important applications to stroke, epilepsy, brain trauma, and neuronal degenerative disease.

  6. Extensional Volcanism of the Taos Plateau Volcanic Field, Northern Rio Grande Rift, USA: New Insights from Geologic Mapping, 40Ar/39Ar Geochronology, Geochemistry and Geophysical Modeling

    NASA Astrophysics Data System (ADS)

    Thompson, R. A.; Turner, K. J.; Cosca, M. A.; Drenth, B.; Grauch, V. J. S.

    2016-12-01

    The Pliocene Taos Plateau Volcanic Field (TPVF) is the largest volcanic field of the Rio Grande rift. Deposits of the TPVF are distributed across 4500 km2 in the southern part of the 11,500 km2 San Luis Valley in southern Colorado and northern New Mexico constituting a major component of the structural San Luis Basin (SLB) fill. Exposed deposit thicknesses range from a few meters near the distal termini of basaltic lava flows to 240 m in the Rio Grande gorge near Taos, NM. New geologic mapping and 100 high-resolution 40Ar/39Ar age determinations help identify a complex distribution of >50 exposed eruptive centers ranging in composition from basalt to rhyolite. Total eruptive volume, estimated from geologic map relations, geophysical modeling of basin geometry and subsurface distribution of basaltic deposits, are approximately 300 km3; comprising 66% Servilleta Basalt (tholeiite), 3% mildly alkaline trachybasalt & trachyandesite, 12% olivine andesite, 17% dacite, and <1% rhyolite. Servilleta Basalt is preserved throughout the TPVF, ranging in age from 5.3 Ma to 2.95 Ma; maximum thickness is exposed in the Rio Grande gorge in association with the largest Pliocene sub-basin in the valley, the Taos graben. Smaller volume basalt centers as young as 2.9 Ma are spatially associated with monogenetic trachybasalt and trachyandesite centers ( 4.3 Ma to 2.8 Ma) along the uplifted footwall of a western fault-bounded sub-basin, the Las Mesitas graben. The plateau surface underlain primarily by Servilleta Basalt is punctuated by large ( 15 km3 erupted volume typical) monogenetic andesitic shield volcanoes ( 5-4.4 Ma); north-south aligned and distributed along the central axis of the SLB, parallel to major intrabasin faults. Large (up to 21 km3 erupted volume) zoned dacitic lava dome complexes ( 5 Ma Guadalupe Mountain/Cerro Negro, 3.9 Ma Ute Mountain, and 3 Ma San Antonio Mountain) reach elevations of 3300 m, 770 m above the valley floor each spatially and temporally associated with fault-bounded sub-basins superposed on the broader structural SLB. Locally, coeval Pliocene fault-slip rates are 2.5 times the long-term rates determined for the SLB confirming the temporal association of local intrabasin extensional faulting and eruptive centers.

  7. High and Low Salt Intake during Pregnancy: Impact on Cardiac and Renal Structure in Newborns.

    PubMed

    Seravalli, Priscila; de Oliveira, Ivone Braga; Zago, Breno Calazans; de Castro, Isac; Veras, Mariana Matera; Alves-Rodrigues, Edson Nogueira; Heimann, Joel C

    2016-01-01

    Previous studies from our laboratory demonstrated that dietary salt overload and salt restriction during pregnancy were associated with cardiac and renal structural and/or functional alterations in adult offspring. The present study evaluated renal and cardiac structure and the local renin-angiotensin system in newborns from dams fed high-, normal- or low-salt diets during pregnancy. Female Wistar rats were fed low- (LS, 0.15% NaCl), normal- (NS, 1.3% NaCl) or high- (HS, 8% NaCl) salt diets during pregnancy. Kidneys and hearts were collected from newborns (n = 6-8/group) during the first 24 hours after birth to evaluate possible changes in structure using stereology. Protein expression of renin-angiotensin system components was evaluated using an indirect enzyme-linked immunosorbent assay (ELISA). No differences between groups were observed in total renal volume, volume of renal compartments or number of glomeruli. The transverse diameter of the nuclei of cardiomyocytes was greater in HS than NS males in the left and right ventricles. Protein expression of the AT1 receptor was lower in the kidneys of the LS than in those of the NS and HS males but not females. Protein expression of the AT2 receptor was lower in the kidneys of the LS males and females than in those of the NS males and females. High salt intake during pregnancy induced left and right ventricular hypertrophy in male newborns. Salt restriction during pregnancy reduced the expression of renal angiotensin II receptors in newborns.

  8. System data communication structures for active-control transport aircraft, volume 1

    NASA Technical Reports Server (NTRS)

    Hopkins, A. L.; Martin, J. H.; Brock, L. D.; Jansson, D. G.; Serben, S.; Smith, T. B.; Hanley, L. D.

    1981-01-01

    Candidate data communication techniques are identified, including dedicated links, local buses, broadcast buses, multiplex buses, and mesh networks. The design methodology for mesh networks is then discussed, including network topology and node architecture. Several concepts of power distribution are reviewed, including current limiting and mesh networks for power. The technology issues of packaging, transmission media, and lightning are addressed, and, finally, the analysis tools developed to aid in the communication design process are described. There are special tools to analyze the reliability and connectivity of networks and more general reliability analysis tools for all types of systems.

  9. Graphite composite truss welding and cap section forming subsystems. Volume 1: Executive summary. [large space structures

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A rolltrusion process was developed for forming of a hybrid, single-ply woven graphite and glass fiber cloth, impregnated with a polysulfone resin and coated with TI02 pigmented P-1700 resin into strips for the on-orbit fabrication of triangular truss segments. Ultrasonic welding in vacuum showed no identifiable effects on weld strength or resin flow characteristics. An existing bench model cap roll forming machine was modified and used to roll form caps for the prototype test truss and for column test specimens in order to test local buckling and torsional instability characteristics.

  10. Imaging whole mouse brains with a dual resolution serial swept-source optical coherence tomography scanner

    NASA Astrophysics Data System (ADS)

    Lefebvre, Joël.; Castonguay, Alexandre; Lesage, Frédéric

    2018-02-01

    High resolution imaging of whole rodent brains using serial OCT scanners is a promising method to investigate microstructural changes in tissue related to the evolution of neuropathologies. Although micron to sub-micron sampling resolution can be obtained by using high numerical aperture objectives and dynamic focusing, such an imaging system is not adapted to whole brain imaging. This is due to the large amount of data it generates and the significant computational resources required for reconstructing such volumes. To address this limitation, a dual resolution serial OCT scanner was developed. The optical setup consists in a swept-source OCT made of two sample and reference arms, each arm being coupled with different microscope objectives (3X / 40X). Motorized flip mirrors were used to switch between each OCT arm, thus allowing low and high resolution acquisitions within the same sample. The low resolution OCT volumes acquired with the 3X arm were stitched together, providing a 3D map of the whole mouse brain. This brain can be registered to an OCT brain template to enable neurological structures localization. The high resolution volumes acquired with the 40X arm were also stitched together to create local high resolution 3D maps of the tissue microstructure. The 40X data can be acquired at any arbitrary location in the sample, thus limiting storage-heavy high resolution data to application restricted to specific regions of interest. By providing dual-resolution OCT data, this setup can be used to validate diffusion MRI with tissue microstructure derived metrics measured at any location in ex vivo brains.

  11. On the emergence of a generalised Gamma distribution. Application to traded volume in financial markets

    NASA Astrophysics Data System (ADS)

    Duarte Queirós, S. M.

    2005-08-01

    This letter reports on a stochastic dynamical scenario whose associated stationary probability density function is exactly a generalised form, with a power law instead of exponencial decay, of the ubiquitous Gamma distribution. This generalisation, also known as F-distribution, was empirically proposed for the first time to adjust for high-frequency stock traded volume distributions in financial markets and verified in experiments with granular material. The dynamical assumption presented herein is based on local temporal fluctuations of the average value of the observable under study. This proposal is related to superstatistics and thus to the current nonextensive statistical mechanics framework. For the specific case of stock traded volume, we connect the local fluctuations in the mean stock traded volume with the typical herding behaviour presented by financial traders. Last of all, NASDAQ 1 and 2 minute stock traded volume sequences and probability density functions are numerically reproduced.

  12. Mesoscale characterization of local property distributions in heterogeneous electrodes

    NASA Astrophysics Data System (ADS)

    Hsu, Tim; Epting, William K.; Mahbub, Rubayyat; Nuhfer, Noel T.; Bhattacharya, Sudip; Lei, Yinkai; Miller, Herbert M.; Ohodnicki, Paul R.; Gerdes, Kirk R.; Abernathy, Harry W.; Hackett, Gregory A.; Rollett, Anthony D.; De Graef, Marc; Litster, Shawn; Salvador, Paul A.

    2018-05-01

    The performance of electrochemical devices depends on the three-dimensional (3D) distributions of microstructural features in their electrodes. Several mature methods exist to characterize 3D microstructures over the microscale (tens of microns), which are useful in understanding homogeneous electrodes. However, methods that capture mesoscale (hundreds of microns) volumes at appropriate resolution (tens of nm) are lacking, though they are needed to understand more common, less ideal electrodes. Using serial sectioning with a Xe plasma focused ion beam combined with scanning electron microscopy (Xe PFIB-SEM), two commercial solid oxide fuel cell (SOFC) electrodes are reconstructed over volumes of 126 × 73 × 12.5 and 124 × 110 × 8 μm3 with a resolution on the order of ≈ 503 nm3. The mesoscale distributions of microscale structural features are quantified and both microscale and mesoscale inhomogeneities are found. We analyze the origin of inhomogeneity over different length scales by comparing experimental and synthetic microstructures, generated with different particle size distributions, with such synthetic microstructures capturing well the high-frequency heterogeneity. Effective medium theory models indicate that significant mesoscale variations in local electrochemical activity are expected throughout such electrodes. These methods offer improved understanding of the performance of complex electrodes in energy conversion devices.

  13. Theoretical models for electrochemical impedance spectroscopy and local ζ-potential of unfolded proteins in nanopores

    NASA Astrophysics Data System (ADS)

    Vitarelli, Michael J.; Talaga, David S.

    2013-09-01

    Single solid-state nanopores find increasing use for electrical detection and/or manipulation of macromolecules. These applications exploit the changes in signals due to the geometry and electrical properties of the molecular species found within the nanopore. The sensitivity and resolution of such measurements are also influenced by the geometric and electrical properties of the nanopore. This paper continues the development of an analytical theory to predict the electrochemical impedance spectra of nanopores by including the influence of the presence of an unfolded protein using the variable topology finite Warburg impedance model previously published by the authors. The local excluded volume of, and charges present on, the segment of protein sampled by the nanopore are shown to influence the shape and peak frequency of the electrochemical impedance spectrum. An analytical theory is used to relate the capacitive response of the electrical double layer at the surface of the protein to both the charge density at the protein surface and the more commonly measured zeta potential. Illustrative examples show how the theory predicts that the varying sequential regions of surface charge density and excluded volume dictated by the protein primary structure may allow for an impedance-based approach to identifying unfolded proteins.

  14. OCT-based angiography of human dermal microvascular reactions to local stimuli: Implications for increasing capillary blood collection volumes.

    PubMed

    Men, Shaojie; Wong, Jennifer Manyu; Welch, Emily J; Xu, Jingjiang; Song, Shaozhen; Deegan, Anthony J; Ravichander, Aarthi; Casavant, Benjamin; Berthier, Erwin; Wang, Ruikang K

    2018-05-25

    To measure and compare microvascular responses within the skin of the upper arm to local stimuli, such as heating or rubbing, through the use of optical coherence tomography angiography (OCTA), and to investigate its impact on blood volume collection. With the use of heat packs or rubbing, local stimulation was applied to the skin of either the left or right upper arm. Data from the stimulated sites were obtained using OCTA comparing pre- and post-stimulation microvascular parameters, such as vessel density, mean vessel diameter, and mean avascular pore size. Additionally, blood was collected using a newly designed collection device and volume was recorded to evaluate the effect of the skin stimulation. Nineteen subjects were recruited for local stimulation study (including rubbing and heating) and 21 subjects for blood drawn study. Of these subjects, 14 agreed to participate in both studies. OCTA was successful in monitoring and measuring minute changes in the microvasculature of the stimulated skin. Compared to baseline, significant changes after local heating and rubbing were respectively found in vessel density (16% [P = 0.0004] and 33% [P < 0.0001] increase), mean vessel diameter (14% and 11% increase) and mean avascular pore size (5% [P = 0.0068] and 8% [P = 0.0005] decrease) after stimulations. A gradual recovery was recorded for each parameter, with no difference being measured after 30 minutes. Blood collection volumes significantly increased after stimulations of heating (48% increase; P = 0.049) and rubbing (78% increase; P = 0.048). Significant correlations were found between blood volume and microvascular parameters except mean avascular pore size under the heating condition. OCTA can provide important information regarding microvascular adaptations to local stimuli. With that, both heating and rubbing of the skin have positive effects on blood collection capacity, with rubbing having the most significant effect. Lasers Surg. Med. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  15. Effect of crystal structure and cationic order on phonon modes across ferroelectric phase transformation in Pb(Fe{sub 0.5-x}Sc{sub x}Nb{sub 0.5})O{sub 3} bulk ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mallesham, B.; Ranjith, R., E-mail: ranjith@iith.ac.in; Viswanath, B.

    Pb(Fe{sub 0.5-x}Sc{sub x}Nb{sub 0.5})O{sub 3} [(PFSN) (0 ≤ x ≤ 0.5)] multiferroic relaxors were synthesized and the temperature dependence of phonon modes across ferroelectric to paraelectric transition was studied. With varying Sc content from x = 0 to 0.25 the structure remains monoclinic and with further addition (x = 0.3 - 0.5) the structure transforms into rhombohedral symmetry. Structural refinement studies showed that the change in crystal structure from monoclinic to rhombohedral symmetry involves a volume increment of 34-36%. Associated changes in the tolerance factor (1.024 ≤ t ≤ 0.976) and bond angles were observed. Structure assisted B′-B″ cation orderingmore » was confirmed through the superlattice reflections in selected area electron diffraction (SAED) pattern of Pb(Sc{sub 0.5}Nb{sub 0.5})O{sub 3} (x = 0.5). Cation ordering is also evident from the evolution of Pb-O phonon mode in Raman spectra of compositions with rhombohedral symmetry (x ≥ 0.3). The high temperature Raman scattering studies show that the B-localized mode [F{sub 1u}, ∼250 cm{sup −1}] and BO{sub 6} octahedral rotational mode [F{sub 1g}, ∼200 cm{sup −1}], both originating from polar nano regions (PNRs) behave like coupled phonon modes in rhombohedral symmetry. However, in monoclinic symmetry they behave independently across the transition. Softening of B localized mode across the transition followed by the hardening for all compositions confirms the diffusive nature of the ferroelectric transformation. The presence of correlation between the B localized and BO{sub 6} rotational modes introduces a weak relaxor feature for systems with rhombohedral symmetry in PFSN ceramics, which was confirmed from the macroscopic dielectric studies.« less

  16. On the Foundations of the Two Measures Field Theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guendelman, E. I.; Kaganovich, A. B.

    2006-11-03

    Two Measures Field Theory (TMT) uses both the Riemannian volume element {radical}(-g)d{sup 4}x and a new one Fcy d4x where the new measure of integration Fcy can be build of four scalar fields. Arguments in favor of TMT, both from the point of view of first principles and from the TMT results are summarized. Possible origin of the TMT and symmetries that protect the structure of TMT are reviewed. It appears that four measure scalar fields treated as 'physical coordinates' allow to define local observables in quantum gravity. The resolution of the old cosmological constant problem as a possible directmore » consequence of the TMT structure is discussed. Other applications of TMT to cosmology and particle physics are also mentioned.« less

  17. Nonlinear wave propagation in discrete and continuous systems

    NASA Astrophysics Data System (ADS)

    Rothos, V. M.

    2016-09-01

    In this review we try to capture some of the recent excitement induced by a large volume of theoretical and computational studies addressing nonlinear Schrödinger models (discrete and continuous) and the localized structures that they support. We focus on some prototypical structures, namely the breather solutions and solitary waves. In particular, we investigate the bifurcation of travelling wave solution in Discrete NLS system applying dynamical systems methods. Next, we examine the combined effects of cubic and quintic terms of the long range type in the dynamics of a double well potential. The relevant bifurcations, the stability of the branches and their dynamical implications are examined both in the reduced (ODE) and in the full (PDE) setting. We also offer an outlook on interesting possibilities for future work on this theme.

  18. EXAFS and XANES analysis of oxides at the nanoscale.

    PubMed

    Kuzmin, Alexei; Chaboy, Jesús

    2014-11-01

    Worldwide research activity at the nanoscale is triggering the appearance of new, and frequently surprising, materials properties in which the increasing importance of surface and interface effects plays a fundamental role. This opens further possibilities in the development of new multifunctional materials with tuned physical properties that do not arise together at the bulk scale. Unfortunately, the standard methods currently available for solving the atomic structure of bulk crystals fail for nanomaterials due to nanoscale effects (very small crystallite sizes, large surface-to-volume ratio, near-surface relaxation, local lattice distortions etc.). As a consequence, a critical reexamination of the available local-structure characterization methods is needed. This work discusses the real possibilities and limits of X-ray absorption spectroscopy (XAS) analysis at the nanoscale. To this end, the present state of the art for the interpretation of extended X-ray absorption fine structure (EXAFS) is described, including an advanced approach based on the use of classical molecular dynamics and its application to nickel oxide nanoparticles. The limits and possibilities of X-ray absorption near-edge spectroscopy (XANES) to determine several effects associated with the nanocrystalline nature of materials are discussed in connection with the development of ZnO-based dilute magnetic semiconductors (DMSs) and iron oxide nanoparticles.

  19. Self-assembly in densely grafted macromolecules with amphiphilic monomer units: diagram of states.

    PubMed

    Lazutin, A A; Vasilevskaya, V V; Khokhlov, A R

    2017-11-22

    By means of computer modelling, the self-organization of dense planar brushes of macromolecules with amphiphilic monomer units was addressed and their state diagram was constructed. The diagram of states includes the following regions: disordered position of monomer units with respect to each other, strands composed of a few polymer chains and lamellae with different domain spacing. The transformation of lamellae structures with different domain spacing occurred within the intermediate region and could proceed through the formation of so-called parking garage structures. The parking garage structure joins the lamellae with large (on the top of the brushes) and small (close to the grafted surface) domain spacing, which appears like a system of inclined locally parallel layers connected with each other by bridges. The parking garage structures were observed for incompatible A and B groups in selective solvents, which result in aggregation of the side B groups and dense packing of amphiphilic macromolecules in the restricted volume of the planar brushes.

  20. Wavelength-scale light concentrator made by direct 3D laser writing of polymer metamaterials.

    PubMed

    Moughames, J; Jradi, S; Chan, T M; Akil, S; Battie, Y; Naciri, A En; Herro, Z; Guenneau, S; Enoch, S; Joly, L; Cousin, J; Bruyant, A

    2016-10-04

    We report on the realization of functional infrared light concentrators based on a thick layer of air-polymer metamaterial with controlled pore size gradients. The design features an optimum gradient index profile leading to light focusing in the Fresnel zone of the structures for two selected operating wavelength domains near 5.6 and 10.4 μm. The metamaterial which consists in a thick polymer containing air holes with diameters ranging from λ/20 to λ/8 is made using a 3D lithography technique based on the two-photon polymerization of a homemade photopolymer. Infrared imaging of the structures reveals a tight focusing for both structures with a maximum local intensity increase by a factor of 2.5 for a concentrator volume of 1.5 λ 3 , slightly limited by the residual absorption of the selected polymer. Such porous and flat metamaterial structures offer interesting perspectives to increase infrared detector performance at the pixel level for imaging or sensing applications.

  1. Wavelength-scale light concentrator made by direct 3D laser writing of polymer metamaterials

    PubMed Central

    Moughames, J.; Jradi, S.; Chan, T. M.; Akil, S.; Battie, Y.; Naciri, A. En; Herro, Z.; Guenneau, S.; Enoch, S.; Joly, L.; Cousin, J.; Bruyant, A.

    2016-01-01

    We report on the realization of functional infrared light concentrators based on a thick layer of air-polymer metamaterial with controlled pore size gradients. The design features an optimum gradient index profile leading to light focusing in the Fresnel zone of the structures for two selected operating wavelength domains near 5.6 and 10.4 μm. The metamaterial which consists in a thick polymer containing air holes with diameters ranging from λ/20 to λ/8 is made using a 3D lithography technique based on the two-photon polymerization of a homemade photopolymer. Infrared imaging of the structures reveals a tight focusing for both structures with a maximum local intensity increase by a factor of 2.5 for a concentrator volume of 1.5 λ3, slightly limited by the residual absorption of the selected polymer. Such porous and flat metamaterial structures offer interesting perspectives to increase infrared detector performance at the pixel level for imaging or sensing applications. PMID:27698476

  2. The dynamics and control of large flexible space structures. Volume 3, part B: The modelling, dynamics, and stability of large Earth pointing orbiting structures

    NASA Technical Reports Server (NTRS)

    Bainum, P. M.; Kumar, V. K.

    1980-01-01

    The dynamics and stability of large orbiting flexible beams, and platforms and dish type structures oriented along the local horizontal are treated both analytically and numerically. It is assumed that such structures could be gravitationally stabilized by attaching a rigid light-weight dumbbell at the center of mass by a spring loaded hinge which also could provide viscous damping. For the beam, the small amplitude inplane pitch motion, dumbbell librational motion, and the anti-symmetric elastic modes are all coupled. The three dimensional equations of motion for a circular flat plate and shallow spherical shell in orbit with a two-degree-of freedom gimballed dumbbell are also developed and show that only those elastic modes described by a single nodal diameter line are influenced by the dumbbell motion. Stability criteria are developed for all the examples and a sensitivity study of the system response characteristics to the key system parameters is carried out.

  3. Eulerian-Lagrangian Simulations of Transonic Flutter Instabilities

    NASA Technical Reports Server (NTRS)

    Bendiksen, Oddvar O.

    1994-01-01

    This paper presents an overview of recent applications of Eulerian-Lagrangian computational schemes in simulating transonic flutter instabilities. This approach, the fluid-structure system is treated as a single continuum dynamics problem, by switching from an Eulerian to a Lagrangian formulation at the fluid-structure boundary. This computational approach effectively eliminates the phase integration errors associated with previous methods, where the fluid and structure are integrated sequentially using different schemes. The formulation is based on Hamilton's Principle in mixed coordinates, and both finite volume and finite element discretization schemes are considered. Results from numerical simulations of transonic flutter instabilities are presented for isolated wings, thin panels, and turbomachinery blades. The results suggest that the method is capable of reproducing the energy exchange between the fluid and the structure with significantly less error than existing methods. Localized flutter modes and panel flutter modes involving traveling waves can also be simulated effectively with no a priori knowledge of the type of instability involved.

  4. A Combined Structural Geology and GIS Approach to Rockslides: an Example from Western Norway

    NASA Astrophysics Data System (ADS)

    Henderson, I.; Derron, M. H.; Jaboyedoff, M.

    2004-12-01

    The western coast of Norway presents an ideal area to study active rockslide development due to the recent post-glacial uplift. This study presents the preliminary results of a combined GIS-structural geology approach to the examination of a potentially catastrophic rockslide in the Romsdalen area of western Norway, a mountainous area, despite being well populated, that is particularly vulnerable to rockslides. Svarttinden is a 1600m high mountain lying on a 12-1300m plateau 1km from the southern edge of the Romsdalen Valley. Recent landslide activity from the mountain side under investigation is evinced by the presence of a debris fan, which has been previously dated at c.5000BP. The rockslide removed in the region of 5 millions m3 of rock material. The purpose of this study was to determine the cause of the previous slide and evaluate the likelihood of further rockslides from the same mountainside by applying GIS and structural geology. Preliminary investigations have shown that the mountain is dissected by a north-south trending, steeply-dipping brittle fault. This has acted as a transfer fault, delimiting the western extent of the palaeo-rockslide. The palaeo-rockslide failed along a single, flat-lying (30-35°) down-slop dipping brittle fault. Remnants of a fault breccia up to 20cm are found on this surface. Evidence exists for shearing on this structure and we consider this a major fault plane (MFP), along which the rockslide has occurred. SEM examination of the microstructures present in this fault gouge will be presented. The western half of this mountain, which lies to the east of the major north-south transfer fault, is underlain by the same low-angle fault gouge. The volume of the rock mass above this MFP is approximately 7 millions m3. Several other low-angle structures are present above the MFP, further weakening the rockmass. Up to several metres of down-slope displacement is observed on these structures. High angle tension fractures are abundant in the mountainside above the MFP, detaching down onto it. These structures increase in frequency and displacement downslope. The low-angle fault planes lie sub-parallel to a local, shallowly north-dipping foliation in the gneissic host-rocks and appear to be localized along fold discontinuities within the gneisses. These folds appear to have acted as a significant 'locking mechanism' for movement along the failure planes as evidence is seen for fault tip-zones buttressing against the high angle southern limbs of these folds and reverse high angle fault structures in the fold axial planes, representing local vertical extension as opposed to downslope shearing. Local ramp structures in the MFP led to the increased frequency of high-angle tension fractures. This suggests that the geometry of the MFP is probably a significant factor in changing the degree of fracturing of the potential rockslide rockmass and therefore may have an affect on the continuity of the rockmass prior to failure. To estimate the volume above the MFP a potential sliding surface was inferred in 3D from field observations and the concept of "sloping local base level" (SLBL). Using a digital terrain model, the SLBL permits to define a surface above which the rocks are assumed erodible (Jaboyedoff 2004). Then the spatial distribution of the shear stress on the sliding plane and the energy of propagation of blocks can be estimated and introduced in a GIS for hazards assessment and zoning. References Jaboyedoff, M., Baillifard, F., Couture, R., Locat, J., and Locat, P. 2004: Toward preliminary hazard assessment using DEM topographic analysis and simple mechanic modeling.

  5. Non-lobar atelectasis generates inflammation and structural alveolar injury in the surrounding healthy tissue during mechanical ventilation.

    PubMed

    Retamal, Jaime; Bergamini, Bruno Curty; Carvalho, Alysson R; Bozza, Fernando A; Borzone, Gisella; Borges, João Batista; Larsson, Anders; Hedenstierna, Göran; Bugedo, Guillermo; Bruhn, Alejandro

    2014-09-09

    When alveoli collapse the traction forces exerted on their walls by adjacent expanded units may increase and concentrate. These forces may promote its re-expansion at the expense of potentially injurious stresses at the interface between the collapsed and the expanded units. We developed an experimental model to test the hypothesis that a local non-lobar atelectasis can act as a stress concentrator, contributing to inflammation and structural alveolar injury in the surrounding healthy lung tissue during mechanical ventilation. A total of 35 rats were anesthetized, paralyzed and mechanically ventilated. Atelectasis was induced by bronchial blocking: after five minutes of stabilization and pre-oxygenation with FIO2 = 1.0, a silicon cylinder blocker was wedged in the terminal bronchial tree. Afterwards, the animals were randomized between two groups: 1) Tidal volume (VT) = 10 ml/kg and positive end-expiratory pressure (PEEP) = 3 cmH2O (VT10/PEEP3); and 2) VT = 20 ml/kg and PEEP = 0 cmH2O (VT20/zero end-expiratory pressure (ZEEP)). The animals were then ventilated during 180 minutes. Three series of experiments were performed: histological (n = 12); tissue cytokines (n = 12); and micro-computed tomography (microCT; n = 2). An additional six, non-ventilated, healthy animals were used as controls. Atelectasis was successfully induced in the basal region of the lung of 26 out of 29 animals. The microCT of two animals revealed that the volume of the atelectasis was 0.12 and 0.21 cm3. There were more alveolar disruption and neutrophilic infiltration in the peri-atelectasis region than the corresponding contralateral lung (control) in both groups. Edema was higher in the peri-atelectasis region than the corresponding contralateral lung (control) in the VT20/ZEEP than VT10/PEEP3 group. The volume-to-surface ratio was higher in the peri-atelectasis region than the corresponding contralateral lung (control) in both groups. We did not find statistical difference in tissue interleukin-1β and cytokine-induced neutrophil chemoattractant-1 between regions. The present findings suggest that a local non-lobar atelectasis acts as a stress concentrator, generating structural alveolar injury and inflammation in the surrounding lung tissue.

  6. Erosion and Deposition Monitoring Using High-Density Aerial Lidar and Geomorphic Change Detection Software Analysis at Los Alamos National Laboratory, Los Alamos New Mexico, LA-UR-17-26743

    NASA Astrophysics Data System (ADS)

    Walker, T.; Kostrubala, T. L.; Muggleton, S. R.; Veenis, S.; Reid, K. D.; White, A. B.

    2017-12-01

    The Los Alamos National Laboratory storm water program installed sediment transport mitigation structures to reduce the migration of contaminants within the Los Alamos and Pueblo (LA/P) watershed in Los Alamos, NM. The goals of these structures are to minimize storm water runoff and erosion, enhance deposition, and reduce mobility of contaminated sediments. Previous geomorphological monitoring used GPS surveyed cross-sections on a reach scale to interpolate annual geomorphic change in sediment volumes. While monitoring has confirmed the LA/P watershed structures are performing as designed, the cross-section method proved difficult to estimate uncertainty and the coverage area was limited. A new method, using the Geomorphic Change Detection (GCD) plugin for ESRI ArcGIS developed by Wheaton et al. (2010), with high-density aerial lidar data, has been used to provide high confidence uncertainty estimates and greater areal coverage. Following the 2014 monsoon season, airborne lidar data has been collected annually and the resulting DEMs processed using the GCD method. Additionally, a more accurate characterization of low-amplitude geomorphic changes, typical of low-flow/low-rainfall monsoon years, has been documented by applying a spatially variable error to volume change calculations using the GCD based fuzzy inference system (FIS). The FIS method allows for the calculation of uncertainty based on data set quality and density e.g. point cloud density, ground slope, and degree of surface roughness. At the 95% confidence level, propagated uncertainty estimates of the 2015 and 2016 lidar DEM comparisons yielded detectable changes greater than 0.3 m - 0.46 m. Geomorphic processes identified and verified in the field are typified by low-amplitude, within-channel aggradation and incision and out of channel bank collapse that over the course of a monsoon season result in localized and dectetable change. While the resulting reach scale volume change from 2015 - 2016 was often nonsignificant, it is estimated with a higher degree of confidence than the previous cross-section/interpolation method. Results from comparisons of the recent low-intensity rainfalls/storm peak discharges monsoon season DEMs have established the expected amount of geomorphic change to be minor and localized, yet demonstrable.

  7. Association of Hospital Volume With Racial and Ethnic Disparities in Locally Advanced Cervical Cancer Treatment.

    PubMed

    Uppal, Shitanshu; Chapman, Christina; Spencer, Ryan J; Jolly, Shruti; Maturen, Kate; Rauh-Hain, J Alejandro; delCarmen, Marcela G; Rice, Laurel W

    2017-02-01

    To evaluate racial-ethnic disparities in guideline-based care in locally advanced cervical cancer and their relationship to hospital case volume. Using the National Cancer Database, we performed a retrospective cohort study of women diagnosed between 2004 and 2012 with locally advanced squamous or adenocarcinoma of the cervix undergoing definitive primary radiation therapy. The primary outcome was the race-ethnicity-based rates of adherence to the National Comprehensive Cancer Network guideline-based care. The secondary outcome was the effect of guideline-based care on overall survival. Multivariable models and propensity matching were used to compare the hospital risk-adjusted rates of guideline-based adherence and overall survival based on hospital case volume. The final cohort consisted of 16,195 patients. The rate of guideline-based care was 58.4% (95% confidence interval [CI] 57.4-59.4%) for non-Hispanic white, 53% (95% CI 51.4-54.9%) for non-Hispanic black, and 51.5% (95% CI 49.4-53.7%) for Hispanic women (P<.001). From 2004 to 2012, the rate of guideline-based care increased from 49.5% (95% CI 47.1-51.9%) to 59.1% (95% CI 56.9-61.2%) (Ptrend<.001). Based on a propensity score-matched analysis, patients receiving guideline-based care had a lower risk of mortality (adjusted hazard ratio 0.65, 95% CI 0.62-0.68). Compared with low-volume hospitals, the increase in adherence to guideline-based care in high-volume hospitals was 48-63% for non-Hispanic white, 47-53% for non-Hispanic black, and 41-54% for Hispanic women. Racial and ethnic disparities in the delivery of guideline-based care are the highest in high-volume hospitals. Guideline-based care in locally advanced cervical cancer is associated with improved survival.

  8. The Economic Impact of Ten Cultural Institutions on the Economy of the Springfield, Illinois SMSA. Technical Supplement. Volume I [and] Volume II--Appendices.

    ERIC Educational Resources Information Center

    Cwi, David; Smith, D. Alden

    The research methods, procedures, and data for determining the impact of 10 fine arts institutions on the Springfield, Illinois, economy (1978) are outlined. A 30-equation model was used to identify a variety of effects on local businesses, government, and individuals. Researchers examined internal records of the 10 institutions as well as local,…

  9. The Economic Impact of Five Cultural Institutions on the Economy of the San Antonio SMSA. Technical Supplement. Volume I [and] Volume II--Appendices.

    ERIC Educational Resources Information Center

    Cwi, David; Smith, D. Alden

    The research methods, procedures, and data for determining the impact of five cultural institutions on the San Antonio, Texas, economy (1978) are outlined. A 30-equation model was used to identify a variety of effects on local businesses, government, and individuals. Researchers examined internal records of the five institutions as well as local,…

  10. The Economic Impact of Six Cultural Institutions on the Economy of the Columbus SMSA. Technical Supplement. Volume I [and] Volume II--Appendices.

    ERIC Educational Resources Information Center

    Cwi, David; Smith, D. Alden

    The research methods, procedures, and data for determining the impact of six fine arts institutions on the Columbus, Ohio, economy (1978) are outlined. A 30-equation model was used to identify a variety of effects on local businesses, government, and individuals. Researchers examined internal records of the six institutions as well as local,…

  11. The Economic Impact of Ten Cultural Institutions on the Economy of the Salt Lake SMSA. Technical Supplement. Volume I [and] Volume II--Appendices.

    ERIC Educational Resources Information Center

    Cwi, David; Smith, D. Alden

    The research methods, procedures, and data for determining the impact of 10 cultural institutions on the Salt Lake City economy (1978) are outlined. A 30-equation model was used to identify a variety of effects on local businesses, government, and individuals. Researchers examined internal records of the 10 institutions as well as local, state,…

  12. The Economic Impact of Ten Cultural Institutions on the Economy of the Minneapolis-St. Paul SMSA. Technical Supplement. Volume I [and] Volume II--Appendices.

    ERIC Educational Resources Information Center

    Cwi, David; Smith, D. Alden

    The research methods, procedures, and data for determining the impact of 10 fine arts institutions on the Minneapolis-St. Paul economy (1978) are outlined. A 30-equation model was used to identify a variety of effects on local businesses, government, and individuals. Researchers examined internal records of the 10 institutions as well as local,…

  13. Tumor Volume Is a Prognostic Factor in Non-Small-Cell Lung Cancer Treated With Chemoradiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexander, Brian M.; Othus, Megan; Caglar, Hale B.

    2011-04-01

    Purpose: To investigate whether primary tumor and nodal volumes defined on radiotherapy planning scans are correlated with outcome (survival and recurrence) after combined-modality treatment. Methods and Materials: A retrospective review of patients with Stage III non-small-cell lung cancer treated with chemoradiation at Brigham and Women's Hospital/Dana-Farber Cancer Institute from 2000 to 2006 was performed. Tumor and nodal volume measurements, as computed by Eclipse (Varian, Palo Alto, CA), were used as independent variables, along with existing clinical factors, in univariate and multivariate analyses for association with outcomes. Results: For patients treated with definitive chemoradiotherapy, both nodal volume (hazard ratio [HR], 1.09;more » p < 0.01) and tumor volume (HR, 1.03; p < 0.01) were associated with overall survival on multivariate analysis. Both nodal volume (HR, 1.10; p < 0.01) and tumor volume (HR, 1.04; p < 0.01) were also associated with local control but not distant metastases. Conclusions: In addition to traditional surgical staging variables, disease burden, measured by primary tumor and nodal metastases volume, provides information that may be helpful in determining prognosis and identifying groups of patients for which more aggressive local therapy is warranted.« less

  14. WE-G-BRD-07: Investigation of Distal Lung Atelectasis Following Stereotactic Body Radiation Therapy Using Regional Lung Volume Changes Between Pre- and Post- Treatment CT Scans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diot, Q; Kavanagh, B; Miften, M

    2014-06-15

    Purpose: To propose a quantitative method using lung deformations to differentiate between radiation-induced fibrosis and potential airway stenosis with distal atelectasis in patients treated with stereotactic body radiation therapy (SBRT) for lung tumors. Methods: Twenty-four lung patients with large radiation-induced density increases outside the high dose region had their pre- and post-treatment CT scans manually registered. They received SBRT treatments at our institution between 2002 and 2009 in 3 or 5 fractions, to a median total dose of 54Gy (range, 30–60). At least 50 anatomical landmarks inside the lung (airway branches) were paired for the pre- and post-treatment scans tomore » guide the deformable registration of the lung structure, which was then interpolated to the whole lung using splines. Local volume changes between the planning and follow-up scans were calculated using the deformation field Jacobian. Hyperdense regions were classified as atelectatic or fibrotic based on correlations between regional density increases and significant volume contractions compared to the surrounding tissues. Results: Out of 24 patients, only 7 demonstrated a volume contraction that was at least one σ larger than the remaining lung average. Because they did not receive high doses, these shrunk hyperdense regions were likely showing distal atelectasis resulting from radiation-induced airway stenosis rather than conventional fibrosis. On average, the hyperdense regions extended 9.2 cm farther than the GTV contours but not significantly more than 8.6 cm for the other patients (p>0.05), indicating that a large offset between the radiation and hyperdense region centers is not a good surrogate for atelectasis. Conclusion: A method based on the relative comparison of volume changes between different dates was developed to identify potential lung regions experiencing distal atelectasis. Such a tool is essential to study which lung structures need to be avoided to prevent atelectasis and limit lung function loss.« less

  15. Flow rate measurement in a volume

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galvez, Cristhian

    A system for measuring flow rate within a volume includes one or more transmission devices that transmit one or more signals through fluid contained within the volume. The volume may be bounded, at least in part, by an outer structure and by an object at least partially contained within the outer structure. A transmission device located at a first location of the outer structure transmits a first signal to a second location of the outer structure. A second signal is transmitted through the fluid from the second location to a third location of the outer structure. The flow rate ofmore » the fluid within the volume may be determined based, at least in part, on the time of flight of both the first signal and the second signal.« less

  16. Instrumentation for the Characterization of Inflatable Structures

    NASA Technical Reports Server (NTRS)

    Swanson, Gregory T.; Cassell, Alan M.; Johnson, R. Keith

    2012-01-01

    Current entry, descent, and landing technologies are not practical for heavy payloads due to mass and volume constraints dictated by limitations imposed by launch vehicle fairings. Therefore, new technologies are now being explored to provide a mass- and volume-efficient solution for heavy payload capabilities, including Inflatable Aerodynamic Decelerators (IAD) [1]. Consideration of IADs for space applications has prompted the development of instrumentation systems for integration with flexible structures to characterize system response to flight-like environment testing. This development opportunity faces many challenges specific to inflatable structures in extreme environments, including but not limited to physical flexibility, packaging, temperature, structural integration and data acquisition [2]. In the spring of 2012, two large scale Hypersonic Inflatable Aerodynamic Decelerators (HIAD) will be tested in the National Full-Scale Aerodynamics Complex s 40 by 80 wind tunnel at NASA Ames Research Center. The test series will characterize the performance of a 3.0 m and 6.0 m HIAD at various angles of attack and levels of inflation during flight-like loading. To analyze the performance of these inflatable test articles as they undergo aerodynamic loading, many instrumentation systems have been researched and developed. These systems will utilize new experimental sensing systems developed by the HIAD ground test campaign instrumentation team, in addition to traditional wind tunnel sensing techniques in an effort to improve test article characterization and model validation. During the 2012 test series the instrumentation systems will target inflatable aeroshell static and dynamic deformation, structural strap loading, surface pressure distribution, localized skin deflection, and torus inflation pressure. This paper will offer an overview of inflatable structure instrumentation, and provide detail into the design and implementation of the sensors systems that will be utilized during the 2012 HIAD ground test campaign.

  17. Multimodal Investigation of Network Level Effects Using Intrinsic Functional Connectivity, Anatomical Covariance, and Structure-to-Function Correlations in Unmedicated Major Depressive Disorder

    PubMed Central

    Scheinost, Dustin; Holmes, Sophie E; DellaGioia, Nicole; Schleifer, Charlie; Matuskey, David; Abdallah, Chadi G; Hampson, Michelle; Krystal, John H; Anticevic, Alan; Esterlis, Irina

    2018-01-01

    Converging evidence suggests that major depressive disorder (MDD) affects multiple large-scale brain networks. Analyses of the correlation or covariance of regional brain structure and function applied to structural and functional MRI data may provide insights into systems-level organization and structure-to-function correlations in the brain in MDD. This study applied tensor-based morphometry and intrinsic connectivity distribution to identify regions of altered volume and intrinsic functional connectivity in data from unmedicated individuals with MDD (n=17) and healthy comparison participants (HC, n=20). These regions were then used as seeds for exploratory anatomical covariance and connectivity analyses. Reduction in volume in the anterior cingulate cortex (ACC) and lower structural covariance between the ACC and the cerebellum were observed in the MDD group. Additionally, individuals with MDD had significantly lower whole-brain intrinsic functional connectivity in the medial prefrontal cortex (mPFC). This mPFC region showed altered connectivity to the ventral lateral PFC (vlPFC) and local circuitry in MDD. Global connectivity in the ACC was negatively correlated with reported depressive symptomatology. The mPFC–vlPFC connectivity was positively correlated with depressive symptoms. Finally, we observed increased structure-to-function correlation in the PFC/ACC in the MDD group. Although across all analysis methods and modalities alterations in the PFC/ACC were a common finding, each modality and method detected alterations in subregions belonging to distinct large-scale brain networks. These exploratory results support the hypothesis that MDD is a systems level disorder affecting multiple brain networks located in the PFC and provide new insights into the pathophysiology of this disorder. PMID:28944772

  18. Multimodal Investigation of Network Level Effects Using Intrinsic Functional Connectivity, Anatomical Covariance, and Structure-to-Function Correlations in Unmedicated Major Depressive Disorder.

    PubMed

    Scheinost, Dustin; Holmes, Sophie E; DellaGioia, Nicole; Schleifer, Charlie; Matuskey, David; Abdallah, Chadi G; Hampson, Michelle; Krystal, John H; Anticevic, Alan; Esterlis, Irina

    2018-04-01

    Converging evidence suggests that major depressive disorder (MDD) affects multiple large-scale brain networks. Analyses of the correlation or covariance of regional brain structure and function applied to structural and functional MRI data may provide insights into systems-level organization and structure-to-function correlations in the brain in MDD. This study applied tensor-based morphometry and intrinsic connectivity distribution to identify regions of altered volume and intrinsic functional connectivity in data from unmedicated individuals with MDD (n=17) and healthy comparison participants (HC, n=20). These regions were then used as seeds for exploratory anatomical covariance and connectivity analyses. Reduction in volume in the anterior cingulate cortex (ACC) and lower structural covariance between the ACC and the cerebellum were observed in the MDD group. Additionally, individuals with MDD had significantly lower whole-brain intrinsic functional connectivity in the medial prefrontal cortex (mPFC). This mPFC region showed altered connectivity to the ventral lateral PFC (vlPFC) and local circuitry in MDD. Global connectivity in the ACC was negatively correlated with reported depressive symptomatology. The mPFC-vlPFC connectivity was positively correlated with depressive symptoms. Finally, we observed increased structure-to-function correlation in the PFC/ACC in the MDD group. Although across all analysis methods and modalities alterations in the PFC/ACC were a common finding, each modality and method detected alterations in subregions belonging to distinct large-scale brain networks. These exploratory results support the hypothesis that MDD is a systems level disorder affecting multiple brain networks located in the PFC and provide new insights into the pathophysiology of this disorder.

  19. Groundwater Arsenic Adsorption on Granular TiO2: Integrating Atomic Structure, Filtration, and Health Impact.

    PubMed

    Hu, Shan; Shi, Qiantao; Jing, Chuanyong

    2015-08-18

    A pressing challenge in arsenic (As) adsorptive filtration is to decipher how the As atomic surface structure obtained in the laboratory can be used to accurately predict the field filtration cycle. The motivation of this study was therefore to integrate molecular level As adsorption mechanisms and capacities to predict effluent As from granular TiO2 columns in the field as well as its health impacts. Approximately 2,955 bed volumes of groundwater with an average of 542 μg/L As were filtered before the effluent As concentration exceeded 10 μg/L, corresponding to an adsorption capacity of 1.53 mg As/g TiO2. After regeneration, the TiO2 column could treat 2,563 bed volumes of groundwater, resulting in an As load of 1.36 mg/g TiO2. Column filtration and EXAFS results showed that among coexisting ions present in groundwater, only Ca(2+), Si(OH)4, and HCO3(-) would interfere with As adsorption. The compound effects of coexisting ions and molecular level structural information were incorporated in the PHREEQC program to satisfactorily predict the As breakthrough curves. The total urinary As concentration from four volunteers of local residences, ranging from 972 to 2,080 μg/L before groundwater treatment, decreased to the range 31.7-73.3 μg/L at the end of the experimental cycle (15-33 days).

  20. Focal Gray Matter Plasticity as a Function of Long Duration Head-down Tilt Bed Rest

    NASA Technical Reports Server (NTRS)

    Koppelmans, V.; DeDios, Y. E.; Wood, S. J.; Reuter-Lorenz, P. A.; Kofman, I.; Bloomberg, J. J.; Mulavara, A. P.; Koppelmans, V.

    2014-01-01

    Long duration spaceflight (i.e., > or = 22 days) has been associated with changes in sensorimotor systems, resulting in difficulties that astronauts experience with posture control, locomotion, and manual control. The microgravity environment is an important causal factor for spaceflight induced sensorimotor changes. Whether these sensorimotor changes may be related to structural and functional brain changes is yet unknown. However, experimental studies revealed changes in the gray matter (GM) of the brain after simulated microgravity. Thus, it is possible that spaceflight may affect brain structure and thereby cognitive functioning and motor behavior. Long duration head-down tilt bed rest has been suggested as an exclusionary analog to study microgravity effects on the sensorimotor system. Bed rest mimics microgravity in body unloading and bodily fluid shifts. In consideration of the health and performance of crewmembers both in- and post-flight, we are conducting a prospective longitudinal 70-day bed rest study as an analog to investigate the effects of microgravity on the brain. VBM analysis revealed a progressive decrease from pre- to in- bed rest in GM volume in bilateral areas including the frontal medial cortex, the insular cortex and the caudate. Over the same time period, there was a progressive increase in GM volume in the cerebellum, occipital-, and parietal cortex, including the precuneus. The majority of these changes did not fully recover during the post-bed rest period. Analysis of lobular GM volumes obtained with BRAINS showed significantly increased volume from pre-bed rest to in-bed rest in GM of the parietal lobe and the third ventricle. Temporal GM volume at 70 days in bed rest was smaller than that at the first pre-bed rest measurement. Trend analysis showed significant positive linear and negative quadratic relationships between parietal GM and time, a positive linear relationship between third ventricle volume and time, and a negative linear relationship between cerebellar GM volume and time. FM performance improved from pre-bed rest session 1 to session 2. From the second pre-bed rest measure to the last-day-in-bed rest, there was a significant decrease in performance that only partially recovered post-bed rest. No significant association was observed between changes in brain volume and changes in functional mobility. Extended bed rest, which is an analog for microgravity, can result in local volumetric GM increase and decrease and adversely affect functional mobility. These changes in brain structure and performance were not related in this sample. Whether the effects of bed rest dissipate at longer times post-bed rest, and if they are associated with behavior are important questions that warrant further research including more subjects and longer follow-up times.

  1. Efficient visibility encoding for dynamic illumination in direct volume rendering.

    PubMed

    Kronander, Joel; Jönsson, Daniel; Löw, Joakim; Ljung, Patric; Ynnerman, Anders; Unger, Jonas

    2012-03-01

    We present an algorithm that enables real-time dynamic shading in direct volume rendering using general lighting, including directional lights, point lights, and environment maps. Real-time performance is achieved by encoding local and global volumetric visibility using spherical harmonic (SH) basis functions stored in an efficient multiresolution grid over the extent of the volume. Our method enables high-frequency shadows in the spatial domain, but is limited to a low-frequency approximation of visibility and illumination in the angular domain. In a first pass, level of detail (LOD) selection in the grid is based on the current transfer function setting. This enables rapid online computation and SH projection of the local spherical distribution of visibility information. Using a piecewise integration of the SH coefficients over the local regions, the global visibility within the volume is then computed. By representing the light sources using their SH projections, the integral over lighting, visibility, and isotropic phase functions can be efficiently computed during rendering. The utility of our method is demonstrated in several examples showing the generality and interactive performance of the approach.

  2. Pressure response of protein backbone structure. Pressure-induced amide 15N chemical shifts in BPTI.

    PubMed Central

    Akasaka, K.; Li, H.; Yamada, H.; Li, R.; Thoresen, T.; Woodward, C. K.

    1999-01-01

    The effect of pressure on amide 15N chemical shifts was studied in uniformly 15N-labeled basic pancreatic trypsin inhibitor (BPTI) in 90%1H2O/10%2H2O, pH 4.6, by 1H-15N heteronuclear correlation spectroscopy between 1 and 2,000 bar. Most 15N signals were low field shifted linearly and reversibly with pressure (0.468 +/- 0.285 ppm/2 kbar), indicating that the entire polypeptide backbone structure is sensitive to pressure. A significant variation of shifts among different amide groups (0-1.5 ppm/2 kbar) indicates a heterogeneous response throughout within the three-dimensional structure of the protein. A tendency toward low field shifts is correlated with a decrease in hydrogen bond distance on the order of 0.03 A/2 kbar for the bond between the amide nitrogen atom and the oxygen atom of either carbonyl or water. The variation of 15N shifts is considered to reflect site-specific changes in phi, psi angles. For beta-sheet residues, a decrease in psi angles by 1-2 degrees/2 kbar is estimated. On average, shifts are larger for helical and loop regions (0.553 +/- 0.343 and 0.519 +/- 0.261 ppm/2 kbar, respectively) than for beta-sheet (0.295 +/- 0.195 ppm/2 kbar), suggesting that the pressure-induced structural changes (local compressibilities) are larger in helical and loop regions than in beta-sheet. Because compressibility is correlated with volume fluctuation, the result is taken to indicate that the volume fluctuation is larger in helical and loop regions than in beta-sheet. An important aspect of the volume fluctuation inferred from pressure shifts is that they include motions in slower time ranges (less than milliseconds) in which many biological processes may take place. PMID:10548039

  3. Improved synthesis and crystal structure of the flexible pillared layer porous coordination polymer: Ni(1,2-bis(4-pyridyl)ethylene)[Ni(CN) 4

    DOE PAGES

    Wong-Ng, W.; Culp, J. T.; Chen, Y. S.; ...

    2013-01-01

    This paper reports our synthesis of flexible coordination polymer, Ni(L)[Ni(CN) 4], (L = 1,2-bis(4-pyridyl)ethylene (nicknamed bpene)), and its structural characterization using synchrotron single crystal X-ray diffraction. The structure of the purplish crystals has been determined to be monoclinic, space group P2 1/m, a = 13.5941(12) Å, b = 14.3621(12) Å, c = 14.2561(12) Å, β = 96.141(2)°, V = 2767.4(4) Å 3, Z = 4, D c = 1.46 g cm -1. Ni(bpene)[Ni(CN) 4] assumes a pillared layer structure with layers defined by Ni[Ni(CN) 4] n nets and bpene ligands acting as pillars. With the present crystallization technique which involvesmore » the use of concentrated ammonium hydroxide solution and dimethyl sulfoxide (DMSO), disordered free bpene ligands and solvents of crystallization (DMSO and water molecules) occupy the pores, resulting in a formula of Ni(bpene)[Ni(CN) 4](1/2)bpene∙DMSO 2H 2O, or Ni 2N 7C 24H 25SO 3. Without the inclusion of free bpene ligands and solvent molecules, the free volume is approximately 61% of the total volume; this free volume fraction is reduced to 50% with the free ligands present. Pores without the free ligands were found to have a local diameter of 5.7 Å and a main aperture of 3.5 Å. Based on the successful crystal synthesis, we also devised a new bulk synthetic technique which yielded a polycrystalline material with a significantly improved CO 2 uptake as compared to the originally reported powder material. The improved synthetic technique yielded a polycrystalline material with 40% higher CO 2 uptake compared to the previously reported powder material. An estimated 14.4 molecules of CO 2 per unit cell was obtained.« less

  4. Hippocampus shape analysis and late-life depression.

    PubMed

    Zhao, Zheen; Taylor, Warren D; Styner, Martin; Steffens, David C; Krishnan, K Ranga R; MacFall, James R

    2008-03-19

    Major depression in the elderly is associated with brain structural changes and vascular lesions. Changes in the subcortical regions of the limbic system have also been noted. Studies examining hippocampus volumetric differences in depression have shown variable results, possibly due to any volume differences being secondary to local shape changes rather than differences in the overall volume. Shape analysis offers the potential to detect such changes. The present study applied spherical harmonic (SPHARM) shape analysis to the left and right hippocampi of 61 elderly subjects with major depression and 43 non-depressed elderly subjects. Statistical models controlling for age, sex, and total cerebral volume showed a significant reduction in depressed compared with control subjects in the left hippocampus (F(1,103) = 5.26; p = 0.0240) but not right hippocampus volume (F(1,103) = 0.41; p = 0.5213). Shape analysis showed significant differences in the mid-body of the left (but not the right) hippocampus between depressed and controls. When the depressed group was dichotomized into those whose depression was remitted at time of imaging and those who were unremitted, the shape comparison showed remitted subjects to be indistinguishable from controls (both sides) while the unremitted subjects differed in the midbody and the lateral side near the head. Hippocampal volume showed no difference between controls and remitted subjects but nonremitted subjects had significantly smaller left hippocampal volumes with no significant group differences in the right hippocampus. These findings may provide support to other reports of neurogenic effects of antidepressants and their relation to successful treatment for depressive symptoms.

  5. Impulsive-antisocial dimension of psychopathy linked to enlargement and abnormal functional connectivity of the striatum.

    PubMed

    Korponay, Cole; Pujara, Maia; Deming, Philip; Philippi, Carissa; Decety, Jean; Kosson, David S; Kiehl, Kent A; Koenigs, Michael

    2017-03-01

    Psychopathy is a mental health disorder characterized by callous and impulsive antisocial behavior, and is associated with a high incidence of violent crime, substance abuse, and recidivism. Recent studies suggest that the striatum may be a key component of the neurobiological basis for the disorder, though structural findings have been mixed and functional connectivity of the striatum in psychopathy has yet to be fully examined. We performed a multimodal neuroimaging study of striatum volume and functional connectivity in psychopathy, using a large sample of adult male prison inmates ( N =124). We conducted volumetric analyses in striatal subnuclei, and subsequently assessed resting-state functional connectivity in areas where volume was related to psychopathy severity. Total PCL-R and Factor 2 scores (which index the impulsive/antisocial traits of psychopathy) were associated with larger striatal subnuclei volumes and increased volume in focal areas throughout the striatum, particularly in the nucleus accumbens and putamen bilaterally. Furthermore, at many of the striatal areas where volume was positively associated with Factor 2 scores, psychopathy severity was also associated with abnormal functional connectivity with other brain regions, including dorsolateral prefrontal cortex, ventral midbrain and other areas of the striatum. The results were not attributable to age, race, IQ, substance use history, or intracranial volume. These findings associate the impulsive/antisocial dimension of psychopathy with enlarged striatal subnuclei and aberrant functional connectivity between the striatum and other brain regions. Furthermore, the co-localization of volumetric and functional connectivity findings suggests that these neural abnormalities may be pathophysiologically linked.

  6. Impulsive-antisocial dimension of psychopathy linked to enlargement and abnormal functional connectivity of the striatum

    PubMed Central

    Korponay, Cole; Pujara, Maia; Deming, Philip; Philippi, Carissa; Decety, Jean; Kosson, David S.; Kiehl, Kent A.; Koenigs, Michael

    2016-01-01

    Background Psychopathy is a mental health disorder characterized by callous and impulsive antisocial behavior, and is associated with a high incidence of violent crime, substance abuse, and recidivism. Recent studies suggest that the striatum may be a key component of the neurobiological basis for the disorder, though structural findings have been mixed and functional connectivity of the striatum in psychopathy has yet to be fully examined. Methods We performed a multimodal neuroimaging study of striatum volume and functional connectivity in psychopathy, using a large sample of adult male prison inmates (N=124). We conducted volumetric analyses in striatal subnuclei, and subsequently assessed resting-state functional connectivity in areas where volume was related to psychopathy severity. Results Total PCL-R and Factor 2 scores (which index the impulsive/antisocial traits of psychopathy) were associated with larger striatal subnuclei volumes and increased volume in focal areas throughout the striatum, particularly in the nucleus accumbens and putamen bilaterally. Furthermore, at many of the striatal areas where volume was positively associated with Factor 2 scores, psychopathy severity was also associated with abnormal functional connectivity with other brain regions, including dorsolateral prefrontal cortex, ventral midbrain and other areas of the striatum. The results were not attributable to age, race, IQ, substance use history, or intracranial volume. Conclusion These findings associate the impulsive/antisocial dimension of psychopathy with enlarged striatal subnuclei and aberrant functional connectivity between the striatum and other brain regions. Furthermore, the co-localization of volumetric and functional connectivity findings suggests that these neural abnormalities may be pathophysiologically linked. PMID:28367514

  7. Networking of three dimensional sonography volume data.

    PubMed

    Kratochwil, A; Lee, A; Schoisswohl, A

    2000-09-01

    Three-dimensioned (3D) sonography enables the examiner to store, instead of copies from single B-scan planes, a volume consisting of 300 scan planes. The volume is displayed on a monitor in form of three orthogonal planes--longitudinal, axial and coronal. Translation and rotation facilitates anatomical orientation and provides any arbitrary plane within the volume to generate organ optimized scan planes. Different algorithms allow the extraction of different information such as surface, or bone structures by maximum mode, or fluid filled structures, such as vessels by the minimum mode. The volume may contain as well color information of vessels. The digitized information is stored on a magnetic optical disc. This allows virtual scanning in absence of the patient under the same conditions as the volume was primarily stored. The volume size is dependent on different, examiner-controlled settings. A volume may need a storage capacity between 2 and 16 MB of 8-bit gray level information. As such huge data sets are unsuitable for network transfer, data compression is of paramount interest. 100 stored volumes were submitted to JPEG, MPEG, and biorthogonal wavelet compression. The original and compressed volumes were randomly shown on two monitors. In case of noticeable image degradation, information on the location of the original and compressed volume and the ratio of compression was read. Numerical values for proving compression fidelity as pixel error calculation and computation of square root error have been unsuitable for evaluating image degradation. The best results in recognizing image degradation were achieved by image experts. The experts disagreed on the ratio where image degradation became visible in only 4% of the volumes. Wavelet compression ratios of 20:1 or 30:1 could be performed without discernible information reduction. The effect of volume compression is reflected both in the reduction of transfer time and in storage capacity. Transmission time for a volume of 6 MB using a normal telephone with a data flow of 56 kB/s was reduced from 14 min to 28 s at a compression rate of 30:1. Compression reduced storage requirements from 6 MB uncompressed to 200 kB at a compression rate of 30:1. This successful compression opens new possibilities of intra- and extra-hospital and global information for 3D sonography. The key to this communication is not only volume compression, but also the fact that the 3D examination can be simulated on any PC by the developed 3D software. PACS teleradiology using digitized radiographs transmitted over standard telephone lines. Systems in combination with the management systems of HIS and RIS are available for archiving, retrieval of images and reports and for local and global communication. This form of tele-medicine will have an impact on cost reduction in hospitals, reduction of transport costs. On this fundament worldwide education and multi-center studies becomes possible.

  8. Highway Safety Program Manual: Volume 2: Motor Vehicle Registration.

    ERIC Educational Resources Information Center

    National Highway Traffic Safety Administration (DOT), Washington, DC.

    Volume 2 of the 19-volume Highway Safety Program Manual (which provides guidance to State and local governments on preferred highway safety practices) describes the purposes and specific objectives of motor vehicle registration. Federal authority for vehicle registration and general policies regarding vehicle registration systems are outlined.…

  9. Highway Safety Program Manual: Volume 13: Traffic Engineering Services.

    ERIC Educational Resources Information Center

    National Highway Traffic Safety Administration (DOT), Washington, DC.

    Volume 13 of the 19-volume Highway Safety Program Manual (which provides guidance to State and local governments on preferred highway safety practices) focuses on traffic engineering services. The introduction outlines the purposes and objectives of Highway Safety Program Standard 13 and the Highway Safety Program Manual. Program development and…

  10. Detection and 3D representation of pulmonary air bubbles in HRCT volumes

    NASA Astrophysics Data System (ADS)

    Silva, Jose S.; Silva, Augusto F.; Santos, Beatriz S.; Madeira, Joaquim

    2003-05-01

    Bubble emphysema is a disease characterized by the presence of air bubbles within the lungs. With the purpose of identifying pulmonary air bubbles, two alternative methods were developed, using High Resolution Computer Tomography (HRCT) exams. The search volume is confined to the pulmonary volume through a previously developed pulmonary contour detection algorithm. The first detection method follows a slice by slice approach and uses selection criteria based on the Hounsfield levels, dimensions, shape and localization of the bubbles. Candidate regions that do not exhibit axial coherence along at least two sections are excluded. Intermediate sections are interpolated for a more realistic representation of lungs and bubbles. The second detection method, after the pulmonary volume delimitation, follows a fully 3D approach. A global threshold is applied to the entire lung volume returning candidate regions. 3D morphologic operators are used to remove spurious structures and to circumscribe the bubbles. Bubble representation is accomplished by two alternative methods. The first generates bubble surfaces based on the voxel volumes previously detected; the second method assumes that bubbles are approximately spherical. In order to obtain better 3D representations, fits super-quadrics to bubble volume. The fitting process is based on non-linear least squares optimization method, where a super-quadric is adapted to a regular grid of points defined on each bubble. All methods were applied to real and semi-synthetical data where artificial and randomly deformed bubbles were embedded in the interior of healthy lungs. Quantitative results regarding bubble geometric features are either similar to a priori known values used in simulation tests, or indicate clinically acceptable dimensions and locations when dealing with real data.

  11. Distributed shared memory for roaming large volumes.

    PubMed

    Castanié, Laurent; Mion, Christophe; Cavin, Xavier; Lévy, Bruno

    2006-01-01

    We present a cluster-based volume rendering system for roaming very large volumes. This system allows to move a gigabyte-sized probe inside a total volume of several tens or hundreds of gigabytes in real-time. While the size of the probe is limited by the total amount of texture memory on the cluster, the size of the total data set has no theoretical limit. The cluster is used as a distributed graphics processing unit that both aggregates graphics power and graphics memory. A hardware-accelerated volume renderer runs in parallel on the cluster nodes and the final image compositing is implemented using a pipelined sort-last rendering algorithm. Meanwhile, volume bricking and volume paging allow efficient data caching. On each rendering node, a distributed hierarchical cache system implements a global software-based distributed shared memory on the cluster. In case of a cache miss, this system first checks page residency on the other cluster nodes instead of directly accessing local disks. Using two Gigabit Ethernet network interfaces per node, we accelerate data fetching by a factor of 4 compared to directly accessing local disks. The system also implements asynchronous disk access and texture loading, which makes it possible to overlap data loading, volume slicing and rendering for optimal volume roaming.

  12. Use of diffusion-weighted MRI to modify radiosurgery planning in brain metastases may reduce local recurrence.

    PubMed

    Zakaria, Rasheed; Pomschar, Andreas; Jenkinson, Michael D; Tonn, Jörg-Christian; Belka, Claus; Ertl-Wagner, Birgit; Niyazi, Maximilian

    2017-02-01

    Stereotactic radiosurgery (SRS) is an effective and well tolerated treatment for selected brain metastases; however, local recurrence still occurs. We investigated the use of diffusion weighted MRI (DWI) as an adjunct for SRS treatment planning in brain metastases. Seventeen consecutive patients undergoing complete surgical resection of a solitary brain metastasis underwent image analysis retrospectively. SRS treatment plans were generated based on standard 3D post-contrast T1-weighted sequences at 1.5T and then separately using apparent diffusion coefficient (ADC) maps in a blinded fashion. Control scans immediately post operation confirmed complete tumour resection. Treatment plans were compared to one another and with volume of local recurrence at progression quantitatively and qualitatively by calculating the conformity index (CI), the overlapping volume as a proportion of the total combined volume, where 1 = identical plans and 0 = no conformation whatsoever. Gross tumour volumes (GTVs) using ADC and post-contrast T1-weighted sequences were quantitatively the same (related samples Wilcoxon signed rank test = -0.45, p = 0.653) but showed differing conformations (CI 0.53, p < 0.001). The diffusion treatment volume (DTV) obtained by combining the two target volumes was significantly greater than the treatment volume based on post contrast T1-weighted MRI alone, both quantitatively (median 13.65 vs. 9.52 cm 3 , related samples Wilcoxon signed rank test p < 0.001) and qualitatively (CI 0.74, p = 0.001). This DTV covered a greater volume of subsequent tumour recurrence than the standard plan (median 3.53 cm 3 vs. 3.84 cm 3 , p = 0.002). ADC maps may be a useful tool in addition to the standard post-contrast T1-weighted sequence used for SRS planning.

  13. Localized and generalized simulated wear of resin composites.

    PubMed

    Barkmeier, W W; Takamizawa, T; Erickson, R L; Tsujimoto, A; Latta, M; Miyazaki, M

    2015-01-01

    A laboratory study was conducted to examine the wear of resin composite materials using both a localized and generalized wear simulation model. Twenty specimens each of seven resin composites (Esthet•X HD [HD], Filtek Supreme Ultra [SU], Herculite Ultra [HU], SonicFill [SF], Tetric EvoCeram Bulk Fill [TB], Venus Diamond [VD], and Z100 Restorative [Z]) were subjected to a wear challenge of 400,000 cycles for both localized and generalized wear in a Leinfelder-Suzuki wear simulator (Alabama machine). The materials were placed in custom cylinder-shaped stainless steel fixtures. A stainless steel ball bearing (r=2.387 mm) was used as the antagonist for localized wear, and a stainless steel, cylindrical antagonist with a flat tip was used for generalized wear. A water slurry of polymethylmethacrylate (PMMA) beads was used as the abrasive media. A noncontact profilometer (Proscan 2100) with Proscan software was used to digitize the surface contours of the pretest and posttest specimens. AnSur 3D software was used for wear assessment. For localized testing, maximum facet depth (μm) and volume loss (mm(3)) were used to compare the materials. The mean depth of the facet surface (μm) and volume loss (mm(3)) were used for comparison of the generalized wear specimens. A one-way analysis of variance (ANOVA) and Tukey post hoc test were used for data analysis of volume loss for both localized and generalized wear, maximum facet depth for localized wear, and mean depth of the facet for generalized wear. The results for localized wear simulation were as follows [mean (standard deviation)]: maximum facet depth (μm)--Z, 59.5 (14.7); HU, 99.3 (16.3); SU, 102.8 (13.8); HD, 110.2 (13.3); VD, 114.0 (10.3); TB, 125.5 (12.1); SF, 195.9 (16.9); volume loss (mm(3))--Z, 0.013 (0.002); SU, 0.026 (0.006); HU, 0.043 (0.008); VD, 0.057 (0.009); HD, 0.058 (0.014); TB, 0.061 (0.010); SF, 0.135 (0.024). Generalized wear simulation results were as follows: mean depth of facet (μm)--Z, 9.3 (3.4); SU, 12.8 (3.1); HU, 15.6 (3.2); TB, 19.2 (4.8); HD, 26.8 (6.5); VD, 29.1 (5.5); SF, 35.6 (8.4); volume loss (mm(3))--Z, 0.132 (0.049); SU, 0.0179 (0.042); HU, 0.224 (0.044); TB, 0.274 (0.065); HD, 0.386 (0.101); VD, 0.417 (0.076); SF, 0.505 (0.105). The ANOVA showed a significant difference among materials (p<0.001) for facet depth and volume loss for both localized and generalized wear. The post hoc test revealed differences (p<0.05) in localized and generalized wear values among the seven resin composites examined in this study. The findings provide valuable information regarding the relative wear characteristics of the materials in this study.

  14. Symposium on Urban Cable Television, Volume II. Thursday, October 19, 1972. Morning Workshop Themes: Economics and Financing of Cable; Public Ownership: Myth and Reality; Programming: Community and Local; New Patterns of Minority Participation.

    ERIC Educational Resources Information Center

    Mitre Corp., McLean, VA.

    Accounts of the workshops conducted during the morning of the second day of the symposium are contained in this volume. These focus on the economics and financing of cable television (CATV), public ownership of cable, community and local programing, and minority participation in CATV. Visual presentations dealing, respectively, with research…

  15. Species richness and morphological diversity of passerine birds

    PubMed Central

    Ricklefs, Robert E.

    2012-01-01

    The relationship between species richness and the occupation of niche space can provide insight into the processes that shape patterns of biodiversity. For example, if species interactions constrained coexistence, one might expect tendencies toward even spacing within niche space and positive relationships between diversity and total niche volume. I use morphological diversity of passerine birds as a proxy for diet, foraging maneuvers, and foraging substrates and examine the morphological space occupied by regional and local passerine avifaunas. Although independently diversified regional faunas exhibit convergent morphology, species are clustered rather than evenly distributed, the volume of the morphological space is weakly related to number of species per taxonomic family, and morphological volume is unrelated to number of species within both regional avifaunas and local assemblages. These results seemingly contradict patterns expected when species interactions constrain regional or local diversity, and they suggest a larger role for diversification, extinction, and dispersal limitation in shaping species richness. PMID:22908271

  16. Intensity-modulated radiotherapy improves lymph node coverage and dose to critical structures compared with three-dimensional conformal radiation therapy in clinically localized prostate cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang-Chesebro, Alice; Xia Ping; Coleman, Joy

    2006-11-01

    Purpose: The aim of this study was to quantify gains in lymph node coverage and critical structure dose reduction for whole-pelvis (WP) and extended-field (EF) radiotherapy in prostate cancer using intensity-modulated radiotherapy (IMRT) compared with three-dimensional conformal radiotherapy (3DCRT) for the first treatment phase of 45 Gy in the concurrent treatment of lymph nodes and prostate. Methods and Materials: From January to August 2005, 35 patients with localized prostate cancer were treated with pelvic IMRT; 7 had nodes defined up to L5-S1 (Group 1), and 28 had nodes defined above L5-S1 (Group 2). Each patient had 2 plans retrospectively generated:more » 1 WP 3DCRT plan using bony landmarks, and 1 EF 3DCRT plan to cover the vascular defined volumes. Dose-volume histograms for the lymph nodes, rectum, bladder, small bowel, and penile bulb were compared by group. Results: For Group 1, WP 3DCRT missed 25% of pelvic nodes with the prescribed dose 45 Gy and missed 18% with the 95% prescribed dose 42.75 Gy, whereas WP IMRT achieved V{sub 45Gy} = 98% and V{sub 42.75Gy} = 100%. Compared with WP 3DCRT, IMRT reduced bladder V{sub 45Gy} by 78%, rectum V{sub 45Gy} by 48%, and small bowel V{sub 45Gy} by 232 cm{sup 3}. EF 3DCRT achieved 95% coverage of nodes for all patients at high cost to critical structures. For Group 2, IMRT decreased bladder V{sub 45Gy} by 90%, rectum V{sub 45Gy} by 54% and small bowel V{sub 45Gy} by 455 cm{sup 3} compared with EF 3DCRT. Conclusion: In this study WP 3DCRT missed a significant percentage of pelvic nodes. Although EF 3DCRT achieved 95% pelvic nodal coverage, it increased critical structure doses. IMRT improved pelvic nodal coverage while decreasing dose to bladder, rectum, small bowel, and penile bulb. For patients with extended node involvement, IMRT especially decreases small bowel dose.« less

  17. Non-linear hydrodynamic instability and turbulence in eccentric astrophysical discs with vertical structure

    NASA Astrophysics Data System (ADS)

    Wienkers, A. F.; Ogilvie, G. I.

    2018-07-01

    Non-linear evolution of the parametric instability of inertial waves inherent to eccentric discs is studied by way of a new local numerical model. Mode coupling of tidal deformation with the disc eccentricity is known to produce exponentially growing eccentricities at certain mean-motion resonances. However, the details of an efficient saturation mechanism balancing this growth still are not fully understood. This paper develops a local numerical model for an eccentric quasi-axisymmetric shearing box which generalizes the often-used Cartesian shearing box model. The numerical method is an overall second-order well-balanced finite volume method which maintains the stratified and oscillatory steady-state solution by construction. This implementation is employed to study the non-linear outcome of the parametric instability in eccentric discs with vertical structure. Stratification is found to constrain the perturbation energy near the mid-plane and localize the effective region of inertial wave breaking that sources turbulence. A saturated marginally sonic turbulent state results from the non-linear breaking of inertial waves and is subsequently unstable to large-scale axisymmetric zonal flow structures. This resulting limit-cycle behaviour reduces access to the eccentric energy source and prevents substantial transport of angular momentum radially through the disc. Still, the saturation of this parametric instability of inertial waves is shown to damp eccentricity on a time-scale of a thousand orbital periods. It may thus be a promising mechanism for intermittently regaining balance with the exponential growth of eccentricity from the eccentric Lindblad resonances and may also help explain the occurrence of 'bursty' dynamics such as the superhump phenomenon.

  18. Dose to mass for evaluation and optimization of lung cancer radiation therapy.

    PubMed

    Tyler Watkins, William; Moore, Joseph A; Hugo, Geoffrey D; Siebers, Jeffrey V

    2017-11-01

    To evaluate potential organ at risk dose-sparing by using dose-mass-histogram (DMH) objective functions compared with dose-volume-histogram (DVH) objective functions. Treatment plans were retrospectively optimized for 10 locally advanced non-small cell lung cancer patients based on DVH and DMH objectives. DMH-objectives were the same as DVH objectives, but with mass replacing volume. Plans were normalized to dose to 95% of the PTV volume (PTV-D95v) or mass (PTV-D95m). For a given optimized dose, DVH and DMH were intercompared to ascertain dose-to-volume vs. dose-to-mass differences. Additionally, the optimized doses were intercompared using DVH and DMH metrics to ascertain differences in optimized plans. Mean dose to volume, D v ‾, mean dose to mass, D M ‾, and fluence maps were intercompared. For a given dose distribution, DVH and DMH differ by >5% in heterogeneous structures. In homogeneous structures including heart and spinal cord, DVH and DMH are nearly equivalent. At fixed PTV-D95v, DMH-optimization did not significantly reduce dose to OARs but reduced PTV-D v ‾ by 0.20±0.2Gy (p=0.02) and PTV-D M ‾ by 0.23±0.3Gy (p=0.02). Plans normalized to PTV-D95m also result in minor PTV dose reductions and esophageal dose sparing (D v ‾ reduced 0.45±0.5Gy, p=0.02 and D M ‾ reduced 0.44±0.5Gy, p=0.02) compared to DVH-optimized plans. Optimized fluence map comparisons indicate that DMH optimization reduces dose in the periphery of lung PTVs. DVH- and DMH-dose indices differ by >5% in lung and lung target volumes for fixed dose distributions, but optimizing DMH did not reduce dose to OARs. The primary difference observed in DVH- and DMH-optimized plans were variations in fluence to the periphery of lung target PTVs, where low density lung surrounds tumor. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. 3D annotation and manipulation of medical anatomical structures

    NASA Astrophysics Data System (ADS)

    Vitanovski, Dime; Schaller, Christian; Hahn, Dieter; Daum, Volker; Hornegger, Joachim

    2009-02-01

    Although the medical scanners are rapidly moving towards a three-dimensional paradigm, the manipulation and annotation/labeling of the acquired data is still performed in a standard 2D environment. Editing and annotation of three-dimensional medical structures is currently a complex task and rather time-consuming, as it is carried out in 2D projections of the original object. A major problem in 2D annotation is the depth ambiguity, which requires 3D landmarks to be identified and localized in at least two of the cutting planes. Operating directly in a three-dimensional space enables the implicit consideration of the full 3D local context, which significantly increases accuracy and speed. A three-dimensional environment is as well more natural optimizing the user's comfort and acceptance. The 3D annotation environment requires the three-dimensional manipulation device and display. By means of two novel and advanced technologies, Wii Nintendo Controller and Philips 3D WoWvx display, we define an appropriate 3D annotation tool and a suitable 3D visualization monitor. We define non-coplanar setting of four Infrared LEDs with a known and exact position, which are tracked by the Wii and from which we compute the pose of the device by applying a standard pose estimation algorithm. The novel 3D renderer developed by Philips uses either the Z-value of a 3D volume, or it computes the depth information out of a 2D image, to provide a real 3D experience without having some special glasses. Within this paper we present a new framework for manipulation and annotation of medical landmarks directly in three-dimensional volume.

  20. Sex on the brain: Are gender-dependent structural and functional differences associated with behavior?

    PubMed

    Grabowska, Anna

    2017-01-02

    A substantial number of studies provide evidence documenting a variety of sex differences in the brain. It remains unclear whether sexual differentiation at the neural level is related to that observed in daily behavior, cognitive function, and the risk of developing certain psychiatric and neurological disorders. Some investigators have questioned whether the brain is truly sexually differentiated and support this view with several arguments including the following: (1) brain structural or functional differences are not necessarily reflected in appropriate differences at the behavioral level, which might suggest that these two phenomena are not linked to each other; and (2) sex-related differences in the brain are rather small and concern features that significantly overlap between males and females. This review polemicizes with those opinions and presents examples of sex-related local neural differences underpinning a variety of sex differences in behaviors, skills, and cognitive/emotional abilities. Although male/female brain differentiation may vary in pattern and scale, nonetheless, in some respects (e.g., relative local gray matter volumes) it can be substantial, taking the form of sexual dimorphism and involving large areas of the brain (the cortex in particular). A significant part of this review is devoted to arguing that some sex differences in the brain may serve to prevent (in the case where they are maladaptive), rather than to produce, differences at the behavioral/skill level. Specifically, some differences might result from compensatory mechanisms aimed at maintaining similar intellectual capacities across the sexes, despite the smaller average volume of the brain in females compared with males. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

Top