Sample records for volumetric based validation

  1. Validation of the generalized model of two-phase thermosyphon loop based on experimental measurements of volumetric flow rate

    NASA Astrophysics Data System (ADS)

    Bieliński, Henryk

    2016-09-01

    The current paper presents the experimental validation of the generalized model of the two-phase thermosyphon loop. The generalized model is based on mass, momentum, and energy balances in the evaporators, rising tube, condensers and the falling tube. The theoretical analysis and the experimental data have been obtained for a new designed variant. The variant refers to a thermosyphon loop with both minichannels and conventional tubes. The thermosyphon loop consists of an evaporator on the lower vertical section and a condenser on the upper vertical section. The one-dimensional homogeneous and separated two-phase flow models were used in calculations. The latest minichannel heat transfer correlations available in literature were applied. A numerical analysis of the volumetric flow rate in the steady-state has been done. The experiment was conducted on a specially designed test apparatus. Ultrapure water was used as a working fluid. The results show that the theoretical predictions are in good agreement with the measured volumetric flow rate at steady-state.

  2. A semi-automatic method for left ventricle volume estimate: an in vivo validation study

    NASA Technical Reports Server (NTRS)

    Corsi, C.; Lamberti, C.; Sarti, A.; Saracino, G.; Shiota, T.; Thomas, J. D.

    2001-01-01

    This study aims to the validation of the left ventricular (LV) volume estimates obtained by processing volumetric data utilizing a segmentation model based on level set technique. The validation has been performed by comparing real-time volumetric echo data (RT3DE) and magnetic resonance (MRI) data. A validation protocol has been defined. The validation protocol was applied to twenty-four estimates (range 61-467 ml) obtained from normal and pathologic subjects, which underwent both RT3DE and MRI. A statistical analysis was performed on each estimate and on clinical parameters as stroke volume (SV) and ejection fraction (EF). Assuming MRI estimates (x) as a reference, an excellent correlation was found with volume measured by utilizing the segmentation procedure (y) (y=0.89x + 13.78, r=0.98). The mean error on SV was 8 ml and the mean error on EF was 2%. This study demonstrated that the segmentation technique is reliably applicable on human hearts in clinical practice.

  3. Volumetric three-dimensional intravascular ultrasound visualization using shape-based nonlinear interpolation

    PubMed Central

    2013-01-01

    Background Intravascular ultrasound (IVUS) is a standard imaging modality for identification of plaque formation in the coronary and peripheral arteries. Volumetric three-dimensional (3D) IVUS visualization provides a powerful tool to overcome the limited comprehensive information of 2D IVUS in terms of complex spatial distribution of arterial morphology and acoustic backscatter information. Conventional 3D IVUS techniques provide sub-optimal visualization of arterial morphology or lack acoustic information concerning arterial structure due in part to low quality of image data and the use of pixel-based IVUS image reconstruction algorithms. In the present study, we describe a novel volumetric 3D IVUS reconstruction algorithm to utilize IVUS signal data and a shape-based nonlinear interpolation. Methods We developed an algorithm to convert a series of IVUS signal data into a fully volumetric 3D visualization. Intermediary slices between original 2D IVUS slices were generated utilizing the natural cubic spline interpolation to consider the nonlinearity of both vascular structure geometry and acoustic backscatter in the arterial wall. We evaluated differences in image quality between the conventional pixel-based interpolation and the shape-based nonlinear interpolation methods using both virtual vascular phantom data and in vivo IVUS data of a porcine femoral artery. Volumetric 3D IVUS images of the arterial segment reconstructed using the two interpolation methods were compared. Results In vitro validation and in vivo comparative studies with the conventional pixel-based interpolation method demonstrated more robustness of the shape-based nonlinear interpolation algorithm in determining intermediary 2D IVUS slices. Our shape-based nonlinear interpolation demonstrated improved volumetric 3D visualization of the in vivo arterial structure and more realistic acoustic backscatter distribution compared to the conventional pixel-based interpolation method. Conclusions This novel 3D IVUS visualization strategy has the potential to improve ultrasound imaging of vascular structure information, particularly atheroma determination. Improved volumetric 3D visualization with accurate acoustic backscatter information can help with ultrasound molecular imaging of atheroma component distribution. PMID:23651569

  4. Validation and refinement of mixture volumetric material properties identified in superpave monitoring project II : phase II.

    DOT National Transportation Integrated Search

    2015-02-01

    This study was initiated to validate and refine mixture volumetric material properties identified in the : Superpave Monitoring Project II. It has been found that differences in performance are primarily controlled : by differences in gradation and r...

  5. A semi-automated volumetric software for segmentation and perfusion parameter quantification of brain tumors using 320-row multidetector computed tomography: a validation study.

    PubMed

    Chae, Soo Young; Suh, Sangil; Ryoo, Inseon; Park, Arim; Noh, Kyoung Jin; Shim, Hackjoon; Seol, Hae Young

    2017-05-01

    We developed a semi-automated volumetric software, NPerfusion, to segment brain tumors and quantify perfusion parameters on whole-brain CT perfusion (WBCTP) images. The purpose of this study was to assess the feasibility of the software and to validate its performance compared with manual segmentation. Twenty-nine patients with pathologically proven brain tumors who underwent preoperative WBCTP between August 2012 and February 2015 were included. Three perfusion parameters, arterial flow (AF), equivalent blood volume (EBV), and Patlak flow (PF, which is a measure of permeability of capillaries), of brain tumors were generated by a commercial software and then quantified volumetrically by NPerfusion, which also semi-automatically segmented tumor boundaries. The quantification was validated by comparison with that of manual segmentation in terms of the concordance correlation coefficient and Bland-Altman analysis. With NPerfusion, we successfully performed segmentation and quantified whole volumetric perfusion parameters of all 29 brain tumors that showed consistent perfusion trends with previous studies. The validation of the perfusion parameter quantification exhibited almost perfect agreement with manual segmentation, with Lin concordance correlation coefficients (ρ c ) for AF, EBV, and PF of 0.9988, 0.9994, and 0.9976, respectively. On Bland-Altman analysis, most differences between this software and manual segmentation on the commercial software were within the limit of agreement. NPerfusion successfully performs segmentation of brain tumors and calculates perfusion parameters of brain tumors. We validated this semi-automated segmentation software by comparing it with manual segmentation. NPerfusion can be used to calculate volumetric perfusion parameters of brain tumors from WBCTP.

  6. Volumetric Echocardiographic Particle Image Velocimetry (V-Echo-PIV)

    NASA Astrophysics Data System (ADS)

    Falahatpisheh, Ahmad; Kheradvar, Arash

    2015-11-01

    Measurement of 3D flow field inside the cardiac chambers has proven to be a challenging task. Current laser-based 3D PIV methods estimate the third component of the velocity rather than directly measuring it and also cannot be used to image the opaque heart chambers. Modern echocardiography systems are equipped with 3D probes that enable imaging the entire 3D opaque field. However, this feature has not yet been employed for 3D vector characterization of blood flow. For the first time, we introduce a method that generates velocity vector field in 4D based on volumetric echocardiographic images. By assuming the conservation of brightness in 3D, blood speckles are tracked. A hierarchical 3D PIV method is used to account for large particle displacement. The discretized brightness transport equation is solved in a least square sense in interrogation windows of size 163 voxels. We successfully validate the method in analytical and experimental cases. Volumetric echo data of a left ventricle is then processed in the systolic phase. The expected velocity fields were successfully predicted by V-Echo-PIV. In this work, we showed a method to image blood flow in 3D based on volumetric images of human heart using no contrast agent.

  7. Quantification of coronary microvascular resistance using angiographic images for volumetric blood flow measurement: in vivo validation

    PubMed Central

    Zhang, Zhang; Takarada, Shigeho

    2011-01-01

    Structural coronary microcirculation abnormalities are important prognostic determinants in clinical settings. However, an assessment of microvascular resistance (MR) requires a velocity wire. A first-pass distribution analysis technique to measure volumetric blood flow has been previously validated. The aim of this study was the in vivo validation of the MR measurement technique using first-pass distribution analysis. Twelve anesthetized swine were instrumented with a transit-time ultrasound flow probe on the proximal segment of the left anterior descending coronary artery (LAD). Microspheres were injected into the LAD to create a model of microvascular dysfunction. Adenosine (400 μg·kg−1·min−1) was used to produce maximum hyperemia. A region of interest in the LAD arterial bed was drawn to generate time-density curves using angiographic images. Volumetric blood flow measurements (Qa) were made using a time-density curve and the assumption that blood was momentarily replaced with contrast agent during the injection. Blood flow from the flow probe (Qp), coronary pressure (Pa), and right atrium pressure (Pv) were continuously recorded. Flow probe-based normalized MR (NMRp) and angiography-based normalized MR (NMRa) were calculated using Qp and Qa, respectively. In 258 measurements, Qa showed a strong correlation with the gold standard Qp (Qa = 0.90 Qp + 6.6 ml/min, r2 = 0.91, P < 0.0001). NMRa correlated linearly with NMRp (NMRa = 0.90 NMRp + 0.02 mmHg·ml−1·min−1, r2 = 0.91, P < 0.0001). Additionally, the Bland-Altman analysis showed a close agreement between NMRa and NMRp. In conclusion, a technique based on angiographic image data for quantifying NMR was validated using a swine model. This study provides a method to measure NMR without using a velocity wire, which can potentially be used to evaluate microvascular conditions during coronary arteriography. PMID:21398596

  8. An inverse hyper-spherical harmonics-based formulation for reconstructing 3D volumetric lung deformations

    NASA Astrophysics Data System (ADS)

    Santhanam, Anand P.; Min, Yugang; Mudur, Sudhir P.; Rastogi, Abhinav; Ruddy, Bari H.; Shah, Amish; Divo, Eduardo; Kassab, Alain; Rolland, Jannick P.; Kupelian, Patrick

    2010-07-01

    A method to estimate the deformation operator for the 3D volumetric lung dynamics of human subjects is described in this paper. For known values of air flow and volumetric displacement, the deformation operator and subsequently the elastic properties of the lung are estimated in terms of a Green's function. A Hyper-Spherical Harmonic (HSH) transformation is employed to compute the deformation operator. The hyper-spherical coordinate transformation method discussed in this paper facilitates accounting for the heterogeneity of the deformation operator using a finite number of frequency coefficients. Spirometry measurements are used to provide values for the airflow inside the lung. Using a 3D optical flow-based method, the 3D volumetric displacement of the left and right lungs, which represents the local anatomy and deformation of a human subject, was estimated from 4D-CT dataset. Results from an implementation of the method show the estimation of the deformation operator for the left and right lungs of a human subject with non-small cell lung cancer. Validation of the proposed method shows that we can estimate the Young's modulus of each voxel within a 2% error level.

  9. Optical Addressing of Multi-Colour Photochromic Material Mixture for Volumetric Display.

    PubMed

    Hirayama, Ryuji; Shiraki, Atsushi; Naruse, Makoto; Nakamura, Shinichiro; Nakayama, Hirotaka; Kakue, Takashi; Shimobaba, Tomoyoshi; Ito, Tomoyoshi

    2016-08-16

    This is the first study to demonstrate that colour transformations in the volume of a photochromic material (PM) are induced at the intersections of two control light channels, one controlling PM colouration and the other controlling decolouration. Thus, PM colouration is induced by position selectivity, and therefore, a dynamic volumetric display may be realised using these two control lights. Moreover, a mixture of multiple PM types with different absorption properties exhibits different colours depending on the control light spectrum. Particularly, the spectrum management of the control light allows colour-selective colouration besides position selectivity. Therefore, a PM-based, full-colour volumetric display is realised. We experimentally construct a mixture of two PM types and validate the operating principles of such a volumetric display system. Our system is constructed simply by mixing multiple PM types; therefore, the display hardware structure is extremely simple, and the minimum size of a volume element can be as small as the size of a molecule. Volumetric displays can provide natural three-dimensional (3D) perception; therefore, the potential uses of our system include high-definition 3D visualisation for medical applications, architectural design, human-computer interactions, advertising, and entertainment.

  10. Optical Addressing of Multi-Colour Photochromic Material Mixture for Volumetric Display

    NASA Astrophysics Data System (ADS)

    Hirayama, Ryuji; Shiraki, Atsushi; Naruse, Makoto; Nakamura, Shinichiro; Nakayama, Hirotaka; Kakue, Takashi; Shimobaba, Tomoyoshi; Ito, Tomoyoshi

    2016-08-01

    This is the first study to demonstrate that colour transformations in the volume of a photochromic material (PM) are induced at the intersections of two control light channels, one controlling PM colouration and the other controlling decolouration. Thus, PM colouration is induced by position selectivity, and therefore, a dynamic volumetric display may be realised using these two control lights. Moreover, a mixture of multiple PM types with different absorption properties exhibits different colours depending on the control light spectrum. Particularly, the spectrum management of the control light allows colour-selective colouration besides position selectivity. Therefore, a PM-based, full-colour volumetric display is realised. We experimentally construct a mixture of two PM types and validate the operating principles of such a volumetric display system. Our system is constructed simply by mixing multiple PM types; therefore, the display hardware structure is extremely simple, and the minimum size of a volume element can be as small as the size of a molecule. Volumetric displays can provide natural three-dimensional (3D) perception; therefore, the potential uses of our system include high-definition 3D visualisation for medical applications, architectural design, human-computer interactions, advertising, and entertainment.

  11. Inventory of File sref_nmm.t03z.pgrb132.p1.f00.grib2

    Science.gov Websites

    TSOIL analysis Soil Temperature Validation to deprecate [K] 403 0-0.1 m below ground SOILW analysis Volumetric Soil Moisture Content [Fraction] 404 0.1-0.4 m below ground TSOIL analysis Soil Temperature Validation to deprecate [K] 405 0.1-0.4 m below ground SOILW analysis Volumetric Soil Moisture Content

  12. Inventory of File sref_em.t03z.pgrb132.p1.f00.grib2

    Science.gov Websites

    0-0.1 m below ground TSOIL analysis Soil Temperature Validation to deprecate [K] 402 0-0.1 m below ground SOILW analysis Volumetric Soil Moisture Content [Fraction] 403 0.1-0.4 m below ground TSOIL analysis Soil Temperature Validation to deprecate [K] 404 0.1-0.4 m below ground SOILW analysis Volumetric

  13. Inventory of File sref_nmb.t03z.pgrb132.p1.f00.grib2

    Science.gov Websites

    TSOIL analysis Soil Temperature Validation to deprecate [K] 403 0-0.1 m below ground SOILW analysis Volumetric Soil Moisture Content [Fraction] 404 0.1-0.4 m below ground TSOIL analysis Soil Temperature Validation to deprecate [K] 405 0.1-0.4 m below ground SOILW analysis Volumetric Soil Moisture Content

  14. Inventory of File sref_nmb.t03z.pgrb132.p1.f06.grib2

    Science.gov Websites

    6 hour fcst Soil Temperature Validation to deprecate [K] 403 0-0.1 m below ground SOILW 6 hour fcst Volumetric Soil Moisture Content [Fraction] 404 0.1-0.4 m below ground TSOIL 6 hour fcst Soil Temperature Validation to deprecate [K] 405 0.1-0.4 m below ground SOILW 6 hour fcst Volumetric Soil Moisture Content

  15. Inventory of File sref_em.t03z.pgrb132.p1.f06.grib2

    Science.gov Websites

    6 hour fcst Soil Temperature Validation to deprecate [K] 402 0-0.1 m below ground SOILW 6 hour fcst Volumetric Soil Moisture Content [Fraction] 403 0.1-0.4 m below ground TSOIL 6 hour fcst Soil Temperature Validation to deprecate [K] 404 0.1-0.4 m below ground SOILW 6 hour fcst Volumetric Soil Moisture Content

  16. Inventory of File sref_nmm.t03z.pgrb132.p1.f06.grib2

    Science.gov Websites

    6 hour fcst Soil Temperature Validation to deprecate [K] 403 0-0.1 m below ground SOILW 6 hour fcst Volumetric Soil Moisture Content [Fraction] 404 0.1-0.4 m below ground TSOIL 6 hour fcst Soil Temperature Validation to deprecate [K] 405 0.1-0.4 m below ground SOILW 6 hour fcst Volumetric Soil Moisture Content

  17. A Case-Based Study with Radiologists Performing Diagnosis Tasks in Virtual Reality.

    PubMed

    Venson, José Eduardo; Albiero Berni, Jean Carlo; Edmilson da Silva Maia, Carlos; Marques da Silva, Ana Maria; Cordeiro d'Ornellas, Marcos; Maciel, Anderson

    2017-01-01

    In radiology diagnosis, medical images are most often visualized slice by slice. At the same time, the visualization based on 3D volumetric rendering of the data is considered useful and has increased its field of application. In this work, we present a case-based study with 16 medical specialists to assess the diagnostic effectiveness of a Virtual Reality interface in fracture identification over 3D volumetric reconstructions. We developed a VR volume viewer compatible with both the Oculus Rift and handheld-based head mounted displays (HMDs). We then performed user experiments to validate the approach in a diagnosis environment. In addition, we assessed the subjects' perception of the 3D reconstruction quality, ease of interaction and ergonomics, and also the users opinion on how VR applications can be useful in healthcare. Among other results, we have found a high level of effectiveness of the VR interface in identifying superficial fractures on head CTs.

  18. Translating the simulation of procedural drilling techniques for interactive neurosurgical training.

    PubMed

    Stredney, Don; Rezai, Ali R; Prevedello, Daniel M; Elder, J Bradley; Kerwin, Thomas; Hittle, Bradley; Wiet, Gregory J

    2013-10-01

    Through previous efforts we have developed a fully virtual environment to provide procedural training of otologic surgical technique. The virtual environment is based on high-resolution volumetric data of the regional anatomy. These volumetric data help drive an interactive multisensory, ie, visual (stereo), aural (stereo), and tactile, simulation environment. Subsequently, we have extended our efforts to support the training of neurosurgical procedural technique as part of the Congress of Neurological Surgeons simulation initiative. To deliberately study the integration of simulation technologies into the neurosurgical curriculum and to determine their efficacy in teaching minimally invasive cranial and skull base approaches. We discuss issues of biofidelity and our methods to provide objective, quantitative and automated assessment for the residents. We conclude with a discussion of our experiences by reporting preliminary formative pilot studies and proposed approaches to take the simulation to the next level through additional validation studies. We have presented our efforts to translate an otologic simulation environment for use in the neurosurgical curriculum. We have demonstrated the initial proof of principles and define the steps to integrate and validate the system as an adjuvant to the neurosurgical curriculum.

  19. On the Stefan Problem with Volumetric Energy Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John Crepeau; Ali Siahpush; Blaine Spotten

    2009-11-01

    This paper presents results of solid-liquid phase change, driven by volumetric energy generation, in a vertical cylinder. We show excellent agreement between a quasi-static, approximate analytical solution valid for Stefan numbers less than one, and a computational model solved using the CFD code FLUENT®. A computational study also shows the effect that the volumetric energy generation has on both the mushy zone thickness and convection in the melt during phase change.

  20. [The water content reference material of water saturated octanol].

    PubMed

    Wang, Haifeng; Ma, Kang; Zhang, Wei; Li, Zhanyuan

    2011-03-01

    The national standards of biofuels specify the technique specification and analytical methods. A water content certified reference material based on the water saturated octanol was developed in order to satisfy the needs of the instrument calibration and the methods validation, assure the accuracy and consistency of results in water content measurements of biofuels. Three analytical methods based on different theories were employed to certify the water content of the reference material, including Karl Fischer coulometric titration, Karl Fischer volumetric titration and quantitative nuclear magnetic resonance. The consistency of coulometric and volumetric titration was achieved through the improvement of methods. The accuracy of the certified result was improved by the introduction of the new method of quantitative nuclear magnetic resonance. Finally, the certified value of reference material is 4.76% with an expanded uncertainty of 0.09%.

  1. MR Imaging Anatomy in Neurodegeneration: A Robust Volumetric Parcellation Method of the Frontal Lobe Gyri with Quantitative Validation in Patients with Dementia

    PubMed Central

    Iordanova, B.; Rosenbaum, D.; Norman, D.; Weiner, M.; Studholme, C.

    2007-01-01

    BACKGROUND AND PURPOSE Brain volumetry is widely used for evaluating tissue degeneration; however, the parcellation methods are rarely validated and use arbitrary planes to mark boundaries of brain regions. The goal of this study was to develop, validate, and apply an MR imaging tracing method for the parcellation of 3 major gyri of the frontal lobe, which uses only local landmarks intrinsic to the structures of interest, without the need for global reorientation or the use of dividing planes or lines. METHODS Studies were performed on 25 subjects—healthy controls and subjects diagnosed with Lewy body dementia and Alzheimer disease—with significant variation in the underlying gyral anatomy and state of atrophy. The protocol was evaluated by using multiple observers tracing scans of subjects diagnosed with neurodegenerative disease and those aging normally, and the results were compared by spatial overlap agreement. To confirm the results, observers marked the same locations in different brains. We illustrated the variabilities of the key boundaries that pose the greatest challenge to defining consistent parcellations across subjects. RESULTS The resulting gyral volumes were evaluated, and their consistency across raters was used as an additional assessment of the validity of our marking method. The agreement on a scale of 0–1 was found to be 0.83 spatial and 0.90 volumetric for the same rater and 0.85 spatial and 0.90 volumetric for 2 different raters. The results revealed that the protocol remained consistent across different neurodegenerative conditions. CONCLUSION Our method provides a simple and reliable way for the volumetric evaluation of frontal lobe neurodegeneration and can be used as a resource for larger comparative studies as well as a validation procedure of automated algorithms. PMID:16971629

  2. Evaluating topologically diverse metal–organic frameworks for cryo-adsorbed hydrogen storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gómez-Gualdrón, Diego A.; Colón, Yamil J.; Zhang, Xu

    Metal–organic frameworks (MOFs) are porous materials synthesized by combining inorganic and organic molecular building blocks into crystalline networks of distinct topologies. Due to the combinatorial possibilities, there are millions of possible MOF structures. Aiming to exploit their exceptional tunability, surface areas and pore volumes, researchers have investigated MOFs for storage of gaseous fuels such as hydrogen for over a decade, but a suitable MOF to store hydrogen at ambient conditions has not yet been found. Here, we sought to rapidly determine the viability of using MOFs for hydrogen storage at recently proposed, cryogenic operating conditions. We constructed a large andmore » structurally diverse set of 13 512 potential MOF structures based on 41 different topologies and used molecular simulation to determine MOF hydrogen deliverable capacities between 100 bar/77 K and 5 bar/160 K. The highest volumetric deliverable capacity was 57 g L-1 of MOF, which surpasses the 37 g L-1 of tank of the incumbent technology (compressing hydrogen to 700 bar at ambient temperature). To validate our in silico MOF construction method, we synthesized a new isoreticular family of MOFs (she-MOF-x series) based on the she topology, which is extremely rare among MOFs. To validate our hydrogen storage predictions, we activated and measured hydrogen adsorption on she-MOF-1 and NU-1103. The latter MOF showed outstanding stability and a good combination of volumetric and gravimetric performance, presenting 43.2 g L-1 of MOF and 12.6 wt% volumetric and gravimetric deliverable capacities, respectively.« less

  3. Forward Osmosis Membranes under Null-Pressure Condition: Do Hydraulic and Osmotic Pressures Have Identical Nature?

    PubMed

    Kook, Seungho; Swetha, Chivukula D; Lee, Jangho; Lee, Chulmin; Fane, Tony; Kim, In S

    2018-03-20

    Forward osmosis (FO) membranes fall into the category of nonporous membranes, based on the assumption that water and solute transport occur solely based on diffusion. The solution-diffusion (S-D) model has been widely used in predicting their performances in the coexistence of hydraulic and osmotic driving forces, a model that postulates the hydraulic and osmotic driving forces have identical nature. It was suggested, however, such membranes may have pores and mass transport could occur both by convection (i.e., volumetric flow) as well as by diffusion assuming that the dense active layer of the membranes is composed of a nonporous structure with defects which induce volumetric flow through the membranes. In addition, the positron annihilation technique has revealed that the active layers can involve relatively uniform porous structures. As such, the assumption of a nonporous active layer in association with hydraulic pressure is questionable. To validate this assumption, we have tested FO membranes under the conditions where hydraulic and osmotic pressures are equivalent yet in opposite directions for water transport, namely the null-pressure condition. We have also established a practically valid characterization method which quantifies the vulnerability of the FO membranes to hydraulic pressure.

  4. Statistical intensity variation analysis for rapid volumetric imaging of capillary network flux

    PubMed Central

    Lee, Jonghwan; Jiang, James Y.; Wu, Weicheng; Lesage, Frederic; Boas, David A.

    2014-01-01

    We present a novel optical coherence tomography (OCT)-based technique for rapid volumetric imaging of red blood cell (RBC) flux in capillary networks. Previously we reported that OCT can capture individual RBC passage within a capillary, where the OCT intensity signal at a voxel fluctuates when an RBC passes the voxel. Based on this finding, we defined a metric of statistical intensity variation (SIV) and validated that the mean SIV is proportional to the RBC flux [RBC/s] through simulations and measurements. From rapidly scanned volume data, we used Hessian matrix analysis to vectorize a segment path of each capillary and estimate its flux from the mean of the SIVs gathered along the path. Repeating this process led to a 3D flux map of the capillary network. The present technique enabled us to trace the RBC flux changes over hundreds of capillaries with a temporal resolution of ~1 s during functional activation. PMID:24761298

  5. Subcortical structure segmentation using probabilistic atlas priors

    NASA Astrophysics Data System (ADS)

    Gouttard, Sylvain; Styner, Martin; Joshi, Sarang; Smith, Rachel G.; Cody Hazlett, Heather; Gerig, Guido

    2007-03-01

    The segmentation of the subcortical structures of the brain is required for many forms of quantitative neuroanatomic analysis. The volumetric and shape parameters of structures such as lateral ventricles, putamen, caudate, hippocampus, pallidus and amygdala are employed to characterize a disease or its evolution. This paper presents a fully automatic segmentation of these structures via a non-rigid registration of a probabilistic atlas prior and alongside a comprehensive validation. Our approach is based on an unbiased diffeomorphic atlas with probabilistic spatial priors built from a training set of MR images with corresponding manual segmentations. The atlas building computes an average image along with transformation fields mapping each training case to the average image. These transformation fields are applied to the manually segmented structures of each case in order to obtain a probabilistic map on the atlas. When applying the atlas for automatic structural segmentation, an MR image is first intensity inhomogeneity corrected, skull stripped and intensity calibrated to the atlas. Then the atlas image is registered to the image using an affine followed by a deformable registration matching the gray level intensity. Finally, the registration transformation is applied to the probabilistic maps of each structures, which are then thresholded at 0.5 probability. Using manual segmentations for comparison, measures of volumetric differences show high correlation with our results. Furthermore, the dice coefficient, which quantifies the volumetric overlap, is higher than 62% for all structures and is close to 80% for basal ganglia. The intraclass correlation coefficient computed on these same datasets shows a good inter-method correlation of the volumetric measurements. Using a dataset of a single patient scanned 10 times on 5 different scanners, reliability is shown with a coefficient of variance of less than 2 percents over the whole dataset. Overall, these validation and reliability studies show that our method accurately and reliably segments almost all structures. Only the hippocampus and amygdala segmentations exhibit relative low correlation with the manual segmentation in at least one of the validation studies, whereas they still show appropriate dice overlap coefficients.

  6. Volumetric Imaging and Characterization of Focusing Waveguide Grating Couplers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katzenmeyer, Aaron Michael; McGuinness, Hayden James Evans; Starbuck, Andrew Lea

    Volumetric imaging of focusing waveguide grating coupler emission with high spatial resolution in the visible (λ = 637.3 nm) is demonstrated using a scanning near-field optical microscope with long z-axis travel range. Stacks of 2-D images recorded at fixed distance from the device are compiled to yield 3-D visualization of the light emission pattern and enable extraction of parameters, such as spot size, angle of emission, and focal height. Measurements of such parameters are not prevalent in the literature yet are necessary for efficacious design and integration. As a result, it is observed that finite-difference time-domain simulations based on fabricationmore » layout files do not perfectly predict in-hand device behavior, underscoring the merit of experimental validation, particularly for critical application.« less

  7. Volumetric Imaging and Characterization of Focusing Waveguide Grating Couplers

    DOE PAGES

    Katzenmeyer, Aaron Michael; McGuinness, Hayden James Evans; Starbuck, Andrew Lea; ...

    2017-08-29

    Volumetric imaging of focusing waveguide grating coupler emission with high spatial resolution in the visible (λ = 637.3 nm) is demonstrated using a scanning near-field optical microscope with long z-axis travel range. Stacks of 2-D images recorded at fixed distance from the device are compiled to yield 3-D visualization of the light emission pattern and enable extraction of parameters, such as spot size, angle of emission, and focal height. Measurements of such parameters are not prevalent in the literature yet are necessary for efficacious design and integration. As a result, it is observed that finite-difference time-domain simulations based on fabricationmore » layout files do not perfectly predict in-hand device behavior, underscoring the merit of experimental validation, particularly for critical application.« less

  8. Volumetric adsorptive microsampling-liquid chromatography tandem mass spectrometry assay for the simultaneous quantification of four antibiotics in human blood: Method development, validation and comparison with dried blood spot.

    PubMed

    Barco, Sebastiano; Castagnola, Elio; Moscatelli, Andrea; Rudge, James; Tripodi, Gino; Cangemi, Giuliana

    2017-10-25

    In this paper we show the development and validation of a volumetric absorptive microsampling (VAMS™)-LC-MS/MS method for the simultaneous quantification of four antibiotics: piperacillin-tazobactam, meropenem, linezolid and ceftazidime in 10μL human blood. The novel VAMS-LC-MS/MS method has been compared with a dried blood spot (DBS)-based method in terms of impact of hematocrit (HCT) on accuracy, reproducibility, recovery and matrix effect. Antibiotics were extracted from VAMS and DBS by protein precipitation with methanol after a re-hydration step at 37°C for 10min. LC-MS/MS was carried out on a Thermo Scientific™ TSQ Quantum™ Access MAX triple quadrupole coupled to an Accela ™UHPLC system. The VAMS-LC-MS/MS method is selective, precise and reproducible. In contrast to DBS, it allows an accurate quantification without any HCT influence. It has been applied to samples derived from pediatric patients under therapy. VAMS is a valid alternative sampling strategy for the quantification of antibiotics and is valuable in support of clinical PK/PD studies and consequently therapeutic drug monitoring (TDM) in pediatrics. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Zero mortality in more than 300 hepatic resections: validity of preoperative volumetric analysis.

    PubMed

    Itoh, Shinji; Shirabe, Ken; Taketomi, Akinobu; Morita, Kazutoyo; Harimoto, Norifumi; Tsujita, Eiji; Sugimachi, Keishi; Yamashita, Yo-Ichi; Gion, Tomonobu; Maehara, Yoshihiko

    2012-05-01

    We reviewed a series of patients who underwent hepatic resection at our institution, to investigate the risk factors for postoperative complications after hepatic resection of liver tumors and for procurement of living donor liver transplantation (LDLT) grafts. Between April 2004 and August 2007, we performed 304 hepatic resections for liver tumors or to procure grafts for LDLT. Preoperative volumetric analysis was done using 3-dimensional computed tomography (3D-CT) prior to major hepatic resection. We compared the clinicopathological factors between patients with and without postoperative complications. There was no operative mortality. According to the 3D-CT volumetry, the mean error ratio between the actual and the estimated remnant liver volume was 13.4%. Postoperative complications developed in 96 (31.6%) patients. According to logistic regression analysis, histological liver cirrhosis and intraoperative blood loss >850 mL were significant risk factors of postoperative complications after hepatic resection. Meticulous preoperative evaluation based on volumetric analysis, together with sophisticated surgical techniques, achieved zero mortality and minimized intraoperative blood loss, which was classified as one of the most significant predictors of postoperative complications after major hepatic resection.

  10. Hematocrit-Independent Quantitation of Stimulants in Dried Blood Spots: Pipet versus Microfluidic-Based Volumetric Sampling Coupled with Automated Flow-Through Desorption and Online Solid Phase Extraction-LC-MS/MS Bioanalysis.

    PubMed

    Verplaetse, Ruth; Henion, Jack

    2016-07-05

    A workflow overcoming microsample collection issues and hematocrit (HCT)-related bias would facilitate more widespread use of dried blood spots (DBS). This report describes comparative results between the use of a pipet and a microfluidic-based sampling device for the creation of volumetric DBS. Both approaches were successfully coupled to HCT-independent, fully automated sample preparation and online liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) analysis allowing detection of five stimulants in finger prick blood. Reproducible, selective, accurate, and precise responses meeting generally accepted regulated bioanalysis guidelines were observed over the range of 5-1000 ng/mL whole blood. The applied heated flow-through solvent desorption of the entire spot and online solid phase extraction (SPE) procedure were unaffected by the blood's HCT value within the tested range of 28.0-61.5% HCT. Enhanced stability for mephedrone on DBS compared to liquid whole blood was observed. Finger prick blood samples were collected using both volumetric sampling approaches over a time course of 25 h after intake of a single oral dose of phentermine. A pharmacokinetic curve for the incurred phentermine was successfully produced using the described validated method. These results suggest that either volumetric sample collection method may be amenable to field-use followed by fully automated, HCT-independent DBS-SPE-LC-MS/MS bioanalysis for the quantitation of these representative controlled substances. Analytical data from DBS prepared with a pipet and microfluidic-based sampling devices were comparable, but the latter is easier to operate, making this approach more suitable for sample collection by unskilled persons.

  11. Translating the Simulation of Procedural Drilling Techniques for Interactive Neurosurgical Training

    PubMed Central

    Stredney, Don; Rezai, Ali R.; Prevedello, Daniel M.; Elder, J. Bradley; Kerwin, Thomas; Hittle, Bradley; Wiet, Gregory J.

    2014-01-01

    Background Through previous and concurrent efforts, we have developed a fully virtual environment to provide procedural training of otologic surgical technique. The virtual environment is based on high-resolution volumetric data of the regional anatomy. This volumetric data helps drive an interactive multi-sensory, i.e., visual (stereo), aural (stereo), and tactile simulation environment. Subsequently, we have extended our efforts to support the training of neurosurgical procedural technique as part of the CNS simulation initiative. Objective The goal of this multi-level development is to deliberately study the integration of simulation technologies into the neurosurgical curriculum and to determine their efficacy in teaching minimally invasive cranial and skull base approaches. Methods We discuss issues of biofidelity as well as our methods to provide objective, quantitative automated assessment for the residents. Results We conclude with a discussion of our experiences by reporting on preliminary formative pilot studies and proposed approaches to take the simulation to the next level through additional validation studies. Conclusion We have presented our efforts to translate an otologic simulation environment for use in the neurosurgical curriculum. We have demonstrated the initial proof of principles and define the steps to integrate and validate the system as an adjuvant to the neurosurgical curriculum. PMID:24051887

  12. Inventory of File nam.t00z.hawaiinest.hiresf00.tm00.gr

    Science.gov Websites

    m below ground TSOIL analysis Soil Temperature Validation to deprecate [K] 589 0-0.1 m below ground SOILW analysis Volumetric Soil Moisture Content [Fraction] 590 0-0.1 m below ground SOILL analysis Liquid Volumetric Soil Moisture (non Frozen) [Proportion] 591 0.1-0.4 m below ground TSOIL analysis Soil

  13. Inventory of File nam.t00z.awip1206.tm00.grib2

    Science.gov Websites

    TMP 6 hour fcst Temperature [K] 048 0-0.1 m below ground TSOIL 6 hour fcst Soil Temperature Validation to deprecate [K] 049 0-0.1 m below ground SOILW 6 hour fcst Volumetric Soil Moisture Content [Fraction] 050 0-0.1 m below ground SOILL 6 hour fcst Liquid Volumetric Soil Moisture (non Frozen

  14. Inventory of File nam.t00z.awp24200.tm00.grib2

    Science.gov Websites

    ground TSOIL analysis Soil Temperature Validation to deprecate [K] 034 0-0.1 m below ground SOILW analysis Volumetric Soil Moisture Content [Fraction] 035 0-0.1 m below ground SOILL analysis Liquid Volumetric Soil Moisture (non Frozen) [Proportion] 036 0.1-0.4 m below ground TSOIL analysis Soil Temperature

  15. Inventory of File nam.t00z.firewxnest.hiresf00.tm00.gr

    Science.gov Websites

    m below ground TSOIL analysis Soil Temperature Validation to deprecate [K] 589 0-0.1 m below ground SOILW analysis Volumetric Soil Moisture Content [Fraction] 590 0-0.1 m below ground SOILL analysis Liquid Volumetric Soil Moisture (non Frozen) [Proportion] 591 0.1-0.4 m below ground TSOIL analysis Soil

  16. Inventory of File nam.t00z.awip3200.tm00.grib2

    Science.gov Websites

    m below ground TSOIL analysis Soil Temperature Validation to deprecate [K] 620 0-0.1 m below ground SOILW analysis Volumetric Soil Moisture Content [Fraction] 621 0-0.1 m below ground SOILL analysis Liquid Volumetric Soil Moisture (non Frozen) [Proportion] 622 0.1-0.4 m below ground TSOIL analysis Soil

  17. Inventory of File nam.t00z.conusnest.hiresf00.tm00.gri

    Science.gov Websites

    m below ground TSOIL analysis Soil Temperature Validation to deprecate [K] 589 0-0.1 m below ground SOILW analysis Volumetric Soil Moisture Content [Fraction] 590 0-0.1 m below ground SOILL analysis Liquid Volumetric Soil Moisture (non Frozen) [Proportion] 591 0.1-0.4 m below ground TSOIL analysis Soil

  18. Inventory of File nam.t00z.alaskanest.hiresf00.tm00.gr

    Science.gov Websites

    m below ground TSOIL analysis Soil Temperature Validation to deprecate [K] 589 0-0.1 m below ground SOILW analysis Volumetric Soil Moisture Content [Fraction] 590 0-0.1 m below ground SOILL analysis Liquid Volumetric Soil Moisture (non Frozen) [Proportion] 591 0.1-0.4 m below ground TSOIL analysis Soil

  19. Inventory of File nam.t00z.awip1200.tm00.grib2

    Science.gov Websites

    analysis Temperature [K] 048 0-0.1 m below ground TSOIL analysis Soil Temperature Validation to deprecate [K] 049 0-0.1 m below ground SOILW analysis Volumetric Soil Moisture Content [Fraction] 050 0-0.1 m below ground SOILL analysis Liquid Volumetric Soil Moisture (non Frozen) [Proportion] 051 0.1-0.4 m

  20. Evaluating the potential of a novel dual heat-pulse sensor to measure volumetric water use in grapevines under a range of flow conditions

    USDA-ARS?s Scientific Manuscript database

    The aim of this study was to validate dual sap flow sensors that combine two heat pulse techniques to measure volumetric water use over the full range of sap flows found in grapevines. The heat ratio method (HRM), which works well at measuring low and reverse flows, was combined with the compensati...

  1. A proposed framework for consensus-based lung tumour volume auto-segmentation in 4D computed tomography imaging

    NASA Astrophysics Data System (ADS)

    Martin, Spencer; Brophy, Mark; Palma, David; Louie, Alexander V.; Yu, Edward; Yaremko, Brian; Ahmad, Belal; Barron, John L.; Beauchemin, Steven S.; Rodrigues, George; Gaede, Stewart

    2015-02-01

    This work aims to propose and validate a framework for tumour volume auto-segmentation based on ground-truth estimates derived from multi-physician input contours to expedite 4D-CT based lung tumour volume delineation. 4D-CT datasets of ten non-small cell lung cancer (NSCLC) patients were manually segmented by 6 physicians. Multi-expert ground truth (GT) estimates were constructed using the STAPLE algorithm for the gross tumour volume (GTV) on all respiratory phases. Next, using a deformable model-based method, multi-expert GT on each individual phase of the 4D-CT dataset was propagated to all other phases providing auto-segmented GTVs and motion encompassing internal gross target volumes (IGTVs) based on GT estimates (STAPLE) from each respiratory phase of the 4D-CT dataset. Accuracy assessment of auto-segmentation employed graph cuts for 3D-shape reconstruction and point-set registration-based analysis yielding volumetric and distance-based measures. STAPLE-based auto-segmented GTV accuracy ranged from (81.51  ±  1.92) to (97.27  ±  0.28)% volumetric overlap of the estimated ground truth. IGTV auto-segmentation showed significantly improved accuracies with reduced variance for all patients ranging from 90.87 to 98.57% volumetric overlap of the ground truth volume. Additional metrics supported these observations with statistical significance. Accuracy of auto-segmentation was shown to be largely independent of selection of the initial propagation phase. IGTV construction based on auto-segmented GTVs within the 4D-CT dataset provided accurate and reliable target volumes compared to manual segmentation-based GT estimates. While inter-/intra-observer effects were largely mitigated, the proposed segmentation workflow is more complex than that of current clinical practice and requires further development.

  2. A proposed framework for consensus-based lung tumour volume auto-segmentation in 4D computed tomography imaging.

    PubMed

    Martin, Spencer; Brophy, Mark; Palma, David; Louie, Alexander V; Yu, Edward; Yaremko, Brian; Ahmad, Belal; Barron, John L; Beauchemin, Steven S; Rodrigues, George; Gaede, Stewart

    2015-02-21

    This work aims to propose and validate a framework for tumour volume auto-segmentation based on ground-truth estimates derived from multi-physician input contours to expedite 4D-CT based lung tumour volume delineation. 4D-CT datasets of ten non-small cell lung cancer (NSCLC) patients were manually segmented by 6 physicians. Multi-expert ground truth (GT) estimates were constructed using the STAPLE algorithm for the gross tumour volume (GTV) on all respiratory phases. Next, using a deformable model-based method, multi-expert GT on each individual phase of the 4D-CT dataset was propagated to all other phases providing auto-segmented GTVs and motion encompassing internal gross target volumes (IGTVs) based on GT estimates (STAPLE) from each respiratory phase of the 4D-CT dataset. Accuracy assessment of auto-segmentation employed graph cuts for 3D-shape reconstruction and point-set registration-based analysis yielding volumetric and distance-based measures. STAPLE-based auto-segmented GTV accuracy ranged from (81.51  ±  1.92) to (97.27  ±  0.28)% volumetric overlap of the estimated ground truth. IGTV auto-segmentation showed significantly improved accuracies with reduced variance for all patients ranging from 90.87 to 98.57% volumetric overlap of the ground truth volume. Additional metrics supported these observations with statistical significance. Accuracy of auto-segmentation was shown to be largely independent of selection of the initial propagation phase. IGTV construction based on auto-segmented GTVs within the 4D-CT dataset provided accurate and reliable target volumes compared to manual segmentation-based GT estimates. While inter-/intra-observer effects were largely mitigated, the proposed segmentation workflow is more complex than that of current clinical practice and requires further development.

  3. A comprehensive visual rating scale of brain magnetic resonance imaging: application in elderly subjects with Alzheimer's disease, mild cognitive impairment, and normal cognition.

    PubMed

    Jang, Jae-Won; Park, So Young; Park, Young Ho; Baek, Min Jae; Lim, Jae-Sung; Youn, Young Chul; Kim, SangYun

    2015-01-01

    Brain magnetic resonance imaging (MRI) shows cerebral structural changes. However, a unified comprehensive visual rating scale (CVRS) has seldom been studied. Thus, we combined brain atrophy and small vessel disease scales and used an MRI template as a CVRS. The aims of this study were to design a simple and reliable CVRS, validate it by investigating cerebral structural changes in clinical groups, and made comparison to the volumetric measurements. Elderly subjects (n = 260) with normal cognition (NC, n = 65), mild cognitive impairment (MCI, n = 101), or Alzheimer's disease (AD, n = 94) were evaluated with brain MRI according to the CVRS of brain atrophy and small vessel disease. Validation of the CVRS with structural changes, neuropsychological tests, and volumetric analyses was performed. The CVRS revealed a high intra-rater and inter-rater agreement and it reflected the structural changes of subjects with NC, MCI, and AD better than volumetric measures (CVRS-coronal: F = 13.5, p < 0.001; CVRS-axial: F = 19.9, p < 0.001). The area under the receiver operation curve (aROC) of the CVRS showed higher accuracy than volumetric analyses. (NC versus MCI aROC: CVRS-coronal, 0.777; CVRS-axial, 0.773; MCI versus AD aROC: CVRS-coronal, 0.680; CVRS-axial, 0.681). The CVRS can be used clinically to conveniently measure structural changes of brain. It reflected cerebral structural changes of clinical groups and correlated with the age better than volumetric measures.

  4. Quantitative imaging features of pretreatment CT predict volumetric response to chemotherapy in patients with colorectal liver metastases.

    PubMed

    Creasy, John M; Midya, Abhishek; Chakraborty, Jayasree; Adams, Lauryn B; Gomes, Camilla; Gonen, Mithat; Seastedt, Kenneth P; Sutton, Elizabeth J; Cercek, Andrea; Kemeny, Nancy E; Shia, Jinru; Balachandran, Vinod P; Kingham, T Peter; Allen, Peter J; DeMatteo, Ronald P; Jarnagin, William R; D'Angelica, Michael I; Do, Richard K G; Simpson, Amber L

    2018-06-19

    This study investigates whether quantitative image analysis of pretreatment CT scans can predict volumetric response to chemotherapy for patients with colorectal liver metastases (CRLM). Patients treated with chemotherapy for CRLM (hepatic artery infusion (HAI) combined with systemic or systemic alone) were included in the study. Patients were imaged at baseline and approximately 8 weeks after treatment. Response was measured as the percentage change in tumour volume from baseline. Quantitative imaging features were derived from the index hepatic tumour on pretreatment CT, and features statistically significant on univariate analysis were included in a linear regression model to predict volumetric response. The regression model was constructed from 70% of data, while 30% were reserved for testing. Test data were input into the trained model. Model performance was evaluated with mean absolute prediction error (MAPE) and R 2 . Clinicopatholologic factors were assessed for correlation with response. 157 patients were included, split into training (n = 110) and validation (n = 47) sets. MAPE from the multivariate linear regression model was 16.5% (R 2 = 0.774) and 21.5% in the training and validation sets, respectively. Stratified by HAI utilisation, MAPE in the validation set was 19.6% for HAI and 25.1% for systemic chemotherapy alone. Clinical factors associated with differences in median tumour response were treatment strategy, systemic chemotherapy regimen, age and KRAS mutation status (p < 0.05). Quantitative imaging features extracted from pretreatment CT are promising predictors of volumetric response to chemotherapy in patients with CRLM. Pretreatment predictors of response have the potential to better select patients for specific therapies. • Colorectal liver metastases (CRLM) are downsized with chemotherapy but predicting the patients that will respond to chemotherapy is currently not possible. • Heterogeneity and enhancement patterns of CRLM can be measured with quantitative imaging. • Prediction model constructed that predicts volumetric response with 20% error suggesting that quantitative imaging holds promise to better select patients for specific treatments.

  5. Comparing Two Processing Pipelines to Measure Subcortical and Cortical Volumes in Patients with and without Mild Traumatic Brain Injury.

    PubMed

    Reid, Matthew W; Hannemann, Nathan P; York, Gerald E; Ritter, John L; Kini, Jonathan A; Lewis, Jeffrey D; Sherman, Paul M; Velez, Carmen S; Drennon, Ann Marie; Bolzenius, Jacob D; Tate, David F

    2017-07-01

    To compare volumetric results from NeuroQuant® and FreeSurfer in a service member setting. Since the advent of medical imaging, quantification of brain anatomy has been a major research and clinical effort. Rapid advancement of methods to automate quantification and to deploy this information into clinical practice has surfaced in recent years. NeuroQuant® is one such tool that has recently been used in clinical settings. Accurate volumetric data are useful in many clinical indications; therefore, it is important to assess the intermethod reliability and concurrent validity of similar volume quantifying tools. Volumetric data from 148 U.S. service members across three different experimental groups participating in a study of mild traumatic brain injury (mTBI) were examined. Groups included mTBI (n = 71), posttraumatic stress disorder (n = 22), or a noncranial orthopedic injury (n = 55). Correlation coefficients and nonparametric group mean comparisons were used to assess reliability and concurrent validity, respectively. Comparison of these methods across our entire sample demonstrates generally fair to excellent reliability as evidenced by large intraclass correlation coefficients (ICC = .4 to .99), but little concurrent validity as evidenced by significantly different Mann-Whitney U comparisons for 26 of 30 brain structures measured. While reliability between the two segmenting tools is fair to excellent, volumetric outcomes are statistically different between the two methods. As suggested by both developers, structure segmentation should be visually verified prior to clinical use and rigor should be used when interpreting results generated by either method. Copyright © 2017 by the American Society of Neuroimaging.

  6. Inventory of File nam.t00z.awip3d00.tm00.grib2

    Science.gov Websites

    Specific Humidity [kg/kg] 432 0-0.1 m below ground TSOIL analysis Soil Temperature Validation to deprecate [K] 433 0-0.1 m below ground SOILW analysis Volumetric Soil Moisture Content [Fraction] 434 0-0.1 m below ground SOILL analysis Liquid Volumetric Soil Moisture (non Frozen) [Proportion] 435 0.1-0.4 m

  7. Inventory of File nam.t00z.awp24206.tm00.grib2

    Science.gov Websites

    TSOIL 6 hour fcst Soil Temperature Validation to deprecate [K] 034 0-0.1 m below ground SOILW 6 hour fcst Volumetric Soil Moisture Content [Fraction] 035 0-0.1 m below ground SOILL 6 hour fcst Liquid Volumetric Soil Moisture (non Frozen) [Proportion] 036 0.1-0.4 m below ground TSOIL 6 hour fcst Soil

  8. Inventory of File nam.t00z.awip3d06.tm00.grib2

    Science.gov Websites

    below ground TSOIL 6 hour fcst Soil Temperature Validation to deprecate [K] 433 0-0.1 m below ground SOILW 6 hour fcst Volumetric Soil Moisture Content [Fraction] 434 0-0.1 m below ground SOILL 6 hour fcst Liquid Volumetric Soil Moisture (non Frozen) [Proportion] 435 0.1-0.4 m below ground TSOIL 6 hour fcst

  9. Development of a Detailed Volumetric Finite Element Model of the Spine to Simulate Surgical Correction of Spinal Deformities

    PubMed Central

    Driscoll, Mark; Mac-Thiong, Jean-Marc; Labelle, Hubert; Parent, Stefan

    2013-01-01

    A large spectrum of medical devices exists; it aims to correct deformities associated with spinal disorders. The development of a detailed volumetric finite element model of the osteoligamentous spine would serve as a valuable tool to assess, compare, and optimize spinal devices. Thus the purpose of the study was to develop and initiate validation of a detailed osteoligamentous finite element model of the spine with simulated correction from spinal instrumentation. A finite element of the spine from T1 to L5 was developed using properties and geometry from the published literature and patient data. Spinal instrumentation, consisting of segmental translation of a scoliotic spine, was emulated. Postoperative patient and relevant published data of intervertebral disc stress, screw/vertebra pullout forces, and spinal profiles was used to evaluate the models validity. Intervertebral disc and vertebral reaction stresses respected published in vivo, ex vivo, and in silico values. Screw/vertebra reaction forces agreed with accepted pullout threshold values. Cobb angle measurements of spinal deformity following simulated surgical instrumentation corroborated with patient data. This computational biomechanical analysis validated a detailed volumetric spine model. Future studies seek to exploit the model to explore the performance of corrective spinal devices. PMID:23991426

  10. Recommended volumetric capacity definitions and protocols for accurate, standardized and unambiguous metrics for hydrogen storage materials

    NASA Astrophysics Data System (ADS)

    Parilla, Philip A.; Gross, Karl; Hurst, Katherine; Gennett, Thomas

    2016-03-01

    The ultimate goal of the hydrogen economy is the development of hydrogen storage systems that meet or exceed the US DOE's goals for onboard storage in hydrogen-powered vehicles. In order to develop new materials to meet these goals, it is extremely critical to accurately, uniformly and precisely measure materials' properties relevant to the specific goals. Without this assurance, such measurements are not reliable and, therefore, do not provide a benefit toward the work at hand. In particular, capacity measurements for hydrogen storage materials must be based on valid and accurate results to ensure proper identification of promising materials for further development. Volumetric capacity determinations are becoming increasingly important for identifying promising materials, yet there exists controversy on how such determinations are made and whether such determinations are valid due to differing methodologies to count the hydrogen content. These issues are discussed herein, and we show mathematically that capacity determinations can be made rigorously and unambiguously if the constituent volumes are well defined and measurable in practice. It is widely accepted that this occurs for excess capacity determinations and we show here that this can happen for the total capacity determination. Because the adsorption volume is undefined, the absolute capacity determination remains imprecise. Furthermore, we show that there is a direct relationship between determining the respective capacities and the calibration constants used for the manometric and gravimetric techniques. Several suggested volumetric capacity figure-of-merits are defined, discussed and reporting requirements recommended. Finally, an example is provided to illustrate these protocols and concepts.

  11. VFMA: Topographic Analysis of Sensitivity Data From Full-Field Static Perimetry

    PubMed Central

    Weleber, Richard G.; Smith, Travis B.; Peters, Dawn; Chegarnov, Elvira N.; Gillespie, Scott P.; Francis, Peter J.; Gardiner, Stuart K.; Paetzold, Jens; Dietzsch, Janko; Schiefer, Ulrich; Johnson, Chris A.

    2015-01-01

    Purpose: To analyze static visual field sensitivity with topographic models of the hill of vision (HOV), and to characterize several visual function indices derived from the HOV volume. Methods: A software application, Visual Field Modeling and Analysis (VFMA), was developed for static perimetry data visualization and analysis. Three-dimensional HOV models were generated for 16 healthy subjects and 82 retinitis pigmentosa patients. Volumetric visual function indices, which are measures of quantity and comparable regardless of perimeter test pattern, were investigated. Cross-validation, reliability, and cross-sectional analyses were performed to assess this methodology and compare the volumetric indices to conventional mean sensitivity and mean deviation. Floor effects were evaluated by computer simulation. Results: Cross-validation yielded an overall R2 of 0.68 and index of agreement of 0.89, which were consistent among subject groups, indicating good accuracy. Volumetric and conventional indices were comparable in terms of test–retest variability and discriminability among subject groups. Simulated floor effects did not negatively impact the repeatability of any index, but large floor changes altered the discriminability for regional volumetric indices. Conclusions: VFMA is an effective tool for clinical and research analyses of static perimetry data. Topographic models of the HOV aid the visualization of field defects, and topographically derived indices quantify the magnitude and extent of visual field sensitivity. Translational Relevance: VFMA assists with the interpretation of visual field data from any perimetric device and any test location pattern. Topographic models and volumetric indices are suitable for diagnosis, monitoring of field loss, patient counseling, and endpoints in therapeutic trials. PMID:25938002

  12. Echocardiography and cardiac resynchronisation therapy, friends or foes?

    PubMed

    van Everdingen, W M; Schipper, J C; van 't Sant, J; Ramdat Misier, K; Meine, M; Cramer, M J

    2016-01-01

    Echocardiography is used in cardiac resynchronisation therapy (CRT) to assess cardiac function, and in particular left ventricular (LV) volumetric status, and prediction of response. Despite its widespread applicability, LV volumes determined by echocardiography have inherent measurement errors, interobserver and intraobserver variability, and discrepancies with the gold standard magnetic resonance imaging. Echocardiographic predictors of CRT response are based on mechanical dyssynchrony. However, parameters are mainly tested in single-centre studies or lack feasibility. Speckle tracking echocardiography can guide LV lead placement, improving volumetric response and clinical outcome by guiding lead positioning towards the latest contracting segment. Results on optimisation of CRT device settings using echocardiographic indices have so far been rather disappointing, as results suffer from noise. Defining response by echocardiography seems valid, although re-assessment after 6 months is advisable, as patients can show both continuous improvement as well as deterioration after the initial response. Three-dimensional echocardiography is interesting for future implications, as it can determine volume, dyssynchrony and viability in a single recording, although image quality needs to be adequate. Deformation patterns from the septum and the derived parameters are promising, although validation in a multicentre trial is required. We conclude that echocardiography has a pivotal role in CRT, although clinicians should know its shortcomings.

  13. Analytic Intermodel Consistent Modeling of Volumetric Human Lung Dynamics.

    PubMed

    Ilegbusi, Olusegun; Seyfi, Behnaz; Neylon, John; Santhanam, Anand P

    2015-10-01

    Human lung undergoes breathing-induced deformation in the form of inhalation and exhalation. Modeling the dynamics is numerically complicated by the lack of information on lung elastic behavior and fluid-structure interactions between air and the tissue. A mathematical method is developed to integrate deformation results from a deformable image registration (DIR) and physics-based modeling approaches in order to represent consistent volumetric lung dynamics. The computational fluid dynamics (CFD) simulation assumes the lung is a poro-elastic medium with spatially distributed elastic property. Simulation is performed on a 3D lung geometry reconstructed from four-dimensional computed tomography (4DCT) dataset of a human subject. The heterogeneous Young's modulus (YM) is estimated from a linear elastic deformation model with the same lung geometry and 4D lung DIR. The deformation obtained from the CFD is then coupled with the displacement obtained from the 4D lung DIR by means of the Tikhonov regularization (TR) algorithm. The numerical results include 4DCT registration, CFD, and optimal displacement data which collectively provide consistent estimate of the volumetric lung dynamics. The fusion method is validated by comparing the optimal displacement with the results obtained from the 4DCT registration.

  14. Novel monorail infusion catheter for volumetric coronary blood flow measurement in humans: in vitro validation.

    PubMed

    van 't Veer, Marcel; Adjedj, Julien; Wijnbergen, Inge; Tóth, Gabor G; Rutten, Marcel C M; Barbato, Emanuele; van Nunen, Lokien X; Pijls, Nico H J; De Bruyne, Bernard

    2016-08-20

    The aim of this study is to validate a novel monorail infusion catheter for thermodilution-based quantitative coronary flow measurements. Based on the principles of thermodilution, volumetric coronary flow can be determined from the flow rate of a continuous saline infusion, the temperature of saline when it enters the coronary artery, and the temperature of the blood mixed with the saline in the distal part of the coronary artery. In an in vitro set-up of the systemic and coronary circulation at body temperature, coronary flow values were varied from 50-300 ml/min in steps of 50 ml/min. At each coronary flow value, thermodilution-based measurements were performed at infusion rates of 15, 20, and 30 ml/min. Temperatures and pressures were simultaneously measured with a pressure/temperature sensor-tipped guidewire. Agreement of the calculated flow and the measured flow as well as repeatability were assessed. A total of five catheters were tested, with a total of 180 measurements. A strong correlation (ρ=0.976, p<0.0001) and a difference of -6.5±15.5 ml/min were found between measured and calculated flow. The difference between two repeated measures was 0.2%±8.0%. This novel infusion catheter used in combination with a pressure/temperature sensor-tipped guidewire allows accurate and repeatable absolute coronary flow measurements. This opens a window to a better understanding of the coronary microcirculation.

  15. Unresectable Hepatocellular Carcinoma: MR Imaging after Intraarterial Therapy. Part I. Identification and Validation of Volumetric Functional Response Criteria

    PubMed Central

    Bonekamp, Susanne; Li, Zhen; Geschwind, Jean-François H.; Halappa, Vivek Gowdra; Corona-Villalobos, Celia Pamela; Reyes, Diane; Pawlik, Timothy M.; Bonekamp, David; Eng, John

    2013-01-01

    Purpose: To identify and validate the optimal thresholds for volumetric functional MR imaging response criteria to predict overall survival after intraarterial treatment (IAT) in patients with unresectable hepatocellular carcinoma (HCC). Materials and Methods: Institutional review board approval and waiver of informed consent were obtained. A total of 143 patients who had undergone MR imaging before and 3–4 weeks after the first cycle of IAT were included. MR imaging analysis of one representative HCC index lesion was performed with proprietary software after initial treatment. Subjects were randomly divided into training (n = 114 [79.7%]) and validation (n = 29 [20.3%]) data sets. Uni- and multivariate Cox models were used to determine the best cutoffs, as well as survival differences, between response groups in the validation data set. Results: Optimal cutoffs in the training data set were 23% increase in apparent diffusion coefficient (ADC) and 65% decrease in volumetric enhancement in the portal venous phase (VE). Subsequently, 25% increase in ADC and 65% decrease in VE were used to stratify patients in the validation data set. Comparison of ADC responders (n = 12 [58.6%]) with nonresponders (n = 17 [34.5%]) showed significant differences in survival (25th percentile survival, 11.2 vs 4.9 months, respectively; P = .008), as did VE responders (n = 9 [31.0%]) compared with nonresponders (n = 20 [69.0%]; 25th percentile survival, 11.5 vs 5.1 months, respectively; P = .01). Stratification of patients with a combination of the criteria resulted in significant differences in survival between patients with lesions that fulfilled both criteria (n = 6 [20.7%]; too few cases to determine 25th percentile), one criterion (n = 9 [31.0%]; 25th percentile survival, 6.0 months), and neither criterion (n = 14 [48.3%]; 25th percentile survival, 5.1 months; P = .01). The association between the two criteria and overall survival remained significant in a multivariate analysis that included age, sex, Barcelona Clinic for Liver Cancer stage, and number of follow-up treatments. Conclusion: After IAT for unresectable HCC, patients can be stratified into significantly different survival categories based on responder versus nonresponder status according to MR imaging ADC and VE cutoffs. © RSNA, 2013 PMID:23616631

  16. A novel approach to EPID-based 3D volumetric dosimetry for IMRT and VMAT QA

    NASA Astrophysics Data System (ADS)

    Alhazmi, Abdulaziz; Gianoli, Chiara; Neppl, Sebastian; Martins, Juliana; Veloza, Stella; Podesta, Mark; Verhaegen, Frank; Reiner, Michael; Belka, Claus; Parodi, Katia

    2018-06-01

    Intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) are relatively complex treatment delivery techniques and require quality assurance (QA) procedures. Pre-treatment dosimetric verification represents a fundamental QA procedure in daily clinical routine in radiation therapy. The purpose of this study is to develop an EPID-based approach to reconstruct a 3D dose distribution as imparted to a virtual cylindrical water phantom to be used for plan-specific pre-treatment dosimetric verification for IMRT and VMAT plans. For each depth, the planar 2D dose distributions acquired in air were back-projected and convolved by depth-specific scatter and attenuation kernels. The kernels were obtained by making use of scatter and attenuation models to iteratively estimate the parameters from a set of reference measurements. The derived parameters served as a look-up table for reconstruction of arbitrary measurements. The summation of the reconstructed 3D dose distributions resulted in the integrated 3D dose distribution of the treatment delivery. The accuracy of the proposed approach was validated in clinical IMRT and VMAT plans by means of gamma evaluation, comparing the reconstructed 3D dose distributions with Octavius measurement. The comparison was carried out using (3%, 3 mm) criteria scoring 99% and 96% passing rates for IMRT and VMAT, respectively. An accuracy comparable to the one of the commercial device for 3D volumetric dosimetry was demonstrated. In addition, five IMRT and five VMAT were validated against the 3D dose calculation performed by the TPS in a water phantom using the same passing rate criteria. The median passing rates within the ten treatment plans was 97.3%, whereas the lowest was 95%. Besides, the reconstructed 3D distribution is obtained without predictions relying on forward dose calculation and without external phantom or dosimetric devices. Thus, the approach provides a fully automated, fast and easy QA procedure for plan-specific pre-treatment dosimetric verification.

  17. Detection of colorectal masses in CT colonography: application of deep residual networks for differentiating masses from normal colon anatomy

    NASA Astrophysics Data System (ADS)

    Näppi, Janne J.; Hironaka, Toru; Yoshida, Hiroyuki

    2018-02-01

    Even though the clinical consequences of a missed colorectal cancer far outweigh those of a missed polyp, there has been little work on computer-aided detection (CADe) for colorectal masses in CT colonography (CTC). One of the problems is that it is not clear how to manually design mathematical image-based features that could be used to differentiate effectively between masses and certain types of normal colon anatomy such as ileocecal valves (ICVs). Deep learning has demonstrated ability to automatically determine effective discriminating features in many image-based problems. Recently, residual networks (ResNets) were developed to address the practical problems of constructing deep network architectures for optimizing the performance of deep learning. In this pilot study, we compared the classification performance of a conventional 2D-convolutional ResNet (2D-ResNet) with that of a volumetric 3D-convolutional ResNet (3D-ResNet) in differentiating masses from normal colon anatomy in CTC. For the development and evaluation of the ResNets, 695 volumetric images of biopsy-proven colorectal masses, ICVs, haustral folds, and rectal tubes were sampled from 196 clinical CTC cases and divided randomly into independent training, validation, and test datasets. The training set was expanded by use of volumetric data augmentation. Our preliminary results on the 140 test samples indicate that it is feasible to train a deep volumetric 3D-ResNet for performing effective image-based discriminations in CTC. The 3D-ResNet slightly outperformed the 2D-ResNet in the discrimination of masses and normal colon anatomy, but the statistical difference between their very high classification accuracies was not significant. The highest classification accuracy was obtained by combining the mass-likelihood estimates of the 2D- and 3D-ResNets, which enabled correct classification of all of the masses.

  18. Design, Implementation and Characterization of a Quantum-Dot-Based Volumetric Display

    NASA Astrophysics Data System (ADS)

    Hirayama, Ryuji; Naruse, Makoto; Nakayama, Hirotaka; Tate, Naoya; Shiraki, Atsushi; Kakue, Takashi; Shimobaba, Tomoyoshi; Ohtsu, Motoichi; Ito, Tomoyoshi

    2015-02-01

    In this study, we propose and experimentally demonstrate a volumetric display system based on quantum dots (QDs) embedded in a polymer substrate. Unlike conventional volumetric displays, our system does not require electrical wiring; thus, the heretofore unavoidable issue of occlusion is resolved because irradiation by external light supplies the energy to the light-emitting voxels formed by the QDs. By exploiting the intrinsic attributes of the QDs, the system offers ultrahigh definition and a wide range of colours for volumetric displays. In this paper, we discuss the design, implementation and characterization of the proposed volumetric display's first prototype. We developed an 8 × 8 × 8 display comprising two types of QDs. This display provides multicolour three-type two-dimensional patterns when viewed from different angles. The QD-based volumetric display provides a new way to represent images and could be applied in leisure and advertising industries, among others.

  19. Design, implementation and characterization of a quantum-dot-based volumetric display.

    PubMed

    Hirayama, Ryuji; Naruse, Makoto; Nakayama, Hirotaka; Tate, Naoya; Shiraki, Atsushi; Kakue, Takashi; Shimobaba, Tomoyoshi; Ohtsu, Motoichi; Ito, Tomoyoshi

    2015-02-16

    In this study, we propose and experimentally demonstrate a volumetric display system based on quantum dots (QDs) embedded in a polymer substrate. Unlike conventional volumetric displays, our system does not require electrical wiring; thus, the heretofore unavoidable issue of occlusion is resolved because irradiation by external light supplies the energy to the light-emitting voxels formed by the QDs. By exploiting the intrinsic attributes of the QDs, the system offers ultrahigh definition and a wide range of colours for volumetric displays. In this paper, we discuss the design, implementation and characterization of the proposed volumetric display's first prototype. We developed an 8 × 8 × 8 display comprising two types of QDs. This display provides multicolour three-type two-dimensional patterns when viewed from different angles. The QD-based volumetric display provides a new way to represent images and could be applied in leisure and advertising industries, among others.

  20. A neural network-based estimator for the mixture ratio of the Space Shuttle Main Engine

    NASA Astrophysics Data System (ADS)

    Guo, T. H.; Musgrave, J.

    1992-11-01

    In order to properly utilize the available fuel and oxidizer of a liquid propellant rocket engine, the mixture ratio is closed loop controlled during main stage (65 percent - 109 percent power) operation. However, because of the lack of flight-capable instrumentation for measuring mixture ratio, the value of mixture ratio in the control loop is estimated using available sensor measurements such as the combustion chamber pressure and the volumetric flow, and the temperature and pressure at the exit duct on the low pressure fuel pump. This estimation scheme has two limitations. First, the estimation formula is based on an empirical curve fitting which is accurate only within a narrow operating range. Second, the mixture ratio estimate relies on a few sensor measurements and loss of any of these measurements will make the estimate invalid. In this paper, we propose a neural network-based estimator for the mixture ratio of the Space Shuttle Main Engine. The estimator is an extension of a previously developed neural network based sensor failure detection and recovery algorithm (sensor validation). This neural network uses an auto associative structure which utilizes the redundant information of dissimilar sensors to detect inconsistent measurements. Two approaches have been identified for synthesizing mixture ratio from measurement data using a neural network. The first approach uses an auto associative neural network for sensor validation which is modified to include the mixture ratio as an additional output. The second uses a new network for the mixture ratio estimation in addition to the sensor validation network. Although mixture ratio is not directly measured in flight, it is generally available in simulation and in test bed firing data from facility measurements of fuel and oxidizer volumetric flows. The pros and cons of these two approaches will be discussed in terms of robustness to sensor failures and accuracy of the estimate during typical transients using simulation data.

  1. A neural network-based estimator for the mixture ratio of the Space Shuttle Main Engine

    NASA Technical Reports Server (NTRS)

    Guo, T. H.; Musgrave, J.

    1992-01-01

    In order to properly utilize the available fuel and oxidizer of a liquid propellant rocket engine, the mixture ratio is closed loop controlled during main stage (65 percent - 109 percent power) operation. However, because of the lack of flight-capable instrumentation for measuring mixture ratio, the value of mixture ratio in the control loop is estimated using available sensor measurements such as the combustion chamber pressure and the volumetric flow, and the temperature and pressure at the exit duct on the low pressure fuel pump. This estimation scheme has two limitations. First, the estimation formula is based on an empirical curve fitting which is accurate only within a narrow operating range. Second, the mixture ratio estimate relies on a few sensor measurements and loss of any of these measurements will make the estimate invalid. In this paper, we propose a neural network-based estimator for the mixture ratio of the Space Shuttle Main Engine. The estimator is an extension of a previously developed neural network based sensor failure detection and recovery algorithm (sensor validation). This neural network uses an auto associative structure which utilizes the redundant information of dissimilar sensors to detect inconsistent measurements. Two approaches have been identified for synthesizing mixture ratio from measurement data using a neural network. The first approach uses an auto associative neural network for sensor validation which is modified to include the mixture ratio as an additional output. The second uses a new network for the mixture ratio estimation in addition to the sensor validation network. Although mixture ratio is not directly measured in flight, it is generally available in simulation and in test bed firing data from facility measurements of fuel and oxidizer volumetric flows. The pros and cons of these two approaches will be discussed in terms of robustness to sensor failures and accuracy of the estimate during typical transients using simulation data.

  2. Fiber Optic Thermo-Hygrometers for Soil Moisture Monitoring.

    PubMed

    Leone, Marco; Principe, Sofia; Consales, Marco; Parente, Roberto; Laudati, Armando; Caliro, Stefano; Cutolo, Antonello; Cusano, Andrea

    2017-06-20

    This work deals with the fabrication, prototyping, and experimental validation of a fiber optic thermo-hygrometer-based soil moisture sensor, useful for rainfall-induced landslide prevention applications. In particular, we recently proposed a new generation of fiber Bragg grating (FBGs)-based soil moisture sensors for irrigation purposes. This device was realized by integrating, inside a customized aluminum protection package, a FBG thermo-hygrometer with a polymer micro-porous membrane. Here, we first verify the limitations, in terms of the volumetric water content (VWC) measuring range, of this first version of the soil moisture sensor for its exploitation in landslide prevention applications. Successively, we present the development, prototyping, and experimental validation of a novel, optimized version of a soil VWC sensor, still based on a FBG thermo-hygrometer, but able to reliably monitor, continuously and in real-time, VWC values up to 37% when buried in the soil.

  3. Fiber Optic Thermo-Hygrometers for Soil Moisture Monitoring

    PubMed Central

    Leone, Marco; Principe, Sofia; Consales, Marco; Parente, Roberto; Laudati, Armando; Caliro, Stefano; Cutolo, Antonello; Cusano, Andrea

    2017-01-01

    This work deals with the fabrication, prototyping, and experimental validation of a fiber optic thermo-hygrometer-based soil moisture sensor, useful for rainfall-induced landslide prevention applications. In particular, we recently proposed a new generation of fiber Bragg grating (FBGs)-based soil moisture sensors for irrigation purposes. This device was realized by integrating, inside a customized aluminum protection package, a FBG thermo-hygrometer with a polymer micro-porous membrane. Here, we first verify the limitations, in terms of the volumetric water content (VWC) measuring range, of this first version of the soil moisture sensor for its exploitation in landslide prevention applications. Successively, we present the development, prototyping, and experimental validation of a novel, optimized version of a soil VWC sensor, still based on a FBG thermo-hygrometer, but able to reliably monitor, continuously and in real-time, VWC values up to 37% when buried in the soil. PMID:28632172

  4. Kinetic Model of Photoautotrophic Growth of Chlorella sp. Microalga, Isolated from the Setúbal Lagoon.

    PubMed

    Heinrich, Josué Miguel; Irazoqui, Horacio Antonio

    2015-01-01

    In this work, a kinetic expression relating light availability in the culture medium with the rate of microalgal growth is obtained. This expression, which is valid for low illumination conditions, was derived from the reactions that take part in the light-dependent stage of photosynthesis. The kinetic expression obtained is a function of the biomass concentration in the culture, as well as of the local volumetric rate of absorption of photons, and only includes two adjustable parameters. To determine the value of these parameters and to test the validity of the hypotheses made, autotrophic cultures of the Chlorella sp. strain were carried out in a modified BBM medium at three CO2 concentrations in the gas stream, namely 0.034%, 0.34% and 3.4%. Moreover, the local volumetric rate of photon absorption was predicted based on a physical model of the interaction of the radiant energy with the suspended biomass, together with a Monte Carlo simulation algorithm. The proposed intrinsic expression of the biomass growth rate, together with the Monte Carlo radiation field simulator, are key to scale up photobioreactors when operating under low irradiation conditions, independently of the configuration of the reactor and of its light source. © 2015 The American Society of Photobiology.

  5. Automatic Estimation of Volumetric Breast Density Using Artificial Neural Network-Based Calibration of Full-Field Digital Mammography: Feasibility on Japanese Women With and Without Breast Cancer.

    PubMed

    Wang, Jeff; Kato, Fumi; Yamashita, Hiroko; Baba, Motoi; Cui, Yi; Li, Ruijiang; Oyama-Manabe, Noriko; Shirato, Hiroki

    2017-04-01

    Breast cancer is the most common invasive cancer among women and its incidence is increasing. Risk assessment is valuable and recent methods are incorporating novel biomarkers such as mammographic density. Artificial neural networks (ANN) are adaptive algorithms capable of performing pattern-to-pattern learning and are well suited for medical applications. They are potentially useful for calibrating full-field digital mammography (FFDM) for quantitative analysis. This study uses ANN modeling to estimate volumetric breast density (VBD) from FFDM on Japanese women with and without breast cancer. ANN calibration of VBD was performed using phantom data for one FFDM system. Mammograms of 46 Japanese women diagnosed with invasive carcinoma and 53 with negative findings were analyzed using ANN models learned. ANN-estimated VBD was validated against phantom data, compared intra-patient, with qualitative composition scoring, with MRI VBD, and inter-patient with classical risk factors of breast cancer as well as cancer status. Phantom validations reached an R 2 of 0.993. Intra-patient validations ranged from R 2 of 0.789 with VBD to 0.908 with breast volume. ANN VBD agreed well with BI-RADS scoring and MRI VBD with R 2 ranging from 0.665 with VBD to 0.852 with breast volume. VBD was significantly higher in women with cancer. Associations with age, BMI, menopause, and cancer status previously reported were also confirmed. ANN modeling appears to produce reasonable measures of mammographic density validated with phantoms, with existing measures of breast density, and with classical biomarkers of breast cancer. FFDM VBD is significantly higher in Japanese women with cancer.

  6. Numerical Analysis of a Pulse Detonation Cross Flow Heat Load Experiment

    NASA Technical Reports Server (NTRS)

    Paxson, Daniel E.; Naples, Andrew .; Hoke, John L.; Schauer, Fred

    2011-01-01

    A comparison between experimentally measured and numerically simulated, time-averaged, point heat transfer rates in a pulse detonation (PDE) engine is presented. The comparison includes measurements and calculations for heat transfer to a cylinder in crossflow and to the tube wall itself using a novel spool design. Measurements are obtained at several locations and under several operating conditions. The measured and computed results are shown to be in substantial agreement, thereby validating the modeling approach. The model, which is based in computational fluid dynamics (CFD) is then used to interpret the results. A preheating of the incoming fuel charge is predicted, which results in increased volumetric flow and subsequent overfilling. The effect is validated with additional measurements.

  7. Inkjet printing-based volumetric display projecting multiple full-colour 2D patterns

    NASA Astrophysics Data System (ADS)

    Hirayama, Ryuji; Suzuki, Tomotaka; Shimobaba, Tomoyoshi; Shiraki, Atsushi; Naruse, Makoto; Nakayama, Hirotaka; Kakue, Takashi; Ito, Tomoyoshi

    2017-04-01

    In this study, a method to construct a full-colour volumetric display is presented using a commercially available inkjet printer. Photoreactive luminescence materials are minutely and automatically printed as the volume elements, and volumetric displays are constructed with high resolution using easy-to-fabricate means that exploit inkjet printing technologies. The results experimentally demonstrate the first prototype of an inkjet printing-based volumetric display composed of multiple layers of transparent films that yield a full-colour three-dimensional (3D) image. Moreover, we propose a design algorithm with 3D structures that provide multiple different 2D full-colour patterns when viewed from different directions and experimentally demonstrate prototypes. It is considered that these types of 3D volumetric structures and their fabrication methods based on widely deployed existing printing technologies can be utilised as novel information display devices and systems, including digital signage, media art, entertainment and security.

  8. Volumetric error modeling, identification and compensation based on screw theory for a large multi-axis propeller-measuring machine

    NASA Astrophysics Data System (ADS)

    Zhong, Xuemin; Liu, Hongqi; Mao, Xinyong; Li, Bin; He, Songping; Peng, Fangyu

    2018-05-01

    Large multi-axis propeller-measuring machines have two types of geometric error, position-independent geometric errors (PIGEs) and position-dependent geometric errors (PDGEs), which both have significant effects on the volumetric error of the measuring tool relative to the worktable. This paper focuses on modeling, identifying and compensating for the volumetric error of the measuring machine. A volumetric error model in the base coordinate system is established based on screw theory considering all the geometric errors. In order to fully identify all the geometric error parameters, a new method for systematic measurement and identification is proposed. All the PIGEs of adjacent axes and the six PDGEs of the linear axes are identified with a laser tracker using the proposed model. Finally, a volumetric error compensation strategy is presented and an inverse kinematic solution for compensation is proposed. The final measuring and compensation experiments have further verified the efficiency and effectiveness of the measuring and identification method, indicating that the method can be used in volumetric error compensation for large machine tools.

  9. Neuroimaging correlates of parent ratings of working memory in typically developing children

    PubMed Central

    Mahone, E. Mark; Martin, Rebecca; Kates, Wendy R.; Hay, Trisha; Horská, Alena

    2009-01-01

    The purpose of the present study was to investigate construct validity of parent ratings of working memory in children, using a multi-trait/multi-method design including neuroimaging, rating scales, and performance-based measures. Thirty-five typically developing children completed performance-based tests of working memory and nonexecutive function (EF) skills, received volumetric MRI, and were rated by parents on both EF-specific and broad behavior rating scales. After controlling for total cerebral volume and age, parent ratings of working memory were significantly correlated with frontal gray, but not temporal, parietal, or occipital gray, or any lobar white matter volumes. Performance-based measures of working memory were also moderately correlated with frontal lobe gray matter volume; however, non-EF parent ratings and non-EF performance-based measures were not correlated with frontal lobe volumes. Results provide preliminary support for the convergent and discriminant validity of parent ratings of working memory, and emphasize their utility in exploring brain–behavior relationships in children. Rating scales that directly examine EF skills may potentially have ecological validity, not only for “everyday” function, but also as correlates of brain volume. PMID:19128526

  10. Volumetric versus area-based density assessment: comparisons using automated quantitative measurements from a large screening cohort

    NASA Astrophysics Data System (ADS)

    Gastounioti, Aimilia; Hsieh, Meng-Kang; Pantalone, Lauren; Conant, Emily F.; Kontos, Despina

    2018-03-01

    Mammographic density is an established risk factor for breast cancer. However, area-based density (ABD) measured in 2D mammograms consider the projection, rather than the actual volume of dense tissue which may be an important limitation. With the increasing utilization of digital breast tomosynthesis (DBT) in screening, there's an opportunity to routinely estimate volumetric breast density (VBD). In this study, we investigate associations between DBT-VBD and ABD extracted from standard-dose mammography (DM) and synthetic 2D digital mammography (sDM) increasingly replacing DM. We retrospectively analyzed bilateral imaging data from a random sample of 1000 women, acquired over a transitional period at our institution when all women had DBT, sDM and DM acquired as part of their routine breast screening. For each exam, ABD was measured in DM and sDM images with the publicly available "LIBRA" software, while DBT-VBD was measured using a previously validated, fully-automated computer algorithm. Spearman correlation (r) was used to compare VBD to ABD measurements. For each density measure, we also estimated the within woman intraclass correlation (ICC) and finally, to compare to clinical assessments, we performed analysis of variance (ANOVA) to evaluate the variation to the assigned clinical BI-RADS breast density category for each woman. DBT-VBD was moderately correlated to ABD from DM (r=0.70) and sDM (r=0.66). All density measures had strong bilateral symmetry (ICC = [0.85, 0.95]), but were significantly different across BI-RADS density categories (ANOVA, p<0.001). Our results contribute to further elaborating the clinical implications of breast density measures estimated with DBT which may better capture the volumetric amount of dense tissue within the breast than area-based measures and visual assessment.

  11. High-volumetric performance aligned nano-porous microwave exfoliated graphite oxide-based electrochemical capacitors.

    PubMed

    Ghaffari, Mehdi; Zhou, Yue; Xu, Haiping; Lin, Minren; Kim, Tae Young; Ruoff, Rodney S; Zhang, Q M

    2013-09-20

    Ultra-high volumetric performance electrochemical double layer capacitors based on high density aligned nano-porous microwave exfoliated graphite oxide have been studied. Elimination of macro-, meso-, and larger micro-pores from electrodes and controlling the nano-morphology results in very high volumetric capacitance, energy, and power density values. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. A new laboratory-scale experimental facility for detailed aerothermal characterizations of volumetric absorbers

    NASA Astrophysics Data System (ADS)

    Gomez-Garcia, Fabrisio; Santiago, Sergio; Luque, Salvador; Romero, Manuel; Gonzalez-Aguilar, Jose

    2016-05-01

    This paper describes a new modular laboratory-scale experimental facility that was designed to conduct detailed aerothermal characterizations of volumetric absorbers for use in concentrating solar power plants. Absorbers are generally considered to be the element with the highest potential for efficiency gains in solar thermal energy systems. The configu-ration of volumetric absorbers enables concentrated solar radiation to penetrate deep into their solid structure, where it is progressively absorbed, prior to being transferred by convection to a working fluid flowing through the structure. Current design trends towards higher absorber outlet temperatures have led to the use of complex intricate geometries in novel ceramic and metallic elements to maximize the temperature deep inside the structure (thus reducing thermal emission losses at the front surface and increasing efficiency). Although numerical models simulate the conjugate heat transfer mechanisms along volumetric absorbers, they lack, in many cases, the accuracy that is required for precise aerothermal validations. The present work aims to aid this objective by the design, development, commissioning and operation of a new experimental facility which consists of a 7 kWe (1.2 kWth) high flux solar simulator, a radiation homogenizer, inlet and outlet collector modules and a working section that can accommodate volumetric absorbers up to 80 mm × 80 mm in cross-sectional area. Experimental measurements conducted in the facility include absorber solid temperature distributions along its depth, inlet and outlet air temperatures, air mass flow rate and pressure drop, incident radiative heat flux, and overall thermal efficiency. In addition, two windows allow for the direct visualization of the front and rear absorber surfaces, thus enabling full-coverage surface temperature measurements by thermal imaging cameras. This paper presents the results from the aerothermal characterization of a siliconized silicon carbide monolithic honeycomb, conducted at realistic conditions of incident radiative power per unit mass flow rate in order to validate its operation.

  13. Extension of the Helmholtz-Smoluchowski velocity to the hydrophobic microchannels with velocity slip.

    PubMed

    Park, H M; Kim, T W

    2009-01-21

    Electrokinetic flows through hydrophobic microchannels experience velocity slip at the microchannel wall, which affects volumetric flow rate and solute retention time. The usual method of predicting the volumetric flow rate and velocity profile for hydrophobic microchannels is to solve the Navier-Stokes equation and the Poisson-Boltzmann equation for the electric potential with the boundary condition of velocity slip expressed by the Navier slip coefficient, which is computationally demanding and defies analytic solutions. In the present investigation, we have devised a simple method of predicting the velocity profiles and volumetric flow rates of electrokinetic flows by extending the concept of the Helmholtz-Smoluchowski velocity to microchannels with Navier slip. The extended Helmholtz-Smoluchowski velocity is simple to use and yields accurate results as compared to the exact solutions. Employing the extended Helmholtz-Smoluchowski velocity, the analytical expressions for volumetric flow rate and velocity profile for electrokinetic flows through rectangular microchannels with Navier slip have been obtained at high values of zeta potential. The range of validity of the extended Helmholtz-Smoluchowski velocity is also investigated.

  14. A B-spline image registration based CAD scheme to evaluate drug treatment response of ovarian cancer patients

    NASA Astrophysics Data System (ADS)

    Tan, Maxine; Li, Zheng; Moore, Kathleen; Thai, Theresa; Ding, Kai; Liu, Hong; Zheng, Bin

    2016-03-01

    Ovarian cancer is the second most common cancer amongst gynecologic malignancies, and has the highest death rate. Since the majority of ovarian cancer patients (>75%) are diagnosed in the advanced stage with tumor metastasis, chemotherapy is often required after surgery to remove the primary ovarian tumors. In order to quickly assess patient response to the chemotherapy in the clinical trials, two sets of CT examinations are taken pre- and post-therapy (e.g., after 6 weeks). Treatment efficacy is then evaluated based on Response Evaluation Criteria in Solid Tumors (RECIST) guideline, whereby tumor size is measured by the longest diameter on one CT image slice and only a subset of selected tumors are tracked. However, this criterion cannot fully represent the volumetric changes of the tumors and might miss potentially problematic unmarked tumors. Thus, we developed a new CAD approach to measure and analyze volumetric tumor growth/shrinkage using a cubic B-spline deformable image registration method. In this initial study, on 14 sets of pre- and post-treatment CT scans, we registered the two consecutive scans using cubic B-spline registration in a multiresolution (from coarse to fine) framework. We used Mattes mutual information metric as the similarity criterion and the L-BFGS-B optimizer. The results show that our method can quantify volumetric changes in the tumors more accurately than RECIST, and also detect (highlight) potentially problematic regions that were not originally targeted by radiologists. Despite the encouraging results of this preliminary study, further validation of scheme performance is required using large and diverse datasets in future.

  15. A comparative study of volumetric breast density estimation in digital mammography and magnetic resonance imaging: results from a high-risk population

    NASA Astrophysics Data System (ADS)

    Kontos, Despina; Xing, Ye; Bakic, Predrag R.; Conant, Emily F.; Maidment, Andrew D. A.

    2010-03-01

    We performed a study to compare methods for volumetric breast density estimation in digital mammography (DM) and magnetic resonance imaging (MRI) for a high-risk population of women. DM and MRI images of the unaffected breast from 32 women with recently detected abnormalities and/or previously diagnosed breast cancer (age range 31-78 yrs, mean 50.3 yrs) were retrospectively analyzed. DM images were analyzed using QuantraTM (Hologic Inc). The MRI images were analyzed using a fuzzy-C-means segmentation algorithm on the T1 map. Both methods were compared to Cumulus (Univ. Toronto). Volumetric breast density estimates from DM and MRI are highly correlated (r=0.90, p<=0.001). The correlation between the volumetric and the area-based density measures is lower and depends on the training background of the Cumulus software user (r=0.73-84, p<=0.001). In terms of absolute values, MRI provides the lowest volumetric estimates (mean=14.63%), followed by the DM volumetric (mean=22.72%) and area-based measures (mean=29.35%). The MRI estimates of the fibroglandular volume are statistically significantly lower than the DM estimates for women with very low-density breasts (p<=0.001). We attribute these differences to potential partial volume effects in MRI and differences in the computational aspects of the image analysis methods in MRI and DM. The good correlation between the volumetric and the area-based measures, shown to correlate with breast cancer risk, suggests that both DM and MRI volumetric breast density measures can aid in breast cancer risk assessment. Further work is underway to fully-investigate the association between volumetric breast density measures and breast cancer risk.

  16. 2pBAb5. Validation of three-dimensional strain tracking by volumetric ultrasound image correlation in a pubovisceral muscle model

    PubMed Central

    Nagle, Anna S.; Nageswaren, Ashok R.; Haridas, Balakrishna; Mast, T. D.

    2014-01-01

    Little is understood about the biomechanical changes leading to pelvic floor disorders such as stress urinary incontinence. In order to measure regional biomechanical properties of the pelvic floor muscles in vivo, a three dimensional (3D) strain tracking technique employing correlation of volumetric ultrasound images has been implemented. In this technique, local 3D displacements are determined as a function of applied stress and then converted to strain maps. To validate this approach, an in vitro model of the pubovisceral muscle, with a hemispherical indenter emulating the downward stress caused by intra-abdominal pressure, was constructed. Volumetric B-scan images were recorded as a function of indenter displacement while muscle strain was measured independently by a sonomicrometry system (Sonometrics). Local strains were computed by ultrasound image correlation and compared with sonomicrometry-measured strains to assess strain tracking accuracy. Image correlation by maximizing an exponential likelihood function was found more reliable than the Pearson correlation coefficient. Strain accuracy was dependent on sizes of the subvolumes used for image correlation, relative to characteristic speckle length scales of the images. Decorrelation of echo signals was mapped as a function of indenter displacement and local tissue orientation. Strain measurement accuracy was weakly related to local echo decorrelation. PMID:24900165

  17. Single-breath-hold abdominal [Formula: see text]  mapping using 3D Cartesian Look-Locker with spatiotemporal sparsity constraints.

    PubMed

    Lugauer, Felix; Wetzl, Jens; Forman, Christoph; Schneider, Manuel; Kiefer, Berthold; Hornegger, Joachim; Nickel, Dominik; Maier, Andreas

    2018-06-01

    Our aim was to develop and validate a 3D Cartesian Look-Locker [Formula: see text] mapping technique that achieves high accuracy and whole-liver coverage within a single breath-hold. The proposed method combines sparse Cartesian sampling based on a spatiotemporally incoherent Poisson pattern and k-space segmentation, dedicated for high-temporal-resolution imaging. This combination allows capturing tissue with short relaxation times with volumetric coverage. A joint reconstruction of the 3D + inversion time (TI) data via compressed sensing exploits the spatiotemporal sparsity and ensures consistent quality for the subsequent multistep [Formula: see text] mapping. Data from the National Institute of Standards and Technology (NIST) phantom and 11 volunteers, along with reference 2D Look-Locker acquisitions, are used for validation. 2D and 3D methods are compared based on [Formula: see text] values in different abdominal tissues at 1.5 and 3 T. [Formula: see text] maps obtained from the proposed 3D method compare favorably with those from the 2D reference and additionally allow for reformatting or volumetric analysis. Excellent agreement is shown in phantom [bias[Formula: see text] < 2%, bias[Formula: see text] < 5% for (120; 2000) ms] and volunteer data (3D and 2D deviation < 4% for liver, muscle, and spleen) for clinically acceptable scan (20 s) and reconstruction times (< 4 min). Whole-liver [Formula: see text] mapping with high accuracy and precision is feasible in one breath-hold using spatiotemporally incoherent, sparse 3D Cartesian sampling.

  18. Generating large-scale estimates from sparse, in-situ networks: multi-scale soil moisture modeling at ARS watersheds for NASA’s soil moisture active passive (SMAP) calibration/validation mission

    USDA-ARS?s Scientific Manuscript database

    NASA’s SMAP satellite, launched in November of 2014, produces estimates of average volumetric soil moisture at 3, 9, and 36-kilometer scales. The calibration and validation process of these estimates requires the generation of an identically-scaled soil moisture product from existing in-situ networ...

  19. Volumetric calibration of a plenoptic camera.

    PubMed

    Hall, Elise Munz; Fahringer, Timothy W; Guildenbecher, Daniel R; Thurow, Brian S

    2018-02-01

    The volumetric calibration of a plenoptic camera is explored to correct for inaccuracies due to real-world lens distortions and thin-lens assumptions in current processing methods. Two methods of volumetric calibration based on a polynomial mapping function that does not require knowledge of specific lens parameters are presented and compared to a calibration based on thin-lens assumptions. The first method, volumetric dewarping, is executed by creation of a volumetric representation of a scene using the thin-lens assumptions, which is then corrected in post-processing using a polynomial mapping function. The second method, direct light-field calibration, uses the polynomial mapping in creation of the initial volumetric representation to relate locations in object space directly to image sensor locations. The accuracy and feasibility of these methods is examined experimentally by capturing images of a known dot card at a variety of depths. Results suggest that use of a 3D polynomial mapping function provides a significant increase in reconstruction accuracy and that the achievable accuracy is similar using either polynomial-mapping-based method. Additionally, direct light-field calibration provides significant computational benefits by eliminating some intermediate processing steps found in other methods. Finally, the flexibility of this method is shown for a nonplanar calibration.

  20. SimDoseCT: dose reporting software based on Monte Carlo simulation for a 320 detector-row cone-beam CT scanner and ICRP computational adult phantoms

    NASA Astrophysics Data System (ADS)

    Cros, Maria; Joemai, Raoul M. S.; Geleijns, Jacob; Molina, Diego; Salvadó, Marçal

    2017-08-01

    This study aims to develop and test software for assessing and reporting doses for standard patients undergoing computed tomography (CT) examinations in a 320 detector-row cone-beam scanner. The software, called SimDoseCT, is based on the Monte Carlo (MC) simulation code, which was developed to calculate organ doses and effective doses in ICRP anthropomorphic adult reference computational phantoms for acquisitions with the Aquilion ONE CT scanner (Toshiba). MC simulation was validated by comparing CTDI measurements within standard CT dose phantoms with results from simulation under the same conditions. SimDoseCT consists of a graphical user interface connected to a MySQL database, which contains the look-up-tables that were generated with MC simulations for volumetric acquisitions at different scan positions along the phantom using any tube voltage, bow tie filter, focal spot and nine different beam widths. Two different methods were developed to estimate organ doses and effective doses from acquisitions using other available beam widths in the scanner. A correction factor was used to estimate doses in helical acquisitions. Hence, the user can select any available protocol in the Aquilion ONE scanner for a standard adult male or female and obtain the dose results through the software interface. Agreement within 9% between CTDI measurements and simulations allowed the validation of the MC program. Additionally, the algorithm for dose reporting in SimDoseCT was validated by comparing dose results from this tool with those obtained from MC simulations for three volumetric acquisitions (head, thorax and abdomen). The comparison was repeated using eight different collimations and also for another collimation in a helical abdomen examination. The results showed differences of 0.1 mSv or less for absolute dose in most organs and also in the effective dose calculation. The software provides a suitable tool for dose assessment in standard adult patients undergoing CT examinations in a 320 detector-row cone-beam scanner.

  1. SimDoseCT: dose reporting software based on Monte Carlo simulation for a 320 detector-row cone-beam CT scanner and ICRP computational adult phantoms.

    PubMed

    Cros, Maria; Joemai, Raoul M S; Geleijns, Jacob; Molina, Diego; Salvadó, Marçal

    2017-07-17

    This study aims to develop and test software for assessing and reporting doses for standard patients undergoing computed tomography (CT) examinations in a 320 detector-row cone-beam scanner. The software, called SimDoseCT, is based on the Monte Carlo (MC) simulation code, which was developed to calculate organ doses and effective doses in ICRP anthropomorphic adult reference computational phantoms for acquisitions with the Aquilion ONE CT scanner (Toshiba). MC simulation was validated by comparing CTDI measurements within standard CT dose phantoms with results from simulation under the same conditions. SimDoseCT consists of a graphical user interface connected to a MySQL database, which contains the look-up-tables that were generated with MC simulations for volumetric acquisitions at different scan positions along the phantom using any tube voltage, bow tie filter, focal spot and nine different beam widths. Two different methods were developed to estimate organ doses and effective doses from acquisitions using other available beam widths in the scanner. A correction factor was used to estimate doses in helical acquisitions. Hence, the user can select any available protocol in the Aquilion ONE scanner for a standard adult male or female and obtain the dose results through the software interface. Agreement within 9% between CTDI measurements and simulations allowed the validation of the MC program. Additionally, the algorithm for dose reporting in SimDoseCT was validated by comparing dose results from this tool with those obtained from MC simulations for three volumetric acquisitions (head, thorax and abdomen). The comparison was repeated using eight different collimations and also for another collimation in a helical abdomen examination. The results showed differences of 0.1 mSv or less for absolute dose in most organs and also in the effective dose calculation. The software provides a suitable tool for dose assessment in standard adult patients undergoing CT examinations in a 320 detector-row cone-beam scanner.

  2. Mass-conserved volumetric lattice Boltzmann method for complex flows with willfully moving boundaries.

    PubMed

    Yu, Huidan; Chen, Xi; Wang, Zhiqiang; Deep, Debanjan; Lima, Everton; Zhao, Ye; Teague, Shawn D

    2014-06-01

    In this paper, we develop a mass-conserved volumetric lattice Boltzmann method (MCVLBM) for numerically solving fluid dynamics with willfully moving arbitrary boundaries. In MCVLBM, fluid particles are uniformly distributed in lattice cells and the lattice Boltzmann equations deal with the time evolution of the particle distribution function. By introducing a volumetric parameter P(x,y,z,t) defined as the occupation of solid volume in the cell, we distinguish three types of lattice cells in the simulation domain: solid cell (pure solid occupation, P=1), fluid cell (pure fluid occupation, P=0), and boundary cell (partial solid and partial fluid, 0

  3. Volumetric calibration of a plenoptic camera

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, Elise Munz; Fahringer, Timothy W.; Guildenbecher, Daniel Robert

    Here, the volumetric calibration of a plenoptic camera is explored to correct for inaccuracies due to real-world lens distortions and thin-lens assumptions in current processing methods. Two methods of volumetric calibration based on a polynomial mapping function that does not require knowledge of specific lens parameters are presented and compared to a calibration based on thin-lens assumptions. The first method, volumetric dewarping, is executed by creation of a volumetric representation of a scene using the thin-lens assumptions, which is then corrected in post-processing using a polynomial mapping function. The second method, direct light-field calibration, uses the polynomial mapping in creationmore » of the initial volumetric representation to relate locations in object space directly to image sensor locations. The accuracy and feasibility of these methods is examined experimentally by capturing images of a known dot card at a variety of depths. Results suggest that use of a 3D polynomial mapping function provides a significant increase in reconstruction accuracy and that the achievable accuracy is similar using either polynomial-mapping-based method. Additionally, direct light-field calibration provides significant computational benefits by eliminating some intermediate processing steps found in other methods. Finally, the flexibility of this method is shown for a nonplanar calibration.« less

  4. Volumetric calibration of a plenoptic camera

    DOE PAGES

    Hall, Elise Munz; Fahringer, Timothy W.; Guildenbecher, Daniel Robert; ...

    2018-02-01

    Here, the volumetric calibration of a plenoptic camera is explored to correct for inaccuracies due to real-world lens distortions and thin-lens assumptions in current processing methods. Two methods of volumetric calibration based on a polynomial mapping function that does not require knowledge of specific lens parameters are presented and compared to a calibration based on thin-lens assumptions. The first method, volumetric dewarping, is executed by creation of a volumetric representation of a scene using the thin-lens assumptions, which is then corrected in post-processing using a polynomial mapping function. The second method, direct light-field calibration, uses the polynomial mapping in creationmore » of the initial volumetric representation to relate locations in object space directly to image sensor locations. The accuracy and feasibility of these methods is examined experimentally by capturing images of a known dot card at a variety of depths. Results suggest that use of a 3D polynomial mapping function provides a significant increase in reconstruction accuracy and that the achievable accuracy is similar using either polynomial-mapping-based method. Additionally, direct light-field calibration provides significant computational benefits by eliminating some intermediate processing steps found in other methods. Finally, the flexibility of this method is shown for a nonplanar calibration.« less

  5. Iterative Reconstruction of Volumetric Particle Distribution for 3D Velocimetry

    NASA Astrophysics Data System (ADS)

    Wieneke, Bernhard; Neal, Douglas

    2011-11-01

    A number of different volumetric flow measurement techniques exist for following the motion of illuminated particles. For experiments that have lower seeding densities, 3D-PTV uses recorded images from typically 3-4 cameras and then tracks the individual particles in space and time. This technique is effective in flows that have lower seeding densities. For flows that have a higher seeding density, tomographic PIV uses a tomographic reconstruction algorithm (e.g. MART) to reconstruct voxel intensities of the recorded volume followed by the cross-correlation of subvolumes to provide the instantaneous 3D vector fields on a regular grid. A new hybrid algorithm is presented which iteratively reconstructs the 3D-particle distribution directly using particles with certain imaging properties instead of voxels as base functions. It is shown with synthetic data that this method is capable of reconstructing densely seeded flows up to 0.05 particles per pixel (ppp) with the same or higher accuracy than 3D-PTV and tomographic PIV. Finally, this new method is validated using experimental data on a turbulent jet.

  6. Adaptive deformable model for colonic polyp segmentation and measurement on CT colonography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao Jianhua; Summers, Ronald M.

    2007-05-15

    Polyp size is one important biomarker for the malignancy risk of a polyp. This paper presents an improved approach for colonic polyp segmentation and measurement on CT colonography images. The method is based on a combination of knowledge-guided intensity adjustment, fuzzy clustering, and adaptive deformable model. Since polyps on haustral folds are the most difficult to be segmented, we propose a dual-distance algorithm to first identify voxels on the folds, and then introduce a counter-force to control the model evolution. We derive linear and volumetric measurements from the segmentation. The experiment was conducted on 395 patients with 83 polyps, ofmore » which 43 polyps were on haustral folds. The results were validated against manual measurement from the optical colonoscopy and the CT colonography. The paired t-test showed no significant difference, and the R{sup 2} correlation was 0.61 for the linear measurement and 0.98 for the volumetric measurement. The mean Dice coefficient for volume overlap between automatic and manual segmentation was 0.752 (standard deviation 0.154)« less

  7. Densely-packed graphene/conducting polymer nanoparticle papers for high-volumetric-performance flexible all-solid-state supercapacitors

    NASA Astrophysics Data System (ADS)

    Yang, Chao; Zhang, Liling; Hu, Nantao; Yang, Zhi; Wei, Hao; Xu, Zhichuan J.; Wang, Yanyan; Zhang, Yafei

    2016-08-01

    Graphene-based all-solid-state supercapacitors (ASSSCs) are one of the most ideal candidates for high-performance flexible power sources. The achievement of high volumetric energy density is highly desired for practical application of this type of ASSSCs. Here, we present a facile method to boost volumetric performances of graphene-based flexible ASSSCs through incorporation of ultrafine polyaniline-poly(4-styrenesulfonate) (PANI-PSS) nanoparticles in reduced graphene oxide (rGO) papers. A compact structure is obtained via intimate contact and π-π interaction between PANI-PSS nanoparticles and rGO sheets. The hybrid paper electrode with the film thickness of 13.5 μm, shows an extremely high volumetric specific capacitance of 272 F/cm3 (0.37 A/cm3 in a three-electrode cell). The assembled ASSSCs show a large volumetric specific capacitance of 217 F/cm3 (0.37 A/cm3 in a two-electrode cell), high volumetric energy and power density, excellent capacitance stability, small leakage current as well as low self-discharge characteristics, revealing the usefulness of this robust hybrid paper for high-performance flexible energy storage devices.

  8. Radiofrequency volumetric reduction of the tongue. A porcine pilot study for the treatment of obstructive sleep apnea syndrome.

    PubMed

    Powell, N B; Riley, R W; Troell, R J; Blumen, M B; Guilleminault, C

    1997-05-01

    To investigate, in an animal model, the feasibility of radiofrequency (RF) volumetric tongue reduction for the future purpose of determining its clinical applications in obstructive sleep apnea syndrome (OSAS). The study was performed in three stages, one in vitro bovine stage and two in vivo porcine stages. The last stage was a prospective investigation with histologic and volumetric analyses to establish outcomes. Laboratory and operating room of veterinary research center. A homogeneous population of porcine animal models, including seven in stage 2 and 12 in stage 3. RF energy was delivered by a custom-fabricated needle electrode and RF generator to the tongue tissue of both the in vitro and in vivo models. Microultransonic crystals were used to measure three-dimensional changes (volumetric reduction). Lesion size correlated well with increasing RF energy delivery (Sperman correlation coefficient of 0.986; p = 0.0003). Histologic assessments done serially over time (1 h through 3 weeks) showed a well-circumscribed lesion with a normal healing progression and no peripheral damage to nerves. Volumetric analysis documented a very mild initial edematous response that promptly tapered at 24 h. At 10 days after RF, a 26.3% volume reduction was documented at the treatment site (circumscribed by the microultrasonic crystals). RF, in a porcine animal model, can safely reduce tongue volume in a precise and controlled manner. Further studies will validate the use of RF in the treatment of OSAS.

  9. Automatic brain caudate nuclei segmentation and classification in diagnostic of Attention-Deficit/Hyperactivity Disorder.

    PubMed

    Igual, Laura; Soliva, Joan Carles; Escalera, Sergio; Gimeno, Roger; Vilarroya, Oscar; Radeva, Petia

    2012-12-01

    We present a fully automatic diagnostic imaging test for Attention-Deficit/Hyperactivity Disorder diagnosis assistance based on previously found evidences of caudate nucleus volumetric abnormalities. The proposed method consists of different steps: a new automatic method for external and internal segmentation of caudate based on Machine Learning methodologies; the definition of a set of new volume relation features, 3D Dissociated Dipoles, used for caudate representation and classification. We separately validate the contributions using real data from a pediatric population and show precise internal caudate segmentation and discrimination power of the diagnostic test, showing significant performance improvements in comparison to other state-of-the-art methods. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Computer-assisted identification and volumetric quantification of dynamic contrast enhancement in brain MRI: an interactive system

    NASA Astrophysics Data System (ADS)

    Wu, Shandong; Avgeropoulos, Nicholas G.; Rippe, David J.

    2013-03-01

    We present a dedicated segmentation system for tumor identification and volumetric quantification in dynamic contrast brain magnetic resonance (MR) scans. Our goal is to offer a practically useful tool at the end of clinicians in order to boost volumetric tumor assessment. The system is designed to work in an interactive mode such that maximizes the integration of computing capacity and clinical intelligence. We demonstrate the main functions of the system in terms of its functional flow and conduct preliminary validation using a representative pilot dataset. The system is inexpensive, user-friendly, easy to deploy and integrate with picture archiving and communication systems (PACS), and possible to be open-source, which enable it to potentially serve as a useful assistant for radiologists and oncologists. It is anticipated that in the future the system can be integrated into clinical workflow so that become routine available to help clinicians make more objective interpretations of treatment interventions and natural history of disease to best advocate patient needs.

  11. Automated Classification of Usual Interstitial Pneumonia using Regional Volumetric Texture Analysis in High-Resolution CT

    PubMed Central

    Depeursinge, Adrien; Chin, Anne S.; Leung, Ann N.; Terrone, Donato; Bristow, Michael; Rosen, Glenn; Rubin, Daniel L.

    2014-01-01

    Objectives We propose a novel computational approach for the automated classification of classic versus atypical usual interstitial pneumonia (UIP). Materials and Methods 33 patients with UIP were enrolled in this study. They were classified as classic versus atypical UIP by a consensus of two thoracic radiologists with more than 15 years of experience using the American Thoracic Society evidence–based guidelines for CT diagnosis of UIP. Two cardiothoracic fellows with one year of subspecialty training provided independent readings. The system is based on regional characterization of the morphological tissue properties of lung using volumetric texture analysis of multiple detector CT images. A simple digital atlas with 36 lung subregions is used to locate texture properties, from which the responses of multi-directional Riesz wavelets are obtained. Machine learning is used to aggregate and to map the regional texture attributes to a simple score that can be used to stratify patients with UIP into classic and atypical subtypes. Results We compared the predictions based on regional volumetric texture analysis with the ground truth established by expert consensus. The area under the receiver operating characteristic curve of the proposed score was estimated to be 0.81 using a leave-one-patient-out cross-validation, with high specificity for classic UIP. The performance of our automated method was found to be similar to that of the two fellows and to the agreement between experienced chest radiologists reported in the literature. However, the errors of our method and the fellows occurred on different cases, which suggests that combining human and computerized evaluations may be synergistic. Conclusions Our results are encouraging and suggest that an automated system may be useful in routine clinical practice as a diagnostic aid for identifying patients with complex lung disease such as classic UIP, obviating the need for invasive surgical lung biopsy and its associated risks. PMID:25551822

  12. Physically Based Modeling and Simulation with Dynamic Spherical Volumetric Simplex Splines

    PubMed Central

    Tan, Yunhao; Hua, Jing; Qin, Hong

    2009-01-01

    In this paper, we present a novel computational modeling and simulation framework based on dynamic spherical volumetric simplex splines. The framework can handle the modeling and simulation of genus-zero objects with real physical properties. In this framework, we first develop an accurate and efficient algorithm to reconstruct the high-fidelity digital model of a real-world object with spherical volumetric simplex splines which can represent with accuracy geometric, material, and other properties of the object simultaneously. With the tight coupling of Lagrangian mechanics, the dynamic volumetric simplex splines representing the object can accurately simulate its physical behavior because it can unify the geometric and material properties in the simulation. The visualization can be directly computed from the object’s geometric or physical representation based on the dynamic spherical volumetric simplex splines during simulation without interpolation or resampling. We have applied the framework for biomechanic simulation of brain deformations, such as brain shifting during the surgery and brain injury under blunt impact. We have compared our simulation results with the ground truth obtained through intra-operative magnetic resonance imaging and the real biomechanic experiments. The evaluations demonstrate the excellent performance of our new technique. PMID:20161636

  13. In situ coating nickel organic complexes on free-standing nickel wire films for volumetric-energy-dense supercapacitors.

    PubMed

    Hong, Min; Xu, Shusheng; Yao, Lu; Zhou, Chao; Hu, Nantao; Yang, Zhi; Hu, Jing; Zhang, Liying; Zhou, Zhihua; Wei, Hao; Zhang, Yafei

    2018-07-06

    A self-free-standing core-sheath structured hybrid membrane electrodes based on nickel and nickel based metal-organic complexes (Ni@Ni-OC) was designed and constructed for high volumetric supercapacitors. The self-standing Ni@Ni-OC film electrode had a high volumetric specific capacity of 1225.5 C cm -3 at 0.3 A cm -3 and an excellent rate capability. Moreover, when countered with graphene-carbon nanotube (G-CNT) film electrode, the as-assembled Ni@Ni-OC//G-CNT hybrid supercapacitor device delivered an extraordinary volumetric capacitance of 85 F cm -3 at 0.5 A cm -3 and an outstanding energy density of 33.8 at 483 mW cm -3 . Furthermore, the hybrid supercapacitor showed no capacitance loss after 10 000 cycles at 2 A cm -3 , indicating its excellent cycle stability. These fascinating performances can be ascribed to its unique core-sheath structure that high capacity nano-porous nickel based metal-organic complexes (Ni-OC) in situ coated on highly conductive Ni wires. The impressive results presented here may pave the way to construct s self-standing membrane electrode for applications in high volumetric-performance energy storage.

  14. Linear and volumetric dimensional changes of injection-molded PMMA denture base resins.

    PubMed

    El Bahra, Shadi; Ludwig, Klaus; Samran, Abdulaziz; Freitag-Wolf, Sandra; Kern, Matthias

    2013-11-01

    The aim of this study was to evaluate the linear and volumetric dimensional changes of six denture base resins processed by their corresponding injection-molding systems at 3 time intervals of water storage. Two heat-curing (SR Ivocap Hi Impact and Lucitone 199) and four auto-curing (IvoBase Hybrid, IvoBase Hi Impact, PalaXpress, and Futura Gen) acrylic resins were used with their specific injection-molding technique to fabricate 6 specimens of each material. Linear and volumetric dimensional changes were determined by means of a digital caliper and an electronic hydrostatic balance, respectively, after water storage of 1, 30, or 90 days. Means and standard deviations of linear and volumetric dimensional changes were calculated in percentage (%). Statistical analysis was done using Student's and Welch's t tests with Bonferroni-Holm correction for multiple comparisons (α=0.05). Statistically significant differences in linear dimensional changes between resins were demonstrated at all three time intervals of water immersion (p≤0.05), with exception of the following comparisons which showed no significant difference: IvoBase Hi Impact/SR Ivocap Hi Impact and PalaXpress/Lucitone 199 after 1 day, Futura Gen/PalaXpress and PalaXpress/Lucitone 199 after 30 days, and IvoBase Hybrid/IvoBase Hi Impact after 90 days. Also, statistically significant differences in volumetric dimensional changes between resins were found at all three time intervals of water immersion (p≤0.05), with exception of the comparison between PalaXpress and Futura Gen. Denture base resins (IvoBase Hybrid and IvoBase Hi Impact) processed by the new injection-molding system (IvoBase), revealed superior dimensional precision. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  15. A Mathematical Model on Water Redistribution Mechanism of the Seismonastic Movement of Mimosa Pudica

    PubMed Central

    Kwan, K.W.; Ye, Z.W.; Chye, M.L.; Ngan, A.H.W.

    2013-01-01

    A theoretical model based on the water redistribution mechanism is proposed to predict the volumetric strain of motor cells in Mimosa pudica during the seismonastic movement. The model describes the water and ion movements following the opening of ion channels triggered by stimulation. The cellular strain is related to the angular velocity of the plant movement, and both their predictions are in good agreement with experimental data, thus validating the water redistribution mechanism. The results reveal that an increase in ion diffusivity across the cell membrane of <15-fold is sufficient to produce the observed seismonastic movement. PMID:23823246

  16. An initial study on the estimation of time-varying volumetric treatment images and 3D tumor localization from single MV cine EPID images

    PubMed Central

    Mishra, Pankaj; Li, Ruijiang; Mak, Raymond H.; Rottmann, Joerg; Bryant, Jonathan H.; Williams, Christopher L.; Berbeco, Ross I.; Lewis, John H.

    2014-01-01

    Purpose: In this work the authors develop and investigate the feasibility of a method to estimate time-varying volumetric images from individual MV cine electronic portal image device (EPID) images. Methods: The authors adopt a two-step approach to time-varying volumetric image estimation from a single cine EPID image. In the first step, a patient-specific motion model is constructed from 4DCT. In the second step, parameters in the motion model are tuned according to the information in the EPID image. The patient-specific motion model is based on a compact representation of lung motion represented in displacement vector fields (DVFs). DVFs are calculated through deformable image registration (DIR) of a reference 4DCT phase image (typically peak-exhale) to a set of 4DCT images corresponding to different phases of a breathing cycle. The salient characteristics in the DVFs are captured in a compact representation through principal component analysis (PCA). PCA decouples the spatial and temporal components of the DVFs. Spatial information is represented in eigenvectors and the temporal information is represented by eigen-coefficients. To generate a new volumetric image, the eigen-coefficients are updated via cost function optimization based on digitally reconstructed radiographs and projection images. The updated eigen-coefficients are then multiplied with the eigenvectors to obtain updated DVFs that, in turn, give the volumetric image corresponding to the cine EPID image. Results: The algorithm was tested on (1) Eight digital eXtended CArdiac-Torso phantom datasets based on different irregular patient breathing patterns and (2) patient cine EPID images acquired during SBRT treatments. The root-mean-squared tumor localization error is (0.73 ± 0.63 mm) for the XCAT data and (0.90 ± 0.65 mm) for the patient data. Conclusions: The authors introduced a novel method of estimating volumetric time-varying images from single cine EPID images and a PCA-based lung motion model. This is the first method to estimate volumetric time-varying images from single MV cine EPID images, and has the potential to provide volumetric information with no additional imaging dose to the patient. PMID:25086523

  17. An initial study on the estimation of time-varying volumetric treatment images and 3D tumor localization from single MV cine EPID images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishra, Pankaj, E-mail: pankaj.mishra@varian.com; Mak, Raymond H.; Rottmann, Joerg

    2014-08-15

    Purpose: In this work the authors develop and investigate the feasibility of a method to estimate time-varying volumetric images from individual MV cine electronic portal image device (EPID) images. Methods: The authors adopt a two-step approach to time-varying volumetric image estimation from a single cine EPID image. In the first step, a patient-specific motion model is constructed from 4DCT. In the second step, parameters in the motion model are tuned according to the information in the EPID image. The patient-specific motion model is based on a compact representation of lung motion represented in displacement vector fields (DVFs). DVFs are calculatedmore » through deformable image registration (DIR) of a reference 4DCT phase image (typically peak-exhale) to a set of 4DCT images corresponding to different phases of a breathing cycle. The salient characteristics in the DVFs are captured in a compact representation through principal component analysis (PCA). PCA decouples the spatial and temporal components of the DVFs. Spatial information is represented in eigenvectors and the temporal information is represented by eigen-coefficients. To generate a new volumetric image, the eigen-coefficients are updated via cost function optimization based on digitally reconstructed radiographs and projection images. The updated eigen-coefficients are then multiplied with the eigenvectors to obtain updated DVFs that, in turn, give the volumetric image corresponding to the cine EPID image. Results: The algorithm was tested on (1) Eight digital eXtended CArdiac-Torso phantom datasets based on different irregular patient breathing patterns and (2) patient cine EPID images acquired during SBRT treatments. The root-mean-squared tumor localization error is (0.73 ± 0.63 mm) for the XCAT data and (0.90 ± 0.65 mm) for the patient data. Conclusions: The authors introduced a novel method of estimating volumetric time-varying images from single cine EPID images and a PCA-based lung motion model. This is the first method to estimate volumetric time-varying images from single MV cine EPID images, and has the potential to provide volumetric information with no additional imaging dose to the patient.« less

  18. Volumetric CT-images improve testing of radiological image interpretation skills.

    PubMed

    Ravesloot, Cécile J; van der Schaaf, Marieke F; van Schaik, Jan P J; ten Cate, Olle Th J; van der Gijp, Anouk; Mol, Christian P; Vincken, Koen L

    2015-05-01

    Current radiology practice increasingly involves interpretation of volumetric data sets. In contrast, most radiology tests still contain only 2D images. We introduced a new testing tool that allows for stack viewing of volumetric images in our undergraduate radiology program. We hypothesized that tests with volumetric CT-images enhance test quality, in comparison with traditional completely 2D image-based tests, because they might better reflect required skills for clinical practice. Two groups of medical students (n=139; n=143), trained with 2D and volumetric CT-images, took a digital radiology test in two versions (A and B), each containing both 2D and volumetric CT-image questions. In a questionnaire, they were asked to comment on the representativeness for clinical practice, difficulty and user-friendliness of the test questions and testing program. Students' test scores and reliabilities, measured with Cronbach's alpha, of 2D and volumetric CT-image tests were compared. Estimated reliabilities (Cronbach's alphas) were higher for volumetric CT-image scores (version A: .51 and version B: .54), than for 2D CT-image scores (version A: .24 and version B: .37). Participants found volumetric CT-image tests more representative of clinical practice, and considered them to be less difficult than volumetric CT-image questions. However, in one version (A), volumetric CT-image scores (M 80.9, SD 14.8) were significantly lower than 2D CT-image scores (M 88.4, SD 10.4) (p<.001). The volumetric CT-image testing program was considered user-friendly. This study shows that volumetric image questions can be successfully integrated in students' radiology testing. Results suggests that the inclusion of volumetric CT-images might improve the quality of radiology tests by positively impacting perceived representativeness for clinical practice and increasing reliability of the test. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. Validation and refinement of mixture volumetric material properties identified in superpave monitoring project II : phase II : [summary].

    DOT National Transportation Integrated Search

    2015-02-01

    Superpave is a set of methods and materials for asphalt paving and the primary method : used by the Florida Department of Transportation. It is well documented that performance : of asphalt mixtures is strongly affected by size composition of aggrega...

  20. Validation studies of Karl Fisher reference method for moisture in cotton

    USDA-ARS?s Scientific Manuscript database

    With current international standard oven drying (SOD) techniques lacking precision and accuracy statements, a new standard reference method is needed. Volumetric Karl Fischer Titration (KFT) is a widely used measure of moisture content. The method is used in many ASTM methods, 14 NIST SRMs, and te...

  1. Multiple sparse volumetric priors for distributed EEG source reconstruction.

    PubMed

    Strobbe, Gregor; van Mierlo, Pieter; De Vos, Maarten; Mijović, Bogdan; Hallez, Hans; Van Huffel, Sabine; López, José David; Vandenberghe, Stefaan

    2014-10-15

    We revisit the multiple sparse priors (MSP) algorithm implemented in the statistical parametric mapping software (SPM) for distributed EEG source reconstruction (Friston et al., 2008). In the present implementation, multiple cortical patches are introduced as source priors based on a dipole source space restricted to a cortical surface mesh. In this note, we present a technique to construct volumetric cortical regions to introduce as source priors by restricting the dipole source space to a segmented gray matter layer and using a region growing approach. This extension allows to reconstruct brain structures besides the cortical surface and facilitates the use of more realistic volumetric head models including more layers, such as cerebrospinal fluid (CSF), compared to the standard 3-layered scalp-skull-brain head models. We illustrated the technique with ERP data and anatomical MR images in 12 subjects. Based on the segmented gray matter for each of the subjects, cortical regions were created and introduced as source priors for MSP-inversion assuming two types of head models. The standard 3-layered scalp-skull-brain head models and extended 4-layered head models including CSF. We compared these models with the current implementation by assessing the free energy corresponding with each of the reconstructions using Bayesian model selection for group studies. Strong evidence was found in favor of the volumetric MSP approach compared to the MSP approach based on cortical patches for both types of head models. Overall, the strongest evidence was found in favor of the volumetric MSP reconstructions based on the extended head models including CSF. These results were verified by comparing the reconstructed activity. The use of volumetric cortical regions as source priors is a useful complement to the present implementation as it allows to introduce more complex head models and volumetric source priors in future studies. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Fast volumetric imaging with patterned illumination via digital micro-mirror device-based temporal focusing multiphoton microscopy.

    PubMed

    Chang, Chia-Yuan; Hu, Yvonne Yuling; Lin, Chun-Yu; Lin, Cheng-Han; Chang, Hsin-Yu; Tsai, Sheng-Feng; Lin, Tzu-Wei; Chen, Shean-Jen

    2016-05-01

    Temporal focusing multiphoton microscopy (TFMPM) has the advantage of area excitation in an axial confinement of only a few microns; hence, it can offer fast three-dimensional (3D) multiphoton imaging. Herein, fast volumetric imaging via a developed digital micromirror device (DMD)-based TFMPM has been realized through the synchronization of an electron multiplying charge-coupled device (EMCCD) with a dynamic piezoelectric stage for axial scanning. The volumetric imaging rate can achieve 30 volumes per second according to the EMCCD frame rate of more than 400 frames per second, which allows for the 3D Brownian motion of one-micron fluorescent beads to be spatially observed. Furthermore, it is demonstrated that the dynamic HiLo structural multiphoton microscope can reject background noise by way of the fast volumetric imaging with high-speed DMD patterned illumination.

  3. Is volumetric modulated arc therapy with constant dose rate a valid option in radiation therapy for head and neck cancer patients?

    PubMed

    Didona, Annamaria; Lancellotta, Valentina; Zucchetti, Claudio; Panizza, Bianca Moira; Frattegiani, Alessandro; Iacco, Martina; Di Pilato, Anna Concetta; Saldi, Simonetta; Aristei, Cynthia

    2018-01-01

    Intensity-modulated radiotherapy (IMRT) improves dose distribution in head and neck (HN) radiation therapy. Volumetric-modulated arc therapy (VMAT), a new form of IMRT, delivers radiation in single or multiple arcs, varying dose rates (VDR-VMAT) and gantry speeds, has gained considerable attention. Constant dose rate VMAT (CDR-VMAT) associated with a fixed gantry speed does not require a dedicated linear accelerator like VDR-VMAT. The present study explored the feasibility, efficiency and delivery accuracy of CDR-VMAT, by comparing it with IMRT and VDR-VMAT in treatment planning for HN cancer. Step and shoot IMRT (SS-IMRT), CDR-VMAT and VDR-VMAT plans were created for 15 HN cancer patients and were generated by Pinnacle 3 TPS (v 9.8) using 6 MV photon energy. Three PTVs were defined to receive respectively prescribed doses of 66 Gy, 60 Gy and 54 Gy, in 30 fractions. Organs at risk (OARs) included the mandible, spinal cord, brain stem, parotids, salivary glands, esophagus, larynx and thyroid. SS-IMRT plans were based on 7 co-planar beams at fixed gantry angles. CDR-VMAT and VDR-VMAT plans, generated by the SmartArc module, used a 2-arc technique: one clockwise from 182° to 178° and the other one anti-clockwise from 178° to 182°. Comparison parameters included dose distribution to PTVs ( D mean , D 2% , D 50% , D 95% , D 98% and Homogeneity Index), maximum or mean doses to OARs, specific dose-volume data, the monitor units and treatment delivery times. Compared with SS-IMRT, CDR-VMAT significantly reduced the maximum doses to PTV1 and PTV2 and significantly improved all PTV3 parameters, except D 98% and D 95% . It significantly spared parotid and submandibular glands and was associated with a lower D mean to the larynx. Compared with VDR-VMAT, CDR-VMAT was linked to a significantly better D mean , to the PTV3 but results were worse for the parotids, left submandibular gland, esophagus and mandible. Furthermore, the D mean to the larynx was also worse. Compared with SS-IMRT and VDR-VMAT, CDR-VMAT was associated with higher average monitor unit values and significantly shorter average delivery times. CDR-VMAT appeared to be a valid option in Radiation Therapy Centers that lack a dedicated linear accelerator for volumetric arc therapy with variable dose-rates and gantry velocities, and are unwilling or unable to sanction major expenditure at present but want to adopt volumetric techniques.

  4. Hologlyphics: volumetric image synthesis performance system

    NASA Astrophysics Data System (ADS)

    Funk, Walter

    2008-02-01

    This paper describes a novel volumetric image synthesis system and artistic technique, which generate moving volumetric images in real-time, integrated with music. The system, called the Hologlyphic Funkalizer, is performance based, wherein the images and sound are controlled by a live performer, for the purposes of entertaining a live audience and creating a performance art form unique to volumetric and autostereoscopic images. While currently configured for a specific parallax barrier display, the Hologlyphic Funkalizer's architecture is completely adaptable to various volumetric and autostereoscopic display technologies. Sound is distributed through a multi-channel audio system; currently a quadraphonic speaker setup is implemented. The system controls volumetric image synthesis, production of music and spatial sound via acoustic analysis and human gestural control, using a dedicated control panel, motion sensors, and multiple musical keyboards. Music can be produced by external acoustic instruments, pre-recorded sounds or custom audio synthesis integrated with the volumetric image synthesis. Aspects of the sound can control the evolution of images and visa versa. Sounds can be associated and interact with images, for example voice synthesis can be combined with an animated volumetric mouth, where nuances of generated speech modulate the mouth's expressiveness. Different images can be sent to up to 4 separate displays. The system applies many novel volumetric special effects, and extends several film and video special effects into the volumetric realm. Extensive and various content has been developed and shown to live audiences by a live performer. Real world applications will be explored, with feedback on the human factors.

  5. Stability of nano-fluids and their use for thermal management of a microprocessor: an experimental and numerical study

    NASA Astrophysics Data System (ADS)

    Shoukat, Ahmad Adnan; Shaban, Muhammad; Israr, Asif; Shah, Owaisur Rahman; Khan, Muhammad Zubair; Anwar, Muhammad

    2018-03-01

    We investigate the heat transfer effect of different types of Nano-fluids on the pin fin heat sinks used in computer's microprocessor. Nano-particles of Aluminum oxide have been used with volumetric concentrations of 0.002% and Silver oxide with volumetric concentrations of 0.001% in the base fluid of deionized water. We have also used Aluminum oxide with ethylene glycol at volumetric concentrations of 0.002%. We report the cooling rates of Nano-fluids for pin-fin heat to cool the microprocessor and compare these with the cooling rate of pure water. We use a microprocessor heat generator in this investigation. The base temperature is obtained using surface heater of power 130 W. The main purpose of this work is to minimize the base temperature, and increase the heat transfer rate of the water block and radiator. The temperature of the heat sink is maintained at 110 °C which is nearly equal to the observed computer microprocessor temperature. We also provide the base temperature at different Reynolds's number using the above mention Nano-fluids with different volumetric concentrations.

  6. Iterative reconstruction of volumetric particle distribution

    NASA Astrophysics Data System (ADS)

    Wieneke, Bernhard

    2013-02-01

    For tracking the motion of illuminated particles in space and time several volumetric flow measurement techniques are available like 3D-particle tracking velocimetry (3D-PTV) recording images from typically three to four viewing directions. For higher seeding densities and the same experimental setup, tomographic PIV (Tomo-PIV) reconstructs voxel intensities using an iterative tomographic reconstruction algorithm (e.g. multiplicative algebraic reconstruction technique, MART) followed by cross-correlation of sub-volumes computing instantaneous 3D flow fields on a regular grid. A novel hybrid algorithm is proposed here that similar to MART iteratively reconstructs 3D-particle locations by comparing the recorded images with the projections calculated from the particle distribution in the volume. But like 3D-PTV, particles are represented by 3D-positions instead of voxel-based intensity blobs as in MART. Detailed knowledge of the optical transfer function and the particle image shape is mandatory, which may differ for different positions in the volume and for each camera. Using synthetic data it is shown that this method is capable of reconstructing densely seeded flows up to about 0.05 ppp with similar accuracy as Tomo-PIV. Finally the method is validated with experimental data.

  7. AISLE: an automatic volumetric segmentation method for the study of lung allometry.

    PubMed

    Ren, Hongliang; Kazanzides, Peter

    2011-01-01

    We developed a fully automatic segmentation method for volumetric CT (computer tomography) datasets to support construction of a statistical atlas for the study of allometric laws of the lung. The proposed segmentation method, AISLE (Automated ITK-Snap based on Level-set), is based on the level-set implementation from an existing semi-automatic segmentation program, ITK-Snap. AISLE can segment the lung field without human interaction and provide intermediate graphical results as desired. The preliminary experimental results show that the proposed method can achieve accurate segmentation, in terms of volumetric overlap metric, by comparing with the ground-truth segmentation performed by a radiologist.

  8. Hybrid system for in vivo real-time planar fluorescence and volumetric optoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Chen, Zhenyue; Deán-Ben, Xosé Luís.; Gottschalk, Sven; Razansky, Daniel

    2018-02-01

    Fluorescence imaging is widely employed in all fields of cell and molecular biology due to its high sensitivity, high contrast and ease of implementation. However, the low spatial resolution and lack of depth information, especially in strongly-scattering samples, restrict its applicability for deep-tissue imaging applications. On the other hand, optoacoustic imaging is known to deliver a unique set of capabilities such as high spatial and temporal resolution in three dimensions, deep penetration and spectrally-enriched imaging contrast. Since fluorescent substances can generate contrast in both modalities, simultaneous fluorescence and optoacoustic readings can provide new capabilities for functional and molecular imaging of living organisms. Optoacoustic images can further serve as valuable anatomical references based on endogenous hemoglobin contrast. Herein, we propose a hybrid system for in vivo real-time planar fluorescence and volumetric optoacoustic tomography, both operating in reflection mode, which synergistically combines the advantages of stand-alone systems. Validation of the spatial resolution and sensitivity of the system were first carried out in tissue mimicking phantoms while in vivo imaging was further demonstrated by tracking perfusion of an optical contrast agent in a mouse brain in the hybrid imaging mode. Experimental results show that the proposed system effectively exploits the contrast mechanisms of both imaging modalities, making it especially useful for accurate monitoring of fluorescence-based signal dynamics in highly scattering samples.

  9. Use of volumetric features for temporal comparison of mass lesions in full field digital mammograms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bozek, Jelena, E-mail: jelena.bozek@fer.hr; Grgic, Mislav; Kallenberg, Michiel

    2014-02-15

    Purpose: Temporal comparison of lesions might improve classification between benign and malignant lesions in full-field digital mammograms (FFDM). The authors compare the use of volumetric features for lesion classification, which are computed from dense tissue thickness maps, to the use of mammographic lesion area. Use of dense tissue thickness maps for lesion characterization is advantageous, since it results in lesion features that are invariant to acquisition parameters. Methods: The dataset used in the analysis consisted of 60 temporal mammogram pairs comprising 120 mediolateral oblique or craniocaudal views with a total of 65 lesions, of which 41 were benign and 24more » malignant. The authors analyzed the performance of four volumetric features, area, and four other commonly used features obtained from temporal mammogram pairs, current mammograms, and prior mammograms. The authors evaluated the individual performance of all features and of different feature sets. The authors used linear discriminant analysis with leave-one-out cross validation to classify different feature sets. Results: Volumetric features from temporal mammogram pairs achieved the best individual performance, as measured by the area under the receiver operating characteristic curve (A{sub z} value). Volume change (A{sub z} = 0.88) achieved higher A{sub z} value than projected lesion area change (A{sub z} = 0.78) in the temporal comparison of lesions. Best performance was achieved with a set that consisted of a set of features extracted from the current exam combined with four volumetric features representing changes with respect to the prior mammogram (A{sub z} = 0.90). This was significantly better (p = 0.005) than the performance obtained using features from the current exam only (A{sub z} = 0.77). Conclusions: Volumetric features from temporal mammogram pairs combined with features from the single exam significantly improve discrimination of benign and malignant lesions in FFDM mammograms compared to using only single exam features. In the comparison with prior mammograms, use of volumetric change may lead to better performance than use of lesion area change.« less

  10. The power-proportion method for intracranial volume correction in volumetric imaging analysis.

    PubMed

    Liu, Dawei; Johnson, Hans J; Long, Jeffrey D; Magnotta, Vincent A; Paulsen, Jane S

    2014-01-01

    In volumetric brain imaging analysis, volumes of brain structures are typically assumed to be proportional or linearly related to intracranial volume (ICV). However, evidence abounds that many brain structures have power law relationships with ICV. To take this relationship into account in volumetric imaging analysis, we propose a power law based method-the power-proportion method-for ICV correction. The performance of the new method is demonstrated using data from the PREDICT-HD study.

  11. Tomographic imaging of OH laser-induced fluorescence in laminar and turbulent jet flames

    NASA Astrophysics Data System (ADS)

    Li, Tao; Pareja, Jhon; Fuest, Frederik; Schütte, Manuel; Zhou, Yihui; Dreizler, Andreas; Böhm, Benjamin

    2018-01-01

    In this paper a new approach for 3D flame structure diagnostics using tomographic laser-induced fluorescence (Tomo-LIF) of the OH radical was evaluated. The approach combined volumetric illumination with a multi-camera detection system of eight views. Single-shot measurements were performed in a methane/air premixed laminar flame and in a non-premixed turbulent methane jet flame. 3D OH fluorescence distributions in the flames were reconstructed using the simultaneous multiplicative algebraic reconstruction technique. The tomographic measurements were compared and validated against results of OH-PLIF in the laminar flame. The effects of the experimental setup of the detection system and the size of the volumetric illumination on the quality of the tomographic reconstructions were evaluated. Results revealed that the Tomo-LIF is suitable for volumetric reconstruction of flame structures with acceptable spatial resolution and uncertainty. It was found that the number of views and their angular orientation have a strong influence on the quality and accuracy of the tomographic reconstruction while the illumination volume thickness influences mainly the spatial resolution.

  12. Tumor Surface Regularity at MR Imaging Predicts Survival and Response to Surgery in Patients with Glioblastoma.

    PubMed

    Pérez-Beteta, Julián; Molina-García, David; Ortiz-Alhambra, José A; Fernández-Romero, Antonio; Luque, Belén; Arregui, Elena; Calvo, Manuel; Borrás, José M; Meléndez, Bárbara; Rodríguez de Lope, Ángel; Moreno de la Presa, Raquel; Iglesias Bayo, Lidia; Barcia, Juan A; Martino, Juan; Velásquez, Carlos; Asenjo, Beatriz; Benavides, Manuel; Herruzo, Ismael; Revert, Antonio; Arana, Estanislao; Pérez-García, Víctor M

    2018-07-01

    Purpose To evaluate the prognostic and predictive value of surface-derived imaging biomarkers obtained from contrast material-enhanced volumetric T1-weighted pretreatment magnetic resonance (MR) imaging sequences in patients with glioblastoma multiforme. Materials and Methods A discovery cohort from five local institutions (165 patients; mean age, 62 years ± 12 [standard deviation]; 43% women and 57% men) and an independent validation cohort (51 patients; mean age, 60 years ± 12; 39% women and 61% men) from The Cancer Imaging Archive with volumetric T1-weighted pretreatment contrast-enhanced MR imaging sequences were included in the study. Clinical variables such as age, treatment, and survival were collected. After tumor segmentation and image processing, tumor surface regularity, measuring how much the tumor surface deviates from a sphere of the same volume, was obtained. Kaplan-Meier, Cox proportional hazards, correlations, and concordance indexes were used to compare variables and patient subgroups. Results Surface regularity was a powerful predictor of survival in the discovery (P = .005, hazard ratio [HR] = 1.61) and validation groups (P = .05, HR = 1.84). Multivariate analysis selected age and surface regularity as significant variables in a combined prognostic model (P < .001, HR = 3.05). The model achieved concordance indexes of 0.76 and 0.74 for the discovery and validation cohorts, respectively. Tumor surface regularity was a predictor of survival for patients who underwent complete resection (P = .01, HR = 1.90). Tumors with irregular surfaces did not benefit from total over subtotal resections (P = .57, HR = 1.17), but those with regular surfaces did (P = .004, HR = 2.07). Conclusion The surface regularity obtained from high-resolution contrast-enhanced pretreatment volumetric T1-weighted MR images is a predictor of survival in patients with glioblastoma. It may help in classifying patients for surgery. © RSNA, 2018 Online supplemental material is available for this article.

  13. Tumor Surface Regularity at MR Imaging Predicts Survival and Response to Surgery in Patients with Glioblastoma.

    PubMed

    Pérez-Beteta, Julián; Molina-García, David; Ortiz-Alhambra, José A; Fernández-Romero, Antonio; Luque, Belén; Arregui, Elena; Calvo, Manuel; Borrás, José M; Meléndez, Bárbara; Rodríguez de Lope, Ángel; Moreno de la Presa, Raquel; Iglesias Bayo, Lidia; Barcia, Juan A; Martino, Juan; Velásquez, Carlos; Asenjo, Beatriz; Benavides, Manuel; Herruzo, Ismael; Revert, Antonio; Arana, Estanislao; Pérez-García, Víctor M

    2018-04-03

    Purpose To evaluate the prognostic and predictive value of surface-derived imaging biomarkers obtained from contrast material-enhanced volumetric T1-weighted pretreatment magnetic resonance (MR) imaging sequences in patients with glioblastoma multiforme. Materials and Methods A discovery cohort from five local institutions (165 patients; mean age, 62 years ± 12 [standard deviation]; 43% women and 57% men) and an independent validation cohort (51 patients; mean age, 60 years ± 12; 39% women and 61% men) from The Cancer Imaging Archive with volumetric T1-weighted pretreatment contrast-enhanced MR imaging sequences were included in the study. Clinical variables such as age, treatment, and survival were collected. After tumor segmentation and image processing, tumor surface regularity, measuring how much the tumor surface deviates from a sphere of the same volume, was obtained. Kaplan-Meier, Cox proportional hazards, correlations, and concordance indexes were used to compare variables and patient subgroups. Results Surface regularity was a powerful predictor of survival in the discovery (P = .005, hazard ratio [HR] = 1.61) and validation groups (P = .05, HR = 1.84). Multivariate analysis selected age and surface regularity as significant variables in a combined prognostic model (P < .001, HR = 3.05). The model achieved concordance indexes of 0.76 and 0.74 for the discovery and validation cohorts, respectively. Tumor surface regularity was a predictor of survival for patients who underwent complete resection (P = .01, HR = 1.90). Tumors with irregular surfaces did not benefit from total over subtotal resections (P = .57, HR = 1.17), but those with regular surfaces did (P = .004, HR = 2.07). Conclusion The surface regularity obtained from high-resolution contrast-enhanced pretreatment volumetric T1-weighted MR images is a predictor of survival in patients with glioblastoma. It may help in classifying patients for surgery. © RSNA, 2018 Online supplemental material is available for this article.

  14. Design of a 4-DOF MR haptic master for application to robot surgery: virtual environment work

    NASA Astrophysics Data System (ADS)

    Oh, Jong-Seok; Choi, Seung-Hyun; Choi, Seung-Bok

    2014-09-01

    This paper presents the design and control performance of a novel type of 4-degrees-of-freedom (4-DOF) haptic master in cyberspace for a robot-assisted minimally invasive surgery (RMIS) application. By using a controllable magnetorheological (MR) fluid, the proposed haptic master can have a feedback function for a surgical robot. Due to the difficulty in utilizing real human organs in the experiment, the cyberspace that features the virtual object is constructed to evaluate the performance of the haptic master. In order to realize the cyberspace, a volumetric deformable object is represented by a shape-retaining chain-linked (S-chain) model, which is a fast volumetric model and is suitable for real-time applications. In the haptic architecture for an RMIS application, the desired torque and position induced from the virtual object of the cyberspace and the haptic master of real space are transferred to each other. In order to validate the superiority of the proposed master and volumetric model, a tracking control experiment is implemented with a nonhomogenous volumetric cubic object to demonstrate that the proposed model can be utilized in real-time haptic rendering architecture. A proportional-integral-derivative (PID) controller is then designed and empirically implemented to accomplish the desired torque trajectories. It has been verified from the experiment that tracking the control performance for torque trajectories from a virtual slave can be successfully achieved.

  15. A mathematical model on water redistribution mechanism of the seismonastic movement of Mimosa pudica.

    PubMed

    Kwan, K W; Ye, Z W; Chye, M L; Ngan, A H W

    2013-07-02

    A theoretical model based on the water redistribution mechanism is proposed to predict the volumetric strain of motor cells in Mimosa pudica during the seismonastic movement. The model describes the water and ion movements following the opening of ion channels triggered by stimulation. The cellular strain is related to the angular velocity of the plant movement, and both their predictions are in good agreement with experimental data, thus validating the water redistribution mechanism. The results reveal that an increase in ion diffusivity across the cell membrane of <15-fold is sufficient to produce the observed seismonastic movement. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  16. Four-Wave-Mixing Approach to In Situ Detection of Nanoparticles

    NASA Astrophysics Data System (ADS)

    Gerakis, Alexandros; Yeh, Yao-Wen; Shneider, Mikhail N.; Mitrani, James M.; Stratton, Brentley C.; Raitses, Yevgeny

    2018-01-01

    We report on the development and experimental validation of a laser-based technique which uses coherent Rayleigh-Brillouin scattering (CRBS) to detect nanoparticles with characteristic sizes ranging from the atomic scale to tens of nanometers. This technique is aimed (nonexclusively) at the detection of nanoparticles produced by volumetric nanoparticle synthesis methods. Using CRBS, carbon nanoparticles of dimensions less than 10 nm and concentrations of 1010 cm-3 are detected in situ in a carbon arc discharge with graphite electrodes. This four-wave-mixing approach should enable advances in the understanding of nanoparticle growth that could potentially lead to improved modeling of the growth mechanisms, and thus to improve synthesis selectivity of nanoparticles and yield.

  17. Applications of magnetic resonance image segmentation in neurology

    NASA Astrophysics Data System (ADS)

    Heinonen, Tomi; Lahtinen, Antti J.; Dastidar, Prasun; Ryymin, Pertti; Laarne, Paeivi; Malmivuo, Jaakko; Laasonen, Erkki; Frey, Harry; Eskola, Hannu

    1999-05-01

    After the introduction of digital imagin devices in medicine computerized tissue recognition and classification have become important in research and clinical applications. Segmented data can be applied among numerous research fields including volumetric analysis of particular tissues and structures, construction of anatomical modes, 3D visualization, and multimodal visualization, hence making segmentation essential in modern image analysis. In this research project several PC based software were developed in order to segment medical images, to visualize raw and segmented images in 3D, and to produce EEG brain maps in which MR images and EEG signals were integrated. The software package was tested and validated in numerous clinical research projects in hospital environment.

  18. Theoretical Limits of Energy Density in Silicon-Carbon Composite Anode Based Lithium Ion Batteries.

    PubMed

    Dash, Ranjan; Pannala, Sreekanth

    2016-06-17

    Silicon (Si) is under consideration as a potential next-generation anode material for the lithium ion battery (LIB). Experimental reports of up to 40% increase in energy density of Si anode based LIBs (Si-LIBs) have been reported in literature. However, this increase in energy density is achieved when the Si-LIB is allowed to swell (volumetrically expand) more than graphite based LIB (graphite-LIB) and beyond practical limits. The volume expansion of LIB electrodes should be negligible for applications such as automotive or mobile devices. We determine the theoretical bounds of Si composition in a Si-carbon composite (SCC) based anode to maximize the volumetric energy density of a LIB by constraining the external dimensions of the anode during charging. The porosity of the SCC anode is adjusted to accommodate the volume expansion during lithiation. The calculated threshold value of Si was then used to determine the possible volumetric energy densities of LIBs with SCC anode (SCC-LIBs) and the potential improvement over graphite-LIBs. The level of improvement in volumetric and gravimetric energy density of SCC-LIBs with constrained volume is predicted to be less than 10% to ensure the battery has similar power characteristics of graphite-LIBs.

  19. An eFTD-VP framework for efficiently generating patient-specific anatomically detailed facial soft tissue FE mesh for craniomaxillofacial surgery simulation

    PubMed Central

    Zhang, Xiaoyan; Kim, Daeseung; Shen, Shunyao; Yuan, Peng; Liu, Siting; Tang, Zhen; Zhang, Guangming; Zhou, Xiaobo; Gateno, Jaime

    2017-01-01

    Accurate surgical planning and prediction of craniomaxillofacial surgery outcome requires simulation of soft tissue changes following osteotomy. This can only be achieved by using an anatomically detailed facial soft tissue model. The current state-of-the-art of model generation is not appropriate to clinical applications due to the time-intensive nature of manual segmentation and volumetric mesh generation. The conventional patient-specific finite element (FE) mesh generation methods are to deform a template FE mesh to match the shape of a patient based on registration. However, these methods commonly produce element distortion. Additionally, the mesh density for patients depends on that of the template model. It could not be adjusted to conduct mesh density sensitivity analysis. In this study, we propose a new framework of patient-specific facial soft tissue FE mesh generation. The goal of the developed method is to efficiently generate a high-quality patient-specific hexahedral FE mesh with adjustable mesh density while preserving the accuracy in anatomical structure correspondence. Our FE mesh is generated by eFace template deformation followed by volumetric parametrization. First, the patient-specific anatomically detailed facial soft tissue model (including skin, mucosa, and muscles) is generated by deforming an eFace template model. The adaptation of the eFace template model is achieved by using a hybrid landmark-based morphing and dense surface fitting approach followed by a thin-plate spline interpolation. Then, high-quality hexahedral mesh is constructed by using volumetric parameterization. The user can control the resolution of hexahedron mesh to best reflect clinicians’ need. Our approach was validated using 30 patient models and 4 visible human datasets. The generated patient-specific FE mesh showed high surface matching accuracy, element quality, and internal structure matching accuracy. They can be directly and effectively used for clinical simulation of facial soft tissue change. PMID:29027022

  20. An eFTD-VP framework for efficiently generating patient-specific anatomically detailed facial soft tissue FE mesh for craniomaxillofacial surgery simulation.

    PubMed

    Zhang, Xiaoyan; Kim, Daeseung; Shen, Shunyao; Yuan, Peng; Liu, Siting; Tang, Zhen; Zhang, Guangming; Zhou, Xiaobo; Gateno, Jaime; Liebschner, Michael A K; Xia, James J

    2018-04-01

    Accurate surgical planning and prediction of craniomaxillofacial surgery outcome requires simulation of soft tissue changes following osteotomy. This can only be achieved by using an anatomically detailed facial soft tissue model. The current state-of-the-art of model generation is not appropriate to clinical applications due to the time-intensive nature of manual segmentation and volumetric mesh generation. The conventional patient-specific finite element (FE) mesh generation methods are to deform a template FE mesh to match the shape of a patient based on registration. However, these methods commonly produce element distortion. Additionally, the mesh density for patients depends on that of the template model. It could not be adjusted to conduct mesh density sensitivity analysis. In this study, we propose a new framework of patient-specific facial soft tissue FE mesh generation. The goal of the developed method is to efficiently generate a high-quality patient-specific hexahedral FE mesh with adjustable mesh density while preserving the accuracy in anatomical structure correspondence. Our FE mesh is generated by eFace template deformation followed by volumetric parametrization. First, the patient-specific anatomically detailed facial soft tissue model (including skin, mucosa, and muscles) is generated by deforming an eFace template model. The adaptation of the eFace template model is achieved by using a hybrid landmark-based morphing and dense surface fitting approach followed by a thin-plate spline interpolation. Then, high-quality hexahedral mesh is constructed by using volumetric parameterization. The user can control the resolution of hexahedron mesh to best reflect clinicians' need. Our approach was validated using 30 patient models and 4 visible human datasets. The generated patient-specific FE mesh showed high surface matching accuracy, element quality, and internal structure matching accuracy. They can be directly and effectively used for clinical simulation of facial soft tissue change.

  1. Multi-Scale Soil Moisture Monitoring and Modeling at ARS Watersheds for NASA's Soil Moisture Active Passive (SMAP) Calibration/Validation Mission

    NASA Astrophysics Data System (ADS)

    Coopersmith, E. J.; Cosh, M. H.

    2014-12-01

    NASA's SMAP satellite, launched in November of 2014, produces estimates of average volumetric soil moisture at 3, 9, and 36-kilometer scales. The calibration and validation process of these estimates requires the generation of an identically-scaled soil moisture product from existing in-situ networks. This can be achieved via the integration of NLDAS precipitation data to perform calibration of models at each ­in-situ gauge. In turn, these models and the gauges' volumetric estimations are used to generate soil moisture estimates at a 500m scale throughout a given test watershed by leveraging, at each location, the gauge-calibrated models deemed most appropriate in terms of proximity, calibration efficacy, soil-textural similarity, and topography. Four ARS watersheds, located in Iowa, Oklahoma, Georgia, and Arizona are employed to demonstrate the utility of this approach. The South Fork watershed in Iowa represents the simplest case - the soil textures and topography are relative constants and the variability of soil moisture is simply tied to the spatial variability of precipitation. The Little Washita watershed in Oklahoma adds soil textural variability (but remains topographically simple), while the Little River watershed in Georgia incorporates topographic classification. Finally, the Walnut Gulch watershed in Arizona adds a dense precipitation network to be employed for even finer-scale modeling estimates. Results suggest RMSE values at or below the 4% volumetric standard adopted for the SMAP mission are attainable over the desired spatial scales via this integration of modeling efforts and existing in-situ networks.

  2. Breast Density Estimation with Fully Automated Volumetric Method: Comparison to Radiologists' Assessment by BI-RADS Categories.

    PubMed

    Singh, Tulika; Sharma, Madhurima; Singla, Veenu; Khandelwal, Niranjan

    2016-01-01

    The objective of our study was to calculate mammographic breast density with a fully automated volumetric breast density measurement method and to compare it to breast imaging reporting and data system (BI-RADS) breast density categories assigned by two radiologists. A total of 476 full-field digital mammography examinations with standard mediolateral oblique and craniocaudal views were evaluated by two blinded radiologists and BI-RADS density categories were assigned. Using a fully automated software, mean fibroglandular tissue volume, mean breast volume, and mean volumetric breast density were calculated. Based on percentage volumetric breast density, a volumetric density grade was assigned from 1 to 4. The weighted overall kappa was 0.895 (almost perfect agreement) for the two radiologists' BI-RADS density estimates. A statistically significant difference was seen in mean volumetric breast density among the BI-RADS density categories. With increased BI-RADS density category, increase in mean volumetric breast density was also seen (P < 0.001). A significant positive correlation was found between BI-RADS categories and volumetric density grading by fully automated software (ρ = 0.728, P < 0.001 for first radiologist and ρ = 0.725, P < 0.001 for second radiologist). Pairwise estimates of the weighted kappa between Volpara density grade and BI-RADS density category by two observers showed fair agreement (κ = 0.398 and 0.388, respectively). In our study, a good correlation was seen between density grading using fully automated volumetric method and density grading using BI-RADS density categories assigned by the two radiologists. Thus, the fully automated volumetric method may be used to quantify breast density on routine mammography. Copyright © 2016 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  3. Temporal lobe epilepsy: quantitative MR volumetry in detection of hippocampal atrophy.

    PubMed

    Farid, Nikdokht; Girard, Holly M; Kemmotsu, Nobuko; Smith, Michael E; Magda, Sebastian W; Lim, Wei Y; Lee, Roland R; McDonald, Carrie R

    2012-08-01

    To determine the ability of fully automated volumetric magnetic resonance (MR) imaging to depict hippocampal atrophy (HA) and to help correctly lateralize the seizure focus in patients with temporal lobe epilepsy (TLE). This study was conducted with institutional review board approval and in compliance with HIPAA regulations. Volumetric MR imaging data were analyzed for 34 patients with TLE and 116 control subjects. Structural volumes were calculated by using U.S. Food and Drug Administration-cleared software for automated quantitative MR imaging analysis (NeuroQuant). Results of quantitative MR imaging were compared with visual detection of atrophy, and, when available, with histologic specimens. Receiver operating characteristic analyses were performed to determine the optimal sensitivity and specificity of quantitative MR imaging for detecting HA and asymmetry. A linear classifier with cross validation was used to estimate the ability of quantitative MR imaging to help lateralize the seizure focus. Quantitative MR imaging-derived hippocampal asymmetries discriminated patients with TLE from control subjects with high sensitivity (86.7%-89.5%) and specificity (92.2%-94.1%). When a linear classifier was used to discriminate left versus right TLE, hippocampal asymmetry achieved 94% classification accuracy. Volumetric asymmetries of other subcortical structures did not improve classification. Compared with invasive video electroencephalographic recordings, lateralization accuracy was 88% with quantitative MR imaging and 85% with visual inspection of volumetric MR imaging studies but only 76% with visual inspection of clinical MR imaging studies. Quantitative MR imaging can depict the presence and laterality of HA in TLE with accuracy rates that may exceed those achieved with visual inspection of clinical MR imaging studies. Thus, quantitative MR imaging may enhance standard visual analysis, providing a useful and viable means for translating volumetric analysis into clinical practice.

  4. Real-time volumetric image reconstruction and 3D tumor localization based on a single x-ray projection image for lung cancer radiotherapy.

    PubMed

    Li, Ruijiang; Jia, Xun; Lewis, John H; Gu, Xuejun; Folkerts, Michael; Men, Chunhua; Jiang, Steve B

    2010-06-01

    To develop an algorithm for real-time volumetric image reconstruction and 3D tumor localization based on a single x-ray projection image for lung cancer radiotherapy. Given a set of volumetric images of a patient at N breathing phases as the training data, deformable image registration was performed between a reference phase and the other N-1 phases, resulting in N-1 deformation vector fields (DVFs). These DVFs can be represented efficiently by a few eigenvectors and coefficients obtained from principal component analysis (PCA). By varying the PCA coefficients, new DVFs can be generated, which, when applied on the reference image, lead to new volumetric images. A volumetric image can then be reconstructed from a single projection image by optimizing the PCA coefficients such that its computed projection matches the measured one. The 3D location of the tumor can be derived by applying the inverted DVF on its position in the reference image. The algorithm was implemented on graphics processing units (GPUs) to achieve real-time efficiency. The training data were generated using a realistic and dynamic mathematical phantom with ten breathing phases. The testing data were 360 cone beam projections corresponding to one gantry rotation, simulated using the same phantom with a 50% increase in breathing amplitude. The average relative image intensity error of the reconstructed volumetric images is 6.9% +/- 2.4%. The average 3D tumor localization error is 0.8 +/- 0.5 mm. On an NVIDIA Tesla C1060 GPU card, the average computation time for reconstructing a volumetric image from each projection is 0.24 s (range: 0.17 and 0.35 s). The authors have shown the feasibility of reconstructing volumetric images and localizing tumor positions in 3D in near real-time from a single x-ray image.

  5. Cost-effectiveness of volumetric alcohol taxation in Australia.

    PubMed

    Byrnes, Joshua M; Cobiac, Linda J; Doran, Christopher M; Vos, Theo; Shakeshaft, Anthony P

    2010-04-19

    To estimate the potential health benefits and cost savings of an alcohol tax rate that applies equally to all alcoholic beverages based on their alcohol content (volumetric tax) and to compare the cost savings with the cost of implementation. Mathematical modelling of three scenarios of volumetric alcohol taxation for the population of Australia: (i) no change in deadweight loss, (ii) no change in tax revenue, and (iii) all alcoholic beverages taxed at the same rate as spirits. Estimated change in alcohol consumption, tax revenue and health benefit. The estimated cost of changing to a volumetric tax rate is $18 million. A volumetric tax that is deadweight loss-neutral would increase the cost of beer and wine and reduce the cost of spirits, resulting in an estimated annual increase in taxation revenue of $492 million and a 2.77% reduction in annual consumption of pure alcohol. The estimated net health gain would be 21 000 disability-adjusted life-years (DALYs), with potential cost offsets of $110 million per annum. A tax revenue-neutral scenario would result in an 0.05% decrease in consumption, and a tax on all alcohol at a spirits rate would reduce consumption by 23.85% and increase revenue by $3094 million [corrected]. All volumetric tax scenarios would provide greater health benefits and cost savings to the health sector than the existing taxation system, based on current understandings of alcohol-related health effects. An equalized volumetric tax that would reduce beer and wine consumption while increasing the consumption of spirits would need to be approached with caution. Further research is required to examine whether alcohol-related health effects vary by type of alcoholic beverage independent of the amount of alcohol consumed to provide a strong evidence platform for alcohol taxation policies.

  6. Comparison of four software packages for CT lung volumetry in healthy individuals.

    PubMed

    Nemec, Stefan F; Molinari, Francesco; Dufresne, Valerie; Gosset, Natacha; Silva, Mario; Bankier, Alexander A

    2015-06-01

    To compare CT lung volumetry (CTLV) measurements provided by different software packages, and to provide normative data for lung densitometric measurements in healthy individuals. This retrospective study included 51 chest CTs of 17 volunteers (eight men and nine women; mean age, 30 ± 6 years), who underwent spirometrically monitored CT at total lung capacity (TLC), functional residual capacity (FRC), and mean inspiratory capacity (MIC). Volumetric differences assessed by four commercial software packages were compared with analysis of variance (ANOVA) for repeated measurements and benchmarked against the threshold for acceptable variability between spirometric measurements. Mean lung density (MLD) and parenchymal heterogeneity (MLD-SD) were also compared with ANOVA. Volumetric differences ranged from 12 to 213 ml (0.20 % to 6.45 %). Although 16/18 comparisons (among four software packages at TLC, MIC, and FRC) were statistically significant (P < 0.001 to P = 0.004), only 3/18 comparisons, one at MIC and two at FRC, exceeded the spirometry variability threshold. MLD and MLD-SD significantly increased with decreasing volumes, and were significantly larger in lower compared to upper lobes (P < 0.001). Lung volumetric differences provided by different software packages are small. These differences should not be interpreted based on statistical significance alone, but together with absolute volumetric differences. • Volumetric differences, assessed by different CTLV software, are small but statistically significant. • Volumetric differences are smaller at TLC than at MIC and FRC. • Volumetric differences rarely exceed spirometric repeatability thresholds at MIC and FRC. • Differences between CTLV measurements should be interpreted based on comparison of absolute differences. • MLD increases with decreasing volumes, and is larger in lower compared to upper lobes.

  7. A reexamination of soil textural effects on microwave emission and backscattering

    NASA Technical Reports Server (NTRS)

    Dobson, M. C.; Kouyate, F.; Ulaby, F. T.

    1984-01-01

    Microwave frequency measurements of moist soil dielectric properties are noted to challenge the validity of percent-of-field-capacity as a moisture indicator that is independent of soil texture in terms of microwave sensitivity. In arriving at this view, gravimetric, volumetric, and percent-of-field-capacity were tested for their ability to reduce dielectric behavior divergence between soil textures at 1.4 and 5.0 GHz. The most congruent dielectric behavior between soil textures is found to occur when soil moisture is expressed on a volumetric basis that is proportional to the number of water dipoles/unit volume. An inadequate characterization of soil bulk density in the field, combined with the dependency of bulk density on water retention at field capacity, offers the most plausible explanation for the earlier conclusions.

  8. Dosimetric validation and clinical implementation of two 3D dose verification systems for quality assurance in volumetric-modulated arc therapy techniques.

    PubMed

    Clemente-Gutiérrez, Francisco; Pérez-Vara, Consuelo

    2015-03-08

    A pretreatment quality assurance program for volumetric techniques should include redundant calculations and measurement-based verifications. The patient-specific quality assurance process must be based in clinically relevant metrics. The aim of this study was to show the commission, clinical implementation, and comparison of two systems that allow performing a 3D redundant dose calculation. In addition, one of them is capable of reconstructing the dose on patient anatomy from measurements taken with a 2D ion chamber array. Both systems were compared in terms of reference calibration data (absolute dose, output factors, percentage depth-dose curves, and profiles). Results were in good agreement for absolute dose values (discrepancies were below 0.5%) and output factors (mean differences were below 1%). Maximum mean discrepancies were located between 10 and 20 cm of depth for PDDs (-2.7%) and in the penumbra region for profiles (mean DTA of 1.5 mm). Validation of the systems was performed by comparing point-dose measurements with values obtained by the two systems for static, dynamic fields from AAPM TG-119 report, and 12 real VMAT plans for different anatomical sites (differences better than 1.2%). Comparisons between measurements taken with a 2D ion chamber array and results obtained by both systems for real VMAT plans were also performed (mean global gamma passing rates better than 87.0% and 97.9% for the 2%/2 mm and 3%/3 mm criteria). Clinical implementation of the systems was evaluated by comparing dose-volume parameters for all TG-119 tests and real VMAT plans with TPS values (mean differences were below 1%). In addition, comparisons between dose distributions calculated by TPS and those extracted by the two systems for real VMAT plans were also performed (mean global gamma passing rates better than 86.0% and 93.0% for the 2%/2 mm and 3%/ 3 mm criteria). The clinical use of both systems was successfully evaluated.

  9. VOLUMETRIC LEAK DETECTION IN LARGE UNDERGROUND STORAGE TANKS - VOLUME II: APPENDICES A-E

    EPA Science Inventory

    The program of experiments conducted at Griffiss Air Force Base was devised to expand the understanding of large underground storage tank behavior as it impacts the performance of volumetric leak detection testing. The report addresses three important questions about testing the ...

  10. A laboratory method for precisely determining the micro-volume-magnitudes of liquid efflux

    NASA Technical Reports Server (NTRS)

    Cloutier, R. L.

    1969-01-01

    Micro-volumetric quantities of ejected liquid are made to produce equal volumetric displacements of a more dense material. Weight measurements are obtained on the displaced heavier liquid and used to calculate volumes based upon the known density of the heavy medium.

  11. Results from VDOT's pilot project using volumetric properties and asphalt content for acceptance of asphalt concrete.

    DOT National Transportation Integrated Search

    1995-01-01

    In 1994 the Virginia Department of Transportation (VDOT) developed a specification for the acceptance of asphalt concrete based largely on Marshall compacted volumetric properties of the mix. A copy of the Special Provision is shown in the Appendix. ...

  12. Validation of SMAP Surface Soil Moisture Products with Core Validation Sites

    NASA Technical Reports Server (NTRS)

    Colliander, A.; Jackson, T. J.; Bindlish, R.; Chan, S.; Das, N.; Kim, S. B.; Cosh, M. H.; Dunbar, R. S.; Dang, L.; Pashaian, L.; hide

    2017-01-01

    The NASA Soil Moisture Active Passive (SMAP) mission has utilized a set of core validation sites as the primary methodology in assessing the soil moisture retrieval algorithm performance. Those sites provide well calibrated in situ soil moisture measurements within SMAP product grid pixels for diverse conditions and locations.The estimation of the average soil moisture within the SMAP product grid pixels based on in situ measurements is more reliable when location specific calibration of the sensors has been performed and there is adequate replication over the spatial domain, with an up-scaling function based on analysis using independent estimates of the soil moisture distribution. SMAP fulfilled these requirements through a collaborative CalVal Partner program.This paper presents the results from 34 candidate core validation sites for the first eleven months of the SMAP mission. As a result of the screening of the sites prior to the availability of SMAP data, out of the 34 candidate sites 18 sites fulfilled all the requirements at one of the resolution scales (at least). The rest of the sites are used as secondary information in algorithm evaluation. The results indicate that the SMAP radiometer-based soil moisture data product meets its expected performance of 0.04 cu m/cu m volumetric soil moisture (unbiased root mean square error); the combined radar-radiometer product is close to its expected performance of 0.04 cu m/cu m, and the radar-based product meets its target accuracy of 0.06 cu m/cu m (the lengths of the combined and radar-based products are truncated to about 10 weeks because of the SMAP radar failure). Upon completing the intensive CalVal phase of the mission the SMAP project will continue to enhance the products in the primary and extended geographic domains, in co-operation with the CalVal Partners, by continuing the comparisons over the existing core validation sites and inclusion of candidate sites that can address shortcomings.

  13. SU-G-JeP2-08: Image-Guided Radiation Therapy Using Synthetic CTs in Brain Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Price, R.G.; Glide-Hurst, C.; Henry Ford Health System, Detroit, MI

    Purpose: Synthetic-CTs(synCTs) are essential for MR-only treatment planning. However, the performance of synCT for IGRT must be carefully assessed. This work evaluated the accuracy of synCT and synCT-generated DRRs and determined their performance for IGRT in brain cancer radiation therapy. Methods: MR-SIM and CT-SIM images were acquired of a novel anthropomorphic phantom and a cohort of 12 patients. SynCTs were generated by combining an ultra-short echo time (UTE) sequence with other MRI datasets using voxel-based weighted summation. For the phantom, DRRs from synCT and CT were compared via bounding box and landmark analysis. Planar (MV/KV) and volumetric (CBCT) IGRT performancemore » were evaluated across several platforms. In patients, retrospective analysis was conducted to register CBCTs (n=34) to synCTs and CTs using automated rigid registration in the treatment planning system using whole brain and local registration techniques. A semi-automatic registration program was developed and validated to rigidly register planar MV/KV images (n=37) to synCT and CT DRRs. Registration reproducibility was assessed and margin differences were characterized using the van Herk formalism. Results: Bounding box and landmark analysis of phantom synCT DRRs were within 1mm of CT DRRs. Absolute 2D/2D registration shift differences ranged from 0.0–0.7mm for phantom DRRs on all treatment platforms and 0.0–0.4mm for volumetric registrations. For patient planar registrations, mean shift differences were 0.4±0.5mm (range: −0.6–1.6mm), 0.0±0.5mm, (range: −0.9–1.2mm), and 0.1±0.3mm (range: −0.7–0.6mm) for the superior-inferior(S-I), left-right(L–R), and anterior-posterior(A-P) axes, respectively. Mean shift differences in volumetric registrations were 0.6±0.4mm (range: −0.2–1.6mm), 0.2±0.4mm (range: −0.3–1.2mm), and 0.2±0.3mm (range: −0.2–1.2mm) for S-I, L–R, and A–P axes, respectively. CT-SIM and synCT derived margins were within 0.3mm. Conclusion: DRRs generated via synCT agreed well with CT-SIM. Planar and volumetric registrations to synCT-derived targets were comparable to CT. This validation is the next step toward clinical implementation of MR-only planning for the brain. The submitting institution has research agreements with Philips Healthcare. Research sponsored by a Henry Ford Health System Internal Mentored Grant.« less

  14. Theoretical Limits of Energy Density in Silicon-Carbon Composite Anode Based Lithium Ion Batteries

    PubMed Central

    Dash, Ranjan; Pannala, Sreekanth

    2016-01-01

    Silicon (Si) is under consideration as a potential next-generation anode material for the lithium ion battery (LIB). Experimental reports of up to 40% increase in energy density of Si anode based LIBs (Si-LIBs) have been reported in literature. However, this increase in energy density is achieved when the Si-LIB is allowed to swell (volumetrically expand) more than graphite based LIB (graphite-LIB) and beyond practical limits. The volume expansion of LIB electrodes should be negligible for applications such as automotive or mobile devices. We determine the theoretical bounds of Si composition in a Si–carbon composite (SCC) based anode to maximize the volumetric energy density of a LIB by constraining the external dimensions of the anode during charging. The porosity of the SCC anode is adjusted to accommodate the volume expansion during lithiation. The calculated threshold value of Si was then used to determine the possible volumetric energy densities of LIBs with SCC anode (SCC-LIBs) and the potential improvement over graphite-LIBs. The level of improvement in volumetric and gravimetric energy density of SCC-LIBs with constrained volume is predicted to be less than 10% to ensure the battery has similar power characteristics of graphite-LIBs. PMID:27311811

  15. Structural neurobiological correlates of Mayer-Salovery-Caruso Emotional Intelligence Test performance in early course schizophrenia.

    PubMed

    Wojtalik, Jessica A; Eack, Shaun M; Keshavan, Matcheri S

    2013-01-10

    The Mayer-Salovey-Caruso Emotional Intelligence Test (MSCEIT) is a key measure of social cognition in schizophrenia that has good psychometric properties and is recommended by the MATRICS committee. As a way to further investigate the validity of the MSCEIT, this study sought to examine the neurobiological correlates of MSCEIT performance in patients with early course schizophrenia. A total of 51 patients diagnosed with early course, stabilized schizophrenia or schizoaffective disorder completed structural magnetic resonance imaging (MRI) scans and the MSCEIT. Investigation of the associations between MSCEIT performance and gray matter morphology was examined by conducting voxel-based morphometry (VBM) analyses across hypothesized social-cognitive regions of interest using automated anatomical labeling in Statistical Parametric Mapping Software, version 5 (SPM5). All VBM analyses utilized general linear models examining gray matter density partitioned images, adjusting for demographic and illness-related confounds. VBM results were then followed up with confirmatory volumetric analyses. Patients with poorer overall and Facilitating, Understanding, and Managing Emotions subscale performances on the MSCEIT showed significantly reduced gray matter density in the left parahippocampal gyrus. Additionally, attenuated performance on the Facilitating and Managing Emotions subscales was significantly associated with reduced right posterior cingulate gray matter density. All associations observed between MSCEIT performance and gray matter density were supported with confirmatory gray matter volumetric analyses, with the exception of the association between the right posterior cingulate and the facilitation of emotions. These findings provide additional evidence for the MSCEIT as a valid social-cognitive measure by elucidating its correlates with neurobiological structures commonly implicated in emotion processing. These findings provide additional biological evidence supporting the use of the MSCEIT in cognitive enhancing clinical trials in schizophrenia. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. WE-FG-207B-06: Plaque Composition Measurement with Dual Energy Computed Tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, C; Ding, H; Malkasian, S

    Purpose: To investigate the feasibility of characterizing arterial plaque composition in terms of water, lipid and protein or calcium using dual energy computed tomography. Characterization of plaque composition can potentially help distinguish vulnerable from stable plaques. Methods: Simulations studies were performed by the CT simulator based on ASTRA tomography toolbox. The beam energy for dual energy images was selected to be 80 kVp and 135 kVp. The radiation dose and energy spectrum for the CT simulator were carefully calibrated with respect to a 320-slice CT scanner. A digital chest phantom was constructed using Matlab for calibration and plaque measurement. Puremore » water, lipid, protein or calcium was used for calibration and a mixture of different volume percentages of these materials were used for validation purposes. Non-calcified plaque was simulated using water, lipid and protein with volumetric percentage range of 35%∼65%, 5%∼60% and 5%∼40%, respectively. Calcified plaque was simulated using water, lipid and calcium with volumetric percentage range of 50%∼80%, 8%∼45% and 3%∼13%, respectively. We employed iterative sinogram processing (ISP) to reduce the beam hardening effect in the simulation to improve the decomposition results. Results: The simulated known composition and dual energy decomposition results were in good agreement. Water, lipid and protein (calcium) mixtures were decomposed into water, lipid and protein (calcium) contents. The RMS errors of volumetric percentage for the water, lipid and protein (non-calcified plaque) decomposition, as compared to known values, were estimated to be approximately 5.74%, 2.54%, and 0.95% respectively. The RMS errors of volumetric percentage for the water, lipid and Calcium (calcified plaque) decomposition, as compared to known values, were estimated to be approximately 7.4%, 8.64%, and 0.08% respectively. Conclusion: The results of this study suggest that the dual energy decomposition can potentially be used to quantify the water, lipid, and protein or calcium composition of a plaque with relatively good accuracy. Grant funding from Toshiba Medical Systems and Philips Medical Systems.« less

  17. Support Vector Machine Based Monitoring of Cardio-Cerebrovascular Reserve during Simulated Hemorrhage.

    PubMed

    van der Ster, Björn J P; Bennis, Frank C; Delhaas, Tammo; Westerhof, Berend E; Stok, Wim J; van Lieshout, Johannes J

    2017-01-01

    Introduction: In the initial phase of hypovolemic shock, mean blood pressure (BP) is maintained by sympathetically mediated vasoconstriction rendering BP monitoring insensitive to detect blood loss early. Late detection can result in reduced tissue oxygenation and eventually cellular death. We hypothesized that a machine learning algorithm that interprets currently used and new hemodynamic parameters could facilitate in the detection of impending hypovolemic shock. Method: In 42 (27 female) young [mean (sd): 24 (4) years], healthy subjects central blood volume (CBV) was progressively reduced by application of -50 mmHg lower body negative pressure until the onset of pre-syncope. A support vector machine was trained to classify samples into normovolemia (class 0), initial phase of CBV reduction (class 1) or advanced CBV reduction (class 2). Nine models making use of different features were computed to compare sensitivity and specificity of different non-invasive hemodynamic derived signals. Model features included : volumetric hemodynamic parameters (stroke volume and cardiac output), BP curve dynamics, near-infrared spectroscopy determined cortical brain oxygenation, end-tidal carbon dioxide pressure, thoracic bio-impedance, and middle cerebral artery transcranial Doppler (TCD) blood flow velocity. Model performance was tested by quantifying the predictions with three methods : sensitivity and specificity, absolute error, and quantification of the log odds ratio of class 2 vs. class 0 probability estimates. Results: The combination with maximal sensitivity and specificity for classes 1 and 2 was found for the model comprising volumetric features (class 1: 0.73-0.98 and class 2: 0.56-0.96). Overall lowest model error was found for the models comprising TCD curve hemodynamics. Using probability estimates the best combination of sensitivity for class 1 (0.67) and specificity (0.87) was found for the model that contained the TCD cerebral blood flow velocity derived pulse height. The highest combination for class 2 was found for the model with the volumetric features (0.72 and 0.91). Conclusion: The most sensitive models for the detection of advanced CBV reduction comprised data that describe features from volumetric parameters and from cerebral blood flow velocity hemodynamics. In a validated model of hemorrhage in humans these parameters provide the best indication of the progression of central hypovolemia.

  18. High-Density Association Study of 383 Candidate Genes for Volumetric BMD at the Femoral Neck and Lumbar Spine Among Older Men

    PubMed Central

    Yerges, Laura M.; Klei, Lambertus; Cauley, Jane A.; Roeder, Kathryn; Kammerer, Candace M.; Moffett, Susan P.; Ensrud, Kristine E.; Nestlerode, Cara S.; Marshall, Lynn M.; Hoffman, Andrew R.; Lewis, Cora; Lang, Thomas F.; Barrett-Connor, Elizabeth; Ferrell, Robert E.; Orwoll, Eric S.

    2009-01-01

    Genetics is a well-established but poorly understood determinant of BMD. Whereas some genetic variants may influence BMD throughout the body, others may be skeletal site specific. We initially screened for associations between 4608 tagging and potentially functional single nucleotide polymorphisms (SNPs) in 383 candidate genes and femoral neck and lumbar spine volumetric BMD (vBMD) measured from QCT scans among 862 community-dwelling white men ≥65 yr of age in the Osteoporotic Fractures in Men Study (MrOS). The most promising SNP associations (p < 0.01) were validated by genotyping an additional 1156 white men from MrOS. This analysis identified 8 SNPs in 6 genes (APC, DMP1, FGFR2, FLT1, HOXA, and PTN) that were associated with femoral neck vBMD and 13 SNPs in 7 genes (APC, BMPR1B, FOXC2, HOXA, IGFBP2, NFATC1, and SOST) that were associated with lumbar spine vBMD in both genotyping samples (p < 0.05). Although most associations were specific to one skeletal site, SNPs in the APC and HOXA gene regions were associated with both femoral neck and lumbar spine BMD. This analysis identifies several novel and robust genetic associations for volumetric BMD, and these findings in combination with other data suggest the presence of genetic loci for volumetric BMD that are at least to some extent skeletal-site specific. PMID:19453261

  19. Inventory of File ndas.t12z.awip3d00.tm03.grib2

    Science.gov Websites

    parameter in canopy conductance [Fraction] 529 surface RCSOL analysis Soil moisture parameter in canopy -0.1 m below ground TSOIL analysis Soil Temperature Validation to deprecate [K] 532 0-0.1 m below ground SOILW analysis Volumetric Soil Moisture Content [Fraction] 533 0.1-0.4 m below ground TSOIL

  20. Explicit robust schemes for implementation of a class of principal value-based constitutive models: Theoretical development

    NASA Technical Reports Server (NTRS)

    Saleeb, A. F.; Arnold, S. M.

    1991-01-01

    The issue of developing effective and robust schemes to implement a class of the Ogden-type hyperelastic constitutive models is addressed. To this end, explicit forms for the corresponding material tangent stiffness tensors are developed, and these are valid for the entire deformation range; i.e., with both distinct as well as repeated principal-stretch values. Throughout the analysis the various implications of the underlying property of separability of the strain-energy functions are exploited, thus leading to compact final forms of the tensor expressions. In particular, this facilitated the treatment of complex cases of uncoupled volumetric/deviatoric formulations for incompressible materials. The forms derived are also amenable for use with symbolic-manipulation packages for systematic code generation.

  1. Four-Wave-Mixing Approach to In Situ Detection of Nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerakis, Alexandros; Yeh, Yao -Wen; Shneider, Mikhail N.

    Here, we report on the development and experimental validation of a laser-based technique which uses coherent Rayleigh-Brillouin scattering (CRBS) to detect nanoparticles with characteristic sizes ranging from the atomic scale to tens of nanometers. This technique is aimed (nonexclusively) at the detection of nanoparticles produced by volumetric nanoparticle synthesis methods. Using CRBS, carbon nanoparticles of dimensions less than 10 nm and concentrations of 10 10 cm –3 are detected in situ in a carbon arc discharge with graphite electrodes. This four-wave-mixing approach should enable advances in the understanding of nanoparticle growth that could potentially lead to improved modeling of themore » growth mechanisms, and thus to improve synthesis selectivity of nanoparticles and yield.« less

  2. Soil moisture datasets at five sites in the central Sierra Nevada and northern Coast Ranges, California

    USGS Publications Warehouse

    Stern, Michelle A.; Anderson, Frank A.; Flint, Lorraine E.; Flint, Alan L.

    2018-05-03

    In situ soil moisture datasets are important inputs used to calibrate and validate watershed, regional, or statewide modeled and satellite-based soil moisture estimates. The soil moisture dataset presented in this report includes hourly time series of the following: soil temperature, volumetric water content, water potential, and total soil water content. Data were collected by the U.S. Geological Survey at five locations in California: three sites in the central Sierra Nevada and two sites in the northern Coast Ranges. This report provides a description of each of the study areas, procedures and equipment used, processing steps, and time series data from each site in the form of comma-separated values (.csv) tables.

  3. Fully automated detection of diabetic macular edema and dry age-related macular degeneration from optical coherence tomography images

    PubMed Central

    Srinivasan, Pratul P.; Kim, Leo A.; Mettu, Priyatham S.; Cousins, Scott W.; Comer, Grant M.; Izatt, Joseph A.; Farsiu, Sina

    2014-01-01

    We present a novel fully automated algorithm for the detection of retinal diseases via optical coherence tomography (OCT) imaging. Our algorithm utilizes multiscale histograms of oriented gradient descriptors as feature vectors of a support vector machine based classifier. The spectral domain OCT data sets used for cross-validation consisted of volumetric scans acquired from 45 subjects: 15 normal subjects, 15 patients with dry age-related macular degeneration (AMD), and 15 patients with diabetic macular edema (DME). Our classifier correctly identified 100% of cases with AMD, 100% cases with DME, and 86.67% cases of normal subjects. This algorithm is a potentially impactful tool for the remote diagnosis of ophthalmic diseases. PMID:25360373

  4. Four-dimensional optoacoustic temperature mapping in laser-induced thermotherapy

    NASA Astrophysics Data System (ADS)

    Oyaga Landa, Francisco Javier; Deán-Ben, Xosé Luís.; Sroka, Ronald; Razansky, Daniel

    2018-02-01

    Photoablative laser therapy is in common use for selective destruction of malignant masses, vascular and brain abnormalities. Tissue ablation and coagulation are irreversible processes occurring shortly after crossing a certain thermal exposure threshold. As a result, accurate mapping of the temperature field is essential for optimizing the outcome of these clinical interventions. Here we demonstrate four-dimensional optoacoustic temperature mapping of the entire photoablated region. Accuracy of the method is investigated in tissue-mimicking phantom experiments. Deviations of the volumetric optoacoustic temperature readings provided at 40ms intervals remained below 10% for temperature elevations above 3°C, as validated by simultaneous thermocouple measurements. The excellent spatio-temporal resolution of the new temperature monitoring approach aims at improving safety and efficacy of laser-based photothermal procedures.

  5. Four-Wave-Mixing Approach to In Situ Detection of Nanoparticles

    DOE PAGES

    Gerakis, Alexandros; Yeh, Yao -Wen; Shneider, Mikhail N.; ...

    2018-01-29

    Here, we report on the development and experimental validation of a laser-based technique which uses coherent Rayleigh-Brillouin scattering (CRBS) to detect nanoparticles with characteristic sizes ranging from the atomic scale to tens of nanometers. This technique is aimed (nonexclusively) at the detection of nanoparticles produced by volumetric nanoparticle synthesis methods. Using CRBS, carbon nanoparticles of dimensions less than 10 nm and concentrations of 10 10 cm –3 are detected in situ in a carbon arc discharge with graphite electrodes. This four-wave-mixing approach should enable advances in the understanding of nanoparticle growth that could potentially lead to improved modeling of themore » growth mechanisms, and thus to improve synthesis selectivity of nanoparticles and yield.« less

  6. Feasibility study on dosimetry verification of volumetric-modulated arc therapy-based total marrow irradiation.

    PubMed

    Liang, Yun; Kim, Gwe-Ya; Pawlicki, Todd; Mundt, Arno J; Mell, Loren K

    2013-03-04

    The purpose of this study was to develop dosimetry verification procedures for volumetric-modulated arc therapy (VMAT)-based total marrow irradiation (TMI). The VMAT based TMI plans were generated for three patients: one child and two adults. The planning target volume (PTV) was defined as bony skeleton, from head to mid-femur, with a 3 mm margin. The plan strategy similar to published studies was adopted. The PTV was divided into head and neck, chest, and pelvic regions, with separate plans each of which is composed of 2-3 arcs/fields. Multiple isocenters were evenly distributed along the patient's axial direction. The focus of this study is to establish a dosimetry quality assurance procedure involving both two-dimensional (2D) and three-dimensional (3D) volumetric verifications, which is desirable for a large PTV treated with multiple isocenters. The 2D dose verification was performed with film for gamma evaluation and absolute point dose was measured with ion chamber, with attention to the junction between neighboring plans regarding hot/cold spots. The 3D volumetric dose verification used commercial dose reconstruction software to reconstruct dose from electronic portal imaging devices (EPID) images. The gamma evaluation criteria in both 2D and 3D verification were 5% absolute point dose difference and 3 mm of distance to agreement. With film dosimetry, the overall average gamma passing rate was 98.2% and absolute dose difference was 3.9% in junction areas among the test patients; with volumetric portal dosimetry, the corresponding numbers were 90.7% and 2.4%. A dosimetry verification procedure involving both 2D and 3D was developed for VMAT-based TMI. The initial results are encouraging and warrant further investigation in clinical trials.

  7. Time-resolved large-scale volumetric pressure fields of an impinging jet from dense Lagrangian particle tracking

    NASA Astrophysics Data System (ADS)

    Huhn, F.; Schanz, D.; Manovski, P.; Gesemann, S.; Schröder, A.

    2018-05-01

    Time-resolved volumetric pressure fields are reconstructed from Lagrangian particle tracking with high seeding concentration using the Shake-The-Box algorithm in a perpendicular impinging jet flow with exit velocity U=4 m/s (Re˜ 36,000) and nozzle-plate spacing H/D=5. Helium-filled soap bubbles are used as tracer particles which are illuminated with pulsed LED arrays. A large measurement volume has been covered (cloud of tracked particles in a volume of 54 L, ˜ 180,000 particles). The reconstructed pressure field has been validated against microphone recordings at the wall with high correlation coefficients up to 0.88. In a reduced measurement volume (13 L), dense Lagrangian particle tracking is shown to be feasable up to the maximal possible jet velocity of U=16 m/s.

  8. Volumetric LiDAR scanning of a wind turbine wake and comparison with a 3D analytical wake model

    NASA Astrophysics Data System (ADS)

    Carbajo Fuertes, Fernando; Porté-Agel, Fernando

    2016-04-01

    A correct estimation of the future power production is of capital importance whenever the feasibility of a future wind farm is being studied. This power estimation relies mostly on three aspects: (1) a reliable measurement of the wind resource in the area, (2) a well-established power curve of the future wind turbines and, (3) an accurate characterization of the wake effects; the latter being arguably the most challenging one due to the complexity of the phenomenon and the lack of extensive full-scale data sets that could be used to validate analytical or numerical models. The current project addresses the problem of obtaining a volumetric description of a full-scale wake of a 2MW wind turbine in terms of velocity deficit and turbulence intensity using three scanning wind LiDARs and two sonic anemometers. The characterization of the upstream flow conditions is done by one scanning LiDAR and two sonic anemometers, which have been used to calculate incoming vertical profiles of horizontal wind speed, wind direction and an approximation to turbulence intensity, as well as the thermal stability of the atmospheric boundary layer. The characterization of the wake is done by two scanning LiDARs working simultaneously and pointing downstream from the base of the wind turbine. The direct LiDAR measurements in terms of radial wind speed can be corrected using the upstream conditions in order to provide good estimations of the horizontal wind speed at any point downstream of the wind turbine. All this data combined allow for the volumetric reconstruction of the wake in terms of velocity deficit as well as turbulence intensity. Finally, the predictions of a 3D analytical model [1] are compared to the 3D LiDAR measurements of the wind turbine. The model is derived by applying the laws of conservation of mass and momentum and assuming a Gaussian distribution for the velocity deficit in the wake. This model has already been validated using high resolution wind-tunnel measurements and large-eddy simulation (LES) data of miniature wind turbine wakes, as well as LES data of real-scale wind-turbine wakes, but not yet with full-scale wind turbine wake measurements. [1] M. Bastankhah and F. Porté-Agel. A New Analytical Model For Wind-Turbine Wakes, in Renewable Energy, vol. 70, p. 116-123, 2014.

  9. Volumetric quantification of bone-implant contact using micro-computed tomography analysis based on region-based segmentation.

    PubMed

    Kang, Sung-Won; Lee, Woo-Jin; Choi, Soon-Chul; Lee, Sam-Sun; Heo, Min-Suk; Huh, Kyung-Hoe; Kim, Tae-Il; Yi, Won-Jin

    2015-03-01

    We have developed a new method of segmenting the areas of absorbable implants and bone using region-based segmentation of micro-computed tomography (micro-CT) images, which allowed us to quantify volumetric bone-implant contact (VBIC) and volumetric absorption (VA). The simple threshold technique generally used in micro-CT analysis cannot be used to segment the areas of absorbable implants and bone. Instead, a region-based segmentation method, a region-labeling method, and subsequent morphological operations were successively applied to micro-CT images. The three-dimensional VBIC and VA of the absorbable implant were then calculated over the entire volume of the implant. Two-dimensional (2D) bone-implant contact (BIC) and bone area (BA) were also measured based on the conventional histomorphometric method. VA and VBIC increased significantly with as the healing period increased (p<0.05). VBIC values were significantly correlated with VA values (p<0.05) and with 2D BIC values (p<0.05). It is possible to quantify VBIC and VA for absorbable implants using micro-CT analysis using a region-based segmentation method.

  10. A Volumetric Flask as a Projector

    ERIC Educational Resources Information Center

    Limsuwan, P.; Asanithi, P.; Thongpool, V.; Piriyawong, V.; Limsuwan, S.

    2012-01-01

    A lens based on liquid in the confined volume of a volumetric flask was presented as a potential projector to observe microscopic floating organisms or materials. In this experiment, a mosquito larva from a natural pond was selected as a demonstration sample. By shining a light beam from a laser pointer of any visible wavelength through the…

  11. Forecasting the start of the pollen season of Poaceæ: evaluation of some methods based on meteorological factors

    NASA Astrophysics Data System (ADS)

    Laaidi, M.

    The pollen of anemogamous plants is responsible for half the allergic diseases, that is to say a prevalence of 10% in the French population. Poaceæ produce the first allergenic pollen almost everywhere. The work described in this article aimed to validate forecast methods for the use of physicians and allergic people who need accurate and early information on the first appearance of pollen in the air. The methods were based on meteorological parameters, mainly temperature. Four volumetric Hirst traps were used from 1995 to 1998, situated in two departments of Burgundy. Two of the methods tested proved to be of particular interest: the sum of the temperatures and the sum of Q10 values, an agrometeorological coefficient integrating temperature. A multiple regression, using maximum temperature and rainfall, was also performed but it gave slightly less accurate results. A χ2-test was then used to compare the accuracy of the three methods. It was found that the date of onset of the pollen season could be predicted early enough to be useful in medical practice. Results were verified in 1999, and the research must be continued to obtain better statistical validity.

  12. Accuracy of surface registration compared to conventional volumetric registration in patient positioning for head-and-neck radiotherapy: A simulation study using patient data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Youngjun; Li, Ruijiang; Na, Yong Hum

    2014-12-15

    Purpose: 3D optical surface imaging has been applied to patient positioning in radiation therapy (RT). The optical patient positioning system is advantageous over conventional method using cone-beam computed tomography (CBCT) in that it is radiation free, frameless, and is capable of real-time monitoring. While the conventional radiographic method uses volumetric registration, the optical system uses surface matching for patient alignment. The relative accuracy of these two methods has not yet been sufficiently investigated. This study aims to investigate the theoretical accuracy of the surface registration based on a simulation study using patient data. Methods: This study compares the relative accuracymore » of surface and volumetric registration in head-and-neck RT. The authors examined 26 patient data sets, each consisting of planning CT data acquired before treatment and patient setup CBCT data acquired at the time of treatment. As input data of surface registration, patient’s skin surfaces were created by contouring patient skin from planning CT and treatment CBCT. Surface registration was performed using the iterative closest points algorithm by point–plane closest, which minimizes the normal distance between source points and target surfaces. Six degrees of freedom (three translations and three rotations) were used in both surface and volumetric registrations and the results were compared. The accuracy of each method was estimated by digital phantom tests. Results: Based on the results of 26 patients, the authors found that the average and maximum root-mean-square translation deviation between the surface and volumetric registrations were 2.7 and 5.2 mm, respectively. The residual error of the surface registration was calculated to have an average of 0.9 mm and a maximum of 1.7 mm. Conclusions: Surface registration may lead to results different from those of the conventional volumetric registration. Only limited accuracy can be achieved for patient positioning with an approach based solely on surface information.« less

  13. Stretchable Fiber Supercapacitors with High Volumetric Performance Based on Buckled MnO2 /Oxidized Carbon Nanotube Fiber Electrodes.

    PubMed

    Li, Mingyang; Zu, Mei; Yu, Jinshan; Cheng, Haifeng; Li, Qingwen

    2017-03-01

    A stretchable fiber supercapacitor (SC) based on buckled MnO 2 /oxidized carbon nanotube (CNT) fiber electrode is fabricated by a simple prestraining-then-buckling method. The prepared stretchable fiber SC has a specific volumetric capacitance up to 409.4 F cm -3 , which is 33 times that of the pristine CNT fiber based SC, and shows the outstanding stability and repeatability in performance as a stretchable SC. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. RINGMesh: A programming library for developing mesh-based geomodeling applications

    NASA Astrophysics Data System (ADS)

    Pellerin, Jeanne; Botella, Arnaud; Bonneau, François; Mazuyer, Antoine; Chauvin, Benjamin; Lévy, Bruno; Caumon, Guillaume

    2017-07-01

    RINGMesh is a C++ open-source programming library for manipulating discretized geological models. It is designed to ease the development of applications and workflows that use discretized 3D models. It is neither a geomodeler, nor a meshing software. RINGMesh implements functionalities to read discretized surface-based or volumetric structural models and to check their validity. The models can be then exported in various file formats. RINGMesh provides data structures to represent geological structural models, either defined by their discretized boundary surfaces, and/or by discretized volumes. A programming interface allows to develop of new geomodeling methods, and to plug in external software. The goal of RINGMesh is to help researchers to focus on the implementation of their specific method rather than on tedious tasks common to many applications. The documented code is open-source and distributed under the modified BSD license. It is available at https://www.ring-team.org/index.php/software/ringmesh.

  15. Intrathoracic airway measurement: ex-vivo validation

    NASA Astrophysics Data System (ADS)

    Reinhardt, Joseph M.; Raab, Stephen A.; D'Souza, Neil D.; Hoffman, Eric A.

    1997-05-01

    High-resolution x-ray CT (HRCT) provides detailed images of the lungs and bronchial tree. HRCT-based imaging and quantitation of peripheral bronchial airway geometry provides a valuable tool for assessing regional airway physiology. Such measurements have been sued to address physiological questions related to the mechanics of airway collapse in sleep apnea, the measurement of airway response to broncho-constriction agents, and to evaluate and track the progression of disease affecting the airways, such as asthma and cystic fibrosis. Significant attention has been paid to the measurements of extra- and intra-thoracic airways in 2D sections from volumetric x-ray CT. A variety of manual and semi-automatic techniques have been proposed for airway geometry measurement, including the use of standardized display window and level settings for caliper measurements, methods based on manual or semi-automatic border tracing, and more objective, quantitative approaches such as the use of the 'half-max' criteria. A recently proposed measurements technique uses a model-based deconvolution to estimate the location of the inner and outer airway walls. Validation using a plexiglass phantom indicates that the model-based method is more accurate than the half-max approach for thin-walled structures. In vivo validation of these airway measurement techniques is difficult because of the problems in identifying a reliable measurement 'gold standard.' In this paper we report on ex vivo validation of the half-max and model-based methods using an excised pig lung. The lung is sliced into thin sections of tissue and scanned using an electron beam CT scanner. Airways of interest are measured from the CT images, and also measured with using a microscope and micrometer to obtain a measurement gold standard. The result show no significant difference between the model-based measurements and the gold standard; while the half-max estimates exhibited a measurement bias and were significantly different than the gold standard.

  16. Modeling and Representation of Human Hearts for Volumetric Measurement

    PubMed Central

    Guan, Qiu; Wang, Wanliang; Wu, Guang

    2012-01-01

    This paper investigates automatic construction of a three-dimensional heart model from a set of medical images, represents it in a deformable shape, and uses it to perform volumetric measurements. This not only significantly improves its reliability and accuracy but also makes it possible to derive valuable novel information, like various assessment and dynamic volumetric measurements. The method is based on a flexible model trained from hundreds of patient image sets by a genetic algorithm, which takes advantage of complete segmentation of the heart shape to form a geometrical heart model. For an image set of a new patient, an interpretation scheme is used to obtain its shape and evaluate some important parameters. Apart from automatic evaluation of traditional heart functions, some new information of cardiovascular diseases may be recognized from the volumetric analysis. PMID:22162723

  17. 40 CFR 63.2164 - If I monitor brew ethanol, what are my monitoring installation, operation, and maintenance...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... batch averages computed from two or more data points over each 1-hour period, except during periods when... performed. During these periods, a valid hour of data shall consist of at least one data point representing... volumetric flask and place the flask on a balance. Tare the balance. Weigh 2.3670 grams of the dry (anhydrous...

  18. Methodological issues in volumetric magnetic resonance imaging of the brain in the Edinburgh High Risk Project.

    PubMed

    Whalley, H C; Kestelman, J N; Rimmington, J E; Kelso, A; Abukmeil, S S; Best, J J; Johnstone, E C; Lawrie, S M

    1999-07-30

    The Edinburgh High Risk Project is a longitudinal study of brain structure (and function) in subjects at high risk of developing schizophrenia in the next 5-10 years for genetic reasons. In this article we describe the methods of volumetric analysis of structural magnetic resonance images used in the study. We also consider potential sources of error in these methods: the validity of our image analysis techniques; inter- and intra-rater reliability; possible positional variation; and thresholding criteria used in separating brain from cerebro-spinal fluid (CSF). Investigation with a phantom test object (of similar imaging characteristics to the brain) provided evidence for the validity of our image acquisition and analysis techniques. Both inter- and intra-rater reliability were found to be good in whole brain measures but less so for smaller regions. There were no statistically significant differences in positioning across the three study groups (patients with schizophrenia, high risk subjects and normal volunteers). A new technique for thresholding MRI scans longitudinally is described (the 'rescale' method) and compared with our established method (thresholding by eye). Few differences between the two techniques were seen at 3- and 6-month follow-up. These findings demonstrate the validity and reliability of the structural MRI analysis techniques used in the Edinburgh High Risk Project, and highlight methodological issues of general concern in cross-sectional and longitudinal studies of brain structure in healthy control subjects and neuropsychiatric populations.

  19. The combined effect of mammographic texture and density on breast cancer risk: a cohort study.

    PubMed

    Wanders, Johanna O P; van Gils, Carla H; Karssemeijer, Nico; Holland, Katharina; Kallenberg, Michiel; Peeters, Petra H M; Nielsen, Mads; Lillholm, Martin

    2018-05-02

    Texture patterns have been shown to improve breast cancer risk segregation in addition to area-based mammographic density. The additional value of texture pattern scores on top of volumetric mammographic density measures in a large screening cohort has never been studied. Volumetric mammographic density and texture pattern scores were assessed automatically for the first available digital mammography (DM) screening examination of 51,400 women (50-75 years of age) participating in the Dutch biennial breast cancer screening program between 2003 and 2011. The texture assessment method was developed in a previous study and validated in the current study. Breast cancer information was obtained from the screening registration system and through linkage with the Netherlands Cancer Registry. All screen-detected breast cancers diagnosed at the first available digital screening examination were excluded. During a median follow-up period of 4.2 (interquartile range (IQR) 2.0-6.2) years, 301 women were diagnosed with breast cancer. The associations between texture pattern scores, volumetric breast density measures and breast cancer risk were determined using Cox proportional hazard analyses. Discriminatory performance was assessed using c-indices. The median age of the women at the time of the first available digital mammography examination was 56 years (IQR 51-63). Texture pattern scores were positively associated with breast cancer risk (hazard ratio (HR) 3.16 (95% CI 2.16-4.62) (p value for trend <0.001), for quartile (Q) 4 compared to Q1). The c-index of texture was 0.61 (95% CI 0.57-0.64). Dense volume and percentage dense volume showed positive associations with breast cancer risk (HR 1.85 (95% CI 1.32-2.59) (p value for trend <0.001) and HR 2.17 (95% CI 1.51-3.12) (p value for trend <0.001), respectively, for Q4 compared to Q1). When adding texture measures to models with dense volume or percentage dense volume, c-indices increased from 0.56 (95% CI 0.53-0.59) to 0.62 (95% CI 0.58-0.65) (p < 0.001) and from 0.58 (95% CI 0.54-0.61) to 0.60 (95% CI 0.57-0.63) (p = 0.054), respectively. Deep-learning-based texture pattern scores, measured automatically on digital mammograms, are associated with breast cancer risk, independently of volumetric mammographic density, and augment the capacity to discriminate between future breast cancer and non-breast cancer cases.

  20. Efficient threshold for volumetric segmentation

    NASA Astrophysics Data System (ADS)

    Burdescu, Dumitru D.; Brezovan, Marius; Stanescu, Liana; Stoica Spahiu, Cosmin; Ebanca, Daniel

    2015-07-01

    Image segmentation plays a crucial role in effective understanding of digital images. However, the research on the existence of general purpose segmentation algorithm that suits for variety of applications is still very much active. Among the many approaches in performing image segmentation, graph based approach is gaining popularity primarily due to its ability in reflecting global image properties. Volumetric image segmentation can simply result an image partition composed by relevant regions, but the most fundamental challenge in segmentation algorithm is to precisely define the volumetric extent of some object, which may be represented by the union of multiple regions. The aim in this paper is to present a new method to detect visual objects from color volumetric images and efficient threshold. We present a unified framework for volumetric image segmentation and contour extraction that uses a virtual tree-hexagonal structure defined on the set of the image voxels. The advantage of using a virtual tree-hexagonal network superposed over the initial image voxels is that it reduces the execution time and the memory space used, without losing the initial resolution of the image.

  1. Temporal Lobe Epilepsy: Quantitative MR Volumetry in Detection of Hippocampal Atrophy

    PubMed Central

    Farid, Nikdokht; Girard, Holly M.; Kemmotsu, Nobuko; Smith, Michael E.; Magda, Sebastian W.; Lim, Wei Y.; Lee, Roland R.

    2012-01-01

    Purpose: To determine the ability of fully automated volumetric magnetic resonance (MR) imaging to depict hippocampal atrophy (HA) and to help correctly lateralize the seizure focus in patients with temporal lobe epilepsy (TLE). Materials and Methods: This study was conducted with institutional review board approval and in compliance with HIPAA regulations. Volumetric MR imaging data were analyzed for 34 patients with TLE and 116 control subjects. Structural volumes were calculated by using U.S. Food and Drug Administration–cleared software for automated quantitative MR imaging analysis (NeuroQuant). Results of quantitative MR imaging were compared with visual detection of atrophy, and, when available, with histologic specimens. Receiver operating characteristic analyses were performed to determine the optimal sensitivity and specificity of quantitative MR imaging for detecting HA and asymmetry. A linear classifier with cross validation was used to estimate the ability of quantitative MR imaging to help lateralize the seizure focus. Results: Quantitative MR imaging–derived hippocampal asymmetries discriminated patients with TLE from control subjects with high sensitivity (86.7%–89.5%) and specificity (92.2%–94.1%). When a linear classifier was used to discriminate left versus right TLE, hippocampal asymmetry achieved 94% classification accuracy. Volumetric asymmetries of other subcortical structures did not improve classification. Compared with invasive video electroencephalographic recordings, lateralization accuracy was 88% with quantitative MR imaging and 85% with visual inspection of volumetric MR imaging studies but only 76% with visual inspection of clinical MR imaging studies. Conclusion: Quantitative MR imaging can depict the presence and laterality of HA in TLE with accuracy rates that may exceed those achieved with visual inspection of clinical MR imaging studies. Thus, quantitative MR imaging may enhance standard visual analysis, providing a useful and viable means for translating volumetric analysis into clinical practice. © RSNA, 2012 Supplemental material: http://radiology.rsna.org/lookup/suppl/doi:10.1148/radiol.12112638/-/DC1 PMID:22723496

  2. Microfluidic volumetric flow determination using optical coherence tomography speckle: An autocorrelation approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Pretto, Lucas R., E-mail: lucas.de.pretto@usp.br; Nogueira, Gesse E. C.; Freitas, Anderson Z.

    2016-04-28

    Functional modalities of Optical Coherence Tomography (OCT) based on speckle analysis are emerging in the literature. We propose a simple approach to the autocorrelation of OCT signal to enable volumetric flow rate differentiation, based on decorrelation time. Our results show that this technique could distinguish flows separated by 3 μl/min, limited by the acquisition speed of the system. We further perform a B-scan of gradient flow inside a microchannel, enabling the visualization of the drag effect on the walls.

  3. Snapshot Hyperspectral Volumetric Microscopy

    NASA Astrophysics Data System (ADS)

    Wu, Jiamin; Xiong, Bo; Lin, Xing; He, Jijun; Suo, Jinli; Dai, Qionghai

    2016-04-01

    The comprehensive analysis of biological specimens brings about the demand for capturing the spatial, temporal and spectral dimensions of visual information together. However, such high-dimensional video acquisition faces major challenges in developing large data throughput and effective multiplexing techniques. Here, we report the snapshot hyperspectral volumetric microscopy that computationally reconstructs hyperspectral profiles for high-resolution volumes of ~1000 μm × 1000 μm × 500 μm at video rate by a novel four-dimensional (4D) deconvolution algorithm. We validated the proposed approach with both numerical simulations for quantitative evaluation and various real experimental results on the prototype system. Different applications such as biological component analysis in bright field and spectral unmixing of multiple fluorescence are demonstrated. The experiments on moving fluorescent beads and GFP labelled drosophila larvae indicate the great potential of our method for observing multiple fluorescent markers in dynamic specimens.

  4. Atlas-based liver segmentation and hepatic fat-fraction assessment for clinical trials.

    PubMed

    Yan, Zhennan; Zhang, Shaoting; Tan, Chaowei; Qin, Hongxing; Belaroussi, Boubakeur; Yu, Hui Jing; Miller, Colin; Metaxas, Dimitris N

    2015-04-01

    Automated assessment of hepatic fat-fraction is clinically important. A robust and precise segmentation would enable accurate, objective and consistent measurement of hepatic fat-fraction for disease quantification, therapy monitoring and drug development. However, segmenting the liver in clinical trials is a challenging task due to the variability of liver anatomy as well as the diverse sources the images were acquired from. In this paper, we propose an automated and robust framework for liver segmentation and assessment. It uses single statistical atlas registration to initialize a robust deformable model to obtain fine segmentation. Fat-fraction map is computed by using chemical shift based method in the delineated region of liver. This proposed method is validated on 14 abdominal magnetic resonance (MR) volumetric scans. The qualitative and quantitative comparisons show that our proposed method can achieve better segmentation accuracy with less variance comparing with two other atlas-based methods. Experimental results demonstrate the promises of our assessment framework. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. High spatiotemporal resolution measurement of regional lung air volumes from 2D phase contrast x-ray images.

    PubMed

    Leong, Andrew F T; Fouras, Andreas; Islam, M Sirajul; Wallace, Megan J; Hooper, Stuart B; Kitchen, Marcus J

    2013-04-01

    Described herein is a new technique for measuring regional lung air volumes from two-dimensional propagation-based phase contrast x-ray (PBI) images at very high spatial and temporal resolution. Phase contrast dramatically increases lung visibility and the outlined volumetric reconstruction technique quantifies dynamic changes in respiratory function. These methods can be used for assessing pulmonary disease and injury and for optimizing mechanical ventilation techniques for preterm infants using animal models. The volumetric reconstruction combines the algorithms of temporal subtraction and single image phase retrieval (SIPR) to isolate the image of the lungs from the thoracic cage in order to measure regional lung air volumes. The SIPR algorithm was used to recover the change in projected thickness of the lungs on a pixel-by-pixel basis (pixel dimensions ≈ 16.2 μm). The technique has been validated using numerical simulation and compared results of measuring regional lung air volumes with and without the use of temporal subtraction for removing the thoracic cage. To test this approach, a series of PBI images of newborn rabbit pups mechanically ventilated at different frequencies was employed. Regional lung air volumes measured from PBI images of newborn rabbit pups showed on average an improvement of at least 20% in 16% of pixels within the lungs in comparison to that measured without the use of temporal subtraction. The majority of pixels that showed an improvement was found to be in regions occupied by bone. Applying the volumetric technique to sequences of PBI images of newborn rabbit pups, it is shown that lung aeration at birth can be highly heterogeneous. This paper presents an image segmentation technique based on temporal subtraction that has successfully been used to isolate the lungs from PBI chest images, allowing the change in lung air volume to be measured over regions as small as the pixel size. Using this technique, it is possible to measure changes in regional lung volume at high spatial and temporal resolution during breathing at much lower x-ray dose than would be required using computed tomography.

  6. Evaluation of physicochemical properties of root-end filling materials using conventional and Micro-CT tests.

    PubMed

    Torres, Fernanda Ferrari Esteves; Bosso-Martelo, Roberta; Espir, Camila Galletti; Cirelli, Joni Augusto; Guerreiro-Tanomaru, Juliane Maria; Tanomaru-Filho, Mario

    2017-01-01

    To evaluate solubility, dimensional stability, filling ability and volumetric change of root-end filling materials using conventional tests and new Micro-CT-based methods. 7. The results suggested correlated or complementary data between the proposed tests. At 7 days, BIO showed higher solubility and at 30 days, showed higher volumetric change in comparison with MTA (p<0.05). With regard to volumetric change, the tested materials were similar (p>0.05) at 7 days. At 30 days, they presented similar solubility. BIO and MTA showed higher dimensional stability than ZOE (p<0.05). ZOE and BIO showed higher filling ability (p<0.05). ZOE presented a higher dimensional change, and BIO had greater solubility after 7 days. BIO presented filling ability and dimensional stability, but greater volumetric change than MTA after 30 days. Micro-CT can provide important data on the physicochemical properties of materials complementing conventional tests.

  7. Ultrahigh volumetric capacitance and cyclic stability of fluorine and nitrogen co-doped carbon microspheres

    NASA Astrophysics Data System (ADS)

    Zhou, Junshuang; Lian, Jie; Hou, Li; Zhang, Junchuan; Gou, Huiyang; Xia, Meirong; Zhao, Yufeng; Strobel, Timothy A.; Tao, Lu; Gao, Faming

    2015-09-01

    Highly porous nanostructures with large surface areas are typically employed for electrical double-layer capacitors to improve gravimetric energy storage capacity; however, high surface area carbon-based electrodes result in poor volumetric capacitance because of the low packing density of porous materials. Here, we demonstrate ultrahigh volumetric capacitance of 521 F cm-3 in aqueous electrolytes for non-porous carbon microsphere electrodes co-doped with fluorine and nitrogen synthesized by low-temperature solvothermal route, rivaling expensive RuO2 or MnO2 pseudo-capacitors. The new electrodes also exhibit excellent cyclic stability without capacitance loss after 10,000 cycles in both acidic and basic electrolytes at a high charge current of 5 A g-1. This work provides a new approach for designing high-performance electrodes with exceptional volumetric capacitance with high mass loadings and charge rates for long-lived electrochemical energy storage systems.

  8. Inverse analysis of giant macroscopic negative thermal expansion of Ca2RuO4‑ y ceramics based on elasticity and structural topology optimization

    NASA Astrophysics Data System (ADS)

    Takezawa, Akihiro; Takenaka, Koshi; Zhang, Xiaopeng

    2018-05-01

    Ca2RuO4‑ y ceramics exhibit a large volumetric negative thermal expansions (NTE), although the crystallographic volume contraction on heating is much smaller than the NTE. Therefore, we examine the differences in the mechanisms underlying the volumetric thermal expansion for ruthenate ceramics and crystals in the context of the elasticity. We identify the possible microstructure of ruthenate ceramics composed of crystal grains and cavities using structural topology optimization. We conclude that the measured large volumetric NTE of ruthenate ceramics is certainly possible via anisotropic crystallographic thermal expansion through an elastic mechanism.

  9. TU-CD-BRB-04: Automated Radiomic Features Complement the Prognostic Value of VASARI in the TCGA-GBM Dataset

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Velazquez, E Rios; Narayan, V; Grossmann, P

    2015-06-15

    Purpose: To compare the complementary prognostic value of automated Radiomic features to that of radiologist-annotated VASARI features in TCGA-GBM MRI dataset. Methods: For 96 GBM patients, pre-operative MRI images were obtained from The Cancer Imaging Archive. The abnormal tumor bulks were manually defined on post-contrast T1w images. The contrast-enhancing and necrotic regions were segmented using FAST. From these sub-volumes and the total abnormal tumor bulk, a set of Radiomic features quantifying phenotypic differences based on the tumor intensity, shape and texture, were extracted from the post-contrast T1w images. Minimum-redundancy-maximum-relevance (MRMR) was used to identify the most informative Radiomic, VASARI andmore » combined Radiomic-VASARI features in 70% of the dataset (training-set). Multivariate Cox-proportional hazards models were evaluated in 30% of the dataset (validation-set) using the C-index for OS. A bootstrap procedure was used to assess significance while comparing the C-Indices of the different models. Results: Overall, the Radiomic features showed a moderate correlation with the radiologist-annotated VASARI features (r = −0.37 – 0.49); however that correlation was stronger for the Tumor Diameter and Proportion of Necrosis VASARI features (r = −0.71 – 0.69). After MRMR feature selection, the best-performing Radiomic, VASARI, and Radiomic-VASARI Cox-PH models showed a validation C-index of 0.56 (p = NS), 0.58 (p = NS) and 0.65 (p = 0.01), respectively. The combined Radiomic-VASARI model C-index was significantly higher than that obtained from either the Radiomic or VASARI model alone (p = <0.001). Conclusion: Quantitative volumetric and textural Radiomic features complement the qualitative and semi-quantitative annotated VASARI feature set. The prognostic value of informative qualitative VASARI features such as Eloquent Brain and Multifocality is increased with the addition of quantitative volumetric and textural features from the contrast-enhancing and necrotic tumor regions. These results should be further evaluated in larger validation cohorts.« less

  10. CBCT-based volumetric and dosimetric variation evaluation of volumetric modulated arc radiotherapy in the treatment of nasopharyngeal cancer patients

    PubMed Central

    2013-01-01

    Objective To investigate the anatomic and dosimetric variations of volumetric modulated arc therapy (VMAT) in the treatment of nasopharyngeal cancer (NPC) patients based on weekly cone beam CT (CBCT). Materials and methods Ten NPC patients treated by VMAT with weekly CBCT for setup corrections were reviewed retrospectively. Deformed volumes of targets and organs at risk (OARs) in the CBCT were compared with those in the planning CT. Delivered doses were recalculated based on weekly CBCT and compared with the planned doses. Results No significant volumetric changes on targets, brainstem, and spinal cord were observed. The average volumes of right and left parotid measured from the fifth CBCT were about 4.4 and 4.5 cm3 less than those from the first CBCT, respectively. There were no significant dose differences between average planned and delivered doses for targets, brainstem and spinal cord. For right parotid, the delivered mean dose was 10.5 cGy higher (p = 0.004) than the planned value per fraction, and the V26 and V32 increased by 7.5% (p = 0.002) and 7.4% (p = 0.01), respectively. For the left parotid, the D50 (dose to the 50% volume) was 8.8 cGy higher (p = 0.03) than the planned values per fraction, and the V26 increased by 8.8% (p = 0.002). Conclusion Weekly CBCTs were applied directly to study the continuous volume changes and resulting dosimetric variations of targets and OARs for NPC patients undergoing VMAT. Significant volumetric and dosimetric variations were observed for parotids. Replanning after 30 Gy will benefit the protection on parotids. PMID:24289312

  11. Volumetric quantification of bone-implant contact using micro-computed tomography analysis based on region-based segmentation

    PubMed Central

    Kang, Sung-Won; Lee, Woo-Jin; Choi, Soon-Chul; Lee, Sam-Sun; Heo, Min-Suk; Huh, Kyung-Hoe

    2015-01-01

    Purpose We have developed a new method of segmenting the areas of absorbable implants and bone using region-based segmentation of micro-computed tomography (micro-CT) images, which allowed us to quantify volumetric bone-implant contact (VBIC) and volumetric absorption (VA). Materials and Methods The simple threshold technique generally used in micro-CT analysis cannot be used to segment the areas of absorbable implants and bone. Instead, a region-based segmentation method, a region-labeling method, and subsequent morphological operations were successively applied to micro-CT images. The three-dimensional VBIC and VA of the absorbable implant were then calculated over the entire volume of the implant. Two-dimensional (2D) bone-implant contact (BIC) and bone area (BA) were also measured based on the conventional histomorphometric method. Results VA and VBIC increased significantly with as the healing period increased (p<0.05). VBIC values were significantly correlated with VA values (p<0.05) and with 2D BIC values (p<0.05). Conclusion It is possible to quantify VBIC and VA for absorbable implants using micro-CT analysis using a region-based segmentation method. PMID:25793178

  12. A novel image processing technique for 3D volumetric analysis of severely resorbed alveolar sockets with CBCT.

    PubMed

    Manavella, Valeria; Romano, Federica; Garrone, Federica; Terzini, Mara; Bignardi, Cristina; Aimetti, Mario

    2017-06-01

    The aim of this study was to present and validate a novel procedure for the quantitative volumetric assessment of extraction sockets that combines cone-beam computed tomography (CBCT) and image processing techniques. The CBCT dataset of 9 severely resorbed extraction sockets was analyzed by means of two image processing software, Image J and Mimics, using manual and automated segmentation techniques. They were also applied on 5-mm spherical aluminum markers of known volume and on a polyvinyl chloride model of one alveolar socket scanned with Micro-CT to test the accuracy. Statistical differences in alveolar socket volume were found between the different methods of volumetric analysis (P<0.0001). The automated segmentation using Mimics was the most reliable and accurate method with a relative error of 1.5%, considerably smaller than the error of 7% and of 10% introduced by the manual method using Mimics and by the automated method using ImageJ. The currently proposed automated segmentation protocol for the three-dimensional rendering of alveolar sockets showed more accurate results, excellent inter-observer similarity and increased user friendliness. The clinical application of this method enables a three-dimensional evaluation of extraction socket healing after the reconstructive procedures and during the follow-up visits.

  13. Enhancing the discrimination accuracy between metastases, gliomas and meningiomas on brain MRI by volumetric textural features and ensemble pattern recognition methods.

    PubMed

    Georgiadis, Pantelis; Cavouras, Dionisis; Kalatzis, Ioannis; Glotsos, Dimitris; Athanasiadis, Emmanouil; Kostopoulos, Spiros; Sifaki, Koralia; Malamas, Menelaos; Nikiforidis, George; Solomou, Ekaterini

    2009-01-01

    Three-dimensional (3D) texture analysis of volumetric brain magnetic resonance (MR) images has been identified as an important indicator for discriminating among different brain pathologies. The purpose of this study was to evaluate the efficiency of 3D textural features using a pattern recognition system in the task of discriminating benign, malignant and metastatic brain tissues on T1 postcontrast MR imaging (MRI) series. The dataset consisted of 67 brain MRI series obtained from patients with verified and untreated intracranial tumors. The pattern recognition system was designed as an ensemble classification scheme employing a support vector machine classifier, specially modified in order to integrate the least squares features transformation logic in its kernel function. The latter, in conjunction with using 3D textural features, enabled boosting up the performance of the system in discriminating metastatic, malignant and benign brain tumors with 77.14%, 89.19% and 93.33% accuracy, respectively. The method was evaluated using an external cross-validation process; thus, results might be considered indicative of the generalization performance of the system to "unseen" cases. The proposed system might be used as an assisting tool for brain tumor characterization on volumetric MRI series.

  14. Heat capacities and volumetric changes in the glass transition range: a constitutive approach based on the standard linear solid

    NASA Astrophysics Data System (ADS)

    Lion, Alexander; Mittermeier, Christoph; Johlitz, Michael

    2017-09-01

    A novel approach to represent the glass transition is proposed. It is based on a physically motivated extension of the linear viscoelastic Poynting-Thomson model. In addition to a temperature-dependent damping element and two linear springs, two thermal strain elements are introduced. In order to take the process dependence of the specific heat into account and to model its characteristic behaviour below and above the glass transition, the Helmholtz free energy contains an additional contribution which depends on the temperature history and on the current temperature. The model describes the process-dependent volumetric and caloric behaviour of glass-forming materials, and defines a functional relationship between pressure, volumetric strain, and temperature. If a model for the isochoric part of the material behaviour is already available, for example a model of finite viscoelasticity, the caloric and volumetric behaviour can be represented with the current approach. The proposed model allows computing the isobaric and isochoric heat capacities in closed form. The difference c_p -c_v is process-dependent and tends towards the classical expression in the glassy and equilibrium ranges. Simulations and theoretical studies demonstrate the physical significance of the model.

  15. Integrated one- and two-photon scanned oblique plane illumination (SOPi) microscopy for rapid volumetric imaging

    NASA Astrophysics Data System (ADS)

    Kumar, Manish; Kishore, Sandeep; Nasenbeny, Jordan; McLean, David L.; Kozorovitskiy, Yevgenia

    2018-05-01

    Versatile, sterically accessible imaging systems capable of in vivo rapid volumetric functional and structural imaging deep in the brain continue to be a limiting factor in neuroscience research. Towards overcoming this obstacle, we present integrated one- and two-photon scanned oblique plane illumination (SOPi) microscopy which uses a single front-facing microscope objective to provide light-sheet scanning based rapid volumetric imaging capability at subcellular resolution. Our planar scan-mirror based optimized light-sheet architecture allows for non-distorted scanning of volume samples, simplifying accurate reconstruction of the imaged volume. Integration of both one-photon (1P) and two-photon (2P) light-sheet microscopy in the same system allows for easy selection between rapid volumetric imaging and higher resolution imaging in scattering media. Using SOPi, we demonstrate deep, large volume imaging capability inside scattering mouse brain sections and rapid imaging speeds up to 10 volumes per second in zebrafish larvae expressing genetically encoded fluorescent proteins GFP or GCaMP6s. SOPi flexibility and steric access makes it adaptable for numerous imaging applications and broadly compatible with orthogonal techniques for actuating or interrogating neuronal structure and activity.

  16. Multimodal molecular 3D imaging for the tumoral volumetric distribution assessment of folate-based biosensors.

    PubMed

    Ramírez-Nava, Gerardo J; Santos-Cuevas, Clara L; Chairez, Isaac; Aranda-Lara, Liliana

    2017-12-01

    The aim of this study was to characterize the in vivo volumetric distribution of three folate-based biosensors by different imaging modalities (X-ray, fluorescence, Cerenkov luminescence, and radioisotopic imaging) through the development of a tridimensional image reconstruction algorithm. The preclinical and multimodal Xtreme imaging system, with a Multimodal Animal Rotation System (MARS), was used to acquire bidimensional images, which were processed to obtain the tridimensional reconstruction. Images of mice at different times (biosensor distribution) were simultaneously obtained from the four imaging modalities. The filtered back projection and inverse Radon transformation were used as main image-processing techniques. The algorithm developed in Matlab was able to calculate the volumetric profiles of 99m Tc-Folate-Bombesin (radioisotopic image), 177 Lu-Folate-Bombesin (Cerenkov image), and FolateRSense™ 680 (fluorescence image) in tumors and kidneys of mice, and no significant differences were detected in the volumetric quantifications among measurement techniques. The imaging tridimensional reconstruction algorithm can be easily extrapolated to different 2D acquisition-type images. This characteristic flexibility of the algorithm developed in this study is a remarkable advantage in comparison to similar reconstruction methods.

  17. Integrated one- and two-photon scanned oblique plane illumination (SOPi) microscopy for rapid volumetric imaging.

    PubMed

    Kumar, Manish; Kishore, Sandeep; Nasenbeny, Jordan; McLean, David L; Kozorovitskiy, Yevgenia

    2018-05-14

    Versatile, sterically accessible imaging systems capable of in vivo rapid volumetric functional and structural imaging deep in the brain continue to be a limiting factor in neuroscience research. Towards overcoming this obstacle, we present integrated one- and two-photon scanned oblique plane illumination (SOPi, /sōpī/) microscopy which uses a single front-facing microscope objective to provide light-sheet scanning based rapid volumetric imaging capability at subcellular resolution. Our planar scan-mirror based optimized light-sheet architecture allows for non-distorted scanning of volume samples, simplifying accurate reconstruction of the imaged volume. Integration of both one-photon (1P) and two-photon (2P) light-sheet microscopy in the same system allows for easy selection between rapid volumetric imaging and higher resolution imaging in scattering media. Using SOPi, we demonstrate deep, large volume imaging capability inside scattering mouse brain sections and rapid imaging speeds up to 10 volumes per second in zebrafish larvae expressing genetically encoded fluorescent proteins GFP or GCaMP6s. SOPi's flexibility and steric access makes it adaptable for numerous imaging applications and broadly compatible with orthogonal techniques for actuating or interrogating neuronal structure and activity.

  18. Towards a Holistic Cortical Thickness Descriptor: Heat Kernel-Based Grey Matter Morphology Signatures.

    PubMed

    Wang, Gang; Wang, Yalin

    2017-02-15

    In this paper, we propose a heat kernel based regional shape descriptor that may be capable of better exploiting volumetric morphological information than other available methods, thereby improving statistical power on brain magnetic resonance imaging (MRI) analysis. The mechanism of our analysis is driven by the graph spectrum and the heat kernel theory, to capture the volumetric geometry information in the constructed tetrahedral meshes. In order to capture profound brain grey matter shape changes, we first use the volumetric Laplace-Beltrami operator to determine the point pair correspondence between white-grey matter and CSF-grey matter boundary surfaces by computing the streamlines in a tetrahedral mesh. Secondly, we propose multi-scale grey matter morphology signatures to describe the transition probability by random walk between the point pairs, which reflects the inherent geometric characteristics. Thirdly, a point distribution model is applied to reduce the dimensionality of the grey matter morphology signatures and generate the internal structure features. With the sparse linear discriminant analysis, we select a concise morphology feature set with improved classification accuracies. In our experiments, the proposed work outperformed the cortical thickness features computed by FreeSurfer software in the classification of Alzheimer's disease and its prodromal stage, i.e., mild cognitive impairment, on publicly available data from the Alzheimer's Disease Neuroimaging Initiative. The multi-scale and physics based volumetric structure feature may bring stronger statistical power than some traditional methods for MRI-based grey matter morphology analysis. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Progression of brain atrophy in PSP and CBS over 6 months and 1 year.

    PubMed

    Dutt, Shubir; Binney, Richard J; Heuer, Hilary W; Luong, Phi; Attygalle, Suneth; Bhatt, Priyanka; Marx, Gabe A; Elofson, Jonathan; Tartaglia, Maria C; Litvan, Irene; McGinnis, Scott M; Dickerson, Bradford C; Kornak, John; Waltzman, Dana; Voltarelli, Lisa; Schuff, Norbert; Rabinovici, Gil D; Kramer, Joel H; Jack, Clifford R; Miller, Bruce L; Rosen, Howard J; Boxer, Adam L

    2016-11-08

    To examine the utility and reliability of volumetric MRI in measuring disease progression in the 4 repeat tauopathies, progressive supranuclear palsy (PSP) and corticobasal syndrome (CBS), to support clinical development of new tau-directed therapeutic agents. Six- and 12-month changes in regional MRI volumes and PSP Rating Scale scores were examined in 55 patients with PSP and 33 patients with CBS (78% amyloid PET negative) compared to 30 normal controls from a multicenter natural history study. Longitudinal voxel-based morphometric analyses identified patterns of volume loss, and region-of-interest analyses examined rates of volume loss in brainstem (midbrain, pons, superior cerebellar peduncle), cortical, and subcortical regions based on previously validated atlases. Results were compared to those in a replication cohort of 226 patients with PSP with MRI data from the AL-108-231 clinical trial. Patients with CBS exhibited greater baseline atrophy and greater longitudinal atrophy rates in cortical and basal ganglia regions than patients with PSP; however, midbrain and pontine atrophy rates were similar. Voxel-wise analyses showed distinct patterns of regional longitudinal atrophy in each group as compared to normal controls. The midbrain/pons volumetric ratio differed between diagnoses but remained stable over time. In both patient groups, brainstem atrophy rates were correlated with disease progression measured using the PSP Rating Scale. Volume loss is quantifiable over a period of 6 months in CBS and PSP. Future clinical trials may be able to combine CBS and PSP to measure therapeutic effects. © 2016 American Academy of Neurology.

  20. Ischemic lesion volume determination on diffusion weighted images vs. apparent diffusion coefficient maps.

    PubMed

    Bråtane, Bernt Tore; Bastan, Birgul; Fisher, Marc; Bouley, James; Henninger, Nils

    2009-07-07

    Though diffusion weighted imaging (DWI) is frequently used for identifying the ischemic lesion in focal cerebral ischemia, the understanding of spatiotemporal evolution patterns observed with different analysis methods remains imprecise. DWI and calculated apparent diffusion coefficient (ADC) maps were serially obtained in rat stroke models (MCAO): permanent, 90 min, and 180 min temporary MCAO. Lesion volumes were analyzed in a blinded and randomized manner by 2 investigators using (i) a previously validated ADC threshold, (ii) visual determination of hypointense regions on ADC maps, and (iii) visual determination of hyperintense regions on DWI. Lesion volumes were correlated with 24 hour 2,3,5-triphenyltetrazoliumchloride (TTC)-derived infarct volumes. TTC-derived infarct volumes were not significantly different from the ADC and DWI-derived lesion volumes at the last imaging time points except for significantly smaller DWI lesions in the pMCAO model (p=0.02). Volumetric calculation based on TTC-derived infarct also correlated significantly stronger to volumetric calculation based on last imaging time point derived lesions on ADC maps than DWI (p<0.05). Following reperfusion, lesion volumes on the ADC maps significantly reduced but no change was observed on DWI. Visually determined lesion volumes on ADC maps and DWI by both investigators correlated significantly with threshold-derived lesion volumes on ADC maps with the former method demonstrating a stronger correlation. There was also a better interrater agreement for ADC map analysis than for DWI analysis. Ischemic lesion determination by ADC was more accurate in final infarct prediction, rater independent, and provided exclusive information on ischemic lesion reversibility.

  1. Validation of spectroscopic gas analyzer accuracy using gravimetric standard gas mixtures: impact of background gas composition on CO2 quantitation by cavity ring-down spectroscopy

    NASA Astrophysics Data System (ADS)

    Lim, Jeong Sik; Park, Miyeon; Lee, Jinbok; Lee, Jeongsoon

    2017-12-01

    The effect of background gas composition on the measurement of CO2 levels was investigated by wavelength-scanned cavity ring-down spectrometry (WS-CRDS) employing a spectral line centered at the R(1) of the (3 00 1)III ← (0 0 0) band. For this purpose, eight cylinders with various gas compositions were gravimetrically and volumetrically prepared within 2σ = 0.1 %, and these gas mixtures were introduced into the WS-CRDS analyzer calibrated against standards of ambient air composition. Depending on the gas composition, deviations between CRDS-determined and gravimetrically (or volumetrically) assigned CO2 concentrations ranged from -9.77 to 5.36 µmol mol-1, e.g., excess N2 exhibited a negative deviation, whereas excess Ar showed a positive one. The total pressure broadening coefficients (TPBCs) obtained from the composition of N2, O2, and Ar thoroughly corrected the deviations up to -0.5 to 0.6 µmol mol-1, while these values were -0.43 to 1.43 µmol mol-1 considering PBCs induced by only N2. The use of TPBC enhanced deviations to be corrected to ˜ 0.15 %. Furthermore, the above correction linearly shifted CRDS responses for a large extent of TPBCs ranging from 0.065 to 0.081 cm-1 atm-1. Thus, accurate measurements using optical intensity-based techniques such as WS-CRDS require TPBC-based instrument calibration or use standards prepared in the same background composition of ambient air.

  2. Microwave heating for thermoplastic composites - Could the technology be used for welding applications?

    NASA Astrophysics Data System (ADS)

    Barasinski, Anaïs; Tertrais, Hermine; Bechtel, Stéphane; Chinesta, Francisco

    2018-05-01

    Welding primary structure thermoplastic composites parts is still an issue today, many technologies have been extensively studied: induction, ultrasonic, resistive welding, none is today entirely viable for this application due to various implementation reasons. On the other hand, microwave solutions are not very common in composites forming process, although being widespread in homes. Microwave (MW) technology relies on volumetric heating. Thermal energy is transferred from an electromagnetic field to materials that can absorb it at specific frequencies. Volumetric heating enables better process temperature control and less overall energy losses, which can results in shorter processing cycles and higher process efficiency. Nowadays, the main drawback of this technology is that the complex physics involved in the conversion of electromagnetic energy in thermal energy (heating) is not entirely understood and controlled for complex materials. In that work, the authors propose to look deeper in that way, first proposing a simulation tool, based on a coupling between a commercial code and a home made one, allowing the following of the electromagnetic field very precisely in the thickness of a laminate composite part, the last consisting of a stack of layers with different orientations, each layer made of a resin matrix and carbon fibers. Thermal fields are then computed and validated by experimental measurements. In a second part, the authors propose to look at a common welding case of a stringer, on a skin.

  3. Free-breathing imaging of the heart using 2D cine-GRICS (generalized reconstruction by inversion of coupled systems) with assessment of ventricular volumes and function.

    PubMed

    Vuissoz, Pierre-André; Odille, Freddy; Fernandez, Brice; Lohezic, Maelene; Benhadid, Adnane; Mandry, Damien; Felblinger, Jacques

    2012-02-01

    To assess cardiac function by means of a novel free-breathing cardiac magnetic resonance imaging (MRI) strategy. A stack of ungated 2D steady-state free precession (SSFP) slices was acquired during free breathing and reconstructed as cardiac cine imaging based on the generalized reconstruction by inversion of coupled systems (GRICS). A motion-compensated sliding window approach allows reconstructing cine movies with most motion artifacts cancelled. The proposed reconstruction uses prior knowledge from respiratory belts and electrocardiogram recordings and features a piecewise linear model that relates the electrocardiogram signal to cardiac displacements. The free-breathing protocol was validated in six subjects against a standard breath-held protocol. Image sharpness, as assessed by the image gradient entropy, was comparable to that of breath-held images and significantly better than in uncorrected images. Volumetric parameters of cardiac function in the left ventricle (LV) and right ventricle (RV) were similar, including end-systolic volumes, end-diastolic volumes and mass, stroke volumes, and ejection fractions (with differences of 3% ± 2.4 in the LV and 2.9% ± 4.4 in the RV). The duration of the free-breathing protocol was nearly the same as the breath-held protocol. Free-breathing cine-GRICS enables accurate assessment of volumetric parameters of cardiac function with efficient correction of motion. Copyright © 2011 Wiley Periodicals, Inc.

  4. Fast isotropic banding-free bSSFP imaging using 3D dynamically phase-cycled radial bSSFP (3D DYPR-SSFP).

    PubMed

    Benkert, Thomas; Ehses, Philipp; Blaimer, Martin; Jakob, Peter M; Breuer, Felix A

    2016-03-01

    Dynamically phase-cycled radial balanced steady-state free precession (DYPR-SSFP) is a method for efficient banding artifact removal in bSSFP imaging. Based on a varying radiofrequency (RF) phase-increment in combination with a radial trajectory, DYPR-SSFP allows obtaining a banding-free image out of a single acquired k-space. The purpose of this work is to present an extension of this technique, enabling fast three-dimensional isotropic banding-free bSSFP imaging. While banding artifact removal with DYPR-SSFP relies on the applied dynamic phase-cycle, this aspect can lead to artifacts, at least when the number of acquired projections lies below a certain limit. However, by using a 3D radial trajectory with quasi-random view ordering for image acquisition, this problem is intrinsically solved, enabling 3D DYPR-SSFP imaging at or even below the Nyquist criterion. The approach is validated for brain and knee imaging at 3 Tesla. Volumetric, banding-free images were obtained in clinically acceptable scan times with an isotropic resolution up to 0.56mm. The combination of DYPR-SSFP with a 3D radial trajectory allows banding-free isotropic volumetric bSSFP imaging with no expense of scan time. Therefore, this is a promising candidate for clinical applications such as imaging of cranial nerves or articular cartilage. Copyright © 2015. Published by Elsevier GmbH.

  5. Segmentation of 3d Models for Cultural Heritage Structural Analysis - Some Critical Issues

    NASA Astrophysics Data System (ADS)

    Gonizzi Barsanti, S.; Guidi, G.; De Luca, L.

    2017-08-01

    Cultural Heritage documentation and preservation has become a fundamental concern in this historical period. 3D modelling offers a perfect aid to record ancient buildings and artefacts and can be used as a valid starting point for restoration, conservation and structural analysis, which can be performed by using Finite Element Methods (FEA). The models derived from reality-based techniques, made up of the exterior surfaces of the objects captured at high resolution, are - for this reason - made of millions of polygons. Such meshes are not directly usable in structural analysis packages and need to be properly pre-processed in order to be transformed in volumetric meshes suitable for FEA. In addition, dealing with ancient objects, a proper segmentation of 3D volumetric models is needed to analyse the behaviour of the structure with the most suitable level of detail for the different sections of the structure under analysis. Segmentation of 3D models is still an open issue, especially when dealing with ancient, complicated and geometrically complex objects that imply the presence of anomalies and gaps, due to environmental agents such as earthquakes, pollution, wind and rain, or human factors. The aims of this paper is to critically analyse some of the different methodologies and algorithms available to segment a 3D point cloud or a mesh, identifying difficulties and problems by showing examples on different structures.

  6. Modeling Electrochemical Performance of the Hierarchical Morphology of Precious Group Metal-free Cathode for Polymer Electrolyte Fuel Cell

    DOE PAGES

    Komini Babu, Siddharth; Chung, Hoon Taek; Zelenay, Piotr; ...

    2017-08-04

    Here, this paper presents a two-dimensional (2D) computational model of a polymer electrolyte fuel cell (PEFC) with a platinum group metal-free (PGM-free) catalyst cathode that can significantly reduce PEFC costs by eliminating the need for expensive platinum catalysts. Due to their comparatively low volumetric activity, PGM-free cathodes are an order of magnitude thicker than their Pt-based counterpart. The resulting need for greater electrode thickness to achieve sufficient power density requires careful attention to the transport losses across the thicker cathodes. The presented model is used to correlate the composition and morphology of the cathode to PEFC performance. The model ismore » a complete cell, continuum model that includes an advanced agglomerate model for a microstructurally consistent representation of the cathode. A unique feature of the approach is the integration of morphology and transport parameter statistics extracted from nano-scale resolution X-ray computed tomography (nano-CT) imaging of PGM-free cathodes. The model was validated with experimental results of PGM-free cathodes with varying Nafion loading. Lastly, our key findings are a need for increased cathode hydrophobicity and increased ionomer conductivity through either reduced tortuosity or increased bulk conductivity. We further use the model to evaluate targets for the volumetric activity and active site density for future catalysts.« less

  7. Modeling Electrochemical Performance of the Hierarchical Morphology of Precious Group Metal-free Cathode for Polymer Electrolyte Fuel Cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Komini Babu, Siddharth; Chung, Hoon Taek; Zelenay, Piotr

    Here, this paper presents a two-dimensional (2D) computational model of a polymer electrolyte fuel cell (PEFC) with a platinum group metal-free (PGM-free) catalyst cathode that can significantly reduce PEFC costs by eliminating the need for expensive platinum catalysts. Due to their comparatively low volumetric activity, PGM-free cathodes are an order of magnitude thicker than their Pt-based counterpart. The resulting need for greater electrode thickness to achieve sufficient power density requires careful attention to the transport losses across the thicker cathodes. The presented model is used to correlate the composition and morphology of the cathode to PEFC performance. The model ismore » a complete cell, continuum model that includes an advanced agglomerate model for a microstructurally consistent representation of the cathode. A unique feature of the approach is the integration of morphology and transport parameter statistics extracted from nano-scale resolution X-ray computed tomography (nano-CT) imaging of PGM-free cathodes. The model was validated with experimental results of PGM-free cathodes with varying Nafion loading. Lastly, our key findings are a need for increased cathode hydrophobicity and increased ionomer conductivity through either reduced tortuosity or increased bulk conductivity. We further use the model to evaluate targets for the volumetric activity and active site density for future catalysts.« less

  8. Validation of cone beam computed tomography-based tooth printing using different three-dimensional printing technologies.

    PubMed

    Khalil, Wael; EzEldeen, Mostafa; Van De Casteele, Elke; Shaheen, Eman; Sun, Yi; Shahbazian, Maryam; Olszewski, Raphael; Politis, Constantinus; Jacobs, Reinhilde

    2016-03-01

    Our aim was to determine the accuracy of 3-dimensional reconstructed models of teeth compared with the natural teeth by using 4 different 3-dimensional printers. This in vitro study was carried out using 2 intact, dry adult human mandibles, which were scanned with cone beam computed tomography. Premolars were selected for this study. Dimensional differences between natural teeth and the printed models were evaluated directly by using volumetric differences and indirectly through optical scanning. Analysis of variance, Pearson correlation, and Bland Altman plots were applied for statistical analysis. Volumetric measurements from natural teeth and fabricated models, either by the direct method (the Archimedes principle) or by the indirect method (optical scanning), showed no statistical differences. The mean volume difference ranged between 3.1 mm(3) (0.7%) and 4.4 mm(3) (1.9%) for the direct measurement, and between -1.3 mm(3) (-0.6%) and 11.9 mm(3) (+5.9%) for the optical scan. A surface part comparison analysis showed that 90% of the values revealed a distance deviation within the interval 0 to 0.25 mm. Current results showed a high accuracy of all printed models of teeth compared with natural teeth. This outcome opens perspectives for clinical use of cost-effective 3-dimensional printed teeth for surgical procedures, such as tooth autotransplantation. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Novel Quaternary Chalcogenide/Reduced Graphene Oxide-Based Asymmetric Supercapacitor with High Energy Density.

    PubMed

    Sarkar, Samrat; Howli, Promita; Das, Biswajit; Das, Nirmalya Sankar; Samanta, Madhupriya; Das, G C; Chattopadhyay, K K

    2017-07-12

    In this work we have synthesized quaternary chalcogenide Cu 2 NiSnS 4 (QC) nanoparticles grown in situ on 2D reduced graphene oxide (rGO) for application as anode material of solid-state asymmetric supercapacitors (ASCs). Thorough characterization of the synthesized composite validates the proper phase, stoichiometry, and morphology. Detailed electrochemical study of the electrode materials and ASCs has been performed. The as-fabricated device delivers an exceptionally high areal capacitance (655.1 mF cm -2 ), which is much superior to that of commercial micro-supercapacitors. Furthermore, a remarkable volumetric capacitance of 16.38 F cm -3 is obtained at a current density of 5 mA cm -2 combined with a very high energy density of 5.68 mW h cm -3 , which is comparable to that of commercially available lithium thin film batteries. The device retains 89.2% of the initial capacitance after running for 2000 cycles, suggesting its long-term capability. Consequently, the enhanced areal and volumetric capacitances combined with decent cycle stability and impressive energy density endow the uniquely decorated QC/rGO composite material as a promising candidate in the arena of energy storage devices. Moreover, Cu 2 NiSnS 4 being a narrow band gap photovoltaic material, this work offers a novel protocol for the development of self-charging supercapacitors in the days to come.

  10. Gradients estimation from random points with volumetric tensor in turbulence

    NASA Astrophysics Data System (ADS)

    Watanabe, Tomoaki; Nagata, Koji

    2017-12-01

    We present an estimation method of fully-resolved/coarse-grained gradients from randomly distributed points in turbulence. The method is based on a linear approximation of spatial gradients expressed with the volumetric tensor, which is a 3 × 3 matrix determined by a geometric distribution of the points. The coarse grained gradient can be considered as a low pass filtered gradient, whose cutoff is estimated with the eigenvalues of the volumetric tensor. The present method, the volumetric tensor approximation, is tested for velocity and passive scalar gradients in incompressible planar jet and mixing layer. Comparison with a finite difference approximation on a Cartesian grid shows that the volumetric tensor approximation computes the coarse grained gradients fairly well at a moderate computational cost under various conditions of spatial distributions of points. We also show that imposing the solenoidal condition improves the accuracy of the present method for solenoidal vectors, such as a velocity vector in incompressible flows, especially when the number of the points is not large. The volumetric tensor approximation with 4 points poorly estimates the gradient because of anisotropic distribution of the points. Increasing the number of points from 4 significantly improves the accuracy. Although the coarse grained gradient changes with the cutoff length, the volumetric tensor approximation yields the coarse grained gradient whose magnitude is close to the one obtained by the finite difference. We also show that the velocity gradient estimated with the present method well captures the turbulence characteristics such as local flow topology, amplification of enstrophy and strain, and energy transfer across scales.

  11. Collaborative voxel-based surgical virtual environments.

    PubMed

    Acosta, Eric; Muniz, Gilbert; Armonda, Rocco; Bowyer, Mark; Liu, Alan

    2008-01-01

    Virtual Reality-based surgical simulators can utilize Collaborative Virtual Environments (C-VEs) to provide team-based training. To support real-time interactions, C-VEs are typically replicated on each user's local computer and a synchronization method helps keep all local copies consistent. This approach does not work well for voxel-based C-VEs since large and frequent volumetric updates make synchronization difficult. This paper describes a method that allows multiple users to interact within a voxel-based C-VE for a craniotomy simulator being developed. Our C-VE method requires smaller update sizes and provides faster synchronization update rates than volumetric-based methods. Additionally, we address network bandwidth/latency issues to simulate networked haptic and bone drilling tool interactions with a voxel-based skull C-VE.

  12. One-dimensional model and solutions for creeping gas flows in the approximation of uniform pressure

    NASA Astrophysics Data System (ADS)

    Vedernikov, A.; Balapanov, D.

    2016-11-01

    A model, along with analytical and numerical solutions, is presented to describe a wide variety of one-dimensional slow flows of compressible heat-conductive fluids. The model is based on the approximation of uniform pressure valid for the flows, in which the sound propagation time is much shorter than the duration of any meaningful density variation in the system. The energy balance is described by the heat equation that is solved independently. This approach enables the explicit solution for the fluid velocity to be obtained. Interfacial and volumetric heat and mass sources as well as boundary motion are considered as possible sources of density variation in the fluid. A set of particular tasks is analyzed for different motion sources in planar, axial, and central symmetries in the quasistationary limit of heat conduction (i.e., for large Fourier number). The analytical solutions are in excellent agreement with corresponding numerical solutions of the whole system of the Navier-Stokes equations. This work deals with the ideal gas. The approach is also valid for other equations of state.

  13. The Anode Challenge for Lithium-Ion Batteries: A Mechanochemically Synthesized Sn-Fe-C Composite Anode Surpasses Graphitic Carbon

    DOE PAGES

    Dong, Zhixin; Zhang, Ruibo; Ji, Dongsheng; ...

    2016-02-04

    Carbon-based anodes are the key limiting factor in increasing the volumetric capacity of lithium-ion batteries. Tin-based composites are one alternative approach. Nanosized Sn–Fe–C anode materials are mechanochemically synthesized by reducing SnO with Ti in the presence of carbon. The optimum synthesis conditions are found to be 1:0.25:10 for initial ratio of SnO, Ti, and graphite with a total grinding time of 8 h. This optimized composite shows excellent extended cycling at the C/10 rate, delivering a first charge capacity as high as 740 mAh g –1 and 60% of which still remained after 170 cycles. The calculated volumetric capacity significantlymore » exceeds that of carbon. In conclusion, it also exhibits excellent rate capability, delivering volumetric capacity higher than 1.6 Ah cc –1 over 140 cycles at the 1 C rate.« less

  14. Light-Curing Volumetric Shrinkage in Dimethacrylate-Based Dental Composites by Nanoindentation and PAL Study.

    PubMed

    Shpotyuk, Olha; Adamiak, Stanislaw; Bezvushko, Elvira; Cebulski, Jozef; Iskiv, Maryana; Shpotyuk, Oleh; Balitska, Valentina

    2017-12-01

    Light-curing volumetric shrinkage in dimethacrylate-based dental resin composites Dipol® is examined through comprehensive kinetics research employing nanoindentation measurements and nanoscale atomic-deficient study with lifetime spectroscopy of annihilating positrons. Photopolymerization kinetics determined through nanoindentation testing is shown to be described via single-exponential relaxation function with character time constants reaching respectively 15.0 and 18.7 s for nanohardness and elastic modulus. Atomic-deficient characteristics of composites are extracted from positron lifetime spectra parameterized employing unconstrained x3-term fitting. The tested photopolymerization kinetics can be adequately reflected in time-dependent changes observed in average positron lifetime (with 17.9 s time constant) and fractional free volume of positronium traps (with 18.6 s time constant). This correlation proves that fragmentation of free-volume positronium-trapping sites accompanied by partial positronium-to-positron traps conversion determines the light-curing volumetric shrinkage in the studied composites.

  15. High resolution coherence domain depth-resolved nailfold capillaroscopy based on correlation mapping optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Subhash, Hrebesh M.; O'Gorman, Sean; Neuhaus, Kai; Leahy, Martin

    2014-03-01

    In this paper we demonstrate a novel application of correlation mapping optical coherence tomography (cm-OCT) for volumetric nailfold capillaroscopy (NFC). NFC is a widely used non-invasive diagnostic method to analyze capillary morphology and microvascular abnormalities of nailfold area for a range of disease conditions. However, the conventional NFC is incapable of providing volumetric imaging, when volumetric quantitative microangiopathic parameters such as plexus morphology, capillary density, and morphologic anomalies of the end row loops most critical. cm-OCT is a recently developed well established coherence domain magnitude based angiographic modality, which takes advantage of the time-varying speckle effect, which is normally dominant in the vicinity of vascular regions compared to static tissue region. It utilizes the correlation coefficient as a direct measurement of decorrelation between two adjacent B-frames to enhance the visibility of depth-resolved microcirculation.

  16. Resolving Mixed Algal Species in Hyperspectral Images

    PubMed Central

    Mehrubeoglu, Mehrube; Teng, Ming Y.; Zimba, Paul V.

    2014-01-01

    We investigated a lab-based hyperspectral imaging system's response from pure (single) and mixed (two) algal cultures containing known algae types and volumetric combinations to characterize the system's performance. The spectral response to volumetric changes in single and combinations of algal mixtures with known ratios were tested. Constrained linear spectral unmixing was applied to extract the algal content of the mixtures based on abundances that produced the lowest root mean square error. Percent prediction error was computed as the difference between actual percent volumetric content and abundances at minimum RMS error. Best prediction errors were computed as 0.4%, 0.4% and 6.3% for the mixed spectra from three independent experiments. The worst prediction errors were found as 5.6%, 5.4% and 13.4% for the same order of experiments. Additionally, Beer-Lambert's law was utilized to relate transmittance to different volumes of pure algal suspensions demonstrating linear logarithmic trends for optical property measurements. PMID:24451451

  17. Validation of model-based brain shift correction in neurosurgery via intraoperative magnetic resonance imaging: preliminary results

    NASA Astrophysics Data System (ADS)

    Luo, Ma; Frisken, Sarah F.; Weis, Jared A.; Clements, Logan W.; Unadkat, Prashin; Thompson, Reid C.; Golby, Alexandra J.; Miga, Michael I.

    2017-03-01

    The quality of brain tumor resection surgery is dependent on the spatial agreement between preoperative image and intraoperative anatomy. However, brain shift compromises the aforementioned alignment. Currently, the clinical standard to monitor brain shift is intraoperative magnetic resonance (iMR). While iMR provides better understanding of brain shift, its cost and encumbrance is a consideration for medical centers. Hence, we are developing a model-based method that can be a complementary technology to address brain shift in standard resections, with resource-intensive cases as referrals for iMR facilities. Our strategy constructs a deformation `atlas' containing potential deformation solutions derived from a biomechanical model that account for variables such as cerebrospinal fluid drainage and mannitol effects. Volumetric deformation is estimated with an inverse approach that determines the optimal combinatory `atlas' solution fit to best match measured surface deformation. Accordingly, preoperative image is updated based on the computed deformation field. This study is the latest development to validate our methodology with iMR. Briefly, preoperative and intraoperative MR images of 2 patients were acquired. Homologous surface points were selected on preoperative and intraoperative scans as measurement of surface deformation and used to drive the inverse problem. To assess the model accuracy, subsurface shift of targets between preoperative and intraoperative states was measured and compared to model prediction. Considering subsurface shift above 3 mm, the proposed strategy provides an average shift correction of 59% across 2 cases. While further improvements in both the model and ability to validate with iMR are desired, the results reported are encouraging.

  18. Right ventricular volumes assessed by echocardiographic three-dimensional knowledge-based reconstruction compared with magnetic resonance imaging in a clinical setting.

    PubMed

    Neukamm, Christian; Try, Kirsti; Norgård, Gunnar; Brun, Henrik

    2014-01-01

    A technique that uses two-dimensional images to create a knowledge-based, three-dimensional model was tested and compared to magnetic resonance imaging. Measurement of right ventricular volumes and function is important in the follow-up of patients after pulmonary valve replacement. Magnetic resonance imaging is the gold standard for volumetric assessment. Echocardiographic methods have been validated and are attractive alternatives. Thirty patients with tetralogy of Fallot (25 ± 14 years) after pulmonary valve replacement were examined. Magnetic resonance imaging volumetric measurements and echocardiography-based three-dimensional reconstruction were performed. End-diastolic volume, end-systolic volume, and ejection fraction were measured, and the results were compared. Magnetic resonance imaging measurements gave coefficient of variation in the intraobserver study of 3.5, 4.6, and 5.3 and in the interobserver study of 3.6, 5.9, and 6.7 for end-diastolic volume, end-systolic volume, and ejection fraction, respectively. Echocardiographic three-dimensional reconstruction was highly feasible (97%). In the intraobserver study, the corresponding values were 6.0, 7.0, and 8.9 and in the interobserver study 7.4, 10.8, and 13.4. In comparison of the methods, correlations with magnetic resonance imaging were r = 0.91, 0.91, and 0.38, and the corresponding coefficient of variations were 9.4, 10.8, and 14.7. Echocardiography derived volumes (mL/m(2)) were significantly higher than magnetic resonance imaging volumes in end-diastolic volume 13.7 ± 25.6 and in end-systolic volume 9.1 ± 17.0 (both P < .05). The knowledge-based three-dimensional right ventricular volume method was highly feasible. Intra and interobserver variabilities were satisfactory. Agreement with magnetic resonance imaging measurements for volumes was reasonable but unsatisfactory for ejection fraction. Knowledge-based reconstruction may replace magnetic resonance imaging measurements for serial follow-up, whereas magnetic resonance imaging should be used for surgical decision making.

  19. Computed Tomography-Based Imaging of Voxel-Wise Lesion Water Uptake in Ischemic Brain: Relationship Between Density and Direct Volumetry.

    PubMed

    Broocks, Gabriel; Flottmann, Fabian; Ernst, Marielle; Faizy, Tobias Djamsched; Minnerup, Jens; Siemonsen, Susanne; Fiehler, Jens; Kemmling, Andre

    2018-04-01

    Net water uptake per volume of brain tissue may be calculated by computed tomography (CT) density, and this imaging biomarker has recently been investigated as a predictor of lesion age in acute stroke. However, the hypothesis that measurements of CT density may be used to quantify net water uptake per volume of infarct lesion has not been validated by direct volumetric measurements so far. The purpose of this study was to (1) develop a theoretical relationship between CT density reduction and net water uptake per volume of ischemic lesions and (2) confirm this relationship by quantitative in vitro and in vivo CT image analysis using direct volumetric measurements. We developed a theoretical rationale for a linear relationship between net water uptake per volume of ischemic lesions and CT attenuation. The derived relationship between water uptake and CT density was tested in vitro in a set of increasingly diluted iodine solutions with successive CT measurements. Furthermore, the consistency of this relationship was evaluated using human in vivo CT images in a retrospective multicentric cohort. In 50 edematous infarct lesions, net water uptake was determined by direct measurement of the volumetric difference between the ischemic and normal hemisphere and was correlated with net water uptake calculated by ischemic density measurements. With regard to in vitro data, water uptake by density measurement was equivalent to direct volumetric measurement (r = 0.99, P < 0.0001; mean ± SD difference, -0.29% ± 0.39%, not different from 0, P < 0.0001). In the study cohort, the mean ± SD uptake of water within infarct measured by volumetry was 44.7 ± 26.8 mL and the mean percent water uptake per lesion volume was 22.7% ± 7.4%. This was equivalent to percent water uptake obtained from density measurements: 21.4% ± 6.4%. The mean difference between percent water uptake by direct volumetry and percent water uptake by CT density was -1.79% ± 3.40%, which was not significantly different from 0 (P < 0.0001). Volume of water uptake in infarct lesions can be calculated quantitatively by relative CT density measurements. Voxel-wise imaging of water uptake depicts lesion pathophysiology and could serve as a quantitative imaging biomarker of acute infarct lesions.

  20. Volumetric formulation for a class of kinetic models with energy conservation.

    PubMed

    Sbragaglia, M; Sugiyama, K

    2010-10-01

    We analyze a volumetric formulation of lattice Boltzmann for compressible thermal fluid flows. The velocity set is chosen with the desired accuracy, based on the Gauss-Hermite quadrature procedure, and tested against controlled problems in bounded and unbounded fluids. The method allows the simulation of thermohydrodyamical problems without the need to preserve the exact space-filling nature of the velocity set, but still ensuring the exact conservation laws for density, momentum, and energy. Issues related to boundary condition problems and improvements based on grid refinement are also investigated.

  1. On Utilization of NEXRAD Scan Strategy Information to Infer Discrepancies Associated With Radar and Rain Gauge Surface Volumetric Rainfall Accumulations

    NASA Technical Reports Server (NTRS)

    Roy, Biswadev; Datta, Saswati; Jones, W. Linwood; Kasparis, Takis; Einaudi, Franco (Technical Monitor)

    2000-01-01

    To evaluate the Tropical Rainfall Measuring Mission (TRMM) monthly Ground Validation (GV) rain map, 42 quality controlled tipping bucket rain gauge data (1 minute interpolated rain rates) were utilized. We have compared the gauge data to the surface volumetric rainfall accumulation of NEXRAD reflectivity field, (converting to rain rates using a 0.5 dB resolution smooth Z-R table). The comparison was carried out from data collected at Melbourne, Florida during the month of July 98. GV operational level 3 (L3 monthly) accumulation algorithm was used to obtain surface volumetric accumulations for the radar. The gauge records were accumulated using the 1 minute interpolated rain rates while the radar Volume Scan (VOS) intervals remain less than or equal to 75 minutes. The correlation coefficient for the radar and gauge totals for the monthly time-scale remain at 0.93, however, a large difference was noted between the gauge and radar derived rain accumulation when the radar data interval is either 9 minute, or 10 minute. This difference in radar and gauge accumulation is being explained in terms of the radar scan strategy information. The discrepancy in terms of the Volume Coverage Pattern (VCP) of the NEXRAD is being reported where VCP mode is ascertained using the radar tilt angle information. Hourly radar and gauge accumulations have been computed using the present operational L3 method supplemented with a threshold period of +/- 5 minutes (based on a sensitivity analysis). These radar and gauge accumulations are subsequently improved using a radar hourly scan weighting factor (taking ratio of the radar scan frequency within a time bin to the 7436 total radar scans for the month). This GV procedure is further being improved by introducing a spatial smoothing method to yield reasonable bulk radar to gauge ratio for the hourly and daily scales.

  2. JP3D compressed-domain watermarking of volumetric medical data sets

    NASA Astrophysics Data System (ADS)

    Ouled Zaid, Azza; Makhloufi, Achraf; Olivier, Christian

    2010-01-01

    Increasing transmission of medical data across multiple user systems raises concerns for medical image watermarking. Additionaly, the use of volumetric images triggers the need for efficient compression techniques in picture archiving and communication systems (PACS), or telemedicine applications. This paper describes an hybrid data hiding/compression system, adapted to volumetric medical imaging. The central contribution is to integrate blind watermarking, based on turbo trellis-coded quantization (TCQ), to JP3D encoder. Results of our method applied to Magnetic Resonance (MR) and Computed Tomography (CT) medical images have shown that our watermarking scheme is robust to JP3D compression attacks and can provide relative high data embedding rate whereas keep a relative lower distortion.

  3. A model for methane production in anaerobic digestion of swine wastewater.

    PubMed

    Yang, Hongnan; Deng, Liangwei; Liu, Gangjin; Yang, Di; Liu, Yi; Chen, Ziai

    2016-10-01

    A study was conducted using a laboratory-scale anaerobic sequencing batch digester to investigate the quantitative influence of organic loading rates (OLRs) on the methane production rate during digestion of swine wastewater at temperatures between 15 °C and 35 °C. The volumetric production rate of methane (Rp) at different OLRs and temperatures was obtained. The maximum volumetric methane production rates (Rpmax) were 0.136, 0.796, 1.294, 1.527 and 1.952 LCH4 L(-1) d(-1) at corresponding organic loading rates of 1.2, 3.6, 5.6, 5.6 and 7.2 g volatile solids L(-1) d(-1), respectively, which occurred at 15, 20, 25, 30 and 35 °C, respectively. A new model was developed to describe the quantitative relationship between Rp and OLR. In addition to the maximum volumetric methane production rate (Rpmax) and the half-saturation constant (KLR) commonly used in previous models such as the modified Stover-Kincannon model and Deng model, the new model introduced a new index (KD) that denoted the speed of volumetric methane production rate approaching the maximum as a function of temperature. The new model more satisfactorily described the influence of OLR on the rate of methane production than other models as confirmed by higher determination coefficients (R(2)) (0.9717-0.9900) and lower bias between the experimental and predicted data in terms of the root mean square error and the Akaike Information Criterion. Data from other published research also validated the applicability and generality of the new kinetic model to different types of wastewater. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Performance of the Volumetric Diffusive Respirator at Altitude

    DTIC Science & Technology

    2014-08-18

    information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM...increased by 30-40%. Tidal volume remained within 15% of sea level values. Respiratory rate fell, while inspiratory time increased and high frequency...altitude, positive end expiratory pressure and peak inspiratory pressure were increased by 30-40%. Tidal volume remained within 15% of sea level

  5. Complex-Difference Constrained Compressed Sensing Reconstruction for Accelerated PRF Thermometry with Application to MRI Induced RF Heating

    PubMed Central

    Cao, Zhipeng; Oh, Sukhoon; Otazo, Ricardo; Sica, Christopher T.; Griswold, Mark A.; Collins, Christopher M.

    2014-01-01

    Purpose Introduce a novel compressed sensing reconstruction method to accelerate proton resonance frequency (PRF) shift temperature imaging for MRI induced radiofrequency (RF) heating evaluation. Methods A compressed sensing approach that exploits sparsity of the complex difference between post-heating and baseline images is proposed to accelerate PRF temperature mapping. The method exploits the intra- and inter-image correlations to promote sparsity and remove shared aliasing artifacts. Validations were performed on simulations and retrospectively undersampled data acquired in ex-vivo and in-vivo studies by comparing performance with previously proposed techniques. Results The proposed complex difference constrained compressed sensing reconstruction method improved the reconstruction of smooth and local PRF temperature change images compared to various available reconstruction methods in a simulation study, a retrospective study with heating of a human forearm in vivo, and a retrospective study with heating of a sample of beef ex vivo . Conclusion Complex difference based compressed sensing with utilization of a fully-sampled baseline image improves the reconstruction accuracy for accelerated PRF thermometry. It can be used to improve the volumetric coverage and temporal resolution in evaluation of RF heating due to MRI, and may help facilitate and validate temperature-based methods for safety assurance. PMID:24753099

  6. 4D-CT Lung registration using anatomy-based multi-level multi-resolution optical flow analysis and thin-plate splines.

    PubMed

    Min, Yugang; Neylon, John; Shah, Amish; Meeks, Sanford; Lee, Percy; Kupelian, Patrick; Santhanam, Anand P

    2014-09-01

    The accuracy of 4D-CT registration is limited by inconsistent Hounsfield unit (HU) values in the 4D-CT data from one respiratory phase to another and lower image contrast for lung substructures. This paper presents an optical flow and thin-plate spline (TPS)-based 4D-CT registration method to account for these limitations. The use of unified HU values on multiple anatomy levels (e.g., the lung contour, blood vessels, and parenchyma) accounts for registration errors by inconsistent landmark HU value. While 3D multi-resolution optical flow analysis registers each anatomical level, TPS is employed for propagating the results from one anatomical level to another ultimately leading to the 4D-CT registration. 4D-CT registration was validated using target registration error (TRE), inverse consistency error (ICE) metrics, and a statistical image comparison using Gamma criteria of 1 % intensity difference in 2 mm(3) window range. Validation results showed that the proposed method was able to register CT lung datasets with TRE and ICE values <3 mm. In addition, the average number of voxel that failed the Gamma criteria was <3 %, which supports the clinical applicability of the propose registration mechanism. The proposed 4D-CT registration computes the volumetric lung deformations within clinically viable accuracy.

  7. Accurate B-spline-based 3-D interpolation scheme for digital volume correlation

    NASA Astrophysics Data System (ADS)

    Ren, Maodong; Liang, Jin; Wei, Bin

    2016-12-01

    An accurate and efficient 3-D interpolation scheme, based on sampling theorem and Fourier transform technique, is proposed to reduce the sub-voxel matching error caused by intensity interpolation bias in digital volume correlation. First, the influence factors of the interpolation bias are investigated theoretically using the transfer function of an interpolation filter (henceforth filter) in the Fourier domain. A law that the positional error of a filter can be expressed as a function of fractional position and wave number is found. Then, considering the above factors, an optimized B-spline-based recursive filter, combining B-spline transforms and least squares optimization method, is designed to virtually eliminate the interpolation bias in the process of sub-voxel matching. Besides, given each volumetric image containing different wave number ranges, a Gaussian weighting function is constructed to emphasize or suppress certain of wave number ranges based on the Fourier spectrum analysis. Finally, a novel software is developed and series of validation experiments were carried out to verify the proposed scheme. Experimental results show that the proposed scheme can reduce the interpolation bias to an acceptable level.

  8. Three-dimensional facial architecture in normodivergent class I Caucasian subjects.

    PubMed

    Ghoubril, J V; Abou Obeid, F M

    2013-06-01

    The aims of this study were to (1) define facial architecture in Caucasian patients with normodivergent, skeletal and dental class I using Treil's cephalometric analysis, which is based on computed tomography (CT), and (2) develop a scheme to determine individual balance or normality in relation to linear, angular and volumetric parameters. The CT data of 60 adult subjects were equally divided between both genders. Based on anatomical points located along the trigeminal neuro-matricial facial growth axes, a three-dimensional maxillo-facial architecture was constructed. Volumetric and linear parameters were greater in males (0.000 < p < 0.044) except for the anterior and posterior mandibular width. Sexual dimorphism was not observed with angular parameters. There was no correlation between volumetric and angular parameters. The correlation tests showed that the total volume of the frame increases with infraorbital depth, supraorbital depth, posterior mandibular width and facial height (0.526 < r < 0.777), while it was not associated with the maxillo-orbital width (0.252 < r < 0.389). Total and orbital volumes were more correlated with posterior than with anterior mandibular width. Maxillo-mandibular volume of the frame was more cor-related with orbital depth (0.591 < r < 0.742) than the orbital volume (0.482 < r < 0.589). The results allowed us to establish three-dimensional cephalometric standards, and to replace the tenet of normality, which is a mean value of calculated parameters, by the concept of individual balance among volumetric entities. While sagittal and vertical dimensions affect volumetric changes of the frame, the transverse dimension does not.

  9. Theoretical and Experimental Estimations of Volumetric Inductive Phase Shift in Breast Cancer Tissue

    NASA Astrophysics Data System (ADS)

    González, C. A.; Lozano, L. M.; Uscanga, M. C.; Silva, J. G.; Polo, S. M.

    2013-04-01

    Impedance measurements based on magnetic induction for breast cancer detection has been proposed in some studies. This study evaluates theoretical and experimentally the use of a non-invasive technique based on magnetic induction for detection of patho-physiological conditions in breast cancer tissue associated to its volumetric electrical conductivity changes through inductive phase shift measurements. An induction coils-breast 3D pixel model was designed and tested. The model involves two circular coils coaxially centered and a human breast volume centrally placed with respect to the coils. A time-harmonic numerical simulation study addressed the effects of frequency-dependent electrical properties of tumoral tissue on the volumetric inductive phase shift of the breast model measured with the circular coils as inductor and sensor elements. Experimentally; five female volunteer patients with infiltrating ductal carcinoma previously diagnosed by the radiology and oncology departments of the Specialty Clinic for Women of the Mexican Army were measured by an experimental inductive spectrometer and the use of an ergonomic inductor-sensor coil designed to estimate the volumetric inductive phase shift in human breast tissue. Theoretical and experimental inductive phase shift estimations were developed at four frequencies: 0.01, 0.1, 1 and 10 MHz. The theoretical estimations were qualitatively in agreement with the experimental findings. Important increments in volumetric inductive phase shift measurements were evident at 0.01MHz in theoretical and experimental observations. The results suggest that the tested technique has the potential to detect pathological conditions in breast tissue associated to cancer by non-invasive monitoring. Further complementary studies are warranted to confirm the observations.

  10. Crumpled Nitrogen-Doped Graphene for Supercapacitors with High Gravimetric and Volumetric Performances.

    PubMed

    Wang, Jie; Ding, Bing; Xu, Yunling; Shen, Laifa; Dou, Hui; Zhang, Xiaogang

    2015-10-14

    Graphene is considered a promising electrochemical capacitors electrode material due to its high surface area and high electrical conductivity. However, restacking interactions between graphene nanosheets significantly decrease the ion-accessible surface area and impede electronic and ionic transfer. This would, in turn, severely hinder the realization of high energy density. Herein, we report a strategy for preparation of few-layer graphene material with abundant crumples and high-level nitrogen doping. The two-dimensional graphene nanosheets (CNG) feature high ion-available surface area, excellent electronic and ion transfer properties, and high packing density, permitting the CNG electrode to exhibit excellent electrochemical performance. In ionic liquid electrolyte, the CNG electrode exhibits gravimetric and volumetric capacitances of 128 F g(-1) and 98 F cm(-3), respectively, achieving gravimetric and volumetric energy densities of 56 Wh kg(-1) and 43 Wh L(-1). The preparation strategy described here provides a new approach for developing a graphene-based supercapacitor with high gravimetric and volumetric energy densities.

  11. Volumetric Light-field Encryption at the Microscopic Scale

    PubMed Central

    Li, Haoyu; Guo, Changliang; Muniraj, Inbarasan; Schroeder, Bryce C.; Sheridan, John T.; Jia, Shu

    2017-01-01

    We report a light-field based method that allows the optical encryption of three-dimensional (3D) volumetric information at the microscopic scale in a single 2D light-field image. The system consists of a microlens array and an array of random phase/amplitude masks. The method utilizes a wave optics model to account for the dominant diffraction effect at this new scale, and the system point-spread function (PSF) serves as the key for encryption and decryption. We successfully developed and demonstrated a deconvolution algorithm to retrieve both spatially multiplexed discrete data and continuous volumetric data from 2D light-field images. Showing that the method is practical for data transmission and storage, we obtained a faithful reconstruction of the 3D volumetric information from a digital copy of the encrypted light-field image. The method represents a new level of optical encryption, paving the way for broad industrial and biomedical applications in processing and securing 3D data at the microscopic scale. PMID:28059149

  12. Evaluation of physicochemical properties of root-end filling materials using conventional and Micro-CT tests

    PubMed Central

    TORRES, Fernanda Ferrari Esteves; BOSSO-MARTELO, Roberta; ESPIR, Camila Galletti; CIRELLI, Joni Augusto; GUERREIRO-TANOMARU, Juliane Maria; TANOMARU-FILHO, Mario

    2017-01-01

    Abstract Objective To evaluate solubility, dimensional stability, filling ability and volumetric change of root-end filling materials using conventional tests and new Micro-CT-based methods. Material and Methods 7 Results The results suggested correlated or complementary data between the proposed tests. At 7 days, BIO showed higher solubility and at 30 days, showed higher volumetric change in comparison with MTA (p<0.05). With regard to volumetric change, the tested materials were similar (p>0.05) at 7 days. At 30 days, they presented similar solubility. BIO and MTA showed higher dimensional stability than ZOE (p<0.05). ZOE and BIO showed higher filling ability (p<0.05). Conclusions ZOE presented a higher dimensional change, and BIO had greater solubility after 7 days. BIO presented filling ability and dimensional stability, but greater volumetric change than MTA after 30 days. Micro-CT can provide important data on the physicochemical properties of materials complementing conventional tests. PMID:28877275

  13. Volumetric Light-field Encryption at the Microscopic Scale

    NASA Astrophysics Data System (ADS)

    Li, Haoyu; Guo, Changliang; Muniraj, Inbarasan; Schroeder, Bryce C.; Sheridan, John T.; Jia, Shu

    2017-01-01

    We report a light-field based method that allows the optical encryption of three-dimensional (3D) volumetric information at the microscopic scale in a single 2D light-field image. The system consists of a microlens array and an array of random phase/amplitude masks. The method utilizes a wave optics model to account for the dominant diffraction effect at this new scale, and the system point-spread function (PSF) serves as the key for encryption and decryption. We successfully developed and demonstrated a deconvolution algorithm to retrieve both spatially multiplexed discrete data and continuous volumetric data from 2D light-field images. Showing that the method is practical for data transmission and storage, we obtained a faithful reconstruction of the 3D volumetric information from a digital copy of the encrypted light-field image. The method represents a new level of optical encryption, paving the way for broad industrial and biomedical applications in processing and securing 3D data at the microscopic scale.

  14. Physical modeling with orthotropic material based on harmonic fields.

    PubMed

    Liao, Sheng-Hui; Zou, Bei-Ji; Geng, Jian-Ping; Wang, Jin-Xiao; Ding, Xi

    2012-11-01

    Although it is well known that human bone tissues have obvious orthotropic material properties, most works in the physical modeling field adopted oversimplified isotropic or approximated transversely isotropic elasticity due to the simplicity. This paper presents a convenient methodology based on harmonic fields, to construct volumetric finite element mesh integrated with complete orthotropic material. The basic idea is taking advantage of the fact that the longitudinal axis direction indicated by the shape configuration of most bone tissues is compatible with the trajectory of the maximum material stiffness. First, surface harmonic fields of the longitudinal axis direction for individual bone models were generated, whose scalar distribution pattern tends to conform very well to the object shape. The scalar iso-contours were extracted and sampled adaptively to construct volumetric meshes of high quality. Following, the surface harmonic fields were expanded over the whole volumetric domain to create longitudinal and radial volumetric harmonic fields, from which the gradient vector fields were calculated and employed as the orthotropic principal axes vector fields. Contrastive finite element analyses demonstrated that elastic orthotropy has significant effect on simulating stresses and strains, including the value as well as distribution pattern, which underlines the relevance of our orthotropic modeling scheme. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  15. Development of a volumetric projection technique for the digital evaluation of field of view.

    PubMed

    Marshall, Russell; Summerskill, Stephen; Cook, Sharon

    2013-01-01

    Current regulations for field of view requirements in road vehicles are defined by 2D areas projected on the ground plane. This paper discusses the development of a new software-based volumetric field of view projection tool and its implementation within an existing digital human modelling system. In addition, the exploitation of this new tool is highlighted through its use in a UK Department for Transport funded research project exploring the current concerns with driver vision. Focusing specifically on rearwards visibility in small and medium passenger vehicles, the volumetric approach is shown to provide a number of distinct advantages. The ability to explore multiple projections of both direct vision (through windows) and indirect vision (through mirrors) provides a greater understanding of the field of view environment afforded to the driver whilst still maintaining compatibility with the 2D projections of the regulatory standards. Field of view requirements for drivers of road vehicles are defined by simplified 2D areas projected onto the ground plane. However, driver vision is a complex 3D problem. This paper presents the development of a new software-based 3D volumetric projection technique and its implementation in the evaluation of driver vision in small- and medium-sized passenger vehicles.

  16. Online dose reconstruction for tracked volumetric arc therapy: Real-time implementation and offline quality assurance for prostate SBRT.

    PubMed

    Kamerling, Cornelis Ph; Fast, Martin F; Ziegenhein, Peter; Menten, Martin J; Nill, Simeon; Oelfke, Uwe

    2017-11-01

    Firstly, this study provides a real-time implementation of online dose reconstruction for tracked volumetric arc therapy (VMAT). Secondly, this study describes a novel offline quality assurance tool, based on commercial dose calculation algorithms. Online dose reconstruction for VMAT is a computationally challenging task in terms of computer memory usage and calculation speed. To potentially reduce the amount of memory used, we analyzed the impact of beam angle sampling for dose calculation on the accuracy of the dose distribution. To establish the performance of the method, we planned two single-arc VMAT prostate stereotactic body radiation therapy cases for delivery with dynamic MLC tracking. For quality assurance of our online dose reconstruction method we have also developed a stand-alone offline dose reconstruction tool, which utilizes the RayStation treatment planning system to calculate dose. For the online reconstructed dose distributions of the tracked deliveries, we could establish strong resemblance for 72 and 36 beam co-planar equidistant beam samples with less than 1.2% deviation for the assessed dose-volume indicators (clinical target volume D98 and D2, and rectum D2). We could achieve average runtimes of 28-31 ms per reported MLC aperture for both dose computation and accumulation, meeting our real-time requirement. To cross-validate the offline tool, we have compared the planned dose to the offline reconstructed dose for static deliveries and found excellent agreement (3%/3 mm global gamma passing rates of 99.8%-100%). Being able to reconstruct dose during delivery enables online quality assurance and online replanning strategies for VMAT. The offline quality assurance tool provides the means to validate novel online dose reconstruction applications using a commercial dose calculation engine. © 2017 The Authors. Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  17. The flow structure of pyroclastic density currents: evidence from particle models and large-scale experiments

    NASA Astrophysics Data System (ADS)

    Dellino, Pierfrancesco; Büttner, Ralf; Dioguardi, Fabio; Doronzo, Domenico Maria; La Volpe, Luigi; Mele, Daniela; Sonder, Ingo; Sulpizio, Roberto; Zimanowski, Bernd

    2010-05-01

    Pyroclastic flows are ground hugging, hot, gas-particle flows. They represent the most hazardous events of explosive volcanism, one striking example being the famous historical eruption of Pompeii (AD 79) at Vesuvius. Much of our knowledge on the mechanics of pyroclastic flows comes from theoretical models and numerical simulations. Valuable data are also stored in the geological record of past eruptions, i.e. the particles contained in pyroclastic deposits, but they are rarely used for quantifying the destructive potential of pyroclastic flows. In this paper, by means of experiments, we validate a model that is based on data from pyroclastic deposits. It allows the reconstruction of the current's fluid-dynamic behaviour. We show that our model results in likely values of dynamic pressure and particle volumetric concentration, and allows quantifying the hazard potential of pyroclastic flows.

  18. Simplifying the exploration of volumetric images: development of a 3D user interface for the radiologist's workplace.

    PubMed

    Teistler, M; Breiman, R S; Lison, T; Bott, O J; Pretschner, D P; Aziz, A; Nowinski, W L

    2008-10-01

    Volumetric imaging (computed tomography and magnetic resonance imaging) provides increased diagnostic detail but is associated with the problem of navigation through large amounts of data. In an attempt to overcome this problem, a novel 3D navigation tool has been designed and developed that is based on an alternative input device. A 3D mouse allows for simultaneous definition of position and orientation of orthogonal or oblique multiplanar reformatted images or slabs, which are presented within a virtual 3D scene together with the volume-rendered data set and additionally as 2D images. Slabs are visualized with maximum intensity projection, average intensity projection, or standard volume rendering technique. A prototype has been implemented based on PC technology that has been tested by several radiologists. It has shown to be easily understandable and usable after a very short learning phase. Our solution may help to fully exploit the diagnostic potential of volumetric imaging by allowing for a more efficient reading process compared to currently deployed solutions based on conventional mouse and keyboard.

  19. Volumetric visualization algorithm development for an FPGA-based custom computing machine

    NASA Astrophysics Data System (ADS)

    Sallinen, Sami J.; Alakuijala, Jyrki; Helminen, Hannu; Laitinen, Joakim

    1998-05-01

    Rendering volumetric medical images is a burdensome computational task for contemporary computers due to the large size of the data sets. Custom designed reconfigurable hardware could considerably speed up volume visualization if an algorithm suitable for the platform is used. We present an algorithm and speedup techniques for visualizing volumetric medical CT and MR images with a custom-computing machine based on a Field Programmable Gate Array (FPGA). We also present simulated performance results of the proposed algorithm calculated with a software implementation running on a desktop PC. Our algorithm is capable of generating perspective projection renderings of single and multiple isosurfaces with transparency, simulated X-ray images, and Maximum Intensity Projections (MIP). Although more speedup techniques exist for parallel projection than for perspective projection, we have constrained ourselves to perspective viewing, because of its importance in the field of radiotherapy. The algorithm we have developed is based on ray casting, and the rendering is sped up by three different methods: shading speedup by gradient precalculation, a new generalized version of Ray-Acceleration by Distance Coding (RADC), and background ray elimination by speculative ray selection.

  20. Exploring the Validity Range of the Polarimetric Two-Scale Two-Component Model for Soil Moisture Retrieval by Using AGRISAR Data

    NASA Astrophysics Data System (ADS)

    Di Martino, Gerardo; Iodice, Antonio; Natale, Antonio; Riccio, Daniele; Ruello, Giuseppe

    2015-04-01

    The recently proposed polarimetric two-scale two- component model (PTSTCM) in principle allows us obtaining a reasonable estimation of the soil moisture even in moderately vegetated areas, where the volumetric scattering contribution is non-negligible, provided that the surface component is dominant and the double-bounce component is negligible. Here we test the PTSTCM validity range by applying it to polarimetric SAR data acquired on areas for which, at the same times of SAR acquisitions, ground measurements of soil moisture were performed. In particular, we employ the AGRISAR'06 database, which includes data from several fields covering a period that spans all the phases of vegetation growth.

  1. Validation and uncertainty analysis of a pre-treatment 2D dose prediction model

    NASA Astrophysics Data System (ADS)

    Baeza, Jose A.; Wolfs, Cecile J. A.; Nijsten, Sebastiaan M. J. J. G.; Verhaegen, Frank

    2018-02-01

    Independent verification of complex treatment delivery with megavolt photon beam radiotherapy (RT) has been effectively used to detect and prevent errors. This work presents the validation and uncertainty analysis of a model that predicts 2D portal dose images (PDIs) without a patient or phantom in the beam. The prediction model is based on an exponential point dose model with separable primary and secondary photon fluence components. The model includes a scatter kernel, off-axis ratio map, transmission values and penumbra kernels for beam-delimiting components. These parameters were derived through a model fitting procedure supplied with point dose and dose profile measurements of radiation fields. The model was validated against a treatment planning system (TPS; Eclipse) and radiochromic film measurements for complex clinical scenarios, including volumetric modulated arc therapy (VMAT). Confidence limits on fitted model parameters were calculated based on simulated measurements. A sensitivity analysis was performed to evaluate the effect of the parameter uncertainties on the model output. For the maximum uncertainty, the maximum deviating measurement sets were propagated through the fitting procedure and the model. The overall uncertainty was assessed using all simulated measurements. The validation of the prediction model against the TPS and the film showed a good agreement, with on average 90.8% and 90.5% of pixels passing a (2%,2 mm) global gamma analysis respectively, with a low dose threshold of 10%. The maximum and overall uncertainty of the model is dependent on the type of clinical plan used as input. The results can be used to study the robustness of the model. A model for predicting accurate 2D pre-treatment PDIs in complex RT scenarios can be used clinically and its uncertainties can be taken into account.

  2. GPM Ground Validation: Pre to Post-Launch Era

    NASA Astrophysics Data System (ADS)

    Petersen, Walt; Skofronick-Jackson, Gail; Huffman, George

    2015-04-01

    NASA GPM Ground Validation (GV) activities have transitioned from the pre to post-launch era. Prior to launch direct validation networks and associated partner institutions were identified world-wide, covering a plethora of precipitation regimes. In the U.S. direct GV efforts focused on use of new operational products such as the NOAA Multi-Radar Multi-Sensor suite (MRMS) for TRMM validation and GPM radiometer algorithm database development. In the post-launch, MRMS products including precipitation rate, accumulation, types and data quality are being routinely generated to facilitate statistical GV of instantaneous (e.g., Level II orbit) and merged (e.g., IMERG) GPM products. Toward assessing precipitation column impacts on product uncertainties, range-gate to pixel-level validation of both Dual-Frequency Precipitation Radar (DPR) and GPM microwave imager data are performed using GPM Validation Network (VN) ground radar and satellite data processing software. VN software ingests quality-controlled volumetric radar datasets and geo-matches those data to coincident DPR and radiometer level-II data. When combined MRMS and VN datasets enable more comprehensive interpretation of both ground and satellite-based estimation uncertainties. To support physical validation efforts eight (one) field campaigns have been conducted in the pre (post) launch era. The campaigns span regimes from northern latitude cold-season snow to warm tropical rain. Most recently the Integrated Precipitation and Hydrology Experiment (IPHEx) took place in the mountains of North Carolina and involved combined airborne and ground-based measurements of orographic precipitation and hydrologic processes underneath the GPM Core satellite. One more U.S. GV field campaign (OLYMPEX) is planned for late 2015 and will address cold-season precipitation estimation, process and hydrology in the orographic and oceanic domains of western Washington State. Finally, continuous direct and physical validation measurements are also being conducted at the NASA Wallops Flight Facility multi-radar, gauge and disdrometer facility located in coastal Virginia. This presentation will summarize the evolution of the NASA GPM GV program from pre to post-launch eras and place focus on evaluation of year-1 post-launch GPM satellite datasets including Level II GPROF, DPR and Combined algorithms, and Level III IMERG products.

  3. Polymerization shrinkage of different types of composite resins and microleakage with and without liner in class II cavities.

    PubMed

    Karaman, E; Ozgunaltay, G

    2014-01-01

    To determine the volumetric polymerization shrinkage of four different types of composite resin and to evaluate microleakage of these materials in class II (MOD) cavities with and without a resin-modified glass ionomer cement (RMGIC) liner, in vitro. One hundred twenty-eight extracted human upper premolar teeth were used. After the teeth were divided into eight groups (n=16), standardized MOD cavities were prepared. Then the teeth were restored with different resin composites (Filtek Supreme XT, Filtek P 60, Filtek Silorane, Filtek Z 250) with and without a RMGIC liner (Vitrebond). The restorations were finished and polished after 24 hours. Following thermocycling, the teeth were immersed in 0.5% basic fuchsin for 24 hours, then midsagitally sectioned in a mesiodistal plane and examined for microleakage using a stereomicroscope. The volumetric polymerization shrinkage of materials was measured using a video imaging device (Acuvol, Bisco, Inc). Data were statistically analyzed with Kruskal-Wallis and Mann-Whitney U-tests. All teeth showed microleakage, but placement of RMGIC liner reduced microleakage. No statistically significant differences were found in microleakage between the teeth restored without RMGIC liner (p>0.05). Filtek Silorane showed significantly less volumetric polymerization shrinkage than the methacrylate-based composite resins (p<0.05). The use of RMGIC liner with both silorane- and methacrylate-based composite resin restorations resulted in reduced microleakage. The volumetric polymerization shrinkage was least with the silorane-based composite.

  4. Compression of real time volumetric echocardiographic data using modified SPIHT based on the three-dimensional wavelet packet transform.

    PubMed

    Hang, X; Greenberg, N L; Shiota, T; Firstenberg, M S; Thomas, J D

    2000-01-01

    Real-time three-dimensional echocardiography has been introduced to provide improved quantification and description of cardiac function. Data compression is desired to allow efficient storage and improve data transmission. Previous work has suggested improved results utilizing wavelet transforms in the compression of medical data including 2D echocardiogram. Set partitioning in hierarchical trees (SPIHT) was extended to compress volumetric echocardiographic data by modifying the algorithm based on the three-dimensional wavelet packet transform. A compression ratio of at least 40:1 resulted in preserved image quality.

  5. Investigation of poly(γ-glutamic acid) production via online determination of viscosity and oxygen transfer rate in shake flasks.

    PubMed

    Regestein Née Meissner, Lena; Arndt, Julia; Palmen, Thomas G; Jestel, Tim; Mitsunaga, Hitoshi; Fukusaki, Eiichiro; Büchs, Jochen

    2017-01-01

    Poly(γ-glutamic acid) (γ-PGA) is a biopolymer with many useful properties making it applicable for instance in food and skin care industries, in wastewater treatment, in biodegradable plastics or in the pharmaceutical industry. γ-PGA is usually produced microbially by different Bacillus spp. The produced γ-PGA increases the viscosity of the fermentation broth. In case of shake flask fermentations, this results in an increase of the volumetric power input. The power input in shake flasks can be determined by measuring the torque of an orbitally rotating lab shaker. The online measurement of the volumetric power input enables to continuously monitor the formation or degradation of viscous products like γ-PGA. Combined with the online measurement of the oxygen transfer rate (OTR), the respiration activity of the organisms can be observed at the same time. Two different Bacillus licheniformis strains and three medium compositions were investigated using online volumetric power input and OTR measurements as well as thorough offline analysis. The online volumetric power input measurement clearly depicted changes in γ-PGA formation due to different medium compositions as well as differences in the production behavior of the two investigated strains. A higher citric acid concentration and the addition of trace elements to the standard medium showed a positive influence on γ-PGA production. The online power input signal was used to derive an online viscosity signal which was validated with offline determined viscosity values. The online measurement of the OTR proved to be a valuable tool to follow the respiration activity of the cultivated strains and to determine its reproducibility under different cultivation conditions. The combination of the volumetric power input and the OTR allows for an easy and reliable investigation of new strains, cultivation conditions and medium compositions for their potential in γ-PGA production. The power input signal and the derived online viscosity directly reflect changes in γ-PGA molecular weight and concentration, respectively, due to different cultivation conditions or production strains.

  6. Radiation effects in concrete for nuclear power plants, Part II: Perspective from micromechanical modeling

    DOE PAGES

    Le Pape, Yann; Field, Kevin G.; Remec, Igor

    2014-11-15

    The need to understand and characterize the effects of neutron irradiation on concrete has become urgent because of the possible extension of service life of many nuclear power generating stations. Current knowledge is primarily based on a collection of data obtained in test reactors. These results are inherently difficult to interpret because materials and testing conditions are inconsistent. A micromechanical approach based on the Hashin composite sphere model is presented to derive a first-order separation of the effects of radiation on cement paste and aggregate, and, also, on their interaction. Although the scarcity of available data limits the validation ofmore » the model, it appears that, without negating a possible gamma-ray induced effect, the neutron-induced damage and swelling of aggregate plays a predominant role on the overall concrete expansion and the damage of the cement paste. Finally, the radiation-induced volumetric expansion (RIVE) effects can also be aided by temperature elevation and shrinkage in the cement paste.« less

  7. Quantitative Tractography and Volumetric MRI in Blast and Blunt Force TBI: Predictors of Neurocognitive and Behavioral Outcome

    DTIC Science & Technology

    2013-10-01

    veterans with mTBI. Further, presence of post-traumatic amnesia may affect subtype of fatigue experienced by veterans with mTBI. The fornix, a limbic...physical fatigue, but not cognitive fatigue, were associated with the presence of post-traumatic amnesia at injury. Conclusion: The MFIS is a valid...pathways. Cognitive and Psychiatric Dissociations between Fractional Anisotropy and Cortical Thickness in Veterans with Mild TBI: (Scott Sorg, Mark

  8. Theoretical characterization of annular array as a volumetric optoacoustic ultrasound handheld probe

    NASA Astrophysics Data System (ADS)

    Kalkhoran, Mohammad Azizian; Vray, Didier

    2018-02-01

    Optoacoustic ultrasound (OPUS) is a promising hybridized technique for simultaneous acquisition of functional and morphological data. The optical specificity of optoacoustic leverages the diagnostic aptitude of ultrasonography beyond anatomy. However, this integration has been rarely practiced for volumetric imaging. The challenge lies in the effective imaging probes that preserve the functionality of both modalities. The potentials of a sparse annular array for volumetric OPUS imaging are theoretically investigated. In order to evaluate and optimize the performance characteristics of the probe, series of analysis in the framework of system model matrix was carried out. The two criteria of voxel crosstalk and eigenanalysis have been employed to unveil information about the spatial sensitivity, aliasing, and number of definable spatial frequency components. Based on these benchmarks, the optimal parameters for volumetric handheld probe are determined. In particular, the number, size, and the arrangement of the elements and overall aperture dimension were investigated. The result of the numerical simulation suggests that the segmented-annular array of 128 negatively focused elements with 1λ × 20λ size, operating at 5-MHz central frequency showcases a good agreement with the physical requirement of both imaging systems. We hypothesize that these features enable a high-throughput volumetric passive/active ultrasonic imaging system with great potential for clinical applications.

  9. Indexing Volumetric Shapes with Matching and Packing

    PubMed Central

    Koes, David Ryan; Camacho, Carlos J.

    2014-01-01

    We describe a novel algorithm for bulk-loading an index with high-dimensional data and apply it to the problem of volumetric shape matching. Our matching and packing algorithm is a general approach for packing data according to a similarity metric. First an approximate k-nearest neighbor graph is constructed using vantage-point initialization, an improvement to previous work that decreases construction time while improving the quality of approximation. Then graph matching is iteratively performed to pack related items closely together. The end result is a dense index with good performance. We define a new query specification for shape matching that uses minimum and maximum shape constraints to explicitly specify the spatial requirements of the desired shape. This specification provides a natural language for performing volumetric shape matching and is readily supported by the geometry-based similarity search (GSS) tree, an indexing structure that maintains explicit representations of volumetric shape. We describe our implementation of a GSS tree for volumetric shape matching and provide a comprehensive evaluation of parameter sensitivity, performance, and scalability. Compared to previous bulk-loading algorithms, we find that matching and packing can construct a GSS-tree index in the same amount of time that is denser, flatter, and better performing, with an observed average performance improvement of 2X. PMID:26085707

  10. Visualization of 3D CT-based anatomical models

    NASA Astrophysics Data System (ADS)

    Alaytsev, Innokentiy K.; Danilova, Tatyana V.; Manturov, Alexey O.; Mareev, Gleb O.; Mareev, Oleg V.

    2018-04-01

    Biomedical volumetric data visualization techniques for the exploration purposes are well developed. Most of the known methods are inappropriate for surgery simulation systems due to lack of realism. A segmented data visualization is a well-known approach for the visualization of the structured volumetric data. The research is focused on improvement of the segmented data visualization technique by the aliasing problems resolution and the use of material transparency modeling for better semitransparent structures rendering.

  11. Volumetric imaging of fast biological dynamics in deep tissue via wavefront engineering

    NASA Astrophysics Data System (ADS)

    Kong, Lingjie; Tang, Jianyong; Cui, Meng

    2016-03-01

    To reveal fast biological dynamics in deep tissue, we combine two wavefront engineering methods that were developed in our laboratory, namely optical phase-locked ultrasound lens (OPLUL) based volumetric imaging and iterative multiphoton adaptive compensation technique (IMPACT). OPLUL is used to generate oscillating defocusing wavefront for fast axial scanning, and IMPACT is used to compensate the wavefront distortions for deep tissue imaging. We show its promising applications in neuroscience and immunology.

  12. Hydrodynamic study of an internal airlift reactor for microalgae culture.

    PubMed

    Rengel, Ana; Zoughaib, Assaad; Dron, Dominique; Clodic, Denis

    2012-01-01

    Internal airlift reactors are closed systems considered today for microalgae cultivation. Several works have studied their hydrodynamics but based on important solid concentrations, not with biomass concentrations usually found in microalgae cultures. In this study, an internal airlift reactor has been built and tested in order to clarify the hydrodynamics of this system, based on microalgae typical concentrations. A model is proposed taking into account the variation of air bubble velocity according to volumetric air flow rate injected into the system. A relationship between riser and downcomer gas holdups is established, which varied slightly with solids concentrations. The repartition of solids along the reactor resulted to be homogenous for the range of concentrations and volumetric air flow rate studied here. Liquid velocities increase with volumetric air flow rate, and they vary slightly when solids are added to the system. Finally, liquid circulation time found in each section of the reactor is in concordance with those employed in microalgae culture.

  13. a Framework for Voxel-Based Global Scale Modeling of Urban Environments

    NASA Astrophysics Data System (ADS)

    Gehrung, Joachim; Hebel, Marcus; Arens, Michael; Stilla, Uwe

    2016-10-01

    The generation of 3D city models is a very active field of research. Modeling environments as point clouds may be fast, but has disadvantages. These are easily solvable by using volumetric representations, especially when considering selective data acquisition, change detection and fast changing environments. Therefore, this paper proposes a framework for the volumetric modeling and visualization of large scale urban environments. Beside an architecture and the right mix of algorithms for the task, two compression strategies for volumetric models as well as a data quality based approach for the import of range measurements are proposed. The capabilities of the framework are shown on a mobile laser scanning dataset of the Technical University of Munich. Furthermore the loss of the compression techniques is evaluated and their memory consumption is compared to that of raw point clouds. The presented results show that generation, storage and real-time rendering of even large urban models are feasible, even with off-the-shelf hardware.

  14. Fully Automated Quantitative Estimation of Volumetric Breast Density from Digital Breast Tomosynthesis Images: Preliminary Results and Comparison with Digital Mammography and MR Imaging.

    PubMed

    Pertuz, Said; McDonald, Elizabeth S; Weinstein, Susan P; Conant, Emily F; Kontos, Despina

    2016-04-01

    To assess a fully automated method for volumetric breast density (VBD) estimation in digital breast tomosynthesis (DBT) and to compare the findings with those of full-field digital mammography (FFDM) and magnetic resonance (MR) imaging. Bilateral DBT images, FFDM images, and sagittal breast MR images were retrospectively collected from 68 women who underwent breast cancer screening from October 2011 to September 2012 with institutional review board-approved, HIPAA-compliant protocols. A fully automated computer algorithm was developed for quantitative estimation of VBD from DBT images. FFDM images were processed with U.S. Food and Drug Administration-cleared software, and the MR images were processed with a previously validated automated algorithm to obtain corresponding VBD estimates. Pearson correlation and analysis of variance with Tukey-Kramer post hoc correction were used to compare the multimodality VBD estimates. Estimates of VBD from DBT were significantly correlated with FFDM-based and MR imaging-based estimates with r = 0.83 (95% confidence interval [CI]: 0.74, 0.90) and r = 0.88 (95% CI: 0.82, 0.93), respectively (P < .001). The corresponding correlation between FFDM and MR imaging was r = 0.84 (95% CI: 0.76, 0.90). However, statistically significant differences after post hoc correction (α = 0.05) were found among VBD estimates from FFDM (mean ± standard deviation, 11.1% ± 7.0) relative to MR imaging (16.6% ± 11.2) and DBT (19.8% ± 16.2). Differences between VDB estimates from DBT and MR imaging were not significant (P = .26). Fully automated VBD estimates from DBT, FFDM, and MR imaging are strongly correlated but show statistically significant differences. Therefore, absolute differences in VBD between FFDM, DBT, and MR imaging should be considered in breast cancer risk assessment.

  15. Comparison of volumetric breast density estimations from mammography and thorax CT

    NASA Astrophysics Data System (ADS)

    Geeraert, N.; Klausz, R.; Cockmartin, L.; Muller, S.; Bosmans, H.; Bloch, I.

    2014-08-01

    Breast density has become an important issue in current breast cancer screening, both as a recognized risk factor for breast cancer and by decreasing screening efficiency by the masking effect. Different qualitative and quantitative methods have been proposed to evaluate area-based breast density and volumetric breast density (VBD). We propose a validation method comparing the computation of VBD obtained from digital mammographic images (VBDMX) with the computation of VBD from thorax CT images (VBDCT). We computed VBDMX by applying a conversion function to the pixel values in the mammographic images, based on models determined from images of breast equivalent material. VBDCT is computed from the average Hounsfield Unit (HU) over the manually delineated breast volume in the CT images. This average HU is then compared to the HU of adipose and fibroglandular tissues from patient images. The VBDMX method was applied to 663 mammographic patient images taken on two Siemens Inspiration (hospL) and one GE Senographe Essential (hospJ). For the comparison study, we collected images from patients who had a thorax CT and a mammography screening exam within the same year. In total, thorax CT images corresponding to 40 breasts (hospL) and 47 breasts (hospJ) were retrieved. Averaged over the 663 mammographic images the median VBDMX was 14.7% . The density distribution and the inverse correlation between VBDMX and breast thickness were found as expected. The average difference between VBDMX and VBDCT is smaller for hospJ (4%) than for hospL (10%). This study shows the possibility to compare VBDMX with the VBD from thorax CT exams, without additional examinations. In spite of the limitations caused by poorly defined breast limits, the calibration of mammographic images to local VBD provides opportunities for further quantitative evaluations.

  16. The approximate entropy concept extended to three dimensions for calibrated, single parameter structural complexity interrogation of volumetric images.

    PubMed

    Moore, Christopher; Marchant, Thomas

    2017-07-12

    Reconstructive volumetric imaging permeates medical practice because of its apparently clear depiction of anatomy. However, the tell tale signs of abnormality and its delineation for treatment demand experts work at the threshold of visibility for hints of structure. Hitherto, a suitable assistive metric that chimes with clinical experience has been absent. This paper develops the complexity measure approximate entropy (ApEn) from its 1D physiological origin into a three-dimensional (3D) algorithm to fill this gap. The first 3D algorithm for this is presented in detail. Validation results for known test arrays are followed by a comparison of fan-beam and cone-beam x-ray computed tomography image volumes used in image guided radiotherapy for cancer. Results show the structural detail down to individual voxel level, the strength of which is calibrated by the ApEn process itself. The potential for application in machine assisted manual interaction and automated image processing and interrogation, including radiomics associated with predictive outcome modeling, is discussed.

  17. The approximate entropy concept extended to three dimensions for calibrated, single parameter structural complexity interrogation of volumetric images

    NASA Astrophysics Data System (ADS)

    Moore, Christopher; Marchant, Thomas

    2017-08-01

    Reconstructive volumetric imaging permeates medical practice because of its apparently clear depiction of anatomy. However, the tell tale signs of abnormality and its delineation for treatment demand experts work at the threshold of visibility for hints of structure. Hitherto, a suitable assistive metric that chimes with clinical experience has been absent. This paper develops the complexity measure approximate entropy (ApEn) from its 1D physiological origin into a three-dimensional (3D) algorithm to fill this gap. The first 3D algorithm for this is presented in detail. Validation results for known test arrays are followed by a comparison of fan-beam and cone-beam x-ray computed tomography image volumes used in image guided radiotherapy for cancer. Results show the structural detail down to individual voxel level, the strength of which is calibrated by the ApEn process itself. The potential for application in machine assisted manual interaction and automated image processing and interrogation, including radiomics associated with predictive outcome modeling, is discussed.

  18. A methodological evaluation of volumetric measurement techniques including three-dimensional imaging in breast surgery.

    PubMed

    Hoeffelin, H; Jacquemin, D; Defaweux, V; Nizet, J L

    2014-01-01

    Breast surgery currently remains very subjective and each intervention depends on the ability and experience of the operator. To date, no objective measurement of this anatomical region can codify surgery. In this light, we wanted to compare and validate a new technique for 3D scanning (LifeViz 3D) and its clinical application. We tested the use of the 3D LifeViz system (Quantificare) to perform volumetric calculations in various settings (in situ in cadaveric dissection, of control prostheses, and in clinical patients) and we compared this system to other techniques (CT scanning and Archimedes' principle) under the same conditions. We were able to identify the benefits (feasibility, safety, portability, and low patient stress) and limitations (underestimation of the in situ volume, subjectivity of contouring, and patient selection) of the LifeViz 3D system, concluding that the results are comparable with other measurement techniques. The prospects of this technology seem promising in numerous applications in clinical practice to limit the subjectivity of breast surgery.

  19. A Methodological Evaluation of Volumetric Measurement Techniques including Three-Dimensional Imaging in Breast Surgery

    PubMed Central

    Hoeffelin, H.; Jacquemin, D.; Defaweux, V.; Nizet, J L.

    2014-01-01

    Breast surgery currently remains very subjective and each intervention depends on the ability and experience of the operator. To date, no objective measurement of this anatomical region can codify surgery. In this light, we wanted to compare and validate a new technique for 3D scanning (LifeViz 3D) and its clinical application. We tested the use of the 3D LifeViz system (Quantificare) to perform volumetric calculations in various settings (in situ in cadaveric dissection, of control prostheses, and in clinical patients) and we compared this system to other techniques (CT scanning and Archimedes' principle) under the same conditions. We were able to identify the benefits (feasibility, safety, portability, and low patient stress) and limitations (underestimation of the in situ volume, subjectivity of contouring, and patient selection) of the LifeViz 3D system, concluding that the results are comparable with other measurement techniques. The prospects of this technology seem promising in numerous applications in clinical practice to limit the subjectivity of breast surgery. PMID:24511536

  20. Effectiveness of a multi-channel volumetric air receiver for a solar power tower

    NASA Astrophysics Data System (ADS)

    Jung, Eui Guk; Boo, Joon Hong; Kang, Yong Heak; Kim, Nak Hoon

    2013-08-01

    In this study, the heat transfer performance of a multi-channel volumetric air receiver for a solar power tower was numerically analyzed. The governing equations, including the solar radiation heat flux, conduction, convection and radiation heat transfer for a single channel, were solved on the basis of valid related references and a methodology that can predict the temperature distribution of the receiver wall and the heat transfer fluid for specific dimensions and input conditions. Furthermore, a mathematical model of the effectiveness of the receiver was derived from an analysis of the temperature profiles of the wall and the heat transfer fluid. The receiver effectiveness as an appropriate criterion to assess economic feasibility regarding geometric size was investigated, as it would be applied to the design process of the receiver. The main parameters for the thermal performance simulations described in this paper are the air mass flow rate, receiver length and the influence of these parameters on the heat transfer performance from the viewpoint of receiver efficiency and effectiveness.

  1. Serial 3-dimensional computed tomography and a novel method of volumetric analysis for the evaluation of the osteo-odonto-keratoprosthesis.

    PubMed

    Sipkova, Zuzana; Lam, Fook Chang; Francis, Ian; Herold, Jim; Liu, Christopher

    2013-04-01

    To assess the use of serial computed tomography (CT) in the detection of osteo-odonto-lamina resorption in osteo-odonto-keratoprosthesis (OOKP) and to investigate the use of new volumetric software, Advanced Lung Analysis software (3D-ALA; GE Healthcare), for detecting changes in OOKP laminar volume. A retrospective assessment of the radiological databases and hospital records was performed for 22 OOKP patients treated at the National OOKP referral center in Brighton, United Kingdom. Three-dimensional surface reconstructions of the OOKP laminae were performed using stored CT data. For the 2-dimensional linear analysis, the linear dimensions of the reconstructed laminae were measured, compared with original measurements taken at the time of surgery, and then assigned a CT grade based on a predetermined resorption grading scale. The volumetric analysis involved calculating the laminar volumes using 3D-ALA. The effectiveness of 2-dimensional linear analysis, volumetric analysis, and clinical examination in detecting laminar resorption was compared. The mean change in laminar volume between the first and second scans was -6.67% (range, +10.13% to -24.86%). CT grades assigned to patients based on laminar dimension measurements remained the same, despite significant changes in laminar volumes. Clinical examination failed to identify 60% of patients who were found to have resorption on volumetric analysis. Currently, the detection of laminar resorption relies on clinical examination and the measurement of laminar dimensions on the 2- and 3-dimensional radiological images. Laminar volume measurement is a useful new addition to the armamentarium. It provides an objective tool that allows for a precise and reproducible assessment of laminar resorption.

  2. MOF Crystal Chemistry Paving the Way to Gas Storage Needs: Aluminum-Based soc-MOF for CH4, O2, and CO2 Storage

    PubMed Central

    2015-01-01

    The molecular building block approach was employed effectively to construct a series of novel isoreticular, highly porous and stable, aluminum-based metal–organic frameworks with soc topology. From this platform, three compounds were experimentally isolated and fully characterized: namely, the parent Al-soc-MOF-1 and its naphthalene and anthracene analogues. Al-soc-MOF-1 exhibits outstanding gravimetric methane uptake (total and working capacity). It is shown experimentally, for the first time, that the Al-soc-MOF platform can address the challenging Department of Energy dual target of 0.5 g/g (gravimetric) and 264 cm3 (STP)/cm3 (volumetric) methane storage. Furthermore, Al-soc-MOF exhibited the highest total gravimetric and volumetric uptake for carbon dioxide and the utmost total and deliverable uptake for oxygen at relatively high pressures among all microporous MOFs. In order to correlate the MOF pore structure and functionality to the gas storage properties, to better understand the structure–property relationship, we performed a molecular simulation study and evaluated the methane storage performance of the Al-soc-MOF platform using diverse organic linkers. It was found that shortening the parent Al-soc-MOF-1 linker resulted in a noticeable enhancement in the working volumetric capacity at specific temperatures and pressures with amply conserved gravimetric uptake/working capacity. In contrast, further expansion of the organic linker (branches and/or core) led to isostructural Al-soc-MOFs with enhanced gravimetric uptake but noticeably lower volumetric capacity. The collective experimental and simulation studies indicated that the parent Al-soc-MOF-1 exhibits the best compromise between the volumetric and gravimetric total and working uptakes under a wide range of pressure and temperature conditions. PMID:26364990

  3. Adhesive blood microsampling systems for steroid measurement via LC-MS/MS in the rat.

    PubMed

    Heussner, Kirsten; Rauh, Manfred; Cordasic, Nada; Menendez-Castro, Carlos; Huebner, Hanna; Ruebner, Matthias; Schmidt, Marius; Hartner, Andrea; Rascher, Wolfgang; Fahlbusch, Fabian B

    2017-04-01

    Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS) allows for the direct analysis of multiple hormones in a single probe with minimal sample volume. Rodent-based animal studies strongly rely on microsampling, such as the dry blood spot (DBS) method. However, DBS suffers the drawback of hematocrit-dependence (non-volumetric). Hence, novel volumetric microsampling techniques were introduced recently, allowing sampling of fixed accurate volumes. We compared these methods for steroid analysis in the rat to improve inter-system comparability. We analyzed steroid levels in blood using the absorptive microsampling devices Whatman® 903 Protein Saver Cards, Noviplex™ Plasma Prep Cards and the Mitra™ Microsampling device and compared the obtained results to the respective EDTA plasma levels. Quantitative steroid analysis was performed via LC-MS/MS. For the determination of the plasma volume factor for each steroid, their levels in pooled blood samples from each human adults and rats (18weeks) were compared and the transferability of these factors was evaluated in a new set of juvenile (21days) and adult (18weeks) rats. Hematocrit was determined concomitantly. Using these approaches, we were unable to apply one single volume factor for each steroid. Instead, plasma volume factors had to be adjusted for the recovery rate of each steroid and device individually. The tested microsampling systems did not allow the use of one single volume factor for adult and juvenile rats based on an unexpectedly strong hematocrit-dependency and other steroid specific (pre-analytic) factors. Our study provides correction factors for LC-MS/MS steroid analysis of volumetric and non-volumetric microsampling systems in comparison to plasma. It argues for thorough analysis of chromatographic effects before the use of novel volumetric systems for steroid analysis. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. MOF Crystal Chemistry Paving the Way to Gas Storage Needs: Aluminum-Based soc-MOF for CH4, O2, and CO2 Storage.

    PubMed

    Alezi, Dalal; Belmabkhout, Youssef; Suyetin, Mikhail; Bhatt, Prashant M; Weseliński, Łukasz J; Solovyeva, Vera; Adil, Karim; Spanopoulos, Ioannis; Trikalitis, Pantelis N; Emwas, Abdul-Hamid; Eddaoudi, Mohamed

    2015-10-21

    The molecular building block approach was employed effectively to construct a series of novel isoreticular, highly porous and stable, aluminum-based metal-organic frameworks with soc topology. From this platform, three compounds were experimentally isolated and fully characterized: namely, the parent Al-soc-MOF-1 and its naphthalene and anthracene analogues. Al-soc-MOF-1 exhibits outstanding gravimetric methane uptake (total and working capacity). It is shown experimentally, for the first time, that the Al-soc-MOF platform can address the challenging Department of Energy dual target of 0.5 g/g (gravimetric) and 264 cm(3) (STP)/cm(3) (volumetric) methane storage. Furthermore, Al-soc-MOF exhibited the highest total gravimetric and volumetric uptake for carbon dioxide and the utmost total and deliverable uptake for oxygen at relatively high pressures among all microporous MOFs. In order to correlate the MOF pore structure and functionality to the gas storage properties, to better understand the structure-property relationship, we performed a molecular simulation study and evaluated the methane storage performance of the Al-soc-MOF platform using diverse organic linkers. It was found that shortening the parent Al-soc-MOF-1 linker resulted in a noticeable enhancement in the working volumetric capacity at specific temperatures and pressures with amply conserved gravimetric uptake/working capacity. In contrast, further expansion of the organic linker (branches and/or core) led to isostructural Al-soc-MOFs with enhanced gravimetric uptake but noticeably lower volumetric capacity. The collective experimental and simulation studies indicated that the parent Al-soc-MOF-1 exhibits the best compromise between the volumetric and gravimetric total and working uptakes under a wide range of pressure and temperature conditions.

  5. Enhancing the performance of the light field microscope using wavefront coding

    PubMed Central

    Cohen, Noy; Yang, Samuel; Andalman, Aaron; Broxton, Michael; Grosenick, Logan; Deisseroth, Karl; Horowitz, Mark; Levoy, Marc

    2014-01-01

    Light field microscopy has been proposed as a new high-speed volumetric computational imaging method that enables reconstruction of 3-D volumes from captured projections of the 4-D light field. Recently, a detailed physical optics model of the light field microscope has been derived, which led to the development of a deconvolution algorithm that reconstructs 3-D volumes with high spatial resolution. However, the spatial resolution of the reconstructions has been shown to be non-uniform across depth, with some z planes showing high resolution and others, particularly at the center of the imaged volume, showing very low resolution. In this paper, we enhance the performance of the light field microscope using wavefront coding techniques. By including phase masks in the optical path of the microscope we are able to address this non-uniform resolution limitation. We have also found that superior control over the performance of the light field microscope can be achieved by using two phase masks rather than one, placed at the objective’s back focal plane and at the microscope’s native image plane. We present an extended optical model for our wavefront coded light field microscope and develop a performance metric based on Fisher information, which we use to choose adequate phase masks parameters. We validate our approach using both simulated data and experimental resolution measurements of a USAF 1951 resolution target; and demonstrate the utility for biological applications with in vivo volumetric calcium imaging of larval zebrafish brain. PMID:25322056

  6. Recommendations for imaging tumor response in neurofibromatosis clinical trials

    PubMed Central

    Ardern-Holmes, Simone L.; Babovic-Vuksanovic, Dusica; Barker, Fred G.; Connor, Steve; Evans, D. Gareth; Fisher, Michael J.; Goutagny, Stephane; Harris, Gordon J.; Jaramillo, Diego; Karajannis, Matthias A.; Korf, Bruce R.; Mautner, Victor; Plotkin, Scott R.; Poussaint, Tina Y.; Robertson, Kent; Shih, Chie-Schin; Widemann, Brigitte C.

    2013-01-01

    Objective: Neurofibromatosis (NF)-related benign tumors such as plexiform neurofibromas (PN) and vestibular schwannomas (VS) can cause substantial morbidity. Clinical trials directed at these tumors have become available. Due to differences in disease manifestations and the natural history of NF-related tumors, response criteria used for solid cancers (1-dimensional/RECIST [Response Evaluation Criteria in Solid Tumors] and bidimensional/World Health Organization) have limited applicability. No standardized response criteria for benign NF tumors exist. The goal of the Tumor Measurement Working Group of the REiNS (Response Evaluation in Neurofibromatosis and Schwannomatosis) committee is to propose consensus guidelines for the evaluation of imaging response in clinical trials for NF tumors. Methods: Currently used imaging endpoints, designs of NF clinical trials, and knowledge of the natural history of NF-related tumors, in particular PN and VS, were reviewed. Consensus recommendations for response evaluation for future studies were developed based on this review and the expertise of group members. Results: MRI with volumetric analysis is recommended to sensitively and reproducibly evaluate changes in tumor size in clinical trials. Volumetric analysis requires adherence to specific imaging recommendations. A 20% volume change was chosen to indicate a decrease or increase in tumor size. Use of these criteria in future trials will enable meaningful comparison of results across studies. Conclusions: The proposed imaging response evaluation guidelines, along with validated clinical outcome measures, will maximize the ability to identify potentially active agents for patients with NF and benign tumors. PMID:24249804

  7. Recommendations for imaging tumor response in neurofibromatosis clinical trials.

    PubMed

    Dombi, Eva; Ardern-Holmes, Simone L; Babovic-Vuksanovic, Dusica; Barker, Fred G; Connor, Steve; Evans, D Gareth; Fisher, Michael J; Goutagny, Stephane; Harris, Gordon J; Jaramillo, Diego; Karajannis, Matthias A; Korf, Bruce R; Mautner, Victor; Plotkin, Scott R; Poussaint, Tina Y; Robertson, Kent; Shih, Chie-Schin; Widemann, Brigitte C

    2013-11-19

    Neurofibromatosis (NF)-related benign tumors such as plexiform neurofibromas (PN) and vestibular schwannomas (VS) can cause substantial morbidity. Clinical trials directed at these tumors have become available. Due to differences in disease manifestations and the natural history of NF-related tumors, response criteria used for solid cancers (1-dimensional/RECIST [Response Evaluation Criteria in Solid Tumors] and bidimensional/World Health Organization) have limited applicability. No standardized response criteria for benign NF tumors exist. The goal of the Tumor Measurement Working Group of the REiNS (Response Evaluation in Neurofibromatosis and Schwannomatosis) committee is to propose consensus guidelines for the evaluation of imaging response in clinical trials for NF tumors. Currently used imaging endpoints, designs of NF clinical trials, and knowledge of the natural history of NF-related tumors, in particular PN and VS, were reviewed. Consensus recommendations for response evaluation for future studies were developed based on this review and the expertise of group members. MRI with volumetric analysis is recommended to sensitively and reproducibly evaluate changes in tumor size in clinical trials. Volumetric analysis requires adherence to specific imaging recommendations. A 20% volume change was chosen to indicate a decrease or increase in tumor size. Use of these criteria in future trials will enable meaningful comparison of results across studies. The proposed imaging response evaluation guidelines, along with validated clinical outcome measures, will maximize the ability to identify potentially active agents for patients with NF and benign tumors.

  8. Enhancing the performance of the light field microscope using wavefront coding.

    PubMed

    Cohen, Noy; Yang, Samuel; Andalman, Aaron; Broxton, Michael; Grosenick, Logan; Deisseroth, Karl; Horowitz, Mark; Levoy, Marc

    2014-10-06

    Light field microscopy has been proposed as a new high-speed volumetric computational imaging method that enables reconstruction of 3-D volumes from captured projections of the 4-D light field. Recently, a detailed physical optics model of the light field microscope has been derived, which led to the development of a deconvolution algorithm that reconstructs 3-D volumes with high spatial resolution. However, the spatial resolution of the reconstructions has been shown to be non-uniform across depth, with some z planes showing high resolution and others, particularly at the center of the imaged volume, showing very low resolution. In this paper, we enhance the performance of the light field microscope using wavefront coding techniques. By including phase masks in the optical path of the microscope we are able to address this non-uniform resolution limitation. We have also found that superior control over the performance of the light field microscope can be achieved by using two phase masks rather than one, placed at the objective's back focal plane and at the microscope's native image plane. We present an extended optical model for our wavefront coded light field microscope and develop a performance metric based on Fisher information, which we use to choose adequate phase masks parameters. We validate our approach using both simulated data and experimental resolution measurements of a USAF 1951 resolution target; and demonstrate the utility for biological applications with in vivo volumetric calcium imaging of larval zebrafish brain.

  9. Simultaneous Moisture Content and Mass Flow Measurements in Wood Chip Flows Using Coupled Dielectric and Impact Sensors.

    PubMed

    Pan, Pengmin; McDonald, Timothy; Fulton, John; Via, Brian; Hung, John

    2016-12-23

    An 8-electrode capacitance tomography (ECT) sensor was built and used to measure moisture content (MC) and mass flow of pine chip flows. The device was capable of directly measuring total water quantity in a sample but was sensitive to both dry matter and moisture, and therefore required a second measurement of mass flow to calculate MC. Two means of calculating the mass flow were used: the first being an impact sensor to measure total mass flow, and the second a volumetric approach based on measuring total area occupied by wood in images generated using the capacitance sensor's tomographic mode. Tests were made on 109 groups of wood chips ranging in moisture content from 14% to 120% (dry basis) and wet weight of 280 to 1100 g. Sixty groups were randomly selected as a calibration set, and the remaining were used for validation of the sensor's performance. For the combined capacitance/force transducer system, root mean square errors of prediction (RMSEP) for wet mass flow and moisture content were 13.42% and 16.61%, respectively. RMSEP using the combined volumetric mass flow/capacitance sensor for dry mass flow and moisture content were 22.89% and 24.16%, respectively. Either of the approaches was concluded to be feasible for prediction of moisture content in pine chip flows, but combining the impact and capacitance sensors was easier to implement. In situations where flows could not be impeded, however, the tomographic approach would likely be more useful.

  10. Measuring Soil Moisture in Skeletal Soils Using a COSMOS Rover

    NASA Astrophysics Data System (ADS)

    Medina, C.; Neely, H.; Desilets, D.; Mohanty, B.; Moore, G. W.

    2017-12-01

    The presence of coarse fragments directly influences the volumetric water content of the soil. Current surface soil moisture sensors often do not account for the presence of coarse fragments, and little research has been done to calibrate these sensors under such conditions. The cosmic-ray soil moisture observation system (COSMOS) rover is a passive, non-invasive surface soil moisture sensor with a footprint greater than 100 m. Despite its potential, the COSMOS rover has yet to be validated in skeletal soils. The goal of this study was to validate measurements of surface soil moisture as taken by a COSMOS rover on a Texas skeletal soil. Data was collected for two soils, a Marfla clay loam and Chinati-Boracho-Berrend association, in West Texas. Three levels of data were collected: 1) COSMOS surveys at three different soil moistures, 2) electrical conductivity surveys within those COSMOS surveys, and 3) ground-truth measurements. Surveys with the COSMOS rover covered an 8000-h area and were taken both after large rain events (>2") and a long dry period. Within the COSMOS surveys, the EM38-MK2 was used to estimate the spatial distribution of coarse fragments in the soil around two COSMOS points. Ground truth measurements included coarse fragment mass and volume, bulk density, and water content at 3 locations within each EM38 survey. Ground-truth measurements were weighted using EM38 data, and COSMOS measurements were validated by their distance from the samples. There was a decrease in water content as the percent volume of coarse fragment increased. COSMOS estimations responded to both changes in coarse fragment percent volume and the ground-truth volumetric water content. Further research will focus on creating digital soil maps using landform data and water content estimations from the COSMOS rover.

  11. SERS-Fluorescence Dual-Mode pH-Sensing Method Based on Janus Microparticles.

    PubMed

    Yue, Shuai; Sun, Xiaoting; Wang, Ning; Wang, Yaning; Wang, Yue; Xu, Zhangrun; Chen, Mingli; Wang, Jianhua

    2017-11-15

    A surface-enhanced Raman scattering (SERS)-fluorescence dual-mode pH-sensing method based on Janus microgels was developed, which combined the advantages of high specificity offered by SERS and fast imaging afforded by fluorescence. Dual-mode probes, pH-dependent 4-mercaptobenzoic acid, and carbon dots were individually encapsulated in the independent hemispheres of Janus microparticles fabricated via a centrifugal microfluidic chip. On the basis of the obvious volumetric change of hydrogels in different pHs, the Janus microparticles were successfully applied for sensitive and reliable pH measurement from 1.0 to 8.0, and the two hemispheres showed no obvious interference. The proposed method addressed the limitation that sole use of the SERS-based pH sensing usually failed in strong acidic media. The gastric juice pH and extracellular pH change were measured separately in vitro using the Janus microparticles, which confirmed the validity of microgels for pH sensing. The microparticles exhibited good stability, reversibility, biocompatibility, and ideal semipermeability for avoiding protein contamination, and they have the potential to be implantable sensors to continuously monitor pH in vivo.

  12. Resolvent analysis of shear flows using One-Way Navier-Stokes equations

    NASA Astrophysics Data System (ADS)

    Rigas, Georgios; Schmidt, Oliver; Towne, Aaron; Colonius, Tim

    2017-11-01

    For three-dimensional flows, questions of stability, receptivity, secondary flows, and coherent structures require the solution of large partial-derivative eigenvalue problems. Reduced-order approximations are thus required for engineering prediction since these problems are often computationally intractable or prohibitively expensive. For spatially slowly evolving flows, such as jets and boundary layers, the One-Way Navier-Stokes (OWNS) equations permit a fast spatial marching procedure that results in a huge reduction in computational cost. Here, an adjoint-based optimization framework is proposed and demonstrated for calculating optimal boundary conditions and optimal volumetric forcing. The corresponding optimal response modes are validated against modes obtained in terms of global resolvent analysis. For laminar base flows, the optimal modes reveal modal and non-modal transition mechanisms. For turbulent base flows, they predict the evolution of coherent structures in a statistical sense. Results from the application of the method to three-dimensional laminar wall-bounded flows and turbulent jets will be presented. This research was supported by the Office of Naval Research (N00014-16-1-2445) and Boeing Company (CT-BA-GTA-1).

  13. Derivation and Validation of Supraglacial Lake Volumes on the Greenland Ice Sheet from High-Resolution Satellite Imagery

    NASA Technical Reports Server (NTRS)

    Moussavi, Mahsa S.; Abdalati, Waleed; Pope, Allen; Scambos, Ted; Tedesco, Marco; MacFerrin, Michael; Grigsby, Shane

    2016-01-01

    Supraglacial meltwater lakes on the western Greenland Ice Sheet (GrIS) are critical components of its surface hydrology and surface mass balance, and they also affect its ice dynamics. Estimates of lake volume, however, are limited by the availability of in situ measurements of water depth,which in turn also limits the assessment of remotely sensed lake depths. Given the logistical difficulty of collecting physical bathymetric measurements, methods relying upon in situ data are generally restricted to small areas and thus their application to largescale studies is difficult to validate. Here, we produce and validate spaceborne estimates of supraglacial lake volumes across a relatively large area (1250 km(exp 2) of west Greenland's ablation region using data acquired by the WorldView-2 (WV-2) sensor, making use of both its stereo-imaging capability and its meter-scale resolution. We employ spectrally-derived depth retrieval models, which are either based on absolute reflectance (single-channel model) or a ratio of spectral reflectances in two bands (dual-channel model). These models are calibrated by usingWV-2multispectral imagery acquired early in the melt season and depth measurements from a high resolutionWV-2 DEM over the same lake basins when devoid of water. The calibrated models are then validated with different lakes in the area, for which we determined depths. Lake depth estimates based on measurements recorded in WV-2's blue (450-510 nm), green (510-580 nm), and red (630-690 nm) bands and dual-channel modes (blue/green, blue/red, and green/red band combinations) had near-zero bias, an average root-mean-squared deviation of 0.4 m (relative to post-drainage DEMs), and an average volumetric error of b1%. The approach outlined in this study - image-based calibration of depth-retrieval models - significantly improves spaceborne supraglacial bathymetry retrievals, which are completely independent from in situ measurements.

  14. Process development of oxalic acid production in submerged culture of Aspergillus niger F22 and its biocontrol efficacy against the root-knot nematode Meloidogyne incognita.

    PubMed

    Lee, Sang Il; Lee, Keon Jin; Chun, Ho Hyun; Ha, Sanghyun; Gwak, Hyun Jung; Kim, Ho Myeong; Lee, Jong-Hee; Choi, Hak-Jong; Kim, Hyeong Hwan; Shin, Teak Soo; Park, Hae Woong; Kim, Jin-Cheol

    2018-03-01

    Oxalic acid has potent nematicidal activity against the root-knot nematode Meloidogyne incognita. In this study, fermentation parameters for oxalic acid production in submerged culture of Aspergillus niger F22 at 23, 25, and 30 °C were optimized in 5-L jar fermenters. The viscosity of the culture broth increased with increasing temperature. There was a negative correlation between oxalic acid production and the apparent viscosity; high volumetric productivity of oxalic acid was obtained at low apparent viscosity (less than 1000 cP), with a productivity of more than 100 mg/L h. When the apparent viscosity was over 2500 cP, the volumetric productivity decreased below 50 mg/L h. In addition, the volumetric mass transfer coefficient, K L a, positively correlated with volumetric productivity. When the K L a value increased from 0.0 to 0.017 /s, the volumetric productivity proportionally increased up to 176 mg/L h. When the temperature decreased, K L a increased due to the decrease in viscosity, leading to increased volumetric productivity. The highest productivity of 7453.3 mg/L was obtained at the lowest temperature, i.e., 23 °C. The nematicidal activity of culture filtrate was proportional to the content of oxalic acid. Based on a constant impeller tip speed, oxalic acid production was successfully scaled up to a 500-L pilot vessel, producing a final concentration comparable to that in the 5-L jar.

  15. Erosion of water-based cements evaluated by volumetric and gravimetric methods.

    PubMed

    Nomoto, Rie; Uchida, Keiko; Momoi, Yasuko; McCabe, John F

    2003-05-01

    To compare the erosion of glass ionomer, zinc phosphate and polycarboxylate cements using volumetric and gravimetric methods. For the volumetric method, the eroded depth of cement placed in a cylindrical cavity in PMMA was measured using a dial gauge after immersion in an eroding solution. For the gravimetric method, the weight of the residue of a solution in which a cylindrical specimen had been immersed was measured. 0.02 M lactic acid solution (0.02 M acid) and 0.1 M lactic acid/sodium lactate buffer solution (0.1 M buffer) were used as eroding solutions. The pH of both solutions was 2.74 and the test period was 24 h. Ranking of eroded depth and weight of residue was polycarboxylate>zinc phosphate>glass ionomers. Differences in erosion were more clearly defined by differences in eroded depth than differences in weight of residue. In 0.02 M acid, the erosion of glass ionomer using the volumetric method was effected by the hygroscopic expansion. In 0.1 M buffer, the erosion for polycarboxylate and zinc phosphate using the volumetric method was much greater than that using the gravimetric method. This is explained by cryo-SEM images which show many holes in the surface of specimens after erosion. It appears that zinc oxide is dissolved leaving a spongy matrix which easily collapses under the force applied to the dial gauge during measurement. The volumetric method that employs eroded depth of cement using a 0.1 M buffer solution is able to quantify erosion and to make material comparisons.

  16. A broad scope knowledge based model for optimization of VMAT in esophageal cancer: validation and assessment of plan quality among different treatment centers.

    PubMed

    Fogliata, Antonella; Nicolini, Giorgia; Clivio, Alessandro; Vanetti, Eugenio; Laksar, Sarbani; Tozzi, Angelo; Scorsetti, Marta; Cozzi, Luca

    2015-10-31

    To evaluate the performance of a broad scope model-based optimisation process for volumetric modulated arc therapy applied to esophageal cancer. A set of 70 previously treated patients in two different institutions, were selected to train a model for the prediction of dose-volume constraints. The model was built with a broad-scope purpose, aiming to be effective for different dose prescriptions and tumour localisations. It was validated on three groups of patients from the same institution and from another clinic not providing patients for the training phase. Comparison of the automated plans was done against reference cases given by the clinically accepted plans. Quantitative improvements (statistically significant for the majority of the analysed dose-volume parameters) were observed between the benchmark and the test plans. Of 624 dose-volume objectives assessed for plan evaluation, in 21 cases (3.3 %) the reference plans failed to respect the constraints while the model-based plans succeeded. Only in 3 cases (<0.5 %) the reference plans passed the criteria while the model-based failed. In 5.3 % of the cases both groups of plans failed and in the remaining cases both passed the tests. Plans were optimised using a broad scope knowledge-based model to determine the dose-volume constraints. The results showed dosimetric improvements when compared to the benchmark data. Particularly the plans optimised for patients from the third centre, not participating to the training, resulted in superior quality. The data suggests that the new engine is reliable and could encourage its application to clinical practice.

  17. Synthesis of chemically bonded graphene/carbon nanotube composites and their application in large volumetric capacitance supercapacitors.

    PubMed

    Jung, Naeyoung; Kwon, Soongeun; Lee, Dongwook; Yoon, Dong-Myung; Park, Young Min; Benayad, Anass; Choi, Jae-Young; Park, Jong Se

    2013-12-17

    Chemically bonded graphene/carbon nanotube composites as flexible supercapacitor electrode materials are synthesized by amide bonding. Carbon nanotubes attached along the edges and onto the surface of graphene act as spacers to increase the electrolyte-accessible surface area. Our lamellar structure electrodes demonstrate the largest volumetric capacitance (165 F cm(-3) ) ever shown by carbon-based electrodes. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Amphiphilic ligand exchange reaction-induced supercapacitor electrodes with high volumetric and scalable areal capacitances

    NASA Astrophysics Data System (ADS)

    Nam, Donghyeon; Heo, Yeongbeom; Cheong, Sanghyuk; Ko, Yongmin; Cho, Jinhan

    2018-05-01

    We introduce high-performance supercapacitor electrodes with ternary components prepared from consecutive amphiphilic ligand-exchange-based layer-by-layer (LbL) assembly among amine-functionalized multi-walled carbon nanotubes (NH2-MWCNTs) in alcohol, oleic acid-stabilized Fe3O4 nanoparticles (OA-Fe3O4 NPs) in toluene, and semiconducting polymers (PEDOT:PSS) in water. The periodic insertion of semiconducting polymers within the (OA-Fe3O4 NP/NH2-MWCNT)n multilayer-coated indium tin oxide (ITO) electrode enhanced the volumetric and areal capacitances up to 408 ± 4 F cm-3 and 8.79 ± 0.06 mF cm-2 at 5 mV s-1, respectively, allowing excellent cycling stability (98.8% of the initial capacitance after 5000 cycles) and good rate capability. These values were higher than those of the OA-Fe3O4 NP/NH2-MWCNT multilayered electrode without semiconducting polymer linkers (volumetric capacitance ∼241 ± 4 F cm-3 and areal capacitance ∼1.95 ± 0.03 mF cm-2) at the same scan rate. Furthermore, when the asymmetric supercapacitor cells (ASCs) were prepared using OA-Fe3O4 NP- and OA-MnO NP-based ternary component electrodes, they displayed high volumetric energy (0.36 mW h cm-3) and power densities (820 mW cm-3).

  19. MXene-Based Electrode with Enhanced Pseudocapacitance and Volumetric Capacity for Power-Type and Ultra-Long Life Lithium Storage.

    PubMed

    Niu, Shanshan; Wang, Zhiyu; Yu, Mingliang; Yu, Mengzhou; Xiu, Luyang; Wang, Song; Wu, Xianhong; Qiu, Jieshan

    2018-04-24

    Powerful yet thinner lithium-ion batteries (LIBs) are eagerly desired to meet the practical demands of electric vehicles and portable electronic devices. However, the use of soft carbon materials in current electrode design to improve the electrode conductivity and stability does not afford high volumetric capacity due to their low density and capacity for lithium storage. Herein, we report a strategy leveraging the MXene with superior conductivity and density to soft carbon as matrix and additive material for comprehensively enhancing the power capability, lifespan, and volumetric capacity of conversion-type anode. A kinetics favorable 2D nanohybrid with high conductivity, compact density, accumulated pseudocapacitance, and diffusion-controlled behavior is fabricated by coupling Ti 3 C 2 MXene with high-density molybdenum carbide for fast lithium storage over 300 cycles with high capacities. By replacing the carbonaceous conductive agent with Ti 3 C 2 MXene, the electrodes with better conductivity and dramatically reduced thickens could be further manufactured to achieve 37-40% improvement in capacity retention and ultra-long life of 5500 cycles with extremely slow capacity loss of 0.002% per cycle at high current rates. Ultrahigh volumetric capacity of 2460 mAh cm -3 could be attained by such MXene-based electrodes, highlighting the great promise of MXene in the development of high-performance LIBs.

  20. Lidar-Based Rock-Fall Hazard Characterization of Cliffs

    USGS Publications Warehouse

    Collins, Brian D.; Greg M.Stock,

    2017-01-01

    Rock falls from cliffs and other steep slopes present numerous challenges for detailed geological characterization. In steep terrain, rock-fall source areas are both dangerous and difficult to access, severely limiting the ability to make detailed structural and volumetric measurements necessary for hazard assessment. Airborne and terrestrial lidar survey methods can provide high-resolution data needed for volumetric, structural, and deformation analyses of rock falls, potentially making these analyses straightforward and routine. However, specific methods to collect, process, and analyze lidar data of steep cliffs are needed to maximize analytical accuracy and efficiency. This paper presents observations showing how lidar data sets should be collected, filtered, registered, and georeferenced to tailor their use in rock fall characterization. Additional observations concerning surface model construction, volumetric calculations, and deformation analysis are also provided.

  1. SUMCOR: Cascade summing correction for volumetric sources applying MCNP6.

    PubMed

    Dias, M S; Semmler, R; Moreira, D S; de Menezes, M O; Barros, L F; Ribeiro, R V; Koskinas, M F

    2018-04-01

    The main features of code SUMCOR developed for cascade summing correction for volumetric sources are described. MCNP6 is used to track histories starting from individual points inside the volumetric source, for each set of cascade transitions from the radionuclide. Total and FEP efficiencies are calculated for all gamma-rays and X-rays involved in the cascade. Cascade summing correction is based on the matrix formalism developed by Semkow et al. (1990). Results are presented applying the experimental data sent to the participants of two intercomparisons organized by the ICRM-GSWG and coordinated by Dr. Marie-Cristine Lépy from the Laboratoire National Henri Becquerel (LNE-LNHB), CEA, in 2008 and 2010, respectively and compared to the other participants in the intercomparisons. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Binary Decision Trees for Preoperative Periapical Cyst Screening Using Cone-beam Computed Tomography.

    PubMed

    Pitcher, Brandon; Alaqla, Ali; Noujeim, Marcel; Wealleans, James A; Kotsakis, Georgios; Chrepa, Vanessa

    2017-03-01

    Cone-beam computed tomographic (CBCT) analysis allows for 3-dimensional assessment of periradicular lesions and may facilitate preoperative periapical cyst screening. The purpose of this study was to develop and assess the predictive validity of a cyst screening method based on CBCT volumetric analysis alone or combined with designated radiologic criteria. Three independent examiners evaluated 118 presurgical CBCT scans from cases that underwent apicoectomies and had an accompanying gold standard histopathological diagnosis of either a cyst or granuloma. Lesion volume, density, and specific radiologic characteristics were assessed using specialized software. Logistic regression models with histopathological diagnosis as the dependent variable were constructed for cyst prediction, and receiver operating characteristic curves were used to assess the predictive validity of the models. A conditional inference binary decision tree based on a recursive partitioning algorithm was constructed to facilitate preoperative screening. Interobserver agreement was excellent for volume and density, but it varied from poor to good for the radiologic criteria. Volume and root displacement were strong predictors for cyst screening in all analyses. The binary decision tree classifier determined that if the volume of the lesion was >247 mm 3 , there was 80% probability of a cyst. If volume was <247 mm 3 and root displacement was present, cyst probability was 60% (78% accuracy). The good accuracy and high specificity of the decision tree classifier renders it a useful preoperative cyst screening tool that can aid in clinical decision making but not a substitute for definitive histopathological diagnosis after biopsy. Confirmatory studies are required to validate the present findings. Published by Elsevier Inc.

  3. Robust and conductive two-dimensional metal-organic frameworks with exceptionally high volumetric and areal capacitance

    DOE PAGES

    Feng, Dawei; Lei, Ting; Lukatskaya, Maria R.; ...

    2018-01-01

    For miniaturized capacitive energy storage, volumetric and areal capacitances are more important metrics than gravimetric ones because of the constraints imposed by device volume and chip area. Typically used in commercial supercapacitors, porous carbons, although they provide a stable and reliable performance, lack volumetric performance because of their inherently low density and moderate capacitances. In this paper, we report a high-performing electrode based on conductive hexaaminobenzene (HAB)-derived two-dimensional metal-organic frameworks (MOFs). In addition to possessing a high packing density and hierarchical porous structure, these MOFs also exhibit excellent chemical stability in both acidic and basic aqueous solutions, which is inmore » sharp contrast to conventional MOFs. Submillimetre-thick pellets of HAB MOFs showed high volumetric capacitances up to 760 F cm -3 and high areal capacitances over 20 F cm -2. Furthermore, the HAB MOF electrodes exhibited highly reversible redox behaviours and good cycling stability with a capacitance retention of 90% after 12,000 cycles. In conclusion, these promising results demonstrate the potential of using redox-active conductive MOFs in energy-storage applications.« less

  4. Robust and conductive two-dimensional metal-organic frameworks with exceptionally high volumetric and areal capacitance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Dawei; Lei, Ting; Lukatskaya, Maria R.

    For miniaturized capacitive energy storage, volumetric and areal capacitances are more important metrics than gravimetric ones because of the constraints imposed by device volume and chip area. Typically used in commercial supercapacitors, porous carbons, although they provide a stable and reliable performance, lack volumetric performance because of their inherently low density and moderate capacitances. In this paper, we report a high-performing electrode based on conductive hexaaminobenzene (HAB)-derived two-dimensional metal-organic frameworks (MOFs). In addition to possessing a high packing density and hierarchical porous structure, these MOFs also exhibit excellent chemical stability in both acidic and basic aqueous solutions, which is inmore » sharp contrast to conventional MOFs. Submillimetre-thick pellets of HAB MOFs showed high volumetric capacitances up to 760 F cm -3 and high areal capacitances over 20 F cm -2. Furthermore, the HAB MOF electrodes exhibited highly reversible redox behaviours and good cycling stability with a capacitance retention of 90% after 12,000 cycles. In conclusion, these promising results demonstrate the potential of using redox-active conductive MOFs in energy-storage applications.« less

  5. Robust and conductive two-dimensional metal-organic frameworks with exceptionally high volumetric and areal capacitance

    NASA Astrophysics Data System (ADS)

    Feng, Dawei; Lei, Ting; Lukatskaya, Maria R.; Park, Jihye; Huang, Zhehao; Lee, Minah; Shaw, Leo; Chen, Shucheng; Yakovenko, Andrey A.; Kulkarni, Ambarish; Xiao, Jianping; Fredrickson, Kurt; Tok, Jeffrey B.; Zou, Xiaodong; Cui, Yi; Bao, Zhenan

    2018-01-01

    For miniaturized capacitive energy storage, volumetric and areal capacitances are more important metrics than gravimetric ones because of the constraints imposed by device volume and chip area. Typically used in commercial supercapacitors, porous carbons, although they provide a stable and reliable performance, lack volumetric performance because of their inherently low density and moderate capacitances. Here we report a high-performing electrode based on conductive hexaaminobenzene (HAB)-derived two-dimensional metal-organic frameworks (MOFs). In addition to possessing a high packing density and hierarchical porous structure, these MOFs also exhibit excellent chemical stability in both acidic and basic aqueous solutions, which is in sharp contrast to conventional MOFs. Submillimetre-thick pellets of HAB MOFs showed high volumetric capacitances up to 760 F cm-3 and high areal capacitances over 20 F cm-2. Furthermore, the HAB MOF electrodes exhibited highly reversible redox behaviours and good cycling stability with a capacitance retention of 90% after 12,000 cycles. These promising results demonstrate the potential of using redox-active conductive MOFs in energy-storage applications.

  6. Preclinical Validation of Anti-Nuclear Factor Kappa B Therapy Against Vestibular Schwannoma and Neurofibromatosis Type II

    DTIC Science & Technology

    2016-06-01

    therapies that simply reduce tumor volume and retard growth can be life- saving. The most successful drug used today to treat NF2, bevacizumab, works...in only about 50% of patients in halting tumor growth or causing tumor shrinkage. Bevacizumab is known to inhibit vascular endothelial growth factor...of TNF (and hence of NFkB) may prevent both VS growth and the associated hearing loss. Using human volumetric VS measurements in a retrospective

  7. The GPM Ground Validation Program: Pre to Post-Launch

    NASA Astrophysics Data System (ADS)

    Petersen, W. A.

    2014-12-01

    NASA GPM Ground Validation (GV) activities have transitioned from the pre to post-launch era. Prior to launch direct validation networks and associated partner institutions were identified world-wide, covering a plethora of precipitation regimes. In the U.S. direct GV efforts focused on use of new operational products such as the NOAA Multi-Radar Multi-Sensor suite (MRMS) for TRMM validation and GPM radiometer algorithm database development. In the post-launch, MRMS products including precipitation rate, types and data quality are being routinely generated to facilitate statistical GV of instantaneous and merged GPM products. To assess precipitation column impacts on product uncertainties, range-gate to pixel-level validation of both Dual-Frequency Precipitation Radar (DPR) and GPM microwave imager data are performed using GPM Validation Network (VN) ground radar and satellite data processing software. VN software ingests quality-controlled volumetric radar datasets and geo-matches those data to coincident DPR and radiometer level-II data. When combined MRMS and VN datasets enable more comprehensive interpretation of ground-satellite estimation uncertainties. To support physical validation efforts eight (one) field campaigns have been conducted in the pre (post) launch era. The campaigns span regimes from northern latitude cold-season snow to warm tropical rain. Most recently the Integrated Precipitation and Hydrology Experiment (IPHEx) took place in the mountains of North Carolina and involved combined airborne and ground-based measurements of orographic precipitation and hydrologic processes underneath the GPM Core satellite. One more U.S. GV field campaign (OLYMPEX) is planned for late 2015 and will address cold-season precipitation estimation, process and hydrology in the orographic and oceanic domains of western Washington State. Finally, continuous direct and physical validation measurements are also being conducted at the NASA Wallops Flight Facility multi-radar, gauge and disdrometer facility located in coastal Virginia. This presentation will summarize the evolution of the NASA GPM GV program from pre to post-launch eras and highlight early evaluations of GPM satellite datasets.

  8. Global Play Evaluation TOol (GPETO) assists Mobil explorationists with play evaluation and ranking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Withers, K.D.; Brown, P.J.; Clary, R.C.

    1996-01-01

    GPETO is a relational database and application containing information about over 2500 plays around the world. It also has information about approximately 30,000 fields and the related provinces. The GPETO application has been developed to assist Mobil geoscientists, planners and managers with global play evaluations and portfolio management. The, main features of GPETO allow users to: (1) view or modify play and province information, (2) composite user specified plays in a statistically valid way, (3) view threshold information for plays and provinces, including curves, (4) examine field size data, including discovered, future and ultimate field sizes for provinces and plays,more » (5) use a database browser to lookup and validate data by geographic, volumetric, technical and business criteria, (6) display ranged values and graphical displays of future and ultimate potential for plays, provinces, countries, and continents, (7) run, view and print a number of informative reports containing input and output data from the system. The GPETO application is written in c and fortran, runs on a unix based system, utilizes an Ingres database, and was implemented using a 3-tiered client/server architecture.« less

  9. Global Play Evaluation TOol (GPETO) assists Mobil explorationists with play evaluation and ranking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Withers, K.D.; Brown, P.J.; Clary, R.C.

    1996-12-31

    GPETO is a relational database and application containing information about over 2500 plays around the world. It also has information about approximately 30,000 fields and the related provinces. The GPETO application has been developed to assist Mobil geoscientists, planners and managers with global play evaluations and portfolio management. The, main features of GPETO allow users to: (1) view or modify play and province information, (2) composite user specified plays in a statistically valid way, (3) view threshold information for plays and provinces, including curves, (4) examine field size data, including discovered, future and ultimate field sizes for provinces and plays,more » (5) use a database browser to lookup and validate data by geographic, volumetric, technical and business criteria, (6) display ranged values and graphical displays of future and ultimate potential for plays, provinces, countries, and continents, (7) run, view and print a number of informative reports containing input and output data from the system. The GPETO application is written in c and fortran, runs on a unix based system, utilizes an Ingres database, and was implemented using a 3-tiered client/server architecture.« less

  10. Dietary assessment in minority ethnic groups: a systematic review of instruments for portion-size estimation in the United Kingdom

    PubMed Central

    Almiron-Roig, Eva; Aitken, Amanda; Galloway, Catherine

    2017-01-01

    Context: Dietary assessment in minority ethnic groups is critical for surveillance programs and for implementing effective interventions. A major challenge is the accurate estimation of portion sizes for traditional foods and dishes. Objective: The aim of this systematic review was to assess records published up to 2014 describing a portion-size estimation element (PSEE) applicable to the dietary assessment of UK-residing ethnic minorities. Data sources, selection, and extraction: Electronic databases, internet sites, and theses repositories were searched, generating 5683 titles, from which 57 eligible full-text records were reviewed. Data analysis: Forty-two publications about minority ethnic groups (n = 20) or autochthonous populations (n = 22) were included. The most common PSEEs (47%) were combination tools (eg, food models and portion-size lists), followed by portion-size lists in questionnaires/guides (19%) and image-based and volumetric tools (17% each). Only 17% of PSEEs had been validated against weighed data. Conclusions: When developing ethnic-specific dietary assessment tools, it is important to consider customary portion sizes by sex and age, traditional household utensil usage, and population literacy levels. Combining multiple PSEEs may increase accuracy, but such methods require validation. PMID:28340101

  11. Continuum approach for aerothermal flow through ablative porous material using discontinuous Galerkin discretization.

    NASA Astrophysics Data System (ADS)

    Schrooyen, Pierre; Chatelain, Philippe; Hillewaert, Koen; Magin, Thierry E.

    2014-11-01

    The atmospheric entry of spacecraft presents several challenges in simulating the aerothermal flow around the heat shield. Predicting an accurate heat-flux is a complex task, especially regarding the interaction between the flow in the free stream and the erosion of the thermal protection material. To capture this interaction, a continuum approach is developed to go progressively from the region fully occupied by fluid to a receding porous medium. The volume averaged Navier-Stokes equations are used to model both phases in the same computational domain considering a single set of conservation laws. The porosity is itself a variable of the computation, allowing to take volumetric ablation into account through adequate source terms. This approach is implemented within a computational tool based on a high-order discontinuous Galerkin discretization. The multi-dimensional tool has already been validated and has proven its efficient parallel implementation. Within this platform, a fully implicit method was developed to simulate multi-phase reacting flows. Numerical results to verify and validate the methodology are considered within this work. Interactions between the flow and the ablated geometry are also presented. Supported by Fund for Research Training in Industry and Agriculture.

  12. Adaptive controller for volumetric display of neuroimaging studies

    NASA Astrophysics Data System (ADS)

    Bleiberg, Ben; Senseney, Justin; Caban, Jesus

    2014-03-01

    Volumetric display of medical images is an increasingly relevant method for examining an imaging acquisition as the prevalence of thin-slice imaging increases in clinical studies. Current mouse and keyboard implementations for volumetric control provide neither the sensitivity nor specificity required to manipulate a volumetric display for efficient reading in a clinical setting. Solutions to efficient volumetric manipulation provide more sensitivity by removing the binary nature of actions controlled by keyboard clicks, but specificity is lost because a single action may change display in several directions. When specificity is then further addressed by re-implementing hardware binary functions through the introduction of mode control, the result is a cumbersome interface that fails to achieve the revolutionary benefit required for adoption of a new technology. We address the specificity versus sensitivity problem of volumetric interfaces by providing adaptive positional awareness to the volumetric control device by manipulating communication between hardware driver and existing software methods for volumetric display of medical images. This creates a tethered effect for volumetric display, providing a smooth interface that improves on existing hardware approaches to volumetric scene manipulation.

  13. Automated quantification of cerebral edema following hemispheric infarction: Application of a machine-learning algorithm to evaluate CSF shifts on serial head CTs.

    PubMed

    Chen, Yasheng; Dhar, Rajat; Heitsch, Laura; Ford, Andria; Fernandez-Cadenas, Israel; Carrera, Caty; Montaner, Joan; Lin, Weili; Shen, Dinggang; An, Hongyu; Lee, Jin-Moo

    2016-01-01

    Although cerebral edema is a major cause of death and deterioration following hemispheric stroke, there remains no validated biomarker that captures the full spectrum of this critical complication. We recently demonstrated that reduction in intracranial cerebrospinal fluid (CSF) volume (∆ CSF) on serial computed tomography (CT) scans provides an accurate measure of cerebral edema severity, which may aid in early triaging of stroke patients for craniectomy. However, application of such a volumetric approach would be too cumbersome to perform manually on serial scans in a real-world setting. We developed and validated an automated technique for CSF segmentation via integration of random forest (RF) based machine learning with geodesic active contour (GAC) segmentation. The proposed RF + GAC approach was compared to conventional Hounsfield Unit (HU) thresholding and RF segmentation methods using Dice similarity coefficient (DSC) and the correlation of volumetric measurements, with manual delineation serving as the ground truth. CSF spaces were outlined on scans performed at baseline (< 6 h after stroke onset) and early follow-up (FU) (closest to 24 h) in 38 acute ischemic stroke patients. RF performed significantly better than optimized HU thresholding (p < 10 - 4 in baseline and p < 10 - 5 in FU) and RF + GAC performed significantly better than RF (p < 10 - 3 in baseline and p < 10 - 5 in FU). Pearson correlation coefficients between the automatically detected ∆ CSF and the ground truth were r  = 0.178 (p = 0.285), r  = 0.876 (p < 10 - 6 ) and r  = 0.879 (p < 10 - 6 ) for thresholding, RF and RF + GAC, respectively, with a slope closer to the line of identity in RF + GAC. When we applied the algorithm trained from images of one stroke center to segment CTs from another center, similar findings held. In conclusion, we have developed and validated an accurate automated approach to segment CSF and calculate its shifts on serial CT scans. This algorithm will allow us to efficiently and accurately measure the evolution of cerebral edema in future studies including large multi-site patient populations.

  14. A cross-validated cytoarchitectonic atlas of the human ventral visual stream.

    PubMed

    Rosenke, Mona; Weiner, Kevin S; Barnett, Michael A; Zilles, Karl; Amunts, Katrin; Goebel, Rainer; Grill-Spector, Kalanit

    2018-04-15

    The human ventral visual stream consists of several areas that are considered processing stages essential for perception and recognition. A fundamental microanatomical feature differentiating areas is cytoarchitecture, which refers to the distribution, size, and density of cells across cortical layers. Because cytoarchitectonic structure is measured in 20-micron-thick histological slices of postmortem tissue, it is difficult to assess (a) how anatomically consistent these areas are across brains and (b) how they relate to brain parcellations obtained with prevalent neuroimaging methods, acquired at the millimeter and centimeter scale. Therefore, the goal of this study was to (a) generate a cross-validated cytoarchitectonic atlas of the human ventral visual stream on a whole brain template that is commonly used in neuroimaging studies and (b) to compare this atlas to a recently published retinotopic parcellation of visual cortex (Wang et al., 2014). To achieve this goal, we generated an atlas of eight cytoarchitectonic areas: four areas in the occipital lobe (hOc1-hOc4v) and four in the fusiform gyrus (FG1-FG4), then we tested how the different alignment techniques affect the accuracy of the resulting atlas. Results show that both cortex-based alignment (CBA) and nonlinear volumetric alignment (NVA) generate an atlas with better cross-validation performance than affine volumetric alignment (AVA). Additionally, CBA outperformed NVA in 6/8 of the cytoarchitectonic areas. Finally, the comparison of the cytoarchitectonic atlas to a retinotopic atlas shows a clear correspondence between cytoarchitectonic and retinotopic areas in the ventral visual stream. The successful performance of CBA suggests a coupling between cytoarchitectonic areas and macroanatomical landmarks in the human ventral visual stream, and furthermore, that this coupling can be utilized for generating an accurate group atlas. In addition, the coupling between cytoarchitecture and retinotopy highlights the potential use of this atlas in understanding how anatomical features contribute to brain function. We make this cytoarchitectonic atlas freely available in both BrainVoyager and FreeSurfer formats (http://vpnl.stanford.edu/vcAtlas). The availability of this atlas will enable future studies to link cytoarchitectonic organization to other parcellations of the human ventral visual stream with potential to advance the understanding of this pathway in typical and atypical populations. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Efficiently dense hierarchical graphene based aerogel electrode for supercapacitors

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Lu, Chengxing; Peng, Huifen; Zhang, Xin; Wang, Zhenkun; Wang, Gongkai

    2016-08-01

    Boosting gravimetric and volumetric capacitances simultaneously at a high rate is still a discrepancy in development of graphene based supercapacitors. We report the preparation of dense hierarchical graphene/activated carbon composite aerogels via a reduction induced self-assembly process coupled with a drying post treatment. The compact and porous structures of composite aerogels could be maintained. The drying post treatment has significant effects on increasing the packing density of aerogels. The introduced activated carbons play the key roles of spacers and bridges, mitigating the restacking of adjacent graphene nanosheets and connecting lateral and vertical graphene nanosheets, respectively. The optimized aerogel with a packing density of 0.67 g cm-3 could deliver maximum gravimetric and volumetric capacitances of 128.2 F g-1 and 85.9 F cm-3, respectively, at a current density of 1 A g-1 in aqueous electrolyte, showing no apparent degradation to the specific capacitance at a current density of 10 A g-1 after 20000 cycles. The corresponding gravimetric and volumetric capacitances of 116.6 F g-1 and 78.1 cm-3 with an acceptable cyclic stability are also achieved in ionic liquid electrolyte. The results show a feasible strategy of designing dense hierarchical graphene based aerogels for supercapacitors.

  16. High-performance flexible all-solid-state supercapacitors based on densely-packed graphene/polypyrrole nanoparticle papers

    NASA Astrophysics Data System (ADS)

    Yang, Chao; Zhang, Liling; Hu, Nantao; Yang, Zhi; Wei, Hao; Wang, Yanyan; Zhang, Yafei

    2016-11-01

    Graphene-based all-solid-state supercapacitors (ASSSCs) have received increasing attention. It's a great challenge to fabricate high-performance flexible solid-state supercapacitors with high areal and volumetric energy storage capability, superior electron and ion conductivity, robust mechanical flexibility, as well as long term stability. Herein, we report a facile method to fabricate flexible ASSSCs based on densely-packed reduced graphene oxide (rGO)/polypyrrole nanoparticle (PPy NP) hybrid papers with a sandwich framework, which consists of well-separated and continuously-aligned rGO sheets. The incorporation of PPy NPs not only provides pseudocapacitance but also facilitates the infiltration of gel electrolyte. The assembled ASSSCs possess maximum areal and volumetric specific capacitances of 477 mF/cm2 and 94.9 F/cm3 at 0.5 mA/cm2. They also exhibit little capacitance deviation under different bending states, excellent cycling stability, small leakage current and low self-discharge characteristics. Additionally, the maximum areal and volumetric energy densities of 132.5 μWh/cm2 and 26.4 mWh/cm3 are achieved, which indicate that this hybrid paper is a promising candidate for high-performance flexible energy storage devices.

  17. Haptics-based dynamic implicit solid modeling.

    PubMed

    Hua, Jing; Qin, Hong

    2004-01-01

    This paper systematically presents a novel, interactive solid modeling framework, Haptics-based Dynamic Implicit Solid Modeling, which is founded upon volumetric implicit functions and powerful physics-based modeling. In particular, we augment our modeling framework with a haptic mechanism in order to take advantage of additional realism associated with a 3D haptic interface. Our dynamic implicit solids are semi-algebraic sets of volumetric implicit functions and are governed by the principles of dynamics, hence responding to sculpting forces in a natural and predictable manner. In order to directly manipulate existing volumetric data sets as well as point clouds, we develop a hierarchical fitting algorithm to reconstruct and represent discrete data sets using our continuous implicit functions, which permit users to further design and edit those existing 3D models in real-time using a large variety of haptic and geometric toolkits, and visualize their interactive deformation at arbitrary resolution. The additional geometric and physical constraints afford more sophisticated control of the dynamic implicit solids. The versatility of our dynamic implicit modeling enables the user to easily modify both the geometry and the topology of modeled objects, while the inherent physical properties can offer an intuitive haptic interface for direct manipulation with force feedback.

  18. Kilohertz VLIF (volumetric laser induced fluorescence) measurements in a seeded free gas-phase jet in the transitionally turbulent flow regime

    NASA Astrophysics Data System (ADS)

    Wu, Yue; Xu, Wenjiang; Ma, Lin

    2018-03-01

    This paper reports the demonstration of instantaneous three-dimension (3D) measurements in turbulent flows at repetition rates up to 10 kHz using VLIF (volumetric laser induced fluorescence). The measurements were performed based on the LIF signal of iodine (I2) vapor seeded in the flow. The LIF signals of I2 vapor were generated volumetrically by a thick laser slab and then simultaneously captured by a total of seven cameras from different perspectives, based on which a 3D tomographic reconstruction was performed to obtain the 3D distribution of I2 vapor concentration. Single-shot measurements obtained in a duration of hundreds of nanoseconds (limited by the pulse duration of the excitation laser) were demonstrated in a 50 × 50 × 50 mm3 at a repetition rate up to 10 kHz. These measurements demonstrated the feasibility and potential of VLIF for resolving the 4D spatiotemporal dynamics of turbulent flows. Based on the experimental results obtained, this work also studied the VLIF signal level and its effects on the reconstruction accuracy under different the measurement conditions, illustrating the capabilities and limitations of performing high speed VLIF measurements.

  19. Sex Assessment from the Volume of the First Metatarsal Bone: A Comparison of Linear and Volume Measurements.

    PubMed

    Gibelli, Daniele; Poppa, Pasquale; Cummaudo, Marco; Mattia, Mirko; Cappella, Annalisa; Mazzarelli, Debora; Zago, Matteo; Sforza, Chiarella; Cattaneo, Cristina

    2017-11-01

    Sexual dimorphism is a crucial characteristic of skeleton. In the last years, volumetric and surface 3D acquisition systems have enabled anthropologists to assess surfaces and volumes, whose potential still needs to be verified. This article aimed at assessing volume and linear parameters of the first metatarsal bone through 3D acquisition by laser scanning. Sixty-eight skeletons underwent 3D scan through laser scanner: Seven linear measurements and volume from each bone were assessed. A cutoff value of 13,370 mm 3 was found, with an accuracy of 80.8%. Linear measurements outperformed volume: metatarsal length and mediolateral width of base showed higher cross-validated accuracies (respectively, 82.1% and 79.1%, raising at 83.6% when both of them were included). Further studies are needed to verify the real advantage for sex assessment provided by volume measurements. © 2017 American Academy of Forensic Sciences.

  20. New solution decomposition and minimization schemes for Poisson-Boltzmann equation in calculation of biomolecular electrostatics

    NASA Astrophysics Data System (ADS)

    Xie, Dexuan

    2014-10-01

    The Poisson-Boltzmann equation (PBE) is one widely-used implicit solvent continuum model in the calculation of electrostatic potential energy for biomolecules in ionic solvent, but its numerical solution remains a challenge due to its strong singularity and nonlinearity caused by its singular distribution source terms and exponential nonlinear terms. To effectively deal with such a challenge, in this paper, new solution decomposition and minimization schemes are proposed, together with a new PBE analysis on solution existence and uniqueness. Moreover, a PBE finite element program package is developed in Python based on the FEniCS program library and GAMer, a molecular surface and volumetric mesh generation program package. Numerical tests on proteins and a nonlinear Born ball model with an analytical solution validate the new solution decomposition and minimization schemes, and demonstrate the effectiveness and efficiency of the new PBE finite element program package.

  1. Theory and preliminary experimental verification of quantitative edge illumination x-ray phase contrast tomography.

    PubMed

    Hagen, C K; Diemoz, P C; Endrizzi, M; Rigon, L; Dreossi, D; Arfelli, F; Lopez, F C M; Longo, R; Olivo, A

    2014-04-07

    X-ray phase contrast imaging (XPCi) methods are sensitive to phase in addition to attenuation effects and, therefore, can achieve improved image contrast for weakly attenuating materials, such as often encountered in biomedical applications. Several XPCi methods exist, most of which have already been implemented in computed tomographic (CT) modality, thus allowing volumetric imaging. The Edge Illumination (EI) XPCi method had, until now, not been implemented as a CT modality. This article provides indications that quantitative 3D maps of an object's phase and attenuation can be reconstructed from EI XPCi measurements. Moreover, a theory for the reconstruction of combined phase and attenuation maps is presented. Both reconstruction strategies find applications in tissue characterisation and the identification of faint, weakly attenuating details. Experimental results for wires of known materials and for a biological object validate the theory and confirm the superiority of the phase over conventional, attenuation-based image contrast.

  2. Directly Grown Nanostructured Electrodes for High Volumetric Energy Density Binder-Free Hybrid Supercapacitors: A Case Study of CNTs//Li4Ti5O12

    NASA Astrophysics Data System (ADS)

    Zuo, Wenhua; Wang, Chong; Li, Yuanyuan; Liu, Jinping

    2015-01-01

    Hybrid supercapacitor (HSC), which typically consists of a Li-ion battery electrode and an electric double-layer supercapacitor electrode, has been extensively investigated for large-scale applications such as hybrid electric vehicles, etc. Its application potential for thin-film downsized energy storage systems that always prefer high volumetric energy/power densities, however, has not yet been explored. Herein, as a case study, we develop an entirely binder-free HSC by using multiwalled carbon nanotube (MWCNT) network film as the cathode and Li4Ti5O12 (LTO) nanowire array as the anode and study the volumetric energy storage capability. Both the electrode materials are grown directly on carbon cloth current collector, ensuring robust mechanical/electrical contacts and flexibility. Our 3 V HSC device exhibits maximum volumetric energy density of ~4.38 mWh cm-3, much superior to those of previous supercapacitors based on thin-film electrodes fabricated directly on carbon cloth and even comparable to the commercial thin-film lithium battery. It also has volumetric power densities comparable to that of the commercial 5.5 V/100 mF supercapacitor (can be operated within 3 s) and has excellent cycling stability (~92% retention after 3000 cycles). The concept of utilizing binder-free electrodes to construct HSC for thin-film energy storage may be readily extended to other HSC electrode systems.

  3. Accuracy Improvement of Multi-Axis Systems Based on Laser Correction of Volumetric Geometric Errors

    NASA Astrophysics Data System (ADS)

    Teleshevsky, V. I.; Sokolov, V. A.; Pimushkin, Ya I.

    2018-04-01

    The article describes a volumetric geometric errors correction method for CNC- controlled multi-axis systems (machine-tools, CMMs etc.). The Kalman’s concept of “Control and Observation” is used. A versatile multi-function laser interferometer is used as Observer in order to measure machine’s error functions. A systematic error map of machine’s workspace is produced based on error functions measurements. The error map results into error correction strategy. The article proposes a new method of error correction strategy forming. The method is based on error distribution within machine’s workspace and a CNC-program postprocessor. The postprocessor provides minimal error values within maximal workspace zone. The results are confirmed by error correction of precision CNC machine-tools.

  4. Segmentation and tracking of lung nodules via graph-cuts incorporating shape prior and motion from 4D CT.

    PubMed

    Cha, Jungwon; Farhangi, Mohammad Mehdi; Dunlap, Neal; Amini, Amir A

    2018-01-01

    We have developed a robust tool for performing volumetric and temporal analysis of nodules from respiratory gated four-dimensional (4D) CT. The method could prove useful in IMRT of lung cancer. We modified the conventional graph-cuts method by adding an adaptive shape prior as well as motion information within a signed distance function representation to permit more accurate and automated segmentation and tracking of lung nodules in 4D CT data. Active shape models (ASM) with signed distance function were used to capture the shape prior information, preventing unwanted surrounding tissues from becoming part of the segmented object. The optical flow method was used to estimate the local motion and to extend three-dimensional (3D) segmentation to 4D by warping a prior shape model through time. The algorithm has been applied to segmentation of well-circumscribed, vascularized, and juxtapleural lung nodules from respiratory gated CT data. In all cases, 4D segmentation and tracking for five phases of high-resolution CT data took approximately 10 min on a PC workstation with AMD Phenom II and 32 GB of memory. The method was trained based on 500 breath-held 3D CT data from the LIDC data base and was tested on 17 4D lung nodule CT datasets consisting of 85 volumetric frames. The validation tests resulted in an average Dice Similarity Coefficient (DSC) = 0.68 for all test data. An important by-product of the method is quantitative volume measurement from 4D CT from end-inspiration to end-expiration which will also have important diagnostic value. The algorithm performs robust segmentation of lung nodules from 4D CT data. Signed distance ASM provides the shape prior information which based on the iterative graph-cuts framework is adaptively refined to best fit the input data, preventing unwanted surrounding tissue from merging with the segmented object. © 2017 American Association of Physicists in Medicine.

  5. Cultivation of an L-lactate dehydrogenase mutant of Bacillus stearothermophilus in continuous culture with cell recycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, R.S.; Bushell, D.; Leak, D.J.

    1994-06-05

    Continuous fermentation with cell recycle proved very effective in increasing the ethanol volumetric productivity of the thermophilic facultative anaerobe, Bacillus stearothermophilus strain LLD-15, on sucrose at 70 C. When complete cell recycle was used, cell viability decreased after a few residence times and sucrose consumption was reduced. Operation using a constant bleed rate resulted in greater stability and higher ethanol volumetric productivities. A mathematical model based on maintenance energy requirements provided an adequate description of the system.

  6. Direct volumetric rendering based on point primitives in OpenGL.

    PubMed

    da Rosa, André Luiz Miranda; de Almeida Souza, Ilana; Yuuji Hira, Adilson; Zuffo, Marcelo Knörich

    2006-01-01

    The aim of this project is to present a renderization by software algorithm of acquired volumetric data. The algorithm was implemented in Java language and the LWJGL graphical library was used, allowing the volume renderization by software and thus preventing the necessity to acquire specific graphical boards for the 3D reconstruction. The considered algorithm creates a model in OpenGL, through point primitives, where each voxel becomes a point with the color values related to this pixel position in the corresponding images.

  7. Inventory of File gfs.t06z.sfluxgrbf00.grib2

    Science.gov Websites

    Volumetric Soil Moisture Content [Fraction] 007 0.1-0.4 m below ground SOILW analysis Volumetric Soil Volumetric Soil Moisture Content [Fraction] 068 1-2 m below ground SOILW analysis Volumetric Soil Moisture analysis Temperature [K] 071 0-0.1 m below ground SOILL analysis Liquid Volumetric Soil Moisture (non

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCulloch, M; Polan, D; Feng, M

    Purpose: Previous studies have shown that radiotherapy treatment for liver metastases causes marked liver hypertrophy in areas receiving low dose and atrophy/fibrosis in areas receiving high dose. The purpose of this work is to develop and evaluate a biomechanical model-based dose-response model to describe these liver responses to SBRT. Methods: In this retrospective study, a biomechanical model-based deformable registration algorithm, Morfeus, was expanded to include dose-based boundary conditions. Liver and tumor volumes were contoured on the planning images and CT/MR images three months post-RT and converted to finite element models. A thermal expansion-based relationship correlating the delivered dose and volumemore » response was generated from 22 patients previously treated. This coefficient, combined with the planned dose, was applied as an additional boundary condition to describe the volumetric response of the liver of an additional cohort of metastatic liver patients treated with SBRT. The accuracy of the model was evaluated based on overall volumetric liver comparisons and the target registration error (TRE) using the average deviations in positions of identified vascular bifurcations on each set of registered images, with a target accuracy of the 2.5mm isotropic dose grid (vector dimension 4.3mm). Results: The thermal expansion coefficient models the volumetric change of the liver to within 3%. The accuracy of Morfeus with dose-expansion boundary conditions a TRE of 5.7±2.8mm compared to 11.2±3.7mm using rigid registration and 8.9±0.28mm using Morfeus with only spatial boundary conditions. Conclusion: A biomechanical model has been developed to describe the volumetric and spatial response of the liver to SBRT. This work will enable the improvement of correlating functional imaging with delivered dose, the mapping of the delivered dose from one treatment onto the planning images for a subsequent treatment, and will further provide information to assist with the biological characterization of patients’ response to radiation.« less

  9. COMPARISON OF VOLUMETRIC REGISTRATION ALGORITHMS FOR TENSOR-BASED MORPHOMETRY

    PubMed Central

    Villalon, Julio; Joshi, Anand A.; Toga, Arthur W.; Thompson, Paul M.

    2015-01-01

    Nonlinear registration of brain MRI scans is often used to quantify morphological differences associated with disease or genetic factors. Recently, surface-guided fully 3D volumetric registrations have been developed that combine intensity-guided volume registrations with cortical surface constraints. In this paper, we compare one such algorithm to two popular high-dimensional volumetric registration methods: large-deformation viscous fluid registration, formulated in a Riemannian framework, and the diffeomorphic “Demons” algorithm. We performed an objective morphometric comparison, by using a large MRI dataset from 340 young adult twin subjects to examine 3D patterns of correlations in anatomical volumes. Surface-constrained volume registration gave greater effect sizes for detecting morphometric associations near the cortex, while the other two approaches gave greater effects sizes subcortically. These findings suggest novel ways to combine the advantages of multiple methods in the future. PMID:26925198

  10. Evaluation of patients with painful total hip arthroplasty using combined single photon emission tomography and conventional computerized tomography (SPECT/CT) - a comparison of semi-quantitative versus 3D volumetric quantitative measurements.

    PubMed

    Barthassat, Emilienne; Afifi, Faik; Konala, Praveen; Rasch, Helmut; Hirschmann, Michael T

    2017-05-08

    It was the primary purpose of our study to evaluate the inter- and intra-observer reliability of a standardized SPECT/CT algorithm for evaluating patients with painful primary total hip arthroplasty (THA). The secondary purpose was a comparison of semi-quantitative and 3D volumetric quantification method for assessment of bone tracer uptake (BTU) in those patients. A novel SPECT/CT localization scheme consisting of 14 femoral and 4 acetabular regions on standardized axial and coronal slices was introduced and evaluated in terms of inter- and intra-observer reliability in 37 consecutive patients with hip pain after THA. BTU for each anatomical region was assessed semi-quantitatively using a color-coded Likert type scale (0-10) and volumetrically quantified using a validated software. Two observers interpreted the SPECT/CT findings in all patients two times with six weeks interval between interpretations in random order. Semi-quantitative and quantitative measurements were compared in terms of reliability. In addition, the values were correlated using Pearson`s correlation. A factorial cluster analysis of BTU was performed to identify clinically relevant regions, which should be grouped and analysed together. The localization scheme showed high inter- and intra-observer reliabilities for all femoral and acetabular regions independent of the measurement method used (semiquantitative versus 3D volumetric quantitative measurements). A high to moderate correlation between both measurement methods was shown for the distal femur, the proximal femur and the acetabular cup. The factorial cluster analysis showed that the anatomical regions might be summarized into three distinct anatomical regions. These were the proximal femur, the distal femur and the acetabular cup region. The SPECT/CT algorithm for assessment of patients with pain after THA is highly reliable independent from the measurement method used. Three clinically relevant anatomical regions (proximal femoral, distal femoral, acetabular) were identified.

  11. Automated Quantification of Volumetric Optic Disc Swelling in Papilledema Using Spectral-Domain Optical Coherence Tomography

    PubMed Central

    Wang, Jui-Kai; Kardon, Randy H.; Kupersmith, Mark J.; Garvin, Mona K.

    2012-01-01

    Purpose. To develop an automated method for the quantification of volumetric optic disc swelling in papilledema subjects using spectral-domain optical coherence tomography (SD-OCT) and to determine the extent that such volumetric measurements correlate with Frisén scale grades (from fundus photographs) and two-dimensional (2-D) peripapillary retinal nerve fiber layer (RNFL) and total retinal (TR) thickness measurements from SD-OCT. Methods. A custom image-analysis algorithm was developed to obtain peripapillary circular RNFL thickness, TR thickness, and TR volume measurements from SD-OCT volumes of subjects with papilledema. In addition, peripapillary RNFL thickness measures from the commercially available Zeiss SD-OCT machine were obtained. Expert Frisén scale grades were independently obtained from corresponding fundus photographs. Results. In 71 SD-OCT scans, the mean (± standard deviation) resulting TR volumes for Frisén scale 0 to scale 4 were 11.36 ± 0.56, 12.53 ± 1.21, 14.42 ± 2.11, 17.48 ± 2.63, and 21.81 ± 3.16 mm3, respectively. The Spearman's rank correlation coefficient was 0.737. Using 55 eyes with valid Zeiss RNFL measurements, Pearson's correlation coefficient (r) between the TR volume and the custom algorithm's TR thickness, the custom algorithm's RNFL thickness, and Zeiss' RNFL thickness was 0.980, 0.929, and 0.946, respectively. Between Zeiss' RNFL and the custom algorithm's RNFL, and the study's TR thickness, r was 0.901 and 0.961, respectively. Conclusions. Volumetric measurements of the degree of disc swelling in subjects with papilledema can be obtained from SD-OCT volumes, with the mean volume appearing to be roughly linearly related to the Frisén scale grade. Using such an approach can provide a more continuous, objective, and robust means for assessing the degree of disc swelling compared with presently available approaches. PMID:22599584

  12. Automated detection, 3D segmentation and analysis of high resolution spine MR images using statistical shape models

    NASA Astrophysics Data System (ADS)

    Neubert, A.; Fripp, J.; Engstrom, C.; Schwarz, R.; Lauer, L.; Salvado, O.; Crozier, S.

    2012-12-01

    Recent advances in high resolution magnetic resonance (MR) imaging of the spine provide a basis for the automated assessment of intervertebral disc (IVD) and vertebral body (VB) anatomy. High resolution three-dimensional (3D) morphological information contained in these images may be useful for early detection and monitoring of common spine disorders, such as disc degeneration. This work proposes an automated approach to extract the 3D segmentations of lumbar and thoracic IVDs and VBs from MR images using statistical shape analysis and registration of grey level intensity profiles. The algorithm was validated on a dataset of volumetric scans of the thoracolumbar spine of asymptomatic volunteers obtained on a 3T scanner using the relatively new 3D T2-weighted SPACE pulse sequence. Manual segmentations and expert radiological findings of early signs of disc degeneration were used in the validation. There was good agreement between manual and automated segmentation of the IVD and VB volumes with the mean Dice scores of 0.89 ± 0.04 and 0.91 ± 0.02 and mean absolute surface distances of 0.55 ± 0.18 mm and 0.67 ± 0.17 mm respectively. The method compares favourably to existing 3D MR segmentation techniques for VBs. This is the first time IVDs have been automatically segmented from 3D volumetric scans and shape parameters obtained were used in preliminary analyses to accurately classify (100% sensitivity, 98.3% specificity) disc abnormalities associated with early degenerative changes.

  13. Micro-computed tomography in murine models of cerebral cavernous malformations as a paradigm for brain disease.

    PubMed

    Girard, Romuald; Zeineddine, Hussein A; Orsbon, Courtney; Tan, Huan; Moore, Thomas; Hobson, Nick; Shenkar, Robert; Lightle, Rhonda; Shi, Changbin; Fam, Maged D; Cao, Ying; Shen, Le; Neander, April I; Rorrer, Autumn; Gallione, Carol; Tang, Alan T; Kahn, Mark L; Marchuk, Douglas A; Luo, Zhe-Xi; Awad, Issam A

    2016-09-15

    Cerebral cavernous malformations (CCMs) are hemorrhagic brain lesions, where murine models allow major mechanistic discoveries, ushering genetic manipulations and preclinical assessment of therapies. Histology for lesion counting and morphometry is essential yet tedious and time consuming. We herein describe the application and validations of X-ray micro-computed tomography (micro-CT), a non-destructive technique allowing three-dimensional CCM lesion count and volumetric measurements, in transgenic murine brains. We hereby describe a new contrast soaking technique not previously applied to murine models of CCM disease. Volumetric segmentation and image processing paradigm allowed for histologic correlations and quantitative validations not previously reported with the micro-CT technique in brain vascular disease. Twenty-two hyper-dense areas on micro-CT images, identified as CCM lesions, were matched by histology. The inter-rater reliability analysis showed strong consistency in the CCM lesion identification and staging (K=0.89, p<0.0001) between the two techniques. Micro-CT revealed a 29% greater CCM lesion detection efficiency, and 80% improved time efficiency. Serial integrated lesional area by histology showed a strong positive correlation with micro-CT estimated volume (r(2)=0.84, p<0.0001). Micro-CT allows high throughput assessment of lesion count and volume in pre-clinical murine models of CCM. This approach complements histology with improved accuracy and efficiency, and can be applied for lesion burden assessment in other brain diseases. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. On-line MR imaging for dose validation of abdominal radiotherapy

    NASA Astrophysics Data System (ADS)

    Glitzner, M.; Crijns, S. P. M.; de Senneville, B. Denis; Kontaxis, C.; Prins, F. M.; Lagendijk, J. J. W.; Raaymakers, B. W.

    2015-11-01

    For quality assurance and adaptive radiotherapy, validation of the actual delivered dose is crucial. Intrafractional anatomy changes cannot be captured satisfactorily during treatment with hitherto available imaging modalitites. Consequently, dose calculations are based on the assumption of static anatomy throughout the treatment. However, intra- and interfraction anatomy is dynamic and changes can be significant. In this paper, we investigate the use of an MR-linac as a dose tracking modality for the validation of treatments in abdominal targets where both respiratory and long-term peristaltic and drift motion occur. The on-line MR imaging capability of the modality provides the means to perform respiratory gating of both delivery and acquisition yielding a model-free respiratory motion management under free breathing conditions. In parallel to the treatment, the volumetric patient anatomy was captured and used to calculate the applied dose. Subsequently, the individual doses were warped back to the planning grid to obtain the actual dose accumulated over the entire treatment duration. Ultimately, the planned dose was validated by comparison with the accumulated dose. Representative for a site subject to breathing modulation, two kidney cases (25 Gy target dose) demonstrated the working principle on volunteer data and simulated delivery. The proposed workflow successfully showed its ability to track local dosimetric changes. Integration of the on-line anatomy information could reveal local dose variations  -2.3-1.5 Gy in the target volume of a volunteer dataset. In the adjacent organs at risk, high local dose errors ranging from  -2.5 to 1.9 Gy could be traced back.

  15. A new contrast-assisted method in microcirculation volumetric flow assessment

    NASA Astrophysics Data System (ADS)

    Lu, Sheng-Yi; Chen, Yung-Sheng; Yeh, Chih-Kuang

    2007-03-01

    Microcirculation volumetric flow rate is a significant index in diseases diagnosis and treatment such as diabetes and cancer. In this study, we propose an integrated algorithm to assess microcirculation volumetric flow rate including estimation of blood perfused area and corresponding flow velocity maps based on high frequency destruction/contrast replenishment imaging technique. The perfused area indicates the blood flow regions including capillaries, arterioles and venules. Due to the echo variance changes between ultrasonic contrast agents (UCAs) pre- and post-destruction two images, the perfused area can be estimated by the correlation-based approach. The flow velocity distribution within the perfused area can be estimated by refilling time-intensity curves (TICs) after UCAs destruction. Most studies introduced the rising exponential model proposed by Wei (1998) to fit the TICs. Nevertheless, we found the TICs profile has a great resemblance to sigmoid function in simulations and in vitro experiments results. Good fitting correlation reveals that sigmoid model was more close to actual fact in describing destruction/contrast replenishment phenomenon. We derived that the saddle point of sigmoid model is proportional to blood flow velocity. A strong linear relationship (R = 0.97) between the actual flow velocities (0.4-2.1 mm/s) and the estimated saddle constants was found in M-mode and B-mode flow phantom experiments. Potential applications of this technique include high-resolution volumetric flow rate assessment in small animal tumor and the evaluation of superficial vasculature in clinical studies.

  16. Estimation of effective x-ray tissue attenuation differences for volumetric breast density measurement

    NASA Astrophysics Data System (ADS)

    Chen, Biao; Ruth, Chris; Jing, Zhenxue; Ren, Baorui; Smith, Andrew; Kshirsagar, Ashwini

    2014-03-01

    Breast density has been identified to be a risk factor of developing breast cancer and an indicator of lesion diagnostic obstruction due to masking effect. Volumetric density measurement evaluates fibro-glandular volume, breast volume, and breast volume density measures that have potential advantages over area density measurement in risk assessment. One class of volume density computing methods is based on the finding of the relative fibro-glandular tissue attenuation with regards to the reference fat tissue, and the estimation of the effective x-ray tissue attenuation differences between the fibro-glandular and fat tissue is key to volumetric breast density computing. We have modeled the effective attenuation difference as a function of actual x-ray skin entrance spectrum, breast thickness, fibro-glandular tissue thickness distribution, and detector efficiency. Compared to other approaches, our method has threefold advantages: (1) avoids the system calibration-based creation of effective attenuation differences which may introduce tedious calibrations for each imaging system and may not reflect the spectrum change and scatter induced overestimation or underestimation of breast density; (2) obtains the system specific separate and differential attenuation values of fibroglandular and fat for each mammographic image; and (3) further reduces the impact of breast thickness accuracy to volumetric breast density. A quantitative breast volume phantom with a set of equivalent fibro-glandular thicknesses has been used to evaluate the volume breast density measurement with the proposed method. The experimental results have shown that the method has significantly improved the accuracy of estimating breast density.

  17. Breast volumetric analysis for aesthetic planning in breast reconstruction: a literature review of techniques

    PubMed Central

    Rozen, Warren Matthew; Spychal, Robert T.; Hunter-Smith, David J.

    2016-01-01

    Background Accurate volumetric analysis is an essential component of preoperative planning in both reconstructive and aesthetic breast procedures towards achieving symmetrization and patient-satisfactory outcome. Numerous comparative studies and reviews of individual techniques have been reported. However, a unifying review of all techniques comparing their accuracy, reliability, and practicality has been lacking. Methods A review of the published English literature dating from 1950 to 2015 using databases, such as PubMed, Medline, Web of Science, and EMBASE, was undertaken. Results Since Bouman’s first description of water displacement method, a range of volumetric assessment techniques have been described: thermoplastic casting, direct anthropomorphic measurement, two-dimensional (2D) imaging, and computed tomography (CT)/magnetic resonance imaging (MRI) scans. However, most have been unreliable, difficult to execute and demonstrate limited practicability. Introduction of 3D surface imaging has revolutionized the field due to its ease of use, fast speed, accuracy, and reliability. However, its widespread use has been limited by its high cost and lack of high level of evidence. Recent developments have unveiled the first web-based 3D surface imaging program, 4D imaging, and 3D printing. Conclusions Despite its importance, an accurate, reliable, and simple breast volumetric analysis tool has been elusive until the introduction of 3D surface imaging technology. However, its high cost has limited its wide usage. Novel adjunct technologies, such as web-based 3D surface imaging program, 4D imaging, and 3D printing, appear promising. PMID:27047788

  18. Quantification of atrial dynamics using cardiovascular magnetic resonance: inter-study reproducibility.

    PubMed

    Kowallick, Johannes T; Morton, Geraint; Lamata, Pablo; Jogiya, Roy; Kutty, Shelby; Hasenfuß, Gerd; Lotz, Joachim; Nagel, Eike; Chiribiri, Amedeo; Schuster, Andreas

    2015-05-17

    Cardiovascular magnetic resonance (CMR) offers quantification of phasic atrial functions based on volumetric assessment and more recently, on CMR feature tracking (CMR-FT) quantitative strain and strain rate (SR) deformation imaging. Inter-study reproducibility is a key requirement for longitudinal studies but has not been defined for CMR-based quantification of left atrial (LA) and right atrial (RA) dynamics. Long-axis 2- and 4-chamber cine images were acquired at 9:00 (Exam A), 9:30 (Exam B) and 14:00 (Exam C) in 16 healthy volunteers. LA and RA reservoir, conduit and contractile booster pump functions were quantified by volumetric indexes as derived from fractional volume changes and by strain and SR as derived from CMR-FT. Exam A and B were compared to assess the inter-study reproducibility. Morning and afternoon scans were compared to address possible diurnal variation of atrial function. Inter-study reproducibility was within acceptable limits for all LA and RA volumetric, strain and SR parameters. Inter-study reproducibility was better for volumetric indexes and strain than for SR parameters and better for LA than for RA dynamics. For the LA, reservoir function showed the best reproducibility (intraclass correlation coefficient (ICC) 0.94-0.97, coefficient of variation (CoV) 4.5-8.2%), followed by conduit (ICC 0.78-0.97, CoV 8.2-18.5%) and booster pump function (ICC 0.71-0.95, CoV 18.3-22.7). Similarly, for the RA, reproducibility was best for reservoir function (ICC 0.76-0.96, CoV 7.5-24.0%) followed by conduit (ICC 0.67-0.91, CoV 13.9-35.9) and booster pump function (ICC 0.73-0.90, CoV 19.4-32.3). Atrial dynamics were not measurably affected by diurnal variation between morning and afternoon scans. Inter-study reproducibility for CMR-based derivation of LA and RA functions is acceptable using either volumetric, strain or SR parameters with LA function showing higher reproducibility than RA function assessment. Amongst the different functional components, reservoir function is most reproducibly assessed by either technique followed by conduit and booster pump function, which needs to be considered in future longitudinal research studies.

  19. Magnetic resonance spectroscopy and brain volumetry in mild cognitive impairment. A prospective study.

    PubMed

    Fayed, Nicolás; Modrego, Pedro J; García-Martí, Gracián; Sanz-Requena, Roberto; Marti-Bonmatí, Luis

    2017-05-01

    To assess the accuracy of magnetic resonance spectroscopy (1H-MRS) and brain volumetry in mild cognitive impairment (MCI) to predict conversion to probable Alzheimer's disease (AD). Forty-eight patients fulfilling the criteria of amnestic MCI who underwent a conventional magnetic resonance imaging (MRI) followed by MRS, and T1-3D on 1.5 Tesla MR unit. At baseline the patients underwent neuropsychological examination. 1H-MRS of the brain was carried out by exploring the left medial occipital lobe and ventral posterior cingulated cortex (vPCC) using the LCModel software. A high resolution T1-3D sequence was acquired to carry out the volumetric measurement. A cortical and subcortical parcellation strategy was used to obtain the volumes of each area within the brain. The patients were followed up to detect conversion to probable AD. After a 3-year follow-up, 15 (31.2%) patients converted to AD. The myo-inositol in the occipital cortex and glutamate+glutamine (Glx) in the posterior cingulate cortex predicted conversion to probable AD at 46.1% sensitivity and 90.6% specificity. The positive predictive value was 66.7%, and the negative predictive value was 80.6%, with an overall cross-validated classification accuracy of 77.8%. The volume of the third ventricle, the total white matter and entorhinal cortex predict conversion to probable AD at 46.7% sensitivity and 90.9% specificity. The positive predictive value was 70%, and the negative predictive value was 78.9%, with an overall cross-validated classification accuracy of 77.1%. Combining volumetric measures in addition to the MRS measures the prediction to probable AD has a 38.5% sensitivity and 87.5% specificity, with a positive predictive value of 55.6%, a negative predictive value of 77.8% and an overall accuracy of 73.3%. Either MRS or brain volumetric measures are markers separately of cognitive decline and may serve as a noninvasive tool to monitor cognitive changes and progression to dementia in patients with amnestic MCI, but the results do not support the routine use in the clinical settings. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Model of large volumetric capacitance in graphene supercapacitors based on ion clustering

    NASA Astrophysics Data System (ADS)

    Skinner, Brian; Fogler, M. M.; Shklovskii, B. I.

    2011-12-01

    Electric double-layer supercapacitors (SCs) are promising devices for high-power energy storage based on the reversible absorption of ions into porous conducting electrodes. Graphene is a particularly good candidate for the electrode material in SCs due to its high conductivity and large surface area. In this paper, we consider SC electrodes made from a stack of graphene sheets with randomly inserted spacer molecules. We show that the large volumetric capacitances C≳100F/cm3 observed experimentally can be understood as a result of collective intercalation of ions into the graphene stack and the accompanying nonlinear screening by graphene electrons that renormalizes the charge of the ion clusters.

  1. A model of large volumetric capacitance in graphene supercapacitors based on ion clustering

    NASA Astrophysics Data System (ADS)

    Skinner, Brian; Fogler, Michael; Shklovskii, Boris

    2012-02-01

    Electric double layer supercapacitors are promising devices for high-power energy storage based on the reversible absorption of ions into porous, conducting electrodes. Graphene is a particularly good candidate for the electrode material in supercapacitors due to its high conductivity and large surface area. In this paper we consider supercapacitor electrodes made from a stack of graphene sheets with randomly-inserted ``spacer" molecules. We show that the large volumetric capacitances C > 100 F/cm^3 observed experimentally can be understood as a result of collective intercalation of ions into the graphene stack and the accompanying nonlinear screening by graphene electrons that renormalizes the charge of the ion clusters.

  2. Engineered, thermoresponsive, magnetic nanocarriers of oligo(ethylene glycol)-methacrylate-based biopolymers

    NASA Astrophysics Data System (ADS)

    McCallister, Thomas; Gidney, Elwood; Adams, Devin; Diercks, David R.; Ghosh, Santaneel

    2014-11-01

    Engineered magnetic nanocarriers offer attractive options for implementing novel therapeutic solutions in biomedical research; however lack of biocompatibility and external tunability have prevented a biomedical breakthrough. Here we report multifunctional, magnetic nanospheres with tailored size, volumetric transition range, and magnetic properties based on biocompatible, thermo-responsive oligo(ethylene glycol) methacrylate biopolymers. Precise control of the nanosphere size in the range 100-300 nm, coupled with a higher and broader volumetric transition range (32-42 °C), is ideal for various biomedical applications. More importantly, super-paramagnetic behavior of the nanocarriers, even after polymer shell shrinkage, indicates stable and easily controllable loss mechanisms under exposure to an ac magnetic field.

  3. Physics-based interactive volume manipulation for sharing surgical process.

    PubMed

    Nakao, Megumi; Minato, Kotaro

    2010-05-01

    This paper presents a new set of techniques by which surgeons can interactively manipulate patient-specific volumetric models for sharing surgical process. To handle physical interaction between the surgical tools and organs, we propose a simple surface-constraint-based manipulation algorithm to consistently simulate common surgical manipulations such as grasping, holding and retraction. Our computation model is capable of simulating soft-tissue deformation and incision in real time. We also present visualization techniques in order to rapidly visualize time-varying, volumetric information on the deformed image. This paper demonstrates the success of the proposed methods in enabling the simulation of surgical processes, and the ways in which this simulation facilitates preoperative planning and rehearsal.

  4. Solvent evaporation induced graphene powder with high volumetric capacitance and outstanding rate capability for supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaozhe; Raj, Devaraj Vasanth; Zhou, Xufeng; Liu, Zhaoping

    2018-04-01

    Graphene-based electrode materials for supercapacitors usually suffer from poor volumetric performance due to the low density. The enhancement of volumetric capacitance by densification of graphene materials, however, is usually accompanied by deterioration of rate capability, as the huge contraction of pore size hinders rapid diffusion of electrolytes. Thus, it is important to develop suitable pore size in graphene materials, which can sustain fast ion diffusion and avoid excessive voids to acquire high density simultaneously for supercapacitor applications. Accordingly, we propose a simple solvent evaporation method to control the pore size of graphene powders by adjusting the surface tension of solvents. Ethanol is used instead of water to reduce the shrinkage degree of graphene powder during solvent evaporation process, due to its lower surface tension comparing with water. Followed by the assistance of mechanical compression, graphene powder having high compaction density of 1.30 g cm-3 and a large proportion of mesopores in the pore size range of 2-30 nm is obtained, which delivers high volumetric capacitance of 162 F cm-3 and exhibits outstanding rate performance of 76% capacity retention at a high current density of 100 A g-1 simultaneously.

  5. Validation of new satellite rainfall products over the Upper Blue Nile Basin, Ethiopia

    NASA Astrophysics Data System (ADS)

    Tesfaye Ayehu, Getachew; Tadesse, Tsegaye; Gessesse, Berhan; Dinku, Tufa

    2018-04-01

    Accurate measurement of rainfall is vital to analyze the spatial and temporal patterns of precipitation at various scales. However, the conventional rain gauge observations in many parts of the world such as Ethiopia are sparse and unevenly distributed. An alternative to traditional rain gauge observations could be satellite-based rainfall estimates. Satellite rainfall estimates could be used as a sole product (e.g., in areas with no (or poor) ground observations) or through integrating with rain gauge measurements. In this study, the potential of a newly available Climate Hazards Group Infrared Precipitation with Stations (CHIRPS) rainfall product has been evaluated in comparison to rain gauge data over the Upper Blue Nile basin in Ethiopia for the period of 2000 to 2015. In addition, the Tropical Applications of Meteorology using SATellite and ground-based observations (TAMSAT 3) and the African Rainfall Climatology (ARC 2) products have been used as a benchmark and compared with CHIRPS. From the overall analysis at dekadal (10 days) and monthly temporal scale, CHIRPS exhibited better performance in comparison to TAMSAT 3 and ARC 2 products. An evaluation based on categorical/volumetric and continuous statistics indicated that CHIRPS has the greatest skills in detecting rainfall events (POD = 0.99, 1.00) and measure of volumetric rainfall (VHI = 1.00, 1.00), the highest correlation coefficients (r = 0.81, 0.88), better bias values (0.96, 0.96), and the lowest RMSE (28.45 mm dekad-1, 59.03 mm month-1) than TAMSAT 3 and ARC 2 products at dekadal and monthly analysis, respectively. CHIRPS overestimates the frequency of rainfall occurrence (up to 31 % at dekadal scale), although the volume of rainfall recorded during those events was very small. Indeed, TAMSAT 3 has shown a comparable performance with that of the CHIRPS product, mainly with regard to bias. The ARC 2 product was found to have the weakest performance underestimating rain gauge observed rainfall by about 24 %. In addition, the skill of CHIRPS is less affected by variation in elevation in comparison to TAMSAT 3 and ARC 2 products. CHIRPS resulted in average biases of 1.11, 0.99, and 1.00 at lower (< 1000 m a.s.l.), medium (1000 to 2000 m a.s.l.), and higher elevation (> 2000 m a.s.l.), respectively. Overall, the finding of this validation study shows the potentials of the CHIRPS product to be used for various operational applications such as rainfall pattern and variability study in the Upper Blue Nile basin in Ethiopia.

  6. Optoacoustic imaging in five dimensions

    NASA Astrophysics Data System (ADS)

    Deán-Ben, X. L.; Gottschalk, Sven; Fehm, Thomas F.; Razansky, Daniel

    2015-03-01

    We report on an optoacoustic imaging system capable of acquiring volumetric multispectral optoacoustic data in real time. The system is based on simultaneous acquisition of optoacoustic signals from 256 different tomographic projections by means of a spherical matrix array. Thereby, volumetric reconstructions can be done at high frame rate, only limited by the pulse repetition rate of the laser. The developed tomographic approach presents important advantages over previously reported systems that use scanning for attaining volumetric optoacoustic data. First, dynamic processes, such as the biodistribution of optical biomarkers, can be monitored in the entire volume of interest. Second, out-of-plane and motion artifacts that could degrade the image quality when imaging living specimens can be avoided. Finally, real-time 3D performance can obviously save time required for experimental and clinical observations. The feasibility of optoacoustic imaging in five dimensions, i.e. real time acquisition of volumetric datasets at multiple wavelengths, is reported. In this way, volumetric images of spectrally resolved chromophores are rendered in real time, thus offering an unparallel imaging performance among the current bio-imaging modalities. This performance is subsequently showcased by video-rate visualization of in vivo hemodynamic changes in mouse brain and handheld visualization of blood oxygenation in deep human vessels. The newly discovered capacities open new prospects for translating the optoacoustic technology into highly performing imaging modality for biomedical research and clinical practice with multiple applications envisioned, from cardiovascular and cancer diagnostics to neuroimaging and ophthalmology.

  7. Directly Grown Nanostructured Electrodes for High Volumetric Energy Density Binder-Free Hybrid Supercapacitors: A Case Study of CNTs//Li4Ti5O12

    PubMed Central

    Zuo, Wenhua; Wang, Chong; Li, Yuanyuan; Liu, Jinping

    2015-01-01

    Hybrid supercapacitor (HSC), which typically consists of a Li-ion battery electrode and an electric double-layer supercapacitor electrode, has been extensively investigated for large-scale applications such as hybrid electric vehicles, etc. Its application potential for thin-film downsized energy storage systems that always prefer high volumetric energy/power densities, however, has not yet been explored. Herein, as a case study, we develop an entirely binder-free HSC by using multiwalled carbon nanotube (MWCNT) network film as the cathode and Li4Ti5O12 (LTO) nanowire array as the anode and study the volumetric energy storage capability. Both the electrode materials are grown directly on carbon cloth current collector, ensuring robust mechanical/electrical contacts and flexibility. Our 3 V HSC device exhibits maximum volumetric energy density of ~4.38 mWh cm−3, much superior to those of previous supercapacitors based on thin-film electrodes fabricated directly on carbon cloth and even comparable to the commercial thin-film lithium battery. It also has volumetric power densities comparable to that of the commercial 5.5 V/100 mF supercapacitor (can be operated within 3 s) and has excellent cycling stability (~92% retention after 3000 cycles). The concept of utilizing binder-free electrodes to construct HSC for thin-film energy storage may be readily extended to other HSC electrode systems. PMID:25586374

  8. An Asymmetric Supercapacitor with Both Ultra-High Gravimetric and Volumetric Energy Density Based on 3D Ni(OH)2/MnO2@Carbon Nanotube and Activated Polyaniline-Derived Carbon.

    PubMed

    Shen, Juanjuan; Li, Xiaocheng; Wan, Liu; Liang, Kun; Tay, Beng Kang; Kong, Lingbin; Yan, Xingbin

    2017-01-11

    Development of a supercapacitor device with both high gravimetric and volumetric energy density is one of the most important requirements for their practical application in energy storage/conversion systems. Currently, improvement of the gravimetric/volumetric energy density of a supercapacitor is restricted by the insufficient utilization of positive materials at high loading density and the inferior capacitive behavior of negative electrodes. To solve these problems, we elaborately designed and prepared a 3D core-shell structured Ni(OH) 2 /MnO 2 @carbon nanotube (CNT) composite via a facile solvothermal process by using the thermal chemical vapor deposition grown-CNTs as support. Owing to the superiorities of core-shell architecture in improving the service efficiency of pseudocapacitive materials at high loading density, the prepared Ni(OH) 2 /MnO 2 @CNT electrode demonstrated a high capacitance value of 2648 F g -1 (1 A g -1 ) at a high loading density of 6.52 mg cm -2 . Coupled with high-performance activated polyaniline-derived carbon (APDC, 400 F g -1 at 1 A g -1 ), the assembled Ni(OH) 2 /MnO 2 @CNT//APDC asymmetric device delivered both high gravimetric and volumetric energy density (126.4 Wh kg -1 and 10.9 mWh cm -3 , respectively), together with superb rate performance and cycling lifetime. Moreover, we demonstrate an effective approach for building a high-performance supercapacitor with high gravimetric/volumetric energy density.

  9. Multi-level tree analysis of pulmonary artery/vein trees in non-contrast CT images

    NASA Astrophysics Data System (ADS)

    Gao, Zhiyun; Grout, Randall W.; Hoffman, Eric A.; Saha, Punam K.

    2012-02-01

    Diseases like pulmonary embolism and pulmonary hypertension are associated with vascular dystrophy. Identifying such pulmonary artery/vein (A/V) tree dystrophy in terms of quantitative measures via CT imaging significantly facilitates early detection of disease or a treatment monitoring process. A tree structure, consisting of nodes and connected arcs, linked to the volumetric representation allows multi-level geometric and volumetric analysis of A/V trees. Here, a new theory and method is presented to generate multi-level A/V tree representation of volumetric data and to compute quantitative measures of A/V tree geometry and topology at various tree hierarchies. The new method is primarily designed on arc skeleton computation followed by a tree construction based topologic and geometric analysis of the skeleton. The method starts with a volumetric A/V representation as input and generates its topologic and multi-level volumetric tree representations long with different multi-level morphometric measures. A new recursive merging and pruning algorithms are introduced to detect bad junctions and noisy branches often associated with digital geometric and topologic analysis. Also, a new notion of shortest axial path is introduced to improve the skeletal arc joining two junctions. The accuracy of the multi-level tree analysis algorithm has been evaluated using computer generated phantoms and pulmonary CT images of a pig vessel cast phantom while the reproducibility of method is evaluated using multi-user A/V separation of in vivo contrast-enhanced CT images of a pig lung at different respiratory volumes.

  10. High dose hypofractionated frameless volumetric modulated arc radiotherapy is a feasible method for treating canine trigeminal nerve sheath tumors.

    PubMed

    Dolera, Mario; Malfassi, Luca; Marcarini, Silvia; Mazza, Giovanni; Carrara, Nancy; Pavesi, Simone; Sala, Massimo; Finesso, Sara; Urso, Gaetano

    2018-06-08

    The aim of this prospective pilot study was to evaluate the feasibility and effectiveness of curative intent high dose hypofractionated frameless volumetric modulated arc radiotherapy for treatment of canine trigeminal peripheral nerve sheath tumors. Client-owned dogs with a presumptive imaging-based diagnosis of trigeminal peripheral nerve sheath tumor were recruited for the study during the period of February 2010 to December 2013. Seven dogs were enrolled and treated with high dose hypofractionated volumetric modulated arc radiotherapy delivered by a 6 MV linear accelerator equipped with a micro-multileaf beam collimator. The plans were computed using a Monte Carlo algorithm with a prescription dose of 37 Gy delivered in five fractions on alternate days. Overall survival was estimated using a Kaplan-Meier curve analysis. Magnetic resonance imaging (MRI) follow-up examinations revealed complete response in one dog, partial response in four dogs, and stable disease in two dogs. Median overall survival was 952 days with a 95% confidence interval of 543-1361 days. Volumetric modulated arc radiotherapy was demonstrated to be feasible and effective for trigeminal peripheral nerve sheath tumor treatment in this sample of dogs. The technique required few sedations and spared organs at risk. Even though larger studies are required, these preliminary results supported the use of high dose hypofractionated volumetric modulated arc radiotherapy as an alternative to other treatment modalities. © 2018 American College of Veterinary Radiology.

  11. Volumetric 3D display using a DLP projection engine

    NASA Astrophysics Data System (ADS)

    Geng, Jason

    2012-03-01

    In this article, we describe a volumetric 3D display system based on the high speed DLPTM (Digital Light Processing) projection engine. Existing two-dimensional (2D) flat screen displays often lead to ambiguity and confusion in high-dimensional data/graphics presentation due to lack of true depth cues. Even with the help of powerful 3D rendering software, three-dimensional (3D) objects displayed on a 2D flat screen may still fail to provide spatial relationship or depth information correctly and effectively. Essentially, 2D displays have to rely upon capability of human brain to piece together a 3D representation from 2D images. Despite the impressive mental capability of human visual system, its visual perception is not reliable if certain depth cues are missing. In contrast, volumetric 3D display technologies to be discussed in this article are capable of displaying 3D volumetric images in true 3D space. Each "voxel" on a 3D image (analogous to a pixel in 2D image) locates physically at the spatial position where it is supposed to be, and emits light from that position toward omni-directions to form a real 3D image in 3D space. Such a volumetric 3D display provides both physiological depth cues and psychological depth cues to human visual system to truthfully perceive 3D objects. It yields a realistic spatial representation of 3D objects and simplifies our understanding to the complexity of 3D objects and spatial relationship among them.

  12. Local lung deposition of ultrafine particles in healthy adults: experimental results and theoretical predictions.

    PubMed

    Sturm, Robert

    2016-11-01

    Ultrafine particles (UFP) of biogenic and anthropogenic origin occur in high numbers in the ambient atmosphere. In addition, aerosols containing ultrafine powders are used for the inhalation therapy of various diseases. All these facts make it necessary to obtain comprehensive knowledge regarding the exact behavior of UFP in the respiratory tract. Theoretical simulations of local UFP deposition are based on previously conducted inhalation experiments, where particles with various sizes (0.04, 0.06, 0.08, and 0.10 µm) were administered to the respiratory tract by application of the aerosol bolus technique. By the sequential change of the lung penetration depth of the inspired bolus, different volumetric lung regions could be generated and particle deposition in these regions could be evaluated. The model presented in this contribution adopted all parameters used in the experiments. Besides the obligatory comparison between practical and theoretical data, also advanced modeling predictions including the effect of varying functional residual capacity (FRC) and respiratory flow rate were conducted. Validation of the UFP deposition model shows that highest deposition fractions occur in those volumetric lung regions corresponding to the small and partly alveolated airways of the tracheobronchial tree. Particle deposition proximal to the trachea is increased in female probands with respect to male subjects. Decrease of both the FRC and the respiratory flow rate results in an enhancement of UFP deposition. The study comes to the conclusion that deposition of UFP taken up via bolus inhalation is influenced by a multitude of factors, among which lung morphometry and breathing conditions play a superior role.

  13. Local lung deposition of ultrafine particles in healthy adults: experimental results and theoretical predictions

    PubMed Central

    2016-01-01

    Background Ultrafine particles (UFP) of biogenic and anthropogenic origin occur in high numbers in the ambient atmosphere. In addition, aerosols containing ultrafine powders are used for the inhalation therapy of various diseases. All these facts make it necessary to obtain comprehensive knowledge regarding the exact behavior of UFP in the respiratory tract. Methods Theoretical simulations of local UFP deposition are based on previously conducted inhalation experiments, where particles with various sizes (0.04, 0.06, 0.08, and 0.10 µm) were administered to the respiratory tract by application of the aerosol bolus technique. By the sequential change of the lung penetration depth of the inspired bolus, different volumetric lung regions could be generated and particle deposition in these regions could be evaluated. The model presented in this contribution adopted all parameters used in the experiments. Besides the obligatory comparison between practical and theoretical data, also advanced modeling predictions including the effect of varying functional residual capacity (FRC) and respiratory flow rate were conducted. Results Validation of the UFP deposition model shows that highest deposition fractions occur in those volumetric lung regions corresponding to the small and partly alveolated airways of the tracheobronchial tree. Particle deposition proximal to the trachea is increased in female probands with respect to male subjects. Decrease of both the FRC and the respiratory flow rate results in an enhancement of UFP deposition. Conclusions The study comes to the conclusion that deposition of UFP taken up via bolus inhalation is influenced by a multitude of factors, among which lung morphometry and breathing conditions play a superior role. PMID:27942511

  14. Integrated simulation of continuous-scale and discrete-scale radiative transfer in metal foams

    NASA Astrophysics Data System (ADS)

    Xia, Xin-Lin; Li, Yang; Sun, Chuang; Ai, Qing; Tan, He-Ping

    2018-06-01

    A novel integrated simulation of radiative transfer in metal foams is presented. It integrates the continuous-scale simulation with the direct discrete-scale simulation in a single computational domain. It relies on the coupling of the real discrete-scale foam geometry with the equivalent continuous-scale medium through a specially defined scale-coupled zone. This zone holds continuous but nonhomogeneous volumetric radiative properties. The scale-coupled approach is compared to the traditional continuous-scale approach using volumetric radiative properties in the equivalent participating medium and to the direct discrete-scale approach employing the real 3D foam geometry obtained by computed tomography. All the analyses are based on geometrical optics. The Monte Carlo ray-tracing procedure is used for computations of the absorbed radiative fluxes and the apparent radiative behaviors of metal foams. The results obtained by the three approaches are in tenable agreement. The scale-coupled approach is fully validated in calculating the apparent radiative behaviors of metal foams composed of very absorbing to very reflective struts and that composed of very rough to very smooth struts. This new approach leads to a reduction in computational time by approximately one order of magnitude compared to the direct discrete-scale approach. Meanwhile, it can offer information on the local geometry-dependent feature and at the same time the equivalent feature in an integrated simulation. This new approach is promising to combine the advantages of the continuous-scale approach (rapid calculations) and direct discrete-scale approach (accurate prediction of local radiative quantities).

  15. Illness Progression, Recent Stress and Morphometry of Hippocampal Subfields and Medial Prefrontal Cortex in Major Depression

    PubMed Central

    Treadway, Michael T.; Waskom, Michael L.; Dillon, Daniel G.; Holmes, Avram J.; Park, Min Tae M.; Chakravarty, M. Mallar; Dutra, Sunny J.; Polli, Frida E.; Iosifescu, Dan V.; Fava, Maurizio; Gabrieli, John D.E.; Pizzagalli, Diego A.

    2014-01-01

    Background Longitudinal studies of illness progression in Major Depressive Disorder (MDD) indicate that the onset of subsequent depressive episodes becomes increasingly decoupled from external stressors. A possible mechanism underlying this phenomenon is that multiple episodes induce long-lasting neurobiological changes that confer increased risk for recurrence. Prior morphometric studies have frequently reported volumetric reductions in MDD—especially in medial prefrontal cortex (mPFC) and the hippocampus— but few studies have investigated whether these changes are exacerbated by prior episodes. Methods We used structural magnetic resonance imaging (sMRI) to examine relationships between number of prior episodes, current stress, and brain volume and cortical thickness in a sample of 103 medication-free depressed patients and never-depressed controls. Volumetric analyses of the hippocampus were performed using a recently-validated subfield segmentation approach, while cortical thickness estimates were obtained using Vertex-Based Cortical Thickness (VBCT). Participants were grouped on the basis of the number of prior depressive episodes as well as current depressive state. Results Number of prior episodes was associated with both lower reported stress levels as well as reduced volume in the dentate gyrus. Cortical thinning of the left medial prefrontal cortex (mPFC) was associated with a greater number of prior depressive episodes, but not current depressive state. Conclusions Collectively, these findings are consistent with preclinical models suggesting that the dentate gyrus and mPFC are especially vulnerable to stress exposure, and provide evidence for morphometric changes that are consistent with stress-sensitization models of recurrence in MDD. PMID:25109665

  16. Simultaneous moisture content and mass flow measurements in wood chip flows using coupled dielectric and impact sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Pengmin; McDonald, Timothy; Fulton, John

    An 8-electrode capacitance tomography (ECT) sensor was built and used to measure moisture content (MC) and mass flow of pine chip flows. The device was capable of directly measuring total water quantity in a sample but was sensitive to both dry matter and moisture, and therefore required a second measurement of mass flow to calculate MC. Two means of calculating the mass flow were used: the first being an impact sensor to measure total mass flow, and the second a volumetric approach based on measuring total area occupied by wood in images generated using the capacitance sensor’s tomographic mode. Testsmore » were made on 109 groups of wood chips ranging in moisture content from 14% to 120% (dry basis) and wet weight of 280 to 1100 g. Sixty groups were randomly selected as a calibration set, and the remaining were used for validation of the sensor’s performance. For the combined capacitance/force transducer system, root mean square errors of prediction (RMSEP) for wet mass flow and moisture content were 13.42% and 16.61%, respectively. RMSEP using the combined volumetric mass flow/capacitance sensor for dry mass flow and moisture content were 22.89% and 24.16%, respectively. Either of the approaches was concluded to be feasible for prediction of moisture content in pine chip flows, but combining the impact and capacitance sensors was easier to implement. As a result, in situations where flows could not be impeded, however, the tomographic approach would likely be more useful.« less

  17. Simultaneous moisture content and mass flow measurements in wood chip flows using coupled dielectric and impact sensors

    DOE PAGES

    Pan, Pengmin; McDonald, Timothy; Fulton, John; ...

    2016-12-23

    An 8-electrode capacitance tomography (ECT) sensor was built and used to measure moisture content (MC) and mass flow of pine chip flows. The device was capable of directly measuring total water quantity in a sample but was sensitive to both dry matter and moisture, and therefore required a second measurement of mass flow to calculate MC. Two means of calculating the mass flow were used: the first being an impact sensor to measure total mass flow, and the second a volumetric approach based on measuring total area occupied by wood in images generated using the capacitance sensor’s tomographic mode. Testsmore » were made on 109 groups of wood chips ranging in moisture content from 14% to 120% (dry basis) and wet weight of 280 to 1100 g. Sixty groups were randomly selected as a calibration set, and the remaining were used for validation of the sensor’s performance. For the combined capacitance/force transducer system, root mean square errors of prediction (RMSEP) for wet mass flow and moisture content were 13.42% and 16.61%, respectively. RMSEP using the combined volumetric mass flow/capacitance sensor for dry mass flow and moisture content were 22.89% and 24.16%, respectively. Either of the approaches was concluded to be feasible for prediction of moisture content in pine chip flows, but combining the impact and capacitance sensors was easier to implement. As a result, in situations where flows could not be impeded, however, the tomographic approach would likely be more useful.« less

  18. Illness progression, recent stress, and morphometry of hippocampal subfields and medial prefrontal cortex in major depression.

    PubMed

    Treadway, Michael T; Waskom, Michael L; Dillon, Daniel G; Holmes, Avram J; Park, Min Tae M; Chakravarty, M Mallar; Dutra, Sunny J; Polli, Frida E; Iosifescu, Dan V; Fava, Maurizio; Gabrieli, John D E; Pizzagalli, Diego A

    2015-02-01

    Longitudinal studies of illness progression in patients with major depressive disorder (MDD) indicate that the onset of subsequent depressive episodes becomes increasingly decoupled from external stressors. A possible mechanism underlying this phenomenon is that multiple episodes induce long-lasting neurobiological changes that confer increased risk for recurrence. Prior morphometric studies have frequently reported volumetric reductions in patients with MDD--especially in medial prefrontal cortex (mPFC) and the hippocampus--but few studies have investigated whether these changes are exacerbated by prior episodes. In a sample of 103 medication-free patients with depression and control subjects with no history of depression, structural magnetic resonance imaging was performed to examine relationships between number of prior episodes, current stress, hippocampal subfield volume and cortical thickness. Volumetric analyses of the hippocampus were performed using a recently validated subfield segmentation approach, and cortical thickness estimates were obtained using vertex-based methods. Participants were grouped on the basis of the number of prior depressive episodes and current depressive diagnosis. Number of prior episodes was associated with both lower reported stress levels and reduced volume in the dentate gyrus. Cortical thinning of the left mPFC was associated with a greater number of prior depressive episodes but not current depressive diagnosis. Collectively, these findings are consistent with preclinical models suggesting that the dentate gyrus and mPFC are especially vulnerable to stress exposure and provide evidence for morphometric changes that are consistent with stress-sensitization models of recurrence in MDD. Copyright © 2015 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  19. Simultaneous Moisture Content and Mass Flow Measurements in Wood Chip Flows Using Coupled Dielectric and Impact Sensors

    PubMed Central

    Pan, Pengmin; McDonald, Timothy; Fulton, John; Via, Brian; Hung, John

    2016-01-01

    An 8-electrode capacitance tomography (ECT) sensor was built and used to measure moisture content (MC) and mass flow of pine chip flows. The device was capable of directly measuring total water quantity in a sample but was sensitive to both dry matter and moisture, and therefore required a second measurement of mass flow to calculate MC. Two means of calculating the mass flow were used: the first being an impact sensor to measure total mass flow, and the second a volumetric approach based on measuring total area occupied by wood in images generated using the capacitance sensor’s tomographic mode. Tests were made on 109 groups of wood chips ranging in moisture content from 14% to 120% (dry basis) and wet weight of 280 to 1100 g. Sixty groups were randomly selected as a calibration set, and the remaining were used for validation of the sensor’s performance. For the combined capacitance/force transducer system, root mean square errors of prediction (RMSEP) for wet mass flow and moisture content were 13.42% and 16.61%, respectively. RMSEP using the combined volumetric mass flow/capacitance sensor for dry mass flow and moisture content were 22.89% and 24.16%, respectively. Either of the approaches was concluded to be feasible for prediction of moisture content in pine chip flows, but combining the impact and capacitance sensors was easier to implement. In situations where flows could not be impeded, however, the tomographic approach would likely be more useful. PMID:28025536

  20. Three-dimensional radiochromic film dosimetry for volumetric modulated arc therapy using a spiral water phantom.

    PubMed

    Tanooka, Masao; Doi, Hiroshi; Miura, Hideharu; Inoue, Hiroyuki; Niwa, Yasue; Takada, Yasuhiro; Fujiwara, Masayuki; Sakai, Toshiyuki; Sakamoto, Kiyoshi; Kamikonya, Norihiko; Hirota, Shozo

    2013-11-01

    We validated 3D radiochromic film dosimetry for volumetric modulated arc therapy (VMAT) using a newly developed spiral water phantom. The phantom consists of a main body and an insert box, each of which has an acrylic wall thickness of 3 mm and is filled with water. The insert box includes a spiral film box used for dose-distribution measurement, and a film holder for positioning a radiochromic film. The film holder has two parallel walls whose facing inner surfaces are equipped with spiral grooves in a mirrored configuration. The film is inserted into the spiral grooves by its side edges and runs along them to be positioned on a spiral plane. Dose calculation was performed by applying clinical VMAT plans to the spiral water phantom using a commercial Monte Carlo-based treatment-planning system, Monaco, whereas dose was measured by delivering the VMAT beams to the phantom. The calculated dose distributions were resampled on the spiral plane, and the dose distributions recorded on the film were scanned. Comparisons between the calculated and measured dose distributions yielded an average gamma-index pass rate of 87.0% (range, 91.2-84.6%) in nine prostate VMAT plans under 3 mm/3% criteria with a dose-calculation grid size of 2 mm. The pass rates were increased beyond 90% (average, 91.1%; range, 90.1-92.0%) when the dose-calculation grid size was decreased to 1 mm. We have confirmed that 3D radiochromic film dosimetry using the spiral water phantom is a simple and cost-effective approach to VMAT dose verification.

  1. MobileFusion: real-time volumetric surface reconstruction and dense tracking on mobile phones.

    PubMed

    Ondrúška, Peter; Kohli, Pushmeet; Izadi, Shahram

    2015-11-01

    We present the first pipeline for real-time volumetric surface reconstruction and dense 6DoF camera tracking running purely on standard, off-the-shelf mobile phones. Using only the embedded RGB camera, our system allows users to scan objects of varying shape, size, and appearance in seconds, with real-time feedback during the capture process. Unlike existing state of the art methods, which produce only point-based 3D models on the phone, or require cloud-based processing, our hybrid GPU/CPU pipeline is unique in that it creates a connected 3D surface model directly on the device at 25Hz. In each frame, we perform dense 6DoF tracking, which continuously registers the RGB input to the incrementally built 3D model, minimizing a noise aware photoconsistency error metric. This is followed by efficient key-frame selection, and dense per-frame stereo matching. These depth maps are fused volumetrically using a method akin to KinectFusion, producing compelling surface models. For each frame, the implicit surface is extracted for live user feedback and pose estimation. We demonstrate scans of a variety of objects, and compare to a Kinect-based baseline, showing on average ∼ 1.5cm error. We qualitatively compare to a state of the art point-based mobile phone method, demonstrating an order of magnitude faster scanning times, and fully connected surface models.

  2. Fluid-structure interaction including volumetric coupling with homogenised subdomains for modeling respiratory mechanics.

    PubMed

    Yoshihara, Lena; Roth, Christian J; Wall, Wolfgang A

    2017-04-01

    In this article, a novel approach is presented for combining standard fluid-structure interaction with additional volumetric constraints to model fluid flow into and from homogenised solid domains. The proposed algorithm is particularly interesting for investigations in the field of respiratory mechanics as it enables the mutual coupling of airflow in the conducting part and local tissue deformation in the respiratory part of the lung by means of a volume constraint. In combination with a classical monolithic fluid-structure interaction approach, a comprehensive model of the human lung can be established that will be useful to gain new insights into respiratory mechanics in health and disease. To illustrate the validity and versatility of the novel approach, three numerical examples including a patient-specific lung model are presented. The proposed algorithm proves its capability of computing clinically relevant airflow distribution and tissue strain data at a level of detail that is not yet achievable, neither with current imaging techniques nor with existing computational models. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  3. Application of Novel Software Algorithms to Spectral-Domain Optical Coherence Tomography for Automated Detection of Diabetic Retinopathy.

    PubMed

    Adhi, Mehreen; Semy, Salim K; Stein, David W; Potter, Daniel M; Kuklinski, Walter S; Sleeper, Harry A; Duker, Jay S; Waheed, Nadia K

    2016-05-01

    To present novel software algorithms applied to spectral-domain optical coherence tomography (SD-OCT) for automated detection of diabetic retinopathy (DR). Thirty-one diabetic patients (44 eyes) and 18 healthy, nondiabetic controls (20 eyes) who underwent volumetric SD-OCT imaging and fundus photography were retrospectively identified. A retina specialist independently graded DR stage. Trained automated software generated a retinal thickness score signifying macular edema and a cluster score signifying microaneurysms and/or hard exudates for each volumetric SD-OCT. Of 44 diabetic eyes, 38 had DR and six eyes did not have DR. Leave-one-out cross-validation using a linear discriminant at missed detection/false alarm ratio of 3.00 computed software sensitivity and specificity of 92% and 69%, respectively, for DR detection when compared to clinical assessment. Novel software algorithms applied to commercially available SD-OCT can successfully detect DR and may have potential as a viable screening tool for DR in future. [Ophthalmic Surg Lasers Imaging Retina. 2016;47:410-417.]. Copyright 2016, SLACK Incorporated.

  4. Assessment of measurement errors and dynamic calibration methods for three different tipping bucket rain gauges

    NASA Astrophysics Data System (ADS)

    Shedekar, Vinayak S.; King, Kevin W.; Fausey, Norman R.; Soboyejo, Alfred B. O.; Harmel, R. Daren; Brown, Larry C.

    2016-09-01

    Three different models of tipping bucket rain gauges (TBRs), viz. HS-TB3 (Hydrological Services Pty Ltd.), ISCO-674 (Isco, Inc.) and TR-525 (Texas Electronics, Inc.), were calibrated in the lab to quantify measurement errors across a range of rainfall intensities (5 mm·h- 1 to 250 mm·h- 1) and three different volumetric settings. Instantaneous and cumulative values of simulated rainfall were recorded at 1, 2, 5, 10 and 20-min intervals. All three TBR models showed a substantial deviation (α = 0.05) in measurements from actual rainfall depths, with increasing underestimation errors at greater rainfall intensities. Simple linear regression equations were developed for each TBR to correct the TBR readings based on measured intensities (R2 > 0.98). Additionally, two dynamic calibration techniques, viz. quadratic model (R2 > 0.7) and T vs. 1/Q model (R2 = > 0.98), were tested and found to be useful in situations when the volumetric settings of TBRs are unknown. The correction models were successfully applied to correct field-collected rainfall data from respective TBR models. The calibration parameters of correction models were found to be highly sensitive to changes in volumetric calibration of TBRs. Overall, the HS-TB3 model (with a better protected tipping bucket mechanism, and consistent measurement errors across a range of rainfall intensities) was found to be the most reliable and consistent for rainfall measurements, followed by the ISCO-674 (with susceptibility to clogging and relatively smaller measurement errors across a range of rainfall intensities) and the TR-525 (with high susceptibility to clogging and frequent changes in volumetric calibration, and highly intensity-dependent measurement errors). The study demonstrated that corrections based on dynamic and volumetric calibration can only help minimize-but not completely eliminate the measurement errors. The findings from this study will be useful for correcting field data from TBRs; and may have major implications to field- and watershed-scale hydrologic studies.

  5. 3D ultrasound volume stitching using phase symmetry and harris corner detection for orthopaedic applications

    NASA Astrophysics Data System (ADS)

    Dalvi, Rupin; Hacihaliloglu, Ilker; Abugharbieh, Rafeef

    2010-03-01

    Stitching of volumes obtained from three dimensional (3D) ultrasound (US) scanners improves visualization of anatomy in many clinical applications. Fast but accurate volume registration remains the key challenge in this area.We propose a volume stitching method based on efficient registration of 3D US volumes obtained from a tracked US probe. Since the volumes, after adjusting for probe motion, are coarsely registered, we obtain salient correspondence points in the central slices of these volumes. This is done by first removing artifacts in the US slices using intensity invariant local phase image processing and then applying the Harris Corner detection algorithm. Fast sub-volume registration on a small neighborhood around the points then gives fast, accurate 3D registration parameters. The method has been tested on 3D US scans of phantom and real human radius and pelvis bones and a phantom human fetus. The method has also been compared to volumetric registration, as well as feature based registration using 3D-SIFT. Quantitative results show average post-registration error of 0.33mm which is comparable to volumetric registration accuracy (0.31mm) and much better than 3D-SIFT based registration which failed to register the volumes. The proposed method was also much faster than volumetric registration (~4.5 seconds versus 83 seconds).

  6. Performance characteristics of low global warming potential R134a alternative refrigerants in ejector-expansion refrigeration system

    NASA Astrophysics Data System (ADS)

    Mishra, Shubham; Sarkar, Jahar

    2016-12-01

    Performance assessment of ejector-expansion vapor compression refrigeration system with eco-friendly R134a alternative refrigerants (R152a, R1234yf, R600a, R600, R290, R161, R32, and propylene) is presented for air-conditioning application. Ejector has been modeled by considering experimental data based correlations of component efficiencies to take care of all irreversibilities. Ejector area ratio has been optimized based on maximum coefficient of performance (COP) for typical air-conditioner operating temperatures. Selected refrigerants have been compared based on area ratio, pressure lift ratio, entrainment ratio, COP, COP improvement and volumetric cooling capacity. Effects of normal boiling point and critical point on the performances have been studied as well. Using ejector as an expansion device, maximum improvement in COP is noted in R1234yf (10.1%), which reduces the COP deviation with R134a (4.5% less in basic cycle and 2.5% less in ejector cycle). Hence, R1234yf seems to be best alternative for ejector expansion system due to its mild flammability and comparable volumetric capacity and cooling COP. refrigerant R161 is superior to R134a in terms of both COP and volumetric cooling capacity, although may be restricted for low capacity application due to its flammability.

  7. Determinants of residential water consumption: Evidence and analysis from a 10-country household survey

    NASA Astrophysics Data System (ADS)

    Grafton, R. Quentin; Ward, Michael B.; To, Hang; Kompas, Tom

    2011-08-01

    Household survey data for 10 countries are used to quantify and test the importance of price and nonprice factors on residential water demand and investigate complementarities between household water-saving behaviors and the average volumetric price of water. Results show (1) the average volumetric price of water is an important predictor of differences in residential consumption in models that include household characteristics, water-saving devices, attitudinal characteristics and environmental concerns as explanatory variables; (2) of all water-saving devices, only a low volume/dual-flush toilet has a statistically significant and negative effect on water consumption; and (3) environmental concerns have a statistically significant effect on some self-reported water-saving behaviors. While price-based approaches are espoused to promote economic efficiency, our findings stress that volumetric water pricing is also one of the most effective policy levers available to regulate household water consumption.

  8. Effect of viscoelasticity on the flow pattern and the volumetric flow rate in electroosmotic flows through a microchannel.

    PubMed

    Park, H M; Lee, W M

    2008-07-01

    Many lab-on-a-chip based microsystems process biofluids such as blood and DNA solutions. These fluids are viscoelastic and show extraordinary flow behaviors, not existing in Newtonian fluids. Adopting appropriate constitutive equations these exotic flow behaviors can be modeled and predicted reasonably using various numerical methods. In the present paper, we investigate viscoelastic electroosmotic flows through a rectangular straight microchannel with and without pressure gradient. It is shown that the volumetric flow rates of viscoelastic fluids are significantly different from those of Newtonian fluids under the same external electric field and pressure gradient. Moreover, when pressure gradient is imposed on the microchannel there appear appreciable secondary flows in the viscoelastic fluids, which is never possible for Newtonian laminar flows through straight microchannels. The retarded or enhanced volumetric flow rates and secondary flows affect dispersion of solutes in the microchannel nontrivially.

  9. Oscillating side-branch enhancements of thermoacoustic heat exchangers

    DOEpatents

    Swift, Gregory W.

    2003-05-13

    A regenerator-based engine or refrigerator has a regenerator with two ends at two different temperatures, through which a gas oscillates at a first oscillating volumetric flow rate in the direction between the two ends and in which the pressure of the gas oscillates, and first and second heat exchangers, each of which is at one of the two different temperatures. A dead-end side branch into which the gas oscillates has compliance and is connected adjacent to one of the ends of the regenerator to form a second oscillating gas flow rate additive with the first oscillating volumetric flow rate, the compliance having a volume effective to provide a selected total oscillating gas volumetric flow rate through the first heat exchanger. This configuration enables the first heat exchanger to be configured and located to better enhance the performance of the heat exchanger rather than being confined to the location and configuration of the regenerator.

  10. Carborane-Based Metal-Organic Framework with High Methane and Hydrogen Storage Capacities

    DTIC Science & Technology

    2013-01-01

    guest solvent molecules were removed via supercritical CO2 (see the Supporting Information for activation details),30,31 the samples were further...unique geometry of the carborane unit, NU-135 has a very high volumetric BET surface area of ca. 1900 m2/cm3. CH4, CO2 , and H2 adsorption isotherms...NU-135 has a very high volumetric BET surface area of ca. 1900 m2/cm3. CH4, CO2 , and H2 adsorption isotherms were measured over a broad range of

  11. Image Matrix Processor for Volumetric Computations Final Report CRADA No. TSB-1148-95

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberson, G. Patrick; Browne, Jolyon

    The development of an Image Matrix Processor (IMP) was proposed that would provide an economical means to perform rapid ray-tracing processes on volume "Giga Voxel" data sets. This was a multi-phased project. The objective of the first phase of the IMP project was to evaluate the practicality of implementing a workstation-based Image Matrix Processor for use in volumetric reconstruction and rendering using hardware simulation techniques. Additionally, ARACOR and LLNL worked together to identify and pursue further funding sources to complete a second phase of this project.

  12. TH-EF-BRA-05: A Method of Near Real-Time 4D MRI Using Volumetric Dynamic Keyhole (VDK) in the Presence of Respiratory Motion for MR-Guided Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, B; Kim, S; Kim, T

    Purpose: To develop a novel method that enables 4D MR imaging in near real-time for continuous monitoring of tumor motion in MR-guided radiotherapy. Methods: This method is mainly based on an idea of expanding dynamic keyhole to full volumetric imaging acquisition. In the VDK approach introduced in this study, a library of peripheral volumetric k-space data is generated in given number of phases (5 and 10 in this study) in advance. For 4D MRI at any given time, only volumetric central k-space data are acquired in real-time and combined with pre-acquired peripheral volumetric k-space data in the library corresponding tomore » the respiratory phase (or amplitude). The combined k-space data are Fourier-transformed to MR images. For simulation study, an MRXCAT program was used to generate synthetic MR images of the thorax with desired respiratory motion, contrast levels, and spatial and temporal resolution. 20 phases of volumetric MR images, with 200 ms temporal resolution in 4 s respiratory period, were generated using balanced steady-state free precession MR pulse sequence. The total acquisition time was 21.5s/phase with a voxel size of 3×3×5 mm{sup 3} and an image matrix of 128×128×56. Image similarity was evaluated with difference maps between the reference and reconstructed images. The VDK, conventional keyhole, and zero filling methods were compared for this simulation study. Results: Using 80% of the ky data and 70% of the kz data from the library resulted in 12.20% average intensity difference from the reference, and 21.60% and 28.45% difference in threshold pixel difference for conventional keyhole and zero filling, respectively. The imaging time will be reduced from 21.5s to 1.3s per volume using the VDK method. Conclusion: Near real-time 4D MR imaging can be achieved using the volumetric dynamic keyhole method. That makes the possibility of utilizing 4D MRI during MR-guided radiotherapy.« less

  13. Validation of measurement‐guided 3D VMAT dose reconstruction on a heterogeneous anthropomorphic phantom

    PubMed Central

    Opp, Daniel; Nelms, Benjamin E.; Zhang, Geoffrey; Stevens, Craig

    2013-01-01

    3DVH software (Sun Nuclear Corp., Melbourne, FL) is capable of generating a volumetric patient VMAT dose by applying a volumetric perturbation algorithm based on comparing measurement‐guided dose reconstruction and TPS‐calculated dose to a cylindrical phantom. The primary purpose of this paper is to validate this dose reconstruction on an anthropomorphic heterogeneous thoracic phantom by direct comparison to independent measurements. The dosimetric insert to the phantom is novel, and thus the secondary goal is to demonstrate how it can be used for the hidden target end‐to‐end testing of VMAT treatments in lung. A dosimetric insert contains a 4 cm diameter unit‐density spherical target located inside the right lung (0.21g/cm3 density). It has 26 slots arranged in two orthogonal directions, milled to hold optically stimulated luminescent dosimeters (OSLDs). Dose profiles in three cardinal orthogonal directions were obtained for five VMAT plans with varying degrees of modulation. After appropriate OSLD corrections were applied, 3DVH measurement‐guided VMAT dose reconstruction agreed 100% with the measurements in the unit density target sphere at 3%/3 mm level (composite analysis) for all profile points for the four less‐modulated VMAT plans, and for 96% of the points in the highly modulated C‐shape plan (from TG‐119). For this latter plan, while 3DVH shows acceptable agreement with independent measurements in the unit density target, in the lung disagreement with experiment is relatively high for both the TPS calculation and 3DVH reconstruction. For the four plans excluding the C‐shape, 3%/3mm overall composite analysis passing rates for 3DVH against independent measurement ranged from 93% to 100%. The C‐shape plan was deliberately chosen as a stress test of the algorithm. The dosimetric spatial alignment hidden target test demonstrated the average distance to agreement between the measured and TPS profiles in the steep dose gradient area at the edge of the 2 cm target to be 1.0±0.7,0.3±0.3, and 0.3±0.3mm for the IEC X, Y, and Z directions, respectively. PACS number: 87.55Qr PMID:23835381

  14. Associations between breast density and a panel of single nucleotide polymorphisms linked to breast cancer risk: a cohort study with digital mammography.

    PubMed

    Keller, Brad M; McCarthy, Anne Marie; Chen, Jinbo; Armstrong, Katrina; Conant, Emily F; Domchek, Susan M; Kontos, Despina

    2015-03-18

    Breast density and single-nucleotide polymorphisms (SNPs) have both been associated with breast cancer risk. To determine the extent to which these two breast cancer risk factors are associated, we investigate the association between a panel of validated SNPs related to breast cancer and quantitative measures of mammographic density in a cohort of Caucasian and African-American women. In this IRB-approved, HIPAA-compliant study, we analyzed a screening population of 639 women (250 African American and 389 Caucasian) who were tested with a validated panel assay of 12 SNPs previously associated to breast cancer risk. Each woman underwent digital mammography as part of routine screening and all were interpreted as negative. Both absolute and percent estimates of area and volumetric density were quantified on a per-woman basis using validated software. Associations between the number of risk alleles in each SNP and the density measures were assessed through a race-stratified linear regression analysis, adjusted for age, BMI, and Gail lifetime risk. The majority of SNPs were not found to be associated with any measure of breast density. SNP rs3817198 (in LSP1) was significantly associated with both absolute area (p = 0.004) and volumetric (p = 0.019) breast density in Caucasian women. In African-American women, SNPs rs3803662 (in TNRC9/TOX3) and rs4973768 (in NEK10) were significantly associated with absolute (p = 0.042) and percent (p = 0.028) volume density respectively. The majority of SNPs investigated in our study were not found to be significantly associated with breast density, even when accounting for age, BMI, and Gail risk, suggesting that these two different risk factors contain potentially independent information regarding a woman's risk to develop breast cancer. Additionally, the few statistically significant associations between breast density and SNPs were different for Caucasian versus African American women. Larger prospective studies are warranted to validate our findings and determine potential implications for breast cancer risk assessment.

  15. Flat panel angiography images in the post-operative follow-up of surgically clipped intracranial aneurysms.

    PubMed

    Budai, Caterina; Cirillo, Luigi; Patruno, Francesco; Dall'olio, Massimo; Princiotta, Ciro; Leonardi, Marco

    2014-04-01

    Cerebral aneurysms must be monitored for varying periods after surgical and/or endovascular treatment and the duration of follow-up will depend on the type of therapy and the immediate post-operative outcome. Surgical clipping for intracranial aneurysms is a valid treatment but the metal clips generate artefacts so that follow-up monitoring still relies on catheter angiography. This study reports our preliminary experience with volumetric angiography using a Philips Allura Xper FD biplane system in the post-operative monitoring of aneurysm residues or major vascular changes following the surgical clipping of intracranial aneurysms. Volumetric angiography yields not only volume-rendered (VR) images, but a volume CT can also be reconstructed at high spatial and contrast resolution from a single acquisition, significantly enhancing the technique's diagnostic power. Between August 2012 and April 2013, we studied 19 patients with a total of 26 aneurysms treated by surgical clipping alone or in combination with endovascular treatment. All patients underwent standard post-operative angiographic follow-up including a rotational volumetric acquisition. Follow-up monitoring disclosed eight aneurysm residues whose assessment was optimal after surgical clipping both in patients with one metal clip and in those with two or more clips. In addition, small residues (1.3 mm) could be monitored together with any change in the calibre or course of vessels located adjacent to the clips. In conclusion, flat panel volume CT is much more reliable than the old 3D acquisitions that yielded only VR images. This is particularly true in patients with small aneurysm residues or lesions with multiple metal clips.

  16. Multilevel Contextual 3-D CNNs for False Positive Reduction in Pulmonary Nodule Detection.

    PubMed

    Dou, Qi; Chen, Hao; Yu, Lequan; Qin, Jing; Heng, Pheng-Ann

    2017-07-01

    False positive reduction is one of the most crucial components in an automated pulmonary nodule detection system, which plays an important role in lung cancer diagnosis and early treatment. The objective of this paper is to effectively address the challenges in this task and therefore to accurately discriminate the true nodules from a large number of candidates. We propose a novel method employing three-dimensional (3-D) convolutional neural networks (CNNs) for false positive reduction in automated pulmonary nodule detection from volumetric computed tomography (CT) scans. Compared with its 2-D counterparts, the 3-D CNNs can encode richer spatial information and extract more representative features via their hierarchical architecture trained with 3-D samples. More importantly, we further propose a simple yet effective strategy to encode multilevel contextual information to meet the challenges coming with the large variations and hard mimics of pulmonary nodules. The proposed framework has been extensively validated in the LUNA16 challenge held in conjunction with ISBI 2016, where we achieved the highest competition performance metric (CPM) score in the false positive reduction track. Experimental results demonstrated the importance and effectiveness of integrating multilevel contextual information into 3-D CNN framework for automated pulmonary nodule detection in volumetric CT data. While our method is tailored for pulmonary nodule detection, the proposed framework is general and can be easily extended to many other 3-D object detection tasks from volumetric medical images, where the targeting objects have large variations and are accompanied by a number of hard mimics.

  17. Hippocampus and Basal Forebrain Volumetry for Dementia and Mild Cognitive Impairment Diagnosis: Could It Be Useful in Primary Care?

    PubMed

    Teipel, Stefan J; Keller, Felix; Thyrian, Jochen R; Strohmaier, Urs; Altiner, Attila; Hoffmann, Wolfgang; Kilimann, Ingo

    2017-01-01

    Once a patient or a knowledgeable informant has noticed decline in memory or other cognitive functions, initiation of early dementia assessment is recommended. Hippocampus and cholinergic basal forebrain (BF) volumetry supports the detection of prodromal and early stages of Alzheimer's disease (AD) dementia in highly selected patient populations. To compare effect size and diagnostic accuracy of hippocampus and BF volumetry between patients recruited in highly specialized versus primary care and to assess the effect of white matter lesions as a proxy for cerebrovascular comorbidity on diagnostic accuracy. We determined hippocampus and BF volumes and white matter lesion load from MRI scans of 71 participants included in a primary care intervention trial (clinicaltrials.gov identifier: NCT01401582) and matched 71 participants stemming from a memory clinic. Samples included healthy controls and people with mild cognitive impairment (MCI), AD dementia, mixed dementia, and non-AD related dementias. Volumetric measures reached similar effect sizes and cross-validated levels of accuracy in the primary care and the memory clinic samples for the discrimination of AD and mixed dementia cases from healthy controls. In the primary care MCI cases, volumetric measures reached only random guessing levels of accuracy. White matter lesions had only a modest effect on effect size and diagnostic accuracy. Hippocampus and BF volumetry may usefully be employed for the identification of AD and mixed dementia, but the detection of MCI does not benefit from the use of these volumetric markers in a primary care setting.

  18. On-demand rendering of an oblique slice through 3D volumetric data using JPEG2000 client-server framework

    NASA Astrophysics Data System (ADS)

    Joshi, Rajan L.

    2006-03-01

    In medical imaging, the popularity of image capture modalities such as multislice CT and MRI is resulting in an exponential increase in the amount of volumetric data that needs to be archived and transmitted. At the same time, the increased data is taxing the interpretation capabilities of radiologists. One of the workflow strategies recommended for radiologists to overcome the data overload is the use of volumetric navigation. This allows the radiologist to seek a series of oblique slices through the data. However, it might be inconvenient for a radiologist to wait until all the slices are transferred from the PACS server to a client, such as a diagnostic workstation. To overcome this problem, we propose a client-server architecture based on JPEG2000 and JPEG2000 Interactive Protocol (JPIP) for rendering oblique slices through 3D volumetric data stored remotely at a server. The client uses the JPIP protocol for obtaining JPEG2000 compressed data from the server on an as needed basis. In JPEG2000, the image pixels are wavelet-transformed and the wavelet coefficients are grouped into precincts. Based on the positioning of the oblique slice, compressed data from only certain precincts is needed to render the slice. The client communicates this information to the server so that the server can transmit only relevant compressed data. We also discuss the use of caching on the client side for further reduction in bandwidth requirements. Finally, we present simulation results to quantify the bandwidth savings for rendering a series of oblique slices.

  19. Soft tissue deformation for surgical simulation: a position-based dynamics approach.

    PubMed

    Camara, Mafalda; Mayer, Erik; Darzi, Ara; Pratt, Philip

    2016-06-01

    To assist the rehearsal and planning of robot-assisted partial nephrectomy, a real-time simulation platform is presented that allows surgeons to visualise and interact with rapidly constructed patient-specific biomechanical models of the anatomical regions of interest. Coupled to a framework for volumetric deformation, the platform furthermore simulates intracorporeal 2D ultrasound image acquisition, using preoperative imaging as the data source. This not only facilitates the planning of optimal transducer trajectories and viewpoints, but can also act as a validation context for manually operated freehand 3D acquisitions and reconstructions. The simulation platform was implemented within the GPU-accelerated NVIDIA FleX position-based dynamics framework. In order to validate the model and determine material properties and other simulation parameter values, a porcine kidney with embedded fiducial beads was CT-scanned and segmented. Acquisitions for the rest position and three different levels of probe-induced deformation were collected. Optimal values of the cluster stiffness coefficients were determined for a range of different particle radii, where the objective function comprised the mean distance error between real and simulated fiducial positions over the sequence of deformations. The mean fiducial error at each deformation stage was found to be compatible with the level of ultrasound probe calibration error typically observed in clinical practice. Furthermore, the simulation exhibited unconditional stability on account of its use of clustered shape-matching constraints. A novel position-based dynamics implementation of soft tissue deformation has been shown to facilitate several desirable simulation characteristics: real-time performance, unconditional stability, rapid model construction enabling patient-specific behaviour and accuracy with respect to reference CT images.

  20. Validation of triple pass 24-hour dietary recall in Ugandan children by simultaneous weighed food assessment.

    PubMed

    Nightingale, Helen; Walsh, Kevin J; Olupot-Olupot, Peter; Engoru, Charles; Ssenyondo, Tonny; Nteziyaremye, Julius; Amorut, Denis; Nakuya, Margaret; Arimi, Margaret; Frost, Gary; Maitland, Kathryn

    2016-08-24

    Undernutrition remains highly prevalent in African children, highlighting the need for accurately assessing dietary intake. In order to do so, the assessment method must be validated in the target population. A triple pass 24 hour dietary recall with volumetric portion size estimation has been described but not previously validated in African children. This study aimed to establish the relative validity of 24-hour dietary recalls of daily food consumption in healthy African children living in Mbale and Soroti, eastern Uganda compared to simultaneous weighed food records. Quantitative assessment of daily food consumption by weighed food records followed by two independent assessments using triple pass 24-hour dietary recall on the following day. In conjunction with household measures and standard food sizes, volumes of liquid, dry rice, or play dough were used to aid portion size estimation. Inter-assessor agreement, and agreement with weighed food records was conducted primarily by Bland-Altman analysis and secondly by intraclass correlation coefficients and quartile cross-classification. 19 healthy children aged 6 months to 12 years were included in the study. Bland-Altman analysis showed 24-hour recall only marginally under-estimated energy (mean difference of 149kJ or 2.8%; limits of agreement -1618 to 1321kJ), protein (2.9g or 9.4%; -12.6 to 6.7g), and iron (0.43mg or 8.3%; -3.1 to 2.3mg). Quartile cross-classification was correct in 79% of cases for energy intake, and 89% for both protein and iron. The intraclass correlation coefficient between the separate dietary recalls for energy was 0.801 (95% CI, 0.429-0.933), indicating acceptable inter-observer agreement. Dietary assessment using 24-hour dietary recall with volumetric portion size estimation resulted in similar and acceptable estimates of dietary intake compared with weighed food records and thus is considered a valid method for daily dietary intake assessment of children in communities with similar diets. The method will be utilised in a sub-study of a large randomised controlled trial addressing treatment in severe childhood anaemia. This study was approved by the Mbale Research Ethics committee (Reference: 2013-050). Transfusion and Treatment of severe Anaemia in African Children: a randomized controlled Trial (TRACT) registration: ISRCTN84086586.

  1. A generalized volumetric dispersion model for a class of two-phase separation/reaction: finite difference solutions

    NASA Astrophysics Data System (ADS)

    Siripatana, Chairat; Thongpan, Hathaikarn; Promraksa, Arwut

    2017-03-01

    This article explores a volumetric approach in formulating differential equations for a class of engineering flow problems involving component transfer within or between two phases. In contrast to conventional formulation which is based on linear velocities, this work proposed a slightly different approach based on volumetric flow-rate which is essentially constant in many industrial processes. In effect, many multi-dimensional flow problems found industrially can be simplified into multi-component or multi-phase but one-dimensional flow problems. The formulation is largely generic, covering counter-current, concurrent or batch, fixed and fluidized bed arrangement. It was also intended to use for start-up, shut-down, control and steady state simulation. Since many realistic and industrial operation are dynamic with variable velocity and porosity in relation to position, analytical solutions are rare and limited to only very simple cases. Thus we also provide a numerical solution using Crank-Nicolson finite difference scheme. This solution is inherently stable as tested against a few cases published in the literature. However, it is anticipated that, for unconfined flow or non-constant flow-rate, traditional formulation should be applied.

  2. Computerized measurement of facial expression of emotions in schizophrenia.

    PubMed

    Alvino, Christopher; Kohler, Christian; Barrett, Frederick; Gur, Raquel E; Gur, Ruben C; Verma, Ragini

    2007-07-30

    Deficits in the ability to express emotions characterize several neuropsychiatric disorders and are a hallmark of schizophrenia, and there is need for a method of quantifying expression, which is currently done by clinical ratings. This paper presents the development and validation of a computational framework for quantifying emotional expression differences between patients with schizophrenia and healthy controls. Each face is modeled as a combination of elastic regions, and expression changes are modeled as a deformation between a neutral face and an expressive face. Functions of these deformations, known as the regional volumetric difference (RVD) functions, form distinctive quantitative profiles of expressions. Employing pattern classification techniques, we have designed expression classifiers for the four universal emotions of happiness, sadness, anger and fear by training on RVD functions of expression changes. The classifiers were cross-validated and then applied to facial expression images of patients with schizophrenia and healthy controls. The classification score for each image reflects the extent to which the expressed emotion matches the intended emotion. Group-wise statistical analysis revealed this score to be significantly different between healthy controls and patients, especially in the case of anger. This score correlated with clinical severity of flat affect. These results encourage the use of such deformation based expression quantification measures for research in clinical applications that require the automated measurement of facial affect.

  3. Comparing Visually Assessed BI-RADS Breast Density and Automated Volumetric Breast Density Software: A Cross-Sectional Study in a Breast Cancer Screening Setting.

    PubMed

    van der Waal, Daniëlle; den Heeten, Gerard J; Pijnappel, Ruud M; Schuur, Klaas H; Timmers, Johanna M H; Verbeek, André L M; Broeders, Mireille J M

    2015-01-01

    The objective of this study is to compare different methods for measuring breast density, both visual assessments and automated volumetric density, in a breast cancer screening setting. These measures could potentially be implemented in future screening programmes, in the context of personalised screening or screening evaluation. Digital mammographic exams (N = 992) of women participating in the Dutch breast cancer screening programme (age 50-75y) in 2013 were included. Breast density was measured in three different ways: BI-RADS density (5th edition) and with two commercially available automated software programs (Quantra and Volpara volumetric density). BI-RADS density (ordinal scale) was assessed by three radiologists. Quantra (v1.3) and Volpara (v1.5.0) provide continuous estimates. Different comparison methods were used, including Bland-Altman plots and correlation coefficients (e.g., intraclass correlation coefficient [ICC]). Based on the BI-RADS classification, 40.8% of the women had 'heterogeneously or extremely dense' breasts. The median volumetric percent density was 12.1% (IQR: 9.6-16.5) for Quantra, which was higher than the Volpara estimate (median 6.6%, IQR: 4.4-10.9). The mean difference between Quantra and Volpara was 5.19% (95% CI: 5.04-5.34) (ICC: 0.64). There was a clear increase in volumetric percent dense volume as BI-RADS density increased. The highest accuracy for predicting the presence of BI-RADS c+d (heterogeneously or extremely dense) was observed with a cut-off value of 8.0% for Volpara and 13.8% for Quantra. Although there was no perfect agreement, there appeared to be a strong association between all three measures. Both volumetric density measures seem to be usable in breast cancer screening programmes, provided that the required data flow can be realized.

  4. Comparing Visually Assessed BI-RADS Breast Density and Automated Volumetric Breast Density Software: A Cross-Sectional Study in a Breast Cancer Screening Setting

    PubMed Central

    van der Waal, Daniëlle; den Heeten, Gerard J.; Pijnappel, Ruud M.; Schuur, Klaas H.; Timmers, Johanna M. H.; Verbeek, André L. M.; Broeders, Mireille J. M.

    2015-01-01

    Introduction The objective of this study is to compare different methods for measuring breast density, both visual assessments and automated volumetric density, in a breast cancer screening setting. These measures could potentially be implemented in future screening programmes, in the context of personalised screening or screening evaluation. Materials and Methods Digital mammographic exams (N = 992) of women participating in the Dutch breast cancer screening programme (age 50–75y) in 2013 were included. Breast density was measured in three different ways: BI-RADS density (5th edition) and with two commercially available automated software programs (Quantra and Volpara volumetric density). BI-RADS density (ordinal scale) was assessed by three radiologists. Quantra (v1.3) and Volpara (v1.5.0) provide continuous estimates. Different comparison methods were used, including Bland-Altman plots and correlation coefficients (e.g., intraclass correlation coefficient [ICC]). Results Based on the BI-RADS classification, 40.8% of the women had ‘heterogeneously or extremely dense’ breasts. The median volumetric percent density was 12.1% (IQR: 9.6–16.5) for Quantra, which was higher than the Volpara estimate (median 6.6%, IQR: 4.4–10.9). The mean difference between Quantra and Volpara was 5.19% (95% CI: 5.04–5.34) (ICC: 0.64). There was a clear increase in volumetric percent dense volume as BI-RADS density increased. The highest accuracy for predicting the presence of BI-RADS c+d (heterogeneously or extremely dense) was observed with a cut-off value of 8.0% for Volpara and 13.8% for Quantra. Conclusion Although there was no perfect agreement, there appeared to be a strong association between all three measures. Both volumetric density measures seem to be usable in breast cancer screening programmes, provided that the required data flow can be realized. PMID:26335569

  5. A deep-sea, high-speed, stereoscopic imaging system for in situ measurement of natural seep bubble and droplet characteristics

    NASA Astrophysics Data System (ADS)

    Wang, Binbin; Socolofsky, Scott A.

    2015-10-01

    Development, testing, and application of a deep-sea, high-speed, stereoscopic imaging system are presented. The new system is designed for field-ready deployment, focusing on measurement of the characteristics of natural seep bubbles and droplets with high-speed and high-resolution image capture. The stereo view configuration allows precise evaluation of the physical scale of the moving particles in image pairs. Two laboratory validation experiments (a continuous bubble chain and an airstone bubble plume) were carried out to test the calibration procedure, performance of image processing and bubble matching algorithms, three-dimensional viewing, and estimation of bubble size distribution and volumetric flow rate. The results showed that the stereo view was able to improve the individual bubble size measurement over the single-camera view by up to 90% in the two validation cases, with the single-camera being biased toward overestimation of the flow rate. We also present the first application of this imaging system in a study of natural gas seeps in the Gulf of Mexico. The high-speed images reveal the rigidity of the transparent bubble interface, indicating the presence of clathrate hydrate skins on the natural gas bubbles near the source (lowest measurement 1.3 m above the vent). We estimated the dominant bubble size at the seep site Sleeping Dragon in Mississippi Canyon block 118 to be in the range of 2-4 mm and the volumetric flow rate to be 0.2-0.3 L/min during our measurements from 17 to 21 July 2014.

  6. Volumetric analysis of pelvic hematomas after blunt trauma using semi-automated seeded region growing segmentation: a method validation study.

    PubMed

    Dreizin, David; Bodanapally, Uttam K; Neerchal, Nagaraj; Tirada, Nikki; Patlas, Michael; Herskovits, Edward

    2016-11-01

    Manually segmented traumatic pelvic hematoma volumes are strongly predictive of active bleeding at conventional angiography, but the method is time intensive, limiting its clinical applicability. We compared volumetric analysis using semi-automated region growing segmentation to manual segmentation and diameter-based size estimates in patients with pelvic hematomas after blunt pelvic trauma. A 14-patient cohort was selected in an anonymous randomized fashion from a dataset of patients with pelvic binders at MDCT, collected retrospectively as part of a HIPAA-compliant IRB-approved study from January 2008 to December 2013. To evaluate intermethod differences, one reader (R1) performed three volume measurements using the manual technique and three volume measurements using the semi-automated technique. To evaluate interobserver differences for semi-automated segmentation, a second reader (R2) performed three semi-automated measurements. One-way analysis of variance was used to compare differences in mean volumes. Time effort was also compared. Correlation between the two methods as well as two shorthand appraisals (greatest diameter, and the ABC/2 method for estimating ellipsoid volumes) was assessed with Spearman's rho (r). Intraobserver variability was lower for semi-automated compared to manual segmentation, with standard deviations ranging between ±5-32 mL and ±17-84 mL, respectively (p = 0.0003). There was no significant difference in mean volumes between the two readers' semi-automated measurements (p = 0.83); however, means were lower for the semi-automated compared with the manual technique (manual: mean and SD 309.6 ± 139 mL; R1 semi-auto: 229.6 ± 88.2 mL, p = 0.004; R2 semi-auto: 243.79 ± 99.7 mL, p = 0.021). Despite differences in means, the correlation between the two methods was very strong and highly significant (r = 0.91, p < 0.001). Correlations with diameter-based methods were only moderate and nonsignificant. Mean semi-automated segmentation time effort was 2 min and 6 s and 2 min and 35 s for R1 and R2, respectively, vs. 22 min and 8 s for manual segmentation. Semi-automated pelvic hematoma volumes correlate strongly with manually segmented volumes. Since semi-automated segmentation can be performed reliably and efficiently, volumetric analysis of traumatic pelvic hematomas is potentially valuable at the point-of-care.

  7. 3D Pathology Volumetric Technique: A Method for Calculating Breast Tumour Volume from Whole-Mount Serial Section Images

    PubMed Central

    Clarke, G. M.; Murray, M.; Holloway, C. M. B.; Liu, K.; Zubovits, J. T.; Yaffe, M. J.

    2012-01-01

    Tumour size, most commonly measured by maximum linear extent, remains a strong predictor of survival in breast cancer. Tumour volume, proportional to the number of tumour cells, may be a more accurate surrogate for size. We describe a novel “3D pathology volumetric technique” for lumpectomies and compare it with 2D measurements. Volume renderings and total tumour volume are computed from digitized whole-mount serial sections using custom software tools. Results are presented for two lumpectomy specimens selected for tumour features which may challenge accurate measurement of tumour burden with conventional, sampling-based pathology: (1) an infiltrative pattern admixed with normal breast elements; (2) a localized invasive mass separated from the in situ component by benign tissue. Spatial relationships between key features (tumour foci, close or involved margins) are clearly visualized in volume renderings. Invasive tumour burden can be underestimated using conventional pathology, compared to the volumetric technique (infiltrative pattern: 30% underestimation; localized mass: 3% underestimation for invasive tumour, 44% for in situ component). Tumour volume approximated from 2D measurements (i.e., maximum linear extent), assuming elliptical geometry, was seen to overestimate volume compared to the 3D volumetric calculation (by a factor of 7x for the infiltrative pattern; 1.5x for the localized invasive mass). PMID:23320179

  8. Flexible MXene/Graphene Films for Ultrafast Supercapacitors with Outstanding Volumetric Capacitance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Jun; Ren, Chang E.; Maleski, Kathleen

    A strategy to prepare flexible and conductive MXene/graphene (reduced graphene oxide, rGO) supercapacitor electrodes by using electrostatic self-assembly between positively charged rGO modified with poly(diallyldimethylammonium chloride) and negatively charged titanium carbide MXene nanosheets is presented. After electrostatic assembly, rGO nanosheets are inserted in-between MXene layers. As a result, the self-restacking of MXene nanosheets is effectively prevented, leading to a considerably increased interlayer spacing. Accelerated diffusion of electrolyte ions enables more electroactive sites to become accessible. The freestanding MXene/rGO-5 wt% electrode displays a volumetric capacitance of 1040 F cm –3 at a scan rate of 2 mV s –1, an impressivemore » rate capability with 61% capacitance retention at 1 V s –1 and long cycle life. Moreover, the fabricated binder-free symmetric supercapacitor shows an ultrahigh volumetric energy density of 32.6 Wh L –1, which is among the highest values reported for carbon and MXene based materials in aqueous electrolytes. Furthermore, this work provides fundamental insight into the effect of interlayer spacing on the electrochemical performance of 2D hybrid materials and sheds light on the design of next-generation flexible, portable and highly integrated supercapacitors with high volumetric and rate performances.« less

  9. Assessing the failure of continuum formula for solid-solid drag force using discrete element method in large size ratios

    NASA Astrophysics Data System (ADS)

    Jalali, Payman; Hyppänen, Timo

    2017-06-01

    In loose or moderately-dense particle mixtures, the contact forces between particles due to successive collisions create average volumetric solid-solid drag force between different granular phases (of different particle sizes). The derivation of the mathematical formula for this drag force is based on the homogeneity of mixture within the calculational control volume. This assumption especially fails when the size ratio of particles grows to a large value of 10 or greater. The size-driven inhomogeneity is responsible to the deviation of intergranular force from the continuum formula. In this paper, we have implemented discrete element method (DEM) simulations to obtain the volumetric mean force exchanged between the granular phases with the size ratios greater than 10. First, the force is calculated directly from DEM averaged over a proper time window. Second, the continuum formula is applied to calculate the drag forces using the DEM quantities. We have shown the two volumetric forces are in good agreement as long as the homogeneity condition is maintained. However, the relative motion of larger particles in a cloud of finer particles imposes the inhomogeneous distribution of finer particles around the larger ones. We have presented correction factors to the volumetric force from continuum formula.

  10. Measurement of vibration-induced volumetric strain in the human lung.

    PubMed

    Hirsch, Sebastian; Posnansky, Oleg; Papazoglou, Sebastian; Elgeti, Thomas; Braun, Jürgen; Sack, Ingolf

    2013-03-01

    Noninvasive image-based measurement of intrinsic tissue pressure is of great interest in the diagnosis and characterization of diseases. Therefore, we propose to exploit the capability of phase-contrast MRI to measure three-dimensional vector fields of tissue motion for deriving volumetric strain induced by external vibration. Volumetric strain as given by the divergence of mechanical displacement fields is related to tissue compressibility and is thus sensitive to the state of tissue pressure. This principle is demonstrated by the measurement of three-dimensional vector fields of 50-Hz oscillations in a compressible agarose phantom and in the lungs of nine healthy volunteers. In the phantom, the magnitude of the oscillating divergence increased by about 400% with 4.8 bar excess air pressure, corresponding to an effective-medium compression modulus of 230 MPa. In lungs, the averaged divergence magnitude increased in all volunteers (N = 9) between 7 and 78% from expiration to inspiration. Measuring volumetric strain by MRI provides a compression-sensitive parameter of tissue mechanics, which varies with the respiratory state in the lungs. In future clinical applications for diagnosis and characterization of lung emphysema, fibrosis, or cancer, divergence-sensitive MRI may serve as a noninvasive marker sensitive to disease-related alterations of regional elastic recoil pressure in the lungs. Copyright © 2012 Wiley Periodicals, Inc.

  11. Volumetric Medical Image Coding: An Object-based, Lossy-to-lossless and Fully Scalable Approach

    PubMed Central

    Danyali, Habibiollah; Mertins, Alfred

    2011-01-01

    In this article, an object-based, highly scalable, lossy-to-lossless 3D wavelet coding approach for volumetric medical image data (e.g., magnetic resonance (MR) and computed tomography (CT)) is proposed. The new method, called 3DOBHS-SPIHT, is based on the well-known set partitioning in the hierarchical trees (SPIHT) algorithm and supports both quality and resolution scalability. The 3D input data is grouped into groups of slices (GOS) and each GOS is encoded and decoded as a separate unit. The symmetric tree definition of the original 3DSPIHT is improved by introducing a new asymmetric tree structure. While preserving the compression efficiency, the new tree structure allows for a small size of each GOS, which not only reduces memory consumption during the encoding and decoding processes, but also facilitates more efficient random access to certain segments of slices. To achieve more compression efficiency, the algorithm only encodes the main object of interest in each 3D data set, which can have any arbitrary shape, and ignores the unnecessary background. The experimental results on some MR data sets show the good performance of the 3DOBHS-SPIHT algorithm for multi-resolution lossy-to-lossless coding. The compression efficiency, full scalability, and object-based features of the proposed approach, beside its lossy-to-lossless coding support, make it a very attractive candidate for volumetric medical image information archiving and transmission applications. PMID:22606653

  12. Fully Automated Quantitative Estimation of Volumetric Breast Density from Digital Breast Tomosynthesis Images: Preliminary Results and Comparison with Digital Mammography and MR Imaging

    PubMed Central

    Pertuz, Said; McDonald, Elizabeth S.; Weinstein, Susan P.; Conant, Emily F.

    2016-01-01

    Purpose To assess a fully automated method for volumetric breast density (VBD) estimation in digital breast tomosynthesis (DBT) and to compare the findings with those of full-field digital mammography (FFDM) and magnetic resonance (MR) imaging. Materials and Methods Bilateral DBT images, FFDM images, and sagittal breast MR images were retrospectively collected from 68 women who underwent breast cancer screening from October 2011 to September 2012 with institutional review board–approved, HIPAA-compliant protocols. A fully automated computer algorithm was developed for quantitative estimation of VBD from DBT images. FFDM images were processed with U.S. Food and Drug Administration–cleared software, and the MR images were processed with a previously validated automated algorithm to obtain corresponding VBD estimates. Pearson correlation and analysis of variance with Tukey-Kramer post hoc correction were used to compare the multimodality VBD estimates. Results Estimates of VBD from DBT were significantly correlated with FFDM-based and MR imaging–based estimates with r = 0.83 (95% confidence interval [CI]: 0.74, 0.90) and r = 0.88 (95% CI: 0.82, 0.93), respectively (P < .001). The corresponding correlation between FFDM and MR imaging was r = 0.84 (95% CI: 0.76, 0.90). However, statistically significant differences after post hoc correction (α = 0.05) were found among VBD estimates from FFDM (mean ± standard deviation, 11.1% ± 7.0) relative to MR imaging (16.6% ± 11.2) and DBT (19.8% ± 16.2). Differences between VDB estimates from DBT and MR imaging were not significant (P = .26). Conclusion Fully automated VBD estimates from DBT, FFDM, and MR imaging are strongly correlated but show statistically significant differences. Therefore, absolute differences in VBD between FFDM, DBT, and MR imaging should be considered in breast cancer risk assessment. © RSNA, 2015 Online supplemental material is available for this article. PMID:26491909

  13. Classifying brain metastases by their primary site of origin using a radiomics approach based on texture analysis: a feasibility study.

    PubMed

    Ortiz-Ramón, Rafael; Larroza, Andrés; Ruiz-España, Silvia; Arana, Estanislao; Moratal, David

    2018-05-14

    To examine the capability of MRI texture analysis to differentiate the primary site of origin of brain metastases following a radiomics approach. Sixty-seven untreated brain metastases (BM) were found in 3D T1-weighted MRI of 38 patients with cancer: 27 from lung cancer, 23 from melanoma and 17 from breast cancer. These lesions were segmented in 2D and 3D to compare the discriminative power of 2D and 3D texture features. The images were quantized using different number of gray-levels to test the influence of quantization. Forty-three rotation-invariant texture features were examined. Feature selection and random forest classification were implemented within a nested cross-validation structure. Classification was evaluated with the area under receiver operating characteristic curve (AUC) considering two strategies: multiclass and one-versus-one. In the multiclass approach, 3D texture features were more discriminative than 2D features. The best results were achieved for images quantized with 32 gray-levels (AUC = 0.873 ± 0.064) using the top four features provided by the feature selection method based on the p-value. In the one-versus-one approach, high accuracy was obtained when differentiating lung cancer BM from breast cancer BM (four features, AUC = 0.963 ± 0.054) and melanoma BM (eight features, AUC = 0.936 ± 0.070) using the optimal dataset (3D features, 32 gray-levels). Classification of breast cancer and melanoma BM was unsatisfactory (AUC = 0.607 ± 0.180). Volumetric MRI texture features can be useful to differentiate brain metastases from different primary cancers after quantizing the images with the proper number of gray-levels. • Texture analysis is a promising source of biomarkers for classifying brain neoplasms. • MRI texture features of brain metastases could help identifying the primary cancer. • Volumetric texture features are more discriminative than traditional 2D texture features.

  14. Thermal and volumetric properties of methanol-hexamethylphosphortriamide mixtures under standard conditions

    NASA Astrophysics Data System (ADS)

    Batov, D. V.; Kustov, A. V.; Antonova, O. A.; Smirnova, N. L.

    2017-02-01

    Enthalpic and volumetric characteristics of mixing in a methanol (MeOH)-hexamethylphosphortriamide (HMPT, 2) mixture are studied. Based on an analysis of concentration changes in the obtained data and the calculated partial molar characteristics, it is shown that at 0.2 molar fractions > x 2 > 0.7 molar fractions, the variation in the composition of the mixture slightly alters the character of intermolecular interactions characteristic of pure components. It is found that MeOH-HMPT mixtures experience most changes in intermolecular interaction and structure within the range of 0.2-0.7 molar fractions of HMPT.

  15. Evaluation of volume change in rectum and bladder during application of image-guided radiotherapy for prostate carcinoma

    NASA Astrophysics Data System (ADS)

    Luna, J. A.; Rojas, J. I.

    2016-07-01

    All prostate cancer patients from Centro Médico Radioterapia Siglo XXI receive Volumetric Modulated Arc Therapy (VMAT). This therapy uses image-guided radiotherapy (IGRT) with the Cone Beam Computed Tomography (CBCT). This study compares the planned dose in the reference CT image against the delivered dose recalculate in the CBCT image. The purpose of this study is to evaluate the anatomic changes and related dosimetric effect based on weekly CBCT directly for patients with prostate cancer undergoing volumetric modulated arc therapy (VMAT) treatment. The collected data were analyzed using one-way ANOVA.

  16. Shape-Based Virtual Screening with Volumetric Aligned Molecular Shapes

    PubMed Central

    Koes, David Ryan; Camacho, Carlos J.

    2014-01-01

    Shape-based virtual screening is an established and effective method for identifying small molecules that are similar in shape and function to a reference ligand. We describe a new method of shape-based virtual screening, volumetric aligned molecular shapes (VAMS). VAMS uses efficient data structures to encode and search molecular shapes. We demonstrate that VAMS is an effective method for shape-based virtual screening and that it can be successfully used as a pre-filter to accelerate more computationally demanding search algorithms. Unique to VAMS is a novel minimum/maximum shape constraint query for precisely specifying the desired molecular shape. Shape constraint searches in VAMS are particularly efficient and millions of shapes can be searched in a fraction of a second. We compare the performance of VAMS with two other shape-based virtual screening algorithms a benchmark of 102 protein targets consisting of more than 32 million molecular shapes and find that VAMS provides a competitive trade-off between run-time performance and virtual screening performance. PMID:25049193

  17. Quantification of ultrasonic texture intra-heterogeneity via volumetric stochastic modeling for tissue characterization.

    PubMed

    Al-Kadi, Omar S; Chung, Daniel Y F; Carlisle, Robert C; Coussios, Constantin C; Noble, J Alison

    2015-04-01

    Intensity variations in image texture can provide powerful quantitative information about physical properties of biological tissue. However, tissue patterns can vary according to the utilized imaging system and are intrinsically correlated to the scale of analysis. In the case of ultrasound, the Nakagami distribution is a general model of the ultrasonic backscattering envelope under various scattering conditions and densities where it can be employed for characterizing image texture, but the subtle intra-heterogeneities within a given mass are difficult to capture via this model as it works at a single spatial scale. This paper proposes a locally adaptive 3D multi-resolution Nakagami-based fractal feature descriptor that extends Nakagami-based texture analysis to accommodate subtle speckle spatial frequency tissue intensity variability in volumetric scans. Local textural fractal descriptors - which are invariant to affine intensity changes - are extracted from volumetric patches at different spatial resolutions from voxel lattice-based generated shape and scale Nakagami parameters. Using ultrasound radio-frequency datasets we found that after applying an adaptive fractal decomposition label transfer approach on top of the generated Nakagami voxels, tissue characterization results were superior to the state of art. Experimental results on real 3D ultrasonic pre-clinical and clinical datasets suggest that describing tumor intra-heterogeneity via this descriptor may facilitate improved prediction of therapy response and disease characterization. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  18. WebMedSA: a web-based framework for segmenting and annotating medical images using biomedical ontologies

    NASA Astrophysics Data System (ADS)

    Vega, Francisco; Pérez, Wilson; Tello, Andrés.; Saquicela, Victor; Espinoza, Mauricio; Solano-Quinde, Lizandro; Vidal, Maria-Esther; La Cruz, Alexandra

    2015-12-01

    Advances in medical imaging have fostered medical diagnosis based on digital images. Consequently, the number of studies by medical images diagnosis increases, thus, collaborative work and tele-radiology systems are required to effectively scale up to this diagnosis trend. We tackle the problem of the collaborative access of medical images, and present WebMedSA, a framework to manage large datasets of medical images. WebMedSA relies on a PACS and supports the ontological annotation, as well as segmentation and visualization of the images based on their semantic description. Ontological annotations can be performed directly on the volumetric image or at different image planes (e.g., axial, coronal, or sagittal); furthermore, annotations can be complemented after applying a segmentation technique. WebMedSA is based on three main steps: (1) RDF-ization process for extracting, anonymizing, and serializing metadata comprised in DICOM medical images into RDF/XML; (2) Integration of different biomedical ontologies (using L-MOM library), making this approach ontology independent; and (3) segmentation and visualization of annotated data which is further used to generate new annotations according to expert knowledge, and validation. Initial user evaluations suggest that WebMedSA facilitates the exchange of knowledge between radiologists, and provides the basis for collaborative work among them.

  19. A new fractional order derivative based active contour model for colon wall segmentation

    NASA Astrophysics Data System (ADS)

    Chen, Bo; Li, Lihong C.; Wang, Huafeng; Wei, Xinzhou; Huang, Shan; Chen, Wensheng; Liang, Zhengrong

    2018-02-01

    Segmentation of colon wall plays an important role in advancing computed tomographic colonography (CTC) toward a screening modality. Due to the low contrast of CT attenuation around colon wall, accurate segmentation of the boundary of both inner and outer wall is very challenging. In this paper, based on the geodesic active contour model, we develop a new model for colon wall segmentation. First, tagged materials in CTC images were automatically removed via a partial volume (PV) based electronic colon cleansing (ECC) strategy. We then present a new fractional order derivative based active contour model to segment the volumetric colon wall from the cleansed CTC images. In this model, the regionbased Chan-Vese model is incorporated as an energy term to the whole model so that not only edge/gradient information but also region/volume information is taken into account in the segmentation process. Furthermore, a fractional order differentiation derivative energy term is also developed in the new model to preserve the low frequency information and improve the noise immunity of the new segmentation model. The proposed colon wall segmentation approach was validated on 16 patient CTC scans. Experimental results indicate that the present scheme is very promising towards automatically segmenting colon wall, thus facilitating computer aided detection of initial colonic polyp candidates via CTC.

  20. Inventory of File gdas1.t06z.sfluxgrbf00.grib2

    Science.gov Websites

    analysis Volumetric Soil Moisture Content [Fraction] 007 0.1-0.4 m below ground SOILW analysis Volumetric Soil Moisture Content [Fraction] 008 0-0.1 m below ground TMP analysis Temperature [K] 009 0.1-0.4 m Volumetric Soil Moisture Content [Fraction] 068 1-2 m below ground SOILW analysis Volumetric Soil Moisture

  1. A framework for combining multiple soil moisture retrievals based on maximizing temporal correlation

    NASA Astrophysics Data System (ADS)

    Kim, Seokhyeon; Parinussa, Robert M.; Liu, Yi. Y.; Johnson, Fiona M.; Sharma, Ashish

    2015-08-01

    A method for combining two microwave satellite soil moisture products by maximizing the temporal correlation with a reference data set has been developed. The method was applied to two global soil moisture data sets, Japan Aerospace Exploration Agency (JAXA) and Land Parameter Retrieval Model (LPRM), retrieved from the Advanced Microwave Scanning Radiometer 2 observations for the period 2012-2014. A global comparison revealed superior results of the combined product compared to the individual products against the reference data set of ERA-Interim volumetric water content. The global mean temporal correlation coefficient of the combined product with this reference was 0.52 which outperforms the individual JAXA (0.35) as well as the LPRM (0.45) product. Additionally, the performance was evaluated against in situ observations from the International Soil Moisture Network. The combined data set showed a significant improvement in temporal correlation coefficients in the validation compared to JAXA and minor improvements for the LPRM product.

  2. Learning without labeling: domain adaptation for ultrasound transducer localization.

    PubMed

    Heimann, Tobias; Mountney, Peter; John, Matthias; Ionasec, Razvan

    2013-01-01

    The fusion of image data from trans-esophageal echography (TEE) and X-ray fluoroscopy is attracting increasing interest in minimally-invasive treatment of structural heart disease. In order to calculate the needed transform between both imaging systems, we employ a discriminative learning based approach to localize the TEE transducer in X-ray images. Instead of time-consuming manual labeling, we generate the required training data automatically from a single volumetric image of the transducer. In order to adapt this system to real X-ray data, we use unlabeled fluoroscopy images to estimate differences in feature space density and correct covariate shift by instance weighting. An evaluation on more than 1900 images reveals that our approach reduces detection failures by 95% compared to cross validation on the test set and improves the localization error from 1.5 to 0.8 mm. Due to the automatic generation of training data, the proposed system is highly flexible and can be adapted to any medical device with minimal efforts.

  3. Influence of Cobb Angle and ISIS2 Surface Topography Volumetric Asymmetry on Scoliosis Research Society-22 Outcome Scores in Scoliosis.

    PubMed

    Brewer, Paul; Berryman, Fiona; Baker, De; Pynsent, Paul; Gardner, Adrian

    2013-11-01

    Retrospective sequential patient series. To establish the relationship between the magnitude of the deformity in scoliosis and patients' perception of their condition, as measured with Scoliosis Research Society-22 scores. A total of 93 untreated patients with adolescent idiopathic scoliosis were included retrospectively. The Cobb angle was measured from a plain radiograph, and volumetric asymmetry was measured by ISIS2 surface topography. The association between Scoliosis Research Society scores for function, pain, self-image, and mental health against Cobb angle and volumetric asymmetry was investigated using the Pearson correlation coefficient. Correlation of both Cobb angle and volumetric asymmetry with function and pain was weak (all < .23); these correlation values were not statistically significant. Correlation of Cobb angle and volumetric asymmetry with self-image, was higher, although still moderate (-.37 for Cobb angle and -.44 for volumetric asymmetry). Both were statistically significant (Cobb angle, p = .0002; volumetric asymmetry; p = .00001). Cobb angle contributed 13.8% to the linear relationship with self-image, whereas volumetric asymmetry contributed 19.3%. For mental health, correlation was statistically significant with Cobb angle (p = .011) and volumetric asymmetry (p = .0005), but the correlation was low to moderate (-.26 and -.35, respectively). Cobb angle contributed 6.9% to the linear relationship with mental health, whereas volumetric asymmetry contributed 12.4%. Volumetric asymmetry correlates better with both mental health and self-image compared with Cobb angle, but the correlation was only moderate. This study suggests that a patient's own perception of self-image and mental health is multifactorial and not completely explained through present objective measurements of the size of the deformity. This helps to explain the difficulties in any objective analysis of a problem with multifactorial perception issues. Further study is required to investigate other physical aspects of the deformity that may have a role in how patients view themselves. Copyright © 2013 Scoliosis Research Society. Published by Elsevier Inc. All rights reserved.

  4. Fully automatic bone age estimation from left hand MR images.

    PubMed

    Stern, Darko; Ebner, Thomas; Bischof, Horst; Grassegger, Sabine; Ehammer, Thomas; Urschler, Martin

    2014-01-01

    There has recently been an increased demand in bone age estimation (BAE) of living individuals and human remains in legal medicine applications. A severe drawback of established BAE techniques based on X-ray images is radiation exposure, since many countries prohibit scanning involving ionizing radiation without diagnostic reasons. We propose a completely automated method for BAE based on volumetric hand MRI images. On our database of 56 male caucasian subjects between 13 and 19 years, we are able to estimate the subjects age with a mean difference of 0.85 ± 0.58 years compared to the chronological age, which is in line with radiologist results using established radiographic methods. We see this work as a promising first step towards a novel MRI based bone age estimation system, with the key benefits of lacking exposure to ionizing radiation and higher accuracy due to exploitation of volumetric data.

  5. Real time markerless motion tracking using linked kinematic chains

    DOEpatents

    Luck, Jason P [Arvada, CO; Small, Daniel E [Albuquerque, NM

    2007-08-14

    A markerless method is described for tracking the motion of subjects in a three dimensional environment using a model based on linked kinematic chains. The invention is suitable for tracking robotic, animal or human subjects in real-time using a single computer with inexpensive video equipment, and does not require the use of markers or specialized clothing. A simple model of rigid linked segments is constructed of the subject and tracked using three dimensional volumetric data collected by a multiple camera video imaging system. A physics based method is then used to compute forces to align the model with subsequent volumetric data sets in real-time. The method is able to handle occlusion of segments and accommodates joint limits, velocity constraints, and collision constraints and provides for error recovery. The method further provides for elimination of singularities in Jacobian based calculations, which has been problematic in alternative methods.

  6. Synthesis of graphene oxide and reduced graphene oxide using volumetric method by a novel approach without NaNO2 or NaNO3

    NASA Astrophysics Data System (ADS)

    Gunda, Rajitha; Madireddy, Buchi Suresh; Dash, Raj Kishora

    2018-02-01

    In the present work, graphite was processed to graphene oxide (GO) using modified Hummer's method by volumetric titration approach, without attaining zero temperature and the addition of toxic chemicals (NaNO2/NaNO3). The complete oxidation of graphite to graphene oxide was obtained by controlled addition (volumetric titration) of KMnO4. The addition of higher KMnO4 resulted in partial oxidation and 2-3 mono-layers with less defects/disordered structure of reduced graphene oxide (RGO) sheets were achieved. Samples were analyzed by XRD, FT-IR, Raman analysis, and TEM analysis. X-ray diffraction displayed the oxidized peak of graphene oxide at 11.9° and reduced graphene oxide at 23.8°. The prolonged stability of the synthesized GO with lower mole ratios of oxidizing agent was confirmed from UV-visible spectroscopy. Based on the results, processed graphene oxide is found to be a candidate material for thermally stable capacitor application.

  7. 3-D World Modeling For An Autonomous Robot

    NASA Astrophysics Data System (ADS)

    Goldstein, M.; Pin, F. G.; Weisbin, C. R.

    1987-01-01

    This paper presents a methodology for a concise representation of the 3-D world model for a mobile robot, using range data. The process starts with the segmentation of the scene into "objects" that are given a unique label, based on principles of range continuity. Then the external surface of each object is partitioned into homogeneous surface patches. Contours of surface patches in 3-D space are identified by estimating the normal and curvature associated with each pixel. The resulting surface patches are then classified as planar, convex or concave. Since the world model uses a volumetric representation for the 3-D environment, planar surfaces are represented by thin volumetric polyhedra. Spherical and cylindrical surfaces are extracted and represented by appropriate volumetric primitives. All other surfaces are represented using the boolean union of spherical volumes (as described in a separate paper by the same authors). The result is a general, concise representation of the external 3-D world, which allows for efficient and robust 3-D object recognition.

  8. High sensitive volumetric imaging of renal microcirculation in vivo using ultrahigh sensitive optical microangiography

    NASA Astrophysics Data System (ADS)

    Zhi, Zhongwei; Jung, Yeongri; Jia, Yali; An, Lin; Wang, Ruikang K.

    2011-03-01

    We present a non-invasive, label-free imaging technique called Ultrahigh Sensitive Optical Microangiography (UHSOMAG) for high sensitive volumetric imaging of renal microcirculation. The UHS-OMAG imaging system is based on spectral domain optical coherence tomography (SD-OCT), which uses a 47000 A-line scan rate CCD camera to perform an imaging speed of 150 frames per second that takes only ~7 seconds to acquire a 3D image. The technique, capable of measuring slow blood flow down to 4 um/s, is sensitive enough to image capillary networks, such as peritubular capillaries and glomerulus within renal cortex. We show superior performance of UHS-OMAG in providing depthresolved volumetric images of rich renal microcirculation. We monitored the dynamics of renal microvasculature during renal ischemia and reperfusion. Obvious reduction of renal microvascular density due to renal ischemia was visualized and quantitatively analyzed. This technique can be helpful for the assessment of chronic kidney disease (CKD) which relates to abnormal microvasculature.

  9. Very high frame rate volumetric integration of depth images on mobile devices.

    PubMed

    Kähler, Olaf; Adrian Prisacariu, Victor; Yuheng Ren, Carl; Sun, Xin; Torr, Philip; Murray, David

    2015-11-01

    Volumetric methods provide efficient, flexible and simple ways of integrating multiple depth images into a full 3D model. They provide dense and photorealistic 3D reconstructions, and parallelised implementations on GPUs achieve real-time performance on modern graphics hardware. To run such methods on mobile devices, providing users with freedom of movement and instantaneous reconstruction feedback, remains challenging however. In this paper we present a range of modifications to existing volumetric integration methods based on voxel block hashing, considerably improving their performance and making them applicable to tablet computer applications. We present (i) optimisations for the basic data structure, and its allocation and integration; (ii) a highly optimised raycasting pipeline; and (iii) extensions to the camera tracker to incorporate IMU data. In total, our system thus achieves frame rates up 47 Hz on a Nvidia Shield Tablet and 910 Hz on a Nvidia GTX Titan XGPU, or even beyond 1.1 kHz without visualisation.

  10. Evaluation of resolution-precision relationships when using Structure-from-Motion to measure low intensity erosion processes, within a laboratory setting.

    NASA Astrophysics Data System (ADS)

    Benaud, Pia; Anderson, Karen; Quine, Timothy; James, Mike; Quinton, John; Brazier, Richard E.

    2017-04-01

    The accessibility of Structure-from-Motion Multi-Stereo View (SfM) and the potential for multi-temporal applications, offers an exciting opportunity to quantify soil erosion spatially. Accordingly, published research provides examples of the successful quantification of large erosion features and events, to centimetre accuracy. Through rigorous control of the camera and image network geometry, the centimetre accuracy achievable at the field scale, can translate to sub-millimetre accuracies within a laboratory environment. The broad aim of this study, therefore, was to understand how ultra-high-resolution spatial information on soil surface topography, derived from SfM, can be utilised to develop a spatially explicit, mechanistic understanding of rill and inter-rill erosion, under experimental conditions. A rainfall simulator was used to create three soil surface conditions; compaction and rainsplash erosion, inter-rill erosion, and rill erosion. Total sediment capture was the primary validation for the experiments, allowing the comparison between structurally and volumetrically derived change, and true soil loss. A Terrestrial Laser Scanner (resolution of ca. 0.8mm) was employed to assess spatial discrepancies within the SfM datasets and to provide an alternative measure of volumetric change. The body of work will present the workflow that has been developed for the laboratory-scale studies and provide information on the importance of DTM resolution for volumetric calculations of soil loss, under different soil surface conditions. To-date, using the methodology presented, point clouds with ca. 3.38 x 107 points per m2, and RMSE values of 0.17 to 0.43 mm (relative precision 1:2023-5117), were constructed. Preliminary results suggest a decrease in DTM resolution from 0.5 to 10 mm does not result in a significant change in volumetric calculations (p = 0.088), while affording a 24-fold decrease in processing times, but may impact negatively on mechanistic understanding of patterns of erosion. It is argued that the approach can be an invaluable tool for the spatially-explicit evaluation of soil erosion models.

  11. Preintervention lesion remodelling affects operative mechanisms of balloon optimised directional coronary atherectomy procedures: a volumetric study with three dimensional intravascular ultrasound

    PubMed Central

    von Birgelen, C; Mintz, G; de Vrey, E A; Serruys, P; Kimura, T; Nobuyoshi, M; Popma, J; Leon, M; Erbel, R; de Feyter, P J

    2000-01-01

    AIMS—To classify atherosclerotic coronary lesions on the basis of adequate or inadequate compensatory vascular enlargement, and to examine changes in lumen, plaque, and vessel volumes during balloon optimised directional coronary atherectomy procedures in relation to the state of adaptive remodelling before the intervention.
DESIGN—29 lesion segments in 29 patients were examined with intravascular ultrasound before and after successful balloon optimised directional coronary atherectomy procedures, and a validated volumetric intravascular ultrasound analysis was performed off-line to assess the atherosclerotic lesion remodelling and changes in plaque and vessel volumes that occurred during the intervention. Based on the intravascular ultrasound data, lesions were classified according to whether there was inadequate (group I) or adequate (group II) compensatory enlargement.
RESULTS—There was no significant difference in patient and lesion characteristics between groups I and II (n = 10 and 19), including lesion length and details of the intervention. Quantitative coronary angiographic data were similar for both groups. However, plaque and vessel volumes were significantly smaller in group I than in II. In group I, 9 (4)% (mean (SD)) of the plaque volume was ablated, while in group II 16 (11)% was ablated (p = 0.01). This difference was reflected in a lower lumen volume gain in group I than in group II (46 (18) mm3 v 80 (49) mm3 (p < 0.02)).
CONCLUSIONS—Preintervention lesion remodelling has an impact on the operative mechanisms of balloon optimised directional coronary atherectomy procedures. Plaque ablation was found to be particularly low in lesions with inadequate compensatory vascular enlargement.


Keywords: intravascular ultrasound; ultrasonics; remodelling; coronary artery disease; atherectomy PMID:10648496

  12. Volume of Lytic Vertebral Body Metastatic Disease Quantified Using Computed Tomography–Based Image Segmentation Predicts Fracture Risk After Spine Stereotactic Body Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thibault, Isabelle; Department of Radiation Oncology, Centre Hospitalier de L'Universite de Québec–Université Laval, Quebec, Quebec; Whyne, Cari M.

    Purpose: To determine a threshold of vertebral body (VB) osteolytic or osteoblastic tumor involvement that would predict vertebral compression fracture (VCF) risk after stereotactic body radiation therapy (SBRT), using volumetric image-segmentation software. Methods and Materials: A computational semiautomated skeletal metastasis segmentation process refined in our laboratory was applied to the pretreatment planning CT scan of 100 vertebral segments in 55 patients treated with spine SBRT. Each VB was segmented and the percentage of lytic and/or blastic disease by volume determined. Results: The cumulative incidence of VCF at 3 and 12 months was 14.1% and 17.3%, respectively. The median follow-up was 7.3 months (range,more » 0.6-67.6 months). In all, 56% of segments were determined lytic, 23% blastic, and 21% mixed, according to clinical radiologic determination. Within these 3 clinical cohorts, the segmentation-determined mean percentages of lytic and blastic tumor were 8.9% and 6.0%, 0.2% and 26.9%, and 3.4% and 15.8% by volume, respectively. On the basis of the entire cohort (n=100), a significant association was observed for the osteolytic percentage measures and the occurrence of VCF (P<.001) but not for the osteoblastic measures. The most significant lytic disease threshold was observed at ≥11.6% (odds ratio 37.4, 95% confidence interval 9.4-148.9). On multivariable analysis, ≥11.6% lytic disease (P<.001), baseline VCF (P<.001), and SBRT with ≥20 Gy per fraction (P=.014) were predictive. Conclusions: Pretreatment lytic VB disease volumetric measures, independent of the blastic component, predict for SBRT-induced VCF. Larger-scale trials evaluating our software are planned to validate the results.« less

  13. Three-dimensional radiochromic film dosimetry for volumetric modulated arc therapy using a spiral water phantom

    PubMed Central

    Tanooka, Masao; Doi, Hiroshi; Miura, Hideharu; Inoue, Hiroyuki; Niwa, Yasue; Takada, Yasuhiro; Fujiwara, Masayuki; Sakai, Toshiyuki; Sakamoto, Kiyoshi; Kamikonya, Norihiko; Hirota, Shozo

    2013-01-01

    We validated 3D radiochromic film dosimetry for volumetric modulated arc therapy (VMAT) using a newly developed spiral water phantom. The phantom consists of a main body and an insert box, each of which has an acrylic wall thickness of 3 mm and is filled with water. The insert box includes a spiral film box used for dose-distribution measurement, and a film holder for positioning a radiochromic film. The film holder has two parallel walls whose facing inner surfaces are equipped with spiral grooves in a mirrored configuration. The film is inserted into the spiral grooves by its side edges and runs along them to be positioned on a spiral plane. Dose calculation was performed by applying clinical VMAT plans to the spiral water phantom using a commercial Monte Carlo-based treatment-planning system, Monaco, whereas dose was measured by delivering the VMAT beams to the phantom. The calculated dose distributions were resampled on the spiral plane, and the dose distributions recorded on the film were scanned. Comparisons between the calculated and measured dose distributions yielded an average gamma-index pass rate of 87.0% (range, 91.2–84.6%) in nine prostate VMAT plans under 3 mm/3% criteria with a dose-calculation grid size of 2 mm. The pass rates were increased beyond 90% (average, 91.1%; range, 90.1–92.0%) when the dose-calculation grid size was decreased to 1 mm. We have confirmed that 3D radiochromic film dosimetry using the spiral water phantom is a simple and cost-effective approach to VMAT dose verification. PMID:23685667

  14. Measurement of cardiac output using improved chromatographic analysis of sulfur hexafluoride (SF6).

    PubMed

    Klocke, F J; Roberts, D L; Farhi, E R; Naughton, B J; Sekovski, B; Klocke, R A

    1977-06-01

    A constant current variable frequency pulsed electron capture detector has been incorporated into the gas chromatographic analysis of trace amounts of sulfur hexafluoride (SF6) in water and blood. The resulting system offers a broader effective operating range than more conventional electron capture units and has been utilized for measurements of cardiac output employing constant-rate infusion of dissolved SF6. The SF6 technique has been validated against direct volumetric measurements of cardiac output in a canine right-heart bypass preparation and used subsequently for rapidly repeated measurements in conscious animals and man.

  15. Evaluation of feature-based 3-d registration of probabilistic volumetric scenes

    NASA Astrophysics Data System (ADS)

    Restrepo, Maria I.; Ulusoy, Ali O.; Mundy, Joseph L.

    2014-12-01

    Automatic estimation of the world surfaces from aerial images has seen much attention and progress in recent years. Among current modeling technologies, probabilistic volumetric models (PVMs) have evolved as an alternative representation that can learn geometry and appearance in a dense and probabilistic manner. Recent progress, in terms of storage and speed, achieved in the area of volumetric modeling, opens the opportunity to develop new frameworks that make use of the PVM to pursue the ultimate goal of creating an entire map of the earth, where one can reason about the semantics and dynamics of the 3-d world. Aligning 3-d models collected at different time-instances constitutes an important step for successful fusion of large spatio-temporal information. This paper evaluates how effectively probabilistic volumetric models can be aligned using robust feature-matching techniques, while considering different scenarios that reflect the kind of variability observed across aerial video collections from different time instances. More precisely, this work investigates variability in terms of discretization, resolution and sampling density, errors in the camera orientation, and changes in illumination and geographic characteristics. All results are given for large-scale, outdoor sites. In order to facilitate the comparison of the registration performance of PVMs to that of other 3-d reconstruction techniques, the registration pipeline is also carried out using Patch-based Multi-View Stereo (PMVS) algorithm. Registration performance is similar for scenes that have favorable geometry and the appearance characteristics necessary for high quality reconstruction. In scenes containing trees, such as a park, or many buildings, such as a city center, registration performance is significantly more accurate when using the PVM.

  16. Assessing the Effects of Software Platforms on Volumetric Segmentation of Glioblastoma

    PubMed Central

    Dunn, William D.; Aerts, Hugo J.W.L.; Cooper, Lee A.; Holder, Chad A.; Hwang, Scott N.; Jaffe, Carle C.; Brat, Daniel J.; Jain, Rajan; Flanders, Adam E.; Zinn, Pascal O.; Colen, Rivka R.; Gutman, David A.

    2017-01-01

    Background Radiological assessments of biologically relevant regions in glioblastoma have been associated with genotypic characteristics, implying a potential role in personalized medicine. Here, we assess the reproducibility and association with survival of two volumetric segmentation platforms and explore how methodology could impact subsequent interpretation and analysis. Methods Post-contrast T1- and T2-weighted FLAIR MR images of 67 TCGA patients were segmented into five distinct compartments (necrosis, contrast-enhancement, FLAIR, post contrast abnormal, and total abnormal tumor volumes) by two quantitative image segmentation platforms - 3D Slicer and a method based on Velocity AI and FSL. We investigated the internal consistency of each platform by correlation statistics, association with survival, and concordance with consensus neuroradiologist ratings using ordinal logistic regression. Results We found high correlations between the two platforms for FLAIR, post contrast abnormal, and total abnormal tumor volumes (spearman’s r(67) = 0.952, 0.959, and 0.969 respectively). Only modest agreement was observed for necrosis and contrast-enhancement volumes (r(67) = 0.693 and 0.773 respectively), likely arising from differences in manual and automated segmentation methods of these regions by 3D Slicer and Velocity AI/FSL, respectively. Survival analysis based on AUC revealed significant predictive power of both platforms for the following volumes: contrast-enhancement, post contrast abnormal, and total abnormal tumor volumes. Finally, ordinal logistic regression demonstrated correspondence to manual ratings for several features. Conclusion Tumor volume measurements from both volumetric platforms produced highly concordant and reproducible estimates across platforms for general features. As automated or semi-automated volumetric measurements replace manual linear or area measurements, it will become increasingly important to keep in mind that measurement differences between segmentation platforms for more detailed features could influence downstream survival or radio genomic analyses. PMID:29600296

  17. Field Management of Hot Mix Asphalt Volumetric Properties

    DOT National Transportation Integrated Search

    1995-12-01

    The Federal Highway Administration (FHWA) Demonstration Project No. 74 has clearly shown that significant differences exist between the volumetric properties of the laboratory designed and plant produced hot mix asphalt (HMA) mixes. The volumetric pr...

  18. Soft bilateral filtering volumetric shadows using cube shadow maps

    PubMed Central

    Ali, Hatam H.; Sunar, Mohd Shahrizal; Kolivand, Hoshang

    2017-01-01

    Volumetric shadows often increase the realism of rendered scenes in computer graphics. Typical volumetric shadows techniques do not provide a smooth transition effect in real-time with conservation on crispness of boundaries. This research presents a new technique for generating high quality volumetric shadows by sampling and interpolation. Contrary to conventional ray marching method, which requires extensive time, this proposed technique adopts downsampling in calculating ray marching. Furthermore, light scattering is computed in High Dynamic Range buffer to generate tone mapping. The bilateral interpolation is used along a view rays to smooth transition of volumetric shadows with respect to preserving-edges. In addition, this technique applied a cube shadow map to create multiple shadows. The contribution of this technique isreducing the number of sample points in evaluating light scattering and then introducing bilateral interpolation to improve volumetric shadows. This contribution is done by removing the inherent deficiencies significantly in shadow maps. This technique allows obtaining soft marvelous volumetric shadows, having a good performance and high quality, which show its potential for interactive applications. PMID:28632740

  19. Volumetric graphics in liquid using holographic femtosecond laser pulse excitations

    NASA Astrophysics Data System (ADS)

    Kumagai, Kota; Hayasaki, Yoshio

    2017-06-01

    Much attention has been paid to the development of three-dimensional volumetric displays in the fields of optics and computer graphics, and it is a dream of we display researchers. However, full-color volumetric displays are challenging because many voxels with different colors have to be formed to render volumetric graphics in real three-dimensional space. Here, we show a new volumetric display in which microbubble voxels are three-dimensionally generated in a liquid by focused femtosecond laser pulses. Use of a high-viscosity liquid, which is the key idea of this system, slows down the movement of the microbubbles, and as a result, volumetric graphics can be displayed. This "volumetric bubble display" has a wide viewing angle and simple refresh and requires no addressing wires because it involves optical access to transparent liquid and achieves full-color graphics composed on light-scattering voxels controlled by illumination light sources. In addition, a bursting of bubble graphics system using an ultrasonic vibrator also has been demonstrated. This technology will open up a wide range of applications in three-dimensional displays, augmented reality and computer graphics.

  20. Scientific Visualization of Radio Astronomy Data using Gesture Interaction

    NASA Astrophysics Data System (ADS)

    Mulumba, P.; Gain, J.; Marais, P.; Woudt, P.

    2015-09-01

    MeerKAT in South Africa (Meer = More Karoo Array Telescope) will require software to help visualize, interpret and interact with multidimensional data. While visualization of multi-dimensional data is a well explored topic, little work has been published on the design of intuitive interfaces to such systems. More specifically, the use of non-traditional interfaces (such as motion tracking and multi-touch) has not been widely investigated within the context of visualizing astronomy data. We hypothesize that a natural user interface would allow for easier data exploration which would in turn lead to certain kinds of visualizations (volumetric, multidimensional). To this end, we have developed a multi-platform scientific visualization system for FITS spectral data cubes using VTK (Visualization Toolkit) and a natural user interface to explore the interaction between a gesture input device and multidimensional data space. Our system supports visual transformations (translation, rotation and scaling) as well as sub-volume extraction and arbitrary slicing of 3D volumetric data. These tasks were implemented across three prototypes aimed at exploring different interaction strategies: standard (mouse/keyboard) interaction, volumetric gesture tracking (Leap Motion controller) and multi-touch interaction (multi-touch monitor). A Heuristic Evaluation revealed that the volumetric gesture tracking prototype shows great promise for interfacing with the depth component (z-axis) of 3D volumetric space across multiple transformations. However, this is limited by users needing to remember the required gestures. In comparison, the touch-based gesture navigation is typically more familiar to users as these gestures were engineered from standard multi-touch actions. Future work will address a complete usability test to evaluate and compare the different interaction modalities against the different visualization tasks.

  1. Evaluation of liver function using gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid enhanced magnetic resonance imaging based on a three-dimensional volumetric analysis system.

    PubMed

    Kudo, Masashi; Gotohda, Naoto; Sugimoto, Motokazu; Kobayashi, Tatsushi; Kojima, Motohiro; Takahashi, Shinichiro; Konishi, Masaru; Hayashi, Ryuichi

    2018-06-02

    Magnetic resonance imaging with gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid (EOB-MRI) is a diagnostic modality for liver tumors. Three-dimensional (3D) volumetric analysis systems using EOB-MRI data are used to simulate liver anatomy for surgery. This study was conducted to investigate clinical utility of a 3D volumetric analysis system on EOB-MRI to evaluate liver function. Between August 2014 and December 2015, 181 patients underwent laboratory and radiological exams as standardized preoperative evaluation for liver surgery. The liver-spleen contrast-enhanced ratio (LSR) was measured by a semi-automated 3D volumetric analysis system on EOB-MRI. First, the inter-evaluator variability of the calculated LSR was evaluated. Additionally, a subset of liver surgical specimens was evaluated histologically by using immunohistochemical staining. Finally, the correlations between the LSR and grading systems of liver function, laboratory data, or histological findings were analyzed. The inter-evaluator correlation coefficient of the measured LSR was 0.986. The mean LSR was significantly correlated with the Child-Pugh score (p = 0.014) and the ALBI score (p < 0.001). Significant correlations were also observed between the LSR and indocyanine green retention rate at 15 min (r = - 0.601, p < 0.001), between the LSR and liver fibrosis stage (r = - 0.556, p < 0.001), and between the LSR and liver steatosis grade (r = - 0.396, p < 0.001). The LSR calculated by a 3D volumetric analysis system on EOB-MRI was highly reproducible and was shown to be correlated with liver function parameters and liver histology. These data suggest that this imaging modality can be a reliable tool to evaluate liver function.

  2. 2D Echocardiographic Evaluation of Right Ventricular Function Correlates With 3D Volumetric Models in Cardiac Surgery Patients.

    PubMed

    Magunia, Harry; Schmid, Eckhard; Hilberath, Jan N; Häberle, Leo; Grasshoff, Christian; Schlensak, Christian; Rosenberger, Peter; Nowak-Machen, Martina

    2017-04-01

    The early diagnosis and treatment of right ventricular (RV) dysfunction are of critical importance in cardiac surgery patients and impact clinical outcome. Two-dimensional (2D) transesophageal echocardiography (TEE) can be used to evaluate RV function using surrogate parameters due to complex RV geometry. The aim of this study was to evaluate whether the commonly used visual evaluation of RV function and size using 2D TEE correlated with the calculated three-dimensional (3D) volumetric models of RV function. Retrospective study, single center, University Hospital. Seventy complete datasets were studied consisting of 2D 4-chamber view loops (2-3 beats) and the corresponding 4-chamber view 3D full-volume loop of the right ventricle. RV function and RV size of the 2D loops then were assessed retrospectively purely qualitatively individually by 4 clinician echocardiographers certified in perioperative TEE. Corresponding 3D volumetric models calculating RV ejection fraction and RV end-diastolic volumes then were established and compared with the 2D assessments. 2D assessment of RV function correlated with 3D volumetric calculations (Spearman's rho -0.5; p<0.0001). No correlation could be established between 2D estimates of RV size and actual 3D volumetric end-diastolic volumes (Spearman's rho 0.15; p = 0.25). The 2D assessment of right ventricular function based on visual estimation as frequently used in clinical practice appeared to be a reliable method of RV functional evaluation. However, 2D assessment of RV size seemed unreliable and should be used with caution. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Volumetric Contrast-Enhanced Ultrasound Imaging to Assess Early Response to Apoptosis-Inducing Anti–Death Receptor 5 Antibody Therapy in a Breast Cancer Animal Model

    PubMed Central

    Hoyt, Kenneth; Sorace, Anna; Saini, Reshu

    2013-01-01

    Objectives The objective of this study was to determine whether volumetric contrast-enhanced ultrasound (US) imaging could detect early tumor response to anti–death receptor 5 antibody (TRA-8) therapy alone or in combination with chemotherapy in a preclinical triple-negative breast cancer animal model. Methods Animal experiments had Institutional Animal Care and Use Committee approval. Thirty breast tumor–bearing mice were administered Abraxane (paclitaxel; Celgene Corporation, Summit, NJ), TRA-8, TRA-8 + Abraxane, or saline as a control on days 0, 3, 7, 10, 14, and 17. Volumetric contrast-enhanced US imaging was performed on days 0, 1, 3, and 7 before dosing. Changes in parametric maps of tumor perfusion were compared with the tumor volume and immunohistologic findings. Results Therapeutic efficacy was detected within 7 days after drug administration using parametric volumetric contrast-enhanced US imaging. Decreased tumor perfusion was observed in both the TRA-8-alone– and TRA-8 + Abraxane–dosed animals compared to control tumors (P = .17; P = .001, respectively). The reduction in perfusion observed in the TRA-8 + Abraxane group was matched with a corresponding regression in tumor size over the same period. Survival curves illustrate that the combination of TRA-8 + Abraxane improves drug efficacy compared to the same drugs administered alone. Immunohistologic analysis revealed increased levels of apoptotic activity in the TRA-8-dosed tumors, confirming enhanced antitumor effects. Conclusions Preliminary results are encouraging, and volumetric contrast-enhanced US-based tumor perfusion imaging may prove clinically feasible for detecting and monitoring the early antitumor effects in response to combination TRA-8 + Abraxane therapy. PMID:23091246

  4. Structural Brain Abnormalities of Attention-Deficit/Hyperactivity Disorder With Oppositional Defiant Disorder.

    PubMed

    Noordermeer, Siri D S; Luman, Marjolein; Greven, Corina U; Veroude, Kim; Faraone, Stephen V; Hartman, Catharina A; Hoekstra, Pieter J; Franke, Barbara; Buitelaar, Jan K; Heslenfeld, Dirk J; Oosterlaan, Jaap

    2017-11-01

    Attention-deficit/hyperactivity disorder (ADHD) is associated with structural abnormalities in total gray matter, basal ganglia, and cerebellum. Findings of structural abnormalities in frontal and temporal lobes, amygdala, and insula are less consistent. Remarkably, the impact of comorbid oppositional defiant disorder (ODD) (comorbidity rates up to 60%) on these neuroanatomical differences is scarcely studied, while ODD (in combination with conduct disorder) has been associated with structural abnormalities of the frontal lobe, amygdala, and insula. The aim of this study was to investigate the effect of comorbid ODD on cerebral volume and cortical thickness in ADHD. Three groups, 16 ± 3.5 years of age (mean ± SD; range 7-29 years), were studied on volumetric and cortical thickness characteristics using structural magnetic resonance imaging (surface-based morphometry): ADHD+ODD (n = 67), ADHD-only (n = 243), and control subjects (n = 233). Analyses included the moderators age, gender, IQ, and scan site. ADHD+ODD and ADHD-only showed volumetric reductions in total gray matter and (mainly) frontal brain areas. Stepwise volumetric reductions (ADHD+ODD < ADHD-only < control subjects) were found for mainly frontal regions, and ADHD+ODD was uniquely associated with reductions in several structures (e.g., the precuneus). In general, findings remained significant after accounting for ADHD symptom severity. There were no group differences in cortical thickness. Exploratory voxelwise analyses showed no group differences. ADHD+ODD and ADHD-only were associated with volumetric reductions in brain areas crucial for attention, (working) memory, and decision-making. Volumetric reductions of frontal lobes were largest in the ADHD+ODD group, possibly underlying observed larger impairments in neurocognitive functions. Previously reported striatal abnormalities in ADHD may be caused by comorbid conduct disorder rather than ODD. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  5. Volumetric laser endomicroscopy in the biliary and pancreatic ducts: a feasibility study with histological correlation.

    PubMed

    Corral, Juan E; Mousa, Omar Y; Krishna, Murli; Levink, Iris J M; Pursell, Khela R; Afsh, Mohammad; Kröner, Paul T; Harnois, Denise M; Wolfsen, Herbert C; Wallace, Michael B; Lukens, Frank J

    2018-06-18

     Volumetric laser endomicroscopy (VLE) provides circumferential images 3 mm into the biliary and pancreatic ducts. We aimed to correlate VLE images with the normal and abnormal microstructure of these ducts. Samples from patients undergoing hepatic or pancreatic resection were evaluated. VLE images were collected using a low-profile VLE catheter inserted manually into the biliary and pancreatic ducts ex vivo. Histological correlation was assessed by two unblinded investigators.  25 patients (20 liver and 5 pancreatic samples) and 111 images were analyzed. VLE revealed three histological layers: epithelium, connective tissue, and parenchyma. It identified distinctive patterns for primary sclerosing cholangitis (PSC), pancreatic cysts, neuroendocrine tumor, and adenocarcinoma adjacent to the pancreatic duct or ampulla. VLE failed to identify dysplasia in a dominant stricture and inflammatory infiltrates in PSC. Reflectivity measurements of the liver parenchyma diagnosed liver cirrhosis with high sensitivity.  VLE can identify histological changes in the biliary and pancreatic ducts allowing real-time diagnosis. Further studies are needed to measure the accuracy of VLE in a larger sample and to validate our findings in vivo. © Georg Thieme Verlag KG Stuttgart · New York.

  6. Zircon age-temperature-compositional spectra in plutonic rocks

    DOE PAGES

    Samperton, Kyle M.; Bell, Elizabeth A.; Barboni, Mélanie; ...

    2017-08-23

    We present that geochronology can resolve dispersed zircon dates in plutonic rocks when magma cooling time scales exceed the temporal precision of individual U-Pb analyses; such age heterogeneity may indicate protracted crystallization between the temperatures of zircon saturation (T sat) and rock solidification (T solid). Diffusive growth models predict asymmetric distributions of zircon dates and crystallization temperatures in a cooling magma, with volumetrically abundant old, hot crystallization at T sat decreasing continuously to volumetrically minor young, cold crystallization at T solid. We present integrated geochronological and geochemical data from Bergell Intrusion tonalites (Central Alps, Europe) that document zircon compositional changemore » over hundreds of thousands of years at the hand-sample scale, indicating melt compositional evolution during solidification. Ti-in-zircon thermometry, crystallization simulation using MELTS software, and U-Pb dates produce zircon mass-temperature-time distributions that are in excellent agreement with zircon growth models. In conclusion, these findings provide the first quantitative validation of longstanding expectations from zircon saturation theory by direct geochronological investigation, underscoring zircon’s capacity to quantify supersolidus cooling rates in magmas and resolve dynamic differentiation histories in the plutonic rock record.« less

  7. Prostate cancer: computer-aided diagnosis on multiparametric MRI

    NASA Astrophysics Data System (ADS)

    Marin, Laura; Racoceanu, Daniel; Renard Penna, Raphaele; Ezziane, Malek

    2017-11-01

    Prostate cancer (PCa) is one of the most common cancers in men, being also the second most deadly cancer after lung cancer. There is increasing interest in active surveillance and minimally invasive focal therapies in PCa to avoid morbidities associated with whole gland therapy. Tumor volume represents an essential prognostic factor of PCa and the definition of index lesion volume is critical for appropriate decision making, especially for image guide focal treatment or in case of active surveillance. Multi-parametric Magnetic Resonance Imaging (mp-MRI) is the modality of choice for the detection and the localization of PCa foci. However, little has been published on mp-MRI accuracy in determining PCa volume, especially at 3T. There is insufficient evidence and no consensus to determine which of the methods for measuring volume is optimal. The objective of this study concerns the elaboration of an algorithm for automatic interpretation of mp-MRI. We determine the accuracy of the proposed method by comparing the prostate tumor volume issued from the automated volumetric mp-MRI measurements of the tumoral region, with manual and semi-automated volumetric measurements done by and respectively with radiologists. Information issued from whole mount histopathology is used to validate the whole approach.

  8. Volumetric breast density evaluation by ultrasound tomography and magnetic resonance imaging: a preliminary comparative study

    NASA Astrophysics Data System (ADS)

    Myc, Lukasz; Duric, Neb; Littrup, Peter; Li, Cuiping; Ranger, Bryan; Lupinacci, Jessica; Schmidt, Steven; Rama, Olsi; Bey-Knight, Lisa

    2010-03-01

    Since a 1976 study by Wolfe, high breast density has gained recognition as a factor strongly correlating with an increased incidence of breast cancer. These observations have led to mammographic density being designated a "risk factor" for breast cancer. Clinically, the exclusive reliance on mammography for breast density measurement has forestalled the inclusion of breast density into statistical risk models. This exclusion has in large part been due to the ionizing radiation associated with the method. Additionally, the use of mammography as valid tool for measuring a three dimensional characteristic (breast density) has been criticized for its prima facie incongruity. These shortfalls have prompted MRI studies of breast density as an alternative three-dimensional method of assessing breast density. Although, MRI is safe and can be used to measure volumetric density, its cost has prohibited its use in screening. Here, we report that sound speed measurements using a prototype ultrasound tomography device have potential for use as surrogates for breast density measurement. Accordingly, we report a strong positive linear correlation between volume-averaged sound speed of the breast and percent glandular tissue volume as assessed by MR.

  9. Zircon age-temperature-compositional spectra in plutonic rocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samperton, Kyle M.; Bell, Elizabeth A.; Barboni, Mélanie

    We present that geochronology can resolve dispersed zircon dates in plutonic rocks when magma cooling time scales exceed the temporal precision of individual U-Pb analyses; such age heterogeneity may indicate protracted crystallization between the temperatures of zircon saturation (T sat) and rock solidification (T solid). Diffusive growth models predict asymmetric distributions of zircon dates and crystallization temperatures in a cooling magma, with volumetrically abundant old, hot crystallization at T sat decreasing continuously to volumetrically minor young, cold crystallization at T solid. We present integrated geochronological and geochemical data from Bergell Intrusion tonalites (Central Alps, Europe) that document zircon compositional changemore » over hundreds of thousands of years at the hand-sample scale, indicating melt compositional evolution during solidification. Ti-in-zircon thermometry, crystallization simulation using MELTS software, and U-Pb dates produce zircon mass-temperature-time distributions that are in excellent agreement with zircon growth models. In conclusion, these findings provide the first quantitative validation of longstanding expectations from zircon saturation theory by direct geochronological investigation, underscoring zircon’s capacity to quantify supersolidus cooling rates in magmas and resolve dynamic differentiation histories in the plutonic rock record.« less

  10. An en bloc approach to CT perfusion for the evaluation of limb ischemia.

    PubMed

    Barfett, Joe; Velauthapillai, Nivethan; Kloeters, Christian; Mikulis, David J; Jaskolka, Jeffrey D

    2012-12-01

    We examine volumetric CT perfusion in soft tissues of the entire foot with an en bloc technique to provide a meaningful measure of differentiation between mild and major vascular impairment. With Institutional Review Board approval, 22 healthy male subjects between the ages of 21 and 50 (mean 37) were enrolled. Volumetric computed tomography using an en bloc technique was conducted on 14 subjects for validation while unilateral vascular obstruction was simulated in the calves of the remaining 8 subjects. Perfusion estimates were made using in-house software and differences in perfusion estimates between feet were evaluated with Student's t-test at 95% confidence. Subjects with simulated major vascular obstruction (calf blood pressure cuff inflated to 200 mmHg) showed significantly higher ratios of perfusion estimates between the unobstructed and obstructed foot compared to subjects with simulated mild vascular obstruction (cuff inflated to 120 mmHg), mean 4.6, SD 2.6 vs. mean 1.3, SD 0.2; P = 0.05. CT perfusion using an en bloc technique shows promise for the future evaluation of patients with critical limb ischemia and particularly for re-characterization post medical, surgical or endovascular intervention.

  11. Numerical study of underwater dispersion of dilute and dense sediment-water mixtures

    NASA Astrophysics Data System (ADS)

    Chan, Ziying; Dao, Ho-Minh; Tan, Danielle S.

    2018-05-01

    As part of the nodule-harvesting process, sediment tailings are released underwater. Due to the long period of clouding in the water during the settling process, this presents a significant environmental and ecological concern. One possible solution is to release a mixture of sediment tailings and seawater, with the aim of reducing the settling duration as well as the amount of spreading. In this paper, we present some results of numerical simulations using the smoothed particle hydrodynamics (SPH) method to model the release of a fixed volume of pre-mixed sediment-water mixture into a larger body of quiescent water. Both the sediment-water mixture and the “clean” water are modeled as two different fluids, with concentration-dependent bulk properties of the sediment-water mixture adjusted according to the initial solids concentration. This numerical model was validated in a previous study, which indicated significant differences in the dispersion and settling process between dilute and dense mixtures, and that a dense mixture may be preferable. For this study, we investigate a wider range of volumetric concentration with the aim of determining the optimum volumetric concentration, as well as its overall effectiveness compared to the original process (100% sediment).

  12. Z-Index Parameterization for Volumetric CT Image Reconstruction via 3-D Dictionary Learning.

    PubMed

    Bai, Ti; Yan, Hao; Jia, Xun; Jiang, Steve; Wang, Ge; Mou, Xuanqin

    2017-12-01

    Despite the rapid developments of X-ray cone-beam CT (CBCT), image noise still remains a major issue for the low dose CBCT. To suppress the noise effectively while retain the structures well for low dose CBCT image, in this paper, a sparse constraint based on the 3-D dictionary is incorporated into a regularized iterative reconstruction framework, defining the 3-D dictionary learning (3-DDL) method. In addition, by analyzing the sparsity level curve associated with different regularization parameters, a new adaptive parameter selection strategy is proposed to facilitate our 3-DDL method. To justify the proposed method, we first analyze the distributions of the representation coefficients associated with the 3-D dictionary and the conventional 2-D dictionary to compare their efficiencies in representing volumetric images. Then, multiple real data experiments are conducted for performance validation. Based on these results, we found: 1) the 3-D dictionary-based sparse coefficients have three orders narrower Laplacian distribution compared with the 2-D dictionary, suggesting the higher representation efficiencies of the 3-D dictionary; 2) the sparsity level curve demonstrates a clear Z-shape, and hence referred to as Z-curve, in this paper; 3) the parameter associated with the maximum curvature point of the Z-curve suggests a nice parameter choice, which could be adaptively located with the proposed Z-index parameterization (ZIP) method; 4) the proposed 3-DDL algorithm equipped with the ZIP method could deliver reconstructions with the lowest root mean squared errors and the highest structural similarity index compared with the competing methods; 5) similar noise performance as the regular dose FDK reconstruction regarding the standard deviation metric could be achieved with the proposed method using (1/2)/(1/4)/(1/8) dose level projections. The contrast-noise ratio is improved by ~2.5/3.5 times with respect to two different cases under the (1/8) dose level compared with the low dose FDK reconstruction. The proposed method is expected to reduce the radiation dose by a factor of 8 for CBCT, considering the voted strongly discriminated low contrast tissues.

  13. Symptom validity testing in memory clinics: Hippocampal-memory associations and relevance for diagnosing mild cognitive impairment.

    PubMed

    Rienstra, Anne; Groot, Paul F C; Spaan, Pauline E J; Majoie, Charles B L M; Nederveen, Aart J; Walstra, Gerard J M; de Jonghe, Jos F M; van Gool, Willem A; Olabarriaga, Silvia D; Korkhov, Vladimir V; Schmand, Ben

    2013-01-01

    Patients with mild cognitive impairment (MCI) do not always convert to dementia. In such cases, abnormal neuropsychological test results may not validly reflect cognitive symptoms due to brain disease, and the usual brain-behavior relationships may be absent. This study examined symptom validity in a memory clinic sample and its effect on the associations between hippocampal volume and memory performance. Eleven of 170 consecutive patients (6.5%; 13% of patients younger than 65 years) referred to memory clinics showed noncredible performance on symptom validity tests (SVTs, viz. Word Memory Test and Test of Memory Malingering). They were compared to a demographically matched group (n = 57) selected from the remaining patients. Hippocampal volume, measured by an automated volumetric method (Freesurfer), was correlated with scores on six verbal memory tests. The median correlation was r = .49 in the matched group. However, the relation was absent (median r = -.11) in patients who failed SVTs. Memory clinic samples may include patients who show noncredible performance, which invalidates their MCI diagnosis. This underscores the importance of applying SVTs in evaluating patients with cognitive complaints that may signify a predementia stage, especially when these patients are relatively young.

  14. Commissioning and validation of COMPASS system for VMAT patient specific quality assurance

    NASA Astrophysics Data System (ADS)

    Pimthong, J.; Kakanaporn, C.; Tuntipumiamorn, L.; Laojunun, P.; Iampongpaiboon, P.

    2016-03-01

    Pre-treatment patient specific quality assurance (QA) of advanced treatment techniques such as volumetric modulated arc therapy (VMAT) is one of important QA in radiotherapy. The fast and reliable dosimetric device is required. The objective of this study is to commission and validate the performance of COMPASS system for dose verification of VMAT technique. The COMPASS system is composed of an array of ionization detectors (MatriXX) mounted to the gantry using a custom holder and software for the analysis and visualization of QA results. We validated the COMPASS software for basic and advanced clinical application. For the basic clinical study, the simple open field in various field sizes were validated in homogeneous phantom. And the advanced clinical application, the fifteen prostate and fifteen nasopharyngeal cancers VMAT plans were chosen to study. The treatment plans were measured by the MatriXX. The doses and dose-volume histograms (DVHs) reconstructed from the fluence measurements were compared to the TPS calculated plans. And also, the doses and DVHs computed using collapsed cone convolution (CCC) Algorithm were compared with Eclipse TPS calculated plans using Analytical Anisotropic Algorithm (AAA) that according to dose specified in ICRU 83 for PTV.

  15. Determining soil volumetric moisture content using time domain reflectometry

    DOT National Transportation Integrated Search

    1998-02-01

    Time domain reflectometry (TDR) is a technique used to measure indirectly the in situ volumetric moisture content of soil. Current research provides a variety of prediction equations that estimate the volumetric moisture content using the dielectric ...

  16. GPU-Based Real-Time Volumetric Ultrasound Image Reconstruction for a Ring Array

    PubMed Central

    Choe, Jung Woo; Nikoozadeh, Amin; Oralkan, Ömer; Khuri-Yakub, Butrus T.

    2014-01-01

    Synthetic phased array (SPA) beamforming with Hadamard coding and aperture weighting is an optimal option for real-time volumetric imaging with a ring array, a particularly attractive geometry in intracardiac and intravascular applications. However, the imaging frame rate of this method is limited by the immense computational load required in synthetic beamforming. For fast imaging with a ring array, we developed graphics processing unit (GPU)-based, real-time image reconstruction software that exploits massive data-level parallelism in beamforming operations. The GPU-based software reconstructs and displays three cross-sectional images at 45 frames per second (fps). This frame rate is 4.5 times higher than that for our previously-developed multi-core CPU-based software. In an alternative imaging mode, it shows one B-mode image rotating about the axis and its maximum intensity projection (MIP), processed at a rate of 104 fps. This paper describes the image reconstruction procedure on the GPU platform and presents the experimental images obtained using this software. PMID:23529080

  17. Bounding uncertainty in volumetric geometric models for terrestrial lidar observations of ecosystems.

    PubMed

    Paynter, Ian; Genest, Daniel; Peri, Francesco; Schaaf, Crystal

    2018-04-06

    Volumetric models with known biases are shown to provide bounds for the uncertainty in estimations of volume for ecologically interesting objects, observed with a terrestrial laser scanner (TLS) instrument. Bounding cuboids, three-dimensional convex hull polygons, voxels, the Outer Hull Model and Square Based Columns (SBCs) are considered for their ability to estimate the volume of temperate and tropical trees, as well as geomorphological features such as bluffs and saltmarsh creeks. For temperate trees, supplementary geometric models are evaluated for their ability to bound the uncertainty in cylinder-based reconstructions, finding that coarser volumetric methods do not currently constrain volume meaningfully, but may be helpful with further refinement, or in hybridized models. Three-dimensional convex hull polygons consistently overestimate object volume, and SBCs consistently underestimate volume. Voxel estimations vary in their bias, due to the point density of the TLS data, and occlusion, particularly in trees. The response of the models to parametrization is analysed, observing unexpected trends in the SBC estimates for the drumlin dataset. Establishing that this result is due to the resolution of the TLS observations being insufficient to support the resolution of the geometric model, it is suggested that geometric models with predictable outcomes can also highlight data quality issues when they produce illogical results.

  18. Design of an optimized biomixture for the degradation of carbofuran based on pesticide removal and toxicity reduction of the matrix.

    PubMed

    Chin-Pampillo, Juan Salvador; Ruiz-Hidalgo, Karla; Masís-Mora, Mario; Carazo-Rojas, Elizabeth; Rodríguez-Rodríguez, Carlos E

    2015-12-01

    Pesticide biopurification systems contain a biologically active matrix (biomixture) responsible for the accelerated elimination of pesticides in wastewaters derived from pest control in crop fields. Biomixtures have been typically prepared using the volumetric composition 50:25:25 (lignocellulosic substrate/humic component/soil); nonetheless, formal composition optimization has not been performed so far. Carbofuran is an insecticide/nematicide of high toxicity widely employed in developing countries. Therefore, the composition of a highly efficient biomixture (composed of coconut fiber, compost, and soil, FCS) for the removal of carbofuran was optimized by means of a central composite design and response surface methodology. The volumetric content of soil and the ratio coconut fiber/compost were used as the design variables. The performance of the biomixture was assayed by considering the elimination of carbofuran, the mineralization of (14)C-carbofuran, and the residual toxicity of the matrix, as response variables. Based on the models, the optimal volumetric composition of the FCS biomixture consists of 45:13:42 (coconut fiber/compost/soil), which resulted in minimal residual toxicity and ∼99% carbofuran elimination after 3 days. This optimized biomixture considerably differs from the standard 50:25:25 composition, which remarks the importance of assessing the performance of newly developed biomixtures during the design of biopurification systems.

  19. Bounding uncertainty in volumetric geometric models for terrestrial lidar observations of ecosystems

    PubMed Central

    Genest, Daniel; Peri, Francesco; Schaaf, Crystal

    2018-01-01

    Volumetric models with known biases are shown to provide bounds for the uncertainty in estimations of volume for ecologically interesting objects, observed with a terrestrial laser scanner (TLS) instrument. Bounding cuboids, three-dimensional convex hull polygons, voxels, the Outer Hull Model and Square Based Columns (SBCs) are considered for their ability to estimate the volume of temperate and tropical trees, as well as geomorphological features such as bluffs and saltmarsh creeks. For temperate trees, supplementary geometric models are evaluated for their ability to bound the uncertainty in cylinder-based reconstructions, finding that coarser volumetric methods do not currently constrain volume meaningfully, but may be helpful with further refinement, or in hybridized models. Three-dimensional convex hull polygons consistently overestimate object volume, and SBCs consistently underestimate volume. Voxel estimations vary in their bias, due to the point density of the TLS data, and occlusion, particularly in trees. The response of the models to parametrization is analysed, observing unexpected trends in the SBC estimates for the drumlin dataset. Establishing that this result is due to the resolution of the TLS observations being insufficient to support the resolution of the geometric model, it is suggested that geometric models with predictable outcomes can also highlight data quality issues when they produce illogical results. PMID:29503722

  20. Validation of a free software for unsupervised assessment of abdominal fat in MRI.

    PubMed

    Maddalo, Michele; Zorza, Ivan; Zubani, Stefano; Nocivelli, Giorgio; Calandra, Giulio; Soldini, Pierantonio; Mascaro, Lorella; Maroldi, Roberto

    2017-05-01

    To demonstrate the accuracy of an unsupervised (fully automated) software for fat segmentation in magnetic resonance imaging. The proposed software is a freeware solution developed in ImageJ that enables the quantification of metabolically different adipose tissues in large cohort studies. The lumbar part of the abdomen (19cm in craniocaudal direction, centered in L3) of eleven healthy volunteers (age range: 21-46years, BMI range: 21.7-31.6kg/m 2 ) was examined in a breath hold on expiration with a GE T1 Dixon sequence. Single-slice and volumetric data were considered for each subject. The results of the visceral and subcutaneous adipose tissue assessments obtained by the unsupervised software were compared to supervised segmentations of reference. The associated statistical analysis included Pearson correlations, Bland-Altman plots and volumetric differences (VD % ). Values calculated by the unsupervised software significantly correlated with corresponding supervised segmentations of reference for both subcutaneous adipose tissue - SAT (R=0.9996, p<0.001) and visceral adipose tissue - VAT (R=0.995, p<0.001). Bland-Altman plots showed the absence of systematic errors and a limited spread of the differences. In the single-slice analysis, VD % were (1.6±2.9)% for SAT and (4.9±6.9)% for VAT. In the volumetric analysis, VD % were (1.3±0.9)% for SAT and (2.9±2.7)% for VAT. The developed software is capable of segmenting the metabolically different adipose tissues with a high degree of accuracy. This free add-on software for ImageJ can easily have a widespread and enable large-scale population studies regarding the adipose tissue and its related diseases. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  1. A coupled melt-freeze temperature index approach in a one-layer model to predict bulk volumetric liquid water content dynamics in snow

    NASA Astrophysics Data System (ADS)

    Avanzi, Francesco; Yamaguchi, Satoru; Hirashima, Hiroyuki; De Michele, Carlo

    2016-04-01

    Liquid water in snow rules runoff dynamics and wet snow avalanches release. Moreover, it affects snow viscosity and snow albedo. As a result, measuring and modeling liquid water dynamics in snow have important implications for many scientific applications. However, measurements are usually challenging, while modeling is difficult due to an overlap of mechanical, thermal and hydraulic processes. Here, we evaluate the use of a simple one-layer one-dimensional model to predict hourly time-series of bulk volumetric liquid water content in seasonal snow. The model considers both a simple temperature-index approach (melt only) and a coupled melt-freeze temperature-index approach that is able to reconstruct melt-freeze dynamics. Performance of this approach is evaluated at three sites in Japan. These sites (Nagaoka, Shinjo and Sapporo) present multi-year time-series of snow and meteorological data, vertical profiles of snow physical properties and snow melt lysimeters data. These data-sets are an interesting opportunity to test this application in different climatic conditions, as sites span a wide latitudinal range and are subjected to different snow conditions during the season. When melt-freeze dynamics are included in the model, results show that median absolute differences between observations and predictions of bulk volumetric liquid water content are consistently lower than 1 vol%. Moreover, the model is able to predict an observed dry condition of the snowpack in 80% of observed cases at a non-calibration site, where parameters from calibration sites are transferred. Overall, the analysis show that a coupled melt-freeze temperature-index approach may be a valid solution to predict average wetness conditions of a snow cover at local scale.

  2. A novel method to estimate the volume of bone defects using cone-beam computed tomography: an in vitro study.

    PubMed

    Esposito, Stefano Andrea; Huybrechts, Bart; Slagmolen, Pieter; Cotti, Elisabetta; Coucke, Wim; Pauwels, Ruben; Lambrechts, Paul; Jacobs, Reinhilde

    2013-09-01

    The routine use of high-resolution images derived from 3-dimensional cone-beam computed tomography (CBCT) datasets enables the linear measurement of lesions in the maxillary and mandibular bones on 3 planes of space. Measurements on different planes would make it possible to obtain real volumetric assessments. In this study, we tested, in vitro, the accuracy and reliability of new dedicated software developed for volumetric lesion assessment in clinical endodontics. Twenty-seven bone defects were created around the apices of 8 teeth in 1 young bovine mandible to simulate periapical lesions of different sizes and shapes. The volume of each defect was determined by taking an impression of the defect using a silicone material. The samples were scanned using an Accuitomo 170 CBCT (J. Morita Mfg Co, Kyoto, Japan), and the data were uploaded into a newly developed dedicated software tool. Two endodontists acted as independent and calibrated observers. They analyzed each bone defect for volume. The difference between the direct volumetric measurements and the measurements obtained with the CBCT images was statistically assessed using a lack-of-fit test. A correlation study was undertaken using the Pearson product-moment correlation coefficient. Intra- and interobserver agreement was also evaluated. The results showed a good fit and strong correlation between both volume measurements (ρ > 0.9) with excellent inter- and intraobserver agreement. Using this software, CBCT proved to be a reliable method in vitro for the estimation of endodontic lesion volumes in bovine jaws. Therefore, it may constitute a new, validated technique for the accurate evaluation and follow-up of apical periodontitis. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  3. Performance Validation Approach for the GTX Air-Breathing Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Trefny, Charles J.; Roche, Joseph M.

    2002-01-01

    The primary objective of the GTX effort is to determine whether or not air-breathing propulsion can enable a launch vehicle to achieve orbit in a single stage. Structural weight, vehicle aerodynamics, and propulsion performance must be accurately known over the entire flight trajectory in order to make a credible assessment. Structural, aerodynamic, and propulsion parameters are strongly interdependent, which necessitates a system approach to design, evaluation, and optimization of a single-stage-to-orbit concept. The GTX reference vehicle serves this purpose, by allowing design, development, and validation of components and subsystems in a system context. The reference vehicle configuration (including propulsion) was carefully chosen so as to provide high potential for structural and volumetric efficiency, and to allow the high specific impulse of air-breathing propulsion cycles to be exploited. Minor evolution of the configuration has occurred as analytical and experimental results have become available. With this development process comes increasing validation of the weight and performance levels used in system performance determination. This paper presents an overview of the GTX reference vehicle and the approach to its performance validation. Subscale test rigs and numerical studies used to develop and validate component performance levels and unit structural weights are outlined. The sensitivity of the equivalent, effective specific impulse to key propulsion component efficiencies is presented. The role of flight demonstration in development and validation is discussed.

  4. Discrete pre-processing step effects in registration-based pipelines, a preliminary volumetric study on T1-weighted images.

    PubMed

    Muncy, Nathan M; Hedges-Muncy, Ariana M; Kirwan, C Brock

    2017-01-01

    Pre-processing MRI scans prior to performing volumetric analyses is common practice in MRI studies. As pre-processing steps adjust the voxel intensities, the space in which the scan exists, and the amount of data in the scan, it is possible that the steps have an effect on the volumetric output. To date, studies have compared between and not within pipelines, and so the impact of each step is unknown. This study aims to quantify the effects of pre-processing steps on volumetric measures in T1-weighted scans within a single pipeline. It was our hypothesis that pre-processing steps would significantly impact ROI volume estimations. One hundred fifteen participants from the OASIS dataset were used, where each participant contributed three scans. All scans were then pre-processed using a step-wise pipeline. Bilateral hippocampus, putamen, and middle temporal gyrus volume estimations were assessed following each successive step, and all data were processed by the same pipeline 5 times. Repeated-measures analyses tested for a main effects of pipeline step, scan-rescan (for MRI scanner consistency) and repeated pipeline runs (for algorithmic consistency). A main effect of pipeline step was detected, and interestingly an interaction between pipeline step and ROI exists. No effect for either scan-rescan or repeated pipeline run was detected. We then supply a correction for noise in the data resulting from pre-processing.

  5. 3D tumor measurement in cone-beam CT breast imaging

    NASA Astrophysics Data System (ADS)

    Chen, Zikuan; Ning, Ruola

    2004-05-01

    Cone-beam CT breast imaging provides a digital volume representation of a breast. With a digital breast volume, the immediate task is to extract the breast tissue information, especially for suspicious tumors, preferably in an automatic manner or with minimal user interaction. This paper reports a program for three-dimensional breast tissue analysis. It consists of volumetric segmentation (by globally thresholding), subsegmentation (connection-based separation), and volumetric component measurement (volume, surface, shape, and other geometrical specifications). A combination scheme of multi-thresholding and binary volume morphology is proposed to fast determine the surface gradients, which may be interpreted as the surface evolution (outward growth or inward shrinkage) for a tumor volume. This scheme is also used to optimize the volumetric segmentation. With a binary volume, we decompose the foreground into components according to spatial connectedness. Since this decomposition procedure is performed after volumetric segmentation, it is called subsegmentation. The subsegmentation brings the convenience for component visualization and measurement, in the whole support space, without interference from others. Upon the tumor component identification, we measure the following specifications: volume, surface area, roundness, elongation, aspect, star-shapedness, and location (centroid). A 3D morphological operation is used to extract the cluster shell and, by delineating the corresponding volume from the grayscale volume, to measure the shell stiffness. This 3D tissue measurement is demonstrated with a tumor-borne breast specimen (a surgical part).

  6. Volumetric dimensional change of six direct core materials.

    PubMed

    Chutinan, Supattriya; Platt, Jeffrey A; Cochran, Michael A; Moore, B Keith

    2004-05-01

    This study evaluated the influence of water on the volumetric dimensional change of six direct placement core build-up materials by using Archimedes' principle. The effect on dimensional change due to the setting reaction was determined through the use of a silicone oil storage medium. The materials used were two dual-cured resin composites (CoreStore and Build-It FR), two chemically activated resin composites (CorePaste and Ti-Core), one metal-reinforced glass ionomer cement (Ketac-Silver), and one resin-modified glass ionomer (Fuji II LC Core). Using the manufacturers' instructions for each material, cylindrical specimens were prepared with dimensions of 7+/-0.1 mm in diameter and 2+/-0.1 mm in height. Each material had four groups (n = 5) based on storage conditions; silicone oil at 23 and 37 degrees C and distilled water at 23 and 37 degrees C. A 0.01 mg resolution balance was used to determine volumetric dimensional change using an Archimedean equation. Measurements were made 30 min after mixing, and at the time intervals of 1, 14, and 56 days. All materials exhibited dimensional change. Ketac-Silver had the most shrinkage in silicone oil and Fuji II LC showed the highest expansion in distilled water. The glass ionomer materials showed more change than did any of the resin composite materials. Current direct placement core materials show variation in the amount of volumetric dimensional change seen over a period of 56 days.

  7. Dynamic CT imaging of volumetric changes in pulmonary nodules correlates with physical measurements of stiffness.

    PubMed

    Lartey, Frederick M; Rafat, Marjan; Negahdar, Mohammadreza; Malkovskiy, Andrey V; Dong, Xinzhe; Sun, Xiaoli; Li, Mei; Doyle, Timothy; Rajadas, Jayakumar; Graves, Edward E; Loo, Billy W; Maxim, Peter G

    2017-02-01

    A major challenge in CT screening for lung cancer is limited specificity when distinguishing between malignant and non-malignant pulmonary nodules (PN). Malignant nodules have different mechanical properties and tissue characteristics ('stiffness') from non-malignant nodules. This study seeks to improve CT specificity by demonstrating in rats that measurements of volumetric ratios in PNs with varying composition can be determined by respiratory-gated dynamic CT imaging and that these ratios correlate with direct physical measurements of PN stiffness. Respiratory-gated MicroCT images acquired at extreme tidal volumes of 9 rats with PNs from talc, matrigel and A549 human lung carcinoma were analyzed and their volumetric ratios (δ) derived. PN stiffness was determined by measuring the Young's modulus using atomic force microscopy (AFM) for each nodule excised immediately after MicroCT imaging. There was significant correlation (p=0.0002) between PN volumetric ratios determined by respiratory-gated CT imaging and the physical stiffness of the PNs determined from AFM measurements. We demonstrated proof of concept that PN volume changes measured non-invasively correlate with direct physical measurements of stiffness. These results may translate clinically into a means of improving the specificity of CT screening for lung cancer and/or improving individual prognostic assessments based on lung tumor stiffness. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Modulation indices for volumetric modulated arc therapy.

    PubMed

    Park, Jong Min; Park, So-Yeon; Kim, Hyoungnyoun; Kim, Jin Ho; Carlson, Joel; Ye, Sung-Joon

    2014-12-07

    The aim of this study is to present a modulation index (MI) for volumetric modulated arc therapy (VMAT) based on the speed and acceleration analysis of modulating-parameters such as multi-leaf collimator (MLC) movements, gantry rotation and dose-rate, comprehensively. The performance of the presented MI (MIt) was evaluated with correlation analyses to the pre-treatment quality assurance (QA) results, differences in modulating-parameters between VMAT plans versus dynamic log files, and differences in dose-volumetric parameters between VMAT plans versus reconstructed plans using dynamic log files. For comparison, the same correlation analyses were performed for the previously suggested modulation complexity score (MCS(v)), leaf travel modulation complexity score (LTMCS) and MI by Li and Xing (MI Li&Xing). In the two-tailed unpaired parameter condition, p values were acquired. The Spearman's rho (r(s)) values of MIt, MCSv, LTMCS and MI Li&Xing to the local gamma passing rate with 2%/2 mm criterion were -0.658 (p < 0.001), 0.186 (p = 0.251), 0.312 (p = 0.05) and -0.455 (p = 0.003), respectively. The values of rs to the modulating-parameter (MLC positions) differences were 0.917, -0.635, -0.857 and 0.795, respectively (p < 0.001). For dose-volumetric parameters, MIt showed higher statistically significant correlations than the conventional MIs. The MIt showed good performance for the evaluation of the modulation-degree of VMAT plans.

  9. Transport properties of alumina nanofluids.

    PubMed

    Wong, Kau-Fui Vincent; Kurma, Tarun

    2008-08-27

    Recent studies have showed that nanofluids have significantly greater thermal conductivity compared to their base fluids. Large surface area to volume ratio and certain effects of Brownian motion of nanoparticles are believed to be the main factors for the significant increase in the thermal conductivity of nanofluids. In this paper all three transport properties, namely thermal conductivity, electrical conductivity and viscosity, were studied for alumina nanofluid (aluminum oxide nanoparticles in water). Experiments were performed both as a function of volumetric concentration (3-8%) and temperature (2-50 °C). Alumina nanoparticles with a mean diameter of 36 nm were dispersed in water. The effect of particle size was not studied. The transient hot wire method as described by Nagaska and Nagashima for electrically conducting fluids was used to test the thermal conductivity. In this work, an insulated platinum wire of 0.003 inch diameter was used. Initial calibration was performed using de-ionized water and the resulting data was within 2.5% of standard thermal conductivity values for water. The thermal conductivity of alumina nanofluid increased with both increase in temperature and concentration. A maximum thermal conductivity of 0.7351 W m(-1) K(-1) was recorded for an 8.47% volume concentration of alumina nanoparticles at 46.6 °C. The effective thermal conductivity at this concentration and temperature was observed to be 1.1501, which translates to an increase in thermal conductivity by 22% when compared to water at room temperature. Alumina being a good conductor of electricity, alumina nanofluid displays an increasing trend in electrical conductivity as volumetric concentration increases. A microprocessor-based conductivity/TDS meter was used to perform the electrical conductivity experiments. After carefully calibrating the conductivity meter's glass probe with platinum tip, using a standard potassium chloride solution, readings were taken at various volumetric concentrations. A 3457.1% increase in the electrical conductivity was measured for a small 1.44% volumetric concentration of alumina nanoparticles in water. The highest value of electrical conductivity, 314 µS cm(-1), was recorded for a volumetric concentration of 8.47%. In the determination of the kinematic viscosity of alumina nanofluid, a standard kinematic viscometer with constant temperature bath was used. Calibrated capillary viscometers were used to measure flow under gravity at precisely controlled temperatures. The capillary viscometers were calibrated with de-ionized water at different temperatures, and the resulting kinematic viscosity values were found to be within 3% of the standard published values. An increase of 35.5% in the kinematic viscosity was observed for an 8.47% volumetric concentration of alumina nanoparticles in water. The maximum kinematic viscosity of alumina nanofluid, 2.901 42 mm(2) s(-1), was obtained at 0 °C for an 8.47% volumetric concentration of alumina nanoparticles. The experimental results of the present work will help researchers arrive at better theoretical models.

  10. A fuzzy-logic-based model to predict biogas and methane production rates in a pilot-scale mesophilic UASB reactor treating molasses wastewater.

    PubMed

    Turkdogan-Aydinol, F Ilter; Yetilmezsoy, Kaan

    2010-10-15

    A MIMO (multiple inputs and multiple outputs) fuzzy-logic-based model was developed to predict biogas and methane production rates in a pilot-scale 90-L mesophilic up-flow anaerobic sludge blanket (UASB) reactor treating molasses wastewater. Five input variables such as volumetric organic loading rate (OLR), volumetric total chemical oxygen demand (TCOD) removal rate (R(V)), influent alkalinity, influent pH and effluent pH were fuzzified by the use of an artificial intelligence-based approach. Trapezoidal membership functions with eight levels were conducted for the fuzzy subsets, and a Mamdani-type fuzzy inference system was used to implement a total of 134 rules in the IF-THEN format. The product (prod) and the centre of gravity (COG, centroid) methods were employed as the inference operator and defuzzification methods, respectively. Fuzzy-logic predicted results were compared with the outputs of two exponential non-linear regression models derived in this study. The UASB reactor showed a remarkable performance on the treatment of molasses wastewater, with an average TCOD removal efficiency of 93 (+/-3)% and an average volumetric TCOD removal rate of 6.87 (+/-3.93) kg TCOD(removed)/m(3)-day, respectively. Findings of this study clearly indicated that, compared to non-linear regression models, the proposed MIMO fuzzy-logic-based model produced smaller deviations and exhibited a superior predictive performance on forecasting of both biogas and methane production rates with satisfactory determination coefficients over 0.98. 2010 Elsevier B.V. All rights reserved.

  11. a Geometric Processing Workflow for Transforming Reality-Based 3d Models in Volumetric Meshes Suitable for Fea

    NASA Astrophysics Data System (ADS)

    Gonizzi Barsanti, S.; Guidi, G.

    2017-02-01

    Conservation of Cultural Heritage is a key issue and structural changes and damages can influence the mechanical behaviour of artefacts and buildings. The use of Finite Elements Methods (FEM) for mechanical analysis is largely used in modelling stress behaviour. The typical workflow involves the use of CAD 3D models made by Non-Uniform Rational B-splines (NURBS) surfaces, representing the ideal shape of the object to be simulated. Nowadays, 3D documentation of CH has been widely developed through reality-based approaches, but the models are not suitable for a direct use in FEA: the mesh has in fact to be converted to volumetric, and the density has to be reduced since the computational complexity of a FEA grows exponentially with the number of nodes. The focus of this paper is to present a new method aiming at generate the most accurate 3D representation of a real artefact from highly accurate 3D digital models derived from reality-based techniques, maintaining the accuracy of the high-resolution polygonal models in the solid ones. The approach proposed is based on a wise use of retopology procedures and a transformation of this model to a mathematical one made by NURBS surfaces suitable for being processed by volumetric meshers typically embedded in standard FEM packages. The strong simplification with little loss of consistency possible with the retopology step is used for maintaining as much coherence as possible between the original acquired mesh and the simplified model, creating in the meantime a topology that is more favourable for the automatic NURBS conversion.

  12. A BPF-FBP tandem algorithm for image reconstruction in reverse helical cone-beam CT

    PubMed Central

    Cho, Seungryong; Xia, Dan; Pellizzari, Charles A.; Pan, Xiaochuan

    2010-01-01

    Purpose: Reverse helical cone-beam computed tomography (CBCT) is a scanning configuration for potential applications in image-guided radiation therapy in which an accurate anatomic image of the patient is needed for image-guidance procedures. The authors previously developed an algorithm for image reconstruction from nontruncated data of an object that is completely within the reverse helix. The purpose of this work is to develop an image reconstruction approach for reverse helical CBCT of a long object that extends out of the reverse helix and therefore constitutes data truncation. Methods: The proposed approach comprises of two reconstruction steps. In the first step, a chord-based backprojection-filtration (BPF) algorithm reconstructs a volumetric image of an object from the original cone-beam data. Because there exists a chordless region in the middle of the reverse helix, the image obtained in the first step contains an unreconstructed central-gap region. In the second step, the gap region is reconstructed by use of a Pack–Noo-formula-based filteredbackprojection (FBP) algorithm from the modified cone-beam data obtained by subtracting from the original cone-beam data the reprojection of the image reconstructed in the first step. Results: The authors have performed numerical studies to validate the proposed approach in image reconstruction from reverse helical cone-beam data. The results confirm that the proposed approach can reconstruct accurate images of a long object without suffering from data-truncation artifacts or cone-angle artifacts. Conclusions: They developed and validated a BPF-FBP tandem algorithm to reconstruct images of a long object from reverse helical cone-beam data. The chord-based BPF algorithm was utilized for converting the long-object problem into a short-object problem. The proposed approach is applicable to other scanning configurations such as reduced circular sinusoidal trajectories. PMID:20175463

  13. A BPF-FBP tandem algorithm for image reconstruction in reverse helical cone-beam CT.

    PubMed

    Cho, Seungryong; Xia, Dan; Pellizzari, Charles A; Pan, Xiaochuan

    2010-01-01

    Reverse helical cone-beam computed tomography (CBCT) is a scanning configuration for potential applications in image-guided radiation therapy in which an accurate anatomic image of the patient is needed for image-guidance procedures. The authors previously developed an algorithm for image reconstruction from nontruncated data of an object that is completely within the reverse helix. The purpose of this work is to develop an image reconstruction approach for reverse helical CBCT of a long object that extends out of the reverse helix and therefore constitutes data truncation. The proposed approach comprises of two reconstruction steps. In the first step, a chord-based backprojection-filtration (BPF) algorithm reconstructs a volumetric image of an object from the original cone-beam data. Because there exists a chordless region in the middle of the reverse helix, the image obtained in the first step contains an unreconstructed central-gap region. In the second step, the gap region is reconstructed by use of a Pack-Noo-formula-based filteredback-projection (FBP) algorithm from the modified cone-beam data obtained by subtracting from the original cone-beam data the reprojection of the image reconstructed in the first step. The authors have performed numerical studies to validate the proposed approach in image reconstruction from reverse helical cone-beam data. The results confirm that the proposed approach can reconstruct accurate images of a long object without suffering from data-truncation artifacts or cone-angle artifacts. They developed and validated a BPF-FBP tandem algorithm to reconstruct images of a long object from reverse helical cone-beam data. The chord-based BPF algorithm was utilized for converting the long-object problem into a short-object problem. The proposed approach is applicable to other scanning configurations such as reduced circular sinusoidal trajectories.

  14. Validating automated kidney stone volumetry in computed tomography and mathematical correlation with estimated stone volume based on diameter.

    PubMed

    Wilhelm, Konrad; Miernik, Arkadiusz; Hein, Simon; Schlager, Daniel; Adams, Fabian; Benndorf, Matthias; Fritz, Benjamin; Langer, Mathias; Hesse, Albrecht; Schoenthaler, Martin; Neubauer, Jakob

    2018-06-02

    To validate AutoMated UroLithiasis Evaluation Tool (AMULET) software for kidney stone volumetry and compare its performance to standard clinical practice. Maximum diameter and volume of 96 urinary stones were measured as reference standard by three independent urologists. The same stones were positioned in an anthropomorphic phantom and CT scans acquired in standard settings. Three independent radiologists blinded to the reference values took manual measurements of the maximum diameter and automatic measurements of maximum diameter and volume. An "expected volume" was calculated based on manual diameter measurements using the formula: V=4/3 πr³. 96 stones were analyzed in the study. We had initially aimed to assess 100. Nine were replaced during data acquisition due of crumbling and 4 had to be excluded because the automated measurement did not work. Mean reference maximum diameter was 13.3 mm (5.2-32.1 mm). Correlation coefficients among all measured outcomes were compared. The correlation between the manual and automatic diameter measurements to the reference was 0.98 and 0.91, respectively (p<0.001). Mean reference volume was 1200 mm³ (10-9000 mm³). The correlation between the "expected volume" and automatically measured volume to the reference was 0.95 and 0.99, respectively (p<0.001). Patients' kidney stone burden is usually assessed according to maximum diameter. However, as most stones are not spherical, this entails a potential bias. Automated stone volumetry is possible and significantly more accurate than diameter-based volumetric calculations. To avoid bias in clinical trials, size should be measured as volume. However, automated diameter measurements are not as accurate as manual measurements.

  15. VOLUMETRIC TANK TESTING: AN OVERVIEW

    EPA Science Inventory

    This report summarizes the technical findings of an EPA study on volumetric tank testing. The results of this study, which evaluated the viability of volumetric tank tests as a means of detecting leaks in underground storage tanks, are described. Also, the accuracy requirements s...

  16. Real-time three-dimensional temperature mapping in photothermal therapy with optoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Oyaga Landa, Francisco Javier; Deán-Ben, Xosé Luís.; Sroka, Ronald; Razansky, Daniel

    2017-07-01

    Ablation and photothermal therapy are widely employed medical protocols where the selective destruction of tissue is a necessity as in cancerous tissue removal or vascular and brain abnormalities. Tissue denaturation takes place when the temperature reaches a threshold value while the time of exposure determines the lesion size. Therefore, the spatio-temporal distribution of temperature plays a crucial role in the outcome of these clinical interventions. We demonstrate fast volumetric temperature mapping with optoacoustic tomography based on real-time optoacoustic readings from the treated region. The performance of the method was investigated in tissue-mimicking phantom experiments. The new ability to non-invasively measure temperature volumetrically in an entire treated region with high spatial and temporal resolutions holds potential for improving safety and efficacy of thermal ablation and to advance the general applicability of laser-based therapy.

  17. Paramagnetic capture mode magnetophoretic microseparator for high efficiency blood cell separations.

    PubMed

    Han, Ki-Ho; Frazier, A Bruno

    2006-02-01

    This paper presents the characterization of continuous single-stage and three-stage cascade paramagnetic capture (PMC) mode magnetophoretic microseparators for high efficiency separation of red and white blood cells from diluted whole blood based on their native magnetic properties. The separation mechanism for both PMC microseparators is based on a high gradient magnetic separation (HGMS) method. This approach enables separation of blood cells without the use of additives such as magnetic beads. Experimental results for the single-stage PMC microseparator show that 91.1% of red blood cells were continuously separated from the sample at a volumetric flow rate of 5 microl h-1. In addition, the three-stage cascade PMC microseparator continuously separated 93.5% of red blood cells and 97.4% of white blood cells from whole blood at a volumetric flow rate of 5 microl h-1.

  18. Quantitative Neuroimaging Software for Clinical Assessment of Hippocampal Volumes on MR Imaging

    PubMed Central

    Ahdidan, Jamila; Raji, Cyrus A.; DeYoe, Edgar A.; Mathis, Jedidiah; Noe, Karsten Ø.; Rimestad, Jens; Kjeldsen, Thomas K.; Mosegaard, Jesper; Becker, James T.; Lopez, Oscar

    2015-01-01

    Background: Multiple neurological disorders including Alzheimer’s disease (AD), mesial temporal sclerosis, and mild traumatic brain injury manifest with volume loss on brain MRI. Subtle volume loss is particularly seen early in AD. While prior research has demonstrated the value of this additional information from quantitative neuroimaging, very few applications have been approved for clinical use. Here we describe a US FDA cleared software program, NeuroreaderTM, for assessment of clinical hippocampal volume on brain MRI. Objective: To present the validation of hippocampal volumetrics on a clinical software program. Method: Subjects were drawn (n = 99) from the Alzheimer Disease Neuroimaging Initiative study. Volumetric brain MR imaging was acquired in both 1.5 T (n = 59) and 3.0 T (n = 40) scanners in participants with manual hippocampal segmentation. Fully automated hippocampal segmentation and measurement was done using a multiple atlas approach. The Dice Similarity Coefficient (DSC) measured the level of spatial overlap between NeuroreaderTM and gold standard manual segmentation from 0 to 1 with 0 denoting no overlap and 1 representing complete agreement. DSC comparisons between 1.5 T and 3.0 T scanners were done using standard independent samples T-tests. Results: In the bilateral hippocampus, mean DSC was 0.87 with a range of 0.78–0.91 (right hippocampus) and 0.76–0.91 (left hippocampus). Automated segmentation agreement with manual segmentation was essentially equivalent at 1.5 T (DSC = 0.879) versus 3.0 T (DSC = 0.872). Conclusion: This work provides a description and validation of a software program that can be applied in measuring hippocampal volume, a biomarker that is frequently abnormal in AD and other neurological disorders. PMID:26484924

  19. VoxelStats: A MATLAB Package for Multi-Modal Voxel-Wise Brain Image Analysis.

    PubMed

    Mathotaarachchi, Sulantha; Wang, Seqian; Shin, Monica; Pascoal, Tharick A; Benedet, Andrea L; Kang, Min Su; Beaudry, Thomas; Fonov, Vladimir S; Gauthier, Serge; Labbe, Aurélie; Rosa-Neto, Pedro

    2016-01-01

    In healthy individuals, behavioral outcomes are highly associated with the variability on brain regional structure or neurochemical phenotypes. Similarly, in the context of neurodegenerative conditions, neuroimaging reveals that cognitive decline is linked to the magnitude of atrophy, neurochemical declines, or concentrations of abnormal protein aggregates across brain regions. However, modeling the effects of multiple regional abnormalities as determinants of cognitive decline at the voxel level remains largely unexplored by multimodal imaging research, given the high computational cost of estimating regression models for every single voxel from various imaging modalities. VoxelStats is a voxel-wise computational framework to overcome these computational limitations and to perform statistical operations on multiple scalar variables and imaging modalities at the voxel level. VoxelStats package has been developed in Matlab(®) and supports imaging formats such as Nifti-1, ANALYZE, and MINC v2. Prebuilt functions in VoxelStats enable the user to perform voxel-wise general and generalized linear models and mixed effect models with multiple volumetric covariates. Importantly, VoxelStats can recognize scalar values or image volumes as response variables and can accommodate volumetric statistical covariates as well as their interaction effects with other variables. Furthermore, this package includes built-in functionality to perform voxel-wise receiver operating characteristic analysis and paired and unpaired group contrast analysis. Validation of VoxelStats was conducted by comparing the linear regression functionality with existing toolboxes such as glim_image and RMINC. The validation results were identical to existing methods and the additional functionality was demonstrated by generating feature case assessments (t-statistics, odds ratio, and true positive rate maps). In summary, VoxelStats expands the current methods for multimodal imaging analysis by allowing the estimation of advanced regional association metrics at the voxel level.

  20. Clinical validation of free breathing respiratory triggered retrospectively cardiac gated cine balanced steady-state free precession cardiovascular magnetic resonance in sedated children.

    PubMed

    Krishnamurthy, Rajesh; Pednekar, Amol; Atweh, Lamya A; Vogelius, Esben; Chu, Zili David; Zhang, Wei; Maskatia, Shiraz; Masand, Prakash; Morris, Shaine A; Krishnamurthy, Ramkumar; Muthupillai, Raja

    2015-01-14

    Cine balanced steady-state free precession (SSFP), the preferred sequence for ventricular function, demands uninterrupted radio frequency (RF) excitation to maintain the steady-state during suspended respiration. This is difficult to accomplish in sedated children. In this work, we validate a respiratory triggered (RT) SSFP sequence that drives the magnetization to steady-state before commencing retrospectively cardiac gated cine acquisition in a sedated pediatric population. This prospective study was performed on 20 sedated children with congenital heart disease (8.6 ± 4 yrs). Identical imaging parameters were used for multiple number of signal averages (MN) and RT cine SSFP sequences covering both the ventricles in short-axis (SA) orientation. Image quality assessment and quantitative volumetric analysis was performed on the datasets by two blinded observers. One-sided Wilcoxon signed rank test and Box plot analysis were performed to compare the clinical scores. Bland-Altman (BA) analysis was performed on LV and RV volumes. Scan duration for SA stack using RT-SSFP (3.9 ± 0.8 min) was slightly shorter than MN-SSFP (4.6 ± 0.9 min) acquisitions. The endocardial edge definition was significantly better for RT than MN, blood to myocardial contrast was better for RT than MN without reaching statistical significance, and inter slice alignment was comparable. BA analysis indicates that the variability of volumetric indices between RT and MN is comparable to inter and intra-observer variability reported in the literature. The free breathing RT-SSFP sequence allows diagnostic images in sedated children with significantly better edge definition when compared to MN-SSFP, without any penalty for total scan time.

  1. Volumetric display containing multiple two-dimensional color motion pictures

    NASA Astrophysics Data System (ADS)

    Hirayama, R.; Shiraki, A.; Nakayama, H.; Kakue, T.; Shimobaba, T.; Ito, T.

    2014-06-01

    We have developed an algorithm which can record multiple two-dimensional (2-D) gradated projection patterns in a single three-dimensional (3-D) object. Each recorded pattern has the individual projected direction and can only be seen from the direction. The proposed algorithm has two important features: the number of recorded patterns is theoretically infinite and no meaningful pattern can be seen outside of the projected directions. In this paper, we expanded the algorithm to record multiple 2-D projection patterns in color. There are two popular ways of color mixing: additive one and subtractive one. Additive color mixing used to mix light is based on RGB colors and subtractive color mixing used to mix inks is based on CMY colors. We made two coloring methods based on the additive mixing and subtractive mixing. We performed numerical simulations of the coloring methods, and confirmed their effectiveness. We also fabricated two types of volumetric display and applied the proposed algorithm to them. One is a cubic displays constructed by light-emitting diodes (LEDs) in 8×8×8 array. Lighting patterns of LEDs are controlled by a microcomputer board. The other one is made of 7×7 array of threads. Each thread is illuminated by a projector connected with PC. As a result of the implementation, we succeeded in recording multiple 2-D color motion pictures in the volumetric displays. Our algorithm can be applied to digital signage, media art and so forth.

  2. Feature-based Morphometry

    PubMed Central

    Toews, Matthew; Wells, William M.; Collins, Louis; Arbel, Tal

    2013-01-01

    This paper presents feature-based morphometry (FBM), a new, fully data-driven technique for identifying group-related differences in volumetric imagery. In contrast to most morphometry methods which assume one-to-one correspondence between all subjects, FBM models images as a collage of distinct, localized image features which may not be present in all subjects. FBM thus explicitly accounts for the case where the same anatomical tissue cannot be reliably identified in all subjects due to disease or anatomical variability. A probabilistic model describes features in terms of their appearance, geometry, and relationship to sub-groups of a population, and is automatically learned from a set of subject images and group labels. Features identified indicate group-related anatomical structure that can potentially be used as disease biomarkers or as a basis for computer-aided diagnosis. Scale-invariant image features are used, which reflect generic, salient patterns in the image. Experiments validate FBM clinically in the analysis of normal (NC) and Alzheimer’s (AD) brain images using the freely available OASIS database. FBM automatically identifies known structural differences between NC and AD subjects in a fully data-driven fashion, and obtains an equal error classification rate of 0.78 on new subjects. PMID:20426102

  3. Studies on Effective Elastic Properties of CNT/Nano-Clay Reinforced Polymer Hybrid Composite

    NASA Astrophysics Data System (ADS)

    Thakur, Arvind Kumar; Kumar, Puneet; Srinivas, J.

    2016-02-01

    This paper presents a computational approach to predict elastic propertiesof hybrid nanocomposite material prepared by adding nano-clayplatelets to conventional CNT-reinforced epoxy system. In comparison to polymers alone/single-fiber reinforced polymers, if an additional fiber is added to the composite structure, it was found a drastic improvement in resultant properties. In this regard, effective elastic moduli of a hybrid nano composite are determined by using finite element (FE) model with square representative volume element (RVE). Continuum mechanics based homogenization of the nano-filler reinforced composite is considered for evaluating the volumetric average of the stresses and the strains under different periodic boundary conditions.A three phase Halpin-Tsai approach is selected to obtain the analytical result based on micromechanical modeling. The effect of the volume fractions of CNTs and nano-clay platelets on the mechanical behavior is studied. Two different RVEs of nano-clay platelets were used to investigate the influence of nano-filler geometry on composite properties. The combination of high aspect ratio of CNTs and larger surface area of clay platelets contribute to the stiffening effect of the hybrid samples. Results of analysis are validated with Halpin-Tsai empirical formulae.

  4. Characterization of dimethacrylate polymeric networks: a study of the crosslinked structure formed by monomers used in dental composites

    PubMed Central

    Shelton, Zachary R.; Braga, Roberto R.; Windmoller, Dario; Machado, José C.

    2011-01-01

    The resin phase of dental composites is mainly composed of combinations of dimethacrylate comonomers, with final polymeric network structure defined by monomer type/reactivity and degree of conversion. This fundamental study evaluates how increasing concentrations of the flexible triethylene glycol dimethacrylate (TEGDMA) influences void formation in bisphenol A diglycidyl dimethacrylate (BisGMA) co-polymerizations and correlates this aspect of network structure with reaction kinetic parameters and macroscopic volumetric shrinkage. Photopolymerization kinetics was followed in real-time by a near-infrared (NIR) spectroscopic technique, viscosity was assessed with a viscometer, volumetric shrinkage was followed with a linometer, free volume formation was determined by positron annihilation lifetime spectroscopy (PALS) and the sol-gel composition was determined by extraction with dichloromethane followed by 1H-NMR analysis. Results show that, as expected, volumetric shrinkage increases with TEGDMA concentration and monomer conversion. Extraction/1H-NMR studies show increasing participation of the more flexible TEGDMA towards the limiting stages of conversion/crosslinking development. As the conversion progresses, either based on longer irradiation times or greater TEGDMA concentrations, the network becomes more dense, which is evidenced by the decrease in free volume and weight loss after extraction in these situations. For the same composition (BisGMA/TEGDMA 60–40 mol%) light-cured for increasing periods of time (from 10 to 600 s), free volume decreased and volumetric shrinkage increased, in a linear relationship with conversion. However, the correlation between free volume and macroscopic volumetric shrinkage was shown to be rather complex for variable compositions exposed for the same time (600 s). The addition of TEGDMA decreases free-volume up to 40 mol% (due to increased conversion), but above that concentration, in spite of the increase in conversion/crosslinking, free volume pore size increases due to the high concentration of the more flexible monomer. In those cases, the increase in volumetric shrinkage was due to higher functional group concentration, in spite of the greater free volume. Therefore, through the application of the PALS model, this study elucidates the network formation in dimethacrylates commonly used in dental materials. PMID:21499538

  5. Characterization of dimethacrylate polymeric networks: a study of the crosslinked structure formed by monomers used in dental composites.

    PubMed

    Pfeifer, Carmem S; Shelton, Zachary R; Braga, Roberto R; Windmoller, Dario; Machado, José C; Stansbury, Jeffrey W

    2011-02-01

    The resin phase of dental composites is mainly composed of combinations of dimethacrylate comonomers, with final polymeric network structure defined by monomer type/reactivity and degree of conversion. This fundamental study evaluates how increasing concentrations of the flexible triethylene glycol dimethacrylate (TEGDMA) influences void formation in bisphenol A diglycidyl dimethacrylate (BisGMA) co-polymerizations and correlates this aspect of network structure with reaction kinetic parameters and macroscopic volumetric shrinkage. Photopolymerization kinetics was followed in real-time by a near-infrared (NIR) spectroscopic technique, viscosity was assessed with a viscometer, volumetric shrinkage was followed with a linometer, free volume formation was determined by positron annihilation lifetime spectroscopy (PALS) and the sol-gel composition was determined by extraction with dichloromethane followed by (1)H-NMR analysis. Results show that, as expected, volumetric shrinkage increases with TEGDMA concentration and monomer conversion. Extraction/(1)H-NMR studies show increasing participation of the more flexible TEGDMA towards the limiting stages of conversion/crosslinking development. As the conversion progresses, either based on longer irradiation times or greater TEGDMA concentrations, the network becomes more dense, which is evidenced by the decrease in free volume and weight loss after extraction in these situations. For the same composition (BisGMA/TEGDMA 60-40 mol%) light-cured for increasing periods of time (from 10 to 600 s), free volume decreased and volumetric shrinkage increased, in a linear relationship with conversion. However, the correlation between free volume and macroscopic volumetric shrinkage was shown to be rather complex for variable compositions exposed for the same time (600 s). The addition of TEGDMA decreases free-volume up to 40 mol% (due to increased conversion), but above that concentration, in spite of the increase in conversion/crosslinking, free volume pore size increases due to the high concentration of the more flexible monomer. In those cases, the increase in volumetric shrinkage was due to higher functional group concentration, in spite of the greater free volume. Therefore, through the application of the PALS model, this study elucidates the network formation in dimethacrylates commonly used in dental materials.

  6. Three-Dimensional Dynamic Rupture in Brittle Solids and the Volumetric Strain Criterion

    NASA Astrophysics Data System (ADS)

    Uenishi, K.; Yamachi, H.

    2017-12-01

    As pointed out by Uenishi (2016 AGU Fall Meeting), source dynamics of ordinary earthquakes is often studied in the framework of 3D rupture in brittle solids but our knowledge of mechanics of actual 3D rupture is limited. Typically, criteria derived from 1D frictional observations of sliding materials or post-failure behavior of solids are applied in seismic simulations, and although mode-I cracks are frequently encountered in earthquake-induced ground failures, rupture in tension is in most cases ignored. Even when it is included in analyses, the classical maximum principal tensile stress rupture criterion is repeatedly used. Our recent basic experiments of dynamic rupture of spherical or cylindrical monolithic brittle solids by applying high-voltage electric discharge impulses or impact loads have indicated generation of surprisingly simple and often flat rupture surfaces in 3D specimens even without the initial existence of planes of weakness. However, at the same time, the snapshots taken by a high-speed digital video camera have shown rather complicated histories of rupture development in these 3D solid materials, which seem to be difficult to be explained by, for example, the maximum principal stress criterion. Instead, a (tensile) volumetric strain criterion where the volumetric strain (dilatation or the first invariant of the strain tensor) is a decisive parameter for rupture seems more effective in computationally reproducing the multi-directionally propagating waves and rupture. In this study, we try to show the connection between this volumetric strain criterion and other classical rupture criteria or physical parameters employed in continuum mechanics, and indicate that the criterion has, to some degree, physical meanings. First, we mathematically illustrate that the criterion is equivalent to a criterion based on the mean normal stress, a crucial parameter in plasticity. Then, we mention the relation between the volumetric strain criterion and the failure envelope of the Mohr-Coulomb criterion that describes shear-related rupture. The critical value of the volumetric strain for rupture may be controlled by the apparent cohesion and apparent angle of internal friction of the Mohr-Coulomb criterion.

  7. 40 CFR 610.64 - Track test procedures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... truck or trailer. (4) Fuel economy will be determined by either a gravimetric or volumetric method. (c... dynamometer except that fuel economy will be measured by gravimetric or volumetric methods. ... either a volumetric or gravimetric procedure approved by the Administrator. (5) Vehicle speed and...

  8. 40 CFR 610.64 - Track test procedures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... truck or trailer. (4) Fuel economy will be determined by either a gravimetric or volumetric method. (c... dynamometer except that fuel economy will be measured by gravimetric or volumetric methods. ... either a volumetric or gravimetric procedure approved by the Administrator. (5) Vehicle speed and...

  9. Comparison of subjective and fully automated methods for measuring mammographic density.

    PubMed

    Moshina, Nataliia; Roman, Marta; Sebuødegård, Sofie; Waade, Gunvor G; Ursin, Giske; Hofvind, Solveig

    2018-02-01

    Background Breast radiologists of the Norwegian Breast Cancer Screening Program subjectively classified mammographic density using a three-point scale between 1996 and 2012 and changed into the fourth edition of the BI-RADS classification since 2013. In 2015, an automated volumetric breast density assessment software was installed at two screening units. Purpose To compare volumetric breast density measurements from the automated method with two subjective methods: the three-point scale and the BI-RADS density classification. Material and Methods Information on subjective and automated density assessment was obtained from screening examinations of 3635 women recalled for further assessment due to positive screening mammography between 2007 and 2015. The score of the three-point scale (I = fatty; II = medium dense; III = dense) was available for 2310 women. The BI-RADS density score was provided for 1325 women. Mean volumetric breast density was estimated for each category of the subjective classifications. The automated software assigned volumetric breast density to four categories. The agreement between BI-RADS and volumetric breast density categories was assessed using weighted kappa (k w ). Results Mean volumetric breast density was 4.5%, 7.5%, and 13.4% for categories I, II, and III of the three-point scale, respectively, and 4.4%, 7.5%, 9.9%, and 13.9% for the BI-RADS density categories, respectively ( P for trend < 0.001 for both subjective classifications). The agreement between BI-RADS and volumetric breast density categories was k w  = 0.5 (95% CI = 0.47-0.53; P < 0.001). Conclusion Mean values of volumetric breast density increased with increasing density category of the subjective classifications. The agreement between BI-RADS and volumetric breast density categories was moderate.

  10. Segmentation of Hyperacute Cerebral Infarcts Based on Sparse Representation of Diffusion Weighted Imaging.

    PubMed

    Zhang, Xiaodong; Jing, Shasha; Gao, Peiyi; Xue, Jing; Su, Lu; Li, Weiping; Ren, Lijie; Hu, Qingmao

    2016-01-01

    Segmentation of infarcts at hyperacute stage is challenging as they exhibit substantial variability which may even be hard for experts to delineate manually. In this paper, a sparse representation based classification method is explored. For each patient, four volumetric data items including three volumes of diffusion weighted imaging and a computed asymmetry map are employed to extract patch features which are then fed to dictionary learning and classification based on sparse representation. Elastic net is adopted to replace the traditional L 0 -norm/ L 1 -norm constraints on sparse representation to stabilize sparse code. To decrease computation cost and to reduce false positives, regions-of-interest are determined to confine candidate infarct voxels. The proposed method has been validated on 98 consecutive patients recruited within 6 hours from onset. It is shown that the proposed method could handle well infarcts with intensity variability and ill-defined edges to yield significantly higher Dice coefficient (0.755 ± 0.118) than the other two methods and their enhanced versions by confining their segmentations within the regions-of-interest (average Dice coefficient less than 0.610). The proposed method could provide a potential tool to quantify infarcts from diffusion weighted imaging at hyperacute stage with accuracy and speed to assist the decision making especially for thrombolytic therapy.

  11. Automated lung tumor segmentation for whole body PET volume based on novel downhill region growing

    NASA Astrophysics Data System (ADS)

    Ballangan, Cherry; Wang, Xiuying; Eberl, Stefan; Fulham, Michael; Feng, Dagan

    2010-03-01

    We propose an automated lung tumor segmentation method for whole body PET images based on a novel downhill region growing (DRG) technique, which regards homogeneous tumor hotspots as 3D monotonically decreasing functions. The method has three major steps: thoracic slice extraction with K-means clustering of the slice features; hotspot segmentation with DRG; and decision tree analysis based hotspot classification. To overcome the common problem of leakage into adjacent hotspots in automated lung tumor segmentation, DRG employs the tumors' SUV monotonicity features. DRG also uses gradient magnitude of tumors' SUV to improve tumor boundary definition. We used 14 PET volumes from patients with primary NSCLC for validation. The thoracic region extraction step achieved good and consistent results for all patients despite marked differences in size and shape of the lungs and the presence of large tumors. The DRG technique was able to avoid the problem of leakage into adjacent hotspots and produced a volumetric overlap fraction of 0.61 +/- 0.13 which outperformed four other methods where the overlap fraction varied from 0.40 +/- 0.24 to 0.59 +/- 0.14. Of the 18 tumors in 14 NSCLC studies, 15 lesions were classified correctly, 2 were false negative and 15 were false positive.

  12. 49 CFR 180.213 - Requalification markings.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... obliterated, except that, when the space originally provided for requalification dates becomes filled... volumetric expansion test, 10-year volumetric expansion test for UN cylinders and cylinders conforming to § 180.209(f) and (h), or 12-year volumetric expansion test for fire extinguishers conforming to § 173...

  13. 49 CFR 180.213 - Requalification markings.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... obliterated, except that, when the space originally provided for requalification dates becomes filled... volumetric expansion test, 10-year volumetric expansion test for UN cylinders and cylinders conforming to § 180.209(f) and (h), or 12-year volumetric expansion test for fire extinguishers conforming to § 173...

  14. 49 CFR 180.213 - Requalification markings.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... obliterated, except that, when the space originally provided for requalification dates becomes filled... volumetric expansion test, 10-year volumetric expansion test for UN cylinders and cylinders conforming to § 180.209(f) and (h), or 12-year volumetric expansion test for fire extinguishers conforming to § 173...

  15. 49 CFR 180.213 - Requalification markings.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... obliterated, except that, when the space originally provided for requalification dates becomes filled... volumetric expansion test, 10-year volumetric expansion test for UN cylinders and cylinders conforming to § 180.209(f) and (h), or 12-year volumetric expansion test for fire extinguishers conforming to § 173...

  16. Commissioning and validation of fluence-based 3D VMAT dose reconstruction system using new transmission detector.

    PubMed

    Nakaguchi, Yuji; Oono, Takeshi; Maruyama, Masato; Shimohigashi, Yoshinobu; Kai, Yudai; Nakamura, Yuya

    2018-06-01

    In this study, we evaluated the basic performance of the three-dimensional dose verification system COMPASS (IBA Dosimetry). This system is capable of reconstructing 3D dose distributions on the patient anatomy based on the fluence measured using a new transmission detector (Dolphin, IBA Dosimetry) during treatment. The stability of the absolute dose and geometric calibrations of the COMPASS system with the Dolphin detector were investigated for fundamental validation. Furthermore, multileaf collimator (MLC) test patterns and a complicated volumetric modulated arc therapy (VMAT) plan were used to evaluate the accuracy of the reconstructed dose distributions determined by the COMPASS. The results from the COMPASS were compared with those of a Monte Carlo simulation (MC), EDR2 film measurement, and a treatment planning system (TPS). The maximum errors for the absolute dose and geometrical position were - 0.28% and 1.0 mm for 3 months, respectively. The Dolphin detector, which consists of ionization chamber detectors, was firmly mounted on the linear accelerator and was very stable. For the MLC test patterns, the TPS showed a > 5% difference at small fields, while the COMPASS showed good agreement with the MC simulation at small fields. However, the COMPASS produced a large error for complex small fields. For a clinical VMAT plan, COMPASS was more accurate than TPS. COMPASS showed real delivered-dose distributions because it uses the measured fluence, a high-resolution detector, and accurate beam modeling. We confirm here that the accuracy and detectability of the delivered dose of the COMPASS system are sufficient for clinical practice.

  17. Improved approach to quantitative cardiac volumetrics using automatic thresholding and manual trimming: a cardiovascular MRI study.

    PubMed

    Rayarao, Geetha; Biederman, Robert W W; Williams, Ronald B; Yamrozik, June A; Lombardi, Richard; Doyle, Mark

    2018-01-01

    To establish the clinical validity and accuracy of automatic thresholding and manual trimming (ATMT) by comparing the method with the conventional contouring method for in vivo cardiac volume measurements. CMR was performed on 40 subjects (30 patients and 10 controls) using steady-state free precession cine sequences with slices oriented in the short-axis and acquired contiguously from base to apex. Left ventricular (LV) volumes, end-diastolic volume, end-systolic volume, and stroke volume (SV) were obtained with ATMT and with the conventional contouring method. Additionally, SV was measured independently using CMR phase velocity mapping (PVM) of the aorta for validation. Three methods of calculating SV were compared by applying Bland-Altman analysis. The Bland-Altman standard deviation of variation (SD) and offset bias for LV SV for the three sets of data were: ATMT-PVM (7.65, [Formula: see text]), ATMT-contours (7.85, [Formula: see text]), and contour-PVM (11.01, 4.97), respectively. Equating the observed range to the error contribution of each approach, the error magnitude of ATMT:PVM:contours was in the ratio 1:2.4:2.5. Use of ATMT for measuring ventricular volumes accommodates trabeculae and papillary structures more intuitively than contemporary contouring methods. This results in lower variation when analyzing cardiac structure and function and consequently improved accuracy in assessing chamber volumes.

  18. A simple analytical model of coupled single flow channel over porous electrode in vanadium redox flow battery with serpentine flow channel

    NASA Astrophysics Data System (ADS)

    Ke, Xinyou; Alexander, J. Iwan D.; Prahl, Joseph M.; Savinell, Robert F.

    2015-08-01

    A simple analytical model of a layered system comprised of a single passage of a serpentine flow channel and a parallel underlying porous electrode (or porous layer) is proposed. This analytical model is derived from Navier-Stokes motion in the flow channel and Darcy-Brinkman model in the porous layer. The continuities of flow velocity and normal stress are applied at the interface between the flow channel and the porous layer. The effects of the inlet volumetric flow rate, thickness of the flow channel and thickness of a typical carbon fiber paper porous layer on the volumetric flow rate within this porous layer are studied. The maximum current density based on the electrolyte volumetric flow rate is predicted, and found to be consistent with reported numerical simulation. It is found that, for a mean inlet flow velocity of 33.3 cm s-1, the analytical maximum current density is estimated to be 377 mA cm-2, which compares favorably with experimental result reported by others of ∼400 mA cm-2.

  19. Pricing of swing options: A Monte Carlo simulation approach

    NASA Astrophysics Data System (ADS)

    Leow, Kai-Siong

    We study the problem of pricing swing options, a class of multiple early exercise options that are traded in energy market, particularly in the electricity and natural gas markets. These contracts permit the option holder to periodically exercise the right to trade a variable amount of energy with a counterparty, subject to local volumetric constraints. In addition, the total amount of energy traded from settlement to expiration with the counterparty is restricted by a global volumetric constraint. Violation of this global volumetric constraint is allowed but would lead to penalty settled at expiration. The pricing problem is formulated as a stochastic optimal control problem in discrete time and state space. We present a stochastic dynamic programming algorithm which is based on piecewise linear concave approximation of value functions. This algorithm yields the value of the swing option under the assumption that the optimal exercise policy is applied by the option holder. We present a proof of an almost sure convergence that the algorithm generates the optimal exercise strategy as the number of iterations approaches to infinity. Finally, we provide a numerical example for pricing a natural gas swing call option.

  20. Properties of Au/Copper oxide nanocomposite prepared by green laser irradiation of the mixture of individual suspensions

    NASA Astrophysics Data System (ADS)

    Aazadfar, Parvaneh; Solati, Elmira; Dorranian, Davoud

    2018-04-01

    The fundamental wavelength of a Q-switched pulsed Nd:YAG laser was employed to produce Au and copper oxide nanoparticles via pulsed laser ablation method in water. Different volumetric ratio of nanoparticles were mixed and irradiated by the second harmonic pulses of the Nd:YAG laser to prepare Au/Copper oxide nanocomposite. The experimental investigation was dedicated to study the properties of Au/Copper oxide nanocomposite as a function of volumetric ratio of Au nanoparticles and copper oxide nanoparticles. Nanocomposites of Au and copper oxide were found almost spherical in shape. Adhesion of spherical nanostructure in Au/Copper oxide nanocomposites was decreased with increasing the concentration of Au nanoparticles. Crystalline phase of the Au/Copper oxide nanocomposites differs with the change in the volumetric ratio of Au and copper oxide nanoparticles. The intensity of surface plasmon resonance of Au nanoparticles was decreased after irradiation. Au/Copper oxide nanocomposites suspensions have emissions in the visible range. Results reveal that green laser irradiation of nanoparticle suspensions is an appropriate method to synthesize Au based nanocomposites with controlled composition and size.

  1. Characterizing Urban Volumetry Using LIDAR Data

    NASA Astrophysics Data System (ADS)

    Santos, T.; Rodrigues, A. M.; Tenedório, J. A.

    2013-05-01

    Urban indicators are efficient tools designed to simplify, quantify and communicate relevant information for land planners. Since urban data has a strong spatial representation, one can use geographical data as the basis for constructing information regarding urban environments. One important source of information about the land status is imagery collected through remote sensing. Afterwards, using digital image processing techniques, thematic detail can be extracted from those images and used to build urban indicators. Most common metrics are based on area (2D) measurements. These include indicators like impervious area per capita or surface occupied by green areas, having usually as primary source a spectral image obtained through a satellite or airborne camera. More recently, laser scanning data has become available for large-scale applications. Such sensors acquire altimetric information and are used to produce Digital Surface Models (DSM). In this context, LiDAR data available for the city is explored along with demographic information, and a framework to produce volumetric (3D) urban indexes is proposed, and measures like Built Volume per capita, Volumetric Density and Volumetric Homogeneity are computed.

  2. Nitrogen-Doped Holey Graphene as an Anode for Lithium-Ion Batteries with High Volumetric Energy Density and Long Cycle Life.

    PubMed

    Xu, Jiantie; Lin, Yi; Connell, John W; Dai, Liming

    2015-12-01

    Nitrogen-doped holey graphene (N-hG) as an anode material for lithium-ion batteries has delivered a maximum volumetric capacity of 384 mAh cm(-3) with an excellent long-term cycling life up to 6000 cycles, and as an electrochemical capacitor has delivered a maximum volumetric energy density of 171.2 Wh L(-1) and a volumetric capacitance of 201.6 F cm(-3) . © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Observational Tests of the Surface Reflectance Boundary Condition for Aerosol Retrievals using Multiangle Spectropolarimetric Imagery

    NASA Astrophysics Data System (ADS)

    Diner, D. J.; Martonchik, J. V.; Sanghavi, S.; Xu, F.; Garay, M. J.; Bradley, C.; Chipman, R.; McClain, S.

    2011-12-01

    Passive retrievals of aerosol properties from aircraft or satellite must account for surface reflection at the lower boundary. Future missions such as Aerosol-Cloud-Ecosystem (ACE) will use multiangular, multispectral, and polarimetric imagery for aerosol remote sensing. Interpreting such multidimensional measurements requires representing the aerosols by a set of optical and microphysical parameters and modeling the surface bidirectional reflectance distribution function (BRDF). We are developing a surface model represented by a matrix BRDF that describes both intensity and polarization. The BRDF is the sum of a depolarizing volumetric (diffuse) scattering term represented by the modified Rahman-Pinty-Verstraete (mRPV) function, and a specular reflection term corresponding to a distribution of tilted microfacets, each of which reflects according to the Fresnel laws. In order to limit the number of parameters that need to be retrieved, empirical constraints are placed on the surface reflection model, e.g., that the volumetric component can be written as the product of a function only of wavelength and a function only of illumination and view geometry and that the polarized surface reflectance is spectrally neutral. Validation of these assumptions is required to establish a successful surface reflectance model that can be used as part of the aerosol retrievals. The Ground-based and Airborne Multiangle SpectroPolarimetric Imagers (GroundMSPI and AirMSPI) are pushbroom cameras that use a novel dual-photoelastic modulator (PEM) design to measure the Stokes vector components I, Q, and U, degree of linear polarization (DOLP), and angle of linear polarization (AOLP) with high accuracy. Intensity bands are centered at 355, 380, 445, 555, 660, 865, and 935 nm, and polarization channels are at 470, 660, and 865 nm. GroundMSPI and AirMSPI data collected on clear days are being used to further develop and validate the parametric surface model. For GroundMSPI, time sequences of intensity and polarization imagery are acquired throughout the day, and motion of the Sun through the sky provides variable scattering angle. AirMSPI acquires multiangular imagery from the NASA ER-2 aircraft by pointing the camera at different angles using a motorized gimbal. In this paper, we will present examples of GroundMSPI and AirMSPI imagery and explore how well the parametric surface model is able to represent the measured intensity and polarization data.

  4. Estimates of volumetric bone density from projectional measurements improve the discriminatory capability of dual X-ray absorptiometry

    NASA Technical Reports Server (NTRS)

    Jergas, M.; Breitenseher, M.; Gluer, C. C.; Yu, W.; Genant, H. K.

    1995-01-01

    To determine whether estimates of volumetric bone density from projectional scans of the lumbar spine have weaker associations with height and weight and stronger associations with prevalent vertebral fractures than standard projectional bone mineral density (BMD) and bone mineral content (BMC), we obtained posteroanterior (PA) dual X-ray absorptiometry (DXA), lateral supine DXA (Hologic QDR 2000), and quantitative computed tomography (QCT, GE 9800 scanner) in 260 postmenopausal women enrolled in two trials of treatment for osteoporosis. In 223 women, all vertebral levels, i.e., L2-L4 in the DXA scan and L1-L3 in the QCT scan, could be evaluated. Fifty-five women were diagnosed as having at least one mild fracture (age 67.9 +/- 6.5 years) and 168 women did not have any fractures (age 62.3 +/- 6.9 years). We derived three estimates of "volumetric bone density" from PA DXA (BMAD, BMAD*, and BMD*) and three from paired PA and lateral DXA (WA BMD, WA BMDHol, and eVBMD). While PA BMC and PA BMD were significantly correlated with height (r = 0.49 and r = 0.28) or weight (r = 0.38 and r = 0.37), QCT and the volumetric bone density estimates from paired PA and lateral scans were not (r = -0.083 to r = 0.050). BMAD, BMAD*, and BMD* correlated with weight but not height. The associations with vertebral fracture were stronger for QCT (odds ratio [QR] = 3.17; 95% confidence interval [CI] = 1.90-5.27), eVBMD (OR = 2.87; CI 1.80-4.57), WA BMDHol (OR = 2.86; CI 1.80-4.55) and WA-BMD (OR = 2.77; CI 1.75-4.39) than for BMAD*/BMD* (OR = 2.03; CI 1.32-3.12), BMAD (OR = 1.68; CI 1.14-2.48), lateral BMD (OR = 1.88; CI 1.28-2.77), standard PA BMD (OR = 1.47; CI 1.02-2.13) or PA BMC (OR = 1.22; CI 0.86-1.74). The areas under the receiver operating characteristic (ROC) curves for QCT and all estimates of volumetric BMD were significantly higher compared with standard PA BMD and PA BMC. We conclude that, like QCT, estimates of volumetric bone density from paired PA and lateral scans are unaffected by height and weight and are more strongly associated with vertebral fracture than standard PA BMD or BMC, or estimates of volumetric density that are solely based on PA DXA scans.

  5. A versatile quantitation platform based on platinum nanoparticles incorporated volumetric bar-chart chip for highly sensitive assays.

    PubMed

    Wang, Yuzhen; Zhu, Guixian; Qi, Wenjin; Li, Ying; Song, Yujun

    2016-11-15

    Platinum nanoparticles incorporated volumetric bar-chart chip (PtNPs-V-Chip) is able to be used for point-of-care tests by providing quantitative and visualized readout without any assistance from instruments, data processing, or graphic plotting. To improve the sensitivity of PtNPs-V-Chip, hybridization chain reaction was employed in this quantitation platform for highly sensitive assays that can detect as low as 16 pM Ebola Virus DNA, 0.01ng/mL carcinoembryonic antigen (CEA), and the 10 HER2-expressing cancer cells. Based on this amplified strategy, a 100-fold decrease of detection limit was achieved for DNA by improving the number of platinum nanoparticle catalyst for the captured analyte. This quantitation platform can also distinguish single base mismatch of DNA hybridization and observe the concentration threshold of CEA. The new strategy lays the foundation for this quantitation platform to be applied in forensic analysis, biothreat detection, clinical diagnostics and drug screening. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Using remote sensing for volumetric analyses of soil degradation by erosion

    NASA Astrophysics Data System (ADS)

    Vlacilova, Marketa; Krasa, Josef; Kavka, Petr

    2014-05-01

    Soil degradation by erosion can be effectively monitored or quantified by modern tools of remote sensing with variable level of detail accessible. The presented study deals with rill erosion assessment using stereoscopic images and orthophotos obtained by UAV (unmanned aerial vehicle). Advantages of UAVs are data in high resolution (1-10 cm/pixel), flexibility of data acquisition and price in comparison with standard aerial photography. Location attacked by intensive rainfall event in the spring 2013 was selected for this study of volumetric assessment of soil degradation by erosion. After the storm, rills and ephemeral gullies in different scales were detected on several fields in the target area. The study was focused on a single parcel catchment (12.5 ha) which attach to the main ephemeral gully in the monitored field. DEM of the location was obtained from UAV stereo images and official LIDAR data. At the same time, in-situ monitoring was effected for comparison and validation of methodology. The field measurement consisted of soil sampling and taking detailed stereo photographs of erosion rills. The photographs were processed by PhotoModeler Scanner software to obtain detailed surface data (TIN) of particular rills. The model for automatic and precise volumetric assessment of single rills was developed within ArcGIS. The whole study area DEM obtained from UAV was also analysed in ArcGIS using similar methodology for computation of rill volumes. The UAV DEM detected most rill bottoms and shapes however the level of detail was too low for actual sediment transport volume estimate. Therefore the volume obtained from UAV DEM was calibrated by the detailed models of single rills acquired by field measurement. Prior the calibration the UAV DEM volume was underestimated by 40-85% based on the rill size. Afterwards the target area was split into twelve separated regions defined by intensity and form of soil degradation (orthophoto-classified rill density). Equally, at least one representative square plot in each section was created. Next, the volume of erosion rills in each square plot was calculated and corrected by referenced relation. These results were extrapolated to the whole of the study catchment. The study contains volumetric evaluation of actual soil loss by rill erosion in detailed scale and in addition, there is a model for rill volume evaluation in highly detached fields. The results illustrate that the volume of soil loss can reach extreme values in detached areas after only one intensive rainfall event. Hundreds of cubic metres of soil can be transported in rills and ephemeral gullies from a single hectare of arable land. Findings are useful for development and verification of procedures for the identification and evaluation of actual degradation of agricultural land by water erosion. The research has been supported by the project No. QJ330118 "Using Remote Sensing for Monitoring of Soil Degradation by Erosion and Erosion Effects".

  7. Image Guided Radiation Therapy Using Synthetic Computed Tomography Images in Brain Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Price, Ryan G.; Department of Radiation Oncology, Wayne State University School of Medicine, Detroit, Michigan; Kim, Joshua P.

    Purpose: The development of synthetic computed tomography (CT) (synCT) derived from magnetic resonance (MR) images supports MR-only treatment planning. We evaluated the accuracy of synCT and synCT-generated digitally reconstructed radiographs (DRRs) relative to CT and determined their performance for image guided radiation therapy (IGRT). Methods and Materials: Magnetic resonance simulation (MR-SIM) and CT simulation (CT-SIM) images were acquired of an anthropomorphic skull phantom and 12 patient brain cancer cases. SynCTs were generated using fluid attenuation inversion recovery, ultrashort echo time, and Dixon data sets through a voxel-based weighted summation of 5 tissue classifications. The DRRs were generated from the phantommore » synCT, and geometric fidelity was assessed relative to CT-generated DRRs through bounding box and landmark analysis. An offline retrospective analysis was conducted to register cone beam CTs (n=34) to synCTs and CTs using automated rigid registration in the treatment planning system. Planar MV and KV images (n=37) were rigidly registered to synCT and CT DRRs using an in-house script. Planar and volumetric registration reproducibility was assessed and margin differences were characterized by the van Herk formalism. Results: Bounding box and landmark analysis of phantom synCT DRRs were within 1 mm of CT DRRs. Absolute planar registration shift differences ranged from 0.0 to 0.7 mm for phantom DRRs on all treatment platforms and from 0.0 to 0.4 mm for volumetric registrations. For patient planar registrations, the mean shift differences were 0.4 ± 0.5 mm (range, −0.6 to 1.6 mm), 0.0 ± 0.5 mm (range, −0.9 to 1.2 mm), and 0.1 ± 0.3 mm (range, −0.7 to 0.6 mm) for the superior-inferior (S-I), left-right (L-R), and anterior-posterior (A-P) axes, respectively. The mean shift differences in volumetric registrations were 0.6 ± 0.4 mm (range, −0.2 to 1.6 mm), 0.2 ± 0.4 mm (range, −0.3 to 1.2 mm), and 0.2 ± 0.3 mm (range, −0.2 to 1.2 mm) for the S-I, L-R, and A-P axes, respectively. The CT-SIM and synCT derived margins were <0.3 mm different. Conclusion: DRRs generated by synCT were in close agreement with CT-SIM. Planar and volumetric image registrations to synCT-derived targets were comparable with CT for phantom and patients. This validation is the next step toward MR-only planning for the brain.« less

  8. Flexible MXene/Carbon Nanotube Composite Paper with High Volumetric Capacitance

    DOE PAGES

    Zhao, Meng-Qiang; Ren, Chang E.; Ling, Zheng; ...

    2014-11-18

    Electrochemical capacitors attract attention because of their high power densities and long cycle lives. Moreover, with increasing demand for portable and wearable electronics, recent research has focused primarily on improving the energy density per unit of volume of electrochemical capacitors. But, the volumetric capacitances of carbon-based electrodes is limited at around 60 F cm -3 for commercial devices, and at best in the range of 300 F cm -3 for low-density porous carbons (<0.5–1 g cm -3 ). Although extremely high capacitances of 1000–1500 F cm -3 can be achieved for hydrated ruthenium oxide, RuO 2 , its highmore » cost limits its wide-spread applications.« less

  9. Man versus machine: comparison of radiologists' interpretations and NeuroQuant® volumetric analyses of brain MRIs in patients with traumatic brain injury.

    PubMed

    Ross, David E; Ochs, Alfred L; Seabaugh, Jan M; Shrader, Carole R

    2013-01-01

    NeuroQuant® is a recently developed, FDA-approved software program for measuring brain MRI volume in clinical settings. The purpose of this study was to compare NeuroQuant with the radiologist's traditional approach, based on visual inspection, in 20 outpatients with mild or moderate traumatic brain injury (TBI). Each MRI was analyzed with NeuroQuant, and the resulting volumetric analyses were compared with the attending radiologist's interpretation. The radiologist's traditional approach found atrophy in 10.0% of patients; NeuroQuant found atrophy in 50.0% of patients. NeuroQuant was more sensitive for detecting brain atrophy than the traditional radiologist's approach.

  10. Using individual patient anatomy to predict protocol compliance for prostate intensity-modulated radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caine, Hannah; Whalley, Deborah; Kneebone, Andrew

    If a prostate intensity-modulated radiation therapy (IMRT) or volumetric-modulated arc therapy (VMAT) plan has protocol violations, it is often a challenge knowing whether this is due to unfavorable anatomy or suboptimal planning. This study aimed to create a model to predict protocol violations based on patient anatomical variables and their potential relationship to target and organ at risk (OAR) end points in the setting of definitive, dose-escalated IMRT/VMAT prostate planning. Radiotherapy plans from 200 consecutive patients treated with definitive radiation for prostate cancer using IMRT or VMAT were analyzed. The first 100 patient plans (hypothesis-generating cohort) were examined to identifymore » anatomical variables that predict for dosimetric outcome, in particular OAR end points. Variables that scored significance were further assessed for their ability to predict protocol violations using a Classification and Regression Tree (CART) analysis. These results were then validated in a second group of 100 patients (validation cohort). In the initial analysis of the hypothesis-generating cohort, percentage of rectum overlap in the planning target volume (PTV) (%OR) and percentage of bladder overlap in the PTV (%OB) were highlighted as significant predictors of rectal and bladder dosimetry. Lymph node treatment was also significant for bladder outcomes. For the validation cohort, CART analysis showed that %OR of < 6%, 6% to 9% and > 9% predicted a 13%, 63%, and 100% rate of rectal protocol violations respectively. For the bladder, %OB of < 9% vs > 9% is associated with 13% vs 88% rate of bladder constraint violations when lymph nodes were not treated. If nodal irradiation was delivered, plans with a %OB of < 9% had a 59% risk of violations. Percentage of rectum and bladder within the PTV can be used to identify individual plan potential to achieve dose-volume histogram (DVH) constraints. A model based on these factors could be used to reduce planning time, improve work flow, and strengthen plan quality and consistency.« less

  11. In vivo validation of patellofemoral kinematics during overground gait and stair ascent.

    PubMed

    Pitcairn, Samuel; Lesniak, Bryson; Anderst, William

    2018-06-18

    The patellofemoral (PF) joint is a common site for non-specific anterior knee pain. The pathophysiology of patellofemoral pain may be related to abnormal motion of the patella relative to the femur, leading to increased stress at the patellofemoral joint. Patellofemoral motion cannot be accurately measured using conventional motion capture. The aim of this study was to determine the accuracy of a biplane radiography system for measuring in vivo PF motion during walking and stair ascent. Four subjects had three 1.0 mm diameter tantalum beads implanted into the patella. Participants performed three trials each of over ground walking and stair ascent while biplane radiographs were collected at 100 Hz. Patella motion was tracked using radiostereophotogrammetric analysis (RSA) as a "gold standard", and compared to a volumetric CT model-based tracking algorithm that matched digitally reconstructed radiographs to the original biplane radiographs. The average RMS difference between the RSA and model-based tracking was 0.41 mm and 1.97° when there was no obstruction from the contralateral leg. These differences increased by 34% and 40%, respectively, when the patella was at least partially obstructed by the contralateral leg. The average RMS difference in patellofemoral joint space between tracking methods was 0.9 mm or less. Previous validations of biplane radiographic systems have estimated tracking accuracy by moving cadaveric knees through simulated motions. These validations were unable to replicate in vivo kinematics, including patella motion due to muscle activation, and failed to assess the imaging and tracking challenges related to contralateral limb obstruction. By replicating the muscle contraction, movement velocity, joint range of motion, and obstruction of the patella by the contralateral limb, the present study provides a realistic estimate of patellofemoral tracking accuracy for future in vivo studies. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. High Volumetric Energy Density Asymmetric Supercapacitors Based on Well-Balanced Graphene and Graphene-MnO2 Electrodes with Densely Stacked Architectures.

    PubMed

    Sheng, Lizhi; Jiang, Lili; Wei, Tong; Fan, Zhuangjun

    2016-10-01

    The well-matched electrochemical parameters of positive and negative electrodes, such as specific capacitance, rate performance, and cycling stability, are important for obtaining high-performance asymmetric supercapacitors. Herein, a facile and cost-effective strategy is demonstrated for the fabrication of 3D densely stacked graphene (DSG) and graphene-MnO 2 (G-MnO 2 ) architectures as the electrode materials for asymmetric supercapacitors (ASCs) by using MnO 2 -intercalated graphite oxide (GO-MnO 2 ) as the precursor. DSG has a stacked graphene structure with continuous ion transport network in-between the sheets, resulting in a high volumetric capacitance of 366 F cm -3 , almost 2.5 times than that of reduced graphene oxide, as well as long cycle life (93% capacitance retention after 10 000 cycles). More importantly, almost similar electrochemical properties, such as specific capacitance, rate performance, and cycling stability, are obtained for DSG as the negative electrode and G-MnO 2 as the positive electrode. As a result, the assembled ASC delivers both ultrahigh gravimetric and volumetric energy densities of 62.4 Wh kg -1 and 54.4 Wh L -1 (based on total volume of two electrodes) in 1 m Na 2 SO 4 aqueous electrolyte, respectively, much higher than most of previously reported ASCs in aqueous electrolytes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Discrete pre-processing step effects in registration-based pipelines, a preliminary volumetric study on T1-weighted images

    PubMed Central

    2017-01-01

    Pre-processing MRI scans prior to performing volumetric analyses is common practice in MRI studies. As pre-processing steps adjust the voxel intensities, the space in which the scan exists, and the amount of data in the scan, it is possible that the steps have an effect on the volumetric output. To date, studies have compared between and not within pipelines, and so the impact of each step is unknown. This study aims to quantify the effects of pre-processing steps on volumetric measures in T1-weighted scans within a single pipeline. It was our hypothesis that pre-processing steps would significantly impact ROI volume estimations. One hundred fifteen participants from the OASIS dataset were used, where each participant contributed three scans. All scans were then pre-processed using a step-wise pipeline. Bilateral hippocampus, putamen, and middle temporal gyrus volume estimations were assessed following each successive step, and all data were processed by the same pipeline 5 times. Repeated-measures analyses tested for a main effects of pipeline step, scan-rescan (for MRI scanner consistency) and repeated pipeline runs (for algorithmic consistency). A main effect of pipeline step was detected, and interestingly an interaction between pipeline step and ROI exists. No effect for either scan-rescan or repeated pipeline run was detected. We then supply a correction for noise in the data resulting from pre-processing. PMID:29023597

  14. Ultrahigh speed endoscopic swept source optical coherence tomography using a VCSEL light source and micromotor catheter

    NASA Astrophysics Data System (ADS)

    Tsai, Tsung-Han; Ahsen, Osman O.; Lee, Hsiang-Chieh; Liang, Kaicheng; Giacomelli, Michael G.; Potsaid, Benjamin M.; Tao, Yuankai K.; Jayaraman, Vijaysekhar; Kraus, Martin F.; Hornegger, Joachim; Figueiredo, Marisa; Huang, Qin; Mashimo, Hiroshi; Cable, Alex E.; Fujimoto, James G.

    2014-03-01

    We developed an ultrahigh speed endoscopic swept source optical coherence tomography (OCT) system for clinical gastroenterology using a vertical-cavity surface-emitting laser (VCSEL) and micromotor based imaging catheter, which provided an imaging speed of 600 kHz axial scan rate and 8 μm axial resolution in tissue. The micromotor catheter was 3.2 mm in diameter and could be introduced through the 3.7 mm accessory port of an endoscope. Imaging was performed at 400 frames per second with an 8 μm spot size using a pullback to generate volumetric data over 16 mm with a pixel spacing of 5 μm in the longitudinal direction. Three-dimensional OCT (3D-OCT) imaging was performed in patients with a cross section of pathologies undergoing standard upper and lower endoscopy at the Veterans Affairs Boston Healthcare System (VABHS). Patients with Barrett's esophagus, dysplasia, and inflammatory bowel disease were imaged. The use of distally actuated imaging catheters allowed OCT imaging with more flexibility such as volumetric imaging in the terminal ileum and the assessment of the hiatal hernia using retroflex imaging. The high rotational stability of the micromotor enabled 3D volumetric imaging with micron scale volumetric accuracy for both en face and cross-sectional imaging. The ability to perform 3D OCT imaging in the GI tract with microscopic accuracy should enable a wide range of studies to investigate the ability of OCT to detect pathology as well as assess treatment response.

  15. A single-walled carbon nanotubes/poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)/copper hexacyanoferrate hybrid film for high-volumetric performance flexible supercapacitors

    NASA Astrophysics Data System (ADS)

    Li, Jianmin; Li, Haizeng; Li, Jiahui; Wu, Guiqing; Shao, Yuanlong; Li, Yaogang; Zhang, Qinghong; Wang, Hongzhi

    2018-05-01

    Volumetric energy density is generally considered to be detrimental to the actual application of supercapacitors, which has provoked a range of research work on increasing the packing density of electrodes. Herein, we fabricate a free-standing single-walled carbon nanotubes (SWCNTs)/poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS)/copper hexacyanoferrate (CuHCF) nanoparticles (NPs) composite supercapacitor electrode, with a high packing density of 2.67 g cm-3. The pseudocapacitive CuHCF NPs are decorated onto the SWCNTs/PEDOT:PSS networks and filled in interspace to increase both of packing density and specific capacitance. This hybrid electrode exhibits a series of outstanding performances, such as high electric conductivity, ultrahigh areal and volumetric capacitances (969.8 mF cm-2 and 775.2 F cm-3 at scan rate of 5 mV s-1), long cycle life and superior rate capability. The asymmetric supercapacitor built by using the SWCNTs/PEDOT:PSS/CuHCF film as positive electrode and Mo-doped WO3/SWCNTs film as negative electrode, can deliver a high energy density of 30.08 Wh L-1 with a power density of 4.25 kW L-1 based on the total volume of the device. The approach unveiled in this study could provide important insights to improving the volumetric performance of energy storage devices and help to reach the critical targets for high rate and high power density demand applications.

  16. Equivalent uniform dose concept evaluated by theoretical dose volume histograms for thoracic irradiation.

    PubMed

    Dumas, J L; Lorchel, F; Perrot, Y; Aletti, P; Noel, A; Wolf, D; Courvoisier, P; Bosset, J F

    2007-03-01

    The goal of our study was to quantify the limits of the EUD models for use in score functions in inverse planning software, and for clinical application. We focused on oesophagus cancer irradiation. Our evaluation was based on theoretical dose volume histograms (DVH), and we analyzed them using volumetric and linear quadratic EUD models, average and maximum dose concepts, the linear quadratic model and the differential area between each DVH. We evaluated our models using theoretical and more complex DVHs for the above regions of interest. We studied three types of DVH for the target volume: the first followed the ICRU dose homogeneity recommendations; the second was built out of the first requirements and the same average dose was built in for all cases; the third was truncated by a small dose hole. We also built theoretical DVHs for the organs at risk, in order to evaluate the limits of, and the ways to use both EUD(1) and EUD/LQ models, comparing them to the traditional ways of scoring a treatment plan. For each volume of interest we built theoretical treatment plans with differences in the fractionation. We concluded that both volumetric and linear quadratic EUDs should be used. Volumetric EUD(1) takes into account neither hot-cold spot compensation nor the differences in fractionation, but it is more sensitive to the increase of the irradiated volume. With linear quadratic EUD/LQ, a volumetric analysis of fractionation variation effort can be performed.

  17. Volumetric breast density affects performance of digital screening mammography.

    PubMed

    Wanders, Johanna O P; Holland, Katharina; Veldhuis, Wouter B; Mann, Ritse M; Pijnappel, Ruud M; Peeters, Petra H M; van Gils, Carla H; Karssemeijer, Nico

    2017-02-01

    To determine to what extent automatically measured volumetric mammographic density influences screening performance when using digital mammography (DM). We collected a consecutive series of 111,898 DM examinations (2003-2011) from one screening unit of the Dutch biennial screening program (age 50-75 years). Volumetric mammographic density was automatically assessed using Volpara. We determined screening performance measures for four density categories comparable to the American College of Radiology (ACR) breast density categories. Of all the examinations, 21.6% were categorized as density category 1 ('almost entirely fatty') and 41.5, 28.9, and 8.0% as category 2-4 ('extremely dense'), respectively. We identified 667 screen-detected and 234 interval cancers. Interval cancer rates were 0.7, 1.9, 2.9, and 4.4‰ and false positive rates were 11.2, 15.1, 18.2, and 23.8‰ for categories 1-4, respectively (both p-trend < 0.001). The screening sensitivity, calculated as the proportion of screen-detected among the total of screen-detected and interval tumors, was lower in higher density categories: 85.7, 77.6, 69.5, and 61.0% for categories 1-4, respectively (p-trend < 0.001). Volumetric mammographic density, automatically measured on digital mammograms, impacts screening performance measures along the same patterns as established with ACR breast density categories. Since measuring breast density fully automatically has much higher reproducibility than visual assessment, this automatic method could help with implementing density-based supplemental screening.

  18. Genetic and environmental determinants of volumetric and areal BMD in multi-generational families of African ancestry: the Tobago Family Health Study.

    PubMed

    Wang, Xiaojing; Kammerer, Candace M; Wheeler, Victor W; Patrick, Alan L; Bunker, Clareann H; Zmuda, Joseph M

    2007-04-01

    BMD is higher and fracture risk is lower among individuals of African versus European descent, but little is known about the genetic architecture of BMD in the former group. Heritabilities of areal and volumetric BMD were moderate in our large families of African descent but differed for trabecular and cortical BMD. Populations of African ancestry have lower osteoporotic fracture risk and higher BMD than other ethnic groups. However, there is a paucity of information regarding the genetic and environmental influences on bone health among populations of African heritage. We dissected the genetic architecture of areal BMD measured by DXA at the proximal femur, lumbar spine, and whole body and volumetric BMD measured by pQCT at the distal and proximal radius and tibia in 283 women and 188 men > or =18 years of age (mean, 43 years) from eight multigenerational Afro-Caribbean families (mean family size > 50). Using quantitative genetic methods, we estimated the residual heritability and the effects of anthropometric, demographic, lifestyle, and medical variables on areal and volumetric BMD. Compared with U.S. non-Hispanic blacks and whites, areal BMD at the femoral neck was highest in the Afro-Caribbean men and women at all ages. Trabecular volumetric BMD decreased linearly with increasing age, whereas cortical volumetric BMD did not decrease until age 40-49, especially in women. Anthropometric, lifestyle, and medical factors accounted for 12-32% of the variation in areal and volumetric BMD, and residual heritabilities (range, 0.23-0.52) were similar to those reported in other ethnic groups. Heritability of cortical BMD was substantially lower than that of areal or trabecular volumetric BMD, although the measured covariates accounted for a similar proportion of the total phenotypic variation. Our study is the first comprehensive genetic epidemiologic analysis of volumetric BMD measured by QCT and the first analysis of these traits in extended families of African descent. Genes account for as much or more of the total variation in areal and volumetric BMD than do environmental factors, but these effects seem to differ for trabecular and cortical bone.

  19. Variable Mach number design approach for a parallel waverider with a wide-speed range based on the osculating cone theory

    NASA Astrophysics Data System (ADS)

    Zhao, Zhen-tao; Huang, Wei; Li, Shi-Bin; Zhang, Tian-Tian; Yan, Li

    2018-06-01

    In the current study, a variable Mach number waverider design approach has been proposed based on the osculating cone theory. The design Mach number of the osculating cone constant Mach number waverider with the same volumetric efficiency of the osculating cone variable Mach number waverider has been determined by writing a program for calculating the volumetric efficiencies of waveriders. The CFD approach has been utilized to verify the effectiveness of the proposed approach. At the same time, through the comparative analysis of the aerodynamic performance, the performance advantage of the osculating cone variable Mach number waverider is studied. The obtained results show that the osculating cone variable Mach number waverider owns higher lift-to-drag ratio throughout the flight profile when compared with the osculating cone constant Mach number waverider, and it has superior low-speed aerodynamic performance while maintaining nearly the same high-speed aerodynamic performance.

  20. volBrain: An Online MRI Brain Volumetry System

    PubMed Central

    Manjón, José V.; Coupé, Pierrick

    2016-01-01

    The amount of medical image data produced in clinical and research settings is rapidly growing resulting in vast amount of data to analyze. Automatic and reliable quantitative analysis tools, including segmentation, allow to analyze brain development and to understand specific patterns of many neurological diseases. This field has recently experienced many advances with successful techniques based on non-linear warping and label fusion. In this work we present a novel and fully automatic pipeline for volumetric brain analysis based on multi-atlas label fusion technology that is able to provide accurate volumetric information at different levels of detail in a short time. This method is available through the volBrain online web interface (http://volbrain.upv.es), which is publically and freely accessible to the scientific community. Our new framework has been compared with current state-of-the-art methods showing very competitive results. PMID:27512372

  1. Dynamic 3D measurement of modulated radiotherapy: a scintillator-based approach

    NASA Astrophysics Data System (ADS)

    Archambault, Louis; Rilling, Madison; Roy-Pomerleau, Xavier; Thibault, Simon

    2017-05-01

    With the rise of high-conformity dynamic radiotherapy, such as volumetric modulated arc therapy and robotic radiosurgery, the temporal dimension of dose measurement is becoming increasingly important. It must be possible to tell both ‘where’ and ‘when’ a discrepancy occurs between the plan and its delivery. A 3D scintillation-based dosimetry system could be ideal for such a thorough, end-to-end verification; however, the challenge lies in retrieving the volumetric information of the light-emitting volume. This paper discusses the motivation, from an optics point of view, of using the images acquired with a plenoptic camera, or light field imager, of an irradiated plastic scintillator volume to reconstruct the delivered 3D dose distribution. Current work focuses on the optimization of the optical design as well as the data processing that is involved in the ongoing development of a clinically viable, second generation dosimetry system.

  2. volBrain: An Online MRI Brain Volumetry System.

    PubMed

    Manjón, José V; Coupé, Pierrick

    2016-01-01

    The amount of medical image data produced in clinical and research settings is rapidly growing resulting in vast amount of data to analyze. Automatic and reliable quantitative analysis tools, including segmentation, allow to analyze brain development and to understand specific patterns of many neurological diseases. This field has recently experienced many advances with successful techniques based on non-linear warping and label fusion. In this work we present a novel and fully automatic pipeline for volumetric brain analysis based on multi-atlas label fusion technology that is able to provide accurate volumetric information at different levels of detail in a short time. This method is available through the volBrain online web interface (http://volbrain.upv.es), which is publically and freely accessible to the scientific community. Our new framework has been compared with current state-of-the-art methods showing very competitive results.

  3. A mass diffusion-based interpretation of the effect of total solids content on solid-state anaerobic digestion of cellulosic biomass.

    PubMed

    Xu, Fuqing; Wang, Zhi-Wu; Tang, Li; Li, Yebo

    2014-09-01

    In solid-state anaerobic digestion (SS-AD) of cellulosic biomass, the volumetric methane production rate has often been found to increase with the increase in total solids (TS) content until a threshold is reached, and then to decrease. This phenomenon cannot be explained by conventional understanding derived from liquid anaerobic digestion. This study proposed that the high TS content-caused mass diffusion limitation may be responsible for the observed methane production deterioration. Based on this hypothesis, a new SS-AD model was developed by taking into account the mass diffusion limitation and hydrolysis inhibition. The good agreement between model simulation and the experimental as well as literature data verified that the observed reduction in volumetric methane production rate could be ascribed to hydrolysis inhibition as a result of the mass diffusion limitation in SS-AD. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. WE-D-303-02: Applications of Volumetric Images Generated with a Respiratory Motion Model Based On An External Surrogate Signal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hurwitz, M; Williams, C; Dhou, S

    Purpose: Respiratory motion can vary significantly over the course of simulation and treatment. Our goal is to use volumetric images generated with a respiratory motion model to improve the definition of the internal target volume (ITV) and the estimate of delivered dose. Methods: Ten irregular patient breathing patterns spanning 35 seconds each were incorporated into a digital phantom. Ten images over the first five seconds of breathing were used to emulate a 4DCT scan, build the ITV, and generate a patient-specific respiratory motion model which correlated the measured trajectories of markers placed on the patients’ chests with the motion ofmore » the internal anatomy. This model was used to generate volumetric images over the subsequent thirty seconds of breathing. The increase in the ITV taking into account the full 35 seconds of breathing was assessed with ground-truth and model-generated images. For one patient, a treatment plan based on the initial ITV was created and the delivered dose was estimated using images from the first five seconds as well as ground-truth and model-generated images from the next 30 seconds. Results: The increase in the ITV ranged from 0.2 cc to 6.9 cc for the ten patients based on ground-truth information. The model predicted this increase in the ITV with an average error of 0.8 cc. The delivered dose to the tumor (D95) changed significantly from 57 Gy to 41 Gy when estimated using 5 seconds and 30 seconds, respectively. The model captured this effect, giving an estimated D95 of 44 Gy. Conclusion: A respiratory motion model generating volumetric images of the internal patient anatomy could be useful in estimating the increase in the ITV due to irregular breathing during simulation and in assessing delivered dose during treatment. This project was supported, in part, through a Master Research Agreement with Varian Medical Systems, Inc. and Radiological Society of North America Research Scholar Grant #RSCH1206.« less

  5. Exploring Volumetrically Indexed Cups

    ERIC Educational Resources Information Center

    Jones, Dustin L.

    2011-01-01

    This article was inspired by a set of 12 cylindrical cups, which are volumetrically indexed; that is to say, the volume of cup "n" is equal to "n" times the volume of cup 1. Various sets of volumetrically indexed cylindrical cups are explored. I demonstrate how this children's toy is ripe for mathematical investigation, with connections to…

  6. 40 CFR Appendix E to Part 52 - Performance Specifications and, Specification Test Procedures for Monitoring Systems for Effluent...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., Specification Test Procedures for Monitoring Systems for Effluent Stream Gas Volumetric Flow Rate E Appendix E... Stream Gas Volumetric Flow Rate 1. Principle and applicability. 1.1Principle. Effluent stream gas... method is applicable to subparts which require continuous gas volumetric flow rate measurement...

  7. 40 CFR Appendix E to Part 52 - Performance Specifications and, Specification Test Procedures for Monitoring Systems for Effluent...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., Specification Test Procedures for Monitoring Systems for Effluent Stream Gas Volumetric Flow Rate E Appendix E... Stream Gas Volumetric Flow Rate 1. Principle and applicability. 1.1Principle. Effluent stream gas... method is applicable to subparts which require continuous gas volumetric flow rate measurement...

  8. 40 CFR 63.1656 - Performance testing, test methods, and compliance demonstrations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... points. (2) Method 2 to determine the volumetric flow rate of the stack gas. (3) Method 3 to determine... matter concentration and volumetric flow rate of the stack gas for positive pressure baghouses without...) Determine the particulate matter concentration and volumetric flow rate using Method 5 or 5D, as applicable...

  9. 40 CFR 63.1656 - Performance testing, test methods, and compliance demonstrations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... points. (2) Method 2 to determine the volumetric flow rate of the stack gas. (3) Method 3 to determine... matter concentration and volumetric flow rate of the stack gas for positive pressure baghouses without...) Determine the particulate matter concentration and volumetric flow rate using Method 5 or 5D, as applicable...

  10. 40 CFR 63.1656 - Performance testing, test methods, and compliance demonstrations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... points. (2) Method 2 to determine the volumetric flow rate of the stack gas. (3) Method 3 to determine... matter concentration and volumetric flow rate of the stack gas for positive pressure baghouses without...) Determine the particulate matter concentration and volumetric flow rate using Method 5 or 5D, as applicable...

  11. An Inquiry-Based Density Laboratory for Teaching Experimental Error

    ERIC Educational Resources Information Center

    Prilliman, Stephen G.

    2012-01-01

    An inquiry-based laboratory exercise is described in which introductory chemistry students measure the density of water five times using either a beaker, a graduated cylinder, or a volumetric pipet. Students are also assigned to use one of two analytical balances, one of which is purposefully miscalibrated by 5%. Each group collects data using…

  12. Identification of Weak Acids and Bases by Titration with Primary Standards. A Modern Version of an Old Analytical Chemistry Experiment.

    ERIC Educational Resources Information Center

    Thompson, Robert Q.

    1988-01-01

    Describes a laboratory exercise in which acid dissociation constants and molecular weights are extracted from sample data and the sample is identified. Emphasizes accurate volumetric work while bringing to practice the concepts of acid-base equilibria, activity coefficients, and thermodynamic constants. (CW)

  13. Characterization of Impact Initiation of Aluminum-Based Intermetallic-Forming Reactive Materials

    DTIC Science & Technology

    2011-12-01

    compressed intermetallic-forming aluminum-based reactive materials upon impact initiation, consisting of equi-volumetric tantalum-aluminum, tungsten-aluminum...18 2.3.4 Dynamic Energy Release Characterization using Pig Test . . . . . . 21 2.3.5 Shock Compression of Reactive Powder Mixtures...is to evaluate the reaction initiation characteristics of quasi-statically compressed intermetallic-forming aluminum-based reactive materials upon

  14. An Analysis of the Chemical Composition of the Atmosphere of Venus on an AMS of the Venera-12 Using a Gas Chromatograph

    NASA Technical Reports Server (NTRS)

    Gelman, B. G.; Zolotukhin, V. G.; Lamonov, N. I.; Levchuk, B. V.; Mukhin, L. M.; Nenarokov, D. F.; Khotnikov, B. P.; Rotin, V. A.; Lipatov, A. N.

    1979-01-01

    Eight analyses of the atmosphere of Venus were made beginning at an altitude of 42 km right down to the surface of the planet. The following were detected in the atmosphere of Venus: nitrogen in concentrations of 2.5 plus or minus 0.5 volumetric %, argon ir concentrations (4 plus or minus 2) x 10 to the minus 3 power volumetric %, CO--(2.8 plus or minus 1.4) x 10 to the minus 3 power volumetric % and SO2 in concentrations (1.3 plus or minus 0.6) x 10 to the minus 2 power volumetric %. The upper limits were estimated for the content of oxygen and water equal to 2 x 10 to the minus 3 power and 10 to the minus 2 power volumetric %, respectively.

  15. Automatic segmentation of the glenohumeral cartilages from magnetic resonance images.

    PubMed

    Neubert, A; Yang, Z; Engstrom, C; Xia, Y; Strudwick, M W; Chandra, S S; Fripp, J; Crozier, S

    2016-10-01

    Magnetic resonance (MR) imaging plays a key role in investigating early degenerative disorders and traumatic injuries of the glenohumeral cartilages. Subtle morphometric and biochemical changes of potential relevance to clinical diagnosis, treatment planning, and evaluation can be assessed from measurements derived from in vivo MR segmentation of the cartilages. However, segmentation of the glenohumeral cartilages, using approaches spanning manual to automated methods, is technically challenging, due to their thin, curved structure and overlapping intensities of surrounding tissues. Automatic segmentation of the glenohumeral cartilages from MR imaging is not at the same level compared to the weight-bearing knee and hip joint cartilages despite the potential applications with respect to clinical investigation of shoulder disorders. In this work, the authors present a fully automated segmentation method for the glenohumeral cartilages using MR images of healthy shoulders. The method involves automated segmentation of the humerus and scapula bones using 3D active shape models, the extraction of the expected bone-cartilage interface, and cartilage segmentation using a graph-based method. The cartilage segmentation uses localization, patient specific tissue estimation, and a model of the cartilage thickness variation. The accuracy of this method was experimentally validated using a leave-one-out scheme on a database of MR images acquired from 44 asymptomatic subjects with a true fast imaging with steady state precession sequence on a 3 T scanner (Siemens Trio) using a dedicated shoulder coil. The automated results were compared to manual segmentations from two experts (an experienced radiographer and an experienced musculoskeletal anatomist) using the Dice similarity coefficient (DSC) and mean absolute surface distance (MASD) metrics. Accurate and precise bone segmentations were achieved with mean DSC of 0.98 and 0.93 for the humeral head and glenoid fossa, respectively. Mean DSC scores of 0.74 and 0.72 were obtained for the humeral and glenoid cartilage volumes, respectively. The manual interobserver reliability evaluated by DSC was 0.80 ± 0.03 and 0.76 ± 0.04 for the two cartilages, implying that the automated results were within an acceptable 10% difference. The MASD between the automatic and the corresponding manual cartilage segmentations was less than 0.4 mm (previous studies reported mean cartilage thickness of 1.3 mm). This work shows the feasibility of volumetric segmentation and separation of the glenohumeral cartilages from MR images. To their knowledge, this is the first fully automated algorithm for volumetric segmentation of the individual glenohumeral cartilages from MR images. The approach was validated against manual segmentations from experienced analysts. In future work, the approach will be validated on imaging datasets acquired with various MR contrasts in patients.

  16. Automatic segmentation of the glenohumeral cartilages from magnetic resonance images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neubert, A., E-mail: ales.neubert@csiro.au

    Purpose: Magnetic resonance (MR) imaging plays a key role in investigating early degenerative disorders and traumatic injuries of the glenohumeral cartilages. Subtle morphometric and biochemical changes of potential relevance to clinical diagnosis, treatment planning, and evaluation can be assessed from measurements derived from in vivo MR segmentation of the cartilages. However, segmentation of the glenohumeral cartilages, using approaches spanning manual to automated methods, is technically challenging, due to their thin, curved structure and overlapping intensities of surrounding tissues. Automatic segmentation of the glenohumeral cartilages from MR imaging is not at the same level compared to the weight-bearing knee and hipmore » joint cartilages despite the potential applications with respect to clinical investigation of shoulder disorders. In this work, the authors present a fully automated segmentation method for the glenohumeral cartilages using MR images of healthy shoulders. Methods: The method involves automated segmentation of the humerus and scapula bones using 3D active shape models, the extraction of the expected bone–cartilage interface, and cartilage segmentation using a graph-based method. The cartilage segmentation uses localization, patient specific tissue estimation, and a model of the cartilage thickness variation. The accuracy of this method was experimentally validated using a leave-one-out scheme on a database of MR images acquired from 44 asymptomatic subjects with a true fast imaging with steady state precession sequence on a 3 T scanner (Siemens Trio) using a dedicated shoulder coil. The automated results were compared to manual segmentations from two experts (an experienced radiographer and an experienced musculoskeletal anatomist) using the Dice similarity coefficient (DSC) and mean absolute surface distance (MASD) metrics. Results: Accurate and precise bone segmentations were achieved with mean DSC of 0.98 and 0.93 for the humeral head and glenoid fossa, respectively. Mean DSC scores of 0.74 and 0.72 were obtained for the humeral and glenoid cartilage volumes, respectively. The manual interobserver reliability evaluated by DSC was 0.80 ± 0.03 and 0.76 ± 0.04 for the two cartilages, implying that the automated results were within an acceptable 10% difference. The MASD between the automatic and the corresponding manual cartilage segmentations was less than 0.4 mm (previous studies reported mean cartilage thickness of 1.3 mm). Conclusions: This work shows the feasibility of volumetric segmentation and separation of the glenohumeral cartilages from MR images. To their knowledge, this is the first fully automated algorithm for volumetric segmentation of the individual glenohumeral cartilages from MR images. The approach was validated against manual segmentations from experienced analysts. In future work, the approach will be validated on imaging datasets acquired with various MR contrasts in patients.« less

  17. SU-F-J-166: Volumetric Spatial Distortions Comparison for 1.5 Tesla Versus 3 Tesla MRI for Gamma Knife Radiosurgery Scans Using Frame Marker Fusion and Co-Registration Modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neyman, G

    Purpose: To compare typical volumetric spatial distortions for 1.5 Tesla versus 3 Tesla MRI Gamma Knife radiosurgery scans in the frame marker fusion and co-registration frame-less modes. Methods: Quasar phantom by Modus Medical Devices Inc. with GRID image distortion software was used for measurements of volumetric distortions. 3D volumetric T1 weighted scans of the phantom were produced on 1.5 T Avanto and 3 T Skyra MRI Siemens scanners. The analysis was done two ways: for scans with localizer markers from the Leksell frame and relatively to the phantom only (simulated co-registration technique). The phantom grid contained a total of 2002more » vertices or control points that were used in the assessment of volumetric geometric distortion for all scans. Results: Volumetric mean absolute spatial deviations relatively to the frame localizer markers for 1.5 and 3 Tesla machine were: 1.39 ± 0.15 and 1.63 ± 0.28 mm with max errors of 1.86 and 2.65 mm correspondingly. Mean 2D errors from the Gamma Plan were 0.3 and 1.0 mm. For simulated co-registration technique the volumetric mean absolute spatial deviations relatively to the phantom for 1.5 and 3 Tesla machine were: 0.36 ± 0.08 and 0.62 ± 0.13 mm with max errors of 0.57 and 1.22 mm correspondingly. Conclusion: Volumetric spatial distortions are lower for 1.5 Tesla versus 3 Tesla MRI machines localized with markers on frames and significantly lower for co-registration techniques with no frame localization. The results show the advantage of using co-registration technique for minimizing MRI volumetric spatial distortions which can be especially important for steep dose gradient fields typically used in Gamma Knife radiosurgery. Consultant for Elekta AB.« less

  18. A volumetric pulmonary CT segmentation method with applications in emphysema assessment

    NASA Astrophysics Data System (ADS)

    Silva, José Silvestre; Silva, Augusto; Santos, Beatriz S.

    2006-03-01

    A segmentation method is a mandatory pre-processing step in many automated or semi-automated analysis tasks such as region identification and densitometric analysis, or even for 3D visualization purposes. In this work we present a fully automated volumetric pulmonary segmentation algorithm based on intensity discrimination and morphologic procedures. Our method first identifies the trachea as well as primary bronchi and then the pulmonary region is identified by applying a threshold and morphologic operations. When both lungs are in contact, additional procedures are performed to obtain two separated lung volumes. To evaluate the performance of the method, we compared contours extracted from 3D lung surfaces with reference contours, using several figures of merit. Results show that the worst case generally occurs at the middle sections of high resolution CT exams, due the presence of aerial and vascular structures. Nevertheless, the average error is inferior to the average error associated with radiologist inter-observer variability, which suggests that our method produces lung contours similar to those drawn by radiologists. The information created by our segmentation algorithm is used by an identification and representation method in pulmonary emphysema that also classifies emphysema according to its severity degree. Two clinically proved thresholds are applied which identify regions with severe emphysema, and with highly severe emphysema. Based on this thresholding strategy, an application for volumetric emphysema assessment was developed offering new display paradigms concerning the visualization of classification results. This framework is easily extendable to accommodate other classifiers namely those related with texture based segmentation as it is often the case with interstitial diseases.

  19. Measurement of insecticides for house spraying

    PubMed Central

    Alvarez, Humberto Romero; Franco, Rafael Miranda

    1959-01-01

    In view of the economic and operational importance in malaria eradication campaigns of correctly measuring the insecticides used, tests have been made in Mexico to compare the accuracy of two manual procedures, one volumetric and the other gravimetric. For volumetric measurement a calibrated, metal measuring-can of sheet metal is used, and for gravimetric measurement a specially designed Roman balance. Altogether 1022 volumetric and 1411 gravimetric tests were made. The results, given in this paper, show that the volumetric measurement entails too great a margin of error to be acceptable, but that the Roman balance is both sufficiently accurate and practical and economical. PMID:14438618

  20. Optical artefact characterization and correction in volumetric scintillation dosimetry

    PubMed Central

    Robertson, Daniel; Hui, Cheukkai; Archambault, Louis; Mohan, Radhe; Beddar, Sam

    2014-01-01

    The goals of this study were (1) to characterize the optical artefacts affecting measurement accuracy in a volumetric liquid scintillation detector, and (2) to develop methods to correct for these artefacts. The optical artefacts addressed were photon scattering, refraction, camera perspective, vignetting, lens distortion, the lens point spread function, stray radiation, and noise in the camera. These artefacts were evaluated by theoretical and experimental means, and specific correction strategies were developed for each artefact. The effectiveness of the correction methods was evaluated by comparing raw and corrected images of the scintillation light from proton pencil beams against validated Monte Carlo calculations. Blurring due to the lens and refraction at the scintillator tank-air interface were found to have the largest effect on the measured light distribution, and lens aberrations and vignetting were important primarily at the image edges. Photon scatter in the scintillator was not found to be a significant source of artefacts. The correction methods effectively mitigated the artefacts, increasing the average gamma analysis pass rate from 66% to 98% for gamma criteria of 2% dose difference and 2 mm distance to agreement. We conclude that optical artefacts cause clinically meaningful errors in the measured light distribution, and we have demonstrated effective strategies for correcting these optical artefacts. PMID:24321820

  1. Alpha shape theory for 3D visualization and volumetric measurement of brain tumor progression using magnetic resonance images.

    PubMed

    Hamoud Al-Tamimi, Mohammed Sabbih; Sulong, Ghazali; Shuaib, Ibrahim Lutfi

    2015-07-01

    Resection of brain tumors is a tricky task in surgery due to its direct influence on the patients' survival rate. Determining the tumor resection extent for its complete information via-à-vis volume and dimensions in pre- and post-operative Magnetic Resonance Images (MRI) requires accurate estimation and comparison. The active contour segmentation technique is used to segment brain tumors on pre-operative MR images using self-developed software. Tumor volume is acquired from its contours via alpha shape theory. The graphical user interface is developed for rendering, visualizing and estimating the volume of a brain tumor. Internet Brain Segmentation Repository dataset (IBSR) is employed to analyze and determine the repeatability and reproducibility of tumor volume. Accuracy of the method is validated by comparing the estimated volume using the proposed method with that of gold-standard. Segmentation by active contour technique is found to be capable of detecting the brain tumor boundaries. Furthermore, the volume description and visualization enable an interactive examination of tumor tissue and its surrounding. Admirable features of our results demonstrate that alpha shape theory in comparison to other existing standard methods is superior for precise volumetric measurement of tumor. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Numerical modelling of multi-vane expander operating conditions in ORC system

    NASA Astrophysics Data System (ADS)

    Rak, Józef; Błasiak, Przemysław; Kolasiński, Piotr

    2017-11-01

    Multi-vane expanders are positive displacement volumetric machines which are nowadays considered for application in micro-power domestic ORC systems as promising alternative to micro turbines and other volumetric expanders. The multi-vane expander features very simple design, low gas flow capacity, low expansion ratios, an advantageous ratio of the power output to the external dimensions and are insensitive to the negative influence of the gas-liquid mixture expansion. Moreover, the multi-vane expander can be easily hermetically sealed, which is one of the key issues in the ORC system design. A literature review indicates that issues concerning the application of multi-vane expanders in such systems, especially related to operating of multi-vane expander with different low-boiling working fluids, are innovative, not fully scientifically described and have the potential for practical implementation. In this paper the results of numerical investigations on multi-vane expander operating conditions are presented. The analyses were performed on three-dimensional numerical model of the expander in ANSYS CFX software. The numerical model of the expander was validated using the data obtained from the experiment carried out on a lab test-stand. Then a series of computational analysis were performed using expanders' numerical model in order to determine its operating conditions under various flow conditions of different working fluids.

  3. Respiratory motion resolved, self-gated 4D-MRI using Rotating Cartesian K-space (ROCK)

    PubMed Central

    Han, Fei; Zhou, Ziwu; Cao, Minsong; Yang, Yingli; Sheng, Ke; Hu, Peng

    2017-01-01

    Purpose To propose and validate a respiratory motion resolved, self-gated (SG) 4D-MRI technique to assess patient-specific breathing motion of abdominal organs for radiation treatment planning. Methods The proposed 4D-MRI technique was based on the balanced steady-state free-precession (bSSFP) technique and 3D k-space encoding. A novel ROtating Cartesian K-space (ROCK) reordering method was designed that incorporates repeatedly sampled k-space centerline as the SG motion surrogate and allows for retrospective k-space data binning into different respiratory positions based on the amplitude of the surrogate. The multiple respiratory-resolved 3D k-space data were subsequently reconstructed using a joint parallel imaging and compressed sensing method with spatial and temporal regularization. The proposed 4D-MRI technique was validated using a custom-made dynamic motion phantom and was tested in 6 healthy volunteers, in whom quantitative diaphragm and kidney motion measurements based on 4D-MRI images were compared with those based on 2D-CINE images. Results The 5-minute 4D-MRI scan offers high-quality volumetric images in 1.2×1.2×1.6mm3 and 8 respiratory positions, with good soft-tissue contrast. In phantom experiments with triangular motion waveform, the motion amplitude measurements based on 4D-MRI were 11.89% smaller than the ground truth, whereas a −12.5% difference was expected due to data binning effects. In healthy volunteers, the difference between the measurements based on 4D-MRI and the ones based on 2D-CINE were 6.2±4.5% for the diaphragm, 8.2±4.9% and 8.9±5.1% for the right and left kidney. Conclusion The proposed 4D-MRI technique could provide high resolution, high quality, respiratory motion resolved 4D images with good soft-tissue contrast and are free of the “stitching” artifacts usually seen on 4D-CT and 4D-MRI based on resorting 2D-CINE. It could be used to visualize and quantify abdominal organ motion for MRI-based radiation treatment planning. PMID:28133752

  4. Respiratory motion-resolved, self-gated 4D-MRI using rotating cartesian k-space (ROCK).

    PubMed

    Han, Fei; Zhou, Ziwu; Cao, Minsong; Yang, Yingli; Sheng, Ke; Hu, Peng

    2017-04-01

    To propose and validate a respiratory motion resolved, self-gated (SG) 4D-MRI technique to assess patient-specific breathing motion of abdominal organs for radiation treatment planning. The proposed 4D-MRI technique was based on the balanced steady-state free-precession (bSSFP) technique and 3D k-space encoding. A novel rotating cartesian k-space (ROCK) reordering method was designed which incorporates repeatedly sampled k-space centerline as the SG motion surrogate and allows for retrospective k-space data binning into different respiratory positions based on the amplitude of the surrogate. The multiple respiratory-resolved 3D k-space data were subsequently reconstructed using a joint parallel imaging and compressed sensing method with spatial and temporal regularization. The proposed 4D-MRI technique was validated using a custom-made dynamic motion phantom and was tested in six healthy volunteers, in whom quantitative diaphragm and kidney motion measurements based on 4D-MRI images were compared with those based on 2D-CINE images. The 5-minute 4D-MRI scan offers high-quality volumetric images in 1.2 × 1.2 × 1.6 mm 3 and eight respiratory positions, with good soft-tissue contrast. In phantom experiments with triangular motion waveform, the motion amplitude measurements based on 4D-MRI were 11.89% smaller than the ground truth, whereas a -12.5% difference was expected due to data binning effects. In healthy volunteers, the difference between the measurements based on 4D-MRI and the ones based on 2D-CINE were 6.2 ± 4.5% for the diaphragm, 8.2 ± 4.9% and 8.9 ± 5.1% for the right and left kidney. The proposed 4D-MRI technique could provide high-resolution, high-quality, respiratory motion-resolved 4D images with good soft-tissue contrast and are free of the "stitching" artifacts usually seen on 4D-CT and 4D-MRI based on resorting 2D-CINE. It could be used to visualize and quantify abdominal organ motion for MRI-based radiation treatment planning. © 2017 American Association of Physicists in Medicine.

  5. Estimated impacts of alternative Australian alcohol taxation structures on consumption, public health and government revenues.

    PubMed

    Doran, Christopher M; Byrnes, Joshua M; Cobiac, Linda J; Vandenberg, Brian; Vos, Theo

    2013-11-04

    To examine health and economic implications of modifying taxation of alcohol in Australia. Economic and epidemiological modelling of four scenarios for changing the current taxation of alcohol products, including: replacing the wine equalisation tax (WET) with a volumetric tax; applying an equal tax rate to all beverages equivalent to a 10% increase in the current excise applicable to spirits and ready-to-drink products; applying an excise tax rate that increases exponentially by 3% for every 1% increase in alcohol content above 3.2%; and applying a two-tiered volumetric tax. We used annual sales data and taxation rates for 2010 as the base case. Alcohol consumption, taxation revenue, disability-adjusted life-years (DALYs) averted and health care costs averted. In 2010, the Australian Government collected close to $8.6 billion from alcohol taxation. All four of the proposed variations to current rates of alcohol excise were shown to save money and more effectively reduce alcohol-related harm compared with the 2010 base case. Abolishing the WET and replacing it with a volumetric tax on wine would increase taxation revenue by $1.3 billion per year, reduce alcohol consumption by 1.3%, save $820 million in health care costs and avert 59 000 DALYs. The alternative scenarios would lead to even higher taxation receipts and greater reductions in alcohol use and harm. Our research findings suggest that any of the proposed variations to current rates of alcohol excise would be a cost-effective health care intervention; they thus reinforce the evidence that taxation is a cost-effective strategy. Of all the scenarios, perhaps the most politically feasible policy option at this point in time is to abolish the WET and replace it with a volumetric tax on wine. This analysis supports the recommendation of the National Preventative Health Taskforce and the Henry Review towards taxing alcohol according to alcohol content.

  6. 40 CFR Table 5 to Subpart Ppp of... - Process Vents From Batch Unit Operations-Monitoring, Recordkeeping, and Reporting Requirements

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Carbon Adsorber f Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s), and 1. Record of total regeneration stream mass or volumetric flow for each carbon bed regeneration cycle.2. Record and report the total regeneration stream mass or volumetric flow during each...

  7. 40 CFR Table 5 to Subpart Ppp of... - Process Vents From Batch Unit Operations-Monitoring, Recordkeeping, and Reporting Requirements

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Carbon Adsorber f Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s), and 1. Record of total regeneration stream mass or volumetric flow for each carbon bed regeneration cycle.2. Record and report the total regeneration stream mass or volumetric flow during each...

  8. 40 CFR Table 5 to Subpart Ppp of... - Process Vents From Batch Unit Operations-Monitoring, Recordkeeping, and Reporting Requirements

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Carbon Adsorber f Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s), and 1. Record of total regeneration stream mass or volumetric flow for each carbon bed regeneration cycle.2. Record and report the total regeneration stream mass or volumetric flow during each...

  9. 40 CFR 98.154 - Monitoring and QA/QC requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the concentrations of the process samples. (b) The mass flow of the product stream containing the HFC... concentration and volumetric flow rate determined by measurement of volumetric flow rate using EPA Method 2, 2A... volumetric flow rate at the inlet or by a metering device for HFC-23 sent to the device. Determine a new...

  10. Three-dimensional (3D) evaluation of liquid distribution in shake flask using an optical fluorescence technique.

    PubMed

    Azizan, Amizon; Büchs, Jochen

    2017-01-01

    Biotechnological development in shake flask necessitates vital engineering parameters e.g. volumetric power input, mixing time, gas liquid mass transfer coefficient, hydromechanical stress and effective shear rate. Determination and optimization of these parameters through experiments are labor-intensive and time-consuming. Computational Fluid Dynamics (CFD) provides the ability to predict and validate these parameters in bioprocess engineering. This work provides ample experimental data which are easily accessible for future validations to represent the hydrodynamics of the fluid flow in the shake flask. A non-invasive measuring technique using an optical fluorescence method was developed for shake flasks containing a fluorescent solution with a waterlike viscosity at varying filling volume (V L  = 15 to 40 mL) and shaking frequency ( n  = 150 to 450 rpm) at a constant shaking diameter (d o  = 25 mm). The method detected the leading edge (LB) and tail of the rotating bulk liquid (TB) relative to the direction of the centrifugal acceleration at varying circumferential heights from the base of the shake flask. The determined LB and TB points were translated into three-dimensional (3D) circumferential liquid distribution plots. The maximum liquid height (H max ) of the bulk liquid increased with increasing filling volume and shaking frequency of the shaking flask, as expected. The toroidal shapes of LB and TB are clearly asymmetrical and the measured TB differed by the elongation of the liquid particularly towards the torus part of the shake flask. The 3D liquid distribution data collected at varying filling volume and shaking frequency, comprising of LB and TB values relative to the direction of the centrifugal acceleration are essential for validating future numerical solutions using CFD to predict vital engineering parameters in shake flask.

  11. Specifications for a coupled neutronics thermal-hydraulics SFR test case

    NASA Astrophysics Data System (ADS)

    Tassone, A.; Smirnov, A. D.; Tikhomirov, G. V.

    2017-01-01

    Coupling neutronics/thermal-hydraulics calculations for the design of nuclear reactors are a growing trend in the scientific community. This approach allows to properly represent the mutual feedbacks between the neutronic distribution and the thermal-hydraulics properties of the materials composing the reactor, details which are often lost when separate analysis are performed. In this work, a test case for a generation IV sodium-cooled fast reactor (SFR), based on the ASTRID concept developed by CEA, is proposed. Two sub-assemblies (SA) characterized by different fuel enrichment and layout are considered. Specifications for the test case are provided including geometrical data, material compositions, thermo-physical properties and coupling scheme details. Serpent and ANSYS-CFX are used as reference in the description of suitable inputs for the performing of the benchmark, but the use of other code combinations for the purpose of validation of the results is encouraged. The expected outcome of the test case are the axial distribution of volumetric power generation term (q‴), density and temperature for the fuel, the cladding and the coolant.

  12. A High Precision $3.50 Open Source 3D Printed Rain Gauge Calibrator

    NASA Astrophysics Data System (ADS)

    Lopez Alcala, J. M.; Udell, C.; Selker, J. S.

    2017-12-01

    Currently available rain gauge calibrators tend to be designed for specific rain gauges, are expensive, employ low-precision water reservoirs, and do not offer the flexibility needed to test the ever more popular small-aperture rain gauges. The objective of this project was to develop and validate a freely downloadable, open-source, 3D printed rain gauge calibrator that can be adjusted for a wide range of gauges. The proposed calibrator provides for applying low, medium, and high intensity flow, and allows the user to modify the design to conform to unique system specifications based on parametric design, which may be modified and printed using CAD software. To overcome the fact that different 3D printers yield different print qualities, we devised a simple post-printing step that controlled critical dimensions to assure robust performance. Specifically, the three orifices of the calibrator are drilled to reach the three target flow rates. Laboratory tests showed that flow rates were consistent between prints, and between trials of each part, while the total applied water was precisely controlled by the use of a volumetric flask as the reservoir.

  13. Gas pre-warming for improving performances of heated humidifiers in neonatal ventilation.

    PubMed

    Schena, E; De Paolis, E; Silvestri, S

    2011-01-01

    Adequate temperature and humidification of gas delivered must be performed during long term neonatal ventilation to avoid potential adverse health effects. Literature shows that performances of heated humidifiers are, at least in some cases, quite poor. In this study, a novel approach to gas conditioning, consisting of gas warming upstream the humidification chamber, is presented. Gas pre-warming, in combination with a control strategy based on a mathematical model taking into account a number of parameters, allows to significantly improve the heated humidifier performances. The theoretical model has been validated and experimental trials have been carried out in the whole volumetric flow-rate (Q) range of neonatal ventilation (lower than 10 L · min(-1)). Experimental results (temperature values ranging from 36 °C to 38 °C and relative humidity values from 90 % to 98 % in the whole range of Q) show values very close to the ideal thermo-hygrometric conditions. The proposed solution allows to avoid vapor condensation at low flow rates and decrease of relative humidity at high flow rates.

  14. Active-passive measurements and CFD based modelling for indoor radon dispersion study.

    PubMed

    Chauhan, Neetika; Chauhan, R P

    2015-06-01

    Computational fluid dynamics (CFD) play a significant role in indoor pollutant dispersion study. Radon is an indoor pollutant which is radioactive and inert gas in nature. The concentration level and spatial distribution of radon may be affected by the dwelling's ventilation conditions. Present work focus at the study of indoor radon gas distribution via measurement and CFD modeling in naturally ventilated living room. The need of the study is the prediction of activity level and to study the effect of natural ventilation on indoor radon. Two measurement techniques (Passive measurement using pin-hole dosimeters and active measurement using continuous radon monitor (SRM)) were used for the validation purpose of CFD results. The CFD simulation results were compared with the measurement results at 15 points, 3 XY planes at different heights along with the volumetric average concentration. The simulation results found to be comparable with the measurement results. The future scope of these CFD codes is to study the effect of varying inflow rate of air on the radon concentration level and dispersion pattern. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. On the resolution of plenoptic PIV

    NASA Astrophysics Data System (ADS)

    Deem, Eric A.; Zhang, Yang; Cattafesta, Louis N.; Fahringer, Timothy W.; Thurow, Brian S.

    2016-08-01

    Plenoptic PIV offers a simple, single camera solution for volumetric velocity measurements of fluid flow. However, due to the novel manner in which the particle images are acquired and processed, few references exist to aid in determining the resolution limits of the measurements. This manuscript provides a framework for determining the spatial resolution of plenoptic PIV based on camera design and experimental parameters. This information can then be used to determine the smallest length scales of flows that are observable by plenoptic PIV, the dynamic range of plenoptic PIV, and the corresponding uncertainty in plenoptic PIV measurements. A simplified plenoptic camera is illustrated to provide the reader with a working knowledge of the method in which the light field is recorded. Then, operational considerations are addressed. This includes a derivation of the depth resolution in terms of the design parameters of the camera. Simulated volume reconstructions are presented to validate the derived limits. It is found that, while determining the lateral resolution is relatively straightforward, many factors affect the resolution along the optical axis. These factors are addressed and suggestions are proposed for improving performance.

  16. Sculpting Mountains: Interactive Terrain Modeling Based on Subsurface Geology.

    PubMed

    Cordonnier, Guillaume; Cani, Marie-Paule; Benes, Bedrich; Braun, Jean; Galin, Eric

    2018-05-01

    Most mountain ranges are formed by the compression and folding of colliding tectonic plates. Subduction of one plate causes large-scale asymmetry while their layered composition (or stratigraphy) explains the multi-scale folded strata observed on real terrains. We introduce a novel interactive modeling technique to generate visually plausible, large scale terrains that capture these phenomena. Our method draws on both geological knowledge for consistency and on sculpting systems for user interaction. The user is provided hands-on control on the shape and motion of tectonic plates, represented using a new geologically-inspired model for the Earth crust. The model captures their volume preserving and complex folding behaviors under collision, causing mountains to grow. It generates a volumetric uplift map representing the growth rate of subsurface layers. Erosion and uplift movement are jointly simulated to generate the terrain. The stratigraphy allows us to render folded strata on eroded cliffs. We validated the usability of our sculpting interface through a user study, and compare the visual consistency of the earth crust model with geological simulation results and real terrains.

  17. McIDAS-V: Advanced Visualization for 3D Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Rink, T.; Achtor, T. H.

    2010-12-01

    McIDAS-V is a Java-based, open-source, freely available software package for analysis and visualization of geophysical data. Its advanced capabilities provide very interactive 4-D displays, including 3D volumetric rendering and fast sub-manifold slicing, linked to an abstract mathematical data model with built-in metadata for units, coordinate system transforms and sampling topology. A Jython interface provides user defined analysis and computation in terms of the internal data model. These powerful capabilities to integrate data, analysis and visualization are being applied to hyper-spectral sounding retrievals, eg. AIRS and IASI, of moisture and cloud density to interrogate and analyze their 3D structure, as well as, validate with instruments such as CALIPSO, CloudSat and MODIS. The object oriented framework design allows for specialized extensions for novel displays and new sources of data. Community defined CF-conventions for gridded data are understood by the software, and can be immediately imported into the application. This presentation will show examples how McIDAS-V is used in 3-dimensional data analysis, display and evaluation.

  18. On the Uncertain Future of the Volumetric 3D Display Paradigm

    NASA Astrophysics Data System (ADS)

    Blundell, Barry G.

    2017-06-01

    Volumetric displays permit electronically processed images to be depicted within a transparent physical volume and enable a range of cues to depth to be inherently associated with image content. Further, images can be viewed directly by multiple simultaneous observers who are able to change vantage positions in a natural way. On the basis of research to date, we assume that the technologies needed to implement useful volumetric displays able to support translucent image formation are available. Consequently, in this paper we review aspects of the volumetric paradigm and identify important issues which have, to date, precluded their successful commercialization. Potentially advantageous characteristics are outlined and demonstrate that significant research is still needed in order to overcome barriers which continue to hamper the effective exploitation of this display modality. Given the recent resurgence of interest in developing commercially viable general purpose volumetric systems, this discussion is of particular relevance.

  19. Handheld real-time volumetric imaging of the spine: technology development.

    PubMed

    Tiouririne, Mohamed; Nguyen, Sarah; Hossack, John A; Owen, Kevin; William Mauldin, F

    2014-03-01

    Technical difficulties, poor image quality and reliance on pattern identifications represent some of the drawbacks of two-dimensional ultrasound imaging of spinal bone anatomy. To overcome these limitations, this study sought to develop real-time volumetric imaging of the spine using a portable handheld device. The device measured 19.2 cm × 9.2 cm × 9.0 cm and imaged at 5 MHz centre frequency. 2D imaging under conventional ultrasound and volumetric (3D) imaging in real time was achieved and verified by inspection using a custom spine phantom. Further device performance was assessed and revealed a 75-min battery life and an average frame rate of 17.7 Hz in volumetric imaging mode. The results suggest that real-time volumetric imaging of the spine is a feasible technique for more intuitive visualization of the spine. These results may have important ramifications for a large array of neuraxial procedures.

  20. Volumetric Titrations Using Electrolytically Generated Reagents for the Determination of Ascorbic Acid and Iron in Dietary Supplement Tablets: An Undergraduate Laboratory Experiment

    ERIC Educational Resources Information Center

    Scanlon, Christopher; Gebeyehu, Zewdu; Griffin, Kameron; Dabke, Rajeev B.

    2014-01-01

    An undergraduate laboratory experiment for the volumetric quantitative analysis of ascorbic acid and iron in dietary supplement tablets is presented. Powdered samples of the dietary supplement tablets were volumetrically titrated against electrolytically generated reagents, and the mass of dietary reagent in the tablet was determined from the…

Top