High energy density redox flow device
Chiang, Yet -Ming; Carter, W. Craig; Duduta, Mihai; Limthongkul, Pimpa
2015-10-06
Redox flow devices are described including a positive electrode current collector, a negative electrode current collector, and an ion-permeable membrane separating said positive and negative current collectors, positioned and arranged to define a positive electroactive zone and a negative electroactive zone; wherein at least one of said positive and negative electroactive zone comprises a flowable semi-solid composition comprising ion storage compound particles capable of taking up or releasing said ions during operation of the cell, and wherein the ion storage compound particles have a polydisperse size distribution in which the finest particles present in at least 5 vol % of the total volume, is at least a factor of 5 smaller than the largest particles present in at least 5 vol % of the total volume.
High energy density redox flow device
Chiang, Yet-Ming; Carter, William Craig; Duduta, Mihai; Limthongkul, Pimpa
2014-05-13
Redox flow devices are described including a positive electrode current collector, a negative electrode current collector, and an ion-permeable membrane separating said positive and negative current collectors, positioned and arranged to define a positive electroactive zone and a negative electroactive zone; wherein at least one of said positive and negative electroactive zone comprises a flowable semi-solid composition comprising ion storage compound particles capable of taking up or releasing said ions during operation of the cell, and wherein the ion storage compound particles have a polydisperse size distribution in which the finest particles present in at least 5 vol % of the total volume, is at least a factor of 5 smaller than the largest particles present in at least 5 vol % of the total volume.
High energy density redox flow device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carter, W. Craig; Chiang, Yet-Ming; Duduta, Mihai
2017-04-04
Redox flow devices are described including a positive electrode current collector, a negative electrode current collector, and an ion-permeable membrane separating said positive and negative current collectors, positioned and arranged to define a positive electroactive zone and a negative electroactive zone; wherein at least one of said positive and negative electroactive zone comprises a flowable semi-solid composition comprising ion storage compound particles capable of taking up or releasing said ions during operation of the cell, and wherein the ion storage compound particles have a polydisperse size distribution in which the finest particles present in at least 5 vol % ofmore » the total volume, is at least a factor of 5 smaller than the largest particles present in at least 5 vol % of the total volume.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chung, Kyoung-Jae; Jung, Bong-Ki; An, YoungHwa
2014-02-15
In a volume-produced negative hydrogen ion source, control of electron temperature is essential due to its close correlation with the generation of highly vibrationally excited hydrogen molecules in the heating region as well as the generation of negative hydrogen ions by dissociative attachment in the extraction region. In this study, geometric effects of the cylindrical discharge chamber on negative ion generation via electron temperature changes are investigated in two discharge chambers with different lengths of 7.5 cm and 11 cm. Measurements with a radio-frequency-compensated Langmuir probe show that the electron temperature in the heating region is significantly increased by reducingmore » the length of the discharge chamber due to the reduced effective plasma size. A particle balance model which is modified to consider the effects of discharge chamber configuration on the plasma parameters explains the variation of the electron temperature with the chamber geometry and gas pressure quite well. Accordingly, H{sup −} ion density measurement with laser photo-detachment in the short chamber shows a few times increase compared to the longer one at the same heating power depending on gas pressure. However, the increase drops significantly as operating gas pressure decreases, indicating increased electron temperatures in the extraction region degrade dissociative attachment significantly especially in the low pressure regime. It is concluded that the increase of electron temperature by adjusting the discharge chamber geometry is efficient to increase H{sup −} ion production as long as low electron temperatures are maintained in the extraction region in volume-produced negative hydrogen ion sources.« less
Comparison of measured and modelled negative hydrogen ion densities at the ECR-discharge HOMER
NASA Astrophysics Data System (ADS)
Rauner, D.; Kurutz, U.; Fantz, U.
2015-04-01
As the negative hydrogen ion density nH- is a key parameter for the investigation of negative ion sources, its diagnostic quantification is essential in source development and operation as well as for fundamental research. By utilizing the photodetachment process of negative ions, generally two different diagnostic methods can be applied: via laser photodetachment, the density of negative ions is measured locally, but only relatively to the electron density. To obtain absolute densities, the electron density has to be measured additionally, which induces further uncertainties. Via cavity ring-down spectroscopy (CRDS), the absolute density of H- is measured directly, however LOS-averaged over the plasma length. At the ECR-discharge HOMER, where H- is produced in the plasma volume, laser photodetachment is applied as the standard method to measure nH-. The additional application of CRDS provides the possibility to directly obtain absolute values of nH-, thereby successfully bench-marking the laser photodetachment system as both diagnostics are in good agreement. In the investigated pressure range from 0.3 to 3 Pa, the measured negative hydrogen ion density shows a maximum at 1 to 1.5 Pa and an approximately linear response to increasing input microwave powers from 200 up to 500 W. Additionally, the volume production of negative ions is 0-dimensionally modelled by balancing H- production and destruction processes. The modelled densities are adapted to the absolute measurements of nH- via CRDS, allowing to identify collisions of H- with hydrogen atoms (associative and non-associative detachment) to be the dominant loss process of H- in the plasma volume at HOMER. Furthermore, the characteristic peak of nH- observed at 1 to 1.5 Pa is identified to be caused by a comparable behaviour of the electron density with varying pressure, as ne determines the volume production rate via dissociative electron attachment to vibrationally excited hydrogen molecules.
Comparison of measured and modelled negative hydrogen ion densities at the ECR-discharge HOMER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rauner, D.; Kurutz, U.; Fantz, U.
2015-04-08
As the negative hydrogen ion density n{sub H{sup −}} is a key parameter for the investigation of negative ion sources, its diagnostic quantification is essential in source development and operation as well as for fundamental research. By utilizing the photodetachment process of negative ions, generally two different diagnostic methods can be applied: via laser photodetachment, the density of negative ions is measured locally, but only relatively to the electron density. To obtain absolute densities, the electron density has to be measured additionally, which induces further uncertainties. Via cavity ring-down spectroscopy (CRDS), the absolute density of H{sup −} is measured directly,more » however LOS-averaged over the plasma length. At the ECR-discharge HOMER, where H{sup −} is produced in the plasma volume, laser photodetachment is applied as the standard method to measure n{sub H{sup −}}. The additional application of CRDS provides the possibility to directly obtain absolute values of n{sub H{sup −}}, thereby successfully bench-marking the laser photodetachment system as both diagnostics are in good agreement. In the investigated pressure range from 0.3 to 3 Pa, the measured negative hydrogen ion density shows a maximum at 1 to 1.5 Pa and an approximately linear response to increasing input microwave powers from 200 up to 500 W. Additionally, the volume production of negative ions is 0-dimensionally modelled by balancing H{sup −} production and destruction processes. The modelled densities are adapted to the absolute measurements of n{sub H{sup −}} via CRDS, allowing to identify collisions of H{sup −} with hydrogen atoms (associative and non-associative detachment) to be the dominant loss process of H{sup −} in the plasma volume at HOMER. Furthermore, the characteristic peak of n{sub H{sup −}} observed at 1 to 1.5 Pa is identified to be caused by a comparable behaviour of the electron density with varying pressure, as n{sub e} determines the volume production rate via dissociative electron attachment to vibrationally excited hydrogen molecules.« less
NASA Astrophysics Data System (ADS)
Kurutz, U.; Friedl, R.; Fantz, U.
2017-07-01
Caesium (Cs) is applied in high power negative hydrogen ion sources to reduce a converter surface’s work function and thus enabling an efficient negative ion surface formation. Inherent drawbacks with the usage of this reactive alkali metal motivate the search for Cs-free alternative materials for neutral beam injection systems in fusion research. In view of a future DEMOnstration power plant, a suitable material should provide a high negative ion formation efficiency and comply with the RAMI issues of the system: reliability, availability, maintainability, inspectability. Promising candidates, like low work function materials (molybdenum doped with lanthanum (MoLa) and LaB6), as well as different non-doped and boron-doped diamond samples were investigated in this context at identical and ion source relevant parameters at the laboratory experiment HOMER. Negative ion densities were measured above the samples by means of laser photodetachment and compared with two reference cases: pure negative ion volume formation with negative ion densities of about 1× {10}15 {{{m}}}-3 and the effect of H- surface production using an in situ caesiated stainless steel sample which yields 2.5 times higher densities. Compared to pure volume production, none of the diamond samples did exhibit a measurable increase in H- densities, while showing clear indications of plasma-induced erosion. In contrast, both MoLa and LaB6 produced systematically higher densities (MoLa: ×1.60 LaB6: ×1.43). The difference to caesiation can be attributed to the higher work functions of MoLa and LaB6 which are expected to be about 3 eV for both compared to 2.1 eV of a caesiated surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stamate, E.; Draghici, M.
2012-04-15
A large area plasma source based on 12 multi-dipolar ECR plasma cells arranged in a 3 x 4 matrix configuration was built and optimized for silicon etching by negative ions. The density ratio of negative ions to electrons has exceeded 300 in Ar/SF{sub 6} gas mixture when a magnetic filter was used to reduce the electron temperature to about 1.2 eV. Mass spectrometry and electrostatic probe were used for plasma diagnostics. The new source is free of density jumps and instabilities and shows a very good stability for plasma potential, and the dominant negative ion species is F{sup -}. Themore » magnetic field in plasma volume is negligible and there is no contamination by filaments. The etching rate by negative ions measured in Ar/SF{sub 6}/O{sub 2} mixtures was almost similar with that by positive ions reaching 700 nm/min.« less
NASA Astrophysics Data System (ADS)
Nemschokmichal, Sebastian; Tschiersch, Robert; Meichsner, Jürgen
2017-11-01
The laser photodetachment experiment in a diffuse helium-oxygen barrier discharge is evaluated by a 1D fluid simulation. As in the experiment, the simulated discharge operates in helium with 400 {ppm} oxygen admixture at 500 {mbar} inside a discharge gap of 3 {mm}. The laser photodetachment is included by the interaction of negative ions with a temporally and spatially dependent photon flux. The simulation with the usually applied set of reactions and rate coefficients provides a much lower negative ion density than needed to explain the impact on the discharge characteristics in the experiment. Further processes for an enhanced negative ion formation and their capabilities of reproducing the experimental results are discussed. These further processes are additional attachment processes in the volume and the negative ion formation at the negatively charged dielectric. Both approaches are able to reproduce the measured laser photodetachment effect partially, but the best agreement with the experimental results is achieved with the formation of negative ions at the negatively charged dielectric.
NASA Astrophysics Data System (ADS)
Wimmer, C.; Schiesko, L.; Fantz, U.
2016-02-01
BATMAN (Bavarian Test Machine for Negative ions) is a test facility equipped with a 1/8 scale H- source for the ITER heating neutral beam injection. Several diagnostics in the boundary layer close to the plasma grid (first grid of the accelerator system) followed the transition from volume to surface dominated H- production starting with a Cs-free, cleaned source and subsequent evaporation of caesium, while the source has been operated at ITER relevant pressure of 0.3 Pa: Langmuir probes are used to determine the plasma potential, optical emission spectroscopy is used to follow the caesiation process, and cavity ring-down spectroscopy allows for the measurement of the H- density. The influence on the plasma during the transition from an electron-ion plasma towards an ion-ion plasma, in which negative hydrogen ions become the dominant negatively charged particle species, is seen in a strong increase of the H- density combined with a reduction of the plasma potential. A clear correlation of the extracted current densities (jH-, je) exists with the Cs emission.
Wimmer, C; Schiesko, L; Fantz, U
2016-02-01
BATMAN (Bavarian Test Machine for Negative ions) is a test facility equipped with a 18 scale H(-) source for the ITER heating neutral beam injection. Several diagnostics in the boundary layer close to the plasma grid (first grid of the accelerator system) followed the transition from volume to surface dominated H(-) production starting with a Cs-free, cleaned source and subsequent evaporation of caesium, while the source has been operated at ITER relevant pressure of 0.3 Pa: Langmuir probes are used to determine the plasma potential, optical emission spectroscopy is used to follow the caesiation process, and cavity ring-down spectroscopy allows for the measurement of the H(-) density. The influence on the plasma during the transition from an electron-ion plasma towards an ion-ion plasma, in which negative hydrogen ions become the dominant negatively charged particle species, is seen in a strong increase of the H(-) density combined with a reduction of the plasma potential. A clear correlation of the extracted current densities (j(H(-)), j(e)) exists with the Cs emission.
Investigating the air oxidation of V(II) ions in a vanadium redox flow battery
NASA Astrophysics Data System (ADS)
Ngamsai, Kittima; Arpornwichanop, Amornchai
2015-11-01
The air oxidation of vanadium (V(II)) ions in a negative electrolyte reservoir is a major side reaction in a vanadium redox flow battery (VRB), which leads to electrolyte imbalance and self-discharge of the system during long-term operation. In this study, an 80% charged negative electrolyte solution is employed to investigate the mechanism and influential factors of the reaction in a negative-electrolyte reservoir. The results show that the air oxidation of V(II) ions occurs at the air-electrolyte solution interface area and leads to a concentration gradient of vanadium ions in the electrolyte solution and to the diffusion of V(II) and V(III) ions. The effect of the ratio of the electrolyte volume to the air-electrolyte solution interface area and the concentrations of vanadium and sulfuric acid in an electrolyte solution is investigated. A higher ratio of electrolyte volume to the air-electrolyte solution interface area results in a slower oxidation reaction rate. The high concentrations of vanadium and sulfuric acid solution also retard the air oxidation of V(II) ions. This information can be utilized to design an appropriate electrolyte reservoir for the VRB system and to prepare suitable ingredients for the electrolyte solution.
Enhancement of negative hydrogen ion production in an electron cyclotron resonance source
NASA Astrophysics Data System (ADS)
Dugar-Zhabon, V. D.; Murillo, M. T.; Karyaka, V. I.
2013-07-01
In this paper, we present a method for improving the negative hydrogen ion yield in the electron cyclotron resonance source with driven plasma rings where the negative ion production is realized in two stages. First, the hydrogen and deuterium molecules are excited in collisions with plasma electrons to high-laying Rydberg and high vibration levels in the plasma volume. The second stage leads to negative ion production through the process of repulsive attachment of low-energy electrons by the excited molecules. The low-energy electrons originate due to a bombardment of the plasma electrode surface by ions of a driven ring and the thermoelectrons produced by a rare earth ceramic electrode, which is appropriately installed in the source chamber. The experimental and calculation data on the negative hydrogen ion generation rate demonstrate that very low-energy thermoelectrons significantly enhance the negative-ion generation rate that occurs in the layer adjacent to the plasma electrode surface. It is found that heating of the tungsten filaments placed in the source chamber improves the discharge stability and extends the pressure operation range.
Challenges/issues of NIS used in particle accelerator facilities
NASA Astrophysics Data System (ADS)
Faircloth, Dan
2013-09-01
High current, high duty cycle negative ion sources are an essential component of many high power particle accelerators. This talk gives an overview of the state-of-the-art sources used around the world. Volume, surface and charge exchange negative ion production processes are detailed. Cesiated magnetron and Penning surface plasma sources are discussed along with surface converter sources. Multicusp volume sources with filament and LaB6 cathodes are described before moving onto RF inductively coupled volume sources with internal and external antennas. The major challenges facing accelerator facilities are detailed. Beam current, source lifetime and reliability are the most pressing. The pros and cons of each source technology is discussed along with their development programs. The uncertainties and unknowns common to these sources are discussed. The dynamics of cesium surface coverage and the causes of source variability are still unknown. Minimizing beam emittance is essential to maximizing the transport of high current beams; space charge effects are very important. The basic physics of negative ion production is still not well understood, theoretical and experimental programs continue to improve this, but there are still many mysteries to be solved.
The extraction of negative carbon ions from a volume cusp ion source
NASA Astrophysics Data System (ADS)
Melanson, Stephane; Dehnel, Morgan; Potkins, Dave; McDonald, Hamish; Hollinger, Craig; Theroux, Joseph; Martin, Jeff; Stewart, Thomas; Jackle, Philip; Philpott, Chris; Jones, Tobin; Kalvas, Taneli; Tarvainen, Olli
2017-08-01
Acetylene and carbon dioxide gases are used in a filament-powered volume-cusp ion source to produce negative carbon ions for the purpose of carbon implantation for gettering applications. The beam was extracted to an energy of 25 keV and the composition was analyzed with a spectrometer system consisting of a 90° dipole magnet and a pair of slits. It is found that acetylene produces mostly C2- ions (up to 92 µA), while carbon dioxide produces mostly O- with only trace amounts of C-. Maximum C2- current was achieved with 400 W of arc power and, the beam current and composition were found to be highly dependent on the pressure in the source. The beam properties as a function of source settings are analyzed, and plasma properties are measured with a Langmuir probe. Finally, we describe testing of a new RF H- ion source, found to produce more than 6 mA of CW H- beam.
Investigations on caesium-free alternatives for H{sup −} formation at ion source relevant parameters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurutz, U.; Fantz, U.; AG Experimentelle Plasmaphysik, Institut für Physik, Universität Augsburg, 86135 Augsburg
2015-04-08
Negative hydrogen ions are efficiently produced in ion sources by the application of caesium. Due to a thereby induced lowering of the work function of a converter surface a direct conversion of impinging hydrogen atoms and positive ions into negative ions is maintained. However, due to the complex caesium chemistry and dynamics a long-term behaviour is inherent for the application of caesium that affects the stability and reliability of negative ion sources. To overcome these drawbacks caesium-free alternatives for efficient negative ion formation are investigated at the flexible laboratory setup HOMER (HOMogenous Electron cyclotron Resonance plasma). By the usage ofmore » a meshed grid the tandem principle is applied allowing for investigations on material induced negative ion formation under plasma parameters relevant for ion source operation. The effect of different sample materials on the ratio of the negative ion density to the electron density n{sub H{sup −}} /n{sub e} is compared to the effect of a stainless steel reference sample and investigated by means of laser photodetachment in a pressure range from 0.3 to 3 Pa. For the stainless steel sample no surface induced effect on the negative ion density is present and the measured negative ion densities are resulting from pure volume formation and destruction processes. In a first step the dependency of n{sub H{sup −}} /n{sub e} on the sample distance has been investigated for a caesiated stainless steel sample. At a distance of 0.5 cm at 0.3 Pa the density ratio is 3 times enhanced compared to the reference sample confirming the surface production of negative ions. In contrast for the caesium-free material samples, tantalum and tungsten, the same dependency on pressure and distance n{sub H{sup −}} /n{sub e} like for the stainless steel reference sample were obtained within the error margins: A density ratio of around 14.5% is measured at 4.5 cm sample distance and 0.3 Pa, linearly decreasing with decreasing distance to 7% at 1.5 cm. Thus, tantalum and tungsten do not significantly affect the negative ion density. First measurements conducted with LaB{sub 6} as well as with two types of diamond like carbon (DLC) n{sub H{sup −}} /n{sub e} of about 15% at 1 Pa were measured, which is comparable to the density ratio obtained for the stainless steel reference sample. At HOMER a surface induced enhancement of n{sub H{sup −}} is only observed when it exceeds the volume formation of H{sup −} which is also realistic for negative hydrogen ion sources.« less
Planned Experiments on the Princeton Advanced Test Stand
NASA Astrophysics Data System (ADS)
Stepanov, A.; Gilson, E. P.; Grisham, L.; Kaganovich, I.; Davidson, R. C.
2010-11-01
The Princeton Advanced Test Stand (PATS) device is an experimental facility based on the STS-100 high voltage test stand transferred from LBNL. It consists of a multicusp RF ion source, a pulsed extraction system capable of forming high-perveance 100keV ion beams, and a large six-foot-long vacuum with convenient access for beam diagnostics. This results in a flexible system for studying high perveance ion beams relevant to NDCX-I/II, including experiments on beam neutralization by ferroelectric plasma sources (FEPS) being developed at PPPL. Research on PATS will concern the basic physics of beam-plasma interactions, such as the effects of volume neutralization on beam emittance, as well as optimizing technology of the FEPS. PATS combines the advantage of an ion beam source and a large-volume plasma source in a chamber with ample access for diagnostics, resulting in a robust setup for investigating and improving relevant aspects of neutralized drift. There are also plans for running the ion source with strongly electro-negative gases such as chlorine, making it possible to extract positive or negative ion beams.
Study of negative ion transport phenomena in a plasma source
NASA Astrophysics Data System (ADS)
Riz, D.; Paméla, J.
1996-07-01
NIETZSCHE (Negative Ions Extraction and Transport ZSimulation Code for HydrogEn species) is a negative ion (NI) transport code developed at Cadarache. This code calculates NI trajectories using a 3D Monte-Carlo technique, taking into account the main destruction processes, as well as elastic collisions (H-/H+) and charge exchanges (H-/H0). It determines the extraction probability of a NI created at a given position. According to the simulations, we have seen that in the case of volume production, only NI produced close to the plasma grid (PG) can be extracted. Concerning the surface production, we have studied how NI produced on the PG and accelerated by the plasma sheath backward into the source could be extracted. We demonstrate that elastic collisions and charge exchanges play an important role, which in some conditions dominates the magnetic filter effect, which acts as a magnetic mirror. NI transport in various conditions will be discussed: volume/surface production, high/low plasmas density, tent filter/transverse filter.
Modeling of negative ion transport in a plasma source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riz, David; Departement de Recherches sur la Fusion Controelee CE Cadarache, 13108 St Paul lez Durance; Pamela, Jerome
1998-08-20
A code called NIETZSCHE has been developed to simulate the negative ion transport in a plasma source, from their birth place to the extraction holes. The ion trajectory is calculated by numerically solving the 3-D motion equation, while the atomic processes of destruction, of elastic collision H{sup -}/H{sup +} and of charge exchange H{sup -}/H{sup 0} are handled at each time step by a Monte-Carlo procedure. This code can be used to calculate the extraction probability of a negative ion produced at any location inside the source. Calculations performed with NIETZSCHE have allowed to explain, either quantitatively or qualitatively, severalmore » phenomena observed in negative ion sources, such as the isotopic H{sup -}/D{sup -} effect, and the influence of the plasma grid bias or of the magnetic filter on the negative ion extraction. The code has also shown that in the type of sources contemplated for ITER, which operate at large arc power densities (>1 W cm{sup -3}), negative ions can reach the extraction region provided if they are produced at a distance lower than 2 cm from the plasma grid in the case of 'volume production' (dissociative attachment processes), or if they are produced at the plasma grid surface, in the vicinity of the extraction holes.« less
Modeling of negative ion transport in a plasma source
NASA Astrophysics Data System (ADS)
Riz, David; Paméla, Jérôme
1998-08-01
A code called NIETZSCHE has been developed to simulate the negative ion transport in a plasma source, from their birth place to the extraction holes. The ion trajectory is calculated by numerically solving the 3-D motion equation, while the atomic processes of destruction, of elastic collision H-/H+ and of charge exchange H-/H0 are handled at each time step by a Monte-Carlo procedure. This code can be used to calculate the extraction probability of a negative ion produced at any location inside the source. Calculations performed with NIETZSCHE have allowed to explain, either quantitatively or qualitatively, several phenomena observed in negative ion sources, such as the isotopic H-/D- effect, and the influence of the plasma grid bias or of the magnetic filter on the negative ion extraction. The code has also shown that in the type of sources contemplated for ITER, which operate at large arc power densities (>1 W cm-3), negative ions can reach the extraction region provided if they are produced at a distance lower than 2 cm from the plasma grid in the case of «volume production» (dissociative attachment processes), or if they are produced at the plasma grid surface, in the vicinity of the extraction holes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yordanov, D., E-mail: yordanov@phys.uni-sofia.bg; Lishev, St.; Shivarova, A.
2016-02-15
Combining measurements of the extracted currents with probe and laser-photodetachment diagnostics, the study is an extension of recent tests of factors and gas-discharge conditions stimulating the extraction of volume produced negative ions. The experiment is in a single element of a rf source with the design of a matrix of small-radius inductively driven discharges. The results are for the electron and negative-ion densities, for the plasma potential and for the electronegativity in the vicinity of the plasma electrode as well as for the currents of the extracted negative ions and electrons. The plasma-electrode bias and the rf power have beenmore » varied. Necessity of a high bias to the plasma electrode and stable linear increase of the extracted currents with the rf power are the main conclusions.« less
Detecting negative ions on board small satellites
NASA Astrophysics Data System (ADS)
Lepri, S. T.; Raines, J. M.; Gilbert, J. A.; Cutler, J.; Panning, M.; Zurbuchen, T. H.
2017-04-01
Recent measurements near comets, planets, and their satellites have shown that heavy ions, energetic neutral atoms, molecular ions, and charged dust contain a wealth of information about the origin, evolution, and interaction of celestial bodies with their space environment. Using highly sensitive plasma instruments, positively charged heavy ions have been used to trace exospheric and surface composition of comets, planets, and satellites as well as the composition of interplanetary and interstellar dust. While positive ions dominate throughout the heliosphere, negative ions are also produced from surface interactions. In fact, laboratory experiments have shown that oxygen released from rocky surfaces is mostly negatively charged. Negative ions and negatively charged nanograins have been detected with plasma electron analyzers in several different environments (e.g., by Cassini and Rosetta), though more extensive studies have been challenging without instrumentation dedicated to negative ions. We discuss an adaptation of the Fast Imaging Plasma Spectrometer (FIPS) flown on MErcury Surface, Space ENvironment, GEochemistry and Ranging (MESSENGER) for the measurement of negatively charged particles. MESSENGER/FIPS successfully measured the plasma environment of Mercury from 2011 until 2015, when the mission ended, and has been used to map multiple ion species (H+ through Na+ and beyond) throughout Mercury's space environment. Modifications to the existing instrument design fits within a 3U CubeSat volume and would provide a low mass, low power instrument, ideal for future CubeSat or distributed sensor missions seeking, for the first time, to characterize the contribution of negative particles in the heliospheric plasmas near the planets, moons, comets, and other sources.
NASA Astrophysics Data System (ADS)
Kuppel, S.; Matsushita, D.; Hatayama, A.; Bacal, M.
2011-01-01
This numerical study focuses on the physical mechanisms involved in the extraction of volume-produced H- ions from a steady state laboratory negative hydrogen ion source with one opening in the plasma electrode (PE) on which a dc-bias voltage is applied. A weak magnetic field is applied in the source plasma transversely to the extracted beam. The goal is to highlight the combined effects of the weak magnetic field and the PE bias voltage (upon the extraction process of H- ions and electrons). To do so, we focus on the behavior of electrons and volume-produced negative ions within a two-dimensional model using the particle-in-cell method. No collision processes are taken into account, except for electron diffusion across the magnetic field using a simple random-walk model at each time step of the simulation. The results show first that applying the magnetic field (without PE bias) enhances H- ion extraction, while it drastically decreases the extracted electron current. Secondly, the extracted H- ion current has a maximum when the PE bias is equal to the plasma potential, while the extracted electron current is significantly reduced by applying the PE bias. The underlying mechanism leading to the above results is the gradual opening by the PE bias of the equipotential lines towards the parts of the extraction region facing the PE. The shape of these lines is due originally to the electron trapping by the magnetic field.
Modeling of negative ion transport in a plasma source (invited)
NASA Astrophysics Data System (ADS)
Riz, David; Paméla, Jérôme
1998-02-01
A code called NIETZSCHE has been developed to simulate the negative ion transport in a plasma source, from their birth place to the extraction holes. The H-/D- trajectory is calculated by numerically solving the 3D motion equation, while the atomic processes of destruction, of elastic collision with H+/D+ and of charge exchange with H0/D0 are handled at each time step by a Monte Carlo procedure. This code can be used to calculate the extraction probability of a negative ion produced at any location inside the source. Calculations performed with NIETZSCHE have been allowed to explain, either quantitatively or qualitatively, several phenomena observed in negative ion sources, such as the isotopic H-/D- effect, and the influence of the plasma grid bias or of the magnetic filter on the negative ion extraction. The code has also shown that, in the type of sources contemplated for ITER, which operate at large arc power densities (>1 W cm-3), negative ions can reach the extraction region provided they are produced at a distance lower than 2 cm from the plasma grid in the case of volume production (dissociative attachment processes), or if they are produced at the plasma grid surface, in the vicinity of the extraction holes.
Study of negative ion transport phenomena in a plasma source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riz, D.; Pamela, J.
1996-07-01
NIETZSCHE (Negative Ions Extraction and Transport ZSimulation Code for HydrogEn species) is a negative ion (NI) transport code developed at Cadarache. This code calculates NI trajectories using a 3D Monte-Carlo technique, taking into account the main destruction processes, as well as elastic collisions (H{sup {minus}}/H{sup +}) and charge exchanges (H{sup {minus}}/H{sup 0}). It determines the extraction probability of a NI created at a given position. According to the simulations, we have seen that in the case of volume production, only NI produced close to the plasma grid (PG) can be extracted. Concerning the surface production, we have studied how NImore » produced on the PG and accelerated by the plasma sheath backward into the source could be extracted. We demonstrate that elastic collisions and charge exchanges play an important role, which in some conditions dominates the magnetic filter effect, which acts as a magnetic mirror. NI transport in various conditions will be discussed: volume/surface production, high/low plasmas density, tent filter/transverse filter. {copyright} {ital 1996 American Institute of Physics.}« less
Electrostatic plasma lens for focusing negatively charged particle beams.
Goncharov, A A; Dobrovolskiy, A M; Dunets, S M; Litovko, I V; Gushenets, V I; Oks, E M
2012-02-01
We describe the current status of ongoing research and development of the electrostatic plasma lens for focusing and manipulating intense negatively charged particle beams, electrons, and negative ions. The physical principle of this kind of plasma lens is based on magnetic isolation electrons providing creation of a dynamical positive space charge cloud in shortly restricted volume propagating beam. Here, the new results of experimental investigations and computer simulations of wide-aperture, intense electron beam focusing by plasma lens with positive space charge cloud produced due to the cylindrical anode layer accelerator creating a positive ion stream towards an axis system is presented.
Mixed Pierce-two-stream instability development in an extraction system of a negative ion source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barminova, H. Y., E-mail: barminova@mephi.ru; Chikhachev, A. S.
2016-02-15
Mixed Pierce-two-stream instability may occur in an extraction system of a negative ion source based on a volume-produced plasma. The reasons for instability development are discussed. Analytically the conditions of unstable beam propagation are determined. The instability threshold is shown to be increased compared with the pure Pierce instability. The influence of inclined perturbations on the instability behavior is investigated. The numerical calculations are performed in COMSOL Multiphysics. The simulation results confirm the existence of such a mixed instability appearance that develops due to both the electrons of the external circuit and the background positive ions.
Negative ion production in large volume source with small deposition of cesium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacquot, C.; Pamela, J.; Riz, D.
1996-03-01
Experimental data on the enhancement of D{sup {minus}} (H{sup {minus}}) negative ion production due to cesium injection into a large volume multiampere negative ion source (MANTIS) are described. The directed deposition of small cesium amounts (5{endash}100 mg) from a compact, movable oven, placed into the central part of a MANTIS gas-discharge box was used. A calorimetrically measured D{sup {minus}} beam with an intensity up to 1.6 A and an extracted current density up to 4.2 mA/cm{sup 2} (beam energy 25 kV) was obtained. Exactly 30 mg of cesium provides at least one month of source operation (1000 pulses with amore » discharge pulse duration of 4 s). The effect of cesium on NI enhancement was immediately displayed after the distributed Cs deposition, but it needed some {open_quote}{open_quote}conditioning{close_quote}{close_quote} of cesium by tens of discharge pulses (or by several hours {open_quote}{open_quote}pause{close_quote}{close_quote}) in the case of a localized Cs deposition. No degradation of extraction-acceleration voltage holding on within the tested range of cesium injection was observed. {copyright} {ital 1996 American Institute of Physics.}« less
Efficiency of Cs-free materials for negative ion production in H2 and D2 plasmas
NASA Astrophysics Data System (ADS)
Friedl, R.; Kurutz, U.; Fantz, U.
2017-08-01
High power negative ion sources use caesium to reduce the work function of the converter surface which significantly increases the negative ion yield. Caesium, however, is a very reactive alkali-metal and shows complex redistribution dynamics in consequence of plasma-surface-interaction. Thus, maintaining a stable and homogenous low work function surface is a demanding task, which is not easily compatible with the RAMI issues (reliability, availability, maintainability, inspectability) for a future DEMO fusion reactor. Hence, Cs-free alternative materials for efficient negative ion formation are desirable. At the laboratory experiment HOMER materials which are referred to as promising are investigated under identical and ion source relevant parameters: the refractory metals Ta and W, non-doped and boron-doped diamond as well as materials with inherent low work function (lanthanum-doped molybdenum, MoLa and lanthanum hexaboride, LaB6). The results are compared to the effect of in-situ caesiation, which at HOMER leads to a maximal increase of the negative ion density by a factor of 2.5. Among the examined samples low work function materials are most efficient. In particular, MoLa leads to an increase of almost 50 % compared to pure volume formation. The difference to a caesiated surface can be attributed to the still higher work function of MoLa, which is expected to be slightly below 3 eV. Using deuterium instead of hydrogen leads to increased atomic and positive ion densities, while comparable negative ion densities are achieved. In contrast to the low work function materials, bulk samples of the refractory metals as well as carbon based materials have no enhancing effect on H-, where the latter materials furthermore show severe erosion due to the hydrogen plasma.
First results of the ITER-relevant negative ion beam test facility ELISE (invited).
Fantz, U; Franzen, P; Heinemann, B; Wünderlich, D
2014-02-01
An important step in the European R&D roadmap towards the neutral beam heating systems of ITER is the new test facility ELISE (Extraction from a Large Ion Source Experiment) for large-scale extraction from a half-size ITER RF source. The test facility was constructed in the last years at Max-Planck-Institut für Plasmaphysik Garching and is now operational. ELISE is gaining early experience of the performance and operation of large RF-driven negative hydrogen ion sources with plasma illumination of a source area of 1 × 0.9 m(2) and an extraction area of 0.1 m(2) using 640 apertures. First results in volume operation, i.e., without caesium seeding, are presented.
Study of electron transport across the magnetic filter of NIO1 negative ion source
NASA Astrophysics Data System (ADS)
Veltri, P.; Sartori, E.; Cavenago, M.; Serianni, G.; Barbisan, M.; Zaniol, B.
2017-08-01
In the framework of the accompanying activities in support to the ITER NBI test facility, a relatively compact radiofrequency (RF) ion source, named NIO1 (Negative Ion Optimization, phase 1) was developed in Padua, Italy, in collaboration between Consorzio RFX and INFN. Negative hydrogen ions are formed in a cold, inductively coupled plasma with a 2MHz, 2.5 kW external antenna. A low electron energy is necessary to increase the survival probability of negative ions in the proximity of the extraction area. This goal is accomplished by means of a transversal magnetic field, confining the high energy electrons better than the colder electrons. In NIO1, this filter field can cover different topologies, exploiting different set of magnets and high current paths. In this contribution we study the property of the plasma in the vicinity of the extraction region for two different B field configurations. For this experiment the source was operated in pure volume conditions, in hydrogen and oxygen plasmas. The experimental data, measured by spectroscopic means, is interpreted also with the support of finite element analyses simulations of the magnetic field and a dedicated particle in cell (PIC) numerical model for the electron transport across it, including Coulomb and gas collisions.
NASA Astrophysics Data System (ADS)
Kujala, J.; Segercrantz, N.; Tuomisto, F.; Slotte, J.
2014-10-01
We have applied positron annihilation spectroscopy to study native point defects in Te-doped n-type and nominally undoped p-type GaSb single crystals. The results show that the dominant vacancy defect trapping positrons in bulk GaSb is the gallium monovacancy. The temperature dependence of the average positron lifetime in both p- and n-type GaSb indicates that negative ion type defects with no associated open volume compete with the Ga vacancies. Based on comparison with theoretical predictions, these negative ions are identified as Ga antisites. The concentrations of these negatively charged defects exceed the Ga vacancy concentrations nearly by an order of magnitude. We conclude that the Ga antisite is the native defect responsible for p-type conductivity in GaSb single crystals.
Jamal, Muhammad Asghar; Rashad, Muhammad; Khosa, Muhammad Kaleem; Bhatti, Haq Nawaz
2015-04-15
Densities and ultrasonic velocity values for aqueous solutions of sodium saccharin (SS) has been measured as a function of concentration at 20.0-45.0 °C and atmospheric pressure using DSA-5000 M. The density and ultrasonic velocity values have been further used to calculate apparent molar volume, apparent specific volume, isentropic apparent molar compressibility and compressibility hydration numbers and reported. The values for apparent molar volume obtained at given temperatures showed negative deviations from Debye-Hückel limiting law and used as a direct measure of the ion-ion and ion-solvent interactions. The apparent specific volumes of the solute were calculated and it was found that these values of the investigated solutions lie on the borderline between the values reported for sweet substances. The sweetness response of the sweeteners is then explained in terms of their solution behaviours. Furthermore, the partial molar expansibility, its second derivative, (∂(2)V°/∂T(2)) as Hepler's constant and thermal expansion coefficient have been estimated. Copyright © 2014 Elsevier Ltd. All rights reserved.
Negative hydrogen ion sources for accelerators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moehs, D.P.; /Fermilab; Peters, J.
2005-08-01
A variety of H{sup -} ion sources are in use at accelerator laboratories around the world. A list of these ion sources includes surface plasma sources with magnetron, Penning and surface converter geometries as well as magnetic-multipole volume sources with and without cesium. Just as varied is the means of igniting and maintaining magnetically confined plasmas. Hot and cold cathodes, radio frequency, and microwave power are all in use, as well as electron tandem source ignition. The extraction systems of accelerator H{sup -} ion sources are highly specialized utilizing magnetic and electric fields in their low energy beam transport systemsmore » to produce direct current, as well as pulsed and/or chopped beams with a variety of time structures. Within this paper, specific ion sources utilized at accelerator laboratories shall be reviewed along with the physics of surface and volume H{sup -} production in regard to source emittance. Current research trends including aperture modeling, thermal modeling, surface conditioning, and laser diagnostics will also be discussed.« less
Electrochemical synthesis of 1D core-shell Si/TiO2 nanotubes for lithium ion batteries
NASA Astrophysics Data System (ADS)
Kowalski, Damian; Mallet, Jeremy; Thomas, Shibin; Nemaga, Abirdu Woreka; Michel, Jean; Guery, Claude; Molinari, Michael; Morcrette, Mathieu
2017-09-01
Silicon negative electrode for lithium ion battery was designed in the form of self-organized 1D core-shell nanotubes to overcome shortcomings linked to silicon volume expansion upon lithiation/delithiation typically occurring with Si nanoparticles. The negative electrode was formed on TiO2 nanotubes in two step electrochemical synthesis by means of anodizing of titanium and electrodeposition of silicon using ionic liquid electrolytes. Remarkably, it was found that the silicon grows perpendicularly to the z-axis of nanotube and therefore its thickness can be precisely controlled by the charge passed in the electrochemical protocol. Deposited silicon creates a continuous Si network on TiO2 nanotubes without grain boundaries and particle-particle interfaces, defining its electrochemical characteristics under battery testing. In the core-shell system the titania nanotube play a role of volume expansion stabilizer framework holding the nanostructured silicon upon lithiation/delithiation. The nature of Si shell and presence of titania core determine stable performance as negative electrode tested in half cell of CR2032 coin cell battery.
NASA Astrophysics Data System (ADS)
Fubiani, G.; Boeuf, J. P.
2015-10-01
The effect on the plasma characteristics of biasing positively the plasma electrode (PE) in negative ion sources with a magnetic filter is analysed using a 3D particle-in-cell model with Monte-Carlo collisions (PIC-MCC). We specialize to the one driver (i.e. one inductively coupled radio-frequency discharge) BATMAN negative ion source and the 4-drivers (large volume) ELISE device. Both are ITER prototype high power tandem-type negative ion sources developed for the neutral beam injector (NBI) system. The plasma is generated in the driver and diffuses inside the second chamber which is magnetized. Asymmetric plasma profiles originate from the formation of an electric field transverse to the electron current flowing through the magnetic filter (Hall effect). The model shows that the importance of the asymmetry increases with the PE bias potential, i.e. with the electron flow from the driver to the extraction region and depends on the shape of the magnetic filter field. We find that although the plasma density and potential profiles may be more or less asymmetric depending on the filter field configuration, the electron current to the plasma grid is always strongly asymmetric.
Negatively Charged Hydrogen Production in a Multicusp Microwave Plasma
NASA Astrophysics Data System (ADS)
Trow, John Robert
1985-06-01
High energy neutral beams are necessary for the continued development of magnetically confined fusion plasma devices. Neutral beams based on positive ions are not efficient at beam energies of 100 keV or above, however negative ion based neutral beam systems are efficient, even at high beam energies. Volume production of H('-) has many advantages over the other methods, chiefly: simplicity of design and operation, and no need for alkalai metals. Since volume production requires a low electron temperature ((TURN)1 eV) but also requires molecular intermediates only formed by more energetic electrons (>20 eV), double plasma devices with a separate hot electron region are desirable. Therefore an experiment was undertaken to examine H('-) production by volume processes in a multicusp microwave discharge, part of the cusp field being enhanced to produce an ECR (electron cyclotron resonance), that would also isolate the hotter plasma formed there. This arrangement is analogous to the "magnetic filters" used in some other negative ion sources. This work describes the experiment set up and the results obtained, which are a survey of the behavior of this type of device. Also included is a discussion of the volume processes associated with H('-) production including numerical estimates, based on the experimental measurements, which indicate H('-) production is by dissociative attachment of cold electrons to vibrationally excited hydrogen molecules, and loss is by mutual neutralization with positive ions. The experimental observations are consistent with this model. These are also the same mechanisms used in the models of Bacal and Hiskes. Since magnetic fields generated by samarium cobalt permanent magnets were an important part of this experiment a set of field calculations was undertaken and is included here as a separate chapter. This device is shown to be a viable scheme of H('-) (or D('-)) produc- tion and is worthy of further development. There are several more. quantities which still need to be measured listed in the conclusion, along with suggested improvements. *This work was supported by the Director, Office of Energy Research, Office of Fusion Energy, Development & Technology Division of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098.
Porcelain-coated antenna for radio-frequency driven plasma source
Leung, Ka-Ngo; Wells, Russell P.; Craven, Glen E.
1996-01-01
A new porcelain-enamel coated antenna creates a clean plasma for volume or surface-conversion ion sources. The porcelain-enamel coating is hard, electrically insulating, long lasting, non fragile, and resistant to puncture by high energy ions in the plasma. Plasma and ion production using the porcelain enamel coated antenna is uncontaminated with filament or extraneous metal ion because the porcelain does not evaporate and is not sputtered into the plasma during operation. Ion beams produced using the new porcelain-enamel coated antenna are useful in ion implantation, high energy accelerators, negative, positive, or neutral beam applications, fusion, and treatment of chemical or radioactive waste for disposal. For ion implantation, the appropriate species ion beam generated with the inventive antenna will penetrate large or small, irregularly shaped conducting objects with a narrow implantation profile.
Monitoring of natural factors in Czech speleotherapeutic centres
NASA Astrophysics Data System (ADS)
Sas, D.; Navrátil, O.; Sládek, P.
1999-01-01
The work deals with the problems of volume activity of radon and its daughter products, of the concentration of positive and negative atmospheric ions and microclimatic conditions in speleotherapeutic centres Zlaté Hory (ore gallery) and Javoříčko (cave).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kujala, J.; Segercrantz, N.; Tuomisto, F.
2014-10-14
We have applied positron annihilation spectroscopy to study native point defects in Te-doped n-type and nominally undoped p-type GaSb single crystals. The results show that the dominant vacancy defect trapping positrons in bulk GaSb is the gallium monovacancy. The temperature dependence of the average positron lifetime in both p- and n-type GaSb indicates that negative ion type defects with no associated open volume compete with the Ga vacancies. Based on comparison with theoretical predictions, these negative ions are identified as Ga antisites. The concentrations of these negatively charged defects exceed the Ga vacancy concentrations nearly by an order of magnitude.more » We conclude that the Ga antisite is the native defect responsible for p-type conductivity in GaSb single crystals.« less
Porcelain-coated antenna for radio-frequency driven plasma source
Leung, K.N.; Wells, R.P.; Craven, G.E.
1996-12-24
A new porcelain-enamel coated antenna creates a clean plasma for volume or surface-conversion ion sources. The porcelain-enamel coating is hard, electrically insulating, long lasting, non fragile, and resistant to puncture by high energy ions in the plasma. Plasma and ion production using the porcelain enamel coated antenna is uncontaminated with filament or extraneous metal ions because the porcelain does not evaporate and is not sputtered into the plasma during operation. Ion beams produced using the new porcelain-enamel coated antenna are useful in ion implantation, high energy accelerators, negative, positive, or neutral beam applications, fusion, and treatment of chemical or radioactive waste for disposal. For ion implantation, the appropriate species ion beam generated with the inventive antenna will penetrate large or small, irregularly shaped conducting objects with a narrow implantation profile. 8 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cho, Won-Hwi; Dang, Jeong-Jeung; Kim, June Young
2016-02-15
Transverse magnetic filter field as well as operating pressure is considered to be an important control knob to enhance negative hydrogen ion production via plasma parameter optimization in volume-produced negative hydrogen ion sources. Stronger filter field to reduce electron temperature sufficiently in the extraction region is favorable, but generally known to be limited by electron density drop near the extraction region. In this study, unexpected electron density increase instead of density drop is observed in front of the extraction region when the applied transverse filter field increases monotonically toward the extraction aperture. Measurements of plasma parameters with a movable Langmuirmore » probe indicate that the increased electron density may be caused by low energy electron accumulation in the filter region decreasing perpendicular diffusion coefficients across the increasing filter field. Negative hydrogen ion populations are estimated from the measured profiles of electron temperatures and densities and confirmed to be consistent with laser photo-detachment measurements of the H{sup −} populations for various filter field strengths and pressures. Enhanced H{sup −} population near the extraction region due to the increased low energy electrons in the filter region may be utilized to increase negative hydrogen beam currents by moving the extraction position accordingly. This new finding can be used to design efficient H{sup −} sources with an optimal filtering system by maximizing high energy electron filtering while keeping low energy electrons available in the extraction region.« less
2017-09-06
discharge from cell 10A shown in FIG. 1, as electrons are utilized from negative electrode 28, lithium ions in anolyte 24 travel across membrane 14 to join...Docket No. 300139 11 of 13 [0029] As cell 10B shown in FIG. 2 is charged, lithium ions in catholyte 16 travel across membrane 14. Discharge of these...with a cell 10B’ in a discharged state. Reservoir 32B contracts as anolyte 24 reduces in volume while cell is discharging. Anolyte 24 travels from
The Remote Detection of Alpha-Radioactive Nucleus Decay
NASA Astrophysics Data System (ADS)
Gurkovskiy, Boris; Miroshnichenko, Vladimir; Onishchenko, Evgeny; Simakov, Andrey; Streil, Thomas
Results of the new device design for the alpha-radiation remote detection are presented. Negative ions from the alpha particle tracks are detected by the discharge wire counter opened to air. Ion clusters being transferred from the particle tracks to the detector volume by an air flux. The detector works in a counting mode that provides sharp selectivity and accuracy of measurements. The basic parameters of the device are: detecting distance -0.5 m; measurement time -30 s; the square sensitivity -0.05 Bq/cm2.
Control of plasma properties in a short direct-current glow discharge with active boundaries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, S. F.; Demidov, V. I., E-mail: vladimir.demidov@mail.wvu.edu; West Virginia University, Morgantown, West Virginia 26506
2016-02-15
To demonstrate controlling electron/metastable density ratio and electron temperature by applying negative voltages to the active (conducting) discharge wall in a low-pressure plasma with nonlocal electron energy distribution function, modeling has been performed in a short (lacking the positive-column region) direct-current glow discharge with a cold cathode. The applied negative voltage can modify the trapping of the low-energy part of the energetic electrons that are emitted from the cathode sheath and that arise from the atomic and molecular processes in the plasma within the device volume. These electrons are responsible for heating the slow, thermal electrons, while production of slowmore » electrons (ions) and metastable atoms is mostly due to the energetic electrons with higher energies. Increasing electron temperature results in increasing decay rate of slow, thermal electrons (ions), while decay rate of metastable atoms and production rates of slow electrons (ions) and metastable atoms practically are unchanged. The result is in the variation of electron/metastable density ratio and electron temperature with the variation of the wall negative voltage.« less
Shi, Loimeng; Gao, Yuan; Hou, Xiaohong; Zhang, Haijun; Zhang, Yichi; Chen, Jiping
2016-02-01
An analytical method for quantifying short-chain chlorinated paraffins (SCCPs) in ambient air using high-volume sampling combined with high resolution gas chromatography-electron capture negative ion-low resolution mass spectrometry ( HRGC-ECNI-LRMS) was developed. An acidified silica gel column and a basic alumina column were used to optimize the cleanup procedures. The results showed a good linearity (R2>0. 99) between the total response factors and the degree of chlorination of SCCPs in the content range of 58. 1%-63. 3%. The limits of detection (S/N ≥3) and the limits of quantification (S/N ≥ 10) were 4. 2 and 12 µg, respectively. The method detection limit (MDL) for SCCPs was 0. 34 ng/m3 (n = 7). The recoveries of SCCPs in air samples were in the range of 81. 9% to 94. 2%. It is demonstrated that the method is suitable for the quantitative analysis of SCCPs in air samples.
Ion and electron sheath characteristics in a low density and low temperature plasma
NASA Astrophysics Data System (ADS)
Borgohain, Binita; Bailung, H.
2017-11-01
Ion and electron sheath characteristics in a low electron temperature (Te ˜ 0.25-0.40 eV) and density (ne ˜ 106-107 cm-3) plasma are described. The plasma is produced in the experimental volume through diffusion from a hot cathode discharge plasma source by using a magnetic filter. The electron energy distribution function in the experimental plasma volume is measured to be a narrow Maxwellian distribution indicating the absence of primary and energetic electrons which are decoupled in the source side by the cusp magnetic field near the filter. An emissive probe is used to measure the sheath potential profiles in front of a metal plate biased negative and positive with respect to the plasma potential. For a positive plate bias, the electron density decreases considerably and the electron sheath expands with a longer presheath region compared to the ion sheath. The sheath potential structures are found to follow the Debye sheath model.
Kraus, W; Briefi, S; Fantz, U; Gutmann, P; Doerfler, J
2014-02-01
Large RF driven negative hydrogen ion sources are being developed at IPP Garching for the future neutral beam injection system of ITER. The overall power efficiency of these sources is low, because for the RF power supply self-excited generators are utilized and the plasma is generated in small cylindrical sources ("drivers") and expands into the source main volume. At IPP experiments to reduce the primary power and the RF power required for the plasma production are performed in two ways: The oscillator generator of the prototype source has been replaced by a transistorized RF transmitter and two alternative driver concepts, a spiral coil, in which the field is concentrated by ferrites, which omits the losses by plasma expansion and a helicon source are being tested.
NASA Astrophysics Data System (ADS)
Nemschokmichal, Sebastian; Tschiersch, Robert; Höft, Hans; Wild, Robert; Bogaczyk, Marc; Becker, Markus M.; Loffhagen, Detlef; Stollenwerk, Lars; Kettlitz, Manfred; Brandenburg, Ronny; Meichsner, Jürgen
2018-05-01
The phenomenology and breakdown mechanism of dielectric barrier discharges are strongly determined by volume and surface memory effects. In particular, the pre-ionization provided by residual species in the volume or surface charges on the dielectrics influences the breakdown behavior of filamentary and diffuse discharges. This was investigated by advanced diagnostics such as streak camera imaging, laser photodetachment of negative ions and laser photodesorption of electrons from dielectric surfaces in correlation with 1D fluid modeling. The streak camera images show that an increasing number of residual charges in the volume changes the microdischarge breakdown in air-like gas mixtures from a cathode-directed streamer to a simultaneous propagation of cathode- and anode-directed streamers. In contrast, seed electrons are important for the pre-ionization if the density of residual charges in the volume is low. One source of seed electrons are negative ions, whose density exceeds the electron density during the pre-phase of diffuse helium-oxygen barrier discharges as indicated by the laser photodetachment experiments. Electrons desorbed from the cathodic dielectric have an even larger influence. They induce a transition from the glow-like to the Townsend-like discharge mode in nominally pure helium. Apart from analyzing the importance of the pre-ionization for the breakdown mechanism, the opportunities for manipulating the lateral structure and discharge modes are discussed. For this purpose, the intensity and diameter of a diffuse discharge in helium are controlled by an illuminated semiconducting barrier. Contribution to the Topical Issue "Fundamentals of Complex Plasmas", edited by Jürgen Meichsner, Michael Bonitz, Holger Fehske, Alexander Piel.
NASA Astrophysics Data System (ADS)
Mochalskyy, Serhiy; Fantz, Ursel; Wünderlich, Dirk; Minea, Tiberiu
2016-10-01
The development of negative ion (NI) sources for the ITER neutral beam injector is strongly accompanied by modelling activities. The ONIX (Orsay Negative Ion eXtraction) code simulates the formation and extraction of negative hydrogen ions and co-extracted electrons produced in caesiated sources. In this paper the 3D geometry of the BATMAN extraction system, and the source characteristics such as the extraction and bias potential, and the 3D magnetic field were integrated in the model. Calculations were performed using plasma parameters experimentally obtained on BATMAN. The comparison of the ONIX calculated extracted NI density with the experimental results suggests that predictive calculations of the extraction of NIs are possible. The results show that for an ideal status of the Cs conditioning the extracted hydrogen NI current density could reach ~30 mA cm-2 at 10 kV and ~20 mA cm-2 at 5 kV extraction potential, with an electron/NI current density ratio of about 1, as measured in the experiments under the same plasma and source conditions. The dependency of the extracted NI current on the NI density in the bulk plasma region from both the modeling and the experiment was investigated. The separate distributions composing the NI beam originating from the plasma bulk region and the PG surface are presented for different NI plasma volume densities and NI emission rates from the plasma grid (PG) wall, respectively. The extracted current from the NIs produced at the Cs covered PG surface, initially moving towards the bulk plasma and then being bent towards the extraction surfaces, is lower compared to the extracted NI current from directly extracted surface produced ions.
NASA Astrophysics Data System (ADS)
Matsuoka, O.; Hiwara, A.; Omi, T.; Toriida, M.; Hayashi, T.; Tanaka, C.; Saito, Y.; Ishida, T.; Tan, H.; Ono, S. S.; Yamamoto, S.
We investigated the influence of vinylene carbonate, as an additive molecule, on the decomposition phenomena of electrolyte solution [ethylene carbonate (EC)—ethyl methyl carbonate (EMC) (1:2 by volume) containing 1 M LiPF 6] on a highly oriented pyrolytic graphite (HOPG) negative electrode by using cyclic voltammetry (CV) and atomic force microscopy (AFM). Vinylene carbonate deactivated reactive sites (e.g. radicals and oxides at the defects and the edge of carbon layer) on the cleaved surface of the HOPG negative electrode, and prevented further decomposition of the other solvents there. Further, vinylene carbonate induced an ultra-thin film (less than 1.0 nm in thickness) on the terrace of the basal plane of the HOPG negative electrode, and this film suppressed the decomposition of electrolyte solution on the terraces of the basal plane. We consider that this ultra-thin passivating film is composed of a reduction product of vinylene carbonate (VC), and might have a polymer structure. These induced effects might explain how VC improves the life performance of lithium-ion cells.
Automatic control of a negative ion source
NASA Astrophysics Data System (ADS)
Saadatmand, K.; Sredniawski, J.; Solensten, L.
1989-04-01
A CAMAC based control architecture is devised for a Berkeley-type H - volume ion source [1]. The architecture employs three 80386 TM PCs. One PC is dedicated to control and monitoring of source operation. The other PC functions with digitizers to provide data acquisition of waveforms. The third PC is used for off-line analysis. Initially, operation of the source was put under remote computer control (supervisory). This was followed by development of an automated startup procedure. Finally, a study of the physics of operation is now underway to establish a data base from which automatic beam optimization can be derived.
NASA Astrophysics Data System (ADS)
Hatayama, A.; Nishioka, S.; Nishida, K.; Mattei, S.; Lettry, J.; Miyamoto, K.; Shibata, T.; Onai, M.; Abe, S.; Fujita, S.; Yamada, S.; Fukano, A.
2018-06-01
The present status of kinetic modeling of particle dynamics in hydrogen negative ion (H‑) source plasmas and their comparisons with experiments are reviewed and discussed with some new results. The main focus is placed on the following topics, which are important for the research and development of H‑ sources for intense and high-quality H‑ ion beams: (i) effects of non-equilibrium features of electron energy distribution function on volume and surface H‑ production, (ii) the origin of the spatial non-uniformity in giant multi-cusp arc-discharge H‑ sources, (iii) capacitive to inductive (E to H) mode transition in radio frequency-inductively coupled plasma H‑ sources and (iv) extraction physics of H‑ ions and beam optics, especially the present understanding of the meniscus formation in strongly electronegative plasmas (so-called ion–ion plasmas) and its effect on beam optics. For these topics, mainly Japanese modeling activities, and their domestic and international collaborations with experimental studies, are introduced with some examples showing how models have been improved and to what extent the modeling studies can presently contribute to improving the source performance. Close collaboration between experimental and modeling activities is indispensable for the validation/improvement of the modeling and its contribution to the source design/development.
Breithaupt, Dietmar E
2004-06-16
Negative ion liquid chromatography-atmospheric pressure chemical ionization mass spectrometry [negative ion LC-(APCI)MS] was used for the identification of astaxanthin esters in extracts of commercial shrimp (Pandalus borealis) and dried microalga (Haematococcus pluvialis) samples. A cleanup step using a normal phase solid phase extraction (SPE) cartridge was applied prior to analysis. Recovery experiments with astaxanthin oleate as model compound proved the applicability of this step (98.5 +/- 7.6%; n = 4). The assignment of astaxanthin esters in negative ion LC-(APCI)MS was based on the detection of the molecular ion (M*-) and the formation of characteristic fragment ions, resulting from the loss of one or two fatty acids. Quantification of individual astaxanthin esters was performed using an astaxanthin calibration curve, which was found to be linear over the required range (1-51 micromol/L; r2 = 0.9996). Detection limits, based on the intensity of M*-, a signal-to-noise ratio of 3:1, and an injection volume of 20 microL, were estimated to be 0.05 microg/mL (free astaxanthin), 0.28 microg/mL (astaxanthin-C16:0), and 0.78 microg/mL (astaxanthin-C16:0/C16:0), respectively. This LC-(APCI)MS method allows for the first time the characterization of native astaxanthin esters in P. borealis and H. pluvialis without using time-consuming isolation steps with subsequent gas chromatographic analyses of fatty acid methyl esters. The results suggest that the pattern of astaxanthin-bound polyunsaturated fatty acids of P. borealis does not reflect the respective fatty acid pattern found in triacylglycerides. Application of the presented LC-(APCI)MS technique in common astaxanthin ester analysis will forestall erroneous xanthophyll ester assignment in natural sources.
Room Temperature, Hybrid Sodium-Based Flow Batteries with Multi-Electron Transfer Redox Reactions
Shamie, Jack S.; Liu, Caihong; Shaw, Leon L.; Sprenkle, Vincent L.
2015-01-01
We introduce a new concept of hybrid Na-based flow batteries (HNFBs) with a molten Na alloy anode in conjunction with a flowing catholyte separated by a solid Na-ion exchange membrane for grid-scale energy storage. Such HNFBs can operate at ambient temperature, allow catholytes to have multiple electron transfer redox reactions per active ion, offer wide selection of catholyte chemistries with multiple active ions to couple with the highly negative Na alloy anode, and enable the use of both aqueous and non-aqueous catholytes. Further, the molten Na alloy anode permits the decoupled design of power and energy since a large volume of the molten Na alloy can be used with a limited ion-exchange membrane size. In this proof-of-concept study, the feasibility of multi-electron transfer redox reactions per active ion and multiple active ions for catholytes has been demonstrated. The critical barriers to mature this new HNFBs have also been explored. PMID:26063629
Ground-Based High-Power Microwave Decoy Discrimination System.
1987-12-23
understanding of plasma instabilities, self-induced magnetic effects , space - charge considerations, production of ion currents, etc. 3.3.4 Cross-Field...breakdown, due to small potential differences. Interaction volumes can therefore be large, avoiding breakdown and space - charge effects (at the price...the interference of the incident and reflected wave, and by the electrostatic forces of the surface (positive) and space charge (negative) trapped in
Positive and negative ion beam merging system for neutral beam production
Leung, Ka-Ngo; Reijonen, Jani
2005-12-13
The positive and negative ion beam merging system extracts positive and negative ions of the same species and of the same energy from two separate ion sources. The positive and negative ions from both sources pass through a bending magnetic field region between the pole faces of an electromagnet. Since the positive and negative ions come from mirror image positions on opposite sides of a beam axis, and the positive and negative ions are identical, the trajectories will be symmetrical and the positive and negative ion beams will merge into a single neutral beam as they leave the pole face of the electromagnet. The ion sources are preferably multicusp plasma ion sources. The ion sources may include a multi-aperture extraction system for increasing ion current from the sources.
Nanoscience Supporting the Research on the Negative Electrodes of Li-Ion Batteries
Mauger, Alain; Julien, Christian M.
2015-01-01
Many efforts are currently made to increase the limited capacity of Li-ion batteries using carbonaceous anodes. The way to reach this goal is to move to nano-structured material because the larger surface to volume ratio of particles and the reduction of the electron and Li path length implies a larger specific capacity. Additionally, nano-particles can accommodate such a dilatation/contraction during cycling, resulting in a calendar life compatible with a commercial use. In this review attention is focused on carbon, silicon, and Li4Ti5O12 materials, because they are the most promising for applications. PMID:28347121
Capra, Janne P; Eskelinen, Sinikka M
2017-01-01
A prerequisite for tissue electrolyte homeostasis is highly regulated ion and water transport through kidney or intestinal epithelia. In the present work, we monitored changes in the cell and luminal volumes of type II Madin-Darby canine kidney (MDCK) cells grown in a 3D environment in response to drugs, or to changes in the composition of the basal extracellular fluid. Using fluorescent markers and high-resolution spinning disc confocal microscopy, we could show that lack of sodium and potassium ions in the basal fluid (tetramethylammonium chloride (TMACl) buffer) induces a rapid increase in the cell and luminal volumes. This transepithelial water flow could be regulated by inhibitors and agonists of chloride channels. Hence, the driving force for the transepithelial water flow is chloride secretion, stimulated by hyperpolarization. Chloride ion depletion of the basal fluid (using sodium gluconate buffer) induces a strong reduction in the lumen size, indicating reabsorption of water from the lumen to the basal side. Lumen size also decreased following depolarization of the cell interior by rendering the membrane permeable to potassium. Hence, MDCK cells are capable of both absorption and secretion of chloride ions and water; negative potential within the lumen supports secretion, while depolarizing conditions promote reabsorption.
Dual mode ion mobility spectrometer and method for ion mobility spectrometry
Scott, Jill R [Idaho Falls, ID; Dahl, David A [Idaho Falls, ID; Miller, Carla J [Idaho Falls, ID; Tremblay, Paul L [Idaho Falls, ID; McJunkin, Timothy R [Idaho Falls, ID
2007-08-21
Ion mobility spectrometer apparatus may include an ion interface that is operable to hold positive and negative ions and to simultaneously release positive and negative ions through respective positive and negative ion ports. A first drift chamber is operatively associated with the positive ion port of the ion interface and encloses an electric field therein. A first ion detector operatively associated with the first drift chamber detects positive ions from the first drift chamber. A second drift chamber is operatively associated with the negative ion port of the ion interface and encloses an electric field therein. A second ion detector operatively associated with the second drift chamber detects negative ions from said second drift chamber.
Electron temperature profiles in axial field 2.45 GHz ECR ion source with a ceramic chamber
NASA Astrophysics Data System (ADS)
Abe, K.; Tamura, R.; Kasuya, T.; Wada, M.
2017-08-01
An array of electrostatic probes was arranged on the plasma electrode of a 2.45 GHz microwave driven axial magnetic filter field type negative hydrogen (H-) ion source to clarify the spatial plasma distribution near the electrode. The measured spatial distribution of electron temperature indicated the lower temperature near the extraction hole of the plasma electrode corresponding to the effectiveness of the axial magnetic filter field geometry. When the ratio of electron saturation current to the ion saturation current was plotted as a function of position, the obtained distribution showed a higher ratio near the hydrogen gas inlet through which ground state hydrogen molecules are injected into the source. Though the efficiency in producing H- ions is smaller for a 2.45 GHz source than a source operated at 14 GHz, it gives more volume to measure spatial distributions of various plasma parameters to understand fundamental processes that are influential on H- production in this type of ion sources.
Spatiotemporal dynamics of charged species in the afterglow of plasmas containing negative ions.
Kaganovich, I D; Ramamurthi, B N; Economou, D J
2001-09-01
The spatiotemporal evolution of charged species densities and wall fluxes during the afterglow of an electronegative discharge has been investigated. The decay of a plasma with negative ions consists of two stages. During the first stage of the afterglow, electrons dominate plasma diffusion and negative ions are trapped inside the vessel by the static electric field; the flux of negative ions to the walls is nearly zero. During this stage, the electron escape frequency increases considerably in the presence of negative ions, and can eventually approach free electron diffusion. During the second stage of the afterglow, electrons have disappeared, and positive and negative ions diffuse to the walls with the ion-ion ambipolar diffusion coefficient. Theories for plasma decay have been developed for equal and strongly different ion (T(i)) and electron (T(e)) temperatures. In the case T(i)=T(e), the species spatial profiles are similar and an analytic solution exists. When detachment is important in the afterglow (weakly electronegative gases, e.g., oxygen) the plasma decay crucially depends on the product of negative ion detachment frequency (gamma(d)) and diffusion time (tau(d)). If gamma(d)tau(d)>2, negative ions convert to electrons during their diffusion towards the walls. The presence of detached electrons results in "self-trapping" of the negative ions, due to emerging electric fields, and the negative ion flux to the walls is extremely small. In the case T(i)
Effects of the plasma-facing materials on the negative ion H ‑ density in an ECR (2.45 GHz) plasma
NASA Astrophysics Data System (ADS)
Bentounes, J.; Béchu, S.; Biggins, F.; Michau, A.; Gavilan, L.; Menu, J.; Bonny, L.; Fombaron, D.; Bès, A.; Lebedev, Yu A.; Shakhatov, V. A.; Svarnas, P.; Hassaine, T.; Lemaire, J. L.; Lacoste, A.
2018-05-01
Within the framework of fundamental research, the present work focuses on the role of surface material in the production of H ‑ negative ion, with a potential application of designing cesium-free H ‑ negative ion sources oriented to fusion application. It is widely accepted that the main reaction leading to H ‑ production, in the plasma volume, is the dissociative attachment of low-energy electrons (T e ≤ 1 eV) on highly ro-vibrationally excited hydrogen molecules. In parallel with other mechanisms, the density of these excited molecules may be enhanced by means of the recombinative desorption, i.e. the interaction between surface absorbed atoms with other atoms (surface adsorbed or not) through the path {H}{{ads}}+{H}{{gas}/{{ads}}}\\to {H}2{(v,J)}{{gas}}+{{Δ }}E. Accordingly, a systematic study on the role played by the surface in this reaction, with respect to the production of H ‑ ion in the plasma volume, is here performed. Thus, tantalum and tungsten (already known as H ‑ enhancers) and quartz (inert surface) materials are employed as inner surfaces of a test bench chamber. The plasma inside the chamber is produced by electron cyclotron resonance (ECR) driving and it is characterized with conventional electrostatic probes, laser photodetachment, and emission and absorption spectroscopy. Two different positions (close to and away from the ECR driving zone) are investigated under various conditions of pressure and power. The experimental results are supported by numerical data generated by a 1D model. The latter couples continuity and electron energy balance equations in the presence of magnetic field, and incorporates vibrational kinetics, H2 molecular reactions, H electronically excited states and ground-state species kinetics. In the light of this study, recombinative desorption has been evidenced as the most probable mechanism, among others, responsible for an enhancement by a factor of about 3.4, at 1.6 Pa and 175 W of microwave power, in the case of tantalum.
Electron cyclotron resonance heating by magnetic filter field in a negative hydrogen ion source.
Kim, June Young; Cho, Won-Hwi; Dang, Jeong-Jeung; Chung, Kyoung-Jae; Hwang, Y S
2016-02-01
The influence of magnetic filter field on plasma properties in the heating region has been investigated in a planar-type inductively coupled radio-frequency (RF) H(-) ion source. Besides filtering high energy electrons near the extraction region, the magnetic filter field is clearly observed to increase the electron temperature in the heating region at low pressure discharge. With increasing the operating pressure, enhancement of electron temperature in the heating region is reduced. The possibility of electron cyclotron resonance (ECR) heating in the heating region due to stray magnetic field generated by a filter magnet located at the extraction region is examined. It is found that ECR heating by RF wave field in the discharge region, where the strength of an axial magnetic field is approximately ∼4.8 G, can effectively heat low energy electrons. Depletion of low energy electrons in the electron energy distribution function measured at the heating region supports the occurrence of ECR heating. The present study suggests that addition of axial magnetic field as small as several G by an external electromagnet or permanent magnets can greatly increase the generation of highly ro-vibrationally excited hydrogen molecules in the heating region, thus improving the performance of H(-) ion generation in volume-produced negative hydrogen ion sources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoshida, M., E-mail: yoshida.masafumi@jaea.go.jp; Hanada, M.; Kojima, A.
2016-02-15
To understand the physics of the cesium (Cs) recycling in the large Cs-seeded negative ion sources relevant to ITER and JT-60SA with ion extraction area of 45-60 cm × 110-120 cm, the time evolution of the negative ion profile was precisely measured in JT-60SA where the ion extraction area is longitudinally segmented into 5. The Cs was seeded from the oven at 180 °C to the ion source. After 1 g of Cs input, surface production of the negative ions appeared only in the central segment where a Cs nozzle was located. Up to 2 g of Cs, the negative ionmore » profile was longitudinally expanded over full ion extraction area. The measured time evolution of the negative ion profile has the similar tendency of distribution of the Cs atoms that is calculated. From the results, it is suggested that Cs atom distribution is correlated with the formation of the negative ion profile.« less
Otero, I; Lepre, L F; Dequidt, A; Husson, P; Costa Gomes, M F
2017-10-19
The effect of the addition of a third ion to the ionic liquid 1-butyl-3-methylimidazolium acetate [C 4 C 1 Im][OAc] was studied through the measurement of the enthalpy of mixing and of the excess molar volume of its mixtures with 1-butyl-3-methylimidazolium trifluoroacetate [C 4 C 1 Im][CF 3 CO 2 ], 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [C 4 C 1 Im][NTf 2 ], and tetrabutylphosphonium acetate [P 4444 ][OAc]. Negative enthalpies of mixing (Δ mix H < 0) and positive excess molar volumes (V E > 0) were observed in all cases. The infrared and NMR studies of the pure ionic liquids and their mixtures show that the presence of a third ion with a weaker affinity with the common counterion contributes to prevailing the more favorable hydrogen-bond, herein always between the imidazolium cation and the acetate anion. Both radial and spatial distribution functions calculated by molecular simulation confirm this behavior. The remarkable enhancement of the viscosities of the [C 4 C 1 Im][OAc] + [P 4444 ][OAc] mixtures could be discussed in light of the calculated friction coefficients.
Excited Negative Ions and Molecules and Negative Ion Production
1992-01-01
theoretically to have negative electron affinities, analogous to the rare gases. Then, Froese Fischer et al.I found theoretically that Ca- exists...AD-A247 017 Final Report - January 1992 EXCITED NEGATIVE IONS AND MOLECULES AND NEGATIVE ION PRODUCTION OTIC James R. Peterson, Senior Staff...Vice President 92-05594Physical Sciences Division1111111111II fuii 1111 ii 92 3 ’ Final Report . January 1992 EXCITED NEGATIVE IONS AND MOLECULES AND
Synthetic and Biopolymer Gels - Similarities and Difference.
NASA Astrophysics Data System (ADS)
Horkay, Ferenc
2006-03-01
Ion exchange plays a central role in a variety of physiological processes, such as nerve excitation, muscle contraction and cell locomotion. Hydrogels can be used as model systems for identifying fundamental chemical and physical interactions that govern structure formation, phase transition, etc. in biopolymer systems. Polyelectrolyte gels are particularly well-suited to study ion-polymer interactions because their structure and physical-chemical properties (charge density, crosslink density, etc) can be carefully controlled. They are sensitive to different external stimuli such as temperature, ionic composition and pH. Surprisingly few investigations have been made on polyelectrolyte gels in salt solutions containing both monovalent and multivalent cations. We have developed an experimental approach that combines small angle neutron scattering and osmotic swelling pressure measurements. The osmotic pressure exerted on a macroscopic scale is a consequence of changes occurring at a molecular level. The intensity of the neutron scattering signal, which provides structural information as a function of spatial resolution, is directly related to the osmotic pressure. We have found a striking similarity in the scattering and osmotic behavior of polyacrylic acid gels and DNA gels swollen in nearly physiological salt solutions. Addition of calcium ions to both systems causes a sudden volume change. This volume transition, which occurs when the majority of the sodium counterions are replaced by calcium ions, is reversible. Such reversibility implies that the calcium ions are not strongly bound by the polyanion, but are free to move along the polymer chain, which allows these ions to form temporary bridges between negative charges on adjacent chains. Mechanical measurements reveal that the elastic modulus is practically unchanged in the calcium-containing gels, i.e., ion bridging is qualitatively different from covalent crosslinks.
Ion beam driven ion-acoustic waves in a plasma cylinder with negative ions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Suresh C.; Gahlot, Ajay
2008-07-15
An ion beam propagating through a magnetized plasma cylinder containing K{sup +} positive ions, electrons, and SF{sub 6}{sup -} negative ions drives electrostatic ion-acoustic (IA) waves to instability via Cerenkov interaction. Two electrostatic IA wave modes in presence of K{sup +} and SF{sub 6}{sup -} ions are studied. The phase velocity of the sound wave in presence of positive and negative ions increase with the relative density of negative ions. The unstable wave frequencies and the growth rate of both the modes in presence of positive and negative ions increase with the relative density of negative ions. The growth ratemore » of both the unstable modes in presence of SF{sub 6}{sup -} and K{sup +} ions scales as the one-third power of the beam density. Numerical calculations of the phase velocity, growth rate, and mode frequencies have been carried out for the parameters of the experiment of Song et al. [Phys. Fluids B 3, 284 (1991)].« less
Stinnett, R.W.
1984-05-08
A negative ion generator is formed from a magnetically insulated transmission line having a coating of graphite on the cathode for producing negative ions and a plurality of apertures on the opposed anode for the release of negative ions. Magnetic insulation keeps electrons from flowing from the cathode to the anode. A transverse magnetic field removes electrons which do escape through the apertures from the trajectory of the negative ions. 8 figs.
Stinnett, Regan W.
1984-01-01
A negative ion generator is formed from a magnetically insulated transmission line having a coating of graphite on the cathode for producing negative ions and a plurality of apertures on the opposed anode for the release of negative ions. Magnetic insulation keeps electrons from flowing from the cathode to the anode. A transverse magnetic field removes electrons which do escape through the apertures from the trajectory of the negative ions.
Preparation of electrochemically active silicon nanotubes in highly ordered arrays
Grünzel, Tobias; Lee, Young Joo; Kuepper, Karsten
2013-01-01
Summary Silicon as the negative electrode material of lithium ion batteries has a very large capacity, the exploitation of which is impeded by the volume changes taking place upon electrochemical cycling. A Si electrode displaying a controlled porosity could circumvent the difficulty. In this perspective, we present a preparative method that yields ordered arrays of electrochemically competent silicon nanotubes. The method is based on the atomic layer deposition of silicon dioxide onto the pore walls of an anodic alumina template, followed by a thermal reduction with lithium vapor. This thermal reduction is quantitative, homogeneous over macroscopic samples, and it yields amorphous silicon and lithium oxide, at the exclusion of any lithium silicides. The reaction is characterized by spectroscopic ellipsometry for thin silica films, and by nuclear magnetic resonance and X-ray photoelectron spectroscopy for nanoporous samples. After removal of the lithium oxide byproduct, the silicon nanotubes can be contacted electrically. In a lithium ion electrolyte, they then display the electrochemical waves also observed for other bulk or nanostructured silicon systems. The method established here paves the way for systematic investigations of how the electrochemical properties (capacity, charge/discharge rates, cyclability) of nanoporous silicon negative lithium ion battery electrode materials depend on the geometry. PMID:24205460
Measuring Light Air Ions in a Speleotherapeutic Cave
NASA Astrophysics Data System (ADS)
Roubal, Z.; Bartušek, K.; Szabó, Z.; Drexler, P.; Überhuberová, J.
2017-02-01
The paper deals with a methodology proposed for measuring the concentration of air ions in the environment of speleotherapeutic caves, and with the implementation of the AK-UTEE-v2 ionmeter. Speleotherapy, in the context of its general definition, is the medical therapy that utilizes the climate of selected caves to treat patients with health problems such as asthma. These spaces are characterized by the presence of high air humidity and they make extreme demands on the execution of the measuring device, the Gerdien tube (GT in the following) in particular, and on the amplifier electronics. The result is an automated measuring system using a GT with low-volume air flow, enabling long-term measuring of air ion concentration and determination of spectral ion characteristics. Interesting from the instrumentation viewpoint are the GT design, active shielding, and execution of the electrometric amplifier. A specific method for the calculation of spectral ion characteristics and the mode of automatic calibration were proposed and a procedure of automatic measurement in the absence of attendants was set up. The measuring system is designed for studying and long-term monitoring of the concentration of light negative ions in dependence on climatic conditions and on the mobility of ions occurring in the cave.
NASA Astrophysics Data System (ADS)
Fujita, S.; Yamamoto, T.; Yoshida, M.; Onai, M.; Kojima, A.; Hatayama, A.; Kashiwagi, M.
2017-08-01
In order to improve the uniformity of the negative ion production, the KEIO-MARC code has been applied to the QST's JT60SA negative ion source in three different magnetic configurations (i) MC-PGMF (Multi-Cusp and PG Magnetic Filter), (ii) TNT-MF (TeNT Magnetic Filter) and (iii) MTNT-MF (Modified TeNT Magnetic Filter). From the results, we have confirmed that the electron rotation inside the negative ion source is an essential element in order to obtain a uniform production of the negative ions. By adding extra tent magnets on the longitudinal sides, the electron rotation has been enhanced, and a uniform production of negative ions has been realized.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malapit, Giovanni M.; Department of Physical Sciences, University of the Philippines Baguio, Baguio City 2600; Mahinay, Christian Lorenz S.
2012-02-15
A plasma sputter-type negative ion source is utilized to produce and detect negative Zr ions with energies between 150 and 450 eV via a retarding potential-type electrostatic energy analyzer. Traditional and modified semi-cylindrical Faraday cups (FC) inside the analyzer are employed to sample negative Zr ions and measure corresponding ion currents. The traditional FC registered indistinct ion current readings which are attributed to backscattering of ions and secondary electron emissions. The modified Faraday cup with biased repeller guard ring, cut out these signal distortions leaving only ringings as issues which are theoretically compensated by fitting a sigmoidal function into themore » data. The mean energy and energy spread are calculated using the ion current versus retarding potential data while the beam width values are determined from the data of the transverse measurement of ion current. The most energetic negative Zr ions yield tighter energy spread at 4.11 eV compared to the least energetic negative Zr ions at 4.79 eV. The smallest calculated beam width is 1.04 cm for the negative Zr ions with the highest mean energy indicating a more focused beam in contrast to the less energetic negative Zr ions due to space charge forces.« less
NASA Astrophysics Data System (ADS)
Wimmer, C.; Fantz, U.; Aza, E.; Jovović, J.; Kraus, W.; Mimo, A.; Schiesko, L.
2017-08-01
The Neutral Beam Injection (NBI) system for fusion devices like ITER and, beyond ITER, DEMO requires large scale sources for negative hydrogen ions. BATMAN (Bavarian Test Machine for Negative ions) is a test facility attached with the prototype source for the ITER NBI (1/8 source size of the ITER source), dedicated to physical investigations due to its flexible access for diagnostics and exchange of source components. The required amount of negative ions is produced by surface conversion of hydrogen atoms or ions on caesiated surfaces. Several diagnostic tools (Optical Emission Spectroscopy, Cavity Ring-Down Spectroscopy for H-, Langmuir probes, Tunable Diode Laser Absorption Spectroscopy for Cs) allow the determination of plasma parameters in the ion source. Plasma parameters for two modifications of the standard prototype source have been investigated: Firstly, a second Cs oven has been installed in the bottom part of the back plate in addition to the regularly used oven in the top part of the back plate. Evaporation from the top oven only can lead to a vertically asymmetric Cs distribution in front of the plasma grid. Using both ovens, a symmetric Cs distribution can be reached - however, in most cases no significant change of the extracted ion current has been determined for varying Cs symmetry if the source is well-conditioned. Secondly, BATMAN has been equipped with a much larger, racetrack-shaped RF driver (area of 32×58 cm2) instead of the cylindrical RF driver (diameter of 24.5 cm). The main idea is that one racetrack driver could substitute two cylindrical drivers in larger sources with increased reliability and power efficiency. For the same applied RF power, the electron density is lower in the racetrack driver due to its five times higher volume. The fraction of hydrogen atoms to molecules, however, is at a similar level or even slightly higher, which is a promising result for application in larger sources.
Controlling plasma distributions as driving forces for ion migration during fs laser writing
NASA Astrophysics Data System (ADS)
Teddy Fernandez, Toney; Siegel, Jan; Hoyo, Jesus; Sotillo, Belen; Fernandez, Paloma; Solis, Javier
2015-04-01
The properties of structures written inside dielectrics with high repetition rate femtosecond lasers are known to depend strongly on the complex interplay of a large number of writing parameters. Recently, ion migration within the laser-excited volume has been identified as a powerful mechanism for changing the local element distribution and producing efficient optical waveguides. In this work it is shown that the transient plasma distribution induced during laser irradiation is a reliable monitor for predicting the final refractive index distribution of the waveguide caused by ion migration. By performing in situ plasma emission microscopy during the writing process inside a La-phosphate glass it is found that the long axis of the plasma distribution determines the axis of ion migration, being responsible for the local refractive index increase. This observation is also valid when strong positive or negative spherical aberration is induced, greatly deforming the focal volume and inverting the index profile. Even subtle changes in the writing conditions, such as an inversion of the writing direction (quill writing effect), show up in the form of a modified plasma distribution, which manifests as a modified index distribution. Finally, it is shown that the superior control over the waveguide properties employing the slit shaping technique is caused by the more confined plasma distribution produced. The underlying reasons for this unexpected result are discussed in terms of non-linear propagation and heat accumulation.
Wu, Chen-Fa; Lai, Chun-Hsien; Chu, Hone-Jay; Lin, Wen-Huang
2011-01-01
Negative air ions (NAI) produce biochemical reactions that increase the levels of the mood chemical serotonin in the environment. Moreover, they benefit both the psychological well being and the human body’s physiological condition. The aim of this research was to estimate and measure the spatial distributions of negative and positive air ions in a residential garden in central Taiwan. Negative and positive air ions were measured at thirty monitoring locations in the study garden from July 2009 to June 2010. Moreover, Kriging was applied to estimate the spatial distribution of negative and positive air ions, as well as the air ion index in the study area. The measurement results showed that the numbers of NAI and PAI differed greatly during the four seasons, the highest and the lowest negative and positive air ion concentrations were found in the summer and winter, respectively. Moreover, temperature was positively affected negative air ions concentration. No matter what temperature is, the ranges of variogram in NAI/PAI were similar during four seasons. It indicated that spatial patterns of NAI/PAI were independent of the seasons and depended on garden elements and configuration, thus the NAP/PAI was a good estimate of the air quality regarding air ions. Kriging maps depicted that the highest negative and positive air ion concentration was next to the waterfall, whereas the lowest air ions areas were next to the exits of the garden. The results reveal that waterscapes are a source of negative and positive air ions, and that plants and green space are a minor source of negative air ions in the study garden. Moreover, temperature and humidity are positively and negatively affected negative air ions concentration, respectively. The proposed monitoring and mapping approach provides a way to effectively assess the patterns of negative and positive air ions in future landscape design projects. PMID:21776231
Wu, Chen-Fa; Lai, Chun-Hsien; Chu, Hone-Jay; Lin, Wen-Huang
2011-06-01
Negative air ions (NAI) produce biochemical reactions that increase the levels of the mood chemical serotonin in the environment. Moreover, they benefit both the psychological well being and the human body's physiological condition. The aim of this research was to estimate and measure the spatial distributions of negative and positive air ions in a residential garden in central Taiwan. Negative and positive air ions were measured at thirty monitoring locations in the study garden from July 2009 to June 2010. Moreover, Kriging was applied to estimate the spatial distribution of negative and positive air ions, as well as the air ion index in the study area. The measurement results showed that the numbers of NAI and PAI differed greatly during the four seasons, the highest and the lowest negative and positive air ion concentrations were found in the summer and winter, respectively. Moreover, temperature was positively affected negative air ions concentration. No matter what temperature is, the ranges of variogram in NAI/PAI were similar during four seasons. It indicated that spatial patterns of NAI/PAI were independent of the seasons and depended on garden elements and configuration, thus the NAP/PAI was a good estimate of the air quality regarding air ions. Kriging maps depicted that the highest negative and positive air ion concentration was next to the waterfall, whereas the lowest air ions areas were next to the exits of the garden. The results reveal that waterscapes are a source of negative and positive air ions, and that plants and green space are a minor source of negative air ions in the study garden. Moreover, temperature and humidity are positively and negatively affected negative air ions concentration, respectively. The proposed monitoring and mapping approach provides a way to effectively assess the patterns of negative and positive air ions in future landscape design projects.
NASA Astrophysics Data System (ADS)
Roberts, J. M.; Veres, P.; Warneke, C.; Neuman, J. A.; Washenfelder, R. A.; Brown, S. S.; Baasandorj, M.; Burkholder, J. B.; Burling, I. R.; Johnson, T. J.; Yokelson, R. J.; de Gouw, J.
2010-07-01
A negative-ion proton-transfer chemical ionization mass spectrometric technique (NI-PT-CIMS), using acetate as the reagent ion, was applied to the measurement of volatile inorganic acids of atmospheric interest: hydrochloric (HCl), nitrous (HONO), nitric (HNO3), and isocyanic (HNCO) acids. Gas phase calibrations through the sampling inlet showed the method to be intrinsically sensitive (6-16 cts/pptv), but prone to inlet effects for HNO3 and HCl. The ion chemistry was found to be insensitive to water vapor concentrations, in agreement with previous studies of carboxylic acids. The inlet equilibration times for HNCO and HONO were 2 to 4 s, allowing for measurement in biomass burning studies. Several potential interferences in HONO measurements were examined: decomposition of HNO3·NO3- clusters within the CIMS, and NO2-water production on inlet surfaces, and were quite minor (≤1%, 3.3%, respectively). The detection limits of the method were limited by the instrument backgrounds in the ion source and flow tube, and were estimated to range between 16 and 50 pptv (parts per trillion by volume) for a 1 min average. The comparison of HONO measured by CIMS and by in situ FTIR showed good correlation and agreement to within 17%. The method provided rapid and accurate measurements of HNCO and HONO in controlled biomass burning studies, in which both acids were seen to be important products.
NASA Astrophysics Data System (ADS)
Roberts, J. M.; Veres, P.; Warneke, C.; Neuman, J. A.; Washenfelder, R. A.; Brown, S. S.; Baasandorj, M.; Burkholder, J. B.; Burling, I. R.; Johnson, T. J.; Yokelson, R. J.; de Gouw, J.
2010-01-01
A negative-ion proton transfer chemical ionization mass spectrometric technique (NI-PT-CIMS), using acetate as the reagent ion, was applied to the measurement of volatile inorganic acids of atmospheric interest: hydrochloric (HCl), nitrous (HONO), nitric (HNO3), and isocyanic (HNCO) acids. Gas phase calibrations through the sampling inlet showed the method to be intrinsically sensitive (6-16 cts/pptv), but prone to inlet effects for HNO3 and HCl. The ion chemistry was found to be insensitive to water vapor concentrations, in agreement with previous studies of carboxylic acids. The inlet equilibration times for HNCO and HONO were 2 to 4 s, allowing for measurement in biomass burning studies. Several potential interferences in HONO measurements were examined: decomposition of HNO3·NO3- clusters within the CIMS, and NO2-water production on inlet surfaces, and were quite minor (≤1%, 3.3%, respectively). The detection limits of the method were limited by the instrument backgrounds in the ion source and flow tube, and were estimated to range between 16 and 50 pptv (parts per trillion by volume) for a 1 min average. The comparison of HONO measured by CIMS and by in situ FTIR showed good correlation and agreement to within 17%. The method provided rapid and accurate measurements of HNCO and HONO in controlled biomass burning studies, in which both acids were seen to be important products.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberts, James M.; Veres, Patrick; Warneke, Carsten
2010-07-23
A negative-ion proton transfer chemical ionization mass spectrometric technique (NI-PT-CIMS), using acetate as the reagent ion, was applied to the measurement of volatile inorganic acids of atmospheric interest: hydrochloric (HCl), nitrous (HONO) nitric (HNO3), and isocyanic (HNCO) acids. Gas phase calibrations through the sampling inlet showed the method to be intrinsically sensitive (6-16 cts/pptv), but prone to inlet effects for HNO3 and HCl. The ion chemistry was found to be insensitive to water vapor concentrations, in agreement with previous studies of carboxylic acids. The inlet equilibration times for HNCO and HONO were 2 to 4 seconds, allowing for measurement inmore » biomass burning studies. Several potential interferences in HONO measurements were examined: decomposition of HNO3•NO3- clusters within the CIMS, and NO2-water production on inlet surfaces, and were quite minor (>_1%, 3.3%, respectively). The detection limits of the method were limited by the instrument backgrounds in the ion source and flow tube, and were estimated to range between 16 and 50 pptv (parts per trillion by volume). The comparison of HONO measured by CIMS and by in situ FTIR showed good correlation and agreement to within 17%. The method provided rapid and accurate measurements of HNCO and HONO in controlled biomass burning studies, and suggest both as products of biomass burning.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grisham, L. R.; Kwan, J. W.
2008-08-01
Some years ago it was suggested that halogen negative ions could offer a feasible alternative path to positive ions as a heavy ion fusion driver beam which would not suffer degradation due to electron accumulation in the accelerator and beam transport system, and which could be converted to a neutral beam by photodetachment near the chamber entrance if desired. Since then, experiments have demonstrated that negative halogen beams can be extracted and accelerated away from the gas plume near the source with a surviving current density close to what could be achieved with a positive ion of similar mass, andmore » with comparable optical quality. In demonstrating the feasibility of halogen negative ions as heavy ion driver beams, ion - ion plasmas, an interesting and somewhat novel state of matter, were produced. These plasmas, produced near the extractor plane of the sources, appear, based upon many lines of experimental evidence, to consist of almost equal densities of positive and negative chlorine ions, with only a small component of free electrons. Serendipitously, the need to extract beams from this plasma for driver development provides a unique diagnostic tool to investigate the plasma, since each component - positive ions, negative ions, and electrons - can be extracted and measured separately. We discuss the relevance of these observations to understanding negative ion beam extraction from electronegative plasmas such as halogens, or the more familiar hydrogen of magnetic fusion ion sources. We suggest a concept which might improve negative hydrogen extraction by the addition of a halogen. The possibility and challenges of producing ion - ion plasmas with thin targets of halogens or, perhaps, salt, is briefly addressed.« less
Photoluminescence from Au ion-implanted nanoporous single-crystal 12CaO•7Al2O3
NASA Astrophysics Data System (ADS)
Miyakawa, Masashi; Kamioka, Hayato; Hirano, Masahiro; Kamiya, Toshio; Sushko, Peter V.; Shluger, Alexander L.; Matsunami, Noriaki; Hosono, Hideo
2006-05-01
Implantation of Au+ ions into a single crystalline 12CaO•7Al2O3 (C12A7) was performed at high temperatures with fluences from 1×1014 to 3×1016cm-2 . This material is composed of positively charged sub-nanometer-sized cages compensated by extra-framework negatively charged species. The depth profile of concentrations of Au species was analyzed using Rutherford backscattering spectrometry. The measured optical spectra and ab initio embedded cluster calculations show that the implanted Au species are stabilized in the form of negative Au- ions below the fluences of ˜1×1016cm-2 (Au volume concentration of ˜2×1021cm-3 ). These ions are trapped in the cages and exhibit photoluminescence (PL) bands peaking at 3.05 and 2.34eV at temperatures below 150K . At fluences exceeding ˜3×1016cm-2 , the implanted Au atoms form nano-sized clusters. This is manifested in quenching of the PL bands and creation of an optical absorption band at 2.43eV due to the surface plasmon of free carriers in the cluster. The PL bands are attributed to the charge transfer transitions (Au0+e-→Au-) due to recombination of photo-excited electrons (e-) , transiently transferred by ultraviolet excitation into a nearby cages, with Au0 atoms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoshida, Masafumi, E-mail: yoshida.masafumi@jaea.go.jp; Hanada, Masaya; Kojima, Atsushi
2014-02-15
Non-uniformity of the negative ion beams in the JT-60 negative ion source with the world-largest ion extraction area was improved by modifying the magnetic filter in the source from the plasma grid (PG) filter to a tent-shaped filter. The magnetic design via electron trajectory calculation showed that the tent-shaped filter was expected to suppress the localization of the primary electrons emitted from the filaments and created uniform plasma with positive ions and atoms of the parent particles for the negative ions. By modifying the magnetic filter to the tent-shaped filter, the uniformity defined as the deviation from the averaged beammore » intensity was reduced from 14% of the PG filter to ∼10% without a reduction of the negative ion production.« less
Noise reduction in negative-ion quadrupole mass spectrometry
Chastagner, P.
1993-04-20
A quadrupole mass spectrometer (QMS) system is described having an ion source, quadrupole mass filter, and ion collector/recorder system. A weak, transverse magnetic field and an electron collector are disposed between the quadrupole and ion collector. When operated in negative ion mode, the ion source produces a beam of primarily negatively-charged particles from a sample, including electrons as well as ions. The beam passes through the quadrupole and enters the magnetic field, where the electrons are deflected away from the beam path to the electron collector. The negative ions pass undeflected to the ion collector where they are detected and recorded as a mass spectrum.
Noise reduction in negative-ion quadrupole mass spectrometry
Chastagner, Philippe
1993-01-01
A quadrupole mass spectrometer (QMS) system having an ion source, quadrupole mass filter, and ion collector/recorder system. A weak, transverse magnetic field and an electron collector are disposed between the quadrupole and ion collector. When operated in negative ion mode, the ion source produces a beam of primarily negatively-charged particles from a sample, including electrons as well as ions. The beam passes through the quadrupole and enters the magnetic field, where the electrons are deflected away from the beam path to the electron collector. The negative ions pass undeflected to the ion collector where they are detected and recorded as a mass spectrum.
Ball lightning dynamics and stability at moderate ion densities
NASA Astrophysics Data System (ADS)
Morrow, R.
2017-10-01
A general mechanism is presented for the dynamics and structure of ball lightning and for the maintenance of the ball lightning structure for several seconds. Results are obtained using a spherical geometry for air at atmospheric pressure, by solving the continuity equations for electrons, positive ions and negative ions coupled with Poisson’s equation. A lightning strike can generate conditions in the lightning channel with a majority of positive nitrogen ions, and a minority of negative oxygen ions and electrons. The calculations are initiated with electrons included; however, at the moderate ion densities chosen the electrons are rapidly lost to form negative ions, and after 1 µs their influence on the ion dynamics is negligible. Further development after 1 µs is followed using a simpler set of equations involving only positive ions and negative ions, but including ion diffusion. The space-charge electric field generated by the majority positive ions drives them from the centre of the distribution and drives the minority negative ions and electrons towards the centre of the distribution. In the central region the positive and negative ion distributions eventually overlap exactly and their space-charge fields cancel resulting in zero electric field, and the plasma ball formed is quite stable for a number of seconds. The formation of such plasma balls is not critically dependent on the initial diameter of the ion distributions, or the initial density of minority negative ions. The ion densities decrease relatively slowly due to mutual neutralization of positive and negative ions. The radiation from this neutralization process involving positive nitrogen ions and negative oxygen ions is not sufficient to account for the reported luminosity of ball lightning and some other source of luminosity is shown to be required; the plasma ball model used could readily incorporate other ions in order to account for the luminosity and range of colours reported for ball lightning. Additionally, ‘phantom plasma balls’ may well be generated and go unnoticed due to very low luminosity; luminous ball lightning may be the exception. Finally, the mechanism described here may also be active in the dynamics of bead lightning.
Negative ion beam development at Cadarache (invited)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simonin, A.; Bucalossi, J.; Desgranges, C.
1996-03-01
Neutral beam injection (NBI) is one of the candidates for plasma heating and current drive in the new generation of large magnetic fusion devices (ITER). In order to produce the required deuterium atom beams with energies of 1 MeV and powers of tens of MW, negative D{sup {minus}} ion beams are required. For this purpose, multiampere D{sup {minus}} beam production and 1 MeV electrostatic acceleration is being studied at Cadarache. The SINGAP experiment, a 1 MeV 0.1 A D{sup {minus}} multisecond beam accelerator facility, has recently started operation. It is equipped with a Pagoda ion source, a multiaperture 60 keVmore » preaccelerator and a 1 MV 120 mA power supply. The particular feature of SINGAP is that the postaccelerator merges the 60 keV beamlets, aiming at accelerating the whole beam to 1 MeV in a single gap. The 1 MV level was obtained in less than 2 weeks, the accumulated voltage on-time of being {approximately}22 min. A second test bed MANTIS, is devoted to the development of multiampere D{sup {minus}} sources. It is capable of driving discharges with current up to 2500 A at arc voltages up to 150 V. A large multicusp source has been tested in pure volume and cesiated operation. With cesium seeding, an accelerated D{sup {minus}} beam current density of up to 5.2 mA/cm{sup 2} (2 A of D{sup {minus}}) was obtained. A modification of the extractor is underway in order to improve this performance. A 3D Monte Carlo code has been developed to simulate the negative ion transport in magnetized plasma sources and optimize magnetic field configuration of the large area D{sup {minus}} sources. {copyright} {ital 1996 American Institute of Physics.}« less
Charging of dust grains in a plasma with negative ions
NASA Astrophysics Data System (ADS)
Kim, Su-Hyun; Merlino, Robert L.
2006-05-01
The effect of negative ions on the charging of dust particles in a plasma is investigated experimentally. A plasma containing a very low percentage of electrons is formed in a single-ended SF6 is admitted into the vacuum system. The relatively cold (Te≈0.2eV ) readily attach to SF6 molecules to form SF6- negative ions. Calculations of the dust charge indicate that for electrons, negative ions, and positive ions of comparable temperatures, the charge (or surface potential) of the dust can be positive if the positive ion mass is smaller than the negative ion mass and if ɛ, the ratio of the electron to positive ion density, is sufficiently small. The K+ positive ions (mass 39amu) and SF6- negative ions (mass 146amu), and also utilizes a rotating cylinder to dispense dust into the plasma column. Analysis of the current-voltage characteristics of a Langmuir probe in the dusty plasma shows evidence for the reduction in the (magnitude) of the negative dust charge and the transition to positively charged dust as the relative concentration of the residual electrons is reduced. Some remarks are offered concerning experiments that could become possible in a dusty plasma with positive grains.
Development of multi-ampered D{sup {minus}} source for fusion applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacquot, C.; Belchenko, Y.; Bucalossi, J.
1996-07-01
Large current and high current density deuterium negative ion sources are investigated on the MANTIS test bed with the objective of producing several amperes of D{sup {minus}} beams, at an accelerated current density in the range 10{endash}20 mA/cm{sup 2}, for possible application in future neutral beam injectors, e.g. ITER. As a first step, the DRAGON source, which was built by Culham Laboratory was tested on the MANTIS test bed in order to test this large source using only {open_quote}{open_quote}pure volume{close_quote}{close_quote} production of negative ions. The accelerated negative ion current is found to be a strong function of the source operatingmore » pressure and the arc power, and a significant isotopic effect is observed. The maximum accelerated currents are 1.3 A of H{sup {minus}} (3.3 mA/cm{sup 2}) and 0.5 A (1.3 mA/cm{sup 2}) at 110 kW of arc power. Cesium injection from a non conventional dispenser together with an improved extraction system, have significantly improved the D-current. A maximum of 14 mA/cm{sup 2} of D{sup {minus}1} are accelerated at 30 kV, which corresponds potentially, to more than 5 A for a full aperture extraction with an arc power of 140 kW (2250 A of arc current). {copyright} {ital 1996 American Institute of Physics.}« less
Electron-less negative ion extraction from ion-ion plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rafalskyi, Dmytro; Aanesland, Ane
2015-03-09
This paper presents experimental results showing that continuous negative ion extraction, without co-extracted electrons, is possible from highly electronegative SF{sub 6} ion-ion plasma at low gas pressure (1 mTorr). The ratio between the negative ion and electron densities is more than 3000 in the vicinity of the two-grid extraction and acceleration system. The measurements are conducted by both magnetized and non-magnetized energy analyzers attached to the external grid. With these two analyzers, we show that the extracted negative ion flux is almost electron-free and has the same magnitude as the positive ion flux extracted and accelerated when the grids aremore » biased oppositely. The results presented here can be used for validation of numerical and analytical models of ion extraction from ion-ion plasma.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miyamoto, K.; Okuda, S.; Hatayama, A.
2013-01-14
To understand the physical mechanism of the beam halo formation in negative ion beams, a two-dimensional particle-in-cell code for simulating the trajectories of negative ions created via surface production has been developed. The simulation code reproduces a beam halo observed in an actual negative ion beam. The negative ions extracted from the periphery of the plasma meniscus (an electro-static lens in a source plasma) are over-focused in the extractor due to large curvature of the meniscus.
Negative ion source with hollow cathode discharge plasma
Hershcovitch, Ady; Prelec, Krsto
1983-01-01
A negative ion source of the type where negative ions are formed by bombarding a low-work-function surface with positive ions and neutral particles from a plasma, wherein a highly ionized plasma is injected into an anode space containing the low-work-function surface. The plasma is formed by hollow cathode discharge and injected into the anode space along the magnetic field lines. Preferably, the negative ion source is of the magnetron type.
Negative ion source with low temperature transverse divergence optical system
Whealton, John H.; Stirling, William L.
1986-01-01
A negative ion source is provided which has extremely low transverse divergence as a result of a unique ion focusing system in which the focal line of an ion beam emanating from an elongated, concave converter surface is outside of the ion exit slit of the source and the path of the exiting ions. The beam source operates with a minimum ion temperature which makes possible a sharply focused (extremely low transverse divergence) ribbon like negative ion beam.
Negative ion source with low temperature transverse divergence optical system
Whealton, J.H.; Stirling, W.L.
1985-03-04
A negative ion source is provided which has extremely low transverse divergence as a result of a unique ion focusing system in which the focal line of an ion beam emanating from an elongated, concave converter surface is outside of the ion exit slit of the source and the path of the exiting ions. The beam source operates with a minimum ion temperature which makes possible a sharply focused (extremely low transverse divergence) ribbon like negative ion beam.
Ding, Dahu; Lei, Zhongfang; Yang, Yingnan; Feng, Chuanping; Zhang, Zhenya
2014-04-15
A novel nickel (II) hexacyanoferrate (III) functionalized agricultural residue-walnut shell (Ni(II)HCF(III)-WS) was developed to selectively remove cesium ion (Cs(+)) from aqueous solutions. This paper showed the first integral study on Cs(+) removal behavior and waste reduction analysis by using biomass adsorption material. The results indicated that the removal process was rapid and reached saturation within 2h. As a special characteristic of Ni(II)HCF(III)-WS, acidic condition was preferred for Cs(+) removal, which was useful for extending the application scope of the prepared biomass material in treating acidic radioactive liquid waste. The newly developed Ni(II)HCF(III)-WS could selectively remove Cs(+) though the coexisting ions (Na(+) and K(+) in this study) exhibited negative effects. In addition, approximately 99.8% (in volume) of the liquid waste was reduced by using Ni(II)HCF(III)-WS and furthermore 91.9% (in volume) of the spent biomass material (Cs-Ni(II)HCF(III)-WS) was reduced after incineration (at 500°C for 2h). Due to its relatively high distribution coefficient and significant volume reduction, Ni(II)HCF(III)-WS is expected to be a promising material for Cs(+) removal in practice. Copyright © 2014 Elsevier B.V. All rights reserved.
Non-destructive ion trap mass spectrometer and method
Frankevich, Vladimir E.; Soni, Manish H.; Nappi, Mario; Santini, Robert E.; Amy, Jonathan W.; Cooks, Robert G.
1997-01-01
The invention relates to an ion trap mass spectrometer of the type having an ion trapping volume defined by spaced end caps and a ring electrode. The ion trap includes a small sensing electrode which senses characteristic motion of ions trapped in said trapping volume and provides an image current. Ions are excited into characteristic motion by application of an excitation pulse to the trapped ions. The invention also relates to a method of operating such an ion trap.
Formation of stable inverse sheath in ion–ion plasma by strong negative ion emission
NASA Astrophysics Data System (ADS)
Zhang, Zhe; Wu, Bang; Yang, Shali; Zhang, Ya; Chen, Dezhi; Fan, Mingwu; Jiang, Wei
2018-06-01
The effect of strong charged particle emission on plasma–wall interactions is a classical, yet unresolved question in plasma physics. Previous studies on secondary electron emission have shown that with different emission coefficients, there are classical, space-charge-limited, and inverse sheaths. In this letter, we demonstrate that a stable ion–ion inverse sheath and ion–ion plasma are formed with strong surface emission of negative ions. The continuous space-charge-limited to inverse ion–ion sheath transition is observed, and the plasma near the surface consequently transforms into pure ion–ion plasma. The results may explain the long-puzzled experimental observation that the density of negative ions depends on only charge not mass in negative ion sources.
Negative ion source with hollow cathode discharge plasma
Hershcovitch, A.; Prelec, K.
1980-12-12
A negative ion source of the type where negative ions are formed by bombarding a low-work-function surface with positive ions and neutral particles from a plasma, wherein a highly ionized plasma is injected into an anode space containing the low-work-function surface is described. The plasma is formed by hollow cathode discharge and injected into the anode space along the magnetic field lines. Preferably, the negative ion source is of the magnetron type.
System integration of RF based negative ion experimental facility at IPR
NASA Astrophysics Data System (ADS)
Bansal, G.; Bandyopadhyay, M.; Singh, M. J.; Gahlaut, A.; Soni, J.; Pandya, K.; Parmar, K. G.; Sonara, J.; Chakraborty, A.
2010-02-01
The setting up of RF based negative ion experimental facility shall witness the beginning of experiments on the negative ion source fusion applications in India. A 1 MHz RF generator shall launch 100 kW RF power into a single driver on the plasma source to produce a plasma of density ~5 × 1012 cm-3. The source can deliver a negative ion beam of ~10 A with a current density of ~30 mA/cm2 and accelerated to 35 kV through an electrostatic ion accelerator. The experimental system is similar to a RF based negative ion source, BATMAN, presently operating at IPP. The subsystems for source operation are designed and procured principally from indigenous resources, keeping the IPP configuration as a base line. The operation of negative ion source is supported by many subsystems e.g. vacuum pumping system with gate valves, cooling water system, gas feed system, cesium delivery system, RF generator, high voltage power supplies, data acquisition and control system, and different diagnostics. The first experiments of negative ion source are expected to start at IPR from the middle of 2009.
Negative ion source development at the cooler synchrotron COSY/Jülich
NASA Astrophysics Data System (ADS)
Felden, O.; Gebel, R.; Maier, R.; Prasuhn, D.
2013-02-01
The Nuclear Physics Institute at the Forschungszentrum Jülich, a member of the Helmholtz Association, conducts experimental and theoretical basic research in the field of hadron, particle, and nuclear physics. It operates the cooler synchrotron COSY, an accelerator and storage ring, which provides unpolarized and polarized proton and deuteron beams with beam momenta of up to 3.7 GeV/c. Main activities of the accelerator division are the design and construction of the high energy storage ring HESR, a synchrotron and part of the international FAIR project, and the operation and development of COSY with injector cyclotron and ion sources. Filament driven volume sources and a charge exchange colliding beams source, based on a nuclear polarized atomic beam source, provide unpolarized and polarized H- or D- routinely for more than 6500 hours/year. Within the Helmholtz Association's initiative Accelerator Research and Development, ARD, the existing sources at COSY, as well as new sources for future programs, are investigated and developed. The paper reports about these plans, improved pulsed beams from the volume sources and the preparation of a source for the ELENA project at CERN.
NASA Astrophysics Data System (ADS)
Gao, Likun; Gan, Wentao; Cao, Guoliang; Zhan, Xianxu; Qiang, Tiangang; Li, Jian
2017-12-01
The Ag/WO3-wood was fabricated through a hydrothermal method and a silver mirror reaction. The system of visible-light activate Ag/WO3-wood was used to produce negative oxygen ions, and the effect of Ag nanoparticles on negative oxygen ions production was investigated. From the results of negative oxygen ions production tests, it can be observed that the sample doped with Ag nanoparticles, the concentration of negative oxygen ions is up to 1660 ions/cm3 after 60 min visible light irradiation. Moreover, for the Ag/WO3-wood, even after 60 min without irradiation, the concentration of negative oxygen ions could keep more than 1000 ions/cm3, which is up to the standard of the fresh air. Moreover, due to the porous structure of wood, the wood acted as substrate could promote the nucleation of nanoparticles, prevent the agglomeration of the particles, and thus lead the improvement of photocatalytic properties. And such wood-based functional materials with the property of negative oxygen ions production could be one of the most promising materials in the application of indoor decoration materials, which would meet people's pursuit of healthy, environment-friendly life.
Sekimoto, Kanako; Sakai, Mami; Takayama, Mitsuo
2012-06-01
The interaction between negative atmospheric ions and various types of organic compounds were investigated using atmospheric pressure corona discharge ionization (APCDI) mass spectrometry. Atmospheric negative ions such as O(2)(-), HCO(3)(-), COO(-)(COOH), NO(2)(-), NO(3)(-), and NO(3)(-)(HNO(3)) having different proton affinities served as the reactant ions for analyte ionization in APCDI in negative-ion mode. The individual atmospheric ions specifically ionized aliphatic and aromatic compounds with various functional groups as atmospheric ion adducts and deprotonated analytes. The formation of the atmospheric ion adducts under certain discharge conditions is most likely attributable to the affinity between the analyte and atmospheric ion and the concentration of the atmospheric ion produced under these conditions. The deprotonated analytes, in contrast, were generated from the adducts of the atmospheric ions with higher proton affinity attributable to efficient proton abstraction from the analyte by the atmospheric ion.
Development of the negative ion beams relevant to ITER and JT-60SA at Japan Atomic Energy Agency.
Hanada, M; Kojima, A; Tobari, H; Nishikiori, R; Hiratsuka, J; Kashiwagi, M; Umeda, N; Yoshida, M; Ichikawa, M; Watanabe, K; Yamano, Y; Grisham, L R
2016-02-01
In order to realize negative ion sources and accelerators to be applicable to International Thermonuclear Experimental Reactor and JT-60 Super Advanced, a large cesium (Cs)-seeded negative ion source and a multi-aperture and multi-stage electric acceleration have been developed at Japan Atomic Energy Agency (JAEA). Long pulse production and acceleration of the negative ion beams have been independently carried out. The long pulse production of the high current beams has achieved 100 s at the beam current of 15 A by modifying the JT-60 negative ion source. The pulse duration time is increased three times longer than that before the modification. As for the acceleration, a pulse duration time has been also extended two orders of magnitudes from 0.4 s to 60 s. The developments of the negative ion source and acceleration at JAEA are well in progress towards the realization of the negative ion sources and accelerators for fusion applications.
A negative ion beam application to artificial formation of neuron network in culture
NASA Astrophysics Data System (ADS)
Tsuji, Hiroshi; Sato, Hiroko; Baba, Takahiro; Gotoh, Yasuhito; Ishikawa, Junzo
2000-02-01
A negative ion beam modification of the biocompatibility of polystyrene surface was investigated for the artificial formation of neuron network in culture with respect to negative ion species. Negative ions of silver, copper or carbon were implanted in nontreated polystyrene (NTPS) dishes at conditions of 20 keV and 3×1015ions/cm2 through a mask with many slits of 60 μm in width. For the surface wettability, the contact angle of ion-implanted NTPS was about 75° for silver-negative ions, which was lower than 86° of the original NTPS. For carbon implantation, on the contrary, the contact angles did not change from the original value. In culture experiment using neuron cells of PC-12h (rat adrenal pheochromocytoma), the cells cultured with serum medium in two days showed the cell attachment and growth in number only at the ion-implanted region on NTPS for all ion species. In another two days in culture with nonserum medium including a nerve growth factor, the outgrowth of neural protrusions was also observed only at the ion-implanted region for all ion species. There was a difference in number of attached cells for ion species. The silver-negative ion-implanted NTPS had a large effect for cell attachment compared with other two ion species. This reason is considered to be due to the lowest contract angles among them.
Investigation of a Mercury-Argon Hot Cathode Discharge
NASA Astrophysics Data System (ADS)
Wamsley, Robert Charles
Classical absorption and laser induced fluorescence (LIF) experiments are used to investigate processes in the cathode region of a Hg-Ar hot cathode discharge. The absorption and LIF measurements are used to test the qualitative understanding and develop a quantitative model of a hot cathode discharge. The main contribution of this thesis is a model of the negative glow region that demonstrates the importance of Penning ionization to the ionization balance in the negative glow. We modeled the excited argon balance equation using a Monte Carlo simulation. In this simulation we used the trapped radiative decay rate of the resonance levels and the Penning ionization rate as the dominant loss terms in the balance equation. The simulated data is compared to and found to agree with absolute excited argon densities measured in a classical absorption experiment. We found the primary production rate per unit volume of excited Ar atoms in the simulation is sharply peaked near the cathode hot spot. We used the ion production rate from this simulation and a Green's function solution to the ambipolar diffusion equation to calculate the contribution of Penning ionization to the total ion density. We compared the results of this calculation to our experimental values of the Hg ^+ densities in the negative glow. We found that Penning ionization is an important and possibly the dominant ionization process in the negative glow.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oudini, N.; Laboratoire des plasmas de Decharges, Centre de Developement des Technologies Avancees, Cite du 20 Aout BP 17 Baba Hassen, 16081 Algiers; Raimbault, J.-L.
2013-04-15
A one-dimensional electronegative plasma situated between two symmetrical parallel electrodes under DC bias is studied by Particle-In-Cell simulation with Monte Carlo Collisions. By varying the electronegativity {alpha}{identical_to}n{sub -}/n{sub e} from the limit of electron-ion plasmas (negative ion free) to ion-ion plasmas (electron free), the sheaths formation, the negative ion flux flowing towards the electrodes, and the particle velocities at the sheath edges are investigated. Depending on {alpha}, it is shown that the electronegative plasma behavior can be described by four regimes. In the lowest regime of {alpha}, i.e., {alpha} < 50, negative ions are confined by two positive sheaths withinmore » the plasma, while in the higher regimes of {alpha}, a negative sheath is formed and the negative ion flux can be extracted from the bulk plasma. In the two intermediate regimes of {alpha}, i.e., 50 < {alpha} < 10{sup 5}, both the electron and the negative ion fluxes are involved in the neutralization of the positive ions flux that leaves the plasma. In particular, we show that the velocity of the negative ions entering the negative sheath is affected by the presence of the electrons, and is not given by the modified Bohm velocity generally accepted for electronegative plasmas. For extremely high electronegativity, i.e., {alpha} > 10{sup 5}, the presence of electrons in the plasma is marginal and the electronegative plasma can be considered as an ion-ion plasma (electron free).« less
Ion detection device and method with compressing ion-beam shutter
Sperline, Roger P [Tucson, AZ
2009-05-26
An ion detection device, method and computer readable medium storing instructions for applying voltages to shutter elements of the detection device to compress ions in a volume defined by the shutter elements and to output the compressed ions to a collector. The ion detection device has a chamber having an inlet and receives ions through the inlet, a shutter provided in the chamber opposite the inlet and configured to allow or prevent the ions to pass the shutter, the shutter having first and second shutter elements, a collector provided in the chamber opposite the shutter and configured to collect ions passed through the shutter, and a processing unit electrically connected to the first and second shutter elements. The processing unit applies, during a first predetermined time interval, a first voltage to the first shutter element and a second voltage to the second shutter element, the second voltage being lower than the first voltage such that ions from the inlet enter a volume defined by the first and second shutter elements, and during a second predetermined time interval, a third voltage to the first shutter element, higher than the first voltage, and a fourth voltage to the second shutter element, the third voltage being higher than the fourth voltage such that ions that entered the volume are compressed as the ions exit the volume and new ions coming from the inlet are prevented from entering the volume. The processing unit is electrically connected to the collector and configured to detect the compressed ions based at least on a current received from the collector and produced by the ions collected by the collector.
Aberration of a negative ion beam caused by space charge effect.
Miyamoto, K; Wada, S; Hatayama, A
2010-02-01
Aberrations are inevitable when the charged particle beams are extracted, accelerated, transmitted, and focused with electrostatic and magnetic fields. In this study, we investigate the aberration of a negative ion accelerator for a neutral beam injector theoretically, especially the spherical aberration caused by the negative ion beam expansion due to the space charge effect. The negative ion current density profiles with the spherical aberration are compared with those without the spherical aberration. It is found that the negative ion current density profiles in a log scale are tailed due to the spherical aberration.
NASA Astrophysics Data System (ADS)
Sekimoto, K.; Takayama, M.
2008-12-01
The dependence of negative ion formation on the inhomogeneous electric field strength in atmospheric pressure negative corona discharge with point-to-plane electrodes has been described. The distribution of negative ions HO-, NOx - and COx - and their abundances on the plane electrode was obtained with a mass spectrometer. The ion distribution on the plane was divided into two regions, the center region on the needle axis and peripheral region occurring the dominant NOx - and COx - ions and HO- ion, respectively. The calculated electric field strength in inhomogeneous electric field established on the needle tip surface suggested that the abundant formation of NOx - and COx - ions and HO- ion is attributed to the high field strength at the tip apex region over 108 Vm-1 and the low field strength at the tip peripheral region of the order of 107 Vm-1, respectively. The formation of HO-, NOx - and COx - has been discussed from the standpoint of negative ion evolution based on the thermochemical reaction and the kinetic energy of electron emitted from the needle tip.
NASA Astrophysics Data System (ADS)
McAdams, R.; Bacal, M.
2010-08-01
For the case of negative ions from a cathode entering a plasma, the maximum negative ion flux and the positive ion flux before the formation of a virtual cathode have been calculated for particular plasma conditions. The calculation is based on a simple modification of an analysis of electron emission into a plasma containing negative ions. The results are in good agreement with a 1d3v PIC code model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rafalskyi, Dmytro, E-mail: dmytro.rafalskyi@lpp.polytechnique.fr; Popelier, Lara; Aanesland, Ane
The PEGASES (Plasma Propulsion with Electronegative Gases) thruster is a gridded ion thruster, where both positive and negative ions are accelerated to generate thrust. In this way, additional downstream neutralization by electrons is redundant. To achieve this, the thruster accelerates alternately positive and negative ions from an ion-ion plasma where the electron density is three orders of magnitude lower than the ion densities. This paper presents a first experimental study of the alternate acceleration in PEGASES, where SF{sub 6} is used as the working gas. Various electrostatic probes are used to investigate the source plasma potential and the energy, composition,more » and current of the extracted beams. We show here that the plasma potential control in such system is key parameter defining success of ion extraction and is sensitive to both parasitic electron current paths in the source region and deposition of sulphur containing dielectric films on the grids. In addition, large oscillations in the ion-ion plasma potential are found in the negative ion extraction phase. The oscillation occurs when the primary plasma approaches the grounded parts of the main core via sub-millimetres technological inputs. By controlling and suppressing the various undesired effects, we achieve perfect ion-ion plasma potential control with stable oscillation-free operation in the range of the available acceleration voltages (±350 V). The measured positive and negative ion currents in the beam are about 10 mA for each component at RF power of 100 W and non-optimized extraction system. Two different energy analyzers with and without magnetic electron suppression system are used to measure and compare the negative and positive ion and electron fluxes formed by the thruster. It is found that at alternate ion-ion extraction the positive and negative ion energy peaks are similar in areas and symmetrical in position with +/− ion energy corresponding to the amplitude of the applied acceleration voltage.« less
Investigations of negative and positive cesium ion species
NASA Technical Reports Server (NTRS)
Chanin, L. M.
1978-01-01
A direct test is provided of the hypothesis of negative ion creation at the anode or collector of a diode operating under conditions simulating a cesium thermionic converter. The experimental technique involves using direct ion sampling through the collector electrode with mass analysis using a quadrupole mass analyzer. Similar measurements are undertaken on positive ions extracted through the emitter electrode. Measurements were made on a variety of gases including pure cesium, helium-cesium mixtures and cesium-hydrogen as well as cesium-xenon mixtures. The gas additive was used primarily to aid in understanding the negative ion formation processes. Measurements were conducted using emitter (cathode) temperatures up to about 1000 F. The major negative ion identified through the collector was Cs(-) with minor negative ion peaks tentatively identified as H(-), H2(-), H3(-), He(-) and a mass 66. Positive ions detected were believed to be Cs(+), Cs2(+) and Cs3(+).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kojima, A.; Hanada, M.; Yoshida, M.
2015-04-08
The temperature control system of the large-size plasma grid has been developed to realize the long pulse production of high-current negative ions for JT-60SA. By using this prototype system for the JT-60SA ion source, 15 A negative ions has been sustained for 100 s for the first time, which is three times longer than that obtained in JT-60U. In this system, a high-temperature fluorinated fluid with a high boiling point of 270 degree Celsius is circulated in the cooling channels of the plasma grids (PG) where a cesium (Cs) coverage is formed to enhance the negative ion production. Because themore » PG temperature control had been applied to only 10% of the extraction area previously, the prototype PG with the full extraction area (110 cm × 45 cm) was developed to increase the negative ion current in this time. In the preliminary results of long pulse productions of high-current negative ions at a Cs conditioning phase, the negative ion production was gradually degraded in the last half of 100 s pulse where the temperature of an arc chamber wall was not saturated. From the spectroscopic measurements, it was found that the Cs flux released from the wall might affect to the negative ion production, which implied the wall temperature should be kept low to control the Cs flux to the PG for the long-pulse high-current production. The obtained results of long-pulse production and the PG temperature control method contributes the design of the ITER ion source.« less
Hershcovitch, A.
1984-02-13
A process for selectively neutralizing H/sup -/ ions in a magnetic field to produce an intense negative hydrogen ion beam with spin polarized protons. Characteristic features of the process include providing a multi-ampere beam of H/sup -/ ions that are
Breathing of Graphite Particles in a Lithium-Ion Battery
NASA Astrophysics Data System (ADS)
Takata, Keiji; Okuda, Mitsuhiro; Yura, Nobuki; Tamura, Ryota
2012-04-01
We imaged changes in volume of graphite particles in a Li-ion battery due to the insertion and extraction of Li ions using scanning probe microscopy. When Li ions were extracted from the graphite particles, the particles were contracted, while expansion was induced in the interspaces between the particles. Variations of the images of volume changes depending on modulation frequencies clearly showed lithium intercalation. A linear relationship between the amplitudes of volume changes and the products of the diffusion elements and the reciprocals of the frequencies has been proven. Thus, the detected signals quantitatively well corresponded to the lithium ion movements.
Tran, T T Nha; Brinkworth, Craig S; Bowie, John H
2015-01-30
To use negative-ion nano-electrospray ionization mass spectrometry of peptides from the tryptic digest of ricin D, to provide sequence information; in particular, to identify disulfide position and connectivity. Negative-ion fragmentations of peptides from the tryptic digest of ricin D was studied using a Waters QTOF2 mass spectrometer operating in MS and MS(2) modes. Twenty-three peptides were obtained following high-performance liquid chromatography and studied by negative-ion mass spectrometry covering 73% of the amino-acid residues of ricin D. Five disulfide-containing peptides were identified, three intermolecular and two intramolecular disulfide-containing peptides. The [M-H](-) anions of the intermolecular disulfides undergo facile cleavage of the disulfide units to produce fragment peptides. In negative-ion collision-induced dissociation (CID) these source-formed anions undergo backbone cleavages, which provide sequencing information. The two intramolecular disulfides were converted proteolytically into intermolecular disulfides, which were identified as outlined above. The positions of the five disulfide groups in ricin D may be determined by characteristic negative-ion cleavage of the disulfide groups, while sequence information may be determined using the standard negative-ion backbone cleavages of the resulting cleaved peptides. Negative-ion mass spectrometry can also be used to provide partial sequencing information for other peptides (i.e. those not containing Cys) using the standard negative-ion backbone cleavages of these peptides. Copyright © 2014 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Fubiani, G.; Boeuf, J. P.
2013-11-01
Results from a 3D self-consistent Particle-In-Cell Monte Carlo Collisions (PIC MCC) model of a high power fusion-type negative ion source are presented for the first time. The model is used to calculate the plasma characteristics of the ITER prototype BATMAN ion source developed in Garching. Special emphasis is put on the production of negative ions on the plasma grid surface. The question of the relative roles of the impact of neutral hydrogen atoms and positive ions on the cesiated grid surface has attracted much attention recently and the 3D PIC MCC model is used to address this question. The results show that the production of negative ions by positive ion impact on the plasma grid is small with respect to the production by atomic hydrogen or deuterium bombardment (less than 10%).
NASA Astrophysics Data System (ADS)
Chen, Jizhang; Zhou, Xiaoyan; Mei, Changtong; Xu, Junling; Zhou, Shuang; Wong, Ching-Ping
2017-02-01
As a promising renewable resource, biomass has several advantages such as wide availability, low cost, and versatility. In this study, we use peanut shell, wheat straw, rice straw, corn stalk, cotton stalk, and soybean stalk as the precursors to synthesize hierarchically porous carbon as the positive electrode material for hybrid Na-ion capacitors, aiming to establish a criterion of choosing suitable biomass precursors. The carbon derived from wood-like cotton stalk has abundant interconnected macropores, high surface area of 1994 m2 g-1, and large pore volume of 1.107 cm3 g-1, thanks to which it exhibits high reversible capacitance of 160.5 F g-1 at 0.2 A g-1 and great rate capability, along with excellent cyclability. The carbonaceous positive electrode material is combined with a Na2Ti2.97Nb0.03O7 negative electrode material to assemble a hybrid Na-ion capacitor, which delivers a high specific energy of 169.4 Wh kg-1 at 120.5 W kg-1, ranking among the best-performed hybrid ion capacitors.
Ion confinement and transport in a toroidal plasma with externally imposed radial electric fields
NASA Technical Reports Server (NTRS)
Roth, J. R.; Krawczonek, W. M.; Powers, E. J.; Kim, Y. C.; Hong, H. Y.
1979-01-01
Strong electric fields were imposed along the minor radius of the toroidal plasma by biasing it with electrodes maintained at kilovolt potentials. Coherent, low-frequency disturbances characteristic of various magnetohydrodynamic instabilities were absent in the high-density, well-confined regime. High, direct-current radial electric fields with magnitudes up to 135 volts per centimeter penetrated inward to at least one-half the plasma radius. When the electric field pointed radially toward, the ion transport was inward against a strong local density gradient; and the plasma density and confinement time were significantly enhanced. The radial transport along the electric field appeared to be consistent with fluctuation-induced transport. With negative electrode polarity the particle confinement was consistent with a balance of two processes: a radial infusion of ions, in those sectors of the plasma not containing electrodes, that resulted from the radially inward fields; and ion losses to the electrodes, each of the which acted as a sink and drew ions out of the plasma. A simple model of particle confinement was proposed in which the particle confinement time is proportional to the plasma volume. The scaling predicted by this model was consistent with experimental measurements.
Dust ion-acoustic shock waves in magnetized pair-ion plasma with kappa distributed electrons
NASA Astrophysics Data System (ADS)
Kaur, B.; Singh, M.; Saini, N. S.
2018-01-01
We have performed a theoretical and numerical analysis of the three dimensional dynamics of nonlinear dust ion-acoustic shock waves (DIASWs) in a magnetized plasma, consisting of positive and negative ion fluids, kappa distributed electrons, immobile dust particulates along with positive and negative ion kinematic viscosity. By employing the reductive perturbation technique, we have derived the nonlinear Zakharov-Kuznetsov-Burgers (ZKB) equation, in which the nonlinear forces are balanced by dissipative forces (associated with kinematic viscosity). It is observed that the characteristics of DIASWs are significantly affected by superthermality of electrons, magnetic field strength, direction cosines, dust concentration, positive to negative ions mass ratio and viscosity of positive and negative ions.
Negative ions of polyatomic molecules.
Christophorou, L G
1980-01-01
In this paper general concepts relating to, and recent advances in, the study of negative ions of polyatomic molecules area discussed with emphasis on halocarbons. The topics dealt with in the paper are as follows: basic electron attachment processes, modes of electron capture by molecules, short-lived transient negative ions, dissociative electron attachment to ground-state molecules and to "hot" molecules (effects of temperature on electron attachment), parent negative ions, effect of density, nature, and state of the medium on electron attachment, electron attachment to electronically excited molecules, the binding of attached electrons to molecules ("electron affinity"), and the basic and the applied significance of negative-ion studies. PMID:7428744
The influence of Mg doping on the formation of Ga vacancies and negative ions in GaN bulk crystals
NASA Astrophysics Data System (ADS)
Saarinen, K.; Nissilä, J.; Hautojärvi, P.; Likonen, J.; Suski, T.; Grzegory, I.; Lucznik, B.; Porowski, S.
1999-10-01
Gallium vacancies and negative ions are observed in GaN bulk crystals by applying positron lifetime spectroscopy. The concentration of Ga vacancies decreases with increasing Mg doping, as expected from the behavior of the VGa formation energy as a function of the Fermi level. The concentration of negative ions correlates with that of Mg impurities determined by secondary ion mass spectrometry. We thus attribute the negative ions to MgGa-. The negative charge of Mg suggests that Mg doping converts n-type GaN to semi-insulating mainly due to the electrical compensation of ON+ donors by MgGa- acceptors.
Mazzini, Virginia; Craig, Vincent S J
2017-10-01
The importance of electrolyte solutions cannot be overstated. Beyond the ionic strength of electrolyte solutions the specific nature of the ions present is vital in controlling a host of properties. Therefore ion specificity is fundamentally important in physical chemistry, engineering and biology. The observation that the strengths of the effect of ions often follows well established series suggests that a single predictive and quantitative description of specific-ion effects covering a wide range of systems is possible. Such a theory would revolutionise applications of physical chemistry from polymer precipitation to drug design. Current approaches to understanding specific-ion effects involve consideration of the ions themselves, the solvent and relevant interfaces and the interactions between them. Here we investigate the specific-ion effects trends of standard partial molar volumes and electrostrictive volumes of electrolytes in water and eleven non-aqueous solvents. We choose these measures as they relate to bulk properties at infinite dilution, therefore they are the simplest electrolyte systems. This is done to test the hypothesis that the ions alone exhibit a specific-ion effect series that is independent of the solvent and unrelated to surface properties. The specific-ion effects trends of standard partial molar volumes and normalised electrostrictive volumes examined in this work show a fundamental ion-specific series that is reproduced across the solvents, which is the Hofmeister series for anions and the reverse lyotropic series for cations, supporting the hypothesis. This outcome is important in demonstrating that ion specificity is observed at infinite dilution and demonstrates that the complexity observed in the manifestation of specific-ion effects in a very wide range of systems is due to perturbations of solvent, surfaces and concentration on the underlying fundamental series. This knowledge will guide a general understanding of specific-ion effects and assist in the development of a quantitative predictive theory of ion specificity.
Study on Antibacterial Property of PMMA Denture Base Materials with Negative Ion Powder
NASA Astrophysics Data System (ADS)
Liu, Meitian; Zhang, Xiaohui; Zhang, Jingting; Zheng, Qian; Liu, Bin
2018-01-01
To prepare the denture base resin with negative ion powder and evaluate the antibacterial effect of denture base resin with different contents of negative ion powder for clinical application. Method: Denture base material with negative ion powder was prepared by in-situ polymerization method, 50mm * 50mm * 2mm standard samples were prepared respectively. Antibacterial properties were tested with the film contact method. Experimental bacteria: Staphylococcus aureus (ATCC6538), Escherichia coli (ATCC8099).Result:With the increase of the amount of negative ion powder, the inhibition rate of the composite material to Escherichia coli and Staphylococcus aureus showed an increasing trend, and the number of residual bacteria on the surface showed a decreasing trend. When the content of negative ion powder was 2%, the composite material Staphylococcus aureus and Escherichia coli were 77.9% and 80.3% respectively. When the addition ratio was 5%, the bactericidal rate of the composite material to Staphylococcus aureus and Escherichia coli reached 98.2% and 99.1% respectively. Conclusion: The denture base material containing more than 2%wt negative ion powder has strong sterilization.
Travelling-wave ion mobility and negative ion fragmentation of high mannose N-glycans
Harvey, David J.; Scarff, Charlotte A.; Edgeworth, Matthew; Struwe, Weston B.; Pagel, Kevin; Thalassinos, Konstantinos; Crispin, Max; Scrivens, Jim
2016-01-01
The isomeric structure of high-mannose N-glycans can significantly impact biological recognition events. Here, the utility of travelling-wave ion mobility-mass spectrometry (TW IM-MS)for isomer separation of high-mannose N-glycans is investigated. Negative ion fragmentation using collision-induced dissociation (CID) gave more informative spectra than positive ion spectra with mass-different fragment ions characterizing many of the isomers. Isomer separation by ion mobility in both ionization modes was generally limited, with the arrival time distributions (ATD) often showing little sign of isomers. However, isomers could be partially resolved by plotting extracted fragment ATDs of the diagnostic fragment ions from the negative ion spectra and the fragmentation spectra of the isomers could be extracted by using ions from limited areas of the ATD peak. In some cases, asymmetric ATDs were observed but no isomers could be detected by fragmentation. In these cases, it was assumed that conformers were being separated. Collision cross sections (CCSs) of the isomers in positive and negative fragmentation mode were estimated from TW IM-MS data using dextran glycans as calibrant. More complete CCS data were achieved in negative ion mode by utilizing the diagnostic fragment ions. Examples of isomer separations are shown for N-glycans released from the well-characterized glycoproteins chicken ovalbumin, porcine thyroglobulin and gp120 from the human immunodeficiency virus. In addition to the cross sectional data, details of the negative ion collision-induced dissociation (CID) spectra of all resolved isomers are discussed. PMID:26956389
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanada, M., E-mail: hanada.masaya@jaea.go.jp; Kojima, A.; Tobari, H.
In order to realize negative ion sources and accelerators to be applicable to International Thermonuclear Experimental Reactor and JT-60 Super Advanced, a large cesium (Cs)-seeded negative ion source and a multi-aperture and multi-stage electric acceleration have been developed at Japan Atomic Energy Agency (JAEA). Long pulse production and acceleration of the negative ion beams have been independently carried out. The long pulse production of the high current beams has achieved 100 s at the beam current of 15 A by modifying the JT-60 negative ion source. The pulse duration time is increased three times longer than that before the modification.more » As for the acceleration, a pulse duration time has been also extended two orders of magnitudes from 0.4 s to 60 s. The developments of the negative ion source and acceleration at JAEA are well in progress towards the realization of the negative ion sources and accelerators for fusion applications.« less
Effect of plasma grid bias on extracted currents in the RF driven surface-plasma negative ion source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belchenko, Yu., E-mail: belchenko@inp.nsk.su; Ivanov, A.; Sanin, A.
2016-02-15
Extraction of negative ions from the large inductively driven surface-plasma negative ion source was studied. The dependencies of the extracted currents vs plasma grid (PG) bias potential were measured for two modifications of radio-frequency driver with and without Faraday screen, for different hydrogen feeds and for different levels of cesium conditioning. The maximal PG current was independent of driver modification and it was lower in the case of inhibited cesium. The maximal extracted negative ion current depends on the potential difference between the near-PG plasma and the PG bias potentials, while the absolute value of plasma potential in the drivermore » and in the PG area is less important for the negative ion production. The last conclusion confirms the main mechanism of negative ion production through the surface conversion of fast atoms.« less
Research progress on ionic plasmas generated in an intense hydrogen negative ion source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takeiri, Y., E-mail: takeiri@nifs.ac.jp; Tsumori, K.; Nagaoka, K.
2015-04-08
Characteristics of ionic plasmas, observed in a high-density hydrogen negative ion source, are investigated with a multi-diagnostics system. The ionic plasma, which consists of hydrogen positive- and negative-ions with a significantly low-density of electrons, is generated in the ion extraction region, from which the negative ions are extracted through the plasma grid. The negative ion density, i.e., the ionic plasma density, as high as the order of 1×10{sup 17}m{sup −3}, is measured with cavity ring-down spectroscopy, while the electron density is lower than 1×10{sup 16}m{sup −3}, which is confirmed with millimeter-wave interferometer. Reduction of the negative ion density is observedmore » at the negative ion extraction, and at that time the electron flow into the ionic plasma region is observed to conserve the charge neutrality. Distribution of the plasma potential is measured in the extraction region in the direction normal to the plasma grid surface with a Langmuir probe, and the results suggest that the sheath is formed at the plasma boundary to the plasma grid to which the bias voltage is applied. The beam extraction should drive the negative ion transport in the ionic plasma across the sheath formed on the extraction surface. Larger reduction of the negative ions at the beam extraction is observed in a region above the extraction aperture on the plasma grid, which is confirmed with 2D image measurement of the Hα emission and cavity ring-down spectroscopy. The electron distribution is also measured near the plasma grid surface. These various properties observed in the ionic plasma are discussed.« less
Production of negatively charged radioactive ion beams
Liu, Y.; Stracener, D. W.; Stora, T.
2017-02-15
Beams of short-lived radioactive nuclei are needed for frontier experimental research in nuclear structure, reactions, and astrophysics. Negatively charged radioactive ion beams have unique advantages and allow for the use of a tandem accelerator for post-acceleration, which can provide the highest beam quality and continuously variable energies. Negative ion beams can be obtained with high intensity and some unique beam purification techniques based on differences in electronegativity and chemical reactivity can be used to provide beams with high purity. This article describes the production of negative radioactive ion beams at the former holifield radioactive ion beam facility at Oak Ridgemore » National Laboratory and at the CERN ISOLDE facility with emphasis on the development of the negative ion sources employed at these two facilities.« less
Three chamber negative ion source
Leung, Ka-Ngo; Ehlers, Kenneth W.; Hiskes, John R.
1985-01-01
A negative ion vessel is divided into an excitation chamber, a negative ionization chamber and an extraction chamber by two magnetic filters. Input means introduces neutral molecules into a first chamber where a first electron discharge means vibrationally excites the molecules which migrate to a second chamber. In the second chamber a second electron discharge means ionizes the molecules, producing negative ions which are extracted into or by a third chamber. A first magnetic filter prevents high energy electrons from entering the negative ionization chamber from the excitation chamber. A second magnetic filter prevents high energy electrons from entering the extraction chamber from the negative ionizing chamber. An extraction grid at the end of the negative ion vessel attracts negative ions into the third chamber and accelerates them. Another grid, located adjacent to the extraction grid, carries a small positive voltage in order to inhibit positive ions from migrating into the extraction chamber and contour the plasma potential. Additional electrons can be suppressed from the output flux using ExB forces provided by magnetic field means and the extractor grid electric potential.
NASA Astrophysics Data System (ADS)
Torbert, R.
1992-12-01
The present volume on active experiments in space discusses dynamic trapping of electrons in the Porcupine ionospheric ion beam experiment, plasma wave observations during electron gun experiments on ISEE-1, spatial coherence and electromagnetic wave generation during electron beam experiments in space, and recent experimental measurements of space platform charging at LEO altitudes. Attention is given to high voltage spheres in an unmagnetized plasma, energetic ion emission for active spacecraft control, the collective gyration of a heavy ion cloud in a magnetized plasma, and remote sensing of artificial luminous clouds by lidars. Topics addressed include modulation of the background flux of energetic particles by artificial injection, wave measurements in active experiments on plasma beam injection, field formation around negatively biased solar arrays in the LEO-plasma, and the registration of ELF waves in rocket-satellite experiments with plasma injection.
The negative ions of strontium and barium
NASA Astrophysics Data System (ADS)
Garwan, M. A.; Kilius, L. R.; Litherland, A. E.; Nadeau, M.-J.; Zhao, X.-L.
1990-12-01
Recent theoretical calculations have predicted a tendency toward higher electron affinities for heavier alkaline elements. Experimental evidence has been obtained for the existence of strontium and barium negative ions created from pure elements in a caesium sputter ion source. Accelerator mass spectrometric techniques were employed to resolve the above elemental negative ions from the interfering molecular species.
Negative ion kinetics in RF glow discharges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gottscho, R.A.; Gacbe, C.E.
1986-04-01
Using temporally and spatially resolved laser spectroscopy, the authors have determined the identities, approximate concentrations, effects on the local field, and kinetics of formation and loss of negative ions in RF discharges. CI/sup -/ and BCI/sub 3//sup -/ are the dominant negative ions found in low-frequency discharges through CI/sub 2/ and BCI/sub 3/, respectively. The electron affinity for CI is measured to be 3.6118 +- 0.0005 eV. Negative ion kinetics are strongly affected by application of the RF field. Formation of negative ions by attachment of slow electrons in RF discharges is governed by the extent and duration of electronmore » energy relaxation. Similarly, destruction of negative ions by collisional detachment and field extraction is dependent upon ion energy modulation. Thus, at low frequency, the anion density peaks at the beginning of the anodic and cathodic half-cycles after electrons have attached but before detachment and extraction have had time to occur. At higher frequencies, electrons have insufficient time to attach before they are reheated and the instantaneous anion density in the sheath is greatly reduced. When the negative ion density is comparable to the positive ion density, the plasma potential is observed to lie below the anode potential, double layers form between sheath and plasma, and anions and electrons are accelerated by large sheath fields to electrode surfaces.« less
NASA Astrophysics Data System (ADS)
Oudini, N.; Sirse, N.; Taccogna, F.; Ellingboe, A. R.; Bendib, A.
2018-05-01
We propose a new technique for diagnosing negative ion properties using Langmuir probe assisted pulsed laser photo-detachment. While the classical technique uses a laser pulse to convert negative ions into electron-atom pairs and a positively biased Langmuir probe tracking the change of electron saturation current, the proposed method uses a negatively biased Langmuir probe to track the temporal evolution of positive ion current. The negative bias aims to avoid the parasitic electron current inherent to probe tip surface ablation. In this work, we show through analytical and numerical approaches that, by knowing electron temperature and performing photo-detachment at two different laser wavelengths, it is possible to deduce plasma electronegativity (ratio of negative ion to electron densities) α, and anisothermicity (ratio of electron to negative ion temperatures) γ-. We present an analytical model that links the change in the collected positive ion current to plasma electronegativity and anisothermicity. Particle-In-Cell simulation is used as a numerical experiment covering a wide range of α and γ- to test the new analysis technique. The new technique is sensitive to α in the range 0.5 < α < 10 and yields γ- for large α, where negative ion flux affects the probe sheath behavior, typically α > 1.
Investigation of Dusts Effect and Negative Ion in DC Plasmas by Electric Probes
NASA Astrophysics Data System (ADS)
Oh, Hye Taek; Kang, Inje; Bae, Min-Keun; Park, Insun; Lee, Seunghwa; Jeong, Seojin; Chung, Kyu-Sun
2017-10-01
Dust is typically negatively charged by electron attachment whose thermal velocities are fast compared to that of the heavier ions. The negatively charged particles can play a role of negative ions which affect the quasi-neutrality of background plasma. To investigate effect of metal dusts and negative ion on plasma and materials, metal dusts are injected into background Ar plasma which is generated by tungsten filament using dust dispenser on Cubical Plasma Device (CPD). The CPD has following conditions: size =24x24x24cm3, plasma source =DC filament plasma (ne 1x10x1010, Te 2eV), background gas =Ar, dusts =tungsten powder (diameter 1.89micron). The dust dispenser is developed to quantitate of metal dust by ultrasonic transducer. Electronegative plasmas are generated by adding O2 + Ar plasma to compare negative ion and dust effect. A few grams of micron-sized dusts are placed in the dust dispenser which is located at the upper side of the Cubical Plasma Device. The falling particles by dust dispenser are mainly charged up by the collection of the background plasma. The change in parameters due to negative ion production are characterized by measuring the floating and plasma potential, electron temperature and negative ion density using electric probes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, A. L.; Chen, J. E.; State Key Laboratory of Nuclear Physics and Technology, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871
Negative hydrogen ion beam can be compensated by the trapping of ions into the beam potential. When the beam propagates through a neutral gas, these ions arise due to gas ionization by the beam ions. However, the high neutral gas pressure may cause serious negative hydrogen ion beam loss, while low neutral gas pressure may lead to ion-ion instability and decompensation. To better understand the space charge compensation processes within a negative hydrogen beam, experimental study and numerical simulation were carried out at Peking University (PKU). The simulation code for negative hydrogen ion beam is improved from a 2D particle-in-cell-Montemore » Carlo collision code which has been successfully applied to H{sup +} beam compensated with Ar gas. Impacts among ions, electrons, and neutral gases in negative hydrogen beam compensation processes are carefully treated. The results of the beam simulations were compared with current and emittance measurements of an H{sup −} beam from a 2.45 GHz microwave driven H{sup −} ion source in PKU. Compensation gas was injected directly into the beam transport region to modify the space charge compensation degree. The experimental results were in good agreement with the simulation results.« less
Counting ions and other nucleophiles at surfaces by chemical trapping.
Cuccovia, Iolanda Midea; da Silva Lima, Filipe; Chaimovich, Hernan
2017-10-01
The interfaces of membranes and other aggregates are determined by the polarity, electrical charge, molecular volume, degrees of motional freedom and packing density of the head groups of the amphiphiles. These properties also determine the type of bound ion (ion selectivity) and its local density, i.e. concentration defined by choosing an appropriate volume element at the aggregate interface. Bulk and local ion concentrations can differ by orders of magnitude. The relationships between ion (or other compound) concentrations in the bulk solvent and in the interface are complex but, in some cases, well established. As the local ion concentration, rather than that in the bulk, controls a variety of properties of membranes, micelles, vesicles and other objects of theoretical and applied interests, measurement of local (interfacial, bound) ion concentrations is of relevance for understanding and characterizing such aggregates. Many experimental methods for estimating ion distributions between the bulk solution and the interface provide indirect estimates because they are based on concentration-dependent properties, rather than concentration measurements. Dediazoniation, i.e. the loss of N 2 , of a substituted diazophenyl derivative provides a tool for determining the number of nucleophiles (including neutral or negatively charged ions) surrounding the diazophenyl derivative prior to the dediazoniation event. This reaction, defined as chemical trapping, and the appropriate reference points obtained in bulk solution allow direct measurements of local concentrations of a variety of nucleophiles at the surface of membranes and other aggregates. Here we review our contributions of our research group to the use, and understanding, of this method and applications of chemical trapping to the description of local concentrations of ions and other nucleophiles in micelles, reverse micelles, vesicles and solvent mixtures. Among other results, we have shown that interfacial water determines micellar shape, zwitterionic vesicle-forming amphiphiles display ion selectivity and urea does not accumulate at micellar interfaces. We have also shown that reaction products can be predicted from the composition of the initial state, even in non-ideal solvent mixtures, supporting the usefulness of chemical trapping as a method to determine local concentrations. In addition, we have analysed the mechanism of dediazoniation, both on theoretical and experimental basis, and concluded that the formation of a free phenyl cation is not a necessary part of the reaction pathway.
Chen, Ping; Harrington, Peter B
2008-02-01
A new method coupling multivariate self-modeling mixture analysis and pattern recognition has been developed to identify toxic industrial chemicals using fused positive and negative ion mobility spectra (dual scan spectra). A Smiths lightweight chemical detector (LCD), which can measure positive and negative ion mobility spectra simultaneously, was used to acquire the data. Simple-to-use interactive self-modeling mixture analysis (SIMPLISMA) was used to separate the analytical peaks in the ion mobility spectra from the background reactant ion peaks (RIP). The SIMPLSIMA analytical components of the positive and negative ion peaks were combined together in a butterfly representation (i.e., negative spectra are reported with negative drift times and reflected with respect to the ordinate and juxtaposed with the positive ion mobility spectra). Temperature constrained cascade-correlation neural network (TCCCN) models were built to classify the toxic industrial chemicals. Seven common toxic industrial chemicals were used in this project to evaluate the performance of the algorithm. Ten bootstrapped Latin partitions demonstrated that the classification of neural networks using the SIMPLISMA components was statistically better than neural network models trained with fused ion mobility spectra (IMS).
NASA Astrophysics Data System (ADS)
Fubiani, G.; Garrigues, L.; Boeuf, J. P.
2018-02-01
We model the extraction of negative ions from a high brightness high power magnetized negative ion source. The model is a Particle-In-Cell (PIC) algorithm with Monte-Carlo Collisions. The negative ions are generated only on the plasma grid surface (which separates the plasma from the electrostatic accelerator downstream). The scope of this work is to derive scaling laws for the negative ion beam properties versus the extraction voltage (potential of the first grid of the accelerator) and plasma density and investigate the origins of aberrations on the ion beam. We show that a given value of the negative ion beam perveance correlates rather well with the beam profile on the extraction grid independent of the simulated plasma density. Furthermore, the extracted beam current may be scaled to any value of the plasma density. The scaling factor must be derived numerically but the overall gain of computational cost compared to performing a PIC simulation at the real plasma density is significant. Aberrations appear for a meniscus curvature radius of the order of the radius of the grid aperture. These aberrations cannot be cancelled out by switching to a chamfered grid aperture (as in the case of positive ions).
Evidence for the existence of negative ions in the D and lower E regions at twilight
NASA Technical Reports Server (NTRS)
Kane, J. A.
1972-01-01
Evidence for negative ions in the lower ionosphere is based on the difference between simultaneously measured profiles of electron and positive ion density. The electron density profiles reported were obtained from ground-to-rocket radio wave absorption measurements while Gerdien ion traps were used to measure the positive ion profiles. Results from a series of three rockets launched from Thumba, India near sunset on 27 March, 1970 indicate that a significant number of negative ions are formed at altitudes as high as 95 km at twilight.
Positive and negative ion outflow at Rhea as observed by Cassini
NASA Astrophysics Data System (ADS)
Desai, Ravindra; Jones, Geraint; Regoli, Leonardo; Cowee, Misa; Coates, Andrew; Kataria, Dhiren
2017-04-01
Rhea is Saturn's largest icy moon and hosts an ethereal oxygen and carbon-dioxide atmosphere as was detected when Cassini observed positive and negative pickup ions outflowing from the moon and an extended neutral exosphere. These pickup ions can form current systems which, with the resulting jxB force, act to slow-down the incident magneto-plasma and cause field-line draping. As well as impacting the plasma interaction, the composition and density of picked up ions provide key diagnostics of the moon's sputter-induced atmosphere and surface. During the first Cassini-Rhea encounter (R1), the Cassini Plasma Spectrometer (CAPS) observed positively and negatively charged pickup ions before and after passing through the moon's plasma wake respectively, in agreement with their anticipated cycloidal trajectories. On the subsequent more distant wake encounter (R1.5) however, only positively charged pickup ions were observed, indicating high loss rates of the negative ions in Saturn's magnetosphere. Here, using an updated model of Cassini's Electron Spectrometer response function, we are able to estimate the outward flux of negatively charged pickup ions, the first time such a plasma population has been constrained. Using test-particle simulations we trace both the positive and negative particles back to Rhea's exobase to better understand their production and loss processes and the implications for Rhea's sputter-induced exosphere. We also look to examine whether the calculated ion densities could generate ion cyclotron wave activity.
Rostad, C.E.; Sanford, W.E.
2009-01-01
Pore waters from the Chesapeake Bay impact structure cores recovered at Eyreville Farm, Northampton County, Virginia, were analyzed to characterize the dissolved organic carbon. After squeezing or centrifuging, a small volume of pore water, 100 ??L, was taken for analysis by electrospray ionization-mass spectrometry. Porewater samples were analyzed directly without filtration or fractionation, in positive and negative mode, for polar organic compounds. Spectra in both modes were dominated by low-molecular-weight ions. Negative mode had clusters of ions differing by -60 daltons, possibly due to increasing concentrations of inorganic salts. The numberaverage molecular weight and weight-average molecular weight values for the pore waters from the Chesapeake Bay impact structure are higher than those reported for other aquatic sources of natural dissolved organic carbon as determined by electrospray ionization-mass spectrometry. In order to address the question of whether drilling mud fluids may have contaminated the pore waters during sample collection, spectra from the pore waters were compared to spectra from drilling mud fluids. Ions indicative of drilling mud fluids were not found in spectra from the pore waters, indicating there was no detectable contamination, and highlighting the usefulness of this analytical technique for detecting potential contamination during sample collection. ?? 2009 The Geological Society of America.
Electron energy recovery system for negative ion sources
Dagenhart, W.K.; Stirling, W.L.
1979-10-25
An electron energy recovery system for negative ion sources is provided. The system, employing crossed electric and magnetic fields, separates the electrons from the ions as they are extracted from the ion source plasma generator and before the ions are accelerated to their full energy. With the electric and magnetic fields oriented 90/sup 0/ to each other, the electrons remain at approximately the electrical potential at which they were generated. The electromagnetic forces cause the ions to be accelerated to the full accelerating supply voltage energy while being deflected through an angle of less than 90/sup 0/. The electrons precess out of the accelerating field region into an electron recovery region where they are collected at a small fraction of the full accelerating supply energy. It is possible, by this method, to collect > 90% of the electrons extracted along with the negative ions from a negative ion source beam at < 4% of full energy.
Mazzini, Virginia
2017-01-01
The importance of electrolyte solutions cannot be overstated. Beyond the ionic strength of electrolyte solutions the specific nature of the ions present is vital in controlling a host of properties. Therefore ion specificity is fundamentally important in physical chemistry, engineering and biology. The observation that the strengths of the effect of ions often follows well established series suggests that a single predictive and quantitative description of specific-ion effects covering a wide range of systems is possible. Such a theory would revolutionise applications of physical chemistry from polymer precipitation to drug design. Current approaches to understanding specific-ion effects involve consideration of the ions themselves, the solvent and relevant interfaces and the interactions between them. Here we investigate the specific-ion effects trends of standard partial molar volumes and electrostrictive volumes of electrolytes in water and eleven non-aqueous solvents. We choose these measures as they relate to bulk properties at infinite dilution, therefore they are the simplest electrolyte systems. This is done to test the hypothesis that the ions alone exhibit a specific-ion effect series that is independent of the solvent and unrelated to surface properties. The specific-ion effects trends of standard partial molar volumes and normalised electrostrictive volumes examined in this work show a fundamental ion-specific series that is reproduced across the solvents, which is the Hofmeister series for anions and the reverse lyotropic series for cations, supporting the hypothesis. This outcome is important in demonstrating that ion specificity is observed at infinite dilution and demonstrates that the complexity observed in the manifestation of specific-ion effects in a very wide range of systems is due to perturbations of solvent, surfaces and concentration on the underlying fundamental series. This knowledge will guide a general understanding of specific-ion effects and assist in the development of a quantitative predictive theory of ion specificity. PMID:29147533
NASA Astrophysics Data System (ADS)
Saquilayan, G. Q.; Wada, M.
2017-08-01
A laser ion source that utilizes a hollow cylinder target is being developed for the production of positive and negative ions. Continuous operation of the laser ion source is possible through the design of a rotating target. Ion extraction through a grounded circular aperture was tested for positive and negative ions up to 1 kV. Time-of-flight measurements for the mass separation of ions were made by placing a Faraday cup at locations 0 and 15 mm from the beam extraction axis. Signals corresponding to slow and massive ions were detected with mass at least 380 amu. Investigation on the beam profile suggests a geometrical optimization of the beam forming system is necessary.
Wang, Xiao-Lei; Li, Chuan-Rong; Xu, Jing-Wei; Hu, Ding-Meng; Zhao, Zhen-Lei; Zhang, Liu-dong
2013-02-01
Taking five typical courtyard forests and a non-forest courtyard in southern mountains areas of Jinan as test objects, a synchronous observation was conducted on the air negative ion concentration and related meteorological factors in March-December, 2010. The air negative ion concentration in the test courtyards showed an obvious seasonal variation, being in the order of summer > autumn > spring > winter. The diurnal variation of the air negative ion concentration presented a double peak curve, with the maximum in 10:00 - 11:00 and 16:00 - 17:00 and the minimum around 12:00. The daily air quality was the best at 10:00 and 16:00, and better in afternoon than in the morning. Summer time and garden sketch mode had the best air quality in a year. The mean annual air negative ion and the coefficient of air ion (CI) of the test courtyards were in the order of garden sketch > economic fruit forest > natural afforested forest > flowers and bonsai > farm tourist > non-forest, with the air negative ion concentration being 813, 745, 695, 688, 649, and 570 ions.cm-3, and the CI being 1.22, 1.11, 0.85, 0.84, 0.83, and 0.69, respectively. It could be concluded that garden sketch was the ideal courtyard forest mode. The air negative ion concentration was significantly positively correlated with air temperature and relative humidity, but irrelevant to light intensity.
Kinetic modeling of particle dynamics in H- negative ion sources (invited)
NASA Astrophysics Data System (ADS)
Hatayama, A.; Shibata, T.; Nishioka, S.; Ohta, M.; Yasumoto, M.; Nishida, K.; Yamamoto, T.; Miyamoto, K.; Fukano, A.; Mizuno, T.
2014-02-01
Progress in the kinetic modeling of particle dynamics in H- negative ion source plasmas and their comparisons with experiments are reviewed, and discussed with some new results. Main focus is placed on the following two topics, which are important for the research and development of large negative ion sources and high power H- ion beams: (i) Effects of non-equilibrium features of EEDF (electron energy distribution function) on H- production, and (ii) extraction physics of H- ions and beam optics.
Negative ion-driven associated particle neutron generator
Antolak, A. J.; Leung, K. N.; Morse, D. H.; ...
2015-10-09
We describe an associated particle neutron generator that employs a negative ion source to produce high neutron flux from a small source size. Furthermore, negative ions produced in an rf-driven plasma source are extracted through a small aperture to form a beam which bombards a positively biased, high voltage target electrode. Electrons co-extracted with the negative ions are removed by a permanent magnet electron filter. The use of negative ions enables high neutron output (100% atomic ion beam), high quality imaging (small neutron source size), and reliable operation (no high voltage breakdowns). Finally, the neutron generator can operate in eithermore » pulsed or continuous-wave (cw) mode and has been demonstrated to produce 10 6 D-D n/s (equivalent to similar to 10 8 D-T n/s) from a 1 mm-diameter neutron source size to facilitate high fidelity associated particle imaging.« less
Motion of negative ion plasma near the boundary with electron−ion plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Medvedev, Yu. V., E-mail: medve@mail.ru
2017-01-15
Processes occurring near the boundary between three-component plasma with negative ions and two-component electron−ion plasma are considered. The excited waves and instability are described. Stability condition at the boundary is determined.
NASA Astrophysics Data System (ADS)
Cristofaro, S.; Friedl, R.; Fantz, U.
2017-08-01
Negative hydrogen ion sources rely on the surface conversion of neutral atomic hydrogen and positive hydrogen ions to H-. The efficiency of this process depends on the actual work function of the converter surface. By introducing caesium into the source the work function decreases, enhancing the negative ion yield. In order to study the impact of the work function on the H- surface production at similar conditions to the ones in ion sources for fusion devices like ITER and DEMO, fundamental investigations are performed in a flexible laboratory experiment. The work function of the converter surface can be absolutely measured by photoelectric effect, while a newly installed cavity ring-down spectroscopy system (CRDS) measures the H- density. The CRDS is firstly tested and characterized by investigations on H- volume production. Caesiation of a stainless steel sample is then performed in vacuum and the plasma effect on the Cs layer is investigated also for long plasma-on times. A minimum work function of (1.9±0.1) eV is reached after some minutes of plasma treatment, resulting in a reduction by a value of 0.8 eV compared to vacuum measurements. The H- density above the surface is (2.1±0.5)×1015 m-3. With further plasma exposure of the caesiated surface, the work function increases up to 3.75 eV, due to the impinging plasma particles which gradually remove the Cs layer. As a result, the H- density decreases by a factor of at least 2.
Negative ion spectrometry for detecting nitrated explosives
NASA Technical Reports Server (NTRS)
Boettger, H. G.; Yinon, J.
1975-01-01
Ionization procedure is modified to produce mainly negative ions by electron capture. Peaks of negative ions are monitored conventionally. Nitrated organic materials could be identified directly from sample sniff inlet stream by suitably modified mass spectrometer because of unique electronegativity which nitro group imparts to organic material.
NASA Technical Reports Server (NTRS)
Scales, W. A.; Bernhardt, P. A.; Ganguli, G.
1994-01-01
Two-dimensional electrostatic particle-in-cell simulations are used to study the early time evolution of electron depletions and negative ion clouds produced during electron attachment chemical releases in the ionosphere. The simulation model considers the evolution in the plane perpendicular to the magnetic field and a three-species plasma that contains electrons, positive ions, and also heavy negative ions that result as a by-product of the electron attachment reaction. The early time evolution (less than the negative ion cyclotron period) of the system shows that a negative charge surplus initially develops outside of the depletion boundary as the heavy negative ions move across the boundary. The electrons are initially restricted from moving into the depletion due to the magnetic field. An inhomogenous electric field develops across the boundary layer due to this charge separation. A highly sheared electron flow velocity develops in the depletion boundary due to E x B and Delta-N x B drifts that result from electron density gradients and this inhomogenous electric field. Structure eventually develops in the depletion boundary layer due to low-frequency electrostatic waves that have growth times shorter than the negative ion cyclotron period. It is proposed that these waves are most likely produced by the electron-ion hybrid instability that results from sufficiently large shears in the electron flow velocity.
Jovanović, Marko; Peter-Katalinić, Jasna
2016-02-01
Oligosaccharides represent complex class of analytes for mass spectrometric analysis due to the high variety of structural isomers concerning glycosidic linkages and possible branching. A systematic study of the negative ion mode matrix-assisted laser desorption/ionization (MALDI) mass spectrometry of various neutral oligosaccharides under selection of an appropriate matrix, like 2,5-dihydroxyacetophenone (2,5-DHAP) is reported here, without commonly used anion dopant strategies. Nevertheless, we were able to generate relevant in-source decay (ISD) cross-ring fragment ions, typically obtained in the negative ion mode. Data observed indicate that the intrinsic property of the terminal non-reduced aldose is crucial for this behavior. A systematic study of the post source decay (PSD) of molecular, pseudomolecular and ISD cross-ring cleavage precursor ions is reported here. A direct comparison of the positive and negative ion mode MALDI MS1 and PSD behavior of neutral oligosaccharides could also be performed under the use of the same matrix preparation, because 2,5-DHAP is fully compatible with positive ion mode acquisition. We found that PSD spectra of deprotonated neutral oligosaccharides obtained in the negative ion mode are richer, because they contained both glycosidic and cross-ring fragment ions. However, we also found that cross-ring fragment ions are readily produced in the positive ion mode when potassiated precursor ions were selected. In addition, we show evidence that non-anionic dopants and specific instrumental parameters can also significantly influence the ISD fragmentation. Taken together, our results should increase our understanding of oligosaccharide behavior in the negative ion mode as well as increase our knowledge regarding many aspects of in-source MALDI chemistry. Copyright © 2016 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yadav, Pinki; Gupta, D. N., E-mail: dngupta@physics.du.ac.in; Avinash, K.
2016-01-15
Stimulated Brillouin instability of a beat-wave of two lasers in plasmas with multiple-ion-species (negative-ions) was studied. The inclusion of negative-ions affects the growth of ion-acoustic wave in Brillouin scattering. Thus, the growth rate of instability is suppressed significantly by the density of negative-ions. To obey the phase-matching condition, the growth rate of the instability attains a maxima for an appropriate scattering angle (angle between the pump and scattered sideband waves). This study would be technologically important to have diagnostics in low-temperature plasmas.
NASA Astrophysics Data System (ADS)
Tsumori, K.; Takeiri, Y.; Ikeda, K.; Nakano, H.; Geng, S.; Kisaki, M.; Nagaoka, K.; Tokuzawa, T.; Wada, M.; Sasaki, K.; Nishiyama, S.; Goto, M.; Osakabe, M.
2017-08-01
Total power of 16 MW has been successfully delivered to the plasma confined in the Large Helical Device (LHD) from three Neutral Beam Injectors (NBIs) equipped with negative hydrogen (H-) ion sources. However, the detailed mechanisms from production through extraction of H- ions are still yet to be clarified and a similar size ion source on an independent acceleration test bench called Research and development Negative Ion Source (RNIS) serves as the facility to study physics related to H- production and transport for further improvement of NBI. The production of negative-ion-rich plasma and the H- ions behavior in the beam extraction region in RNIS is being investigated by employing an integrated diagnostic system. Flow patterns of electrons, positive ions and H- ions in the extraction region are described in a two-dimensional map. The measured flow patterns indicate the existence a stagnation region, where the H- flow changes the direction at a distance about 20 mm from the plasma grid. The pattern also suggested the H- flow originated from plasma grid (PG) surface that turned back toward extraction apertures. The turning region seems formed by a layer of combined magnetic field produced by the magnetic filter field and the Electron-Deflection Magnetic (EDM) field created by magnets installed in the extraction electrode.
Acknowledgements Introduction Negative Ion Source Operating Conditions & Procedures Cathode Ionization Potentials & Electron Affinities A Negative-Ion Cookbook Roy Middleton Department Of Physics 3Li Lithium 4Be Beryllium 5B Boron 6C Carbon 7N Nitrogen 8O Oxygen 9F Fluorine 10Ne Neon 11Na Sodium
Cook, John B.; Detsi, Eric; Liu, Yijin; ...
2016-12-07
Next generation Li-ion batteries will require negative electrode materials with energy densities many-fold higher than that found in the graphitic carbon currently used in commercial Li-ion batteries. While various nanostructured alloying-type anode materials may satisfy that requirement, such materials do not always exhibit long cycle lifetimes and/or their processing routes are not always suitable for large-scale synthesis. Here, we report on a high-performance anode material for next generation Li-ion batteries made of nanoporous Sn powders with hierarchical ligament morphology. This material system combines both long cycle lifetimes (more than 72% capacity retention after 350 cycles), high capacity (693 mAh/g, nearlymore » twice that of commercial graphitic carbon), good charging/discharging capabilities (545 mAh/g at 1 A/g, 1.5C), and a scalable processing route that involves selective alloy corrosion. The good cycling performance of this system is attributed to its nanoporous architecture and its unique hierarchical ligament morphology, which accommodates the large volume changes taking place during lithiation, as confirmed by synchrotron-based ex-situ X-ray 3D tomography analysis. In conclusion, our findings are an important step for the development of high-performance Li-ion batteries.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holroyd, R.A.; Schwarz, H.A.; Stradowska, E.
The rate constants for attachment of excess electrons to 1,3-butadiene (k[sub a]) and detachment from the butadiene anion (k[sub d]) in n-hexane are reported. The equilibrium constant, K[sub eq] = k[sub a]/k[sub d], increases rapidly with pressure and decreases as the temperature increases. At -7[degree]C attachment is observed at 1 bar. At high pressures the attachment rate is diffusion controlled. The activation energy for detachment is about 21 kcal/mol; detachment is facilitated by the large entropy of activation. The reaction volumes for attachment range from -181 cm[sup 3]/mol at 400 bar to-122 cm[sup 3]/mol at 1500 bar and are largelymore » attributed to the electrostriction volume of the butadiene anion ([Delta][bar V][sub el]). Values of [Delta][bar V][sub el] calculated by a model, which includes a glassy shell of solvent molecules around the ion, are in agreement with experimental reaction volumes. The analysis indicates the partial molar volume of the electron in hexane is small and probably negative. It is shown that the entropies of reaction are closely related to the partial molar volumes of reaction. 22 refs., 5 figs., 5 tabs.« less
Marto, J A; White, F M; Seldomridge, S; Marshall, A G
1995-11-01
Matrix-assisted laser desorption/ionization (MALDI) Fourier transform ion cyclotron resonance mass spectrometry provides for structural analysis of the principal biological phospholipids: glycerophosphatidylcholine, -ethanolamine, -serine, and -inositol. Both positive and negative molecular or quasimolecular ions are generated in high abundance. Isolated molecular ions may be collisionally activated in the source side of a dual trap mass analyzer, yielding fragments serving to identify the polar head group (positive ion mode) and fatty acid side chains (negative ion mode). Azimuthal quadrupolar excitation following collisionally activated dissociation refocuses productions close to the solenoid axis; subsequent transfer of product ions to the analyzer ion trap allows for high-resolution mass analysis. Cyro-cooling of the sample probe with liquid nitrogen greatly reduces matrix adduction encountered in the negative ion mode.
Plasma-surface interaction in negative hydrogen ion sources
NASA Astrophysics Data System (ADS)
Wada, Motoi
2018-05-01
A negative hydrogen ion source delivers more beam current when Cs is introduced to the discharge, but a continuous operation of the source reduces the beam current until more Cs is added to the source. This behavior can be explained by adsorption and ion induced desorption of Cs atoms on the plasma grid surface of the ion source. The interaction between the ion source plasma and the plasma grid surface of a negative hydrogen ion source is discussed in correlation to the Cs consumption of the ion source. The results show that operation with deuterium instead of hydrogen should require more Cs consumption and the presence of medium mass impurities as well as ions of the source wall materials in the arc discharge enlarges the Cs removal rate during an ion source discharge.
Characteristics of Electronegative Plasma Sheath with q-Nonextensive Electron Distribution
NASA Astrophysics Data System (ADS)
Borgohain, D. R.; Saharia, K.
2018-01-01
The characteristics of sheath in a plasma system containing q-nonextensive electrons, cold fluid ions, and Boltzmann-distributed negative ions are investigated. A modified Bohm sheath criterion is derived by using the Sagdeev pseudopotential technique. It is found that the proposed Bohm velocity depends on the degree of nonextensivity ( q), negative ion temperature to nonextensive electron temperature ratio (σ), and negative ion density ( B). Using the modified Bohm sheath criterion, the sheath characteristics, such as the spatial distribution of the potential, positive ion velocity, and density profile, have been numerically investigated, which clearly shows the effect of negative ions, as well as the nonextensive distribution of electrons. It is found that, as the nonextensivity parameter and the electronegativity increases, the electrostatic sheath potential increases sharply and the sheath width decreases.
Electronegative nonlinear oscillating modes in plasmas
NASA Astrophysics Data System (ADS)
Panguetna, Chérif Souleman; Tabi, Conrad Bertrand; Kofané, Timoléon Crépin
2018-02-01
The emergence of nonlinear modulated waves is addressed in an unmagnetized electronegative plasma made of Boltzmann electrons, Boltzmann negative ions and cold mobile positive ions. The reductive perturbation method is used to reduce the dynamics of the whole system to a cubic nonlinear Schrödinger equation, whose the nonlinear and dispersion coefficients, P and Q, are function of the negative ion parameters, namely the negative ion concentration ratio (α) and the electron-to-negative ion temperature ratio (σn). It is observed that these parameters importantly affect the formation of modulated ion-acoustic waves, either as exact solutions or via the activation of modulational instability. Especially, the theory of modulational instability is used to show the correlation between the parametric analysis and the formation of modulated solitons, obtained here as bright envelopes and kink-wave solitons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, John B.; Detsi, Eric; Liu, Yijin
Next generation Li-ion batteries will require negative electrode materials with energy densities many-fold higher than that found in the graphitic carbon currently used in commercial Li-ion batteries. While various nanostructured alloying-type anode materials may satisfy that requirement, such materials do not always exhibit long cycle lifetimes and/or their processing routes are not always suitable for large-scale synthesis. Here, we report on a high-performance anode material for next generation Li-ion batteries made of nanoporous Sn powders with hierarchical ligament morphology. This material system combines both long cycle lifetimes (more than 72% capacity retention after 350 cycles), high capacity (693 mAh/g, nearlymore » twice that of commercial graphitic carbon), good charging/discharging capabilities (545 mAh/g at 1 A/g, 1.5C), and a scalable processing route that involves selective alloy corrosion. The good cycling performance of this system is attributed to its nanoporous architecture and its unique hierarchical ligament morphology, which accommodates the large volume changes taking place during lithiation, as confirmed by synchrotron-based ex-situ X-ray 3D tomography analysis. In conclusion, our findings are an important step for the development of high-performance Li-ion batteries.« less
An ultrastable anode for long-life room-temperature sodium-ion batteries.
Yu, Haijun; Ren, Yang; Xiao, Dongdong; Guo, Shaohua; Zhu, Yanbei; Qian, Yumin; Gu, Lin; Zhou, Haoshen
2014-08-18
Sodium-ion batteries are important alternative energy storage devices that have recently come again into focus for the development of large-scale energy storage devices because sodium is an abundant and low-cost material. However, the development of electrode materials with long-term stability has remained a great challenge. A novel negative-electrode material, a P2-type layered oxide with the chemical composition Na(2/3)Co(1/3)Ti(2/3)O2, exhibits outstanding cycle stability (ca. 84.84 % capacity retention for 3000 cycles, very small decrease in the volume (0.046 %) after 500 cycles), good rate capability (ca. 41 % capacity retention at a discharge/charge rate of 10 C), and a usable reversible capacity of about 90 mAh g(-1) with a safe average storage voltage of approximately 0.7 V in the sodium half-cell. This P2-type layered oxide is a promising anode material for sodium-ion batteries with a long cycle life and should greatly promote the development of room-temperature sodium-ion batteries. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Vacuum insulation of the high energy negative ion source for fusion application.
Kojima, A; Hanada, M; Hilmi, A; Inoue, T; Watanabe, K; Taniguchi, M; Kashiwagi, M; Umeda, N; Tobari, H; Kobayashi, S; Yamano, Y; Grisham, L R
2012-02-01
Vacuum insulation on a large size negative ion accelerator with multiple extraction apertures and acceleration grids for fusion application was experimentally examined and designed. In the experiment, vacuum insulation characteristics were investigated in the JT-60 negative ion source with >1000 apertures on the grid with the surface area of ∼2 m(2). The sustainable voltages varied with a square root of the gap lengths between the grids, and decreased with number of the apertures and with the surface area of the grids. Based on the obtained results, the JT-60SA (super advanced) negative ion source is designed to produce 22 A, 500 keV D(-) ion beams for 100 s.
An advanced negative hydrogen ion source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goncharov, Alexey A., E-mail: gonchar@iop.kiev.ua; Dobrovolsky, Andrey N.; Goretskii, Victor P.
2016-02-15
The results of investigation of emission productivity of negative particles source with cesiated combined discharge are presented. A cylindrical beam of negative hydrogen ions with density about 2 A/cm{sup 2} in low noise mode on source emission aperture is obtained. The total beam current values are up to 200 mA for negative hydrogen ions and up to 1.5 A for all negative particles with high divergence after source. The source has simple design and can produce stable discharge with low level of oscillation.
Negative ion beam injection apparatus with magnetic shield and electron removal means
Anderson, Oscar A.; Chan, Chun F.; Leung, Ka-Ngo
1994-01-01
A negative ion source is constructed to produce H.sup.- ions without using Cesium. A high percentage of secondary electrons that typically accompany the extracted H.sup.- are trapped and eliminated from the beam by permanent magnets in the initial stage of acceleration. Penetration of the magnetic field from the permanent magnets into the ion source is minimized. This reduces the destructive effect the magnetic field could have on negative ion production and extraction from the source. A beam expansion section in the extractor results in a strongly converged final beam.
Characterization of the ITER model negative ion source during long pulse operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hemsworth, R.S.; Boilson, D.; Crowley, B.
2006-03-15
It is foreseen to operate the neutral beam system of the International Thermonuclear Experimental Reactor (ITER) for pulse lengths extending up to 1 h. The performance of the KAMABOKO III negative ion source, which is a model of the source designed for ITER, is being studied on the MANTIS test bed at Cadarache. This article reports the latest results from the characterization of the ion source, in particular electron energy distribution measurements and the comparison between positive ion and negative ion extraction from the source.
Production of large resonant plasma volumes in microwave electron cyclotron resonance ion sources
Alton, Gerald D.
1998-01-01
Microwave injection methods for enhancing the performance of existing electron cyclotron resonance (ECR) ion sources. The methods are based on the use of high-power diverse frequency microwaves, including variable-frequency, multiple-discrete-frequency, and broadband microwaves. The methods effect large resonant "volume" ECR regions in the ion sources. The creation of these large ECR plasma volumes permits coupling of more microwave power into the plasma, resulting in the heating of a much larger electron population to higher energies, the effect of which is to produce higher charge state distributions and much higher intensities within a particular charge state than possible in present ECR ion sources.
NASA Astrophysics Data System (ADS)
Woo, Jihoon; Baek, Seong-Ho; Park, Jung-Soo; Jeong, Young-Min; Kim, Jae Hyun
2015-12-01
We introduce a one-step process that consists of thermal disproportionation and impurity doping to enhance the reversible capacity and electrical conductivity of silicon monoxide (SiO)-based negative electrode materials in Li-ion batteries. Transmission electron microscope (TEM) results reveal that thermally treated SiO at 900 °C (H-SiO) consists of uniformly dispersed nano-crystalline Si (nc-Si) in an amorphous silicon oxide (SiOx) matrix. Compared to that of prinstine SiO, the electrochemical performance of H-SiO shows improved specific capacity, due mainly to the increased reversible capacity by nc-Si and to the reduced volume expansion by thermally disproportionated SiOx matrix. Further electrochemical improvements can be obtained by boron-doping on SiO (HB-SiO) using solution dopant during thermal disproportionation. HB-SiO electrode without carbon coating exhibits significantly enhanced specific capacity superior to that of undoped H-SiO electrode, having 947 mAh g-1 at 0.5C rate and excellent capacity retention of 93.3% over 100 cycles. Electrochemical impedance spectroscopy (EIS) measurement reveals that the internal resistance of the HB-SiO electrode is significantly reduced by boron doping.
Cesium vapor thermionic converter anomalies arising from negative ion emission
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rasor, Ned S., E-mail: ned.rasor@gmail.com
2016-08-14
Compelling experimental evidence is given that a longstanding limit encountered on cesium vapor thermionic energy converter performance improvement and other anomalies arise from thermionic emission of cesium negative ions. It is shown that the energy that characterizes thermionic emission of cesium negative ions is 1.38 eV and, understandably, is not the electron affinity 0.47 eV determined for the photodetachment threshold of the cesium negative ion. The experimental evidence includes measurements of collector work functions and volt-ampere characteristics in quasi-vacuum cesium vapor thermionic diodes, along with reinterpretation of the classic Taylor-Langmuir S-curve data on electron emission in cesium vapor. The quantitative effects ofmore » negative ion emission on performance in the ignited, unignited, and quasi-vacuum modes of cesium vapor thermionic converter operation are estimated.« less
Study of negative hydrogen ion beam optics using the 3D3V PIC model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miyamoto, K., E-mail: kmiyamot@naruto-u.ac.jp; Nishioka, S.; Goto, I.
The mechanism of negative ion extraction under real conditions with the complex magnetic field is studied by using the 3D PIC simulation code. The extraction region of the negative ion source for the negative ion based neutral beam injection system in fusion reactors is modelled. It is shown that the E x B drift of electrons is caused by the magnetic filter and the electron suppression magnetic field, and the resultant asymmetry of the plasma meniscus. Furthermore, it is indicated that that the asymmetry of the plasma meniscus results in the asymmetry of negative ion beam profile including the beammore » halo. It could be demonstrated theoretically that the E x B drift is not significantly weakened by the elastic collisions of the electrons with neutral particles.« less
D-region positive and negative ion concentration and mobilities during the February 1979 eclipse
NASA Astrophysics Data System (ADS)
Conley, T. D.; Narcisi, R. S.; Hegblom, E. R.
1983-07-01
Positive and negative ion concentrations and mobilities have been obtained from an analysis of Gerdien condenser measurements on rocket flights, A10.802-1 and A10.802-2, during and after eclipse totality. The aerodynamic instrument calibration and the data analysis techniques are discussed. The measured concentrations on both flights were about 10,000/cu cm in the altitudes range, 45-80 km. These high concentrations at very low altitudes suggest that a relativistic electron precipitation event was occurring during the measurements. The ion concentration measurements along with electron density measurements made by other groups during the eclipse were used to calculate the negative ion/ electron ratio, and the lumped parameter detachment rate. These results are compared with prior measurements during eclipse and solar proton events and code results. The analysis shows that the present negative ion model is incomplete. The reduced mobilities were also determined. The mobility distributions show that the heavy ions of both the positive and negative species dominate from 45 to 70 km. The data reveal more massive ions at higher altitudes than at low altitudes (1000 vs 300 a.m.u.) as well as possible evidence for multiply charged ions below about 60 km.
An analytic expression for the sheath criterion in magnetized plasmas with multi-charged ion species
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hatami, M. M., E-mail: m-hatami@kntu.ac.ir
2015-04-15
The generalized Bohm criterion in magnetized multi-component plasmas consisting of multi-charged positive and negative ion species and electrons is analytically investigated by using the hydrodynamic model. It is assumed that the electrons and negative ion density distributions are the Boltzmann distribution with different temperatures and the positive ions enter into the sheath region obliquely. Our results show that the positive and negative ion temperatures, the orientation of the applied magnetic field and the charge number of positive and negative ions strongly affect the Bohm criterion in these multi-component plasmas. To determine the validity of our derived generalized Bohm criterion, itmore » reduced to some familiar physical condition and it is shown that monotonically reduction of the positive ion density distribution leading to the sheath formation occurs only when entrance velocity of ion into the sheath satisfies the obtained Bohm criterion. Also, as a practical application of the obtained Bohm criterion, effects of the ionic temperature and concentration as well as magnetic field on the behavior of the charged particle density distributions and so the sheath thickness of a magnetized plasma consisting of electrons and singly charged positive and negative ion species are studied numerically.« less
Partial Molar Volumes of Aqua Ions from First Principles.
Wiktor, Julia; Bruneval, Fabien; Pasquarello, Alfredo
2017-08-08
Partial molar volumes of ions in water solution are calculated through pressures obtained from ab initio molecular dynamics simulations. The correct definition of pressure in charged systems subject to periodic boundary conditions requires access to the variation of the electrostatic potential upon a change of volume. We develop a scheme for calculating such a variation in liquid systems by setting up an interface between regions of different density. This also allows us to determine the absolute deformation potentials for the band edges of liquid water. With the properly defined pressures, we obtain partial molar volumes of a series of aqua ions in very good agreement with experimental values.
Tarran, Robert; Grubb, Barbara R.; Gatzy, John T.; Davis, C. William; Boucher, Richard C.
2001-01-01
Two hypotheses have been proposed recently that offer different views on the role of airway surface liquid (ASL) in lung defense. The “compositional” hypothesis predicts that ASL [NaCl] is kept low (<50 mM) by passive forces to permit antimicrobial factors to act as a chemical defense. The “volume” hypothesis predicts that ASL volume (height) is regulated isotonically by active ion transport to maintain efficient mechanical mucus clearance as the primary form of lung defense. To compare these hypotheses, we searched for roles for: (1) passive forces (surface tension, ciliary tip capillarity, Donnan, and nonionic osmolytes) in the regulation of ASL composition; and (2) active ion transport in ASL volume regulation. In primary human tracheobronchial cultures, we found no evidence that a low [NaCl] ASL could be produced by passive forces, or that nonionic osmolytes contributed substantially to ASL osmolality. Instead, we found that active ion transport regulated ASL volume (height), and that feedback existed between the ASL and airway epithelia to govern the rate of ion transport and volume absorption. The mucus layer acted as a “reservoir” to buffer periciliary liquid layer height (7 μm) at a level optimal for mucus transport by donating or accepting liquid to or from the periciliary liquid layer, respectively. These data favor the active ion transport/volume model hypothesis to describe ASL physiology. PMID:11479349
Vacuum insulation of the high energy negative ion source for fusion application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kojima, A.; Hanada, M.; Inoue, T.
2012-02-15
Vacuum insulation on a large size negative ion accelerator with multiple extraction apertures and acceleration grids for fusion application was experimentally examined and designed. In the experiment, vacuum insulation characteristics were investigated in the JT-60 negative ion source with >1000 apertures on the grid with the surface area of {approx}2 m{sup 2}. The sustainable voltages varied with a square root of the gap lengths between the grids, and decreased with number of the apertures and with the surface area of the grids. Based on the obtained results, the JT-60SA (super advanced) negative ion source is designed to produce 22 A,more » 500 keV D{sup -} ion beams for 100 s.« less
Carbon Dioxide Removal by Salty Aerosols
NASA Astrophysics Data System (ADS)
Gokturk, H.
2016-12-01
Aerosols consisting of salt ions dissolved in water are observed in nature as sea spray particles generated by breaking waves. Such aerosols can be also generated artificially by spraying seawater to the atmosphere to create clouds, which was suggested as a method of solar radiation management (SRM). Salty aerosols can be utilized not only for SRM, but also for carbon dioxide removal from the atmosphere, if salt ions carrying charges -2 or more negative are added to the seawater. CO2 is a very stable molecule where carbon to oxygen double bond has a bond strength of 8.3 eV (190 kcal/mol). Therefore the approach chosen here to modify CO2 is to further oxidize it to CO3. Quantum mechanical calculations indicate that CO2 reacts readily with hydroxyl minus ion (OH-) or oxygen double minus ion (O-) to form HCO3- or CO3-, respectively. What is studied in this paper is the utilization of hydrated negative salt ions to create OH- and possibly even O-. The negative ions chosen are chlorine minus ion (Cl-), sulfate double minus ion (SO4-), phosphate triple minus ion (PO4--) and silicate quadruple minus ion (SiO4--). The former two ions exist in seawater, but the latter two ions do not, though they are available as part of water soluble salts such as potassium phosphate. Using quantum mechanical calculations, following reactions were investigated: R1: (Cl-) + H2O => HCl + (OH-), R2: (SO4-) + H2O => (HSO4-) + (OH-), R3: (PO4--) + H2O => (HPO4-) + (OH-), R4: (SiO4--) + H2O => (HSiO4--) + (OH-), R5: (HPO4-) + H2O => (H2PO4-) + (OH-), R6: (HSiO4--) + H2O => (H2SiO4-) + (OH-), R7: (H2SiO4-) + H2O => (H3SiO4-) + (OH-), R8: (SiO4--) + H2O => (H2SiO4-) + (O-). Results indicate that singly charged negative salt ions, such as Cl- in R1, cannot create OH-. Doubly charged negative salt ions, such as SO4- in R2, can create OH-, though the amount of SO4- in seawater is relatively small. Triply or quadruply charged negative ions are even more favorable than doubly charged ions in creating OH- (R3, R4, R6). Quadruply charged negative ions can also create O- (R8), however in practice O- is likely to react with other water molecules to create more OH-. In conclusion, seawater fortified with highly charged negative salt ions and sprayed into the atmosphere has the potential to create aerosols containing OH- which can react with the CO2 and modify it to a carbonate.
Specific formation of negative ions from leucine and isoleucine molecules
NASA Astrophysics Data System (ADS)
Papp, Peter; Shchukin, Pavel; Matejčík, Štefan
2010-01-01
Dissociative electron attachment (DEA) to gas phase leucine (Leu) and isoleucine (Ile) molecules was studied using experimental and quantum-chemical methods. The relative partial cross sections for DEA have been measured using crossed electron/molecular beams technique. Supporting ab initio calculations of the structure, energies of neutral molecules, fragments, and negative ions have been carried out at G3MP2 and B3LYP levels in order to interpret the experimental data. Leu and Ile exhibit several common features. The negative ionic fragments from both molecules are formed in the electron energy range from 0 to approximately 14 eV via three resonances (1.2, 5.5, and 8 eV). The relative partial cross sections for DEA Leu and Ile are very similar. The dominant negative ions formed were closed shell negative ions (M-H)- (m/z=130) formed preferentially via low electron energy resonance of 1.23 eV. Additional negative ions with m/z=115, 114, 113, 112, 84, 82, 74, 45, 26, and 17 have been detected.
Method and apparatus for efficient photodetachment and purification of negative ion beams
Beene, James R [Oak Ridge, TN; Liu, Yuan [Knoxville, TN; Havener, Charles C [Knoxville, TN
2008-02-26
Methods and apparatus are described for efficient photodetachment and purification of negative ion beams. A method of purifying an ion beam includes: inputting the ion beam into a gas-filled multipole ion guide, the ion beam including a plurality of ions; increasing a laser-ion interaction time by collisional cooling the plurality of ions using the gas-filled multipole ion guide, the plurality of ions including at least one contaminant; and suppressing the at least one contaminant by selectively removing the at least one contaminant from the ion beam by electron photodetaching at least a portion of the at least one contaminant using a laser beam.
Negative Ion Time Projection Chamber operation with SF6 at nearly atmospheric pressure
NASA Astrophysics Data System (ADS)
Baracchini, E.; Cavoto, G.; Mazzitelli, G.; Murtas, F.; Renga, F.; Tomassini, S.
2018-04-01
We present the measurement of negative ion drift velocities and mobilities for innovative particle tracking detectors using gas mixtures based on SF6. This gas has recently received attention in the context of directional Dark Matter searches, thanks to its high Fluorine content, reduced diffusion and multiple species of charge carriers, which allow for full detector fiducialization. Our measurements, performed with a 5 cm drift distance Negative Ion Time Projection Chamber, show the possibility of negative ion operation in pure SF6 between 75 and 150 Torr with triple thin GEM amplification, confirming the attractive potentialities of this gas. Above all, our results with the mixture He:CF4:SF6 360:240:10 Torr demonstrate for the first time the feasibility of SF6‑ negative ion drift and gas gain in He at nearly atmospheric pressure, opening very interesting prospects for the next generation of directional Dark Matter detectors.
NASA Astrophysics Data System (ADS)
Hashiguchi, Minako; Sakaguchi, Isao; Adachi, Yutaka; Ohashi, Naoki
2016-10-01
Quantitative analyses of N and O ions in GaN thin films implanted with oxygen ions (16O+) were conducted by secondary ion mass spectrometry (SIMS). Positive (CsM+) and negative secondary ions extracted by Cs+ primary ion bombardment were analyzed for oxygen quantitative analysis. The oxygen depth profiles were obtained using two types of primary ion beams: a Gaussian-type beam and a broad spot beam. The oxygen peak concentrations in GaN samples were from 3.2 × 1019 to 7.0 × 1021 atoms/cm3. The depth profiles show equivalent depth resolutions in the two analyses. The intensity of negative oxygen ions was approximately two orders of magnitude higher than that of positive ions. In contrast, the O/N intensity ratio measured using CsM+ molecular ions was close to the calculated atomic density ratio, indicating that the SIMS depth profiling using CsM+ ions is much more effective for the measurements of O and N ions in heavy O-implanted GaN than that using negative ions.
Production of large resonant plasma volumes in microwave electron cyclotron resonance ion sources
Alton, G.D.
1998-11-24
Microwave injection methods are disclosed for enhancing the performance of existing electron cyclotron resonance (ECR) ion sources. The methods are based on the use of high-power diverse frequency microwaves, including variable-frequency, multiple-discrete-frequency, and broadband microwaves. The methods effect large resonant ``volume`` ECR regions in the ion sources. The creation of these large ECR plasma volumes permits coupling of more microwave power into the plasma, resulting in the heating of a much larger electron population to higher energies, the effect of which is to produce higher charge state distributions and much higher intensities within a particular charge state than possible in present ECR ion sources. 5 figs.
High voltage holding in the negative ion sources with cesium deposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belchenko, Yu.; Abdrashitov, G.; Ivanov, A.
High voltage holding of the large surface-plasma negative ion source with cesium deposition was studied. It was found that heating of ion-optical system electrodes to temperature >100 °C facilitates the source conditioning by high voltage pulses in vacuum and by beam shots. The procedure of electrode conditioning and the data on high-voltage holding in the negative ion source with small cesium seed are described. The mechanism of high voltage holding improvement by depletion of cesium coverage is discussed.
NASA Astrophysics Data System (ADS)
Nishioka, S.; Goto, I.; Miyamoto, K.; Hatayama, A.; Fukano, A.
2016-01-01
Recently, in large-scale hydrogen negative ion sources, the experimental results have shown that ion-ion plasma is formed in the vicinity of the extraction hole under the surface negative ion production case. The purpose of this paper is to clarify the mechanism of the ion-ion plasma formation by our three dimensional particle-in-cell simulation. In the present model, the electron loss along the magnetic filter field is taken into account by the " √{τ///τ⊥ } model." The simulation results show that the ion-ion plasma formation is due to the electron loss along the magnetic filter field. Moreover, the potential profile for the ion-ion plasma case has been looked into carefully in order to discuss the ion-ion plasma formation. Our present results show that the potential drop of the virtual cathode in front of the plasma grid is large when the ion-ion plasma is formed. This tendency has been explained by a relationship between the virtual cathode depth and the net particle flux density at the virtual cathode.
Ion optical design of a collinear laser-negative ion beam apparatus.
Diehl, C; Wendt, K; Lindahl, A O; Andersson, P; Hanstorp, D
2011-05-01
An apparatus for photodetachment studies on atomic and molecular negative ions of medium up to heavy mass (M ≃ 500) has been designed and constructed. Laser and ion beams are merged in the apparatus in a collinear geometry and atoms, neutral molecules and negative ions are detected in the forward direction. The ion optical design and the components used to optimize the mass resolution and the transmission through the extended field-free interaction region are described. A 90° sector field magnet with 50 cm bending radius in combination with two slits is used for mass dispersion providing a resolution of M∕ΔM≅800 for molecular ions and M∕ΔM≅400 for atomic ions. The difference in mass resolution for atomic and molecular ions is attributed to different energy distributions of the sputtered ions. With 1 mm slits, transmission from the source through the interaction region to the final ion detector was determined to be about 0.14%.
Plasma properties in electron-bombardment ion thrusters
NASA Technical Reports Server (NTRS)
Matossian, J. N.; Beattie, J. R.
1987-01-01
The paper describes a technique for computing volume-averaged plasma properties within electron-bombardment ion thrusters, using spatially varying Langmuir-probe measurements. Average values of the electron densities are defined by integrating the spatially varying Maxwellian and primary electron densities over the ionization volume, and then dividing by the volume. Plasma properties obtained in the 30-cm-diameter J-series and ring-cusp thrusters are analyzed by the volume-averaging technique. The superior performance exhibited by the ring-cusp thruster is correlated with a higher average Maxwellian electron temperature. The ring-cusp thruster maintains the same fraction of primary electrons as does the J-series thruster, but at a much lower ion production cost. The volume-averaged predictions for both thrusters are compared with those of a detailed thruster performance model.
100 s extraction of negative ion beams by using actively temperature-controlled plasma grid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kojima, A., E-mail: kojima.atsushi@jaea.go.jp; Hanada, M.; Yoshida, M.
2014-02-15
Long pulse beam extraction with a current density of 120 A/m{sup 2} for 100 s has been achieved with a newly developed plasma grid (PG) for the JT-60SA negative ion source which is designed to produce high power and long pulse beams with a negative ion current of 130 A/m{sup 2} (22 A) and a pulse length of 100 s. The PG temperature is regulated by fluorinated fluids in order to keep the high PG temperature for the cesium-seeded negative ion production. The time constant for temperature controllability of the PG was measured to be below 10 s, which wasmore » mainly determined by the heat transfer coefficient of the fluorinated fluid. The measured decay time of the negative ion current extracted from the actively temperature-controlled PG was 430 s which was sufficient for the JT-60SA requirement, and much longer than that by inertial-cooling PG of 60 s. Obtained results of the long pulse capability are utilized to design the full size PG for the JT-60SA negative ion source.« less
Zeng, Liang; Ichikawa, Takayuki; Kawahito, Koji; Miyaoka, Hiroki; Kojima, Yoshitsugu
2017-01-25
Magnesium hydride, MgH 2 , a recently developed compound for lithium-ion batteries, is considered to be a promising conversion-type negative electrode material due to its high theoretical lithium storage capacity of over 2000 mA h g -1 , suitable working potential, and relatively small volume expansion. Nevertheless, it suffers from unsatisfactory cyclability, poor reversibility, and slow kinetics in conventional nonaqueous electrolyte systems, which greatly limit the practical application of MgH 2 . In this work, a vapor-grown carbon nanofiber was used to enhance the electrical conductivity of MgH 2 using LiBH 4 as the solid-state electrolyte. It shows that a reversible capacity of over 1200 mA h g -1 with an average voltage of 0.5 V (vs Li/Li + ) can be obtained after 50 cycles at a current density of 1000 mA g -1 . In addition, the capacity of MgH 2 retains over 1100 mA h g -1 at a high current density of 8000 mA g -1 , which indicates the possibility of using MgH 2 as a negative electrode material for high power and high capacity lithium-ion batteries in future practical applications. Moreover, the widely studied sulfide-based solid electrolyte was also used to assemble battery cells with MgH 2 electrode in the same system, and the electrochemical performance was as good as that using LiBH 4 electrolyte.
NASA Astrophysics Data System (ADS)
Salmanpoor, H.; Sharifian, M.; Gholipour, S.; Borhani Zarandi, M.; Shokri, B.
2018-03-01
The oblique propagation of nonlinear ion acoustic solitary waves (solitons) in magnetized collisionless and weakly relativistic plasma with positive and negative ions and super thermal electrons has been examined by using reduced perturbation method to obtain the Korteweg-de Vries equation that admits an obliquely propagating soliton solution. We have investigated the effects of plasma parameters like negative ion density, electrons temperature, angle between wave vector and magnetic field, ions velocity, and k (spectral index in kappa distribution) on the amplitude and width of solitary waves. It has been found out that four modes exist in our plasma model, but the analysis of the results showed that only two types of ion acoustic modes (fast and slow) exist in the plasma and in special cases only one mode could be propagated. The parameters of plasma for these two modes (or one mode) determine which one is rarefactive and which one is compressive. The main parameter is negative ions density (β) indicating which mode is compressive or rarefactive. The effects of the other plasma parameters on amplitude and width of the ion acoustic solitary waves have been studied. The main conclusion is that the effects of the plasma parameters on amplitude and width of the solitary wave strongly depend on the value of the negative ion density.
Osborne, Daniel M; Podgorski, David C; Bronk, Deborah A; Roberts, Quinn; Sipler, Rachel E; Austin, David; Bays, James S; Cooper, William T
2013-04-30
Dissolved organic nitrogen (DON) represents a significant fraction of the total dissolved nitrogen pool in most surface waters and serves as an important nitrogen source for phytoplankton and bacteria. As with other natural organic matter mixtures, ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FTICRMS) is the only technique currently able to provide molecular composition information on DON. Although electrospray ionization (ESI) is the most commonly used ionization method, it is not very efficient at ionizing most DON components. Positive- and negative-mode atmospheric pressure photoionization (APPI) coupled with ultrahigh resolution FTICRMS at 9.4 T were compared for determining the composition of DON before and after bioassays. Toluene was added as the APPI dopant to the solid-phase DON extracts, producing a final sample that was 90% methanol and 10% toluene by volume. Positive-mode (+) APPI proved significantly more efficient at ionizing DON; 62% of the formulas that could be assigned in the positive-ion spectrum contained at least one nitrogen atom vs. 31% in the negative-ion spectrum. FTICR mass spectral data indicated that most of the refractory DON compounds (i.e. nonreactive during the 5 days of the incubation) had molecular compositions representative of lignin-like molecules, while lipid-like and protein-like molecules comprised most of the small reactive component of the DON pool. From these data we conclude that (+) APPI FTICRMS is a promising technique for describing the molecular composition of DON mixtures. The technique is particularly valuable in assessing the bioavailability of individual components of DON when combined with bioassays. Copyright © 2013 John Wiley & Sons, Ltd.
Ion collector design for an energy recovery test proposal with the negative ion source NIO1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Variale, V., E-mail: vincenzo.variale@ba.infn.it; Cavenago, M.; Agostinetti, P.
2016-02-15
Commercial viability of thermonuclear fusion power plants depends also on minimizing the recirculation power used to operate the reactor. The neutral beam injector (NBI) remains one of the most important method for plasma heating and control. For the future fusion power plant project DEMO, a NBI wall plug efficiency at least of 0.45 is required, while efficiency of present NBI project is about 0.25. The D{sup −} beam from a negative ion source is partially neutralized by a gas cell, which leaves more than 40% of energy in residual beams (D{sup −} and D{sup +}), so that an ion beammore » energy recovery system can significantly contribute to optimize efficiency. Recently, the test negative ion source NIO1 (60 keV, 9 beamlets with 15 mA H{sup −} each) has been designed and built at RFX (Padua) for negative ion production efficiency and the beam quality optimization. In this paper, a study proposal to use the NIO1 source also for a beam energy recovery test experiment is presented and a preliminary design of a negative ion beam collector with simulations of beam energy recovery is discussed.« less
Simulation of passive thermal management system for lithium-ion battery packs
NASA Astrophysics Data System (ADS)
Mills, Andrew; Al-Hallaj, Said
A passive thermal management system that uses a phase change material (PCM) is designed and simulated for a lithium-ion (Li-ion) laptop battery pack. The problem of low thermal conductivity of the PCM was significantly improved by impregnating an expanded graphite (EG) matrix with the PCM. The heat generation rate for a commercial 186502.2 Ah Li-ion battery was experimentally measured for various constant power discharges. Simulation of the battery pack, composed of six Li-ion batteries, shows that safe operation of the battery pack during the most extreme case requires the volume of the battery pack be almost doubled to fit sufficient PCM in the pack. Improving the properties of the PCM composite have the potential to significantly reduce the volume increase in comparison to the original battery pack volume.
Photodissociation of Gaseous Ions Formed by Laser Desorption.
1986-09-20
produced by separate pathways from the (M-I)- ion or from consecutive photodissociations. Hesperidin : In the negative ion LD mass spectrum of this compound...an ion of m/z r was produced from the sodium salt of hesperidin phosphoric acid ester. This ion was observed to dissociate by loss of the attached...Experimental conditions are same as in the top spectrum. Figure 8. Top. Negative ions formed by laser desorption from Na-salt of hesperidin phosphoric acid ester
Cook, John B.; Lin, Terri C.; Detsi, Eric; ...
2017-01-05
Tin metal is an attractive negative electrode material to replace graphite in Li-ion batteries due to its high energy density. However, tin undergoes a large volume change upon alloying with Li, which pulverizes the particles, and ultimately leads to short cycling lifetimes. Nevertheless, nanoporous materials have been shown to extend battery life well past what is observed in nonporous material. Despite the exciting potential of porous alloying anodes to significantly increase the energy density in Li-ion batteries, the fundamental physics of how nanoscale architectures accommodate the electrochemically induced volume changes are poorly understood. Here, operando transmission X-ray microscopy has beenmore » used to develop an understanding of the mechanisms that govern the enhanced cycling stability in nanoporous tin. We found that in comparison to dense tin, nanoporous tin undergoes a 6-fold smaller areal expansion after lithiation, as a result of the internal porosity and unique nanoscale architecture. The expansion is also more gradual in nanoporous tin compared to the dense material. The nanoscale resolution of the microscope used in this study is ~30 nm, which allowed us to directly observe the pore structure during lithiation and delithiation. We found that nanoporous tin remains porous during the first insertion and desinsertion cycle. This observation is key, as fully closed pores could lead to mechanical instability, electrolyte inaccessibility, and short lifetimes. Here, while tin was chosen for this study because of its high X-ray contrast, the results of this work should be general to other alloy-type systems, such as Si, that also suffer from volume change based cycling degradation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, John B.; Lin, Terri C.; Detsi, Eric
Tin metal is an attractive negative electrode material to replace graphite in Li-ion batteries due to its high energy density. However, tin undergoes a large volume change upon alloying with Li, which pulverizes the particles, and ultimately leads to short cycling lifetimes. Nevertheless, nanoporous materials have been shown to extend battery life well past what is observed in nonporous material. Despite the exciting potential of porous alloying anodes to significantly increase the energy density in Li-ion batteries, the fundamental physics of how nanoscale architectures accommodate the electrochemically induced volume changes are poorly understood. Here, operando transmission X-ray microscopy has beenmore » used to develop an understanding of the mechanisms that govern the enhanced cycling stability in nanoporous tin. We found that in comparison to dense tin, nanoporous tin undergoes a 6-fold smaller areal expansion after lithiation, as a result of the internal porosity and unique nanoscale architecture. The expansion is also more gradual in nanoporous tin compared to the dense material. The nanoscale resolution of the microscope used in this study is ~30 nm, which allowed us to directly observe the pore structure during lithiation and delithiation. We found that nanoporous tin remains porous during the first insertion and desinsertion cycle. This observation is key, as fully closed pores could lead to mechanical instability, electrolyte inaccessibility, and short lifetimes. Here, while tin was chosen for this study because of its high X-ray contrast, the results of this work should be general to other alloy-type systems, such as Si, that also suffer from volume change based cycling degradation.« less
NASA Astrophysics Data System (ADS)
Basak, Tamal; Chakrabarti, Sandip Kumar
Our objective is to study the effects of solar energetic phenomena on the lower ionosphere using subionospherically propagating Very Low Frequency signals. In this work, we dealt with the negative ion contents of the lower D-region during flares. We did a generalized study of the variation of the lambda-parameter both with height and time. In this purpose, we numerically solved the D-region electron continuity equation, where, we supplied the N_e-profile calculated from LWPC results. The results generally agree with those present in the literature, namely, the effect on the negative ion density during flares due to photo-electron detachment and photo-dissociation processes. However, for our VLF propagation path of interest, we found that the negative ions exist till somewhat higher altitudes (˜ 73-74 km) than the high-latitude D-region heights. Other workers did model study on Cl(-) ions and its complex compounds at nighttime in high latitude ionosphere. They reported that, though negative ions are less abundant in daytime, in lower latitudes its availability increases, which supports our results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Medasani, Bharat; Ovanesyan, Zaven; Thomas, Dennis G.
In this article we present a classical density functional theory for electrical double layers of spherical macroions that extends the capabilities of conventional approaches by accounting for electrostatic ion correlations, size asymmetry and excluded volume effects. The approach is based on a recent approximation introduced by Hansen-Goos and Roth for the hard sphere excess free energy of inhomogeneous fluids (J. Chem. Phys. 124, 154506). It accounts for the proper and efficient description of the effects of ionic asymmetry and solvent excluded volume, especially at high ion concentrations and size asymmetry ratios including those observed in experimental studies. Additionally, we utilizemore » a leading functional Taylor expansion approximation of the ion density profiles. In addition, we use the Mean Spherical Approximation for multi-component charged hard sphere fluids to account for the electrostatic ion correlation effects. These approximations are implemented in our theoretical formulation into a suitable decomposition of the excess free energy which plays a key role in capturing the complex interplay between charge correlations and excluded volume effects. We perform Monte Carlo simulations in various scenarios to validate the proposed approach, obtaining a good compromise between accuracy and computational cost. We use the proposed computational approach to study the effects of ion size, ion size asymmetry and solvent excluded volume on the ion profiles, integrated charge, mean electrostatic potential, and ionic coordination number around spherical macroions in various electrolyte mixtures. Our results show that both solvent hard sphere diameter and density play a dominant role in the distribution of ions around spherical macroions, mainly for experimental water molarity and size values where the counterion distribution is characterized by a tight binding to the macroion, similar to that predicted by the Stern model.« less
High brilliance negative ion and neutral beam source
Compton, Robert N.
1991-01-01
A high brilliance mass selected (Z-selected) negative ion and neutral beam source having good energy resolution. The source is based upon laser resonance ionization of atoms or molecules in a small gaseous medium followed by charge exchange through an alkali oven. The source is capable of producing microampere beams of an extremely wide variety of negative ions, and milliampere beams when operated in the pulsed mode.
Shahraki, Hassan; Tabrizchi, Mahmoud; Farrokhpor, Hossein
2018-05-26
The ionization source is an essential component of most explosive detectors based on negative ion mobility spectrometry. Conventional ion sources suffer from such inherent limitations as special safety regulations on radioactive sources or generating interfering ions (for non-radioactive sources) such as corona discharge operating in the air. In this study, a new negative ion source is introduced for ion mobility spectrometry that is based on thermal ionization and operates in the air, applicable to explosives detection. Our system consists of a heating filament powered by an isolated power supply connected to negative high voltage. The ionization is assisted by doping chlorinated compounds in the gas phase using chlorinated hydrocarbons in contact with the heating element to yield Cl - reactant ions. Several chlorinated hydrocarbons are evaluated as the reagent chemicals for providing Cl- reactant ions, of which CCl 4 is identified as the best ionizing reagent. The ion source is evaluated by recording the ion mobility spectra of common explosives, including TNT, RDX, and PETN in the air. A detection limit of 150 pg is obtained for TNT. Compared to other ionization sources, the new source is found to be low-cost, simple, and long-lived, making it suited to portable explosives detection devices. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Elkamash, I. S.; Kourakis, I.
2018-05-01
The criteria for occurrence and the dynamical features of electrostatic solitary waves in a homogeneous, unmagnetized ultradense plasma penetrated by a negative ion beam are investigated, relying on a quantum hydrodynamic model. The ionic components are modeled as inertial fluids, while the relativistic electrons obey Fermi-Dirac statistics. A new set of exact analytical conditions for localized solitary pulses to exist is obtained, in terms of plasma density. The algebraic analysis reveals that these depend sensitively on the negative ion beam characteristics, that is, the beam velocity and density. Particular attention is paid to the simultaneous occurrence of positive and negative potential pulses, identified by their respective distinct ambipolar electric field structure forms. It is shown that the coexistence of positive and negative potential pulses occurs in a certain interval of parameter values, where the ion beam inertia becomes significant.
Process for measuring degradation of sulfur hexafluoride in high voltage systems
Sauers, Isidor
1986-01-01
This invention is a method of detecting the presence of toxic and corrosive by-products in high voltage systems produced by electrically induced degradation of SF.sub.6 insulating gas in the presence of certain impurities. It is an improvement over previous methods because it is extremely sensitive, detecting by-products present in parts per billion concentrations, and because the device employed is of a simple design and takes advantage of the by-products natural affinity for fluoride ions. The method employs an ion-molecule reaction cell in which negative ions of the by-products are produced by fluorine attachment. These ions are admitted to a negative ion mass spectrometer and identified by their spectra. This spectrometry technique is an improvement over conventional techniques because the negative ion peaks are strong and not obscured by a major ion spectra of the SF.sub.6 component as is the case in positive ion mass spectrometry.
Process for measuring degradation of sulfur hexafluoride in high voltage systems
Sauers, I.
1985-04-23
This invention is a method of detecting the presence of toxic and corrosive by-products in high voltage systems produced by electrically induced degradation of SF/sub 6/ insulating gas in the presence of certain impurities. It is an improvement over previous methods because it is extremely sensitive, detecting by-products present in parts per billion concentrations, and because the device employed is of a simple design and takes advantage of the by-products natural affinity for fluoride ions. The method employs an ion-molecule reaction cell in which negative ions of the by-products are produced by fluorine attachment. These ions are admitted to a negative ion mass spectrometer and identified by their spectra. This spectrometry technique is an improvement over conventional techniques because the negative ion peaks are strong and not obscured by a major ion spectra of the SF/sub 6/ component as is the case in positive ion mass spectrometry.
Development of a negative ion-based neutral beam injector in Novosibirsk.
Ivanov, A A; Abdrashitov, G F; Anashin, V V; Belchenko, Yu I; Burdakov, A V; Davydenko, V I; Deichuli, P P; Dimov, G I; Dranichnikov, A N; Kapitonov, V A; Kolmogorov, V V; Kondakov, A A; Sanin, A L; Shikhovtsev, I V; Stupishin, N V; Sorokin, A V; Popov, S S; Tiunov, M A; Belov, V P; Gorbovsky, A I; Kobets, V V; Binderbauer, M; Putvinski, S; Smirnov, A; Sevier, L
2014-02-01
A 1000 keV, 5 MW, 1000 s neutral beam injector based on negative ions is being developed in the Budker Institute of Nuclear Physics, Novosibirsk in collaboration with Tri Alpha Energy, Inc. The innovative design of the injector features the spatially separated ion source and an electrostatic accelerator. Plasma or photon neutralizer and energy recuperation of the remaining ion species is employed in the injector to provide an overall energy efficiency of the system as high as 80%. A test stand for the beam acceleration is now under construction. A prototype of the negative ion beam source has been fabricated and installed at the test stand. The prototype ion source is designed to produce 120 keV, 1.5 A beam.
Positive and negative ion mode ESI-MS and MS/MS for studying drug-DNA complexes
NASA Astrophysics Data System (ADS)
Rosu, Frédéric; Pirotte, Sophie; Pauw, Edwin De; Gabelica, Valérie
2006-07-01
We report systematic investigation of duplex DNA complexes with minor groove binders (Hoechsts 33258 and 33342, netropsin and DAPI) and intercalators (daunomycin, doxorubicin, actinomycin D, ethidium, cryptolepine, neocryptolepine, m-Amsacrine, proflavine, ellipticine and mitoxantrone) by ESI-MS and ESI-MS/MS in the negative ion mode and in the positive ion mode. The apparent solution phase equilibrium binding constants can be determined by measuring relative intensities in the ESI-MS spectrum. While negative ion mode gives reliable results, positive ion mode gives a systematic underestimation of the binding constants and even a complete suppression of the complexes for intercalators lacking functional groups capable of interacting in the grooves. In the second part of the paper we systematically compare MS/MS fragmentation channels and breakdown curves in the positive and the negative modes, and discuss the possible uses and caveats of MS/MS in drug-DNA complexes. In the negative mode, the drugs can be separated in three groups: (1) those that leave the complex with no net charge; (2) those that leave the complex with a negative charge; and (3) those that remain attached on the strands upon dissociation of the duplex due to their positive charge. In the positive ion mode, all complexes fragment via the loss of protonated drug. Information on the stabilization of the complex by drug-DNA noncovalent interactions can be obtained straightforwardly only in the case of neutral drug loss. In all other cases, proton affinity (in the positive ion mode), gas-phase basicity (in the negative ion mode) and coulombic repulsion are the major factors influencing the fragmentation channel and the dissociation kinetics.
The effects of CO2 on the negative reactant ions of IMS
NASA Technical Reports Server (NTRS)
Spangler, Glenn E.
1995-01-01
In the presence of CO2, the negative reactant ions of ion mobility spectrometry (IMS) are ion clusters of CO4(-) and CO3(-). Methyl salicylate is ionized by the CO4(-)(H2O(n))(N2(m)) reactant ions, but not by the CO3(-)(H2O(n))(N2(m)) reactant ions. While the CO4(-) ions are formed by direct association, the CO3(-) ions require additional energy to be formed. The additional energy is provided by either excited neutral gas molecules in a metastable state or UV (ultraviolet) radiation.
Experimental benchmark of the NINJA code for application to the Linac4 H- ion source plasma
NASA Astrophysics Data System (ADS)
Briefi, S.; Mattei, S.; Rauner, D.; Lettry, J.; Tran, M. Q.; Fantz, U.
2017-10-01
For a dedicated performance optimization of negative hydrogen ion sources applied at particle accelerators, a detailed assessment of the plasma processes is required. Due to the compact design of these sources, diagnostic access is typically limited to optical emission spectroscopy yielding only line-of-sight integrated results. In order to allow for a spatially resolved investigation, the electromagnetic particle-in-cell Monte Carlo collision code NINJA has been developed for the Linac4 ion source at CERN. This code considers the RF field generated by the ICP coil as well as the external static magnetic fields and calculates self-consistently the resulting discharge properties. NINJA is benchmarked at the diagnostically well accessible lab experiment CHARLIE (Concept studies for Helicon Assisted RF Low pressure Ion sourcEs) at varying RF power and gas pressure. A good general agreement is observed between experiment and simulation although the simulated electron density trends for varying pressure and power as well as the absolute electron temperature values deviate slightly from the measured ones. This can be explained by the assumption of strong inductive coupling in NINJA, whereas the CHARLIE discharges show the characteristics of loosely coupled plasmas. For the Linac4 plasma, this assumption is valid. Accordingly, both the absolute values of the accessible plasma parameters and their trends for varying RF power agree well in measurement and simulation. At varying RF power, the H- current extracted from the Linac4 source peaks at 40 kW. For volume operation, this is perfectly reflected by assessing the processes in front of the extraction aperture based on the simulation results where the highest H- density is obtained for the same power level. In surface operation, the production of negative hydrogen ions at the converter surface can only be considered by specialized beam formation codes, which require plasma parameters as input. It has been demonstrated that this input can be provided reliably by the NINJA code.
Negative electrodes for Na-ion batteries.
Dahbi, Mouad; Yabuuchi, Naoaki; Kubota, Kei; Tokiwa, Kazuyasu; Komaba, Shinichi
2014-08-07
Research interest in Na-ion batteries has increased rapidly because of the environmental friendliness of sodium compared to lithium. Throughout this Perspective paper, we report and review recent scientific advances in the field of negative electrode materials used for Na-ion batteries. This paper sheds light on negative electrode materials for Na-ion batteries: carbonaceous materials, oxides/phosphates (as sodium insertion materials), sodium alloy/compounds and so on. These electrode materials have different reaction mechanisms for electrochemical sodiation/desodiation processes. Moreover, not only sodiation-active materials but also binders, current collectors, electrolytes and electrode/electrolyte interphase and its stabilization are essential for long cycle life Na-ion batteries. This paper also addresses the prospect of Na-ion batteries as low-cost and long-life batteries with relatively high-energy density as their potential competitive edge over the commercialized Li-ion batteries.
NASA Astrophysics Data System (ADS)
Cheng, Sy-Chyi; Bhat, Suhail Muzaffar; Shiea, Jentaie
2017-07-01
Flame atmospheric pressure chemical ionization (FAPCI) combined with negative electrospray ionization (ESI) mass spectrometry was developed to detect the ion/molecule reactions (IMRs) products between nitric acid (HNO3) and negatively charged amino acid, angiotensin I (AI) and angiotensin II (AII), and insulin ions. Nitrate and HNO3-nitrate ions were detected in the oxyacetylene flame, suggesting that a large quantity of nitric acid (HNO3) was produced in the flame. The HNO3 and negatively charged analyte ions produced by a negative ESI source were delivered into each arm of a Y-shaped stainless steel tube where they merged and reacted. The products were subsequently characterized with an ion trap mass analyzer attached to the exit of the Y-tube. HNO3 showed the strongest affinity to histidine and formed (Mhistidine-H+HNO3)- complex ions, whereas some amino acids did not react with HNO3 at all. Reactions between HNO3 and histidine residues in AI and AII resulted in the formation of dominant [MAI-H+(HNO3)]- and [MAII-H+(HNO3)]- ions. Results from analyses of AAs and insulin indicated that HNO3 could not only react with basic amino acid residues, but also with disulfide bonds to form [M-3H+(HNO3)n]3- complex ions. This approach is useful for obtaining information about the number of basic amino acid residues and disulfide bonds in peptides and proteins.
Cheng, Sy-Chyi; Bhat, Suhail Muzaffar; Shiea, Jentaie
2017-07-01
Flame atmospheric pressure chemical ionization (FAPCI) combined with negative electrospray ionization (ESI) mass spectrometry was developed to detect the ion/molecule reactions (IMRs) products between nitric acid (HNO 3 ) and negatively charged amino acid, angiotensin I (AI) and angiotensin II (AII), and insulin ions. Nitrate and HNO 3 -nitrate ions were detected in the oxyacetylene flame, suggesting that a large quantity of nitric acid (HNO 3 ) was produced in the flame. The HNO 3 and negatively charged analyte ions produced by a negative ESI source were delivered into each arm of a Y-shaped stainless steel tube where they merged and reacted. The products were subsequently characterized with an ion trap mass analyzer attached to the exit of the Y-tube. HNO 3 showed the strongest affinity to histidine and formed (M histidine -H+HNO 3 ) - complex ions, whereas some amino acids did not react with HNO 3 at all. Reactions between HNO 3 and histidine residues in AI and AII resulted in the formation of dominant [M AI -H+(HNO 3 )] - and [M AII -H+(HNO 3 )] - ions. Results from analyses of AAs and insulin indicated that HNO 3 could not only react with basic amino acid residues, but also with disulfide bonds to form [M-3H+(HNO 3 ) n ] 3- complex ions. This approach is useful for obtaining information about the number of basic amino acid residues and disulfide bonds in peptides and proteins. Graphical Abstract ᅟ.
Overview of the design of the ITER heating neutral beam injectors
NASA Astrophysics Data System (ADS)
Hemsworth, R. S.; Boilson, D.; Blatchford, P.; Dalla Palma, M.; Chitarin, G.; de Esch, H. P. L.; Geli, F.; Dremel, M.; Graceffa, J.; Marcuzzi, D.; Serianni, G.; Shah, D.; Singh, M.; Urbani, M.; Zaccaria, P.
2017-02-01
The heating neutral beam injectors (HNBs) of ITER are designed to deliver 16.7 MW of 1 MeV D0 or 0.87 MeV H0 to the ITER plasma for up to 3600 s. They will be the most powerful neutral beam (NB) injectors ever, delivering higher energy NBs to the plasma in a tokamak for longer than any previous systems have done. The design of the HNBs is based on the acceleration and neutralisation of negative ions as the efficiency of conversion of accelerated positive ions is so low at the required energy that a realistic design is not possible, whereas the neutralisation of H- and D- remains acceptable (≈56%). The design of a long pulse negative ion based injector is inherently more complicated than that of short pulse positive ion based injectors because: • negative ions are harder to create so that they can be extracted and accelerated from the ion source; • electrons can be co-extracted from the ion source along with the negative ions, and their acceleration must be minimised to maintain an acceptable overall accelerator efficiency; • negative ions are easily lost by collisions with the background gas in the accelerator; • electrons created in the extractor and accelerator can impinge on the extraction and acceleration grids, leading to high power loads on the grids; • positive ions are created in the accelerator by ionisation of the background gas by the accelerated negative ions and the positive ions are back-accelerated into the ion source creating a massive power load to the ion source; • electrons that are co-accelerated with the negative ions can exit the accelerator and deposit power on various downstream beamline components. The design of the ITER HNBs is further complicated because ITER is a nuclear installation which will generate very large fluxes of neutrons and gamma rays. Consequently all the injector components have to survive in that harsh environment. Additionally the beamline components and the NB cell, where the beams are housed, will be activated and all maintenance will have to be performed remotely. This paper describes the design of the HNB injectors, but not the associated power supplies, cooling system, cryogenic system etc, or the high voltage bushing which separates the vacuum of the beamline from the high pressure SF6 of the high voltage (1 MV) transmission line, through which the power, gas and cooling water are supplied to the beam source. Also the magnetic field reduction system is not described.
Negative hydrogen ions in a linear helicon plasma device
NASA Astrophysics Data System (ADS)
Corr, Cormac; Santoso, Jesse; Samuell, Cameron; Willett, Hannah; Manoharan, Rounak; O'Byrne, Sean
2015-09-01
Low-pressure negative ion sources are of crucial importance to the development of high-energy (>1 MeV) neutral beam injection systems for the ITER experimental tokamak device. Due to their high power coupling efficiency and high plasma densities, helicon devices may be able to reduce power requirements and potentially remove the need for caesium. In helicon sources, the RF power can be coupled efficiently into the plasma and it has been previously observed that the application of a small magnetic field can lead to a significant increase in the plasma density. In this work, we investigate negative ion dynamics in a high-power (20 kW) helicon plasma source. The negative ion fraction is measured by probe-based laser photodetachment, electron density and temperature are determined by a Langmuir probe and tuneable diode laser absorption spectroscopy is used to determine the density of the H(n = 2) excited atomic state and the gas temperature. The negative ion density and excited atomic hydrogen density display a maximum at a low applied magnetic field of 3 mT, while the electron temperature displays a minimum. The negative ion density can be increased by a factor of 8 with the application of the magnetic field. Spatial and temporal measurements will also be presented. The Australian Research Grants Council is acknowledged for funding.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Shu-Xia; Research group PLASMANT, Dept. Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp; Gao, Fei
2015-07-21
In this paper, the negative ion behavior in a C{sub 4}F{sub 8} inductively coupled plasma (ICP) is investigated using a hybrid model. The model predicts a non-monotonic variation of the total negative ion density with power at low pressure (10–30 mTorr), and this trend agrees well with experiments that were carried out in many fluorocarbon (fc) ICP sources, like C{sub 2}F{sub 6}, CHF{sub 3}, and C{sub 4}F{sub 8}. This behavior is explained by the availability of feedstock C{sub 4}F{sub 8} gas as a source of the negative ions, as well as by the presence of low energy electrons due tomore » vibrational excitation at low power. The maximum of the negative ion density shifts to low power values upon decreasing pressure, because of the more pronounced depletion of C{sub 4}F{sub 8} molecules, and at high pressure (∼50 mTorr), the anion density continuously increases with power, which is similar to fc CCP sources. Furthermore, the negative ion composition is identified in this paper. Our work demonstrates that for a clear understanding of the negative ion behavior in radio frequency C{sub 4}F{sub 8} plasma sources, one needs to take into account many factors, like the attachment characteristics, the anion composition, the spatial profiles, and the reactor configuration. Finally, a detailed comparison of our simulation results with experiments is conducted.« less
NASA Astrophysics Data System (ADS)
Xia, Zije; Williams, Evan R.
2018-01-01
Theta glass electrospray emitters can rapidly mix solutions to investigate fast reactions that occur as quickly as 1 μs, but emitters with submicron tips have the unusual properties of desalting protein ions and affecting the observed abundances of some proteins as a result of protein-surface interactions. The role of protein physical properties on ion signal was investigated using 1.7 ± 0.1 μm and 269 ± 7 nm emitters and 100 mM aqueous ammonium acetate or ammonium bicarbonate solutions. Protein ion desalting occurs for both positive and negative ions. The signal of a mixture of proteins with the 269 nm tips is time-dependent and the order in which ions of each protein is observed is related to the expected strengths of the protein-surface interactions. These results indicate that it is not just the high surface-to-volume ratio that plays a role in protein adsorption and reduction or absence of initial ion signal, but the small diffusion distance and extremely low flow rates of the smaller emitters can lead to complete adsorption of some proteins and loss of signal until the adsorption sites are filled and the zeta potential is significantly reduced. After about 30 min, signals for a protein mixture from the two different size capillaries are similar. These results show the advantages of submicron emitters but also indicate that surface effects must be taken into account in experiments using such small tips or that coating the emitter surface to prevent adsorption should be considered. [Figure not available: see fulltext.
Effects of meteoric smoke particles on the D region ion chemistry
NASA Astrophysics Data System (ADS)
Baumann, Carsten; Rapp, Markus; Anttila, Milla; Kero, Antti; Verronen, Pekka T.
2015-12-01
This study focuses on meteor smoke particle (MSP) induced effects on the D region ion chemistry. Hereby, MSPs, represented with an 11 bin size distribution, have been included as an active component into the Sodankyä Ion and Neutral Chemistry model. By doing that, we model the diurnal variation of the negatively and positively charged MSPs as well as ions and the electron density under quiet ionospheric conditions. Two distinct points in time are studied in more detail, i.e., one for sunlit conditions (Solar zenith angle is 72°) and one for dark conditions (Solar zenith angle is 103°). We find nightly decrease of free electrons and negative ions, the positive ion density is enhanced at altitudes above 80 km and reduced below. During sunlit conditions the electron density is enhanced between 60 and 70 km altitude, while there is a reduction in negative and positive ions densities. In general, the MSP influence on the ion chemistry is caused by changes in the electron density. On the one hand, these changes occur due to nightly electron scavenging by MSPs resulting in a reduced electron-ion recombination. As a consequence positive ion density increase, especially water cluster ions are highly affected. On the other hand, the electron density is slightly increased during daytime by a MSP-related production due to solar radiation. Thus, more electrons attach to neutrals and short-lived negative ions increase in number density. The direct attachment of ions to MSPs is a minor process, but important for long living ions.
MALDI-MS/MS with Traveling Wave Ion Mobility for the Structural Analysis of N-Linked Glycans
NASA Astrophysics Data System (ADS)
Harvey, David J.; Scarff, Charlotte A.; Crispin, Max; Scanlan, Christopher N.; Bonomelli, Camille; Scrivens, James H.
2012-11-01
The preference for singly charged ion formation by MALDI makes it a better choice than electrospray ionization for profiling mixtures of N-glycans. For structural analysis, fragmentation of negative ions often yields more informative spectra than fragmentation of positive ones but such ions are more difficult to produce from neutral glycans under MALDI conditions. This work investigates conditions for the formation of both positive and negative ions by MALDI from N-linked glycans released from glycoproteins and their subsequent MS/MS and ion mobility behaviour. 2,4,6-Trihydroxyacetophenone (THAP) doped with ammonium nitrate was found to give optimal ion yields in negative ion mode. Ammonium chloride or phosphate also yielded prominent adducts but anionic carbohydrates such as sulfated N-glycans tended to ionize preferentially. Carbohydrates adducted with all three adducts (phosphate, chloride, and nitrate) produced good negative ion CID spectra but those adducted with iodide and sulfate did not yield fragment ions although they gave stronger signals. Fragmentation paralleled that seen following electrospray ionization providing superior spectra than could be obtained by PSD on MALDI-TOF instruments or with ion traps. In addition, ion mobility drift times of the adducted glycans and the ability of this technique to separate isomers also mirrored those obtained following ESI sample introduction. Ion mobility also allowed profiles to be obtained from samples whose MALDI spectra showed no evidence of such ions allowing the technique to be used in conditions where sample amounts were limiting. The method was applied to N-glycans released from the recombinant human immunodeficiency virus glycoprotein, gp120.
A Microwave Driven Ion Source for Continuous-Flow AMS (Abstract)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wills, J.; Schneider, R.J.; Reden, K.F. von
2005-03-15
A microwave-driven, gas-fed ion source originally developed as a high-current positive ion injector for a Tandem accelerator at Chalk River has been the subject of a three-year development program at the Woods Hole Oceanographic Institution NOSAMS facility. Off-line tests have demonstrated positive carbon currents of 1 mA and negative carbon currents of 80 {mu}A from CO2 gas feed. This source and a magnesium charge-exchange canal were coupled to the recombinator of the NOSAMS Tandetron for on-line tests, with the source fed with reference gasses and a combustion device.The promising results obtained have prompted the redesign of the microwave source formore » use as an on-line, continuous-flow injector for a new AMS facility under construction at NOSAMS. The new design is optimized for best transmission of the extracted positive-ion beam through the charge-exchange canal and for reliable operation at 40 kV extraction voltage. Other goals of the re-design include improved lifetime of the microwave window and the elimination of dead volumes in the plasma generator that increase sample hold-up time.This talk will include a summary of results obtained to date at NOSAMS with the Chalk River source and a detailed description of the new design.« less
NASA Astrophysics Data System (ADS)
Lee, Seungjun; Lee, Myoung-Jae
2012-10-01
The electrostatic dust-cyclotron (EDC) waves in a magnetized dusty plasma was reported that they could be excited by gravity in a collisional plasma [1]. Rosenberg suggested that EDC waves could be excited by ions drifting along the magnetic field in a collisional plasma containing dust grains with large thermal speeds [2]. The existing investigations, however, focus on EDC volume waves in which the boundary effects are not considered. In this work, we attempt to obtain some physical results concerning the fundamental mode of EDC surface wave and the stability of wave by utilizing a kinetic method. The EDC surface wave is assumed to propagate along an external magnetic field at the interface between the plasma and the vacuum. The plasma is comprised of drifting ions flowing along an external magnetic field. To derive the growth rate of surface waves, we employ the specular reflection boundary conditions. The EDC surface wave is found to be unstable when the ion drift velocity is larger than the phase velocity of the wave. In addition, the wave becomes to be more unstable if dust particles carry more negative charges.[4pt] [1] N. D'Angelo, Phys. Lett. A 323, 445 (2004).[0pt] [2] M. Rosenberg, Phys. Scr. 82, 035505 (2010).
NASA Astrophysics Data System (ADS)
Sartori, E.; Carozzi, G.; Veltri, P.; Spolaore, M.; Cavazzana, R.; Antoni, V.; Serianni, G.
2017-08-01
The measurement of the plasma potential and the energy spectrum of secondary particles in the drift region of a negative ion beam offers an insight into beam-induced plasma formation and beam transport in low pressure gasses. Plasma formation in negative-ion beam systems, and the characteristics of such a plasma are of interest especially for space charge compensation, plasma formation in neutralizers, and the development of improved schemes of beam-induced plasma neutralisers for future fusion devices. All these aspects have direct implications in the ITER Heating Neutral Beam and the operation of the prototypes, SPIDER and MITICA, and also have important role in the conceptual studies for NBI systems of DEMO, while at present experimental data are lacking. In this paper we present the design and development of an ion energy analyzer to measure the beam plasma formation and space charge compensation in negative ion beams. The diagnostic is a retarding field energy analyzer (RFEA), and will measure the transverse energy spectra of plasma molecular ions. The calculations that supported the design are reported, and a method to interpret the measurements in negative ion beam systems is also proposed. Finally, the experimental results of the first test in a magnetron plasma are presented.
Negative ion treatment increases positive emotional processing in seasonal affective disorder.
Harmer, C J; Charles, M; McTavish, S; Favaron, E; Cowen, P J
2012-08-01
Antidepressant drug treatments increase the processing of positive compared to negative affective information early in treatment. Such effects have been hypothesized to play a key role in the development of later therapeutic responses to treatment. However, it is unknown whether these effects are a common mechanism of action for different treatment modalities. High-density negative ion (HDNI) treatment is an environmental manipulation that has efficacy in randomized clinical trials in seasonal affective disorder (SAD). The current study investigated whether a single session of HDNI treatment could reverse negative affective biases seen in seasonal depression using a battery of emotional processing tasks in a double-blind, placebo-controlled randomized study. Under placebo conditions, participants with seasonal mood disturbance showed reduced recognition of happy facial expressions, increased recognition memory for negative personality characteristics and increased vigilance to masked presentation of negative words in a dot-probe task compared to matched healthy controls. Negative ion treatment increased the recognition of positive compared to negative facial expression and improved vigilance to unmasked stimuli across participants with seasonal depression and healthy controls. Negative ion treatment also improved recognition memory for positive information in the SAD group alone. These effects were seen in the absence of changes in subjective state or mood. These results are consistent with the hypothesis that early change in emotional processing may be an important mechanism for treatment action in depression and suggest that these effects are also apparent with negative ion treatment in seasonal depression.
Numerical Analysis of Plasma Transport in Tandem Volume Magnetic Multicusp Ion Sources
1992-03-01
the results of the model are qualitatively correct. Boltzmann Equation, Ion Sources, Plasma Simulation, Electron Temperature, Plasma Density, Ion Temperature, Hydrogen Ions, Magnetic Filters, Hydrogen Plasma Chemistry .
Modeling of surface-dominated plasmas: from electric thruster to negative ion source.
Taccogna, F; Schneider, R; Longo, S; Capitelli, M
2008-02-01
This contribution shows two important applications of the particle-in-cell/monte Carlo technique on ion sources: modeling of the Hall thruster SPT-100 for space propulsion and of the rf negative ion source for ITER neutral beam injection. In the first case translational degrees of freedom are involved, while in the second case inner degrees of freedom (vibrational levels) are excited. Computational results show how in both cases, plasma-wall and gas-wall interactions play a dominant role. These are secondary electron emission from the lateral ceramic wall of SPT-100 and electron capture from caesiated surfaces by positive ions and atoms in the rf negative ion source.
Volume of reaction by the Archibald ultracentrifuge method (lobster hemocyanin).
Saxena, V P; Kegeles, G; Kikas, R
1976-07-01
Samples of lobster hemocyanin (Homarus americanus) under conditions of reversible reaction between whole (25 S) and half (17 S) molecules have been subjected to accurately known nitrogen pressures in analytical ultracentrifuge cells. A modified pressurization chamber of the type developed by Schumaker and colleagues has been constructed for this purpose. The molecular weight was then determined at the top (liquid-gas) meniscus, by means of the Archibald method. The logarithmic dependence upon pressure of the derived equilibrium constant then gave directly the volume of reaction. Experiments were performed in veronal-citrate buffers at pH 8, where the molar volume of formation of whole (dodecameric) molecules from half molecules appears to be negative, and at pH 8.46 in veronal-citrate buffer in the presence of 0.003 molar free calcium ion, where the molar volume of formation was estimated to be + 390 cm3/mole. In glycine-sodium hydroxide buffer at pH 9.6 containing 0.0047 molar free calcium, the molar volume of formation of whole molecules was estimated to be +120 +/- 70 cm3, corresponding to an estimated difference in partial specific volume between whole molecules and half molecules of only 1.3 (10)-4cm3/gram. The correctness of the sign of this value in glycine buffer has been verified by pressure-jump light-scattering experiments.
Hershcovitch, Ady
1987-01-01
A process for selectively neutralizing H.sup.- ions in a magnetic field to produce an intense negative hydrogen ion beam with spin polarized protons. Characteristic features of the process include providing a multi-ampere beam of H.sup.- ions that are intersected by a beam of laser light. Photodetachment is effected in a uniform magnetic field that is provided around the beam of H.sup.- ions to spin polarize the H.sup.- ions and produce first and second populations or groups of ions, having their respective proton spin aligned either with the magnetic field or opposite to it. The intersecting beam of laser light is directed to selectively neutralize a majority of the ions in only one population, or given spin polarized group of H.sup.- ions, without neutralizing the ions in the other group thereby forming a population of H.sup.- ions each of which has its proton spin down, and a second group or population of H.sup.o atoms having proton spin up. Finally, the two groups of ions are separated from each other by magnetically bending the group of H.sup.- ions away from the group of neutralized ions, thereby to form an intense H.sup.- ion beam that is directed toward a predetermined objective.
The negative ions emission in nitrogen
NASA Technical Reports Server (NTRS)
Soon, W. H.; Kunc, J. A.
1991-01-01
The contribution of negative atomic ions to continuum radiation in nitrogen plasma is discussed. It is shown that both unstable N(-)(3P) and metastable N(-)(1D) ions have a significant effect on the total production of the continuum radiation at electron temperatures below 12,000 K.
Characterization of oxidized coal surfaces: Quarterly report, January 1987-April 1987
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hercules, D.M.
1987-04-01
The work has focused on exploration of ambient temperature in-situ derivatization of aldehydes and ketones on carbon surfaces. 2,4-Dinitrophenylhydrazine, bisulfite, -ylium dichloro-iodate, and iminium perchlorate derivatizations were performed on a set of model aldehydes and ketones. Positive and negative ion laser mass spectra (LMS) of the 2,4-dinitrophenylhydrazine derivatives were obtained on zinic which is a common metal support used for LMS analysis. Although positive ion spectra were informative, negative ion spectra were more satisfactory as most compounds yielded molecular ion species in negative ion analysis. Spectra of selected preformed derivatives placed on charcoal and of benzaldehyde derivatized on charcoal weremore » also obtained. Molecular ion species that can be distinguished readily from carbon background ions were observed. Thus, the results established that in-situ derivatization followed by analysis is indeed possible. 3 refs., 8 figs.« less
Electromagnetic dip and hump solitary structures in oxygen-hydrogen dissipative plasmas
NASA Astrophysics Data System (ADS)
Hussain, S.; Haseeb, Mahnaz Q.; Hasnain, H.
2017-10-01
The excitation of low frequency magnetosonic waves in O + - H + - e - and O + - H - - e - collisional plasmas is studied. The light ions (hydrogen) may be positive as well as negative and are warm, and the heavy ions (oxygen) are considered as the cold species. The inertia of isothermal electrons is also considered. The collisions of ions and electrons with neutrals are taken into account. The hydrodynamic equations represent the dynamics of positive ions, negative ions, and isothermal electrons along with Maxwell's equations. The damped Korteweg de Vries equation is derived by employing the reductive perturbation technique and its time dependent solution is presented. Dip magnetosonic solitary structures are observed when both ions are positive and hump structures are seen in the presence of negative ions. The effects of variations of different plasma parameters on magnetosonic solitary structures in the presence of collisions are discussed.
Analysis of the beam halo in negative ion sources by using 3D3V PIC code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miyamoto, K., E-mail: kmiyamot@naruto-u.ac.jp; Nishioka, S.; Goto, I.
The physical mechanism of the formation of the negative ion beam halo and the heat loads of the multi-stage acceleration grids are investigated with the 3D PIC (particle in cell) simulation. The following physical mechanism of the beam halo formation is verified: The beam core and the halo consist of the negative ions extracted from the center and the periphery of the meniscus, respectively. This difference of negative ion extraction location results in a geometrical aberration. Furthermore, it is shown that the heat loads on the first acceleration grid and the second acceleration grid are quantitatively improved compared with thosemore » for the 2D PIC simulation result.« less
McClory, Phillip J; Håkansson, Kristina
2017-10-03
Negative ion mode nanoelectrospray ionization (nESI) is often utilized to analyze acidic compounds, from small molecules to proteins, with mass spectrometry (MS). Under high aqueous solvent conditions, corona discharge is commonly observed at emitter tips, resulting in low ion abundances and reduced nESI needle lifetimes. We have successfully reduced corona discharge in negative ion mode by trace addition of trifluoroethanol (TFE) to aqueous samples. The addition of as little as 0.2% TFE increases aqueous spray stability not only in nESI direct infusion, but also in nanoflow liquid chromatography (nLC)/MS experiments. Negative ion mode spray stability with 0.2% TFE is approximately 6× higher than for strictly aqueous samples. Upon addition of 0.2% TFE to the mobile phase of nLC/MS experiments, tryptic peptide identifications increased from 93 to 111 peptides, resulting in an average protein sequence coverage increase of 18%.
Ajaero, Chukwuemeka; Peru, Kerry M; Simair, Monique; Friesen, Vanessa; O'Sullivan, Gwen; Hughes, Sarah A; McMartin, Dena W; Headley, John V
2018-08-01
Large volumes of oil sands process-affected water (OSPW) are generated during the extraction of bitumen from oil sands in the Athabasca region of northeastern Alberta, Canada. As part of the development of treatment technologies, molecular characterization of naphthenic acids (NAs) and naphthenic acid fraction compounds (NAFC) in wetlands is a topic of research to better understand their fate and behavior in aquatic environments. Reported here is the application of high-resolution negative-ion electrospray Orbitrap-mass spectrometry for molecular characterization of NAs and NAFCs in a non-aerated constructed treatment wetland. The effectiveness of the wetlands to remove OSPW-NAs and NAFCs was evaluated by monitoring the changes in distributions of NAFC compounds in the untreated sample and non-aerated treatment system. After correction for measured evapotranspiration, the removal rate of the classical NAs followed approximately first-order kinetics, with higher rates observed for structures with relatively higher number of carbon atoms. These findings indicate that constructed wetland treatment is a viable method for removal of classical NAs in OSPW. Work is underway to evaluate the effects of wetland design on water quality improvement, preferential removal of different NAFC species, and reduction in toxicity. Copyright © 2018. Published by Elsevier B.V.
Favorable Effects of Weak Acids on Negative-Ion Electrospray Ionization Mass Spectrometry
Wu, Zengru; Gao, Wenqing; Phelps, Mitch A.; Wu, Di; Miller, Duane D.; Dalton, James T.
2007-01-01
Despite widespread use in pharmacokinetic, drug metabolism, and pesticide residue studies, little is known about the factors governing response during reversed-phase liquid chromatography coupled with negative-ion electrospray ionization (ESI−) mass spectrometry. We examined the effects of various mobile-phase modifiers on the ESI− response of four selective androgen receptor modulators using a postcolumn infusion system. Acetic, propionic, and butyric acid improved the ESI− responses of analytes to varying extents at low concentrations. Formic acid suppressed ionization, as did neutral salts (ammonium formate, ammonium acetate) and bases (ammonium hydroxide, triethylamine) under most conditions. Two modifiers (2,2,2-trifluoroethanol, formaldehyde) that produce anions with high gas-phase proton affinity increased ESI− responses. However, the concentrations of these modifiers required to enhance ESI− response were higher than that of acidic modifiers, which is a phenomenon likely related to their low pKa values. 2,2,2-Trifluoroethanol increased response of more hydrophobic compounds but decreased response of a more hydrophilic compound. Formaldehyde improved response of all the compounds, especially the hydrophilic compound with lower surface activity. In summary, these results suggest that an ideal ESI− modifier should provide cations that can be easily electrochemically reduced and produce anions with small molecular volume and high gas-phase proton affinity. PMID:14750883
Dissimilar viscosity induced sample pre-concentration in elecrokinetic nanofluidic channels
NASA Astrophysics Data System (ADS)
Wink, Dean; Shelton, Elijah; Pennathur, Sumita; Storey, Brian
2013-11-01
Nanofluidic analysis systems boast many advantages: portability, small sample handling, short processing times, and potential for integration with mobile electronics. However, such systems face the challenge of detecting increasingly small volumes of sample at low concentrations. In this work, we demonstrate a unique pre-concentration technique in electrokinetic nanofluidic systems based on a viscosity mismatch between two fluids. In nanofluidic electrokinetic systems, finite electric double layers (EDL) lead to non-uniform electric potentials and transverse concentration distributions. Therefore, when the EDL is comparable in size to the channel height, negatively charged ions are repelled from negatively charged walls and preferentially populate the channel centerline. Furthermore, an axial piecewise viscosity distribution induces internal pressure gradients within the channel. These force the ions to move at a different average velocities based on the pressure gradient being favorable or adverse, leading to focusing. To experimentally probe this phenomenon, we electrokinetically inject solutions of borate buffer with and without glycerol (to change the viscosity) and use a fluorescent tracer dye to visualize the flow. We perform the injections in cross-geometry channels of 20 micron, 1 micron, and 250 nanometer depths. We measure fluorescence at 5, 10 and 15 mm distances from junction. Enhancement is characterized by comparing intensities to control measurements for systems with uniform viscosity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Xingcheng; Zhou, Weidong; Kim, Youngnam
Si is an attractive negative electrode material for lithium ion batteries due to its high specifi c capacity (≈3600 mAh g –1 ). However, the huge volume swelling and shrinking during cycling, which mimics a breathing effect at the material/electrode/cell level, leads to several coupled issues including fracture of Si particles, unstable solid electrolyte interphase, and low Coulombic effi ciency. In this work, the regulation of the breathing effect is reported by using Si–C yolk–shell nanocomposite which has been well-developed by other researchers. The focus is on understanding how the nanoscaled materials design impacts the mechanical and electrochemical response atmore » electrode level. For the fi rst time, it is possible to observe one order of magnitude of reduction on breathing effect at the electrode level during cycling: the electrode thickness variation reduced down to 10%, comparing with 100% in the electrode with Si nanoparticles as active materials. The Si–C yolk–shell nanocomposite electrode exhibits excellent capacity retention and high cycle effi ciency. In situ transmission electron microscopy and fi nite element simulations consistently reveals that the dramatically enhanced performance is associated with the regulated breathing of the Si in the new composite, therefore the suppression of the overall electrode expansion.« less
Radiation of partially ionized atomic hydrogen
NASA Technical Reports Server (NTRS)
Soon, W. H.; Kunc, J. A.
1990-01-01
A nonlinear collisional-radiative model for determination of production of electrons, positive and negative ions, excited atoms, and spectral and continuum line intensities in stationary partially ionized atomic hydrogen is presented. Transport of radiation is included by coupling the rate equations for production of the electrons, ions, and excited atoms with the radiation escape factors, which are not constant but depend on plasma conditions. It is found that the contribution of the negative ion emission to the total continuum emission can be important. Comparison of the calculated total continuum emission coefficient, including the negative ion emission, is in good agreement with experimental results.
Effect of Primary-Ion Current Density on Charge Compensation in SIMS Analysis of a Quartz Glass
NASA Astrophysics Data System (ADS)
Inoue, Kazuyuki; Isogai, Akio
1988-05-01
In secondary ion mass spectrometry (SIMS) analysis of a quartz glass by means of negative ion bombardment, the effect of the negative ion current density (Ji) has been investigated. The results show that under lower Ji (<20 μA/cm2), time is required to compensate for the surface charge and the time is inversely proportional to Ji.
Bitto, David; Harvey, David J.; Halldorsson, Steinar; Doores, Katie J.; Pritchard, Laura K.; Huiskonen, Juha T.; Bowden, Thomas A.; Crispin, Max
2016-01-01
Summary Glycan analysis of virion-derived glycoproteins is challenging due to the difficulties in glycoprotein isolation and low sample abundance. Here, we describe how ion mobility mass spectrometry can be used to obtain spectra from virion samples. We also describe how negative ion fragmentation of glycans can be used to probe structural features of virion glycans. PMID:26169737
Dill, Allison L.; Ifa, Demian R.; Manicke, Nicholas E.; Costa, Anthony B.; Ramos-Vara, José A.; Knapp, Deborah W.; Cooks, R. Graham
2009-01-01
Desorption electrospray ionization (DESI) mass spectrometry (MS) was used in an imaging mode to interrogate the lipid profiles of thin tissue sections of canine spontaneous invasive transitional cell carcinoma (TCC) of the urinary bladder (a model of human invasive bladder cancer) as well as adjacent normal tissue from four different dogs. The glycerophospholipids and sphingolipids that appear as intense signals in both the negative ion and positive ion modes were identified by tandem mass spectrometry (MS/MS) product ion scans using collision-induced dissociation. Differences in the relative distributions of the lipid species were present between the tumor and adjacent normal tissue in both the negative and positive ion modes. DESI-MS images showing the spatial distributions of particular glycerophospholipids, sphinoglipids and free fatty acids in both the negative and positive ion modes were compared to serial tissue sections that were stained with hematoxylin and eosin (H&E). Increased absolute and relative intensities for at least five different glycerophospholipids and three free fatty acids in the negative ion mode and at least four different lipid species in the positive ion mode were seen in the tumor region of the samples in all four dogs. In addition, one sphingolipid species exhibited increased signal intensity in the positive ion mode in normal tissue relative to the diseased tissue. Principal component analysis (PCA) was also used to generate unsupervised statistical images from the negative ion mode data and these images are in excellent agreement with the DESI images obtained from the selected ions and also the H&E stained tissue PMID:19810710
High-capacity FeTiO3/C negative electrode for sodium-ion batteries with ultralong cycle life
NASA Astrophysics Data System (ADS)
Ding, Changsheng; Nohira, Toshiyuki; Hagiwara, Rika
2018-06-01
The development of electrode materials which improve both the energy density and cycle life is one of the most challenging issues facing the practical application of sodium-ion batteries today. In this work, FeTiO3/C nanoparticles are synthesized as negative electrode materials for sodium-ion batteries. The electrochemical performance and charge-discharge mechanism of the FeTiO3/C negative electrode are investigated in an ionic liquid electrolyte at 90 °C. The FeTiO3/C negative electrode delivers a high reversible capacity of 403 mAh g-1 at a current rate of 10 mA g-1, and exhibits high rate capability and excellent cycling stability for up to 2000 cycles. The results indicate that FeTiO3/C is a promising negative electrode material for sodium-ion batteries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oudini, N.; Taccogna, F.; Bendib, A.
2014-06-15
Laser photo-detachment is used as a method to measure or determine the negative ion density and temperature in electronegative plasmas. In essence, the method consists of producing an electropositive channel (negative ion free region) via pulsed laser photo-detachment within an electronegative plasma bulk. Electrostatic probes placed in this channel measure the change in the electron density. A second pulse might be used to track the negative ion recovery. From this, the negative ion density and temperature can be determined. We study the formation and relaxation of the electropositive channel via a two-dimensional Particle-In-Cell/Mote Carlo collision model. The simulation is mainlymore » carried out in a Hydrogen plasma with an electronegativity of α = 1, with a parametric study for α up to 20. The temporal and spatial evolution of the plasma potential and the electron densities shows the formation of a double layer (DL) confining the photo-detached electrons within the electropositive channel. This DL evolves into two fronts that move in the opposite directions inside and outside of the laser spot region. As a consequence, within the laser spot region, the background and photo-detached electron energy distribution function relaxes/thermalizes via collisionless effects such as Fermi acceleration and Landau damping. Moreover, the simulations show that collisional effects and the DL electric field strength might play a non-negligible role in the negative ion recovery within the laser spot region, leading to a two-temperature negative ion distribution. The latter result might have important effects in the determination of the negative ion density and temperature from laser photo detachment diagnostic.« less
NASA Astrophysics Data System (ADS)
Oudini, N.; Taccogna, F.; Bendib, A.; Aanesland, A.
2014-06-01
Laser photo-detachment is used as a method to measure or determine the negative ion density and temperature in electronegative plasmas. In essence, the method consists of producing an electropositive channel (negative ion free region) via pulsed laser photo-detachment within an electronegative plasma bulk. Electrostatic probes placed in this channel measure the change in the electron density. A second pulse might be used to track the negative ion recovery. From this, the negative ion density and temperature can be determined. We study the formation and relaxation of the electropositive channel via a two-dimensional Particle-In-Cell/Mote Carlo collision model. The simulation is mainly carried out in a Hydrogen plasma with an electronegativity of α = 1, with a parametric study for α up to 20. The temporal and spatial evolution of the plasma potential and the electron densities shows the formation of a double layer (DL) confining the photo-detached electrons within the electropositive channel. This DL evolves into two fronts that move in the opposite directions inside and outside of the laser spot region. As a consequence, within the laser spot region, the background and photo-detached electron energy distribution function relaxes/thermalizes via collisionless effects such as Fermi acceleration and Landau damping. Moreover, the simulations show that collisional effects and the DL electric field strength might play a non-negligible role in the negative ion recovery within the laser spot region, leading to a two-temperature negative ion distribution. The latter result might have important effects in the determination of the negative ion density and temperature from laser photo detachment diagnostic.
Metal-air cell with performance enhancing additive
Friesen, Cody A; Buttry, Daniel
2015-11-10
Systems and methods drawn to an electrochemical cell comprising a low temperature ionic liquid comprising positive ions and negative ions and a performance enhancing additive added to the low temperature ionic liquid. The additive dissolves in the ionic liquid to form cations, which are coordinated with one or more negative ions forming ion complexes. The electrochemical cell also includes an air electrode configured to absorb and reduce oxygen. The ion complexes improve oxygen reduction thermodynamics and/or kinetics relative to the ionic liquid without the additive.
A future, intense source of negative hydrogen ions
NASA Technical Reports Server (NTRS)
Siefken, Hugh; Stein, Charles
1994-01-01
By directly heating lithium hydride in a vacuum, up to 18 micro-A/sq cm of negative hydrogen has been obtained from the crystal lattice. The amount of ion current extracted and analyzed is closely related to the temperature of the sample and to the rate at which the temperature is changed. The ion current appears to be emission limited and saturates with extraction voltage. For a fixed extraction voltage, the ion current could be maximized by placing a grid between the sample surface and the extraction electrode. Electrons accompanying the negative ions were removed by a magnetic trap. A Wein velocity filter was designed and built to provide definitive mass analysis of the extracted ion species. This technique when applied to other alkali hydrides may produce even higher intensity beams possessing low values of emittance.
Mathurin; Faye; Brunot; Tabet; Wells; Fuche
2000-10-15
A new combination of a dual EI/CI ion source with a quadrupole ion trap mass spectrometer has been realized in order to efficiently produce negative ions in the reaction cell. Analysis of volatile compounds was performed under negative ion chemical ionization (NICI) during a reaction period where selected reactant negative ions, previously produced in the external ion source, were allowed to interact with molecules, introduced by hyphenated techniques such as gas chromatography. The O2*-, CH3O-, and Cl- reactant ions were used in this study to ensure specific ion/molecule interactions such as proton transfer, nucleophilic displacement, or charge exchange processes, respectively leading to even-electron species, i.e., deprotonated [M - H]- molecules, diagnostic [M - R]- ions, or odd-electron M*- molecular species. The reaction orientation depends on the thermochemistry of reactions within kinetic controls. First analytical results are presented here for the trace-level detection of several contaminants under NICI/Cl- conditions. Phosphorus-containing compounds (malathion, ethyl parathion, and methyl parathion as representative for pesticides) and nitro-containing compounds (2,4,6-trinitrotoluene for explosive material) have been chosen in order to explore the analytical ability of this promising instrumental coupling.
Clegg, S L; Wexler, A S
2011-04-21
A Pitzer ion interaction model has been applied to the systems H(2)SO(4)-H(2)O (0-3 mol kg(-1), 0-55 °C) and H(2)SO(4)-(NH(4))(2)SO(4)-H(2)O (0-6 mol kg(-1), 25 °C) for the calculation of apparent molar volume and density. The dissociation reaction HSO(4)(-)((aq)) ↔ H(+)((aq)) + SO(4)(2-)((aq)) is treated explicitly. Apparent molar volumes of the SO(4)(2-) ion at infinite dilution were obtained from part 1 of this work, (1) and the value for the bisulfate ion was determined in this study from 0 to 55 °C. In dilute solutions of both systems, the change in the degree of dissociation of the HSO(4)(-) ion with concentration results in much larger variations of the apparent molar volumes of the solutes than for conventional strong (fully dissociated) electrolytes. Densities and apparent molar volumes are tabulated. Apparent molar volumes calculated using the model are combined with other data for the solutes NH(4)HSO(4) and (NH(4))(3)H(SO(4))(2) at 25 °C to obtain apparent molar volumes and densities over the entire concentration range (including solutions supersaturated with respect to the salts).
NASA Astrophysics Data System (ADS)
Sekimoto, K.; Takayama, M.
2010-12-01
Atmospheric ion water clusters have been of long-standing interest in the field of atmospheric sciences, because of them playing a central role in the formation of tropospheric aerosols which affect the photochemistry, radiation budget of the atmosphere and climate. On the basis of a mechanism of aerosol formation in the troposphere proposed by Yu and Turco, termed “ion-mediated nucleation” (Geophys. Res. Lett. 2000, 27, 883), atmospheric ion water clusters are most likely to be produced via two processes; 1) direct attachment of polar solvent molecules H2O to atmospheric ions due to them having strong binding energy via ion-dipole interactions, and 2) growth of ion-induced hydrates into larger water clusters bound via hydrogen-bonding networks by condensation with H2O molecules. The stability and growth rates of water clusters are strongly dependent on the thermochemical properties of individual atmospheric core ions. A large number of thermochemical information of the positive atmospheric ion H3O+ and its hydrates H3O+(H2O)n have been reported so far, while there has been little information of the water clusters with the negative atmospheric core ions. Therefore, fundamental studies of the thermochemistry of various negative atmospheric ion water clusters will contribute towards furthering an understanding of their unique role in atmospheric sciences and climate change. We have recently established an atmospheric pressure DC corona discharge device containing a specific corona needle electrode that made it possible to reproducibly generate negative core ions Y- originating from ambient air (Int. J. Mass Spectrom. 2007, 261, 38; Eur. Phys. J. D 2008, 50, 297). The change in electric field strength on the needle tip resulted in the formation of negative atmospheric core ions Y- with various different lifetimes in air. The low field strength brought about the dominant formation of core ions with short lifetimes in air such as O2- and HOx-, while the longer-lived core ions HCN-, NOx- and COx- were mainly produced at higher field strength. Furthermore, the use of the discharge system coupled to mass spectrometers led to the stable formation of large water clusters Y-(H2O)n due to adiabatic expansion caused by the pressure difference between the ambient discharge area (760 torr) and vacuum region in the mass spectrometers (≈ 1 torr). Here we show the resulting mass spectra of large water clusters Y-(H2O)n (0 ≤ n ≥ 80) with the dominant negative core ion Y- such as O2-, HO-, HO2-, HCN-, NO2-, NO3-, NO3-(HNO3)2, CO3- and HCO4- which play a central role in tropospheric ion chemistry, as well as the detailed mechanism of formation of those negative ion water clusters by atmospheric pressure DC corona discharge mass spectrometry. Here we also provide new thermochemical information about magic numbers and first hydrated shells for individual negative core ions Y-, which have particular stability in the Y-(H2O)n cluster series, by using the reliable mass spectrometry data obtained and the relationship between the temperature condition in a reaction chamber and the resulting cluster distribution.
Modeling and design of a beam emission spectroscopy diagnostic for the negative ion source NIO1
NASA Astrophysics Data System (ADS)
Barbisan, M.; Zaniol, B.; Cavenago, M.; Pasqualotto, R.
2014-02-01
Consorzio RFX and INFN-LNL are building a flexible small ion source (Negative Ion Optimization 1, NIO1) capable of producing about 130 mA of H- ions accelerated at 60 KeV. Aim of the experiment is to test and develop the instrumentation for SPIDER and MITICA, the prototypes, respectively, of the negative ion sources and of the whole neutral beam injectors which will operate in the ITER experiment. As SPIDER and MITICA, NIO1 will be monitored with beam emission spectroscopy (BES), a non-invasive diagnostic based on the analysis of the spectrum of the Hα emission produced by the interaction of the energetic ions with the background gas. Aim of BES is to monitor direction, divergence, and uniformity of the ion beam. The precision of these measurements depends on a number of factors related to the physics of production and acceleration of the negative ions, to the geometry of the beam, and to the collection optics. These elements were considered in a set of codes developed to identify the configuration of the diagnostic which minimizes the measurement errors. The model was already used to design the BES diagnostic for SPIDER and MITICA. The paper presents the model and describes its application to design the BES diagnostic in NIO1.
NASA Astrophysics Data System (ADS)
Novikov, A. N.; Doronin, Ya. I.; Rakhmanova, P. A.
2018-07-01
The heat capacities and volumes of dimethylsulfoxide (DMSO) solutions of barium and cadmium iodides at 298.15 K were measured by calorimetry and densimetry. The standard partial molar heat capacities \\bar C_{p,2}^° and volumes \\bar V2^° of BaI2 and CdI2 in DMSO were calculated. The standard heat capacities \\bar C_{p,i}^° and volumes \\bar {V}i^° of barium and cadmium ions in DMSO at 298.15 K were determined.
NASA Astrophysics Data System (ADS)
Harvey, David J.; Struwe, Weston B.
2018-05-01
There is considerable potential for the use of ion mobility mass spectrometry in structural glycobiology due in large part to the gas-phase separation attributes not typically observed by orthogonal methods. Here, we evaluate the capability of traveling wave ion mobility combined with negative ion collision-induced dissociation to provide structural information on N-linked glycans containing multiple fucose residues forming the Lewisx and Lewisy epitopes. These epitopes are involved in processes such as cell-cell recognition and are important as cancer biomarkers. Specific information that could be obtained from the intact N-glycans by negative ion CID included the general topology of the glycan such as the presence or absence of a bisecting GlcNAc residue and the branching pattern of the triantennary glycans. Information on the location of the fucose residues was also readily obtainable from ions specific to each antenna. Some isobaric fragment ions produced prior to ion mobility could subsequently be separated and, in some cases, provided additional valuable structural information that was missing from the CID spectra alone.
Development of the Long Pulse Negative Ion Source for ITER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hemsworth, R.S.; Svensson, L.; Esch, H.P.L. de
2005-04-06
A model of the ion source designed for the neutral beam injectors of the International Thermonuclear Experimental Reactor (ITER), the KAMABOKO III ion source, is being tested on the MANTIS test stand at the DRFC Cadarache in collaboration with JAERI, Japan, who designed and supplied the ion source. The ion source is attached to a 3 grid 30 keV accelerator (also supplied by JAERI) and the accelerated negative ion current is determined from the energy deposited on a calorimeter located 1.6 m from the source.During experiments on MANTIS three adverse effects of long pulse operation were found: The negative ionmore » current to the calorimeter is {approx_equal}50% of that obtained from short pulse operation Increasing the plasma grid (PG) temperature results in {<=}40% enhancement in negative ion yield, substantially below that reported for short pulse operation, {>=}100%. The caesium 'consumption' is up to 1500 times that expected.Results presented here indicate that each of these is, at least partially, explained by thermal effects. Additionally presented are the results of a detailed characterisation of the source, which enable the most efficient mode of operation to be identified.« less
Self-diffusion of Si and O in diopside-anorthite melt at high pressures
NASA Astrophysics Data System (ADS)
Tinker, David; Lesher, Charles E.; Hutcheon, Ian D.
2003-01-01
Self-diffusion coefficients for Si and O in Di 58An 42 liquid were measured from 1 to 4 GPa and temperatures from 1510 to 1764°C. Glass starting powders enriched in 18O and 28Si were mated to isotopically normal glass powders to form simple diffusion couples, and self-diffusion experiments were conducted in the piston cylinder device (1 and 2 GPa) and in the multianvil apparatus (3.5 and 4 GPa). Profiles of 18O/ 16O and 29,30Si/ 28Si were measured using secondary ion mass spectrometry. Self-diffusion coefficients for O (D(O)) are slightly greater than self-diffusion coefficients for Si (D(Si)) and are often the same within error. For example, D(O) = 4.20 ± 0.42 × 10 -11 m 2/s and D(Si) = 3.65 ± 0.37 × 10 -11 m 2/s at 1 GPa and 1662°C. Activation energies for self-diffusion are 215 ± 13 kJ/mol for O and 227 ± 13 kJ/mol for Si. Activation volumes for self-diffusion are -2.1 ± 0.4 cm 3/mol and -2.3 ± 0.4 cm 3/mol for O and Si, respectively. The similar self-diffusion coefficients for Si and O, similar activation energies, and small, negative activation volumes are consistent with Si and O transport by a cooperative diffusion mechanism, most likely involving the formation and disassociation of a high-coordinated intermediate species. The small absolute magnitudes of the activation volumes imply that Di 58An 42 liquid is close to a transition from negative to positive activation volume, and Adam-Gibbs theory suggests that this transition is linked to the existence of a critical fraction (˜0.6) of bridging oxygen.
A Study of Green's Function Methods Applied to Space Radiation Protection
NASA Technical Reports Server (NTRS)
Heinbockel, John H.
2001-01-01
The purpose of this research was to study the propagation of galactic ions through various materials. Galactic light ions result from the break up of heavy ion particles and their propagation through materials is modeled using the one-dimensional Boltzmann equation. When ions enter materials there can occur (i) the interaction of ions with orbital electrons which causes ionization within the material and (ii) ions collide with atoms causing production of secondary particles which penetrate deeper within the material. These processes are modeled by a continuum model. The basic idea is to place a control volume within the material and examine the change in ion flux across this control volume. In this way on can derive the basic equations for the transport of light and heavy ions in matter. Green's function perturbation methods can then be employed to solve the resulting equations using energy dependent nuclear cross sections.
NASA Astrophysics Data System (ADS)
Michael, Manesh; Willington, Neethu T.; Jayakumar, Neethu; Sebastian, Sijo; Sreekala, G.; Venugopal, Chandu
2016-12-01
We investigate the existence of ion-acoustic shock waves in a five component cometary plasma consisting of positively and negatively charged oxygen ions, kappa described hydrogen ions, hot solar electrons, and slightly colder cometary electrons. The KdVB equation has been derived for the system, and its solution plotted for different kappa values, oxygen ion densities, as well as the temperature ratios for the ions. It is found that the amplitude of the shock wave decreases with increasing kappa values. The strength of the shock profile decreases with increasing temperatures of the positively charged oxygen ions and densities of negatively charged oxygen ions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shukla, Anil, E-mail: Anil.Shukla@pnnl.gov; Bogdanov, Bogdan
2015-02-14
Small cationic and anionic clusters of lithium formate were generated by electrospray ionization and their fragmentations were studied by tandem mass spectrometry (collision-induced dissociation with N{sub 2}). Singly as well as multiply charged clusters were formed in both positive and negative ion modes with the general formulae, (HCOOLi){sub n}Li{sup +}, (HCOOLi){sub n}Li{sub m}{sup m+}, (HCOOLi){sub n}HCOO{sup −}, and (HCOOLi){sub n}(HCOO){sub m}{sup m−}. Several magic number cluster (MNC) ions were observed in both the positive and negative ion modes although more predominant in the positive ion mode with (HCOOLi){sub 3}Li{sup +} being the most abundant and stable cluster ion. Fragmentations ofmore » singly charged positive clusters proceed first by the loss of a dimer unit ((HCOOLi){sub 2}) followed by the loss of monomer units (HCOOLi) although the former remains the dominant dissociation process. In the case of positive cluster ions, all fragmentations lead to the magic cluster (HCOOLi){sub 3}Li{sup +} as the most abundant fragment ion at higher collision energies which then fragments further to dimer and monomer ions at lower abundances. In the negative ion mode, however, singly charged clusters dissociated via sequential loss of monomer units. Multiply charged clusters in both positive and negative ion modes dissociated mainly via Coulomb repulsion. Quantum chemical calculations performed for smaller cluster ions showed that the trimer ion has a closed ring structure similar to the phenalenylium structure with three closed rings connected to the central lithium ion. Further additions of monomer units result in similar symmetric structures for hexamer and nonamer cluster ions. Thermochemical calculations show that trimer cluster ion is relatively more stable than neighboring cluster ions, supporting the experimental observation of a magic number cluster with enhanced stability.« less
Optogalvanic photodetachment spectroscopy
NASA Technical Reports Server (NTRS)
Mcdermid, I. S.; Webster, C. R.
1983-01-01
A new extension to optogalvanic spectroscopy, in which electrons detached from negative ions formed in the discharge are observed as a function of incident laser wavelength, has been developed. The determination of the electron affinities of I(-) and Cl(-) atomic ions is described. The potential of the technique for studying the spectroscopy of molecular negative ions is also discussed.
A precise ion chromatography method has been developed for the determination of chloride in high ionic strength ammonium acetate solutions (10-5 M-5 M) using sodium carbonate/sodium bicarbonate as eluent. Negative ion electrospray ionization (ESI) mass spectrometry was used for q...
Atomic Rearrangements in Electron Attachment to Laser-Excited Molecules^*
NASA Astrophysics Data System (ADS)
Pinnaduwage, Lal; McCorkle, Dennis
1996-10-01
We report the observation of extensive atomic rearrangements in dissociative electron attachment to triethylamine " (Pinnaduwage and McCorkle, Chem.Phys. Lett. (in press, 1996))" and benzene laser excited to energies above their ionization thresholds. Large signal of "rearranged" negative ions, such as C_3^- (which is observed in both cases), were observed. This is in contrast to negative-ion formation via electron attachment to molecules in their ground states, where "rearranged" negative ions are comparatively weak and have been observed only occasionally. However, formation of "rearranged" positive ions is of common occurrence in the ionization of polyatomic molecules; it is possible that the formation of "rearranged" positive ions in the ionization processes, and the formation of such negative ions via electron attachment to excited states located close to the ionization threshold, are related. * Work supported by the LDRD Program of the Oak Ridge National Laboratory, managed by Lockheed Martin Energy Research Corp. for the US Department of Energy under contract number DE-AC05-96OR22464, and by the National Science Foundation under contract CHE-93113949 with the Univ. of Tenn., Knoxville.
Solar coronal loop heating by cross-field wave transport
NASA Technical Reports Server (NTRS)
Amendt, Peter; Benford, Gregory
1989-01-01
Solar coronal arches heated by turbulent ion-cyclotron waves may suffer significant cross-field transport by these waves. Nonlinear processes fix the wave-propagation speed at about a tenth of the ion thermal velocity, which seems sufficient to spread heat from a central core into a large cool surrounding cocoon. Waves heat cocoon ions both through classical ion-electron collisions and by turbulent stochastic ion motions. Plausible cocoon sizes set by wave damping are in roughly kilometers, although the wave-emitting core may be only 100 m wide. Detailed study of nonlinear stabilization and energy-deposition rates predicts that nearby regions can heat to values intermediate between the roughly electron volt foot-point temperatures and the about 100 eV core, which is heated by anomalous Ohmic losses. A volume of 100 times the core volume may be affected. This qualitative result may solve a persistent problem with current-driven coronal heating; that it affects only small volumes and provides no way to produce the extended warm structures perceptible to existing instruments.
Local Structure and Ion Transport in Glassy Poly(ethylene oxide styrene) Copolymers
NASA Astrophysics Data System (ADS)
Yang, Han-Chang; Mays, Jimmy; Sokolov, Alexei P.; Winey, Karen I.
2014-03-01
Polymer electrolytes have attracted attention for a wide variety of applications in energy production such as lithium-ion batteries and fuel cells. The concept of free volume provides important information about ion mobility and chain dynamics in the polymer matrix. Researchers have recently demonstrated that ion transport in glassy polymer can be improved by designing a system with high free volume. We have studied the effect of temperature and humidity on the intermolecular correlations of poly(ethylene oxide styrene-block-styrene) (PEOSt- b-St) block copolymer and poly(ethylene oxide styrene) (PEOSt) homopolymer using in situ multi-angle x-ray scattering across a wide range of scattering angles (q = 0.007-1.5 Å-1) . An increase in backbone-to-backbone distance is observed, indicating an increase in free volume between different polymer main chains. Structural characterization of the polymer segments will be discussed together with conductivity and dielectric results to better understand the ion transport mechanism in the local environment of the polymer system. Department of Chemistry, University of Tennessee.
A mean-field theory on the differential capacitance of asymmetric ionic liquid electrolytes.
Han, Yining; Huang, Shanghui; Yan, Tianying
2014-07-16
The size of ions significantly influences the electric double layer structure of room temperature ionic liquid (IL) electrolytes and their differential capacitance (Cd). In this study, we extended the mean-field theory (MFT) developed independently by Kornyshev (2007J. Phys. Chem. B 111 5545-57) and Kilic, Bazant, and Ajdari (2007 Phys. Rev. E 75 021502) (the KKBA MFT) to take into account the asymmetric 1:1 IL electrolytes by introducing an additional parameter ξ for the anion/cation volume ratio, besides the ionic compressibility γ in the KKBA MFT. The MFT of asymmetric ions becomes KKBA MFT upon ξ = 1, and further reduces to Gouy-Chapman theory in the γ → 0 limit. The result of the extended MFT demonstrates that the asymmetric ILs give rise to an asymmetric Cd, with the higher peak in Cd occurring at positive polarization for the smaller anionic size. At high potential, Cd decays asymptotically toward KKBA MFT characterized by γ for the negative polarization, and characterized by ξγ for the positive polarization, with inverse-square-root behavior. At low potential, around the potential of zero charge, the asymmetric ions cause a higher Cd, which exceeds that of Gouy-Chapman theory.
Zhao, Hui; Wei, Yang; Qiao, Ruimin; Zhu, Chenhui; Zheng, Ziyan; Ling, Min; Jia, Zhe; Bai, Ying; Fu, Yanbao; Lei, Jinglei; Song, Xiangyun; Battaglia, Vincent S; Yang, Wanli; Messersmith, Phillip B; Liu, Gao
2015-12-09
High-tap-density silicon nanomaterials are highly desirable as anodes for lithium ion batteries, due to their small surface area and minimum first-cycle loss. However, this material poses formidable challenges to polymeric binder design. Binders adhere on to the small surface area to sustain the drastic volume changes during cycling; also the low porosities and small pore size resulting from this material are detrimental to lithium ion transport. This study introduces a new binder, poly(1-pyrenemethyl methacrylate-co-methacrylic acid) (PPyMAA), for a high-tap-density nanosilicon electrode cycled in a stable manner with a first cycle efficiency of 82%-a value that is further improved to 87% when combined with graphite material. Incorporating the MAA acid functionalities does not change the lowest unoccupied molecular orbital (LUMO) features or lower the adhesion performance of the PPy homopolymer. Our single-molecule force microscopy measurement of PPyMAA reveals similar adhesion strength between polymer binder and anode surface when compared with conventional polymer such as homopolyacrylic acid (PAA), while being electronically conductive. The combined conductivity and adhesion afforded by the MAA and pyrene copolymer results in good cycling performance for the high-tap-density Si electrode.
Lanthanide-IMAC enrichment of carbohydrates and polyols.
Schemeth, Dieter; Rainer, Matthias; Messner, Christoph B; Rode, Bernd M; Bonn, Günther K
2014-03-01
In this study a new type of immobilized metal ion affinity chromatography resin for the enrichment of carbohydrates and polyols was synthesized by radical polymerization reaction of vinyl phosphonic acid and 1,4-butandiole dimethacrylate using azo-bis-isobutyronitrile as radical initiator. Interaction between the chelated trivalent lanthanide ions and negatively charged hydroxyl groups of carbohydrates and polyols was observed by applying high pH values. The new method was evaluated by single standard solutions, mixtures of standards, honey and a more complex extract of Cynara scolymus. The washing step was accomplished by acetonitrile in excess volumes. Elution of enriched carbohydrates was successfully performed with deionized water. The subsequent analysis was carried out with matrix-free laser desorption/ionization-time of flight mass spectrometry involving a TiO2 -coated steel target, especially suitable for the measurement of low-molecular-weight substances. Quantitative analysis of the sugar alcohol xylitol as well as the determination of the maximal loading capacity was performed by gas chromatography in conjunction with mass spectrometric detection after chemical derivatization. In a parallel approach quantum mechanical geometry optimizations were performed in order to compare the coordination behavior of various trivalent lanthanide ions. Copyright © 2013 John Wiley & Sons, Ltd.
Osmosensation in TRPV2 dominant negative expressing skeletal muscle fibres
Zanou, Nadège; Mondin, Ludivine; Fuster, Clarisse; Seghers, François; Dufour, Inès; de Clippele, Marie; Schakman, Olivier; Tajeddine, Nicolas; Iwata, Yuko; Wakabayashi, Shigeo; Voets, Thomas; Allard, Bruno; Gailly, Philippe
2015-01-01
Abstract Increased plasma osmolarity induces intracellular water depletion and cell shrinkage followed by activation of a regulatory volume increase (RVI). In skeletal muscle, this is accompanied by transverse tubule (TT) dilatation and by a membrane depolarization responsible for a release of Ca2+ from intracellular pools. We observed that both hyperosmotic shock-induced Ca2+ transients and RVI were inhibited by Gd3+, ruthenium red and GsMTx4 toxin, three inhibitors of mechanosensitive ion channels. The response was also completely absent in muscle fibres overexpressing a non-permeant, dominant negative (DN) mutant of the transient receptor potential, V2 isoform (TRPV2) ion channel, suggesting the involvement of TRPV2 or of a TRP isoform susceptible to heterotetramerization with TRPV2. The release of Ca2+ induced by hyperosmotic shock was increased by cannabidiol, an activator of TRPV2, and decreased by tranilast, an inhibitor of TRPV2, suggesting a role for the TRPV2 channel itself. Hyperosmotic shock-induced membrane depolarization was impaired in TRPV2-DN fibres, suggesting that TRPV2 activation triggers the release of Ca2+ from the sarcoplasmic reticulum by depolarizing TTs. RVI requires the sequential activation of STE20/SPS1-related proline/alanine-rich kinase (SPAK) and NKCC1, a Na+–K+–Cl− cotransporter, allowing ion entry and driving osmotic water flow. In fibres overexpressing TRPV2-DN as well as in fibres in which Ca2+ transients were abolished by the Ca2+ chelator BAPTA, the level of P-SPAKSer373 in response to hyperosmotic shock was reduced, suggesting a modulation of SPAK phosphorylation by intracellular Ca2+. We conclude that TRPV2 is involved in osmosensation in skeletal muscle fibres, acting in concert with P-SPAK-activated NKCC1. Key points Increased plasma osmolarity induces intracellular water depletion and cell shrinkage (CS) followed by activation of a regulatory volume increase (RVI). In skeletal muscle, the hyperosmotic shock-induced CS is accompanied by a small membrane depolarization responsible for a release of Ca2+ from intracellular pools. Hyperosmotic shock also induces phosphorylation of STE20/SPS1-related proline/alanine-rich kinase (SPAK). TRPV2 dominant negative expressing fibres challenged with hyperosmotic shock present a slower membrane depolarization, a diminished Ca2+ response, a smaller RVI response, a decrease in SPAK phosphorylation and defective muscle function. We suggest that hyperosmotic shock induces TRPV2 activation, which accelerates muscle cell depolarization and allows the subsequent Ca2+ release from the sarcoplasmic reticulum, activation of the Na+–K+–Cl− cotransporter by SPAK, and the RVI response. PMID:26108786
Dissociative attachment of electrons with Si2H6
NASA Technical Reports Server (NTRS)
Krishnakumar, E.; Srivastava, S. K.; Iga, I.
1991-01-01
Cross-sections for the production of negative ion fragments by electron attachment to Si2H6 and ion pair formation from it have been measured by utilizing the crossed electron beam-molecular beam collision technique. The negative ions are mass-analyzed by employing a quadrupole mass spectrometer. There are serious disagreements between the present and two previously published results. In the present paper cross-section values, appearance potentials, and the various channels of dissociation for the formation of negative monosilane fragments are presented.
A Benign, Low Z Electron Capture Agent for Negative Ion TPCs
NASA Technical Reports Server (NTRS)
Martoff, C. J.; Dion, M. P.; Hosack, M.; Barton, D.; Black, J. K.
2008-01-01
We have identified nitromethane (CH3NO2) as an effective electron capture agent for negative ion TPCs (NITPCs). We present drift velocity and longitudinal diffusion measurements for negative ion gas mixtures using nitromethane as the capture agent. Not only is nitromethane substantially more benign than the only other identified capture agent, CS2, but its low atomic number will enable the use of the NITPC as a photoelectric X-ray polarimeter in the 1-10 keV band.
Bimolecular reaction dynamics from photoelectron spectroscopy of negative ions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bradforth, S.E.
1992-11-01
The transition state region of a neutral bimolecular reaction may be experimentally investigated by photoelectron spectroscopy of an appropriate negative ion. The photoelectron spectrum provides information on the spectroscopy and dynamics of the short lived transition state and may be used to develop model potential energy surfaces that are semi-quantitative in this important region. The principles of bound [yields] bound negative ion photoelectron spectroscopy are illustrated by way of an example: a full analysis of the photoelectron bands of CN[sup [minus
The Cadarache negative ion experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Massmann, P.; Bottereau, J.M.; Belchenko, Y.
1995-12-31
Up to energies of 140 keV neutral beam injection (NBI) based on positive ions has proven to be a reliable and flexible plasma heating method and has provided major contributions to most of the important experiments on virtually all large tokamaks around the world. As a candidate for additional heating and current drive on next step fusion machines (ITER ao) it is hoped that NBI can be equally successful. The ITER NBI parameters of 1 MeV, 50 MW D{degree} demand primary D{sup {minus}} beams with current densities of at least 15 mA/cm{sup 2}. Although considerable progress has been made inmore » the area of negative ion production and acceleration the high demands still require substantial and urgent development. Regarding negative ion production Cs seeded plasma sources lead the way. Adding a small amount of Cs to the discharge (Cs seeding) not only increases the negative ion yield by a factor 3--5 but also has the advantage that the discharge can be run at lower pressures. This is beneficial for the reduction of stripping losses in the accelerator. Multi-ampere negative ion production in a large plasma source is studied in the MANTIS experiment. Acceleration and neutralization at ITER relevant parameters is the objective of the 1 MV SINGAP experiment.« less
Satoh, Takafumi; Kishi, Shintaro; Nagashima, Hisayuki; Tachikawa, Masumi; Kanamori-Kataoka, Mieko; Nakagawa, Takao; Kitagawa, Nobuyoshi; Tokita, Kenichi; Yamamoto, Soichiro; Seto, Yasuo
2015-03-20
The ion mobility behavior of nineteen chemical warfare agents (7 nerve gases, 5 blister agents, 2 lachrymators, 2 blood agents, 3 choking agents) and related compounds including simulants (8 agents) and organic solvents (39) was comparably investigated by the ion mobility spectrometry instrument utilizing weak electric field linear drift tube with corona discharge ionization, ammonia doping, purified inner air drift flow circulation operated at ambient temperature and pressure. Three alkyl methylphosphonofluoridates, tabun, and four organophosphorus simulants gave the intense characteristic positive monomer-derived ion peaks and small dimer-derived ion peaks, and the later ion peaks were increased with the vapor concentrations. VX, RVX and tabun gave both characteristic positive monomer-derived ions and degradation product ions. Nitrogen mustards gave the intense characteristic positive ion peaks, and in addition distinctive negative ion peak appeared from HN3. Mustard gas, lewisite 1, o-chlorobenzylidenemalononitrile and 2-mercaptoethanol gave the characteristic negative ion peaks. Methylphosphonyl difluoride, 2-chloroacetophenone and 1,4-thioxane gave the characteristic ion peaks both in the positive and negative ion mode. 2-Chloroethylethylsulfide and allylisothiocyanate gave weak ion peaks. The marker ion peaks derived from two blood agents and three choking agents were very close to the reactant ion peak in negative ion mode and the respective reduced ion mobility was fluctuated. The reduced ion mobility of the CWA monomer-derived peaks were positively correlated with molecular masses among structurally similar agents such as G-type nerve gases and organophosphorus simulants; V-type nerve gases and nitrogen mustards. The slope values of the calibration plots of the peak heights of the characteristic marker ions versus the vapor concentrations are related to the detection sensitivity, and within chemical warfare agents examined the slope values for sarin, soman, tabun and nitrogen mustards were higher. Some CWA simulants and organic solvents gave the ion peaks eluting at the similar positions of the CWAs, resulting in false positive alarms. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Vickridge, Ian
2007-09-01
These two volumes present a series of papers that have arisen from a discussion meeting held at the Royal Danish Academy of Sciences and Letters in May 2006, under a strong impetus from Prof. Peter Sigmund. A significant number of central players in the 'ion beam' family were invited to participate in the discussions and most of them contributed to these two volumes. The prime purpose of the volumes, as stated in the Abstract, is 'to help those engaged in basic and applied research within ion-beam science to stay or become alert with respect to central problems in and around their area', whilst not having the pretension to be either 'a comprehensive review or a tutorial'. The overall result is stunning, and ion beam scientists from all realms are likely to want these two volumes, which together comprise some 750 pages, on their bookshelves.
ESI-MS of Cucurbituril Complexes Under Negative Polarity.
Rodrigues, Maria A A; Mendes, Débora C; Ramamurthy, Vaidhyanathan; Da Silva, José P
2017-11-01
Electrospray ionization mass spectrometry (ESI-MS) is a powerful tool to study host-guest supramolecular interactions. ESI-MS can be used for detailed gas-phase reactivity studies, to clarify the structure, or simply to verify the formation of complexes. Depending on the structure of the host and of the guest, negative and/or positive ESI are used. Here we report the unexpected formation of host-guest complexes between cucurbit[n]urils (n = 7, 8, CB[n]) and amine, styryl pyridine, and styryl pyridine dimer cations, under negative ESI. Non-complexed CB[n] form double charged halide (Br - , Cl - , F - ) adducts. Under negative ESI, halide ions interact with CB[n] outer surface hydrogen atoms. One to one host-guest complexes (1:1) of CB[n] with positive charged guests were also observed as single and double charged ions under negative ESI. The positive charge of guests is neutralized by ion-pairing with halide anions. Depending on the number of positive charges guests retain in the gas phase, one or two additional halide ions are required for neutralization. Complexes 1:2 of CB[8] with styryl pyridines retain two halide ions in the gas phase, one per guest. Styryl pyridine dimers form 1:1 complexes possessing a single extra halide ion and therefore a single positive charge. Negative ESI is sensitive to small structural differences between complexes, distinguishing between 1:2 complexes of styryl pyridine-CB[8] and corresponding 1:1 complexes with the dimer. Negative ESI gives simpler spectra than positive ESI and allows the determination of guest charge state of CB[n] complexes in the gas phase. Graphical Abstract ᅟ.
Negative ions at Titan: New results using spacecraft attitude changes
NASA Astrophysics Data System (ADS)
Wellbrock, A.; Coates, A. J.; Lewis, G. R.; Jones, G. H.; Arridge, C. S.; Magee, B. A.; Crary, F. J.; Waite, J. H.; Sittler, E. C.; Young, D. T.
2009-04-01
A. Wellbrock, A. J. Coates, G. R. Lewis, G. H. Jones, C. S. Arridge, B. A. Magee, F. J. Crary, J. H. Waite, E. C. Sittler, D. T. Young The ELS (ELectron Spectrometer) part of the Cassini Plasma Spectrometer (CAPS) revealed the existence of negative ions in Titan's ionosphere (Coates et al, 2007, Waite et al, 2007). The instrument is mounted on a rotating platform called the actuator. The negative ions are detected when this actuator points in the direction in which the spacecraft travels (the ‘ram direction'). This is because the negative ions have slow thermal speeds compared to the spacecraft speed, whereas electrons have much higher thermal speeds and are detected in any direction as their distribution is isotropic. Hence the negative ions can be identified as narrow spikes in the ELS electron spectrograms. During most Titan flybys, the spacecraft attitude is oriented such that the central anode of the instrument points in the ram direction. However, during Titan encounters when the spacecraft rotates, other anodes can point in the ram direction for short periods of time, or in a direction very close to the ram direction. In the latter case, only higher mass ions are detected. Comparing data from different anodes in and near the ram direction can be used to obtain information related to the ion velocity and temperature, which we discuss. The study of measurements from all anodes of the instrument also significantly increases the number of negative ion spikes available for analysis. The resulting set of data allows a statistical study of the different mass groups at a range of altitudes and latitudes, and their scale heights. We summarise and discuss the results. References: Coates, A.J., F.J. Crary, G.R. Lewis, D.T. Young, J.H. Waite, Jr., E.C.Sittler Jr., Discovery of heavy negative ions in Titan's ionosphere, Geophys. Res. Lett., 34, L22103, 2007. Waite, J. H., Jr., D. T. Young, T. E. Cravens, A. J. Coates, F. J. Crary, B. Magee and J. Westlake, The Process of Tholin Formation in Titan's Upper Atmosphere, Science 316, 870 (11 May 2007).
Kim, Yang Seon; Yoon, Ki Young; Park, Jae Hong; Hwang, Jungho
2011-01-15
We aerosolized the Escherichia coli (E. coli) and Staphylococcus epidermidis (S. epidermidis) bacteria and collected them on membrane filters. Then we generated air ions by applying a high voltage to a carbon fiber tip and applied them to the contaminated filters. The antibacterial efficiency was not significantly affected by the bacteria being Gram-positive or Gram-negative, however, negative ions showed a lower antibacterial efficiency than positive ions to both E. coli and S. epidermidis, even though the concentration of negative air ions was much higher than that of positive air ions. With a field emission scanning electron microscope (FE-SEM) images and fluorescence microscopy images using a LIVE/DEAD BacLight Bacterial Viability Kit, electrostatic disruption of the bacteria was found to be the dominant antibacterial effect. Copyright © 2010 Elsevier B.V. All rights reserved.
Yamano, Y; Takahashi, M; Kobayashi, S; Hanada, M; Ikeda, Y
2008-02-01
Neutral beam injection (NBI) used for JT-60U is required to generate negative ions of 500 keV energies. To produce such high-energy ions, three-stage electrostatic accelerators consisting of three insulator rings made of fiberglass reinforced plastic (FRP) are applied. The surface discharges along FRP insulators are one of the most serious problems in the development of NBI. To increase the hold-off voltage against surface flashover events, it is necessary to investigate the FRP insulator properties related to surface discharges in vacuum. This paper describes surface flashover characteristics for FRP and alumina samples under vacuum condition. The results show that the fold-off voltages for FRP samples are inferior to those of alumina ceramics. In addition, measurement results of surface resistivity and volume resistivity under vacuum and atmospheric conditions, secondary electron emission characteristics, and cathodoluminescence under some keV electron beam irradiation are also reported. These are important parameters to analyze surface discharge of insulators in vacuum.
NASA Astrophysics Data System (ADS)
Yamano, Y.; Takahashi, M.; Kobayashi, S.; Hanada, M.; Ikeda, Y.
2008-02-01
Neutral beam injection (NBI) used for JT-60U is required to generate negative ions of 500keV energies. To produce such high-energy ions, three-stage electrostatic accelerators consisting of three insulator rings made of fiberglass reinforced plastic (FRP) are applied. The surface discharges along FRP insulators are one of the most serious problems in the development of NBI. To increase the hold-off voltage against surface flashover events, it is necessary to investigate the FRP insulator properties related to surface discharges in vacuum. This paper describes surface flashover characteristics for FRP and alumina samples under vacuum condition. The results show that the fold-off voltages for FRP samples are inferior to those of alumina ceramics. In addition, measurement results of surface resistivity and volume resistivity under vacuum and atmospheric conditions, secondary electron emission characteristics, and cathodoluminescence under some keV electron beam irradiation are also reported. These are important parameters to analyze surface discharge of insulators in vacuum.
Sternad, M.; Forster, M.; Wilkening, M.
2016-01-01
Silicon-based microelectronics forms a major foundation of our modern society. Small lithium-ion batteries act as the key enablers of its success and have revolutionised portable electronics used in our all everyday’s life. While large-scale LIBs are expected to help establish electric vehicles, on the other end of device size chip-integrated Si-based μ-batteries may revolutionise microelectronics once more. In general, Si is regarded as one of the white hopes since it offers energy densities being ten times higher than conventional anode materials. The use of monocrystalline, wafer-grade Si, however, requires several hurdles to be overcome since it its volume largely expands during lithiation. Here, we will show how 3D patterned Si wafers, prepared by the sophisticated techniques from semiconductor industry, are to be electrochemically activated to overcome these limitations and to leverage their full potential being reflected in stable charge capacities (>1000 mAhg–1) and high Coulomb efficiencies (98.8%). PMID:27531589
NASA Astrophysics Data System (ADS)
Lee, Joonseong; Kim, Seonghoon; Chang, Rakwoo; Jayanthi, Lakshmi; Gebremichael, Yeshitila
2013-01-01
The present study examines the effects of the model dependence, ionic strength, divalent ions, and hydrophobic interaction on the structural organization of the human neurofilament (NF) brush, using canonical ensemble Monte Carlo (MC) simulations of a coarse-grained model with the amino-acid resolution. The model simplifies the interactions between the NF core and the sidearm or between the sidearms by the sum of excluded volume, electrostatic, and hydrophobic interactions, where both monovalent salt ions and solvents are implicitly incorporated into the electrostatic interaction potential. Several important observations are made from the MC simulations of the coarse-grained model NF systems. First, the mean-field type description of monovalent salt ions works reasonably well in the NF system. Second, the manner by which the NF sidearms are arranged on the surface of the NF backbone core has little influence on the lateral extension of NF sidearms. Third, the lateral extension of the NF sidearms is highly affected by the ionic strength of the system: at low ionic strength, NF-M is most extended but at high ionic strength, NF-H is more stretched out because of the effective screening of the electrostatic interaction. Fourth, the presence of Ca2 + ions induces the attraction between negatively charged residues, which leads to the contraction of the overall NF extension. Finally, the introduction of hydrophobic interaction does not change the general structural organization of the NF sidearms except that the overall extension is contracted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adhikary, N. C., E-mail: nirab-iasst@yahoo.co.in; Deka, M. K.; Dev, A. N.
2014-08-15
In this report, the investigation of the properties of dust acoustic (DA) solitary wave propagation in an adiabatic dusty plasma including the effect of the non-thermal ions and trapped electrons is presented. The reductive perturbation method has been employed to derive the modified Korteweg–de Vries (mK-dV) equation for dust acoustic solitary waves in a homogeneous, unmagnetized, and collisionless plasma whose constituents are electrons, singly charged positive ions, singly charged negative ions, and massive charged dust particles. The stationary analytical solution of the mK-dV equation is numerically analyzed and where the effect of various dusty plasma constituents DA solitary wave propagationmore » is taken into account. It is observed that both the ions in dusty plasma play as a key role for the formation of both rarefactive as well as the compressive DA solitary waves and also the ion concentration controls the transformation of negative to positive potentials of the waves.« less
Titan's plasma interaction: photoelectrons and negative ions
NASA Astrophysics Data System (ADS)
Coates, Coates; Welbrock, Anne; Desai, Ravi; Waite, Hunter
2016-06-01
We present a review of some of the most important results from the CAPS electron spectrometer.These include the role of photoelectrons and polar wind escape processes, and remarkable negative ion observations.
Shao, Zhecheng; Wyatt, Mark F; Stein, Bridget K; Brenton, A Gareth
2010-10-30
A method for the accurate mass measurement of negative radical ions by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOFMS) is described. This is an extension to our previously described method for the accurate mass measurement of positive radical ions (Griffiths NW, Wyatt MF, Kean SD, Graham AE, Stein BK, Brenton AG. Rapid Commun. Mass Spectrom. 2010; 24: 1629). The porphyrin standard reference materials (SRMs) developed for positive mode measurements cannot be observed in negative ion mode, so fullerene and fluorinated porphyrin compounds were identified as effective SRMs. The method is of immediate practical use for the accurate mass measurement of functionalised fullerenes, for which negative ion MALDI-TOFMS is the principal mass spectrometry characterisation technique. This was demonstrated by the accurate mass measurement of six functionalised C(60) compounds. Copyright © 2010 John Wiley & Sons, Ltd.
Nanostructured Na2Ti9O19 for Hybrid Sodium-Ion Capacitors with Excellent Rate Capability.
Bhat, Swetha S M; Babu, Binson; Feygenson, Mikhail; Neuefeind, Joerg C; Shaijumon, M M
2018-01-10
Herein, we report a new Na-insertion electrode material, Na 2 Ti 9 O 19 , as a potential candidate for Na-ion hybrid capacitors. We study the structural properties of nanostructured Na 2 Ti 9 O 19 , synthesized by a hydrothermal technique, upon electrochemical cycling vs Na. Average and local structures of Na 2 Ti 9 O 19 are elucidated from neutron Rietveld refinement and pair distribution function (PDF), respectively, to investigate the initial discharge and charge events. Rietveld refinement reveals electrochemical cycling of Na 2 Ti 9 O 19 is driven by single-phase solid solution reaction during (de)sodiation without any major structural deterioration, keeping the average structure intact. Unit cell volume and lattice evolution on discharge process is inherently related to TiO 6 distortion and Na ion perturbations, while the PDF reveals the deviation in the local structure after sodiation. Raman spectroscopy and X-ray photoelectron spectroscopy studies further corroborate the average and local structural behavior derived from neutron diffraction measurements. Also, Na 2 Ti 9 O 19 shows excellent Na-ion kinetics with a capacitve nature of 86% at 1.0 mV s -1 , indicating that the material is a good anode candidate for a sodium-ion hybrid capacitor. A full cell hybrid Na-ion capacitor is fabricated by using Na 2 Ti 9 O 19 as anode and activated porous carbon as cathode, which exhibits excellent electrochemical properties, with a maximum energy density of 54 Wh kg -1 and a maximum power density of 5 kW kg -1 . Both structural insights and electrochemical investigation suggest that Na 2 Ti 9 O 19 is a promising negative electrode for sodium-ion batteries and hybrid capacitors.
First results from negative ion beam extraction in ROBIN in surface mode
NASA Astrophysics Data System (ADS)
Pandya, Kaushal; Gahlaut, Agrajit; Yadav, Ratnakar K.; Bhuyan, Manas; Bandyopadhyay, Mainak; Das, B. K.; Bharathi, P.; Vupugalla, Mahesh; Parmar, K. G.; Tyagi, Himanshu; Patel, Kartik; Bhagora, Jignesh; Mistri, Hiren; Prajapati, Bhavesh; Pandey, Ravi; Chakraborty, Arun. K.
2017-08-01
ROBIN, the first step in the Indian R&D program on negative ion beams has reached an important milestone, with the production of negative ions in the surface conversion mode through Cesium (Cs) vapor injection into the source. In the present set-up, negative hydrogen ion beam extraction is effected through an extraction area of ˜73.38 cm2 (146 apertures of 8mm diameter). The three grid electrostatic accelerator system of ROBIN is fed by high voltage DC power supplies (Extraction Power Supply System: 11kV, 35A and Acceleration Power Supply System: 35kV, 15A). Though, a considerable reduction of co-extracted electron current is usually observed during surface mode operation, in order to increase the negative ion current, various other parameters such as plasma grid temperature, plasma grid bias, extraction to acceleration voltage ratio, impurity control and Cs recycling need to be optimized. In the present experiments, to control and to understand the impurity behavior, a Cryopump (14,000 l/s for Hydrogen) is installed along with a Residual Gas Analyzer (RGA). To characterize the source plasma, two sets of Langmuir probes are inserted through the diagnostic flange ports available at the extraction plane. To characterize the beam properties, thermal differential calorimeter, Doppler Shift Spectroscopy and electrical current measurements are implemented in ROBIN. In the present set up, all the negative ion beam extraction experiments have been performed by varying different experimental parameters e.g. RF power (30-70 kW), source operational pressure (0.3 - 0.6Pa), plasma grid bias voltage, extraction & acceleration voltage combination etc. The experiments in surface mode operation is resulted a reduction of co-extracted electron current having electron to ion ratio (e/i) ˜2 whereas the extracted negative ion current density was increased. However, further increase in negative ion current density is expected to be improved after a systematic optimization of the operational parameters and Cs conditioning of the source. It was also found out that a better performance of ROBIN is achieved in the pressure range: 0.5-0.6 Pa. In this paper, the preliminary results on parametric study of ROBIN operation and beam optimization in surface mode are discussed.
Shepherd, Simon J; Beggs, Clive B; Smith, Caroline F; Kerr, Kevin G; Noakes, Catherine J; Sleigh, P Andrew
2010-04-12
In recent years there has been renewed interest in the use of air ionizers to control the spread of infection in hospitals and a number of researchers have investigated the biocidal action of ions in both air and nitrogen. By comparison, the physical action of air ions on bacterial dissemination and deposition has largely been ignored. However, there is clinical evidence that air ions might play an important role in preventing the transmission of Acinetobacter infection. Although the reasons for this are unclear, it is hypothesized that a physical effect may be responsible: the production of air ions may negatively charge items of plastic medical equipment so that they repel, rather than attract, airborne bacteria. By negatively charging both particles in the air and items of plastic equipment, the ionizers minimize electrostatic deposition on these items. In so doing they may help to interrupt the transmission of Acinetobacter infection in certain healthcare settings such as intensive care units. A study was undertaken in a mechanically ventilated room under ambient conditions to accurately measure changes in surface potential exhibited by items of plastic medical equipment in the presence of negative air ions. Plastic items were suspended on nylon threads, either in free space or in contact with a table surface, and exposed to negative ions produced by an air ionizer. The charge build-up on the specimens was measured using an electric field mill while the ion concentration in the room air was recorded using a portable ion counter. The results of the study demonstrated that common items of equipment such as ventilator tubes rapidly developed a large negative charge (i.e. generally >-100V) in the presence of a negative air ionizer. While most items of equipment tested behaved in a similar manner to this, one item, a box from a urological collection and monitoring system (the only item made from styrene acrylonitrile), did however develop a positive charge in the presence of the ionizer. The findings of the study suggest that the action of negative air ionizers significantly alters the electrostatic landscape of the clinical environment, and that this has the potential to cause any Acinetobacter-bearing particles in the air to be strongly repelled from some plastic surfaces and attracted to others. In so doing, this may prevent critical items of equipment from becoming contaminated with the bacterium.
Transverse field focused system
Anderson, O.A.
1983-06-01
It is an object of the invention to provide a transport apparatus for a high current negative-ion beam which will bend the beam around corners through a baffled path in a differential pump or a neutron trap. It is another object of the invention to provide a transport apparatus for a high current negative-ion beam which will allow gas molecules in the beam to exit outwardly from the transport apparatus. A further object of the invention is to provide a multi-stage accelerator for a high current negative-ion beam which will enable acceleration of the beam to very high energy levels with a minimum loss of current carrying capacity. A still further object of the invention is to provide an apparatus for transport or accelertion of a sheet beam of negative ions which is shaped to confine the beam against divergence or expansion.
NASA Astrophysics Data System (ADS)
Li, Shenmin; Guo, Hua
2002-09-01
The scattering dynamics of vibrationally excited NO from a metal surface is investigated theoretically using a dissipative model that includes both the neutral and negative ion states. The Liouville-von Neumann equation is solved numerically by a Monte Carlo wave packet method, in which the wave packet is allowed to "jump" between the neutral and negative ion states in a stochastic fashion. It is shown that the temporary population of the negative ion state results in significant changes in vibrational dynamics, which eventually lead to vibrationally inelastic scattering of NO. Reasonable agreement with experiment is obtained with empirical potential energy surfaces. In particular, the experimentally observed facile multiquantum relaxation of the vibrationally highly excited NO is reproduced. The simulation also provides interesting insight into the scattering dynamics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oudini, N.; Sirse, N.; Ellingboe, A. R.
2015-07-15
This paper presents a critical assessment of the theory of photo-detachment diagnostic method used to probe the negative ion density and electronegativity α = n{sub -}/n{sub e}. In this method, a laser pulse is used to photo-detach all negative ions located within the electropositive channel (laser spot region). The negative ion density is estimated based on the assumption that the increase of the current collected by an electrostatic probe biased positively to the plasma is a result of only the creation of photo-detached electrons. In parallel, the background electron density and temperature are considered as constants during this diagnostics. While the numericalmore » experiments performed here show that the background electron density and temperature increase due to the formation of an electrostatic potential barrier around the electropositive channel. The time scale of potential barrier rise is about 2 ns, which is comparable to the time required to completely photo-detach the negative ions in the electropositive channel (∼3 ns). We find that neglecting the effect of the potential barrier on the background plasma leads to an erroneous determination of the negative ion density. Moreover, the background electron velocity distribution function within the electropositive channel is not Maxwellian. This is due to the acceleration of these electrons through the electrostatic potential barrier. In this work, the validity of the photo-detachment diagnostic assumptions is questioned and our results illustrate the weakness of these assumptions.« less
Spherical ion acoustic waves in pair ion plasmas with nonthermal electrons
NASA Astrophysics Data System (ADS)
Selim, M. M.
2016-04-01
Propagation of nonplanar ion acoustic waves in a plasma composed of negative and positive ions and nonthermally distributed electrons is investigated using reductive perturbation theory. The spherical Kadomtsev-Petviashvili (SKP) equation which describes the dynamics of the nonlinear spherical ion acoustic waves is derived. It is found that compressive and rarefactive ion-acoustic solitary wave characteristics significantly depend on the density and mass ratios of the positive to negative ions, the nonthermal electron parameter, and the geometry factor. The possible regions for the existence of spherical ion acoustic waves are defined precisely for typical parameters of (H+, O2 -) and (H+, H-) plasmas in the D and F-regions of the Earth's ionosphere, as well as for laboratory plasma (Ar+, F-).
Negative thermal ion mass spectrometry of osmium, rhenium, and iridium
NASA Technical Reports Server (NTRS)
Creaser, R. A.; Papanastassiou, D. A.; Wasserburg, G. J.
1991-01-01
This paper describes a technique for obtaining, in a conventional surface ionization mass spectrometer, intense ion beams of negatively charged oxides of Os, Re, and Ir by thermal ionization. It is shown that the principal ion species of these ions are OsO3(-), ReO4(-), and IrO2(-), respectively. For Re-187/Os-187 studies, this technique offers the advantage of isotopic analyses without prior chemical separation of Re from Os.
Strong Turbulence in Alkali Halide Negative Ion Plasmas
NASA Astrophysics Data System (ADS)
Sheehan, Daniel
1999-11-01
Negative ion plasmas (NIPs) are charge-neutral plasmas in which the negative charge is dominated by negative ions rather than electrons. They are found in laser discharges, combustion products, semiconductor manufacturing processes, stellar atmospheres, pulsar magnetospheres, and the Earth's ionosphere, both naturally and man-made. They often display signatures of strong turbulence^1. Development of a novel, compact, unmagnetized alkali halide (MX) NIP source will be discussed, it incorporating a ohmically-heated incandescent (2500K) tantulum solenoid (3cm dia, 15 cm long) with heat shields. The solenoid ionizes the MX vapor and confines contaminant electrons, allowing a very dry (electron-free) source. Plasma densities of 10^10 cm-3 and positive to negative ion mass ratios of 1 <= fracm_+m- <= 20 are achievable. The source will allow tests of strong turbulence theory^2. 1 Sheehan, D.P., et al., Phys. Fluids B5, 1593 (1993). 2 Tsytovich, V. and Wharton, C.W., Comm. Plasma Phys. Cont. Fusion 4, 91 (1978).
Onai, M; Etoh, H; Aoki, Y; Shibata, T; Mattei, S; Fujita, S; Hatayama, A; Lettry, J
2016-02-01
Recently, a filament driven multi-cusp negative ion source has been developed for proton cyclotrons in medical applications. In this study, numerical modeling of the filament arc-discharge source plasma has been done with kinetic modeling of electrons in the ion source plasmas by the multi-cusp arc-discharge code and zero dimensional rate equations for hydrogen molecules and negative ions. In this paper, main focus is placed on the effects of the arc-discharge power on the electron energy distribution function and the resultant H(-) production. The modelling results reasonably explains the dependence of the H(-) extraction current on the arc-discharge power in the experiments.
NASA Astrophysics Data System (ADS)
Cody, Robert B.; Dane, A. John
2013-03-01
Large polarizable n-alkanes (approximately C18 and larger), alcohols, and other nonpolar compounds can be detected as negative ions when sample solutions are injected directly into the sampling orifice of the atmospheric pressure interface of the time-of-flight mass spectrometer with the direct analysis in real time (DART) ion source operating in negative-ion mode. The mass spectra are dominated by peaks corresponding to [M + O2]‾•. No fragmentation is observed, making this a very soft ionization technique for samples that are otherwise difficult to analyze by DART. Detection limits for cholesterol were determined to be in the low nanogram range.
Cody, Robert B; Dane, A John
2013-03-01
Large polarizable n-alkanes (approximately C18 and larger), alcohols, and other nonpolar compounds can be detected as negative ions when sample solutions are injected directly into the sampling orifice of the atmospheric pressure interface of the time-of-flight mass spectrometer with the direct analysis in real time (DART) ion source operating in negative-ion mode. The mass spectra are dominated by peaks corresponding to [M + O2]‾(•). No fragmentation is observed, making this a very soft ionization technique for samples that are otherwise difficult to analyze by DART. Detection limits for cholesterol were determined to be in the low nanogram range.
Spherical nonlinear ion-acoustic solitary waves in Titan's atmosphere
NASA Astrophysics Data System (ADS)
Selim, M. M.
2016-03-01
Propagation of spherical nonlinear ion-acoustic solitary waves in positive and negative ion plasmas with superthermal electrons is investigated. The effects of perturbations of the azimuthal and zenith-angle as well as the radial coordinate on the solitary wave profile are reported. The existence domains and the characteristics of the spherical solitary pulses are examined. The solitary excitations are found to be strongly dependent on the plasma parameters; the mass ratio of the positive-to-negative ions, electrons superthermality, and the spherical geometry. The role of superthermal electrons in formation of the spherical nonlinear ion-acoustic solitary excitations for two ion mass groups in Titan's upper atmosphere is investigated.
Design and Preliminary Testing Plan of Electronegative Ion Thruster
NASA Technical Reports Server (NTRS)
Schloeder, Natalie R.; Liu, Thomas M.; Walker, Mitchell L. R.; Polzin, Kurt A.; Dankanich, John W.; Aanesland, Ane
2014-01-01
Electronegative ion thrusters are a new iteration of existing gridded ion thruster technology differentiated by their ability to produce and accelerate both positive and negative ions. The primary motivations for electronegative ion thruster development include the elimination of lifetime-limiting cathodes from a thruster system and the ability to generate appreciable thrust through the acceleration of both positive or negative-charged ions. Proof-of-concept testing of the PEGASES (Plasma Propulsion with Electronegative GASES) thruster demonstrated the production of positively and negatively-charged ions (argon and sulfur hexafluoride, respectively) in an RF discharge and the subsequent acceleration of each charge species through the application of a time-varying electric field to a pair of metallic grids similar to those found in gridded ion thrusters. Leveraging the knowledge gained through experiments with the PEGASES I and II prototypes, the MINT (Marshall's Ion-ioN Thruster) is being developed to provide a platform for additional electronegative thruster proof-of-concept validation testing including direct thrust measurements. The design criteria used in designing the MINT are outlined and the planned tests that will be used to characterize the performance of the prototype are described.
Very Large Area/Volume Microwave ECR Plasma and Ion Source
NASA Technical Reports Server (NTRS)
Foster, John E. (Inventor); Patterson, Michael J. (Inventor)
2009-01-01
The present invention is an apparatus and method for producing very large area and large volume plasmas. The invention utilizes electron cyclotron resonances in conjunction with permanent magnets to produce dense, uniform plasmas for long life ion thruster applications or for plasma processing applications such as etching, deposition, ion milling and ion implantation. The large area source is at least five times larger than the 12-inch wafers being processed to date. Its rectangular shape makes it easier to accommodate to materials processing than sources that are circular in shape. The source itself represents the largest ECR ion source built to date. It is electrodeless and does not utilize electromagnets to generate the ECR magnetic circuit, nor does it make use of windows.
NASA Astrophysics Data System (ADS)
Ovanesyan, Zaven
Highly charged cylindrical and spherical objects (macroions) are probably the simplest structures for modeling nucleic acids, proteins and nanoparticles. Their ubiquitous presence within biophysical systems ensures that Coulomb forces are among the most important interactions that regulate the behavior of these systems. In these systems, ions position themselves in a strongly correlated manner near the surface of a macroion and form electrical double layers (EDLs). These EDLs play an important role in many biophysical and biochemical processes. For instance, the macroion's net charge can change due to the binding of many multivalent ions to its surface. Thus, proper description of EDLs near the surface of a macroion may reveal a counter-intuitive charge inversion behavior, which can generate attraction between like-charged objects. This is relevant for the variety of fields such as self-assembly of DNA and RNA folding, as well as for protein aggregation and neurodegenerative diseases. Certainly, the key factors that contribute to these phenomena cannot be properly understood without an accurate solvation model. With recent advancements in computer technologies, the possibility to use computational tools for fundamental understanding of the role of EDLs around biomolecules and nanoparticles on their physical and chemical properties is becoming more feasible. Establishing the impact of the excluded volume and ion-ion correlations, ionic strength and pH of the electrolyte on the EDL around biomolecules and nanoparticles, and how changes in these properties consequently affect the Zeta potential and surface charge density are still not well understood. Thus, modeling and understanding the role of these properties on EDLs will provide more insights on the stability, adsorption, binding and function of biomolecules and nanoparticles. Existing mean-field theories such as Poisson Boltzmann (PB) often neglect the ion-ion correlations, solvent and ion excluded volume effects, which are important details for proper description of EDL properties. In this thesis, we implement an efficient and accurate classical solvation density functional theory (CDSFT) for EDLs of spherical macroions and cylindrical polyelectrolytes embedded in aqueous electrolytes. This approach extends the capabilities of mean field approximations by taking into account electrostatic ion-ion correlations, size asymmetry and excluded volume effects without compromising the computational cost. We apply the computational tool to study the structural and thermodynamic properties of the ionic atmosphere around B-DNA and spherical nanoparticles. We demonstrate that the presence of solvent molecules at experimental concentration and size values has a significant impact on the layering of ions. This layering directly influences the integrated charge and mean electrostatic potential in the diffuse region of the spherical electrical double layer (SEDL) and have a noticeable impact on the behavior of zeta potential (ZP). Recently, we have extended the aforementioned CSDFT to account for the charge-regulated mechanisms of the macroion surface on the structural and thermodynamic properties of spherical EDLs. In the approach, the CSDFT is combined with a surface complexation model to account for ion correlation and excluded volume effects on the surface titration of spherical macroions. We apply the proposed computational approach to describe the role that the ion size and solvent excluded volume play on the surface titration properties of silica nanoparticles. We analyze the effects of the nanoparticle size, pH and salt concentration of the aqueous solution on the nanoparticle's surface charge and zeta potential. The results reveal that surface charge density and zeta potential significantly depend on excluded volume and ion-ion correlation effects as well as on pH for monovalent ion species at high salt concentrations. Overall, our results are in good agreement with Monte Carlo simulations and available experimental data. We discuss future directions of this work, which includes extension of the solvation model for studying the flexibility properties of rigid peptides and globular proteins, and describes benefits that this research can potentially bring to scientific and non scientific communities.
NASA Astrophysics Data System (ADS)
Ri, Gum-Chol; Choe, Song-Hyok; Yu, Chol-Jun
2018-02-01
Natural abundance of sodium and its similar behavior to lithium triggered recent extensive studies of cost-effective sodium-ion batteries (SIBs) for large-scale energy storage systems. A challenge is to develop electrode materials with a high electrode potential, specific capacity and a good rate capability. In this work we propose mixed eldfellite compounds Nax(Fe1/2M1/2) (SO4)2 (x = 0-2, M = Mn, Co, Ni) as a new family of high electrode potential cathodes of SIBs and present their material properties predicted by first-principles calculations. The structural optimizations show that these materials have significantly small volume expansion rates below 5% upon Na insertion/desertion with negative Na binding energies. Through the electronic structure calculations, we find band insulating properties and hole (and/or electron) polaron hoping as a possible mechanism for the charge transfer. Especially we confirm the high electrode voltages over 4 V with reasonably high specific capacities. We also investigate the sodium ion mobility by estimating plausible diffusion pathways and calculating the corresponding activation barriers, demonstrating the reasonably fast migrations of sodium ions during the operation. Our calculation results indicate that these mixed eldfellite compounds can be suitable materials for high performance SIB cathodes.
Hoffmann, Else Kay
2011-01-01
This mini review outlines studies of cell volume regulation in two closely related mammalian cell lines: nonadherent Ehrlich ascites tumour cells (EATC) and adherent Ehrlich Lettre ascites (ELA) cells. Focus is on the regulatory volume decrease (RVD) that occurs after cell swelling, the volume regulatory ion channels involved, and the mechanisms (cellular signalling pathways) that regulate these channels. Finally, I shall also briefly review current investigations in these two cell lines that focuses on how changes in cell volume can regulate cell functions such as cell migration, proliferation, and programmed cell death. Copyright © 2011 S. Karger AG, Basel.
Methods of obtaining a uniform volume concentration of implanted ions
NASA Astrophysics Data System (ADS)
Reutov, V. F.
1998-05-01
Three simple practical methods of irradiation with high energy particles (>5 MeV/n), providing the conditions of obtaining a uniform volume concentration of the implanted ions in the massive samples are described in the present paper. Realization of the condition of two-sided irradiation of a plane sample during its rotation in the flux of the projectiles is the basis of the first method. The use of free air as a filter with varying absorbent ability due to the movement of the irradiated sample along ion beam brought to the atmosphere is at the basis of the second method of uniform ion alloying. The third method of obtaining a uniform volume concentration of the implanted ions in a massive sample consists of sample irradiation through the absorbent filter in the shape of a foil curved according to the parabolic law moving along its surface. The first method is the most effective for obtaining a great number of the samples, for mechanical tests, for example, the second one - for irradiation in different gaseous media, the third one - for obtaining high concentration of the implanted ions under controlled (regulated) thermal and deformation conditions.
Sakoda, Akihiro; Hanamoto, Katsumi; Haruki, Naoto; Nagamatsu, Tomohiro; Yamaoka, Kiyonori
2007-01-01
To elucidate the characteristics of some radon hot springs, we simulated a hot spring by soaking the rocks for the radon therapy in water and measured the concentrations of radon and negative air ions in various conditions. In the results, the individual rock structure could contribute to radon leaching because the radon leaching rates were independent of the grain sizes. More negative air ions were generated by the wet rocks than by the dry rocks.
Nishikaze, Takashi; Kaneshiro, Kaoru; Kawabata, Shin-ichirou; Tanaka, Koichi
2012-11-06
Negative-ion fragmentation of underivatized N-glycans has been proven to be more informative than positive-ion fragmentation. Fluorescent labeling via reductive amination is often employed for glycan analysis, but little is known about the influence of the labeling group on negative-ion fragmentation. We previously demonstrated that the on-target glycan-labeling method using 3-aminoquinoline/α-cyano-4-hydroxycinnamic acid (3AQ/CHCA) liquid matrix enables highly sensitive, rapid, and quantitative N-glycan profiling analysis. The current study investigates the suitability of 3AQ-labeled N-glycans for structural analysis based on negative-ion collision-induced dissociation (CID) spectra. 3AQ-labeled N-glycans exhibited simple and informative CID spectra similar to those of underivatized N-glycans, with product ions due to cross-ring cleavages of the chitobiose core and ions specific to two antennae (D and E ions). The interpretation of diagnostic fragment ions suggested for underivatized N-glycans could be directly applied to the 3AQ-labeled N-glycans. However, fluorescently labeled N-glycans by conventional reductive amination, such as 2-aminobenzamide (2AB)- and 2-pyrydilamine (2PA)-labeled N-glycans, exhibited complicated CID spectra consisting of numerous signals formed by dehydration and multiple cleavages. The complicated spectra of 2AB- and 2PA-labeled N-glycans was found to be due to their open reducing-terminal N-acetylglucosamine (GlcNAc) ring, rather than structural differences in the labeling group in the N-glycan derivative. Finally, as an example, the on-target 3AQ labeling method followed by negative-ion CID was applied to structurally analyze neutral N-glycans released from human epidermal growth factor receptor type 2 (HER2) protein. The glycan-labeling method using 3AQ-based liquid matrix should facilitate highly sensitive quantitative and qualitative analyses of glycans.
Electrochemical cell and negative electrode therefor
Kaun, Thomas D.
1982-01-01
A secondary electrochemical cell with the positive and negative electrodes separated by a molten salt electrolyte with the negative electrode comprising a particulate mixture of lithium-aluminum alloy and electrolyte and an additive selected from graphitized carbon, Raney iron or mixtures thereof. The lithium-aluminum alloy is present in the range of from about 45 to about 80 percent by volume of the negative electrode, and the electrolyte is present in an amount not less than about 10 percent by volume of the negative electrode. The additive of graphitized carbon is present in the range of from about 1 to about 10 percent by volume of the negative electrode, and the Raney iron additive is present in the range of from about 3 to about 10 percent by volume of the negative electrode.
NASA Astrophysics Data System (ADS)
Kitajima, Kensei; Majima, Takuya; Nishio, Tatsuya; Oonishi, Yoshiki; Mizutani, Shiori; Kohno, Jun-ya; Saito, Manabu; Tsuchida, Hidetsugu
2018-06-01
We have investigated the negative and positive secondary ions emitted from ethanol droplets by 4.0-MeV C3+ impact to reveal the characteristic features of the reaction processes induced by fast heavy ions at the liquid ethanol surface. Analysis of the secondary ions was performed by time-of-flight mass spectrometry for microdroplet targets in a high vacuum environment. Fragment ions, deprotonated cluster ions, and trace amounts of the reaction product ions are observed in the negative secondary ions. The main fragment anions are C2HmO- (m = 1, 3, and 5) and C2H- generated by loss of hydrogen and oxygen atoms. The reaction product anions include deprotonated glycols, larger alcohols, and their dehydrated and dehydrogenated forms generated by secondary reactions between fragments and radicals. Furthermore, C3Hm- (m = 0-2) and C4Hm- (m = 0 and 1) are observed, which could be produced through a plasma state generated in the heavy ion track. Deprotonated ethanol cluster ions, [(EtOH)n - H]-, are observed up to about n = 25. [(EtOH)n - H]- have smaller kinetic energies than the protonated cluster ions (EtOH)nH+. This probably represents the effect of the positive Coulomb potential transiently formed in the ion track. We also discuss the size distributions and structures of the water- and CH2OH-radical-attached ethanol cluster ions.
Langmuir probe analysis in electronegative plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bredin, Jerome, E-mail: jerome.bredin@lpp.polytechnique.fr; Chabert, Pascal; Aanesland, Ane
2014-12-15
This paper compares two methods to analyze Langmuir probe data obtained in electronegative plasmas. The techniques are developed to allow investigations in plasmas, where the electronegativity α{sub 0} = n{sub –}/n{sub e} (the ratio between the negative ion and electron densities) varies strongly. The first technique uses an analytical model to express the Langmuir probe current-voltage (I-V) characteristic and its second derivative as a function of the electron and ion densities (n{sub e}, n{sub +}, n{sub –}), temperatures (T{sub e}, T{sub +}, T{sub –}), and masses (m{sub e}, m{sub +}, m{sub –}). The analytical curves are fitted to the experimental data bymore » adjusting these variables and parameters. To reduce the number of fitted parameters, the ion masses are assumed constant within the source volume, and quasi-neutrality is assumed everywhere. In this theory, Maxwellian distributions are assumed for all charged species. We show that this data analysis can predict the various plasma parameters within 5–10%, including the ion temperatures when α{sub 0} > 100. However, the method is tedious, time consuming, and requires a precise measurement of the energy distribution function. A second technique is therefore developed for easier access to the electron and ion densities, but does not give access to the ion temperatures. Here, only the measured I-V characteristic is needed. The electron density, temperature, and ion saturation current for positive ions are determined by classical probe techniques. The electronegativity α{sub 0} and the ion densities are deduced via an iterative method since these variables are coupled via the modified Bohm velocity. For both techniques, a Child-Law sheath model for cylindrical probes has been developed and is presented to emphasize the importance of this model for small cylindrical Langmuir probes.« less
Production of Neutral Beams from Negative Ion Beam Systems in the USSR
1982-12-01
research is to produce long-pulse and CW high-energy neutral beams. The Oak Ridge National Laboratory ( ORNL ) has been concentrating on the direct extraction...next generation of mirror devices [1II. ORNL is using a cesium converter to produce negative ions from low-energy positive ions from a duopigatron ion...with Formation of Highly Excited Hydrogen Atoms," ZhTF, Vol. 36, No. 7, 1966, p. 1241 . 107. Kartashev, K. B., V. I. Pistunovich, V. V. Platonov, V. D
Tunable thermal expansion in framework materials through redox intercalation
Chen, Jun; Gao, Qilong; Sanson, Andrea; Jiang, Xingxing; Huang, Qingzhen; Carnera, Alberto; Rodriguez, Clara Guglieri; Olivi, Luca; Wang, Lei; Hu, Lei; Lin, Kun; Ren, Yang; Lin, Zheshuai; Wang, Cong; Gu, Lin; Deng, Jinxia; Attfield, J. Paul; Xing, Xianran
2017-01-01
Thermal expansion properties of solids are of fundamental interest and control of thermal expansion is important for practical applications but can be difficult to achieve. Many framework-type materials show negative thermal expansion when internal cages are empty but positive thermal expansion when additional atoms or molecules fill internal voids present. Here we show that redox intercalation offers an effective method to control thermal expansion from positive to zero to negative by insertion of Li ions into the simple negative thermal expansion framework material ScF3, doped with 10% Fe to enable reduction. The small concentration of intercalated Li ions has a strong influence through steric hindrance of transverse fluoride ion vibrations, which directly controls the thermal expansion. Redox intercalation of guest ions is thus likely to be a general and effective method for controlling thermal expansion in the many known framework materials with phonon-driven negative thermal expansion. PMID:28181576
MgO-templated carbon as a negative electrode material for Na-ion capacitors
NASA Astrophysics Data System (ADS)
Kado, Yuya; Soneda, Yasushi
2016-12-01
In this study, MgO-templated carbon with different pore structures was investigated as a negative electrode material for Na-ion capacitors. With increasing the Brunauer-Emmett-Teller surface area, the irreversible capacity increased, and the coulombic efficiency of the 1st cycle decreased because of the formation of solid electrolyte interface layers. MgO-templated carbon annealed at 1000 °C exhibited the highest capacity and best rate performance, suggesting that an appropriate balance between surface area and crystallinity is imperative for fast Na-ion storage, attributed to the storage mechanism: combination of non-faradaic electric double-layer capacitance and faradaic Na intercalation in the carbon layers. Finally, a Na-ion capacitor cell using MgO-templated carbon and activated carbon as the negative and positive electrodes, respectively, exhibited an energy density at high power density significantly greater than that exhibited by the cell using a commercial hard carbon negative electrode.
Tunable thermal expansion in framework materials through redox intercalation
NASA Astrophysics Data System (ADS)
Chen, Jun; Gao, Qilong; Sanson, Andrea; Jiang, Xingxing; Huang, Qingzhen; Carnera, Alberto; Rodriguez, Clara Guglieri; Olivi, Luca; Wang, Lei; Hu, Lei; Lin, Kun; Ren, Yang; Lin, Zheshuai; Wang, Cong; Gu, Lin; Deng, Jinxia; Attfield, J. Paul; Xing, Xianran
2017-02-01
Thermal expansion properties of solids are of fundamental interest and control of thermal expansion is important for practical applications but can be difficult to achieve. Many framework-type materials show negative thermal expansion when internal cages are empty but positive thermal expansion when additional atoms or molecules fill internal voids present. Here we show that redox intercalation offers an effective method to control thermal expansion from positive to zero to negative by insertion of Li ions into the simple negative thermal expansion framework material ScF3, doped with 10% Fe to enable reduction. The small concentration of intercalated Li ions has a strong influence through steric hindrance of transverse fluoride ion vibrations, which directly controls the thermal expansion. Redox intercalation of guest ions is thus likely to be a general and effective method for controlling thermal expansion in the many known framework materials with phonon-driven negative thermal expansion.
Theoretical study of the BeLi, BeNa, MgLi, MgNa, and AlBe molecules and their negative ions
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Partridge, Harry
1992-01-01
The alkaline earth-alkali diatomics are found to have weak bonds, because the diffuse alkali valence s orbitals cannot form a bond of sufficient strength to pay the promotion energy of the alkaline-earth atoms. This leads to van der Waals bonding in the neutrals as well as the negative ions. In fact, the negative ions have larger binding energies than the neutrals as a result of the much larger polarizability of the negative ion. The binding energy of AlBe is significantly larger than the Be-alkali molecules, due to a covalent contribution to the bonding. The binding energy in AlBe(-) is considerably larger than AlBe; the binding energy of the X 3Sigma(-) state of AlBe(-) is computed to be 1.36 eV, as compared with 0.57 eV for the X 2Pi state of AlBe.
Besil, Natalia; Uclés, Samanta; Mezcúa, Milagros; Heinzen, Horacio; Fernández-Alba, Amadeo R
2015-08-01
Gas chromatography coupled to high resolution hybrid quadrupole time-of-flight mass spectrometry (GC-QTOF MS), operating in negative chemical ionization (NCI) mode and combining full scan with MSMS experiments using accurate mass analysis, has been explored for the automated determination of pesticide residues in fruit and vegetables. Seventy compounds were included in this approach where 50 % of them are not approved by the EU legislation. A global 76 % of the analytes could be identified at 1 μg kg(-1). Recovery studies were developed at three concentration levels (1, 5, and 10 μg kg(-1)). Seventy-seven percent of the detected pesticides at the lowest level yielded recoveries within the 70 %-120 % range, whereas 94 % could be quantified at 5 μg kg(-1), and the 100 % were determined at 10 μg kg(-1). Good repeatability, expressed as relative standard deviation (RSD <20 %), was obtained for all compounds. The main drawback of the method was the limited dynamic range that was observed for some analytes that can be overcome either diluting the sample or lowering the injection volume. A home-made database was developed and applied to an automatic accurate mass data processing. Measured mass accuracies of the generated ions were mainly less than 5 ppm for at least one diagnostic ion. When only one ion was obtained in the single-stage NCI-MS, a representative product ion from MSMS experiments was used as identification criterion. A total of 30 real samples were analyzed and 67 % of the samples were positive for 12 different pesticides in the range 1.0-1321.3 μg kg(-1).
The negative hydrogen Penning ion gauge ion source for KIRAMS-13 cyclotron
DOE Office of Scientific and Technical Information (OSTI.GOV)
An, D. H.; Jung, I. S.; Kang, J.
2008-02-15
The cold-cathode-type Penning ion gauge (PIG) ion source for the internal ion source of KIRAMS-13 cyclotron has been used for generation of negative hydrogen ions. The dc H-beam current of 650 {mu}A from the PIG ion source with the Dee voltage of 40 kV and arc current of 1.0 A is extrapolated from the measured dc extraction beam currents at the low extraction dc voltages. The output optimization of PIG ion source in the cyclotron has been carried out by using various chimneys with different sizes of the expansion gap between the plasma boundary and the chimney wall. This papermore » presents the results of the dc H-extraction measurement and the expansion gap experiment.« less
Counting the ions surrounding nucleic acids
2017-01-01
Abstract Nucleic acids are strongly negatively charged, and thus electrostatic interactions—screened by ions in solution—play an important role in governing their ability to fold and participate in biomolecular interactions. The negative charge creates a region, known as the ion atmosphere, in which cation and anion concentrations are perturbed from their bulk values. Ion counting experiments quantify the ion atmosphere by measuring the preferential ion interaction coefficient: the net total number of excess ions above, or below, the number expected due to the bulk concentration. The results of such studies provide important constraints on theories, which typically predict the full three-dimensional distribution of the screening cloud. This article reviews the state of nucleic acid ion counting measurements and critically analyzes their ability to test both analytical and simulation-based models. PMID:28034959
Oldekop, Maarja-Liisa; Rebane, Riin; Herodes, Koit
2017-10-01
Matrix effect, the influence of co-eluting components on the ionization efficiency of the analyte, affects the trueness and precision of the LC-ESI-MS analysis. Derivatization can reduce or eliminate matrix effect, for example, diethyl ethoxymethylenemalonate (DEEMM) derivatives have shown less matrix effect compared to other derivatives. Moreover, the use of negative ion mode can further reduce matrix effect. In order to investigate the combination of derivatization and different ionization modes, an LC-ESI-MS/MS method using alternating positive/negative ion mode was developed and validated. The analyses in positive and negative ion modes had comparable limit of quantitation values. The influence of ESI polarity on matrix effect was investigated during the analysis of 22 DEEMM-derivatized amino acids in herbal extracts and honeys. Sample dilution approach was used for the evaluation of the presence of matrix effect. Altogether, 4 honeys and 11 herbal extracts were analyzed, and the concentrations of 22 amino acids in the samples are presented. In the positive ion mode, matrix effect was observed for several amino acid derivatives and the matrix effect was stronger in honey samples compared to the herbal extracts. The negative ion mode was free from matrix effect, with only few exceptions in honeys (average relative standard deviation over all analytes and matrices was 8%; SD = 7%). The matrix effect was eliminated in the positive ion mode by sample dilution and agreement between concentrations from the two ion modes was achieved for most amino acids. In conclusion, it was shown that the combination of derivatization and negative ion mode can be a powerful tool for minimizing matrix effect in more complicated applications.
Oomens, Jos; Berden, Giel; Morton, Thomas Hellman
2015-06-22
CO stretching frequencies of free, gaseous, fluorinated alkoxide ions shift substantially to the blue, relative to those of corresponding alcohols complexed with ammonia. Free α-fluorinated ions, pentafluoroethoxide and heptafluoroisopropoxide anions, display further blue shifts relative to cases with only β-fluorination, providing experimental evidence for fluorine negative hyperconjugation. DFT analysis with the atoms in molecules (AIM) method confirms an increase in CO bond order for the α-fluorinated ions, demonstrating an increase in carbonyl character for the free ions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Liu, Chengyuan; Zhu, Yanan; Yang, Jiuzhong; Zhao, Wan; Lu, Deen; Pan, Yang
2017-04-01
Solvent and ion source pressure were two important factors relating to the photon induced ion-molecule reactions in low pressure photoionization (LPPI). In this work, four anabolic steroids were analyzed by LPPI mass spectrometry. Both the ion species present and their relative abundances could be controlled by switching the solvent and adjusting the ion source pressure. Whereas M •+ , MH + , [M - H 2 O] + , and solvent adducts were observed in positive LPPI, [M - H] - and various oxidation products were abundant in negative LPPI. Changing the solvent greatly affected formation of the ion species in both positive and negative ion modes. The ion intensities of the solvent adduct and oxygen adduct were selectively enhanced when the ion source pressure was elevated from 68 to 800 Pa. The limit of detection could be decreased by increasing the ion source pressure. Graphical Abstract ᅟ.
NASA Astrophysics Data System (ADS)
Liu, Chengyuan; Zhu, Yanan; Yang, Jiuzhong; Zhao, Wan; Lu, Deen; Pan, Yang
2017-04-01
Solvent and ion source pressure were two important factors relating to the photon induced ion-molecule reactions in low pressure photoionization (LPPI). In this work, four anabolic steroids were analyzed by LPPI mass spectrometry. Both the ion species present and their relative abundances could be controlled by switching the solvent and adjusting the ion source pressure. Whereas M•+, MH+, [M - H2O]+, and solvent adducts were observed in positive LPPI, [M - H]- and various oxidation products were abundant in negative LPPI. Changing the solvent greatly affected formation of the ion species in both positive and negative ion modes. The ion intensities of the solvent adduct and oxygen adduct were selectively enhanced when the ion source pressure was elevated from 68 to 800 Pa. The limit of detection could be decreased by increasing the ion source pressure.
Negative charge emission due to excimer laser bombardment of sodium trisilicate glass
NASA Astrophysics Data System (ADS)
Langford, S. C.; Jensen, L. C.; Dickinson, J. T.; Pederson, L. R.
1990-10-01
We describe measurements of negative charge emission accompanying irradiation of sodium trisilicate glass (Na2Oṡ3SiO2) with 248-nm excimer laser light at fluences on the order of 2 J/cm2 per pulse, i.e., at the threshold for ablative etching of the glass surface. The negative charge emission consists of a very prompt photoelectron burst coincident with the laser pulse, followed by a much slower plume of electrons and negative ions traveling with a high density cloud of positive ions, previously identified as primarily Na+. Using combinations of E and B fields in conjunction with time-of-flight methods, the negative ions were successfully separated from the plume and tentatively identified as O-, Si-, NaO-, and perhaps NaSi-. These negative species are probably formed by gas phase collisions in the near-surface region which result in electron attachment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rafalskyi, Dmytro; Aanesland, Ane; Dudin, Stanislav
2015-05-15
This paper presents the development of a magnetized retarding field energy analyzer (MRFEA) used for positive and negative ion analysis. The two-stage analyzer combines a magnetic electron barrier and an electrostatic ion energy barrier allowing both positive and negative ions to be analyzed without the influence of electrons (co-extracted or created downstream). An optimal design of the MRFEA for ion-ion beams has been achieved by a comparative study of three different MRFEA configurations, and from this, scaling laws of an optimal magnetic field strength and topology have been deduced. The optimal design consists of a uniform magnetic field barrier createdmore » in a rectangular channel and an electrostatic barrier consisting of a single grid and a collector placed behind the magnetic field. The magnetic barrier alone provides an electron suppression ratio inside the analyzer of up to 6000, while keeping the ion energy resolution below 5 eV. The effective ion transparency combining the magnetic and electrostatic sections of the MRFEA is measured as a function of the ion energy. It is found that the ion transparency of the magnetic barrier increases almost linearly with increasing ion energy in the low-energy range (below 200 eV) and saturates at high ion energies. The ion transparency of the electrostatic section is almost constant and close to the optical transparency of the entrance grid. We show here that the MRFEA can provide both accurate ion flux and ion energy distribution measurements in various experimental setups with ion beams or plasmas run at low pressure and with ion energies above 10 eV.« less
NASA Astrophysics Data System (ADS)
Wang, Qiufen; Huang, Ying; Miao, Juan; Zhao, Yang; Wang, Yan
2012-10-01
The nanocomposites Li2SnO3/polyaniline (Li2SnO3/PANI) have been synthesized by a micro emulsion polymerization method. The structure, morphology and electrochemical properties of the as-prepared materials are characterized by XRD, FTIR, Raman, XPS, TGA, TEM and electrochemical measurements. Results show that Li2SnO3/PANI nanocomposites are composed of uniform and blocky nano-sized particles (40-50 nm) with clear lattice fringes. Electrochemical measurement suggests that Li2SnO3/PANI exhibits better cycling properties and lower initial irreversible capacities than Li2SnO3 as negative electrodes materials for lithium-ion batteries. At a current density of 60 mA g-1 in the voltage about 0.05-2.0 V, the initial irreversible capacity of Li2SnO3/PANI is 563 mAh g-1 while it is 687.5 mAh g-1 to Li2SnO3. The capacity retained of Li2SnO3/PANI (569.2 mAh g-1) is higher than that of Li2SnO3 (510.2 mAh g-1) after 50 cycles. The PANI in the Li2SnO3/PANI nanocomposites can buffer the released stress caused by the drastic volume variation during the alloying/de-alloying process of Li-Sn.
Negative hydrogen ion production in a helicon plasma source
NASA Astrophysics Data System (ADS)
Santoso, J.; Manoharan, R.; O'Byrne, S.; Corr, C. S.
2015-09-01
In order to develop very high energy (>1 MeV) neutral beam injection systems for applications, such as plasma heating in fusion devices, it is necessary first to develop high throughput negative ion sources. For the ITER reference source, this will be realised using caesiated inductively coupled plasma devices, containing either hydrogen or deuterium discharges, operated with high rf input powers (up to 90 kW per driver). It has been suggested that due to their high power coupling efficiency, helicon devices may be able to reduce power requirements and potentially obviate the need for caesiation due to the high plasma densities achievable. Here, we present measurements of negative ion densities in a hydrogen discharge produced by a helicon device, with externally applied DC magnetic fields ranging from 0 to 8.5 mT at 5 and 10 mTorr fill pressures. These measurements were taken in the magnetised plasma interaction experiment at the Australian National University and were performed using the probe-based laser photodetachment technique, modified for the use in the afterglow of the plasma discharge. A peak in the electron density is observed at ˜3 mT and is correlated with changes in the rf power transfer efficiency. With increasing magnetic field, an increase in the negative ion fraction from 0.04 to 0.10 and negative ion densities from 8 × 1014 m-3 to 7 × 1015 m-3 is observed. It is also shown that the negative ion densities can be increased by a factor of 8 with the application of an external DC magnetic field.
Yu, Xu; Wang, Fan; Li, Jiani; Shan, Weiguang; Zhu, Bingqi; Wang, Jian
2017-06-05
Thirteen unknown impurities in flomoxef sodium were separated and characterized by liquid chromatography coupled with high resolution ion trap/time-of-flight mass spectrometry (LC-IT-TOF MS)with positive and negative modes of electrospray ionization method for further improvement of official monographs in pharmacopoeias. The fragmentation patterns of impurities in flomoxef in the negative ion mode were studied in detail, and new negative-ion fragmentation regularities were discovered. Chromatographic separation was performed on a Kromasil C18 column (250mm×4.6mm, 5μm). The mobile phase consisted of (A) ammonium formate aqueous solution (10mM)-methanol (84:16, v/v) and (B) ammonium formate aqueous solution (10mM)-methanol (47:53, v/v). In order to determine the m/z values of the molecular ions and formulas of all detected impurities, full scan LC-MS in both positive and negative ion modes was firstly executed to obtain the m/z value of the molecules. Then LC-MS 2 and LC-MS 3 were carried out on target compounds to obtain as much structural information as possible. Complete fragmentation patterns of impurities were studied and used to obtain information about the structures of these impurities. Structures of thirteen unknown degradation products in flomoxef sodium were deduced based on the high resolution MS n data with both positive and negative modes. The forming mechanisms of degradation products in flomoxef sodium were also studied. Copyright © 2017. Published by Elsevier B.V.
Kim, Gwang-Won; Kim, Yun-Hyeon; Jeong, Gwang-Woo
2017-01-01
The purpose of this study was to evaluate gray matter (GM) and white matter (WM) volume alterations in whole-brain structures in patients with schizophrenia and healthy controls using voxel-based morphometry (VBM), and further to assess the correlation between GM and WM volume variations and symptom severity in schizophrenia. A total of 22 patients with schizophrenia and 22 age-matched healthy controls participated. Magnetic resonance image data were processed using SPM8 software with diffeomorphic anatomical registration via an exponentiated Lie algebra (DARTEL) algorithm. Patients with schizophrenia exhibited significantly decreased GM volumes of the insula, superior temporal gyrus (STG), gyrus rectus, and anterior cingulate cortex (ACC) compared with healthy controls. The GM volumes of the STG and gyrus rectus were negatively correlated with the positive scales on the Positive and Negative Syndrome Scale (PANSS) and those of the STG and ACC were negatively correlated with the negative scales. The durations of illness in schizophrenia were negatively correlated with the GM volumes of the insula, STG, and ACC. Patients with schizophrenia exhibited significantly decreased WM volumes of the superior frontal gyrus, inferior temporal gyrus, and STG. The WM volumes of the STG were negatively correlated with the duration of illness. Our findings suggest that GM and WM volume abnormalities in the STG are associated with the psychopathology of schizophrenia.
Pseudocapacitance of MXene nanosheets for high-power sodium-ion hybrid capacitors
Wang, Xianfen; Kajiyama, Satoshi; Iinuma, Hiroki; Hosono, Eiji; Oro, Shinji; Moriguchi, Isamu; Okubo, Masashi; Yamada, Atsuo
2015-01-01
High-power Na-ion batteries have tremendous potential in various large-scale applications. However, conventional charge storage through ion intercalation or double-layer formation cannot satisfy the requirements of such applications owing to the slow kinetics of ion intercalation and the small capacitance of the double layer. The present work demonstrates that the pseudocapacitance of the nanosheet compound MXene Ti2C achieves a higher specific capacity relative to double-layer capacitor electrodes and a higher rate capability relative to ion intercalation electrodes. By utilizing the pseudocapacitance as a negative electrode, the prototype Na-ion full cell consisting of an alluaudite Na2Fe2(SO4)3 positive electrode and an MXene Ti2C negative electrode operates at a relatively high voltage of 2.4 V and delivers 90 and 40 mAh g−1 at 1.0 and 5.0 A g−1 (based on the weight of the negative electrode), respectively, which are not attainable by conventional electrochemical energy storage systems. PMID:25832913
NASA Astrophysics Data System (ADS)
Sekimoto, K.; Takayama, M.
2010-12-01
The change in the distribution pattern of negative ions HO-, NOx- and COx- observed on arbitrary point-to-plane electrode configuration has been investigated by varying the angle of needle to the plane electrode, under atmospheric pressure corona discharge conditions. The stationary inhomogeneous electric field distributions between the point-to-plane electrodes with arbitrary needle angle were calculated. The experimental and theoretical results obtained suggested that the negative ion evolutions progress along field lines established between the electrodes with arbitrary configurations and the resulting terminal ion formation on a given field line is attributable to the electric field strength on the needle tip surface where the field line arose. The NOx- and COx- ions were dominantly produced on the field lines arising from the needle tip apex region with the highest electric field strength, while the field lines emanating from the tip peripheral regions with lower field strength resulted in the formation of the HO- ion.
A 1D ion species model for an RF driven negative ion source
NASA Astrophysics Data System (ADS)
Turner, I.; Holmes, A. J. T.
2017-08-01
A one-dimensional model for an RF driven negative ion source has been developed based on an inductive discharge. The RF source differs from traditional filament and arc ion sources because there are no primary electrons present, and is simply composed of an antenna region (driver) and a main plasma discharge region. However the model does still make use of the classical plasma transport equations for particle energy and flow, which have previously worked well for modelling DC driven sources. The model has been developed primarily to model the Small Negative Ion Facility (SNIF) ion source at CCFE, but may be easily adapted to model other RF sources. Currently the model considers the hydrogen ion species, and provides a detailed description of the plasma parameters along the source axis, i.e. plasma temperature, density and potential, as well as current densities and species fluxes. The inputs to the model are currently the RF power, the magnetic filter field and the source gas pressure. Results from the model are presented and where possible compared to existing experimental data from SNIF, with varying RF power, source pressure.
Long-pulse beam acceleration of MeV-class H(-) ion beams for ITER NB accelerator.
Umeda, N; Kashiwagi, M; Taniguchi, M; Tobari, H; Watanabe, K; Dairaku, M; Yamanaka, H; Inoue, T; Kojima, A; Hanada, M
2014-02-01
In order to realize neutral beam systems in International Thermonuclear Experimental Reactor whose target is to produce a 1 MeV, 200 A/m(2) during 3600 s D(-) ion beam, the electrostatic five-stages negative ion accelerator so-called "MeV accelerator" has been developed at Japan Atomic Energy Agency. To extend pulse length, heat load of the acceleration grids was reduced by controlling the ion beam trajectory. Namely, the beam deflection due to the residual magnetic field of filter magnet was suppressed with the newly developed extractor with a 0.5 mm off-set aperture displacement. The new extractor improved the deflection angle from 6 mrad to 1 mrad, resulting in the reduction of direct interception of negative ions from 23% to 15% of the total acceleration power, respectively. As a result, the pulse length of 130 A/m(2), 881 keV H(-) ion beam has been successfully extended from a previous value of 0.4 s to 8.7 s. This is the first long pulse negative ion beam acceleration over 100 MW/m(2).
Sekimoto, Kanako; Takayama, Mitsuo
2013-05-01
Collision-induced dissociation (CID) experiments were performed on atmospheric ion adducts [M + R](-) formed between various types of organic compounds M and atmospheric negative ions R(-) [such as O2(-), HCO3(-), COO(-)(COOH), NO2(-), NO3(-), and NO3(-)(HNO3)] in negative-ion mode atmospheric pressure corona discharge ionization (APCDI) mass spectrometry. All of the [M + R](-) adducts were fragmented to form deprotonated analytes [M - H](-) and/or atmospheric ions R(-), whose intensities in the CID spectra were dependent on the proton affinities of the [M - H](-) and R(-) fragments. Precursor ions [M + R](-) for which R(-) have higher proton affinities than [M - H](-) formed [M - H](-) as the dominant product. Furthermore, the CID of the adducts with HCO3(-) and NO3(-)(HNO3) led to other product ions such as [M + HO](-) and NO3(-), respectively. The fragmentation behavior of [M + R](-) for each R(-) observed was independent of analyte type (e.g., whether the analyte was aliphatic or aromatic, or possessed certain functional groups).
Dissociation of dicyclohexyl phthalate molecule induced by low-energy electron impact
NASA Astrophysics Data System (ADS)
Lacko, Michal; Papp, Peter; Matejčík, Štefan
2018-06-01
Experimental investigation of electron ionization (EI) of and electron attachment (EA) onto dicyclohexyl phthalate (DCHP) was carried out using a crossed electron and molecular beam technique. Formation of positive and negative ions by EI and EA with the corresponding dissociation processes was studied and discussed. Due to a low ion yield of the parent positive ion, we were not able to estimate the ionization energy of DCHP. However, we estimated the appearance energies for the protonated phthalate anhydride (m/z 149) to be 10.5 eV and other significant ionic fragments of m/z 249 [DCHP—(R—2H)]+, m/z 167 [DCHP—(2R—3H)]+, and m/z 83 [C6H11]+. The reaction mechanisms of the dissociative ionization process were discussed. In the case of negative ions, we estimated the relative cross sections for a transient negative ion (TNI) and for several detected ions. At low electron energies (close to 0 eV), the TNI of DCHP molecules was the dominant ion, with products of dissociative EA dominating in broad resonances at 7.5 and 8.5 eV.
Robinson, P R; Jones, M D; Maddock, J
1988-11-18
A procedure for the analysis of clebopride in plasma using capillary gas chromatography-negative-ion chemical ionization mass spectrometry has been developed. Employing an ethoxy analogue as internal standard, the two compounds were extracted from basified plasma using dichloromethane. Subsequent reaction with heptafluorobutyryl imidazole produced volatile monoheptafluorobutyryl derivatives whose ammonia negative-ion mass spectra proved ideal for selected-ion monitoring. The recovery of clebopride from plasma at 0.536 nmol/l was found to be 85.5 +/- 0.9% (n = 3) whilst measurement down to 0.268 nmol/l was possible with a coefficient of variation of 7.9%. Plasma levels of the compound are reported in two volunteers following ingestion of 1 mg of clebopride as the malate salt.
Wang, Haifeng; Wen, Baohong; Cheng, Jingliang; Li, Hongpeng
2017-01-16
In order to examine the difference in brain structure between obese and normal weight individuals, and to explore the relationship between the neuroanatomical changes and impulsivity traits, this study used a voxel-based morphometry method to examine gray matter (GM) volume alterations related to impulsive personality traits in obese individuals relative to normal weight. Eighty adults that completed the UPPS-P Impulsive Behavior Scale were analyzed. Possible GM volume alterations were first analyzed at the whole brain level, and then the relationship between regional GM volume differences and UPPS-P scores were examined in selected regions of interest. Reduced GM volumes were found in the frontal and limbic regions in the obese group compared to normal weight individuals. In the normal weight group, lack of perseverance was negatively correlated with GM volume in the anterior cingulate cortex, and negative urgency was negatively correlated with GM volume in the insula. In the obese group, sensation seeking was negatively correlated with GM volume in the left amygdala and right pallidum. These findings might improve our understanding of the relationship between lack of perseverance, negative urgency, and sensation seeking and body weight fluctuations.
Wang, Haifeng; Wen, Baohong; Cheng, Jingliang; Li, Hongpeng
2017-01-01
In order to examine the difference in brain structure between obese and normal weight individuals, and to explore the relationship between the neuroanatomical changes and impulsivity traits, this study used a voxel-based morphometry method to examine gray matter (GM) volume alterations related to impulsive personality traits in obese individuals relative to normal weight. Eighty adults that completed the UPPS-P Impulsive Behavior Scale were analyzed. Possible GM volume alterations were first analyzed at the whole brain level, and then the relationship between regional GM volume differences and UPPS-P scores were examined in selected regions of interest. Reduced GM volumes were found in the frontal and limbic regions in the obese group compared to normal weight individuals. In the normal weight group, lack of perseverance was negatively correlated with GM volume in the anterior cingulate cortex, and negative urgency was negatively correlated with GM volume in the insula. In the obese group, sensation seeking was negatively correlated with GM volume in the left amygdala and right pallidum. These findings might improve our understanding of the relationship between lack of perseverance, negative urgency, and sensation seeking and body weight fluctuations. PMID:28091559
Ren, Xinxin; Liu, Jia; Zhang, Chengsen; Luo, Hai
2013-03-15
With the rapid development of ambient mass spectrometry, the hybrid laser-based ambient ionization methods which can generate multiply charged ions of large biomolecules and also characterize small molecules with good signal-to-noise in both positive and negative ion modes are of particular interest. An ambient ionization method termed high-voltage-assisted laser desorption ionization (HALDI) is developed, in which a 1064 nm laser is used to desorb various liquid samples from the sample target biased at a high potential without the need for an organic matrix. The pre-charged liquid samples are desorbed by the laser to form small charged droplets which may undergo an electrospray-like ionization process to produce multiply charged ions of large biomolecules. Various samples including proteins, oligonucleotides (ODNs), drugs, whole milk and chicken eggs have been analyzed by HALDI-MS in both positive and negative ion mode with little or no sample preparation. In addition, HALDI can generate intense signals with better signal-to-noise in negative ion mode than laser desorption spay post-ionization (LDSPI) from the same samples, such as ODNs and some carboxylic-group-containing small drug molecules. HALDI-MS can directly analyze a variety of liquid samples including proteins, ODNs, pharmaceuticals and biological fluids in both positive and negative ion mode without the use of an organic matrix. This technique may be further developed into a useful tool for rapid analysis in many different fields such as pharmaceutical, food, and biological sciences. Copyright © 2013 John Wiley & Sons, Ltd.
Helicon wave-generated plasmas for negative ion beams for fusion
NASA Astrophysics Data System (ADS)
Furno, Ivo; Agnello, Riccardo; Fantz, U.; Howling, Alan; Jacquier, Remy; Marini, Claudio; Plyushchev, Gennady; Guittienne, Philippe; Simonin, Alain
2017-10-01
In the next generation of fusion reactors, such as DEMO, neutral beam injectors (NBIs) of high energy (0.8-1 MeV) deuterium atoms with high wall-plug efficiency (>50%) will be required to reach burning plasma conditions and to provide a significant amount of current drive. The present NBI system for DEMO assumes that 50 MW is delivered to the plasma by 3 NBIs. In the Siphore NBI concept, negative deuterium ions are extracted from a long, thin ion source 3 m high and 15 cm wide, accelerated and subsequently photo-neutralized. This requires the development of a new generation of negative ion sources. At the Swiss Plasma Center, a novel radio frequency helicon plasma source, based on a resonant network antenna source delivering up to 10 kW at 13.56 MHz, has been developed and is presently under study on the Resonant Antenna Ion Device (RAID). RAID is a linear device (1.9 m total length, 0.4 m diameter) and is equipped with an extensive set of diagnostics for full plasma characterization. In this work, the principles of operation of resonant antennas as helicon sources are introduced. We present absolute spectroscopy, Langmuir probe, and interferometry measurements on helicon plasmas. We characterize the performance of the source in terms of hydrogen/deuterium dissociation and negative ion production as a function of the input power. Furthermore, first results with the helicon birdcage antenna installed on the Cybele negative ion source at CEA-IRFM are presented, as a first step towards the validation of the Siphore concept.
Stress and Strain in Silicon Electrode Models
Higa, Kenneth; Srinivasan, Venkat
2015-03-24
While the high capacity of silicon makes it an attractive negative electrode for Li-ion batteries, the associated large volume change results in fracture and capacity fade. Composite electrodes incorporating silicon have additional complexity, as active material is attached to surrounding material which must likewise experience significant volume change. In this paper, a finite-deformation model is used to explore, for the first time, mechanical interactions between a silicon particle undergoing lithium insertion, and attached binder material. Simulations employ an axisymmetric model system in which solutions vary in two spatial directions and shear stresses develop at interfaces between materials. The mechanical responsemore » of the amorphous active material is dependent on lithium concentration, and an equation of state incorporating reported volume expansion data is used. Simulations explore the influence of active material size and binder stiffness, and suggest delamination as an additional mode of material damage. Computed strain energies and von Mises equivalent stresses are in physically-relevant ranges, comparable to reported yield stresses and adhesion energies, and predicted trends are largely consistent with reported experimental results. It is hoped that insights from this work will support the design of more robust silicon composite electrodes.« less
NASA Astrophysics Data System (ADS)
Mochalskyy, S.; Wünderlich, D.; Ruf, B.; Franzen, P.; Fantz, U.; Minea, T.
2014-02-01
Decreasing the co-extracted electron current while simultaneously keeping negative ion (NI) current sufficiently high is a crucial issue on the development plasma source system for ITER Neutral Beam Injector. To support finding the best extraction conditions the 3D Particle-in-Cell Monte Carlo Collision electrostatic code ONIX (Orsay Negative Ion eXtraction) has been developed. Close collaboration with experiments and other numerical models allows performing realistic simulations with relevant input parameters: plasma properties, geometry of the extraction aperture, full 3D magnetic field map, etc. For the first time ONIX has been benchmarked with commercial positive ions tracing code KOBRA3D. A very good agreement in terms of the meniscus position and depth has been found. Simulation of NI extraction with different e/NI ratio in bulk plasma shows high relevance of the direct negative ion extraction from the surface produced NI in order to obtain extracted NI current as in the experimental results from BATMAN testbed.
Xu, Chengdong; Dodbiba, Edra; Padivitage, Nilusha L T; Breitbach, Zachary S; Armstrong, Daniel W
2012-12-30
The detection of metal cations continues to be essential in many scientific and industrial areas of interest. The most common electrospray ionization mass spectrometry (ESI-MS) approach involves chelating the metal ions and detecting the organometallic complex in the negative ion mode. However, it is well known that negative ion mode ESI-MS is generally less sensitive than the positive ion mode. To achieve greater sensitivity, it is necessary to examine the feasibility of detecting the chelated metal cations in positive ion mode ESI-MS. Since highly solvated native metal cations have relatively low ionization efficiency in ESI-MS, and can be difficult to detect in the positive ion mode, a tetracationic ion-pairing agent was added to form a complex with the negatively charged metal chelate. The use of the ion-pairing agent leads to the generation of an overall positively charged complex, which can be detected at higher m/z values in the positive ion mode by electrospray ionization linear quadrupole ion trap mass spectrometry. Thirteen chelating agents with diverse structures were evaluated in this study. The nature of the chelating agent played as important a role as was previously determined for cationic pairing agents. The detection limits of six metal cations reached sub-picogram levels and significant improvements were observed when compared to negative ion mode detection where the metal-chelates were monitored without adding the ion-pairing reagent (IPR). Also, selective reaction monitoring (SRM) analyses were performed on the ternary complexes, which improved detection limits by one to three orders of magnitude. With this method it was possible to analyze the metal cations in the positive ion mode ESI-MS with the advantage of speed, sensitivity and selectivity. The optimum solution pH for this type of analysis is 5-7. Tandem mass spectrometry (MS/MS) further increases the sensitivity. Speciation is straightforward making this a broadly useful approach for the analysis of metal ions. Copyright © 2012 John Wiley & Sons, Ltd.
Harvey, David J
2005-01-01
Negative ion electrospray mass spectra of high-mannose N-linked glycans derivatised with 2-aminobenzoic acids and ionised from solutions containing ammonium hydroxide gave prominent [M-H](-) ions accompanied by weaker [M-2H](2-) ions. Fragmentation of both types of ions gave prominent singly charged glycosidic cleavage ions containing the derivatised reducing terminus and ions from the non-reducing terminus that appeared to be products of cross-ring cleavages. Differentiation of these two groups of ions was conveniently achieved in a single spectrum by use of chloro- or bromo-substituted benzoic acids in order to label ions containing the derivative with an atom with a distinctive isotope pattern. Fragmentation of the doubly charged ions gave more abundant fragments, both singly and doubly charged, than did fragmentation of the singly charged ions, but information of chain branching was masked by the appearance of prominent ions produced by internal cleavages. Copyright (c) 2005 John Wiley & Sons, Ltd.
Ion sound instability driven by the ion flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koshkarov, O., E-mail: koshkarov.alexandr@usask.ca; Smolyakov, A. I.; National Research Centre
2015-05-15
Ion sound instabilities driven by the ion flow in a system of a finite length are considered by analytical and numerical methods. The ion sound waves are modified by the presence of stationary ion flow resulting in negative and positive energy modes. The instability develops due to coupling of negative and positive energy modes mediated by reflections from the boundary. It is shown that the wave dispersion due to deviation from quasineutrality is crucial for the stability. In finite length system, the dispersion is characterized by the length of the system measured in units of the Debye length. The instabilitymore » is studied analytically and the results are compared with direct, initial value numerical simulations.« less
NASA Astrophysics Data System (ADS)
Chitanda, Jackson M.; Zhang, Haixia; Pahl, Erica; Purves, Randy W.; El-Aneed, Anas
2016-10-01
The utility of novel functionalized nanodiamonds (NDs) as matrices for matrix-assisted laser desorption ionization-mass spectrometry (MALDI-MS) is described herein. MALDI-MS analysis of small organic compounds (<1000 Da) is typically complex because of interferences from numerous cluster ions formed when using conventional matrices. To expand the use of MALDI for the analysis of small molecules, novel matrices were designed by covalently linking conventional matrices (or a lysine moiety) to detonated NDs. Four new functionalized NDs were evaluated for their ionization capabilities using five pharmaceuticals with varying molecular structures. Two ND matrices were able to ionize all tested pharmaceuticals in the negative ion mode, producing the deprotonated ions [M - H]-. Ion intensity for target analytes was generally strong with enhanced signal-to-noise ratios compared with conventional matrices. The negative ion mode is of great importance for biological samples as interference from endogenous compounds is inherently minimized in the negative ion mode. Since the molecular structures of the tested pharmaceuticals did not suggest that negative ion mode would be preferable, this result magnifies the importance of these findings. On the other hand, conventional matrices primarily facilitated the ionization as expected in the positive ion mode, producing either the protonated molecules [M + H]+ or cationic adducts (typically producing complex spectra with numerous adduct peaks). The data presented in this study suggests that these matrices may offer advantages for the analysis of low molecular weight pharmaceuticals/metabolites.
Chitanda, Jackson M; Zhang, Haixia; Pahl, Erica; Purves, Randy W; El-Aneed, Anas
2016-10-01
The utility of novel functionalized nanodiamonds (NDs) as matrices for matrix-assisted laser desorption ionization-mass spectrometry (MALDI-MS) is described herein. MALDI-MS analysis of small organic compounds (<1000 Da) is typically complex because of interferences from numerous cluster ions formed when using conventional matrices. To expand the use of MALDI for the analysis of small molecules, novel matrices were designed by covalently linking conventional matrices (or a lysine moiety) to detonated NDs. Four new functionalized NDs were evaluated for their ionization capabilities using five pharmaceuticals with varying molecular structures. Two ND matrices were able to ionize all tested pharmaceuticals in the negative ion mode, producing the deprotonated ions [M - H](-). Ion intensity for target analytes was generally strong with enhanced signal-to-noise ratios compared with conventional matrices. The negative ion mode is of great importance for biological samples as interference from endogenous compounds is inherently minimized in the negative ion mode. Since the molecular structures of the tested pharmaceuticals did not suggest that negative ion mode would be preferable, this result magnifies the importance of these findings. On the other hand, conventional matrices primarily facilitated the ionization as expected in the positive ion mode, producing either the protonated molecules [M + H](+) or cationic adducts (typically producing complex spectra with numerous adduct peaks). The data presented in this study suggests that these matrices may offer advantages for the analysis of low molecular weight pharmaceuticals/metabolites. Graphical Abstract ᅟ.
Sekimoto, Kanako; Takayama, Mitsuo
2011-01-01
Reliable mass spectrometry data from large water clusters Y(-)(H(2)O)(n) with various negative core ions Y(-) such as O(2)(-), HO(-), HO(2)(-), NO(2)(-), NO(3)(-), NO(3)(-)(HNO(3))(2), CO(3)(-) and HCO(4)(-) have been obtained using atmospheric pressure negative corona discharge mass spectrometry. All the core Y(-) ions observed were ionic species that play a central role in tropospheric ion chemistry. These mass spectra exhibited discontinuities in ion peak intensity at certain size clusters Y(-)(H(2)O)(m) indicating specific thermochemical stability. Thus, Y(-)(H(2)O)(m) may correspond to the magic number or first hydrated shell in the cluster series Y(-)(H(2)O)(n). The high intensity discontinuity at HO(-)(H(2)O)(3) observed was the first mass spectrometric evidence for the specific stability of HO(-)(H(2)O)(3) as the first hydrated shell which Eigen postulated in 1964. The negative ion water clusters Y(-)(H(2)O)(n) observed in the mass spectra are most likely to be formed via core ion formation in the ambient discharge area (760 torr) and the growth of water clusters by adiabatic expansion in the vacuum region of the mass spectrometers (≈1 torr). The detailed mechanism of the formation of the different core water cluster ions Y(-)(H(2)O)(n) is described. Copyright © 2010 John Wiley & Sons, Ltd.
ABSORPTION METHOD FOR SEPARATING METAL CATIONS
Tompkins, E.R.; Parker, G.W.
1959-03-10
An improved method is presented for the chromatographic separation of fission products wherein a substantial reduction in liquid volume is obtained. The process consists in contacting a solution containing fission products with a body of ion-exchange adsorbent to effect adsorption of fission product cations. The loaded exchange resin is then contacted with a small volume of a carboxylic acid eluant, thereby recovering the fission products. The fission product carrying eluate is acidified without increasing its volume to the volume of the original solution, and the acidified eluate is then used as a feed solution for a smaller body of ion-exchange resin effecting readsorption of the fission product cations.
Zhou, Xibin; Zhang, Yahe; Zhao, Suoqi; Hsu, Chang Samuel; Shi, Quan
2013-12-15
Monohydric alcohols are common in natural products, bio-oils, and medicine. We have found that monohydric alcohols can form O3 (ions containing three oxygen atoms) and O4 adduct ions in negative electrospray ionization (ESI) Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), which would significantly affect the composition analysis of alcohols, especially in a complex mixture. It is necessary to study the reaction pathways and the method to eliminate or reduce the 'artifact' adducts. Octadecanol, cholesterol, squalanol and two complex monohydric alcohol mixtures were selected as model compounds. These samples were subjected to negative ion ESI FT-ICR MS analysis. The composition and formation mechanism of adducts were studied by the ultrahigh-resolution accurate mass measurement for elemental composition, along with the MS(2) isolation and collision-induced dissociation (CID) experiments for structural determination. The reaction pathway of O3 adduct formation is the coupling of a monohydric alcohol ion with a CO2 to form a stable O3 ionic species by likely a covalent bond (source of CO2 is not clear). The O4 species are formed by O3 ionic species adducted with an alcohol molecule of the solvent, such as methanol or ethanol, by likely a hydrogen bond. These adduct ions could be eliminated or reduced by increasing collision energy. However, excessive collision energy would fragment monohydric alcohol ions. The formation mechanisms of O3 and O4 adducts from monohydric alcohols in negative ion ESI FT-ICR MS were proposed. The solvent adduction effects can be eliminated or reduced by optimizing the collision energy of CID in FT-ICR MS. Copyright © 2013 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Nimmerichter, Alfred; Holdhaus, Johann; Mehnen, Lars; Vidotto, Claudia; Loidl, Markus; Barker, Alan R.
2014-09-01
Limited research has suggested that acute exposure to negatively charged ions may enhance cardio-respiratory function, aerobic metabolism and recovery following exercise. To test the physiological effects of negatively charged air ions, 14 trained males (age: 32 ± 7 years; : 57 ± 7 mL min-1 kg-1) were exposed for 20 min to either a high-concentration of air ions (ION: 220 ± 30 × 103 ions cm-3) or normal room conditions (PLA: 0.1 ± 0.06 × 103 ions cm-3) in an ionization chamber in a double-blinded, randomized order, prior to performing: (1) a bout of severe-intensity cycling exercise for determining the time constant of the phase II response ( τ) and the magnitude of the slow component (SC); and (2) a 30-s Wingate test that was preceded by three 30-s Wingate tests to measure plasma [adrenaline] (ADR), [nor-adrenaline] (N-ADR) and blood [lactate] (BLac) over 20 min during recovery in the ionization chamber. There was no difference between ION and PLA for the phase II τ (32 ± 14 s vs. 32 ± 14 s; P = 0.7) or SC (404 ± 214 mL vs 482 ± 217 mL; P = 0.17). No differences between ION and PLA were observed at any time-point for ADR, N-ADR and BLac as well as on peak and mean power output during the Wingate tests (all P > 0.05). A high-concentration of negatively charged air ions had no effect on aerobic metabolism during severe-intensity exercise or on performance or the recovery of the adrenergic and metabolic responses after repeated-sprint exercise in trained athletes.
Behavior of collisional sheath in electronegative plasma with q-nonextensive electron distribution
NASA Astrophysics Data System (ADS)
Borgohain, Dima Rani; Saharia, K.
2018-03-01
Electronegative plasma sheath is addressed in a collisional unmagnetized plasma consisting of q-nonextensive electrons, Boltzmann distributed negative ions and cold fluid positive ions. Considering the positive ion-neutral collisions and ignoring the effects of ionization and collisions between negative species and positive ions (neutrals), a modified Bohm sheath criterion and hence floating potential are derived by using multifluid model. Using the modified Bohm sheath criterion, the sheath characteristics such as spatial profiles of density, potential and net space charge density have been numerically investigated. It is found that increasing values of q-nonextensivity, electronegativity and collisionality lead to a decrease of the sheath thickness and an increase of the sheath potential and the net space charge density. With increasing values of the electron temperature to negative ion temperature ratio, the sheath thickness increases and the sheath potential as well as the net space charge density in the sheath region decreases.
An investigation of the ionospheric D region at sunrise
NASA Technical Reports Server (NTRS)
Turco, R. P.; Sechrist, C. F., Jr.
1970-01-01
The growth over sunrise of the C and D layers of the ionosphere is investigated. The model which is analyzed includes the negative ion species O(-), O2(-), O3(-), O4(-), NO3(-), CO3(-), and CO4(-). Ionization sources due to galactic cosmic rays, precipitated electrons, ionization of NO by scattered Lyman alpha radiation, and the direct solar radiation ionization are also included. The photodetachment of most of the negative ions is discussed, as well as the time variation of these parameters. The time variations of the electron, negative ion, and positive ion densities are calculated over sunrise. From these data, the mesospheric C and D layer development is plotted. Several model parameters are varied until the best agreement with experimentally determined electron densities is obtained. The results are discussed in light of several atmospheric parameters including the O and NO concentrations and the electron-ion recombination coefficient.
Quéméner, Bernard; Désiré, Cédric; Lahaye, Marc; Debrauwer, Laurent; Negroni, Luc
2003-01-01
The off-line coupling of high-performance anion-exchange chromatography (HPAEC) to electrospray ionisation/ion trap mass spectrometry (ESI-ITMS) is described. The Dionex carbohydrate membrane desalter (CMD) has been assessed as an on-line chromatographic desalting system to remove the high sodium concentration necessary for the HPAEC separation of partially methyl-esterified oligogalacturonides. The developed HPAEC configuration proved to be suitable for indirect coupling with ESI-ITMS. This paper provides some interesting features of positive- and negative-ion multistage tandem mass spectrometry (MS(n)) analysis of these acidic oligosaccharides. The spectra acquired in both negative- and positive-ion modes show characteristic fragment ions resulting from glycosidic bond and cross-ring cleavages. Some new mass spectrometric fragmentation routes are also described. The positive-ion mode gave more complex spectra but was as informative as the negative-ion mode. ESI-ITMS was revealed to be, as previously reported from direct use on an unseparated enzymatic digest, a powerful sequencing technique for the determination of linkage type and the methyl ester distribution of partially methyl-esterified oligogalacturonides. Moreover, unlike matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-ToF MS), it gives valuable information on the elution behaviour of these oligomers in relation to their structure, namely the HPAEC co-elution of isomeric structures.
Electron energy recovery system for negative ion sources
Dagenhart, William K.; Stirling, William L.
1982-01-01
An electron energy recovery system for negative ion sources is provided. The system, employs crossed electric and magnetic fields to separate the electrons from ions as they are extracted from a negative ion source plasma generator and before the ions are accelerated to their full kinetic energy. With the electric and magnetic fields oriented 90.degree. to each other, the electrons are separated from the plasma and remain at approximately the electrical potential of the generator in which they were generated. The electrons migrate from the ion beam path in a precessing motion out of the ion accelerating field region into an electron recovery region provided by a specially designed electron collector electrode. The electron collector electrode is uniformly spaced from a surface of the ion generator which is transverse to the direction of migration of the electrons and the two surfaces are contoured in a matching relationship which departs from a planar configuration to provide an electric field component in the recovery region which is parallel to the magnetic field thereby forcing the electrons to be directed into and collected by the electron collector electrode. The collector electrode is maintained at a potential slightly positive with respect to the ion generator so that the electrons are collected at a small fraction of the full accelerating supply voltage energy.
Seto, Yasuo; Sekiguchi, Hiroshi; Maruko, Hisashi; Yamashiro, Shigeharu; Sano, Yasuhiro; Takayama, Yasuo; Sekioka, Ryoji; Yamaguchi, Shintaro; Kishi, Shintaro; Satoh, Takafumi; Sekiguchi, Hiroyuki; Iura, Kazumitsu; Nagashima, Hisayuki; Nagoya, Tomoki; Tsuge, Kouichiro; Ohsawa, Isaac; Okumura, Akihiko; Takada, Yasuaki; Ezawa, Naoya; Watanabe, Susumu; Hashimoto, Hiroaki
2014-05-06
A highly sensitive and specific real-time field-deployable detection technology, based on counterflow air introduction atmospheric pressure chemical ionization, has been developed for a wide range of chemical warfare agents (CWAs) comprising gaseous (two blood agents, three choking agents), volatile (six nerve gases and one precursor agent, five blister agents), and nonvolatile (three lachrymators, three vomiting agents) agents in air. The approach can afford effective chemical ionization, in both positive and negative ion modes, for ion trap multiple-stage mass spectrometry (MS(n)). The volatile and nonvolatile CWAs tested provided characteristic ions, which were fragmented into MS(3) product ions in positive and negative ion modes. Portions of the fragment ions were assigned by laboratory hybrid mass spectrometry (MS) composed of linear ion trap and high-resolution mass spectrometers. Gaseous agents were detected by MS or MS(2) in negative ion mode. The limits of detection for a 1 s measurement were typically at or below the microgram per cubic meter level except for chloropicrin (submilligram per cubic meter). Matrix effects by gasoline vapor resulted in minimal false-positive signals for all the CWAs and some signal suppression in the case of mustard gas. The moisture level did influence the measurement of the CWAs.
Dousty, Faezeh; O'Brien, Rob
2015-06-15
As in the case with positive ion atmospheric pressure photoionization (PI-APPI), the addition of dopants significantly improves the sensitivity of negative ion APPI (NI-APPI). However, the research on dopant-assisted-NI-APPI has been quite limited compared to the studies on dopant-assisted PI-APPI. This work presents the potential of isoprene as a novel dopant for NI-APPI. Thirteen compounds, possessing suitable gas-phase ion energetic properties in order to make stable negative ions, were selected. Dopants were continuously introduced into a tee junction prior to the ion source through a fused-silica capillary, while analytes were directly injected into the same tee. Then both were mixed with the continuous solvent from high-performance liquid chromatography (HPLC), nebulized, and entered the source. The nebulized stream was analyzed by APPI tandem quadrupole mass spectrometry in the negative ion mode. The results obtained using isoprene were compared with those obtained by using toluene as a dopant and dopant-free NI-APPI. Isoprene enhanced the ionization intensities of the studied compounds, which were found to be comparable and, in some cases, more effective than toluene. The mechanisms leading to the observed set of negative analyte ions were also discussed. Because in NI-APPI, thermal electrons, which are produced during the photoionization of a dopant, are considered the main reagent ions, both isoprene and toluene promoted the ionization of analytes through the same mechanisms, as expected. Isoprene was shown to perform well as a novel dopant for NI-APPI. Isoprene has a high photoabsorption cross section in the VUV region; therefore, its photoionization leads to a highly effective production of thermal electrons, which further promotes the ionization of analytes. In addition, isoprene is environmentally benign and less toxic compared to currently used dopants. Copyright © 2015 John Wiley & Sons, Ltd.
Numerical simulations of the first operational conditions of the negative ion test facility SPIDER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Serianni, G., E-mail: gianluigi.serianni@igi.cnr.it; Agostinetti, P.; Antoni, V.
2016-02-15
In view of the realization of the negative ion beam injectors for ITER, a test facility, named SPIDER, is under construction in Padova (Italy) to study and optimize production and extraction of negative ions. The present paper is devoted to the analysis of the expected first operations of SPIDER in terms of single-beamlet and multiple-beamlet simulations of the hydrogen beam optics in various operational conditions. The effectiveness of the methods adopted to compensate for the magnetic deflection of the particles is also assessed. Indications for a sequence of the experimental activities are obtained.
Numerical simulations of the first operational conditions of the negative ion test facility SPIDER
NASA Astrophysics Data System (ADS)
Serianni, G.; Agostinetti, P.; Antoni, V.; Baltador, C.; Cavenago, M.; Chitarin, G.; Marconato, N.; Pasqualotto, R.; Sartori, E.; Toigo, V.; Veltri, P.
2016-02-01
In view of the realization of the negative ion beam injectors for ITER, a test facility, named SPIDER, is under construction in Padova (Italy) to study and optimize production and extraction of negative ions. The present paper is devoted to the analysis of the expected first operations of SPIDER in terms of single-beamlet and multiple-beamlet simulations of the hydrogen beam optics in various operational conditions. The effectiveness of the methods adopted to compensate for the magnetic deflection of the particles is also assessed. Indications for a sequence of the experimental activities are obtained.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdrashitov, G. F.; Belchenko, Yu. I.; Gusev, I. A.
An injector of hydrogen atoms with an energy of 0.5–1 MeV and equivalent current of up to 1.5 A for purposes of controlled fusion research is currently under design at the Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences. Within this project, a multiple-aperture RF surface-plasma source of negative hydrogen ions is designed. The source design and results of experiments on the generation of a negative ion beam with a current of >1 A in the long-pulse mode are presented.
Progress of the ELISE test facility: towards one hour pulses in hydrogen
NASA Astrophysics Data System (ADS)
Wünderlich, D.; Fantz, U.; Heinemann, B.; Kraus, W.; Riedl, R.; Wimmer, C.; the NNBI Team
2016-10-01
In order to fulfil the ITER requirements, the negative hydrogen ion source used for NBI has to deliver a high source performance, i.e. a high extracted negative ion current and simultaneously a low co-extracted electron current over a pulse length up to 1 h. Negative ions will be generated by the surface process in a low-temperature low-pressure hydrogen or deuterium plasma. Therefore, a certain amount of caesium has to be deposited on the plasma grid in order to obtain a low surface work function and consequently a high negative ion production yield. This caesium is re-distributed by the influence of the plasma, resulting in temporal instabilities of the extracted negative ion current and the co-extracted electrons over long pulses. This paper describes experiments performed in hydrogen operation at the half-ITER-size NNBI test facility ELISE in order to develop a caesium conditioning technique for more stable long pulses at an ITER relevant filling pressure of 0.3 Pa. A significant improvement of the long pulse stability is achieved. Together with different plasma diagnostics it is demonstrated that this improvement is correlated to the interplay of very small variations of parameters like the electrostatic potential and the particle densities close to the extraction system.
Lou, Xianwen; van Dongen, Joost L J; Meijer, E W
2010-07-01
A simple method was developed for the generation of cesium iodide (CsI) cluster ions up to m/z over 20,000 in matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS). Calibration ions in both positive and negative ion modes can readily be generated from a single MALDI spot of CsI(3) with 2-[(2E)-3-(4-tert-butylphenyl)-2-methylprop-2-enylidene] malononitrile (DCTB) matrix. The major cluster ion series observed in the positive ion mode is [(CsI)(n)Cs](+), and in the negative ion mode is [(CsI)(n)I](-). In both cluster series, ions spread evenly every 259.81 units. The easy method described here for the production of CsI cluster ions should be useful for MALDI MS calibrations. Copyright 2010 American Society for Mass Spectrometry. Published by Elsevier Inc. All rights reserved.
Effect of Coulomb collision on the negative ion extraction mechanism in negative ion sources.
Goto, I; Miyamoto, K; Nishioka, S; Mattei, S; Lettry, J; Abe, S; Hatayama, A
2016-02-01
To improve the H(-) ion beam optics, it is necessary to understand the energy relaxation process of surface produced H(-) ions in the extraction region of Cs seeded H(-) ion sources. Coulomb collisions of charged particles have been introduced to the 2D3V-PIC (two dimension in real space and three dimension in velocity space particle-in-cell) model for the H(-) extraction by using the binary collision model. Due to Coulomb collision, the lower energy part of the ion energy distribution function of H(-) ions has been greatly increased. The mean kinetic energy of the surface produced H(-) ions has been reduced to 0.65 eV from 1.5 eV. It has been suggested that the beam optics of the extracted H(-) ion beam is strongly affected by the energy relaxation process due to Coulomb collision.
Effect of solute atoms on swelling in Ni alloys and pure Ni under He + ion irradiation
NASA Astrophysics Data System (ADS)
Wakai, E.; Ezawa, T.; Imamura, J.; Takenaka, T.; Tanabe, T.; Oshima, R.
2002-12-01
The effects of solute atoms on microstructural evolutions have been investigated using Ni alloys under 25 keV He + irradiation at 500 °C. The specimens used were pure Ni, Ni-Si, Ni-Co, Ni-Cu, Ni-Mn and Ni-Pd alloys with different volume size factors. The high number densities of dislocation loops about 1.5×10 22 m -3 were formed in the specimens irradiated to 1×10 19 ions/m 2, and they were approximately equivalent, except for Ni-Si. The mean size of loops tended to increase with the volume size factor of solute atoms. In a dose of 4×10 20 ions/m 2, the swelling was changed from 0.2% to 4.5%, depending on the volume size factors. The number densities of bubbles tended to increase with the absolute values of the volume size factor, and the swelling increased with the volume size factors. This suggests that the mobility of helium and vacancy atoms may be influenced by the interaction of solute atoms with them.
Brahim, Bessem; Tabet, Jean-Claude; Alves, Sandra
2018-02-01
Gas-phase fragmentation of single strand DNA-peptide noncovalent complexes is investigated in positive and negative electrospray ionization modes.Collision-induced dissociation experiments, performed on the positively charged noncovalent complex precursor ions, have confirmed the trend previously observed in negative ion mode, i.e. a high stability of noncovalent complexes containing very basic peptidic residues (i.e. R > K) and acidic nucleotide units (i.e. Thy units), certainly incoming from the existence of salt bridge interactions. Independent of the ion polarity, stable noncovalent complex precursor ions were found to dissociate preferentially through covalent bond cleavages of the partners without disrupting noncovalent interactions. The resulting DNA fragment ions were found to be still noncovalently linked to the peptides. Additionally, the losses of an internal nucleic fragment producing "three-body" noncovalent fragment ions were also observed in both ion polarities, demonstrating the spectacular salt bridge interaction stability. The identical fragmentation patterns (regardless of the relative fragment ion abundances) observed in both polarities have shown a common location of salt bridge interaction certainly preserved from solution. Nonetheless, most abundant noncovalent fragment ions (and particularly three-body ones) are observed from positively charged noncovalent complexes. Therefore, we assume that, independent of the preexisting salt bridge interaction and zwitterion structures, multiple covalent bond cleavages from single-stranded DNA/peptide complexes rely on an excess of positive charges in both electrospray ionization ion polarities.
Role of ion hydration for the differential capacitance of an electric double layer.
Caetano, Daniel L Z; Bossa, Guilherme V; de Oliveira, Vinicius M; Brown, Matthew A; de Carvalho, Sidney J; May, Sylvio
2016-10-12
The influence of soft, hydration-mediated ion-ion and ion-surface interactions on the differential capacitance of an electric double layer is investigated using Monte Carlo simulations and compared to various mean-field models. We focus on a planar electrode surface at physiological concentration of monovalent ions in a uniform dielectric background. Hydration-mediated interactions are modeled on the basis of Yukawa potentials that add to the Coulomb and excluded volume interactions between ions. We present a mean-field model that includes hydration-mediated anion-anion, anion-cation, and cation-cation interactions of arbitrary strengths. In addition, finite ion sizes are accounted for through excluded volume interactions, described either on the basis of the Carnahan-Starling equation of state or using a lattice gas model. Both our Monte Carlo simulations and mean-field approaches predict a characteristic double-peak (the so-called camel shape) of the differential capacitance; its decrease reflects the packing of the counterions near the electrode surface. The presence of hydration-mediated ion-surface repulsion causes a thin charge-depleted region close to the surface, which is reminiscent of a Stern layer. We analyze the interplay between excluded volume and hydration-mediated interactions on the differential capacitance and demonstrate that for small surface charge density our mean-field model based on the Carnahan-Starling equation is able to capture the Monte Carlo simulation results. In contrast, for large surface charge density the mean-field approach based on the lattice gas model is preferable.
The characteristics of a new negative metal ion beam source and its applications
NASA Astrophysics Data System (ADS)
Paik, Namwoong
2001-10-01
Numerous efforts at energetic thin film deposition processes using ion beams have been made to meet the demands of today's thin film industry. As one of these efforts, a new Magnetron Sputter Negative Ion Source (MSNIS) was developed. In this study, the development and the characterization of the MSNIS were investigated. Amorphous carbon films were used as a sample coating medium to evaluate the ion beam energy effect. A review of energetic Physical Vapor Deposition (PVD) techniques is presented in Chapter 1. The energetic PVD methods can be classified into two major categories: the indirect ion beam method Ion Beam Assisted Deposition (IBAD), and the direct ion beam method-Direct Ion Beam Deposition (DIBD). In this chapter, currently available DIBD processes such as Cathodic Arc, Laser Ablation, Ionized Physical Vapor Deposition (I-PVD) and Magnetron Sputter Negative Ion Source (MSNIS) are individually reviewed. The design and construction of the MSNIS is presented in chapter 2. The MSNIS is a hybrid of the conventional magnetron sputter configuration and the cesium surface ionizer. The negative sputtered ions are produced directly from the sputter target by surface ionization. In chapter 3, the ion beam and plasma characteristics of an 8″ diameter MSNIS are investigated using a retarding field analyzer and a cylindrical Langmuir Probe. The measured electron temperature is approximately 2-5 eV, while the plasma density and plasma potential were of the order of 10 11-1012 cm3 and 5-20 V, respectively, depending on the pressure and power. In chapter 4, in order to evaluate the effect of the ion beam on the resultant films, amorphous carbon films were deposited under various conditions. The structure of carbon films was investigated using Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). The result suggests the fraction of spa bonding is more than 70% in some samples prepared by MSNIS while magnetron sputtered samples showed less than 30%. (Abstract shortened by UMI.)
Is the compressibility positive or negative in a strongly-coupled dusty plasma?
NASA Astrophysics Data System (ADS)
Goree, John; Ruhunusiri, W. D. Suranga
2014-10-01
In dusty plasmas, dust particles are often strongly coupled with a large Coulomb coupling parameter Γ, while the electrons and ions that share the same volume are weakly coupled. In most substances, compressibility β must be positive; otherwise there would be an explosive instability. In a multicomponent plasma, however, one could entertain the idea that β for a single strongly coupled component could be negative, provided that the restoring force from charge separation overwhelms the destabilizing effect. Indeed, the compressibility for a strongly-coupled dust component is assumed to be negative in three theories we identified in the literature for dust acoustic waves. These theories use a multi-fluid model, with an OCP (one component plasma) or Yukawa-OCP approach for the dust fluid. We performed dusty plasma experiments designed to determine the value of the inverse compressibility β-1, and in particular its sign. We fit an experimentally measured dispersion relation to theory, with β-1 as a free parameter, taking into account the systematic errors in the experiment and model. We find that β-1 is either positive, or it has a negligibly small negative value, which is not in agreement with the assumptions of the OCP-based theories. Supported by NSF and NASA.
Kinetic treatment of nonlinear ion-acoustic waves in multi-ion plasma
NASA Astrophysics Data System (ADS)
Ahmad, Zulfiqar; Ahmad, Mushtaq; Qamar, A.
2017-09-01
By applying the kinetic theory of the Valsove-Poisson model and the reductive perturbation technique, a Korteweg-de Vries (KdV) equation is derived for small but finite amplitude ion acoustic waves in multi-ion plasma composed of positive and negative ions along with the fraction of electrons. A correspondent equation is also derived from the basic set of fluid equations of adiabatic ions and isothermal electrons. Both kinetic and fluid KdV equations are stationary solved with different nature of coefficients. Their differences are discussed both analytically and numerically. The criteria of the fluid approach as a limiting case of kinetic theory are also discussed. The presence of negative ion makes some modification in the solitary structure that has also been discussed with its implication at the laboratory level.
Gutser, R; Fantz, U; Wünderlich, D
2010-02-01
Cesium seeded sources for surface generated negative hydrogen ions are major components of neutral beam injection systems in future large-scale fusion experiments such as ITER. Stability and delivered current density depend highly on the cesium conditions during plasma-on and plasma-off phases of the ion source. The Monte Carlo code CSFLOW3D was used to study the transport of neutral and ionic cesium in both phases. Homogeneous and intense flows were obtained from two cesium sources in the expansion region of the ion source and from a dispenser array, which is located 10 cm in front of the converter surface.
Determination of gas phase protein ion densities via ion mobility analysis with charge reduction.
Maisser, Anne; Premnath, Vinay; Ghosh, Abhimanyu; Nguyen, Tuan Anh; Attoui, Michel; Hogan, Christopher J
2011-12-28
We use a charge reduction electrospray (ESI) source and subsequent ion mobility analysis with a differential mobility analyzer (DMA, with detection via both a Faraday cage electrometer and a condensation particle counter) to infer the densities of single and multiprotein ions of cytochrome C, lysozyme, myoglobin, ovalbumin, and bovine serum albumin produced from non-denaturing (20 mM aqueous ammonium acetate) and denaturing (1 : 49.5 : 49.5, formic acid : methanol : water) ESI. Charge reduction is achieved through use of a Po-210 radioactive source, which generates roughly equal concentrations of positive and negative ions. Ions produced by the source collide with and reduce the charge on ESI generated drops, preventing Coulombic fissions, and unlike typical protein ESI, leading to gas-phase protein ions with +1 to +3 excess charges. Therefore, charge reduction serves to effectively mitigate any role that Coulombic stretching may play on the structure of the gas phase ions. Density inference is made via determination of the mobility diameter, and correspondingly the spherical equivalent protein volume. Through this approach it is found that for both non-denaturing and denaturing ESI-generated ions, gas-phase protein ions are relatively compact, with average densities of 0.97 g cm(-3) and 0.86 g cm(-3), respectively. Ions from non-denaturing ESI are found to be slightly more compact than predicted from the protein crystal structures, suggesting that low charge state protein ions in the gas phase are slightly denser than their solution conformations. While a slight difference is detected between the ions produced with non-denaturing and denaturing ESI, the denatured ions are found to be much more dense than those examined previously by drift tube mobility analysis, in which charge reduction was not employed. This indicates that Coulombic stretching is typically what leads to non-compact ions in the gas-phase, and suggests that for gas phase measurements to be correlated to biomolecular structures in solution, low charge state ions should be analyzed. Further, to determine if different solution conditions give rise to ions of different structure, ions of similar charge state should be compared. Non-denatured protein ion densities are found to be in excellent agreement with non-denatured protein ion densities inferred from prior DMA and drift tube measurements made without charge reduction (all ions with densities in the 0.85-1.10 g cm(-3) range), showing that these ions are not strongly influenced by Coulombic stretching nor by analysis method.
Yool, Andrea J
2007-01-01
The neurogenic protein Drosophila big brain (BIB), which is involved in the process of neuroblast determination, and the water channel aquaporin-1 (AQP1) are among a subset of the major intrinsic protein (MIP) channels that have been found to show gated monovalent cation channel activity. A glutamate residue in the first transmembrane (M1) domain is conserved throughout the MIP family. Mutation of this residue to asparagine in BIB (E71N) knocks out ion channel activity, and when coexpressed with BIB wild-type as shown here generates a dominant-negative effect on ion channel function, measured in the Xenopus oocyte expression system using two-electrode voltage clamp. cRNAs for wild-type and mutant BIB or AQP1 channels were injected individually or as mixtures. The magnitude of the BIB ionic conductance response was greatly reduced by coexpression of the mutant E71N subunit, suggesting a dominant-negative mechanism of action. The analogous mutation in AQP1 (E17N) did not impair ion channel activation by cGMP, but did knock out water channel function, although not via a dominant-negative effect. This contrast in sensitivity between BIB and AQP1 to mutation of the M1 glutamate suggests the possibility of interesting structural differences in the molecular basis of the ion permeation between these two classes of channels. The dominant-negative construct of BIB could be a tool for testing a role for BIB ion channels during nervous system development in Drosophila. The neurogenic protein Drosophila big brain (BIB), which is involved in the process of neuroblast determination, and the water channel aquaporin-1 (AQP1) are among a subset of the major intrinsic protein (MIP) channels that have been found to show gated monovalent cation channel activity. A glutamate residue in the first transmembrane (M1) domain is conserved throughout the MIP family. Mutation of this residue to asparagine in BIB (E71N) knocks out ion channel activity, and when coexpressed with BIB wild-type as shown here generates a dominant-negative effect on ion channel function, measured in the Xenopus oocyte expression system using two-electrode voltage clamp. cRNAs for wild-type and mutant BIB or AQP1 channels were injected individually or as mixtures. The magnitude of the BIB ionic conductance response was greatly reduced by coexpression of the mutant E71N subunit, suggesting a dominant-negative mechanism of action. The analogous mutation in AQP1 (E17N) did not impair ion channel activation by cGMP, but did knock out water channel function, although not via a dominant-negative effect. This contrast in sensitivity between BIB and AQP1 to mutation of the M1 glutamate suggests the possibility of interesting structural differences in the molecular basis of the ion permeation between these two classes of channels. The dominant-negative construct of BIB could be a tool for testing a role for BIB ion channels during nervous system development in Drosophila.
Self-sustained focusing of high-density streaming plasma
NASA Astrophysics Data System (ADS)
Bugaev, A.; Dobrovolskiy, A.; Goncharov, A.; Gushenets, V.; Litovko, I.; Naiko, I.; Oks, E.
2017-01-01
We describe our observations of the transport through an electrostatic plasma lens of a wide-aperture, high-current, low energy, metal-ion plasma flow produced by a cathodic arc discharge. The lens input aperture was 80 mm, the length of the lens was 140 mm, and there were three electrostatic ring electrodes located in a magnetic field formed by permanent magnets. The lens outer electrodes were grounded and the central electrode was biased up to -3 kV. The plasma was a copper plasma with directed (streaming) ion energy 20-40 eV, and the equivalent ion current was up to several amperes depending on the potential applied to the central lens electrode. We find that when the central lens electrode is electrically floating, the current density of the plasma flow at the lens focus increases by up to 40%-50%, a result that is in good agreement with a theoretical treatment based on plasma-optical principles of magnetic insulation of electrons and equipotentialization along magnetic field lines. When the central lens electrode is biased negatively, an on-axis stream of energetic electrons is formed, which can also provide a mechanism for focusing of the plasma flow. Optical emission spectra under these conditions show an increase in intensity of lines corresponding to both copper atoms and singly charged copper ions, indicating the presence of fast electrons within the lens volume. These energetic electrons, as well as accumulating on-axis and providing ion focusing, can also assist in reducing the microdroplet component in the dense, low-temperature, metal plasma.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lindahl, A. O.; Hanstorp, D.; Forstner, Dr. Oliver
2010-01-01
The depopulation of excited states in beams of negatively charged carbon and silicon ions was demonstrated using collisional detachment and laser photodetachment in a radio-frequency quadrupole ion guide filled with helium. The high-lying, loosely bound {sup 2}D excited state in C{sup -} was completely depleted through collisional detachment alone, which was quantitatively determined within 6%. For Si{sup -} the combined signal from the population in the {sup 2}P and {sup 2}D excited states was only partly depleted through collisions in the cooler. The loosely bound {sup 2}P state was likely to be completely depopulated, and the more tightly bound {supmore » 2}D state was partly depopulated through collisions. 98(2)% of the remaining {sup 2}D population was removed by photodetachment in the cooler using less than 2 W laser power. The total reduction of the excited population in Si{sup -}, including collisional detachment and photodetachment, was estimated to be 99(1)%. Employing this novel technique to produce a pure ground state negative ion beam offers possibilities of enhancing selectivity, as well as accuracy, in high-precision experiments on atomic as well as molecular negative ions.« less
Ion source development for a photoneutralization based NBI system for fusion reactors
NASA Astrophysics Data System (ADS)
Simonin, A.; de Esch, H. P. L.; Garibaldi, P.; Grand, C.; Bechu, S.; Bès, A.; Lacoste, A.
2015-04-01
The next step after ITER is to demonstrate the viability and generation of electricity by a future fusion reactor (DEMO). The specifications required to operate an NBI system on DEMO are very demanding. The system has to provide a very high level of power and energy, ~100MW of D° beam at 1MeV, including high wall-plug efficiency (η > 60%). For this purpose, a new injector concept, called Siphore, is under investigation between CEA and French universities. Siphore is based on the stripping of the accelerated negative ions by photo-detachment provided by several Fabry-Perot cavities (3.5MW of light power per cavity) implemented along the D- beam. The beamline is designed to be tall and narrow in order that the photon flux overlaps the entire negative ion beam. The paper will describe the present R&D at CEA which addresses the development of an ion source and pre-accelerator prototypes for Siphore, the main goal being to produce an intense negative ion beam sheet. The negative ion source Cybele is based on a magnetized plasma column where hot electrons are emitted from the source center. Parametric studies of the source are performed using Langmuir probes in order to characterize the plasma and to compare with numerical models being developed in French universities.
2014-01-01
Background Chlamydia psittaci (Cp) is a respiratory pathogen capable of inducing acute pulmonary zoonotic disease (psittacosis) or persistent infection. To elucidate the pathogenesis of this infection, a translational large animal model was recently introduced by our group. This study aims at quantifying and differentiating pulmonary dysfunction and acid–base imbalances induced by Cp. Methods Forty-two calves were grouped in (i) animals inoculated with Cp (n = 21) and (ii) controls sham-inoculated with uninfected cell culture (n = 21). For pulmonary function testing, impulse oscillometry, capnography, and FRC (functional residual capacity) measurement were applied to spontaneously breathing animals. Variables of acid–base status were assessed in venous blood using both (i) traditional Henderson-Hasselbalch and (ii) strong ion approach. Results Both obstructive and restrictive pulmonary disorders were induced in calves experimentally inoculated with Cp. Although disorders in respiratory mechanics lasted for 8–11 days, the pattern of spontaneous breathing was mainly altered in the period of acute illness (until 4 days post inoculation, dpi). Expiration was more impaired than inspiration, resulting in elevated FRC. Ventilation was characterised by a reduction in tidal volume (−25%) combined with an increased percentage of dead space volume and a significant reduction of alveolar volume by 10%. Minute ventilation increased significantly (+50%) due to a compensatory doubling of respiratory rate. Hyperventilatory hypocapnia at 2–3 dpi resulted in slightly increased blood pH at 2 dpi. However, the acid–base equilibrium was additionally influenced by metabolic components, i.e. the systemic inflammatory response, all of which were detected with help of the strong ion theory. Decreased concentrations of albumin (2–10 dpi), a negative acute-phase marker, resulted in a decrease in the sum of non-volatile weak acids (Atot), revealing an alkalotic effect. This was counterbalanced by acidic effects of decreased strong ion difference (SID), mediated by the interplay between hypochloraemia (alkalotic effect) and hyponatraemia (acidic effect). Conclusions This bovine model was found to be suitable for studying pathophysiology of respiratory Cp infection and may help elucidating functional host-pathogen interactions in the mammalian lung. PMID:24517577
Zhao, Hui; Wei, Yang; Qiao, Ruimin; ...
2015-11-24
High-tap-density silicon nanomaterials are highly desirable as anodes for lithium ion batteries, due to their small surface area and minimum first-cycle loss. However, this material poses formidable challenges to polymeric binder design. Binders adhere on to the small surface area to sustain the drastic volume changes during cycling; also the low porosities and small pore size resulting from this material are detrimental to lithium ion transport. This study introduces a new binder, poly(1-pyrenemethyl methacrylate-co-methacrylic acid) (PPyMAA), for a high-tap-density nanosilicon electrode cycled in a stable manner with a first cycle efficiency of 82%-a value that is further improved to 87%more » when combined with graphite material. Incorporating the MAA acid functionalities does not change the lowest unoccupied molecular orbital (LUMO) features or lower the adhesion performance of the PPy homopolymer. Our single-molecule force microscopy measurement of PPyMAA reveals similar adhesion strength between polymer binder and anode surface when compared with conventional polymer such as homopolyacrylic acid (PAA), while being electronically conductive. Finally, the combined conductivity and adhesion afforded by the MAA and pyrene copolymer results in good cycling performance for the high-tap-density Si electrode.« less
One-dimensional Ar-SF{sub 6} hydromodel at low-pressure in e-beam generated plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petrov, George M., E-mail: george.petrov@nrl.navy.mil; Boris, David R.; Petrova, Tzvetelina B.
2016-03-15
A one-dimensional steady-state hydrodynamic model of electron beam generated plasmas produced in Ar-SF{sub 6} mixtures at low pressure in a constant magnetic field was developed. Simulations were performed for a range of SF{sub 6} partial pressures at constant 30 mTorr total gas pressure to determine the spatial distribution of species densities and fluxes. With the addition of small amount of SF{sub 6} (∼1%), the confining electrostatic field sharply decreases with respect to the pure argon case. This effect is due to the applied magnetic field inhibiting electron diffusion. The hallmark of electronegative discharge plasmas, positive ion—negative ion core and positivemore » ion—electron edge, was not observed. Instead, a plasma with large electronegativity (∼100) is formed throughout the volume, and only a small fraction (≈30%) of the parent SF{sub 6} molecules were dissociated to F{sub 2}, SF{sub 2}, and SF{sub 4}. Importantly, F radical densities were found to be very low, on the order of the ion density. Model predictions for the electron density, ion density, and plasma electronegativity are in good agreement with experimental data over the entire range of SF{sub 6} concentrations investigated.« less
Improvement of voltage holding capability in the 500 keV negative ion source for JT-60SA.
Tanaka, Y; Hanada, M; Kojima, A; Akino, N; Shimizu, T; Ohshima, K; Inoue, T; Watanabe, K; Taniguchi, M; Kashiwagi, M; Umeda, N; Tobari, H; Grisham, L R
2010-02-01
Voltage holding capability of JT-60 negative ion source that has a large electrostatic negative ion accelerator with 45 cm x 1.1 m acceleration grids was experimentally examined and improved to realize 500 keV, 22 A, and 100 s D- ion beams for JT-60 Super Advanced. The gap lengths in the acceleration stages were extended to reduce electric fields in a gap between the large grids and at the corner of the support flanges from the original 4-5 to 3-4 kV/mm. As a result, the voltage holding capability without beam acceleration has been successfully improved from 400 to 500 kV. The pulse duration to hold 500 kV reached 40 s of the power supply limitation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Onai, M., E-mail: onai@ppl.appi.keio.ac.jp; Fujita, S.; Hatayama, A.
2016-02-15
Recently, a filament driven multi-cusp negative ion source has been developed for proton cyclotrons in medical applications. In this study, numerical modeling of the filament arc-discharge source plasma has been done with kinetic modeling of electrons in the ion source plasmas by the multi-cusp arc-discharge code and zero dimensional rate equations for hydrogen molecules and negative ions. In this paper, main focus is placed on the effects of the arc-discharge power on the electron energy distribution function and the resultant H{sup −} production. The modelling results reasonably explains the dependence of the H{sup −} extraction current on the arc-discharge powermore » in the experiments.« less
NASA Technical Reports Server (NTRS)
Boumsellek, S.; Alajajian, S. H.; Chutjian, A.
1992-01-01
First results of a beam-beam, single-collision study of negative-ion mass spectra produced by attachment of zero-energy electrons to the molecules of the explosives RDX, PETN, and TNT are presented. The technique used is reversal electron attachment detection (READ) wherein the zero-energy electrons are produced by focusing an intense electron beam into a shaped electrostatic field which reverses the trajectory of electrons. The target beam is introduced at the reversal point, and attachment occurs because the electrons have essentially zero longitudinal and radial velocity. The READ technique is used to obtain the 'signature' of molecular ion formation and/or fragmentation for each explosive. Present data are compared with results from atmospheric-pressure ionization and negative-ion chemical ionization methods.
Negative hydrogen ion production in a helicon plasma source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santoso, J., E-mail: Jesse.Santoso@anu.edu.au; Corr, C. S.; Manoharan, R.
2015-09-15
In order to develop very high energy (>1 MeV) neutral beam injection systems for applications, such as plasma heating in fusion devices, it is necessary first to develop high throughput negative ion sources. For the ITER reference source, this will be realised using caesiated inductively coupled plasma devices, containing either hydrogen or deuterium discharges, operated with high rf input powers (up to 90 kW per driver). It has been suggested that due to their high power coupling efficiency, helicon devices may be able to reduce power requirements and potentially obviate the need for caesiation due to the high plasma densities achievable. Here,more » we present measurements of negative ion densities in a hydrogen discharge produced by a helicon device, with externally applied DC magnetic fields ranging from 0 to 8.5 mT at 5 and 10 mTorr fill pressures. These measurements were taken in the magnetised plasma interaction experiment at the Australian National University and were performed using the probe-based laser photodetachment technique, modified for the use in the afterglow of the plasma discharge. A peak in the electron density is observed at ∼3 mT and is correlated with changes in the rf power transfer efficiency. With increasing magnetic field, an increase in the negative ion fraction from 0.04 to 0.10 and negative ion densities from 8 × 10{sup 14 }m{sup −3} to 7 × 10{sup 15 }m{sup −3} is observed. It is also shown that the negative ion densities can be increased by a factor of 8 with the application of an external DC magnetic field.« less
NASA Technical Reports Server (NTRS)
Manzo, Michelle A.; Brewer, Jeffrey C.; Bugga, Ratnakumar V.; Darcy, Eric C.; Jeevarajan, Judith A.; McKissock, Barbara I.; Schmitz, Paul C.
2010-01-01
This NASA Aerospace Flight Battery Systems Working Group was chartered within the NASA Engineering and Safety Center (NESC). The Battery Working Group was tasked to complete tasks and to propose proactive work to address battery related, agency-wide issues on an annual basis. In its first year of operation, this proactive program addressed various aspects of the validation and verification of aerospace battery systems for NASA missions. Studies were performed, issues were discussed and in many cases, test programs were executed to generate recommendations and guidelines to reduce risk associated with various aspects of implementing battery technology in the aerospace industry. This document contains Part 1 - Volume I: Generic Safety, Handling and Qualification Guidelines for Lithium-Ion (Li-Ion) Batteries, Availability of Source Materials for Lithium-Ion (Li-Ion) Batteries, and Maintaining Technical Communications Related to Aerospace Batteries (NASA Aerospace Battery Workshop).
Ion processing element with composite media
Mann, Nick R.; Tranter, Troy J.; Todd, Terry A.; Sebesta, Ferdinand
2003-02-04
An ion processing element employing composite media disposed in a porous substrate, for facilitating removal of selected chemical species from a fluid stream. The ion processing element includes a porous fibrous glass substrate impregnated by composite media having one or more active components supported by a matrix material of polyacrylonitrile. The active components are effective in removing, by various mechanisms, one or more constituents from a fluid stream passing through the ion processing element. Due to the porosity and large surface area of both the composite medium and the substrate in which it is disposed, a high degree of contact is achieved between the active component and the fluid stream being processed. Further, the porosity of the matrix material and the substrate facilitates use of the ion processing element in high volume applications where it is desired to effectively process a high volume flows.
Ion processing element with composite media
Mann, Nick R [Blackfoot, ID; Tranter, Troy J [Idaho Falls, ID; Todd, Terry A [Aberdeen, ID; Sebesta, Ferdinand [Prague, CZ
2009-03-24
An ion processing element employing composite media disposed in a porous substrate, for facilitating removal of selected chemical species from a fluid stream. The ion processing element includes a porous fibrous glass substrate impregnated by composite media having one or more active components supported by a matrix material of polyacrylonitrile. The active components are effective in removing, by various mechanisms, one or more constituents from a fluid stream passing through the ion processing element. Due to the porosity and large surface area of both the composite medium and the substrate in which it is disposed, a high degree of contact is achieved between the active component and the fluid stream being processed. Further, the porosity of the matrix material and the substrate facilitates use of the ion processing element in high volume applications where it is desired to effectively process a high volume flows.
NASA Astrophysics Data System (ADS)
Fornof, K. T.; Gilbert, G. O.
1988-12-01
The possibility that individual differences in reactivity to stressors are a major factor underlying discordant results reported for air ion studies prompted an investigation of response patterns in school children under both normal indoor air ion levels and moderately increased negative air ion levels (4000±500/cm3). It was hypothesized that the impact of stressors is reduced with high negative air ionization, and that resultant changes in stress effects would be differentially exhibited according to the children's normal degree of stimulus reactivity. A counter-balanced, replicative, withinssubject design was selected, and the subjects were 12 environmentally sensitive, 1st 4th grade school children. In addition to monitoring stress effects on activity level, attention span, concentration to task and conceptual performance, measures were also made of urinary 5-hydroxyindole acetic acid levels and skin resistance response (SRR) to determine if changes extended to the physiological state. The cold water test was used to add physical stress and enable calculations of Lacey's autonomic lability scores (ALS) as indicators of individual reactivity. The results show main effects for air ions on both physiological parameters, with 48% less change in %SRR ( P<0.01) and 46% less change in urinary 5-HIAA levels ( P<0.055) during negative air ions, indicating increased stress tolerance. Strong interactive effects for ALS x air ion condition appeared, with high and low ALS children reacting oppositely to negative air ions in measures of skin resistance level ( P<0.01), wrist activity ( P<0.01) and digit span backwards ( P<0.004). Thus individual differences in autonomic reactivity and the presence or absence of stressors appear as critical elements for internal validity, and in preventing consequent skewed results from obscuring progress in air ion research.
Presence of negative charge on the basal planes of New York talc.
Burdukova, E; Becker, M; Bradshaw, D J; Laskowski, J S
2007-11-01
Potentiometric titration measurements as well as rheological measurements of talc aqueous suspensions indicate that the behavior of the New York talc particles is consistent with the presence of a negative charge on their basal planes. The possibility of the presence of a negative electrical charge on the basal planes of talc particles is analyzed in this paper. Samples of New York talc were studied using electron microprobe analysis and dehydration techniques and the exact chemical formula of New York talc was determined. It was found that there exists a deficiency of protons in the tetrahedral layers of talc, resulting from substitution of Si(4+) ions with Al(3+) and Ti(3+) ions. The comparison of the level of substitution of Si(4+) ions with ions of a lower valency was found to be of a similar order of magnitude as that found in other talc deposits. This strongly points to the presence of a negative charge on the talc basal planes.
Measurement of heat load density profile on acceleration grid in MeV-class negative ion accelerator.
Hiratsuka, Junichi; Hanada, Masaya; Kojima, Atsushi; Umeda, Naotaka; Kashiwagi, Mieko; Miyamoto, Kenji; Yoshida, Masafumi; Nishikiori, Ryo; Ichikawa, Masahiro; Watanabe, Kazuhiro; Tobari, Hiroyuki
2016-02-01
To understand the physics of the negative ion extraction/acceleration, the heat load density profile on the acceleration grid has been firstly measured in the ITER prototype accelerator where the negative ions are accelerated to 1 MeV with five acceleration stages. In order to clarify the profile, the peripheries around the apertures on the acceleration grid were separated into thermally insulated 34 blocks with thermocouples. The spatial resolution is as low as 3 mm and small enough to measure the tail of the beam profile with a beam diameter of ∼16 mm. It was found that there were two peaks of heat load density around the aperture. These two peaks were also clarified to be caused by the intercepted negative ions and secondary electrons from detailed investigation by changing the beam optics and gas density profile. This is the first experimental result, which is useful to understand the trajectories of these particles.
Tunable thermal expansion in framework materials through redox intercalation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Jun; Gao, Qilong; Sanson, Andrea
Thermal expansion properties of solids are of fundamental interest and control of thermal expansion is important for practical applications but can be difficult to achieve. Many framework type materials show negative thermal expansion when internal cages are empty but positive thermal expansion when additional atoms or molecules fill internal voids present, offering a potential route for control. Here we show that redox intercalation offers an effective method to control thermal expansion from positive to zero to negative by insertion of Li ions into the simple negative thermal expansion framework material ScF 3, doped with 10% Fe to enable reduction. Themore » small concentration of intercalated Li ions has a strong influence through steric hindrance of transverse fluoride ion vibrations, which directly controls the thermal expansion. As a result, redox intercalation of guest ions is thus likely to be a general and effective method for controlling thermal expansion in the many known framework materials with phonon-driven negative thermal expansion.« less
Negative-hydrogen-ion production from a nanoporous 12CaO • 7Al2O3 electride surface
NASA Astrophysics Data System (ADS)
Sasao, Mamiko; Moussaoui, Roba; Kogut, Dmitry; Ellis, James; Cartry, Gilles; Wada, Motoi; Tsumori, Katsuyoshi; Hosono, Hideo
2018-06-01
A high production rate of negative hydrogen ions (H‑) was observed from a nanoporous 12CaO • 7Al2O3 (C12A7) electride surface immersed in hydrogen/deuterium low-pressure plasmas. The target was negatively biased at 20–130 V, and the target surface was bombarded by H3 + ions from the plasma. The production rate was compared with that from a clean molybdenum surface. Using the pseudo-exponential work-function dependence of the H‑ production rate, the total H‑ yield from the C12A7 electride surface bombarded at 80 V was evaluated to be 25% of that from a cesiated molybdenum surface with the lowest work-function. The measured H‑ energy spectrum indicates that the major production mechanism is desorption by sputtering. This material has potential to be used as a production surface of cesium-free negative ion sources for accelerators, heating beams in nuclear fusion, and surface modification for industrial applications.
Tunable thermal expansion in framework materials through redox intercalation
Chen, Jun; Gao, Qilong; Sanson, Andrea; ...
2017-02-09
Thermal expansion properties of solids are of fundamental interest and control of thermal expansion is important for practical applications but can be difficult to achieve. Many framework type materials show negative thermal expansion when internal cages are empty but positive thermal expansion when additional atoms or molecules fill internal voids present, offering a potential route for control. Here we show that redox intercalation offers an effective method to control thermal expansion from positive to zero to negative by insertion of Li ions into the simple negative thermal expansion framework material ScF 3, doped with 10% Fe to enable reduction. Themore » small concentration of intercalated Li ions has a strong influence through steric hindrance of transverse fluoride ion vibrations, which directly controls the thermal expansion. As a result, redox intercalation of guest ions is thus likely to be a general and effective method for controlling thermal expansion in the many known framework materials with phonon-driven negative thermal expansion.« less
MALDI Mass Spectrometry of Fullero[C60]tetrahydropyridines
NASA Astrophysics Data System (ADS)
Fatkullina, A. F.; Yanybin, V. M.; Asfandiarov, N. L.; Tuktarov, A. R.; Khalilov, L. M.
2018-07-01
Mass spectra of positive and negative MALDI ions of the series of fullero[C60] tetrahydropyridines with different substituents in a heterocycle are systematically studied for the first time. All mass spectra contain C60 fullerene peaks as a result of the reduction of fullero[C60]tetrahydropyridines. The intensities of the protonated molecular ions' [M + H]+ peaks are highest in the mass spectra of positive ions of the studied compounds, while molecular radical ion [M]+ is less intense. The intensities of the peaks of molecular radical ion [M]- are highest in the mass spectra of the negative ions. The [C60C2H5] ions formed during the decay of the molecular ions with the detachment of neutral nitrile molecules is characteristic of all compounds. Using DFT quantum-chemical calculations (PBE/3z), the energies of the highest (HOMO) and lowest unoccupied molecular orbitals (LUMO) are determined for fullero[C60]tetrahydropyridines with substituents in the heterocycle.
Li Storage of Calcium Niobates for Lithium Ion Batteries.
Yim, Haena; Yu, Seung-Ho; Yoo, So Yeon; Sung, Yung-Eun; Choi, Ji-Won
2015-10-01
New types of niobates negative electrode were studied for using in lithium-ion batteries in order to alternate metallic lithium anodes. The potassium intercalated compound KCa2Nb3O10 and proton intercalated compound HCa2Nb3O10 were studied, and the electrochemical results showed a reversible cyclic voltammetry profile with acceptable discharge capacity. The as-prepared KCa2Nb3O10 negative electrode had a low discharge capacity caused by high overpotential, but the reversible intercalation and deintercalation reaction of lithium ions was activated after exchanging H+ ions for intercalated K+ ions. The initial discharge capacity of HCa2Nb3O10 was 54.2 mAh/g with 92.1% of coulombic efficiency, compared with 10.4 mAh/g with 70.2% of coulombic efficiency for KCa2Nb3O10 at 1 C rate. The improved electrochemical performance of the HCa2Nb3O10 was related to the lower bonding energy between proton cation and perovskite layer, which facilitate Li+ ions intercalating into the cation site, unlike potassium cation and perovskite layer. Also, this negative material can be easily exfoliated to Ca2Nb3O10 layer by using cation exchange process. Then, obtained two-dimensional nanosheets layer, which recently expected to be an advanced electrode material because of its flexibility, chemical stable, and thin film fabricable, can allow Li+ ions to diffuse between the each perovskite layer. Therefore, this new type layered perovskite niobates can be used not only bulk-type lithium ion batteries but also thin film batteries as a negative material.
Negative Dielectric Constant Material Based on Ion Conducting Materials
NASA Technical Reports Server (NTRS)
Gordon, Keith L. (Inventor); Kang, Jin Ho (Inventor); Park, Cheol (Inventor); Lillehei, Peter T. (Inventor); Harrison, Joycelyn S. (Inventor)
2017-01-01
Metamaterials or artificial negative index materials (NIMs) have generated great attention due to their unique and exotic electromagnetic properties. One exemplary negative dielectric constant material, which is an essential key for creating the NIMs, was developed by doping ions into a polymer, a protonated poly (benzimidazole) (PBI). The doped PBI showed a negative dielectric constant at megahertz (MHz) frequencies due to its reduced plasma frequency and an induction effect. The magnitude of the negative dielectric constant and the resonance frequency were tunable by doping concentration. The highly doped PBI showed larger absolute magnitude of negative dielectric constant at just above its resonance frequency than the less doped PBI.
Negative Dielectric Constant Material Based on Ion Conducting Materials
NASA Technical Reports Server (NTRS)
Gordon, Keith L. (Inventor); Kang, Jin Ho (Inventor); Harrison, Joycelyn S. (Inventor); Park, Cheol (Inventor); Lillehei, Peter T. (Inventor)
2014-01-01
Metamaterials or artificial negative index materials (NIMs) have generated great attention due to their unique and exotic electromagnetic properties. One exemplary negative dielectric constant material, which is an essential key for creating the NIMs, was developed by doping ions into a polymer, a protonated poly(benzimidazole) (PBI). The doped PBI showed a negative dielectric constant at megahertz (MHz) frequencies due to its reduced plasma frequency and an induction effect. The magnitude of the negative dielectric constant and the resonance frequency were tunable by doping concentration. The highly doped PBI showed larger absolute magnitude of negative dielectric constant at just above its resonance frequency than the less doped PBI.
NASA Astrophysics Data System (ADS)
Tidrow, Steven Clay
Two primary concerns, in the sputter deposition of high T_{c} material films, are the prevention of oxygen deficiency in the films and the elimination of the negative ion effect. "Oxygen deficiency" occurs when the amount of oxygen incorporated into the film is less than the amount of oxygen required to form the superconducting material lattice. Oxygen deficiency is due to the volatile nature of oxygen. The negative ion effect occurs when an atom or molecule (typically oxygen) gains an extra electron, is accelerated away from the target and impinges upon a film being grown directly in front of the sputtering target. The impinging particle has enough energy to cause resputtering of the deposited film. The presence of Sr and to a greater extent Ba, may enhance the negative ion effect in these materials. However, it is oxygen which readily forms negative ions that is primarily responsible for the negative ion effect. Thus, oxygen must be given special attention in the sputter deposition of high T_{c} material films. A specially designed sputtering system is used to demonstrate that the negative ion effect can be reduced such that large uniform high T_{c} material films possessing predicted and repeated composition can be grown in an on-axis arrangement. Utilizing this same sputtering system and the volatile nature of oxygen, it is demonstrated that oxygen processes occurring in the chamber during growth of high T_ {c} material films can be investigated using the tracer ^{18}O. In particular, it is shown that ^{18}O can be utilized as a tool for (1) investigating the negative ion effect, (2) investigating oxygen incorporation into high T_{c} material films, (3) investigating oxygen incorporation into the target, (4) tailoring films for oxygen migration and interface investigations and (5) tailoring films for the other specific oxygen investigations. Such sputtering systems that utilize the tracer ^{18}O are necessary for systematic growth of high T_ {c} material films for systematic investigations into the nature of these materials.
Depth Profiles of Mg, Si, and Zn Implants in GaN by Trace Element Accelerator Mass Spectrometry
NASA Astrophysics Data System (ADS)
Ravi Prasad, G. V.; Pelicon, P.; Mitchell, L. J.; McDaniel, F. D.
2003-08-01
GaN is one of the most promising electronic materials for applications requiring high-power, high frequencies, or high-temperatures as well as opto-electronics in the blue to ultraviolet spectral region. We have recently measured depth profiles of Mg, Si, and Zn implants in GaN substrates by the TEAMS particle counting method for both matrix and trace elements, using a gas ionization chamber. Trace Element Accelerator Mass Spectrometry (TEAMS) is a combination of Secondary Ion Mass Spectrometry (SIMS) and Accelerator Mass Spectrometry (AMS) to measure trace elements at ppb levels. Negative ions from a SIMS like source are injected into a tandem accelerator. Molecular interferences inherent with the SIMS method are eliminated in the TEAMS method. Negative ion currents are extremely low with GaN as neither gallium nor nitrogen readily forms negative ions making the depth profile measurements more difficult. The energies of the measured ions are in the range of 4-8 MeV. A careful selection of mass/charge ratios of the detected ions combined with energy-loss behavior of the ions in the ionization chamber eliminated molecular interferences.
Wang, Deli; Wang, Jie; He, Huan; ...
2015-12-30
Transition metal oxides are among the most promising anode candidates for next-generation lithium-ion batteries for their high theoretical capacity. However, the large volume expansion and low lithium ion diffusivity leading to a poor charging/discharging performance. In this study, we developed a surfactant and template-free strategy for the synthesis of a composite of Co xFe 3–xO 4 hollow spheres supported by carbon nanotubes via an impregnation–reduction–oxidation process. The synergy of the composite, as well as the hollow structures in the electrode materials, not only facilitate Li ion and electron transport, but also accommodate large volume expansion. Using state-of-the-art electron tomography, wemore » directly visualize the particles in 3-D, where the voids in the hollow structures serve to buffer the volume expansion of the material. These improvements result in a high reversible capacity as well as an outstanding rate performance for lithium-ion battery applications. As a result, this study sheds light on large-scale production of hollow structured metal oxides for commercial applications in energy storage and conversion.« less
Ion-induced nuclear radiotherapy
Horn, K.M.; Doyle, B.L.
1996-08-20
Ion-induced Nuclear Radiotherapy (INRT) is a technique for conducting radiosurgery and radiotherapy with a very high degree of control over the spatial extent of the irradiated volume and the delivered dose. Based upon the concept that low energy, ion induced atomic and nuclear reactions can be used to produce highly energetic reaction products at the site of a tumor, the INRT technique is implemented through the use of a conduit-needle or tube which conducts a low energy ion beam to a position above or within the intended treatment area. At the end of the conduit-needle or tube is a specially fabricated target which, only when struck by the ion beam, acts as a source of energetic radiation products. The inherent limitations in the energy, and therefore range, of the resulting reaction products limits the spatial extent of irradiation to a pre-defined volume about the point of reaction. Furthermore, since no damage is done to tissue outside this irradiated volume, the delivered dose may be made arbitrarily large. INRT may be used both as a point-source of radiation at the site of a small tumor, or as a topical bath of radiation to broad areas of diseased tissue. 25 figs.
Ion-induced nuclear radiotherapy
Horn, Kevin M.; Doyle, Barney L.
1996-01-01
Ion-induced Nuclear Radiotherapy (INRT) is a technique for conducting radiosurgery and radiotherapy with a very high degree of control over the spatial extent of the irradiated volume and the delivered dose. Based upon the concept that low energy, ion induced atomic and nuclear reactions can be used to produce highly energetic reaction products at the site of a tumor, the INRT technique is implemented through the use of a conduit-needle or tube which conducts a low energy ion beam to a position above or within the intended treatment area. At the end of the conduit-needle or tube is a specially fabricated target which, only when struck by the ion beam, acts as a source of energetic radiation products. The inherent limitations in the energy, and therefore range, of the resulting reaction products limits the spatial extent of irradiation to a pre-defined volume about the point of reaction. Furthermore, since no damage is done to tissue outside this irradiated volume, the delivered dose may be made arbitrarily large. INRT may be used both as a point-source of radiation at the site of a small tumor, or as a topical bath of radiation to broad areas of diseased tissue.
J. M. Roberts; P. Veres; C. Warneke; J. A. Neuman; R. A. Washenfelder; S. S. Brown; M. Baasandorj; J. B. Burkholder; I. R. Burling; T. J. Johnson; R. J. Yokelson; J. de Gouw
2010-01-01
A negative-ion proton transfer chemical ionization mass spectrometric technique (NI-PT-CIMS), using acetate as the reagent ion, was applied to the measurement of volatile inorganic acids of atmospheric interest: hydrochloric (HCl), nitrous (HONO), nitric 5 (HNO3), and isocyanic (HNCO) acids. Gas phase calibrations through the sampling inlet showed the method to be...
Negative charge emission due to excimer laser bombardment of sodium trisilicate glass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Langford, S.C.; Jensen, L.C.; Dickinson, J.T.
We describe measurements of negative charge emission accompanying irradiation of sodium trisilicate glass (Na{sub 2}O{center dot}3SiO{sub 2}) with 248-nm excimer laser light at fluences on the order of 2 J/cm{sup 2} per pulse, i.e., at the threshold for ablative etching of the glass surface. The negative charge emission consists of a very prompt photoelectron burst coincident with the laser pulse, followed by a much slower plume of electrons and negative ions traveling with a high density cloud of positive ions, previously identified as primarily Na{sup +}. Using combinations of {bold E} and {bold B} fields in conjunction with time-of-flight methods,more » the negative ions were successfully separated from the plume and tentatively identified as O{sup {minus}}, Si{sup {minus}}, NaO{sup {minus}}, and perhaps NaSi{sup {minus}}. These negative species are probably formed by gas phase collisions in the near-surface region which result in electron attachment.« less
NASA Astrophysics Data System (ADS)
Houweling, Antonetta C.; Crama, Koen; Visser, Jorrit; Fukata, Kyohei; Rasch, Coen R. N.; Ohno, Tatsuya; Bel, Arjan; van der Horst, Astrid
2017-04-01
Radiotherapy using charged particles is characterized by a low dose to the surrounding healthy organs, while delivering a high dose to the tumor. However, interfractional anatomical changes can greatly affect the robustness of particle therapy. Therefore, we compared the dosimetric impact of interfractional anatomical changes (i.e. body contour differences and gastrointestinal gas volume changes) in photon, proton and carbon ion therapy for pancreatic cancer patients. In this retrospective planning study, photon, proton and carbon ion treatment plans were created for 9 patients. Fraction dose calculations were performed using daily cone-beam CT (CBCT) images. To this end, the planning CT was deformably registered to each CBCT; gastrointestinal gas volumes were delineated on the CBCTs and copied to the deformed CT. Fraction doses were accumulated rigidly. To compare planned and accumulated dose, dose-volume histogram (DVH) parameters of the planned and accumulated dose of the different radiotherapy modalities were determined for the internal gross tumor volume, internal clinical target volume (iCTV) and organs-at-risk (OARs; duodenum, stomach, kidneys, liver and spinal cord). Photon plans were highly robust against interfractional anatomical changes. The difference between the planned and accumulated DVH parameters for the photon plans was less than 0.5% for the target and OARs. In both proton and carbon ion therapy, however, coverage of the iCTV was considerably reduced for the accumulated dose compared with the planned dose. The near-minimum dose ({{D}98 % } ) of the iCTV reduced with 8% for proton therapy and with 10% for carbon ion therapy. The DVH parameters of the OARs differed less than 3% for both particle modalities. Fractionated radiotherapy using photons is highly robust against interfractional anatomical changes. In proton and carbon ion therapy, such changes can severely reduce the dose coverage of the target.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haeberli, W.
1981-04-01
This paper presents a survey of methods, commonly in use or under development, to produce beams of polarized negative ions for injection into accelerators. A short summary recalls how the hyperfine interaction is used to obtain nuclear polarization in beams of atoms. Atomic-beam sources for light ions are discussed. If the best presently known techniques are incorporated in all stages of the source, polarized H/sup -/ and D/sup -/ beams in excess of 10 ..mu..A can probably be achieved. Production of polarized ions from fast (keV) beams of polarized atoms is treated separately for atoms in the H(25) excited statemore » (Lamb-Shift source) and atoms in the H(1S) ground state. The negative ion beam from Lamb-Shift sources has reached a plateau just above 1 ..mu..A, but this beam current is adequate for many applications and the somewhat lower beam current is compensated by other desirable characteristics. Sources using fast polarized ground state atoms are in a stage of intense development. The next sections summarize production of polarized heavy ions by the atomic beam method, which is well established, and by optical pumping, which has recently been demonstrated to yield very large nuclear polarization. A short discussion of proposed ion sources for polarized /sup 3/He/sup -/ ions is followed by some concluding remarks.« less
Osmosensation in TRPV2 dominant negative expressing skeletal muscle fibres.
Zanou, Nadège; Mondin, Ludivine; Fuster, Clarisse; Seghers, François; Dufour, Inès; de Clippele, Marie; Schakman, Olivier; Tajeddine, Nicolas; Iwata, Yuko; Wakabayashi, Shigeo; Voets, Thomas; Allard, Bruno; Gailly, Philippe
2015-09-01
Increased plasma osmolarity induces intracellular water depletion and cell shrinkage (CS) followed by activation of a regulatory volume increase (RVI). In skeletal muscle, the hyperosmotic shock-induced CS is accompanied by a small membrane depolarization responsible for a release of Ca(2+) from intracellular pools. Hyperosmotic shock also induces phosphorylation of STE20/SPS1-related proline/alanine-rich kinase (SPAK). TRPV2 dominant negative expressing fibres challenged with hyperosmotic shock present a slower membrane depolarization, a diminished Ca(2+) response, a smaller RVI response, a decrease in SPAK phosphorylation and defective muscle function. We suggest that hyperosmotic shock induces TRPV2 activation, which accelerates muscle cell depolarization and allows the subsequent Ca(2+) release from the sarcoplasmic reticulum, activation of the Na(+) -K(+) -Cl(-) cotransporter by SPAK, and the RVI response. Increased plasma osmolarity induces intracellular water depletion and cell shrinkage followed by activation of a regulatory volume increase (RVI). In skeletal muscle, this is accompanied by transverse tubule (TT) dilatation and by a membrane depolarization responsible for a release of Ca(2+) from intracellular pools. We observed that both hyperosmotic shock-induced Ca(2+) transients and RVI were inhibited by Gd(3+) , ruthenium red and GsMTx4 toxin, three inhibitors of mechanosensitive ion channels. The response was also completely absent in muscle fibres overexpressing a non-permeant, dominant negative (DN) mutant of the transient receptor potential, V2 isoform (TRPV2) ion channel, suggesting the involvement of TRPV2 or of a TRP isoform susceptible to heterotetramerization with TRPV2. The release of Ca(2+) induced by hyperosmotic shock was increased by cannabidiol, an activator of TRPV2, and decreased by tranilast, an inhibitor of TRPV2, suggesting a role for the TRPV2 channel itself. Hyperosmotic shock-induced membrane depolarization was impaired in TRPV2-DN fibres, suggesting that TRPV2 activation triggers the release of Ca(2+) from the sarcoplasmic reticulum by depolarizing TTs. RVI requires the sequential activation of STE20/SPS1-related proline/alanine-rich kinase (SPAK) and NKCC1, a Na(+) -K(+) -Cl(-) cotransporter, allowing ion entry and driving osmotic water flow. In fibres overexpressing TRPV2-DN as well as in fibres in which Ca(2+) transients were abolished by the Ca(2+) chelator BAPTA, the level of P-SPAK(Ser373) in response to hyperosmotic shock was reduced, suggesting a modulation of SPAK phosphorylation by intracellular Ca(2+) . We conclude that TRPV2 is involved in osmosensation in skeletal muscle fibres, acting in concert with P-SPAK-activated NKCC1. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.
Robinson, P R; Jones, M D; Maddock, J; Rees, L W
1991-03-08
A procedure for the simultaneous assay of clebopride and its major metabolite N-desbenzylclebopride in plasma has been developed. The method utilizes capillary gas chromatography-negative-ion chemical ionization mass spectrometry with selected-ion monitoring of characteristic ions. Employing 2-ethoxy analogues as internal standards, the benzamides were extracted from basified plasma using dichloromethane. Subsequent reaction with heptafluorobutyric anhydride produced volatile mono- and diheptafluorobutyryl derivatives of clebopride and N-desbenzylclebopride, respectively. The methane negative-ion mass spectra of these derivatives exhibited intense high-mass ions ideal for specific quantitation of low levels in biological fluids. Using this procedure the recovery of the drug and metabolite from human plasma was found to be 84.4 +/- 1.5% (n = 3) and 77.4 +/- 4.7% (n = 3), respectively, at 0.5 ng/ml. Measurement of both compounds down to 0.10 ng/ml with a coefficient of variation of less than 10.5% is described. Plasma levels are reported in four volunteers up to 24 h following oral administration of 1 mg of clebopride malate salt.
Steiner, Wes E; Harden, Charles S; Hong, Feng; Klopsch, Steve J; Hill, Herbert H; McHugh, Vincent M
2006-02-01
The use of negative ion monitoring mode with an atmospheric pressure ion mobility orthogonal reflector time-of-flight mass spectrometer [IM(tof)MS] to detect chemical warfare agent (CWA) degradation products from aqueous phase samples has been determined. Aqueous phase sampling used a traditional electrospray ionization (ESI) source for sample introduction and ionization. Certified reference materials (CRM) of CWA degradation products for the detection of Schedule 1, 2, or 3 toxic chemicals or their precursors as defined by the chemical warfare convention (CWC) treaty verification were used in this study. A mixture of six G-series nerve related CWA degradation products (EMPA, IMPA, EHEP, IHEP, CHMPA, and PMPA) and their related collision induced dissociation (CID) fragment ions (MPA and EPA) were found in each case to be clearly resolved and detected using the IM(tof)MS instrument in negative ion monitoring mode. Corresponding ions, masses, drift times, K(o) values, and signal intensities for each of the CWA degradation products are reported.
NASA Astrophysics Data System (ADS)
Korte, Andrew R.; Lee, Young Jin
2013-06-01
We have recently developed a multiplex mass spectrometry imaging (MSI) method which incorporates high mass resolution imaging and MS/MS and MS3 imaging of several compounds in a single data acquisition utilizing a hybrid linear ion trap-Orbitrap mass spectrometer (Perdian and Lee, Anal. Chem. 82, 9393-9400, 2010). Here we extend this capability to obtain positive and negative ion MS and MS/MS spectra in a single MS imaging experiment through polarity switching within spiral steps of each raster step. This methodology was demonstrated for the analysis of various lipid class compounds in a section of mouse brain. This allows for simultaneous imaging of compounds that are readily ionized in positive mode (e.g., phosphatidylcholines and sphingomyelins) and those that are readily ionized in negative mode (e.g., sulfatides, phosphatidylinositols and phosphatidylserines). MS/MS imaging was also performed for a few compounds in both positive and negative ion mode within the same experimental set-up. Insufficient stabilization time for the Orbitrap high voltage leads to slight deviations in observed masses, but these deviations are systematic and were easily corrected with a two-point calibration to background ions.
Wang, T; Yang, Z; Dong, P; long, J D; He, X Z; Wang, X; Zhang, K Z; Zhang, L W
2012-06-01
The cold-cathode Penning ion gauge (PIG) type ion source has been used for generation of negative hydrogen (H(-)) ions as the internal ion source of a compact cyclotron. A novel method called electrical shielding box dc beam measurement is described in this paper, and the beam intensity was measured under dc extraction inside an electrical shielding box. The results of the trajectory simulation and dc H(-) beam extraction measurement were presented. The effect of gas flow rate, magnetic field strength, arc current, and extraction voltage were also discussed. In conclusion, the dc H(-) beam current of about 4 mA from the PIG ion source with the puller voltage of 40 kV and arc current of 1.31 A was extrapolated from the measurement at low extraction dc voltages.
Measuring Compositions in Organic Depth Profiling: Results from a VAMAS Interlaboratory Study.
Shard, Alexander G; Havelund, Rasmus; Spencer, Steve J; Gilmore, Ian S; Alexander, Morgan R; Angerer, Tina B; Aoyagi, Satoka; Barnes, Jean-Paul; Benayad, Anass; Bernasik, Andrzej; Ceccone, Giacomo; Counsell, Jonathan D P; Deeks, Christopher; Fletcher, John S; Graham, Daniel J; Heuser, Christian; Lee, Tae Geol; Marie, Camille; Marzec, Mateusz M; Mishra, Gautam; Rading, Derk; Renault, Olivier; Scurr, David J; Shon, Hyun Kyong; Spampinato, Valentina; Tian, Hua; Wang, Fuyi; Winograd, Nicholas; Wu, Kui; Wucher, Andreas; Zhou, Yufan; Zhu, Zihua; Cristaudo, Vanina; Poleunis, Claude
2015-08-20
We report the results of a VAMAS (Versailles Project on Advanced Materials and Standards) interlaboratory study on the measurement of composition in organic depth profiling. Layered samples with known binary compositions of Irganox 1010 and either Irganox 1098 or Fmoc-pentafluoro-l-phenylalanine in each layer were manufactured in a single batch and distributed to more than 20 participating laboratories. The samples were analyzed using argon cluster ion sputtering and either X-ray photoelectron spectroscopy (XPS) or time-of-flight secondary ion mass spectrometry (ToF-SIMS) to generate depth profiles. Participants were asked to estimate the volume fractions in two of the layers and were provided with the compositions of all other layers. Participants using XPS provided volume fractions within 0.03 of the nominal values. Participants using ToF-SIMS either made no attempt, or used various methods that gave results ranging in error from 0.02 to over 0.10 in volume fraction, the latter representing a 50% relative error for a nominal volume fraction of 0.2. Error was predominantly caused by inadequacy in the ability to compensate for primary ion intensity variations and the matrix effect in SIMS. Matrix effects in these materials appear to be more pronounced as the number of atoms in both the primary analytical ion and the secondary ion increase. Using the participants' data we show that organic SIMS matrix effects can be measured and are remarkably consistent between instruments. We provide recommendations for identifying and compensating for matrix effects. Finally, we demonstrate, using a simple normalization method, that virtually all ToF-SIMS participants could have obtained estimates of volume fraction that were at least as accurate and consistent as XPS.
Measuring Compositions in Organic Depth Profiling: Results from a VAMAS Interlaboratory Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shard, A. G.; Havelund, Rasmus; Spencer, Steve J.
We report the results of a VAMAS (Versailles Project on Advanced Materials and Standards) interlaboratory study on the measurement of composition in organic depth profiling. Layered samples with known binary compositions of Irganox 1010 and either Irganox 1098 or Fmoc-pentafluoro-L-phenylalanine in each layer were manufactured in a single batch and distributed to more than 20 participating laboratories. The samples were analyzed using argon cluster ion sputtering and either X-ray Photoelectron Spectroscopy (XPS) or Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) to generate depth profiles. Participants were asked to estimate the volume fractions in two of the layers and were provided withmore » the compositions of all other layers. Participants using XPS provided volume fractions within 0.03 of the nominal values. Participants using ToF-SIMS either made no attempt, or used various methods that gave results ranging in error from 0.02 to over 0.10 in volume fraction, the latter representing a 50% relative error for a nominal volume fraction of 0.2. Error was predominantly caused by inadequacy in the ability to compensate for primary ion intensity variations and the matrix effect in SIMS. Matrix effects in these materials appear to be more pronounced as the number of atoms in both the primary analytical ion and the secondary ion increase. Using the participants’ data we show that organic SIMS matrix effects can be measured and are remarkably consistent between instruments. We provide recommendations for identifying and compensating for matrix effects. Finally we demonstrate, using a simple normalization method, that virtually all ToF-SIMS participants could have obtained estimates of volume fraction that were at least as accurate and consistent as XPS.« less
Controlling Electron Backstreaming Phenomena Through the Use of a Transverse Magnetic Field
NASA Technical Reports Server (NTRS)
Foster, John E.; Patterson, Michael J.
2002-01-01
DEEP-SPACE mission propulsion requirements can be satisfied by the use of high specific impulse systems such as ion thrusters. For such missions. however. the ion thruster will be required to provide thrust for long periods of time. To meet the long operation time and high-propellant throughput requirements, thruster lifetime must be increased. In general, potential ion thruster failure mechanisms associated with long-duration thrusting can be grouped into four areas: (1) ion optics failure; (2) discharge cathode failure; (3) neutralizer failure; and (4) electron backstreaming caused by accelerator grid aperture enlargement brought on by accelerator grid erosion. The work presented here focuses on electron backstreaming. which occurs when the potential at the center of an accelerator grid aperture is insufficient to prevent the backflow of electrons into the ion thruster. The likelihood of this occurring depends on ion source operation time. plasma density, and grid voltages, as accelerator grid apertures enlarge as a result of erosion. Electrons that enter the gap between the high-voltage screen and accelerator grids are accelerated to the energies approximately equal to the beam voltage. This energetic electron beam (typically higher than 1 kV) can damage not only the ion source discharge cathode assembly. but also any of the discharge surfaces upstream of the ion acceleration optics that the electrons happen to impact. Indeed. past backstreaming studies have shown that near the backstreaming limit, which corresponds to the absolute value of the accelerator grid voltage below which electrons can backflow into the thruster, there is a rather sharp rise in temperature at structures such as the cathode keeper electrode. In this respect operation at accelerator grid voltages near the backstreaming limit is avoided. Generally speaking, electron backstreaming is prevented by operating the accelerator grid at a sufficiently negative voltage to ensure a sufficiently negative aperture center potential. This approach can provide the necessary margin assuming an expected aperture enlargement. Operation at very negative accelerator grid voltages, however, enhances ion charge-exchange and direct impingement erosion of the accelerator grid. The focus of the work presented here is the mitigation of electron backstreaming by the use of a magnetic field. The presence of a magnetic field oriented perpendicular to the thruster axis can significantly decrease the magnitude of the backflowing electron current by significantly reducing the electron diffusion coefficient. Negative ion sources utilize this principle to reduce the fraction of electrons in the negative ion beam. The focus of these efforts has been on the attenuation of electron current diffusing from the discharge plasma into the negative ion extraction optics by placing the transverse magnetic field upstream of the extraction electrodes. In contrast. in the case of positive ion sources such as ion thrusters, the approach taken in the work presented here is to apply the transverse field downstream of the ion extraction system so as to prevent electrons from flowing back into the source. It was found in the work presented here that the magnetic field also reduces the absolute value of the electron backstreaming limit voltage. In this respect. the applied transverse magnetic field provides two mechanisms for electron backstreaming mitigation: (1) electron current attenuation and (2) backstreaming limit voltage shift. Such a shift to less negative voltages can lead to reduced accelerator grid erosion rates.
Negative-ion chemical-ionization mass spectrometry (NICI MS) has the potential to be a very useful technique in identifying various polycyclic aromatic hydrocarbons (PAHs) in soil and sediment samples. Some PAHs give much stronger signals under NICI MS conditions than others. On ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xue, Haizhou; Zhang, Yanwen; Zhu, Zihua
Single crystalline 6H-SiC samples were irradiated at 150 K using 2MeV Pt ions. Local volume swelling is determined by electron energy loss spectroscopy (EELS), a nearly sigmoidal dependence with irradiation dose is observed. The disorder profiles and ion distribution are determined by Rutherford backscattering spectrometry (RBS), transmission electron microscopy and secondary ion mass spectrum. Since the volume swelling reaches 12% over the damage region under high ion fluence, lattice expansion is considered and corrected during the data analysis of RBS spectra to obtain depth profiles. Projectile and damage profiles are estimated by SRIM (Stopping and Range of Ions in Matter).more » Comparing with the measured profiles, SRIM code significantly overestimates the electronic stopping power for the slow heavy Pt ions, and large derivations are observed in the predicted ion distribution and the damage profiles. Utilizing the reciprocity method that is based on the invariance of the inelastic excitation in ion atom collisions against interchange of projectile and target, much lower electronic stopping is deduced. A simple approach based on reducing the density of SiC target in SRIM simulation is proposed to compensate the overestimated SRIM electronic stopping power values. Better damage profile and ion range are predicted.« less
NASA Technical Reports Server (NTRS)
Chutijian, Ara; Boumsellek, S.; Alajajian, S. H.
1992-01-01
In the search for high sensitivity and direct atmospheric sampling of trace species, techniques have been developed such as atmospheric-sampling, glow-discharge ionization (ASGDI), corona discharge, atmospheric pressure ionization (API), electron-capture detection (ECD), and negative-ion chemical ionization (NICI) that are capable of detecting parts-per-billion to parts-per-trillion concentrations of trace species. These techniques are based on positive- or negative-ion formation via charge-transfer to the target, or electron capture under multiple-collision conditions in a Maxwellian distribution of electron energies at the source temperature. One drawback of the high-pressure, corona- or glow-discharge devices is that they are susceptible to interferences either through indistinguishable product masses, or through undesired ion-molecule reactions. The ASGDI technique is relatively immune from such interferences, since at target concentrations of less than 1 ppm the majority of negative ions arises via electron capture rather than through ion-molecule chemistry. A drawback of the conventional ECD, and possibly of the ASGDI, is that they exhibit vanishingly small densities of electrons with energies in the range 0-10 millielectron volts (meV), as can be seen from a typical Maxwellian electron energy distribution function at T = 300 K. Slowing the electrons to these subthermal (less than 10 meV) energies is crucial, since the cross section for attachment of several large classes of molecules is known to increase to values larger than 10(exp -12) sq cm at near-zero electron energies. In the limit of zero energy these cross sections are predicted to diverge as epsilon(exp -1/2), where epsilon is the electron energy. In order to provide a better 'match' between the electron energy distribution function and attachment cross section, a new concept of attachment in an electrostatic mirror was developed. In this scheme, electrons are brought to a momentary halt by reversing their direction with electrostatic fields. At this turning point the electrons have zero or near-zero energy. A beam of target molecules is introduced, and the resultant negative ions extracted. This basic idea has been recently improved to allow for better reversal geometry, higher electron currents, lower backgrounds, and increased negative-ion extraction efficiency. We present herein application of the so-called reversal electron attachment detector (READ) to the study of negative-ion formation in the explosives molecules RDX, PETN, and TNT under single-collision conditions.
Inner-shell photodetachment of transition metal negative ions
NASA Astrophysics Data System (ADS)
Dumitriu, Ileana
This thesis focuses on the study of inner-shell photodetachment of transition metal negative ions, specifically Fe- and Ru- . Experimental investigations have been performed with the aim of gaining new insights into the physics of negative atomic ions and providing valuable absolute cross section data for astrophysics. The experiments were performed using the X-ray radiation from the Advanced Light Source, Lawrence Berkeley National Laboratory, and the merged-beam technique for photoion spectroscopy. Negative ions are a special class of atomic systems very different from neutral atoms and positive ions. The fundamental physics of the interaction of transition metal negative ions with photons is interesting but difficult to analyze in detail because the angular momentum coupling generates a large number of possible terms resulting from the open d shell. Our work reports on the first inner-shell photodetachment studies and absolute cross section measurements for Fe- and Ru -. In the case of Fe-, an important astrophysical abundant element, the inner-shell photodetachment cross section was obtained by measuring the Fe+ and Fe2+ ion production over the photon energy range of 48--72 eV. The absolute cross sections for the production of Fe+ and Fe2+ were measured at four photon energies. Strong shape resonances due to the 3p→3d photoexcitation were measured above the 3p detachment threshold. The production of Ru+, Ru2+, and Ru3+ from Ru- was measured over 30--90 eV photon energy range The absolute photodetachment cross sections of Ru - ([Kr] 4d75s 2) leading to Ru+, Ru2+, and Ru 3+ ion production were measured at three photon energies. Resonance effects were observed due to interference between transitions of the 4 p-electrons to the quasi-bound 4p54d85s 2 states and the 4d→epsilonf continuum. The role of many-particle effects, intershell interaction, and polarization seems much more significant in Ru- than in Fe- photodetachment.
NASA Astrophysics Data System (ADS)
Parveen, Shahida; Mahmood, Shahzad; Adnan, Muhammad; Qamar, Anisa
2016-09-01
The head on collision between two dust ion acoustic (DIA) solitary waves, propagating in opposite directions, is studied in an unmagnetized plasma constituting adiabatic ions, static dust charged (positively/negatively) grains, and non-inertial kappa distributed electrons. In the linear limit, the dispersion relation of the dust ion acoustic (DIA) solitary wave is obtained using the Fourier analysis. For studying characteristic head-on collision of DIA solitons, the extended Poincaré-Lighthill-Kuo method is employed to obtain Korteweg-de Vries (KdV) equations with quadratic nonlinearities and investigated the phase shifts in their trajectories after the interaction. It is revealed that only compressive solitary waves can exist for the positive dust charged concentrations while for negative dust charge concentrations both the compressive and rarefactive solitons can propagate in such dusty plasma. It is found that for specific sets of plasma parameters, the coefficient of nonlinearity disappears in the KdV equation for the negative dust charged grains. Therefore, the modified Korteweg-de Vries (mKdV) equations with cubic nonlinearity coefficient, and their corresponding phase shift and trajectories, are also derived for negative dust charged grains plasma at critical composition. The effects of different plasma parameters such as superthermality, concentration of positively/negatively static dust charged grains, and ion to electron temperature ratio on the colliding soliton profiles and their corresponding phase shifts are parametrically examined.
Pechini process-derived tin oxide and tin oxide-graphite composites for lithium-ion batteries
NASA Astrophysics Data System (ADS)
Zhang, R.; Lee, Jim Y.; Liu, Z. L.
The Pechini process [Ceram. Bull. 68 (1989) 1002] is used to obtain fine tin oxide powders that reduce the specific volume change in Li + insertion and extraction reactions. The suitability of these tin oxides as active materials for negative electrodes in lithium-ion batteries is investigated. From elemental analysis, it is found that the templating polymer network is almost completely obliterated after heating at 500 °C. The best tin oxide does not exhibit extensive crystallization of tin atoms even after 30 cycles of alloying and de-alloying reactions with Li. The structure and the specific capacity of the oxides are dependent on the heat treatment and remnants of the polymeric CH network can impose an unfavorable outcome. A capacity of 600 mAh g -1, which is unchanged for 30 cycles, can be obtained from tin oxide heat treated at 1000 °C. Composites of graphite and SnO 2 are also prepared and exhibit synergistic interactions between graphite and tin oxide which are similar to those reported previously [Electrochem. Solid State Lett. 3 (2000) 167].
Rodriguez, Estrella Sanz; Poynter, Sam; Curran, Mark; Haddad, Paul R; Shellie, Robert A; Nesterenko, Pavel N; Paull, Brett
2015-08-28
Preservation of ionic species within Antarctic ice yields a unique proxy record of the Earth's climate history. Studies have been focused until now on two proxies: the ionic components of sea salt aerosol and methanesulfonic acid. Measurement of the all of the major ionic species in ice core samples is typically carried out by ion chromatography. Former methods, whilst providing suitable detection limits, have been based upon off-column preconcentration techniques, requiring larger sample volumes, with potential for sample contamination and/or carryover. Here, a new capillary ion chromatography based analytical method has been developed for quantitative analysis of limited volume Antarctic ice core samples. The developed analytical protocol applies capillary ion chromatography (with suppressed conductivity detection) and direct on-column sample injection and focusing, thus eliminating the requirement for off-column sample preconcentration. This limits the total sample volume needed to 300μL per analysis, allowing for triplicate sample analysis with <1mL of sample. This new approach provides a reliable and robust analytical method for the simultaneous determination of organic and inorganic anions, including fluoride, methanesulfonate, chloride, sulfate and nitrate anions. Application to composite ice-core samples is demonstrated, with coupling of the capillary ion chromatograph to high resolution mass spectrometry used to confirm the presence and purity of the observed methanesulfonate peak. Copyright © 2015 Elsevier B.V. All rights reserved.
Durden, David A
2007-05-01
Avermectin endectocides are used for the treatment of cattle against a variety of nematode and arthropod parasites, and consequently may appear in milk after normal or off-label use. The compounds abamectin, doramectin, and ivermectin, contain only C, H and O and may be expected to be detected by LC-MS in negative ion mode. The others contain nitrogen in addition and would be expected to be preferentially ionized in positive mode. The use of positive ion and negative ion methods with electrospray LC-MS-MS were compared. Using negative ion the compounds abamectin, doramectin, ivermectin, emamectin, eprinomectin, and moxidectin gave a curvilinear response and were quantified in raw milk by LC-MS-MS with a triethylamine-acetonitrile buffer over the concentration range 1-60 ppb (microg/kg) using selamectin as the internal standard. The limits of detection (LOD) were between 0.19 ppb (doramectin) and 0.38 ppb (emamectin). The compounds gave maximum sensitivity with positive ionisation from a formic acid-ammonium formate-acetonitrile buffer and were detected in milk (LC-MS-MS) also with a curvilinear response over the range 0.5-60 ppb. Although the positive ion signals were larger, with somewhat lower limits of detection (LOD between 0.06 ppb (doramectin) and 0.32 ppb (moxidectin) the negative ion procedure gave a more linear response and more consistent results. Comparison of spiked samples in the range 2-50 ppb showed a high degree of correlation between the two methods.
The photodetachment cross-section and threshold energy of negative ions in carbon dioxide
NASA Technical Reports Server (NTRS)
Helmy, E. M.; Woo, S. B.
1974-01-01
Threshold energy and sunlight photodetachment measurements on negative carbon dioxide ions, using a 2.5 kw light pressure xenon lamp, show that: (1) Electron affinity of CO3(+) is larger than 2.7 e.V. and that an isomeric form of CO3(+) is likely an error; (2) The photodetachment cross section of CO3(-) will roughly be like a step function across the range of 4250 to 2500A, having its threshold energy at 4250A; (3) Sunlight photodetachment rate for CO3(-) is probably much smaller than elsewhere reported; and (4) The probability of having photodetached electrons re-attach to form negative ions is less than 1%. Mass identifying drift tube tests confirm that the slower ion is CO3(-), formed through the O(-) + 2CO2 yields CO3(-) + CO2 reaction.
Improvement of voltage holding capability in the 500 keV negative ion source for JT-60SA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanaka, Y.; Hanada, M.; Kojima, A.
2010-02-15
Voltage holding capability of JT-60 negative ion source that has a large electrostatic negative ion accelerator with 45 cmx1.1 m acceleration grids was experimentally examined and improved to realize 500 keV, 22 A, and 100 s D{sup -} ion beams for JT-60 Super Advanced. The gap lengths in the acceleration stages were extended to reduce electric fields in a gap between the large grids and at the corner of the support flanges from the original 4-5 to 3-4 kV/mm. As a result, the voltage holding capability without beam acceleration has been successfully improved from 400 to 500 kV. The pulsemore » duration to hold 500 kV reached 40 s of the power supply limitation.« less
Nickel-Tin Electrode Materials for Nonaqueous Li-Ion Cells
NASA Technical Reports Server (NTRS)
Ehrlich, Grant M.; Durand, Christopher
2005-01-01
Experimental materials made from mixtures of nickel and tin powders have shown promise for use as the negative electrodes of rechargeable lithium-ion electrochemical power cells. During charging (or discharging) of a lithium-ion cell, lithium ions are absorbed into (or desorbed from, respectively) the negative electrode, typically through an intercalation or alloying process. The negative electrodes (for this purpose, designated as anodes) in state-of-the-art Li-ion cells are made of graphite, in which intercalation occurs. Alternatively, the anodes can be made from metals, in which alloying can occur. For reasons having to do with the electrochemical potential of intercalated lithium, metallic anode materials (especially materials containing tin) are regarded as safer than graphite ones; in addition, such metallic anode materials have been investigated in the hope of obtaining reversible charge/discharge capacities greater than those of graphite anodes. However, until now, each of the tin-containing metallic anode formulations tested has been found to be inadequate in some respect.
NASA Astrophysics Data System (ADS)
Sommani, P.; Tsuji, H.; Sato, H.; Kitamura, T.; Hattori, M.; Gotoh, Y.; Ishikawa, J.
2007-04-01
The minimum line width of the negative-ion-modified polystyrene (PS) for guidance and immobilizations of nerve-cell body and neurite extension have been investigated. Carbon negative ions were implanted into PS at fluence of 3 × 1015 ions/cm2 and energy of 5-20 keV through the various triangle apertures of the micro-pattern mask. After in vitro culture of the nerve-like cells of rat adrenal pheochromocytoma (PC12h), results showed that the minimum line widths for a single cell attachment and for neurite extension were 5-7 and 3-5 μm, respectively. While the minimum line width for attachment of cell group with long neurite was about 20 μm. The suitable widths for a large number of cells and for neurite extension were 20 and 5 μm, respectively. Therefore, the guidance for a clear separation of the attachment size of cell body and neurite extension could be achieved by the different modified line widths.
A universal sample manipulator with 50 kV negative bias
NASA Astrophysics Data System (ADS)
Kenny, M. J.; Wielunski, L. S.; Scott, M. D.; Clissold, R. A.; Stevenson, D.; Baxter, G.
1991-04-01
A manipulator incorporating a number of novel features has been built for a research ion implanter. The system is designed to enable uniform dose implantation of both planar and nonplanar surfaces by incorporating one translational and two rotational degrees of freedom. Negative target bias of up to 50 kV may be applied to the target, thus increasing the ion energy by this amount. The target chamber and all external manipulator controls are grounded. With the exception of the high voltage power supply, cable and feedthrough, all high voltage components are within the vacuum system. A secondary electron suppression cage which can be held at a negative bias of up to 60 kV relative to the chamber (i.e. 10 kV relative to the manipulator) surrounds the manipulator. Performance has been evaluated using 15N ions and nuclear reaction analysis through 15N(p,α) 12C to profile ion concentrations for dose uniformity and for ion depth at elevated target potentials.
Numerical analysis of the spatial nonuniformity in a Cs-seeded H{sup -} ion source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takado, N.; Hanatani, J.; Mizuno, T.
The H{sup -} ion production and transport processes are numerically simulated to clarify the origin of H{sup -} beam nonuniformity. The three-dimensional transport code using the Monte Carlo method has been applied to H{sup 0} atoms and H{sup -} ions in the large 'JAERI 10A negative ion source' under the Cs-seeded condition, in which negative ions are dominantly produced by the surface production process. The results show that a large fraction of hydrogen atoms is produced in the region with high electron temperature. This leads to a spatial nonuniformity of H{sup 0} atom flux to the plasma grid and themore » resultant H{sup -} ion surface production. In addition, most surface-produced H{sup -} ions are extracted even through the high T{sub e} region without destruction. These results indicate a correlation between the production process of the H{sup -} ion and the spatial nonuniformity of the H{sup -} ion beam.« less
NASA Astrophysics Data System (ADS)
Chen, Xiaoyue; Lan, Lei; Lu, Hailiang; Wang, Yu; Wen, Xishan; Du, Xinyu; He, Wangling
2017-10-01
A numerical simulation method of negative direct current (DC) corona discharge based on a plasma chemical model is presented, and a coaxial cylindrical gap is adopted. There were 15 particle species and 61 kinds of collision reactions electrons involved, and 22 kinds of reactions between ions are considered in plasma chemical reactions. Based on this method, continuous Trichel pulses are calculated on about a 100 us timescale, and microcosmic physicochemical process of negative DC corona discharge in three different periods is discussed. The obtained results show that the amplitude of Trichel pulses is between 1-2 mA, and that pulse interval is in the order of 10-5 s. The positive ions produced by avalanche ionization enhanced the electric field near the cathode at the beginning of the pulse, then disappeared from the surface of cathode. The electric field decreases and the pulse ceases to develop. The negative ions produced by attachment slowly move away from the cathode, and the electric field increases gradually until the next pulse begins to develop. The positive and negative ions with the highest density during the corona discharge process are O4+ and O3- , respectively.
Ion Selectivity Mechanism in a Bacterial Pentameric Ligand-Gated Ion Channel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fritsch, Sebastian; Ivanov, Ivaylo; Wang, Hailong
2010-01-01
The proton-gated ion channel from Gloeobacter violaceus (GLIC) is a prokaryotic homolog of the eukaryotic nicotinic acetylcholine receptor that responds to the binding of neurotransmitter acetylcholine and mediates fast signal transmission. Recent emergence of a high-resolution crystal structure of GLIC captured in a potentially open state allowed detailed, atomic-level insight into ion conduction and selectivity mechanisms in these channels. Herein, we have examined the barriers to ion conduction and origins of ion selectivity in the GLIC channel by the construction of potential-of-mean-force profiles for sodium and chloride ions inside the transmembrane region. Our calculations reveal that the GLIC channel ismore » open for a sodium ion to transport, but presents a 11 kcal/mol free energy barrier for a chloride ion. Our collective findings identify three distinct contributions to the observed preference for the permeant ions. First, there is a substantial contribution due to a ring of negatively charged glutamate residues (E-2 ) at the narrow intracellular end of the channel. The negative electrostatics of this region and the ability of the glutamate side chains to directly bind cations would strongly favor the passage of sodium ions while hindering translocation of chloride ions. Second, our results imply a significant hydrophobic contribution to selectivity linked to differences in the desolvation penalty for the sodium versus chloride ions in the central hydrophobic region of the pore. This hydrophobic contribution is evidenced by the large free energy barriers experienced by Cl in the middle of the pore for both GLIC and the E-2 A mutant. Finally, there is a distinct contribution arising from the overall negative electrostatics of the channel.« less
NASA Astrophysics Data System (ADS)
Zhou, Qinghua; Hua, Lei; Wang, Changsong; Li, Enyou; Li, Haiyang
2015-01-01
On-line monitoring of propofol in exhaled air is a potential way to evaluate the anaesthesia depth for patients during surgery. In this study, a negative 63Ni ionization high resolution ion mobility spectrometer with Bradbury-Nielsen-Gate-Grid structure was built to measure propofol with reactant ions Cl-(H2O) n using dichloromethane as dopant. Instead of forming three propofol ions (M - H)-, M · O2 -, and (M2 - H)- with reactant ions O2 -(H2O) n , only product ion M · Cl- was produced when introducing dichloromethane gas. The peak-to-peak resolution ( R p-p) between reactant ions Cl-(H2O) n and product ion M · Cl- was 17.4, which was 1.6 times larger than that between O2 -(H2O) n and product ion. Furthermore, the linear response range using reactant ions Cl-(H2O) n was 3.5 times wider than that obtained with reactant ions O2 -(H2O) n .
Scattering of Femtosecond Laser Pulses on the Negative Hydrogen Ion
NASA Astrophysics Data System (ADS)
Astapenko, V. A.; Moroz, N. N.
2018-05-01
Elastic scattering of ultrashort laser pulses (USLPs) on the negative hydrogen ion is considered. Results of calculations of the USLP scattering probability are presented and analyzed for pulses of two types: the corrected Gaussian pulse and wavelet pulse without carrier frequency depending on the problem parameters.
Reprint of: Negative carbon cluster ion beams: New evidence for the special nature of C60
NASA Astrophysics Data System (ADS)
Liu, Y.; O'brien, S. C.; Zhang, Q.; Heath, J. R.; Tittel, F. K.; Curl, R. F.; Kroto, H. W.; Smalley, R. E.
2013-12-01
Cold carbon cluster negative ions are formed by supersonic expansion of a plasma created at the nozzle of a supersonic cluster beam source by an excimer laser pulse. The observed distribution of mass peaks for the Cn- ions for n > 40 demonstrates that the evidence previously given for the special stability of neutral C60 and the existence of spheroidal carbon shells cannot be an artifact of the ionization conditions.
Ion source development for a photoneutralization based NBI system for fusion reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simonin, A.; Esch, H. P. L. de; Garibaldi, P.
2015-04-08
The next step after ITER is to demonstrate the viability and generation of electricity by a future fusion reactor (DEMO). The specifications required to operate an NBI system on DEMO are very demanding. The system has to provide a very high level of power and energy, ~100MW of D° beam at 1MeV, including high wall-plug efficiency (η > 60%). For this purpose, a new injector concept, called Siphore, is under investigation between CEA and French universities. Siphore is based on the stripping of the accelerated negative ions by photo-detachment provided by several Fabry-Perot cavities (3.5MW of light power per cavity)more » implemented along the D{sup −} beam. The beamline is designed to be tall and narrow in order that the photon flux overlaps the entire negative ion beam. The paper will describe the present R and D at CEA which addresses the development of an ion source and pre-accelerator prototypes for Siphore, the main goal being to produce an intense negative ion beam sheet. The negative ion source Cybele is based on a magnetized plasma column where hot electrons are emitted from the source center. Parametric studies of the source are performed using Langmuir probes in order to characterize the plasma and to compare with numerical models being developed in French universities.« less
Lew, V L; Freeman, C J; Ortiz, O E; Bookchin, R M
1991-01-01
We developed a mathematical model of the reticulocyte, seeking to explain how a cell with similar volume but much higher ionic traffic than the mature red cell (RBC) regulates its volume, pH, and ion content in physiological and abnormal conditions. Analysis of the fluxbalance required by reticulocytes to conserve volume and composition predicted the existence of previously unsuspected Na(+)-dependent Cl- entry mechanisms. Unlike mature RBCs, reticulocytes did not tend to return to their original state after brief perturbations. The model predicted hysteresis and drift in cell pH, volume, and ion contents after transient alterations in membrane permeability or medium composition; irreversible cell dehydration could thus occur by brief K+ permeabilization, transient medium acidification, or the replacement of external Na+ with an impermeant cation. Both the hysteresis and drift after perturbations were shown to depend on the pHi dependence of the K:Cl cotransport, a major reticulocyte transporter. This behavior suggested a novel mechanism for the generation of irreversibly sickled cells directly from reticulocytes, rather than in a stepwise, progressive manner from discocytes. Experimental tests of the model's predictions and the hypothesis are described in the following paper. PMID:1985088
An effective method to screen sodium-based layered materials for sodium ion batteries
NASA Astrophysics Data System (ADS)
Zhang, Xu; Zhang, Zihe; Yao, Sai; Chen, An; Zhao, Xudong; Zhou, Zhen
2018-03-01
Due to the high cost and insufficient resource of lithium, sodium-ion batteries are widely investigated for large-scale applications. Typically, insertion-type materials possess better cyclic stability than alloy-type and conversion-type ones. Therefore, in this work, we proposed a facile and effective method to screen sodium-based layered materials based on Materials Project database as potential candidate insertion-type materials for sodium ion batteries. The obtained Na-based layered materials contains 38 kinds of space group, which reveals that the credibility of our screening approach would not be affected by the space group. Then, some important indexes of the representative materials, including the average voltage, volume change and sodium ion mobility, were further studied by means of density functional theory computations. Some materials with extremely low volume changes and Na diffusion barriers are promising candidates for sodium ion batteries. We believe that our classification algorithm could also be used to search for other alkali and multivalent ion-based layered materials, to accelerate the development of battery materials.
Xu, Feng; Wu, Lijun; Meng, Qingping; Kaltak, Merzuk; Huang, Jianping; Durham, Jessica L; Fernandez-Serra, Marivi; Sun, Litao; Marschilok, Amy C; Takeuchi, Esther S; Takeuchi, Kenneth J; Hybertsen, Mark S; Zhu, Yimei
2017-05-24
Multiple lithium-ion transport pathways and local phase changes upon lithiation in silver hollandite are revealed via in situ microscopy including electron diffraction, imaging and spectroscopy, coupled with density functional theory and phase field calculations. We report unexpected inter-nanorod lithium-ion transport, where the reaction fronts and kinetics are maintained within the neighbouring nanorod. Notably, this is the first time-resolved visualization of lithium-ion transport within and between individual nanorods, where the impact of oxygen deficiencies is delineated. Initially, fast lithium-ion transport is observed along the long axis with small net volume change, resulting in two lithiated silver hollandite phases distinguishable by orthorhombic distortion. Subsequently, a slower reaction front is observed, with formation of polyphase lithiated silver hollandite and face-centred-cubic silver metal with substantial volume expansion. These results indicate lithium-ion transport is not confined within a single nanorod and may provide a paradigm shift for one-dimensional tunnelled materials, particularly towards achieving high-rate capability.
Xu, Feng; Wu, Lijun; Meng, Qingping; ...
2017-05-24
Multiple lithium-ion transport pathways and local phase changes upon lithiation in silver hollandite are revealed via in situ microscopy including electron diffraction, imaging and spectroscopy, coupled with density functional theory and phase field calculations. Here, we report unexpected inter-nanorod lithium-ion transport, where the reaction fronts and kinetics are maintained within the neighbouring nanorod. Notably, this is the first time-resolved visualization of lithium-ion transport within and between individual nanorods, where the impact of oxygen deficiencies is delineated. Initially, fast lithium-ion transport is observed along the long axis with small net volume change, resulting in two lithiated silver hollandite phases distinguishable bymore » orthorhombic distortion. As a result, a slower reaction front is observed, with formation of polyphase lithiated silver hollandite and face-centred-cubic silver metal with substantial volume expansion. Our results indicate lithium-ion transport is not confined within a single nanorod and may provide a paradigm shift for one-dimensional tunnelled materials, particularly towards achieving high-rate capability.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Feng; Wu, Lijun; Meng, Qingping
Multiple lithium-ion transport pathways and local phase changes upon lithiation in silver hollandite are revealed via in situ microscopy including electron diffraction, imaging and spectroscopy, coupled with density functional theory and phase field calculations. Here, we report unexpected inter-nanorod lithium-ion transport, where the reaction fronts and kinetics are maintained within the neighbouring nanorod. Notably, this is the first time-resolved visualization of lithium-ion transport within and between individual nanorods, where the impact of oxygen deficiencies is delineated. Initially, fast lithium-ion transport is observed along the long axis with small net volume change, resulting in two lithiated silver hollandite phases distinguishable bymore » orthorhombic distortion. As a result, a slower reaction front is observed, with formation of polyphase lithiated silver hollandite and face-centred-cubic silver metal with substantial volume expansion. Our results indicate lithium-ion transport is not confined within a single nanorod and may provide a paradigm shift for one-dimensional tunnelled materials, particularly towards achieving high-rate capability.« less
Sayar, Omid; Zhad, Hamid Reza Lotfi Zadeh; Sadeghi, Omid; Amani, Vahid; Najafi, Ezzatolla; Tavassoli, Najmeh
2012-12-01
We have developed a facile and highly sensitive sorbent for cadmium and lead ions. It is based on Fe₃O₄ nanoparticles functionalized with a derivative of picoline and was characterized by scanning electron microscopy, differential thermographic analysis, and elemental analysis. The material can be applied to the preconcentration of lead and cadmium ions. Factors such as the type, concentration and volume of eluent, the pH of the sample solution, the time for extraction, and the volume of the sample were studied. The effects of a variety of ions on preconcentration and recovery of these ions were also investigated. The ions were determined by FAAS, and the limits of detection are <0.8 and <0.061 μg L⁻¹ for lead and cadmium, respectively. Recoveries and precisions are >98.0 % and <1.3 %, respectively. The method was validated by analyzing several certified leaf reference materials.
NASA Astrophysics Data System (ADS)
Ivchenko, V. A.
2017-01-01
In this paper are the results of direction observations of nanopores in the subsurface volume of metals materials Pt and Pd(CuAg) using field-ion microscopy (FIM). Radiation of tip specimens was carried out with ions having an energy ˜ 25-30 keV in the fluency range of 1016 - 1018 ions/cm2, the current density lying within 150- 340 µA/cm2. Nanopores have been observed immediately after removal of the first atomic layers from the irradiated surface. It was established that, the threshold for ion-implanted platinum corresponds to fluence F = 1017 ions/cm2. For Pd(CuAg) it was revealed that nanopores have been down to 80 nm deep with current density 340 µA/cm2. Their dimensions and volume fractions were determined. The obtained results can be used for prediction of radiation stability of materials based on fcc metals.
Zhao, Xin; Hayner, Cary M; Kung, Mayfair C; Kung, Harold H
2011-11-22
The unique combination of high surface area, high electrical conductivity and robust mechanical integrity has attracted great interest in the use of graphene sheets for future electronics applications. Their potential applications for high-power energy storage devices, however, are restricted by the accessible volume, which may be only a fraction of the physical volume, a consequence of the compact geometry of the stack and the ion mobility. Here we demonstrated that remarkably enhanced power delivery can be realized in graphene papers for the use in Li-ion batteries by controlled generation of in-plane porosity via a mechanical cavitation-chemical oxidation approach. These flexible, holey graphene papers, created via facile microscopic engineering, possess abundant ion binding sites, enhanced ion diffusion kinetics, and excellent high-rate lithium-ion storage capabilities, and are suitable for high-performance energy storage devices. © 2011 American Chemical Society
Yang, Dongmei; Li, Junhui; Ding, Yiting; Tyree, Melvin T
2017-03-01
The physiological advantages of negative turgor pressure, P t , in leaf cells are water saving and homeostasis of reactants. This paper advances methods for detecting the occurrence of negative P t in leaves. Biomechanical models of pressure-volume (PV) curves predict that negative P t does not change the linearity of PV curve plots of inverse balance pressure, P B , versus relative water loss, but it does predict changes in either the y-intercept or the x-intercept of the plots depending on where cell collapse occurs in the P B domain because of negative P t . PV curve analysis of Robinia leaves revealed a shift in the x-intercept (x-axis is relative water loss) of PV curves, caused by negative P t of palisade cells. The low x-intercept of the PV curve was explained by the non-collapse of palisade cells in Robinia in the P B domain. Non-collapse means that P t smoothly falls from positive to negative values with decreasing cell volume without a dramatic change in slope. The magnitude of negative turgor in non-collapsing living cells was as low as -1.3 MPa and the relative volume of the non-collapsing cell equaled 58% of the total leaf cell volume. This study adds to the growing evidence for negative P t . © 2016 John Wiley & Sons Ltd.
Nimmerichter, Alfred; Holdhaus, Johann; Mehnen, Lars; Vidotto, Claudia; Loidl, Markus; Barker, Alan R
2014-09-01
Limited research has suggested that acute exposure to negatively charged ions may enhance cardio-respiratory function, aerobic metabolism and recovery following exercise. To test the physiological effects of negatively charged air ions, 14 trained males (age: 32 ± 7 years; VO2max: 57 ± 7 mL min(-1) kg(-1)) were exposed for 20 min to either a high-concentration of air ions (ION: 220 ± 30 × 10(3) ions cm(-3)) or normal room conditions (PLA: 0.1 ± 0.06 × 10(3) ions cm(-3)) in an ionization chamber in a double-blinded, randomized order, prior to performing: (1) a bout of severe-intensity cycling exercise for determining the time constant of the phase II VO2 response (τ) and the magnitude of the VO2 slow component (SC); and (2) a 30-s Wingate test that was preceded by three 30-s Wingate tests to measure plasma [adrenaline] (ADR), [nor-adrenaline] (N-ADR) and blood [lactate] (B(Lac)) over 20 min during recovery in the ionization chamber. There was no difference between ION and PLA for the phase II VO2 τ (32 ± 14 s vs. 32 ± 14 s; P = 0.7) or VO2 SC (404 ± 214 mL vs 482 ± 217 mL; P = 0.17). No differences between ION and PLA were observed at any time-point for ADR, N-ADR and B(Lac) as well as on peak and mean power output during the Wingate tests (all P > 0.05). A high-concentration of negatively charged air ions had no effect on aerobic metabolism during severe-intensity exercise or on performance or the recovery of the adrenergic and metabolic responses after repeated-sprint exercise in trained athletes.
Watanabe, Yuuya; Ohnaka, Kenji; Fujita, Saki; Kishi, Midori; Yuchi, Akio
2011-10-01
The spaces (voids) available for cations in the five exchange resins with varying exchange capacities and cross-linking degrees were estimated, on the basis of the additivity of molar volumes of the constituents. Tetraalkylammonium ions (NR(4)(+); R: Me, Et, Pr) may completely exchange potassium ion on the resin having a larger void radius. In contrast, the ratio of saturated adsorption capacity to exchange capacity of the resin having a smaller void radius decreased with an increase in size of NR(4)(+) ions, due to the interionic contacts. Alkali metal ions could be exchanged quantitatively. While the hydration numbers of K(+), Rb(+), and Cs(+) were independent of the void radius, those of Li(+) and Na(+), especially Na(+), decreased with a decrease in void radius. Interionic contacts between the hydrated ions enhance the dehydration. Multivalent metal ions have the hydration numbers, comparable to or rather greater than those in water. A greater void volume available due to exchange stoichiometry released the interionic contacts and occasionally promoted the involvement of water molecules other than directly bound molecules. The close proximity between ions in the conventional ion-exchange resins having higher exchange capacities may induce varying interactions.
Black, Jennifer M.; Zhu, Mengyang; Zhang, Pengfei; Unocic, Raymond R.; Guo, Daqiang; Okatan, M. Baris; Dai, Sheng; Cummings, Peter T.; Kalinin, Sergei V.; Feng, Guang; Balke, Nina
2016-01-01
Atomic force microscopy (AFM) force-distance measurements are used to investigate the layered ion structure of Ionic Liquids (ILs) at the mica surface. The effects of various tip properties on the measured force profiles are examined and reveal that the measured ion position is independent of tip properties, while the tip radius affects the forces required to break through the ion layers as well as the adhesion force. Force data is collected for different ILs and directly compared with interfacial ion density profiles predicted by molecular dynamics. Through this comparison it is concluded that AFM force measurements are sensitive to the position of the ion with the larger volume and mass, suggesting that ion selectivity in force-distance measurements are related to excluded volume effects and not to electrostatic or chemical interactions between ions and AFM tip. The comparison also revealed that at distances greater than 1 nm the system maintains overall electroneutrality between the AFM tip and sample, while at smaller distances other forces (e.g., van der waals interactions) dominate and electroneutrality is no longer maintained. PMID:27587276
NASA Astrophysics Data System (ADS)
Dev, A. N.; Deka, M. K.; Sarma, J.; Saikia, D.; Adhikary, N. C.
2016-10-01
The stationary solution is obtained for the K-P-Burgers equation that describes the nonlinear propagations of dust ion acoustic waves in a multi-component, collisionless, un-magnetized relativistic dusty plasma consisting of electrons, positive and negative ions in the presence of charged massive dust grains. Here, the Kadomtsev-Petviashvili (K-P) equation, three-dimensional (3D) Burgers equation, and K-P-Burgers equations are derived by using the reductive perturbation method including the effects of viscosity of plasma fluid, thermal energy, ion density, and ion temperature on the structure of a dust ion acoustic shock wave (DIASW). The K-P equation predictes the existences of stationary small amplitude solitary wave, whereas the K-P-Burgers equation in the weakly relativistic regime describes the evolution of shock-like structures in such a multi-ion dusty plasma.
Investigation of high duty factor ISR RFQ-1000
NASA Astrophysics Data System (ADS)
Lu, Y. R.; Chen, C. E.; Fang, J. X.; Gao, S. L.; Guo, J. F.; Guo, Z. Y.; Li, D. S.; Li, W. G.; Pan, O. J.; Ren, X. T.; Wu, Y.; Yan, X. Q.; Yu, J. X.; Yu, M. L.; Ratzinger, U.; Deitinghoff, H.; Klein, H.; Schempp, A.
2003-12-01
Two Integral Split Ring (ISR) RFQs with high duty factor of 16.7% have been designed for the application of heavy ion implantation and built in the past several years at Institute of Heavy Ion Physics (IHIP) in Peking University. Two kinds of PIG ion sources with permanent magnets and LEBT were installed and optimized for the injection into these two RFQs. The positive O+ and negative O- ions were extracted and accelerated separately as well as simultaneously. The output macro pulse O- beam current reached 660 μA at a transmission efficiency of more than 82%. The N+ beam was also accelerated with similar transmission efficiency, but the output current intensity for positive ions were lower than the negative ions because of the extracted current limitation of ion sources. The improvements, especially for high duty factor and experimental results with the 1 MeV ISR RFQ will be presented in this paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Shimin, E-mail: gsm861@126.com; Mei, Liquan, E-mail: lqmei@mail.xjtu.edu.cn
The amplitude modulation of ion-acoustic waves is investigated in an unmagnetized plasma containing positive ions, negative ions, and electrons obeying a kappa-type distribution that is penetrated by a positive ion beam. By considering dissipative mechanisms, including ionization, negative-positive ion recombination, and electron attachment, we introduce a comprehensive model for the plasma with the effects of sources and sinks. Via reductive perturbation theory, the modified nonlinear Schrödinger equation with a dissipative term is derived to govern the dynamics of the modulated waves. The effect of the plasma parameters on the modulation instability criterion for the modified nonlinear Schrödinger equation is numericallymore » investigated in detail. Within the unstable region, first- and second-order dissipative ion-acoustic rogue waves are present. The effect of the plasma parameters on the characteristics of the dissipative rogue waves is also discussed.« less
Fantz, U; Franzen, P; Kraus, W; Falter, H D; Berger, M; Christ-Koch, S; Fröschle, M; Gutser, R; Heinemann, B; Martens, C; McNeely, P; Riedl, R; Speth, E; Wünderlich, D
2008-02-01
The international fusion experiment ITER requires for the plasma heating and current drive a neutral beam injection system based on negative hydrogen ion sources at 0.3 Pa. The ion source must deliver a current of 40 A D(-) for up to 1 h with an accelerated current density of 200 Am/(2) and a ratio of coextracted electrons to ions below 1. The extraction area is 0.2 m(2) from an aperture array with an envelope of 1.5 x 0.6 m(2). A high power rf-driven negative ion source has been successfully developed at the Max-Planck Institute for Plasma Physics (IPP) at three test facilities in parallel. Current densities of 330 and 230 Am/(2) have been achieved for hydrogen and deuterium, respectively, at a pressure of 0.3 Pa and an electron/ion ratio below 1 for a small extraction area (0.007 m(2)) and short pulses (<4 s). In the long pulse experiment, equipped with an extraction area of 0.02 m(2), the pulse length has been extended to 3600 s. A large rf source, with the width and half the height of the ITER source but without extraction system, is intended to demonstrate the size scaling and plasma homogeneity of rf ion sources. The source operates routinely now. First results on plasma homogeneity obtained from optical emission spectroscopy and Langmuir probes are very promising. Based on the success of the IPP development program, the high power rf-driven negative ion source has been chosen recently for the ITER beam systems in the ITER design review process.
Computational studies for a multiple-frequency electron cyclotron resonance ion source (abstract)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alton, G.D.
1996-03-01
The number density of electrons, the energy (electron temperature), and energy distribution are three of the fundamental properties which govern the performance of electron cyclotron resonance (ECR) ion sources in terms of their capability to produce high charge state ions. The maximum electron energy is affected by several processes including the ability of the plasma to absorb power. In principle, the performances of an ECR ion source can be realized by increasing the physical size of the ECR zone in relation to the total plasma volume. The ECR zones can be increased either in the spatial or frequency domains inmore » any ECR ion source based on B-minimum plasma confinement principles. The former technique requires the design of a carefully tailored magnetic field geometry so that the central region of the plasma volume is a large, uniformly distributed plasma volume which surrounds the axis of symmetry, as proposed in Ref. . Present art forms of the ECR source utilize single frequency microwave power supplies to maintain the plasma discharge; because the magnetic field distribution continually changes in this source design, the ECR zones are relegated to thin {open_quote}{open_quote}surfaces{close_quote}{close_quote} which surround the axis of symmetry. As a consequence of the small ECR zone in relation to the total plasma volume, the probability for stochastic heating of the electrons is quite low, thereby compromising the source performance. This handicap can be overcome by use of broadband, multiple frequency microwave power as evidenced by the enhanced performances of the CAPRICE and AECR ion sources when two frequency microwave power was utilized. We have used particle-in-cell codes to simulate the magnetic field distributions in these sources and to demonstrate the advantages of using multiple, discrete frequencies over single frequencies to power conventional ECR ion sources. (Abstract Truncated)« less
Advanced electric propulsion research - 1990
NASA Technical Reports Server (NTRS)
Monheiser, Jeffery M.; Wilbur, Paul J.
1991-01-01
An experimental study of impingement current collection on the accelerator grid of an ion thruster is presented. The equipment, instruments, and procedures being used to conduct the study are discussed. The contribution to this current due to charge-exchange ions produced close to the grid is determined using a volume-integration procedure and measured ion beam current design, computed neutral atom density and measured beam plasma potential data. This current, which is expected to be almost equal to that measured directly, is found to be an order of magnitude less. The impingement current determined by integrating the current density of ambient ions in the beam plasma close to the grid is found to agree with the directly measured impingement current. Possible reasons for the disagreement between the directly measured and volume integrated impingement currents are discussed.
Left ventricular function during lower body negative pressure
NASA Technical Reports Server (NTRS)
Ahmad, M.; Blomqvist, C. G.; Mullins, C. B.; Willerson, J. T.
1977-01-01
The response of the human left ventricle to lower body negative pressure (LBNP) and the relation between left ventricular function and hemodynamic response were investigated. Ventricular function curves relating stroke volume to end-diastolic volume were obtained in 12 normal men. Volume data were derived from echocardiographic measurements of left ventricular end-systolic and end-diastolic diameters at rest and during lower body negative pressure (LBNP) at minus 40 mm Hg. End-diastolic volume decreased by 19% and stroke volume by 22%. There were no significant changes in heart rate, arterial blood pressure, or end-systolic volume. Thus, moderate levels of LBNP significantly reduce preload and stroke volume without affecting contractile state. The absence of significant changes in heart rate and arterial blood pressure in the presence of a significant reduction in stroke volume is consistent with an increase in systemic peripheral resistance mediated by low-pressure baroreceptors.
Shirai, Katsuyuki; Kawashima, Motohiro; Saitoh, Jun-Ichi; Abe, Takanori; Fukata, Kyohei; Shigeta, Yuka; Irie, Daisuke; Shiba, Shintaro; Okano, Naoko; Ohno, Tatsuya; Nakano, Takashi
2017-01-01
The safety and efficacy of carbon-ion radiotherapy for advanced non-small cell lung cancer have not been established. We evaluated the clinical outcomes and dose-volume histogram parameters of carbon-ion radiotherapy compared with photon therapy in T2b-4N0M0 non-small cell lung cancer. Twenty-three patients were treated with carbon-ion radiotherapy between May 2011 and December 2015. Seven, 14, and 2 patients had T2b, T3, and T4, respectively. The median age was 78 (range, 53-91) years, with 22 male patients. There were 12 adenocarcinomas, 8 squamous cell carcinomas, 1 non-small cell lung carcinoma, and 2 clinically diagnosed lung cancers. Eleven patients were operable, and 12 patients were inoperable. Most patients (91%) were treated with carbon-ion radiotherapy of 60.0 Gy relative biological effectiveness (RBE) in 4 fractions or 64.0 Gy (RBE) in 16 fractions. Local control and overall survival rates were calculated. Dose-volume histogram parameters of normal lung and tumor coverages were compared between carbon-ion radiotherapy and photon therapies, including three-dimensional conformal radiotherapy (3DCRT) and intensity-modulated radiotherapy (IMRT). The median follow-up of surviving patients was 25 months. Three patients experienced local recurrence, and the 2-year local control rate was 81%. During follow-up, 5 patients died of lung cancer, and 1 died of intercurrent disease. The 2-year overall survival rate was 70%. Operable patients had a better overall survival rate compared with inoperable patients (100% vs. 43%; P = 0.04). There was no grade ≥2 radiation pneumonitis. In dose-volume histogram analysis, carbon-ion radiotherapy had a significantly lower dose to normal lung and greater tumor coverage compared with photon therapies. Carbon-ion radiotherapy was effectively and safely performed for T2b-4N0M0 non-small cell lung cancer, and the dose distribution was superior compared with those for photon therapies. A Japanese multi-institutional study is ongoing to prospectively evaluate these patients and establish the use of carbon-ion radiotherapy.
Monoenergetic source of kilodalton ions from Taylor cones of ionic liquids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larriba, C.; Castro, S.; Fernandez de la Mora, J.
2007-04-15
The ionic liquid ion sources (ILISs) recently introduced by Lozano and Martinez Sanchez [J. Colloid Interface Sci. 282, 415 (2005)], based on electrochemically etched tungsten tips as emitters for Taylor cones of ionic liquids (ILs), have been tested with ionic liquids [A{sup +}B{sup -}] of increasing molecular weight and viscosity. These ILs have electrical conductivities well below 1 S/m and were previously thought to be unsuitable to operate in the purely ionic regime because their Taylor cones produce mostly charged drops from conventional capillary tube sources. Strikingly, all the ILs tried on ILIS form charged beams composed exclusively of smallmore » ions and cluster ions A{sup +}(AB){sub n} or B{sup -}(AB){sub n}, with abundances generally peaking at n=1. Particularly interesting are the positive and negative ion beams produced from the room temperature molten salts 1-methyl-3-pentylimidazolium tris(pentafluoroethyl) trifluorophosphate (C{sub 5}MI-(C{sub 2}F{sub 5}){sub 3}PF{sub 3}) and 1-ethyl-3-methylimidazolium bis(pentafluoroethyl) sulfonylimide (EMI-(C{sub 2}F{sub 5}SO{sub 3}){sub 2}N). We extend to these heavier species the previous conclusions from Lozano and Martinez Sanchez on the narrow energy distributions of the ion beams. In combination with suitable ILs, this source yields nanoamphere currents of positive and negative monoenergetic molecular ions with masses exceeding 2000 amu. Potential applications are in biological secondary ion mass spectrometry, chemically assisted high-resolution ion beam etching, and electrical propulsion. Advantages of the ILISs versus similar liquid metal ion sources include the possibility to form negative as well as positive ion beams and a much wider range of ion compositions and molecular masses.« less
Quéméner, Bernard; Désiré, Cédric; Debrauwer, Laurent; Rathahao, Estelle
2003-01-17
The off-line coupling of high-performance anion-exchange chromatography to electrospray ion trap mass spectrometry (ESI-IT-MS) is described. Two sets of isocratic conditions were optimised for the semi-preparative purification of oligogalacturonates of degree of polymerisation from 4 to 6 by monitoring eluates with either pulsed amperometric detection or evaporative light scattering detection in the presence of an online Dionex Carbohydrate Membrane Desalter (CMD). In these conditions, purified oligogalacturonate solutions were suitable, without further desalting steps, for infusion ESI-IT-MS experiments. This paper provides some interesting features of positive and negative ESI-IT-multiple MS (MSn) of these acidic oligosaccharides. The spectra acquired in both ion modes show characteristic fragments resulting from glycosidic bond and cross-ring cleavages. Under negative ionization conditions, the fragmentation of the singly-charged [M-H]- ions, as well as the Ci-, and Zi-, fragment ions through sequential MSn experiments, was always dominated by product ions from C- and Z-type glycosidic cleavages. All spectra also displayed 0.2 A-type cross-ring cleavage ions which carry linkage information. Collision-induced dissociation (CID) spectra of sodium-cationized species obtained under positive ionization conditions were more complex. Successive MSn experiments also led to the 0.2 A-type cross-ring cleavage ions observed together with B- and Y-type ions. The presence of the 0.2 A ion series was related to Mr 60 (C2H4O2) losses. Combined with the absence of the Mr 30 (CH2O) and the Mr 90 (C3H6O3) ions, these ions were indicative of 1-4 type glycosidic linkage.
JLTV - Briefings to Industry, Ground Vehicle Power and Mobility (GVPM)
2009-05-27
lithium ion battery cathodes, separators, and electrolytes. This effort shall also access the...manufacturability of the improved designs using the new materials. PAYOFF: Improved lithium ion battery power density Improved lithium ion battery energy...negative electrodes in lithium-ion batteries. PAYOFF: Better understanding of lithium - ion battery charging limitations Improved safety for
Electron multiplier-ion detector system
Dietz, L.A.
1975-08-01
This patent relates to an improved ion detector for use in mass spectrometers for pulse counting signal ions which may have a positive or a negative charge. The invention combines a novel electron multiplier with a scintillator type of ion detector. It is a high vacuum, high voltage device intended for use in ion microprobe mass spectrometers. (auth)
Development progresses of radio frequency ion source for neutral beam injector in fusion devices.
Chang, D H; Jeong, S H; Kim, T S; Park, M; Lee, K W; In, S R
2014-02-01
A large-area RF (radio frequency)-driven ion source is being developed in Germany for the heating and current drive of an ITER device. Negative hydrogen ion sources are the major components of neutral beam injection systems in future large-scale fusion experiments such as ITER and DEMO. RF ion sources for the production of positive hydrogen (deuterium) ions have been successfully developed for the neutral beam heating systems at IPP (Max-Planck-Institute for Plasma Physics) in Germany. The first long-pulse ion source has been developed successfully with a magnetic bucket plasma generator including a filament heating structure for the first NBI system of the KSTAR tokamak. There is a development plan for an RF ion source at KAERI to extract the positive ions, which can be applied for the KSTAR NBI system and to extract the negative ions for future fusion devices such as the Fusion Neutron Source and Korea-DEMO. The characteristics of RF-driven plasmas and the uniformity of the plasma parameters in the test-RF ion source were investigated initially using an electrostatic probe.
Ovanesyan, Zaven; Fenley, Marcia O.; Guerrero-García, Guillermo Iván; Olvera de la Cruz, Mónica
2014-01-01
The ionic atmosphere around a nucleic acid regulates its stability in aqueous salt solutions. One major source of complexity in biological activities involving nucleic acids arises from the strong influence of the surrounding ions and water molecules on their structural and thermodynamic properties. Here, we implement a classical density functional theory for cylindrical polyelectrolytes embedded in aqueous electrolytes containing explicit (neutral hard sphere) water molecules at experimental solvent concentrations. Our approach allows us to include ion correlations as well as solvent and ion excluded volume effects for studying the structural and thermodynamic properties of highly charged cylindrical polyelectrolytes. Several models of size and charge asymmetric mixtures of aqueous electrolytes at physiological concentrations are studied. Our results are in good agreement with Monte Carlo simulations. Our numerical calculations display significant differences in the ion density profiles for the different aqueous electrolyte models studied. However, similar results regarding the excess number of ions adsorbed to the B-DNA molecule are predicted by our theoretical approach for different aqueous electrolyte models. These findings suggest that ion counting experimental data should not be used alone to validate the performance of aqueous DNA-electrolyte models. PMID:25494770
An overview of negative hydrogen ion sources for accelerators
NASA Astrophysics Data System (ADS)
Faircloth, Dan; Lawrie, Scott
2018-02-01
An overview of high current (>1 mA) negative hydrogen ion (H-) sources that are currently used on particle accelerators. The current understanding of how H- ions are produced is summarised. Issues relating to caesium usage are explored. The different ways of expressing emittance and beam currents are clarified. Source technology naming conventions are defined and generalised descriptions of each source technology are provided. Examples of currently operating sources are outlined, with their current status and future outlook given. A comparative table is provided.
Optical and Mechanical Properties of Infrared Materials.
1980-07-01
the negative ion vacancy site (holes at positive ion vacancy site) and pro- duce color centers (F orU centers) in the crystal. The density and dis...because they are re- latively easy to generate and measure. The negative ion vacancy density should be proportional to the F-center concentration in...Sankur H. Park R. T. Swimm R. Quimby N. Koumvakalis Research Assistants: A. Stewart J. S. Ko A. Halliyal T- R. Gururaja B. C. Chung S. T. Wu APPENDIX "A
The effects of vortex like distributed electron in magnetized multi-ion dusty plasmas
NASA Astrophysics Data System (ADS)
Haider, Md. Masum; Ferdous, Tahmina; Duha, Syed S.
2014-09-01
The nonlinear propagation of small but finite amplitude dust-ion-acoustic solitary waves in a magnetized, collisionless dusty plasma is investigated theoretically. It has been assumed that the electrons are trapped following the vortex-like distribution and that the negatively and positively charged ions are mobile with the presence of charge fluctuating stationary dusts, where ions mass provide the inertia and restoring forces are provided by the thermal pressure of hot electrons. A reductive perturbation method was employed to obtain a modified Korteweg-de Vries (mK-dV) equation for the first-order potential and a stationary solution is obtained. The effect of the presence of trapped electrons, negatively and positively charged ions and arbitrary charged dust grains are discussed.
NASA Technical Reports Server (NTRS)
Lin, Robert P.
1988-01-01
Participation of U.S. scientists on the COPERNIC (COmplete Positive ions, Electrons and Ram Negative Ion measurements near Comet Halley) plasma experiment on the Giotto mission is described. The experiment consisted of two detectors: the EESA (electron electrostatic analyzer) which provided three-dimensional measurements of the distribution of electrons from 10 eV to 30 keV, and the PICCA (positive ion cluster composition analyzer) which provided mass analysis of positively charged cold cometary ions from mass 10 to 210 amu. In addition, a small 3 deg wide sector of the EESA looking in the ram direction was devoted to the detection of negatively charged cold cometary ions. Both detectors operated perfectly up to near closest approach (approx. 600 km) to Halley, but impacts of dust particles and neutral gas on the spacecraft contaminated parts of the data during the last few minutes. Although no flight hardware was fabricated in the U.S., The U.S. made very significant contributions to the hardware design, ground support equipment (GSE) design and fabrication, and flight and data reduction software required for the experiment, and also participated fully in the data reduction and analysis, and theoretical modeling and interpretation. Cometary data analysis is presented.
Alternative mass reference standards for direct analysis in real time mass spectrometry.
Cody, Robert B; Dane, A John
2016-05-30
Mass spectra were acquired with the Direct Analysis in Real Time (DART®) ion source for an amine-terminated polyether used as positive-ion mass reference standards and for several fluorinated materials commonly used as negative-ion reference standards for mass spectrometry. A commercial time-of-flight mass spectrometer equipped with a DART ion source was used for all measurements. Mass reference standards deposited onto the sealed end of a glass melting point tube were suspended in the DART gas stream for analysis. A polyetheramine (Jeffamine® M-600) produced intense peaks corresponding to protonated molecules. Perfluorotributylamine (PFTBA), and perfluorotripentylamine, gave useful reference spectra for different m/z ranges. DART mass spectra of Ultramark 1621® resembled those previously reported for Fast Atom Bombardment (FAB) and Electrospray Ionization (ESI). Fomblin®Y, a fluorinated ether, was the most useful negative-ion reference standard of the materials tested. The material is commercially available, inexpensive, and provides reference peaks covering the m/z range 85 to >3000. Jeffamine-M600 was found to be a convenient alternative to polyethers such as polyethylene glycol (PEG) for DART positive-ion mass calibration. Fomblin Y was suitable for use as a negative-ion reference standard. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Improving the accuracy of ionization chamber dosimetry in small megavoltage x-ray fields
NASA Astrophysics Data System (ADS)
McNiven, Andrea L.
The dosimetry of small x-ray fields is difficult, but important, in many radiation therapy delivery methods. The accuracy of ion chambers for small field applications, however, is limited due to the relatively large size of the chamber with respect to the field size, leading to partial volume effects, lateral electronic disequilibrium and calibration difficulties. The goal of this dissertation was to investigate the use of ionization chambers for the purpose of dosimetry in small megavoltage photon beams with the aim of improving clinical dose measurements in stereotactic radiotherapy and helical tomotherapy. A new method for the direct determination of the sensitive volume of small-volume ion chambers using micro computed tomography (muCT) was investigated using four nominally identical small-volume (0.56 cm3) cylindrical ion chambers. Agreement between their measured relative volume and ionization measurements (within 2%) demonstrated the feasibility of volume determination through muCT. Cavity-gas calibration coefficients were also determined, demonstrating the promise for accurate ion chamber calibration based partially on muCT. The accuracy of relative dose factor measurements in 6MV stereotactic x-ray fields (5 to 40mm diameter) was investigated using a set of prototype plane-parallel ionization chambers (diameters of 2, 4, 10 and 20mm). Chamber and field size specific correction factors ( CSFQ ), that account for perturbation of the secondary electron fluence, were calculated using Monte Carlo simulation methods (BEAM/EGSnrc simulations). These correction factors (e.g. CSFQ = 1.76 (2mm chamber, 5mm field) allow for accurate relative dose factor (RDF) measurement when applied to ionization readings, under conditions of electronic disequilibrium. With respect to the dosimetry of helical tomotherapy, a novel application of the ion chambers was developed to characterize the fan beam size and effective dose rate. Characterization was based on an adaptation of the computed tomography dose index (CTDI), a concept normally used in diagnostic radiology. This involved experimental determination of the fan beam thickness using the ion chambers to acquire fan beam profiles and extrapolation to a 'zero-size' detector. In conclusion, improvements have been made in the accuracy of small field dosimetry measurements in stereotactic radiotherapy and helical tomotherapy. This was completed through introduction of an original technique involving micro-CT imaging for sensitive volume determination and potentially ion chamber calibration coefficients, the use of appropriate Monte Carlo derived correction factors for RDF measurement, and the exploitation of the partial volume effect for helical tomotherapy fan beam dosimetry. With improved dosimetry for a wide range of challenging small x-ray field situations, it is expected that the patient's radiation safety will be maintained, and that clinical trials will adopt calibration protocols specialized for modern radiotherapy with small fields or beamlets. Keywords. radiation therapy, ionization chambers, small field dosimetry, stereotactic radiotherapy, helical tomotherapy, micro-CT.
Ingram, Malcolm D; Imrie, Corrie T; Stoeva, Zlatka; Pas, Steven J; Funke, Klaus; Chandler, Howard W
2005-09-08
We demonstrate the use of activation energy versus activation volume "master plots" to explore ion transport in typical fragile glass forming systems exhibiting non-Arrhenius behavior. These systems include solvent-free salt complexes in poly(ethylene oxide) (PEO) and low molecular weight poly(propylene oxide) (PPO) and molten 2Ca(NO3)2.3KNO3 (CKN). Plots showing variations in apparent activation energy EA versus apparent activation volume VA are straight lines with slopes given by M = DeltaEA/DeltaVA. A simple ion transport mechanism is described where the rate determining step involves a dilatation (expressed as VA) around microscopic cavities and a corresponding work of expansion (EA). The slopes of the master plots M are equated to internal elastic moduli, which vary from 1.1 GPa for liquid PPO to 5.0 GPa for molten CKN on account of differing intermolecular forces in these materials.
Borodin, Oleg
2009-09-10
A number of correlations between heat of vaporization (H(vap)), cation-anion binding energy (E(+/-)), molar volume (V(m)), self-diffusion coefficient (D), and ionic conductivity for 29 ionic liquids have been investigated using molecular dynamics (MD) simulations that employed accurate and validated many-body polarizable force fields. A significant correlation between D and H(vap) has been found, while the best correlation was found for -log(DV(m)) vs H(vap) + 0.28E(+/-). A combination of enthalpy of vaporization and a fraction of the cation-anion binding energy was suggested as a measure of the effective cohesive energy for ionic liquids. A deviation of some ILs from the reported master curve is explained based upon ion packing and proposed diffusion pathways. No general correlations were found between the ion diffusion coefficient and molecular volume or the diffusion coefficient and cation/anion binding energy.
Nishimura, Hidekazu
2012-11-01
Several Japanese companies sell electrical devices advertised as effective in inactivating viruses and killing bacteria by releasing special materials, e.g., Plasmacluster ions, Nanoe particle and minus ions, into the air. These companies claim that their devices killed bacteria on plates in their own experiments. We tested device effectiveness using the same experiments from the Plasmacluster ioniser SHARP Co., Japan, the Nanoe generator Panasonic Co., Japan, and the Vion KING JIM Co., Japan, to test their advertising claims. Bactericidal ability on agar plate was tested, using Staphylococcus aureus, Pseudomonas aeruginosa, Bacillus cereus, and Enterococcus faecalis as follows: the medium containing a certain amount of each bacterium was put onto an agar plate and smeared. Plates were kept in a closed chamber (inner volume 14.4 m3) or a glove box (inner volume 0.2 m), with one of the devices run for 2 hours. Plates not exposed to any device were used as controls. Each plate was retrieved and put in an incubator to count the number of bacterial colonies formed on the plate. There was no significant difference in the number of colonies on plates exposed to devices compared to control, in the number for all devices, or in all bacteria tested in experiments in the 14.4 m3 chamber. These results strongly suggest that these devices have almost no bactericidal effect, at least in space exceeding this volume. Colony formation was suppressed in the glove box in all devices and in all bacteria tested except P. aeruginosa, although the degree of suppression differed among experiments. The colony formation suppression mechanism was analyzed, and indicated that:colony formation did not change even after the removal of Plasmacluster ions, Nanoe particles, or negative ions from the air, while colony formation was decreased drastically by the removal of ozone from space, which was revealed to be generated inevitably during device operation. These results strongly suggest that the bactericidal effect seen only on the agar plate in narrow space was explained by ozone released in space as a by-product, not by special materials as advertising claimed. It is thus important to analyze the effect of special materials such as those done in this study and to suggest the involvement of ozone as the true cause, as have been done in this study, in evaluating bactericidal effect or viral inactivation as advertised by these companies.
Very-low-energy-spread ion sources
NASA Astrophysics Data System (ADS)
Lee, Y.
1997-05-01
Ion beams with low axial energy spread are required in many applications such as ion projection lithography, isobaric separation in radioactive ion beam experiments, and ion beam deposition processes. In an ion source, the spread of the axial ion energy is caused by the nonuniformity of the plasma potential distribution along the source axis. Multicusp ion sources are capable of production positive and negative ions with good beam quality and relatively low energy spread. By intorducing a magnetic filter inside the multicusp source chamber, the axial plasma potential distribution is modified and the energy spread of positive hydrogen ions can be reduced to as low as 1 eV. The energy spread measurements of multicusp sources have been conducted by employing three different techniques: an electrostatic energy analyzer at the source exit; a magnetic deflection spectrometer; and a retarding-field energy analyzer for the accelerated beam. These different measurements confirmed tha! t ! the axial energy spread of positive and negative ions generated in the filter-equipped multicusp sources are small. New ion source configurations are now being investigated at LBNL with the purpose of achieving enen lower energy spread (<1eV) and of maximizing source performance such as reliability and lifetime.
Resonant electron capture by aspartame and aspartic acid molecules.
Muftakhov, M V; Shchukin, P V
2016-12-30
The processes for dissociative electron capture are the key mechanisms for decomposition of biomolecules, proteins in particular, under interaction with low-energy electrons. Molecules of aspartic acid and aspartame, i.e. modified dipeptides, were studied herein to define the impact of the side functional groups on peptide chain decomposition in resonant electron-molecular reactions. The processes of formation and decomposition of negative ions of both aspartame and aspartic acid were studied by mass spectrometry of negative ions under resonant electron capture. The obtained mass spectra were interpreted under thermochemical analysis by quantum chemical calculations. Main channels of negative molecular ions fragmentation were found and characteristic fragment ions were identified. The СООН fragment of the side chain in aspartic acid is shown to play a key role like the carboxyl group in amino acids and aliphatic oligopeptides. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Capillary electrophoresis electrospray negative ion mass spectrometry was investigated for the determination of chlorinated acid herbicides and several phenols in water. Sixteen analytes were separated as their anions in less than 40 min with a buffer consisting of 5 mM ammonium ...
A large-area RF source for negative hydrogen ions
NASA Astrophysics Data System (ADS)
Frank, P.; Feist, J. H.; Kraus, W.; Speth, E.; Heinemann, B.; Probst, F.; Trainham, R.; Jacquot, C.
1998-08-01
In a collaboration with CEA Cadarache, IPP is presently developing an rf source, in which the production of negative ions (H-/D-) is being investigated. It utilizes PINI-size rf sources with an external antenna and for the first step a small size extraction system with 48 cm2 net extraction area. First results from BATMAN (Ba¯varian T_est Ma¯chine for N_egative Ions) show (without Cs) a linear dependence of the negative ion yield with rf power, without any sign of saturation. At elevated pressure (1.6 Pa) a current density of 4.5 mA/cm2 H- (without Cs) has been found so far. At medium pressure (0.6 Pa) the current density is lower by approx. a factor of 5, but preliminary results with Cesium injection show a relative increase by almost the same factor in this pressure range. Langmuir probe measurements indicate an electron temperature Te>2 eV close to the plasma grid with a moderate magnetic filter (700 Gcm). Attempts to improve the performance by using different magnetic configurations and different wall materials are under way.
Computer Modeling of High-Intensity Cs-Sputter Ion Sources
NASA Astrophysics Data System (ADS)
Brown, T. A.; Roberts, M. L.; Southon, J. R.
The grid-point mesh program NEDLab has been used to computer model the interior of the high-intensity Cs-sputter source used in routine operations at the Center for Accelerator Mass Spectrometry (CAMS), with the goal of improving negative ion output. NEDLab has several features that are important to realistic modeling of such sources. First, space-charge effects are incorporated in the calculations through an automated ion-trajectories/Poissonelectric-fields successive-iteration process. Second, space charge distributions can be averaged over successive iterations to suppress model instabilities. Third, space charge constraints on ion emission from surfaces can be incorporate under Child's Law based algorithms. Fourth, the energy of ions emitted from a surface can be randomly chosen from within a thermal energy distribution. And finally, ions can be emitted from a surface at randomized angles The results of our modeling effort indicate that significant modification of the interior geometry of the source will double Cs+ ion production from our spherical ionizer and produce a significant increase in negative ion output from the source.
Halim, Mohammad A; Clavier, Christian; Dagany, Xavier; Kerleroux, Michel; Dugourd, Philippe; Dunbar, Robert C; Antoine, Rodolphe
2018-05-07
In this study, we report the unimolecular dissociation mechanism of megadalton SO 3 -containing poly(2-acrylamido-2-methyl-1-propanesulfonic acid) (PAMPS) polymer cations and anions with the aid of infrared multiphoton dissociation coupled to charge detection ion trap mass spectrometry. A gated electrostatic ion trap ("Benner trap") is used to store and detect single gaseous polymer ions generated by positive and negative polarity in an electrospray ionization source. The trapped ions are then fragmented due to the sequential absorption of multiple infrared photons produced from a continuous-wave CO 2 laser. Several fragmentation pathways having distinct signatures are observed. Highly charged parent ions characteristically adopt a distinctive "stair-case" pattern (assigned to the "fission" process) whereas low charge species take on a "funnel like" shape (assigned to the "evaporation" process). Also, the log-log plot of the dissociation rate constants as a function of laser intensity between PAMPS positive and negative ions is significantly different.
NASA Astrophysics Data System (ADS)
Zheng, Jun; Yang, Dongsen; Ma, Yan; Chen, Mindong; Cheng, Jin; Li, Shizheng; Wang, Ming
2015-10-01
A new corona discharge (CD) based ion source was developed for a commercial high-resolution time-of-flight chemical ionization mass spectrometer (HRToF-CIMS) (Aerodyne Research Inc.) to measure both gaseous sulfuric acid (H2SO4) and aerosol sulfate after thermal desorption. Nitrate core ions (NO3-) were used as reagent ions and were generated by a negative discharge in zero air followed by addition of excess nitrogen dioxide (NO2) to convert primary ions and hydroxyl radicals (OH) into NO3- ions and nitric acid (HNO3). The CD-HRToF-CIMS showed no detectable interference from hundreds parts per billion by volume (ppbv) of sulfur dioxide (SO2). Unlike the atmospheric pressure ionization (API) ToF-CIMS, the CD ion source was integrated onto the ion-molecule reaction (IMR) chamber and which made it possible to measure aerosol sulfate by coupling to a filter inlet for gases and aerosols (FIGAERO). Moreover, compared with a quadrupole-based mass spectrometer, the desired HSO4- signal was detected by its exact mass of m/z 96.960, which was well resolved from the potential interferences of HCO3-ṡ(H2O)2 (m/z 97.014) and O-ṡH2OṡHNO3 (m/z 97.002). In this work, using laboratory-generated standards the CD-HRToF-CIMS was demonstrated to be able to detect as low as 3.1 × 105 molecules cm-3 gaseous H2SO4 and 0.5 μg m-3 ammonium sulfate based on 10-s integration time and two times of the baseline noise. The CD ion source had the advantages of low cost and a simple but robust structure. Since the system was non-radioactive and did not require corrosive HNO3 gas, it can be readily field deployed. The CD-HRToF-CIMS can be a powerful tool for both field and laboratory studies of aerosol formation mechanism and the chemical processes that were critical to understand the evolution of aerosols in the atmosphere.
Linear Ion Traps in Space: The Mars Organic Molecule Analyzer (MOMA) Instrument and Beyond
NASA Astrophysics Data System (ADS)
Arevalo, Ricardo; Brinckerhoff, William; Mahaffy, Paul; van Amerom, Friso; Danell, Ryan; Pinnick, Veronica; Li, Xiang; Hovmand, Lars; Getty, Stephanie; Grubisic, Andrej; Goesmann, Fred; Cottin, Hervé
2015-11-01
Historically, quadrupole mass spectrometer (QMS) instruments have been used to explore a wide survey of planetary targets in our solar system, from Venus (Pioneer Venus) to Saturn (Cassini-Huygens). However, linear ion trap (LIT) mass spectrometers have found a niche as smaller, versatile alternatives to traditional quadrupole analyzers.The core astrobiological experiment of ESA’s ExoMars Program is the Mars Organic Molecule Analyzer (MOMA) onboard the ExoMars 2018 rover. The MOMA instrument is centered on a linear (or 2-D) ion trap mass spectrometer. As opposed to 3-D traps, LIT-based instruments accommodate two symmetrical ion injection pathways, enabling two complementary ion sources to be used. In the case of MOMA, these two analytical approaches are laser desorption mass spectrometry (LDMS) at Mars ambient pressures, and traditional gas chromatography mass spectrometry (GCMS). The LIT analyzer employed by MOMA also offers: higher ion capacity compared to a 3-D trap of the same volume; redundant detection subassemblies for extended lifetime; and, a link to heritage QMS designs and assembly logistics. The MOMA engineering test unit (ETU) has demonstrated the detection of organics in the presence of wt.%-levels of perchlorate, effective ion enhancement via stored waveform inverse Fourier transform (SWIFT), and derivation of structural information through tandem mass spectrometry (MS/MS).A more progressive linear ion trap mass spectrometer (LITMS), funded by the NASA ROSES MatISSE Program, is being developed at NASA GSFC and promises to augment the capabilities of the MOMA instrument by way of: an expanded mass range (i.e., 20 - 2000 Da); detection of both positive and negative ions; spatially resolved (<1 mm) characterization of individual rock core layers; and, evolved gas analysis and GCMS with pyrolysis up to 1300° C (enabling breakdown of refractory phases). The Advanced Resolution Organic Molecule Analyzer (AROMA) instrument, being developed through NASA PICASSO and ESA Research and Development Programs, combines a highly capable LIT front end (a la LITMS) with a high-resolution OrbitrapTM (a la CosmOrbitrap) mass analyzer to enable disambiguation of complex molecular signals in organic-rich targets.
Cellular pressure and volume regulation and implications for cell mechanics
NASA Astrophysics Data System (ADS)
Jiang, Hongyuan; Sun, Sean
2013-03-01
In eukaryotic cells, small changes in cell volume can serve as important signals for cell proliferation, death and migration. Volume and shape regulation also directly impacts the mechanics of the cell and multi-cellular tissues. Recent experiments found that during mitosis, eukaryotic cells establish a preferred steady volume and pressure, and the steady volume and pressure can robustly adapt to large osmotic shocks. Here we develop a mathematical model of cellular pressure and volume regulation, incorporating essential elements such as water permeation, mechano-sensitive channels, active ion pumps and active stresses in the actomyosin cortex. The model can fully explain the available experimental data, and predicts the cellular volume and pressure for several models of cell cortical mechanics. Furthermore, we show that when cells are subjected to an externally applied load, such as in an AFM indentation experiment, active regulation of volume and pressure leads to complex cellular response. We found the cell stiffness highly depends on the loading rate, which indicates the transport of water and ions might contribute to the observed viscoelasticity of cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rani, Kavita; Sharma, Suresh C.
2015-02-15
An ion beam propagating through a magnetized dusty plasma drives Kelvin Helmholtz Instability (KHI) via Cerenkov interaction. The frequency of the unstable wave increases with the relative density of negatively charged dust grains. It is observed that the beam has stabilizing effect on the growth rate of KHI for low shear parameter, but for high shear parameter, the instability is destabilized with relative density of negatively charged dust grains.
Effects of air ions on the neonatal growth of laboratory rats
NASA Astrophysics Data System (ADS)
Hinsull, S. M.; Bellamy, D.; Head, E. L.
1981-12-01
The effect of continuous positive and negative ionization on the growth of rats during the pre and post natal period, up to 10 weeks of age was investigated. It was found that continuous exposure to 1.0×104 pos. ions/ml had no detrimental effect on the animals at any stage of their development. In contrast, exposure to 1.0×104 neg. ions/ml, during gestation and the early post natal period, resulted in some adverse effects on growth and development. However, when exposure to this level of negative ions began at the time of weaning, no adverse effects were observed.
Layered materials with improved magnesium intercalation for rechargeable magnesium ion cells
Doe, Robert Ellis; Downie, Craig Michael; Fischer, Christopher; Lane, George Hamilton; Morgan, Dane; Nevin, Josh; Ceder, Gerbrand; Persson, Kristin Aslaug; Eaglesham, David
2015-10-27
Electrochemical devices which incorporate cathode materials that include layered crystalline compounds for which a structural modification has been achieved which increases the diffusion rate of multi-valent ions into and out of the cathode materials. Examples in which the layer spacing of the layered electrode materials is modified to have a specific spacing range such that the spacing is optimal for diffusion of magnesium ions are presented. An electrochemical cell comprised of a positive intercalation electrode, a negative metal electrode, and a separator impregnated with a nonaqeuous electrolyte solution containing multi-valent ions and arranged between the positive electrode and the negative electrode active material is described.
Existence domain of electrostatic solitary waves in the lunar wake
NASA Astrophysics Data System (ADS)
Rubia, R.; Singh, S. V.; Lakhina, G. S.
2018-03-01
Electrostatic solitary waves (ESWs) and double layers are explored in a four-component plasma consisting of hot protons, hot heavier ions (He++), electron beam, and suprathermal electrons having κ-distribution using the Sagdeev pseudopotential method. Three modes exist: slow and fast ion-acoustic modes and electron-acoustic mode. The occurrence of ESWs and their existence domain as a function of various plasma parameters, such as the number densities of ions and electron beam, the spectral index, κ, the electron beam velocity, the temperatures of ions, and electron beam, are analyzed. It is observed that both the slow and fast ion-acoustic modes support both positive and negative potential solitons as well as their coexistence. Further, they support a "forbidden gap," the region in which the soliton ceases to propagate. In addition, slow ion-acoustic solitons support the existence of both positive and negative potential double layers. The electron-acoustic mode is only found to support negative potential solitons for parameters relevant to the lunar wake plasma. Fast Fourier transform of a soliton electric field produces a broadband frequency spectrum. It is suggested that all three soliton types taken together can provide a good explanation for the observed electrostatic waves in the lunar wake.
Generalization of the Child-Langmuir law to the alternate extraction of positive and negative ions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lafleur, T., E-mail: trevor.lafleur@lpp.polytechnique.fr; ONERA-The French Aerospace Lab, 91120 Palaiseau; Aanesland, A.
Using a combined analytical and simulation approach, we investigate positive and negative ion extraction between two electrodes from an ion-ion plasma source. With a square voltage waveform applied to the electrodes, we obtain approximate analytical solutions for the time-averaged extracted current densities, which are given simply by: J{sub p}{sup ac}=[α−fL√((M{sub p})/(q{sub p}V{sub 0}) )]J{sub p}{sup dc}, and J{sub n}{sup ac}=[(1−α)−fL√((M{sub n})/(q{sub n}V{sub 0}) )]J{sub n}{sup dc}, where J{sup ac} is the time-averaged current density, α is the square waveform duty cycle, f is the frequency, L is the electrode gap length, M is the ion mass, q is the ionmore » charge, V{sub 0} is the applied voltage amplitude, J{sup dc} is the dc extracted current density, and the subscripts p and n refer to positive and negative ions, respectively. In particular, if J{sup dc} is the dc space-charge limited current density, then these equations describe the square waveform generalization of the Child-Langmuir law.« less
Neutral beamline with ion energy recovery based on magnetic blocking of electrons
Stirling, W.L.
1980-07-01
A neutral beamline generator with energy recovery of the full-energy ion component of the beam based on magnetic blocking of electrons is provided. Ions from a positive ion source are accelerated to the desired beam energy from a slightly positive potential level with respect to ground through a neutralizer cell by means of a negative acceleration voltage. The unneutralized full-energy ion component of the beam exiting the neutralizer are retarded and slightly deflected and the elecrons in the neutralizer are blocked by a magnetic field generated transverse to the beamline. An electron collector in the form of a coaxial cylinder surrounding and protruding axial a few centimeters beyond the neutralizer exit terminates the electrons which exit the neutralizer in an E x B drift to the collector when the collector is biased a few hundred volts positive with respect to the neutralizer voltage. The neutralizer is operated at the negative acceleration voltage. The neutralizer is operated at the negative acceleration voltage, and the deflected full energy ions are decelerated and the charge collected at ground potential thereby expending none of their energy received from the acceleration power supply.
Desai, R T; Cowee, M M; Wei, H; Fu, X; Gary, S P; Volwerk, M; Coates, A J
2017-10-01
In the vicinity of Europa, Galileo observed bursty Alfvén-cyclotron wave power at the gyrofrequencies of a number of species including K + , O 2+, Na + , and Cl + , indicating the localized pickup of these species. Additional evidence for the presence of chlorine was the occurrence of both left-hand (LH) and right-hand (RH) polarized transverse wave power near the Cl + gyrofrequency, thought to be due to the pickup of both Cl + and the easily formed chlorine anion, Cl - . To test this hypothesis, we use one-dimensional hybrid (kinetic ion, massless fluid electron) simulations for both positive and negative pickup ions and self-consistently reproduce the growth of both LH and RH Alfvén-cyclotron waves in agreement with linear theory. We show how the simultaneous generation of LH and RH waves can result in nongyrotropic ion distributions and increased wave amplitudes, and how even trace quantities of negative pickup ions are able to generate an observable RH signal. Through comparing simulated and observed wave amplitudes, we are able to place the first constraints on the densities of Chlorine pickup ions in localized regions at Europa.
Ling, Ling; Li, Ying; Wang, Sheng; Guo, Liming; Xiao, Chunsheng; Chen, Xuesi; Guo, Xinhua
2018-04-01
Matrix interference ions in low mass range has always been a concern when using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to analyze small molecules (<500 Da). In this work, a novel matrix, N1,N4-dibenzylidenebenzene-1,4-diamine (DBDA) was synthesized for the analyses of small molecules by negative ion MALDI-TOF MS. Notably, only neat ions ([M-H] - ) of fatty acids without matrix interference appeared in the mass spectra and the limit of detection (LOD) reached 0.3 fmol. DBDA also has great performance towards other small molecules such as amino acids, peptides, and nucleotide. Furthermore, with this novel matrix, the free fatty acids in serum were quantitatively analyzed based on the correlation curves with correlation coefficient of 0.99. In addition, UV-Vis experiments and molecular orbital calculations were performed to explore mechanism about DBDA used as matrix in the negative ion mode. The present work shows that the DBDA matrix is a highly sensitive matrix with few interference ions for analysis of small molecules. Meanwhile, DBDA is able to precisely quantify the fatty acids in real biological samples. Graphical Abstract ᅟ.
Asymmetric battery having a semi-solid cathode and high energy density anode
Tan, Taison; Chiang, Yet-Ming; Ota, Naoki; Wilder, Throop; Duduta, Mihai
2017-11-28
Embodiments described herein relate generally to devices, systems and methods of producing high energy density batteries having a semi-solid cathode that is thicker than the anode. An electrochemical cell can include a positive electrode current collector, a negative electrode current collector and an ion-permeable membrane disposed between the positive electrode current collector and the negative electrode current collector. The ion-permeable membrane is spaced a first distance from the positive electrode current collector and at least partially defines a positive electroactive zone. The ion-permeable membrane is spaced a second distance from the negative electrode current collector and at least partially defines a negative electroactive zone. The second distance is less than the first distance. A semi-solid cathode that includes a suspension of an active material and a conductive material in a non-aqueous liquid electrolyte is disposed in the positive electroactive zone, and an anode is disposed in the negative electroactive zone.
Asymmetric battery having a semi-solid cathode and high energy density anode
Tan, Taison; Chiang, Yet-Ming; Ota, Naoki; Wilder, Throop; Duduta, Mihai
2016-09-06
Embodiments described herein relate generally to devices, systems and methods of producing high energy density batteries having a semi-solid cathode that is thicker than the anode. An electrochemical cell can include a positive electrode current collector, a negative electrode current collector and an ion-permeable membrane disposed between the positive electrode current collector and the negative electrode current collector. The ion-permeable membrane is spaced a first distance from the positive electrode current collector and at least partially defines a positive electroactive zone. The ion-permeable membrane is spaced a second distance from the negative electrode current collector and at least partially defines a negative electroactive zone. The second distance is less than the first distance. A semi-solid cathode that includes a suspension of an active material and a conductive material in a non-aqueous liquid electrolyte is disposed in the positive electroactive zone, and an anode is disposed in the negative electroactive zone.
Selective resputtering of bismuth in sputtered Bi-Sr-Ca-Cu-O films
NASA Astrophysics Data System (ADS)
Grace, J. M.; McDonald, D. B.; Reiten, M. T.; Olson, J.; Kampwirth, R. T.; Gray, K. E.
1991-10-01
We present studies using a dc magnetron in an on-axis configuration to sputter Bi-Sr-Ca-Cu-O films from a composite target. These studies show that bismuth can be preferentially resputtered. The influence of ozone, molecular oxygen, and total pressure on the resputtering of bismuth is investigated and discussed. Ozone, in low concentrations, can dramatically affect the degree of resputtering. By comparing the effects of molecular oxygen and ozone, some insight is gained regarding the possible mechanisms of negative ion formation in the magnetron environment. Based on our results we suggest that molecular oxygen can bring about resputtering primarily by forming O+2, which collides with the target to produce energetic negative oxygen ions. In contrast, ozone may form negative ions by electron impact in the dark space above the target, giving rise to lower-energy negative ions, which can traverse the plasma unneutralized and can be stopped with an applied bias on the sample block. With no added oxidant, negative oxygen ions from the target oxygen may dominate the background resputtering. Similarity is found between our results and those for similar studies on Y-Ba-Cu-O by other workers. Bismuth in Bi-Sr-Ca-Cu-O behaves as barium in Y-Ba-Cu-O with regards to preferential resputtering; furthermore, the response of strontium, calcium, and copper to oxygen in sputtered Bi-Sr-Ca-Cu-O is similar to what is observed for copper in Y-Ba-Cu-O.
Laser ion source for high brightness heavy ion beam
Okamura, M.
2016-09-01
A laser ion source is known as a high current high charge state heavy ion source. But, we place great emphasis on the capability to realize a high brightness ion source. A laser ion source has a pinpoint small volume where materials are ionized and can achieve quite uniform low temperature ion beam. Those features may enable us to realize very small emittance beams. Furthermore, a low charge state high brightness laser ion source was successfully commissioned in Brookhaven National Laboratory in 2014. Now most of all the solid based heavy ions are being provided from the laser ion sourcemore » for regular operation.« less
Study of Ti 4+ substitution in ZrW 2O 8 negative thermal expansion materials
NASA Astrophysics Data System (ADS)
De Buysser, Klaartje; Van Driessche, Isabel; Putte, Bart Vande; Schaubroeck, Joseph; Hoste, Serge
2007-08-01
Powder XRD-analysis and thermo-mechanical analysis on sintered TiO 2-WO 3-ZrO 2 mixtures revealed the formation of Zr 1-xTi xW 2O 8 solid solutions. A noticeable decrease in unit cell parameter ' a' and in the order-disorder transition temperature could be seen in the case of Zr 1-xTi xW 2O 8 solid solutions. Studies performed on other ZrW 2O 8 solid solutions have attributed an increase in phase transition temperature to a decrease in free lattice volume, whereas a decrease in phase transition temperature was suggested to be due to the presence of a more disordered state. Our studies indicate that the phase transition temperature in our materials is strongly influenced by the bond dissociation energy of the substituting ion-oxygen bond. A decrease in bond strength may compensate for the effect of a decrease in lattice free volume, lowering the phase transition temperature as the degree of substitution by Ti 4+ increases. This hypothesis is proved by differential scanning calorimetry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xue, Haizhou; Zhang, Yanwen; Zhu, Zihua
Single crystalline 6H-SiC samples were irradiated at 150 K with 2 MeV Pt ions. The local volume swelling was determined by electron energy loss spectroscopy (EELS), and a nearly sigmoidal dependence on irradiation dose is observed. The disorder profiles and ion distribution were determined by Rutherford backscattering spectrometry (RBS), transmission electron microscopy, and secondary ion mass spectrometry. Since the volume swelling reaches 12% over the damage region at high ion fluence, the effect of lattice expansion is considered and corrected for in the analysis of RBS spectra to obtain depth profiles. Projectile and damage profiles are estimated by SRIM (Stoppingmore » and Range of Ions in Matter).When compared with the measured profiles, the SRIM code predictions of ion distribution and the damage profiles are underestimated due to significant overestimation of the electronic stopping power for the slow heavy Pt ions. By utilizing the reciprocity method, which is based on the invariance of the inelastic energy loss in ion-solid collisions against interchange of projectile and target atom, a much lower electronic stopping power is deduced. A simple approach, based on reducing the density of SiC target in SRIM simulation, is proposed to compensate the overestimated SRIM electronic stopping power values, which results in improved agreement between predicted and measured damage profiles and ion ranges.« less
Heiser, Brian; Okrasinski, E B; Murray, Rebecca; McCord, Kelly
The initial negative pressures of evacuated blood collection tubes (EBCT) and their in vitro performance as a rigid closed-suction surgical drain (CSSD) reservoir has not been evaluated in the scientific literature despite being described in both human and veterinary texts and journals. The initial negative pressures of EBCT sized 3, 6, 10, and 15 mL were measured and the stability of the system monitored. The pressure-to-volume curve as either air or water was added and maximal filling volumes were measured. Evacuated blood collection tubes beyond the manufacture's expiration date were evaluated for initial negative pressures and maximal filling volumes. Initial negative pressure ranged from -214 mm Hg to -528 mm Hg for EBCT within the manufacturer's expiration date. Different pressure-to-volume curves were found for air versus water. Optimal negative pressures of CSSD are debated in the literature. Drain purpose and type of exudates are factors that should be considered when deciding which EBCT size to implement. Evacuated blood collection tubes have a range of negative pressures and pressure-to-volume curves similar to previously evaluated CSSD rigid reservoirs. Proper drain management and using EBCT within labeled expiration date are important to ensure that expected negative pressures are generated.
Power supply system for negative ion source at IPR
NASA Astrophysics Data System (ADS)
Gahlaut, Agrajit; Sonara, Jashwant; Parmar, K. G.; Soni, Jignesh; Bandyopadhyay, M.; Singh, Mahendrajit; Bansal, Gourab; Pandya, Kaushal; Chakraborty, Arun
2010-02-01
The first step in the Indian program on negative ion beams is the setting up of Negative ion Experimental Assembly - RF based, where 100 kW of RF power shall be coupled to a plasma source producing plasma of density ~5 × 1012 cm-3, from which ~ 10 A of negative ion beam shall be produced and accelerated to 35 kV, through an electrostatic ion accelerator. The experimental system is modelled similar to the RF based negative ion source, BATMAN presently operating at IPP, Garching, Germany. The mechanical system for Negative Ion Source Assembly is close to the IPP source, remaining systems are designed and procured principally from indigenous sources, keeping the IPP configuration as a base line. High voltage (HV) and low voltage (LV) power supplies are two key constituents of the experimental setup. The HV power supplies for extraction and acceleration are rated for high voltage (~15 to 35kV), and high current (~ 15 to 35A). Other attributes are, fast rate of voltage rise (< 5ms), good regulation (< ±1%), low ripple (< ±2%), isolation (~50kV), low energy content (< 10J) and fast cut-off (< 100μs). The low voltage (LV) supplies required for biasing and providing heating power to the Cesium oven and the plasma grids; have attributes of low ripple, high stability, fast and precise regulation, programmability and remote operation. These power supplies are also equipped with over-voltage, over-current and current limit (CC Mode) protections. Fault diagnostics, to distinguish abnormal rise in currents (breakdown faults) with over-currents is enabled using fast response breakdown and over-current protection scheme. To restrict the fault energy deposited on the ion source, specially designed snubbers are implemented in each (extraction and acceleration) high voltage path to swap the surge energy. Moreover, the monitoring status and control signals from these power supplies are required to be electrically (~ 50kV) isolated from the system. The paper shall present the design basis, topology selection, manufacturing, testing, commissioning, integration and control strategy of these HVPS. A complete power interconnection scheme, which includes all protective devices and measuring devices, low & high voltage power supplies, monitoring and control signals etc. shall also be discussed. The paper also discusses the protocols involved in grounding and shielding, particularly in operating the system in RF environment.
NASA Technical Reports Server (NTRS)
Sellen, J. M., Jr.; Kemp, R. F.; Hall, D. F.
1973-01-01
The analysis of ion exhaust beam current flow for multiply charged ion species and the application to propellant utilization for the thruster are discussed. The ion engine in use in the experiments is a twenty centimeter diameter electromagnet electron bombardment engine. The experimental technique to determine the multiply charged ion abundance ratios using ion time of flight is described. An analytical treatment of the discharge action in producing various ion species has been carried out.
Ion-source modeling and improved performance of the CAMS high-intensity Cs-sputter ion source
NASA Astrophysics Data System (ADS)
Brown, T. A.; Roberts, M. L.; Southon, J. R.
2000-10-01
The interior of the high-intensity Cs-sputter source used in routine operations at the Center for Accelerator Mass Spectrometry (CAMS) has been computer modeled using the program NEDLab, with the aim of improving negative ion output. Space charge effects on ion trajectories within the source were modeled through a successive iteration process involving the calculation of ion trajectories through Poisson-equation-determined electric fields, followed by calculation of modified electric fields incorporating the charge distribution from the previously calculated ion trajectories. The program has several additional features that are useful in ion source modeling: (1) averaging of space charge distributions over successive iterations to suppress instabilities, (2) Child's Law modeling of space charge limited ion emission from surfaces, and (3) emission of particular ion groups with a thermal energy distribution and at randomized angles. The results of the modeling effort indicated that significant modification of the interior geometry of the source would double Cs + ion production from our spherical ionizer and produce a significant increase in negative ion output from the source. The results of the implementation of the new geometry were found to be consistent with the model results.
Changes in apparent molar water volume and DKP solubility yield insights on the Hofmeister effect.
Payumo, Alexander Y; Huijon, R Michael; Mansfield, Deauna D; Belk, Laurel M; Bui, Annie K; Knight, Anne E; Eggers, Daryl K
2011-12-15
This study examines the properties of a 4 × 2 matrix of aqueous cations and anions at concentrations up to 8.0 M. The apparent molar water volume, as calculated by subtracting the mass and volume of the ions from the corresponding solution density, was found to exceed the molar volume of ice in many concentrated electrolyte solutions, underscoring the nonideal behavior of these systems. The solvent properties of water were also analyzed by measuring the solubility of diketopiperazine (DKP) in 2.000 M salt solutions prepared from the same ion combinations. Solution rankings for DKP solubility were found to parallel the Hofmeister series for both cations and anions, whereas molar water volume concurred with the cation series only. The results are discussed within the framework of a desolvation energy model that attributes solute-specific changes in equilibria to solute-dependent changes in the free energy of bulk water.
Changes in Apparent Molar Water Volume and DKP Solubility Yield Insights on the Hofmeister Effect
Payumo, Alexander Y.; Huijon, R. Michael; Mansfield, Deauna D.; Belk, Laurel M.; Bui, Annie K.; Knight, Anne E.; Eggers, Daryl K.
2011-01-01
This study examines the properties of a 4 × 2 matrix of aqueous cations and anions at concentrations up to 8.0 M. The apparent molar water volume, as calculated by subtracting the mass and volume of the ions from the corresponding solution density, was found to exceed the molar volume of ice in many concentrated electrolyte solutions, underscoring the non-ideal behavior of these systems. The solvent properties of water were also analyzed by measuring the solubility of diketopiperazine (DKP) in 2.000 M salt solutions prepared from the same ion combinations. Solution rankings for DKP solubility were found to parallel the Hofmeister series for both cations and anions, whereas molar water volume concurred with the cation series only. The results are discussed within the framework of a desolvation energy model that attributes solute-specific changes in equilibria to solute-dependent changes in the free energy of bulk water. PMID:22029390
Angel, Peggi M.; Spraggins, Jeffrey M.; Baldwin, H. Scott; Caprioli, Richard
2012-01-01
We have achieved enhanced lipid imaging to a ~10 μm spatial resolution using negative ion mode matrix assisted laser desorption ionization (MALDI) imaging mass spectrometry, sublimation of 2,5-dihydroxybenzoic acid as the MALDI matrix and a sample preparation protocol that uses aqueous washes. We report on the effect of treating tissue sections by washing with volatile buffers at different pHs prior to negative ion mode lipid imaging. The results show that washing with ammonium formate, pH 6.4, or ammonium acetate, pH 6.7, significantly increases signal intensity and number of analytes recorded from adult mouse brain tissue sections. Major lipid species measured were glycerophosphoinositols, glycerophosphates, glycerolphosphoglycerols, glycerophosphoethanolamines, glycerophospho-serines, sulfatides, and gangliosides. Ion images from adult mouse brain sections that compare washed and unwashed sections are presented and show up to fivefold increases in ion intensity for washed tissue. The sample preparation protocol has been found to be applicable across numerous organ types and significantly expands the number of lipid species detectable by imaging mass spectrometry at high spatial resolution. PMID:22243218
Volumetric response of intracranial meningioma after photon or particle irradiation.
Mozes, Petra; Dittmar, Jan Oliver; Habermehl, Daniel; Tonndorf-Martini, Eric; Hideghety, Katalin; Dittmar, Anne; Debus, Jürgen; Combs, Stephanie E
2017-03-01
Meningiomas are usually slow growing, well circumscribed intracranial tumors. In symptom-free cases observation with close follow-up imaging could be performed. Symptomatic meningiomas could be surgically removed and/or treated with radiotherapy. The study aimed to evaluate the volumetric response of intracranial meningiomas at different time points after photon, proton, and a mixed photon and carbon ion boost irradiation. In Group A 38 patients received proton therapy (median dose: 56 GyE in 1.8-2 GyE daily fractions) or a mixed photon/carbon ion therapy (50 Gy in 2 Gy daily fractions with intensity modulated radiotherapy (IMRT) and 18 GyE in 3 GyE daily dose carbon ion boost). Thirty-nine patients (Group B) were treated by photon therapy with IMRT or fractionated stereotactic radiotherapy technique (median dose: 56 Gy in 1.8-2 Gy daily fractions). The delineation of the tumor volume was based on the initial, one- and two-year follow-up magnetic resonance imaging and these volumes were compared to evaluate the volumetric tumor response. Significant tumor volume shrinkage was detected at one- and at two-year follow-up both after irradiation by particles and by photons. No significant difference in tumor volume change was observed between photon, proton or combined photon plus carbon ion boost treated patients. WHO grade and gender appear to be determining factors for tumor volume shrinkage. Significant volumetric shrinkage of meningiomas could be observed independently of the applied radiation modality. Long-term follow-up is recommended to evaluate further dynamic of size reduction and its correlation with outcome data.
Water Permeability Adjusts Resorption in Lung Epithelia to Increased Apical Surface Liquid Volumes.
Schmidt, Hanna; Michel, Christiane; Braubach, Peter; Fauler, Michael; Neubauer, Daniel; Thompson, Kristin E; Frick, Manfred; Mizaikoff, Boris; Dietl, Paul; Wittekindt, Oliver H
2017-03-01
The apical surface liquid (ASL) layer covers the airways and forms a first line of defense against pathogens. Maintenance of ASL volume by airway epithelia is essential for maintaining lung function. The proteolytic activation of epithelial Na + channels is believed to be the dominating mechanism to cope with increases in ASL volumes. Alternative mechanisms, in particular increases in epithelial osmotic water permeability (P osm ), have so far been regarded as rather less important. However, most studies mainly addressed immediate effects upon apical volume expansion (AVE) and increases in ASL. This study addresses the response of lung epithelia to long-term AVE. NCI-H441 cells and primary human tracheal epithelial cells, both cultivated in air-liquid interface conditions, were used as models for the lung epithelium. AVE was established by adding isotonic solution to the apical surface of differentiated lung epithelia, and time course of ASL volume restoration was assessed by the deuterium oxide dilution method. Concomitant ion transport was investigated in Ussing chambers. We identified a low resorptive state immediately after AVE, which coincided with proteolytic ion transport activation within 10-15 minutes after AVE. The main clearance of excess ASL occurred during a delayed (hours after AVE) high resorptive state, which did not correlate with ion transport activation. Instead, high resorptive state onset coincided with an increase in P osm , which depended on aquaporin up-regulation. In summary, our data demonstrate that, aside from ion transport activation, modulation of P osm is a major mechanism to compensate for long-term AVE in lung epithelia.
Astronomy-inspired Atomic and Molecular Physics
NASA Astrophysics Data System (ADS)
Rau, A. R. P.
2002-02-01
Aimed at senior undergraduate and first-year graduate students in departments of physics and astronomy, this textbook gives a systematic treatment of atomic and molecular structure and spectra, together with the effect of weak and strong external electromagnetic fields. Topics chosen are those of interest in astronomy and indeed many were inspired by specific astronomical contexts. Examples include the negative ion of hydrogen and the effects of strong magnetic fields such as those occurring on certain white dwarfs and neutron stars. Adiabatic and non-adiabatic handling of electron correlations and application to processes such as dielectronic recombination are included. Astronomical examples are provided throughout as well as end-of-the chapter problems and exercises. Over seventy illustrative diagrams complete this unique and comprehensive volume. Link: http://www.wkap.nl/prod/b/1-4020-0467-2
Gray matter volume and rapid decision-making in major depressive disorder.
Nakano, Masayuki; Matsuo, Koji; Nakashima, Mami; Matsubara, Toshio; Harada, Kenichiro; Egashira, Kazuteru; Masaki, Hiroaki; Takahashi, Kanji; Watanabe, Yoshifumi
2014-01-03
Reduced motivation and blunted decision-making are key features of major depressive disorder (MDD). Patients with MDD show abnormal decision-making when given negative feedback regarding a reward. The brain mechanisms underpinning this behavior remain unclear. In the present study, we examined the association between rapid decision-making with negative feedback and brain volume in MDD. Thirty-six patients with MDD and 54 age-, sex- and IQ-matched healthy subjects were studied. Subjects performed a rapid decision-making monetary task in which participants could make high- or low-risk choices. We compared between the 2 groups the probability that a high-risk choice followed negative feedback. In addition, we used voxel-based morphometry (VBM) to compare between group differences in gray matter volume, and the correlation between the probability for high-risk choices and brain volume. Compared to the healthy group, the MDD group showed significantly lower probabilities for high-risk choices following negative feedback. VBM analysis revealed that the MDD group had less gray matter volume in the right medial prefrontal cortex and orbitofrontal cortex (OFC) compared to the healthy group. The right OFC volume was negatively correlated with the probability that a high-risk choice followed negative feedback in patients with MDD. We did not observe these trends in healthy subjects. Patients with MDD show reduced motivation for monetary incentives when they were required to make rapid decisions following negative feedback. We observed a correlation between this reduced motivation and gray matter volume in the medial and ventral prefrontal cortex, which suggests that these brain regions are likely involved in the pathophysiology of aberrant decision-making in MDD. © 2013.
Optical properties of antiferromagnetic/ion-crystal superlattices
NASA Astrophysics Data System (ADS)
Ta, Jin-Xing; Song, Yu-Ling; Wang, Xuan-Zhang
2012-01-01
Transmission, refraction and absorption properties of an antiferromagnetic/ion-crystal superlattice are investigated. The transmission spectra based on FeF2/TlBr superlattices reveal that there exist two intriguing guided modes in a wide stop band. Additionally, FeF2/TlBr superlattices possess either the negative refraction or the quasi left-handedness, or even simultaneously hold them at certain frequencies of two guided modes, which require both negative magnetic permeability of antiferromagnetic layers and negative permittivity of ion-crystal layers. Frequency regimes of the guided modes will be dependent on the magnitude of the external magnetic field. Therefore, handedness and refraction properties of the system can be manipulated by modifying the external magnetic field. Absorption spectra exhibit that absorption corresponding to guided modes is noticeable.
Kidwell, H; Jones, J J; Games, D E
2001-01-01
Five polar herbicides were separated and characterised using high-speed analytical countercurrent chromatography (HSACCC) in conjunction with online electrospray mass spectrometry (ESI-MS). The countercurrent chromatography used a standard isocratic biphasic solvent system of hexane/ethyl acetate/methanol/water in reverse phase to effect the separation of these five environmentally important compounds. The chromatograph was coupled to a triple quadrupole mass spectrometer via a standard electrospray liquid chromatography interface that was able to give mass spectra in negative ion mode of each compound. Limits of detection are reported for this series of compounds along with representative negative ion ESI-MS data and calibrations for the separation. Copyright 2001 John Wiley & Sons, Ltd.
Design of a cavity ring-down spectroscopy diagnostic for negative ion rf source SPIDER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pasqualotto, R.; Alfier, A.; Lotto, L.
2010-10-15
The rf source test facility SPIDER will test and optimize the source of the 1 MV neutral beam injection systems for ITER. Cavity ring-down spectroscopy (CRDS) will measure the absolute line-of-sight integrated density of negative (H{sup -} and D{sup -}) ions, produced in the extraction region of the source. CRDS takes advantage of the photodetachment process: negative ions are converted to neutral hydrogen atoms by electron stripping through absorption of a photon from a laser. The design of this diagnostic is presented with the corresponding simulation of the expected performance. A prototype operated without plasma has provided CRDS reference signals,more » design validation, and results concerning the signal-to-noise ratio.« less
Supersonic Bare Metal Cluster Beams. Technical Progress Report, March 16, 1984 - April 1, 1985
DOE R&D Accomplishments Database
Smalley, R. E.
1985-01-01
There have been four major areas of concentration for the study of bare metal cluster beams: neutral cluster, chemical reactivity, cold cluster ion source development (both positive and negative), bare cluster ion ICR (ion cyclotron resonance) development, and photofragmentation studies of bare metal cluster ions.
USDA-ARS?s Scientific Manuscript database
A method has been developed for screening glyceollins and their metabolites based upon precursor ion scanning. Under higher-energy collision conditions, employing a triple quadrupole mass spectrometer in the negative ion mode, deprotonated glyceollin precursors yield a diagnostic radical product ion...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verkhoturov, Stanislav V.; Geng, Sheng; Schweikert, Emile A., E-mail: schweikert@chem.tamu.edu
We present the first data from individual C{sub 60} impacting one to four layer graphene at 25 and 50 keV. Negative secondary ions and electrons emitted in transmission were recorded separately from each impact. The yields for C{sub n}{sup −} clusters are above 10% for n ≤ 4, they oscillate with electron affinities and decrease exponentially with n. The result can be explained with the aid of MD simulation as a post-collision process where sufficient vibrational energy is accumulated around the rim of the impact hole for sputtering of carbon clusters. The ionization probability can be estimated by comparing experimentalmore » yields of C{sub n}{sup −} with those of C{sub n}{sup 0} from MD simulation, where it increases exponentially with n. The ionization probability can be approximated with ejecta from a thermally excited (3700 K) rim damped by cluster fragmentation and electron detachment. The experimental electron probability distributions are Poisson-like. On average, three electrons of thermal energies are emitted per impact. The thermal excitation model invoked for C{sub n}{sup −} emission can also explain the emission of electrons. The interaction of C{sub 60} with graphene is fundamentally different from impacts on 3D targets. A key characteristic is the high degree of ionization of the ejecta.« less