Ye, Zhi-Min; Dai, Shu-Jun; Yan, Feng-Qin; Wang, Lei; Fang, Jun; Fu, Zhen-Fu; Wang, Yue-Zhen
2018-01-01
This study aimed to evaluate both the short- and long-term efficacies of chemoradiotherapy in relation to the treatment of esophageal cancer . This was achieved through the use of dynamic contrast-enhanced magnetic resonance imaging-derived volume transfer constant and diffusion weighted imaging-derived apparent diffusion coefficient . Patients with esophageal cancer were assigned into the sensitive and resistant groups based on respective efficacies in chemoradiotherapy. Dynamic contrast-enhanced magnetic resonance imaging and diffusion weighted imaging were used to measure volume transfer constant and apparent diffusion coefficient, while computed tomography was used to calculate tumor size reduction rate. Pearson correlation analyses were conducted to analyze correlation between volume transfer constant, apparent diffusion coefficient, and the tumor size reduction rate. Receiver operating characteristic curve was constructed to analyze the short-term efficacy of volume transfer constant and apparent diffusion coefficient, while Kaplan-Meier curve was employed for survival rate analysis. Cox proportional hazard model was used for the risk factors for prognosis of patients with esophageal cancer. Our results indicated reduced levels of volume transfer constant, while increased levels were observed in ADC min , ADC mean , and ADC max following chemoradiotherapy. A negative correlation was determined between ADC min , ADC mean , and ADC max , as well as in the tumor size reduction rate prior to chemoradiotherapy, whereas a positive correlation was uncovered postchemoradiotherapy. Volume transfer constant was positively correlated with tumor size reduction rate both before and after chemoradiotherapy. The 5-year survival rate of patients with esophageal cancer having high ADC min , ADC mean , and ADC max and volume transfer constant before chemoradiotherapy was greater than those with respectively lower values. According to the Cox proportional hazard model, ADC mean , clinical stage, degree of differentiation, and tumor stage were all confirmed as being independent risk factors in regard to the prognosis of patients with EC. The findings of this study provide evidence suggesting that volume transfer constant and apparent diffusion coefficient as being tools allowing for the evaluation of both the short- and long-term efficacies of chemoradiotherapy esophageal cancer treatment.
NASA Astrophysics Data System (ADS)
Umer, Asim; Naveed, Shahid; Ramzan, Naveed
2016-10-01
Nanofluids, having 1-100 nm size particles in any base fluid are promising fluid for heat transfer intensification due to their enhanced thermal conductivity as compared with the base fluid. The forced convection of nanofluids is the major practical application in heat transfer equipments. In this study, heat transfer enhancements at constant wall heat flux under laminar flow conditions were investigated. Nanofluids of different volume fractions (1, 2 and 4 %) of copper (I) oxide nanoparticles in deionized water were prepared using two step technique under mechanical mixing and ultrasonication. The results were investigated by increasing the Reynolds number of the nanofluids at constant heat flux. The trends of Nusselt number variation with dimensionless length (X/D) and Reynolds numbers were studied. It was observed that heat transfer coefficient increases with increases particles volume concentration and Reynolds number. The maximum enhancement in heat transfer coefficient of 61 % was observed with 4 % particle volume concentration at Reynolds number (Re ~ 605).
Nam, J G; Kang, K M; Choi, S H; Lim, W H; Yoo, R-E; Kim, J-H; Yun, T J; Sohn, C-H
2017-12-01
Glioblastoma is the most common primary brain malignancy and differentiation of true progression from pseudoprogression is clinically important. Our purpose was to compare the diagnostic performance of dynamic contrast-enhanced pharmacokinetic parameters using the fixed T1 and measured T1 on differentiating true from pseudoprogression of glioblastoma after chemoradiation with temozolomide. This retrospective study included 37 patients with histopathologically confirmed glioblastoma with new enhancing lesions after temozolomide chemoradiation defined as true progression ( n = 15) or pseudoprogression ( n = 22). Dynamic contrast-enhanced pharmacokinetic parameters, including the volume transfer constant, the rate transfer constant, the blood plasma volume per unit volume, and the extravascular extracellular space per unit volume, were calculated by using both the fixed T1 of 1000 ms and measured T1 by using the multiple flip-angle method. Intra- and interobserver reproducibility was assessed by using the intraclass correlation coefficient. Dynamic contrast-enhanced pharmacokinetic parameters were compared between the 2 groups by using univariate and multivariate analysis. The diagnostic performance was evaluated by receiver operating characteristic analysis and leave-one-out cross validation. The intraclass correlation coefficients of all the parameters from both T1 values were fair to excellent (0.689-0.999). The volume transfer constant and rate transfer constant from the fixed T1 were significantly higher in patients with true progression ( P = .048 and .010, respectively). Multivariate analysis revealed that the rate transfer constant from the fixed T1 was the only independent variable (OR, 1.77 × 10 5 ) and showed substantial diagnostic power on receiver operating characteristic analysis (area under the curve, 0.752; P = .002). The sensitivity and specificity on leave-one-out cross validation were 73.3% (11/15) and 59.1% (13/20), respectively. The dynamic contrast-enhanced parameter of rate transfer constant from the fixed T1 acted as a preferable marker to differentiate true progression from pseudoprogression. © 2017 by American Journal of Neuroradiology.
The Proell Effect: A Macroscopic Maxwell's Demon
NASA Astrophysics Data System (ADS)
Rauen, Kenneth M.
2011-12-01
Maxwell's Demon is a legitimate challenge to the Second Law of Thermodynamics when the "demon" is executed via the Proell effect. Thermal energy transfer according to the Kinetic Theory of Heat and Statistical Mechanics that takes place over distances greater than the mean free path of a gas circumvents the microscopic randomness that leads to macroscopic irreversibility. No information is required to sort the particles as no sorting occurs; the entire volume of gas undergoes the same transition. The Proell effect achieves quasi-spontaneous thermal separation without sorting by the perturbation of a heterogeneous constant volume system with displacement and regeneration. The classical analysis of the constant volume process, such as found in the Stirling Cycle, is incomplete and therefore incorrect. There are extra energy flows that classical thermo does not recognize. When a working fluid is displaced across a regenerator with a temperature gradient in a constant volume system, complimentary compression and expansion work takes place that transfers energy between the regenerator and the bulk gas volumes of the hot and cold sides of the constant volume system. Heat capacity at constant pressure applies instead of heat capacity at constant volume. The resultant increase in calculated, recyclable energy allows the Carnot Limit to be exceeded in certain cycles. Super-Carnot heat engines and heat pumps have been designed and a US patent has been awarded.
Ting, Hsien-Hung; Hou, Shuhn-Shyurng
2016-01-01
This study numerically investigates heat transfer augmentation using water-based Al2O3 and CuO nanofluids flowing in a triangular cross-sectional duct under constant heat flux in laminar flow conditions. The Al2O3/water nanofluids with different volume fractions (0.1%, 0.5%, 1%, 1.5%, and 2%) and CuO/water nanofluids with various volume fractions (0.05%, 0.16%, 0.36%, 0.5%, and 0.8%) are employed, and Reynolds numbers in the range of 700 to 1900 in a laminar flow are considered. The heat transfer rate becomes more remarkable when employing nanofluids. As compared with pure water, at a Peclet number of 7000, a 35% enhancement in the convective heat transfer coefficient, is obtained for an Al2O3/water nanofluid with 2% particle volume fraction; at the same Peclet number, a 41% enhancement in the convective heat transfer coefficient is achieved for a CuO/water nanofluid with 0.8% particle volume concentration. Heat transfer enhancement increases with increases in particle volume concentration and Peclet number. Moreover, the numerical results are found to be in good agreement with published experimental data. PMID:28773698
Joseph E. Mulrooney
2001-01-01
Transfer tests of technical malathion alone and in mixtures of different ratios of cottonseed oil (CSO) were conducted in the laboratory. A Potter spray tower was used to treat cotton leaves excised from plants grown in a greenhouse. Mixtures of malathion:CSO were applied first at constant volume and then at constant rate. CSO was found to enhance transfer of malathion...
Microcomputer-Based Programs for Pharmacokinetic Simulations.
ERIC Educational Resources Information Center
Li, Ronald C.; And Others
1995-01-01
Microcomputer software that simulates drug-concentration time profiles based on user-assigned pharmacokinetic parameters such as central volume of distribution, elimination rate constant, absorption rate constant, dosing regimens, and compartmental transfer rate constants is described. The software is recommended for use in undergraduate…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baensch, B.; Meier, M.; Martinez, P.
1994-10-12
The reversible intermolecular electron-transfer reaction between pentaammine(isonicotinamide)ruthenium(II/III) and horse-heart cytochrome c iron(III/II) was subjected to a detailed kinetic and thermodynamic study as a function of temperature and pressure. Theoretical calculations based on the Marcus-Hush theory were employed to predict all rate and equilibrium constants as well as activation parameters. There is an excellent agreement between the kinetically and thermodynamically determined equilibrium constants and associated pressure parameters. These data are used to construct a volume profile for the overall process, from which it follows that the transition state lies halfway between the reactant and product states on a volume basis. Themore » reorganization in the transition state has reached a similar degree in both directions of the electron-transfer process and corresponds to a {lambda}{sup {double_dagger}} value of 0.44 for this reversible reaction. This is the first complete volume profile analysis for a reversible intermolecular electron-transfer reaction.« less
NASA Astrophysics Data System (ADS)
Etminan, Amin; Harun, Zambri; Sharifian, Ahmad
2017-01-01
In this article distilled water and CuO particles with volume fraction of 1%, 2% and 4% are studied numerically. The steady state flow regime is considered laminar with Reynolds number of 100 and nanoparticles diameters (dp) are set in the range of 20 nm and 80 nm. The hydraulic diameter and the length of equilateral triangular channel are 8 mm and 1000 mm respectively. The problem is solved using finite volume method with constant heat flux for two sides and constant temperature for one side. Convective heat transfer coefficient, Nusselt number and convective heat transfer coefficient distribution on walls are investigated in details. The fluid flow is supposed to be one phase flow. It can be observed that nanofluid leads to a remarkable enhancement on heat transfer coefficient pressure loss through the channel. The computations reveal that the size of nanoparticles has no significant influence on heat transfer properties. Besides, the study shows a good agreement between current results and experimental data in the literatures.
Dahlqvist, M; Lagerstrand, L; Nilsen, A
1994-01-01
Acute temporary changes in lung function may be of use as a biological exposure indicator. However, studies of humans occupationally exposed to complex airborne irritants are often expensive and time demanding. Therefore, an animal model could be a valuable complement. A rabbit model has been evaluated where transfer factor was measured twice during the same day, and with the rabbit awake and available for exposure, in between. Anaesthesia and intubation in 22 rabbits (2.6 [0.2] kg [Mean (SD)]) were immediately followed by two measurements of transfer factor and alveolar volume. Transfer factor was estimated by the single breath CO-technique used in humans. The samples were analysed for CO and He on a gas chromatograph. After one pair of measurements the rabbit was allowed to wake up and after 5 h the duplicate measurements were repeated. The mean values of transfer factor, alveolar volume and transfer constant were 0.50 (0.09) mmol min-1 kPa-1, 127 (8) ml and 3.9 (0.6) mmol min-1 kPa-1 l-1, respectively. The intraindividual coefficients of variation were 7.3%, 5.3% and 6.7%, respectively. Five hours later when the duplicate measurements were repeated, transfer factor, alveolar volume and transfer constant were unchanged still. The results suggest that relatively small changes in transfer factor may be detected without losing power, and thus that this model could be used as a biological exposure indicator.
Slip-Flow and Heat Transfer of a Non-Newtonian Nanofluid in a Microtube
Niu, Jun; Fu, Ceji; Tan, Wenchang
2012-01-01
The slip-flow and heat transfer of a non-Newtonian nanofluid in a microtube is theoretically studied. The power-law rheology is adopted to describe the non-Newtonian characteristics of the flow, in which the fluid consistency coefficient and the flow behavior index depend on the nanoparticle volume fraction. The velocity profile, volumetric flow rate and local Nusselt number are calculated for different values of nanoparticle volume fraction and slip length. The results show that the influence of nanoparticle volume fraction on the flow of the nanofluid depends on the pressure gradient, which is quite different from that of the Newtonian nanofluid. Increase of the nanoparticle volume fraction has the effect to impede the flow at a small pressure gradient, but it changes to facilitate the flow when the pressure gradient is large enough. This remarkable phenomenon is observed when the tube radius shrinks to micrometer scale. On the other hand, we find that increase of the slip length always results in larger flow rate of the nanofluid. Furthermore, the heat transfer rate of the nanofluid in the microtube can be enhanced due to the non-Newtonian rheology and slip boundary effects. The thermally fully developed heat transfer rate under constant wall temperature and constant heat flux boundary conditions is also compared. PMID:22615961
Nguyen, T B; Cron, G O; Bezzina, K; Perdrizet, K; Torres, C H; Chakraborty, S; Woulfe, J; Jansen, G H; Thornhill, R E; Zanette, B; Cameron, I G
2016-12-01
Tumor CBV is a prognostic and predictive marker for patients with gliomas. Tumor CBV can be measured noninvasively with different MR imaging techniques; however, it is not clear which of these techniques most closely reflects histologically-measured tumor CBV. Our aim was to investigate the correlations between dynamic contrast-enhanced and DSC-MR imaging parameters and immunohistochemistry in patients with gliomas. Forty-three patients with a new diagnosis of glioma underwent a preoperative MR imaging examination with dynamic contrast-enhanced and DSC sequences. Unnormalized and normalized cerebral blood volume was obtained from DSC MR imaging. Two sets of plasma volume and volume transfer constant maps were obtained from dynamic contrast-enhanced MR imaging. Plasma volume obtained from the phase-derived vascular input function and bookend T1 mapping (Vp_Φ) and volume transfer constant obtained from phase-derived vascular input function and bookend T1 mapping (K trans _Φ) were determined. Plasma volume obtained from magnitude-derived vascular input function (Vp_SI) and volume transfer constant obtained from magnitude-derived vascular input function (K trans _SI) were acquired, without T1 mapping. Using CD34 staining, we measured microvessel density and microvessel area within 3 representative areas of the resected tumor specimen. The Mann-Whitney U test was used to test for differences according to grade and degree of enhancement. The Spearman correlation was performed to determine the relationship between dynamic contrast-enhanced and DSC parameters and histopathologic measurements. Microvessel area, microvessel density, dynamic contrast-enhanced, and DSC-MR imaging parameters varied according to the grade and degree of enhancement (P < .05). A strong correlation was found between microvessel area and Vp_Φ and between microvessel area and unnormalized blood volume (r s ≥ 0.61). A moderate correlation was found between microvessel area and normalized blood volume, microvessel area and Vp_SI, microvessel area and K trans _Φ, microvessel area and K trans _SI, microvessel density and Vp_Φ, microvessel density and unnormalized blood volume, and microvessel density and normalized blood volume (0.44 ≤ r s ≤ 0.57). A weaker correlation was found between microvessel density and K trans _Φ and between microvessel density and K trans _SI (r s ≤ 0.41). With dynamic contrast-enhanced MR imaging, use of a phase-derived vascular input function and bookend T1 mapping improves the correlation between immunohistochemistry and plasma volume, but not between immunohistochemistry and the volume transfer constant. With DSC-MR imaging, normalization of tumor CBV could decrease the correlation with microvessel area. © 2016 by American Journal of Neuroradiology.
Ahn, S S; Kim, S H; Lee, J E; Ahn, K J; Kim, D J; Choi, H S; Kim, J; Shin, N-Y; Lee, S-K
2015-02-01
BBB disruption after acute ischemic stroke and subsequent permeability increase may be enhanced by reperfusion. Agmatine has been reported to attenuate BBB disruption. Our aim was to evaluate the effects of agmatine on BBB stabilization in a rat model of transient cerebral ischemia by using permeability dynamic contrast-enhanced MR imaging at early stages and subsequently to demonstrate the feasibility of dynamic contrast-enhanced MR imaging for the investigation of new therapies. Thirty-four male Sprague-Dawley rats were subjected to transient MCA occlusion for 90 minutes. Immediately after reperfusion, agmatine (100 mg/kg) or normal saline was injected intraperitoneally into the agmatine-treated group (n = 17) or the control group, respectively. MR imaging was performed after reperfusion. For quantitative analysis, regions of interest were defined within the infarct area, and values for volume transfer constant, rate transfer coefficient, volume fraction of extravascular extracellular space, and volume fraction of blood plasma were obtained. Infarct volume, infarct growth, quantitative imaging parameters, and numbers of factor VIII-positive cells after immunohistochemical staining were compared between control and agmatine-treated groups. Among the permeability parameters, volume transfer constant and volume fraction of extravascular extracellular space were significantly lower in the agmatine-treated group compared with the control group (0.05 ± 0.02 minutes(-1) versus 0.08 ± 0.03 minute(-1), P = .012, for volume transfer constant and 0.12 ± 0.06 versus 0.22 ± 0.15, P = .02 for volume fraction of extravascular extracellular space). Other permeability parameters were not significantly different between the groups. The number of factor VIII-positive cells was less in the agmatine-treated group than in the control group (3-fold versus 4-fold, P = .037). In ischemic stroke, agmatine protects the BBB, which can be monitored in vivo by quantification of permeability by using dynamic contrast-enhanced MR imaging. Therefore, dynamic contrast-enhanced MR imaging may serve as a potential imaging biomarker for assessing the BBB stabilization properties of pharmacologic agents. © 2015 by American Journal of Neuroradiology.
NASA Astrophysics Data System (ADS)
Jayhooni, S. M. H.; Rahimpour, M. R.
2013-06-01
In the present paper, free convection fluid flow and heat transfer of various water based nanofluids has been investigated numerically around a spherical mini-reactor. This numerical simulation is a finite-volume, steady, two dimensions, elliptic and multi-grid solver. The wall of the spherical mini-reactor are maintained at constant temperature TH and the temperature of nanofluid far from it is considered constant (TC). Computational fluid dynamics (CFD) is used for solving the relevant mathematical expressions for free convection heat transfer around it. The numerical simulation and available correlation are valid for based fluid. The effects of pertinent parameters, such as, Rayleigh number, and the volume fraction of the nanoparticles in the fluid flow and heat transfer around the spherical mini-reactor are investigated. This study has been carried out for the pertinent parameters in the following ranges: the Rayleigh number of base fluid is assumed to be less than 109 (Ra < 109). Besides, the percentages of the volumetric fraction of nanoparticle which is used for preparing the nanofluids, are between 0 and 4 (0 ⩽ φ ⩽ 4%). The obtained results show that the average Nusselt number for a range of the solid volume fraction of the nanofluid increases by increasing the Rayleigh number. Finally, the heat transfer has been enhanced not only by increasing the particle volume fraction but also by decreasing the size of particle diameter. Moreover, the Churchill's correlation is approximately appropriate for predicting the free convection heat transfer inside diverse kinds of nanofluids especially for high range of Rayleigh numbers.
NASA Astrophysics Data System (ADS)
Bouakkaz, Rafik; Salhi, Fouzi; Khelili, Yacine; Quazzazi, Mohamed; Talbi, Kamel
2017-06-01
In this work, steady flow-field and heat transfer through a copper- water nanofluid around a rotating circular cylinder with a constant nondimensional rotation rate α varying from 0 to 5 was investigated for Reynolds numbers of 5-40. Furthermore, the range of nanoparticle volume fractions considered is 0-5%. The effect of volume fraction of nanoparticles on the fluid flow and heat transfer characteristics are carried out by using a finite-volume method based commercial computational fluid dynamics solver. The variation of the local and the average Nusselt numbers with Reynolds number, volume fractions, and rotation rate are presented for the range of conditions. The average Nusselt number is found to decrease with increasing value of the rotation rate for the fixed value of the Reynolds number and volume fraction of nanoparticles. In addition, rotation can be used as a drag reduction technique.
Space transfer vehicle concepts and requirements study. Volume 2, book 3: STV system interfaces
NASA Technical Reports Server (NTRS)
Weber, Gary A.
1991-01-01
This report presents the results of systems analyses and conceptual design of space transfer vehicles (STV). The missions examined included piloted and unpiloted lunar outpost support and spacecraft servicing, and unpiloted payload delivery to various earth and solar orbits. The study goal was to examine the mission requirements and provide a decision data base for future programmatic development plans. The final lunar transfer vehicles provided a wide range of capabilities and interface requirements while maintaining a constant payload mission model. Launch vehicle and space station sensitivity was examined, with the final vehicles as point design covering the range of possible options. Development programs were defined and technology readiness levels for different options were determined. Volume 1 presents the executive summary, volume 2 provides the study results, and volume 3 the cost and WBS data.
Passive air sampling theory for semivolatile organic compounds.
Bartkow, Michael E; Booij, Kees; Kennedy, Karen E; Müller, Jochen F; Hawker, Darryl W
2005-07-01
The mathematical modelling underlying passive air sampling theory can be based on mass transfer coefficients or rate constants. Generally, these models have not been inter-related. Starting with basic models, the exchange of chemicals between the gaseous phase and the sampler is developed using mass transfer coefficients and rate constants. Importantly, the inter-relationships between the approaches are demonstrated by relating uptake rate constants and loss rate constants to mass transfer coefficients when either sampler-side or air-side resistance is dominating chemical exchange. The influence of sampler area and sampler volume on chemical exchange is discussed in general terms and as they relate to frequently used parameters such as sampling rates and time to equilibrium. Where air-side or sampler-side resistance dominates, an increase in the surface area of the sampler will increase sampling rates. Sampling rates are not related to the sampler/air partition coefficient (K(SV)) when air-side resistance dominates and increase with K(SV) when sampler-side resistance dominates.
Convective mass transfer around a dissolving bubble
NASA Astrophysics Data System (ADS)
Duplat, Jerome; Grandemange, Mathieu; Poulain, Cedric
2017-11-01
Heat or mass transfer around an evaporating drop or condensing vapor bubble is a complex issue due to the interplay between the substrate properties, diffusion- and convection-driven mass transfer, and Marangoni effects, to mention but a few. In order to disentangle these mechanisms, we focus here mainly on the convective mass transfer contribution in an isothermal mass transfer problem. For this, we study the case of a millimetric carbon dioxide bubble which is suspended under a substrate and dissolved into pure liquid water. The high solubility of CO2 in water makes the liquid denser and promotes a buoyant-driven flow at a high (solutal) Rayleigh number (Ra˜104 ). The alteration of p H allows the concentration field in the liquid to be imaged by laser fluorescence enabling us to measure both the global mass flux (bubble volume, contact angle) and local mass flux around the bubble along time. After a short period of mass diffusion, where the boundary layer thickens like the square root of time, convection starts and the CO2 is carried by a plume falling at constant velocity. The boundary layer thickness then reaches a plateau which depends on the bubble cross section. Meanwhile the plume velocity scales like (dV /d t )1 /2 with V being the volume of the bubble. As for the rate of volume loss, we recover a constant mass flux in the diffusion-driven regime followed by a decrease in the volume V like V2 /3 after convection has started. We present a model which agrees well with the bubble dynamics and discuss our results in the context of droplet evaporation, as well as high Rayleigh convection.
The DTIC Review. Hybrid and Electronic Vehicles. Volume 4. Number 1, June 1998.
1998-06-01
ARGONNE NATIONAL LAB KIRTLAND AFB, NM IL (U) Constant-Thrust Orbit-Raising Transfer Charts. • (U) Dynamics and Controls in Maglev Systems DESCRIPTIVE...method to levitated ( MAGLEV ) ground transportation systems has generate minimum-fuel trajectories between coplanar important consequences for safety...satellite designers to control systems must be considered if MAGLEV systems assess preliminary fuel requirements for constant-thrust are to be economically
NASA Astrophysics Data System (ADS)
Kahani, M.; Zeinali Heris, S.; Mousavi, S. M.
2014-05-01
Coiled tubes and nanofludics are two significant techniques to enhance the heat transfer ability of thermal equipments. The forced convective heat transfer and the pressure drop of nanofluid inside straight tube and helical coiled one with a constant wall heat flux were studied experimentally. Distilled water was used as a host fluid and Nanofluids of aqueous TiO2 nanoparticles (50 nm) suspensions were prepared in various volume concentrations of 0.25-2 %. The heat transfer coefficient of nanofluids is obtained for different nanoparticle concentrations as well as various Reynolds numbers. The experiments covered a range of Reynolds number of 500-4,500. The results show the considerable enhancement of heat transfer rate, which is due to the nanoparticles present in the fluid. Heat transfer coefficient increases by increasing the volume concentration of nanoparticles as well as Reynolds number. Moreover, due to the curvature of the tube when fluid flows inside helical coiled tube instead of straight one, both convective heat transfer coefficient and the pressure drop of fluid grow considerably. Also, the thermal performance factors for tested nanofluids are greater than unity and the maximum thermal performance factor of 3.72 is found with the use of 2.0 % volume concentration of nanofluid at Reynolds number of 1,750.
Heat transfer measurements for Stirling machine cylinders
NASA Technical Reports Server (NTRS)
Kornhauser, Alan A.; Kafka, B. C.; Finkbeiner, D. L.; Cantelmi, F. C.
1994-01-01
The primary purpose of this study was to measure the effects of inflow-produced heat turbulence on heat transfer in Stirling machine cylinders. A secondary purpose was to provide new experimental information on heat transfer in gas springs without inflow. The apparatus for the experiment consisted of a varying-volume piston-cylinder space connected to a fixed volume space by an orifice. The orifice size could be varied to adjust the level of inflow-produced turbulence, or the orifice plate could be removed completely so as to merge the two spaces into a single gas spring space. Speed, cycle mean pressure, overall volume ratio, and varying volume space clearance ratio could also be adjusted. Volume, pressure in both spaces, and local heat flux at two locations were measured. The pressure and volume measurements were used to calculate area averaged heat flux, heat transfer hysteresis loss, and other heat transfer-related effects. Experiments in the one space arrangement extended the range of previous gas spring tests to lower volume ratio and higher nondimensional speed. The tests corroborated previous results and showed that analytic models for heat transfer and loss based on volume ratio approaching 1 were valid for volume ratios ranging from 1 to 2, a range covering most gas springs in Stirling machines. Data from experiments in the two space arrangement were first analyzed based on lumping the two spaces together and examining total loss and averaged heat transfer as a function of overall nondimensional parameter. Heat transfer and loss were found to be significantly increased by inflow-produced turbulence. These increases could be modeled by appropriate adjustment of empirical coefficients in an existing semi-analytic model. An attempt was made to use an inverse, parameter optimization procedure to find the heat transfer in each of the two spaces. This procedure was successful in retrieving this information from simulated pressure-volume data with artificially generated noise, but it failed with the actual experimental data. This is evidence that the models used in the parameter optimization procedure (and to generate the simulated data) were not correct. Data from the surface heat flux sensors indicated that the primary shortcoming of these models was that they assumed turbulence levels to be constant over the cycle. Sensor data in the varying volume space showed a large increase in heat flux, probably due to turbulence, during the expansion stroke.
NASA Astrophysics Data System (ADS)
Iyahraja, S.; Rajadurai, J. Selwin; Rajesh, S.; Pandian, R. Seeni Thangaraj; Kumaran, M. Selva; Selvakumar, G.
2018-07-01
In the present study, performance of convective heat transfer and friction factor of silver-water nanofluids in a horizontal circular pipe under turbulent flow were investigated experimentally under uniform heat flux condition. The volume concentration of silver nanoparticles is varied as 0.01, 0.05 and 0.1%. Heat transfer coefficient and friction factor of nanofluids were measured experimentally by varying the Reynolds number from 3000 to 21,000. It is observed that the addition of even low volume fraction of silver nanoparticles increases both Nusselt number and heat transfer coefficient of the nanofluid significantly. Nusselt number of silver-water nanofluid increases up to 32.6% for 0.1% volume fraction at Reynolds number of 21,000. However, the addition of nanoparticles in the base fluid increases the friction factor slightly. New empirical correlations are also proposed for the estimation of Nusselt number and friction factor of silver-water nanofluid based on the data of present experimental investigation. The proposed correlations of Nusselt number and friction factor show good agreement with their experimental data.
NASA Astrophysics Data System (ADS)
Iyahraja, S.; Rajadurai, J. Selwin; Rajesh, S.; Pandian, R. Seeni Thangaraj; Kumaran, M. Selva; Selvakumar, G.
2018-02-01
In the present study, performance of convective heat transfer and friction factor of silver-water nanofluids in a horizontal circular pipe under turbulent flow were investigated experimentally under uniform heat flux condition. The volume concentration of silver nanoparticles is varied as 0.01, 0.05 and 0.1%. Heat transfer coefficient and friction factor of nanofluids were measured experimentally by varying the Reynolds number from 3000 to 21,000. It is observed that the addition of even low volume fraction of silver nanoparticles increases both Nusselt number and heat transfer coefficient of the nanofluid significantly. Nusselt number of silver-water nanofluid increases up to 32.6% for 0.1% volume fraction at Reynolds number of 21,000. However, the addition of nanoparticles in the base fluid increases the friction factor slightly. New empirical correlations are also proposed for the estimation of Nusselt number and friction factor of silver-water nanofluid based on the data of present experimental investigation. The proposed correlations of Nusselt number and friction factor show good agreement with their experimental data.
NASA Astrophysics Data System (ADS)
Alosious, Sobin; R, Sarath S.; Nair, Anjan R.; Krishnakumar, K.
2017-12-01
Forced convective heat transfer of Al2O3 and CuO nanofluids through flat tube automobile radiator were studied experimentally and numerically. Nanofluids of 0.05% volume concentrations were prepared with Al2O3 and CuO nanoparticles having diameter below 50 nm. The working fluid recirculates through an automobile flat tube radiator with constant inlet temperature of 90 °C. Experiments were conducted by using water and nanofluids by varying the Reynolds numbers from 136 to 816. The flat tube of the radiator with same dimensions were modeled and numerically studied the heat transfer. The model includes the thickness of tube wall and also considers the effect of fins in the radiator. Numerical studies were carried out for six different volume concentrations from 0.05% to 1% and Reynolds number varied between 136 and 816 for both nanofluids. The results show an enhancement in heat transfer coefficient and effectiveness of radiator with increase in Reynolds number and volume concentration. A maximum enhancement of 13.2% and 16.4% in inside heat transfer coefficient were obtained for 1% concentration of CuO and Al2O3 nanofluids respectively. However increasing the volume concentration causes an increase in viscosity and density, which leads to an increase in pumping power. For same heat rejection of water, the area of the radiator can be reduced by 2.1% and 2.9% by using 1% concentration of CuO and Al2O3 nanofluids respectively. The optimum values of volume concentration were found to be 0.4% to 0.8% in which heat transfer enhancement dominates pumping power increase. Al2O3 nanofluids gives the maximum heat transfer enhancement and stability compared to CuO nanofluids.
Abdeen, Nishard; Cross, Albert; Cron, Gregory; White, Steven; Rand, Thomas; Miller, David; Santyr, Giles
2006-08-01
We used the dual capability of hyperpolarized 129Xe for spectroscopy and imaging to develop new measures of xenon diffusing capacity in the rat lung that (analogously to the diffusing capacity of carbon monoxide or DLCO) are calculated as a product of total lung volume and gas transfer rate constants divided by the pressure gradient. Under conditions of known constant pressure breath-hold, the volume is measured by hyperpolarized 129Xe MRI, and the transfer rate is measured by dynamic spectroscopy. The new quantities (xenon diffusing capacity in lung parenchyma (DLXeLP)), xenon diffusing capacity in RBCs (DLXeRBC), and total lung xenon diffusing capacity (DLXe)) were measured in six normal rats and six rats with lung inflammation induced by instillation of fungal spores of Stachybotrys chartarum. DLXeLP, DLXeRBC, and DLXe were 56 +/- 10 ml/min/mmHg, 64 +/- 35 ml/min/mmHg, and 29 +/- 9 ml/min/mmHg, respectively, for normal rats, and 27 +/- 9 ml/min/mmHg, 42 +/- 27 ml/min/mmHg, and 16 +/- 7 ml/min/mmHg, respectively, for diseased rats. Lung volumes and gas transfer times for LP (TtrLP) were 16 +/- 2 ml and 22 +/- 3 ms, respectively, for normal rats and 12 +/- 2 ml and 35 +/- 8 ms, respectively, for diseased rats. Xenon diffusing capacities may be useful for measuring changes in gas exchange associated with inflammation and other lung diseases. Copyright 2006 Wiley-Liss, Inc.
On the brittle nature of rare earth pnictides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shriya, S.; Sapkale, R.; Varshney, Dinesh, E-mail: vdinesh33@rediffmail.com, E-mail: sapkale.raju@rediffmail.com
The high-pressure structural phase transition and pressure as well temperature induced elastic properties in ReY; (Re = La, Sc, Pr; Y = N, P, As, Sb, Bi) pnictides have been performed using effective interionic interaction potential with emphasis on charge transfer interactions and covalent contribution. Estimated values of phase transition pressure and the volume discontinuity in pressure-volume phase diagram indicate the structural phase transition from NaCl to CsCl structure. From the investigations of elastic constants the pressure (temperature) dependent volume collapse/expansion, second order Cauchy discrepancy, anisotropy, hardness and brittle/ductile nature of rare earth pnictides are computed.
NASA Astrophysics Data System (ADS)
Jafarimoghaddam, Amin; Aberoumand, Sadegh; Jafarimoghaddam, Reza
2017-12-01
This study aims to experimentally investigate and introduce a new model for enhancing convective heat transfer in the presence of Ag/ oil nanofluid. An annular tube was designed with a turbine element attached to the inner tube. The inner tube was a bearing shaft which could rotate with the rotation of turbine element. As the previous works by authors, the setup was conducted with a fully developed laminar flow regime with the Reynolds numbers less than 160. The outer surface of the annular tube was heated by an element with constant heat flux of 204 W. Ag/ oil nanofluid was used in different volume concentrations of 0.011%, 0.044% and 0.171%. The new model could enhance the convective heat transfer coefficient up to 54% (compared to the simple annular tube in the case of base fluid) for the best studied case (nanofluid with the volume concentration of 0.171%) while the friction factor remained low. The new model can be applied for related applications regarding Ag/ oil nanofluid as a new step in enhancing the convective heat transfer coefficient.
NASA Astrophysics Data System (ADS)
Jafarimoghaddam, Amin; Aberoumand, Sadegh; Jafarimoghaddam, Reza
2018-05-01
This study aims to experimentally investigate and introduce a new model for enhancing convective heat transfer in the presence of Ag/ oil nanofluid. An annular tube was designed with a turbine element attached to the inner tube. The inner tube was a bearing shaft which could rotate with the rotation of turbine element. As the previous works by authors, the setup was conducted with a fully developed laminar flow regime with the Reynolds numbers less than 160. The outer surface of the annular tube was heated by an element with constant heat flux of 204 W. Ag/ oil nanofluid was used in different volume concentrations of 0.011%, 0.044% and 0.171%. The new model could enhance the convective heat transfer coefficient up to 54% (compared to the simple annular tube in the case of base fluid) for the best studied case (nanofluid with the volume concentration of 0.171%) while the friction factor remained low. The new model can be applied for related applications regarding Ag/ oil nanofluid as a new step in enhancing the convective heat transfer coefficient.
NASA Astrophysics Data System (ADS)
Akbari, Omid Ali; Toghraie, Davood; Karimipour, Arash; Marzban, Ali; Ahmadi, Gholam Reza
2017-02-01
In this investigation, the behavior of non-Newtonian nanofluid hydrodynamic and heat transfer are simulated. In this study, we numerically simulated a laminar forced non-Newtonian nanofluid flow containing a 0.5 wt% carboxy methyl cellulose (CMC) solutionin water as the base fluid with alumina at volume fractions of 0.5 and 1.5 as the solid nanoparticle. Numerical solution was modelled in Cartesian coordinate system in a two-dimensional microchannel in Reynolds number range of 10≤Re≤1000. The analyzed geometrical space here was a rectangular part of whose upper and bottom walls was influenced by a constant temperature. The effect of volume fraction of the nanoparticles, Reynolds number and non-Newtonian nanofluids was studied. In this research, the changes pressure drop, the Nusselt number, dimensionless temperature and heat transfer coefficient, caused by the motion of non-Newtonian nanofluids are described. The results indicated that the increase of the volume fraction of the solid nanoparticles and a reduction in the diameter of the nanoparticles would improve heat transfer which is more significant in Reynolds number. The results of the introduced parameters in the form of graphs drawing and for different parameters are compared.
NASA Astrophysics Data System (ADS)
Arslanturk, Cihat
2011-02-01
Although tapered fins transfer more rate of heat per unit volume, they are not found in every practical application because of the difficulty in manufacturing and fabrications. Therefore, there is a scope to modify the geometry of a constant thickness fin in view of the less difficulty in manufacturing and fabrication as well as betterment of heat transfer rate per unit volume of the fin material. For the better utilization of fin material, it is proposed a modified geometry of new fin with a step change in thickness (SF) in the literature. In the present paper, the homotopy perturbation method has been used to evaluate the temperature distribution within the straight radiating fins with a step change in thickness and variable thermal conductivity. The temperature profile has an abrupt change in the temperature gradient where the step change in thickness occurs and thermal conductivity parameter describing the variation of thermal conductivity has an important role on the temperature profile and the heat transfer rate. The optimum geometry which maximizes the heat transfer rate for a given fin volume has been found. The derived condition of optimality gives an open choice to the designer.
NASA Astrophysics Data System (ADS)
Dodd, Michael; Ferrante, Antonino
2017-11-01
Our objective is to perform DNS of finite-size droplets that are evaporating in isotropic turbulence. This requires fully resolving the process of momentum, heat, and mass transfer between the droplets and surrounding gas. We developed a combined volume-of-fluid (VOF) method and low-Mach-number approach to simulate this flow. The two main novelties of the method are: (i) the VOF algorithm captures the motion of the liquid gas interface in the presence of mass transfer due to evaporation and condensation without requiring a projection step for the liquid velocity, and (ii) the low-Mach-number approach allows for local volume changes caused by phase change while the total volume of the liquid-gas system is constant. The method is verified against an analytical solution for a Stefan flow problem, and the D2 law is verified for a single droplet in quiescent gas. We also demonstrate the schemes robustness when performing DNS of an evaporating droplet in forced isotropic turbulence.
Dynamically controlled crystallization method and apparatus and crystals obtained thereby
NASA Technical Reports Server (NTRS)
Arnowitz, Leonard (Inventor); Steinberg, Emanuel (Inventor)
1999-01-01
A method and apparatus for dynamically controlling the crystallization of proteins including a crystallization chamber or chambers for holding a protein in a salt solution, one or more salt solution chambers, two communication passages respectively coupling the crystallization chamber with each of the salt solution chambers, and transfer mechanisms configured to respectively transfer salt solution between each of the salt solution chambers and the crystallization chamber. The transfer mechanisms are interlocked to maintain the volume of salt solution in the crystallization chamber substantially constant. Salt solution of different concentrations is transferred into and out of the crystallization chamber to adjust the salt concentration in the crystallization chamber to achieve precise control of the crystallization process.
Benefits of slush hydrogen for space missions
NASA Technical Reports Server (NTRS)
Friedlander, Alan; Zubrin, Robert; Hardy, Terry L.
1991-01-01
A study was performed to quantify the benefits of using slush hydrogen instead of normal boiling point liquid hydrogen as a fuel for several space missions. Vehicles considered in the study included the Space Shuttle/Shuttle-C, LEO to GEO transfer vehicles, Lunar and Mars transfer vehicles, and cryogenic depots in low Earth orbit. The advantages of using slush hydrogen were expressed in terms of initial mass differences at a constant payload, payload differences at a constant tank volume, and increases in fuel storage time for cryogenic depots. Both chemical oxygen/hydrogen and hydrogen nuclear thermal rocket propulsion were considered in the study. The results indicated that slush hydrogen offers the potential for significant decreases in initial mass and increases in payload for most missions studied. These advantages increase as the mission difficulty, or energy, increases.
Kazi, Salim Newaz; Sadeghinezhad, Emad
2014-01-01
Thermal characteristics of turbulent nanofluid flow in a rectangular pipe have been investigated numerically. The continuity, momentum, and energy equations were solved by means of a finite volume method (FVM). The symmetrical rectangular channel is heated at the top and bottom at a constant heat flux while the sides walls are insulated. Four different types of nanoparticles Al2O3, ZnO, CuO, and SiO2 at different volume fractions of nanofluids in the range of 1% to 5% are considered in the present investigation. In this paper, effect of different Reynolds numbers in the range of 5000 < Re < 25000 on heat transfer characteristics of nanofluids flowing through the channel is investigated. The numerical results indicate that SiO2-water has the highest Nusselt number compared to other nanofluids while it has the lowest heat transfer coefficient due to low thermal conductivity. The Nusselt number increases with the increase of the Reynolds number and the volume fraction of nanoparticles. The results of simulation show a good agreement with the existing experimental correlations. PMID:25254236
Yarmand, Hooman; Gharehkhani, Samira; Kazi, Salim Newaz; Sadeghinezhad, Emad; Safaei, Mohammad Reza
2014-01-01
Thermal characteristics of turbulent nanofluid flow in a rectangular pipe have been investigated numerically. The continuity, momentum, and energy equations were solved by means of a finite volume method (FVM). The symmetrical rectangular channel is heated at the top and bottom at a constant heat flux while the sides walls are insulated. Four different types of nanoparticles Al2O3, ZnO, CuO, and SiO2 at different volume fractions of nanofluids in the range of 1% to 5% are considered in the present investigation. In this paper, effect of different Reynolds numbers in the range of 5000 < Re < 25000 on heat transfer characteristics of nanofluids flowing through the channel is investigated. The numerical results indicate that SiO2-water has the highest Nusselt number compared to other nanofluids while it has the lowest heat transfer coefficient due to low thermal conductivity. The Nusselt number increases with the increase of the Reynolds number and the volume fraction of nanoparticles. The results of simulation show a good agreement with the existing experimental correlations.
NASA Technical Reports Server (NTRS)
Hollis, Brian R.
1995-01-01
A FORTRAN computer code for the reduction and analysis of experimental heat transfer data has been developed. This code can be utilized to determine heat transfer rates from surface temperature measurements made using either thin-film resistance gages or coaxial surface thermocouples. Both an analytical and a numerical finite-volume heat transfer model are implemented in this code. The analytical solution is based on a one-dimensional, semi-infinite wall thickness model with the approximation of constant substrate thermal properties, which is empirically corrected for the effects of variable thermal properties. The finite-volume solution is based on a one-dimensional, implicit discretization. The finite-volume model directly incorporates the effects of variable substrate thermal properties and does not require the semi-finite wall thickness approximation used in the analytical model. This model also includes the option of a multiple-layer substrate. Fast, accurate results can be obtained using either method. This code has been used to reduce several sets of aerodynamic heating data, of which samples are included in this report.
Application handbook for a Standardized Control Module (SCM) for DC-DC converters, volume 1
NASA Astrophysics Data System (ADS)
Lee, F. C.; Mahmoud, M. F.; Yu, Y.
1980-04-01
The standardized control module (SCM) was developed for application in the buck, boost and buck/boost DC-DC converters. The SCM used multiple feedback loops to provide improved input line and output load regulation, stable feedback control system, good dynamic transient response and adaptive compensation of the control loop for changes in open loop gain and output filter time constraints. The necessary modeling and analysis tools to aid the design engineer in the application of the SCM to DC-DC Converters were developed. The SCM functional block diagram and the different analysis techniques were examined. The average time domain analysis technique was chosen as the basic analytical tool. The power stage transfer functions were developed for the buck, boost and buck/boost converters. The analog signal and digital signal processor transfer functions were developed for the three DC-DC Converter types using the constant on time, constant off time and constant frequency control laws.
Application handbook for a Standardized Control Module (SCM) for DC-DC converters, volume 1
NASA Technical Reports Server (NTRS)
Lee, F. C.; Mahmoud, M. F.; Yu, Y.
1980-01-01
The standardized control module (SCM) was developed for application in the buck, boost and buck/boost DC-DC converters. The SCM used multiple feedback loops to provide improved input line and output load regulation, stable feedback control system, good dynamic transient response and adaptive compensation of the control loop for changes in open loop gain and output filter time constraints. The necessary modeling and analysis tools to aid the design engineer in the application of the SCM to DC-DC Converters were developed. The SCM functional block diagram and the different analysis techniques were examined. The average time domain analysis technique was chosen as the basic analytical tool. The power stage transfer functions were developed for the buck, boost and buck/boost converters. The analog signal and digital signal processor transfer functions were developed for the three DC-DC Converter types using the constant on time, constant off time and constant frequency control laws.
NASA Astrophysics Data System (ADS)
Chavan, Durgeshkumar; Pise, Ashok T.
2015-09-01
In the present paper, experimental study is performed to investigate convective heat transfer and flow characteristics of nanofluids through a circular tube. The heat transfer coefficient and friction factor of the γ-Al2O3-water nanofluid flowing through a pipe of 10 mm inner ID and 1 m in length, with constant wall temperature under turbulent flow conditions are investigated. Experiments are conducted with 30 nm size γ-Al2O3 nanoparticle with a volume fraction between 0.1 and to 1.0 and Reynolds number between 8,000 and 14,000. Experimental results emphasize the heat transfer enhancement with the increase in a Reynolds number or nanoparticle volume fraction. The maximum enhancement of 36 % in the heat transfer coefficient for a Reynolds number of 8,550, by using nanofluid with 1.0 vol% was observed compared with base fluid. Experimental measurement also shows the considerable increase in the pressure drop with small addition of nanoparticles in base fluid. Experimental results of nanofluids were compared with existing convective heat transfer correlations in the turbulent regime. Comparison shows that Maiga's correlation has close agreement with experimental results in comparison with Dittus Boelter correlation.
NASA Astrophysics Data System (ADS)
Khorasanizadeh, H.; Fakhari, M. M.; Ghaffari, S. P.
2015-05-01
Heat transfer enhancement or deterioration of variable properties Al2O3-EG-water nanofluid natural convection in a differentially heated rectangular cavity has been investigated numerically. A finite volume approach has been utilized to solve the governing equations for a Newtonian fluid. The influences of the pertinent parameters such as Rayleigh number, Ra, in the range of 103-107 and nanoparticles volume fraction from 0 to 0.04 have been studied. The results verified by making overall comparison with some existing experimental results have shown that for Ra = 103, for which conduction heat transfer is dominant, the average Nusselt number increases as nanoparticles volume fraction increases, but contradictory with the constant properties cases it decreases for higher Ra values. This reduction, which is associated with the increased viscosity, is more severe at Ra = 104 and the least deterioration in heat transfer occurs for Ra = 107. This is due to the fact that the Brownian motion enhances as Ra increases; thus at Ra = 107 the improved conductivity becomes more important than viscosity enhancement. To clarify the contradictory reports existing in the literature on the natural convection heat transfer enhancement or deterioration of nanofluids, a scale analysis performed showed that unlike methods of evaluating the base fluid Ra have led to such differences.
NASA Astrophysics Data System (ADS)
Salehin, Musfequs; Ehsan, Mohammad Monjurul; Islam, A. K. M. Sadrul
2017-06-01
Heat transfer enhancement by corrugation in fluid domain is a popular method. The rate of improvement is more when it is used highly thermal conductive fluid as heating or cooling medium. In this present study, heat transfer augmentation was investigated numerically by implementing corrugation in the fluid domain and nanofluid as the base fluid in the turbulent forced convection regime. Finite volume method (FVM) was applied to solve the continuity, momentum and energy equations. All the numerical simulations were considered for single phase flow. A rectangle corrugated pipe with 5000 W/m2 constant heat flux subjected to the corrugated wall was considered as the fluid domain. In the range of Reynolds number 15000 to 40000, thermo-physical and hydrodynamic behavior was investigated by using CuO-water nanofluid from 1% to 5% volume fraction as the base fluid through the corrugated fluid domain. Corrugation justification was performed by changing the amplitude of the corrugation and the corrugation wave length for obtaining the increased heat transfer rate with minimum pumping power. For using CuO-water nanofluid, augmentation was also found more in the rectangle corrugated pipe both in heat transfer and pumping power requirement with the increase of Reynolds number and the volume fraction of nanofluid. For the increased pumping power, optimization of pumping power by using nanofluid was also performed for economic finding.
Ma, Wanling; Li, Na; Zhao, Weiwei; Ren, Jing; Wei, Mengqi; Yang, Yong; Wang, Yingmei; Fu, Xin; Zhang, Zhuoli; Larson, Andrew C; Huan, Yi
2016-01-01
To clarify diffusion and perfusion abnormalities and evaluate correlation between apparent diffusion coefficient (ADC), MR perfusion and histopathologic parameters of pancreatic cancer (PC). Eighteen patients with PC underwent diffusion-weighted imaging and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). Parameters of DCE-MRI and ADC of cancer and non-cancerous tissue were compared. Correlation between the rate constant that represents transfer of contrast agent from the arterial blood into the extravascular extracellular space (K, volume of the extravascular extracellular space per unit volume of tissue (Ve), and ADC of PC and histopathologic parameters were analyzed. The rate constant that represents transfer of contrast agent from the extravascular extracellular space into blood plasma, K, tissue volume fraction occupied by vascular space, and ADC of PC were significantly lower than nontumoral pancreases. Ve of PC was significantly higher than that of nontumoral pancreas. Apparent diffusion coefficient and K values of PC were negatively correlated to fibrosis content and fibroblast activation protein staining score. Fibrosis content was positively correlated to Ve. Apparent diffusion coefficient values and parameters of DCE-MRI can differentiate PC from nontumoral pancreases. There are correlations between ADC, K, Ve, and fibrosis content of PC. Fibroblast activation protein staining score of PC is negatively correlated to ADC and K. Apparent diffusion coefficient, K, and Ve may be feasible to predict prognosis of PC.
Förste, Alexander; Pfirrmann, Marco; Sachs, Johannes; Gröger, Roland; Walheim, Stefan; Brinkmann, Falko; Hirtz, Michael; Fuchs, Harald; Schimmel, Thomas
2015-05-01
There are only few quantitative studies commenting on the writing process in dip-pen nanolithography with lipids. Lipids are important carrier ink molecules for the delivery of bio-functional patters in bio-nanotechnology. In order to better understand and control the writing process, more information on the transfer of lipid material from the tip to the substrate is needed. The dependence of the transferred ink volume on the dwell time of the tip on the substrate was investigated by topography measurements with an atomic force microscope (AFM) that is characterized by an ultra-large scan range of 800 × 800 μm(2). For this purpose arrays of dots of the phospholipid1,2-dioleoyl-sn-glycero-3-phosphocholine were written onto planar glass substrates and the resulting pattern was imaged by large scan area AFM. Two writing regimes were identified, characterized of either a steady decline or a constant ink volume transfer per dot feature. For the steady state ink transfer, a linear relationship between the dwell time and the dot volume was determined, which is characterized by a flow rate of about 16 femtoliters per second. A dependence of the ink transport from the length of pauses before and in between writing the structures was observed and should be taken into account during pattern design when aiming at best writing homogeneity. The ultra-large scan range of the utilized AFM allowed for a simultaneous study of the entire preparation area of almost 1 mm(2), yielding good statistic results.
NASA Astrophysics Data System (ADS)
Förste, Alexander; Pfirrmann, Marco; Sachs, Johannes; Gröger, Roland; Walheim, Stefan; Brinkmann, Falko; Hirtz, Michael; Fuchs, Harald; Schimmel, Thomas
2015-05-01
There are only few quantitative studies commenting on the writing process in dip-pen nanolithography with lipids. Lipids are important carrier ink molecules for the delivery of bio-functional patters in bio-nanotechnology. In order to better understand and control the writing process, more information on the transfer of lipid material from the tip to the substrate is needed. The dependence of the transferred ink volume on the dwell time of the tip on the substrate was investigated by topography measurements with an atomic force microscope (AFM) that is characterized by an ultra-large scan range of 800 × 800 μm2. For this purpose arrays of dots of the phospholipid1,2-dioleoyl-sn-glycero-3-phosphocholine were written onto planar glass substrates and the resulting pattern was imaged by large scan area AFM. Two writing regimes were identified, characterized of either a steady decline or a constant ink volume transfer per dot feature. For the steady state ink transfer, a linear relationship between the dwell time and the dot volume was determined, which is characterized by a flow rate of about 16 femtoliters per second. A dependence of the ink transport from the length of pauses before and in between writing the structures was observed and should be taken into account during pattern design when aiming at best writing homogeneity. The ultra-large scan range of the utilized AFM allowed for a simultaneous study of the entire preparation area of almost 1 mm2, yielding good statistic results.
NASA Astrophysics Data System (ADS)
Hassanpour, Amin; Ranjbar, A. A.; Sheikholeslami, M.
2018-02-01
In this research, flow and forced convection heat transfer of a water-copper nanofluid in the presence of magnetic field is studied. The walls of the square ventilation cavity are insulated. The dominating equations are solved by implementing the finite-volume method (FVM) using the Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) algorithm. The effects of Hartmann number, nanoparticles volume fraction and Reynolds number on the flow and heat transfer characteristics were examined. The results demonstrate that increasing Reynolds and Hartmann numbers lead to increase the average Nusselt number. By evaluating the geometrical parameters, it was found that the size and number of vortices in the flow field decrease by increasing the inlet width. Besides, the increase of the average Nusselt number occurs with the increase of the inlet width. Moreover, it has been observed that the effect of the Hartmann number is more pronounced for higher Reynolds numbers.
NASA Astrophysics Data System (ADS)
Togun, Hussein
2016-03-01
This paper presents a numerical investigate on CuO-water nano-fluid and heat transfer in a backward-facing step with and without obstacle. The range of Reynolds number varied from 75 to 225 with volume fraction on CuO nanoparticles varied from 1 to 4 % at constant heat flux was investigated. Continuity, momentum, and energy equations with finite volume method in two dimensions were employed. Four different configurations of backward-facing step (without obstacle, with obstacle of 1.5 mm, with obstacle of 3 mm, with obstacle of 4.5 mm) were considered to find the best thermal performance. The results show that the maximum augmentation in heat transfer was about 22 % for backward-facing step with obstacle of 4.5 mm and using CuO nanoparticles at Reynolds number of 225 compared with backward-facing step without obstacle. It is also observed that increase in size of recirculation region with increase of height obstacle on the channel wall has remarkable effect on thermal performance. The results also found that increases in Reynolds number, height obstacle, and volume fractions of CuO nanoparticles lead to increase of pressure drop.
High pressure and temperature induced structural and elastic properties of lutetium chalcogenides
NASA Astrophysics Data System (ADS)
Shriya, S.; Kinge, R.; Khenata, R.; Varshney, Dinesh
2018-04-01
The high-pressure structural phase transition and pressure as well temperature induced elastic properties of rock salt to CsCl structures in semiconducting LuX (X = S, Se, and Te) chalcogenides compound have been performed using effective interionic interaction potential with emphasis on charge transfer interactions and covalent contribution. Estimated values of phase transition pressure and the volume discontinuity in pressure-volume phase diagram indicate the structural phase transition from ZnS to NaCl structure. From the investigations of elastic constants the pressure (temperature) dependent volume collapse/expansion, melting temperature TM, Hardness (HV), and young modulus (E) the LuX lattice infers mechanical stiffening, and thermal softening.
A novel pressure-driven piezodispenser for nanoliter volumes.
McGuire, Shawn; Fisher, Charles; Holl, Mark; Meldrum, Deirdre
2008-08-01
A successful dispensing device has been built for use in biotechnology applications requiring nanoliter volume liquid transfer. Air pressure is used as the primary driving force and is controlled via a high speed miniature solenoid valve as opposed to many existing systems that use a valve in line with constantly pressurized fluid to start and stop the dispensing action. This automated pressure-driven system is used to improve a typical piezodriven microdispenser. The resulting system is much less prone to failures resulting from air entrainment and can dispense much higher viscosity fluids than the microdispenser alone.
NASA Technical Reports Server (NTRS)
Ohri, A. K.; Wilson, T. G.; Owen, H. A., Jr.
1977-01-01
A procedure is presented for designing air-gapped energy-storage reactors for nine different dc-to-dc converters resulting from combinations of three single-winding power stages for voltage stepup, current stepup and voltage stepup/current stepup and three controllers with control laws that impose constant-frequency, constant transistor on-time and constant transistor off-time operation. The analysis, based on the energy-transfer requirement of the reactor, leads to a simple relationship for the required minimum volume of the air gap. Determination of this minimum air gap volume then permits the selection of either an air gap or a cross-sectional core area. Having picked one parameter, the minimum value of the other immediately leads to selection of the physical magnetic structure. Other analytically derived equations are used to obtain values for the required turns, the inductance, and the maximum rms winding current. The design procedure is applicable to a wide range of magnetic material characteristics and physical configurations for the air-gapped magnetic structure.
Experimental Studies on Grooved Double Pipe Heat Exchanger with Different Groove Space
NASA Astrophysics Data System (ADS)
Sunu, P. W.; Arsawan, I. M.; Anakottapary, D. S.; Santosa, I. D. M. C.; Yasa, I. K. A.
2018-01-01
Experimental studies were performed on grooved double pipe heat exchanger (DPHE) with different groove space. The objective of this work is to determine optimal heat transfer parameter especially logarithmic mean temperature difference (LMTD). The document in this paper also provides the total heat observed by the cold fluid. The rectangular grooves were incised on outer surface of tube side with circumferential pattern and two different grooves space, namely 1 mm and 2 mm. The distance between grooves and the grooves high were kept constant, 8 mm and 0.3 mm respectively. The tube diameter is 20 mm and its made of aluminium. The shell is made of acrylic which has 28 mm in diameter. Water is used as the working fluid. Using counter flow scheme, the cold fluid flows in the annulus room of DPHE. The volume flowrate of hot fluid remains constant at 15 lpm. The volume flowrate of cold fluid were varied from 11 lpm to 15 lpm. Based on logarithmic mean temperature difference analysis, the LMTD of 1 mm grooves space was higher compared to that of 2 mm grooves space. The smaller grooves space has more advantage since the recirculating region are increased which essentially cause larger heat transfer enhancement.
Intriguingly high convective heat transfer enhancement of nanofluid coolants in laminar flows
NASA Astrophysics Data System (ADS)
Xie, Huaqing; Li, Yang; Yu, Wei
2010-05-01
We reported on investigation of the convective heat transfer enhancement of nanofluids as coolants in laminar flows inside a circular copper tube with constant wall temperature. Nanofluids containing Al 2O 3, ZnO, TiO 2, and MgO nanoparticles were prepared with a mixture of 55 vol.% distilled water and 45 vol.% ethylene glycol as base fluid. It was found that the heat transfer behaviors of the nanofluids were highly depended on the volume fraction, average size, species of the suspended nanoparticles and the flow conditions. MgO, Al 2O 3, and ZnO nanofluids exhibited superior enhancements of heat transfer coefficient, with the highest enhancement up to 252% at a Reynolds number of 1000 for MgO nanofluid. Our results demonstrated that these oxide nanofluids might be promising alternatives for conventional coolants.
Heat-transfer tests of aqueous ethylene glycol solutions in an electrically heated tube
NASA Technical Reports Server (NTRS)
Bernardo, Everett; Eian, Carroll S
1945-01-01
As part of an investigation of the cooling characteristics of liquid-cooled engines, tests were conducted with an electrically heated single-tube heat exchanger to determine the heat-transfer characteristics of an-e-2 ethylene glycol and other ethylene glycol-water mixtures. Similar tests were conducted with water and commercial butanol (n-butyl alcohol) for check purposes. The results of tests conducted at an approximately constant liquid-flow rate of 0.67 pound per second (Reynolds number, 14,500 to 112,500) indicate that at an average liquid temperature 200 degrees f, the heat-transfer coefficients obtained using water, nominal (by volume) 30 percent-70 percent and 70 percent-30 percent glycol-water mixtures are approximately 3.8, 2.8, and 1.4 times higher, respectively, than the heat-transfer coefficients obtained using an-e-2 ethylene glycol.
Influence of nanofluids on the efficiency of Flat-Plate Solar Collectors (FPSC)
NASA Astrophysics Data System (ADS)
Nejad, Marjan B.; Mohammed, H. A.; Sadeghi, O.; Zubeer, Swar A.
2017-11-01
A numerical investigation is performed using finite volume method to study the laminar heat transfer in a three-dimensional flat-plate solar collector using different nanofluids as working fluids. Three nanofluids with different types of nanoparticles (Ag, MWCNT and Al2O3 dispersed in water) with 1-2 wt% volume fractions are analyzed. A constant heat flux, equivalent to solar radiation absorbed by the collector, is applied at the top surface of the absorber plate. In this study, several parameters including boundary conditions (different volume flow rates, different fluid inlet temperatures and different solar irradiance at Skudai, Malaysia), different types of nanoparticles, and different solar collector tilt angles are investigated to identify their effects on the heat transfer performance of FPSC. The numerical results reveal that the three types of nanofluid enhance the thermal performance of solar collector compared to pure water and FPSC with Ag nanofluid has the best thermal performance enhancement. For all the cases, the collector efficiency increased with the increase of volume flow rate while fluid outlet temperature decreased. It is found that FPSC with tilt angle of 10° and fluid inlet temperature of 301.15 K has the best thermal performance.
Lyons, K. David; James, Robert; Berry, David A.; Gardner, Todd
2004-09-21
The invention provides a method and apparatus for producing a synthesis gas from a variety of hydrocarbons. The apparatus (device) consists of a semi-batch, non-constant volume reactor to generate a synthesis gas. While the apparatus feeds mixtures of air, steam, and hydrocarbons into a cylinder where work is performed on the fluid by a piston to adiabatically raise its temperature without heat transfer from an external source.
Kensy, Frank; Zimmermann, Hartmut F; Knabben, Ingo; Anderlei, Tibor; Trauthwein, Harald; Dingerdissen, Uwe; Büchs, Jochen
2005-03-20
Oxygen limitation is one of the most frequent problems associated with the application of shaking bioreactors. The gas-liquid oxygen transfer properties of shaken 48-well microtiter plates (MTPs) were analyzed at different filling volumes, shaking diameters, and shaking frequencies. On the one hand, an optical method based on sulfite oxidation was used as a chemical model system to determine the maximum oxygen transfer capacity (OTR(max)). On the other hand, the Respiration Activity Monitoring System (RAMOS) was applied for online measurement of the oxygen transfer rate (OTR) during growth of the methylotropic yeast Hansenula polymorpha. A proportionality constant between the OTR(max) of the biological system and the OTR(max) of the chemical system were indicated from these data, offering the possibility to transform the whole set of chemical data to biologically relevant conditions. The results exposed "out of phase" shaking conditions at a shaking diameter of 1 mm, which were confirmed by theoretical consideration with the phase number (Ph). At larger shaking diameters (2-50 mm) the oxygen transfer rate in MTPs shaken at high frequencies reached values of up to 0.28 mol/L/h, corresponding to a volumetric mass transfer coefficient (k(L)a) of 1,600 1/h. The specific mass transfer area (a) increases exponentially with the shaking frequency up to values of 2,400 1/m. On the contrary, the mass transfer coefficient (k(L)) is constant at a level of about 0.15 m/h over a wide range of shaking frequencies and shaking diameters. However, at high shaking frequencies, when the complete liquid volume forms a thin film on the cylindric wall of the well, the mass transfer coefficient (k(L)) increases linearly to values of up to 0.76 m/h. Essentially, the present investigation demonstrates that the 48-well plate outperforms the 96-well MTP and shake flasks at widely used operating conditions with respect to oxygen supply. The 48-well plates emerge, therefore, as an excellent alternative for microbial cultivation and expression studies combining the advantages of both the high-throughput 96-well MTP and the classical shaken Erlenmeyer flask.
Oxygen transfer rate estimation in oxidation ditches from clean water measurements.
Abusam, A; Keesman, K J; Meinema, K; Van Straten, G
2001-06-01
Standard methods for the determination of oxygen transfer rate are based on assumptions that are not valid for oxidation ditches. This paper presents a realistic and simple new method to be used in the estimation of oxygen transfer rate in oxidation ditches from clean water measurements. The new method uses a loop-of-CSTRs model, which can be easily incorporated within control algorithms, for modelling oxidation ditches. Further, this method assumes zero oxygen transfer rates (KLa) in the unaerated CSTRs. Application of a formal estimation procedure to real data revealed that the aeration constant (k = KLaVA, where VA is the volume of the aerated CSTR) can be determined significantly more accurately than KLa and VA. Therefore, the new method estimates k instead of KLa. From application to real data, this method proved to be more accurate than the commonly used Dutch standard method (STORA, 1980).
NASA Astrophysics Data System (ADS)
Hassan, Ali; Ramzan, Naveed; Umer, Asim; Ahmad, Ayyaz; Muryam, Hina
2018-02-01
The enhancement in the convective heat transfer coefficient of the ethylene glycol (EG) base cuprous oxide (Cu2O) nanofluids were investigated. The nanofluids of different volume concentrations i-e 1%, 2.5% and 4.5% were prepared by the two step method. Cuprous oxide (Cu2O) nanoparticles were ultrasonically stirred for four hours in the ethylene glycol (EG). The experimental study has been performed through circular tube geometry in laminar flow regime at average Reynolds numbers 36, 71 and 116. The constant heat flux Q = 4000 (W/m2) was maintained during this work. Substantial enhancement was observed in the convective heat transfer coefficient of ethylene glycol (EG) base cuprous oxide (Cu2O) nanofluids than the base fluid. The maximum 74% enhancement was observed in convective heat transfer coefficient at 4.5 vol% concentration and Re = 116.
Heat transfer behaviours of nanofluids in a uniformly heated tube
NASA Astrophysics Data System (ADS)
Maı̈ga, Sidi El Bécaye; Nguyen, Cong Tam; Galanis, Nicolas; Roy, Gilles
2004-03-01
In the present work, we consider the problem of the forced convection flow of water- γAl 2O 3 and ethylene glycol- γAl 2O 3 nanofluids inside a uniformly heated tube that is submitted to a constant and uniform heat flux at the wall. In general, it is observed that the inclusion of nanoparticles has increased considerably the heat transfer at the tube wall for both the laminar and turbulent regimes. Such improvement of heat transfer becomes more pronounced with the increase of the particle concentration. On the other hand, the presence of particles has produced adverse effects on the wall friction that also increases with the particle volume concentration. Results have also shown that the ethylene glycol- γAl 2O 3 mixture gives a far better heat transfer enhancement than the water- γAl 2O 3 mixture.
Primary propulsion/large space system interaction study
NASA Technical Reports Server (NTRS)
Coyner, J. V.; Dergance, R. H.; Robertson, R. I.; Wiggins, J. V.
1981-01-01
An interaction study was conducted between propulsion systems and large space structures to determine the effect of low thrust primary propulsion system characteristics on the mass, area, and orbit transfer characteristics of large space systems (LSS). The LSS which were considered would be deployed from the space shuttle orbiter bay in low Earth orbit, then transferred to geosynchronous equatorial orbit by their own propulsion systems. The types of structures studied were the expandable box truss, hoop and column, and wrap radial rib each with various surface mesh densities. The impact of the acceleration forces on system sizing was determined and the effects of single point, multipoint, and transient thrust applications were examined. Orbit transfer strategies were analyzed to determine the required velocity increment, burn time, trip time, and payload capability over a range of final acceleration levels. Variables considered were number of perigee burns, delivered specific impulse, and constant thrust and constant acceleration modes of propulsion. Propulsion stages were sized for four propellant combinations; oxygen/hydrogen, oxygen/methane, oxygen/kerosene, and nitrogen tetroxide/monomethylhydrazine, for pump fed and pressure fed engine systems. Two types of tankage configurations were evaluated, minimum length to maximize available payload volume and maximum performance to maximize available payload mass.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Redies, C.; Hoffer, L.J.; Beil, C.
In prolonged fasting, the brain derives a large portion of its oxidative energy from the ketone bodies, beta-hydroxybutyrate and acetoacetate, thereby reducing whole body glucose consumption. Energy substrate utilization differs regionally in the brain of fasting rat, but comparable information has hitherto been unavailable in humans. We used positron emission tomography (PET) to study regional brain glucose and oxygen metabolism, blood flow, and blood volume in four obese subjects before and after a 3-wk total fast. Whole brain glucose utilization fell to 54% of control (postabsorptive) values (P less than 0.002). The whole brain rate constant for glucose tracer phosphorylationmore » fell to 51% of control values (P less than 0.002). Both parameters decreased uniformly throughout the brain. The 2-fluoro-2-deoxy-D-glucose lumped constant decreased from a control value of 0.57 to 0.43 (P less than 0.01). Regional blood-brain barrier transfer coefficients for glucose tracer, regional oxygen utilization, blood flow, and blood volume were unchanged.« less
40 CFR 86.519-90 - Constant volume sampler calibration.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 19 2013-07-01 2013-07-01 false Constant volume sampler calibration... Regulations for 1978 and Later New Motorcycles; Test Procedures § 86.519-90 Constant volume sampler calibration. (a) The CVS (Constant Volume Sampler) is calibrated using an accurate flowmeter and restrictor...
40 CFR 86.519-90 - Constant volume sampler calibration.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Constant volume sampler calibration... Regulations for 1978 and Later New Motorcycles; Test Procedures § 86.519-90 Constant volume sampler calibration. (a) The CVS (Constant Volume Sampler) is calibrated using an accurate flowmeter and restrictor...
40 CFR 86.519-90 - Constant volume sampler calibration.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Constant volume sampler calibration... Regulations for 1978 and Later New Motorcycles; Test Procedures § 86.519-90 Constant volume sampler calibration. (a) The CVS (Constant Volume Sampler) is calibrated using an accurate flowmeter and restrictor...
40 CFR 86.519-90 - Constant volume sampler calibration.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 19 2014-07-01 2014-07-01 false Constant volume sampler calibration... Regulations for 1978 and Later New Motorcycles; Test Procedures § 86.519-90 Constant volume sampler calibration. (a) The CVS (Constant Volume Sampler) is calibrated using an accurate flowmeter and restrictor...
40 CFR 86.519-90 - Constant volume sampler calibration.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Constant volume sampler calibration... Regulations for 1978 and Later New Motorcycles; Test Procedures § 86.519-90 Constant volume sampler calibration. (a) The CVS (Constant Volume Sampler) is calibrated using an accurate flowmeter and restrictor...
Salman, Sami D.; Kadhum, Abdul Amir H.; Takriff, Mohd S.; Mohamad, Abu Bakar
2014-01-01
Numerical investigation has been carried out on heat transfer and friction factor characteristics of copper-water nanofluid flow in a constant heat-fluxed tube with the existence of new configuration of vortex generator using Computational Fluid Dynamics (CFD) simulation. Two types of swirl flow generator: Classical twisted tape (CTT) and Parabolic-cut twisted tape (PCT) with a different twist ratio (y = 2.93, 3.91 and 4.89) and different cut depth (w = 0.5, 1.0 and 1.5 cm) with 2% and 4% volume concentration of CuO nanofluid were used for simulation. The effect of different parameters such as flow Reynolds number, twist ratio, cut depth and nanofluid were considered. The results show that the enhancement of heat transfer rate and the friction factor induced by the Classical (CTT) and Parabolic-cut (PCT) inserts increases with twist ratio and cut depth decreases. The results also revealed that the heat transfer enhancement increases with an increase in the volume fraction of the CuO nanoparticle. Furthermore, the twisted tape with twist ratio (y = 2.93) and cut depth w = 0.5 cm offered 10% enhancement of the average Nusselt number with significant increases in friction factor than those of Classical twisted tape. PMID:24605055
NASA Astrophysics Data System (ADS)
Nabil, M. F.; Azmi, W. H.; Hamid, K. A.; Mamat, R.
2017-10-01
The need for high performance of heat transfer has been evaluated by finding different ways to enhance heat transfer rate in fluid. One of the methods is the combination of two or more nanoparticles and it is known as hybrid/composite nanofluids which can give better performance of heat transfer. Thus, the present study focused on combination of Titanium oxide (TiO2) and Silicon oxide (SiO2) nanoparticles dispersed in 60:40 volume ratio of water and ethylene glycol mixture as the base fluid. The TiO2-SiO2 hybrid nanofluids are prepared using two-step method for different concentration of 2.0%, 2.5% and 3.0%. The experimental determination of heat transfer coefficients are conducted in the Reynolds numbers range from 2000 to 10000 at a bulk temperature of 30°C. The experiments are undertaken for constant heat flux in a circular tube. The Nusselt number of composite TiO2- SiO2 nanofluids is observed to be higher than the base fluid. The finding on heat transfer coefficient shows that 3.0% volume concentration is the highest enhancement with 45.9% compared with base fluid. While at concentration 2.0% and 2.5%, the enhancement recorded were 29.4% and 33.2%, respectively. The friction factor of nanofluids shows a decreased with the increasing of Reynolds numbers. However, the friction factor slightly increased with the increased of concentration.
Simulation of forced convection in a channel with nanofluid by the lattice Boltzmann method
2013-01-01
This paper presents a numerical study of the thermal performance of fins mounted on the bottom wall of a horizontal channel and cooled with either pure water or an Al2O3-water nanofluid. The bottom wall of the channel is heated at a constant temperature and cooled by mixed convection of laminar flow at a relatively low temperature. The results of the numerical simulation indicate that the heat transfer rate of fins is significantly affected by the Reynolds number (Re) and the thermal conductivity of the fins. The influence of the solid volume fraction on the increase of heat transfer is more noticeable at higher values of the Re. PMID:23594696
NASA Astrophysics Data System (ADS)
Najafi Khaboshan, Hasan; Nazif, Hamid Reza
2018-04-01
Heat transfer and turbulent flow of Al2O3-water nanofluid within alternating oval cross-section tube are numerically simulated using Eulerian-Eulerian two-phase mixture model. The primary goal of the present study is to investigate the effects of nanoparticles volume fraction, nanoparticles diameter and different inlet velocities on heat transfer, pressure drop and entropy generation characteristics of the alternating oval cross-section tube. For numerical simulation validation, the numerical results were compared with experimental data. Also, constant wall temperature boundary condition was considered on the tube wall. In addition, the comparison of thermal-hydraulic performance and the entropy generation characteristics between alternating oval cross-section tube and circular tube under same fluids were done. The results show that the heat transfer coefficient and pressure drop of alternating oval cross-section tube is more than base tube under same fluids. Also, these two parameters are increased when adding Al2O3 nanoparticle into water fluid, at any inlet velocity for both tubes. Furthermore, compared to the base fluid, the value of the heat transfer enhancement of nanofluid is higher than the increase of friction factor of nanofluid at the same given inlet boundary conditions. The results of entropy generation analysis illustrate that the total entropy generation increase with increasing the nanoparticles volume fraction and decreasing the nanoparticles diameter of nanofluid. The generation of thermal entropy is the main part of irreversibility, and Bejan number with an increase of the nanoparticles diameter slightly increases. Finally, at any given inlet velocity the frictional irreversibility is grown with an increase the nanoparticles volume fraction.
Numerical analysis of the forced convective heat transfer on Al2O3-Cu/water hybrid nanofluid
NASA Astrophysics Data System (ADS)
Rahman, Mohd Rosdzimin Abdul; Leong, Kin Yuen; Idris, Azam Che; Saad, Mohd Rashdan; Anwar, Mahmood
2017-05-01
A numerical investigation to elucidate thermal behavior of hybrid nanofluids consisting of Al2O3 and Cu nanoparticles at ratio of 90:10 was conducted. Numerical domain of a two-dimensional axisymmetric copper tube with a length of 1000 and 10 mm in diameter is used. A uniform axial velocity is assigned at the velocity inlet based on the Reynolds number. The outer wall of the tube consists of non-slip wall condition with a constant heat flux. The assumptions of this numerical analysis are; (1) there is a steady state analysis, (2) effective thermo-physical properties of the nanofluid are depend on the volume concentration, and (3) fluid is continuum. It is found that the dominant nanoparticle in the hybrid nanofluids strongly influences the thermal behavior of the hybrid nanofluids. It was also found that the heat transfer coefficient increases as the volume concentration of the hybrid nanoparticle increases in base fluids and the Reynolds number.
Bruder, Friedrich-Karl; Hagen, Rainer; Rölle, Thomas; Weiser, Marc-Stephan; Fäcke, Thomas
2011-05-09
Optical data storage has had a major impact on daily life since its introduction to the market in 1982. Compact discs (CDs), digital versatile discs (DVDs), and Blu-ray discs (BDs) are universal data-storage formats with the advantage that the reading and writing of the digital data does not require contact and is therefore wear-free. These formats allow convenient and fast data access, high transfer rates, and electricity-free data storage with low overall archiving costs. The driving force for development in this area is the constant need for increased data-storage capacity and transfer rate. The use of holographic principles for optical data storage is an elegant way to increase the storage capacity and the transfer rate, because by this technique the data can be stored in the volume of the storage material and, moreover, it can be optically processed in parallel. This Review describes the fundamental requirements for holographic data-storage materials and compares the general concepts for the materials used. An overview of the performance of current read-write devices shows how far holographic data storage has already been developed. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The acoustical structure of highly porous open-cell foams
NASA Technical Reports Server (NTRS)
Lambert, R. F.
1982-01-01
This work concerns both the theoretical prediction and measurement of structural parameters in open-cell highly porous polyurethane foams. Of particular interest are the dynamic flow resistance, thermal time constant, and mass structure factor and their dependence on frequency and geometry of the cellular structure. The predictions of cell size parameters, static flow resistance, and heat transfer as accounted for by a Nusselt number are compared with measurement. Since the static flow resistance and inverse thermal time constant are interrelated via the 'mean' pore size parameter of Biot, only two independent measurements such as volume porosity and mean filament diameter are required to make the predictions for a given fluid condition. The agreements between this theory and nonacoustical experiments are excellent.
Michelan, Rogério; Zimmer, Thiago R; Rodrigues, José A D; Ratusznei, Suzana M; de Moraes, Deovaldo; Zaiat, Marcelo; Foresti, Eugenio
2009-03-01
The effect of flow type and rotor speed was investigated in a round-bottom reactor with 5 L useful volume containing 2.0 L of granular biomass. The reactor treated 2.0 L of synthetic wastewater with a concentration of 800 mgCOD/L in 8-h cycles at 30 degrees C. Five impellers, commonly used in biological processes, have been employed to this end, namely: a turbine and a paddle impeller with six-vertical-flat-blades, a turbine and a paddle impeller with six-45 degrees -inclined-flat-blades and a three-blade-helix impeller. Results showed that altering impeller type and rotor speed did not significantly affect system stability and performance. Average organic matter removal efficiency was about 84% for filtered samples, total volatile acids concentration was below 20 mgHAc/L and bicarbonate alkalinity a little less than 400 mgCaCO3/L for most of the investigated conditions. However, analysis of the first-order kinetic model constants showed that alteration in rotor speed resulted in an increase in the values of the kinetic constants (for instance, from 0.57 h(-1) at 50 rpm to 0.84 h(-1) at 75 rpm when the paddle impeller with six-45 degrees -inclined-flat-blades was used) and that axial flow in mechanically stirred reactors is preferable over radial-flow when the vertical-flat-blade impeller is compared to the inclined-flat-blade impeller (for instance at 75 rpm, from 0.52 h(-1) with the six-flat-blade-paddle impeller to 0.84 h(-1) with the six-45 degrees -inclined-flat-blade-paddle impeller), demonstrating that there is a rotor speed and an impeller type that maximize solid-liquid mass transfer in the reaction medium. Furthermore, power consumption studies in this reduced reactor volume showed that no high power transfer is required to improve mass transfer (less than 0.6 kW/10(3)m3).
On the pressure and temperature dependent ductile, brittle nature of SmS1-xSex semiconductor
NASA Astrophysics Data System (ADS)
Shriya, S.; Khan, E.; Khenata, R.; Varshney, Dinesh
2018-04-01
The high-pressure structural phase transition and pressure as well temperature induced elastic properties of rocksalt to CsCl structures of SmS1-xSex (x = 0, 0.11, 0.44, 1) compound have been performed using effective interionic interaction potential with emphasis on charge transfer interactions and covalent contribution. Estimated values of phase transition pressure and the volume discontinuity in pressure-volume phase diagram indicate the structural phase transition from ZnS to NaCl structure. From the investigations of elastic constants the pressure (temperature) dependent volume collapse/expansion, melting temperature TM, Hardness (HV), Poisson's ratio ν and Pugh ratio ϕ (= BT/GH) the SmS1-xSex (x = 0, 0.11, 0.44, 1) lattice infers mechanical stiffening, thermal softening, and ductile (brittle) nature.
NASA Astrophysics Data System (ADS)
Aman, Sidra; Zuki Salleh, Mohd; Ismail, Zulkhibri; Khan, Ilyas
2017-09-01
This article focuses on the flow of Maxwell nanofluids with graphene nanoparticles over a vertical plate (static) with constant wall temperature. Possessing high thermal conductivity, engine oil is useful to be chosen as base fluid with free convection. The problem is modelled in terms of PDE’s with boundary conditions. Some suitable non-dimensional variables are interposed to transform the governing equations into dimensionless form. The generated equations are solved via Laplace transform technique. Exact solutions are evaluated for velocity and temperature. These solutions are significantly controlled by some parameters involved. Temperature rises with elevation in volume fraction while Velocity decreases with increment in volume fraction. A comparison with previous published results are established and discussed. Moreover, a detailed discussion is made for influence of volume fraction on the flow and heat profile.
2014-08-06
the pressure field is uniform across them, but which allow mass flow to be diverted. Series elements have a constant mass flow across the ports...they can be used to calculate the pressure and mass flow after the element from the pressure and mass flow prior to the element, as shown in...the matrix product of each transfer matrix in turn. The final matrix gives no information about the pressures and mass flows within the element
NASA Astrophysics Data System (ADS)
Aghaei, Alireza; Khorasanizadeh, Hossein; Sheikhzadeh, Ghanbarali; Abbaszadeh, Mahmoud
2016-04-01
The flow under influence of magnetic field is experienced in cooling electronic devices and voltage transformers, nuclear reactors, biochemistry and in physical phenomenon like geology. In this study, the effects of magnetic field on the flow field, heat transfer and entropy generation of Cu-water nanofluid mixed convection in a trapezoidal enclosure have been investigated. The top lid is cold and moving toward right or left, the bottom wall is hot and the side walls are insulated and their angle from the horizon are 15°, 30°, 45° and 60°. Simulations have been carried out for constant Grashof number of 104, Reynolds numbers of 30, 100, 300 and 1000, Hartmann numbers of 25, 50, 75 and 100 and nanoparticles volume fractions of zero up to 0.04. The finite volume method and SIMPLER algorithm have been utilized to solve the governing equations numerically. The results showed that with imposing the magnetic field and enhancing it, the nanofluid convection and the strength of flow decrease and the flow tends toward natural convection and finally toward pure conduction. For this reason, for all of the considered Reynolds numbers and volume fractions, by increasing the Hartmann number the average Nusselt number decreases. Furthermore, for any case with constant Reynolds and Hartmann numbers by increasing the volume fraction of nanoparticles the maximum stream function decreases. For all of the studied cases, entropy generation due to friction is negligible and the total entropy generation is mainly due to irreversibility associated with heat transfer and variation of the total entropy generation with Hartmann number is similar to that of the average Nusselt number. With change in lid movement direction at Reynolds number of 30 the average Nusselt number and total entropy generation are changed, but at Reynolds number of 1000 it has a negligible effect.
Solidification of high temperature molten salts for thermal energy storage systems
NASA Technical Reports Server (NTRS)
Sheffield, J. W.
1981-01-01
The solidification of phase change materials for the high temperature thermal energy storage system of an advanced solar thermal power system has been examined theoretically. In light of the particular thermophysical properties of candidate phase change high temperature salts, such as the eutectic mixture of NaF - MgF2, the heat transfer characteristics of one-dimensional inward solidification for a cylindrical geometry have been studied. The Biot number for the solidified salt is shown to be the critical design parameter for constant extraction heat flux. A fin-on-fin design concept of heat transfer surface augmentation is proposed in an effort to minimize the effects of the salt's low thermal conductivity and large volume change upon fusing.
Dynamically controlled crystallization method and apparatus and crystals obtained thereby
NASA Technical Reports Server (NTRS)
Arnowitz, Leonard (Inventor); Steinberg, Emanuel (Inventor)
2003-01-01
A method and apparatus for dynamically controlling the crystallization of molecules including a crystallization chamber (14) or chambers for holding molecules in a precipitant solution, one or more precipitant solution reservoirs (16, 18), communication passages (17, 19) respectively coupling the crystallization chamber(s) with each of the precipitant solution reservoirs, and transfer mechanisms (20, 21, 22, 24, 26, 28) configured to respectively transfer precipitant solution between each of the precipitant solution reservoirs and the crystallization chamber(s). The transfer mechanisms are interlocked to maintain a constant volume of precipitant solution in the crystallization chamber(s). Precipitant solutions of different concentrations are transferred into and out of the crystallization chamber(s) to adjust the concentration of precipitant in the crystallization chamber(s) to achieve precise control of the crystallization process. The method and apparatus can be used effectively to grow crystals under reduced gravity conditions such as microgravity conditions of space, and under conditions of reduced or enhanced effective gravity as induced by a powerful magnetic field.
Charge transfer and adsorption-desorption kinetics in carbon nanotube and graphene gas sensing
NASA Astrophysics Data System (ADS)
Liang, Sang-Zi; Chen, Gugang; Harutyunyan, Avetik; Cole, Milton; Sofo, Jorge
2014-03-01
Detection of molecules in the gas phase by carbon nanotube and graphene has great application potentials due to the high sensitivity and surface-to-volume ratio. In chemiresistor, the conductance of the materials has been proposed to change as a result of charge transfer from the adsorbed molecules. Due to self-interaction errors, calculations using LDA or GGA density functionals have an innate disadvantage in dealing with charge transfer situations. A model which takes into consideration the dielectric interaction between the graphene surface and the molecule is employed to estimate the distance where charge transfer becomes favorable. Adsorption-desorption kinetics is studied with a modified Langmuir model, including sites from which the molecules do not desorb within the experimental time. Assuming a constant mobility, the model reproduces existing experimental conductance data. Its parameters provide information about the microscopic process during the detection and varying them allows optimization of aspects of sensor performance, including sensitivity, detection limit and response time. This work is supported by Honda Research Institute USA, Inc.
NASA Astrophysics Data System (ADS)
Armaghani, T.; Esmaeili, H.; Mohammadpoor, Y. A.; Pop, I.
2018-01-01
In this paper, the steady mixed convection flow and heat transfer of water-copper oxide nanofluid in an open C-shaped enclosure is investigated numerically. The enclosure is under constant magnetic field. Effects of Richardson number, magnetic and nanofluid volume fraction parameters are studied and discussed. The nanofluid with a cold temperature of T C and a velocity of u c enters the enclosure from the top right corner and exits from the bottom right corner. The vertical wall of the left side is subjected to a hot and constant temperature T h . Also, other walls are insulated. It is found that the heat transfer is increased via increasing the Hartmann and Reynolds numbers. For low Reynolds numbers, the enhances of the Hartman number leads to a slightly increases of the average Nusselt number, but for high Reynolds numbers, the average Nusselt number gets an ascending trend and the increase in the Hartmann number shows its effect more pronounced. Also, with increase in Ri, the effect of nanofluid on the heat transfer increases. Due to practical impotence, the study of mixed convection heat transfer in enclosures and various shaped of cavities has attracted remarkable attentions in the past few decades. Significant applications of the mixed convection flow can be found in atmospheric flows, solar energy storage, heat exchangers, lubrication technology, drying technologies, cooling of the electronic devices, etc. The present results are original and new for the problem of MHD mixed convection flow and heat transfer in an open C-shaped enclosure using water-copper oxide nanofluid. Comparison of the obtained results with those from the open literature (Mahmoodi et al. [24]) is acceptable.
NASA Astrophysics Data System (ADS)
Armaghani, T.; Esmaeili, H.; Mohammadpoor, Y. A.; Pop, I.
2018-06-01
In this paper, the steady mixed convection flow and heat transfer of water-copper oxide nanofluid in an open C-shaped enclosure is investigated numerically. The enclosure is under constant magnetic field. Effects of Richardson number, magnetic and nanofluid volume fraction parameters are studied and discussed. The nanofluid with a cold temperature of T C and a velocity of u c enters the enclosure from the top right corner and exits from the bottom right corner. The vertical wall of the left side is subjected to a hot and constant temperature T h . Also, other walls are insulated. It is found that the heat transfer is increased via increasing the Hartmann and Reynolds numbers. For low Reynolds numbers, the enhances of the Hartman number leads to a slightly increases of the average Nusselt number, but for high Reynolds numbers, the average Nusselt number gets an ascending trend and the increase in the Hartmann number shows its effect more pronounced. Also, with increase in Ri, the effect of nanofluid on the heat transfer increases. Due to practical impotence, the study of mixed convection heat transfer in enclosures and various shaped of cavities has attracted remarkable attentions in the past few decades. Significant applications of the mixed convection flow can be found in atmospheric flows, solar energy storage, heat exchangers, lubrication technology, drying technologies, cooling of the electronic devices, etc. The present results are original and new for the problem of MHD mixed convection flow and heat transfer in an open C-shaped enclosure using water-copper oxide nanofluid. Comparison of the obtained results with those from the open literature (Mahmoodi et al. [24]) is acceptable.
Sackmann, Eric K; Majlof, Lars; Hahn-Windgassen, Annett; Eaton, Brent; Bandzava, Temo; Daulton, Jay; Vandenbroucke, Arne; Mock, Matthew; Stearns, Richard G; Hinkson, Stephen; Datwani, Sammy S
2016-02-01
Acoustic liquid handling uses high-frequency acoustic signals that are focused on the surface of a fluid to eject droplets with high accuracy and precision for various life science applications. Here we present a multiwell source plate, the Echo Qualified Reservoir (ER), which can acoustically transfer over 2.5 mL of fluid per well in 25-nL increments using an Echo 525 liquid handler. We demonstrate two Labcyte technologies-Dynamic Fluid Analysis (DFA) methods and a high-voltage (HV) grid-that are required to maintain accurate and precise fluid transfers from the ER at this volume scale. DFA methods were employed to dynamically assess the energy requirements of the fluid and adjust the acoustic ejection parameters to maintain a constant velocity droplet. Furthermore, we demonstrate that the HV grid enhances droplet velocity and coalescence at the destination plate. These technologies enabled 5-µL per destination well transfers to a 384-well plate, with accuracy and precision values better than 4%. Last, we used the ER and Echo 525 liquid handler to perform a quantitative polymerase chain reaction (qPCR) assay to demonstrate an application that benefits from the flexibility and larger volume capabilities of the ER. © 2015 Society for Laboratory Automation and Screening.
NASA Astrophysics Data System (ADS)
Rezaei, Omid; Akbari, Omid Ali; Marzban, Ali; Toghraie, Davood; Pourfattah, Farzad; Mashayekhi, Ramin
2017-09-01
In this presentation, the flow and heat transfer inside a microchannel with a triangular section, have been numerically simulated. In this three-dimensional simulation, the flow has been considered turbulent. In order to increase the heat transfer of the channel walls, the semi-truncated and semi-attached ribs have been placed inside the channel and the effect of forms and numbers of ribs has been studied. In this research, the base fluid is Water and the effect of volume fraction of Al2O3 nanoparticles on the amount of heat transfer and physics of flow have been investigated. The presented results are including of the distribution of Nusselt number in the channel, friction coefficient and Performance Evaluation Criterion of each different arrangement. The results indicate that, the ribs affect the physics of flow and their influence is absolutely related to Reynolds number of flow. Also, the investigation of the used semi-truncated and semi-attached ribs in Reynolds number indicates that, although heat transfer increases, but more pressure drop arises. Therefore, in this method, in order to improve the heat transfer from the walls of microchannel on the constant heat flux, using the pump is demanded.
The efficiency of combustion turbines with constant-pressure combustion
NASA Technical Reports Server (NTRS)
Piening, Werner
1941-01-01
Of the two fundamental cycles employed in combustion turbines, namely, the explosion (or constant-volume) cycle and the constant-pressure cycle, the latter is considered more in detail and its efficiency is derived with the aid of the cycle diagrams for the several cases with adiabatic and isothermal compression and expansion strokes and with and without utilization of the exhaust heat. Account is also taken of the separate efficiencies of the turbine and compressor and of the pressure losses and heat transfer in the piping. The results show that without the utilization of the exhaust heat the efficiencies for the two cases of adiabatic and isothermal compression is offset by the increase in the heat supplied. It may be seen from the curves that it is necessary to attain separate efficiencies of at least 80 percent in order for useful results to be obtained. There is further shown the considerable effect on the efficiency of pressure losses in piping or heat exchangers.
NASA Astrophysics Data System (ADS)
Hatami, M.; Zhou, J.; Geng, J.; Jing, D.
2018-04-01
In this paper, the effect of a variable magnetic field (VMF) on the natural convection heat transfer of Fe3O4-water nanofluid in a half-annulus cavity is studied by finite element method using FlexPDE commercial code. After deriving the governing equations and solving the problem by defined boundary conditions, the effects of three main parameters (Hartmann Number (Ha), nanoparticles volume fraction (φ) and Rayleigh number (Ra)) on the local and average Nusselt numbers of inner wall are investigated. As a main outcome, results confirm that in low Eckert numbers, increasing the Hartmann number make a decrease on the Nusselt number due to Lorentz force resulting from the presence of stronger magnetic field.
NASA Astrophysics Data System (ADS)
Yamaji, Minoru; Oshima, Juro; Hidaka, Motohiko
2009-06-01
Evidence for the coupled electron/proton transfer mechanism of the phenolic H-atom transfer between triplet π,π ∗ 3,3'-carbonylbis(7-diethylaminocoumarin) and phenol derivatives is obtained by using laser photolysis techniques. It was confirmed that the quenching rate constants of triplet CBC by phenols having positive Hammett constants do not follow the Rehm-Weller equation for electron transfer while those by phenols with negative Hammett constants do it. From the viewpoint of thermodynamic parameters for electron transfer, the crucial factors for phenolic H-atom transfer to π,π ∗ triplet are discussed.
Mishellany-Dutour, Anne; Woda, Alain; Labouré, Hélène; Bourdiol, Pierre; Lachaze, Pauline; Guichard, Elisabeth; Feron, Gilles
2012-01-01
We hypothesized that interindividual differences in motor activities during chewing and/or swallowing were determining factors for the transfer of volatile aroma from the in-mouth air cavity (IMAC) toward the olfactory mucosa. In our first experiment, we looked for changes in IMAC volume after saliva deglutition in 12 healthy subjects. The mean IMAC volume was measured after empty deglutition using an acoustic pharyngometer device. Based on the time course of the IMAC volume after swallowing, we discerned two groups of subjects. The first group displayed a small, constant IMAC volume (2.26 mL ±0.62) that corresponded to a high tongue position. The second group displayed a progressive increase in IMAC (from 6.82 mL ±2.37 to 22.82 mL ±3.04) that corresponded to a progressive lowering of the tongue to its resting position. In our second experiment, we investigated the relationship between IMAC volume changes after deglutition and the level of aroma release at the nostril. For this purpose, the release of menthone was measured at the nostril level in 25 subjects who consumed similar amounts of a mint tablet. The subjects were separated into two groups corresponding to two levels of menthone release: high (H) and low (L). The mean volume of IMAC was measured during and after empty deglutition. Group H displayed a small, constant amplitude of IMAC volume change after deglutition, while Group L displayed a progressive increase in IMAC. It is likely that Group H continuously released the aroma through the veloglossal isthmus as the mint was consumed, while Group L trapped the aroma in the oral cavity and then released it into the nasal cavity upon swallowing. These results show that the in vivo aroma release profile in humans depends closely on the different motor patterns at work during empty deglutition. PMID:22815986
Modeling experimental stable isotope results from CO2 adsorption and diffusion experiments
NASA Astrophysics Data System (ADS)
Larson, T. E.
2012-12-01
Transport of carbon dioxide through porous media can be affected by diffusion, advection and adsorption processes. Developing new tools to understand which of these processes dominates migration of CO2 or other gases in the subsurface is important to a wide range of applications including CO2 storage. Whereas advection rates are not affected by isotope substitution in CO2, adsorption and diffusion constants are. For example, differences in the binary diffusion constant calculated between C12O2-He and C13O2-He results in a carbon isotope fractionation whereby the front of the chromatographic peak is enriched in carbon-12 and the tail of the peak is enriched in carbon-13. Interestingly, adsorption is shown to have an opposite, apparent inverse affect whereby the lighter isotopologues of CO2 are preferentially retained by the chromatographic column and the heavier isotopologues are eluted first. This apparent inverse chromatographic effect has been ascribed to Van der Waals dispersion forces. Smaller molar volumes of the heavier isotopologues resulting from increased bond strength (shorter bond length) effectively decreases Van der Waals forces in heavier isotopologues compared to lighter isotopologues. Here we discuss the possible application of stable isotope values measured across chromatographic peaks to differentiate diffusion-dominated from adsorption-dominated transport processes for CO2. Separate 1-dimensional flow-through columns were packed with quartz and illite, and one remained empty. Dry helium was used as a carrier gas. Constant flow rate, temperature and column pressure were maintained. After background CO2 concentrations were minimized and constant, a sustained pulse of CO2 was injected at the head of the column and the effluent was sampled at 4 minute intervals for CO2 concentration, and carbon and oxygen isotope ratios. The quartz-sand packed and empty columns resulted in similar trends in concentration and isotope ratios whereby CO2 concentrations steadily increased and became constant after two pore volumes of CO2 flushed through the column. Carbon and oxygen isotope values of the front of the peak (first pore volume) are 2‰ and 5‰ lower than the injected CO2 values, respectively. These results are fit very well using a mass transfer model that only includes binary diffusion between CO2 and helium that account for isotope substitution in the reduced mass coefficient. In contrast to these diffusion-dominated systems, CO2 break through curves from the illite packed column show strong adsorption effects that include a +180‰ increase in the carbon isotope ratio at the front of the peak followed by a 20‰ decrease. Up to 20 pore volumes of CO2 were flushed through the column before the carbon and oxygen isotope values stabilized to their starting values. These adsorption effects cannot be modeled using mass isotope effects alone, and instead must include additional parameters such as volume effects. These results demonstrate the importance of understanding the isotopic effects of CO2 in different substrates, and potentially offers a tracer tool that can be used to quantify surface area, transport distance, and surface reactivity of CO2. Additional applications may include more affectively determining transfer rates of CO2 across low permeability zones.
Aberoumand, Sadegh
2017-01-01
The present study aims to experimentally investigate heat transfer performance of rectangular and semicircular tubes in the presence of Ag / water nanofluids. The nanoparticles of Ag (silver) were used in seven different volume concentrations of 0.03%, 0.07%, 0.1%, 0.2%, 0.4%, 1% and 2%. The experiment was conducted in relatively low Reynolds numbers of 301 to 740. A heater with the power of 200 W was used to keep the outer surface of the tubes under a constant heat flux condition. In addition, the rectangular tube has been designed within the same length as the semicircular one and also within the same hydraulic diameter. Moreover, the average nanoparticles size was 20 nm. The outcome results of the present empirical work indicate that, for all the examined Reynolds numbers, the semicircular tube has higher convective heat transfer coefficient for all the utilized volume concentrations of Ag nanoparticles. The possible reasons behind this advantage are discussed through the present work mainly by taking the boundary effect on Brownian motions into account. Coming to this point that the conventional design for cooling system of photovoltaic cells is a heat sink with the rectangular graves, it is discussed that using a semicircular design may have the advantage over the rectangular one in convective heat transfer coefficient enhancement and hence a better cooling performance for these solar cells. PMID:28753603
Jafarimoghaddam, Amin; Aberoumand, Sadegh
2017-01-01
The present study aims to experimentally investigate heat transfer performance of rectangular and semicircular tubes in the presence of Ag / water nanofluids. The nanoparticles of Ag (silver) were used in seven different volume concentrations of 0.03%, 0.07%, 0.1%, 0.2%, 0.4%, 1% and 2%. The experiment was conducted in relatively low Reynolds numbers of 301 to 740. A heater with the power of 200 W was used to keep the outer surface of the tubes under a constant heat flux condition. In addition, the rectangular tube has been designed within the same length as the semicircular one and also within the same hydraulic diameter. Moreover, the average nanoparticles size was 20 nm. The outcome results of the present empirical work indicate that, for all the examined Reynolds numbers, the semicircular tube has higher convective heat transfer coefficient for all the utilized volume concentrations of Ag nanoparticles. The possible reasons behind this advantage are discussed through the present work mainly by taking the boundary effect on Brownian motions into account. Coming to this point that the conventional design for cooling system of photovoltaic cells is a heat sink with the rectangular graves, it is discussed that using a semicircular design may have the advantage over the rectangular one in convective heat transfer coefficient enhancement and hence a better cooling performance for these solar cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soudackov, Alexander V.; Hammes-Schiffer, Sharon
2015-11-21
Rate constant expressions for vibronically nonadiabatic proton transfer and proton-coupled electron transfer reactions are presented and analyzed. The regimes covered include electronically adiabatic and nonadiabatic reactions, as well as high-frequency and low-frequency proton donor-acceptor vibrational modes. These rate constants differ from previous rate constants derived with the cumulant expansion approach in that the logarithmic expansion of the vibronic coupling in terms of the proton donor-acceptor distance includes a quadratic as well as a linear term. The analysis illustrates that inclusion of this quadratic term in the framework of the cumulant expansion framework may significantly impact the rate constants at highmore » temperatures for proton transfer interfaces with soft proton donor-acceptor modes that are associated with small force constants and weak hydrogen bonds. The effects of the quadratic term may also become significant in these regimes when using the vibronic coupling expansion in conjunction with a thermal averaging procedure for calculating the rate constant. In this case, however, the expansion of the coupling can be avoided entirely by calculating the couplings explicitly for the range of proton donor-acceptor distances sampled. The effects of the quadratic term for weak hydrogen-bonding systems are less significant for more physically realistic models that prevent the sampling of unphysical short proton donor-acceptor distances. Additionally, the rigorous relation between the cumulant expansion and thermal averaging approaches is clarified. In particular, the cumulant expansion rate constant includes effects from dynamical interference between the proton donor-acceptor and solvent motions and becomes equivalent to the thermally averaged rate constant when these dynamical effects are neglected. This analysis identifies the regimes in which each rate constant expression is valid and thus will be important for future applications to proton transfer and proton-coupled electron transfer in chemical and biological processes.« less
Abolhasani, Milad; Singh, Mayank; Kumacheva, Eugenia; Günther, Axel
2012-05-07
We present an automated microfluidic (MF) approach for the systematic and rapid investigation of carbon dioxide (CO(2)) mass transfer and solubility in physical solvents. Uniformly sized bubbles of CO(2) with lengths exceeding the width of the microchannel (plugs) were isothermally generated in a co-flowing physical solvent within a gas-impermeable, silicon-based MF platform that is compatible with a wide range of solvents, temperatures and pressures. We dynamically determined the volume reduction of the plugs from images that were accommodated within a single field of view, six different downstream locations of the microchannel at any given flow condition. Evaluating plug sizes in real time allowed our automated strategy to suitably select inlet pressures and solvent flow rates such that otherwise dynamically self-selecting parameters (e.g., the plug size, the solvent segment size, and the plug velocity) could be either kept constant or systematically altered. Specifically, if a constant slug length was imposed, the volumetric dissolution rate of CO(2) could be deduced from the measured rate of plug shrinkage. The solubility of CO(2) in the physical solvent was obtained from a comparison between the terminal and the initial plug sizes. Solubility data were acquired every 5 min and were within 2-5% accuracy as compared to literature data. A parameter space consisting of the plug length, solvent slug length and plug velocity at the microchannel inlet was established for different CO(2)-solvent pairs with high and low gas solubilities. In a case study, we selected the gas-liquid pair CO(2)-dimethyl carbonate (DMC) and volumetric mass transfer coefficients 4-30 s(-1) (translating into mass transfer times between 0.25 s and 0.03 s), and Henry's constants, within the range of 6-12 MPa.
TiO2/water Nanofluid Heat Transfer in Heat Exchanger Equipped with Double Twisted-Tape Inserts
NASA Astrophysics Data System (ADS)
Eiamsa-ard, S.; Ketrain, R.; Chuwattanakul, V.
2018-05-01
Nowadays, heat transfer enhancement plays an important role in improving efficiency of heat transfer and thermal systems for numerous areas such as heat recovery processes, chemical reactors, air-conditioning/refrigeration system, food engineering, solar air/water heater, cooling of high power electronics etc. The present work presents the experimental results of the heat transfer enhancement of TiO2/water nanofluid in a heat exchanger tube fitted with double twisted tapes. The study covered twist ratios of twisted tapes (y/w) of 1.5, 2.0, and 2.5) while the concentration of the nanofluid was kept constant at 0.05% by volume. Observations show that heat transfer, friction loss and thermal performance increase as twist ratio (y/w) decreases. The use of the nanofluid in the tube equipped with the double twisted-tapes with the smallest twist ratio (y/w = 1.5) results in the increases of heat transfer rates and friction factor up to 224.8% and 8.98 times, respectively as compared to those of water. In addition, the experimental results performed that double twisted tapes induced dual swirling-flows which played an important role in improving fluid mixing and heat transfer enhancement. It is also observed that the TiO2/water nanofluid was responsible for low pressure loss behaviors.
Goodarzi, M; Safaei, M R; Oztop, Hakan F; Karimipour, A; Sadeghinezhad, E; Dahari, M; Kazi, S N; Jomhari, N
2014-01-01
The effect of radiation on laminar and turbulent mixed convection heat transfer of a semitransparent medium in a square enclosure was studied numerically using the Finite Volume Method. A structured mesh and the SIMPLE algorithm were utilized to model the governing equations. Turbulence and radiation were modeled with the RNG k-ε model and Discrete Ordinates (DO) model, respectively. For Richardson numbers ranging from 0.1 to 10, simulations were performed for Rayleigh numbers in laminar flow (10⁴) and turbulent flow (10⁸). The model predictions were validated against previous numerical studies and good agreement was observed. The simulated results indicate that for laminar and turbulent motion states, computing the radiation heat transfer significantly enhanced the Nusselt number (Nu) as well as the heat transfer coefficient. Higher Richardson numbers did not noticeably affect the average Nusselt number and corresponding heat transfer rate. Besides, as expected, the heat transfer rate for the turbulent flow regime surpassed that in the laminar regime. The simulations additionally demonstrated that for a constant Richardson number, computing the radiation heat transfer majorly affected the heat transfer structure in the enclosure; however, its impact on the fluid flow structure was negligible.
Goodarzi, M.; Safaei, M. R.; Oztop, Hakan F.; Karimipour, A.; Sadeghinezhad, E.; Dahari, M.; Kazi, S. N.; Jomhari, N.
2014-01-01
The effect of radiation on laminar and turbulent mixed convection heat transfer of a semitransparent medium in a square enclosure was studied numerically using the Finite Volume Method. A structured mesh and the SIMPLE algorithm were utilized to model the governing equations. Turbulence and radiation were modeled with the RNG k-ε model and Discrete Ordinates (DO) model, respectively. For Richardson numbers ranging from 0.1 to 10, simulations were performed for Rayleigh numbers in laminar flow (104) and turbulent flow (108). The model predictions were validated against previous numerical studies and good agreement was observed. The simulated results indicate that for laminar and turbulent motion states, computing the radiation heat transfer significantly enhanced the Nusselt number (Nu) as well as the heat transfer coefficient. Higher Richardson numbers did not noticeably affect the average Nusselt number and corresponding heat transfer rate. Besides, as expected, the heat transfer rate for the turbulent flow regime surpassed that in the laminar regime. The simulations additionally demonstrated that for a constant Richardson number, computing the radiation heat transfer majorly affected the heat transfer structure in the enclosure; however, its impact on the fluid flow structure was negligible. PMID:24778601
NASA Astrophysics Data System (ADS)
Abbasian Arani, A. A.; Aberoumand, H.; Aberoumand, S.; Jafari Moghaddam, A.; Dastanian, M.
2016-08-01
In this work an experimental study on Silver-oil nanofluid was carried out in order to present the laminar convective heat transfer coefficient and friction factor in a concentric annulus with constant heat flux boundary condition. Silver-oil nanofluid prepared by Electrical Explosion of Wire technique with no nanoparticles agglomeration during nanofluid preparation process and experiments. The average sizes of particles were 20 nm. Nanofluids with various particle Volume fractions of 0.011, 0.044 and 0.171 vol% were employed. The nanofluid flowing between the tubes is heated by an electrical heating coil wrapped around it. The effects of different parameters such as flow Reynolds number, tube diameter ratio and nanofluid particle concentration on heat transfer coefficient are studied. Results show that, heat transfer coefficient increased by using nanofluid instead of pure oil. Maximum enhancement of heat transfer coefficient occurs in 0.171 vol%. In addition the results showed that, there are slight increases in pressure drop of nanofluid by increasing the nanoparticle concentration of nanofluid in compared to pure oil.
Nonequilibrium adiabatic molecular dynamics simulations of methane clathrate hydrate decomposition
NASA Astrophysics Data System (ADS)
Alavi, Saman; Ripmeester, J. A.
2010-04-01
Nonequilibrium, constant energy, constant volume (NVE) molecular dynamics simulations are used to study the decomposition of methane clathrate hydrate in contact with water. Under adiabatic conditions, the rate of methane clathrate decomposition is affected by heat and mass transfer arising from the breakup of the clathrate hydrate framework and release of the methane gas at the solid-liquid interface and diffusion of methane through water. We observe that temperature gradients are established between the clathrate and solution phases as a result of the endothermic clathrate decomposition process and this factor must be considered when modeling the decomposition process. Additionally we observe that clathrate decomposition does not occur gradually with breakup of individual cages, but rather in a concerted fashion with rows of structure I cages parallel to the interface decomposing simultaneously. Due to the concerted breakup of layers of the hydrate, large amounts of methane gas are released near the surface which can form bubbles that will greatly affect the rate of mass transfer near the surface of the clathrate phase. The effects of these phenomena on the rate of methane hydrate decomposition are determined and implications on hydrate dissociation in natural methane hydrate reservoirs are discussed.
Nonequilibrium adiabatic molecular dynamics simulations of methane clathrate hydrate decomposition.
Alavi, Saman; Ripmeester, J A
2010-04-14
Nonequilibrium, constant energy, constant volume (NVE) molecular dynamics simulations are used to study the decomposition of methane clathrate hydrate in contact with water. Under adiabatic conditions, the rate of methane clathrate decomposition is affected by heat and mass transfer arising from the breakup of the clathrate hydrate framework and release of the methane gas at the solid-liquid interface and diffusion of methane through water. We observe that temperature gradients are established between the clathrate and solution phases as a result of the endothermic clathrate decomposition process and this factor must be considered when modeling the decomposition process. Additionally we observe that clathrate decomposition does not occur gradually with breakup of individual cages, but rather in a concerted fashion with rows of structure I cages parallel to the interface decomposing simultaneously. Due to the concerted breakup of layers of the hydrate, large amounts of methane gas are released near the surface which can form bubbles that will greatly affect the rate of mass transfer near the surface of the clathrate phase. The effects of these phenomena on the rate of methane hydrate decomposition are determined and implications on hydrate dissociation in natural methane hydrate reservoirs are discussed.
Ni, Liangping; Liu, Ying
2018-04-01
The present study aimed to assess early-stage nasopharyngeal carcinoma (NPC) with dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and diffusion-weighted imaging (DWI) at 3.0 T. A total of 44 patients newly diagnosed with NPC were included in the present study. All patients underwent MR examination at 3.0 T using DCE-MRI and DWI. The volume transfer constant ( K trans ), flux rate constant between extravascular extracellular space and plasma ( K ep ), the volume of extravascular extracellular space per unit volume of tissue ( V e ) and the apparent diffusion coefficient (ADC) of tumours were investigated. Furthermore, the correlation between clinical stages and ADC value and K trans were analysed. The diagnostic accuracy of K trans and ADC were estimated using receiver operating characteristic curves. NPC stage correlated positively with K trans and negatively with ADC values. Additionally, tumour K trans negatively correlated with ADC value. The sensitivity and accuracy of combined K trans and ADC in distinguishing between stage II and stage III and stage III and IV were higher than the values of either measurement used separately. The present study suggested that K trans and ADC derived from DCE-MRI and DWI may be useful to detect stage early NPC accurately. K trans and ADC in combination were superior than either alone.
Linear energy transfer incorporated intensity modulated proton therapy optimization
NASA Astrophysics Data System (ADS)
Cao, Wenhua; Khabazian, Azin; Yepes, Pablo P.; Lim, Gino; Poenisch, Falk; Grosshans, David R.; Mohan, Radhe
2018-01-01
The purpose of this study was to investigate the feasibility of incorporating linear energy transfer (LET) into the optimization of intensity modulated proton therapy (IMPT) plans. Because increased LET correlates with increased biological effectiveness of protons, high LETs in target volumes and low LETs in critical structures and normal tissues are preferred in an IMPT plan. However, if not explicitly incorporated into the optimization criteria, different IMPT plans may yield similar physical dose distributions but greatly different LET, specifically dose-averaged LET, distributions. Conventionally, the IMPT optimization criteria (or cost function) only includes dose-based objectives in which the relative biological effectiveness (RBE) is assumed to have a constant value of 1.1. In this study, we added LET-based objectives for maximizing LET in target volumes and minimizing LET in critical structures and normal tissues. Due to the fractional programming nature of the resulting model, we used a variable reformulation approach so that the optimization process is computationally equivalent to conventional IMPT optimization. In this study, five brain tumor patients who had been treated with proton therapy at our institution were selected. Two plans were created for each patient based on the proposed LET-incorporated optimization (LETOpt) and the conventional dose-based optimization (DoseOpt). The optimized plans were compared in terms of both dose (assuming a constant RBE of 1.1 as adopted in clinical practice) and LET. Both optimization approaches were able to generate comparable dose distributions. The LET-incorporated optimization achieved not only pronounced reduction of LET values in critical organs, such as brainstem and optic chiasm, but also increased LET in target volumes, compared to the conventional dose-based optimization. However, on occasion, there was a need to tradeoff the acceptability of dose and LET distributions. Our conclusion is that the inclusion of LET-dependent criteria in the IMPT optimization could lead to similar dose distributions as the conventional optimization but superior LET distributions in target volumes and normal tissues. This may have substantial advantages in improving tumor control and reducing normal tissue toxicities.
Nguyen, T B; Cron, G O; Perdrizet, K; Bezzina, K; Torres, C H; Chakraborty, S; Woulfe, J; Jansen, G H; Sinclair, J; Thornhill, R E; Foottit, C; Zanette, B; Cameron, I G
2015-11-01
Dynamic contrast-enhanced MR imaging parameters can be biased by poor measurement of the vascular input function. We have compared the diagnostic accuracy of dynamic contrast-enhanced MR imaging by using a phase-derived vascular input function and "bookend" T1 measurements with DSC MR imaging for preoperative grading of astrocytomas. This prospective study included 48 patients with a new pathologic diagnosis of an astrocytoma. Preoperative MR imaging was performed at 3T, which included 2 injections of 5-mL gadobutrol for dynamic contrast-enhanced and DSC MR imaging. During dynamic contrast-enhanced MR imaging, both magnitude and phase images were acquired to estimate plasma volume obtained from phase-derived vascular input function (Vp_Φ) and volume transfer constant obtained from phase-derived vascular input function (K(trans)_Φ) as well as plasma volume obtained from magnitude-derived vascular input function (Vp_SI) and volume transfer constant obtained from magnitude-derived vascular input function (K(trans)_SI). From DSC MR imaging, corrected relative CBV was computed. Four ROIs were placed over the solid part of the tumor, and the highest value among the ROIs was recorded. A Mann-Whitney U test was used to test for difference between grades. Diagnostic accuracy was assessed by using receiver operating characteristic analysis. Vp_ Φ and K(trans)_Φ values were lower for grade II compared with grade III astrocytomas (P < .05). Vp_SI and K(trans)_SI were not significantly different between grade II and grade III astrocytomas (P = .08-0.15). Relative CBV and dynamic contrast-enhanced MR imaging parameters except for K(trans)_SI were lower for grade III compared with grade IV (P ≤ .05). In differentiating low- and high-grade astrocytomas, we found no statistically significant difference in diagnostic accuracy between relative CBV and dynamic contrast-enhanced MR imaging parameters. In the preoperative grading of astrocytomas, the diagnostic accuracy of dynamic contrast-enhanced MR imaging parameters is similar to that of relative CBV. © 2015 by American Journal of Neuroradiology.
Balla, Hyder H; Abdullah, Shahrir; Mohdfaizal, Wan; Zulkifli, Rozli; Sopian, Kamaruzaman
2013-01-01
A numerical simulation model for laminar flow of nanofluids in a pipe with constant heat flux on the wall was built to study the effect of the Reynolds number on convective heat transfer and pressure loss. The investigation was performed for hybrid nanofluids consisting of CuO-Cu nanoparticles and compared with CuO and Cu in which the nanoparticles have a spherical shape with size 50, 50, 50nm respectively. The nanofluids were prepared, following which the thermal conductivity and dynamic viscosity were measured for a range of temperatures (10 -60°C). The numerical results obtained were compared with the existing well-established correlation. The prediction of the Nusselt number for nanofluids agrees well with the Shah correlation. The comparison of heat transfer coefficients for CuO, Cu and CuO-Cu presented an increase in thermal conductivity of the nanofluid as the convective heat transfer coefficient increased. It was found that the pressure loss increases with an increase in the Reynolds number, nanoparticle density and particle volume fraction. However, the flow demonstrates enhancement in heat transfer which becomes greater with an increase in the Reynolds number for the nanofluid flow.
Nagaraja, Tavarekere N; Elmghirbi, Rasha; Brown, Stephen L; Schultz, Lonni R; Lee, Ian Y; Keenan, Kelly A; Panda, Swayamprava; Cabral, Glauber; Mikkelsen, Tom; Ewing, James R
2017-12-01
The objective was to study temporal changes in tumor vascular physiological indices in a period of 24h in a 9L gliosarcoma rat model. Fischer-344 rats (N=14) were orthotopically implanted with 9L cells. At 2weeks post-implantation, they were imaged twice in a 24h interval using dynamic contrast enhanced magnetic resonance imaging (DCE-MRI). Data-driven model-selection-based analysis was used to segment tumor regions with varying vascular permeability characteristics. The region with the maximum number of estimable parameters of vascular kinetics was chosen for comparison across the two time points. It provided estimates of three parameters for an MR contrast agent (MRCA): i) plasma volume (v p ), ii) forward volumetric transfer constant (K trans ) and interstitial volume fraction (v e , ratio of K trans to reverse transfer constant, k ep ). In addition, MRCA extracellular distribution volume (V D ) was estimated in the tumor and its borders, along with tumor blood flow (TBF) and peritumoral MRCA flux. Descriptors of parametric distributions were compared between the two times. Tumor extent was examined by hematoxylin and eosin (H&E) staining. Picrosirus red staining of secreted collagen was performed as an additional index for 9L cells. Test-retest differences between population summaries for any parameter were not significant (paired t and Wilcoxon signed rank tests). Bland-Altman plots showed no apparent trends between the differences and averages of the test-retest measures for all indices. The intraclass correlation coefficients showed moderate to almost perfect reproducibility for all of the parameters, except v p . H&E staining showed tumor infiltration in parenchyma, perivascular space and white matter tracts. Collagen staining was observed along the outer edges of main tumor mass. The data suggest the relative stability of these MR indices of tumor microenvironment over a 24h duration in this gliosarcoma model. Copyright © 2017. Published by Elsevier Inc.
Extraction of anthocyanins from red cabbage using high pressure CO2.
Xu, Zhenzhen; Wu, Jihong; Zhang, Yan; Hu, Xiaosong; Liao, Xiaojun; Wang, Zhengfu
2010-09-01
The extraction kinetics of anthocyanins from red cabbage using high pressure CO(2) (HPCD) against conventional acidified water (CAW) was investigated. The HPCD time, temperature, pressure and volume ratio of solid-liquid mixture vs. pressurized CO(2) (R((S+L)/G)) exhibited important roles on the extraction kinetics of anthocyanins. The extraction kinetics showed two phases, the yield increased with increasing the time in the first phase, the yield defined as steady-state yield (y(*)) was constant in the second phase. The y(*) of anthocyanins using HPCD increased with higher temperature, higher pressure and lower R((S+L)/G). The general mass transfer model with higher regression coefficients (R(2)>0.97) fitted the kinetic data better than the Fick's second law diffusion model. As compared with CAW, the time (t(*)) to reach the y(*) of anthocyanins using HPCD was reduced by half while its corresponding overall volumetric mass transfer coefficients k(L)xa from the general mass transfer model increased by two folds. Copyright 2010 Elsevier Ltd. All rights reserved.
Harinipriya, S; Sangaranarayanan, M V
2006-01-31
The evaluation of the free energy of activation pertaining to the electron-transfer reactions occurring at liquid/liquid interfaces is carried out employing a diffuse boundary model. The interfacial solvation numbers are estimated using a lattice gas model under the quasichemical approximation. The standard reduction potentials of the redox couples, appropriate inner potential differences, dielectric permittivities, as well as the width of the interface are included in the analysis. The methodology is applied to the reaction between [Fe(CN)6](3-/4-) and [Lu(biphthalocyanine)](3+/4+) at water/1,2-dichloroethane interface. The rate-determining step is inferred from the estimated free energy of activation for the constituent processes. The results indicate that the solvent shielding effect and the desolvation of the reactants at the interface play a central role in dictating the free energy of activation. The heterogeneous electron-transfer rate constant is evaluated from the molar reaction volume and the frequency factor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mirkovic, D; Peeler, C; Grosshans, D
Purpose: To develop a model of the relative biological effectiveness (RBE) of protons as a function of dose and linear energy transfer (LET) for induction of brain necrosis using clinical data. Methods: In this study, treatment planning information was exported from a clinical treatment planning system (TPS) and used to construct a detailed Monte Carlo model of the patient and the beam delivery system. The physical proton dose and LET were computed in each voxel of the patient volume using Monte Carlo particle transport. A follow-up magnetic resonance imaging (MRI) study registered to the treatment planning CT was used tomore » determine the region of the necrosis in the brain volume. Both, the whole brain and the necrosis volumes were segmented from the computed tomography (CT) dataset using the contours drawn by a physician and the corresponding voxels were binned with respect to dose and LET. The brain necrosis probability was computed as a function of dose and LET by dividing the total volume of all necrosis voxels with a given dose and LET with the corresponding total brain volume resulting in a set of NTCP-like curves (probability as a function of dose parameterized by LET). Results: The resulting model shows dependence on both dose and LET indicating the weakness of the constant RBE model for describing the brain toxicity. To the best of our knowledge the constant RBE model is currently used in all clinical applications which may Result in increased rate of brain toxicities in patients treated with protons. Conclusion: Further studies are needed to develop more accurate brain toxicity models for patients treated with protons and other heavy ions.« less
Constant load and constant volume response of municipal solid waste in simple shear.
Zekkos, Dimitrios; Fei, Xunchang
2017-05-01
Constant load and constant volume simple shear testing was conducted on relatively fresh municipal solid waste (MSW) from two landfills in the United States, one in Michigan and a second in Texas, at respective natural moisture content below field capacity. The results were assessed in terms of two failure strain criteria, at 10% and 30% shear strain, and two interpretations of effective friction angle. Overall, friction angle obtained assuming that the failure plane is horizontal and at 10% shear strain resulted in a conservative estimation of shear strength of MSW. Comparisons between constant volume and constant load simple shear testing results indicated significant differences in the shear response of MSW with the shear resistance in constant volume being lower than the shear resistance in constant load. The majority of specimens were nearly uncompacted during specimen preparation to reproduce the state of MSW in bioreactor landfills or in uncontrolled waste dumps. The specimens had identical percentage of <20mm material but the type of <20mm material was different. The <20mm fraction from Texas was finer and of high plasticity. MSW from Texas was overall weaker in both constant load and constant volume conditions compared to Michigan waste. The results of these tests suggest the possibility of significantly lower shear strength of MSW in bioreactor landfills where waste is placed with low compaction effort and constant volume, i.e., "undrained", conditions may occur. Compacted MSW specimens resulted in shear strength parameters that are higher than uncompacted specimens and closer to values reported in the literature. However, the normalized undrained shear strength in simple shear for uncompacted and compacted MSW was still higher than the normalized undrained shear strength reported in the literature for clayey and silty soils. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukherjee, Manidipto; Saha, Saptarshi; Pal, Tapan Kumar, E-mail: tkpal.ju@gmail.com
2015-04-15
The present study elaborately discussed the effect of different modes of metal transfer (i.e., short circuit mode, spray mode and pulse mode) on grain structure and direction of grain growth in low nickel austenitic stainless steel weld metals. Electron backscattered diffraction (EBSD) analysis was used to study the grain growth direction and grain structure in weld metals. The changes in grain structure and grain growth direction were found to be essentially varied with the weld pool shape and acting forces induced by modes of metal transfer at a constant welding speed. Short circuit mode of metal transfer owing to highermore » Marangoni force (M{sub a}) and low electromagnetic force (R{sub m}) promotes the lower weld pool volume (Γ) and higher weld pool maximum radius (r{sub m}). Short circuit mode also shows curved and tapered columnar grain structures and the grain growth preferentially occurred in <001> direction. In contrast, spray mode of metal transfer increases the Γ and reduces the r{sub m} values due to very high R{sub m} and typically reveals straight and broad columnar grain structures with preferential growth direction in <111>. In the pulse mode of metal transfer relatively high M{sub a} and R{sub m} simultaneously increase the weld pool width and the primary penetration which might encourage relatively complex grain growth directions in the weld pool and cause a shift of major intensity from <001> to <111> direction. It can also be concluded that the fusion zone grain structure and direction of grain growth are solely dependent on modes of metal transfer and remain constant for a particular mode of metal transfer irrespective of filler wire used. - Highlights: • Welded joints of LNiASS were prepared by varying modes of metal transfer. • Weld pool shape, grain structure and grain growth direction were studied. • Short circuit mode shows curved and tapered grain growth in <001> direction. • Spray mode shows straight and broad columnar grain growth in <111> direction. • Pulse mode shows complex grain growth with a shift in growth direction.« less
NASA Technical Reports Server (NTRS)
Mccarty, R. D.; Weber, L. A.
1972-01-01
The tables include entropy, enthalpy, internal energy, density, volume, speed of sound, specific heat, thermal conductivity, viscosity, thermal diffusivity, Prandtl number, and the dielectric constant for 65 isobars. Quantities of special utility in heat transfer and thermodynamic calculations are also included in the isobaric tables. In addition to the isobaric tables, tables for the saturated vapor and liquid are given, which include all of the above properties, plus the surface tension. Tables for the P-T of the freezing liquid, index of refraction, and the derived Joule-Thomson inversion curve are also presented.
Use of nonwettable membranes for water transfer
NASA Technical Reports Server (NTRS)
Hausch, H. G.
1970-01-01
Transfer of water through nonwettable vinyl fluoride membranes has two unique features - /1/ very low water transfer rates can be held constant by holding temperature and solute concentrations constant, /2/ the pressure gradient against which water is transported is limited only by solution breakthrough or membrane strength.
Alzoman, Nourah Z.; Alshehri, Jamilah M.; Darwish, Ibrahim A.; Khalil, Nasr Y.; Abdel-Rahman, Hamdy M.
2014-01-01
The reaction of 2,3-dichloro-1,4-naphthoquinone (DCNQ) with crizotinib (CZT; a novel drug used for treatment of non-small cell lung cancer) was investigated in different solvents of varying dielectric constants and polarity indexes. The reaction produced a red-colored product. Spectrophotometric investigations confirmed that the reaction proceeded through charge–transfer (CT) complex formation. The molar absorptivity of the complex was found to be linearly correlated with the dielectric constant and polarity index of the solvent; the correlation coefficients were 0.9567 and 0.9069, respectively. The stoichiometric ratio of DCNQ:CZT was found to be 2:1 and the association constant of the complex was found to be 1.07 × 102 l/mol. The kinetics of the reaction was studied; the order of the reaction, rate and rate constant were determined. Computational molecular modeling for the complex between DCNQ and CZT was conducted, the sites of interaction on CZT molecule were determined, and the mechanism of the reaction was postulated. The reaction was employed as a basis in the development of a novel 96-microwell assay for CZT in a linear range of 4–500 μg/ml. The assay limits of detection and quantitation were 2.06 and 6.23 μg/ml, respectively. The assay was validated as per the guidelines of the International Conference on Harmonization (ICH) and successfully applied to the analysis of CZT in its bulk and capsules with good accuracy and precision. The assay has high throughput and consumes a minimum volume of organic solvents thus it reduces the exposures of the analysts to the toxic effects of organic solvents, and significantly reduces the analysis cost. PMID:25685046
Ultrasonic and spectral studies on charge transfer complexes of anisole and certain aromatic amines
NASA Astrophysics Data System (ADS)
Rajesh, R.; Raj Muhamed, R.; Justin Adaikala Baskar, A.; Kannappan, V.
2016-10-01
Stability constants of two complexes of anisole with aniline and N-methylaniline (NMA) are determined from the measured ultrasonic velocity in n-hexane medium at four different temperatures. Acoustic and excess thermo acoustic parameters [excess ultrasonic velocity (uE), excess molar volume (VE), excess internal pressure (πiE)] are reported for these systems at four different temperatures. The trend in acoustic and excess parameters with concentration in the two systems establishes the formation of hydrogen bonded complexes between anisole and the two amines. Thermodynamic properties are computed for the two complexes from the variation in K with temperature. The formation of these complexes is also established by UV spectral method and their spectral characteristics and stability constants are determined. K values of these complexes obtained by ultrasonic and UV spectroscopic techniques agree well. Aniline forms more stable complex than N-methylaniline with anisole in n-hexane medium.
Kantak, Shailesh S; Sullivan, Katherine J; Fisher, Beth E; Knowlton, Barbara J; Winstein, Carolee J
2011-01-01
The authors investigated how brain activity during motor-memory consolidation contributes to transfer of learning to novel versions of a motor skill following distinct practice structures. They used 1 Hz repetitive Transcranial Magnetic Stimulation (rTMS) immediately after constant or variable practice of an arm movement skill to interfere with primary motor cortex (M1) or dorsolateral prefrontal cortex (DLPFC). The effect of interference was assessed through skill performance on two transfer targets: one within and one outside the range of practiced movement parameters for the variable practice group. For the control (no rTMS) group, variable practice benefited delayed transfer performance more than constant practice. The rTMS effect on delayed transfer performance differed for the two transfer targets. For the within-range target, rTMS interference had no significant affect on the delayed transfer after either practice structure. However, for the outside-range target, rTMS interference to DLPFC but not M1 attenuated delayed transfer benefit following variable practice. Additionally, for the outside-range target, rTMS interference to M1 but not DLPFC attenuated delayed transfer following constant practice. This suggests that variable practice may promote reliance on DLPFC for memory consolidation associated with outside-range transfer of learning, whereas constant practice may promote reliance on M1 for consolidation and long-term transfer.
2017-10-26
1 FINAL REPORT Converting Constant Volume, Multizone Air Handling Systems to Energy Efficient Variable Air Volume Multizone...Systems Energy and Water Projects Project Number: EW-201152 ERDC-CERL 26 October 2017 2 TABLE OF CONTENTS ACKNOWLEDGEMENTS...16 3.2.1 Energy Usage (Quantitative
The ejector-loop fermenter: Description and performance of the apparatus.
Moresi, M; Bartolo Gianturco, G; Sebastiani, E
1983-12-01
A novel fermentation unit, the ejector-loop fermenter (ELF), consisting of an outer-loop tower fermenter, a centrifugal pump, a plate-heat exchanger, and a gas-liquid ejector, was designed and constructed. Aeration was achieved by continuously recirculating the fermentation medium through two different nozzle devices instead of using the traditional expensive air compressor. By carrying out a whey fermentation with Kluyveromyces fragilis as the test organism, either in the ELF or in conventional stirred fermenter, it was possible to confirm that the high sheat streses and mixing shock occurring in the ejector nozzle and diffuser sections did not affect microbial growth. Within the range of experimental power consumption per unit volume (-0.1-5 kW/m(3)), the oxygen transfer capability of the ELF per unit power input was found to vary from 1 to 2.5 kg O(2) kW(-1)h(-1). Moreover, it is shown that there is suficient room for improvement in the performance of the ELF unit by care fully designing the aeration device. In fact, at constant volumetric oxygen transfer coefficient, the power consumpotion per unit volume in a 4-mm nozzle was found to be about 40% less than that in a 6-mm nozzle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Westerhout, R.W.J.; Balk, R.H.P.; Meijer, R.
1997-08-01
A screen heater with a gas sweep was developed and applied to study the pyrolysis kinetics of low density polyethene (LDPE) and polypropene (PP) at temperatures ranging from 450 to 530 C. The aim of this study was to examine the applicability of screen heaters to measure these kinetics. On-line measurement of the rate of volatiles formation using a hydrocarbon analyzer was applied to enable the determination of the conversion rate over the entire conversion range on the basis of a single experiment. Another important feature of the screen heater used in this study is the possibility to measure pyrolysismore » kinetics under nearly isothermal conditions. The kinetic constants for LDPE and PP pyrolysis were determined, using a first order model to describe the conversion rate in the 70--90% conversion range and the random chain dissociation model for the entire conversion range. In addition to the experimental work two single particle models have been developed which both incorporate a mass and a (coupled) enthalpy balance, which were used to assess the influence of internal and external heat transfer processes on the pyrolysis process. The first model assumes a variable density and constant volume during the pyrolysis process, whereas the second model assumes a constant density and a variable volume. An important feature of these models is that they can accommodate kinetic models for which no analytical representation of the pyrolysis kinetics is available.« less
Stoliker, Deborah L.; Liu, Chongxuan; Kent, Douglas B.; Zachara, John M.
2013-01-01
Rates of U(VI) release from individual dry-sieved size fractions of a field-aggregated, field-contaminated composite sediment from the seasonally saturated lower vadose zone of the Hanford 300-Area were examined in flow-through reactors to maintain quasi-constant chemical conditions. The principal source of variability in equilibrium U(VI) adsorption properties of the various size fractions was the impact of variable chemistry on adsorption. This source of variability was represented using surface complexation models (SCMs) with different stoichiometric coefficients with respect to hydrogen ion and carbonate concentrations for the different size fractions. A reactive transport model incorporating equilibrium expressions for cation exchange and calcite dissolution, along with rate expressions for aerobic respiration and silica dissolution, described the temporal evolution of solute concentrations observed during the flow-through reactor experiments. Kinetic U(VI) desorption was well described using a multirate SCM with an assumed lognormal distribution for the mass-transfer rate coefficients. The estimated mean and standard deviation of the rate coefficients were the same for all <2 mm size fractions but differed for the 2–8 mm size fraction. Micropore volumes, assessed using t-plots to analyze N2 desorption data, were also the same for all dry-sieved <2 mm size fractions, indicating a link between micropore volumes and mass-transfer rate properties. Pore volumes for dry-sieved size fractions exceeded values for the corresponding wet-sieved fractions. We hypothesize that repeated field wetting and drying cycles lead to the formation of aggregates and/or coatings containing (micro)pore networks which provided an additional mass-transfer resistance over that associated with individual particles. The 2–8 mm fraction exhibited a larger average and standard deviation in the distribution of mass-transfer rate coefficients, possibly caused by the abundance of microporous basaltic rock fragments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shukla-Dave, Amita, E-mail: davea@mskcc.org; Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY; Lee, Nancy Y.
2012-04-01
Purpose: Dynamic contrast-enhanced MRI (DCE-MRI) can provide information regarding tumor perfusion and permeability and has shown prognostic value in certain tumors types. The goal of this study was to assess the prognostic value of pretreatment DCE-MRI in head and neck squamous cell carcinoma (HNSCC) patients with nodal disease undergoing chemoradiation therapy or surgery. Methods and Materials: Seventy-four patients with histologically proven squamous cell carcinoma and neck nodal metastases were eligible for the study. Pretreatment DCE-MRI was performed on a 1.5T MRI. Clinical follow-up was a minimum of 12 months. DCE-MRI data were analyzed using the Tofts model. DCE-MRI parameters weremore » related to treatment outcome (progression-free survival [PFS] and overall survival [OS]). Patients were grouped as no evidence of disease (NED), alive with disease (AWD), dead with disease (DOD), or dead of other causes (DOC). Prognostic significance was assessed using the log-rank test for single variables and Cox proportional hazards regression for combinations of variables. Results: At last clinical follow-up, for Stage III, all 12 patients were NED. For Stage IV, 43 patients were NED, 4 were AWD, 11 were DOD, and 4 were DOC. K{sup trans} is volume transfer constant. In a stepwise Cox regression, skewness of K{sup trans} (volume transfer constant) was the strongest predictor for Stage IV patients (PFS and OS: p <0.001). Conclusion: Our study shows that skewness of K{sup trans} was the strongest predictor of PFS and OS in Stage IV HNSCC patients with nodal disease. This study suggests an important role for pretreatment DCE-MRI parameter K{sup trans} as a predictor of outcome in these patients.« less
Chen, Liangliang; Ye, Yufeng; Chen, Hanwei; Chen, Shihui; Jiang, Jinzhao; Dan, Guo; Huang, Bingsheng
2018-06-01
To study the difference of the Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) parameters among the primary tumor, metastatic node and peripheral normal tissue of head and neck cancer. Consecutive newly-diagnosed head and neck cancer patients with nodal metastasis between December 2010 and July 2013 were recruited, and 25 patients (8 females; 24~63,mean 43±11 years old) were enrolled. DCE-MRI was performed in the primary tumor region including the regional lymph nodes on a 3.0-T MRI system. Three quantitative parameters: Ktrans (volume transfer constant), ve (volume fraction of extravascular extracellular space) and kep (the rate constant of contrast transfer) were calculated for the largest node. A repeated-measure ANOVA with a Greenhouse-Geisser correction and post hoc tests using the Bonferroni correction were used to evaluate the differences in Ktrans, ve and kep among primary tumors, metastatic nodes and normal tissue. The values of both Ktrans and ve of normal tissue differed significantly from those of nodes (both P < 0.001) and primary tumors (both P < 0.001) respectively, while no significant differences of Ktrans and ve were observed between nodes and primary tumors (P = 0.075 and 0.365 respectively). The kep values of primary tumors were significantly different from those of nodes (P = 0.001) and normal tissue (P = 0.002), while no significant differences between nodes and normal tissue (P > 0.999). The DCE-MRI parameters were different in the tumors, metastatic nodes and normal tissue in head and neck cancer. These findings may be useful in the characterization of head and neck cancer.
2017-10-26
30. Energy Information Agency Natural Gas Price Data ..................................................................................... 65 Figure...different market sectors (residential, commercial, and industrial). Figure 30. Energy Information Agency Natural Gas Price Data 7.2.3 AHU Size...1 FINAL REPORT Converting Constant Volume, Multizone Air Handling Systems to Energy Efficient Variable Air Volume Multizone
Vibration Method for Tracking the Resonant Mode and Impedance of a Microwave Cavity
NASA Technical Reports Server (NTRS)
Barmatz, M.; Iny, O.; Yiin, T.; Khan, I.
1995-01-01
A vibration technique his been developed to continuously maintain mode resonance and impedance much between a constant frequency magnetron source and resonant cavity. This method uses a vibrating metal rod to modulate the volume of the cavity in a manner equivalent to modulating an adjustable plunger. A similar vibrating metal rod attached to a stub tuner modulates the waveguide volume between the source and cavity. A phase sensitive detection scheme determines the optimum position of the adjustable plunger and stub turner during processing. The improved power transfer during the heating of a 99.8% pure alumina rod was demonstrated using this new technique. Temperature-time and reflected power-time heating curves are presented for the cases of no tracking, impedance tracker only, mode tracker only and simultaneous impedance and mode tracking. Controlled internal melting of an alumina rod near 2000 C using both tracking units was also demonstrated.
Comparison of Dynamic Contrast Enhanced MRI and Quantitative SPECT in a Rat Glioma Model
Skinner, Jack T.; Yankeelov, Thomas E.; Peterson, Todd E.; Does, Mark D.
2012-01-01
Pharmacokinetic modeling of dynamic contrast enhanced (DCE)-MRI data provides measures of the extracellular volume fraction (ve) and the volume transfer constant (Ktrans) in a given tissue. These parameter estimates may be biased, however, by confounding issues such as contrast agent and tissue water dynamics, or assumptions of vascularization and perfusion made by the commonly used model. In contrast to MRI, radiotracer imaging with SPECT is insensitive to water dynamics. A quantitative dual-isotope SPECT technique was developed to obtain an estimate of ve in a rat glioma model for comparison to the corresponding estimates obtained using DCE-MRI with a vascular input function (VIF) and reference region model (RR). Both DCE-MRI methods produced consistently larger estimates of ve in comparison to the SPECT estimates, and several experimental sources were postulated to contribute to these differences. PMID:22991315
Flow and volume dependence of rat airway resistance during constant flow inflation and deflation.
Rubini, Alessandro; Carniel, Emanuele Luigi; Parmagnani, Andrea; Natali, Arturo Nicola
2011-12-01
The aim of this study was to measure the flow and volume dependence of both the ohmic and the viscoelastic pressure dissipations of the normal rat respiratory system separately during inflation and deflation. The study was conducted in the Respiratory Physiology Laboratory in our institution. Measurements were obtained for Seven albino Wistar rats of both sexes by using the flow interruption method during constant flow inflations and deflations. Measurements included anesthesia induction, tracheostomy and positioning of a tracheal cannula, positive pressure ventilation, constant flow respiratory system inflations and deflations at two different volumes and flows. The ohmic resistance exhibited volume and flow dependence, decreasing with lung volume and increasing with flow rate, during both inflation and deflation. The stress relaxation-related viscoelastic resistance also exhibited volume and flow dependence. It decreased with the flow rate at a constant lung volume during both inflation and deflation, but exhibited a different behavior with the lung volume at a constant flow rate (i.e., increased during inflations and decreased during deflations). Thus, stress relaxation in the rat lungs exhibited a hysteretic behavior. The observed flow and volume dependence of respiratory system resistance may be predicted by an equation derived from a model of the respiratory system that consists of two distinct compartments. The equation agrees well with the experimental data and indicates that the loading time is the critical parameter on which stress relaxation depends, during both lung inflation and deflation.
On framing potential features of SWCNTs and MWCNTs in mixed convective flow
NASA Astrophysics Data System (ADS)
Hayat, T.; Ullah, Siraj; Khan, M. Ijaz; Alsaedi, A.
2018-03-01
Our target in this research article is to elaborate the characteristics of Darcy-Forchheimer relation in carbon-water nanoliquid flow induced by impermeable stretched cylinder. Energy expression is modeled through viscous dissipation and nonlinear thermal radiation. Application of appropriate transformations yields nonlinear ODEs through nonlinear PDEs. Shooting technique is adopted for the computations of nonlinear ODEs. Importance of influential variables for velocity and thermal fields is elaborated graphically. Moreover rate of heat transfer and drag force are calculated and demonstrated through Tables. Our analysis reports that velocity is higher for ratio of rate constant and buoyancy factor when compared with porosity and volume fraction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soudackov, Alexander; Hammes-Schiffer, Sharon
2015-11-17
Rate constant expressions for vibronically nonadiabatic proton transfer and proton-coupled electron transfer reactions are presented and analyzed. The regimes covered include electronically adiabatic and nonadiabatic reactions, as well as high-frequency and low-frequency regimes for the proton donor-acceptor vibrational mode. These rate constants differ from previous rate constants derived with the cumulant expansion approach in that the logarithmic expansion of the vibronic coupling in terms of the proton donor-acceptor distance includes a quadratic as well as a linear term. The analysis illustrates that inclusion of this quadratic term does not significantly impact the rate constants derived using the cumulant expansion approachmore » in any of the regimes studied. The effects of the quadratic term may become significant when using the vibronic coupling expansion in conjunction with a thermal averaging procedure for calculating the rate constant, however, particularly at high temperatures and for proton transfer interfaces with extremely soft proton donor-acceptor modes that are associated with extraordinarily weak hydrogen bonds. Even with the thermal averaging procedure, the effects of the quadratic term for weak hydrogen-bonding systems are less significant for more physically realistic models that prevent the sampling of unphysical short proton donor-acceptor distances, and the expansion of the coupling can be avoided entirely by calculating the couplings explicitly for the range of proton donor-acceptor distances. This analysis identifies the regimes in which each rate constant expression is valid and thus will be important for future applications to proton transfer and proton-coupled electron transfer in chemical and biological processes. We are grateful for support from National Institutes of Health Grant GM056207 (applications to enzymes) and the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences (applications to molecular electrocatalysts).« less
40 CFR 86.078-3 - Abbreviations.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., and for 1985 and Later Model Year New Gasoline Fueled, Natural Gas-Fueled, Liquefied Petroleum Gas... feet per hour. CFV—Critical flow venturi. CFV-CVS—Critical flow venturi—constant volume sampler... pump—constant volume sampler. ppm—parts per million by volume. ppm C—parts per million, carbon. psi...
MD studies of electron transfer at ambient and elevated pressures
NASA Astrophysics Data System (ADS)
Giles, Alex; Spooner, Jacob; Weinberg, Noham
2013-06-01
The effect of pressure on the rate constants of outer-sphere electron transfer reactions has often been described using the Marcus-Hush theory. This theory agrees well with experiment when internal reorganization of the ionic system is negligible, however it does not offer a recipe for calculation of the effects that result from significant solute restructuring. We have recently developed a molecular dynamics technique that accurately describes structural dependence of molecular volumes in non-polar and weakly polar systems. We are now extending this approach to the case of highly polar ionic systems where both solvent and solute restructuring components are important. For this purpose we construct pressure-dependent two-dimensional surfaces for electron transfer reactions in coordinate system composed of interionic distance and Marcus-type solvent polarization coordinate, and use these surfaces to describe pressure effects on reaction kinetics. R.A. Marcus. J. Chem. Phys. 24, 966 (1956); 24, 979 (1956); 26, 867 (1957). Discuss. Faraday Soc. 29, 21 (1960). Faraday Discuss. Chem. Soc. 74, 7 (1982); N.S. Hush. Trans. Faraday Soc. 57, 557 (1961).
Šesták, Jozef; Kahle, Vladislav
2014-07-11
Performing gradient liquid chromatography at constant pressure instead of constant flow rate has serious potential for shortening the analysis time and increasing the productivity of HPLC instruments that use gradient methods. However, in the constant pressure mode the decreasing column permeability during a long period of time negatively affects the repeatability of retention time. Thus a volume-based approach, in which the detector signal is plotted as a function of retention volume, must be taken into consideration. Traditional HPLC equipment, however, requires quite complex hardware and software modifications in order to work at constant pressure and in the volume-based mode. In this short communication, a low cost and easily feasible pressure-controlled extension of the previously described simple gradient liquid chromatography platform is proposed. A test mixture of four nitro esters was separated by 10-60% (v/v) acetone/water gradient and a high repeatability of retention volumes at 20MPa (RSD less than 0.45%) was realized. Separations were also performed at different values of pressure (20, 25, and 31MPa), and only small variations of the retention volumes (up to 0.8%) were observed. In this particular case, the gain in the analysis speed of 7% compared to the constant flow mode was realized at a constant pressure. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Lee, Myeong H.; Dunietz, Barry D.; Geva, Eitan
2014-03-01
Classical Marcus theory is commonly adopted in solvent-mediated charge transfer (CT) process to obtain the CT rate constant, but it can become questionable when the intramolecular vibrational modes dominate the CT process as in OPV devices because Marcus theory treats these modes classically and therefore nuclear tunneling is not accounted for. We present a computational scheme to obtain the electron transfer rate constant beyond classical Marcus theory. Within this approach, the nuclear vibrational modes are treated quantum-mechanically and a short-time approximation is avoided. Ab initio calculations are used to obtain the basic parameters needed for calculating the electron transfer rate constant. We apply our methodology to phthalocyanine(H2PC)-C60 organic photovoltaic system where one C60 acceptor and one or two H2PC donors are included to model the donor-acceptor interface configuration. We obtain the electron transfer and recombination rate constants for all accessible charge transfer (CT) states, from which the CT exciton dynamics is determined by employing a master equation. The role of higher lying excited states in CT exciton dynamics is discussed. This work is pursued as part of the Center for Solar and Thermal Energy Conversion, an Energy Frontier Research Center funded by the US Department of Energy Office of Science, Office of Basic Energy Sciences under 390 Award No. DE-SC0000957.
The physics of volume rendering
NASA Astrophysics Data System (ADS)
Peters, Thomas
2014-11-01
Radiation transfer is an important topic in several physical disciplines, probably most prominently in astrophysics. Computer scientists use radiation transfer, among other things, for the visualization of complex data sets with direct volume rendering. In this article, I point out the connection between physical radiation transfer and volume rendering, and I describe an implementation of direct volume rendering in the astrophysical radiation transfer code RADMC-3D. I show examples for the use of this module on analytical models and simulation data.
Cao, Y; Brown, S L; Knight, R A; Fenstermacher, J D; Ewing, J R
2005-02-01
Water exchange across capillary walls couples intra- and extravascular (IV-EV) protons and their magnetization. A bolus i.v. injection of an extracellular MRI contrast agent (MRCA) causes a large increase in the spin-lattice relaxation rate, R1, of water protons in the plasma and blood cells within the capillaries and changes the effective relaxation rate R1eff in tissue via IV-EV water exchange. An analysis of the effect of plasma-red cell and IV-EV water exchange on the MRI-measured influx and permeability of capillaries to the MRCA is presented and focused on the brain and the blood-brain barrier. The effect of arrival of a bolus of an MRCA in the capillary on the relaxation rate R1eff in tissue via IV-EV water exchange occurs more rapidly than the MRCA uptake in tissue and can dominate the initial time curve of the R1eff change before the MRCA uptake in tissue becomes significant. This raises the possibility that (tissue dependent) IV-EV rate of exchange of water molecules can affect estimates of MRCA transfer constant. We demonstrate that an approach that considers IV-EV water exchange and uses the theoretical model of blood-brain tracer distribution developed by Patlak et al. (J Cereb Blood Flow Metab 1983;3:1-7) can lead to an accurate estimate of the MRI-determined influx rate constant of the MRCA and to an underestimation of the tissue blood volume.
Theoretical rate constants of super-exchange hole transfer and thermally induced hopping in DNA.
Shimazaki, Tomomi; Asai, Yoshihiro; Yamashita, Koichi
2005-01-27
Recently, the electronic properties of DNA have been extensively studied, because its conductivity is important not only to the study of fundamental biological problems, but also in the development of molecular-sized electronics and biosensors. We have studied theoretically the reorganization energies, the activation energies, the electronic coupling matrix elements, and the rate constants of hole transfer in B-form double-helix DNA in water. To accommodate the effects of DNA nuclear motions, a subset of reaction coordinates for hole transfer was extracted from classical molecular dynamics (MD) trajectories of DNA in water and then used for ab initio quantum chemical calculations of electron coupling constants based on the generalized Mulliken-Hush model. A molecular mechanics (MM) method was used to determine the nuclear Franck-Condon factor. The rate constants for two types of mechanisms of hole transfer-the thermally induced hopping (TIH) and the super-exchange mechanisms-were determined based on Marcus theory. We found that the calculated matrix elements are strongly dependent on the conformations of the nucleobase pairs of hole-transferable DNA and extend over a wide range of values for the "rise" base-step parameter but cluster around a particular value for the "twist" parameter. The calculated activation energies are in good agreement with experimental results. Whereas the rate constant for the TIH mechanism is not dependent on the number of A-T nucleobase pairs that act as a bridge, the rate constant for the super-exchange process rapidly decreases when the length of the bridge increases. These characteristic trends in the calculated rate constants effectively reproduce those in the experimental data of Giese et al. [Nature 2001, 412, 318]. The calculated rate constants were also compared with the experimental results of Lewis et al. [Nature 2000, 406, 51].
NASA Technical Reports Server (NTRS)
Clayton, J. Louie
2002-01-01
This study provides development and verification of analysis methods used to assess performance of a carbon fiber rope (CFR) thermal barrier system that is currently being qualified for use in Reusable Solid Rocket Motor (RSRM) nozzle joint-2. Modeled geometry for flow calculations considers the joint to be vented with the porous CFR barriers placed in the 'open' assembly gap. Model development is based on a 1-D volume filling approach where flow resistances (assembly gap and CFRs) are defined by serially connected internal flow and the porous media 'Darcy' relationships. Combustion gas flow rates are computed using the volume filling code by assuming a lumped distribution total joint fill volume on a per linear circumferential inch basis. Gas compressibility, friction and heat transfer are included in the modeling. Gas-to-wall heat transfer is simulated by concurrent solution of the compressible flow equations and a large thermal 2-D finite element (FE) conduction grid. The derived numerical technique loosely couples the FE conduction matrix with the compressible gas flow equations. Free constants that appear in the governing equations are calibrated by parametric model comparison to hot fire subscale test results. The calibrated model is then used to make full-scale motor predictions using RSRM aft dome environments. Model results indicate that CFR thermal barrier systems will provide a thermally benign and controlled pressurization environment for the RSRM nozzle joint-2 primary seal activation.
NASA Technical Reports Server (NTRS)
Clayton, J. Louie; Phelps, Lisa (Technical Monitor)
2001-01-01
This study provides for development and verification of analysis methods used to assess performance of a carbon fiber rope (CFR) thermal barrier system that is currently being qualified for use in Reusable Solid Rocket Motor (RSRM) nozzle joint-2. Modeled geometry for flow calculations considers the joint to be vented with the porous CFR barriers placed in the "open' assembly gap. Model development is based on a 1-D volume filling approach where flow resistances (assembly gap and CFRs) are defined by serially connected internal flow and the porous media "Darcy" relationships. Combustion gas flow rates are computed using the volume filling code by assuming a lumped distribution total joint fill volume on a per linear circumferential inch basis. Gas compressibility, friction and heat transfer are included in the modeling. Gas-to-wall heat transfer is simulated by concurrent solution of the compressible flow equations and a large thermal 2-D finite element (FE) conduction grid. The derived numerical technique loosely couples the FE conduction matrix with the compressible gas flow equations, Free constants that appear in the governing equations are calibrated by parametric model comparison to hot fire subscale test results. The calibrated model is then used to make full-scale motor predictions using RSRM aft dome environments. Model results indicate that CFR thermal barrier systems will provide a thermally benign and controlled pressurization environment for the RSRM nozzle joint-2 primary seal activation.
Cosmological measure with volume averaging and the vacuum energy problem
NASA Astrophysics Data System (ADS)
Astashenok, Artyom V.; del Popolo, Antonino
2012-04-01
In this paper, we give a possible solution to the cosmological constant problem. It is shown that the traditional approach, based on volume weighting of probabilities, leads to an incoherent conclusion: the probability that a randomly chosen observer measures Λ = 0 is exactly equal to 1. Using an alternative, volume averaging measure, instead of volume weighting can explain why the cosmological constant is non-zero.
Increasing heat transfer of non-Newtonian nanofluid in rectangular microchannel with triangular ribs
NASA Astrophysics Data System (ADS)
Shamsi, Mohammad Reza; Akbari, Omid Ali; Marzban, Ali; Toghraie, Davood; Mashayekhi, Ramin
2017-09-01
In this study, computational fluid dynamics and the laminar flow of the non-Newtonian fluid have been numerically studied. The cooling fluid includes water and 0.5 wt% Carboxy methyl cellulose (CMC) making the non-Newtonian fluid. In order to make the best of non-Newtonian nanofluid in this simulation, solid nanoparticles of Aluminum Oxide have been added to the non-Newtonian fluid in volume fractions of 0-2% with diameters of 25, 45 and 100 nm. The supposed microchannel is rectangular and two-dimensional in Cartesian coordination. The power law has been used to speculate the dynamic viscosity of the cooling nanofluid. The field of numerical solution is simulated in the Reynolds number range of 5 < Re < 300. A constant heat flux of 10,000 W/m2 is exercised on the lower walls of the studied geometry. Further, the effect of triangular ribs with angle of attacks of 30°, 45° and 60° is studied on flow parameters and heat transfer due to the fluid flow. The results show that an increase in the volume fraction of nanoparticles as well as the use for nanoparticles with smaller diameters lead to greater heat transfer. Among all the studied forms, the triangular rib from with an angle of attack 30° has the biggest Nusselt number and the smallest pressure drop along the microchannel. Also, an increase in the angle of attack and as a result of a sudden contact between the fluid and the ribs and also a reduction in the coflowing length (length of the rib) cause a cut in heat transfer by the fluid in farther parts from the solid wall (tip of the rib).
NASA Astrophysics Data System (ADS)
Schiebl, M.; Zelenka, Z.; Buchner, C.; Pohl, R.; Steindl, D.
2018-02-01
In this study, the influence of the unknown sinker temperature on the measured density of liquids is evaluated. Generally, due to the intrinsic temperature instability of the heat bath temperature controller, the system will never reach thermal equilibrium but instead will oscillate around a mean temperature. The sinker temperature follows this temperature oscillation with a certain time lag. Since the sinker temperature is not measured directly in a hydrostatic weighing apparatus, the temperature of the sinker, and thus in turn the volume of the sinker, is not known exactly. As a consequence, this leads to uncertainty in the value of the density of the liquid. From an analysis of the volume relaxation of the sinker immersed into a heat bath with time-dependent temperature characteristics, the heat transfer coefficient can be estimated, and thus a characteristic time constant for achieving quasi thermal equilibrium for a hydrostatic weighing apparatus is proposed. Additionally, from a theoretical analysis of the transient behavior of the sinker volume, the systematic deviation of the theoretical to the actual measured liquid density is calculated.
Kungwan, Nawee; Ngaojampa, Chanisorn; Ogata, Yudai; Kawatsu, Tsutomu; Oba, Yuki; Kawashima, Yukio; Tachikawa, Masanori
2017-10-05
Solvent dependence of double proton transfer in the formic acid-formamidine (FA-FN) complex at room temperature was investigated by means of ab initio path integral molecular dynamics (AIPIMD) simulation with taking nuclear quantum and thermal effects into account. The conductor-like screening model (COSMO) was applied for solvent effect. In comparison with gas phase, double proton delocalization between two heavy atoms (O and N) in FA-FN were observed with reduced proton transfer barrier height in low dielectric constant medium (<4.8). For dielectric constant medium at 4.8, the chance of finding these two protons are more pronounced due to the solvent effect which completely washes out the proton transfer barrier. In the case of higher dielectric constant medium (>4.8), the ionic species becomes more stable than the neutral ones and the formate anion and formamidium cation are thermodynamically stable. For ab initio molecular dynamics simulation, in low dielectric constant medium (<4.8) a reduction of proton transfer barrier with solvent effect is found to be less pronounced than the AIPIMD due to the absence of nuclear quantum effect. Moreover, the motions of FA-FN complex are significantly different with increasing dielectric constant medium. Such a difference is revealed in detail by the principal component analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maagd, P.G.J. de; Opperhuizen, A.; Sijm, D.T.H.M.
Aqueous solubilities, n-octanol/water partition coefficients (K{sub ow}S), and Henry`s law constants were determined for a range of polycyclic aromatic hydrocarbons (PAHs) using a generator-column, slow-stirring, and gas-purge method, respectively. The currently obtained data were compared to available literature data. For seven of the PAHs no K{sub ow}S previously were determined with the slow-stirring method. For four of the PAHs the present study reports the first experimental Henry`s law constants. Relationships between subcooled liquid solubilities, K{sub ow}S, and Henry`s law constants as a function of molar volume are discussed. A consistent data set was obtained, for which an excellent correlation wasmore » found between subcooled liquid solubility and molar volume. A linear fit did not accurately describe the relationship between log K{sub ow} and molar volume. This is probably due to a decreasing solubility in n-octanol with increasing molar volume. Finally, a high correlation was found between Henry`s law constant and molar volume. The presently obtained dataset can be used to predict the fate and behavior of unsubstituted homocyclic PAHs.« less
Thermal conductivity measurements in porous mixtures of methane hydrate and quartz sand
Waite, W.F.; deMartin, B.J.; Kirby, S.H.; Pinkston, J.; Ruppel, C.D.
2002-01-01
Using von Herzen and Maxwell's needle probe method, we measured thermal conductivity in four porous mixtures of quartz sand and methane gas hydrate, with hydrate composing 0, 33, 67 and 100% of the solid volume. Thermal conductivities were measured at a constant methane pore pressure of 24.8 MPa between -20 and +15??C, and at a constant temperature of -10??C between 3.5 and 27.6 MPa methane pore pressure. Thermal conductivity decreased with increasing temperature and increased with increasing methane pore pressure. Both dependencies weakened with increasing hydrate content. Despite the high thermal conductivity of quartz relative to methane hydrate, the largest thermal conductivity was measured in the mixture containing 33% hydrate rather than in hydrate-free sand. This suggests gas hydrate enhanced grain-to-grain heat transfer, perhaps due to intergranular contact growth during hydrate synthesis. These results for gas-filled porous mixtures can help constrain thermal conductivity estimates in porous, gas hydrate-bearing systems.
Choi, Yoon Seong; Park, Mina; Kwon, Hyeong Ju; Koh, Yoon Woo; Lee, Seung-Koo; Kim, Jinna
2016-02-01
The objective of this study was to investigate differences in dynamic contrast-enhanced MRI (DCE-MRI) parameters on the basis of the status of human papillomavirus (HPV) and epidermal growth factor receptor (EGFR) biomarkers in patients with squamous cell carcinoma (SCC) of the oral cavity and oropharynx by use of histogram analysis. A total of 22 consecutive patients with oral cavity and oropharyngeal SCC underwent DCE-MRI before receiving treatment. DCE parameter maps of the volume transfer constant (K(trans)), the flux rate constant (kep), and the extravascular extracellular volume fraction (ve) were obtained. The histogram parameters were calculated using the entire enhancing tumor volume and were compared between the patient subgroups on the basis of HPV and EGFR biomarker statuses. The cumulative histogram parameters of K(trans) and kep showed lower values in the HPV-negative and EFGR-overexpression group than in the HPV-positive EGFR-negative group. These differences were statistically significant for the mean (p = 0.009), 25th, 50th, and 75th percentile values of K(trans) and for the 25th percentile value of kep when correlated with HPV status in addition to the mean K(trans) value (p = 0.047) and kep value (p = 0.004) when correlated with EGFR status. No statistically significant difference in ve was found on the basis of HPV and EGFR status. DCE-MRI is useful for the assessment of the tumor microenvironment associated with HPV and EGFR biomarkers before treatment of patients with oral cavity and oropharyngeal SCC.
Fundamental Insight on Developing Low Dielectric Constant Polyimides
NASA Technical Reports Server (NTRS)
Simpson, J. O.; SaintClair, A. K.
1997-01-01
Thermally stable, durable, insulative polyimides are in great demand for the fabrication of microelectronic devices. In this investigation dielectric and optical properties have been studied for several series of aromatic polyimides. The effect of polarizability, fluorine content, and free volume on dielectric constant was examined. In general, minimizing polarizability, maximizing free volume and fluorination all lowered dielectric constants in the polyimides studied.
NASA Astrophysics Data System (ADS)
Alsabery, A. I.; Chamkha, A. J.; Saleh, H.; Hashim, I.; Chanane, B.
2017-03-01
The effects of finite wall thickness and sinusoidal heating on convection in a nanofluid-saturated local thermal non-equilibrium (LTNE) porous cavity are studied numerically using the finite difference method. The finite thickness vertical wall of the cavity is maintained at a constant temperature and the right wall is heated sinusoidally. The horizontal insulated walls allow no heat transfer to the surrounding. The Darcy law is used along with the Boussinesq approximation for the flow. Water-based nanofluids with Cu nanoparticles are chosen for investigation. The results of this study are obtained for various parameters such as the Rayleigh number, periodicity parameter, nanoparticles volume fraction, thermal conductivity ratio, ratio of wall thickness to its height and the modified conductivity ratio. Explanation for the influence of the various above-mentioned parameters on the streamlines, isotherms, local Nusselt number and the weighted average heat transfer is provided with regards to the thermal conductivities of nanoparticles suspended in the pure fluid and the porous medium. It is shown that the overall heat transfer is significantly increased with the relative non-uniform heating. Further, the convection heat transfer is shown to be inhibited by the presence of the solid wall. The results have possible applications in the heat-storage fluid-saturated porous systems and the applications of the high power heat transfer.
Imaging performance of an isotropic negative dielectric constant slab.
Shivanand; Liu, Huikan; Webb, Kevin J
2008-11-01
The influence of material and thickness on the subwavelength imaging performance of a negative dielectric constant slab is studied. Resonance in the plane-wave transfer function produces a high spatial frequency ripple that could be useful in fabricating periodic structures. A cost function based on the plane-wave transfer function provides a useful metric to evaluate the planar slab lens performance, and using this, the optimal slab dielectric constant can be determined.
Single Event Rates for Devices Sensitive to Particle Energy
NASA Technical Reports Server (NTRS)
Edmonds, L. D.; Scheick, L. Z.; Banker, M. W.
2012-01-01
Single event rates (SER) can include contributions from low-energy particles such that the linear energy transfer (LET) is not constant. Previous work found that the environmental description that is most relevant to the low-energy contribution to the rate is a "stopping rate per unit volume" even when the physical mechanisms for a single-event effect do not require an ion to stop in some device region. Stopping rate tables are presented for four heavy-ion environments that are commonly used to assess device suitability for space applications. A conservative rate estimate utilizing limited test data is derived, and the example of SEGR rate in a power MOSFET is presented.
Revert Ventura, A J; Sanz Requena, R; Martí-Bonmatí, L; Pallardó, Y; Jornet, J; Gaspar, C
2014-01-01
To study whether the histograms of quantitative parameters of perfusion in MRI obtained from tumor volume and peritumor volume make it possible to grade astrocytomas in vivo. We included 61 patients with histological diagnoses of grade II, III, or IV astrocytomas who underwent T2*-weighted perfusion MRI after intravenous contrast agent injection. We manually selected the tumor volume and peritumor volume and quantified the following perfusion parameters on a voxel-by-voxel basis: blood volume (BV), blood flow (BF), mean transit time (TTM), transfer constant (K(trans)), washout coefficient, interstitial volume, and vascular volume. For each volume, we obtained the corresponding histogram with its mean, standard deviation, and kurtosis (using the standard deviation and kurtosis as measures of heterogeneity) and we compared the differences in each parameter between different grades of tumor. We also calculated the mean and standard deviation of the highest 10% of values. Finally, we performed a multiparametric discriminant analysis to improve the classification. For tumor volume, we found statistically significant differences among the three grades of tumor for the means and standard deviations of BV, BF, and K(trans), both for the entire distribution and for the highest 10% of values. For the peritumor volume, we found no significant differences for any parameters. The discriminant analysis improved the classification slightly. The quantification of the volume parameters of the entire region of the tumor with BV, BF, and K(trans) is useful for grading astrocytomas. The heterogeneity represented by the standard deviation of BF is the most reliable diagnostic parameter for distinguishing between low grade and high grade lesions. Copyright © 2011 SERAM. Published by Elsevier Espana. All rights reserved.
Creatine kinase rate constant in the human heart measured with 3D-localization at 7 tesla.
Clarke, William T; Robson, Matthew D; Neubauer, Stefan; Rodgers, Christopher T
2017-07-01
We present a new Bloch-Siegert four Angle Saturation Transfer (BOAST) method for measuring the creatine kinase (CK) first-order effective rate constant k f in human myocardium at 7 tesla (T). BOAST combines a variant of the four-angle saturation transfer (FAST) method using amplitude-modulated radiofrequency pulses, phosphorus Bloch-Siegert B1+-mapping to determine the per-voxel flip angles, and nonlinear fitting to Bloch simulations for postprocessing. Optimal flip angles and repetition time parameters were determined from Monte Carlo simulations. BOAST was validated in the calf muscle of two volunteers at 3T and 7T. The myocardial CK forward rate constant was then measured in 10 volunteers at 7T in 82 min (after 1 H localization). BOAST kfCK values were 0.281 ± 0.002 s -1 in the calf and 0.35 ± 0.05 s -1 in myocardium. These are consistent with literature values from lower fields. Using a literature values for adenosine triphosphate concentration, we computed CK flux values of 4.55 ± 1.52 mmol kg -1 s -1 . The sensitive volume for BOAST depends on the B 1 inhomogeneity of the transmit coil. BOAST enables measurement of the CK rate constant in the human heart at 7T, with spatial localization in three dimensions to 5.6 mL voxels, using a 10-cm loop coil. Magn Reson Med 78:20-32, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.
Creatine kinase rate constant in the human heart measured with 3D‐localization at 7 tesla
Robson, Matthew D.; Neubauer, Stefan; Rodgers, Christopher T.
2016-01-01
Purpose We present a new Bloch‐Siegert four Angle Saturation Transfer (BOAST) method for measuring the creatine kinase (CK) first‐order effective rate constant kf in human myocardium at 7 tesla (T). BOAST combines a variant of the four‐angle saturation transfer (FAST) method using amplitude‐modulated radiofrequency pulses, phosphorus Bloch‐Siegert B1+‐mapping to determine the per‐voxel flip angles, and nonlinear fitting to Bloch simulations for postprocessing. Methods Optimal flip angles and repetition time parameters were determined from Monte Carlo simulations. BOAST was validated in the calf muscle of two volunteers at 3T and 7T. The myocardial CK forward rate constant was then measured in 10 volunteers at 7T in 82 min (after 1H localization). Results BOAST kfCK values were 0.281 ± 0.002 s−1 in the calf and 0.35 ± 0.05 s−1 in myocardium. These are consistent with literature values from lower fields. Using a literature values for adenosine triphosphate concentration, we computed CK flux values of 4.55 ± 1.52 mmol kg−1 s−1. The sensitive volume for BOAST depends on the B1 inhomogeneity of the transmit coil. Conclusion BOAST enables measurement of the CK rate constant in the human heart at 7T, with spatial localization in three dimensions to 5.6 mL voxels, using a 10‐cm loop coil. Magn Reson Med 78:20–32, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. PMID:27579566
Thermo-acoustical molecular interaction study in binary mixtures of glycerol and ethylene glycol
NASA Astrophysics Data System (ADS)
Kaur, Kirandeep; Juglan, K. C.; Kumar, Harsh
2017-07-01
Ultrasonic velocity, density and viscosity are measured over the entire composition range for binary liquid mixtures of glycerol (CH2OH-CHOH-CH2OH) and ethylene glycol (HOCH2CH2OH) at different temperatures and constant frequency of 2MHz using ultrasonic interferometer, specific gravity bottle and viscometer respectively. Measured experimental values are used to obtained various acoustical parameters such as adiabatic compressibility, acoustic impedance, intermolecular free length, relaxation time, ultrasonic attenuation, effective molar weight, free volume, available volume, molar volume, Wada's constant, Rao's constant, Vander Waal's constant, internal pressure, Gibb's free energy and enthalpy. The variation in acoustical parameters are interpreted in terms of molecular interactions between the components of molecules of binary liquid mixtures.
Nguyen, T B; Cron, G O; Mercier, J F; Foottit, C; Torres, C H; Chakraborty, S; Woulfe, J; Jansen, G H; Caudrelier, J M; Sinclair, J; Hogan, M J; Thornhill, R E; Cameron, I G
2015-01-01
The prognostic value of dynamic contrast-enhanced MR imaging-derived plasma volume obtained in tumor and the contrast transfer coefficient has not been well-established in patients with gliomas. We determined whether plasma volume and contrast transfer coefficient in tumor correlated with survival in patients with gliomas in addition to other factors such as age, type of surgery, preoperative Karnofsky score, contrast enhancement, and histopathologic grade. This prospective study included 46 patients with a new pathologically confirmed diagnosis of glioma. The contrast transfer coefficient and plasma volume obtained in tumor maps were calculated directly from the signal-intensity curve without T1 measurements, and values were obtained from multiple small ROIs placed within tumors. Survival curve analysis was performed by dichotomizing patients into groups of high and low contrast transfer coefficient and plasma volume. Univariate analysis was performed by using dynamic contrast-enhanced parameters and clinical factors. Factors that were significant on univariate analysis were entered into multivariate analysis. For all patients with gliomas, survival was worse for groups of patients with high contrast transfer coefficient and plasma volume obtained in tumor (P < .05). In subgroups of high- and low-grade gliomas, survival was worse for groups of patients with high contrast transfer coefficient and plasma volume obtained in tumor (P < .05). Univariate analysis showed that factors associated with lower survival were age older than 50 years, low Karnofsky score, biopsy-only versus resection, marked contrast enhancement versus no/mild enhancement, high contrast transfer coefficient, and high plasma volume obtained in tumor (P < .05). In multivariate analysis, a low Karnofsky score, biopsy versus resection in combination with marked contrast enhancement, and a high contrast transfer coefficient were associated with lower survival rates (P < .05). In patients with glioma, those with a high contrast transfer coefficient have lower survival than those with low parameters. © 2015 by American Journal of Neuroradiology.
NASA Astrophysics Data System (ADS)
Jajodia, S.; Chimankar, O. P.; Kalambe, A.; Goswami, S. G.
2012-12-01
Amino acids are the building blocks of the proteins; their study provides important information, about the behaviour of larger biomolecules such as proteins. The properties of proteins such as their structure, solubility, denaturation, etc. are greatly influenced by electrolytes. Ultrasonic velocity and density values have been used for evaluation of thermal expansion coefficient and adiabatic compressibility for ternary systems (amino acid/salt + water) namely L-leucine / L-asparagine each in 1.5 M aqueous solution of NaCl used as solvent for various concentrations and at different temperatures (298.15K - 323.15K). Present paper reports the variation of various thermoacoustical parameters such as Moelwyn-Hughes parameter (C1), Beyer's non-linearity parameter (B/A), internal pressure (Pi), fractional free volume (f), available volume (Va), repulsive exponent (n), molecular constant (r), van der Waals' constant (b), Debye temperatue (θD), etc. have been computed from the thermal expansion coefficient with the change of concentration and temperature. The variations of all these parameters have been interpreted in terms of various intermolecular interactions such as strong, weak, charge transfer, complex formation, hydrogen bonding interaction. The structure making and breaking properties of the interacting components existing in proposed ternary systems. It shows the associating and dissociating tendency of the molecules of solute in solvent.The hetromolecular interactions are present in both the ternary systems.
A Variational Statistical-Field Theory for Polar Liquid Mixtures
NASA Astrophysics Data System (ADS)
Zhuang, Bilin; Wang, Zhen-Gang
Using a variational field-theoretic approach, we derive a molecularly-based theory for polar liquid mixtures. The resulting theory consists of simple algebraic expressions for the free energy of mixing and the dielectric constant as functions of mixture composition. Using only the dielectric constants and the molar volumes of the pure liquid constituents, the theory evaluates the mixture dielectric constants in good agreement with the experimental values for a wide range of liquid mixtures, without using adjustable parameters. In addition, the theory predicts that liquids with similar dielectric constants and molar volumes dissolve well in each other, while sufficient disparity in these parameters result in phase separation. The calculated miscibility map on the dielectric constant-molar volume axes agrees well with known experimental observations for a large number of liquid pairs. Thus the theory provides a quantification for the well-known empirical ``like-dissolves-like'' rule. Bz acknowledges the A-STAR fellowship for the financial support.
Human heart rate variability relation is unchanged during motion sickness
NASA Technical Reports Server (NTRS)
Mullen, T. J.; Berger, R. D.; Oman, C. M.; Cohen, R. J.
1998-01-01
In a study of 18 human subjects, we applied a new technique, estimation of the transfer function between instantaneous lung volume (ILV) and instantaneous heart rate (HR), to assess autonomic activity during motion sickness. Two control recordings of ILV and electrocardiogram (ECG) were made prior to the development of motion sickness. During the first, subjects were seated motionless, and during the second they were seated rotating sinusoidally about an earth vertical axis. Subjects then wore prism goggles that reverse the left-right visual field and performed manual tasks until they developed moderate motion sickness. Finally, ILV and ECG were recorded while subjects maintained a relatively constant level of sickness by intermittent eye closure during rotation with the goggles. Based on analyses of ILV to HR transfer functions from the three conditions, we were unable to demonstrate a change in autonomic control of heart rate due to rotation alone or due to motion sickness. These findings do not support the notion that moderate motion sickness is manifested as a generalized autonomic response.
Kilburn, K H; Warshaw, R H; Thornton, J C; Thornton, K; Miller, A
1992-01-01
BACKGROUND: Published predicted values for total lung capacity and residual volume are often based on a small number of subjects and derive from different populations from predicted spirometric values. Equations from the only two large studies gave smaller predicted values for total lung capacity than the smaller studies. A large number of subjects have been studied from a population which has already provided predicted values for spirometry and transfer factor for carbon monoxide. METHODS: Total lung capacity was measured from standard posteroanterior and lateral chest radiographs and forced vital capacity by spirometry in a population sample of 771 subjects. Prediction equations were developed for total lung capacity (TLC), residual volume (RV) and RV/TLC in two groups--normal and total. Subjects with signs or symptoms of cardiopulmonary disease were combined with the normal subjects and equations for all subjects were also modelled. RESULTS: Prediction equations for TLC and RV in non-smoking normal men and women were square root transformations which included height and weight but not age. They included a coefficient for duration of smoking in current smokers. The predictive equation for RV/TLC included weight, age, age and duration of smoking for current smokers and ex-smokers of both sexes. For the total population the equations took the same form but the height coefficients and constants were slightly different. CONCLUSION: These population based prediction equations for TLC, RV and RV/TLC provide reference standards in a population that has provided reference standards for spirometry and single breath transfer factor for carbon monoxide. PMID:1412094
Inter-Facility Transfer of Pediatric Burn Patients from U.S. Emergency Departments
Johnson, Sarah A.; Shi, Junxin; Groner, Jonathan I.; Thakkar, Rajan K.; Fabia, Renata; Besner, Gail E.; Xiang, Huiyun; Wheeler, Krista K.
2016-01-01
Purpose To describe the epidemiology of pediatric burn patients seen in U.S. emergency departments (EDs) and to determine factors associated with inter-facility transfer. Methods We analyzed data from the 2012 Nationwide Emergency Department Sample. Current American Burn Association (ABA) Guidelines were used to identify children <18 who met criteria for referral to burn centers. Burn patient admission volume was used as a proxy for burn expertise. Logistic models were fitted to examine the odds of transfer from low volume hospitals. Results In 2012, there were an estimated 126,742 (95% CI: 116,104–137,380) pediatric burn ED visits in the U.S. Of the 69,003 (54.4%) meeting referral criteria, 83.2% were in low volume hospitals. Only 8.2% of patients meeting criteria were transferred from low volume hospitals. Of the 52,604 (95% CI: 48,433 – 56,775) not transferred, 98.3% were treated and released and 1.7% were admitted without transfer; 54.7% of burns involved hands. Conclusions Over 90% of pediatric burn ED patients meet ABA burn referral criteria but are not transferred from low volume hospitals. Perhaps a portion of the 92% of patients currently receiving definitive care in low volume hospitals are under-referred and would have improved clinical outcomes if transferred at the time of presentation. PMID:27554628
Aryal, Madhava P; Nagaraja, Tavarekere N; Brown, Stephen L; Lu, Mei; Bagher-Ebadian, Hassan; Ding, Guangliang; Panda, Swayamprava; Keenan, Kelly; Cabral, Glauber; Mikkelsen, Tom; Ewing, James R
2014-10-01
The distribution of dynamic contrast-enhanced MRI (DCE-MRI) parametric estimates in a rat U251 glioma model was analyzed. Using Magnevist as contrast agent (CA), 17 nude rats implanted with U251 cerebral glioma were studied by DCE-MRI twice in a 24 h interval. A data-driven analysis selected one of three models to estimate either (1) plasma volume (vp), (2) vp and forward volume transfer constant (K(trans)) or (3) vp, K(trans) and interstitial volume fraction (ve), constituting Models 1, 2 and 3, respectively. CA distribution volume (VD) was estimated in Model 3 regions by Logan plots. Regions of interest (ROIs) were selected by model. In the Model 3 ROI, descriptors of parameter distributions--mean, median, variance and skewness--were calculated and compared between the two time points for repeatability. All distributions of parametric estimates in Model 3 ROIs were positively skewed. Test-retest differences between population summaries for any parameter were not significant (p ≥ 0.10; Wilcoxon signed-rank and paired t tests). These and similar measures of parametric distribution and test-retest variance from other tumor models can be used to inform the choice of biomarkers that best summarize tumor status and treatment effects. Copyright © 2014 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Mitter, H.; Böse, N.; Benyon, R.; Vicente, T.
2012-09-01
During calibration of precision optical dew-point hygrometers (DPHs), it is usually necessary to take into account the pressure drop induced by the gas flow between the "point of reference" and the "point of use" (mirror or measuring head of the DPH) either as a correction of the reference dew-point temperature or as part of the uncertainty estimation. At dew-point temperatures in the range of ambient temperature and below, it is sufficient to determine the pressure drop for the required gas flow, and to keep the volumetric flow constant during the measurements. In this case, it is feasible to keep the dry-gas flow into the dew-point generator constant or to measure the flow downstream the DPH at ambient temperature. In normal operation, at least one DPH in addition to the monitoring DPH are used, and this operation has to be applied to each instrument. The situation is different at high dew-point temperatures up to 95 °C, the currently achievable upper limit reported in this paper. With increasing dew-point temperatures, the reference gas contains increasing amounts of water vapour and a constant dry-gas flow will lead to a significant enhanced volume flow at the conditions at the point of use, and therefore, to a significantly varying pressure drop depending on the applied dew-point temperature. At dew-point temperatures above ambient temperature, it is also necessary to heat the reference gas and the mirror head of the DPH sufficiently to avoid condensation which will additionally increase the volume flow and the pressure drop. In this paper, a method is provided to calculate the dry-gas flow rate needed to maintain a known wet-gas flow rate through a chilled mirror for a range of temperature and pressures.
NASA Astrophysics Data System (ADS)
Zhang, Yiming; Zhao, Zhengming; Chen, Kainan; Fan, Jun
2017-05-01
Wireless Power Transfer (WPT) has been the research focus and applied in many fields. Normally power is transferred wirelessly to charge the battery, which requires specific load characteristics. The load characteristics are essential for the design and operation of the WPT system. This paper investigates the load characteristics of the WPT system with different resonant types and resonator numbers. It is found that in a WPT system with series or LCL resonance under a constant voltage source, the load characteristic is determined by the number of inductors. Even number of inductors results in a constant current characteristic and odd number constant voltage characteristic. Calculations, simulations, and experiments verify the analysis.
Flores-Cano, J V; Sánchez-Polo, M; Messoud, J; Velo-Gala, I; Ocampo-Pérez, R; Rivera-Utrilla, J
2016-03-15
This study analyzed the overall adsorption rate of metronidazole, dimetridazole, and diatrizoate on activated carbons prepared from coffee residues and almond shells. It was also elucidated whether the overall adsorption rate was controlled by reaction on the adsorbent surface or by intraparticle diffusion. Experimental data of the pollutant concentration decay curves as a function of contact time were interpreted by kinetics (first- and second-order) and diffusion models, considering external mass transfer, surface and/or pore volume diffusion, and adsorption on an active site. The experimental data were better interpreted by a first-order than second-order kinetic model, and the first-order adsorption rate constant varied linearly with respect to the surface area and total pore volume of the adsorbents. According to the diffusion model, the overall adsorption rate is governed by intraparticle diffusion, and surface diffusion is the main mechanism controlling the intraparticle diffusion, representing >90% of total intraparticle diffusion. Copyright © 2015 Elsevier Ltd. All rights reserved.
MRI contrast agent concentration and tumor interstitial fluid pressure.
Liu, L J; Schlesinger, M
2016-10-07
The present work describes the relationship between tumor interstitial fluid pressure (TIFP) and the concentration of contrast agent for dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). We predict the spatial distribution of TIFP based on that of contrast agent concentration. We also discuss the cases for estimating tumor interstitial volume fraction (void fraction or porosity of porous medium), ve, and contrast volume transfer constant, K(trans), by measuring the ratio of contrast agent concentration in tissue to that in plasma. A linear fluid velocity distribution may reflect a quadratic function of TIFP distribution and lead to a practical method for TIFP estimation. To calculate TIFP, the parameters or variables should preferably be measured along the direction of the linear fluid velocity (this is in the same direction as the gray value distribution of the image, which is also linear). This method may simplify the calculation for estimating TIFP. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.
An implicit numerical model for multicomponent compressible two-phase flow in porous media
NASA Astrophysics Data System (ADS)
Zidane, Ali; Firoozabadi, Abbas
2015-11-01
We introduce a new implicit approach to model multicomponent compressible two-phase flow in porous media with species transfer between the phases. In the implicit discretization of the species transport equation in our formulation we calculate for the first time the derivative of the molar concentration of component i in phase α (cα, i) with respect to the total molar concentration (ci) under the conditions of a constant volume V and temperature T. The species transport equation is discretized by the finite volume (FV) method. The fluxes are calculated based on powerful features of the mixed finite element (MFE) method which provides the pressure at grid-cell interfaces in addition to the pressure at the grid-cell center. The efficiency of the proposed model is demonstrated by comparing our results with three existing implicit compositional models. Our algorithm has low numerical dispersion despite the fact it is based on first-order space discretization. The proposed algorithm is very robust.
Heat transfer enhancement of Fe3O4 ferrofluids in the presence of magnetic field
NASA Astrophysics Data System (ADS)
Fadaei, Farzad; Shahrokhi, Mohammad; Molaei Dehkordi, Asghar; Abbasi, Zeinab
2017-05-01
In this article, three-dimensional (3D) forced-convection heat transfer of magnetic nanofluids in a pipe subject to constant wall heat flux in the presence of single or double permanent magnet(s) or current-carrying wire has been investigated and compared. In this regard, laminar fluid flow and equilibrium magnetization for the ferrofluid were considered. In addition, variations of magnetic field in different media were taken into account and the assumption of having a linear relationship of magnetization with applied magnetic field intensity was also relaxed. Effects of magnetic field intensity, nanoparticle volume fraction, Reynolds number value, and the type of magnetic field source (i.e., a permanent magnet or current-carrying wire) on the forced-convection heat transfer of magnetic nanofluids were carefully investigated. It was found that by applying the magnetic field, the fluid mixing could be intensified that leads to an increase in the Nusselt number value along the pipe length. Moreover, the obtained simulation results indicate that applying the magnetic field induced by two permanent magnets with a magnetization of 3×105 (A/m) (for each one), the fully developed Nusselt number value can be increased by 196%.
NASA Astrophysics Data System (ADS)
Krikkis, Rizos N.
2018-06-01
A non-equilibrium thermodynamic and heat transfer model for LNG ageing during ship transportation has been developed based on experimental data. The measurements reveal that the liquid temperature remains nearly constant, whereas significant variations are observed for the gas temperature. The measurement of the liquid temperature along the tank height suggests that a small scale rollover phenomenon may have taken place in one cargo tank. A time dependent heat transfer mechanism has been considered by taking into account the temperature variations of the atmospheric air, the seawater and the cofferdam environment which affect the cargo tanks. An important finding is that the evaporation rate (boil-of rate) is forced to follow the fuel flow consumption profile imposed by the vessel's propulsion system in order to match the tank pressure and volume constraints. The theoretical model is favorably compared to a comprehensive set on per hour basis of on board measurements of cargo temperatures and pressures, recorded during laden voyages, providing a better understanding of the underlying processes involved. The dominant role of the fuel consumption on the evaporation rate may be utilized in order to devise an efficient cargo management strategy during the laden voyage.
Effective diffusion coefficients of gas mixture in heavy oil under constant-pressure conditions
NASA Astrophysics Data System (ADS)
Li, Huazhou Andy; Sun, Huijuan; Yang, Daoyong
2017-05-01
We develop a method to determine the effective diffusion coefficient for each individual component of a gas mixture in a non-volatile liquid (e.g., heavy oil) at high pressures with compositional analysis. Theoretically, a multi-component one-way diffusion model is coupled with the volume-translated Peng-Robinson equation of state to quantify the mass transfer between gas and liquid (e.g., heavy oil). Experimentally, the diffusion tests have been conducted with a PVT setup for one pure CO2-heavy oil system and one C3H8-CO2-heavy oil system under constant temperature and pressure, respectively. Both the gas-phase volume and liquid-phase swelling effect are simultaneously recorded during the measurement. As for the C3H8-CO2-heavy oil system, the gas chromatography method is employed to measure compositions of the gas phase at the beginning and end of the diffusion measurement, respectively. The effective diffusion coefficients are then determined by minimizing the discrepancy between the measured and calculated gas-phase composition at the end of diffusion measurement. The newly developed technique can quantify the contributions of each component of mixture to the bulk mass transfer from gas into liquid. The effective diffusion coefficient of C3H8 in the C3H8-CO2 mixture at 3945 ± 20 kPa and 293.85 K, i.e., 18.19 × 10^{ - 10} {{m}}^{ 2} / {{s}}, is found to be much higher than CO2 at 3950 ± 18 kPa and 293.85 K, i.e., 8.68 × 10^{ - 10} {{m}}^{ 2} / {{s}}. In comparison with pure CO2, the presence of C3H8 in the C3H8-CO2 mixture contributes to a faster diffusion of CO2 from the gas phase into heavy oil and consequently a larger swelling factor of heavy oil.
ERIC Educational Resources Information Center
Monroe, Charles; Newman, John
2005-01-01
This simple example demonstrates the physical significance of similarity solutions and the utility of dimensional and asymptotic analysis of partial differential equations. A procedure to determine the existence of similarity solutions is proposed and subsequently applied to transient constant-flux heat transfer. Short-time expressions follow from…
The Henry’s law constant (HLC) and the overall mass transfer coefficient are both important parameters for modeling formaldehyde emissions from aqueous solutions. In this work, the apparent HLCs for aqueous formaldehyde solutions were determined in the concentration range from 0....
NASA Technical Reports Server (NTRS)
Miller, W. S.
1974-01-01
The cryogenic refrigerator thermal design calculations establish design approach and basic sizing of the machine's elements. After the basic design is defined, effort concentrates on matching the thermodynamic design with that of the heat transfer devices (heat exchangers and regenerators). Typically, the heat transfer device configurations and volumes are adjusted to improve their heat transfer and pressure drop characteristics. These adjustments imply that changes be made to the active displaced volumes, compensating for the influence of the heat transfer devices on the thermodynamic processes of the working fluid. Then, once the active volumes are changed, the heat transfer devices require adjustment to account for the variations in flows, pressure levels, and heat loads. This iterative process is continued until the thermodynamic cycle parameters match the design of the heat transfer devices. By examing several matched designs, a near-optimum refrigerator is selected.
Mukherjee, Puspal; Biswas, Somnath; Sen, Pratik
2015-08-27
Fluorescence quenching studies through steady-state and time-resolved measurements are inadequate to quantify the bimolecular electron transfer rate in bulk homogeneous solution due to constraints from diffusion. To nullify the effect of diffusion, direct evaluation of the rate of formation of a transient intermediate produced upon the electron transfer is essential. Methyl viologen, a well-known electron acceptor, produces a radical cation after accepting an electron, which has a characteristic strong and broad absorption band centered at 600 nm. Hence it is a good choice to evaluate the rate of photoinduced electron transfer reaction employing femtosecond broadband transient absorption spectroscopy. The time constant of the aforementioned process between pyrene and methyl viologen in methanol has been estimated to be 2.5 ± 0.4 ps using the same technique. The time constant for the backward reaction was found to be 14 ± 1 ps. These values did not change with variation of concentration of quencher, i.e., methyl viologen. Hence, we can infer that diffusion has no contribution in the estimation of rate constants. However, on changing the solvent from methanol to ethanol, the time constant of the electron transfer reaction has been found to increase and has accounted for the change in solvent reorganization energy.
2010-01-01
constant-pressure ( Brayton ) cycle used in gas turbines and ramjets. The advantages of PDE for air- breathing propulsion are simplicity and easy scaling...constant-volume, and detonative combustion cycles will be referred to as Brayton , Humphrey, and PDE cycles. The efficiency of thermodynamic cycles O’ODD...efficiency of Brayton cycle, as 0G HH =′ , i.e., 0==constpχ (3) Constant-volume combustion (point E in Fig. 1) results in temperature K 2647/0E
Temperature control and measurement with tunable femtosecond optical tweezers
NASA Astrophysics Data System (ADS)
Mondal, Dipankar; Goswami, Debabrata
2016-09-01
We present the effects of wavelength dependent temperature rise in a femtosecond optical tweezers. Our experiments involve the femtosecond trapping laser tunable from 740-820 nm at low power 25 mW to cause heating in the trapped volume within a homogeneous solution of sub micro-molar concentration of IR dye. The 780 nm high repetition rate laser acts as a resonant excitation source which helps to create the local heating effortlessly within the trapping volume. We have used both position autocorrelation and equipartion theorem to evaluate temperature at different wavelength having different absorption coefficient. Fixing the pulse width in the temporal domain gives constant bandwidth at spatial domain, which makes our system behave as a tunable temperature rise device with high precision. This observation leads us to calculate temperature as well as viscosity within the vicinity of the trapping zone. A mutual energy transfer occurs between the trapped bead and solvents that leads to transfer the thermal energy of solvents into the kinetic energy of the trap bead and vice-versa. Thus hot solvated molecules resulting from resonant and near resonant excitation of trapping wavelength can continuously dissipate heat to the trapped bead which will be reflected on frequency spectrum of Brownian noise exhibited by the bead. Temperature rise near the trapping zone can significantly change the viscosity of the medium. We observe temperature rise profile according to its Gaussian shaped absorption spectrum with different wavelength.
Low versus high volume of culture medium during embryo transfer: a randomized clinical trial.
Sigalos, George Α; Michalopoulos, Yannis; Kastoras, Athanasios G; Triantafyllidou, Olga; Vlahos, Nikos F
2018-04-01
The aim of this prospective randomized control trial was to evaluate if the use of two different volumes (20-25 vs 40-45 μl) of media used for embryo transfer affects the clinical outcomes in fresh in vitro fertilization (IVF) cycles. In total, 236 patients were randomized in two groups, i.e., "low volume" group (n = 118) transferring the embryos with 20-25 μl of medium and "high volume" group (n = 118) transferring the embryos with 40-45 μl of medium. The clinical pregnancy, implantation, and ongoing pregnancy rates were compared between the two groups. No statistically significant differences were observed in clinical pregnancy (46.8 vs 54.3%, p = 0.27), implantation (23.7 vs 27.8%, p = 0.30), and ongoing pregnancy (33.3 vs 40.0%, p = 0.31) rates between low and high volume group, respectively. Higher volume of culture medium to load the embryo into the catheter during embryo transfer does not influence the clinical outcome in fresh IVF cycles. NCT03350646.
Rathbun, R.E.; Tai, D.Y.
1988-01-01
The two-film model is often used to describe the volatilization of organic substances from water. This model assumes uniformly mixed water and air phases separated by thin films of water and air in which mass transfer is by molecular diffusion. Mass-transfer coefficients for the films, commonly called film coefficients, are related through the Henry's law constant and the model equation to the overall mass-transfer coefficient for volatilization. The films are modeled as two resistances in series, resulting in additive resistances. The two-film model and the concept of additivity of resistances were applied to experimental data for acetone and t-butyl alcohol. Overall mass-transfer coefficients for the volatilization of acetone and t-butyl alcohol from water were measured in the laboratory in a stirred constant-temperature bath. Measurements were completed for six water temperatures, each at three water mixing conditions. Wind-speed was constant at about 0.1 meter per second for all experiments. Oxygen absorption coefficients were measured simultaneously with the measurement of the acetone and t-butyl alcohol mass-transfer coefficients. Gas-film coefficients for acetone, t-butyl alcohol, and water were determined by measuring the volatilization fluxes of the pure substances over a range of temperatures. Henry's law constants were estimated from data from the literature. The combination of high resistance in the gas film for solutes with low values of the Henry's law constants has not been studied previously. Calculation of the liquid-film coefficients for acetone and t-butyl alcohol from measured overall mass-transfer and gas-film coefficients, estimated Henry's law constants, and the two-film model equation resulted in physically unrealistic, negative liquid-film coefficients for most of the experiments at the medium and high water mixing conditions. An analysis of the two-film model equation showed that when the percentage resistance in the gas film is large and the gas-film resistance approaches the overall resistance in value, the calculated liquid-film coefficient becomes extremely sensitive to errors in the Henry's law constant. The negative coefficients were attributed to this sensitivity and to errors in the estimated Henry's law constants. Liquid-film coefficients for the absorption of oxygen were correlated with the stirrer Reynolds number and the Schmidt number. Application of this correlation with the experimental conditions and a molecular-diffusion coefficient adjustment resulted in values of the liquid-film coefficients for both acetone and t-butyl alcohol within the range expected for all three mixing conditions. Comparison of Henry's law constants calculated from these film coefficients and the experimental data with the constants calculated from literature data showed that the differences were small relative to the errors reported in the literature as typical for the measurement or estimation of Henry's law constants for hydrophilic compounds such as ketones and alcohols. Temperature dependence of the mass-transfer coefficients was expressed in two forms. The first, based on thermodynamics, assumed the coefficients varied as the exponential of the reciprocal absolute temperature. The second empirical approach assumed the coefficients varied as the exponential of the absolute temperature. Both of these forms predicted the temperature dependence of the experimental mass-transfer coefficients with little error for most of the water temperature range likely to be found in streams and rivers. Liquid-film and gas-film coefficients for acetone and t-butyl alcohol were similar in value. However, depending on water mixing conditions, overall mass-transfer coefficients for acetone were from two to four times larger than the coefficients for t-butyl alcohol. This difference in behavior of the coefficients resulted because the Henry's law constant for acetone was about three times larger than that of
The ideal Kolmogorov inertial range and constant
NASA Technical Reports Server (NTRS)
Zhou, YE
1993-01-01
The energy transfer statistics measured in numerically simulated flows are found to be nearly self-similar for wavenumbers in the inertial range. Using the measured self-similar form, an 'ideal' energy transfer function and the corresponding energy flux rate were deduced. From this flux rate, the Kolmogorov constant was calculated to be 1.5, in excellent agreement with experiments.
Computer programs for thermodynamic and transport properties of hydrogen (tabcode-II)
NASA Technical Reports Server (NTRS)
Roder, H. M.; Mccarty, R. D.; Hall, W. J.
1972-01-01
The thermodynamic and transport properties of para and equilibrium hydrogen have been programmed into a series of computer routines. Input variables are the pair's pressure-temperature and pressure-enthalpy. The programs cover the range from 1 to 5000 psia with temperatures from the triple point to 6000 R or enthalpies from minus 130 BTU/lb to 25,000 BTU/lb. Output variables are enthalpy or temperature, density, entropy, thermal conductivity, viscosity, at constant volume, the heat capacity ratio, and a heat transfer parameter. Property values on the liquid and vapor boundaries are conveniently obtained through two small routines. The programs achieve high speed by using linear interpolation in a grid of precomputed points which define the surface of the property returned.
Striatal volume predicts level of video game skill acquisition.
Erickson, Kirk I; Boot, Walter R; Basak, Chandramallika; Neider, Mark B; Prakash, Ruchika S; Voss, Michelle W; Graybiel, Ann M; Simons, Daniel J; Fabiani, Monica; Gratton, Gabriele; Kramer, Arthur F
2010-11-01
Video game skills transfer to other tasks, but individual differences in performance and in learning and transfer rates make it difficult to identify the source of transfer benefits. We asked whether variability in initial acquisition and of improvement in performance on a demanding video game, the Space Fortress game, could be predicted by variations in the pretraining volume of either of 2 key brain regions implicated in learning and memory: the striatum, implicated in procedural learning and cognitive flexibility, and the hippocampus, implicated in declarative memory. We found that hippocampal volumes did not predict learning improvement but that striatal volumes did. Moreover, for the striatum, the volumes of the dorsal striatum predicted improvement in performance but the volumes of the ventral striatum did not. Both ventral and dorsal striatal volumes predicted early acquisition rates. Furthermore, this early-stage correlation between striatal volumes and learning held regardless of the cognitive flexibility demands of the game versions, whereas the predictive power of the dorsal striatal volumes held selectively for performance improvements in a game version emphasizing cognitive flexibility. These findings suggest a neuroanatomical basis for the superiority of training strategies that promote cognitive flexibility and transfer to untrained tasks.
[Modeling and analysis of volume conduction based on field-circuit coupling].
Tang, Zhide; Liu, Hailong; Xie, Xiaohui; Chen, Xiufa; Hou, Deming
2012-08-01
Numerical simulations of volume conduction can be used to analyze the process of energy transfer and explore the effects of some physical factors on energy transfer efficiency. We analyzed the 3D quasi-static electric field by the finite element method, and developed A 3D coupled field-circuit model of volume conduction basing on the coupling between the circuit and the electric field. The model includes a circuit simulation of the volume conduction to provide direct theoretical guidance for energy transfer optimization design. A field-circuit coupling model with circular cylinder electrodes was established on the platform of the software FEM3.5. Based on this, the effects of electrode cross section area, electrode distance and circuit parameters on the performance of volume conduction system were obtained, which provided a basis for optimized design of energy transfer efficiency.
Supin, Alexander Ya; Nachtigall, Paul E; Breese, Marlee
2011-09-01
Auditory evoked potentials (AEP) were recorded during echolocation in a false killer whale Pseudorca crassidens. An electronically synthesized and played-back (simulated) echo was triggered by an emitted biosonar pulse, and its intensity was proportional to that of the emitted click. The delay and transfer factor of the echo relative to the emitted click was controlled by the operator. The echo delay varied from 2 to 16 ms (by two-fold steps), and the transfer factor varied within ranges from -45 to -30 dB at the 2-ms delay to -60 to -45 dB at the 16-ms delay. Echo-related AEPs featured amplitude dependence both on echo delay at a constant transfer factor (the longer the delay, the higher amplitude) and on echo transfer factor at a constant delay (the higher transfer factor, the higher amplitude). Conjunctional variation of the echo transfer factor and delay kept the AEP amplitude constant when the delay to transfer factor trade was from -7.1 to -8.4 dB per delay doubling. The results confirm the hypothesis that partial forward masking of the echoes by the preceding emitted sonar pulses serves as a time-varying automatic gain control in the auditory system of echolocating odontocetes. © 2011 Acoustical Society of America
NASA Astrophysics Data System (ADS)
Wang, Da-Lin; Qi, Hong
Semi-transparent materials (such as IR optical windows) are widely used for heat protection or transfer, temperature and image measurement, and safety in energy , space, military, and information technology applications. They are used, for instance, ceramic coatings for thermal barriers of spacecrafts or gas turbine blades, and thermal image observation under extreme or some dangerous environments. In this paper, the coupled conduction and radiation heat transfer model is established to describe temperature distribution of semitransparent thermal barrier medium within the aerothermal environment. In order to investigate this numerical model, one semi-transparent sample with black coating was considered, and photothermal properties were measured. At last, Finite Volume Method (FVM) was used to solve the coupled model, and the temperature responses from the sample surfaces were obtained. In addition, experiment study was also taken into account. In the present experiment, aerodynamic heat flux was simulated by one electrical heater, and two experiment cases were designed in terms of the duration of aerodynamic heating. One case is that the heater irradiates one surface of the sample continually until the other surface temperature up to constant, and the other case is that the heater works only 130 s. The surface temperature responses of these two cases were recorded. Finally, FVM model of the coupling conduction-radiation heat transfer was validated based on the experiment study with relative error less than 5%.
Electron transfer by excited benzoquinone anions: slow rates for two-electron transitions.
Zamadar, Matibur; Cook, Andrew R; Lewandowska-Andralojc, Anna; Holroyd, Richard; Jiang, Yan; Bikalis, Jin; Miller, John R
2013-09-05
Electron transfer (ET) rate constants from the lowest excited state of the radical anion of benzoquinone, BQ(-•)*, were measured in THF solution. Rate constants for bimolecular electron transfer reactions typically reach the diffusion-controlled limit when the free-energy change, ΔG°, reaches -0.3 eV. The rate constants for ET from BQ(-•)* are one-to-two decades smaller at this energy and do not reach the diffusion-controlled limit until -ΔG° is 1.5-2.0 eV. The rates are so slow probably because a second electron must also undergo a transition to make use of the energy of the excited state. Similarly, ET, from solvated electrons to neutral BQ to form the lowest excited state, is slow, while fast ET is observed at a higher excited state, which can be populated in a transition involving only one electron. A simple picture based on perturbation theory can roughly account for the control of electron transfer by the need for transition of a second electron. The picture also explains how extra driving force (-ΔG°) can restore fast rates of electron transfer.
Hydrophilic solute transport across the rat blood-brain barrier
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lucchesi, K.J.
1987-01-01
Brain capillary permeability-surface area products (PS) of hydrophilic solutes ranging in size from 180 to 5,500 Daltons were measured in rats according to the method of Ohno, Pettigrew and Rapoport. The distribution volume of 70 KD dextran at 10 minutes after i.v. injection was also measured to determine the residual volume of blood in brain tissue at the time of sacrifice. Small test solutes were injected in pairs in order to elucidate whether their transfer into the brain proceeds by diffusion through water- or lipid-filled channels or by vesicular transport. This issue was examined in rats whose blood-brain barrier (BBB)more » was presumed to be intact (untreated) and in rats that received intracarotid infusions to open the BBB (isosmotic salt (ISS) and hyperosmolar arabinose). Ohno PS values of {sup 3}H-inulin and {sup 14}C-L-glucose in untreated rats were found to decrease as the labelling time was lengthened. This was evidence that a rapidly equilibrating compartment exists between blood and brain that renders the Ohno two-compartment model inadequate for computing true transfer rate constants. When the data were reanalyzed using a multi-compartment graphical analysis, solutes with different molecular radii were found to enter the brain at approximately equal rates. Furthermore, unidirectional transport is likely to be initiated by solute adsorption to a glycocalyx coat on the luminal surface of brain capillary endothelium. Apparently, more inulin than L-glucose was adsorbed, which may account for its slightly faster transfer across the BBB. After rats were treated with intracarotid infusions of ISS or hyperosmolar arabinose, solute PS values were significantly increased, but the ratio of PS for each of the solute pairs approached that of their free-diffusion coefficients.« less
Investigation of Conjugate Heat Transfer in Turbine Blades and Vanes
NASA Technical Reports Server (NTRS)
Kassab, A. J.; Kapat, J. S.
2001-01-01
We report on work carried out to develop a 3-D coupled Finite Volume/BEM-based temperature forward/flux back (TFFB) coupling algorithm to solve the conjugate heat transfer (CHT) which arises naturally in analysis of systems exposed to a convective environment. Here, heat conduction within a structure is coupled to heat transfer to the external fluid which is convecting heat into or out of the solid structure. There are two basic approaches to solving coupled fluid structural systems. The first is a direct coupling where the solution of the different fields is solved simultaneously in one large set of equations. The second approach is a loose coupling strategy where each set of field equations is solved to provide boundary conditions for the other. The equations are solved in turn until an iterated convergence criterion is met at the fluid-solid interface. The loose coupling strategy is particularly attractive when coupling auxiliary field equations to computational fluid dynamics codes. We adopt the latter method in which the BEM is used to solve heat conduction inside a structure which is exposed to a convective field which in turn is resolved by solving the NASA Glenn compressible Navier-Stokes finite volume code Glenn-HT. The BEM code features constant and bi-linear discontinuous elements and an ILU-preconditioned GMRES iterative solver for the resulting non-symmetric algebraic set arising in the conduction solution. Interface of flux and temperature is enforced at the solid/fluid interface, and a radial-basis function scheme is used to interpolated information between the CFD and BEM surface grids. Additionally, relaxation is implemented in passing the fluxes from the conduction solution to the fluid solution. Results from a simple test example are reported.
NASA Astrophysics Data System (ADS)
Lee, Myeong H.; Dunietz, Barry D.; Geva, Eitan
2014-03-01
We present a methodology to obtain the photo-induced electron transfer rate constant in organic photovoltaic (OPV) materials within the framework of Fermi's golden rule, using inputs obtained from first-principles electronic structure calculation. Within this approach, the nuclear vibrational modes are treated quantum-mechanically and a short-time approximation is avoided in contrast to the classical Marcus theory where these modes are treated classically within the high-temperature and short-time limits. We demonstrate our methodology on boron-subphthalocyanine-chloride/C60 OPV system to determine the rate constants of electron transfer and electron recombination processes upon photo-excitation. We consider two representative donor/acceptor interface configurations to investigate the effect of interface configuration on the charge transfer characteristics of OPV materials. In addition, we determine the time scale of excited states population by employing a master equation after obtaining the rate constants for all accessible electronic transitions. This work is pursued as part of the Center for Solar and Thermal Energy Conversion, an Energy Frontier Research Center funded by the US Department of Energy Office of Science, Office of Basic Energy Sciences under 390 Award No. DE-SC0000957.
Artés, Juan M; Díez-Pérez, Ismael; Sanz, Fausto; Gorostiza, Pau
2011-03-22
We present a method to measure directly and at the single-molecule level the distance decay constant that characterizes the rate of electron transfer (ET) in redox proteins. Using an electrochemical tunneling microscope under bipotentiostatic control, we obtained current−distance spectroscopic recordings of individual redox proteins confined within a nanometric tunneling gap at a well-defined molecular orientation. The tunneling current decays exponentially, and the corresponding decay constant (β) strongly supports a two-step tunneling ET mechanism. Statistical analysis of decay constant measurements reveals differences between the reduced and oxidized states that may be relevant to the control of ET rates in enzymes and biological electron transport chains.
NASA Astrophysics Data System (ADS)
Heris, Saeed Zeinali; Farzin, Farshad; Sardarabadi, Hamideh
2015-04-01
The aim of the present study was to investigate heat transfer characteristics of turbine oil-based nanofluids inside a circular tube in laminar flow under a constant heat flux boundary condition. Oil-based nanofluids were prepared dispersing less than 1 % volume concentrations of CuO, , and nanoparticles in turbine oil using a two-step method. The primary objective was to evaluate and compare the effect of different volume concentrations and nanoparticle types on convective heat transfer. An experimental apparatus was designed and constructed to measure the heat transfer coefficient and the Nusselt number of the samples. Due to the high Prandtl number of the nanofluids (about 350), it was concluded that the nanofluids were in the developing region. Experimental results clearly indicated that all of the added nanoparticles improved both the heat transfer coefficient and the Nusselt number of the turbine oil. A nanofluid is more capable than a single-phase fluid insofar as removing heat from high heat flux surfaces. The highest values of the Nusselt number and the Nusselt number ratio (the ratio of the nanofluid Nusselt number to that of the pure turbine oil) belonged to the CuO/turbine oil nanofluid. Among the sample nanofluids, the highest Nusselt number ratios belonged to CuO/turbine oil (0.50 %), /turbine oil (0.50 %), /turbine oil (0.50 %), and a Reynolds number of about 800 which were 1.38, 1.31, and 1.15, respectively. Moreover, so as to determine the efficiency of a nanofluid, the ratio of the pressure drop and Nusselt number of three nanofluid samples were compared with that of the base fluid. A third parameter (performance index) was evaluated to determine the possibility of practically using such for rating nanofluids. All the obtained performance indexes for CuO/turbine oil and /turbine oil were more than one, meaning the employment of such nanofluids leads to a higher quality turbine oil.
Problems encountered in fluctuating flame temperature measurements by thermocouple.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donaldson, A. Burl; Lucero, Ralph E.; Gill, Walter
2008-11-01
Some thermocouple experiments were carried out in order to obtain sensitivity of thermocouple readings to fluctuations in flames and to determine if the average thermocouple reading was representative of the local volume temperature for fluctuating flames. The thermocouples considered were an exposed junction thermocouple and a fully sheathed thermocouple with comparable time constants. Either the voltage signal or indicated temperature for each test was recorded at sampling rates between 300-4,096 Hz. The trace was then plotted with respect to time or sample number so that time variation in voltage or temperature could be visualized and the average indicated temperature couldmore » be determined. For experiments where high sampling rates were used, the signal was analyzed using Fast Fourier Transforms (FFT) to determine the frequencies present in the thermocouple signal. This provided a basic observable as to whether or not the probe was able to follow flame oscillations. To enhance oscillations, for some experiments, the flame was forced. An analysis based on thermocouple time constant, coupled with the transfer function for a sinusoidal input was tested against the experimental results.« less
Problems Encountered in Fluctuating Flame Temperature Measurements by Thermocouple
Yilmaz, Nadir; Gill, Walt; Donaldson, A. Burl; Lucero, Ralph E.
2008-01-01
Some thermocouple experiments were carried out in order to obtain sensitivity of thermocouple readings to fluctuations in flames and to determine if the average thermocouple reading was representative of the local volume temperature for fluctuating flames. The thermocouples considered were an exposed junction thermocouple and a fully sheathed thermocouple with comparable time constants. Either the voltage signal or indicated temperature for each test was recorded at sampling rates between 300-4,096 Hz. The trace was then plotted with respect to time or sample number so that time variation in voltage or temperature could be visualized and the average indicated temperature could be determined. For experiments where high sampling rates were used, the signal was analyzed using Fast Fourier Transforms (FFT) to determine the frequencies present in the thermocouple signal. This provided a basic observable as to whether or not the probe was able to follow flame oscillations. To enhance oscillations, for some experiments, the flame was forced. An analysis based on thermocouple time constant, coupled with the transfer function for a sinusoidal input was tested against the experimental results. PMID:27873964
Problems Encountered in Fluctuating Flame Temperature Measurements by Thermocouple.
Yilmaz, Nadir; Gill, Walt; Donaldson, A Burl; Lucero, Ralph E
2008-12-04
Some thermocouple experiments were carried out in order to obtain sensitivity of thermocouple readings to fluctuations in flames and to determine if the average thermocouple reading was representative of the local volume temperature for fluctuating flames. The thermocouples considered were an exposed junction thermocouple and a fully sheathed thermocouple with comparable time constants. Either the voltage signal or indicated temperature for each test was recorded at sampling rates between 300-4,096 Hz. The trace was then plotted with respect to time or sample number so that time variation in voltage or temperature could be visualized and the average indicated temperature could be determined. For experiments where high sampling rates were used, the signal was analyzed using Fast Fourier Transforms (FFT) to determine the frequencies present in the thermocouple signal. This provided a basic observable as to whether or not the probe was able to follow flame oscillations. To enhance oscillations, for some experiments, the flame was forced. An analysis based on thermocouple time constant, coupled with the transfer function for a sinusoidal input was tested against the experimental results.
Jeong, Eun-Kee; Sung, Young-Hoon; Kim, Seong-Eun; Zuo, Chun; Shi, Xianfeng; Mellon, Eric A; Renshaw, Perry F
2011-08-01
High-energy phosphate metabolism, which allows the synthesis and regeneration of adenosine triphosphate (ATP), is a vital process for neuronal survival and activity. In particular, creatine kinase (CK) serves as an energy reservoir for the rapid buffering of ATP levels. Altered CK enzyme activity, reflecting compromised high-energy phosphate metabolism or mitochondrial dysfunction in the brain, can be assessed using magnetization transfer (MT) MRS. MT (31)P MRS has been used to measure the forward CK reaction rate in animal and human brain, employing a surface radiofrequency coil. However, long acquisition times and excessive radiofrequency irradiation prevent these methods from being used routinely for clinical evaluations. In this article, a new MT (31)P MRS method is presented, which can be practically used to measure the CK forward reaction rate constant in a clinical MRI system employing a volume head (31)P coil for spatial localization, without contamination from the scalp muscle, and an acquisition time of 30 min. Other advantages associated with the method include radiofrequency homogeneity within the regions of interest of the brain using a volume coil with image-selected in vivo spectroscopy localization, and reduction of the specific absorption rate using nonadiabatic radiofrequency pulses for MT saturation. The mean value of k(f) was measured as 0.320 ± 0.075 s(-1) from 10 healthy volunteers with an age range of 18-40 years. These values are consistent with those obtained using earlier methods, and the technique may be used routinely to evaluate energetic processes in the brain on a clinical MRI system. Copyright © 2010 John Wiley & Sons, Ltd.
40 CFR 91.421 - Dilute gaseous exhaust sampling and analytical system description.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Pump—Constant Volume Sampler (PDP-CVS) system with a heat exchanger, or a Critical Flow Venturi—Constant Volume Sampler (CFV-CVS) system with CVS sample probes and/or a heat exchanger or electronic flow... sampling point. (ii) For the CFV-CVS, either a heat exchanger or electronic flow compensation is required...
40 CFR 91.421 - Dilute gaseous exhaust sampling and analytical system description.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Pump—Constant Volume Sampler (PDP-CVS) system with a heat exchanger, or a Critical Flow Venturi—Constant Volume Sampler (CFV-CVS) system with CVS sample probes and/or a heat exchanger or electronic flow... sampling point. (ii) For the CFV-CVS, either a heat exchanger or electronic flow compensation is required...
40 CFR 91.421 - Dilute gaseous exhaust sampling and analytical system description.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Pump—Constant Volume Sampler (PDP-CVS) system with a heat exchanger, or a Critical Flow Venturi—Constant Volume Sampler (CFV-CVS) system with CVS sample probes and/or a heat exchanger or electronic flow... sampling point. (ii) For the CFV-CVS, either a heat exchanger or electronic flow compensation is required...
Thermodynamic Entropy and the Accessible States of Some Simple Systems
ERIC Educational Resources Information Center
Sands, David
2008-01-01
Comparison of the thermodynamic entropy with Boltzmann's principle shows that under conditions of constant volume the total number of arrangements in a simple thermodynamic system with temperature-independent constant-volume heat capacity, C, is T[superscript C/k]. A physical interpretation of this function is given for three such systems: an…
Numerical simulations of thermal conductivity in dissipative two-dimensional Yukawa systems.
Khrustalyov, Yu V; Vaulina, O S
2012-04-01
Numerical data on the heat transfer constants in two-dimensional Yukawa systems were obtained. Numerical study of the thermal conductivity and diffusivity was carried out for the equilibrium systems with parameters close to conditions of laboratory experiments with dusty plasma. For calculations of heat transfer constants the Green-Kubo formulas were used. The influence of dissipation (friction) on the heat transfer processes in nonideal systems was investigated. The approximation of the coefficient of thermal conductivity is proposed. Comparison of the obtained results to the existing experimental and numerical data is discussed.
Recovery of spiked Δ9-tetrahydrocannabinol in oral fluid from polypropylene containers.
Molnar, Anna; Lewis, John; Fu, Shanlin
2013-04-10
Oral fluid is currently used by Australian and international law enforcement agencies and employers to detect recent use of cannabis and other drugs of abuse. The main psychoactive constituent of cannabis, Δ(9)-tetrahydrocannabinol (THC), is highly lipophilic and losses occur when in contact with plastic, possibly due to its adsorption onto the plastic surface. This study aims to investigate factors governing the interaction of THC with plastic and search for ways of overcoming such interaction so to improve THC recovery. As polypropylene is one of the most common types of plastic used in collection devices, it was the focus of this study. All experiments were done by preparing neat oral fluid samples spiked with THC in 2-mL polypropylene centrifuge tubes. Samples were transferred with or without prior addition of Triton(®) X-100 (0.25%) to glass tubes containing d3-THC as internal standard and 0.1M phosphate buffer was then added. Samples were extracted by liquid-liquid extraction using hexane/ethyl acetate (9:1, v/v), dried and analysed by gas chromatography-mass spectrometry (GC-MS) after derivatisation. No significant difference was found in terms of THC loss to plastic when the concentration ranged from 25 to 1000 ng/mL in the same volume of oral fluid. Varying the oral fluid volume (0.5-1.5 mL) while keeping THC at a constant concentration showed an upward trend with more loss associated with lower volumes. The use of Triton(®) X-100 significantly decreased the adherence of THC to the plastic tubes and increased the THC transfer (>96%) at all volumes tested. Degradation of THC during storage was also studied over a 4-week period and it was found that azide did not seem to play a significant role in preserving THC in oral fluid. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
System Would Regulate Low Gas Pressure
NASA Technical Reports Server (NTRS)
Frazer, Robert E.
1994-01-01
System intended to maintain gases in containers at pressures near atmospheric. Includes ballast volume in form of underinflated balloon that communicates with working volume. Balloon housed in rigid chamber not subjected to extremes of temperature of working volume. Pressure in chamber surrounding balloon regulated at ambient atmospheric pressure or at constant small differential pressure above or below ambient. Expansion and contraction of balloon accommodates expansion or contraction of gas during operational heating or cooling in working volume, maintaining pressure in working volume at ambient or constant differential above or below ambient. Gas lost from system due to leakage or diffusion, low-pressure sensor responds, signaling valve actuators to supply more gas to working volume. If pressure rises too high, overpressure relief valve opens before excessive pressure damages system.
NASA Technical Reports Server (NTRS)
Kim, Jungho
2004-01-01
Boiling is a complex phenomenon where hydrodynamics, heat transfer, mass transfer, and interfacial phenomena are tightly interwoven. An understanding of boiling and critical heat flux in microgravity environments is of importance to space based hardware and processes such as heat exchange, cryogenic fuel storage and transportation, electronic cooling, and material processing due to the large amounts of heat that can be removed with relatively little increase in temperature. Although research in this area has been performed in the past four decades, the mechanisms by which heat is removed from surfaces in microgravity are still unclear. Recently, time and space resolved heat transfer data were obtained in both earth and low gravity environments using an array of microheaters varying in size between 100 microns to 700 microns. These heaters were operated in both constant temperature as well as constant heat flux mode. Heat transfer under nucleating bubbles in earth gravity were directly measured using a microheater array with 100 m resolution operated in constant temperature mode with low and high subcooled bulk liquid along with images from below and from the side. The individual bubble departure diameter and energy transfer were larger with low subcooling but the departure frequency increased at high subcooling, resulting in higher overall heat transfer. The bubble growth for both subcoolings was primarily due to energy transfer from the superheated liquid layer relatively little was due to wall heat transfer during the bubble growth process. Oscillating bubbles and sliding bubbles were also observed in highly subcooled boiling. Transient conduction and/or microconvection was the dominant heat transfer mechanism in the above cases. A transient conduction model was developed and compared with the experimental data with good agreement. Data was also obtained with the heater array operated in a constant heat flux mode and measuring the temperature distribution across the array during boiling. The instantaneous heat transfer into the substrate was numerically determined and subtracted from the supplied heat to obtain the wall to liquid heat flux.
Dielectric properties of CaCu3Ti4O12-silicone resin composites
NASA Astrophysics Data System (ADS)
Babu, Sanjesh; Singh, Kirti; Govindan, Anil
2012-06-01
CaCu3Ti4O12 (CCTO)-silicone resin composites with various CCTO volume fractions were prepared. Relatively high dielectric constant ( ɛ=119) and low loss (tan δ=0.35) of the composites with CCTO volume fraction of 0.9 were observed. Two theoretical models were employed to predict the dielectric constant of these composites; the dielectric constant obtained via the Maxwell-Garnett model was in close agreement with the experimental data. The dielectric constant of CCTO-silicone resin composites showed a weak frequency dependence at the measuring frequency range and the loss tangent apparently decreases with increase in frequency.
Electron-transfer oxidation properties of DNA bases and DNA oligomers.
Fukuzumi, Shunichi; Miyao, Hiroshi; Ohkubo, Kei; Suenobu, Tomoyoshi
2005-04-21
Kinetics for the thermal and photoinduced electron-transfer oxidation of a series of DNA bases with various oxidants having the known one-electron reduction potentials (E(red)) in an aqueous solution at 298 K were examined, and the resulting electron-transfer rate constants (k(et)) were evaluated in light of the free energy relationship of electron transfer to determine the one-electron oxidation potentials (E(ox)) of DNA bases and the intrinsic barrier of the electron transfer. Although the E(ox) value of GMP at pH 7 is the lowest (1.07 V vs SCE) among the four DNA bases, the highest E(ox) value (CMP) is only 0.19 V higher than that of GMP. The selective oxidation of GMP in the thermal electron-transfer oxidation of GMP results from a significant decrease in the pH dependent oxidation potential due to the deprotonation of GMP*+. The one-electron reduced species of the photosensitizer produced by photoinduced electron transfer are observed as the transient absorption spectra when the free energy change of electron transfer is negative. The rate constants of electron-transfer oxidation of the guanine moieties in DNA oligomers with Fe(bpy)3(3+) and Ru(bpy)3(3+) were also determined using DNA oligomers containing different guanine (G) sequences from 1 to 10 G. The rate constants of electron-transfer oxidation of the guanine moieties in single- and double-stranded DNA oligomers with Fe(bpy)3(2+) and Ru(bpy)3(3+) are dependent on the number of sequential guanine molecules as well as on pH.
NASA Astrophysics Data System (ADS)
Nguyen, Mary; Rick, Steven W.
2018-06-01
The diffusion rates for water molecules in salt solutions depend on the identity of the ions, as well as their concentration. Among the alkali metal ions, cesium and potassium increase and sodium strongly decreases the diffusion constant of water. The origin of the difference can be understood by examining the simulation results using different potential models. In this work, aqueous solutions of salts are simulated with a variety of models. Commonly used non-polarizable models, which otherwise reproduce many experimental properties, do not capture the trend in the diffusion constant, while models which include polarization and/or charge transfer interactions do. For the non-polarizable models, the diffusion constant decreases too strongly with salt concentration. The changes in the water diffusion constant with increasing salt concentration match the diffusion constant of the ion. The ion diffusion constant is dependent on the residence time for water in the ion solvation shell. The non-polarizable models over-estimate the residence time, relative to the translational diffusion constant and so tend to under-estimate the ion and water diffusion constants.
Rocquefelte, Xavier; Jobic, Stéphane; Whangbo, Myung-Hwan
2006-02-16
How indices of refraction n(omega) of insulating solids are affected by the volume dilution of an optical entity and the mixing of different, noninteracting simple solid components was examined on the basis of the dielectric function epsilon(1)(omega) + iepsilon(2)(omega). For closely related insulating solids with an identical composition and the formula unit volume V, the relation [epsilon(1)(omega) - 1]V = constant was found by combining the relation epsilon(2)(omega)V = constant with the Kramers-Kronig relation. This relation becomes [n(2)(omega) - 1]V = constant for the index of refraction n(omega) determined for the incident light with energy less than the band gap (i.e., h omega < E(g)). For a narrow range of change in the formula unit volume, the latter relation is well approximated by a linear relation between n and 1/V.
NASA Astrophysics Data System (ADS)
Al-Asbahi, Bandar Ali
2017-10-01
Energy transfer between poly (9,9'-di-n-octylfluorenyl-2,7-diyl) (PFO) as a donor in presence of TiO2 nanoparticles (NPs) and Fluorol 7GA as an acceptor with different weight ratios has been investigated by steady-state emission measurements. Based on the absorption and fluorescence measurements, the energy transfer properties, such as quenching rate constant (kSV), energy transfer rate constant (kET), quantum yield (ϕDA), and lifetime (τDA), of the donor in the presence of the acceptor, energy transfer probability (PDA), energy transfer efficiency (η), energy transfer time (τET), and critical distance of the energy transfer (Ro) were calculated. Förster-type energy transfer between the excited donor and ground-state acceptor molecules was the dominant mechanism responsible for the energy transfer as evidenced by large values of kSV, kET, and Ro. Moreover, these composite materials were employed as an emissive layer in organic light-emitting diodes (OLEDs). Additionally, the optoelectronic properties of OLEDs were investigated in terms of current density-voltage characteristics and electroluminescence spectra.
Phase-field simulations of coherent precipitate morphologies and coarsening kinetics
NASA Astrophysics Data System (ADS)
Vaithyanathan, Venugopalan
2002-09-01
The primary aim of this research is to enhance the fundamental understanding of coherent precipitation reactions in advanced metallic alloys. The emphasis is on a particular class of precipitation reactions which result in ordered intermetallic precipitates embedded in a disordered matrix. These precipitation reactions underlie the development of high-temperature Ni-base superalloys and ultra-light aluminum alloys. Phase-field approach, which has emerged as the method of choice for modeling microstructure evolution, is employed for this research with the focus on factors that control the precipitate morphologies and coarsening kinetics, such as precipitate volume fractions and lattice mismatch between precipitates and matrix. Two types of alloy systems are considered. The first involves L1 2 ordered precipitates in a disordered cubic matrix, in an attempt to model the gamma' precipitates in Ni-base superalloys and delta' precipitates in Al-Li alloys. The effect of volume fraction on coarsening kinetics of gamma' precipitates was investigated using two-dimensional (2D) computer simulations. With increase in volume fraction, larger fractions of precipitates were found to have smaller aspect ratios in the late stages of coarsening, and the precipitate size distributions became wider and more positively skewed. The most interesting result was associated with the effect of volume fraction on the coarsening rate constant. Coarsening rate constant as a function of volume fraction extracted from the cubic growth law of average half-edge length was found to exhibit three distinct regimes: anomalous behavior or decreasing rate constant with volume fraction at small volume fractions ( ≲ 20%), volume fraction independent or constant behavior for intermediate volume fractions (˜20--50%), and the normal behavior or increasing rate constant with volume fraction for large volume fractions ( ≳ 50%). The second alloy system considered was Al-Cu with the focus on understanding precipitation of metastable tetragonal theta'-Al 2Cu in a cubic Al solid solution matrix. In collaboration with Chris Wolverton at Ford Motor Company, a multiscale model, which involves a novel combination of first-principles atomistic calculations with a mesoscale phase-field microstructure model, was developed. Reliable energetics in the form of bulk free energy, interfacial energy and parameters for calculating the elastic energy were obtained using accurate first-principles calculations. (Abstract shortened by UMI.)
Periodic Heat Transfer at Small Pressure Fluctuations
NASA Technical Reports Server (NTRS)
Pfriem, H.
1943-01-01
The effect of cyclic gas pressure variations on the periodic heat transfer at a flat wall is theoretically analyzed and the differential equation describing the process and its solution for relatively. Small pressure fluctuations developed, thus explaining the periodic heat cycle between gas and wall surface. The processes for pure harmonic pressure and temperature oscillations, respectively, in the gas space are described by means of a constant heat transfer coefficient and the equally constant phase angle between the appearance of the maximum values of the pressure and heat flow most conveniently expressed mathematically in the form of a complex heat transfer coefficient. Any cyclic pressure oscillations, can be reduced by Fourier analysis to harmonic oscillations, which result in specific, mutual relationships of heat-transfer coefficients and phase angles for the different harmonics.
Ballast system for maintaining constant pressure in a glove box
NASA Technical Reports Server (NTRS)
Shlichta, Paul J. (Inventor)
1989-01-01
A ballast system is disclosed for a glove box including a fixed platform on which is mounted an inflatable bag on top of which resides a cover and a weight. The variable gas volume of the inflatable bag communicates with that of the glove box via a valved tube. The weight and the gas volume are selected to maintain a relatively constant pressure in the glove box despite variations in the glove box volume while avoiding the use of complicated valving apparatus.
Ballast system for maintaining constant pressure in a glove box
NASA Astrophysics Data System (ADS)
Shlichta, Paul J.
1989-09-01
A ballast system is disclosed for a glove box including a fixed platform on which is mounted an inflatable bag on top of which resides a cover and a weight. The variable gas volume of the inflatable bag communicates with that of the glove box via a valved tube. The weight and the gas volume are selected to maintain a relatively constant pressure in the glove box despite variations in the glove box volume while avoiding the use of complicated valving apparatus.
Ballast system for maintaining constant pressure in a glove box
NASA Technical Reports Server (NTRS)
Shlichta, Paul J. (Inventor)
1990-01-01
A ballast system for a glove box including a fixed platform on which is mounted an inflatable bag on top of which resides a cover and a weight. The variable gas volume of the inflatable bag communicates with that of the glove box via a valved tube. The weight and gas volume are selected to maintain a relatively constant pressure in the glove box despite variations in the glove box volume while avoiding the use of complicated valving apparatus.
On the Henry constant and isosteric heat at zero loading in gas phase adsorption.
Do, D D; Nicholson, D; Do, H D
2008-08-01
The Henry constant and the isosteric heat of adsorption at zero loading are commonly used as indicators of the strength of the affinity of an adsorbate for a solid adsorbent. It is assumed that (i) they are observable in practice, (ii) the Van Hoff's plot of the logarithm of the Henry constant versus the inverse of temperature is always linear and the slope is equal to the heat of adsorption, and (iii) the isosteric heat of adsorption at zero loading is either constant or weakly dependent on temperature. We show in this paper that none of these three points is necessarily correct, first because these variables might not be observable since they are outside the range of measurability; second that the linearity of the Van Hoff plot breaks down at very high temperature, and third that the isosteric heat versus loading is a strong function of temperature. We demonstrate these points using Monte Carlo integration and Monte Carlo simulation of adsorption of various gases on a graphite surface. Another issue concerning the Henry constant is related to the way the adsorption excess is defined. The most commonly used equation is the one that assumes that the void volume is the volume extended all the way to a boundary passing through the centres of the outermost solid atoms. With this definition the Henry constant can become negative at high temperatures. Although adsorption at these temperatures may not be practical because of the very low value of the Henry constant, it is more useful to define the Henry constant in such a way that it is always positive at all temperatures. Here we propose the use of the accessible volume; the volume probed by the adsorbate when it is in nonpositive regions of the potential, to calculate the Henry constant.
1998 Conference on Precision Electromagnetic Measurements Digest. Proceedings.
NASA Astrophysics Data System (ADS)
Nelson, T. L.
The following topics were dealt with: fundamental constants; caesium standards; AC-DC transfer; impedance measurement; length measurement; units; statistics; cryogenic resonators; time transfer; QED; resistance scaling and bridges; mass measurement; atomic fountains and clocks; single electron transport; Newtonian constant of gravitation; stabilised lasers and frequency measurements; cryogenic current comparators; optical frequency standards; high voltage devices and systems; international compatibility; magnetic measurement; precision power measurement; high resolution spectroscopy; DC transport standards; waveform acquisition and analysis; ion trap standards; optical metrology; quantised Hall effect; Josephson array comparisons; signal generation and measurement; Avogadro constant; microwave networks; wideband power standards; antennas, fields and EMC; quantum-based standards.
NASA Astrophysics Data System (ADS)
Kovalev, Yu. M.; Kuropatenko, V. F.
2018-05-01
An analysis of the existing approximations used for describing the dependence of heat capacity at a constant volume on the temperature of a molecular crystal has been carried out. It is shown that the considered Debye and Einstein approximations do not enable one to adequately describe the dependence of heat capacity at a constant volume on the temperature of the molecular crystals of nitro compounds. This inference requires the development of special approximations that would describe both low-frequency and high-frequency parts of the vibrational spectra of molecular crystals. This work presents a universal dependence allowing one to describe the dependence of heat capacity at a constant volume on temperature for a number of molecular crystals of nitro compounds.
Bongrani, S; Fornasier, M; Papotti, M; Razzetti, R; Robertson, B
1994-01-01
Immature newborn rabbits delivered at a gestational age of 27 days were tracheotomized and treated, via the tracheal cannula, with clinically recommended doses of natural or synthetic surfactant (Curosurf and Exosurf, respectively). Littermates received 0.1% tyloxapol, 5% Tween 20, or saline. The dose volume of Curosurf was 2.5 ml/kg, that of the other materials 5 ml/kg. Animals were kept in a multiplethysmograph system and ventilated for 30 min with a standardized sequence of insufflation pressures. End-expiratory lung gas volume was calculated at the end of the experiment from measurements of lung weight and total lung volume. Tidal volumes were significantly improved in all groups of animals receiving surfactant or detergents. However, expiratory time constant (determined from the tidal volume tracing) was significantly longer, and end-expiratory gas volume significantly larger, in animals treated with Curosurf than in those receiving Exosurf or detergents. These differences were confirmed by semiquantitative evaluation of alveolar air expansion in histological sections. In addition, airway epithelial necrosis was reduced in animals receiving Curosurf, Exosurf, or Tween 20, but not in animals treated with tyloxapol. The discrepancy between improvements in tidal volume, expiratory time constant, and end-expiratory gas volume reflects failure of lung stabilization in animals treated with Exosurf or detergents, probably due to absence of specific hydrophobic proteins in the synthetic products.
Kalema, T; Viot, M
2014-02-01
The aim of this study is to develop internal ventilation by transferred air to achieve a good indoor climate with low energy consumption in educational buildings with constant air volume (CAV) ventilation. Both measurements of CO2 concentration and a multi-room calculation model are presented. The study analyzes how to use more efficiently the available spaces and the capacity of CAV ventilation systems in existing buildings and the impact this has on the indoor air quality and the energy consumption of the ventilation. The temperature differences can be used to create natural ventilation airflows between neighboring spaces. The behavior of temperature-driven airflows between rooms was studied and included in the calculation model. The effect of openings between neighboring spaces, such as doors or large apertures in the walls, on the CO2 concentration was studied in different classrooms. The air temperatures and CO2 concentrations were measured using a wireless, internet-based measurement system. The multi-room calculation model predicted the CO2 concentration in the rooms, which was then compared with the measured ones. Using transferred air between occupied and unoccupied spaces can noticeably reduce the total mechanical ventilation rates needed to keep a low CO2 concentration. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Glicksman, Martin E.; Smith, Richard N.; Marsh, Steven P.; Kuklinski, Robert
A key element of mushy zone modeling is the description of the microscopic evolution of the lengthscales within the mushy zone and the influence of macroscopic transport processes. This paper describes some recent progress in developing a mean-field statistical theory of phase coarsening in adiabatic mushy zones. The main theoretical predictions are temporal scaling laws that indicate that average lengthscale increases as time 1/3, a self-similar distribution of mushy zone lengthscales based on spherical solid particle shapes, and kinetic rate constants which provide the dependences of the coarsening process on material parameters and the volume fraction of the solid phase. High precision thermal decay experiments are described which verify aspects of the theory in pure material mushy zones held under adiabatic conditions. The microscopic coarsening theory is then integrated within a macroscopic heat transfer model of one-dimensional alloy solidification, using the Double Integral Method. The method demonstrates an ability to predict the influence of macroscopic heat transfer on the evolution of primary and secondary dendrite arm spacings in Al-Cu alloys. Finally, some suggestions are made for future experimental and theoretical studies required in developing comprehensive solidification processing models.
Investigation on wear and corrosion behavior of equal channel angular pressed aluminium 2014 alloy
NASA Astrophysics Data System (ADS)
Divya, S. P.; Yoganandan, G.; Balaraju, J. N.; Srinivasan, S. A.; Nagaraj, M.; Ravisankar, B.
2018-02-01
Aluminium 2014 alloy solutionized at 495°C, aged at 195°C was subjected to Equal Channel Angular Pressing (ECAP). Dry sliding wear tests were conducted using pin on disc tribometer system under nominal loads of 10N and 30N with constant speed 2m/s for 2000m in order to investigate their wear behavior after ECAP. The Co-efficient of friction and loss in volume were decreased after ECAP. The dominant wear mechanism observed was adhesion, delamination in addition to these wear mechanisms, oxidation and transfer of Fe from the counter surface to the Al 2014 pin were observed at higher loading condition. The corrosion behavior was evaluated by potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS) in 3.5% NaCl solution. The results obtained from PDP showed higher corrosion potential and lower corrosion density after ECAP than base. Electrochemical impedance spectroscopy (EIS) showed higher charge transfer resistance after ECAP. Surface morphology showed decreased pit size and increased oxygen content in ECAP sample than base after PDP.
Jaramillo, Vinicio D Armijos; Sukno, Serenella A; Thon, Michael R
2015-01-02
Horizontal gene transfer (HGT) is the stable transmission of genetic material between organisms by means other than vertical inheritance. HGT has an important role in the evolution of prokaryotes but is relatively rare in eukaryotes. HGT has been shown to contribute to virulence in eukaryotic pathogens. We studied the importance of HGT in plant pathogenic fungi by identifying horizontally transferred genes in the genomes of three members of the genus Colletotrichum. We identified eleven HGT events from bacteria into members of the genus Colletotrichum or their ancestors. The HGT events include genes involved in amino acid, lipid and sugar metabolism as well as lytic enzymes. Additionally, the putative minimal dates of transference were calculated using a time calibrated phylogenetic tree. This analysis reveals a constant flux of genes from bacteria to fungi throughout the evolution of subphylum Pezizomycotina. Genes that are typically transferred by HGT are those that are constantly subject to gene duplication and gene loss. The functions of some of these genes suggest roles in niche adaptation and virulence. We found no evidence of a burst of HGT events coinciding with major geological events. In contrast, HGT appears to be a constant, albeit rare phenomenon in the Pezizomycotina, occurring at a steady rate during their evolution.
International Space Station (ISS) Water Transfer Hardware Logistics
NASA Technical Reports Server (NTRS)
Shkedi, Brienne D.
2006-01-01
Water transferred from the Space Shuttle to the International Space Station (ISS) is generated as a by-product from the Shuttle fuel cells, and is generally preferred over the Progress which has to launch water from the ground. However, launch mass and volume are still required for the transfer and storage hardware. Some of these up-mass requirements have been reduced since ISS assembly began due to changes in the storage hardware (CWC). This paper analyzes the launch mass and volume required to transfer water from the Shuttle and analyzes the up-mass savings due to modifications in the CWC. Suggestions for improving the launch mass and volume are also provided.
Chakravorty, Dhruva K; Hammes-Schiffer, Sharon
2010-06-02
The two proton transfer reactions catalyzed by ketosteroid isomerase (KSI) involve a dienolate intermediate stabilized by hydrogen bonds with Tyr14 and Asp99. Molecular dynamics simulations based on an empirical valence bond model are used to examine the impact of mutating these residues on the hydrogen-bonding patterns, conformational changes, and van der Waals and electrostatic interactions during the proton transfer reactions. While the rate constants for the two proton transfer steps are similar for wild-type (WT) KSI, the simulations suggest that the rate constant for the first proton transfer step is smaller in the mutants due to the significantly higher free energy of the dienolate intermediate relative to the reactant. The calculated rate constants for the mutants D99L, Y14F, and Y14F/D99L relative to WT KSI are qualitatively consistent with the kinetic experiments indicating a significant reduction in the catalytic rates along the series of mutants. In the simulations, WT KSI retained two hydrogen-bonding interactions between the substrate and the active site, while the mutants typically retained only one hydrogen-bonding interaction. A new hydrogen-bonding interaction between the substrate and Tyr55 was observed in the double mutant, leading to the prediction that mutation of Tyr55 will have a greater impact on the proton transfer rate constants for the double mutant than for WT KSI. The electrostatic stabilization of the dienolate intermediate relative to the reactant was greater for WT KSI than for the mutants, providing a qualitative explanation for the significantly reduced rates of the mutants. The active site exhibited restricted motion during the proton transfer reactions, but small conformational changes occurred to facilitate the proton transfer reactions by strengthening the hydrogen-bonding interactions and by bringing the proton donor and acceptor closer to each other with the proper orientation for proton transfer. Thus, these calculations suggest that KSI forms a preorganized active site but that the structure of this preorganized active site is altered upon mutation. Moreover, small conformational changes due to stochastic thermal motions are required within this preorganized active site to facilitate the proton transfer reactions.
NASA Technical Reports Server (NTRS)
1991-01-01
This document presents trade studies and reference concept designs accomplished during a study of Space Transfer Concepts and Analyses for Exploration Missions (STCAEM). This volume contains the major top level trades, level 2 trades conducted in support of NASA's Lunar/Mars Exploration Program Office, and a synopsis of the vehicles for different propulsion systems under trade consideration. The vehicles are presented in more detail in other volumes of this report. Book 1 of Volume 1 covers the following analyses: lunar/Mars commonality trades, lunar/Mars mission operations, and Mars transfer systems.
NASA Technical Reports Server (NTRS)
Kim, J.; Bae, S. W.; Whitten, M. W.; Mullen, J. D.; Quine, R. W.; Kalkur, T. S.
1999-01-01
Two systems have been developed to study boiling heat transfer on the microscale. The first system utilizes a 32 x 32 array of diodes to measure the local temperature fluctuations during boiling on a silicon wafer heated from below. The second system utilizes an array of 96 microscale heaters each maintained at constant surface temperature using electronic feedback loops. The power required to keep each heater at constant temperature is measured, enabling the local heat transfer coefficient to be determined. Both of these systems as well as some preliminary results are discussed.
Koppenol, Willem H.
2013-01-01
The mercapto group of cysteine (Cys) is a predominant target for oxidative modification, where one-electron oxidation leads to the formation of Cys thiyl radicals, CysS•. These Cys thiyl radicals enter 1,2- and 1,3-hydrogen transfer reactions, for which rate constants are reported in this paper. The products of these 1,2- and 1,3-hydrogen transfer reactions are carbon-centered radicals at position C3 (α-mercaptoalkyl radicals) and C2 (•Cα radicals) of Cys, respectively. Both processes can be monitored separately in Cys analogues such as cysteamine (CyaSH) and penicillamine (PenSH). At acidic pH, thiyl radicals from CyaSH permit only the 1,2-hydrogen transfer according to equilibrium 12, +H3NCH2CH2S• ⇌ +H3NCH2 •CH–SH, where rate constants for forward and reverse reaction are k12 ≈ 105 s−1 and k−12 ≈ 1.5 × 105s−1, respectively. In contrast, only the 1,3-hydrogen transfer is possible for thiyl radicals from PenSH according to equilibrium 14, (+H3N/CO2H)Cα–C(CH3)2–S• ⇌ (+H3N/CO2H)•Cα–C(CH3)2–SH, where rate constants for the forward and the reverse reaction are k14 = 8 × 104 s−1 and k−14 = 1.4 × 106 s−1. The •Cα radicals from PenSH and Cys have the additional opportunity for β-elimination of HS•/S•−, which proceeds with k39 ≈ (3 ± 1) × 104 s−1 from •Cα radicals from PenSH and k−34 ≈ 5 × 103 s−1 from •Cα radicals from Cys. The rate constants quantified for the 1,2- and 1,3-hydrogen transfer reactions can be used as a basis to calculate similar processes for Cys thiyl radicals in proteins, where hydrogen transfer reactions, followed by the addition of oxygen, may lead to the irreversible modification of target proteins. PMID:22483034
Measured performance of a 1089 K (1500 deg F) heat storage device for sun-shade orbital missions
NASA Technical Reports Server (NTRS)
Namkoong, D.
1972-01-01
Tubes designed for a solar heat receiver to serve as an energy source for a Brayton power system were tested for 2002 hours and 1251 sun-shade cycles. The tubes were designed to transfer a constant thermal input to the Brayton system during an orbit. Excess solar energy during a sun period is stored as heat of fusion of lithium fluoride. The niobium - 1% zirconium tubes accommodate the 23 percent volume decrease of LiF during freezing. Test results showed slight, local distortions. The gas discharge temperature varied from 16 K (29 F) below to 28 K (50 F) above the nominal value of 1089 K (1500 F). The tube surface temperatures ranged from 1039 K (1410 F) to 1183 K (1670 F).
Membrane dynamics of dividing cells imaged by lattice light-sheet microscopy
Aguet, François; Upadhyayula, Srigokul; Gaudin, Raphaël; Chou, Yi-ying; Cocucci, Emanuele; He, Kangmin; Chen, Bi-Chang; Mosaliganti, Kishore; Pasham, Mithun; Skillern, Wesley; Legant, Wesley R.; Liu, Tsung-Li; Findlay, Greg; Marino, Eric; Danuser, Gaudenz; Megason, Sean; Betzig, Eric; Kirchhausen, Tom
2016-01-01
Membrane remodeling is an essential part of transferring components to and from the cell surface and membrane-bound organelles and for changes in cell shape, which are particularly critical during cell division. Earlier analyses, based on classical optical live-cell imaging and mostly restricted by technical necessity to the attached bottom surface, showed persistent formation of endocytic clathrin pits and vesicles during mitosis. Taking advantage of the resolution, speed, and noninvasive illumination of the newly developed lattice light-sheet fluorescence microscope, we reexamined their assembly dynamics over the entire cell surface and found that clathrin pits form at a lower rate during late mitosis. Full-cell imaging measurements of cell surface area and volume throughout the cell cycle of single cells in culture and in zebrafish embryos showed that the total surface increased rapidly during the transition from telophase to cytokinesis, whereas cell volume increased slightly in metaphase and was relatively constant during cytokinesis. These applications demonstrate the advantage of lattice light-sheet microscopy and enable a new standard for imaging membrane dynamics in single cells and multicellular assemblies. PMID:27535432
Enthalpy versus entropy: What drives hard-particle ordering in condensed phases?
Anthamatten, Mitchell; Ou, Jane J.; Weinfeld, Jeffrey A.; ...
2016-07-27
In support of mesoscopic-scale materials processing, spontaneous hard-particle ordering has been actively pursued for over a half-century. The generally accepted view that entropy alone can drive hard particle ordering is evaluated. Furthermore, a thermodynamic analysis of hard particle ordering was conducted and shown to agree with existing computations and experiments. Conclusions are that (i) hard particle ordering transitions between states in equilibrium are forbidden at constant volume but are allowed at constant pressure; (ii) spontaneous ordering transitions at constant pressure are driven by enthalpy, and (iii) ordering under constant volume necessarily involves a non-equilibrium initial state which has yet tomore » be rigorously defined.« less
NASA Technical Reports Server (NTRS)
Myers, Jerry G.; Hussey, Sam W.; Yee, Glenda F.; Kim, Jungho
2003-01-01
Investigations into single bubble pool boiling phenomena are often complicated by the difficulties in obtaining time and space resolved information in the bubble region. This usually occurs because the heaters and diagnostics used to measure heat transfer data are often on the order of, or larger than, the bubble characteristic length or region of influence. This has contributed to the development of many different and sometimes contradictory models of pool boiling phenomena and dominant heat transfer mechanisms. Recent investigations by Yaddanapyddi and Kim and Demiray and Kim have obtained time and space resolved heat transfer information at the bubble/heater interface under constant temperature conditions using a novel micro-heater array (10x10 array, each heater 100 microns on a side) that is semi-transparent and doubles as a measurement sensor. By using active feedback to maintain a state of constant temperature at the heater surface, they showed that the area of influence of bubbles generated in FC-72 was much smaller than predicted by standard models and that micro-conduction/micro-convection due to re-wetting dominated heat transfer effects. This study seeks to expand on the previous work by making time and space resolved measurements under bubbles nucleating on a micro-heater array operated under constant heat flux conditions. In the planned investigation, wall temperature measurements made under a single bubble nucleation site will be synchronized with high-speed video to allow analysis of the bubble energy removal from the wall.
Xia, Wei; Yan, Zhuangzhi; Gao, Xin
2017-10-01
To find early predictors of histologic response in soft tissue sarcoma through volume transfer constant (K trans ) analysis based on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). 11 Patients with soft tissue sarcoma of the lower extremity that underwent preoperative chemoradiotherapy followed by limb salvage surgery were included in this retrospective study. For each patient, DCE-MRI data sets were collected before and two weeks after therapy initiation, and histologic tumor cell necrosis rate (TCNR) was reported at surgery. The DCE-MRI volumes were aligned by registration. Then, the aligned volumes were used to obtain the K trans variation map. Accordingly, three sub-volumes (with increased, decreased or unchanged K trans ) were defined and identified, and fractions of the sub-volumes, denoted as F + , F - and F 0 , respectively, were calculated. The predictive ability of volume fractions was determined by using area under a receiver operating characteristic curve (AUC). Linear regression analysis was performed to investigate the relationship between TCNR and volume fractions. In addition, the K trans values of the sub-volumes were compared. The AUC for F - (0.896) and F 0 (0.833) were larger than that for change of tumor longest diameter ΔD (0.625) and the change of mean K trans ΔK trans ¯ (0.792). Moreover, the regression results indicated that TCNR was directly proportional to F 0 (R 2 =0.75, P=0.0003), while it was inversely proportional to F - (R 2 =0.77, P=0.0002). However, TCNR had relatively weak linear relationship with ΔK trans ¯ (R 2 =0.64, P=0.0018). Additionally, TCNR did not have linear relationship with DD (R 2 =0.16, P=0.1246). The volume fraction F - and F 0 have potential as early predictors of soft tissue sarcoma histologic response. Copyright © 2017 Elsevier B.V. All rights reserved.
Histogram analysis of T2*-based pharmacokinetic imaging in cerebral glioma grading.
Liu, Hua-Shan; Chiang, Shih-Wei; Chung, Hsiao-Wen; Tsai, Ping-Huei; Hsu, Fei-Ting; Cho, Nai-Yu; Wang, Chao-Ying; Chou, Ming-Chung; Chen, Cheng-Yu
2018-03-01
To investigate the feasibility of histogram analysis of the T2*-based permeability parameter volume transfer constant (K trans ) for glioma grading and to explore the diagnostic performance of the histogram analysis of K trans and blood plasma volume (v p ). We recruited 31 and 11 patients with high- and low-grade gliomas, respectively. The histogram parameters of K trans and v p , derived from the first-pass pharmacokinetic modeling based on the T2* dynamic susceptibility-weighted contrast-enhanced perfusion-weighted magnetic resonance imaging (T2* DSC-PW-MRI) from the entire tumor volume, were evaluated for differentiating glioma grades. Histogram parameters of K trans and v p showed significant differences between high- and low-grade gliomas and exhibited significant correlations with tumor grades. The mean K trans derived from the T2* DSC-PW-MRI had the highest sensitivity and specificity for differentiating high-grade gliomas from low-grade gliomas compared with other histogram parameters of K trans and v p . Histogram analysis of T2*-based pharmacokinetic imaging is useful for cerebral glioma grading. The histogram parameters of the entire tumor K trans measurement can provide increased accuracy with additional information regarding microvascular permeability changes for identifying high-grade brain tumors. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ghasemi, Khaled; Rezvani, Ali Reza; Shokrollahi, Ardeshir; Zarghampour, Fereshteh; Moghimi, Abolghasem; García-Granda, Santiago; Mendoza-Meroño, Rafael
2015-06-01
Reaction between 2,2‧-dipyridylamine (DPA) and 2,6-pyridine dicarboxylic acid (dipicolinic acid, dipicH2), in water results in the formation of a proton transfer or charge transfer (CT) complex, (DPAH)+(dipicH)-·H2O, 1. The characterization was performed using 1H NMR and FTIR spectroscopy, elemental analysis and X-ray crystallography. The crystal system is triclinic with space group P1. The structural investigations exhibit that the hydrogen bonds and π-π stacking interactions stabilize the crystal structure of proton transfer complex. The protonation constants of 2,6-pyridine dicarboxylic acid, 2,2‧-dipyridylamine and the equilibrium constants for dipic-DPA (1:1) proton transfer system were calculated by potentiometric pH titration method using Hyperquad2008 program. The stoichiometries of the proton transfer species in solution was in agreement with the solid state result.
The Gaseous Explosive Reaction : The Effect of Inert Gases
NASA Technical Reports Server (NTRS)
Stevens, F W
1928-01-01
Attention is called in this report to previous investigations of gaseous explosive reactions carried out under constant volume conditions, where the effect of inert gases on the thermodynamic equilibrium was determined. The advantage of constant pressure methods over those of constant volume as applied to studies of the gaseous explosive reaction is pointed out and the possibility of realizing for this purpose a constant pressure bomb mentioned. The application of constant pressure methods to the study of gaseous explosive reactions, made possible by the use of a constant pressure bomb, led to the discovery of an important kinetic relation connecting the rate of propagation of the zone of explosive reaction within the active gases, with the initial concentrations of those gases: s = K(sub 1)(A)(sup n1)(B)(sup n2)(C)(sup n3)------. By a method analogous to that followed in determining the effect of inert gases on the equilibrium constant K, the present paper records an attempt to determine their kinetic effect upon the expression given above.
Does the Addition of Inert Gases at Constant Volume and Temperature Affect Chemical Equilibrium?
ERIC Educational Resources Information Center
Paiva, Joao C. M.; Goncalves, Jorge; Fonseca, Susana
2008-01-01
In this article we examine three approaches, leading to different conclusions, for answering the question "Does the addition of inert gases at constant volume and temperature modify the state of equilibrium?" In the first approach, the answer is yes as a result of a common students' alternative conception; the second approach, valid only for ideal…
Thermosetting resins with high fractions of free volume and inherently low dielectric constants.
Lin, Liang-Kai; Hu, Chien-Chieh; Su, Wen-Chiung; Liu, Ying-Ling
2015-08-18
This work demonstrates a new class of thermosetting resins, based on Meldrum's acid (MA) derivatives, which have high fractions of free volume and inherently low k values of about 2.0 at 1 MHz. Thermal decomposition of the MA groups evolves CO2 and acetone to create air-trapped cavities so as to reduce the dielectric constants.
Biologically inspired highly efficient buoyancy engine
NASA Astrophysics Data System (ADS)
Akle, Barbar; Habchi, Wassim; Abdelnour, Rita; Blottman, John, III; Leo, Donald
2012-04-01
Undersea distributed networked sensor systems require a miniaturization of platforms and a means of both spatial and temporal persistence. One aspect of this system is the necessity to modulate sensor depth for optimal positioning and station-keeping. Current approaches involve pneumatic bladders or electrolysis; both require mechanical subsystems and consume significant power. These are not suitable for the miniaturization of sensor platforms. Presented in this study is a novel biologically inspired method that relies on ionic motion and osmotic pressures to displace a volume of water from the ocean into and out of the proposed buoyancy engine. At a constant device volume, the displaced water will alter buoyancy leading to either sinking or floating. The engine is composed of an enclosure sided on the ocean's end by a Nafion ionomer and by a flexible membrane separating the water from a gas enclosure. Two electrodes are placed one inside the enclosure and the other attached to the engine on the outside. The semi-permeable membrane Nafion allows water motion in and out of the enclosure while blocking anions from being transferred. The two electrodes generate local concentration changes of ions upon the application of an electrical field; these changes lead to osmotic pressures and hence the transfer of water through the semi-permeable membrane. Some aquatic organisms such as pelagic crustacean perform this buoyancy control using an exchange of ions through their tissue to modulate its density relative to the ambient sea water. In this paper, the authors provide an experimental proof of concept of this buoyancy engine. The efficiency of changing the engine's buoyancy is calculated and optimized as a function of electrode surface area. For example electrodes made of a 3mm diameter Ag/AgCl proved to transfer approximately 4mm3 of water consuming 4 Joules of electrical energy. The speed of displacement is optimized as a function of the surface area of the Nafion membrane and its thickness. The 4mm3 displaced volume obtained with the Ag/AgCl electrodes required approximately 380 seconds. The thickness of the Nafion membrane is 180μm and it has an area of 133mm3.
Constant volume gas cell optical phase-shifter
Phillion, Donald W.
2002-01-01
A constant volume gas cell optical phase-shifter, particularly applicable for phase-shifting interferometry, contains a sealed volume of atmospheric gas at a pressure somewhat different than atmospheric. An optical window is present at each end of the cell, and as the length of the cell is changed, the optical path length of a laser beam traversing the cell changes. The cell comprises movable coaxial tubes with seals and a volume equalizing opening. Because the cell is constant volume, the pressure, temperature, and density of the contained gas do not change as the cell changes length. This produces an exactly linear relationship between the change in the length of the gas cell and the change in optical phase of the laser beam traversing it. Because the refractive index difference between the gas inside and the atmosphere outside is very much the same, a large motion must be made to change the optical phase by the small fraction of a wavelength that is required by phase-shifting interferometry for its phase step. This motion can be made to great fractional accuracy.
Dynamics and mass transport of solutal convection in a closed porous media system
NASA Astrophysics Data System (ADS)
Wen, Baole; Akhbari, Daria; Hesse, Marc
2016-11-01
Most of the recent studies of CO2 sequestration are performed in open systems where the constant partial pressure of CO2 in the vapor phase results in a time-invariant saturated concentration of CO2 in the brine (Cs). However, in some closed natural CO2 reservoirs, e.g., Bravo Dome in New Mexico, the continuous dissolution of CO2 leads to a pressure drop in the gas that is accompanied by a reduction of Cs and thereby affects the dynamics and mass transport of convection in the brine. In this talk, I discuss the characteristics of convective CO2 dissolution in a closed system. The gas is assumed to be ideal and its solubility given by Henry's law. An analytical solution shows that the diffusive base state is no longer self-similar and that diffusive mass transfer declines rapidly. Scaling analysis reveals that the volume ratio of brine and gas η determines the behavior of the system. DNS show that no constant flux regime exists for η > 0 nevertheless, the quantity F /Cs2 remains constant, where F is the dissolution flux. The onset time is only affected by η when the Rayleigh number Ra is small. In this case, the drop in Cs during the initial diffusive regime significantly reduces the effective Ra and therefore delays the onset.
SteamTables: An approach of multiple variable sets
NASA Astrophysics Data System (ADS)
Verma, Mahendra P.
2009-10-01
Using the IAPWS-95 formulation, an ActiveX component SteamTablesIIE in Visual Basic 6.0 is developed to calculate thermodynamic properties of pure water as a function of two independent intensive variables: (1) temperature ( T) or pressure ( P) and (2) T, P, volume ( V), internal energy ( U), enthalpy ( H), entropy ( S) or Gibbs free energy ( G). The second variable cannot be the same as variable 1. Additionally, it calculates the properties along the separation boundaries (i.e., sublimation, saturation, critical isochor, ice I melting, ice III to ice IIV melting and minimum volume curves) considering the input parameter as T or P for the variable 1. SteamTablesIIE is an extension of the ActiveX component SteamTables implemented earlier considering T (190 to 2000 K) and P (3.23×10 -8 to 10000 MPa) as independent variables. It takes into account the following 27 intensive properties: temperature ( T), pressure ( P), fraction, state, volume ( V), density ( Den), compressibility factor ( Z0), internal energy ( U), enthalpy ( H), Gibbs free energy ( G), Helmholtz free energy ( A), entropy ( S), heat capacity at constant pressure ( C p), heat capacity at constant volume ( C v), coefficient of thermal expansion ( CTE), isothermal compressibility ( Z iso), speed of sound ( VelS), partial derivative of P with T at constant V ( dPdT), partial derivative of T with V at constant P ( dTdV), partial derivative of V with P at constant T ( dVdP), Joule-Thomson coefficient ( JTC), isothermal throttling coefficient ( IJTC), viscosity ( Vis), thermal conductivity ( ThrmCond), surface tension ( SurfTen), Prandtl number ( PrdNum) and dielectric constant ( DielCons).
An exact closed form solution for constant area compressible flow with friction and heat transfer
NASA Technical Reports Server (NTRS)
Sturas, J. I.
1971-01-01
The well-known differential equation for the one-dimensional flow of a compressible fluid with heat transfer and wall friction has no known solution in closed form for the general case. This report presents a closed form solution for the special case of constant heat flux per unit length and constant specific heat. The solution was obtained by choosing the square of a dimensionless flow parameter as one of the independent variables to describe the flow. From this exact solution, an approximate simplified form is derived that is applicable for predicting subsonic flow performance characteristics for many types of constant area passages in internal flow. The data included in this report are considered sufficiently accurate for use as a guide in analyzing and designing internal gas flow systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seyedein, S.H.; Hasan, H.
1997-03-01
Controlled flow and heat transfer are important for the quality of a strip in a twin-roll continuous casting process. A numerical study was carried out to investigate the two-dimensional turbulent flow and heat transfer in the liquid stainless-steel-filled wedge-shaped cavity formed by the two counterrotating rolls in a twin-roll continuous casting system. The turbulent characteristics of the flow were modeled using a low-Reynolds-number {kappa}-{epsilon} turbulence model due to Launder and Sharma. The arbitrary nature of the computational domain was accounted for through the use of a nonorthogonal boundary-fitted coordinate system on a staggered grid. A control-volume-based finite difference scheme wasmore » used to solve the transformed transport equations. This study is primarily focused on elucidating the inlet superheat dissipation in the melt pool with the rolls being maintained at a constant liquidus temperature of the steel. A parametric study was carried out to ascertain the effect of the inlet superheat, the casting speed, and the roll gap at the nip of the rotating rolls on the flow and heat transfer characteristics. The velocity fields show two counterrotating recirculation zones in the upstream region. The local Nusselt number on the roll surface shows significant variations. The contours of temperature and turbulent viscosity show the complex nature of the turbulent transport phenomena to be expected in a twin-roll casting process.« less
Hopkins, Heidi; Oyibo, Wellington; Luchavez, Jennifer; Mationg, Mary Lorraine; Asiimwe, Caroline; Albertini, Audrey; González, Iveth J; Gatton, Michelle L; Bell, David
2011-02-08
Malaria rapid diagnostic tests (RDTs) are increasingly used by remote health personnel with minimal training in laboratory techniques. RDTs must, therefore, be as simple, safe and reliable as possible. Transfer of blood from the patient to the RDT is critical to safety and accuracy, and poses a significant challenge to many users. Blood transfer devices were evaluated for accuracy and precision of volume transferred, safety and ease of use, to identify the most appropriate devices for use with RDTs in routine clinical care. Five devices, a loop, straw-pipette, calibrated pipette, glass capillary tube, and a new inverted cup device, were evaluated in Nigeria, the Philippines and Uganda. The 227 participating health workers used each device to transfer blood from a simulated finger-prick site to filter paper. For each transfer, the number of attempts required to collect and deposit blood and any spilling of blood during transfer were recorded. Perceptions of ease of use and safety of each device were recorded for each participant. Blood volume transferred was calculated from the area of blood spots deposited on filter paper. The overall mean volumes transferred by devices differed significantly from the target volume of 5 microliters (p < 0.001). The inverted cup (4.6 microliters) most closely approximated the target volume. The glass capillary was excluded from volume analysis as the estimation method used is not compatible with this device. The calibrated pipette accounted for the largest proportion of blood exposures (23/225, 10%); exposures ranged from 2% to 6% for the other four devices. The inverted cup was considered easiest to use in blood collection (206/226, 91%); the straw-pipette and calibrated pipette were rated lowest (143/225 [64%] and 135/225 [60%] respectively). Overall, the inverted cup was the most preferred device (72%, 163/227), followed by the loop (61%, 138/227). The performance of blood transfer devices varied in this evaluation of accuracy, blood safety, ease of use, and user preference. The inverted cup design achieved the highest overall performance, while the loop also performed well. These findings have relevance for any point-of-care diagnostics that require blood sampling.
NASA Astrophysics Data System (ADS)
Lucey, Paul G.; Trang, David; Johnson, Jeffrey R.; Glotch, Timothy D.
2018-01-01
Several studies have detected the presence of nanophase ferric oxide, such as nanophase hematite, across the martian surface through spacecraft and rover data. In this study, we used the radiative transfer method to detect and quantify the abundance of these nanophase particles. Because the visible/near-infrared spectral characteristics of hematite > 10 nm in size are different from nanophase hematite < 10 nm, there are not any adequate optical constants of nanophase hematite to study visible to near-infrared rover/spacecraft data of the martian surface. Consequently, we found that radiative transfer models based upon the optical constants of crystalline hematite are unable to reproduce laboratory spectra of nanophase hematite. In order to match the model spectra to the laboratory spectra, we developed a new set of optical constants of nanophase hematite in the visible and near-infrared and found that radiative transfer models based upon these optical constants consistently model the laboratory spectra. We applied our model to the passive bidirectional reflectance spectra data from the Chemistry and Camera (ChemCam) instrument onboard the Mars Science Laboratory rover, Curiosity. After modeling six spectra representing different major units identified during the first year of rover operations, we found that the nanophase hematite abundance was no more than 4 wt%.
NASA Astrophysics Data System (ADS)
Li, Xin; Cai, Yu; Moloney, Brendan; Chen, Yiyi; Huang, Wei; Woods, Mark; Coakley, Fergus V.; Rooney, William D.; Garzotto, Mark G.; Springer, Charles S.
2016-08-01
Dynamic-Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) has been used widely for clinical applications. Pharmacokinetic modeling of DCE-MRI data that extracts quantitative contrast reagent/tissue-specific model parameters is the most investigated method. One of the primary challenges in pharmacokinetic analysis of DCE-MRI data is accurate and reliable measurement of the arterial input function (AIF), which is the driving force behind all pharmacokinetics. Because of effects such as inflow and partial volume averaging, AIF measured from individual arteries sometimes require amplitude scaling for better representation of the blood contrast reagent (CR) concentration time-courses. Empirical approaches like blinded AIF estimation or reference tissue AIF derivation can be useful and practical, especially when there is no clearly visible blood vessel within the imaging field-of-view (FOV). Similarly, these approaches generally also require magnitude scaling of the derived AIF time-courses. Since the AIF varies among individuals even with the same CR injection protocol and the perfect scaling factor for reconstructing the ground truth AIF often remains unknown, variations in estimated pharmacokinetic parameters due to varying AIF scaling factors are of special interest. In this work, using simulated and real prostate cancer DCE-MRI data, we examined parameter variations associated with AIF scaling. Our results show that, for both the fast-exchange-limit (FXL) Tofts model and the water exchange sensitized fast-exchange-regime (FXR) model, the commonly fitted CR transfer constant (Ktrans) and the extravascular, extracellular volume fraction (ve) scale nearly proportionally with the AIF, whereas the FXR-specific unidirectional cellular water efflux rate constant, kio, and the CR intravasation rate constant, kep, are both AIF scaling insensitive. This indicates that, for DCE-MRI of prostate cancer and possibly other cancers, kio and kep may be more suitable imaging biomarkers for cross-platform, multicenter applications. Data from our limited study cohort show that kio correlates with Gleason scores, suggesting that it may be a useful biomarker for prostate cancer disease progression monitoring.
Numerical study of heat and mass transfer in inertial suspensions in pipes.
NASA Astrophysics Data System (ADS)
Niazi Ardekani, Mehdi; Brandt, Luca
2017-11-01
Controlling heat and mass transfer in particulate suspensions has many important applications such as packed and fluidized bed reactors and industrial dryers. In this work, we study the heat and mass transfer within a suspension of spherical particles in a laminar pipe flow, using the immersed boundary method (IBM) to account for the solid fluid interactions and a volume of fluid (VoF) method to resolve temperature equation both inside and outside of the particles. Tracers that follow the fluid streamlines are considered to investigate mass transfer within the suspension. Different particle volume fractions 5, 15, 30 and 40% are simulated for different pipe to particle diameter ratios: 5, 10 and 15. The preliminary results quantify the heat and mass transfer enhancement with respect to a single-phase laminar pipe flow. We show in particular that the heat transfer from the wall saturates for volume fractions more than 30%, however at high particle Reynolds numbers (small diameter ratios) the heat transfer continues to increase. Regarding the dispersion of tracer particles we show that the diffusivity of tracers increases with volume fraction in radial and stream-wise directions however it goes through a peak at 15% in the azimuthal direction. European Research Council, Grant No. ERC-2013-CoG- 616186, TRITOS; SNIC (the Swedish National Infrastructure for Computing).
Sailamul, Pachaya; Jang, Jaeson; Paik, Se-Bum
2017-12-01
Correlated neural activities such as synchronizations can significantly alter the characteristics of spike transfer between neural layers. However, it is not clear how this synchronization-dependent spike transfer can be affected by the structure of convergent feedforward wiring. To address this question, we implemented computer simulations of model neural networks: a source and a target layer connected with different types of convergent wiring rules. In the Gaussian-Gaussian (GG) model, both the connection probability and the strength are given as Gaussian distribution as a function of spatial distance. In the Uniform-Constant (UC) and Uniform-Exponential (UE) models, the connection probability density is a uniform constant within a certain range, but the connection strength is set as a constant value or an exponentially decaying function, respectively. Then we examined how the spike transfer function is modulated under these conditions, while static or synchronized input patterns were introduced to simulate different levels of feedforward spike synchronization. We observed that the synchronization-dependent modulation of the transfer function appeared noticeably different for each convergence condition. The modulation of the spike transfer function was largest in the UC model, and smallest in the UE model. Our analysis showed that this difference was induced by the different spike weight distributions that was generated from convergent synapses in each model. Our results suggest that, the structure of the feedforward convergence is a crucial factor for correlation-dependent spike control, thus must be considered important to understand the mechanism of information transfer in the brain.
First Principles Analysis of Convection in the Earth's Mantle, Eustatic Sea Level and Earth Volume
NASA Astrophysics Data System (ADS)
Kinsland, G. L.
2011-12-01
Steady state convection (convection whereby heat leaving the mantle at the top is equal to the heat entering the mantle across the core mantle boundary and that created within the mantle) of the Earth's mantle is, to a very good approximation, both a constant mass and constant volume process. Mass or volume which moves to one place; e.g., an oceanic ridge; must be accompanied by mass or volume removed from another place. The location of removal, whether from underneath of an ocean or a continent, determines the relationship between oceanic ridge volume and eustatic sea level. If all of the volume entering a ridge were to come from under an oceanic basin then the size of the ridge would not affect eustatic sea level as it would be compensated by a lowering of the sea floor elsewhere. If the volume comes from under a continent then the hypsometry of the continent becomes important. Thus, eustatic sea level is not simply related to convection rate and oceanic ridge volume as posited by Hays and Pitman(1973). Non-steady state convection is still a constant mass process but is not a constant volume process. The mantle experiences a net gain of heat, warms and expands during periods of relatively slow convection (that being convection rate which is less than that necessary to transport incoming and internally created heat to the surface). Conversely, the mantle has a net loss of heat, cools and contracts during periods of relatively rapid convection. The Earth itself expands and contracts as the mantle does. During rapid convection more volume is delivered from the interior of the mantle to the Earth's ridge system than during slow convection. The integral of the difference of ridge system volume between fast and slow convection over a fast-slow convection cycle is a measure of the difference in volume of the mantle over a cycle. The magnitude of the Earth's volume expansion and contraction as calculated from published values for the volume of ocean ridges and is about .05% and has a period of hundreds of millions of years. Hays, J.D., W.C. Pitmann III, 1973, Lithospheric plate motion, sea level changes and climatic and ecological consequences, Nature 246, 18 - 22.
Ray, W J; Post, C B; Puvathingal, J M
1989-01-24
Net rate constants that define the steady-state rate through a sequence of steps and the corresponding effective energy barriers for two (PO3-)-transfer steps in the phosphoglucomutase reaction were compared as a function of metal ion, M, where M = Mg2+ and Cd2+. These steps involve the reaction of either the 1-phosphate or the 6-phosphate of glucose 1,6-bisphosphate (Glc-P2) bound to the dephosphoenzyme (ED) to produce the phosphoenzyme (EP) and the free monophosphates, glucose 1-phosphate (Glc-1-P) or glucose 6-phosphate (Glc-6-P): EP.M + Glc-1-P----ED.M.Glc-P2----EP.M.Glc-6-P6. Before this comparison was made, net rate constants for the Cd2+ enzyme, obtained at high enzyme concentration via 31P NMR saturation-transfer studies [Post, C. B., Ray, W. J., Jr., & Gorenstein, D. G. (1989) Biochemistry (preceding paper in this issue)], were appropriately scaled by using the observed constants to calculate both the expected isotope-transfer rate at equilibrium and the steady-state rate under initial velocity conditions and comparing the calculated values with those measured in dilute solution. For the Mg2+ enzyme, narrow limits on possible values of the corresponding net rate constants were imposed on the basis of initial velocity rate constants for the forward and reverse directions plus values for the equilibrium distribution of central complexes, since direct measurement is not feasible. The effective energy barriers for both the Mg2+ and Cd2+ enzymes, calculated from the respective net rate constants, together with previously values for the equilibrium distribution of complexes in both enzymic systems [Ray, W. J., Jr., & Long, J. W. (1976) Biochemistry 15, 4018-4025], show that the 100-fold decrease in the kappa cat for the Cd2+ relative to the Mg2+ enzyme is caused by two factors: the increased stability of the intermediate bisphosphate complex and the decreased ability to cope with the phosphate ester involving the 1-hydroxyl group of the glucose ring. In fact, it is unlikely that the efficiency of (PO3-) transfer to the 6-hydroxyl group of bound Glc-1-P (thermodynamically favorable direction) is reduced by more than an order of magnitude in the Cd2+ enzyme. By contrast, the efficiency of the Li+ enzyme in the same (PO3-)-transfer step is less than 4 x 10(-8) that of the Mg2+ enzyme.(ABSTRACT TRUNCATED AT 400 WORDS)
Yin, Ping; Xiong, Hua; Liu, Yi; Sah, Shambhu K; Zeng, Chun; Wang, Jingjie; Li, Yongmei; Hong, Nan
2018-01-01
To investigate the application value of using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) with extended Tofts linear model for relapsing-remitting multiple sclerosis (RRMS) and its correlation with expanded disability status scale (EDSS) scores and disease duration. Thirty patients with multiple sclerosis (MS) underwent conventional magnetic resonance imaging (MRI) and DCE-MRI with a 3.0 Tesla MR scanner. An extended Tofts linear model was used to quantitatively measure MR imaging biomarkers. The histogram parameters and correlation among imaging biomarkers, EDSS scores, and disease duration were also analyzed. The MR imaging biomarkers volume transfer constant (K trans ), volume of the extravascular extracellular space per unit volume of tissue (Ve), fractional plasma volume (V p ), cerebral blood flow (CBF), and cerebral blood volume (CBV) of contrast-enhancing (CE) lesions were significantly higher (P < 0.05) than those of nonenhancing (NE) lesions and normal-appearing white matter (NAWM) regions. The skewness of Ve value in CE lesions was more close to normal distribution. There was no significant correlation among the biomarkers with the EDSS scores and disease duration (P > 0.05). Our study demonstrates that the DCE-MRI with the extended Tofts linear model can measure the permeability and perfusion characteristic in MS lesions and in NAWM regions. The K trans , Ve, Vp, CBF, and CBV of CE lesions were significantly higher than that of NE lesions. The skewness of Ve value in CE lesions was more close to normal distribution, indicating that the histogram can be helpful to distinguish the pathology of MS lesions.
Virtual versus real water transfers within China.
Ma, Jing; Hoekstra, Arjen Y; Wang, Hao; Chapagain, Ashok K; Wang, Dangxian
2006-05-29
North China faces severe water scarcity--more than 40% of the annual renewable water resources are abstracted for human use. Nevertheless, nearly 10% of the water used in agriculture is employed in producing food exported to south China. To compensate for this 'virtual water flow' and to reduce water scarcity in the north, the huge south-north Water Transfer Project is currently being implemented. This paradox--the transfer of huge volumes of water from the water-rich south to the water-poor north versus transfer of substantial volumes of food from the food-sufficient north to the food-deficit south--is receiving increased attention, but the research in this field has not yet reached further than rough estimation and qualitative description. The aim of this paper is to review and quantify the volumes of virtual water flows between the regions in China and to put them in the context of water availability per region. The analysis shows that north China annually exports about 52 billion m3 of water in virtual form to south China, which is more than the maximum proposed water transfer volume along the three routes of the Water Transfer Project from south to north.
Virtual versus real water transfers within China
Ma, Jing; Hoekstra, Arjen Y; Wang, Hao; Chapagain, Ashok K; Wang, Dangxian
2005-01-01
North China faces severe water scarcity—more than 40% of the annual renewable water resources are abstracted for human use. Nevertheless, nearly 10% of the water used in agriculture is employed in producing food exported to south China. To compensate for this ‘virtual water flow’ and to reduce water scarcity in the north, the huge south–north Water Transfer Project is currently being implemented. This paradox—the transfer of huge volumes of water from the water-rich south to the water-poor north versus transfer of substantial volumes of food from the food-sufficient north to the food-deficit south—is receiving increased attention, but the research in this field has not yet reached further than rough estimation and qualitative description. The aim of this paper is to review and quantify the volumes of virtual water flows between the regions in China and to put them in the context of water availability per region. The analysis shows that north China annually exports about 52 billion m3 of water in virtual form to south China, which is more than the maximum proposed water transfer volume along the three routes of the Water Transfer Project from south to north. PMID:16767828
Heat transfer characteristics of an emergent strand
NASA Technical Reports Server (NTRS)
Simon, W. E.; Witte, L. C.; Hedgcoxe, P. G.
1974-01-01
A mathematical model was developed to describe the heat transfer characteristics of a hot strand emerging into a surrounding coolant. A stable strand of constant efflux velocity is analyzed, with a constant (average) heat transfer coefficient on the sides and leading surface of the strand. After developing a suitable governing equation to provide an adequate description of the physical system, the dimensionless governing equation is solved with Laplace transform methods. The solution yields the temperature within the strand as a function of axial distance and time. Generalized results for a wide range of parameters are presented, and the relationship of the results and experimental observations is discussed.
Efficient transformer for electromagnetic waves
Miller, R.B.
A transformer structure for efficient transfer of electromagnetic energy from a transmission line to an unmatched load provides voltage multiplication and current division by a predetermined constant. Impedance levels are transformed by the square of that constant. The structure includes a wave splitter, connected to an input transmission device and to a plurality of output transmission devices. The output transmission devices are effectively connected in parallel to the input transmission device. The output transmission devices are effectively series connected to provide energy to a load. The transformer structure is particularly effective in increasing efficiency of energy transfer through an inverting convolute structure by capturing and transferring energy losses from the inverter to the load.
Measurement Corner: Volume, Temperature and Pressure
ERIC Educational Resources Information Center
Teates, Thomas G.
1977-01-01
Boyle's Law and basic relationships between volume and pressure of a gas at constant temperature are presented. Suggests two laboratory activities for demonstrating the effect of temperature on the volume of a gas or liquid. (CS)
Mass transfer equation for proteins in very high-pressure liquid chromatography.
Gritti, Fabrice; Guiochon, Georges
2009-04-01
The mass transfer kinetics of human insulin was investigated on a 50 mm x 2.1 mm column packed with 1.7 microm BEH-C(18) particles, eluted with a water/acetonitrile/trifluoroacetic acid (TFA) (68/32/0.1, v/v/v) solution. The different contributions to the mass transfer kinetics, e.g., those of longitudinal diffusion, eddy dispersion, the film mass transfer resistance, cross-particle diffusivity, adsorption-desorption kinetics, and transcolumn differential sorption, were incorporated into a general mass transfer equation designed to account for the mass transfer kinetics of proteins under high pressure. More specifically, this equation includes the effects of pore size exclusion, pressure, and temperature on the band broadening of a protein. The flow rate was first increased from 0.001 to 0.250 mL/min, the pressure drop increasing from 2 to 298 bar, and the column being placed in stagnant air at 296.5 K, in order to determine the effective diffusivity of insulin through the porous particles, the mass transfer rate constants, and the adsorption equilibrium constant in the low-pressure range. Then, the column inlet pressure was increased by using capillary flow restrictors downstream the column, at the constant flow rate of 0.03 mL/min. The column temperature was kept uniform by immersing the column in a circulating water bath thermostatted at 298.7 and 323.15 K, successively. The results showed that the surface diffusion coefficient of insulin decreases faster than its bulk diffusion coefficient with increasing average column pressure. This is consistent with the adsorption energy of insulin onto the BEH-C(18) surface increasing strongly with increasing pressure. In contrast, given the precision of the height equivalent to a theoretical plate (HETP) measurement (+/-12%), the adsorption kinetics of insulin appears to be rather independent of the pressure. On average, the adsorption rate constant of insulin is doubled from about 40 to 80 s(-1) when the temperature increases from 298.7 to 323.15 K.
Heat Transfer and Pressure Drop in Concentric Annular Flows of Binary Inert Gas Mixtures
NASA Technical Reports Server (NTRS)
Reid, R. S.; Martin, J. J.; Yocum, D. J.; Stewart, E. T.
2007-01-01
Studies of heat transfer and pressure drop of binary inert gas mixtures flowing through smooth concentric circular annuli, tubes with fully developed velocity profiles, and constant heating rate are described. There is a general lack of agreement among the constant property heat transfer correlations for such mixtures. No inert gas mixture data exist for annular channels. The intent of this study was to develop highly accurate and benchmarked pressure drop and heat transfer correlations that can be used to size heat exchangers and cores for direct gas Brayton nuclear power plants. The inside surface of the annular channel is heated while the outer surface of the channel is insulated. Annulus ratios range 0.5 < r* < 0.83. These smooth tube data may serve as a reference to the heat transfer and pressure drop performance in annuli, tubes, and channels having helixes or spacer ribs, or other surfaces.
Martínez-González, Eduardo; Frontana, Carlos
2014-05-07
In this work, experimental evidence of the influence of the electron transfer kinetics during electron transfer controlled hydrogen bonding between anion radicals of metronidazole and ornidazole, derivatives of 5-nitro-imidazole, and 1,3-diethylurea as the hydrogen bond donor, is presented. Analysis of the variations of voltammetric EpIcvs. log KB[DH], where KB is the binding constant, allowed us to determine the values of the binding constant and also the electron transfer rate k, confirmed by experiments obtained at different scan rates. Electronic structure calculations at the BHandHLYP/6-311++G(2d,2p) level for metronidazole, including the solvent effect by the Cramer/Truhlar model, suggested that the minimum energy conformer is stabilized by intramolecular hydrogen bonding. In this structure, the inner reorganization energy, λi,j, contributes significantly (0.5 eV) to the total reorganization energy of electron transfer, thus leading to a diminishment of the experimental k.
Optimal thrust level for orbit insertion
NASA Astrophysics Data System (ADS)
Cerf, Max
2017-07-01
The minimum-fuel orbital transfer is analyzed in the case of a launcher upper stage using a constantly thrusting engine. The thrust level is assumed to be constant and its value is optimized together with the thrust direction. A closed-loop solution for the thrust direction is derived from the extremal analysis for a planar orbital transfer. The optimal control problem reduces to two unknowns, namely the thrust level and the final time. Guessing and propagating the costates is no longer necessary and the optimal trajectory is easily found from a rough initialization. On the other hand the initial costates are assessed analytically from the initial conditions and they can be used as initial guess for transfers at different thrust levels. The method is exemplified on a launcher upper stage targeting a geostationary transfer orbit.
Laminar convective heat transfer of non-Newtonian nanofluids with constant wall temperature
NASA Astrophysics Data System (ADS)
Hojjat, M.; Etemad, S. Gh.; Bagheri, R.; Thibault, J.
2011-02-01
Nanofluids are obtained by dispersing homogeneously nanoparticles into a base fluid. Nanofluids often exhibit higher heat transfer rate in comparison with the base fluid. In the present study, forced convection heat transfer under laminar flow conditions was investigated experimentally for three types of non-Newtonian nanofluids in a circular tube with constant wall temperature. CMC solution was used as the base fluid and γ-Al2O3, TiO2 and CuO nanoparticles were homogeneously dispersed to create nanodispersions of different concentrations. Nanofluids as well as the base fluid show shear thinning (pseudoplastic) rheological behavior. Results show that the presence of nanoparticles increases the convective heat transfer of the nanodispersions in comparison with the base fluid. The convective heat transfer enhancement is more significant when both the Peclet number and the nanoparticle concentration are increased. The increase in convective heat transfer is higher than the increase caused by the augmentation of the effective thermal conductivity.
Nakamura, Toru; Yamaji, Takayuki; Takayama, Kozo
2013-05-01
To predict the stability of pharmaceutical preparations under uncontrolled temperature conditions accurately, a method to compute the average reaction rate constant taking into account the heat transfer from the atmosphere to the product was developed. The average reaction rate constants computed with taken into consideration heat transfer (κ(re) ) were then compared with those computed without taking heat transfer into consideration (κ(in) ). The apparent thermal diffusivity (κ(a) ) exerted some influence on the average reaction rate constant ratio (R, R = κ(re) /κ(in) ). In the regions where the κ(a) was large (above 1 h(-1) ) or very small, the value of R was close to 1. On the contrary, in the middle region (0.001-1 h(-1) ), the value of R was less than 1.The κ(a) of the central part of a large-size container and that of the central part of a paper case of 10 bottles of liquid medicine (100 mL) fell within this middle region. On the basis of the above-mentioned considerations, heat transfer may need to be taken into consideration to enable a more accurate prediction of the stability of actual pharmaceutical preparations under nonisothermal atmospheres. Copyright © 2013 Wiley Periodicals, Inc.
Reference database of lung volumes and capacities in wistar rats from 2 to 24 months.
Filho, Wilson Jacob; Fontinele, Renata Gabriel; de Souza, Romeu Rodrigues
2014-01-01
This study determines the effects of growing and aging on lung physiological volumes and capacities and the incidence of inflammation in the small airways with age in rats. A reference database comprising of body weight gain, lung physiological volumes and capacities and an anatomopathological study of lung lesions over 240 Wistar rats from two to 24 -mo, is described. Tidal volume (TV), minute respiratory volume (MRV), and forced vital capacity (FVC) decreased during the first six months of life and then remain constant until 24 -mo of age. The respiratory frequency (Rf) and dynamical compliance (Cdyn) maintain at constant values from 2 to 24- mo of age; the functional residual capacity (FRC) increases in the first 6 -mo and then remains constant up to 24 -mo. It was verified a less intensive inflammation in the small airways with age, when compared with the median and large airways. This study showed the normal parameters for lung volumes and capacities and the incidence of infections for growing and aging male and female rats. The age-related data on these main respiratory parameters in rats would be useful in studies of aging-related disorders using this model and for safety pharmacology studies necessary for the development of drugs.
40 CFR 80.1453 - What are the product transfer document (PTD) requirements for the RFS program?
Code of Federal Regulations, 2014 CFR
2014-07-01
... state “No assigned RINs transferred.”. (iv) If RINs have been separated from the renewable fuel or fuel... renewable fuel or fuel blend shall state “This volume of fuel must be used in the designated form, without... used to transfer ownership of the renewable fuel shall state “This volume of renewable fuel may not be...
Satellite Power Systems (SPS) concept definition study, exhibit C. Volume 4: Transportation analysis
NASA Technical Reports Server (NTRS)
Hanley, G. M.
1979-01-01
Volume 4 of a seven volume Satellite Power Systems (SPS) is presented. This volume is divided into the following sections: (1) transportation systems elements; (2) transportation systems requirements; (3) heavy lift launch vehicles (HLLV); (4) LEO-GEO transportation; (5) on-orbit mobility systems; (6) personnel transfer systems; and (7) cost and programmatics. Three appendixes are also provided and they include: horizontal takeoff (single stage to orbit technical summary); HLLV reference vehicle trajectory and trade study data; and electric orbital transfer vehicle sizing.
Mechanism of explosive eruptions of Kilauea Volcano, Hawaii
Dvorak, J.J.
1992-01-01
A small explosive eruption of Kilauea Volcano, Hawaii, occurred in May 1924. The eruption was preceded by rapid draining of a lava lake and transfer of a large volume of magma from the summit reservoir to the east rift zone. This lowered the magma column, which reduced hydrostatic pressure beneath Halemaumau and allowed groundwater to flow rapidly into areas of hot rock, producing a phreatic eruption. A comparison with other events at Kilauea shows that the transfer of a large volume of magma out of the summit reservoir is not sufficient to produce a phreatic eruption. For example, the volume transferred at the beginning of explosive activity in May 1924 was less than the volumes transferred in March 1955 and January-February 1960, when no explosive activity occurred. Likewise, draining of a lava lake and deepening of the floor of Halemaumau, which occurred in May 1922 and August 1923, were not sufficient to produce explosive activity. A phreatic eruption of Kilauea requires both the transfer of a large volume of magma from the summit reservoir and the rapid removal of magma from near the surface, where the surrounding rocks have been heated to a sufficient temperature to produce steam explosions when suddenly contacted by groundwater. ?? 1992 Springer-Verlag.
NASA Astrophysics Data System (ADS)
Alyassin, Abdal M.
2002-05-01
3D Digital mammography (3DDM) is a new technology that provides high resolution X-ray breast tomographic data. Like any other tomographic medical imaging modalities, viewing a stack of tomographic images may require time especially if the images are of large matrix size. In addition, it may cause difficulty to conceptually construct 3D breast structures. Therefore, there is a need to readily visualize the data in 3D. However, one of the issues that hinder the usage of volume rendering (VR) is finding an automatic way to generate transfer functions that efficiently map the important diagnostic information in the data. We have developed a method that randomly samples the volume. Based on the mean and the standard deviation of these samples, the technique determines the lower limit and upper limit of a piecewise linear ramp transfer function. We have volume rendered several 3DDM data using this technique and compared visually the outcome with the result from a conventional automatic technique. The transfer function generated through the proposed technique provided superior VR images over the conventional technique. Furthermore, the improvement in the reproducibility of the transfer function correlated with the number of samples taken from the volume at the expense of the processing time.
NASA Astrophysics Data System (ADS)
Shin, Seokmin; Metiu, Horia
1995-06-01
We use a minimal model to study the effects of the upper electronic states on the rate of a charge transfer reaction. The model consists of three ions and an electron, all strung on a line. The two ions at the ends of the structure are held fixed, but the middle ion and the electron are allowed to move in one dimension, along the line joining them. The system has two bound states, one in which the electron ties the movable ion to the fixed ion at the left, and the other in which the binding takes place to the fixed ion at the right. The transition between these bound states is a charge transfer reaction. We use the flux-flux correlation function theory to perform two calculations of the rate constant for this reaction. In one we obtain numerically the exact rate constant. In the other we calculate the exact rate constant for the case when the reaction proceeds exclusively on the ground adiabatic state. The difference between these calculations gives the magnitude of the nonadiabatic effects. We find that the nonadiabatic effects are fairly large even when the gap between the ground and the excited adiabatic state substantially exceeds the thermal energy. The rate in the nonadiabatic theory is always smaller than that of the adiabatic one. Both rate constants satisfy the Arrhenius formula. Their activation energies are very close but the nonadiabatic one is always higher. The nonadiabatic preexponential is smaller, due to the fact that the upper electronic state causes an early recrossing of the reactive flux. The description of this reaction in terms of two diabatic states, one for reactants and one for products, is not always adequate. In the limit when nonadiabaticity is small, we need to use a third diabatic state, in which the electron binds to the moving ion as the latter passes through the transition state; this is an atom transfer process. The reaction changes from an atom transfer to an electron transfer, as nonadiabaticity is increased.
Effect of initial conditions on combustion generated loads
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tieszen, S.R.
1991-01-01
This analytical study examines the effect of initial thermodynamic conditions on the loads generated by the combustion of homogeneous hydrogen-air-steam mixtures. The effect of initial temperature, pressure, hydrogen concentration, and steam concentration is evaluated for two cases, (1) constant volume and (2) constant initial pressure. For each case, the Adiabatic, Isochoric, Complete Combustion (AICC), Chapman-Jouguet (CJ), and normally reflected CJ pressures are calculated for a range of hydrogen and steam concentrations representative of the entire flammable regime. For detonation loads, pressure profiles and time-histories are also evaluated in one-dimensional Cartesian geometry. The results show that to a first approximation, themore » AICC and CJ pressures are directly proportional to the initial density. Increasing the hydrogen concentration up to stoichiometric concentrations significantly increases the AICC, CJ, and reflected CJ pressures. For the constant volume case, the AICC, CJ, and reflected CJ pressures increase with increasing hydrogen concentration on the rich side of stoichiometric concentrations. For the constant initial pressure case, the AICC, CJ and reflected CJ pressures decrease with increasing hydrogen concentration on the rich side of stoichiometric values. The addition of steam decreases the AICC, CJ and reflected CJ pressures for the constant initial pressure case, but increases them for the constant volume case. For detonations, the pressure time-histories can be normalized with the AICC pressure and the reverberation time for Cartesian geometry. 35 refs., 16 figs.« less
NASA Astrophysics Data System (ADS)
Perlík, Václav; Seibt, Joachim; Cranston, Laura J.; Cogdell, Richard J.; Lincoln, Craig N.; Savolainen, Janne; Šanda, František; Mančal, Tomáš; Hauer, Jürgen
2015-06-01
The initial energy transfer steps in photosynthesis occur on ultrafast timescales. We analyze the carotenoid to bacteriochlorophyll energy transfer in LH2 Marichromatium purpuratum as well as in an artificial light-harvesting dyad system by using transient grating and two-dimensional electronic spectroscopy with 10 fs time resolution. We find that Förster-type models reproduce the experimentally observed 60 fs transfer times, but overestimate coupling constants, which lead to a disagreement with both linear absorption and electronic 2D-spectra. We show that a vibronic model, which treats carotenoid vibrations on both electronic ground and excited states as part of the system's Hamiltonian, reproduces all measured quantities. Importantly, the vibronic model presented here can explain the fast energy transfer rates with only moderate coupling constants, which are in agreement with structure based calculations. Counterintuitively, the vibrational levels on the carotenoid electronic ground state play the central role in the excited state population transfer to bacteriochlorophyll; resonance between the donor-acceptor energy gap and the vibrational ground state energies is the physical basis of the ultrafast energy transfer rates in these systems.
NASA Astrophysics Data System (ADS)
Tian, Ran; Dai, Xiaoye; Wang, Dabiao; Shi, Lin
2018-06-01
In order to improve the prediction performance of the numerical simulations for heat transfer of supercritical pressure fluids, a variable turbulent Prandtl number (Prt) model for vertical upward flow at supercritical pressures was developed in this study. The effects of Prt on the numerical simulation were analyzed, especially for the heat transfer deterioration conditions. Based on the analyses, the turbulent Prandtl number was modeled as a function of the turbulent viscosity ratio and molecular Prandtl number. The model was evaluated using experimental heat transfer data of CO2, water and Freon. The wall temperatures, including the heat transfer deterioration cases, were more accurately predicted by this model than by traditional numerical calculations with a constant Prt. By analyzing the predicted results with and without the variable Prt model, it was found that the predicted velocity distribution and turbulent mixing characteristics with the variable Prt model are quite different from that predicted by a constant Prt. When heat transfer deterioration occurs, the radial velocity profile deviates from the log-law profile and the restrained turbulent mixing then leads to the deteriorated heat transfer.
Hurley, J K; Salamon, Z; Meyer, T E; Fitch, J C; Cusanovich, M A; Markley, J L; Cheng, H; Xia, B; Chae, Y K; Medina, M
1993-09-14
Ferredoxin (Fd) functions in photosynthesis to transfer electrons from photosystem I to ferredoxin-NADP+ reductase (FNR). We have made several site-directed mutants of Anabaena 7120 Fd and have used laser flash photolysis to investigate the effects of these mutations on the kinetics of reduction of oxidized Fd by deazariboflavin semiquinone (dRfH.) and the reduction of oxidized Anabaena FNR by reduced Fd. None of the mutations influenced the second-order rate constant for dRfH. reduction by more than a factor of 2, suggesting that the ability of the [2Fe-2S] cluster to participate in electron transfer was not seriously affected. In contrast, a surface charge reversal mutation, E94K, resulted in a 20,000-fold decrease in the second-order rate constant for electron transfer from Fd to FNR, whereas a similar mutation at an adjacent site, E95K, produced little or no change in reaction rate constant compared to wild-type Fd. Such a dramatic difference between contiguous surface mutations suggests a very precise surface complementarity at the protein-protein interface. Mutations introduced at F65 (F65I and F65A) also decreased the rate constant for the Fd/FNR electron transfer reaction by more than 3 orders of magnitude. Spectroscopic and thermodynamic measurements with both the E94 and F65 mutants indicated that the kinetic differences cannot be ascribed to changes in gross conformation, redox potential, or FNR binding constant but rather reflect the protein-protein interactions that control electron transfer. Several mutations at other sites in the vicinity of E94 and F65 (R42, T48, D68, and D69) resulted in little or no perturbation of the Fd/FNR interaction.(ABSTRACT TRUNCATED AT 250 WORDS)
Technology transfer from NASA to targeted industries, volume 2
NASA Technical Reports Server (NTRS)
Mccain, Wayne; Schroer, Bernard J.; Souder, William E.; Spann, Mary S.; Watters, Harry; Ziemke, M. Carl
1993-01-01
This volume contains the following materials to support Volume 1: (1) Survey of Metal Fabrication Industry in Alabama; (2) Survey of Electronics Manufacturing/Assembly Industry in Alabama; (3) Apparel Modular Manufacturing Simulators; (4) Synopsis of a Stereolithography Project; (5) Transferring Modular Manufacturing Technology to an Apparel Firm; (6) Letters of Support; (7) Fact Sheets; (8) Publications; and (9) One Stop Access to NASA Technology Brochure.
Study of polytropic exponent based on high pressure switching expansion reduction
NASA Astrophysics Data System (ADS)
Wang, Xuanyin; Luo, Yuxi; Xu, Zhipeng
2011-10-01
Switching expansion reduction (SER) uses a switch valve to substitute the throttle valve to reduce pressure for high pressure pneumatics. The experiments indicate that the simulation model well predicts the actual characteristics. The heat transfers and polytropic exponents of the air in expansion tank and supply tanks of SER have been studied on the basis of the experiments and the simulation model. Through the mathematical reasoning in this paper, the polytropic exponent can be calculated by the air mass, heat, and work exchanges of the pneumatic container. For the air in a constant volume tank, when the heat-absorption is large enough to raise air temperature in discharging process, the polytropic exponent is less than 1; when the air is experiencing a discharging and heat-releasing process, the polytropic exponent exceeds the specific heat ratio (the value of 1.4).
A study of the kinetics of isothermal nicotine desorption from silicon dioxide
NASA Astrophysics Data System (ADS)
Adnadjevic, Borivoj; Lazarevic, Natasa; Jovanovic, Jelena
2010-12-01
The isothermal kinetics of nicotine desorption from silicon dioxide (SiO 2) was investigated. The isothermal thermogravimetric curves of nicotine at temperatures of 115 °C, 130 °C and 152 °C were recorded. The kinetic parameters ( Ea, ln A) of desorption of nicotine were calculated using various methods (stationary point, model constants and differential isoconversion method). By applying the "model-fitting" method, it was found that the kinetic model of nicotine desorption from silicon dioxide was a phase boundary controlled reaction (contracting volume). The values of the kinetic parameters, Ea,α and ln Aα, complexly change with changing degree of desorption and a compensation effect exists. A new mechanism of activation for the desorption of the absorbed molecules of nicotine was suggested in agreement with model of selective energy transfer.
Anode energy transfer in a transient arc
NASA Astrophysics Data System (ADS)
Valensi, F.; Ratovoson, P.; Razafinimanana, M.; Gleizes, A.
2017-04-01
This work deals with experimental investigation of a transient arc. Arc configuration and electrode erosion were studied in order to quantify the energy transfer to the electrodes as a function of maximal current, time constant and electrodes material. Experiments with two consecutive arcs allow demonstrating non stationary behaviour of the arc electrode interaction. This is due to the fact that while the duration of the experiments is far larger than plasma phenomena time constants, it is comparable to those of electrode heating and melting processes.
Lattice constant in nonstoichiometric uranium dioxide from first principles
NASA Astrophysics Data System (ADS)
Bruneval, Fabien; Freyss, Michel; Crocombette, Jean-Paul
2018-02-01
Nonstoichiometric uranium dioxide experiences a shrinkage of its lattice constant with increasing oxygen content, in both the hypostoichiometric and the hyperstoichiometric regimes. Based on first-principles calculations within the density functional theory (DFT)+U approximation, we have developed a point defect model that accounts for the volume of relaxation of the most significant intrinsic defects of UO2. Our point defect model takes special care of the treatment of the charged defects in the equilibration of the model and in the determination of reliable defect volumes of formation. In the hypostoichiometric regime, the oxygen vacancies are dominant and explain the lattice constant variation with their surprisingly positive volume of relaxation. In the hyperstoichiometric regime, the uranium vacancies are predicted to be the dominating defect,in contradiction with experimental observations. However, disregarding uranium vacancies allows us to recover a good match for the lattice-constant variation as a function of stoichiometry. This can be considered a clue that the uranium vacancies are indeed absent in UO2 +x, possibly due to the very slow diffusion of uranium.
Modeling measured glottal volume velocity waveforms.
Verneuil, Andrew; Berry, David A; Kreiman, Jody; Gerratt, Bruce R; Ye, Ming; Berke, Gerald S
2003-02-01
The source-filter theory of speech production describes a glottal energy source (volume velocity waveform) that is filtered by the vocal tract and radiates from the mouth as phonation. The characteristics of the volume velocity waveform, the source that drives phonation, have been estimated, but never directly measured at the glottis. To accomplish this measurement, constant temperature anemometer probes were used in an in vivo canine constant pressure model of phonation. A 3-probe array was positioned supraglottically, and an endoscopic camera was positioned subglottically. Simultaneous recordings of airflow velocity (using anemometry) and glottal area (using stroboscopy) were made in 3 animals. Glottal airflow velocities and areas were combined to produce direct measurements of glottal volume velocity waveforms. The anterior and middle parts of the glottis contributed significantly to the volume velocity waveform, with less contribution from the posterior part of the glottis. The measured volume velocity waveforms were successfully fitted to a well-known laryngeal airflow model. A noninvasive measured volume velocity waveform holds promise for future clinical use.
Numerical analysis of transient laminar forced convection of nanofluids in circular ducts
NASA Astrophysics Data System (ADS)
Sert, İsmail Ozan; Sezer-Uzol, Nilay; Kakaç, Sadık
2013-10-01
In this study, forced convection heat transfer characteristics of nanofluids are investigated by numerical analysis of incompressible transient laminar flow in a circular duct under step change in wall temperature and wall heat flux. The thermal responses of the system are obtained by solving energy equation under both transient and steady-state conditions for hydro-dynamically fully-developed flow. In the analyses, temperature dependent thermo-physical properties are also considered. In the numerical analysis, Al2O3/water nanofluid is assumed as a homogenous single-phase fluid. For the effective thermal conductivity of nanofluids, Hamilton-Crosser model is used together with a model for Brownian motion in the analysis which takes the effects of temperature and the particle diameter into account. Temperature distributions across the tube for a step jump of wall temperature and also wall heat flux are obtained for various times during the transient calculations at a given location for a constant value of Peclet number and a particle diameter. Variations of thermal conductivity in turn, heat transfer enhancement is obtained at various times as a function of nanoparticle volume fractions, at a given nanoparticle diameter and Peclet number. The results are given under transient and steady-state conditions; steady-state conditions are obtained at larger times and enhancements are found by comparison to the base fluid heat transfer coefficient under the same conditions.
Technology Transfer Program (TTP). Quality Assurance System. Volume 2. Appendices
1980-03-03
LSCo Report No. - 2X23-5.1-4-I TECHNOLOGY TRANSFER PROGRAM (TTP) FINAL REPORT QUALITY ASSURANCE SYSTEM Appendix A Accuracy Control System QUALITY...4-1 TECHNOLOGY TRANSFER PROGRAM (TTP) FINAL REPORT QUALITY ASSURANCE SYSTEM Appendix A Accuracy Control System QUALITY ASSURANCE VOLUME 2 APPENDICES...prepared by: Livingston Shipbuilding Company Orange, Texas March 3, 1980 APPENDIX A ACCURACY CONTROL SYSTEM . IIII MARINE TECHNOLOGY. INC. HP-121
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Chao; Xu, Zhijie; Lai, Canhai
A hierarchical model calibration and validation is proposed for quantifying the confidence level of mass transfer prediction using a computational fluid dynamics (CFD) model, where the solvent-based carbon dioxide (CO2) capture is simulated and simulation results are compared to the parallel bench-scale experimental data. Two unit problems with increasing level of complexity are proposed to breakdown the complex physical/chemical processes of solvent-based CO2 capture into relatively simpler problems to separate the effects of physical transport and chemical reaction. This paper focuses on the calibration and validation of the first unit problem, i.e. the CO2 mass transfer across a falling ethanolaminemore » (MEA) film in absence of chemical reaction. This problem is investigated both experimentally and numerically using nitrous oxide (N2O) as a surrogate for CO2. To capture the motion of gas-liquid interface, a volume of fluid method is employed together with a one-fluid formulation to compute the mass transfer between the two phases. Bench-scale parallel experiments are designed and conducted to validate and calibrate the CFD models using a general Bayesian calibration. Two important transport parameters, e.g. Henry’s constant and gas diffusivity, are calibrated to produce the posterior distributions, which will be used as the input for the second unit problem to address the chemical adsorption of CO2 across the MEA falling film, where both mass transfer and chemical reaction are involved.« less
Estimated Viscosities and Thermal Conductivities of Gases at High Temperatures
NASA Technical Reports Server (NTRS)
Svehla, Roger A.
1962-01-01
Viscosities and thermal conductivities, suitable for heat-transfer calculations, were estimated for about 200 gases in the ground state from 100 to 5000 K and 1-atmosphere pressure. Free radicals were included, but excited states and ions were not. Calculations for the transport coefficients were based upon the Lennard-Jones (12-6) potential for all gases. This potential was selected because: (1) It is one of the most realistic models available and (2) intermolecular force constants can be estimated from physical properties or by other techniques when experimental data are not available; such methods for estimating force constants are not as readily available for other potentials. When experimental viscosity data were available, they were used to obtain the force constants; otherwise the constants were estimated. These constants were then used to calculate both the viscosities and thermal conductivities tabulated in this report. For thermal conductivities of polyatomic gases an Eucken-type correction was made to correct for exchange between internal and translational energies. Though this correction may be rather poor at low temperatures, it becomes more satisfactory with increasing temperature. It was not possible to obtain force constants from experimental thermal conductivity data except for the inert atoms, because most conductivity data are available at low temperatures only (200 to 400 K), the temperature range where the Eucken correction is probably most in error. However, if the same set of force constants is used for both viscosity and thermal conductivity, there is a large degree of cancellation of error when these properties are used in heat-transfer equations such as the Dittus-Boelter equation. It is therefore concluded that the properties tabulated in this report are suitable for heat-transfer calculations of gaseous systems.
Relative Evaluation of the Independent Volume Measures of Caverns
DOE Office of Scientific and Technical Information (OSTI.GOV)
MUNSON,DARRELL E.
2000-08-01
Throughout the construction and operation of the caverns of the Strategic Petroleum Reserve (SPR), three types of cavern volume measurements have been maintained. These are: (1) the calculated solution volume determined during initial construction by solution mining and any subsequent solutioning during oil transfers, (2) the calculated sonar volume determined through sonar surveys of the cavern dimensions, and (3) the direct metering of oil to determine the volume of the cavern occupied by the oil. The objective of this study is to compare these measurements to each other and determine, if possible, the uncertainties associated with a given type ofmore » measurement. Over time, each type of measurement has acquired a customary, or an industry accepted, stated uncertainty. This uncertainty is not necessarily the result of a technical analysis. Ultimately there is one definitive quantity, the oil volume measure by the oil custody transfer meters, taken by all parties to the transfer as the correct ledger amount and for which the SPR Project is accountable. However, subsequent transfers within a site may not be with meters of the same accuracy. In this study, a very simple theory of the perfect relationship is used to evaluate the correlation (deviation) of the various measures. This theory permits separation of uncertainty and bias. Each of the four SPR sites are examined, first with comparisons between the calculated solution volumes and the sonar volumes determined during construction, then with comparisons of the oil inventories and the sonar volumes obtained either by surveying through brine prior to oil filling or through the oil directly.« less
Elementary Energy Transfer Pathways in Allochromatium vinosum Photosynthetic Membranes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lüer, Larry; Carey, Anne-Marie; Henry, Sarah
2015-11-01
Allochromatium vinosum (formerly Chromatium vinosum) purple bacteria are known to adapt their light-harvesting strategy during growth according to environmental factors such as temperature and average light intensity. Under low light illumination or low ambient temperature conditions, most of the LH2 complexes in the photosynthetic membranes form a B820 exciton with reduced spectral overlap with LH1. To elucidate the reason for this light and temperature adaptation of the LH2 electronic structure, we performed broadband femtosecond transient absorption spectroscopy as a function of excitation wavelength in A. vinosum membranes. A target analysis of the acquired data yielded individual rate constants for allmore » relevant elementary energy transfer (ET) processes. We found that the ET dynamics in high-light-grown membranes was well described by a homogeneous model, with forward and backward rate constants independent of the pump wavelength. Thus, the overall B800→B850→B890→ Reaction Center ET cascade is well described by simple triexponential kinetics. In the low-light-grown membranes, we found that the elementary backward transfer rate constant from B890 to B820 was strongly reduced compared with the corresponding constant from B890 to B850 in high-light-grown samples. The ET dynamics of low-light-grown membranes was strongly dependent on the pump wavelength, clearly showing that the excitation memory is not lost throughout the exciton lifetime. The observed pump energy dependence of the forward and backward ET rate constants suggests exciton diffusion via B850→ B850 transfer steps, making the overall ET dynamics nonexponential. Our results show that disorder plays a crucial role in our understanding of low-light adaptation in A. vinosum.« less
Elementary Energy Transfer Pathways in Allochromatium vinosum Photosynthetic Membranes
Lüer, Larry; Carey, Anne-Marie; Henry, Sarah; Maiuri, Margherita; Hacking, Kirsty; Polli, Dario; Cerullo, Giulio; Cogdell, Richard J.
2015-01-01
Allochromatium vinosum (formerly Chromatium vinosum) purple bacteria are known to adapt their light-harvesting strategy during growth according to environmental factors such as temperature and average light intensity. Under low light illumination or low ambient temperature conditions, most of the LH2 complexes in the photosynthetic membranes form a B820 exciton with reduced spectral overlap with LH1. To elucidate the reason for this light and temperature adaptation of the LH2 electronic structure, we performed broadband femtosecond transient absorption spectroscopy as a function of excitation wavelength in A. vinosum membranes. A target analysis of the acquired data yielded individual rate constants for all relevant elementary energy transfer (ET) processes. We found that the ET dynamics in high-light-grown membranes was well described by a homogeneous model, with forward and backward rate constants independent of the pump wavelength. Thus, the overall B800→B850→B890→ Reaction Center ET cascade is well described by simple triexponential kinetics. In the low-light-grown membranes, we found that the elementary backward transfer rate constant from B890 to B820 was strongly reduced compared with the corresponding constant from B890 to B850 in high-light-grown samples. The ET dynamics of low-light-grown membranes was strongly dependent on the pump wavelength, clearly showing that the excitation memory is not lost throughout the exciton lifetime. The observed pump energy dependence of the forward and backward ET rate constants suggests exciton diffusion via B850→ B850 transfer steps, making the overall ET dynamics nonexponential. Our results show that disorder plays a crucial role in our understanding of low-light adaptation in A. vinosum. PMID:26536265
Elementary Energy Transfer Pathways in Allochromatium vinosum Photosynthetic Membranes.
Lüer, Larry; Carey, Anne-Marie; Henry, Sarah; Maiuri, Margherita; Hacking, Kirsty; Polli, Dario; Cerullo, Giulio; Cogdell, Richard J
2015-11-03
Allochromatium vinosum (formerly Chromatium vinosum) purple bacteria are known to adapt their light-harvesting strategy during growth according to environmental factors such as temperature and average light intensity. Under low light illumination or low ambient temperature conditions, most of the LH2 complexes in the photosynthetic membranes form a B820 exciton with reduced spectral overlap with LH1. To elucidate the reason for this light and temperature adaptation of the LH2 electronic structure, we performed broadband femtosecond transient absorption spectroscopy as a function of excitation wavelength in A. vinosum membranes. A target analysis of the acquired data yielded individual rate constants for all relevant elementary energy transfer (ET) processes. We found that the ET dynamics in high-light-grown membranes was well described by a homogeneous model, with forward and backward rate constants independent of the pump wavelength. Thus, the overall B800→B850→B890→ Reaction Center ET cascade is well described by simple triexponential kinetics. In the low-light-grown membranes, we found that the elementary backward transfer rate constant from B890 to B820 was strongly reduced compared with the corresponding constant from B890 to B850 in high-light-grown samples. The ET dynamics of low-light-grown membranes was strongly dependent on the pump wavelength, clearly showing that the excitation memory is not lost throughout the exciton lifetime. The observed pump energy dependence of the forward and backward ET rate constants suggests exciton diffusion via B850→ B850 transfer steps, making the overall ET dynamics nonexponential. Our results show that disorder plays a crucial role in our understanding of low-light adaptation in A. vinosum. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Wijaya Sunu, Putu; Anakottapary, Daud Simon; Mulawarman, A. A. N. B.; Cipta Santosa, I. D. M.; Putu Sastra Negara, I.
2018-01-01
In this paper, the volume flowrate of chilled water in the water chiller simulation apparatus was optimized using experimental studied. The experimental analysis was performed on the fan coil unit (FCU) of the system. The chilled water flows in tube side and the air as a hot fluid flows throughout the tube and fin of FCU. The thermal performance and analysis of the heat transfer is examined using various chilled water flowrate e.g. 11, 12, 13, 14, 15 lpm. The effect of the flowrate to the important parameter such as LMTD temperature, heat absorb used for investigate the heat transfer characteristics. The result showed that the heat transfer characteristics has been increased with the increased of chilled water volume flowrate.
2006-08-31
volumetric depletion efficiency ( VDE ) considers how much DNAPL is depleted from the system, relative to the total volume of solution flushed through the...aqueous phase contaminant. VDE is important to consider, as conditions that result in the fastest mass transfer, highest enhancement, or best MTE, may...volumes of flushing fluid, maximizing DNAPL depletion while minimizing flushing volume requirements may be desirable from a remediation standpoint. VDE
Effect of vibrationally excited oxygen on ozone production in the stratosphere
NASA Technical Reports Server (NTRS)
Patten, K. O., Jr.; Connell, P. S.; Kinnison, D. E.; Wuebbles, D. J.; Slanger, T. G.; Froidevaux, L.
1994-01-01
Photolysis of vibrationally excited oxygen produced by ultraviolet photolysis of ozone in the upper stratosphere is incorporated into the Lawrence Livermore National Laboratory two-dimensional zonally averaged chemical-radiative-transport model of the troposphere and stratosphere. The importance of this potential contributor of odd oxygen to the concentration of ozone is evaluated based on recent information on vibrational distributions of excited oxygen and on preliminary studies of energy transfer from the excited oxygen. When energy transfer rate constants similar to those of Toumi et al. (1991) are assumed, increases in model ozone concentrations of up to 4.0% in the upper stratosphere are found, and the model ozone concentrations are found to agree slightly better with measurements, including recent data from the Upper Atmosphere Research Satellite. However, the ozone increase is only 0.3% when the larger energy transfer rate constants indicated by recent experimental work are applied to the model. An ozone increase of 1% at 50 km requires energy transfer rate constants one-twentieth those of the preliminary observations. As a result, vibrationally excited oxygen processes probably do not contribute enough ozone to be significant in models of the upper stratosphere.
High resolution gas volume change sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dirckx, Joris J. J.; Aernouts, Jef E. F.; Aerts, Johan R. M.
2007-05-15
Changes of gas quantity in a system can be measured either by measuring pressure changes or by measuring volume changes. As sensitive pressure sensors are readily available, pressure change is the commonly used technique. In many physiologic systems, however, buildup of pressure influences the gas exchange mechanisms, thus changing the gas quantity change rate. If one wants to study the gas flow in or out of a biological gas pocket, measurements need to be done at constant pressure. In this article we present a highly sensitive sensor for quantitative measurements of gas volume change at constant pressure. The sensor ismore » based on optical detection of the movement of a droplet of fluid enclosed in a capillary. The device is easy to use and delivers gas volume data at a rate of more than 15 measurements/s and a resolution better than 0.06 {mu}l. At the onset of a gas quantity change the sensor shows a small pressure artifact of less than 15 Pa, and at constant change rates the pressure artifact is smaller than 10 Pa or 0.01% of ambient pressure.« less
Post, C B; Ray, W J; Gorenstein, D G
1989-01-24
Time-dependent 31P saturation-transfer studies were conducted with the Cd2+-activated form of muscle phosphoglucomutase to probe the origin of the 100-fold difference between its catalytic efficiency (in terms of kcat) and that of the more efficient Mg2+-activated enzyme. The present paper describes the equilibrium mixture of phosphoglucomutase and its substrate/product pair when the concentration of the Cd2+ enzyme approaches that of the substrate and how the nine-spin 31P NMR system provided by this mixture was treated. It shows that the presence of abortive complexes is not a significant factor in the reduced activity of the Cd2+ enzyme since the complex of the dephosphoenzyme and glucose 1,6-bisphosphate, which accounts for a large majority of the enzyme present at equilibrium, is catalytically competent. It also shows that rate constants for saturation transfer obtained at three different ratios of enzyme to free substrate are mutually compatible. These constants, which were measured at chemical equilibrium, can be used to provide a quantitative kinetic rationale for the reduced steady-state activity elicited by Cd2+ relative to Mg2+ [cf. Ray, W.J., Post, C.B., & Puvathingal, J.M. (1989) Biochemistry (following paper in this issue)]. They also provide minimal estimates of 350 and 150 s-1 for the rate constants describing (PO3-) transfer from the Cd2+ phosphoenzyme to the 6-position of bound glucose 1-phosphate and to the 1-position of bound glucose 6-phosphate, respectively. These minimal estimates are compared with analogous estimates for the Mg2+ and Li+ forms of the enzyme in the accompanying paper.
Double proton transfer in the complex of acetic acid with methanol: Theory versus experiment
NASA Astrophysics Data System (ADS)
Fernández-Ramos, Antonio; Smedarchina, Zorka; Rodríguez-Otero, Jesús
2001-01-01
To test the approximate instanton approach to intermolecular proton-transfer dynamics, we report multidimensional ab initio bimolecular rate constants of HH, HD, and DD exchange in the complex of acetic acid with methanol in tetrahydrofuran-d8, and compare them with the NMR (nuclear magnetic resonance) experiments of Gerritzen and Limbach. The bimolecular rate constants are evaluated as products of the exchange rates and the equilibrium rate constants of complex formation in solution. The two molecules form hydrogen-bond bridges and the exchange occurs via concerted transfer of two protons. The dynamics of this transfer is evaluated in the complete space of 36 vibrational degrees of freedom. The geometries of the two isolated molecules, the complex, and the transition states corresponding to double proton transfer are fully optimized at QCISD (quadratic configuration interaction including single and double substitutions) level of theory, and the normal-mode frequencies are calculated at MP2 (Møller-Plesset perturbation theory of second order) level with the 6-31G (d,p) basis set. The presence of the solvent is taken into account via single-point calculations over the gas phase geometries with the PCM (polarized continuum model). The proton exchange rate constants, calculated with the instanton method, show the effect of the structure and strength of the hydrogen bonds, reflected in the coupling between the tunneling motion and the other vibrations of the complex. Comparison with experiment, which shows substantial kinetic isotopic effects (KIE), indicates that tunneling prevails over classic exchange for the whole temperature range of observation. The unusual behavior of the experimental KIE upon single and double deuterium substitution is well reproduced and is related to the synchronicity of two-atom tunneling.
Volume Holographic Storage of Digital Data Implemented in Photorefractive Media
NASA Astrophysics Data System (ADS)
Heanue, John Frederick
A holographic data storage system is fundamentally different from conventional storage devices. Information is recorded in a volume, rather than on a two-dimensional surface. Data is transferred in parallel, on a page-by -page basis, rather than serially. These properties, combined with a limited need for mechanical motion, lead to the potential for a storage system with high capacity, fast transfer rate, and short access time. The majority of previous volume holographic storage experiments have involved direct storage and retrieval of pictorial information. Success in the development of a practical holographic storage device requires an understanding of the performance capabilities of a digital system. This thesis presents a number of contributions toward this goal. A description of light diffraction from volume gratings is given. The results are used as the basis for a theoretical and numerical analysis of interpage crosstalk in both angular and wavelength multiplexed holographic storage. An analysis of photorefractive grating formation in photovoltaic media such as lithium niobate is presented along with steady-state expressions for the space-charge field in thermal fixing. Thermal fixing by room temperature recording followed by ion compensation at elevated temperatures is compared to simultaneous recording and compensation at high temperature. In particular, the tradeoff between diffraction efficiency and incomplete Bragg matching is evaluated. An experimental investigation of orthogonal phase code multiplexing is described. Two unique capabilities, the ability to perform arithmetic operations on stored data pages optically, rather than electronically, and encrypted data storage, are demonstrated. A comparison of digital signal representations, or channel codes, is carried out. The codes are compared in terms of bit-error rate performance at constant capacity. A well-known one-dimensional digital detection technique, maximum likelihood sequence estimation, is extended for use in a two-dimensional page format memory. The effectiveness of the technique in a system corrupted by intersymbol interference is investigated both experimentally and through numerical simulations. The experimental implementation of a fully-automated multiple page digital holographic storage system is described. Finally, projections of the performance limits of holographic data storage are made taking into account typical noise sources.
Understanding post-operative temperature drop in cardiac surgery: a mathematical model.
Tindall, M J; Peletier, M A; Severens, N M W; Veldman, D J; de Mol, B A J M
2008-12-01
A mathematical model is presented to understand heat transfer processes during the cooling and re-warming of patients during cardiac surgery. Our compartmental model is able to account for many of the qualitative features observed in the cooling of various regions of the body including the central core containing the majority of organs, the rectal region containing the intestines and the outer peripheral region of skin and muscle. In particular, we focus on the issue of afterdrop: a drop in core temperature following patient re-warming, which can lead to serious post-operative complications. Model results for a typical cooling and re-warming procedure during surgery are in qualitative agreement with experimental data in producing the afterdrop effect and the observed dynamical variation in temperature between the core, rectal and peripheral regions. The influence of heat transfer processes and the volume of each compartmental region on the afterdrop effect is discussed. We find that excess fat on the peripheral and rectal regions leads to an increase in the afterdrop effect. Our model predicts that, by allowing constant re-warming after the core temperature has been raised, the afterdrop effect will be reduced.
Voltammetric Perspectives on the Acidity Scale and H+/H2 Process in Ionic Liquid Media.
Bentley, Cameron L; Bond, Alan M; Zhang, Jie
2018-03-19
Nonhaloaluminate ionic liquids (ILs) have received considerable attention as alternatives to molecular solvents in diverse applications spanning the fields of physical, chemical, and biological science. One important and often overlooked aspect of the implementation of these designer solvents is how the properties of the IL formulation affect (electro)chemical reactivity. This aspect is emphasized herein, where recent (voltammetric) studies on the energetics of proton (H + ) transfer and electrode reaction mechanisms of the H + H 2 process in IL media are highlighted and discussed. The energetics of proton transfer, quantified using the pK 3 a (minus logarithm of acidity equilibrium constant, K a ) formalism, is strongly governed by the constituent IL anion, and to a lesser extent, the IL cation. The H + /H 2 process, a model inner-sphere reaction, also displays electrochemical characteristics that are strongly IL-dependent. Overall, these studies highlight the need to carry out systematic investigations to resolve IL structure and function relationships in order to realize the potential of these diverse and versatile solvents. Expected final online publication date for the Annual Review of Analytical Chemistry Volume 11 is June 12, 2018. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Queuing theory models used for port equipment sizing
NASA Astrophysics Data System (ADS)
Dragu, V.; Dinu, O.; Ruscă, A.; Burciu, Ş.; Roman, E. A.
2017-08-01
The significant growth of volumes and distances on road transportation led to the necessity of finding solutions to increase water transportation market share together with the handling and transfer technologies within its terminals. It is widely known that the biggest times are consumed within the transport terminals (loading/unloading/transfer) and so the necessity of constantly developing handling techniques and technologies in concordance with the goods flows size so that the total waiting time of ships within ports is reduced. Port development should be achieved by harmonizing the contradictory interests of port administration and users. Port administrators aim profit increase opposite to users that want savings by increasing consumers’ surplus. The difficulty consists in the fact that the transport demand - supply equilibrium must be realised at costs and goods quantities transiting the port in order to satisfy the interests of both parties involved. This paper presents a port equipment sizing model by using queueing theory so that the sum of costs for ships waiting operations and equipment usage would be minimum. Ship operation within the port is assimilated to a mass service waiting system in which parameters are later used to determine the main costs for ships and port equipment.
Aman, Sidra; Khan, Ilyas; Ismail, Zulkhibri; Salleh, Mohd Zuki; Al-Mdallal, Qasem M
2017-05-26
This article investigates heat transfer enhancement in free convection flow of Maxwell nanofluids with carbon nanotubes (CNTs) over a vertically static plate with constant wall temperature. Two kinds of CNTs i.e. single walls carbon nanotubes (SWCNTs) and multiple walls carbon nanotubes (MWCNTs) are suspended in four different types of base liquids (Kerosene oil, Engine oil, water and ethylene glycol). Kerosene oil-based nanofluids are given a special consideration due to their higher thermal conductivities, unique properties and applications. The problem is modelled in terms of PDE's with initial and boundary conditions. Some relevant non-dimensional variables are inserted in order to transmute the governing problem into dimensionless form. The resulting problem is solved via Laplace transform technique and exact solutions for velocity, shear stress and temperature are acquired. These solutions are significantly controlled by the variations of parameters including the relaxation time, Prandtl number, Grashof number and nanoparticles volume fraction. Velocity and temperature increases with elevation in Grashof number while Shear stress minimizes with increasing Maxwell parameter. A comparison between SWCNTs and MWCNTs in each case is made. Moreover, a graph showing the comparison amongst four different types of nanofluids for both CNTs is also plotted.
NASA Astrophysics Data System (ADS)
Zhao, Liang; Xing, Yuming; Liu, Xin; Rui, Zhoufeng
2018-01-01
The use of thermal energy storage systems can effectively reduce energy consumption and improve the system performance. One of the promising ways for thermal energy storage system is application of phase change materials (PCMs). In this study, a two-dimensional numerical model is presented to investigate the heat transfer enhancement during the melting/solidification process in a triplex tube heat exchanger (TTHX) by using fluent software. The thermal conduction and natural convection are all taken into account in the simulation of the melting/solidification process. As the volume fraction of fin is kept to be a constant, the influence of proposed fin arrangement on temporal profile of liquid fraction over the melting process is studied and reported. By rotating the unit with different angle, the simulation shows that the melting time varies a little, which means that the installation error can be reduced by the selected fin arrangement. The proposed fin arrangement also can effectively reduce time of the solidification of the PCM by investigating the solidification process. To summarize, this work presents a shape optimization for the improvement of the thermal energy storage system by considering both thermal energy charging and discharging process.
Quantitative Assessment of Heterogeneity in Tumor Metabolism Using FDG-PET
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vriens, Dennis, E-mail: d.vriens@nucmed.umcn.nl; Disselhorst, Jonathan A.; Oyen, Wim J.G.
2012-04-01
Purpose: [{sup 18}F]-fluorodeoxyglucose-positron emission tomography (FDG-PET) images are usually quantitatively analyzed in 'whole-tumor' volumes of interest. Also parameters determined with dynamic PET acquisitions, such as the Patlak glucose metabolic rate (MR{sub glc}) and pharmacokinetic rate constants of two-tissue compartment modeling, are most often derived per lesion. We propose segmentation of tumors to determine tumor heterogeneity, potentially useful for dose-painting in radiotherapy and elucidating mechanisms of FDG uptake. Methods and Materials: In 41 patients with 104 lesions, dynamic FDG-PET was performed. On MR{sub glc} images, tumors were segmented in quartiles of background subtracted maximum MR{sub glc} (0%-25%, 25%-50%, 50%-75%, and 75%-100%).more » Pharmacokinetic analysis was performed using an irreversible two-tissue compartment model in the three segments with highest MR{sub glc} to determine the rate constants of FDG metabolism. Results: From the highest to the lowest quartile, significant decreases of uptake (K{sub 1}), washout (k{sub 2}), and phosphorylation (k{sub 3}) rate constants were seen with significant increases in tissue blood volume fraction (V{sub b}). Conclusions: Tumor regions with highest MR{sub glc} are characterized by high cellular uptake and phosphorylation rate constants with relatively low blood volume fractions. In regions with less metabolic activity, the blood volume fraction increases and cellular uptake, washout, and phosphorylation rate constants decrease. These results support the hypothesis that regional tumor glucose phosphorylation rate is not dependent on the transport of nutrients (i.e., FDG) to the tumor.« less
Power Transfer in Physical Systems.
ERIC Educational Resources Information Center
Kaeck, Jack A.
1990-01-01
Explores the power transfer using (1) a simple electric circuit consisting of a power source with internal resistance; (2) two different mechanical systems (gravity driven and constant force driven); (3) ecological examples; and (4) a linear motor. (YP)
Miura, Yohei; Ichikawa, Katsuhiro; Fujimura, Ichiro; Hara, Takanori; Hoshino, Takashi; Niwa, Shinji; Funahashi, Masao
2018-03-01
The 320-detector row computed tomography (CT) system, i.e., the area detector CT (ADCT), can perform helical scanning with detector configurations of 4-, 16-, 32-, 64-, 80-, 100-, and 160-detector rows for routine CT examinations. This phantom study aimed to compare the quality of images obtained using helical scan mode with different detector configurations. The image quality was measured using modulation transfer function (MTF) and noise power spectrum (NPS). The system performance function (SP), based on the pre-whitening theorem, was calculated as MTF 2 /NPS, and compared between configurations. Five detector configurations, i.e., 0.5 × 16 mm (16 row), 0.5 × 64 mm (64 row), 0.5 × 80 mm (80 row), 0.5 × 100 mm (100 row), and 0.5 × 160 mm (160 row), were compared using a constant volume CT dose index (CTDI vol ) of 25 mGy, simulating the scan of an adult abdomen, and with a constant effective mAs value. The MTF was measured using the wire method, and the NPS was measured from images of a 20-cm diameter phantom with uniform content. The SP of 80-row configuration was the best, for the constant CTDI vol , followed by the 64-, 160-, 16-, and 100-row configurations. The decrease in the rate of the 100- and 160-row configurations from the 80-row configuration was approximately 30%. For the constant effective mAs, the SPs of the 100-row and 160-row configurations were significantly lower, compared with the other three detector configurations. The 80- and 64-row configurations were adequate in cases that required dose efficiency rather than scan speed.
Kuzmin, Michael G; Soboleva, Irina V; Dolotova, Elena V
2007-01-18
Exciplex emission spectra and rate constants of their decay via internal conversion and intersystem crossing are studied and discussed in terms of conventional radiationless transition approach. Exciplexes of 9-cyanophenanthrene with 1,2,3-trimethoxybenzene and 1,3,5-trimethoxybenzene were studied in heptane, toluene, butyl acetate, dichloromethane, butyronitrile, and acetonitrile. A better description of spectra and rate constants is obtained using 0-0 transition energy and Gauss broadening of vibrational bands rather than the free energy of electron transfer and reorganization energy. The coincidence of parameters describing exciplex emission spectra and dependence of exciplex decay rate constants on energy gap gives the evidence of radiationless quantum transition mechanism rather than thermally activated medium reorganization mechanism of charge recombination in exciplexes and excited charge transfer complexes (contact radical ion pairs) as well as in solvent separated radical ion pairs. Radiationless quantum transition mechanism is shown to provide an appropriate description also for the main features of exergonic excited-state charge separation reactions if fast mutual transformations of loose and tight pairs of reactants are considered. In particular, very fast electron transfer (ET) in tight pairs of reactants with strong electronic coupling of locally excited and charge transfer states can prevent the observation of an inverted region in bimolecular excited-state charge separation even for highly exergonic reactions.
NASA Astrophysics Data System (ADS)
Lam, Phoebe J.; Doney, Scott C.; Bishop, James K. B.
2011-09-01
We have compiled a global data set of 62 open ocean profiles of particulate organic carbon (POC), CaCO3, and opal concentrations collected by large volume in situ filtration in the upper 1000 m over the last 30 years. We define concentration-based metrics for the strength (POC concentration at depth) and efficiency (attenuation of POC with depth in the mesopelagic) of the biological pump. We show that the strength and efficiency of the biological pump are dynamic and are characterized by a regime of constant and high transfer efficiency at low to moderate surface POC and a bloom regime where the height of the bloom is characterized by a weak deep biological pump and low transfer efficiency. The variability in POC attenuation length scale manifests in a clear decoupling between the strength of the shallow biological pump (e.g., POC at the export depth) and the strength of the deep biological pump (POC at 500 m). We suggest that the paradigm of diatom-driven export production is driven by a too restrictive perspective on upper mesopelagic dynamics. Indeed, our full mesopelagic analysis suggests that large, blooming diatoms have low transfer efficiency and thus may not export substantially to depth; rather, our analysis suggests that ecosystems characterized by smaller cells and moderately high %CaCO3 have a high mesopelagic transfer efficiency and can have higher POC concentrations in the deep mesopelagic even with relatively low surface or near-surface POC. This has negative implications for the carbon sequestration prospects of deliberate iron fertilization.
NASA Astrophysics Data System (ADS)
Fennel, Franziska; Lochbrunner, Stefan
2015-10-01
Exciton annihilation dynamics in a disordered organic model system is investigated by ultrafast absorption spectroscopy. We show that the temporal evolution of the exciton density can be quantitatively understood by applying Förster energy transfer theory to describe the diffusion of the excitons as well as the annihilation step itself. To this end, previous formulations of Förster theory are extended to account for the inhomogeneous distribution of the S0-S1 transition energies resulting in an effective exciton diffusion constant. Two annihilation pathways are considered, the direct transfer of an exciton between two excited molecules and diffusive motion by multiple transfer steps towards a second exciton preceding the annihilation event. One pathway can be emphasized with respect to the other by tuning the exciton diffusion constant via the chromophore concentration. The investigated system allows one to extract all relevant parameters for the description and provides in this way a proof that the annihilation dynamics can be entirely understood and modeled by Förster energy transfer.
ChPT loops for the lattice: pion mass and decay constant, HVP at finite volume and nn̅-oscillations
NASA Astrophysics Data System (ADS)
Bijnens, Johan
2018-03-01
I present higher loop order results for several calculations in Chiral perturbation Theory. 1) Two-loop results at finite volume for hadronic vacuum polarization. 2) A three-loop calculation of the pion mass and decay constant in two-flavour ChPT. For the pion mass all needed auxiliary parameters can be determined from lattice calculations of ππ-scattering. 3) Chiral corrections to neutron-anti-neutron oscillations.
The interaction of trimethylamine dehydrogenase and electron-transferring flavoprotein.
Shi, Weiwei; Mersfelder, John; Hille, Russ
2005-05-27
The interaction between the physiological electron transfer partners trimethylamine dehydrogenase (TMADH) and electron-transferring flavoprotein (ETF) from Methylophilus methylotrophus has been examined with particular regard to the proposal that the former protein "imprints" a conformational change on the latter. The results indicate that the absorbance change previously attributed to changes in the environment of the FAD of ETF upon binding to TMADH is instead caused by electron transfer from partially reduced, as-isolated TMADH to ETF. Prior treatment of the as-isolated enzyme with the oxidant ferricenium essentially abolishes the observed spectral change. Further, when the semiquinone form of ETF is used instead of the oxidized form, the mirror image of the spectral change seen with as-isolated TMADH and oxidized ETF is observed. This is attributable to a small amount of electron transfer in the reverse of the physiological direction. Kinetic determination of the dissociation constant and limiting rate constant for electron transfer within the complex of (reduced) TMADH with (oxidized) ETF is reconfirmed and discussed in the context of a recently proposed model for the interaction between the two proteins that involves "structural imprinting" of ETF.
Valenti, Philippe; Maqdes, Ali; Werthel, Jean-David
2017-10-01
The purpose of this study was to report clinical and radiological results of reverse shoulder arthroplasty (RSA) after failure of either a deltoid and/or a latissimus dorsi transfer. Between 2001 and 2011, ten patients (average age, 61 years) underwent primary RSA after a failed tendon transfer for irreparable postero-superior rotator cuff tear (five deltoid muscle transfers, four latissimus dorsi transfers and one both). Average follow-up was 48 months. Outcome measures included pain, range of motion and postoperative Constant-Murley score. Pain score improved significantly from a mean 8.3 to a mean 0.3. Mean shoulder elevation improved from 66 to 134°, and absolute Constant-Murley scores increased from 25.8 to 62.8 The mean improvement in external rotation was limited to 7.5°. Subjectively, six patients rated the result as much better and three rated it as better than before surgery. Failure of the tendon transfer with deterioration of the functional outcomes can be salvaged with a RSA with no impact on the expected outcome.
Shek, Yuen Lai; Chalikian, Tigran V
2013-01-29
We report the first application of volume and compressibility measurements to characterization of interactions between cosolvents (osmolytes) and globular proteins. Specifically, we measure the partial molar volumes and adiabatic compressibilities of cytochrome c, ribonuclease A, lysozyme, and ovalbumin in aqueous solutions of the stabilizing osmolyte glycine betaine (GB) at concentrations between 0 and 4 M. The fact that globular proteins do not undergo any conformational transitions in the presence of GB provides an opportunity to study the interactions of GB with proteins in their native states within the entire range of experimentally accessible GB concentrations. We analyze our resulting volumetric data within the framework of a statistical thermodynamic model in which each instance of GB interaction with a protein is viewed as a binding reaction that is accompanied by release of four water molecules. From this analysis, we calculate the association constants, k, as well as changes in volume, ΔV(0), and adiabatic compressibility, ΔK(S0), accompanying each GB-protein association event in an ideal solution. By comparing these parameters with similar characteristics determined for low-molecular weight analogues of proteins, we conclude that there are no significant cooperative effects involved in interactions of GB with any of the proteins studied in this work. We also evaluate the free energies of direct GB-protein interactions. The energetic properties of GB-protein association appear to scale with the size of the protein. For all proteins, the highly favorable change in free energy associated with direct protein-cosolvent interactions is nearly compensated by an unfavorable free energy of cavity formation (excluded volume effect), yielding a modestly unfavorable free energy for the transfer of a protein from water to a GB/water mixture.
Compaction-Based Deformable Terrain Model as an Interface for Real-Time Vehicle Dynamics Simulations
2013-04-16
to vehicular loads, and the resulting visco-elastic-plastic stress/strain on the affected soil volume. Pedo transfer functions allow for the...resulting visco-elastic-plastic stress/strain on the affected soil volume. Pedo transfer functions allow for the calculation of the soil mechanics model
Aerogel Insulation Applications for Liquid Hydrogen Launch Vehicle Tanks
NASA Technical Reports Server (NTRS)
Fesmire, J. E.; Sass, J.
2007-01-01
Aerogel based insulation systems for ambient pressure environments were developed for liquid hydrogen (LH2) tank applications. Solutions to thermal insulation problems were demonstrated for the Space Shuttle External Tank (ET) through extensive testing at the Cryogenics Test Laboratory. Demonstration testing was performed using a 1/10th scale ET LH2 intertank unit and liquid helium as the coolant to provide the 20 K cold boundary temperature. Cryopumping tests in the range of 20K were performed using both constant mass and constant pressure methods. Long-duration tests (up to 10 hours) showed that the nitrogen mass taken up inside the intertank is reduced by a factor of nearly three for the aerogel insulated case as compared to the un-insulated (bare metal flight configuration) case. Test results including thermal stabilization, heat transfer effectiveness, and cryopumping confirm that the aerogel system eliminates free liquid nitrogen within the intertank. Physisorption (or adsorption) of liquid nitrogen within the fine pore structure of aerogel materials was also investigated. Results of a mass uptake method show that the sorption ratio (liquid nitrogen to aerogel beads) is about 62 percent by volume. A novel liquid nitrogen production method of testing the liquid nitrogen physical adsorption capacity of aerogel beads was also performed to more closely approximate the actual launch vehicle cooldown and thermal stabilization effects within the aerogel material. The extraordinary insulating effectiveness of the aerogel material shows that cryopumping is not an open-cell mass transport issue but is strictly driven by thermal communication between warm and cold surfaces. The new aerogel insulation technology is useful to solve heat transfer problem areas and to augment existing thermal protection systems on launch vehicles. Examples are given and potential benefits for producing launch systems that are more reliable, robust, reusable, and efficient are outlined.
Constant-current control method of multi-function electromagnetic transmitter.
Xue, Kaichang; Zhou, Fengdao; Wang, Shuang; Lin, Jun
2015-02-01
Based on the requirements of controlled source audio-frequency magnetotelluric, DC resistivity, and induced polarization, a constant-current control method is proposed. Using the required current waveforms in prospecting as a standard, the causes of current waveform distortion and current waveform distortion's effects on prospecting are analyzed. A cascaded topology is adopted to achieve 40 kW constant-current transmitter. The responsive speed and precision are analyzed. According to the power circuit of the transmitting system, the circuit structure of the pulse width modulation (PWM) constant-current controller is designed. After establishing the power circuit model of the transmitting system and the PWM constant-current controller model, analyzing the influence of ripple current, and designing an open-loop transfer function according to the amplitude-frequency characteristic curves, the parameters of the PWM constant-current controller are determined. The open-loop transfer function indicates that the loop gain is no less than 28 dB below 160 Hz, which assures the responsive speed of the transmitting system; the phase margin is 45°, which assures the stabilization of the transmitting system. Experimental results verify that the proposed constant-current control method can keep the control error below 4% and can effectively suppress load change caused by the capacitance of earth load.
Constant-current control method of multi-function electromagnetic transmitter
NASA Astrophysics Data System (ADS)
Xue, Kaichang; Zhou, Fengdao; Wang, Shuang; Lin, Jun
2015-02-01
Based on the requirements of controlled source audio-frequency magnetotelluric, DC resistivity, and induced polarization, a constant-current control method is proposed. Using the required current waveforms in prospecting as a standard, the causes of current waveform distortion and current waveform distortion's effects on prospecting are analyzed. A cascaded topology is adopted to achieve 40 kW constant-current transmitter. The responsive speed and precision are analyzed. According to the power circuit of the transmitting system, the circuit structure of the pulse width modulation (PWM) constant-current controller is designed. After establishing the power circuit model of the transmitting system and the PWM constant-current controller model, analyzing the influence of ripple current, and designing an open-loop transfer function according to the amplitude-frequency characteristic curves, the parameters of the PWM constant-current controller are determined. The open-loop transfer function indicates that the loop gain is no less than 28 dB below 160 Hz, which assures the responsive speed of the transmitting system; the phase margin is 45°, which assures the stabilization of the transmitting system. Experimental results verify that the proposed constant-current control method can keep the control error below 4% and can effectively suppress load change caused by the capacitance of earth load.
Aging dynamics in the polymer glass of poly(2-chlorostyrene): Dielectric susceptibility and volume
NASA Astrophysics Data System (ADS)
Fukao, Koji; Tahara, Daisuke
2009-11-01
Aging dynamics was investigated in the glassy states of poly(2-chlorostyrene) by measuring the complex electrical capacitance during aging below the glass transition temperature. The variations with time and temperature of the ac dielectric susceptibility and volume could be determined by simply measuring the variation in the complex electrical capacitance. Isothermal aging at a given temperature for several hours after an intermittent stop in constant-rate cooling is stored in the deviations of both the real and imaginary parts of the complex ac dielectric susceptibility and volume. During cooling after isothermal aging, the deviation of the ac dielectric susceptibility from the reference value decreases and almost vanishes at room temperature. By contrast, the deviation in volume induced during isothermal aging remains almost constant during cooling. The simultaneous measurement of ac dielectric susceptibility and volume clearly revealed that the ac dielectric susceptibility exhibits a full rejuvenation effect, whereas the volume does not show any rejuvenation effects. We discuss a plausible model that can reproduce the present experimental results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perlík, Václav; Seibt, Joachim; Šanda, František
The initial energy transfer steps in photosynthesis occur on ultrafast timescales. We analyze the carotenoid to bacteriochlorophyll energy transfer in LH2 Marichromatium purpuratum as well as in an artificial light-harvesting dyad system by using transient grating and two-dimensional electronic spectroscopy with 10 fs time resolution. We find that Förster-type models reproduce the experimentally observed 60 fs transfer times, but overestimate coupling constants, which lead to a disagreement with both linear absorption and electronic 2D-spectra. We show that a vibronic model, which treats carotenoid vibrations on both electronic ground and excited states as part of the system’s Hamiltonian, reproduces all measuredmore » quantities. Importantly, the vibronic model presented here can explain the fast energy transfer rates with only moderate coupling constants, which are in agreement with structure based calculations. Counterintuitively, the vibrational levels on the carotenoid electronic ground state play the central role in the excited state population transfer to bacteriochlorophyll; resonance between the donor-acceptor energy gap and the vibrational ground state energies is the physical basis of the ultrafast energy transfer rates in these systems.« less
NASA Astrophysics Data System (ADS)
Ghasemi, Fatemeh; Ghasemi, Khaled; Rezvani, Ali Reza; Shokrollahi, Ardeshir; Refahi, Masoud; García-Granda, Santiago; Mendoza-Meroño, Rafael
2017-03-01
Reaction between N,N-dimethylebiguanidine, Met = Metformin, and 4-hydroxy-2,6-pyridinedicarboxylic acid, HO-dipicH2, results in the formation of a novel proton transfer compound, [MetH2][HO-dipicH]2·H2O, 1. The characterization was performed using FTIR, UV-Vis, 1H and 13C NMR spectroscopy and X-ray crystallography. The crystal system is triclinic with space group P 1 bar and two molecules per unit cell. The protonation constants of O-dipic and Met, in all of probability protonated forms, and the equilibrium constants for the O-dipic-Met proton transfer system were investigated by the potentiometric pH titration method using the Hyperquad2008 program. The stoichiometry of the proton transfer species in solution were in agreement with the solid state result.
Catalytic oxidation of o-aminophenols and aromatic amines by mushroom tyrosinase.
Muñoz-Muñoz, Jose Luis; Garcia-Molina, Francisco; Garcia-Ruiz, Pedro Antonio; Varon, Ramon; Tudela, Jose; Rodriguez-Lopez, Jose N; Garcia-Canovas, Francisco
2011-12-01
The kinetics of tyrosinase acting on o-aminophenols and aromatic amines as substrates was studied. The catalytic constants of aromatic monoamines and o-diamines were both low, these results are consistent with our previous mechanism in which the slow step is the transfer of a proton by a hydroxyl to the peroxide in oxy-tyrosinase (Fenoll et al., Biochem. J. 380 (2004) 643-650). In the case of o-aminophenols, the hydroxyl group indirectly cooperates in the transfer of the proton and consequently the catalytic constants in the action of tyrosinase on these compounds are higher. In the case of aromatic monoamines, the Michaelis constants are of the same order of magnitude than for monophenols, which suggests that the monophenols bind better (higher binding constant) to the enzyme to facilitate the π-π interactions between the aromatic ring and a possible histidine of the active site. In the case of aromatic o-diamines, both the catalytic and Michaelis constants are low, the values of the catalytic constants being lower than those of the corresponding o-diphenols. The values of the Michaelis constants of the aromatic o-diamines are slightly lower than those of their corresponding o-diphenols, confirming that the aromatic o-diamines bind less well (lower binding constant) to the enzyme. Copyright © 2011 Elsevier B.V. All rights reserved.
DIVWAG Model Documentation. Volume II. Programmer/Analyst Manual. Part 4.
1976-07-01
Model Constant Data Deck Structure . .. .... IV-13-A-40 Appendix B. Movement Model Program Descriptions . .. .. . .IV-13-B-1 1. Introduction...Data ................ IV-15-A-17 11. Airmobile Constant Data Deck Structure .. ...... .. IV-15-A-30 Appendix B. Airmobile Model Program Descriptions...Make no changes. 12. AIRMOBILE CONSTANT DATA DECK STRUCTURE . The deck structure required by the Airmobile Model constant data load program and the data
Heat transfer to the transpired turbulent boundary layer.
NASA Technical Reports Server (NTRS)
Kays, W. M.
1972-01-01
This paper contains a summarization of five years work on an investigation on heat transfer to the transpired turbulent boundary layer. Experimental results are presented for friction coefficient and Stanton number over a wide range of blowing and suction for the case of constant free-stream velocity, holding certain blowing parameters constant. The problem of the accelerated turbulent boundary layer with transpiration is considered, experimental data are presented and discussed, and theoretical models for solution of the momentum equation under these conditions are presented. Data on turbulent Prandtl number are presented so that solutions to the energy equation may be obtained. Some examples of boundary layer heat transfer and friction coefficient predictions are presented using one of the models discussed, employing a finite difference solution method.
Vibrational energy transfer in OH X 2Pi(i), v = 2 and 1
NASA Technical Reports Server (NTRS)
Raiche, George A.; Jeffries, Jay B.; Rensberger, Karen J.; Crosley, David R.
1990-01-01
Using an IR-pump/UV-probe method in a flow discharge cell, vibrational energy transfer in OH X 2Pi(i) has been studied. OH is prepared in v = 2 by overtone excitation, and the time evolution of population in v = 2 and 1 monitored by laser-induced fluorescence. Rate constants for vibrational relaxation by the colliders H2O, NH3, CO2, and CH4 were measured. Ratios of rate constants for removal from the two states, k2/k1, range from two to five.
Study of charge transfer complexes of menadione (vitamin K 3) with a series of anilines
NASA Astrophysics Data System (ADS)
Pal, Purnendu; Saha, Avijit; Mukherjee, Asok K.; Mukherjee, Dulal C.
2004-01-01
Menadione (vitamin K 3) has been shown to form charge transfer complexes with N, N-dimethyl aniline, N, N-dimethyl p-toluidine and N, N-dimethyl m-toluidine in CCl 4 medium. The CT transition energies are well correlated with the ionisation potentials of the anilines. The formation constants of the complexes have been determined at a number of temperatures from which the enthalpies and entropies of formation have been obtained. The formation constants exhibit a very good linear free energy relationship (Hammett) at all the temperatures studied.
Heat transfer augmentation of a car radiator using nanofluids
NASA Astrophysics Data System (ADS)
Hussein, Adnan M.; Bakar, R. A.; Kadirgama, K.; Sharma, K. V.
2014-05-01
The car radiator heat transfer enhancement by using TiO2 and SiO2 nanoparticles dispersed in water as a base fluid was studied experimentally. The test rig is setup as a car radiator with tubes and container. The range of Reynolds number and volume fraction are (250-1,750) and (1.0-2.5 %) respectively. Results showed that the heat transfer increases with increasing of nanofluid volume fraction. The experimental data is agreed with other investigator.
40 CFR 211.210-2 - Labeling requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... constant); (ii) Ear cup volume or shape; (iii) Mounting of ear cup on head band; (iv) Ear cushion; (v... tension (spring constant); (ii) Mounting of plug on head band; (iii) Shape of plug; (iv) Material...
Forced convection flow boiling and two-phase flow phenomena in a microchannel
NASA Astrophysics Data System (ADS)
Na, Yun Whan
2008-07-01
The present study was performed to numerically analyze the evaporation phenomena through the liquid-vapor interface and to investigate bubble dynamics and heat transfer behavior during forced convective flow boiling in a microchannel. Flow instabilities of two-phase flow boiling in a microchannel were studied as well. The main objective of this research is to investigate the fundamental mechanisms of two-phase flow boiling in a microchannel and provide predictive tools to design thermal management systems, for example, microchannel heat sinks. The numerical results obtained from this study were qualitatively and quantitatively compared with experimental results in the open literature. Physical and mathematical models, accounting for evaporating phenomena through the liquid-vapor interface in a microchannel at constant heat flux and constant wall temperature, have been developed, respectively. The heat transfer mechanism is affected by the dominant heat conduction through the thin liquid film and vaporization at the liquid-vapor interface. The thickness of the liquid film and the pressure of the liquid and vapor phases were simultaneously solved by the governing differential equations. The developed semi-analytical evaporation model that takes into account of the interfacial phenomena and surface tension effects was used to obtain solutions numerically using the fourth-order Runge-Kutta method. The effects of heat flux 19 and wall temperature on the liquid film were evaluated. The obtained pressure drops in a microchannel were qualitatively consistent with the experimental results of Qu and Mudawar (2004). Forced convective flow boiling in a single microchannel with different channel heights was studied through a numerical simulation to investigate bubble dynamics, flow patterns, and heat transfer. The momentum and energy equations were solved using the finite volume method while the liquid-vapor interface of a bubble is captured using the VOF (Volume of Fluid) technique. The effects of different constant heat fluxes and different channel heights on the boiling mechanisms were investigated. The effects of liquid velocity on the bubble departure diameter were analyzed. The obtained results showed that the wall superheats at the position of nucleate boiling are relatively independent of the mass flow rates at the same channel height. The obtained results, however, showed that the heat flux at the onset of nucleate boiling strongly depends on the channel height. With a decrease of the channel height and an increase of the liquid velocity at the channel inlet, the departure diameter of a bubble was smaller. The periodic flow patterns, such as the bubbly flow, elongated slug flow, and churn flow were observed in the microchannel. Flow instabilities of two-phase flow boiling in a trapezoidal microchannel using a three-dimensional model were investigated. Fluctuation behaviors of flow boiling parameters such as wall temperature and inlet pressure caused by periodic flow patterns were studied at different heat fluxes and mass fluxes. The numerical results showed large amplitude and short period oscillations for wall temperature and inlet pressure fluctuations. Stable and unstable flow boiling regime with short period oscillations were investigated. Those flow boiling regimes were not listed in stable and unstable boiling regime map proposed by Wang et al. (2007).
Local conformational dynamics in alpha-helices measured by fast triplet transfer.
Fierz, Beat; Reiner, Andreas; Kiefhaber, Thomas
2009-01-27
Coupling fast triplet-triplet energy transfer (TTET) between xanthone and naphthylalanine to the helix-coil equilibrium in alanine-based peptides allowed the observation of local equilibrium fluctuations in alpha-helices on the nanoseconds to microseconds time scale. The experiments revealed faster helix unfolding in the terminal regions compared with the central parts of the helix with time constants varying from 250 ns to 1.4 micros at 5 degrees C. Local helix formation occurs with a time constant of approximately 400 ns, independent of the position in the helix. Comparing the experimental data with simulations using a kinetic Ising model showed that the experimentally observed dynamics can be explained by a 1-dimensional boundary diffusion with position-independent elementary time constants of approximately 50 ns for the addition and of approximately 65 ns for the removal of an alpha-helical segment. The elementary time constant for helix growth agrees well with previously measured time constants for formation of short loops in unfolded polypeptide chains, suggesting that helix elongation is mainly limited by a conformational search.
NASA Astrophysics Data System (ADS)
Potham, Sathya Prasad
Droplet collision and impingement on a substrate are widely observed phenomenon in many applications like spray injection of Internal Combustion Engines, spray cooling, spray painting and atomizers used in propulsion applications. Existing Lagrangian models do not provide a comprehensive picture of the outcome of these events and may involve model constants requiring experimental data for validation. Physics based models like Volume of Fluid (VOF) method involve no parametric tuning and are more accurate. The aim of this thesis is to extend the basic VOF method with an evaporation sub-model and implement in an open source Computational Fluid Dynamics (CFD) software, OpenFOAM. The new model is applied to numerically study the evaporation of spherical n-heptane droplets impinging on a hot wall at atmospheric pressure and a temperature above the Leidenfrost temperature. An additional vapor phase is introduced apart from the liquid and gas phases to understand the mixing and diffusion of vapor and gas phases. The evaporation model is validated quantitatively and qualitatively with fundamental problems having analytical solutions and published results. The effect of droplet number and arrangement on evaporation is studied by three cases with one (Case 1), two (Case 2) and four (Case 3) droplets impinging on hot wall in film boiling regime at a fixed temperature of wall and a constant non-dimensional distance between droplets. Droplet lift and spread, surface temperature, heat transfer, and evaporation rate are examined. It was observed that more liquid mass evaporated in Case 1 compared to the other cases. Droplet levitation begins early in Case 1 and very high levitation observed was partially due to contraction of its shape from elongated to a more circular form. Average surface temperature was also considerably reduced in Case 1 due to high droplet levitation.
Optimizing gene transfer to conventional outflow cells in living mouse eyes
Li, G; Gonzalez, P; Camras, LJ; Navarro, I; Qiu, J; Challa, P; Stamer, WD
2013-01-01
The mouse eye has physiological and genetic advantages to study conventional outflow function. However, its small size and shallow anterior chamber presents technical challenges to efficient intracameral delivery of genetic material to conventional outflow cells. The goal of this study was to optimize methods to overcome this technical hurdle, without damaging ocular structures or compromising outflow function. Gene targeting was monitored by immunofluorescence microscopy after transduction of adenovirus encoding green fluorescent protein driven by a CMV promoter. Guided by a micromanipulator and stereomicroscope, virus was delivered intracamerally to anesthetized mice by bolus injection using 33 gauge needle attached to Hamilton syringe or infusion with glass micropipette connected to syringe pump. The total number of particles introduced remained constant, while volume of injected virus solution (3–10 µl) was varied for each method and time of infusion (3–40 min) tested. Outflow facility and intraocular pressure were monitored invasively using established techniques. Unlike bolus injections or slow infusions, introduction of virus intracamerally during rapid infusions (3 min) at any volume tested preferentially targeted trabecular meshwork and Schlemm's canal cells, with minimal transduction of neighboring cells. While infusions resulted in transient intraocular pressure spikes (commensurate with volume infused, Δ40–70 mmHg), eyes typically recovered within 60 minutes. Transduced eyes displayed normal outflow facility and tissue morphology 3–6 days after infusions. Taken together, fast infusion of virus solution in small volumes intracamerally is a novel and effective method to selectively deliver agents to conventional outflow cells in living mice. PMID:23337742
Hamzaoui, Mahmoud; Hubert, Jane; Reynaud, Romain; Marchal, Luc; Foucault, Alain; Renault, Jean-Hugues
2012-07-20
The aim of this article was to evaluate the influence of the column design of a hydrostatic support-free liquid-liquid chromatography device on the process efficiency when the strong ion-exchange (SIX) development mode is used. The purification of p-hydroxybenzylglucosinolate (sinalbin) from a crude aqueous extract of white mustard seeds (Sinapis alba L.) was achieved on two types of devices: a centrifugal partition chromatograph (CPC) and a centrifugal partition extractor (CPE). They differ in the number, volume and geometry of their partition cells. The SIX-CPE process was evaluated in terms of productivity and sinalbin purification capability as compared to previously optimized SIX-CPC protocols that were carried out on columns of 200 mL and 5700 mL inner volume, respectively. The objective was to determine whether the decrease in partition cell number, the increase in their volume and the use of a "twin cell" design would induce a significant increase in productivity by applying higher mobile phase flow rate while maintaining a constant separation quality. 4.6g of sinalbin (92% recovery) were isolated from 25 g of a crude white mustard seed extract, in only 32 min and with a purity of 94.7%, thus corresponding to a productivity of 28 g per hour and per liter of column volume (g/h/LV(c)). Therefore, the SIX-CPE process demonstrates promising industrial technology transfer perspectives for the large-scale isolation of ionized natural products. Copyright © 2012 Elsevier B.V. All rights reserved.
Kirmaier, Christine; Laible, Philip D; Hanson, Deborah K; Holten, Dewey
2003-02-25
We report time-resolved optical measurements of the primary electron transfer reactions in Rhodobacter capsulatus reaction centers (RCs) having four mutations: Phe(L181) --> Tyr, Tyr(M208) --> Phe, Leu(M212) --> His, and Trp(M250) --> Val (denoted YFHV). Following direct excitation of the bacteriochlorophyll dimer (P) to its lowest excited singlet state P, electron transfer to the B-side bacteriopheophytin (H(B)) gives P(+)H(B)(-) in approximately 30% yield. When the secondary quinone (Q(B)) site is fully occupied, P(+)H(B)(-) decays with a time constant estimated to be in the range of 1.5-3 ns. In the presence of excess terbutryn, a competitive inhibitor of Q(B) binding, the observed lifetime of P(+)H(B)(-) is noticeably longer and is estimated to be in the range of 4-8 ns. On the basis of these values, the rate constant for P(+)H(B)(-) --> P(+)Q(B)(-) electron transfer is calculated to be between approximately (2 ns)(-)(1) and approximately (12 ns)(-)(1), making it at least an order of magnitude smaller than the rate constant of approximately (200 ps)(-)(1) for electron transfer between the corresponding A-side cofactors (P(+)H(A)(-) --> P(+)Q(A)(-)). Structural and energetic factors associated with electron transfer to Q(B) compared to Q(A) are discussed. Comparison of the P(+)H(B)(-) lifetimes in the presence and absence of terbutryn indicates that the ultimate (i.e., quantum) yield of P(+)Q(B)(-) formation relative to P is 10-25% in the YFHV RC.
NASA Technical Reports Server (NTRS)
Thompson, E.
1979-01-01
A finite element computer code for the analysis of mantle convection is described. The coupled equations for creeping viscous flow and heat transfer can be solved for either a transient analysis or steady-state analysis. For transient analyses, either a control volume or a control mass approach can be used. Non-Newtonian fluids with viscosities which have thermal and spacial dependencies can be easily incorporated. All material parameters may be written as function statements by the user or simply specified as constants. A wide range of boundary conditions, both for the thermal analysis and the viscous flow analysis can be specified. For steady-state analyses, elastic strain rates can be included. Although this manual was specifically written for users interested in mantle convection, the code is equally well suited for analysis in a number of other areas including metal forming, glacial flows, and creep of rock and soil.
Two-Dimensional Mathematical Modeling of the Pack Carburizing Process
NASA Astrophysics Data System (ADS)
Sarkar, S.; Gupta, G. S.
2008-10-01
Pack carburization is the oldest method among the case-hardening treatments, and sufficient attempts have not been made to understand this process in terms of heat and mass transfer, effect of alloying elements, dimensions of the sample, etc. Thus, a two-dimensional mathematical model in cylindrical coordinate is developed for simulating the pack carburization process for chromium-bearing steel in this study. Heat and mass balance equations are solved simultaneously, where the surface temperature of the sample varies with time, but the carbon potential at the surface during the process remains constant. The fully implicit finite volume technique is used to solve the governing equations. Good agreement has been found between the predicted and published data. The effect of temperature, carburizing time, dimensions of the sample, etc. on the pack carburizing process shows some interesting results. It is found that the two-dimensional model gives better insight into understanding the carburizing process.
NASA Astrophysics Data System (ADS)
Zhang, Ziyu; Jiang, Wen; Dolbow, John E.; Spencer, Benjamin W.
2018-01-01
We present a strategy for the numerical integration of partial elements with the eXtended finite element method (X-FEM). The new strategy is specifically designed for problems with propagating cracks through a bulk material that exhibits inelasticity. Following a standard approach with the X-FEM, as the crack propagates new partial elements are created. We examine quadrature rules that have sufficient accuracy to calculate stiffness matrices regardless of the orientation of the crack with respect to the element. This permits the number of integration points within elements to remain constant as a crack propagates, and for state data to be easily transferred between successive discretizations. In order to maintain weights that are strictly positive, we propose an approach that blends moment-fitted weights with volume-fraction based weights. To demonstrate the efficacy of this simple approach, we present results from numerical tests and examples with both elastic and plastic material response.
Lewis, Leroy C.; Trammell, David R.
1986-01-01
A disposable rabbit for transferring radioactive samples in a pneumatic transfer system comprises aerated plastic shaped in such a manner as to hold a radioactive sample and aerated such that dissolution of the rabbit in a solvent followed by evaporation of the solid yields solid waste material having a volume significantly smaller than the original volume of the rabbit.
Lewis, L.C.; Trammell, D.R.
1983-10-12
A disposable rabbit for transferring radioactive samples in a pneumatic transfer system comprises aerated plastic shaped in such a manner as to hold a radioactive sample and aerated such that dissolution of the rabbit in a solvent followed by evaporation of the solid yields solid waste material having a volume significantly smaller than the original volume of the rabbit.
DOT National Transportation Integrated Search
1978-09-01
While the major focus of the present study, as reflected in Volume II, III, and V, has been upon the overseas activities of the four U.S. automobile manufacturers, a supplementary concern has been to develop insights into the flows or transfers of te...
Determination of the Avogadro constant by the XRCD method using a 28Si-enriched sphere
NASA Astrophysics Data System (ADS)
Kuramoto, Naoki; Mizushima, Shigeki; Zhang, Lulu; Fujita, Kazuaki; Azuma, Yasushi; Kurokawa, Akira; Okubo, Sho; Inaba, Hajime; Fujii, Kenichi
2017-10-01
To determine the Avogadro constant N A by the x-ray crystal density method, the density of a 28Si-enriched crystal was determined by absolute measurements of the mass and volume of a 1 kg sphere manufactured from the crystal. The mass and volume were determined by an optical interferometer and a vacuum mass comparator, respectively. The sphere surface was characterized by x-ray photoelectron spectroscopy and spectroscopic ellipsometry to derive the mass and volume of the Si core of the sphere excluding the surface layers. From the mass and volume, the density of the Si core was determined with a relative standard uncertainty of 2.3 × 10-8. By combining the Si core density with the lattice constant and the molar mass of the sphere reported by the International Avogadro Coordination (IAC) project in 2015, a new value of 6.022 140 84(15) × 1023 mol-1 was obtained for N A with a relative standard uncertainty of 2.4 × 10-8. To make the N A value determined in this work usable for a future adjustment of the fundamental constants by the CODATA Task Group on Fundamental Constants, the correlation of the new N A value with the N A values determined in our previous works was examined. The correlation coefficients with the values of N A determined by IAC in 2011 and 2015 were estimated to be 0.07 and 0.28, respectively. The correlation of the new N A value with the N A value determined by IAC in 2017 using a different 28Si-enriched crystal was also examined, and the correlation coefficient was estimated to be 0.21.
Guidance and control strategies for aerospace vehicles
NASA Technical Reports Server (NTRS)
Hibey, Joseph L.; Naidu, Desineni S.
1990-01-01
The first part of the report concerns broadly the summary of the work done in the areas of singular perturbations and time scales (SPaTS), aerobraking technology, guidance and aerocruise. The synergistic plane change problem connected with orbital transfer employing aeroassist technology, is addressed. The mission involves transfer from high Earth orbit to low Earth orbit with plane change being performed within the atmosphere. The complete mission consists of a deorbit phase, atmospheric phase, and finally reorbit phase. The atmospheric maneuver is composed of an entry mode, a cruise mode, and finally an exit mode. During the cruise mode, constant altitude and velocity are maintained by means of bank angle control with constant thrust or thrust control with constant bank angle. Comparisons between these two control strategies bring out some interesting features.
NASA Astrophysics Data System (ADS)
Nugroho, Tito Dwi; Purwadi, P. K.
2017-01-01
The function of the fin is to extend surfaces so that objects fitted with fin can remove the heat to the surrounding environment so that the cooling process can take place more quickly. The purpose of this study is to calculate and determine the effect of (a) the convective heat transfer coefficient of fluid on the value of the fin on the efficiency and effectiveness of non-steady state, and (b) the fin material to the value of the fins on the efficiency and effectiveness of non-steady state. The studied fins are in the form of straight fins with rhombus sectional area which is a function of position x with the short diagonal length of D1 and D2 as long diagonal length, L as fin's length and α as fin's tilt angle. Research solved numerical computation, using a finite difference method on the explicit way. At first, the fin has the same initial temperature with essentially temperature Ti = Tb, then abruptly fin conditioned on fluid temperature environment T∞. Fin's material is assumed with uniform properties, does not change with changes in temperature, and fin does not change the shape and volume during the process. The temperature of the fluid around the fins and the value of the convective heat transfer coefficient are permanently constant, and there is no energy generation in the fin. Fin's heat transfer conduction only take place in one direction, namely in the direction perpendicular to the fin base (or x-direction). The entire surface of the fin makes the process of heat transfer to a fluid environment around the fins. The results show that (a) the greater the value of heat transfer coefficient of convection h, the smaller the efficiency fin and effectiveness fins (b) In circumstances of unsteady state, the efficiency and effectivity influenced by the value of density, specific heat, heat transfer coefficient of conduction and thermal diffusivity fin material.
The anisotropic Hooke's law for cancellous bone and wood.
Yang, G; Kabel, J; van Rietbergen, B; Odgaard, A; Huiskes, R; Cowin, S C
A method of data analysis for a set of elastic constant measurements is applied to data bases for wood and cancellous bone. For these materials the identification of the type of elastic symmetry is complicated by the variable composition of the material. The data analysis method permits the identification of the type of elastic symmetry to be accomplished independent of the examination of the variable composition. This method of analysis may be applied to any set of elastic constant measurements, but is illustrated here by application to hardwoods and softwoods, and to an extraordinary data base of cancellous bone elastic constants. The solid volume fraction or bulk density is the compositional variable for the elastic constants of these natural materials. The final results are the solid volume fraction dependent orthotropic Hooke's law for cancellous bone and a bulk density dependent one for hardwoods and softwoods.
Tsuruoka, Nozomu; Sadakane, Takuya; Hayashi, Rika; Tsujimura, Seiya
2017-03-10
The flavin adenine dinucleotide-dependent glucose dehydrogenase (FAD-GDH) from Aspergillus species require suitable redox mediators to transfer electrons from the enzyme to the electrode surface for the application of bioelectrical devices. Although several mediators for FAD-GDH are already in use, they are still far from optimum in view of potential, kinetics, sustainability, and cost-effectiveness. Herein, we investigated the efficiency of various phenothiazines and quinones in the electrochemical oxidation of FAD-GDH from Aspergillus terreus . At pH 7.0, the logarithm of the bimolecular oxidation rate constants appeared to depend on the redox potentials of all the mediators tested. Notably, the rate constant of each molecule for FAD-GDH was approximately 2.5 orders of magnitude higher than that for glucose oxidase from Aspergillus sp. The results suggest that the electron transfer kinetics is mainly determined by the formal potential of the mediator, the driving force of electron transfer, and the electron transfer distance between the redox active site of the mediator and the FAD, affected by the steric or chemical interactions. Higher k ₂ values were found for ortho-quinones than for para-quinones in the reactions with FAD-GDH and glucose oxidase, which was likely due to less steric hindrance in the active site in the case of the ortho-quinones.
WE-AB-207B-06: Dose and Biological Uncertainties in Sarcoma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marteinsdottir, M; University of Iceland, Reykjavik; Schuemann, J
2016-06-15
Purpose: To understand the clinical impact of key uncertainties in proton therapy potentially affecting the analysis of clinical trials, namely the assumption of using a constant relative biological effectiveness (RBE) of 1.1 compared to variable RBE for proton therapy and the use of analytical dose calculation (ADC) methods. Methods: Proton dose distributions were compared for analytical and Monte Carlo (TOPAS) dose calculations. In addition, differences between using a constant RBE of 1.1 (RBE-constant) were compared with four different RBE models (to assess model variations). 10 patients were selected from an ongoing clinical trial on IMRT versus scanned protons for sarcoma.more » Comparisons were performed using dosimetric indices based on dose-volume histogram analyses and γ-index analyses. Results: For three of the RBE-models the mean dose, D95, D50 and D02 (dose values covering 95%, 50% and 2% of the target volume, respectively) were up to 5% lower than for RBE-constant. The dosimetric indices for one of the RBE-models were around 9% lower than for the RBE-constant model. The differences for V90 (the percentage of the target volume covered by 90% of the prescription dose) were up to 40% for three RBE-models, whereas for one the difference was around 95%. All ADC dosimetric indices were up to 5% larger than for RBE-constant. The γ-index passing rate for the target volume with a 3%/3mm criterion was above 97% for all models except for one, which was below 24%. Conclusion: Interpretation of clinical trials on sarcoma may depend on dose calculation uncertainties (as assessed by Monte Carlo). In addition, the biological dose distribution depends notably on which RBE model is utilized. The current practice of using a constant RBE of 1.1 may overestimate the target dose by as much as 5% for biological dose calculations. Performing an RBE uncertainty analysis is recommended for trial analysis. U19 projects - U19 CA 021239. PI: Delaney.« less
NASA Astrophysics Data System (ADS)
Joubert, J. C.; Sharifpur, M.; Solomon, A. Brusly; Meyer, J. P.
2017-12-01
The natural convection heat transfer of a magnetic nanofluid in a differentially heated cavity is investigated with and without an applied external magnetic field. The effects of volume fraction, magnetic field configuration, and magnetic field strength are investigated. Spherical Fe2O3 nanoparticles with a diameter of 15-20 nm are used in the nanofluids. Volume fractions ranging between 0.05% and 0.3% are tested for the case with no magnetic field, while only a volume fraction of 0.1% was tested in an externally applied magnetic field. The experiments were conducted for a range of Rayleigh numbers in 1.7 × 108 < Ra < 4.2 × 108. The viscosity of the nanofluid was determined experimentally. An empirical correlation for the viscosity was determined, and the stability of various nanofluids was investigated. Using heat transfer data obtained from the cavity, the average heat transfer coefficient and average Nusselt number for the nanofluids are determined. It was found that a volume fraction of 0.1% showed a maximum increase of 5.63% to the Nu at the maximum Ra. For the magnetic field study, it was found that the best-performing magnetic field enhanced the heat transfer behaviour by an additional 2.81% in Nu at Ra = 3.8 × 108.
Zhang, Zhongrui; Zhong, Quanlin; Niklas, Karl J; Cai, Liang; Yang, Yusheng; Cheng, Dongliang
2016-08-24
Metabolic scaling theory (MST) posits that the scaling exponents among plant height H, diameter D, and biomass M will covary across phyletically diverse species. However, the relationships between scaling exponents and normalization constants remain unclear. Therefore, we developed a predictive model for the covariation of H, D, and stem volume V scaling relationships and used data from Chinese fir (Cunninghamia lanceolata) in Jiangxi province, China to test it. As predicted by the model and supported by the data, normalization constants are positively correlated with their associated scaling exponents for D vs. V and H vs. V, whereas normalization constants are negatively correlated with the scaling exponents of H vs. D. The prediction model also yielded reliable estimations of V (mean absolute percentage error = 10.5 ± 0.32 SE across 12 model calibrated sites). These results (1) support a totally new covariation scaling model, (2) indicate that differences in stem volume scaling relationships at the intra-specific level are driven by anatomical or ecophysiological responses to site quality and/or management practices, and (3) provide an accurate non-destructive method for predicting Chinese fir stem volume.
Effects of cannabis on lung function: a population-based cohort study.
Hancox, R J; Poulton, R; Ely, M; Welch, D; Taylor, D R; McLachlan, C R; Greene, J M; Moffitt, T E; Caspi, A; Sears, M R
2010-01-01
The effects of cannabis on lung function remain unclear and may be different from those of tobacco. We compared the associations between use of these substances and lung function in a population-based cohort (n = 1,037). Cannabis and tobacco use were reported at ages 18, 21, 26 and 32 yrs. Spirometry, plethysmography and carbon monoxide transfer factor were measured at 32 yrs. Associations between lung function and exposure to each substance were adjusted for exposure to the other substance. Cumulative cannabis use was associated with higher forced vital capacity, total lung capacity, functional residual capacity and residual volume. Cannabis was also associated with higher airway resistance but not with forced expiratory volume in 1 s, forced expiratory ratio or transfer factor. These findings were similar among those who did not smoke tobacco. In contrast, tobacco use was associated with lower forced expiratory volume in 1 s, lower forced expiratory ratio, lower transfer factor and higher static lung volumes, but not with airway resistance. Cannabis appears to have different effects on lung function from those of tobacco. Cannabis use was associated with higher lung volumes, suggesting hyperinflation and increased large-airways resistance, but there was little evidence for airflow obstruction or impairment of gas transfer.
7 CFR 929.55 - Interhandler transfer.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 8 2014-01-01 2014-01-01 false Interhandler transfer. 929.55 Section 929.55... transfer. (a) Transfer of cranberries from one handler to another may be made without prior notice to the committee, except during a period when a volume regulation has been established. If such transfer is made...
Runout and fine-sediment deposits of axisymmetric turbidity currents
NASA Astrophysics Data System (ADS)
Dade, W. Brian; Huppert, Herbert E.
1995-09-01
We develop a model that describes the runout behavior and resulting deposit of a radially spreading, suspension-driven gravity current on a surface of negligible slope. Our analysis considers the separate cases of constant-volume and constant-flux sources. It incorporates expressions for the conservation of volume, a Froude number condition at the current front, and the evolution of the driving suspension due to settling of particles to the underlying bed. The model captures the key features of a range of experimental observations. The analysis also provides important scaling relationships between the geometry of a deposit and the source conditions for the deposit-forming flow, as well as explicit expressions for flow speed and deposit thickness as functions of radial distance from the source. Among the results of our study we find that, in the absence of information regarding flow history, the geometries of relatively well-sorted deposits generated by flows with source conditions of constant volume or constant flux are virtually indistinguishable. The results of our analysis can be used by geologists in the interpretation of some geologically important gravity-surge deposits. Using our analytical results, we consider three previously studied, radially symmetric turbidites of the Hispaniola-Caicos basin in the western Atlantic Ocean. From gross geometry and grain size of the turbidites alone we estimate for the respective deposit-forming events that upon entry into the basin the initial sediment concentrations were approximately 3% by volume and the total volumes were roughly between 30 km3 and 100 km3. Each of the suspension-driven flows is inferred to have spread into the basin with a characteristic speed of 3-5 m s-1, and reached its ultimate runout length of about 60-75 km while laying down a deposit over a period of about 10-12 hours.
Monitoring of intracranial compliance: correction for a change in body position.
Raabe, A; Czosnyka, M; Piper, I; Seifert, V
1999-01-01
The objectives of our study were 1. to investigate whether the intracranial compliance changes with body position; 2. to test if the pressure-volume index (PVI) calculation is affected by different body positions; 3. to define the optimal parameter to correct PVI for changes in body position and 4. to investigate the physiological meaning of the constant term (P0) in the model of the intracranial volume-pressure relationship. Thirteen patients were included in this study. All patients were subjected to 2 to 3 different body positions. In each position, either classic bolus injection was performed for measurement of intracranial compliance and calculation of PVI or the new Spiegelberg compliance monitor was used to calculate PVI continuously. Four different models were used for calculating the constant pressure term P0 and the P0 corrected PVI values. Pressure volume index not corrected for the constant term P0 significantly decreased with elevating the patients head (r = 0.70, p < 0.0001). In contrast, volume-pressure response and ICP pulse amplitude did not change with position. Using the constant term P0 to correct the PVI we found no changes between the different body positions. Our results suggest that during the variation in body position there is no change in intracranial compliance but a change in hydrostatic offset pressure which causes a shifting of the volume-pressure curve along the pressure axis without its shape being affected. PVI measurements should either be performed only with the patient in the 0 degree recumbent position or that the PVI calculation should be corrected for the hydrostatic difference between the level of the ICP transducer and the hydrostatic indifference point of the craniospinal system close to the third thoracic vertebra.
Pan, Yang; Fu, Yao; Liu, Shaoxiong; Yu, Haizhu; Gao, Yuhe; Guo, Qingxiang; Yu, Shuqin
2006-06-15
The quenching of the triplets of 1,2-naphthoquinone (NQ) and 1,2-naphthoquinone-4-sulfonic acid sodium salt (NQS) by various electron and H-atom donors was investigated by laser flash photolysis measurement in acetonitrile and benzene. The results showed that the reactivities and configurations of 3NQ* (3NQS*) are governed by solvent polarity. All the quenching rate constants (kq) measured in benzene are larger than those in acetonitrile. The SO3Na substituent at the C-4 position of NQS makes 3NQS* more reactive than 3NQ* in electron/H-atom transfer reactions. Large differences of kq values were discovered in H-atom transfer reactions for alcohols and phenols, which can be explained by different H-abstraction mechanisms. Detection of radical cations of amines/anilines in time-resolved transient absorption spectra confirms an electron transfer mechanism. Triplets are identified as precursors of formed radical anions of NQ and NQS in photoinduced reactions. The dependence of electron transfer rate constants on the free energy changes (DeltaG) was treated by using the Rehm-Weller equation. For the four anilines with different substituents on the para or meta position of amidocyanogen, good correlation between log kq values with Hammett sigma constants testifies the correctness of empirical Hammett equation. Charge density distributions, adiabatic ionization/affinity potentials and redox potentials of NQ (NQS) and some quenchers were studied by quantum chemistry calculation.
Shi, Shuyun; Zhang, Yuping; Chen, Xiaoqin; Peng, Mijun
2011-10-12
The effects of 1:1 flavonoid-Cu(2+) complexes of four flavonoids with different C-ring substituents, quercetin (QU), luteolin (LU), taxifolin (TA), and (+)-catechin (CA), on bovine serum albumin (BSA) were investigated and compared with corresponding free flavonoids by spectroscopic analysis in an attempt to characterize the chemical association taking place. The results indicated that all of the quenching mechanisms were based on static quenching combined with nonradiative energy transfer. Cu(2+) chelation changed the binding constants for BSA depending on the structures of flavonoids and the detected concentrations. The reduced hydroxyl groups, increased steric hindrance, and hydrophilicity of Cu(2+) chelation may be the main reasons for the reduced binding constants, whereas the formation of stable flavonoid-Cu(2+) complexes and synergistic action could increase the binding constants. The changed trends of critical energy transfer distance (R(0)) for Cu(2+) chelation were contrary to those of binding constants.
Isothermal titration calorimetry in nanoliter droplets with subsecond time constants.
Lubbers, Brad; Baudenbacher, Franz
2011-10-15
We reduced the reaction volume in microfabricated suspended-membrane titration calorimeters to nanoliter droplets and improved the sensitivities to below a nanowatt with time constants of around 100 ms. The device performance was characterized using exothermic acid-base neutralizations and a detailed numerical model. The finite element based numerical model allowed us to determine the sensitivities within 1% and the temporal dynamics of the temperature rise in neutralization reactions as a function of droplet size. The model was used to determine the optimum calorimeter design (membrane size and thickness, junction area, and thermopile thickness) and sensitivities for sample volumes of 1 nL for silicon nitride and polymer membranes. We obtained a maximum sensitivity of 153 pW/(Hz)(1/2) for a 1 μm SiN membrane and 79 pW/(Hz)(1/2) for a 1 μm polymer membrane. The time constant of the calorimeter system was determined experimentally using a pulsed laser to increase the temperature of nanoliter sample volumes. For a 2.5 nanoliter sample volume, we experimentally determined a noise equivalent power of 500 pW/(Hz)(1/2) and a 1/e time constant of 110 ms for a modified commercially available infrared sensor with a thin-film thermopile. Furthermore, we demonstrated detection of 1.4 nJ reaction energies from injection of 25 pL of 1 mM HCl into a 2.5 nL droplet of 1 mM NaOH. © 2011 American Chemical Society
NASA Astrophysics Data System (ADS)
Hasanpour, B.; Irandoost, M. S.; Hassani, M.; Kouhikamali, R.
2018-01-01
In this paper a numerical simulation of upward two-phase flow evaporation in a vertical tube has been studied by considering water as working fluid. To this end, the computational fluid dynamic simulations of this system are performed with heat and mass transfer mechanisms due to energy transfer during the phase change interaction near the heat transfer surface. The volume of fluid model in an available Eulerian-Eulerian approach based on finite volume method is utilized and the mass source term in conservation of mass equation is implemented using a user defined function. The characteristics of water flow boiling such as void fraction and heat transfer coefficient distribution are investigated. The main cause of fluctuations on heat transfer coefficient and volume fraction is velocity increment in the vapor phase rather than the liquid phase. The case study of this research including convective heat transfer coefficient and tube diameter are considered as a parametric study. The operating conditions are considered at high pressure in saturation temperature and the physical properties of water are determined by considering system's inlet temperature and pressure in saturation conditions. Good agreement is achieved between the numerical and the experimental values of heat transfer coefficients.
NASA Astrophysics Data System (ADS)
Hasanpour, B.; Irandoost, M. S.; Hassani, M.; Kouhikamali, R.
2018-07-01
In this paper a numerical simulation of upward two-phase flow evaporation in a vertical tube has been studied by considering water as working fluid. To this end, the computational fluid dynamic simulations of this system are performed with heat and mass transfer mechanisms due to energy transfer during the phase change interaction near the heat transfer surface. The volume of fluid model in an available Eulerian-Eulerian approach based on finite volume method is utilized and the mass source term in conservation of mass equation is implemented using a user defined function. The characteristics of water flow boiling such as void fraction and heat transfer coefficient distribution are investigated. The main cause of fluctuations on heat transfer coefficient and volume fraction is velocity increment in the vapor phase rather than the liquid phase. The case study of this research including convective heat transfer coefficient and tube diameter are considered as a parametric study. The operating conditions are considered at high pressure in saturation temperature and the physical properties of water are determined by considering system's inlet temperature and pressure in saturation conditions. Good agreement is achieved between the numerical and the experimental values of heat transfer coefficients.
NASA Technical Reports Server (NTRS)
Dring, R. P.; Blair, M. F.; Joslyn, H. D.
1986-01-01
A combined experimental and analytical program was conducted to examine the effects of inlet turbulence on airfoil heat transfer. The experimental portion of the study was conducted in a large-scale (approx 5X engine), ambient temperature, rotating turbine model configured in both single stage and stage-and-a-half arrangements. Heat transfer measurements were obtained using low-conductivity airfoils with miniature thermcouples welded to a thin, electrically heated surface skin. Heat transfer data were acquired for various combinations of low or high inlet turbulence intensity, flow coefficient, first-stator/rotor axial spacing, Reynolds number and relative circumferential position of the first and second stators. Aerodynamic measurements obtained as part of the program include distributions of the mean and fluctuating velocities at the turbine inlet and, for each airfoil row, midspan airfoil surface pressures and circumferential distributions of the downstream steady state pressures and fluctuating velocities. Analytical results include airfoil heat transfer predictions produced using existing 2-D boundary layer computation schemes and an examination of solutions of the unsteady boundary layer equations. The results are reported in four separate volumes, of which this is Volume 2: Heat Transfer Data Tabulation; 15 Percent Axial Spacing.
Volume-energy parameters for heat transfer to supercritical fluids
NASA Technical Reports Server (NTRS)
Kumakawa, A.; Niino, M.; Hendricks, R. C.; Giarratano, P. J.; Arp, V. D.
1986-01-01
Reduced Nusselt numbers of supercritical fluids from different sources were grouped by several volume-energy parameters. A modified bulk expansion parameter was introduced based on a comparative analysis of data scatter. Heat transfer experiments on liquefied methane were conducted under near-critical conditions in order to confirm the usefulness of the parameters. It was experimentally revealed that heat transfer characteristics of near-critical methane are similar to those of hydrogen. It was shown that the modified bulk expansion parameter and the Gibbs-energy parameter grouped the heat transfer data of hydrogen, oxygen and methane including the present data on near-critical methane. It was also indicated that the effects of surface roughness on heat transfer were very important in grouping the data of high Reynolds numbers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feitelson, J.; Mauzerall, D.C.
1993-08-12
Wide-band, time-resolved, pulsed photoacoustics has been employed to study the electron-transfer reaction between a triplet magnesium porphyrin and various quinones in polar and nonpolar solvents. The reaction rate constants are near encounter limited. The yield of triplet state is 70% in both solvents. The yield of ions is 85% in the former and zero in the latter, in agreement with spin dephasing time and escape times from the Coulomb wells in the two solvents. In methanol the plot of measured heat output versus quinone redox potential is linear. This implies that the entropy of electron transfer is constant through themore » series, but it may not be negligible. 16 refs., 2 figs., 1 tab.« less
NASA Astrophysics Data System (ADS)
Xu, Weilin; Li, Songtao; Zhou, Xiaochun; Xing, Wei; Huang, Mingyou; Lu, Tianhong; Liu, Changpeng
2006-05-01
In the present work a nonmonotonic dependence of standard rate constant (k0) on reorganization energy (λ) was discovered qualitatively from electron transfer (Marcus-Hush-Levich) theory for heterogeneous electron transfer processes on electrode surface. It was found that the nonmonotonic dependence of k0 on λ is another result, besides the disappearance of the famous Marcus inverted region, coming from the continuum of electronic states in electrode: with the increase of λ, the states for both Process I and Process II ET processes all vary from nonadiabatic to adiabatic state continuously, and the λ dependence of k0 for Process I is monotonic thoroughly, while for Process II on electrode surface the λ dependence of k0 could show a nonmonotonicity.
Mars Observer data production, transfer, and archival: The data production assembly line
NASA Technical Reports Server (NTRS)
Childs, David B.
1993-01-01
This paper describes the data production, transfer, and archival process designed for the Mars Observer Flight Project. It addresses the developmental and operational aspects of the archive collection production process. The developmental aspects cover the design and packaging of data products for archival and distribution to the planetary community. Also discussed is the design and development of a data transfer and volume production process capable of handling the large throughput and complexity of the Mars Observer data products. The operational aspects cover the main functions of the process: creating data and engineering products, collecting the data products and ancillary products in a central repository, producing archive volumes, validating volumes, archiving, and distributing the data to the planetary community.
Hadron mass and decays constant predictions of the valence approximation to lattice QCD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weingarten, D.
1993-05-01
A key goal of the lattice formulation of QCD is to reproduce the masses and decay constants of the low-lying baryons and mesons. Lattice QCD mass and decay constant predictions for the real world are supposed to be obtained from masses and decay constants calculated with finite lattice spacing and finite lattice volume by taking the limits of zero spacing and infinite volume. In addition, since the algorithms used for hadron mass and decay constant calculations become progressively slower for small quark masses, results are presently found with quark masses much larger than the expected values of the up andmore » down quark masses. Predictions for the properties of hadrons containing up and down quarks then require a further extrapolation to small quark masses. The author reports here mass and decay constant predictions combining all three extrapolations for Wilson quarks in the valence (quenched) approximation. This approximation may be viewed as replacing the momentum and frequency dependent color dielectric constant arising from quark-antiquark vacuum polarization with its zero-momentum, zero-frequency limit. These calculations used approximately one year of machine time on the GF11 parallel computer running at a sustained rate of between 5 and 7 Gflops.« less
Dielectric constant of liquid alkanes and hydrocarbon mixtures
NASA Technical Reports Server (NTRS)
Sen, A. D.; Anicich, V. G.; Arakelian, T.
1992-01-01
The complex dielectric constants of n-alkanes with two to seven carbon atoms have been measured. The measurements were conducted using a slotted-line technique at 1.2 GHz and at atmospheric pressure. The temperature was varied from the melting point to the boiling point of the respective alkanes. The real part of the dielectric constant was found to decrease with increasing temperature and correlate with the change in the molar volume. An upper limit to all the loss tangents was established at 0.001. The complex dielectric constants of a few mixtures of liquid alkanes were also measured at room temperature. For a pentane-octane mixture the real part of the dielectric constant could be explained by the Clausius-Mosotti theory. For the mixtures of n-hexane-ethylacetate and n-hexane-acetone the real part of the dielectric constants could be explained by the Onsager theory extended to mixtures. The dielectric constant of the n-hexane-acetone mixture displayed deviations from the Onsager theory at the highest fractions of acetone. The dipole moments of ethylacetate and acetone were determined for dilute mixtures using the Onsager theory and were found to be in agreement with their accepted gas-phase values. The loss tangents of the mixtures exhibited a linear relationship with the volume fraction for low concentrations of the polar liquids.
Use of a single ventilator to support 4 patients: laboratory evaluation of a limited concept.
Branson, Richard D; Blakeman, Thomas C; Robinson, Bryce Rh; Johannigman, Jay A
2012-03-01
A mass-casualty respiratory failure event where patients exceed available ventilators has spurred several proposed solutions. One proposal is use of a single ventilator to support 4 patients. A ventilator was modified to allow attachment of 4 circuits. Each circuit was connected to one chamber of 2 dual-chambered, test lungs. The ventilator was set at a tidal volume (V(T)) of 2.0 L, respiratory frequency of 10 breaths/min, and PEEP of 5 cm H(2)O. Tests were repeated with pressure targeted breaths at 15 cm H(2)O. Airway pressure, volume, and flow were measured at each chamber. The test lungs were set to simulate 4 patients using combinations of resistance (R) and compliance (C). These included equivalent C and R, constant R and variable C, constant C and variable R, and variable C and variable R. When R and C were equivalent the V(T) distributed to each chamber of the test lung was similar during both volume (range 428-442 mL) and pressure (range 528-544 mL) breaths. Changing C while R was constant resulted in large variations in delivered V(T) (volume range 257-621 mL, pressure range 320-762 mL). Changing R while C was constant resulted in a smaller variation in V(T) (volume range 418-460 mL, pressure range 502-554 mL) compared to only C changes. When R and C were both varied, the range of delivered V(T) in both volume (336-517 mL) and pressure (417-676 mL) breaths was greater, compared to only R changes. Using a single ventilator to support 4 patients is an attractive concept; however, the V(T) cannot be controlled for each subject and V(T) disparity is proportional to the variability in compliance. Along with other practical limitations, these findings cannot support the use of this concept for mass-casualty respiratory failure.
2007-01-01
Equation of State R2 – Constant in JWL Equation of State σ – Yield Stress T – Temperature...v – Specific volume w – Constant in JWL Equation of State x – Spatial coordinate y – Spatial coordinate Y – Yield stress Subscripts Comp – Value at...Constant in JWL Equation of State α – Porosity B – Compaction Modulus B1 – Strain Hardening Constant B2 – Constant in JWL Equation of State
Influence of elliptical structure on impinging-jet-array heat transfer performances
NASA Astrophysics Data System (ADS)
Arjocu, Simona C.; Liburdy, James A.
1997-11-01
A three-by-three square array of submerged, elliptic, impinging jets in water was used to study the heat transfer distribution in the cooling process of a constant heat flux surface. Tow jet aspect ratios were used, 2 and 3, both with the same hydraulic diameter. The array was tested at Reynolds numbers from 300 to 1500 and impinging distances of 1 to 5 hydraulic diameters. Thermochromic liquid crystals wee used to map the local heat transfer coefficient using a transient method, while the jet temperature was kept constant. The liquid crystal images were recorded through an optical fiber coupled with a CCD camera and a frame grabber and analyzed based on an RGB-temperature calibration technique. The results are reported relative to the unit cell that is used to delimitate the central jet. The heat transfer variation is shown to depend on the impingement distance and Reynolds number. The elliptic jets exhibit axis switching, jet column instability and jet swaying. All of these mechanisms affect the enhancement of the heat transfer rate and its distribution. The results are compared in terms of average and local heat transfer coefficients, for both major and minor planes for the two jet aspect ratios.
Chavan, Shreyas; Cha, Hyeongyun; Orejon, Daniel; Nawaz, Kashif; Singla, Nitish; Yeung, Yip Fun; Park, Deokgeun; Kang, Dong Hoon; Chang, Yujin; Takata, Yasuyuki; Miljkovic, Nenad
2016-08-09
Understanding the fundamental mechanisms governing vapor condensation on nonwetting surfaces is crucial to a wide range of energy and water applications. In this paper, we reconcile classical droplet growth modeling barriers by utilizing two-dimensional axisymmetric numerical simulations to study individual droplet heat transfer on nonwetting surfaces (90° < θa < 170°). Incorporation of an appropriate convective boundary condition at the liquid-vapor interface reveals that the majority of heat transfer occurs at the three phase contact line, where the local heat flux can be up to 4 orders of magnitude higher than at the droplet top. Droplet distribution theory is incorporated to show that previous modeling approaches underpredict the overall heat transfer by as much as 300% for dropwise and jumping-droplet condensation. To verify our simulation results, we study condensed water droplet growth using optical and environmental scanning electron microscopy on biphilic samples consisting of hydrophobic and nanostructured superhydrophobic regions, showing excellent agreement with the simulations for both constant base area and constant contact angle growth regimes. Our results demonstrate the importance of resolving local heat transfer effects for the fundamental understanding and high fidelity modeling of phase change heat transfer on nonwetting surfaces.
Li, Xin; Cai, Yu; Moloney, Brendan; Chen, Yiyi; Huang, Wei; Woods, Mark; Coakley, Fergus V; Rooney, William D; Garzotto, Mark G; Springer, Charles S
2016-08-01
Dynamic-Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) has been used widely for clinical applications. Pharmacokinetic modeling of DCE-MRI data that extracts quantitative contrast reagent/tissue-specific model parameters is the most investigated method. One of the primary challenges in pharmacokinetic analysis of DCE-MRI data is accurate and reliable measurement of the arterial input function (AIF), which is the driving force behind all pharmacokinetics. Because of effects such as inflow and partial volume averaging, AIF measured from individual arteries sometimes require amplitude scaling for better representation of the blood contrast reagent (CR) concentration time-courses. Empirical approaches like blinded AIF estimation or reference tissue AIF derivation can be useful and practical, especially when there is no clearly visible blood vessel within the imaging field-of-view (FOV). Similarly, these approaches generally also require magnitude scaling of the derived AIF time-courses. Since the AIF varies among individuals even with the same CR injection protocol and the perfect scaling factor for reconstructing the ground truth AIF often remains unknown, variations in estimated pharmacokinetic parameters due to varying AIF scaling factors are of special interest. In this work, using simulated and real prostate cancer DCE-MRI data, we examined parameter variations associated with AIF scaling. Our results show that, for both the fast-exchange-limit (FXL) Tofts model and the water exchange sensitized fast-exchange-regime (FXR) model, the commonly fitted CR transfer constant (K(trans)) and the extravascular, extracellular volume fraction (ve) scale nearly proportionally with the AIF, whereas the FXR-specific unidirectional cellular water efflux rate constant, kio, and the CR intravasation rate constant, kep, are both AIF scaling insensitive. This indicates that, for DCE-MRI of prostate cancer and possibly other cancers, kio and kep may be more suitable imaging biomarkers for cross-platform, multicenter applications. Data from our limited study cohort show that kio correlates with Gleason scores, suggesting that it may be a useful biomarker for prostate cancer disease progression monitoring. Copyright © 2016 Elsevier Inc. All rights reserved.
Sverdlova, Nina S; Lambertz, Markus; Witzel, Ulrich; Perry, Steven F
2012-01-01
Various parts of the respiratory system play an important role in temperature control in birds. We create a simplified computational fluid dynamics (CFD) model of heat exchange in the trachea and air sacs of the domestic fowl (Gallus domesticus) in order to investigate the boundary conditions for the convective and evaporative cooling in these parts of the respiratory system. The model is based upon published values for respiratory times, pressures and volumes and upon anatomical data for this species, and the calculated heat exchange is compared with experimentally determined values for the domestic fowl and a closely related, wild species. In addition, we studied the trachea histologically to estimate the thickness of the heat transfer barrier and determine the structure and function of moisture-producing glands. In the transient CFD simulation, the airflow in the trachea of a 2-dimensional model is evoked by changing the volume of the simplified air sac. The heat exchange between the respiratory system and the environment is simulated for different ambient temperatures and humidities, and using two different models of evaporation: constant water vapour concentration model and the droplet injection model. According to the histological results, small mucous glands are numerous but discrete serous glands are lacking on the tracheal surface. The amount of water and heat loss in the simulation is comparable with measured respiratory values previously reported. Tracheal temperature control in the avian respiratory system may be used as a model for extinct or rare animals and could have high relevance for explaining how gigantic, long-necked dinosaurs such as sauropoda might have maintained a high metabolic rate.
Bateman, J; Proctor, M; Buchnev, O; Podoliak, N; D'Alessandro, G; Kaczmarek, M
2014-07-01
The voltage transfer function is a rapid and visually effective method to determine the electrical response of liquid crystal (LC) systems using optical measurements. This method relies on crosspolarized intensity measurements as a function of the frequency and amplitude of the voltage applied to the device. Coupled with a mathematical model of the device it can be used to determine the device time constants and electrical properties. We validate the method using photorefractive LC cells and determine the main time constants and the voltage dropped across the layers using a simple nonlinear filter model.
Hydrogen slush density reference system
NASA Technical Reports Server (NTRS)
Weitzel, D. H.; Lowe, L. T.; Ellerbruch, D. A.; Cruz, J. E.; Sindt, C. F.
1971-01-01
A hydrogen slush density reference system was designed for calibration of field-type instruments and/or transfer standards. The device is based on the buoyancy principle of Archimedes. The solids are weighed in a low-mass container so arranged that solids and container are buoyed by triple-point liquid hydrogen during the weighing process. Several types of hydrogen slush density transducers were developed and tested for possible use as transfer standards. The most successful transducers found were those which depend on change in dielectric constant, after which the Clausius-Mossotti function is used to relate dielectric constant and density.
Generation of constant-amplitude radio-frequency sweeps at a tunnel junction for spin resonance STM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paul, William; Lutz, Christopher P.; Heinrich, Andreas J.
2016-07-15
We describe the measurement and successful compensation of the radio-frequency transfer function of a scanning tunneling microscope over a wide frequency range (15.5–35.5 GHz) and with high dynamic range (>50 dB). The precise compensation of cabling resonances and attenuations is critical for the production of constant-voltage frequency sweeps for electric-field driven electron spin resonance (ESR) experiments. We also demonstrate that a well-calibrated tunnel junction voltage is necessary to avoid spurious ESR peaks that can arise due to a non-flat transfer function.
Air sparging: Air-water mass transfer coefficients
NASA Astrophysics Data System (ADS)
Braida, Washington J.; Ong, Say Kee
1998-12-01
Experiments investigating the mass transfer of several dissolved volatile organic compounds (VOCs) across the air-water interface were conducted using a single-air- channel air-sparging system. Three different porous media were used in the study. Air velocities ranged from 0.2 cm s-1 to 2.5 cm s-1. The tortuosity factor for each porous medium and the air-water mass transfer coefficients were estimated by fitting experimental data to a one-dimensional diffusion model. The estimated mass transfer coefficients KG ranged from 1.79 × 10-3 cm min-1 to 3.85 × 10-2 cm min-1. The estimated lumped gas phase mass transfer coefficients KGa were found to be directly related to the air diffusivity of the VOC, air velocity, and particle size, and inversely related to the Henry's law constant of the VOCs. Of the four parameters investigated, the parameter that controlled or had a dominant effect on the lumped gas phase mass transfer coefficient was the air diffusivity of the VOC. Two empirical models were developed by correlating the Damkohler and the modified air phase Sherwood numbers with the air phase Peclet number, Henry's law constant, and the reduced mean particle size of porous media. The correlation developed in this study may be used to obtain better predictions of mass transfer fluxes for field conditions.
VOLUME COMPENSATING MEANS FOR PULSATING PUMPS
Weaver, D.L.W.; MacCormack, R.S. Jr.
1959-12-01
A double diaphragm, two-liquid pulsating pump for remote control use, having as an improvement an apparatus for maintaining constant the volume of the liquid such as kerosene between the two diaphragms is described. Phase difficulties encountered in the operation of such pumps when the volume of the liquid is altered by changes in temperature are avoided.
Tech Transfer News. Volume 9, No. 1
NASA Technical Reports Server (NTRS)
Victor, Megan E. (Compiler)
2017-01-01
Kennedy Tech Transfer News is the magazine of the Technology Transfer Office at NASA's Kennedy Space Center, Florida. This magazine seeks to inform and educate civil servant and contractor personnel at Kennedy Space Center about actively participating in achieving NASA's technology transfer and partnership goals.
Zhang, J; Zuo, P L; Cheng, K B; Yu, A H; Cheng, X G
2016-04-18
To investigate the feasibility of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) parameters in differentiating musculoskeletal tumors with different behaviours of pathological findings before therapy. A total of 34 subjects of musculoskeletal tumors were involved in this retrospective analysis. DCE-MRI was performed using a fat-saturated 3D VIBE (volumetric interpolated breath-hold exam) imaging sequence with following parameters: FA, 10 degree; TR/TE, 5.6/2.4 ms; slice thickness, 4.0 mm with no intersection gap; field of view, 310 mm×213 mm; matrix, 256×178; voxel size, 1.2 mm×1.2 mm×4.0 mm; parallel imaging acceleration factor. The actuation time for the DCE-MRI sequence was 255 s with a temporal resolution of 5 s and 40 image volumes. Using pathological results as a gold standard, tumors were divided into benign, borderline and malignant tumors. Toft's model was used for calculation of K(trans) (volume transfer constant), Ve (extravascular extracellular space distribute volume per unit tissue volume) and Kep (microvascular permeability reflux constant). Those parameters were compared between the lesions and the control tissues using paired t tests. The one-way analysis of variance was used to assess the difference among benign, borderline and malignant tumors. P values <0.05 difference was statistically significant. Based on the WHO Classification of Tumours of Soft Tissue and Bone(2012) criteria, 34 patients were divided into three groups: 11 for benign tumors, 12 for borderline tumors, and 11 for malignancies. Compared with control tissues, K(trans) and Kep showed no difference, but Ve was increased in benign tumors, Kep showed no difference, but K(trans) and Ve were increased in borderline tumors,K(trans), Kep and Ve were increased in malignant tumors. K(trans) (P<0.001) and Kep (P<0.01) were significantly higher in malignant tumors than in benign and borderline tumors, but did not show any difference between benign tumors and borderline tumors. Ve was significantly higher in malignant tumors than in benign (P<0.05), but did not show any difference between malignant and borderline tumors, benign tumors and borderline tumors (P>0.05). DCE-MRI technique is useful to evaluate the pathological behaviour of musculoskeletal tumors. The quantitative analysis of DCE parameters in conjunction with conventional MR images can improve the accuracy of musculoskeletal tumor qualitative analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, S; Rimner, A; Hayes, S
Purpose: To use dual-input tracer kinetic modeling of the lung for mapping spatial heterogeneity of various kinetic parameters in malignant MPM Methods: Six MPM patients received DCE-MRI as part of their radiation therapy simulation scan. 5 patients had the epitheloid subtype of MPM, while one was biphasic. A 3D fast-field echo sequence with TR/TE/Flip angle of 3.62ms/1.69ms/15° was used for DCE-MRI acquisition. The scan was collected for 5 minutes with a temporal resolution of 5-9 seconds depending on the spatial extent of the tumor. A principal component analysis-based groupwise deformable registration was used to co-register all the DCE-MRI series formore » motion compensation. All the images were analyzed using five different dual-input tracer kinetic models implemented in analog continuous-time formalism: the Tofts-Kety (TK), extended TK (ETK), two compartment exchange (2CX), adiabatic approximation to the tissue homogeneity (AATH), and distributed parameter (DP) models. The following parameters were computed for each model: total blood flow (BF), pulmonary flow fraction (γ), pulmonary blood flow (BF-pa), systemic blood flow (BF-a), blood volume (BV), mean transit time (MTT), permeability-surface area product (PS), fractional interstitial volume (vi), extraction fraction (E), volume transfer constant (Ktrans) and efflux rate constant (kep). Results: Although the majority of patients had epitheloid histologies, kinetic parameter values varied across different models. One patient showed a higher total BF value in all models among the epitheloid histologies, although the γ value was varying among these different models. In one tumor with a large area of necrosis, the TK and ETK models showed higher E, Ktrans, and kep values and lower interstitial volume as compared to AATH and DP and 2CX models. Kinetic parameters such as BF-pa, BF-a, PS, Ktrans values were higher in surviving group compared to non-surviving group across most models. Conclusion: Dual-input tracer kinetic modeling is feasible in determining micro-vascular characteristics of MPM. This project was supported from Cycle for Survival and MSK Imaging and radiation science (IMRAS) grants.« less
Reactions of small negative ions with O2(a 1[Delta]g) and O2(X 3[Sigma]g-)
NASA Astrophysics Data System (ADS)
Midey, Anthony; Dotan, Itzhak; Seeley, J. V.; Viggiano, A. A.
2009-02-01
The rate constants and product ion branching ratios were measured for the reactions of various small negative ions with O2(X 3[Sigma]g-) and O2(a 1[Delta]g) in a selected ion flow tube (SIFT). Only NH2- and CH3O- were found to react with O2(X) and both reactions were slow. CH3O- reacted by hydride transfer, both with and without electron detachment. NH2- formed both OH-, as observed previously, and O2-, the latter via endothermic charge transfer. A temperature study revealed a negative temperature dependence for the former channel and Arrhenius behavior for the endothermic channel, resulting in an overall rate constant with a minimum at 500 K. SF6-, SF4-, SO3- and CO3- were found to react with O2(a 1[Delta]g) with rate constants less than 10-11 cm3 s-1. NH2- reacted rapidly with O2(a 1[Delta]g) by charge transfer. The reactions of HO2- and SO2- proceeded moderately with competition between Penning detachment and charge transfer. SO2- produced a SO4- cluster product in 2% of reactions and HO2- produced O3- in 13% of the reactions. CH3O- proceeded essentially at the collision rate by hydride transfer, again both with and without electron detachment. These results show that charge transfer to O2(a 1[Delta]g) occurs readily if the there are no restrictions on the ion beyond the reaction thermodynamics. The SO2- and HO2- reactions with O2(a) are the only known reactions involving Penning detachment besides the reaction with O2- studied previously [R.S. Berry, Phys. Chem. Chem. Phys., 7 (2005) 289-290].
Dynamics of networks of excitatory and inhibitory neurons in response to time-dependent inputs.
Ledoux, Erwan; Brunel, Nicolas
2011-01-01
We investigate the dynamics of recurrent networks of excitatory (E) and inhibitory (I) neurons in the presence of time-dependent inputs. The dynamics is characterized by the network dynamical transfer function, i.e., how the population firing rate is modulated by sinusoidal inputs at arbitrary frequencies. Two types of networks are studied and compared: (i) a Wilson-Cowan type firing rate model; and (ii) a fully connected network of leaky integrate-and-fire (LIF) neurons, in a strong noise regime. We first characterize the region of stability of the "asynchronous state" (a state in which population activity is constant in time when external inputs are constant) in the space of parameters characterizing the connectivity of the network. We then systematically characterize the qualitative behaviors of the dynamical transfer function, as a function of the connectivity. We find that the transfer function can be either low-pass, or with a single or double resonance, depending on the connection strengths and synaptic time constants. Resonances appear when the system is close to Hopf bifurcations, that can be induced by two separate mechanisms: the I-I connectivity and the E-I connectivity. Double resonances can appear when excitatory delays are larger than inhibitory delays, due to the fact that two distinct instabilities exist with a finite gap between the corresponding frequencies. In networks of LIF neurons, changes in external inputs and external noise are shown to be able to change qualitatively the network transfer function. Firing rate models are shown to exhibit the same diversity of transfer functions as the LIF network, provided delays are present. They can also exhibit input-dependent changes of the transfer function, provided a suitable static non-linearity is incorporated.
NASA Astrophysics Data System (ADS)
Ali, Ismat H.
2015-06-01
The kinetics of oxidation of [CrIII(atda)(H2O)2] (atda = anthranil- N, N-diacetato) complex by IO{4/-} was studied spectrophotometrically in aqueous solutions with pH range 2.20-3.34, 0.30 M ionic strength and in 20.0-40.0°C temperature range. The rate law of the reaction exhibited saturation kinetics. Values of the rate constant for the electron transfer process, the equilibrium constant for dissociation of [CrIII (atda)(H2O)2] to [CrIII (atda) (H2O)OH]+ + H+ and the pre-equilibrium formation constant were calculated. The thermodynamic activation parameters are reported. It is proposed that electron transfer proceeds through an inner-sphere mechanism via coordination of the IVII to chromium(III).
Experimental study on convective heat transfer of TiO2 nanofluids
NASA Astrophysics Data System (ADS)
Vakili, M.; Mohebbi, A.; Hashemipour, H.
2013-08-01
In this study, nanofluids with different TiO2 nanoparticle concentrations were synthesized and measured in different constant heat fluxes for their heat transfer behavior upon flowing through a vertical pipe. Addition of nanoparticles into the base fluid enhances the forced convective heat transfer coefficient. The results show that the enhancement of the convective heat transfer coefficient in the mixture consisting of ethylene glycol and distilled water is more than distilled water as a base fluid.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nie, K; Yue, N; Jabbour, S
Purpose: To compare three different pharmacokinetic models for analysis of dynamic-contrast-enhanced (DCE)-CT data with respect to different acquisition times and location of region of interest. Methods: Eight rectal cancer patients with pre-treatment DCE-CTs were included. The dynamic sequence started 4–10seconds(s) after the injection of contrast agent. The scan included a 110s acquisition with intervals of 40×1s+15×3s+4×6s. An experienced oncologist outlined the tumor region. Hotspots with top-5%-enhancement were also identified. Pharmacokinetic analysis was performed using three different models: deconvolution method, Patlak model, and modified Toft’s model. Perfusion parameters as blood flow (BF), blood volume (BV), mean transit time (MTT), permeability-surface-area-product (PS),more » volume transfer constant (Ktrans), and flux rate constant (Kep), were compared with respect to different acquisition times of 45s, 65s, 85s and 105s. Both hotspot and whole-volume variances were also assessed. The differences were compared using the Wilcoxon matched-pairs test and Bland-Altman plots. Results: Moderate correlation was observed for various perfusion parameters (r=0.56–0.72, p<0.0001) but the Wilcoxon test revealed a significant difference among the three models (P < .001). Significant differences in PS were noted between acquisitions of 45s versus longer time of 85s or 105s (p<0.05) using Patlak but not with the deconvolution method. In addition, measurements varied substantially between whole-volume vs. hotspot analysis. Conclusion: The radiation dose of DCE-CT was on average 1.5 times of an abdomen/pelvic CT, which is not insubstantial. To take the DCE-CT forward as a biomarker in oncology, prospective studies should be carefully designed with the optimal image acquisition and analysis technique. Our study suggested that: (1) different kinetic models are not interchangeable; (2) a 45s acquisition might not be sufficient for reliable permeability measurement in rectal cancer using Patlak model, but might be achievable using deconvolution method; and (3) local variations existed inside the tumor, and both whole-volume-averaged and local-heterogeneity analysis is recommended for future quantitative studies. This work is supported by the National High-tech R&D program for Young Scientists by the Ministry of Science and Technology of China (Grant No. 2015AA020917), Natural Science Foundation of China (NSFC Grant No. 81201091).« less
Thermo-mechanical concepts applied to modeling liquid propellant rocket engine stability
NASA Astrophysics Data System (ADS)
Kassoy, David R.; Norris, Adam
2016-11-01
The response of a gas to transient, spatially distributed energy addition can be quantified mathematically using thermo-mechanical concepts available in the literature. The modeling demonstrates that the ratio of the energy addition time scale to the acoustic time scale of the affected volume, and the quantity of energy added to that volume during the former determine the whether the responses to heating can be described as occurring at nearly constant volume, fully compressible or nearly constant pressure. Each of these categories is characterized by significantly different mechanical responses. Application to idealized configurations of liquid propellant rocket engines provides an opportunity to identify physical conditions compatible with gasdynamic disturbances that are sources of engine instability. Air Force Office of Scientific Research.
NASA Astrophysics Data System (ADS)
Dhanai, Ruchika; Rana, Puneet; Kumar, Lokendra
2016-05-01
The motivation behind the present analysis is to focus on magneto-hydrodynamic flow and heat transfer characteristics of non-Newtonian fluid (Sisko fluid) past a permeable nonlinear shrinking sheet utilizing nanoparticles involving convective boundary condition. The non-homogenous nanofluid transport model considering the effect of Brownian motion, thermophoresis, suction/injection and no nanoparticle flux at the sheet with convective boundary condition has been solved numerically by the RKF45 method with shooting technique. Critical points for various pertinent parameters are evaluated in this study. The dual solutions (both first and second solutions) are captured in certain range of material constant (nc< n < ∞) , mass transfer parameter (sc < s < ∞) and shrinking parameter (χc < χ < 0) . For both the branches (upper and lower branch), the rate of heat transfer is an increasing function of the power-law index, Prandtl number and Biot number, whereas it is a decreasing function of the material constant and thermophoresis parameter.
Photo-dynamics of roseoflavin and riboflavin in aqueous and organic solvents
NASA Astrophysics Data System (ADS)
Zirak, P.; Penzkofer, A.; Mathes, T.; Hegemann, P.
2009-03-01
Roseoflavin (8-dimethylamino-8-demethyl- D-riboflavin) and riboflavin in aqueous and organic solvents are studied by optical absorption spectroscopy, fluorescence spectroscopy, and fluorescence decay kinetics. Solvent polarity dependent absorption shifts are observed. The fluorescence quantum yields are solvent dependent. For roseoflavin the fluorescence decay shows a bi-exponential dependence (ps to sub-ps time constant, and 100 ps to a few ns time constant). The roseoflavin photo-dynamics is explained in terms of fast intra-molecular charge transfer (diabatic electron transfer) from the dimethylamino electron donor group to the pteridin carbonyl electron acceptor followed by intra-molecular charge recombination. The fast fluorescence component is due to direct locally-excited-state emission, and the slow fluorescence component is due to delayed locally-excited-state emission and charge transfer state emission. The fluorescence decay of riboflavin is mono-exponential. The S 1-state potential energy surface is determined by vibronic relaxation and solvation dynamics due to excited-state dipole moment changes (adiabatic optical electron transfer).
NASA Technical Reports Server (NTRS)
Green, R. N.; Kibler, J. F.; Young, G. R.
1974-01-01
A method is presented for factoring a two-impulse orbital transfer into a three- or four-impulse transfer which solves the rendezvous problem and satisfies an intermediate timing constraint. Both the time of rendezvous and the intermediate time of a alinement are formulated as any element of a finite sequence of times. These times are integer multiples of a constant plus an additive constant. The rendezvous condition is an equality constraint, whereas the intermediate alinement is an inequality constraint. The two timing constraints are satisfied by factoring the impulses into collinear parts that vectorially sum to the original impulse and by varying the resultant period differences and the number of revolutions in each orbit. Five different types of solutions arise by considering factoring either or both of the two impulses into two or three parts with a limit for four total impulses. The impulse-factoring technique may be applied to any two-impulse transfer which has distinct orbital periods.
NASA Astrophysics Data System (ADS)
Singh, Neeti; Ahmad, Afaq
2010-08-01
The charge transfer complex of 1-Naphthylamine as a donor with π-acceptor picric acid has been studied spectrophotometrically in different solvents at room temperature. The results indicate that the formation of charge transfer complex is high in less polar solvent. The stoichiometry of the complex was found to be 1:1 by straight line method. The data are analysed in terms of formation constant ( KCT), molar extinction coefficient ( ɛCT), standard free energy (Δ G o), oscillator strength ( ƒ), transition dipole moment ( μ EN), resonance energy ( R N) and ionization potential ( I D). It is concluded that the formation constant ( KCT) of the complex is found to be depends upon the nature of both electron acceptor and donor and also on the polarity of solvents. Further the charge transfer molecular complex between picric acid and 1-Naphthylamine is stabilized by hydrogen bonding.
Simple control laws for low-thrust orbit transfers
NASA Technical Reports Server (NTRS)
Petropoulos, Anastassios E.
2003-01-01
Two methods are presented by which to determine both a thrust direction and when to apply thrust to effect specified changes in any of the orbit elements except for true anomaly, which is assumed free. The central body is assumed to be a point mass, and the initial and final orbits are assumed closed. Thrust, when on, is of a constant value, and specific impulse is constant. The thrust profiles derived from the two methods are not propellant-optimal, but are based firstly on the optimal thrust directions and location on the osculating orbit for changing each of the orbit elements and secondly on the desired changes in the orbit elements. Two examples of transfers are presented, one in semimajor axis and inclination, and one in semimajor axis and eccentricity. The latter compares favourably with a propellant-optimized transfer between the same orbits. The control laws have few input parameters, but can still capture the complexity of a wide variety of orbit transfers.
Experimental studies of fundamental issues in electron transfer through nanometer scale devices
NASA Astrophysics Data System (ADS)
Yamamoto, Hiromichi
Electron transfer reactions constitute many of the primary events in materials science, chemistry, physics, and biochemistry, e.g. the electron transport properties and photoexcited processes in solids and molecules, chemical reactions, corrosion, photosynthesis, respiration, and so forth. A self-assembled monolayer (SAM) film provides us with a unique environment not only to understand and manipulate the surface electronic properties of a solid, but also to control electron transfer processes at the interface. The first topic in this thesis describes the structure and electron tunneling characterization of alkanethiol SAMs on InP(100). Angle-resolved X-ray photoelectron spectroscopy was used to characterize the bonding of alkanethiols to n-InP surfaces and to measure the monolayer thickness. The results showed that the sulfur binds to In atoms on the surface, and provided film thicknesses of 6.4 A for C8H17SH, 11.1 A for C12H25SH, and 14.9 A for C16H 33SH, resulting in an average tilt angle of 55°. The analysis indicated that super-exchange coupling between the alkane chains plays an important role in defining electron tunneling barriers, especially for highly tilted chains. The second topic describes studies of cytochrome c bound to pure and mixed SAMs of o-terminated alkanethiol (terminated with pyridine, imidazole or nitrile groups) and alkanethiol on gold. Electrochemical methods are used to determine electron transfer rate constants of cytochrome c, and scanning tunneling microscopy to observe the cytochrome c on the SAM. Detailed analysis revealed direct association of the heme of cytochrome c with the terminal groups of the SAMs and a 'turning-over' of the electron transfer of cytochrome c from adiabatic to non-adiabatic regime. The third topic describes studies of oxidation and reduction of cytochrome c in solution through eleven different self-assembled monolayers (SAMs) on gold electrodes by cyclic voltammetry. Electron transfer rate constants of cytochrome c through the eleven SAMs ranged from ≤10-4 to ˜10-1 cm/sec. A strong correlation between the electron transfer rate constants and the hydrogen bonding ability of the SAM is identified. This correlation is discussed in terms of the dependence of the rate constant on the outer-sphere reorganization energy and the electronic coupling between the cytochrome and the differently terminated monolayer films.
Cho, H. Jean; Jaffe, Peter R.; Smith, James A.
1993-01-01
This paper describes laboratory and field experiments which were conducted to study the dynamics of trichloroethylene (TCE) as it volatilized from contaminated groundwater and diffused in the presence of infiltrating water through the unsaturated soil zone to the land surface. The field experiments were conducted at the Picatinny Arsenal, which is part of the United States Geological Survey Toxic Substances Hydrology Program. In both laboratory and field settings the gas and water phase concentrations of TCE were not in equilibrium during infiltration. Gas-water mass transfer rate constants were calibrated to the experimental data using a model in which the water phase was treated as two phases: a mobile water phase and an immobile water phase. The mass transfer limitations of a volatile organic compound between the gas and liquid phases were described explicitly in the model. In the laboratory experiment the porous medium was nonsorbing, and water infiltration rates ranged from 0.076 to 0.28 cm h−1. In the field experiment the water infiltration rate was 0.34 cm h−1, and sorption onto the soil matrix was significant. The laboratory-calibrated gas-water mass transfer rate constant is 3.3×10−4 h−1 for an infiltration rate of 0.076 cm h−1 and 1.4×10−3 h−1 for an infiltration rate of 0.28 cm h−1. The overall mass transfer rate coefficients, incorporating the contribution of mass transfer between mobile and immobile water phases and the variation of interfacial area with moisture content, range from 3×10−4 h−1 to 1×10−2 h−1. A power law model relates the gas-water mass transfer rate constant to the infiltration rate and the fraction of the water phase which is mobile. It was found that the results from the laboratory experiments could not be extrapolated to the field. In order to simulate the field experiment the very slow desorption of TCE from the soil matrix was incorporated into the mathematical model. When desorption from the soil matrix was added to the model, the calibrated gas-water mass transfer rate constant is 2 orders of magnitude lower than that predicted using the power law model developed for the nonsorbing laboratory soil.
Grinolds, Darcy D W; Brown, Patrick R; Harris, Daniel K; Bulovic, Vladimir; Bawendi, Moungi G
2015-01-14
We study the dielectric constant of lead sulfide quantum dot (QD) films as a function of the volume fraction of QDs by varying the QD size and keeping the ligand constant. We create a reliable QD sizing curve using small-angle X-ray scattering (SAXS), thin-film SAXS to extract a pair-distribution function for QD spacing, and a stacked-capacitor geometry to measure the capacitance of the thin film. Our data support a reduced dielectric constant in nanoparticles.
Prakash, J; Ramesh, K; Tripathi, D; Kumar, R
2018-07-01
A numerical simulation is presented to study the heat and flow characteristics of blood flow altered by electroosmosis through the tapered micro-vessels. Blood is assumed as non-Newtonian (micropolar) nanofluids. The flow regime is considered as asymmetric diverging (tapered) microchannel for more realistic micro-vessels which is produced by choosing the peristaltic wave train on the walls to have different amplitudes and phase. The Rosseland approximation is employed to model the radiation heat transfer and temperatures of the walls are presumed constants. The mathematical formulation of the present problem is simplified under the long-wavelength, low-Reynolds number and Debye-Hückel linearization approximations. The influence of various dominant physical parameters are discussed for axial velocity, microrotation distribution, thermal temperature distribution and nanoparticle volume fraction field. However, our foremost emphasis is to determine the effects of thermal radiation and coupling number on the axial velocity and microrotation distribution beneath electroosmotic environment. This analysis places a significant observation on the thermal radiation and coupling number which plays an influential role in hearten fluid velocity. This study is encouraged by exploring the nanofluid-dynamics in peristaltic transport as symbolized by heat transport in biological flows and also in novel pharmacodynamics pumps and gastro-intestinal motility enhancement. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Reisgen, Uwe; Schleser, Markus; Mokrov, Oleg; Zabirov, Alexander
2011-06-01
A two dimensional transient numerical analysis and computational module for simulation of electrical and thermal characteristics during electrode melting and metal transfer involved in Gas-Metal-Arc-Welding (GMAW) processes is presented. Solution of non-linear transient heat transfer equation is carried out using a control volume finite difference technique. The computational module also includes controlling and regulation algorithms of industrial welding power sources. The simulation results are the current and voltage waveforms, mean voltage drops at different parts of circuit, total electric power, cathode, anode and arc powers and arc length. We describe application of the model for normal process (constant voltage) and for pulsed processes with U/I and I/I-modulation modes. The comparisons with experimental waveforms of current and voltage show that the model predicts current, voltage and electric power with a high accuracy. The model is used in simulation package SimWeld for calculation of heat flux into the work-piece and the weld seam formation. From the calculated heat flux and weld pool sizes, an equivalent volumetric heat source according to Goldak model, can be generated. The method was implemented and investigated with the simulation software SimWeld developed by the ISF at RWTH Aachen University.
Modeling the Flow of Rarefied Gases at NASA
NASA Technical Reports Server (NTRS)
Forrest E. Lumpkin, III
2012-01-01
At modest temperatures, the thermal energy of atmospheric diatomic gases such as nitrogen is primarily distributed between only translational and rotational energy modes. Furthermore, these energy modes are fully excited such that the specific heat at constant volume is well approximated by the simple expression C(sub v) = 5/2 R. As a result, classical mechanics provides a suitable approximation at such temperatures of the true quantum mechanical behavior of the inter-molecular collisions of such molecules. Using classical mechanics, the transfer of energy between rotational and translation energy modes is studied. The approach of Lordi and Mates is adopted to compute the trajectories and time dependent rotational orientations and energies during the collision of two non-polar diatomic molecules. A Monte-Carlo analysis is performed collecting data from the results of many such simulations in order to estimate the rotational relaxation time. A Graphical Processing Unit (GPU) is employed to improve the performance of the Monte-Carlo analysis. A comparison of the performance of the GPU implementation to an implementation on traditional computer architecture is made. Effects of the assumed inter-molecular potential on the relaxation time are studied. The seminar will also present highlights of computational analyses performed at NASA Johnson Space Center of heat transfer in rarefied gases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu Weilin; Li Songtao; Zhou Xiaochun
2006-05-07
In the present work a nonmonotonic dependence of standard rate constant (k{sup 0}) on reorganization energy ({lambda}) was discovered qualitatively from electron transfer (Marcus-Hush-Levich) theory for heterogeneous electron transfer processes on electrode surface. It was found that the nonmonotonic dependence of k{sup 0} on {lambda} is another result, besides the disappearance of the famous Marcus inverted region, coming from the continuum of electronic states in electrode: with the increase of {lambda}, the states for both Process I and Process II ET processes all vary from nonadiabatic to adiabatic state continuously, and the {lambda} dependence of k{sup 0} for Process Imore » is monotonic thoroughly, while for Process II on electrode surface the {lambda} dependence of k{sup 0} could show a nonmonotonicity.« less
Two-dimensional numerical simulation of a Stirling engine heat exchanger
NASA Technical Reports Server (NTRS)
Ibrahim, Mounir; Tew, Roy C.; Dudenhoefer, James E.
1989-01-01
The first phase of an effort to develop multidimensional models of Stirling engine components is described. The ultimate goal is to model an entire engine working space. Parallel plate and tubular heat exchanger models are described, with emphasis on the central part of the channel (i.e., ignoring hydrodynamic and thermal end effects). The model assumes laminar, incompressible flow with constant thermophysical properties. In addition, a constant axial temperature gradient is imposed. The governing equations describing the model have been solved using the Crack-Nicloson finite-difference scheme. Model predictions are compared with analytical solutions for oscillating/reversing flow and heat transfer in order to check numerical accuracy. Excellent agreement is obtained for flow both in circular tubes and between parallel plates. The computational heat transfer results are in good agreement with the analytical heat transfer results for parallel plates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jansen, Jacobus F.A.; Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, New York; Department of Radiology, Maastricht University Medical Center, Maastricht
2012-01-01
Purpose: To correlate proton magnetic resonance spectroscopy ({sup 1}H-MRS), dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), and {sup 18}F-labeled fluorodeoxyglucose positron emission tomography ([{sup 18}F]FDG PET) of nodal metastases in patients with head and neck squamous cell carcinoma (HNSCC) for assessment of tumor biology. Additionally, pretreatment multimodality imaging was evaluated for its efficacy in predicting short-term response to treatment. Methods and Materials: Metastatic neck nodes were imaged with {sup 1}H-MRS, DCE-MRI, and [{sup 18}F]FDG PET in 16 patients with newly diagnosed HNSCC, before treatment. Short-term patient radiological response was evaluated at 3 to 4 months. Correlations among {sup 1}H-MRS (choline concentrationmore » relative to water [Cho/W]), DCE-MRI (volume transfer constant [K{sup trans}]; volume fraction of the extravascular extracellular space [v{sub e}]; and redistribution rate constant [k{sub ep}]), and [{sup 18}F]FDG PET (standard uptake value [SUV] and total lesion glycolysis [TLG]) were calculated using nonparametric Spearman rank correlation. To predict short-term responses, logistic regression analysis was performed. Results: A significant positive correlation was found between Cho/W and TLG ({rho} = 0.599; p = 0.031). Cho/W correlated negatively with heterogeneity measures of standard deviation std(v{sub e}) ({rho} = -0.691; p = 0.004) and std(k{sub ep}) ({rho} = -0.704; p = 0.003). Maximum SUV (SUVmax) values correlated strongly with MRI tumor volume ({rho} = 0.643; p = 0.007). Logistic regression indicated that std(K{sup trans}) and SUVmean were significant predictors of short-term response (p < 0.07). Conclusion: Pretreatment multimodality imaging using {sup 1}H-MRS, DCE-MRI, and [{sup 18}F]FDG PET is feasible in HNSCC patients with nodal metastases. Additionally, combined DCE-MRI and [{sup 18}F]FDG PET parameters were predictive of short-term response to treatment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Y; Diwanji, T; Zhang, B
2015-06-15
Purpose: To determine the ability of pharmacokinetic parameters derived from dynamic contrast-enhanced MRI (DCE- MRI) acquired before and during concurrent chemotherapy and radiation therapy to predict clinical response in patients with head and neck cancer. Methods: Eleven patients underwent a DCE-MRI scan at three time points: 1–2 weeks before treatment, 4–5 weeks after treatment initiation, and 3–4 months after treatment completion. Post-processing of MRI data included correction to reduce motion artifacts. The arterial input function was obtained by measuring the dynamic tracer concentration in the jugular veins. The volume transfer constant (Ktrans), extracellular extravascular volume fraction (ve), rate constant (Kep;more » Kep = Ktrans/ve), and plasma volume fraction (vp) were computed for primary tumors and cervical nodal masses. Patients were categorized into two groups based on response to therapy at 3–4 months: responders (no evidence of disease) and partial responders (regression of disease). Responses of the primary tumor and nodes were evaluated separately. A linear classifier and receiver operating characteristic curve analyses were used to determine the best model for discrimination of responders from partial responders. Results: When the above pharmacokinetic parameters of the primary tumor measured before and during treatment were incorporated into the linear classifier, a discriminative accuracy of 88.9%, with sensitivity =100% and specificity = 66.7%, was observed between responders (n=6) and partial responders (n=3) for the primary tumor with the corresponding accuracy = 44.4%, sensitivity = 66.7%, and specificity of 0% for nodal masses. When only pre-treatment parameters were used, the accuracy decreased to 66.7%, with sensitivity = 66.7% and specificity = 66.7% for the primary tumor and decreased to 33.3%, sensitivity of 50%, and specificity of 0% for nodal masses. Conclusion: Higher accuracy, sensitivity, and specificity were obtained using DCE-MRI-derived pharmacokinetic parameters acquired before and during treatment as compared with those derived from the pre-treatment time-point, exclusively.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vasbinder, Michael John
2006-01-01
Chapters 1 and 2 dealt with the chemistry of superoxo-, hydroperoxo-, and oxo- complexes of chromium, rhodium and cobalt. Chapter 3 dealt with the mechanism of oxygen-atom transfer catalyzed by an oxo-complex of rhenium. In Chapter 1, it was shown that hydroperoxometal complexes of cobalt and rhodium react with superoxochromium and chromyl ions, generating reduced chromium species while oxidizing the hydroperoxometal ions to their corresponding superoxometal ions. It was shown that the chromyl and superoxochromium ions are the more powerful oxidants. Evidence supports hydrogen atom transfer from the hydroperoxometal ion to the oxidizing superoxochromium or chromyl ion as the reactionmore » mechanism. There is a significant H/D kinetic isotope effect. Comparisons to the rate constants of other known hydrogen atom transfer reactions show the expected correlation with bond dissociation energies. In Chapter 2, it was found that the superoxometal complexes Cr{sub aq}OO 2+ and Rh(NH 3) 4(H 2O)OO 2+ oxidize stable nitroxyl radicals of the TEMPO series with rate constants that correlate with the redox potentials of both the oxidant and reductant. These reactions fit the Marcus equation for electron transfer near the theoretical value. Acid catalysis is important to the reaction, especially the thermodynamically limited cases involving Rh(NH 3) 4(H 2O)OO 2+ as the oxidant. The rate constants are notably less than those measured in the reaction between the same nitroxyl radicals and other strong free-radical oxidants, an illustration of the delocalized and stabilized nature of the superoxometal ions. Chapter 3 showed that oxo-rhenium catalysts needed a nucleophile to complete the catalytic oxygen-atom transfer from substituted pyridine-N-oxides to triphenylphosphine. The reaction was studied by introducing various pyridine-derived nucleophiles and monitoring their effect on the rate, then fitting the observed rate constants to the Hammett correlation. It was found that the values of the Hammett reaction constant PN were -1.0(1) for 4-nitro-2-methylpyridine-N-oxide and -2.6(4) for 4-methylpyridine-N-oxide as substrates. The negative value confirms pyridine is acting as a nucleophile. Nucleophiles other than pyridine derivatives were also tested. In the end, it was found that the most effective nucleophiles were the pyridine-N-oxides themselves, meaning that a second equivalent of substrate serves as the most efficient promoter of this oxygen-atom transfer reaction. This relative nucleophilicity of pyridines and pyridine-N-oxides is similar to what is observed in other OAT reactions generating high-valent metal-oxo species.« less
NASA Astrophysics Data System (ADS)
Yamaji, Minoru; Aoyama, Yutaka; Furukawa, Takashi; Itoh, Takao; Tobita, Seiji
2006-03-01
The mechanism of the H-atom transfer from phenols or thiophenols to triplet π,π ∗ 5,12-naphthacenequinone (5,12-NQ) has been examined by means of laser flash photolysis at 295 K. Based on the Hammett plots and the Rehm-Weller equation for the quenching rate constants, the phenolic H-atom transfer from phenols or thiophenols to triplet π,π ∗ 5,12-NQ is shown to proceed via the electron transfer followed by proton transfer. The previously proposed mechanism for H-atom transfer of π,π ∗ triplets, that proton transfer is followed by electron transfer, was not verified in the present systems.
Villemur, R; Déziel, E; Benachenhou, A; Marcoux, J; Gauthier, E; Lépine, F; Beaudet, R; Comeau, Y
2000-01-01
High-molecular-weight (HMW) polycyclic aromatic hydrocarbons (PAHs) are pollutants that persist in the environment due to their low solubility in water and their sequestration by soil and sediments. The addition of a water-immiscible, nonbiodegradable, and biocompatible liquid, silicone oil, to a soil slurry was studied to promote the desorption of PAHs from soil and to increase their bioavailability. First, the transfer into silicone oil of phenanthrene, pyrene, chrysene, and benzo[a]pyrene added to a sterilized soil (sandy soil with 0.65% total volatile solids) was measured for 4 days in three two-liquid-phase (TLP) slurry systems each containing 30% (w/v) soil but different volumes of silicone oil (2.5%, 7.5%, and 15% [v/v]). Except for chrysene, a high percentage of these PAHs was transferred from soil to silicone oil in the TLP slurry system containing 15% silicone oil. Rapid PAH transfer occurred during the first 8 h, probably resulting from the extraction of nonsolubilized and of poorly sorbed PAHs. This was followed by a period in which a slower but constant transfer occurred, suggesting extraction of more tightly bound PAHs. Second, a HMW PAH-degrading consortium was enriched in a TLP slurry system with a microbial population isolated from a creosote-contaminated soil. This consortium was then added to three other TLP slurry systems each containing 30% (w/v) sterilized soil that had been artificially contaminated with pyrene, chrysene, and benzo[a]pyrene, but different volumes of silicone oil (10%, 20%, and 30% [v/v]). The resulting TLP slurry bioreactors were much more efficient than the control slurry bioreactor containing the same contaminated soil but no oil phase. In the TLP slurry bioreactor containing 30% silicone oil, the rate of pyrene degradation was 19 mg L(-)(1) day(-)(1) and no pyrene was detected after 4 days. The degradation rates of chrysene and benzo[a]pyrene in the 30% TLP slurry bioreactor were, respectively, 3.5 and 0.94 mg L(-)(1) day(-)(1). Low degradation of pyrene and no significant degradation of chrysene and benzo[a]pyrene occurred in the slurry bioreactor. This is the first report in which a TLP system was combined with a slurry system to improve the biodegradation of PAHs in soil.
2012-06-01
calculates a constant convection heat transfer coefficient on the hot and cold side of the cooling jacket wall. The calculated maximum wall temperature for...regeneratively cools the combustion chamber and nozzle. The heat transferred to the fuel from cooling provides enough power to the turbine to power both... heat transfer at the throat compared to a bell nozzle. This increase in heat transfer surface area means more power to the turbine, increased chamber
Modified expression for bulb-tracer depletion—Effect on argon dating standards
Fleck, Robert J.; Calvert, Andrew T.
2014-01-01
40Ar/39Ar geochronology depends critically on well-calibrated standards, often traceable to first-principles K-Ar age calibrations using bulb-tracer systems. Tracer systems also provide precise standards for noble-gas studies and interlaboratory calibration. The exponential expression long used for calculating isotope tracer concentrations in K-Ar age dating and calibration of 40Ar/39Ar age standards may provide a close approximation of those values, but is not correct. Appropriate equations are derived that accurately describe the depletion of tracer reservoirs and concentrations of sequential tracers. In the modified expression the depletion constant is not in the exponent, which only varies as integers by tracer-number. Evaluation of the expressions demonstrates that systematic error introduced through use of the original expression may be substantial where reservoir volumes are small and resulting depletion constants are large. Traditional use of large reservoir to tracer volumes and the resulting small depletion constants have kept errors well less than experimental uncertainties in most previous K-Ar and calibration studies. Use of the proper expression, however, permits use of volumes appropriate to the problems addressed.
Stresses and elastic constants of crystalline sodium, from molecular dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schiferl, S.K.
1985-02-01
The stresses and the elastic constants of bcc sodium are calculated by molecular dynamics (MD) for temperatures to T = 340K. The total adiabatic potential of a system of sodium atoms is represented by pseudopotential model. The resulting expression has two terms: a large, strictly volume-dependent potential, plus a sum over ion pairs of a small, volume-dependent two-body potential. The stresses and the elastic constants are given as strain derivatives of the Helmholtz free energy. The resulting expressions involve canonical ensemble averages (and fluctuation averages) of the position and volume derivatives of the potential. An ensemble correction relates the resultsmore » to MD equilibrium averages. Evaluation of the potential and its derivatives requires the calculation of integrals with infinite upper limits of integration, and integrand singularities. Methods for calculating these integrals and estimating the effects of integration errors are developed. A method is given for choosing initial conditions that relax quickly to a desired equilibrium state. Statistical methods developed earlier for MD data are extended to evaluate uncertainties in fluctuation averages, and to test for symmetry. 45 refs., 10 figs., 4 tabs.« less
NASA Astrophysics Data System (ADS)
Wang, Lin; Blaha, Stephan; Kawazoe, Takaaki; Miyajima, Nobuyoshi; Katsura, Tomoo
2017-03-01
Dislocation recovery experiments were performed on predeformed olivine single crystals at pressures of 2, 7 and 12 GPa and a constant temperature of 1650 K to determine the pressure dependence of the annihilation rate constants for [100](010) edge dislocation (a dislocation) and [001](010) screw dislocation (c dislocation). The constants of both types of dislocations are comparable within 0.3 orders of magnitude. The activation volumes of a and c dislocations are small and identical within error: 2.7 ± 0.2 and 2.5 ± 0.9 cm3/mol, respectively. These values are slightly larger and smaller than those of Si lattice and grain-boundary diffusions in olivine, respectively. The small and identical activation volumes for the a and c dislocations suggest that the pressure-induced fabric transition is unlikely in the asthenosphere. The decrease in seismic anisotropy with depth down in the asthenosphere may be caused by the fabric transition from A type or B type to AG type with decreasing stress with depth.
An Assessment of Helium Evolution from Helium-Saturated Propellant Depressurization in Space
NASA Technical Reports Server (NTRS)
Nguyen, Bich N.; Best, Frederick; Wong, Tony; Kurwitz, Cable; McConnaughey, H. (Technical Monitor)
2001-01-01
Helium evolution from the transfer of helium-saturated propellant in space is quantified to assess its impacts from creating two-phase gas/liquid flow from the supply tank, gas injection into the receiving tank, and liquid discharge from the receiving tank. Propellant transfer takes place between two similar tanks whose maximum storage capacity is approximately 2.55 cubic meters each. The maximum on-orbit propellants transfer capability is 9000 lbm (fuel and oxidizer). The transfer line is approximately 1.27 cm in diameter and 6096 cm in length and comprised of the fluid interconnect system (FICS), the orbiter propellant transfer system (OPTS), and the International Space Station (ISS) propulsion module (ISSPM). The propellant transfer rate begins at approximately 11 liter per minute (lpm) and subsequently drops to approximately 0.5 lpm. The tank nominal operating pressure is approximately 1827 kPa (absolute). The line pressure drops for Monomethy1hydrazine (MMH) and Nitrogen tetroxide (NTO) at 11.3 lpm are approximately 202 kPa and 302 kPa, respectively. The pressure-drop results are based on a single-phase flow. The receiving tank is required to vent from approximately 1827 kPa to a lower pressure to affect propellant transfer. These pressure-drop scenarios cause the helium-saturated propellants to release excess helium. For tank ullage venting, the maximum volumes of helium evolved at tank pressure are approximately 0.5 ft3 for MMH and 2 ft3 for NTO. In microgravity environment, due to lack of body force, the helium evolution from a liquid body acts to propel it, which influences its fluid dynamics. For propellant transfer, the volume fractions of helium evolved at line pressure are 0.1% by volume for MMH and 0.6 % by volume for NTO at 11.3 lpm. The void fraction of helium evolved varies as an approximate second order power function of flow rate.
NASA Astrophysics Data System (ADS)
von Benten, R.; Charvat, A.; Link, O.; Abel, B.; Schwarzer, D.
2004-03-01
Femtosecond pump probe spectroscopy was employed to measure intramolecular vibrational energy redistribution (IVR) and intermolecular vibrational energy transfer (VET) of benzene in the gas phase and in supercritical (sc) CO 2. We observe two IVR time scales the faster of which proceeds within τ IVR(1)<0.5 ps. The slower IVR component has a time constant of τ IVR(2)=(48±5) ps in the gas phase and in scCO 2 is accelerated by interactions with the solvent. At the highest CO 2 density it is reduced to τ IVR(2)=(6±1) ps. The corresponding IVR rate constants show a similar density dependence as the VET rate constants. Model calculations suggest that both quantities correlate with the local CO 2 density in the immediate surrounding of the benzene molecule.
Ivanov, Mikhail V; Babikov, Dmitri
2012-05-14
Efficient method is proposed for computing thermal rate constant of recombination reaction that proceeds according to the energy transfer mechanism, when an energized molecule is formed from reactants first, and is stabilized later by collision with quencher. The mixed quantum-classical theory for the collisional energy transfer and the ro-vibrational energy flow [M. Ivanov and D. Babikov, J. Chem. Phys. 134, 144107 (2011)] is employed to treat the dynamics of molecule + quencher collision. Efficiency is achieved by sampling simultaneously (i) the thermal collision energy, (ii) the impact parameter, and (iii) the incident direction of quencher, as well as (iv) the rotational state of energized molecule. This approach is applied to calculate third-order rate constant of the recombination reaction that forms the (16)O(18)O(16)O isotopomer of ozone. Comparison of the predicted rate vs. experimental result is presented.
Effects of tunnelling and asymmetry for system-bath models of electron transfer
NASA Astrophysics Data System (ADS)
Mattiat, Johann; Richardson, Jeremy O.
2018-03-01
We apply the newly derived nonadiabatic golden-rule instanton theory to asymmetric models describing electron-transfer in solution. The models go beyond the usual spin-boson description and have anharmonic free-energy surfaces with different values for the reactant and product reorganization energies. The instanton method gives an excellent description of the behaviour of the rate constant with respect to asymmetry for the whole range studied. We derive a general formula for an asymmetric version of the Marcus theory based on the classical limit of the instanton and find that this gives significant corrections to the standard Marcus theory. A scheme is given to compute this rate based only on equilibrium simulations. We also compare the rate constants obtained by the instanton method with its classical limit to study the effect of tunnelling and other quantum nuclear effects. These quantum effects can increase the rate constant by orders of magnitude.
Park, Jinwoo; Kumar, Vipin; Wang, Xu; Lee, Pooi See; Kim, Woong
2017-10-04
The redox-active electrolyte supercapacitor (RAES) is a relatively new type of energy storage device. Simple addition of selected redox species in the electrolyte can greatly enhance the energy density of supercapacitors relative to traditional electric double layer capacitors (EDLCs) owing to redox reactions. Studies on the kinetics at the interface of the electrode and redox mediator are important when developing RAESs. In this work, we employ highly accurate scanning electrochemical microscopy (SECM) to extract the kinetic constants at carbon/hydroquinone interfaces. The charge transfer rate constants are 1.2 × 10 -2 and 1.3 × 10 -2 cm s -1 for the carbon nanotube/hydroquinone and reduced graphene oxide/hydroquinone interfaces, respectively. These values are higher than those obtained by the conventional cyclic voltammetry method, approximately by an order of magnitude. The evaluation of heterogeneous rate constants with SECM would be the cornerstone for understanding and developing high performance RAESs.
Effects of variable specific heat on energy transfer in a high-temperature supersonic channel flow
NASA Astrophysics Data System (ADS)
Chen, Xiaoping; Li, Xiaopeng; Dou, Hua-Shu; Zhu, Zuchao
2018-05-01
An energy transfer mechanism in high-temperature supersonic turbulent flow for variable specific heat (VSH) condition through turbulent kinetic energy (TKE), mean kinetic energy (MKE), turbulent internal energy (TIE) and mean internal energy (MIE) is proposed. The similarities of energy budgets between VSH and constant specific heat (CSH) conditions are investigated by introducing a vibrational energy excited degree and considering the effects of fluctuating specific heat. Direct numerical simulation (DNS) of temporally evolving high-temperature supersonic turbulent channel flow is conducted at Mach number 3.0 and Reynolds number 4800 combined with a constant dimensional wall temperature 1192.60 K for VSH and CSH conditions to validate the proposed energy transfer mechanism. The differences between the terms in the two kinetic energy budgets for VSH and CSH conditions are small; however, the magnitude of molecular diffusion term for VSH condition is significantly smaller than that for CSH condition. The non-negligible energy transfer is obtained after neglecting several small terms of diffusion, dissipation and compressibility related. The non-negligible energy transfer involving TIE includes three processes, in which energy can be gained from TKE and MIE and lost to MIE. The same non-negligible energy transfer through TKE, MKE and MIE is observed for both the conditions.
A one-dimensional model for gas-solid heat transfer in pneumatic conveying
NASA Astrophysics Data System (ADS)
Smajstrla, Kody Wayne
A one-dimensional ODE model reduced from a two-fluid model of a higher dimensional order is developed to study dilute, two-phase (air and solid particles) flows with heat transfer in a horizontal pneumatic conveying pipe. Instead of using constant air properties (e.g., density, viscosity, thermal conductivity) evaluated at the initial flow temperature and pressure, this model uses an iteration approach to couple the air properties with flow pressure and temperature. Multiple studies comparing the use of constant or variable air density, viscosity, and thermal conductivity are conducted to study the impact of the changing properties to system performance. The results show that the fully constant property calculation will overestimate the results of the fully variable calculation by 11.4%, while the constant density with variable viscosity and thermal conductivity calculation resulted in an 8.7% overestimation, the constant viscosity with variable density and thermal conductivity overestimated by 2.7%, and the constant thermal conductivity with variable density and viscosity calculation resulted in a 1.2% underestimation. These results demonstrate that gas properties varying with gas temperature can have a significant impact on a conveying system and that the varying density accounts for the majority of that impact. The accuracy of the model is also validated by comparing the simulation results to the experimental values found in the literature.
Dual-Use Space Technology Transfer Conference and Exhibition. Volume 2
NASA Technical Reports Server (NTRS)
Krishen, Kumar (Compiler)
1994-01-01
This is the second volume of papers presented at the Dual-Use Space Technology Transfer Conference and Exhibition held at the Johnson Space Center February 1-3, 1994. Possible technology transfers covered during the conference were in the areas of information access; innovative microwave and optical applications; materials and structures; marketing and barriers; intelligent systems; human factors and habitation; communications and data systems; business process and technology transfer; software engineering; biotechnology and advanced bioinstrumentation; communications signal processing and analysis; medical care; applications derived from control center data systems; human performance evaluation; technology transfer methods; mathematics, modeling, and simulation; propulsion; software analysis and decision tools; systems/processes in human support technology; networks, control centers, and distributed systems; power; rapid development; perception and vision technologies; integrated vehicle health management; automation technologies; advanced avionics; and robotics technologies.
Inhibition of crossed-beam energy transfer induced by expansion-velocity fluctuations
NASA Astrophysics Data System (ADS)
Neuville, C.; Glize, K.; Loiseau, P.; Masson-Laborde, P.-E.; Debayle, A.; Casanova, M.; Baccou, C.; Labaune, C.; Depierreux, S.
2018-04-01
Crossed-beam energy transfer between three laser beams has been experimentally investigated in a flowing plasma. Time-evolution measurements of the amplification of a first beam by a second beam highlighted the inhibition of energy transfer by hydrodynamic modifications of the plasma in the crossing volume due to the propagation of a third beam. According to 3D simulations and an analytical model, it appears that the long-wavelength expansion-velocity fluctuations produced by the propagation of the third beam in the crossing volume are responsible for this mitigation of energy transfer. This effect could be a cause of the over-estimation of the amount of the transferred energy in indirect-drive inertial confinement fusion experiments. Besides, tuning such long-wavelength fluctuations could be a way to completely inhibit CBET at the laser entrance holes of hohlraums.
Detonation Jet Engine. Part 1--Thermodynamic Cycle
ERIC Educational Resources Information Center
Bulat, Pavel V.; Volkov, Konstantin N.
2016-01-01
We present the most relevant works on jet engine design that utilize thermodynamic cycle of detonative combustion. The efficiency advantages of thermodynamic detonative combustion cycle over Humphrey combustion cycle at constant volume and Brayton combustion cycle at constant pressure were demonstrated. An ideal Ficket-Jacobs detonation cycle, and…
NASA Technical Reports Server (NTRS)
Johnson, B. V.; Wagner, J. H.; Steuber, G. D.
1993-01-01
An experimental program was conducted to investigate heat transfer and pressure loss characteristics of rotating multipass passages, for configurations and dimensions typical of modem turbine blades. This experimental program is one part of the NASA Hot Section Technology (HOST) Initiative, which has as its overall objective the development and verification of improved analysis methods that will form the basis for a design system that will produce turbine components with improved durability. The objective of this program was the generation of a data base of heat transfer and pressure loss data required to develop heat transfer correlations and to assess computational fluid dynamic techniques for rotating coolant passages. The experimental work was broken down into two phases. Phase 1 consists of experiments conducted in a smooth wall large scale heat transfer model. A detailed discussion of these results was presented in volume 1 of a NASA Report. In Phase 2 the large scale model was modified to investigate the effects of skewed and normal passage turbulators. The results of Phase 2 along with comparison to Phase 1 is the subject of this Volume 2 NASA Report.
NASA Astrophysics Data System (ADS)
Teitelbaum, Heshel; Caridade, Pedro J. S. B.; Varandas, António J. C.
2004-06-01
Classical trajectory calculations using the MERCURY/VENUS code have been carried out on the H+O2 reactive system using the DMBE-IV potential energy surface. The vibrational quantum number and the temperature were selected over the ranges v=0 to 15, and T=300 to 10 000 K, respectively. All other variables were averaged. Rate constants were determined for the energy transfer process, H+O2(v)-->H+O2(v''), for the bimolecular exchange process, H+O2(v)-->OH(v')+O, and for the dissociative process, H+O2(v)-->H+O+O. The dissociative process appears to be a mere extension of the process of transferring large amounts of energy. State-to-state rate constants are given for the exchange reaction, and they are in reasonable agreement with previous results, while the energy transfer and dissociative rate constants have never been reported previously. The lifetime distributions of the HO2 complex, calculated as a function of v and temperature, were used as a basis for determining the relative contributions of various vibrational states of O2 to the thermal rate coefficients for recombination at various pressures. This novel approach, based on the complex's ability to survive until it collides in a secondary process with an inert gas, is used here for the first time. Complete falloff curves for the recombination of H+O2 are also calculated over a wide range of temperatures and pressures. The combination of the two separate studies results in pressure- and temperature-dependent rate constants for H+O2(v)(+Ar)⇄HO2(+Ar). It is found that, unlike the exchange reaction, vibrational and rotational-translational energy are liabilities in promoting recombination.
Improving Articulation and Transfer Relationships. New Directions for Community Colleges, Number 39.
ERIC Educational Resources Information Center
Kintzer, Frederick C., Ed.
1982-01-01
With the intent of revitalizing the study of educational articulation and transfer, this collection of essays describes and assesses the current status of transfer education, points to particular problems and concerns, and highlights specific techniques, activities, and practices. The volume includes "The Transfer Function--One of Many,"…
NASA Technical Reports Server (NTRS)
Weber, L. A.
1975-01-01
Compressibility measurements and thermodynamic properties data for parahydrogen were extended to higher temperatures and pressures. Results of an experimental program are presented in the form of new pressure, volume and temperature data in the temperature range 23 to 300 K at pressures up to 800 bar. Also given are tables of thermodynamic properties on isobars to 1000 bar including density, internal energy, enthalpy, entropy, specific heats at constant volume and constant pressure, velocity of sound, and surface derivatives. The accuracy of the data is discussed and comparisons are made with previous data.
Energy-transfer processes in neon-hydrogen mixtures excited by electron beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morozov, A.; Kruecken, R.; Ulrich, A.
2005-12-15
Energy- and charge-transfer processes in neon-hydrogen mixtures (500-1400 hPa neon and 0.001-3 hPa hydrogen partial pressures) excited by a pulsed low-energy ({approx}10 keV) electron beam were investigated using time-resolved spectroscopy. Time spectra of the hydrogen Lyman-{alpha} line, neon excimer emission (second continuum), and neon atomic lines (3p-3s transitions) were recorded. The time-integrated intensity of the Lyman-{alpha} emission was measured for the same range of gas mixtures. It is shown that direct energy transfer from Ne{sub 2}* excimers and neon atoms in the four lowest excited states as well as recombination of H{sub 3}{sup +} ions are the main channels populatingmore » atomic hydrogen in the n=2 state. A rate constant of (4.2{+-}1.4)x10{sup -11} cm{sup 3} s{sup -1} was obtained for the charge transfer from Ne{sub 2}{sup +} ions to molecular hydrogen. A lower limit for the depopulation rate constant of Ne{sub 2}* excimers by molecular hydrogen (combination of energy transfer and ionization) was found to be 1.0x10{sup -10} cm{sup 3} s{sup -1}.« less
OPTRAN- OPTIMAL LOW THRUST ORBIT TRANSFERS
NASA Technical Reports Server (NTRS)
Breakwell, J. V.
1994-01-01
OPTRAN is a collection of programs that solve the problem of optimal low thrust orbit transfers between non-coplanar circular orbits for spacecraft with chemical propulsion systems. The programs are set up to find Hohmann-type solutions, with burns near the perigee and apogee of the transfer orbit. They will solve both fairly long burn-arc transfers and "divided-burn" transfers. Program modeling includes a spherical earth gravity model and propulsion system models for either constant thrust or constant acceleration. The solutions obtained are optimal with respect to fuel use: i.e., final mass of the spacecraft is maximized with respect to the controls. The controls are the direction of thrust and the thrust on/off times. Two basic types of programs are provided in OPTRAN. The first type is for "exact solution" which results in complete, exact tkme-histories. The exact spacecraft position, velocity, and optimal thrust direction are given throughout the maneuver, as are the optimal thrust switch points, the transfer time, and the fuel costs. Exact solution programs are provided in two versions for non-coplanar transfers and in a fast version for coplanar transfers. The second basic type is for "approximate solutions" which results in approximate information on the transfer time and fuel costs. The approximate solution is used to estimate initial conditions for the exact solution. It can be used in divided-burn transfers to find the best number of burns with respect to time. The approximate solution is useful by itself in relatively efficient, short burn-arc transfers. These programs are written in FORTRAN 77 for batch execution and have been implemented on a DEC VAX series computer with the largest program having a central memory requirement of approximately 54K of 8 bit bytes. The OPTRAN program were developed in 1983.
Heat transfer enhancement by application of nano-powder
NASA Astrophysics Data System (ADS)
Mosavian, M. T. Hamed; Heris, S. Zeinali; Etemad, S. Gh.; Esfahany, M. Nasr
2010-09-01
In this investigation, laminar flow heat transfer enhancement in circular tube utilizing different nanofluids including Al2O3 (20 nm), CuO (50 nm), and Cu (25 nm) nanoparticles in water was studied. Constant wall temperature was used as thermal boundary condition. The results indicate enhancement of heat transfer with increasing nanoparticle concentrations, but an optimum concentration for each nanofluid suspension can be found. Based on the experimental results, metallic nanoparticles show better enhancement of heat transfer coefficient in comparison with oxide particles. The promotions of heat transfer due to utilizing nanoparticles are higher than the theoretical correlation prediction.
Flow and heat transfer in a curved channel
NASA Technical Reports Server (NTRS)
Brinich, P. F.; Graham, R. W.
1977-01-01
Flow and heat transfer in a curved channel of aspect ratio 6 and inner- to outer-wall radius ratio 0.96 were studied. Secondary currents and large longitudinal vortices were found. The heat-transfer rates of the outer and inner walls were independently controlled to maintain a constant wall temperature. Heating the inner wall increased the pressure drop along the channel length, whereas heating the outer wall had little effect. Outer-wall heat transfer was as much as 40 percent greater than the straight-channel correlation, and inner-wall heat transfer was 22 percent greater than the straight-channel correlation.
Method and apparatus for providing a precise amount of gas at a precise humidity
Hallman, Jr., Russell L.; Truett, James C.
2001-02-06
A fluid transfer system includes a permeable fluid carrier, a constant temperature source of a first fluid, and a constant pressure source of a second fluid. The fluid carrier has a length, an inlet end, and an outlet end. The constant pressure source connects to the inlet end and communicates the second fluid into the fluid carrier, and the constant temperature source surrounds a least of portion of the length. A mixture of the first fluid and the second fluid exits via the outlet end A method of making a mixture of two fluids is also disclosed.
NASA Astrophysics Data System (ADS)
Hao, Wenfeng; Liu, Ye; Huang, Xinrong; Liu, Yinghua; Zhu, Jianguo
2018-06-01
In this work, the elastic constants of 3D four directional cylindrical braided composite shafts were predicted using analytical and numerical methods. First, the motion rule of yarn carrier of 3D four directional cylindrical braided composite shafts was analyzed, and the horizontal projection of yarn motion trajectory was obtained. Then, the geometry models of unit-cells with different braiding angles and fiber volume contents were built up, and the meso-scale models of 3D cylindrical braided composite shafts were obtained. Finally, the effects of braiding angles and fiber volume contents on the elastic constants of 3D braided composite shafts were analyzed theoretically and numerically. These results play a crucial role in investigating the mechanical properties of 3D 4-directional braided composites shafts.
Song, Hee-eun; Taniguchi, Masahiko; Kirmaier, Christine; Bocian, David F; Lindsey, Jonathan S; Holten, Dewey
2009-01-01
A new strategy is described and implemented for determining the rates of hole-transfer between equivalent porphyrins in multiporphyrin architectures. The approach allows access to these rates between sites that are not the most easily oxidized components of the array. The specific architectures investigated with this new strategy are triads consisting of one zinc porphyrin (Zn) and two free base porphyrins (Fb). The triads employ a diphenylethyne linker (ZnFbFbU) and a phenylene linker (ZnFbFbPhi). The zinc porphyrin is selectively oxidized to produce Zn(+)FbFb, the free base porphyrins are excited to produce the excited-state mixture Zn(+)Fb*Fb and Zn(+)FbFb*, and the subsequent dynamics are monitored by ultrafast absorption spectroscopy. The system evolves by a combination of energy- and hole-transfer processes involving (adjacent and nonadjacent) zinc and free base porphyrin constituents that are complete within 100 ps of excitation; the rate constants of many of these processes are derived from prior studies of the oxidized forms of the benchmark dyads (ZnFbU and ZnFbPhi). One of the excited-state decay channels produces the metastable state ZnFbFb(+) that decays to a second metastable state ZnFb(+)Fb by the target hole-transfer process, followed by rapid hole transfer to produce the Zn(+)FbFb thermodynamic ground state of the system. The rate constant for hole transfer between the free base porphyrins in the oxidized ZnFbFb triads is found to be (0.5 ns)(-1) and (0.6 ns)(-1) across phenylene and diphenylethyne linkers, respectively. These rate constants are comparable to those recently measured, using a related but distinct strategy, for ground-state hole transfer between zinc porphyrins in oxidized ZnZnFb triads. The two complementary strategies provide unique approaches for probing hole transfer between equivalent sites in multiporphyrin arrays, with the choice of method being guided by the particular target process and the ease of synthesis of the necessary architectures.
[Impact of liquid volume of recycled methanogenic effluent on anaerobic hydrolysis].
Hao, Li-ping; Lü, Fan; He, Pin-jing; Shao, Li-ming
2008-09-01
Methanogenic effluent was recycled to regulate hydrolysis during two-phase anaerobic digestion of organic solid wastes. In order to study the impact of recycled effluent's volume on hydrolysis, four hydrolysis reactors filled with vegetable and flower wastes were constructed, with different liquid volumes of recycled methanogenic effluent, i.e., 0.1, 0.5, 1.0, 2.0 m3/(m3 x d), respectively. The parameters related to hydrolytic environment (pH, alkalinity, ORP, concentrations of ammonia and reducing sugar), microbial biomass and hydrolysis efficiency (accumulated SCOD, accumulated reducing sugar, and hydrolysis rate constants) were monitored. This research shows that recycling methanogenic effluent into the hydrolysis reactor can enhance its buffer capability and operation stability; higher recycled volume is favorable for microbial anabolism and further promotes hydrolysis. After 9 days of reaction, the accumulated SCOD in the hydrolytic effluent reach 334, 407, 413, 581 mg/g at recycled volumes of 0.1, 0.5, 1.0, 2.0 m3/(m3 x d) and their first-order hydrolysis rate kinetic constants are 0.065, 0.083, 0.089, 0.105 d(-1), respectively.
Pin stack array for thermoacoustic energy conversion
Keolian, Robert M.; Swift, Gregory W.
1995-01-01
A thermoacoustic stack for connecting two heat exchangers in a thermoacoustic energy converter provides a convex fluid-solid interface in a plane perpendicular to an axis for acoustic oscillation of fluid between the two heat exchangers. The convex surfaces increase the ratio of the fluid volume in the effective thermoacoustic volume that is displaced from the convex surface to the fluid volume that is adjacent the surface within which viscous energy losses occur. Increasing the volume ratio results in an increase in the ratio of transferred thermal energy to viscous energy losses, with a concomitant increase in operating efficiency of the thermoacoustic converter. The convex surfaces may be easily provided by a pin array having elements arranged parallel to the direction of acoustic oscillations and with effective radial dimensions much smaller than the thicknesses of the viscous energy loss and thermoacoustic energy transfer volumes.
Spin polarization transfer by the radical pair mechanism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zarea, Mehdi, E-mail: m-zarea@northwestern.edu; Ratner, Mark A.; Wasielewski, Michael R.
2015-08-07
In a three-site representation, we study a spin polarization transfer from radical pair spins to a nearby electron or nuclear spin. The quantum dynamics of the radical pair spins is governed by a constant exchange interaction between the radical pair spins which have different Zeeman frequencies. Radical pair spins can recombine to the singlet ground state or to lower energy triplet states. It is then shown that the coherent dynamics of the radical pair induces spin polarization on the nearby third spin in the presence of a magnetic field. The spin polarization transfer depends on the difference between Zeeman frequencies,more » the singlet and triplet recombination rates, and on the exchange and dipole-dipole interactions between the different spins. In particular, the sign of the polarization depends on the exchange coupling between radical pair spins and also on the difference between singlet and triplet recombination rate constants.« less
Two-dimensional numerical simulation of a Stirling engine heat exchanger
NASA Technical Reports Server (NTRS)
Ibrahim, Mounir B.; Tew, Roy C.; Dudenhoefer, James E.
1989-01-01
The first phase of an effort to develop multidimensional models of Stirling engine components is described; the ultimate goal is to model an entire engine working space. More specifically, parallel plate and tubular heat exchanger models with emphasis on the central part of the channel (i.e., ignoring hydrodynamic and thermal end effects) are described. The model assumes: laminar, incompressible flow with constant thermophysical properties. In addition, a constant axial temperature gradient is imposed. The governing equations, describing the model, were solved using Crank-Nicloson finite-difference scheme. Model predictions were compared with analytical solutions for oscillating/reversing flow and heat transfer in order to check numerical accuracy. Excellent agreement was obtained for the model predictions with analytical solutions available for both flow in circular tubes and between parallel plates. Also the heat transfer computational results are in good agreement with the heat transfer analytical results for parallel plates.
Heat-transfer processes in air-cooled engine cylinders
NASA Technical Reports Server (NTRS)
Pinkel, Benjamin
1938-01-01
From a consideration of heat-transfer theory, semi-empirical expressions are set up for the transfer of heat from the combustion gases to the cylinder of an air-cooled engine and from the cylinder to the cooling air. Simple equations for the average head and barrel temperatures as functions of the important engine and cooling variables are obtained from these expressions. The expressions involve a few empirical constants, which may be readily determined from engine tests. Numerical values for these constants were obtained from single-cylinder engine tests for cylinders of the Pratt & Whitney 1535 and 1340-h engines. The equations provide a means of calculating the effect of the various engine and cooling variables on the cylinder temperatures and also of correlating the results of engine cooling tests. An example is given of the application of the equations to the correlation of cooling-test data obtained in flight.
DOE R&D Accomplishments Database
Marcus, R. A.
1962-01-01
Using a theory of electron transfers which takes cognizance of reorganization of the medium outside the inner coordination shell and of changes of bond lengths inside it, relations between electrochemical and related chemical rate constants are deduced and compared with the experimental data. A correlation is found, without the use of arbitrary parameters. Effects of weak complexes with added electrolytes are included under specified conditions. The deductions offer a way of coordinating a variety of data in the two fields, internally as well as with each those in another. For example, the rate of oxidation or reduction of a series of related reactants by one reagent is correlated with that of another and with that of the corresponding electrochemical oxidation-reduction reaction, under certain specified conditions. These correlations may also provide a test for distinguishing an electron from an atom transfer mechanism. (auth)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joye, D.D.
1996-07-01
Mixed convection heat transfer in a vertical tube with opposing flow (downflow heating) was studied experimentally for Reynolds numbers ranging from about 1,000 to 30,000 at constant Grashof numbers ranging about 1{1/2} orders of magnitude under constant wall temperature (CWT) conditions. Three correlations developed for opposing mixed convection flows in vertical conduits predicted the data reasonably well, except near and into the asymptote region for which these equations were not designed. A critical Reynolds number is developed here, above which these equations can be used for design purposes regardless of the boundary condition. Below Re{sub crit}, the correlations, the asymptotemore » equation should be used for the CWT boundary condition, which is more prevalent in process situations than the uniform heat flux (UHF) boundary condition.« less
Plasma-field Coupling at Small Length Scales in Solar Wind Near 1 AU
NASA Astrophysics Data System (ADS)
Livadiotis, G.; Desai, M. I.
2016-10-01
In collisionless plasmas such as the solar wind, the coupling between plasma constituents and the embedded magnetic field occurs on various temporal and spatial scales, and is primarily responsible for the transfer of energy between waves and particles. Recently, it was shown that the transfer of energy between solar wind plasma particles and waves is governed by a new and unique relationship: the ratio between the magnetosonic energy and the plasma frequency is constant, E ms/ω pl ˜ ℏ*. This paper examines the variability and substantial departure of this ratio from ℏ* observed at ˜1 au, which is caused by a dispersion of fast magnetosonic (FMS) waves. In contrast to the efficiently transferred energy in the fast solar wind, the lower efficiency of the slow solar wind can be caused by this dispersion, whose relation and characteristics are derived and studied. In summary, we show that (I) the ratio E ms/ω pl transitions continuously from the slow to the fast solar wind, tending toward the constant ℏ* (II) the transition is more efficient for larger thermal, Alfvén, or FMS speeds; (III) the fast solar wind is almost dispersionless, characterized by quasi-constant values of the FMS speed, while the slow wind is subject to dispersion that is less effective for larger wind or magnetosonic speeds; and (IV) the constant ℏ* is estimated with the best known precision, ℏ* ≈ (1.160 ± 0.083) × 10-22 Js.
Hydrogen transfer reactions of interstellar Complex Organic Molecules
NASA Astrophysics Data System (ADS)
Álvarez-Barcia, S.; Russ, P.; Kästner, J.; Lamberts, T.
2018-06-01
Radical recombination has been proposed to lead to the formation of complex organic molecules (COMs) in CO-rich ices in the early stages of star formation. These COMs can then undergo hydrogen addition and abstraction reactions leading to a higher or lower degree of saturation. Here, we have studied 14 hydrogen transfer reactions for the molecules glyoxal, glycoaldehyde, ethylene glycol, and methylformate and an additional three reactions where CHnO fragments are involved. Over-the-barrier reactions are possible only if tunneling is invoked in the description at low temperature. Therefore the rate constants for the studied reactions are calculated using instanton theory that takes quantum effects into account inherently. The reactions were characterized in the gas phase, but this is expected to yield meaningful results for CO-rich ices due to the minimal alteration of reaction landscapes by the CO molecules. We found that rate constants should not be extrapolated based on the height of the barrier alone, since the shape of the barrier plays an increasingly larger role at decreasing temperature. It is neither possible to predict rate constants based only on considering the type of reaction, the specific reactants and functional groups play a crucial role. Within a single molecule, though, hydrogen abstraction from an aldehyde group seems to be always faster than hydrogen addition to the same carbon atom. Reactions that involve heavy-atom tunneling, e.g., breaking or forming a C-C or C-O bond, have rate constants that are much lower than those where H transfer is involved.
Technology 2001: The Second National Technology Transfer Conference and Exposition, volume 2
NASA Technical Reports Server (NTRS)
1991-01-01
Proceedings of the workshop are presented. The mission of the conference was to transfer advanced technologies developed by the Federal government, its contractors, and other high-tech organizations to U.S. industries for their use in developing new or improved products and processes. Volume two presents papers on the following topics: materials science, robotics, test and measurement, advanced manufacturing, artificial intelligence, biotechnology, electronics, and software engineering.
NASA Technical Reports Server (NTRS)
Dickman, Glen J.; Keeley, J. T.
1985-01-01
This portion of the Orbit Transfer Vehicle (OTV) Concept Definition and System Analysis Study, Volume 2, Book 2, summarizes the flight vehicle concept selection process and results. It presents an overview of OTV mission and system design requirements and describes the family of OTV recommended, the reasons for this recommendation, and the associated Phase C/D Program.
Berezhkovskiy, Leonid M
2011-11-01
The influence of hepatic uptake and efflux, which includes passive diffusion and transporter-mediated component, on drug distribution volumes [steady-state volume of distribution (V(ss)) and terminal volume of distribution (V(β))], mean residence time (MRT), clearance, and terminal half-life is considered using a simplified physiologically based pharmacokinetic model. To account for hepatic uptake, liver is treated as two-compartmental unit with drug transfer from extracellular water into hepatocytes. The exactly calculated distribution volumes and MRT are compared with that obtained by the traditional equations based on the assumption of central elimination. It was found that V(ss) may increase more than 10-fold and V(β) more than 100-fold due to the contribution of transporter-mediated uptake. The terminal half-life may be substantially shortened (more than 100-fold) due to transporters. It may also decrease significantly due to the increase of intrinsic hepatic clearance (CL(int)), whereas hepatic clearance has already reached saturation (and stays close to the possible maximum value). It is shown that in case of transporter-mediated uptake of compound into hepatocytes, in the absence of efflux and passive diffusion (unidirectional uptake), hepatic clearance is independent of CL(int) and is determined by hepatic blood flow and uptake rate constant. The effects of transporter-mediated uptake are mostly pronounced for hydrophilic acidic compounds and moderately lipophilic neutral compounds. For basic compounds and lipophilic neutral compounds the change of distribution volumes due to transporters is rather unlikely. It was found that the traditional equations provide very accurate values of V(ss), V(β), and MRT in the absence of transporter action even for very low rates of passive diffusion. On the other hand, the traditional equations fail to provide the correct values of these parameters when the increase of distribution volumes due to transporters takes place, and actually yield the values substantially smaller than the true ones (up to an order of magnitude for V(ss) and MRT, and three orders of magnitude for V(β)). Copyright © 2011 Wiley-Liss, Inc.
Black hole enthalpy and an entropy inequality for the thermodynamic volume
NASA Astrophysics Data System (ADS)
Cvetič, M.; Gibbons, G. W.; Kubizňák, D.; Pope, C. N.
2011-07-01
In a theory where the cosmological constant Λ or the gauge coupling constant g arises as the vacuum expectation value, its variation should be included in the first law of thermodynamics for black holes. This becomes dE=TdS+ΩidJi+ΦαdQα+ΘdΛ, where E is now the enthalpy of the spacetime, and Θ, the thermodynamic conjugate of Λ, is proportional to an effective volume V=-(16πΘ)/(D-2) “inside the event horizon.” Here we calculate Θ and V for a wide variety of D-dimensional charged rotating asymptotically anti-de Sitter (AdS) black hole spacetimes, using the first law or the Smarr relation. We compare our expressions with those obtained by implementing a suggestion of Kastor, Ray, and Traschen, involving Komar integrals and Killing potentials, which we construct from conformal Killing-Yano tensors. We conjecture that the volume V and the horizon area A satisfy the inequality R≡((D-1)V/AD-2)1/(D-1)(AD-2/A)1/(D-2)≥1, where AD-2 is the volume of the unit (D-2) sphere, and we show that this is obeyed for a wide variety of black holes, and saturated for Schwarzschild-AdS. Intriguingly, this inequality is the “inverse” of the isoperimetric inequality for a volume V in Euclidean (D-1) space bounded by a surface of area A, for which R≤1. Our conjectured reverse isoperimetric inequality can be interpreted as the statement that the entropy inside a horizon of a given ”volume” V is maximized for Schwarzschild-AdS. The thermodynamic definition of V requires a cosmological constant (or gauge coupling constant). However, except in seven dimensions, a smooth limit exists where Λ or g goes to zero, providing a definition of V even for asymptotically flat black holes.
Gray, Richard W; French, Stephen J; Robinson, Tristan M; Yeomans, Martin R
2003-02-01
The role of gastric volume in the short-term control of eating in humans remains unclear, with some studies reporting that food volume alone can reduce appetite but others finding no such effect. A recent study in our laboratory, found effects of preload volume on subjective appetite (hunger, fullness) but not intake, and found effects of preload energy on intake but not appetite. That study used an interval of 30 min between serving preloads and the test meal, and the present study attempted to maximise the effects of the volume manipulation by removing the delay between the preload and test meal. We administered four soup-based preloads varying in volume (150 and 450 ml) using water, and energy density (1.4 and 4.2 kJ/ml) using maltodextrin, producing three energy levels (209, 629, 629 and 1886 kJ; repeated measures). These were followed immediately by an unlimited hot pasta lunch, during which food weight was monitored continuously by computer. Increasing soup volume at constant energy (629 kJ) reduced appetite ratings, but not intake. In contrast, increasing soup energy at constant volume (450 ml) reduced intake, without affecting appetite. The discrepancies between our results and other reported studies suggest that volume is more influential when intakes are large, or that there may be a threshold concentration for nutrients in the GI tract before volume alone is tangibly expressed in subsequent eating.
FOR STIMULI-RESPONSIVE POLYMERS WITH ENHANCED EFFICIENCY IN RESERVOIR RECOVERY PROCESSES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Charles McCormick; Roger Hester
To date, our synthetic research efforts have been focused on the development of stimuli-responsive water-soluble polymers designed for use in enhanced oil recovery (EOR) applications. These model systems are structurally tailored for potential application as viscosifiers and/or mobility control agents for secondary and tertiary EOR methods. The following report discloses the progress of our ongoing research of polyzwitterions, polymers derived from monomers bearing both positive and negative charges, that show the ability to sustain or increase their hydrodynamic volume (and thus, solution viscosity) in the presence of electrolytes. Such polymers appear to be well-suited for use under conditions similar tomore » those encountered in EOR operations. Additionally, we disclose the synthesis and characterization of a well-defined set of polyacrylamide (PAM) homopolymers that vary by MW. The MW of the PAM samples is controlled by addition of sodium formate to the polymerization medium as a conventional chain transfer agent. Data derived from polymer characterization is used to determine the kinetic parameter C{sub CT}, the chain transfer constant to sodium formate under the given polymerization conditions. The PAM homopolymer series will be employed in future set of experiments designed to test a simplified intrinsic viscosity equation. The flow resistance of a polymer solution through a porous medium is controlled by the polymer's hydrodynamic volume, which is strongly related to it's intrinsic viscosity. However, the hydrodynamic volume of a polymer molecule in an aqueous solution varies with fluid temperature, solvent composition, and polymer structure. This report on the theory of polymer solubility accentuates the importance of developing polymer solutions that increase in intrinsic viscosity when fluid temperatures are elevated above room conditions. The intrinsic viscosity response to temperature and molecular weight variations of three polymer solutions verified the modeling capability of a simplified intrinsic viscosity equation. These results imply that the simplified intrinsic viscosity equation is adequate in modeling polymer coil size response to solvent composition, temperature and polymer molecular weight. The equation can be used to direct efforts to produce superior polymers for mobility control during flooding of reservoirs at elevated temperatures.« less
Naval Medical Research and Development News. Volume 8, Issue 3
2016-03-01
VIII, Issue 3 DAYTON, Ohio - Mosquito-borne diseases, such as Dengue virus and malaria, are a constant threat to people residing in sub-tropical and...Insecticides Story by Lt. Cmdr. Carlis Brown, NAMRU-Dayton Mosquito-borne diseases, such as Dengue virus and malaria, are a constant threat to people
NASA Technical Reports Server (NTRS)
Marlowe, M. B.; Moore, R. A.; Whetstone, W. D.
1979-01-01
User instructions are given for performing linear and nonlinear steady state and transient thermal analyses with SPAR thermal analysis processors TGEO, SSTA, and TRTA. It is assumed that the user is familiar with basic SPAR operations and basic heat transfer theory.
Fabrication of hydrogen peroxide biosensor based on Ni doped SnO2 nanoparticles.
Lavanya, N; Radhakrishnan, S; Sekar, C
2012-01-01
Ni doped SnO(2) nanoparticles (0-5 wt%) have been prepared by a simple microwave irradiation (2.45 GHz) method. Powder X-ray diffraction (XRD) and transmission electron microscopy (TEM) studies confirmed the formation of rutile structure with space group (P(42)/mnm) and nanocrystalline nature of the products with spherical morphology. Direct electrochemistry of horseradish peroxidase (HRP)/nano-SnO(2) composite has been studied. The immobilized enzyme retained its bioactivity, exhibited a surface confined, reversible one-proton and one-electron transfer reaction, and had good stability, activity and a fast heterogeneous electron transfer rate. A significant enzyme loading (3.374×10(-10) mol cm(-2)) has been obtained on nano-Ni doped SnO(2) as compared to the bare glassy carbon (GC) and nano-SnO(2) modified surfaces. This HRP/nano-Ni-SnO(2) film has been used for sensitive detection of H(2)O(2) by differential pulse voltammetry (DPV), which exhibited a wider linearity range from 1.0×10(-7) to 3.0×10(-4)M (R=0.9897) with a detection limit of 43 nM. The apparent Michaelis-Menten constant (K(M)(app)) of HRP on the nano-Ni-SnO(2) was estimated as 0.221 mM. This excellent performance of the fabricated biosensor is attributed to large surface-to-volume ratio and Ni doping into SnO(2) which facilitate the direct electron transfer between the redox enzyme and the surface of electrode. Copyright © 2012 Elsevier B.V. All rights reserved.
Jajamovich, Guido H; Huang, Wei; Besa, Cecilia; Li, Xin; Afzal, Aneela; Dyvorne, Hadrien A; Taouli, Bachir
2016-02-01
To quantify hepatocellular carcinoma (HCC) perfusion and flow with the fast exchange regime-allowed Shutter-Speed model (SSM) compared to the Tofts model (TM). In this prospective study, 25 patients with HCC underwent DCE-MRI. ROIs were placed in liver parenchyma, portal vein, aorta and HCC lesions. Signal intensities were analyzed employing dual-input TM and SSM models. ART (arterial fraction), K (trans) (contrast agent transfer rate constant from plasma to extravascular extracellular space), ve (extravascular extracellular volume fraction), kep (contrast agent intravasation rate constant), and τi (mean intracellular water molecule lifetime) were compared between liver parenchyma and HCC, and ART, K (trans), v e and k ep were compared between models using Wilcoxon tests and limits of agreement. Test-retest reproducibility was assessed in 10 patients. ART and v e obtained with TM; ART, ve, ke and τi obtained with SSM were significantly different between liver parenchyma and HCC (p < 0.04). Parameters showed variable reproducibility (CV range 14.7-66.5% for both models). Liver K (trans) and ve; HCC ve and kep were significantly different when estimated with the two models (p < 0.03). Our results show differences when computed between the TM and the SSM. However, these differences are smaller than parameter reproducibilities and may be of limited clinical significance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szymanski, R., E-mail: rszymans@cbmm.lodz.pl; Sosnowski, S.; Maślanka, Ł.
2016-03-28
Theoretical analysis and computer simulations (Monte Carlo and numerical integration of differential equations) show that the statistical effect of a small number of reacting molecules depends on a way the molecules are distributed among the small volume nano-reactors (droplets in this study). A simple reversible association A + B = C was chosen as a model reaction, enabling to observe both thermodynamic (apparent equilibrium constant) and kinetic effects of a small number of reactant molecules. When substrates are distributed uniformly among droplets, all containing the same equal number of substrate molecules, the apparent equilibrium constant of the association is highermore » than the chemical one (observed in a macroscopic—large volume system). The average rate of the association, being initially independent of the numbers of molecules, becomes (at higher conversions) higher than that in a macroscopic system: the lower the number of substrate molecules in a droplet, the higher is the rate. This results in the correspondingly higher apparent equilibrium constant. A quite opposite behavior is observed when reactant molecules are distributed randomly among droplets: the apparent association rate and equilibrium constants are lower than those observed in large volume systems, being the lower, the lower is the average number of reacting molecules in a droplet. The random distribution of reactant molecules corresponds to ideal (equal sizes of droplets) dispersing of a reaction mixture. Our simulations have shown that when the equilibrated large volume system is dispersed, the resulting droplet system is already at equilibrium and no changes of proportions of droplets differing in reactant compositions can be observed upon prolongation of the reaction time.« less
ERIC Educational Resources Information Center
Box, Dale
2008-01-01
The British Columbia (BC) Council on Admissions and Transfer (BCCAT) has undertaken, in the last couple of years, a review of the BC Transfer System. Preliminary findings indicate that the current structure of the BC Transfer Guide (BCTG), which designates institutions as either "sending" institutions or "receiving"…
Cai, Lile; Tay, Wei-Liang; Nguyen, Binh P; Chui, Chee-Kong; Ong, Sim-Heng
2013-01-01
Transfer functions play a key role in volume rendering of medical data, but transfer function manipulation is unintuitive and can be time-consuming; achieving an optimal visualization of patient anatomy or pathology is difficult. To overcome this problem, we present a system for automatic transfer function design based on visibility distribution and projective color mapping. Instead of assigning opacity directly based on voxel intensity and gradient magnitude, the opacity transfer function is automatically derived by matching the observed visibility distribution to a target visibility distribution. An automatic color assignment scheme based on projective mapping is proposed to assign colors that allow for the visual discrimination of different structures, while also reflecting the degree of similarity between them. When our method was tested on several medical volumetric datasets, the key structures within the volume were clearly visualized with minimal user intervention. Copyright © 2013 Elsevier Ltd. All rights reserved.
Particle shape effect on heat transfer performance in an oscillating heat pipe.
Ji, Yulong; Wilson, Corey; Chen, Hsiu-Hung; Ma, Hongbin
2011-04-05
The effect of alumina nanoparticles on the heat transfer performance of an oscillating heat pipe (OHP) was investigated experimentally. A binary mixture of ethylene glycol (EG) and deionized water (50/50 by volume) was used as the base fluid for the OHP. Four types of nanoparticles with shapes of platelet, blade, cylinder, and brick were studied, respectively. Experimental results show that the alumina nanoparticles added in the OHP significantly affect the heat transfer performance and it depends on the particle shape and volume fraction. When the OHP was charged with EG and cylinder-like alumina nanoparticles, the OHP can achieve the best heat transfer performance among four types of particles investigated herein. In addition, even though previous research found that these alumina nanofluids were not beneficial in laminar or turbulent flow mode, they can enhance the heat transfer performance of an OHP.
Particle shape effect on heat transfer performance in an oscillating heat pipe
2011-01-01
The effect of alumina nanoparticles on the heat transfer performance of an oscillating heat pipe (OHP) was investigated experimentally. A binary mixture of ethylene glycol (EG) and deionized water (50/50 by volume) was used as the base fluid for the OHP. Four types of nanoparticles with shapes of platelet, blade, cylinder, and brick were studied, respectively. Experimental results show that the alumina nanoparticles added in the OHP significantly affect the heat transfer performance and it depends on the particle shape and volume fraction. When the OHP was charged with EG and cylinder-like alumina nanoparticles, the OHP can achieve the best heat transfer performance among four types of particles investigated herein. In addition, even though previous research found that these alumina nanofluids were not beneficial in laminar or turbulent flow mode, they can enhance the heat transfer performance of an OHP. PMID:21711830
Murakami, Masaaki; Maeda, Kiminori; Arai, Tatsuo
2005-07-07
The kinetics of intermediates generated from intramolecular electron-transfer reaction by photo irradiation of the flavin adenine dinucleotide (FAD) molecule was studied by a magnetic field effect (MFE) on transient absorption (TA) spectra. Existence time of MFE and MFE action spectra have a strong dependence on the pH of solutions. The MFE action spectra have indicated the existence of interconversion between the radical pair and the cation form of the triplet excited state of flavin part. All rate constants of the triplet and the radical pair were determined by analysis of the MFE action spectra and decay kinetics of TA. The obtained values for the interconversion indicate that the formation of cation radical promotes the back electron-transfer reaction to the triplet excited state. Further, rate constants of spin relaxation and recombination have been studied by the time profiles of MFE at various pH. The drastic change of those two factors has been obtained and can be explained by SOC (spin-orbit coupling) induced back electron-transfer promoted by the formation of a stacking conformation at pH > 2.5.
NASA Astrophysics Data System (ADS)
Macready, Hugh; Kim, Jinman; Feng, David; Cai, Weidong
2006-03-01
Dual-modality imaging scanners combining functional PET and anatomical CT constitute a challenge in volumetric visualization that can be limited by the high computational demand and expense. This study aims at providing physicians with multi-dimensional visualization tools, in order to navigate and manipulate the data running on a consumer PC. We have maximized the utilization of pixel-shader architecture of the low-cost graphic hardware and the texture-based volume rendering to provide visualization tools with high degree of interactivity. All the software was developed using OpenGL and Silicon Graphics Inc. Volumizer, tested on a Pentium mobile CPU on a PC notebook with 64M graphic memory. We render the individual modalities separately, and performing real-time per-voxel fusion. We designed a novel "alpha-spike" transfer function to interactively identify structure of interest from volume rendering of PET/CT. This works by assigning a non-linear opacity to the voxels, thus, allowing the physician to selectively eliminate or reveal information from the PET/CT volumes. As the PET and CT are rendered independently, manipulations can be applied to individual volumes, for instance, the application of transfer function to CT to reveal the lung boundary while adjusting the fusion ration between the CT and PET to enhance the contrast of a tumour region, with the resultant manipulated data sets fused together in real-time as the adjustments are made. In addition to conventional navigation and manipulation tools, such as scaling, LUT, volume slicing, and others, our strategy permits efficient visualization of PET/CT volume rendering which can potentially aid in interpretation and diagnosis.
NASA Astrophysics Data System (ADS)
Banerjee, S.; Cook-Chennault, K. A.; Du, W.; Sundar, U.; Halim, H.; Tang, A.
2016-11-01
Three-phase lead zirconate titanate (PZT, PbZr0.52Ti0.48O3)-epoxy-multi-walled carbon nanotube (MWCNT) bulk composites were prepared, where the volume fraction of PZT was held constant at 30%, while the volume fraction of the MWCNTs was varied from 1.0%-10%. The samples were poled using either a parallel plate contact or contactless (corona) poling technique. The piezoelectric strain coefficient (d33), dielectric constant (ɛ), and dielectric loss tangent (tan δ) of the samples were measured at 110 Hz, and compared as a function of poling technique and volume fraction of MWCNTs. The highest values for dielectric constant and piezoelectric strain coefficients were 465.82 and 18.87 pC/N for MWCNT volume fractions of 10% and 6%, respectively. These values were obtained for samples that were poled using the corona contactless method. The impedance and dielectric spectra of the composites were recorded over a frequency range of 100 Hz-20 MHz. The impedance values observed for parallel-plate contact poled samples are higher than that of corona poled composites. The fractured surface morphology and distribution of the PZT particles and MWCNTs were observed with the aid of electron dispersion spectroscopy and a scanning electron microscope. The surface morphology of the MWCNTs was observed with the aid of a field emission transmission electron microscope.
Variations of Thermal Pressure for Solids along the Principal Hugoniot
NASA Astrophysics Data System (ADS)
Gong, Zizheng; Yu, Hui; Deng, Liwei; Zhang, Li; Yang, Jinke
2006-07-01
The behavior of thermal pressure PTH for all kinds of solid materials was investigated using the lattice dynamics theory up to 500GPa. The results show that for most metals, ionic crystal and minerals, the thermal pressure is approximately independent on volume, whereas the thermal pressure of a few solids has strong dependence on volume. The volume dependence of thermal pressure has no relation with the chemical bonding type and crystal structure of materials, but is correlated with the Debye temperature ΘD and the second Grüneisen parameter q. The ratio of the thermal pressure to the total pressure (PTH /PTotal) along the Hugoniot keeps constant over a wide compression range, not only for non-porous materials but also for porous materials within certain porosity, which could explain the existence of material constant parameter β along solid Hugoniot.
Kerkhoff, M.J.; Lee, T.M.; Allen, E.R.; Lundgren, D.A.; Winefordner, J.D.
1985-01-01
A high-volume sampler fitted with a glass-fiber filter and backed by polyurethane foam (PUF) was employed to collect airborne particulate and gas-phase polycylic aromatic hydrocarbons (PAHs) in ambient air. Samples were collected from four sources representing a range of environmental conditions: gasoline engine exhaust, diesel engine exhaust, air near a heavily traveled interstate site, and air from a moderately polluted urban site. Spectral fingerprints of the unseparated particulate and gas-phase samples were obtained by constant energy synchronous luminescence spectroscopy (CESLS). Five major PAHs in the gas-phase extracts were characterized and estimated. The compatibility of a high-volume sampling method using polyurethane foam coupled with CESLS detection is explored for use as a screening technique for PAHs in ambient air. ?? 1985 American Chemical Society.
The effect of the London-van der Waals dispersion force on interline heat transfer
NASA Technical Reports Server (NTRS)
Wayner, P. C., Jr.
1978-01-01
A theoretical procedure to determine the heat transfer characteristics of the interline region (junction of liquid-solid-vapor) from the macroscopic optical and thermophysical properties of the system is outlined. The analysis is based on the premise that the interline transport processes are controlled by the London-van der Waals dispersion force between condensed phases (solid and liquid). Numerical values of the dispersion constant are presented. The procedure is used to compare the relative size of the interline heat sink of various systems using a constant heat flux mode. This solution demonstrates the importance of the interline heat flow number, which is evaluated for various systems.
NASA Astrophysics Data System (ADS)
Roy, Dalim Kumar; Saha, Avijit; Mukherjee, Asok K.
2006-03-01
Cloxacillin sodium has been shown to form a charge transfer complex of 2:1 stoichiometry with riboflavin (Vitamin B 2) in aqueous ethanol medium. The enthalpy and entropy of formation of this complex have been determined by estimating the formation constant spectrophotometrically at five different temperatures in pure water medium. Pronounced effect of dielectric constant of the medium on the magnitude of K has been observed by determining K in aqueous ethanol mixtures of varying composition. This has been rationalized in terms of ionic dissociation of the cloxacillin sodium (D -Na +), hydrolysis of the anion D - and complexation of the free acid, DH with riboflavin.
NASA Astrophysics Data System (ADS)
Reitan, Nina Kristine; Thuen, Marte; Goa, Pa˚L. Erik; de Lange Davies, Catharina
2010-05-01
Solid tumors are characterized by abnormal blood vessel organization, structure, and function. These abnormalities give rise to enhanced vascular permeability and may predict therapeutic responses. The permeability and architecture of the microvasculature in human osteosarcoma tumors growing in dorsal window chambers in athymic mice were measured by confocal laser scanning microscopy (CLSM) and dynamic contrast enhanced magnetic resonance imaging (DCE-MRI). Dextran (40 kDa) and Gadomer were used as molecular tracers for CLSM and DCE-MRI, respectively. A significant correlation was found between permeability indicators. The extravasation rate Ki as measured by CLSM correlated positively with DCE-MRI parameters, such as the volume transfer constant Ktrans and the initial slope of the contrast agent concentration-time curve. This demonstrates that these two techniques give complementary information. Extravasation was further related to microvascular structure and was found to correlate with the fractal dimension and vascular density. The structural parameter values that were obtained from CLSM images were higher for abnormal tumor vasculature than for normal vessels.
Scale-up of recombinant Opc protein production in Escherichia coli for a meningococcal vaccine.
Pérez, Raúl Espinosa; Lasa, Alexis Musacchio; Rodríguez, Ricardo Silva; Menéndez, Evelin Caballero; Suárez, José García; Balaguer, Héctor Díaz
2006-12-15
Opc is an outer membrane protein from Neisseria meningitidis present in meningococcal vaccine preparations. The opc gene, codifying for this protein, was cloned in to Escherichia coli and the Opc protein was expressed under the control of a tryptophan promoter. The recombinant strain was grown in batch cultures. Opc was expressed as inclusion bodies at about 32% of the total cellular protein. We examined the scale-up culture conditions for the production of the recombinant Opc. The scale-up process was performed from 1.5 l to 50 l culture, using first, the constant power per unit of volume (P/V) as main scaling criteria, and then the oxygen mass transfer coefficient (K(L)a) scaling criteria to adjust the optimal aeration conditions. A final productivity of 52 mgl(-1)h(-1) was obtained at the 50l culture scale compared with the 49 mgl(-1)h(-1) productivity at 1.5l laboratory scale.
Mauzerall, David; Hou, Jian-Min; Boichenko, Vladimir A
2002-01-01
Photoacoustics (PA) allows the determination of enthalpy and volume changes of photoreactions in photosynthetic reaction centers on the 0.1-10 mus time scale. These include the bacterial centers from Rb. sphaeroides, PS I and PS II centers from Synechocystis and in whole cells. In vitro and in vivo PA data on PS I and PS II revealed that both the volume change (-26 A(3)) and reaction enthalpy (-0.4 eV) in PS I are the same as those in the bacterial centers. However the volume change in PS II is small and the enthalpy far larger, -1 eV. Assigning the volume changes to electrostriction allows a coherent explanation of these observations. One can explain the large volume decrease in the bacterial centers with an effective dielectric coefficient of approximately 4. This is a unique approach to this parameter so important in estimation of protein energetics. The value of the volume contraction for PS I can only be explained if the acceptor is the super- cluster (Fe(4)S(4))(Cys(4)) with charge change from -1 to -2. The small volume change in PS II is explained by sub-mus electron transfer from Y(Z) anion to P(680) cation, in which charge is only moved from the Y(Z) anion to the Q(A) with no charge separation or with rapid proton transfer from oxidized Y(Z) to a polar region and thus very little change in electrostriction. At more acid pH equally rapid proton transfer from a neighboring histidine to a polar region may be caused by the electric field of the P(680) cation.
Modeling of the heat transfer performance of plate-type dispersion nuclear fuel elements
NASA Astrophysics Data System (ADS)
Ding, Shurong; Huo, Yongzhong; Yan, XiaoQing
2009-08-01
Considering the mutual actions between fuel particles and the metal matrix, the three-dimensional finite element models are developed to simulate the heat transfer behaviors of dispersion nuclear fuel plates. The research results indicate that the temperatures of the fuel plate might rise more distinctly with considering the particle swelling and the degraded surface heat transfer coefficients with increasing burnup; the local heating phenomenon within the particles appears when their thermal conductivities are too low. With rise of the surface heat transfer coefficients, the temperatures within the fuel plate decrease; the temperatures of the fuel plate are sensitive to the variations of the heat transfer coefficients whose values are lower, but their effects are weakened and slight when the heat transfer coefficients increase and reach a certain extent. Increasing the heat generation rate leads to elevating the internal temperatures. The temperatures and the maximum temperature differences within the plate increase along with the particle volume fractions. The surface thermal flux goes up along with particle volume fractions and heat generation rates, but the effects of surface heat transfer coefficients are not evident.
NASA Technical Reports Server (NTRS)
Chen, M. H.; Berger, R. D.; Saul, J. P.; Stevenson, K.; Cohen, R. J.
1987-01-01
We report a new method for the noninvasive characterization of the frequency response of the autonomic nervous system (ANS) in mediating fluctuations in heart rate (HR). The approach entails computation of the transfer function magnitude and phase between instantaneous lung volume and HR. Broad band fluctuations in lung volume were initiated when subjects breathed on cue to a sequence of beeps spaced randomly in time. We studied 10 subjects in both supine and standing positions. The transfer function, averaged among all the subjects, showed systematic differences between the two postures, reflecting the differing frequency responses of the sympathetic and parasympathetic divisions of the ANS.
El-Azab, Hossam Mahmoud; Rott, Olaf; Irlenbusch, Ulrich
2015-03-18
Irreparable posterosuperior rotator cuff tears are treated in several ways. Transfer of the latissimus dorsi is an alternative with acceptable mid-term results, but long-term results have rarely been published. The cases of 108 consecutive patients with 115 shoulders treated with latissimus dorsi transfer between 2000 and 2005 were reviewed clinically and radiographically. Ninety-three shoulders in eighty-six patients were included in the follow-up analysis. The mean duration of follow-up was 9.3 years (range, 6.6 to 11.7 years), and the mean age at the operation was fifty-six years (range, forty to seventy-two years). Outcome measures included the Constant-Murley score (Constant score), American Shoulder and Elbow Surgeons (ASES) index, and visual analog scale (VAS) for pain. The progress of cuff tear arthropathy was determined with radiographic evaluation according to the system described by Hamada et al. The mean relative Constant score improved from 44% preoperatively to 71% at the time of follow-up (p < 0.0001, effect size = 0.6), excluding the clinical failures. Similarly, the mean ASES index improved from 30 to 70 (p < 0.0001, effect size = 0.7), and the mean VAS score decreased from 7.8 to 2.4 (p < 0.0001, effect size = 0.8). A pain-free outcome was reported in only eighteen shoulders (19%). Active shoulder movement improved significantly (p < 0.05). The mean Hamada radiographic grade of cuff tear arthropathy increased from 1.7 (range, 0 to 2) preoperatively to 2.2 (range, 1 to 5) (p < 0.0001, effect size = 0.2). The rate of clinical failure of latissimus dorsi transfer was 10%, and the rate of shoulder prosthetic replacement after latissimus dorsi transfer was 4%. Pain relief and improvement of shoulder function were maintained a mean of 9.3 years after latissimus dorsi transfer for irreparable posterosuperior cuff defects. The younger the patient, the better the outcome. Copyright © 2015 by The Journal of Bone and Joint Surgery, Incorporated.
NASA Astrophysics Data System (ADS)
Bominaar, E. L.; Achim, C.; Borshch, S. A.
1999-06-01
Polynuclear transition-metal complexes, such as Fe-S clusters, are the prosthetic groups in a large number of metalloproteins and serve as temporary electron storage units in a number of important redox-based biological processes. Polynuclearity distinguishes clusters from mononuclear centers and confers upon them unique properties, such as spin ordering and the presence of thermally accessible excited spin states in clusters with paramagnetic sites, and fractional valencies in clusters of the mixed-valence type. In an earlier study we presented an effective-mode (EM) analysis of electron transfer from a binuclear mixed-valence donor with paramagnetic sites to a mononuclear acceptor which revealed that the cluster-specific attributes have an important impact on the kinetics of long-range electron transfer. In the present study, the validity of these results is tested in the framework of more detailed theories which we have termed the multimode semiclassical (SC) model and the quantum-mechanical (QM) model. It is found that the qualitative trends in the rate constant are the same in all treatments and that the semiclassical models provide a good approximation of the more rigorous quantum-mechanical description of electron transfer under physiologically relevant conditions. In particular, the present results corroborate the importance of electron transfer via excited spin states in reactions with a low driving force and justify the use of semiclassical theory in cases in which the QM model is computationally too demanding. We consider cases in which either one or two donor sites of a dimer are electronically coupled to the acceptor. In the case of multiconnectivity, the rate constant for electron transfer from a valence-delocalized (class-III) donor is nonadditive with respect to transfer from individual metal sites of the donor and undergoes an order-of-magnitude change by reversing the sign of the intradimer metal-metal resonance parameter (β). In the case of single connectivity, the rate constant for electron transfer from a valence-localized (class-II) donor can readily be tuned over several orders of magnitude by introducing differences in the electronic potentials at the two metal sites of the donor. These results indicate that theories of cluster-based electron transfer, in order to be realistic, need to consider both intrinsic electronic structure and extrinsic interactions of the cluster with the protein environment.
NASA Astrophysics Data System (ADS)
Elias, M. M.; Saidur, R.; Ben-Mansour, R.; Hepbasli, A.; Rahim, N. A.; Jesbains, K.
2018-04-01
Nanofluid is a new class of engineering fluid that has good heat transfer characteristics which is essential to increase the heat transfer performance in various engineering applications such as heat exchangers and cooling of electronics. In this study, experiments were conducted to compare the heat transfer performance and pressure drop characteristics in a plate heat exchanger (PHE) for 30° and 60° chevron angles using water based Al2O3 nanofluid at the concentrations from 0 to 0.5 vol.% for different Reynolds numbers. The thermo-physical properties has been determined and presented in this paper. At 0.5 vol% concentration, the maximum heat transfer coefficient, the overall heat transfer coefficient and the heat transfer rate for 60° chevron angle have attained a higher percentage of 15.14%, 7.8% and 15.4%, respectively in comparison with the base fluid. Consequently, when the volume concentration or Reynolds number increases, the heat transfer coefficient and the overall heat transfer coefficient as well as the heat transfer rate of the PHE (Plate Heat Exchangers) increases respectively. Similarly, the pressure drop increases with the volume concentration. 60° chevron angle showed better performance in comparison with 30° chevron angle.
NASA Technical Reports Server (NTRS)
Kihm, K. D.; Allen, J. S.; Hallinan, K. P.; Pratt, D. M.
2004-01-01
In order to enhance the fundamental understanding of thin film evaporation and thereby improve the critical design concept for two-phase heat transfer devices, microscale heat and mass transport is to be investigated for the transition film region using state-of-the-art optical diagnostic techniques. By utilizing a microgravity environment, the length scales of the transition film region can be extended sufficiently, from submicron to micron, to probe and measure the microscale transport fields which are affected by intermolecular forces. Extension of the thin film dimensions under microgravity will be achieved by using a conical evaporator made of a thin silicon substrate under which concentric and individually controlled micro-heaters are vapor-deposited to maintain either a constant surface temperature or a controlled temperature variation. Local heat transfer rates, required to maintain the desired wall temperature boundary condition, will be measured and recorded by the concentric thermoresistance heaters controlled by a Wheatstone bridge circuit, The proposed experiment employs a novel technique to maintain a constant liquid volume and liquid pressure in the capillary region of the evaporating meniscus so as to maintain quasi-stationary conditions during measurements on the transition film region. Alternating use of Fizeau interferometry via white and monochromatic light sources will measure the thin film slope and thickness variation, respectively. Molecular Fluorescence Tracking Velocimetry (MFTV), utilizing caged fluorophores of approximately 10-nm in size as seeding particles, will be used to measure the velocity profiles in the thin film region. An optical sectioning technique using confocal microscopy will allow submicron depthwise resolution for the velocity measurements within the film for thicknesses on the order of a few microns. Digital analysis of the fluorescence image-displacement PDFs, as described in the main proposal, can further enhance the depthwise resolution.
Oppenländer, Thomas; Walddörfer, Carsten; Burgbacher, Jens; Kiermeier, Martin; Lachner, Klaus; Weinschrott, Helga
2005-07-01
Xenon excimer (Xe2*) lamps can be used for the oxidation and mineralization of organic compounds in aqueous solution. This vacuum-ultraviolet (VUV) photochemical method is mainly based on the photochemically initiated homolysis of water that produces hydrogen atoms and hydroxyl radicals. The efficiency of substrate oxidation and mineralization is limited markedly due to the high absorbance of water at the emission maximum of the Xe2* lamp (lambda(max)=172 nm). This photochemical condition generates an extreme heterogeneity between the irradiated volume V(irr) and the non-irradiated ("dark") bulk solution. During VUV-initiated photomineralization of organic substrates, the fast scavenging of hydrogen atoms and of carbon-centered radicals by dissolved molecular oxygen produces a permanent oxygen deficit within V(irr) and adjacent compartments. Hence, at a constant photon flux the concentration of dissolved molecular oxygen within the zones of photo and thermal radical reactions limits the rate of mineralization, i.e. the rate of TOC diminution. Thus, a simple and convenient technique is presented that overcomes this limitation by injection of molecular oxygen (or air) into the irradiated volume by use of a ceramic oxygenator (aerator). The tube oxygenator was centered axially within the xenon excimer flow-through lamp. Consequently, the oxygen or air bubbles enhanced the transfer of dissolved molecular oxygen into the VUV-irradiated volume leading to an increased rate of mineralization of organic model compounds, e.g. 1-heptanol, benzoic acid and potassium hydrogen phthalate.
Modern Chemical Technology, Volume 7.
ERIC Educational Resources Information Center
Pecsok, Robert L.; Chapman, Kenneth
This volume is one of the series for the Chemical Technician Curriculum Project (ChemTeC) of the American Chemical Society funded by the National Science Foundation. It consists of discussions, exercises, and experiments on the following topics: the nature of reversible processes, equilibrium constants, variable reaction tendencies, practical…
KSC Tech Transfer News, Volume 5, No. 2
NASA Technical Reports Server (NTRS)
Nichols, James D.
2013-01-01
Kennedy Tech Transfer News is the semiannual magazine of the Innovative Partnerships Program Office at NASA Kennedy Space Center in Cape Canaveral, Florida. This magazine seeks to inform and educate cMI servant and Contractor personnel at Kennedy about actively participating in achieving NASA's technology transfer goals
Ground State of the Universe and the Cosmological Constant. A Nonperturbative Analysis.
Husain, Viqar; Qureshi, Babar
2016-02-12
The physical Hamiltonian of a gravity-matter system depends on the choice of time, with the vacuum naturally identified as its ground state. We study the expanding Universe with scalar field in the volume time gauge. We show that the vacuum energy density computed from the resulting Hamiltonian is a nonlinear function of the cosmological constant and time. This result provides a new perspective on the relation between time, the cosmological constant, and vacuum energy.
Fujisaki, Keisuke; Ikeda, Tomoyuki
2013-01-01
To connect different scale models in the multi-scale problem of microwave use, equivalent material constants were researched numerically by a three-dimensional electromagnetic field, taking into account eddy current and displacement current. A volume averaged method and a standing wave method were used to introduce the equivalent material constants; water particles and aluminum particles are used as composite materials. Consumed electrical power is used for the evaluation. Water particles have the same equivalent material constants for both methods; the same electrical power is obtained for both the precise model (micro-model) and the homogeneous model (macro-model). However, aluminum particles have dissimilar equivalent material constants for both methods; different electric power is obtained for both models. The varying electromagnetic phenomena are derived from the expression of eddy current. For small electrical conductivity such as water, the macro-current which flows in the macro-model and the micro-current which flows in the micro-model express the same electromagnetic phenomena. However, for large electrical conductivity such as aluminum, the macro-current and micro-current express different electromagnetic phenomena. The eddy current which is observed in the micro-model is not expressed by the macro-model. Therefore, the equivalent material constant derived from the volume averaged method and the standing wave method is applicable to water with a small electrical conductivity, although not applicable to aluminum with a large electrical conductivity. PMID:28788395
Shpotyuk, Olha; Adamiak, Stanislaw; Bezvushko, Elvira; Cebulski, Jozef; Iskiv, Maryana; Shpotyuk, Oleh; Balitska, Valentina
2017-12-01
Light-curing volumetric shrinkage in dimethacrylate-based dental resin composites Dipol® is examined through comprehensive kinetics research employing nanoindentation measurements and nanoscale atomic-deficient study with lifetime spectroscopy of annihilating positrons. Photopolymerization kinetics determined through nanoindentation testing is shown to be described via single-exponential relaxation function with character time constants reaching respectively 15.0 and 18.7 s for nanohardness and elastic modulus. Atomic-deficient characteristics of composites are extracted from positron lifetime spectra parameterized employing unconstrained x3-term fitting. The tested photopolymerization kinetics can be adequately reflected in time-dependent changes observed in average positron lifetime (with 17.9 s time constant) and fractional free volume of positronium traps (with 18.6 s time constant). This correlation proves that fragmentation of free-volume positronium-trapping sites accompanied by partial positronium-to-positron traps conversion determines the light-curing volumetric shrinkage in the studied composites.
Howell, D.G.
1989-01-01
If the volume of continents has been growing since 4 Ga then the area of the ocean basins must have been shrinking. Therefore, by inferring a constant continental freeboard, in addition to constant continental crustal thicknesses and seawater volume, it is possible to calculate the necessary combinations of increased ridge lengths and spreading rates required to displace the seawater in the larger oceans of the past in order to maintain the constant freeboard. A reasonable choice from the various possibilities is that at 4 Ga ago, the ridge length and spreading rates were ca. 2.5 times greater than the averages of these parameters during the past 200 Ma. By 2.5 Ga ago the ridge length and spreading rate decreased to about 1.8 times the recent average and by 1 Ga ago these features became reduced to approximately 1.4 times recent averages. ?? 1989.
Transfer potentials shape and equilibrate monetary systems
NASA Astrophysics Data System (ADS)
Fischer, Robert; Braun, Dieter
2003-04-01
We analyze a monetary system of random money transfer on the basis of double entry bookkeeping. Without boundary conditions, we do not reach a price equilibrium and violate text-book formulas of economist's quantity theory ( MV= PQ). To match the resulting quantity of money with the model assumption of a constant price, we have to impose boundary conditions. They either restrict specific transfers globally or impose transfers locally. Both connect through a general framework of transfer potentials. We show that either restricted or imposed transfers can shape Gaussian, tent-shape exponential, Boltzmann-exponential, pareto or periodic equilibrium distributions. We derive the master equation and find its general time-dependent approximate solution. An equivalent of quantity theory for random money transfer under the boundary conditions of transfer potentials is given.
Gas chromatograph sample-transfer valve
NASA Technical Reports Server (NTRS)
Wang, W. S.; Wright, H. W., Jr.
1971-01-01
Slide-type gate valve incorporates sampling volume and transfer passageway for guiding a metered quantity of gas from pressurized test cell to gas chromatograph. Gate is moved by pneumatic bellows-type actuator.
Sarangapani, Radhakrishnan; Reddy, Sreekantha T; Sikder, Arun K
2015-04-01
Molecular dynamics simulations studies are carried out on hydroxyl terminated polyethers that are useful in energetic polymeric binder applications. Energetic polymers derived from oxetanes with heterocyclic side chains with different energetic substituents are designed and simulated under the ensembles of constant particle number, pressure, temperature (NPT) and constant particle number, volume, temperature (NVT). Specific volume of different amorphous polymeric models is predicted using NPT-MD simulations as a function of temperature. Plots of specific volume versus temperature exhibited a characteristic change in slope when amorphous systems change from glassy to rubbery state. Several material properties such as Young's, shear, and bulk modulus, Poisson's ratio, etc. are predicted from equilibrated structures and established the structure-property relations among designed polymers. Energetic performance parameters of these polymers are calculated and results reveal that the performance of the designed polymers is comparable to the benchmark energetic polymers like polyNIMMO, polyAMMO and polyBAMO. Overall, it is worthy remark that this molecular simulations study on novel energetic polyethers provides a good guidance on mastering the design principles and allows us to design novel polymers of tailored properties. Copyright © 2015 Elsevier Inc. All rights reserved.
Numerical Modeling of Cavitating Venturi: A Flow Control Element of Propulsion System
NASA Technical Reports Server (NTRS)
Majumdar, Alok; Saxon, Jeff (Technical Monitor)
2002-01-01
In a propulsion system, the propellant flow and mixture ratio could be controlled either by variable area flow control valves or by passive flow control elements such as cavitating venturies. Cavitating venturies maintain constant propellant flowrate for fixed inlet conditions (pressure and temperature) and wide range of outlet pressures, thereby maintain constant, engine thrust and mixture ratio. The flowrate through the venturi reaches a constant value and becomes independent of outlet pressure when the pressure at throat becomes equal to vapor pressure. In order to develop a numerical model of propulsion system, it is necessary to model cavitating venturies in propellant feed systems. This paper presents a finite volume model of flow network of a cavitating venturi. The venturi was discretized into a number of control volumes and mass, momentum and energy conservation equations in each control volume are simultaneously solved to calculate one-dimensional pressure, density, and flowrate and temperature distribution. The numerical model predicts cavitations at the throat when outlet pressure was gradually reduced. Once cavitation starts, with further reduction of downstream pressure, no change in flowrate is found. The numerical predictions have been compared with test data and empirical equation based on Bernoulli's equation.
VOLATILIZATION OF ALKYLBENZENES FROM WATER.
Rathbun, R.E.; Tai, D.Y.
1985-01-01
Volatilization is a physical process of importance in determining the fate of many organic compounds in streams and rivers. This process is frequently described by the conceptual-two-film model. The model assumes uniformly mixed water and air phases separated by thin films of water and air in which mass transfer is by molecular diffusion. Mass-transfer coefficients for the water and air films are related to an overall mass-transfer coefficient for volatilization through the Henry's law constant.
Gadda, Giovanni; Yuan, Hongling
2017-11-15
Choline oxidase oxidizes choline to glycine betaine, with two flavin-mediated reactions to convert the alcohol substrate to the carbon acid product. Proton abstraction from choline or hydrated betaine aldehyde in the wild-type enzyme occurs in the mixing time of the stopped-flow spectrophotometer, thereby precluding a mechanistic investigation. Mutagenesis of S101 rendered the proton transfer reaction amenable to study. Here, we have investigated the aldehyde oxidation reaction catalyzed by the mutant enzymes using steady-state and rapid kinetics with betaine aldehyde. Stopped-flow traces for the reductive half-reaction of the S101T/V/C variants were biphasic, corresponding to the reactions of proton abstraction and hydride transfer. In contrast, the S101A enzyme yielded monophasic traces like wild-type choline oxidase. The rate constants for proton transfer in the S101T/C/V variants decreased logarithmically with increasing hydrophobicity of residue 101, indicating a behavior different from that seen previously with choline for which no correlation was determined. The rate constants for hydride transfer also showed a logarithmic decrease with increasing hydrophobicity at position 101, which was similar to previous results with choline as a substrate for the enzyme. Thus, the hydrophilic character of S101 is necessary not only for efficient hydride transfer but also for the proton abstraction reaction. Copyright © 2017. Published by Elsevier Inc.
Choi, Hyunbong; Santra, Pralay K; Kamat, Prashant V
2012-06-26
Manipulation of energy and electron transfer processes in a light harvesting assembly is an important criterion to mimic natural photosynthesis. We have now succeeded in sequentially assembling CdSe quantum dot (QD) and squaraine dye (SQSH) on TiO(2) film and couple energy and electron transfer processes to generate photocurrent in a hybrid solar cell. When attached separately, both CdSe QDs and SQSH inject electrons into TiO(2) under visible-near-IR irradiation. However, CdSe QD if linked to TiO(2) with SQSH linker participates in an energy transfer process. The hybrid solar cells prepared with squaraine dye as a linker between CdSe QD and TiO(2) exhibited power conversion efficiency of 3.65% and good stability during illumination with global AM 1.5 solar condition. Transient absorption spectroscopy measurements provided further insight into the energy transfer between excited CdSe QD and SQSH (rate constant of 6.7 × 10(10) s(-1)) and interfacial electron transfer between excited SQSH and TiO(2) (rate constant of 1.2 × 10(11) s(-1)). The synergy of covalently linked semiconductor quantum dots and near-IR absorbing squaraine dye provides new opportunities to harvest photons from selective regions of the solar spectrum in an efficient manner.
Lennox, J Christian; Dempsey, Jillian L
2017-11-22
A polypyridyl ruthenium complex with fluorinated bipyridine ligands and a covalently bound tyrosine moiety was synthesized, and its photo-induced proton-coupled electron transfer (PCET) reactivity in acetonitrile was investigated with transient absorption spectroscopy. Using flash-quench methodology with methyl viologen as an oxidative quencher, a Ru 3+ species is generated that is capable of initiating the intramolecular PCET oxidation of the tyrosine moiety. Using a series of substituted pyridine bases, the reaction kinetics were found to vary as a function of proton acceptor concentration and identity, with no significant H/D kinetic isotope effect. Through analysis of the kinetics traces and comparison to a control complex without the tyrosine moiety, PCET reactivity was found to proceed through an equilibrium electron transfer followed by proton transfer (ET-PT) pathway in which irreversible deprotonation of the tyrosine radical cation shifts the ET equilibrium, conferring a base dependence on the reaction. Comprehensive kinetics modeling allowed for deconvolution of complex kinetics and determination of rate constants for each elementary step. Across the five pyridine bases explored, spanning a range of 4.2 pK a units, a linear free-energy relationship was found for the proton transfer rate constant with a slope of 0.32. These findings highlight the influence that proton transfer driving force exerts on PCET reaction kinetics.
Predicting the Rate Constant of Electron Tunneling Reactions at the CdSe-TiO2 Interface.
Hines, Douglas A; Forrest, Ryan P; Corcelli, Steven A; Kamat, Prashant V
2015-06-18
Current interest in quantum dot solar cells (QDSCs) motivates an understanding of the electron transfer dynamics at the quantum dot (QD)-metal oxide (MO) interface. Employing transient absorption spectroscopy, we have monitored the electron transfer rate (ket) at this interface as a function of the bridge molecules that link QDs to TiO2. Using mercaptoacetic acid, 3-mercaptopropionic acid, 8-mercaptooctanoic acid, and 16-mercaptohexadecanoic acid, we observe an exponential attenuation of ket with increasing linker length, and attribute this to the tunneling of the electron through the insulating linker molecule. We model the electron transfer reaction using both rectangular and trapezoidal barrier models that have been discussed in the literature. The one-electron reduction potential (equivalent to the lowest unoccupied molecular orbital) of each molecule as determined by cyclic voltammetry (CV) was used to estimate the effective barrier height presented by each ligand at the CdSe-TiO2 interface. The electron transfer rate (ket) calculated for each CdSe-ligand-TiO2 interface using both models showed the results in agreement with the experimentally determined trend. This demonstrates that electron transfer between CdSe and TiO2 can be viewed as electron tunneling through a layer of linking molecules and provides a useful method for predicting electron transfer rate constants.
Thermodynamic Volume in AdS/CFT
NASA Astrophysics Data System (ADS)
Kim, Kyung Kiu; Ahn, Byoungjoon
2018-01-01
In this note, we study on extended thermodynamics of AdS black holes by varying cosmological constant. We found and discussed pressure and volume of both bulk and boundary physics through AdS/CFT correspondence. In particular, we derive the relation between thermodynamic volume and a chemical potential for M2 brane dual to four dimensional AdS space. In addition, we show that thermodynamic volume of hyperbolic black hole is related to `entanglement pressure' coming from a generalized first law of entanglement entropy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heifetz, Alexander; Vilim, Richard
Super-critical carbon dioxide (S-CO2) is a promising thermodynamic cycle for advanced nuclear reactors and solar energy conversion applications. Dynamic control of the proposed recompression S-CO2 cycle is accomplished with input from resistance temperature detector (RTD) measurements of the process fluid. One of the challenges in practical implementation of S-CO2 cycle is high corrosion rate of component and sensor materials. In this paper, we develop a mathematical model of RTD sensing using eigendecomposition model of radial heat transfer in a layered long cylinder. We show that the value of RTD time constant primarily depends on the rate of heat transfer frommore » the fluid to the outer wall of RTD. We also show that for typical material properties, RTD time constant can be calculated as the sum of reciprocal eigen-values of the heat transfer matrix. Using the computational model and a set of RTD and CO2 fluid thermophysical parameter values, we calculate the value of time constant of thermowell-mounted RTD sensor at the hot side of the precooler in the S-CO2 cycle. The eigendecomposition model of RTD will be used in future studies to model sensor degradation and its impact on control of S-CO2. (C) 2016 Elsevier B.V. All rights reserved.« less
Serrating Nozzle Surfaces for Complete Transfer of Droplets
NASA Technical Reports Server (NTRS)
Kim, Chang-Jin " CJ"
2010-01-01
A method of ensuring the complete transfer of liquid droplets from nozzles in microfluidic devices to nearby surfaces involves relatively simple geometric modification of the nozzle surfaces. The method is especially applicable to nozzles in print heads and similar devices required to dispense liquid droplets having precise volumes. Examples of such devices include heads for soft printing of ink on paper and heads for depositing droplets of deoxyribonucleic acid (DNA) or protein solutions on glass plates to form microarrays of spots for analysis. The main purpose served by the present method is to ensure that droplets transferred from a nozzle have consistent volume, as needed to ensure accuracy in microarray analysis or consistent appearance of printed text and images. In soft printing, droplets having consistent volume are generated inside a print head, but in the absence of the present method, the consistency is lost in printing because after each printing action (in which a drop is ejected from a nozzle), a small residual volume of liquid remains attached to the nozzle. By providing for complete transfer of droplets (and thus eliminating residual liquid attached to the nozzle) the method ensures consistency of volume of transferred droplets. An additional benefit of elimination of residue is prevention of cross-contamination among different liquids printed through the same nozzle a major consideration in DNA microarray analysis. The method also accelerates the printing process by minimizing the need to clean a printing head to prevent cross-contamination. Soft printing involves a hydrophobic nozzle surface and a hydrophilic print surface. When the two surfaces are brought into proximity such that a droplet in the nozzle makes contact with the print surface, a substantial portion of the droplet becomes transferred to the print surface. Then as the nozzle and the print surface are pulled apart, the droplet is pulled apart and most of the droplet remains on the print surface. The basic principle of the present method is to reduce the liquid-solid surface energy of the nozzle to a level sufficiently below the intrinsic solid-liquid surface energy of the nozzle material so that the droplet is not pulled apart and, instead, the entire droplet volume becomes transferred to the print surface. In this method, the liquid-solid surface energy is reduced by introducing artificial surface roughness in the form of micromachined serrations on the inner nozzle surface (see figure). The method was tested in experiments on soft printing of DNA solutions and of deionized water through 0.5-mm-diameter nozzles, of which some were not serrated, some were partially serrated, and some were fully serrated. In the nozzles without serrations, transfer was incomplete; that is, residual liquids remained in the nozzles after printing. However, in every nozzle in which at least half the inner surface was serrated, complete transfer of droplets to the print surface was achieved.
NASA Astrophysics Data System (ADS)
Kumar, P. C. Mukesh; Kumar, J.; Suresh, S.; Babu, K. Praveen
2012-10-01
In this experimental investigation, the heat transfer coefficients of a shell and helically coiled tube heat exchanger using Al2O3/water nanofluid under laminar flow condition were studied. The Al2O3 nanoparticles were characterized by X-Ray diffraction (XRD). The Al2O3/water nanofluid at 0.1%, 0.4% and 0.8% particle volume concentration were prepared by using two step method. The prepared nanofluid was characterized by scanning electron microscope (SEM). It is observed that the overall heat transfer coefficient, inner heat transfer coefficient and experimental inner Nusselt number increase while increasing particle volume concentration and increasing inner Dean number. The enhancement of overall heat transfer coefficient was found to be 7%, 16.9% and 24.2% at 0.1%, 0.4% and 0.8% Al2O3/water nanofluid respectively when compared with water. The enhancement of tube side experimental Nusselt number was found to be 17%, 22.9% and 28% at 0.1%, 0.4% and 0.8% particle volume concentration of Al2O3/water nanofluid respectively when compared with water at fixed Dean number. The tests were conducted in the range of 1600 < De < 2700, and 5200 < Re < 8600 under laminar flow condition and counter flow configuration. These enhancements are due to higher thermal conductivity of nanofluid while increasing particle volume concentration and Brownian motion of nanoparticles. It is studied that there is no negative impact on formation of secondary flow and mixing of fluid when nanofluid passes through the helically coiled tube.
Natural convection of Al2O3-water nanofluid in a wavy enclosure
NASA Astrophysics Data System (ADS)
Leonard, Mitchell; Mozumder, Aloke K.; Mahmud, Shohel; Das, Prodip K.
2017-06-01
Natural convection heat transfer and fluid flow inside enclosures filled with fluids, such as air, water or oil, have been extensively analysed for thermal enhancement and optimisation due to their applications in many engineering problems, including solar collectors, electronic cooling, lubrication technologies, food processing and nuclear reactors. In comparison, little effort has been given to the problem of natural convection inside enclosures filled with nanofluids, while the addition of nanoparticles into a fluid base to alter thermal properties can be a feasible solution for many heat transfer problems. In this study, the problem of natural convection heat transfer and fluid flow inside a wavy enclosure filled with Al2O3-water nanofluid is investigated numerically using ANSYS-FLUENT. The effects of surface waviness and aspect ratio of the wavy enclosure on the heat transfer and fluid flow are analysed for various concentrations of Al2O3 nanoparticles in water. Flow fields and temperature fields are investigated and heat transfer rate is examined for different values of Rayleigh number. Results show that heat transfer within the enclosure can be enhanced by increasing surface waviness, aspect ratio or nanoparticles volume fraction. Changes in surface waviness have little effect on the heat transfer rate at low Rayleigh numbers, but when Ra ≥ 105 heat transfer increases with the increase of surface waviness from zero to higher values. Increasing the aspect ratio causes an increase in heat transfer rate, as the Rayleigh number increases the effect of changing aspect ratio is more apparent with the greatest heat transfer enhancement seen at higher Rayleigh numbers. Nanoparticles volume fraction has a little effect on the average Nusselt number at lower Rayleigh numbers when Ra ≥ 105 average Nusselt number increases with the increase of volume fraction. These findings provide insight into the heat transfer effects of using Al2O3-water nanofluid as a heat transfer medium and the effects of changing geometrical parameters, which will help in developing novel geometries with enhanced and controlled heat-transfer for solar collectors, electronic cooling, and food processing industries.
Consolino, Lorena; Longo, Dario Livio; Dastrù, Walter; Cutrin, Juan Carlos; Dettori, Daniela; Lanzardo, Stefania; Oliviero, Salvatore; Cavallo, Federica; Aime, Silvio
2016-07-15
Tumour progression depends on several sequential events that include the microenvironment remodelling processes and the switch to the angiogenic phenotype, leading to new blood vessels recruitment. Non-invasive imaging techniques allow the monitoring of functional alterations in tumour vascularity and cellularity. The aim of this work was to detect functional changes in vascularisation and cellularity through Dynamic Contrast Enhanced (DCE) and Diffusion Weighted (DW) Magnetic Resonance Imaging (MRI) modalities during breast cancer initiation and progression of a transgenic mouse model (BALB-neuT mice). Histological examination showed that BALB-neuT mammary glands undergo a slow neoplastic progression from simple hyperplasia to invasive carcinoma, still preserving normal parts of mammary glands. DCE-MRI results highlighted marked functional changes in terms of vessel permeability (K(trans) , volume transfer constant) and vascularisation (vp , vascular volume fraction) in BALB-neuT hyperplastic mammary glands if compared to BALB/c ones. When breast tissue progressed from simple to atypical hyperplasia, a strong increase in DCE-MRI biomarkers was observed in BALB-neuT in comparison to BALB/c mice (K(trans) = 5.3 ± 0.7E-4 and 3.1 ± 0.5E-4; vp = 7.4 ± 0.8E-2 and 4.7 ± 0.6E-2 for BALB-neuT and BALB/c, respectively) that remained constant during the successive steps of the neoplastic transformation. Consistent with DCE-MRI observations, microvessel counting revealed a significant increase in tumour vessels. Our study showed that DCE-MRI estimates can accurately detect the angiogenic switch at early step of breast cancer carcinogenesis. These results support the view that this imaging approach is an excellent tool to characterize microvasculature changes, despite only small portions of the mammary glands developed neoplastic lesions in a transgenic mouse model. © 2016 UICC.
Yuan, Su Juan; Qiao, Tian Kui; Qiang, Jin Wei; Cai, Song Qi; Li, Ruo Kun
2017-09-26
To investigate dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) for assessing histopathological and molecular biological features in induced rat epithelial ovarian carcinomas (EOCs). 7,12-dimethylbenz[A]anthracene (DMBA) was applied to induce EOCs in situ in 46 SD rats. Conventional MRI and DCE-MRI were performed to evaluate the morphology and perfusion features of the tumors, including the time-signal intensity curve (TIC), volume transfer constant (K trans ), rate constant (K ep ), extravascular extracellular space volume ratio (V e ) and initial area under the curve (IAUC). DCE-MRI parameters were correlated with histological grade, microvascular density (MVD), vascular endothelial growth factor (VEGF) and fraction of Ki67-positive cells and the serum level of cancer antigen 125 (CA125). Thirty-five of the 46 rats developed EOCs. DCE-MRI showed type III TIC more frequently than type II (29/35 vs. 6/35, p < 0.001) in EOCs. The two types of TIC of tumors had significant differences in the histological grade, MVD, expression of VEGF and Ki67, and the serum level of CA125 (all p < 0.01). K trans , K ep and IAUC values showed significant differences in different histological grades in overall and pairwise comparisons except for IAUC in grade 2 vs. grade 3 (all p < 0.01). There was no significant difference in V e values among the three grade groups (p > 0.05). K trans , K ep and IAUC values were positively correlated with MVD, VEGF and Ki67 expression (all p < 0.01). V e was not significantly correlated with MVD, VEGF expression, Ki67 expression and the CA125 level (all p > 0.05). TIC types and perfusion parameters of DCE-MRI can reflect tumor grade, angiogenesis and cell proliferation to some extent, thereby helping treatment planning and predicting prognosis.
NASA Astrophysics Data System (ADS)
Aboulfotoh, Noha; Twiefel, Jens
2018-06-01
A typical vibration harvester is tuned to operate at resonance in order to maximize the power output. There are many design parameter sets for tuning the harvester to a specific frequency, even for simple geometries. This work studies the impact of the geometrical parameters on the harvested power while keeping the resonance frequency constant in order to find the combination of the parameters that optimizes the power under a predefined volume. A bimorph piezoelectric cantilever is considered for the study. It consists of two piezoelectric layers and a middle non-piezoelectric layer and holds a tip mass. A theoretical model was derived to obtain the system parameters and the power as functions of the design parameters. Formulas for the optimal load resistance that provide maximum power capability at resonance and anti-resonance frequency were derived. The influence of the width on the power is studied, considering a constant mass ratio (between the tip mass and the mass of the beam). This keeps the resonance frequency constant while changing the width. The influence of the ratio between the thickness of the middle layer and that of the piezoelectric layer is also studied. It is assumed that the total thickness of the cantilever is constant and the middle layer has the same mechanical properties (elasticity and density) as the piezoelectric layer. This keeps the resonance frequency constant while changing the ratio between the thicknesses. Finally, the influence of increasing the free length as well as of increasing the mass ratio on the power is investigated. This is done by first, increasing each of them individually and secondly, by increasing each of them simultaneously while increasing the total thickness under the condition of maintaining a constant resonance frequency. Based on the analysis of these influences, recommendations as to how to maximize the geometrical parameters within the available volume and mass are presented.
NASA Technical Reports Server (NTRS)
1983-01-01
Orbital Transfer Vehicle (OTV) servicing study scope, propellant transfer, storage and reliquefaction technology development missions (TDM), docking and berthing TDM, maintenance TDM, OTV/payload integration TDM, combined TDMS design, summary space station accomodations, programmatic analysis, and TDM equipment operational usage are discussed.
Tech Transfer Magazine - KSC News Volume I, Number 2, Fall/Winter 2008
NASA Technical Reports Server (NTRS)
Dunn, Carol (Editor)
2008-01-01
Kennedy Tech Transfer News is the semiannual magazine of the Innovative Partnerships Program Office at NASA Kennedy Space Center in Cape Canaveral, Florida. This magazine seeks to inform and educate cMI servant and Contractor personnel at Kennedy about actively participating in achieving NASA's technology transfer goals:
Flexible Manufacturing System Handbook. Volume II. Description of the Technology
1983-02-01
hubs, or wheels with considerable 4 FM5 Handbook, Volume II milling, drilling and/or tapping, are usually candidates for inclusion in a prismatic...0.06 inch) to transfer pallets to a machine or unload station. Wheel encoders can be used as less precise feedback for the drive system and its...must be used to control pallet transfer. The Cincinnati Milacron Variable Mission System uses this type of MHS, specifically the Eaton-Kenway Robo
NASA Astrophysics Data System (ADS)
Jafarimoghaddam, Amin; Aberoumand, Sadegh; Javaherdeh, Kourosh; Arani, Ali Akbar Abbasian; Jafarimoghaddam, Reza
2018-04-01
In this work, an experimental study on nanofluid preparation stability, thermo-physical properties, heat transfer performance and friction factor of Al/ Oil nanofluids has been carried out. Electrical Explosion Wire ( E.E.W) which is one of the most reliable one-step techniques for nanofluids preparation has been used. An annular tube has been considered as the test section in which the outer tube was subject to a uniform heat flux boundary condition of about 204 W. The utilized nanofluids were prepared in three different volume concentrations of 0.011%, 0.044% and 0.171%. A wide range of parameters such as Reynolds number Prandtl number, viscosity, thermal conductivity, density, specific heat, convective heat transfer coefficient, Nusselt number and the friction factor have been studied. The experiment was conducted in relatively low Reynolds numbers of less than 160 and within a hydrodynamically fully-developed regime. According to the results, thermal conductivity, density and viscosity increased depending on the volume concentrations and working temperatures while the specific heat declined. More importantly, it was observed that convective heat transfer coefficient and Nusselt number enhanced by 28.6% and 16.4%, respectively, for the highest volume concentration. Finally, the friction factor (which plays an important role in the pumping power) was found to be increased around 18% in the volume fraction of 0.171%.
NASA Astrophysics Data System (ADS)
Larsson, Sven; Volosov, Andrey
1987-12-01
Rate constants for photoinduced intramolecular electron transfer are calculated for four of the molecules studied by Hush et al. The electronic factor is obtained in quantum chemical calculations using the CNDO/S method. The results agree reasonably well with experiments for the forward reaction. Possible reasons for the disagreement for the charge recombination process are offered.
Counter-transference and counter-experience in the treatment of violence prone youth.
King, C H
1976-01-01
The constant confrontation inherent in therapeutic intervention with violence prone children, some of whome have committed homicide, is explored. Problems unique to work with these youths are discussed in terms of counter-transference issues for clinicians and counter-experience of teachers and child care workers. Suggestions for training and supervision are offered.
NASA Astrophysics Data System (ADS)
Naik, Lohit; Deshapande, Narahari; Khazi, Imtiyaz Ahamed M.; Malimath, G. H.
2018-02-01
In the present work, we have carried out energy transfer studies using newly synthesised derivatives of thiophene substituted 1,3,4-oxadiazoles namely, 2-(-4-(thiophene-3-yl)phenyl)-5-(5-(thiophene-3-yl)thiophene-2-yl)-1,3,4-oxadiazole [TTO], 2-(-4-(benzo[b]thiophene-2-yl)phenyl)-5-(5-(benzo[b]thiophene-2-yl)-1,3,4-oxadiozole [TBO] and 2-(4-(4-(trifluoromethyl)phenyl)phenyl)-5-(5-(4-(trifluoromethyl)phenyl)thiophen-2-yl)-1,3,4-oxadiazole [TMO] as donors and laser dye coumarin-334 as acceptor in ethanol and dye-doped polymer (poly(methyl methacrylate) (PMMA)) media following steady-state and time-resolved fluorescence methods. Bimolecular quenching constant ( k q), translation diffusion rate parameter ( k d), diffusion length ( D l), critical transfer distance ( R 0), donor- acceptor distance ( r) and energy transfer efficiency ( E T) are calculated. It is observed that, critical transfer distance is more than the diffusion length for all the pairs. Further, bimolecular quenching constant is also more than the translation diffusion rate parameter. Hence, our experimental findings suggest that overall energy transfer is due to Förster resonance energy transfer (FRET) between donor and acceptor in both the media and for all the pairs. In addition, considerable increase in fluorescence intensity and energy transfer efficiency is observed in dye-doped polymer matrix systems as compared to liquid media. This suggests that, these donor-acceptor pairs doped in PMMA matrix may be used for applications such as energy transfer dye lasers (ETDL) to improve the efficiency and photostability, to enhance tunability and for plastic scintillation detectors.
Mainka, Alexander; Kürbis, Steffen; Birkholz, Peter
2018-01-01
Recently, 3D printing has been increasingly used to create physical models of the vocal tract with geometries obtained from magnetic resonance imaging. These printed models allow measuring the vocal tract transfer function, which is not reliably possible in vivo for the vocal tract of living humans. The transfer functions enable the detailed examination of the acoustic effects of specific articulatory strategies in speaking and singing, and the validation of acoustic plane-wave models for realistic vocal tract geometries in articulatory speech synthesis. To measure the acoustic transfer function of 3D-printed models, two techniques have been described: (1) excitation of the models with a broadband sound source at the glottis and measurement of the sound pressure radiated from the lips, and (2) excitation of the models with an external source in front of the lips and measurement of the sound pressure inside the models at the glottal end. The former method is more frequently used and more intuitive due to its similarity to speech production. However, the latter method avoids the intricate problem of constructing a suitable broadband glottal source and is therefore more effective. It has been shown to yield a transfer function similar, but not exactly equal to the volume velocity transfer function between the glottis and the lips, which is usually used to characterize vocal tract acoustics. Here, we revisit this method and show both, theoretically and experimentally, how it can be extended to yield the precise volume velocity transfer function of the vocal tract. PMID:29543829
Correcting reaction rates measured by saturation-transfer magnetic resonance spectroscopy
NASA Astrophysics Data System (ADS)
Gabr, Refaat E.; Weiss, Robert G.; Bottomley, Paul A.
2008-04-01
Off-resonance or spillover irradiation and incomplete saturation can introduce significant errors in the estimates of chemical rate constants measured by saturation-transfer magnetic resonance spectroscopy (MRS). Existing methods of correction are effective only over a limited parameter range. Here, a general approach of numerically solving the Bloch-McConnell equations to calculate exchange rates, relaxation times and concentrations for the saturation-transfer experiment is investigated, but found to require more measurements and higher signal-to-noise ratios than in vivo studies can practically afford. As an alternative, correction formulae for the reaction rate are provided which account for the expected parameter ranges and limited measurements available in vivo. The correction term is a quadratic function of experimental measurements. In computer simulations, the new formulae showed negligible bias and reduced the maximum error in the rate constants by about 3-fold compared to traditional formulae, and the error scatter by about 4-fold, over a wide range of parameters for conventional saturation transfer employing progressive saturation, and for the four-angle saturation-transfer method applied to the creatine kinase (CK) reaction in the human heart at 1.5 T. In normal in vivo spectra affected by spillover, the correction increases the mean calculated forward CK reaction rate by 6-16% over traditional and prior correction formulae.
Agency on the move: revisioning the route to social change.
Frazier, Kathryn E
2013-09-01
Throughout the course of everyday life individuals enter into interactions in which an intricate relationship between agency and subordination can be observed: they sometimes act agentively and at other times-via discursive and/or interpersonal processes-their agency is reduced to objectness. Thus, theoretically we can think of constant dynamics of transfer of agency. It is argued that the transfer of agency between persons (or groups) is a fundamental quality of the societal discourses in which all persons are constituted. This transfer of agency occurs constantly throughout social interaction and at different levels of social functioning as individuals live and make meaning of their experiences. In light of this perspective, it is suggested that social change movements that aim to interrupt the transfer of agency and instead fix agency with one person (or one group of people) are inadequate. Rather, these movements can actually subvert their own agenda by producing problematic tensions in discourse and subjectivity. The self-defense movement, a component of the movement to end violence against women, is presented as a case study. The problematic and tension-filled positions and meanings the movement (re)produces for women are explored as an effect of denying any transfer of agency between women and men around issues of violence and gender oppression.
NASA Astrophysics Data System (ADS)
Moorthy, P.; Oumer, A. N.; Ishak, M.
2018-03-01
The aim of this paper is to investigate the effect of fin shapes on the performance of compact finned flat tube heat exchangers. Three types of fin shapes namely plain, wavy, and rectangular grooved fins attached to three by three arrays of flat tube banks were considered. Moreover, the tubes were deployed in in-line and staggered arrangements. In addition to the fin shapes, the air velocity and the tube inclination angles were varied and the thermal-hydraulic performance was analysed. On the other hand, the temperatures at the tube surfaces were kept constant to produce constant heat flux throughout the study. The results showed that as flowrate increases, the heat transfer increases, however, the friction factor decreases. Staggered arrangement produces higher heat transfer and friction factor than inline fin. Moreover, the rectangular fin is the best in terms of high heat transfer however the drawback of high friction factor leads the fin to have the least efficiency of all. On the other hand, plain fin had the least heat transfer performance however the highest efficiency was achieved. Therefore, plain fin should be used when efficiency is prioritized and rectangular fin when high heat transfer is desired.
Verification of a two-dimensional infiltration model for the resin transfer molding process
NASA Technical Reports Server (NTRS)
Hammond, Vincent H.; Loos, Alfred C.; Dexter, H. Benson; Hasko, Gregory H.
1993-01-01
A two-dimensional finite element model for the infiltration of a dry textile preform by an injected resin was verified. The model, which is based on the finite element/control volume technique, determines the total infiltration time and the pressure increase at the mold inlet associated with the RTM process. Important input data for the model are the compaction and permeability behavior of the preform along with the kinetic and rheological behavior of the resin. The compaction behavior for several textile preforms was determined by experimental methods. A power law regression model was used to relate fiber volume fraction to the applied compaction pressure. Results showed a large increase in fiber volume fraction with the initial application of pressure. However, as the maximum fiber volume fraction was approached, the amount of compaction pressure required to decrease the porosity of the preform rapidly increased. Similarly, a power law regression model was used to relate permeability to the fiber volume fraction of the preform. Two methods were used to measure the permeability of the textile preform. The first, known as the steady state method, measures the permeability of a saturated preform under constant flow rate conditions. The second, denoted the advancing front method, determines the permeability of a dry preform to an infiltrating fluid. Water, corn oil, and an epoxy resin, Epon 815, were used to determine the effect of fluid type and viscosity on the steady state permeability behavior of the preform. Permeability values measured with the different fluids showed that fluid viscosity had no influence on the permeability behavior of 162 E-glass and TTI IM7/8HS preforms. Permeabilities measured from steady state and advancing front experiments for the warp direction of 162 E-glass fabric were similar. This behavior was noticed for tests conducted with corn oil and Epon 815. Comparable behavior was observed for the warp direction of the TTI IM7/8HS preform and corn oil. Mold filling and flow visualization experiments were performed to verify the analytical computer model. Frequency dependent electromagnetic sensors were used to monitor the resin flow front as a function of time. For the flow visualization tests, a video camera and high resolution tape recorder were used to record the experimental flow fronts. Comparisons between experimental and model predicted flow fronts agreed well for all tests. For the mold filling tests conducted at constant flow rate injection, the model was able to accurately predict the pressure increase at the mold inlet during the infiltration process. A kinetics model developed to predict the degree of cure as a function of time for the injected resin accurately calculated the increase in the degree of cure during the subsequent cure cycle.
A urine volume measurement system
NASA Technical Reports Server (NTRS)
Poppendiek, H. F.; Mouritzen, G.; Sabin, C. M.
1972-01-01
An improved urine volume measurement system for use in the unusual environment of manned space flight is reported. The system utilizes a low time-constant thermal flowmeter. The time integral of the transient response of the flowmeter gives the urine volume during a void as it occurs. In addition, the two phase flows through the flowmeter present no problem. Developments of the thermal flowmeter and a verification of the predicted performance characteristics are summarized.
NASA Technical Reports Server (NTRS)
Basu, S.; Cetegen, B. M.
2005-01-01
An integral analysis of hydrodynamics and heat transfer in a thin liquid film flowing over a rotating disk surface is presented for both constant temperature and constant heat flux boundary conditions. The model is found to capture the correct trends of the liquid film thickness variation over the disk surface and compare reasonably well with experimental results over the range of Reynolds and Rossby numbers covering both inertia and rotation dominated regimes. Nusselt number variation over the disk surface shows two types of behavior. At low rotation rates, the Nusselt number exhibits a radial decay with Nusselt number magnitudes increasing with higher inlet Reynolds number for both constant wall temperature and heat flux cases. At high rotation rates, the Nusselt number profiles exhibit a peak whose location advances radially outward with increasing film Reynolds number or inertia. The results also compare favorably with the full numerical simulation results from an earlier study as well as with the reported experimental results.
Bubble Continuous Positive Airway Pressure Enhances Lung Volume and Gas Exchange in Preterm Lambs
Pillow, J. Jane; Hillman, Noah; Moss, Timothy J. M.; Polglase, Graeme; Bold, Geoff; Beaumont, Chris; Ikegami, Machiko; Jobe, Alan H.
2007-01-01
Rationale: The technique used to provide continuous positive airway pressure (CPAP) to the newborn may influence lung function and breathing efficiency. Objectives: To compare differences in gas exchange physiology and lung injury resulting from treatment of respiratory distress with either bubble or constant pressure CPAP and to determine if the applied flow influences short-term outcomes. Methods: Lambs (133 d gestation; term is 150 d) born via cesarean section were weighed, intubated, and treated with CPAP for 3 hours. Two groups were treated with 8 L/minute applied flow using the bubble (n = 12) or the constant pressure (n = 12) technique. A third group (n = 10) received the bubble method with 12 L/minute bias flow. Measurements at study completion included arterial blood gases, oxygraphy, capnography, tidal flow, multiple breath washout, lung mechanics, static pressure–volume curves, and bronchoalveolar lavage fluid protein. Measurements and Main Results: Birth weight and arterial gas variables at 15 minutes were comparable. Flow (8 or 12 L/min) did not influence the 3-hour outcomes in the bubble group. Bubble technique was associated with a higher pH, PaO2, oxygen uptake, and area under the flow–volume curve, and a decreased alveolar protein, respiratory quotient, PaCO2, and ventilation inhomogeneity compared with the constant pressure group. Conclusions: Compared with constant pressure technique, bubble CPAP promotes enhanced airway patency during treatment of acute postnatal respiratory disease in preterm lambs and may offer protection against lung injury. PMID:17431223
Gambini, R; Pullin, J
2000-12-18
We consider general relativity with a cosmological constant as a perturbative expansion around a completely solvable diffeomorphism invariant field theory. This theory is the lambda --> infinity limit of general relativity. This allows an explicit perturbative computational setup in which the quantum states of the theory and the classical observables can be explicitly computed. An unexpected relationship arises at a quantum level between the discrete spectrum of the volume operator and the allowed values of the cosmological constant.
Development of a PBPK Model for JP-8
2006-11-15
risks from exposures to chemicals. JP-8 is a challenging material to work with because JP-8 is a mixture of hundreds of hydrocarbons, significantly...et al., 1999) CONSTANT VLC = 0.04 !Liver tissue Schoeffner et al, 1999 CONSTANT VBC = 0.0076 !Brain tissue Schoeffner et al, 1999 CONSTANT VFC = 0.07...0.78*QC-QL-QB QS = 0.22*QC-QF !Scaled Tissue Volumes VL = VLC *BW VF = VFC*BW VB = VBC*BW 10 VS = 0.82*BW-VF VR = 0.09*BW-VL-VB !Metabolic
Plasma volume during stress in man - Osmolality and red cell volume
NASA Technical Reports Server (NTRS)
Greenleaf, J. E.; Convertino, V. A.; Mangseth, G. R.
1979-01-01
The purpose was (1) to test the hypothesis that in man there is a range of plasma osmolality within which the red cell volume (RCV) and mean corpuscular volume (MCV) remain essentially constant and (2) to determine the upper limit of this range. During a variety of stresses - submaximal and maximal exercise, heat and altitude exposure, +Gz acceleration, and tilting - changes in plasma osmolality between -1 and +13 mosmol/kg resulted in essentially no change in the regression of percent change in plasma volume (PV) calculated from a change in hematocrit (Hct) on that calculated from a change in Hct + hemoglobin (Hb), i.e., the RCV and MCV were constant. Factors that do not influence RCV are the level of metabolism, heat exposure at rest, and short-term orthostasis (heat-to-foot acceleration). Factors that may influence RCV are exposure to high altitude and long-term orthostasis (head-up tilting). Factors that definitely influence RCV are prior dehydration and extended periods of stress. Thus, either the Hct or the Hct + Hb equations can be used to calculate percent changes in PV under short-term periods of stress when the change in plasma osmolality is less than 13 mosmol/kg.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holroyd, R.A.; Schwarz, H.A.; Stradowska, E.
The rate constants for attachment of excess electrons to 1,3-butadiene (k[sub a]) and detachment from the butadiene anion (k[sub d]) in n-hexane are reported. The equilibrium constant, K[sub eq] = k[sub a]/k[sub d], increases rapidly with pressure and decreases as the temperature increases. At -7[degree]C attachment is observed at 1 bar. At high pressures the attachment rate is diffusion controlled. The activation energy for detachment is about 21 kcal/mol; detachment is facilitated by the large entropy of activation. The reaction volumes for attachment range from -181 cm[sup 3]/mol at 400 bar to-122 cm[sup 3]/mol at 1500 bar and are largelymore » attributed to the electrostriction volume of the butadiene anion ([Delta][bar V][sub el]). Values of [Delta][bar V][sub el] calculated by a model, which includes a glassy shell of solvent molecules around the ion, are in agreement with experimental reaction volumes. The analysis indicates the partial molar volume of the electron in hexane is small and probably negative. It is shown that the entropies of reaction are closely related to the partial molar volumes of reaction. 22 refs., 5 figs., 5 tabs.« less
One- and two-dimensional search of an equation of state using a newly released 2DRoptimize package
NASA Astrophysics Data System (ADS)
Jamal, M.; Reshak, A. H.
2018-05-01
A new package called 2DRoptimize has been released for performing two-dimensional searches of the equation of state (EOS) for rhombohedral, tetragonal, and hexagonal compounds. The package is compatible and available with the WIEN2k package. The 2DRoptimize package performs a convenient volume and c/a structure optimization. First, the package finds the best value for c/a and the associated energy for each volume. In the second step, it calculates the EoS. The package then finds the equation of the c/a ratio vs. volume to calculate the c/a ratio at the optimized volume. In the last stage, by using the optimized volume and c/a ratio, the 2DRoptimize package calculates a and c lattice constants for tetragonal and hexagonal compounds, as well as the a lattice constant with the α angle for rhombohedral compounds. We tested our new package based on several hexagonal, tetragonal, and rhombohedral structures, and the 2D search results for the EOS showed that this method is more accurate than 1D search. Our results agreed very well with the experimental data and they were better than previous theoretical calculations.
Analytical Equations for Orbital Transfer Maneuvers of a Vehicle Using Constant Low Thrust
1981-12-01
136auks" ,b , .. .. a. AFIT/GA/AA/81D -3 ANALITICAL EQUATIOIS FOR OR.BITAL TRASFER MANIUVRS OF A V 1CI, USING CONSTANT LOW THRUST THESIS AFIT/GA/AA...nondimensional radius ( )m - specified values vii. AFIT/GA/AA/81D -3 Abstract The object of this study is to derive a set of equations which predict the...study is to derive a set of equations which predict the results of orbital maneuvers of vehicles using constant low thrust. These equations are
Construction and Start-up of a Large-Volume Thermostat for Dielectric-Constant Gas Thermometry
NASA Astrophysics Data System (ADS)
Merlone, A.; Moro, F.; Zandt, T.; Gaiser, C.; Fellmuth, B.
2010-07-01
A liquid-bath thermostat with a volume of about 800 L was designed to provide a suitable thermal environment for a dielectric-constant gas thermometer (DCGT) in the range from the triple point of mercury to the melting point of gallium. In the article, results obtained with the unique, huge thermostat without the DCGT measuring chamber are reported to demonstrate the capability of controlling the temperature of very large systems at a metrological level. First tests showed that the bath together with its temperature controller provide a temperature variation of less than ±0.5mK peak-to-peak. This temperature instability could be maintained over a period of several days. In the central working volume (diameter—500mm, height—650mm), in which the vacuum chamber containing the measuring system of the DCGT will be placed later, the temperature inhomogeneity has been demonstrated to be also well below 1mK.