Shock/vortex interaction and vortex-breakdown modes
NASA Technical Reports Server (NTRS)
Kandil, Osama A.; Kandil, H. A.; Liu, C. H.
1992-01-01
Computational simulation and study of shock/vortex interaction and vortex-breakdown modes are considered for bound (internal) and unbound (external) flow domains. The problem is formulated using the unsteady, compressible, full Navier-Stokes (NS) equations which are solved using an implicit, flux-difference splitting, finite-volume scheme. For the bound flow domain, a supersonic swirling flow is considered in a configured circular duct and the problem is solved for quasi-axisymmetric and three-dimensional flows. For the unbound domain, a supersonic swirling flow issued from a nozzle into a uniform supersonic flow of lower Mach number is considered for quasi-axisymmetric and three-dimensional flows. The results show several modes of breakdown; e.g., no-breakdown, transient single-bubble breakdown, transient multi-bubble breakdown, periodic multi-bubble multi-frequency breakdown and helical breakdown.
A computational study of the taxonomy of vortex breakdown
NASA Technical Reports Server (NTRS)
Spall, Robert E.; Gatski, Thomas B.
1990-01-01
The results of a fully three-dimensional numerical simulation of vortex breakdown using the unsteady, incompressible Navier-Stokes equations are presented. The solutions show that the freestream axial velocity distribution has a significant effect on the position and type of vortex breakdown. Common features between bubble-type and spiral-type breakdown are identified and the role of flow stagnation and the critical state are discussed as complimentary ideas describing the initiation of breakdown.
Vortex breakdown in closed containers with polygonal cross sections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naumov, I. V., E-mail: naumov@itp.nsc.ru; Dvoynishnikov, S. V.; Kabardin, I. K.
2015-12-15
The vortex breakdown bubble in the confined flow generated by a rotating lid in closed containers with polygonal cross sections was analysed both experimentally and numerically for the height/radius aspect ratio equal to 2. The stagnation point locations of the breakdown bubble emergence and the corresponding Reynolds number were determined experimentally and in addition computed numerically by STAR-CCM+ CFD software for square, pentagonal, hexagonal, and octagonal cross section configurations. The flow pattern and the velocity were observed and measured by combining the seeding particle visualization and the temporal accuracy of laser Doppler anemometry. The vortex breakdown size and position onmore » the container axis were determined for Reynolds numbers, ranging from 1450 to 2400. The obtained results were compared with the flow structure in the closed container of cubical and cylindrical configurations. It is shown that the measured evolution of steady vortex breakdown is in close agreement with the numerical results.« less
A computational study of the topology of vortex breakdown
NASA Technical Reports Server (NTRS)
Spall, Robert E.; Gatski, Thomas B.
1991-01-01
A fully three-dimensional numerical simulation of vortex breakdown using the unsteady, incompressible Navier-Stokes equations has been performed. Solutions to four distinct types of breakdown are identified and compared with experimental results. The computed solutions include weak helical, double helix, spiral, and bubble-type breakdowns. The topological structure of the various breakdowns as well as their interrelationship are studied. The data reveal that the asymmetric modes of breakdown may be subject to additional breakdowns as the vortex core evolves in the streamwise direction. The solutions also show that the freestream axial velocity distribution has a significant effect on the position and type of vortex breakdown.
Numerical simulation of incidence and sweep effects on delta wing vortex breakdown
NASA Technical Reports Server (NTRS)
Ekaterinaris, J. A.; Schiff, Lewis B.
1994-01-01
The structure of the vortical flowfield over delta wings at high angles of attack was investigated. Three-dimensional Navier-Stokes numerical simulations were carried out to predict the complex leeward-side flowfield characteristics, including leading-edge separation, secondary separation, and vortex breakdown. Flows over a 75- and a 63-deg sweep delta wing with sharp leading edges were investigated and compared with available experimental data. The effect of variation of circumferential grid resolution grid resolution in the vicinity of the wing leading edge on the accuracy of the solutions was addressed. Furthermore, the effect of turbulence modeling on the solutions was investigated. The effects of variation of angle of attack on the computed vortical flow structure for the 75-deg sweep delta wing were examined. At moderate angles of attack no vortex breakdown was observed. When a critical angle of attack was reached, bubble-type vortex breakdown was found. With further increase in angle of attack, a change from bubble-type breakdown to spiral-type vortex breakdown was predicted by the numerical solution. The effects of variation of sweep angle and freestream Mach number were addressed with the solutions on a 63-deg sweep delta wing.
A numerical study of three-dimensional vortex breakdown
NASA Technical Reports Server (NTRS)
Spall, Robert E.; Ash, Robert L.
1987-01-01
A numerical simulation of bubble-type vortex breakdown using a unique discrete form of the full 3-D, unsteady incompressible Navier-Stokes equations was performed. The Navier-Stokes equations were written in a vorticity-velocity form and the physical problem was not restricted to axisymmetric flow. The problem was parametized on a Rossby- Reynolds-number basis. Utilization of this parameter duo was shown to dictate the form of the free-field boundary condition specification and allowed control of axial breakdown location within the computational domain. The structure of the breakdown bubble was studied through time evolution plots of planar projected velocity vectors as well as through plots of particle traces and vortex lines. These results compared favorably with previous experimental studies. In addition, profiles of all three velocity components are presented at various axial stations and a Fourier analysis was performed to identify the dominant circumferential modes. The dynamics of the breakdown process were studied through plots of axial variation of rate of change of integrated total energy and rate of change of integrated enstrophy, as well as through contour plots of velocity, vorticity and pressure.
Experimental study of the velocity field on a delta wing
NASA Technical Reports Server (NTRS)
Payne, F. M.; Ng, T. T.; Nelson, R. C.
1987-01-01
An experimental study of the leading edge vortices on delta wings at large angles of incidence is presented. A combination of flow visualization, seven-hole pressure probe surveys and laser velocimeter measurements were used to study the leading edge vortex formation and breakdown for a set of delta wings. The delta wing models were thin flat plates with sharp leading edges having sweep angles of 70, 75, 80, and 85 degrees. The flow structure was examined for angles of incidence from 10 to 40 degrees and chord Reynolds numbers from 85,000 to 640,000. Vortex breakdown was observed on all the wings tested. Both bubble and spiral modes of breakdown were observed. The visualization and wake survey data shows that when vortex breakdown occurs the core flow transforms abruptly from a jet-like flow to a wake-like flow. The result also revealed that probe induced vortex breakdown was more steady than the natural breakdown.
Vortex shedding within laminar separation bubbles forming over an airfoil
NASA Astrophysics Data System (ADS)
Kirk, Thomas M.; Yarusevych, Serhiy
2017-05-01
Vortex shedding within laminar separation bubbles forming over the suction side of a NACA 0018 airfoil is studied through a combination of high-speed flow visualization and boundary layer measurements. Wind tunnel experiments are performed at a chord-based Reynolds number of 100,000 and four angles of attack. The high-speed flow visualization is complemented by quantitative velocity and surface pressure measurements. The structures are shown to originate from the natural amplification of small-amplitude disturbances, and the shear layer roll-up is found to occur coherently across the span. However, significant cycle-to-cycle variations are observed in vortex characteristics, including shedding period and roll-up location. The formation of the roll-up vortices precedes the later stages of transition, during which these structures undergo significant deformations and breakdown to smaller scales. During this stage of flow development, vortex merging is also observed. The results provide new insight into the development of coherent structures in separation bubbles and their relation to the overall bubble dynamics and mean bubble topology.
An experimental study of interacting swirl flows in a model gas turbine combustor
NASA Astrophysics Data System (ADS)
Vishwanath, Rahul B.; Tilak, Paidipati Mallikarjuna; Chaudhuri, Swetaprovo
2018-03-01
In this experimental work, we analyze the flow structures emerging from the mutual interaction between adjacent swirling flows at variable degrees of swirl, issued into a semi-confined chamber, as it could happen in a three cup sector of an annular premixed combustor of a modern gas turbine engine. Stereoscopic particle image velocimetry ( sPIV) is used to characterize both the non-reacting and reacting flow fields in the central diametrical (vertical) plane of the swirlers and the corresponding transverse (horizontal) planes at different heights above the swirlers. A central swirling flow with a fixed swirl vane angle is allowed to interact with its neighboring flows of varied swirl levels, with constant inlet bulk flow velocity through the central port. It is found that the presence of straight jets with zero swirl or co-rotating swirling jets with increasing swirl on both sides of the central swirling jet, significantly alters its structures. As such, an increase in the amount of swirl in the neighboring flows increases the recirculation levels in central swirling flow leading to a bubble-type vortex breakdown, not formed otherwise. It is shown with the aid of Helmholtz decomposition that the transition from conical to bubble-type breakdown is captured well by the radial momentum induced by the azimuthal vorticity. Simultaneous sPIV and OH-planar laser-induced fluorescence (PLIF) are employed to identify the influence of the neighboring jets on the reacting vortex breakdown states. Significant changes in the vortex breakdown size and structure are observed due to variation in swirl levels of the neighboring jets alongside reaction and concomitant flow dilatation.
NASA Technical Reports Server (NTRS)
Faler, J. H.
1976-01-01
The results of an experimental study of spiraling flows in a slightly diverging, circular duct are reported. Seven types of flow disturbances were observed. In addition to the spiral and axisymmetric vortex breakdowns and the double helix mode, four other forms were identified and are reported. The type and axial location of the disturbance depended on the Reynolds and circulation numbers of the flow. Detailed velocity measurements were made by using a laser Doppler anemometer. Measurements made far upstream of any disturbance showed that the introduction of swirl resulted in the formation of a high axial velocity jet centered around the vortex center. A mapping of the velocity field of a so-called axisymmetric breakdown, formed at a Reynolds number of 2560, revealed that the recirculation zone is a two-celled structure, with four stagnation points on the vortex axis marking the axial extremes of the concentric cells. The dominant feature of the flow inside the bubble was the strong, periodic velocity fluctuations. Existing theoretical models do not predict the two-celled structure and the temporal velocity fluctuations that were observed.
Vortex breakdown in simple pipe bends
NASA Astrophysics Data System (ADS)
Ault, Jesse; Shin, Sangwoo; Stone, Howard
2016-11-01
Pipe bends and elbows are one of the most common fluid mechanics elements that exists. However, despite their ubiquity and the extensive amount of research related to these common, simple geometries, unexpected complexities still remain. We show that for a range of geometries and flow conditions, these simple flows experience unexpected fluid dynamical bifurcations resembling the bubble-type vortex breakdown phenomenon. Specifically, we show with simulations and experiments that recirculation zones develop within the bends under certain conditions. As a consequence, fluid and particles can remain trapped within these structures for unexpectedly-long time scales. We also present simple techniques to mitigate this recirculation effect which can potentially have impact across industries ranging from biomedical and chemical processing to food and health sciences.
Pattern formation and three-dimensional instability in rotating flows
NASA Astrophysics Data System (ADS)
Christensen, Erik A.; Aubry, Nadine; Sorensen, Jens N.
1997-03-01
A fluid flow enclosed in a cylindrical container where fluid motion is created by the rotation of one end wall as a centrifugal fan is studied. Direct numerical simulations and spatio-temporal analysis have been performed in the early transition scenario, which includes a steady-unsteady transition and a breakdown of axisymmetric to three-dimensional flow behavior. In the early unsteady regime of the flow, the central vortex undergoes a vertical beating motion, accompanied by axisymmetric spikes formation on the edge of the breakdown bubble. As traveling waves, the spikes move along the central vortex core toward the rotating end-wall. As the Reynolds number is increased further, the flow undergoes a three-dimensional instability. The influence of the latter on the previous patterns is studied.
NASA Technical Reports Server (NTRS)
Delfrate, John H.; Fisher, David F.; Zuniga, Fanny A.
1990-01-01
In-flight results from surface and off-surface flow visualizations and from extensive pressure distributions document the vortical flow on the leading edge extensions (LEX) and forebody of the NASA F-18 high alpha research vehicle for low speeds and angles of attack up to 50 degs. Surface flow visualization data, obtained using the emitted fluid technique, were used to define separation lines and laminar separation bubbles. Off-surface flow visualization data, obtained by smoke injection, were used to document both the path of the vortex cores and the location of vortex core breakdown. The location of vortex core breakdown correlated well with the loss of suction pressure on the LEX and with the flow visualization results from ground facilities. Surface flow separation lines on the LEX and forebody corresponded well with the end of pressure recovery under the vortical flows. Correlation of the pressures with wind tunnel results show fair to good correlation.
Evolution and transition mechanisms of internal swirling flows with tangential entry
NASA Astrophysics Data System (ADS)
Wang, Yanxing; Wang, Xingjian; Yang, Vigor
2018-01-01
The characteristics and transition mechanisms of different states of swirling flow in a cylindrical chamber have been numerically investigated using the Galerkin finite element method. The effects of the Reynolds number and swirl level were examined, and a unified theory connecting different flow states was established. The development of each flow state is considered as a result of the interaction and competition between basic mechanisms: (1) the centrifugal effect, which drives an axisymmetric central recirculation zone (CRZ); (2) flow instabilities, which develop at the free shear layer and the central solid-body rotating flow; (3) the bouncing and restoring effects of the injected flow, which facilitate the convergence of flow on the centerline and the formation of bubble-type vortex breakdown; and (4) the damping effect of the end-induced flow, which suppresses the development of the instability waves. The results show that the CRZ, together with the free shear layer on its surface, composes the basic structure of swirling flow. The development of instability waves produces a number of discrete vortex cores enclosing the CRZ. The azimuthal wave number is primarily determined by the injection angle. Generally, the wave number is smaller at a higher injection angle, due to the reduction of the perimeter of the free shear layer. At the same time, the increase in the Reynolds number facilitates the growth of the wave number. The end-induced flow tends to reduce the wave number near the head end and causes a change in wave number from the head end to the downstream region. Spiral-type vortex breakdown can be considered as a limiting case at a high injection angle, with a wave number equal to 0 near the head end and equal to 1 downstream. At lower Reynolds numbers, the bouncing and restoring effect of the injected flow generates bubble-type vortex breakdown.
Supersonic shock wave/vortex interaction
NASA Technical Reports Server (NTRS)
Settles, G. S.; Cattafesta, L.
1993-01-01
Although shock wave/vortex interaction is a basic and important fluid dynamics problem, very little research has been conducted on this topic. Therefore, a detailed experimental study of the interaction between a supersonic streamwise turbulent vortex and a shock wave was carried out at the Penn State Gas Dynamics Laboratory. A vortex is produced by replaceable swirl vanes located upstream of the throat of various converging-diverging nozzles. The supersonic vortex is then injected into either a coflowing supersonic stream or ambient air. The structure of the isolated vortex is investigated in a supersonic wind tunnel using miniature, fast-response, five-hole and total temperature probes and in a free jet using laser Doppler velocimetry. The cases tested have unit Reynolds numbers in excess of 25 million per meter, axial Mach numbers ranging from 2.5 to 4.0, and peak tangential Mach numbers from 0 (i.e., a pure jet) to about 0.7. The results show that the typical supersonic wake-like vortex consists of a non-isentropic, rotational core, where the reduced circulation distribution is self similar, and an outer isentropic, irrotational region. The vortex core is also a region of significant turbulent fluctuations. Radial profiles of turbulent kinetic energy and axial-tangential Reynolds stress are presented. The interactions between the vortex and both oblique and normal shock waves are investigated using nonintrusive optical diagnostics (i.e. schlieren, planar laser scattering, and laser Doppler velocimetry). Of the various types, two Mach 2.5 overexpanded-nozzle Mach disc interactions are examined in detail. Below a certain vortex strength, a 'weak' interaction exists in which the normal shock is perturbed locally into an unsteady 'bubble' shock near the vortex axis, but vortex breakdown (i.e., a stagnation point) does not occur. For stronger vortices, a random unsteady 'strong' interaction results that causes vortex breakdown. The vortex core reforms downstream of the rear stagnation point, and the reduced circulation distribution once again becomes self-similar in this region. A-new model of this interaction is proposed. Finally, a curve defining the approximate limits of supersonic vortex breakdown is presented.
Structure of a swirling jet with vortex breakdown and combustion
NASA Astrophysics Data System (ADS)
Sharaborin, D. K.; Dulin, V. M.; Markovich, D. M.
2018-03-01
An experimental investigation is performed in order to compare the time-averaged spatial structure of low- and high-swirl turbulent premixed lean flames by using the particle image velocimetry and spontaneous Raman scattering techniques. Distributions of the time-average velocity, density and concentration of the main components of the gas mixture are measured for turbulent premixed swirling propane/air flames at atmospheric pressure for the equivalence ratio Φ = 0.7 and Reynolds number Re = 5000 for low- and high-swirl reacting jets. For the low-swirl jet (S = 0.41), the local minimum of the axial mean velocity is observed within the jet center. The positive value of the mean axial velocity indicates the absence of a permanent recirculation zone, and no clear vortex breakdown could be determined from the average velocity field. For the high-swirl jet (S = 1.0), a pronounced vortex breakdown took place with a bubble-type central recirculation zone. In both cases, the flames are stabilized in the inner mixing layer of the jet around the central wake, containing hot combustion products. O2 and CO2 concentrations in the wake of the low-swirl jet are found to be approximately two times smaller and greater than those in the recirculation zone of the high-swirl jet, respectively.
Analysis and control of asymmetric vortex flows and supersonic vortex breakdown
NASA Technical Reports Server (NTRS)
Kandil, Osama A.
1991-01-01
Topics relative to the analysis and control of asymmetric vortex flow and supersonic vortex breakdown are discussed. Specific topics include the computation of compressible, quasi-axisymmetric slender vortex flow and breakdown; supersonic quasi-axisymmetric vortex breakdown; and three-dimensional Navier-Stokes asymmetric solutions for cones and cone-cylinder configurations.
The Speed of Axial Propagation of a Cylindrical Bubble Through a Cylindrical Vortex
NASA Technical Reports Server (NTRS)
Shariff, Karim; Mansour, Nagi N. (Technical Monitor)
2002-01-01
Inspired by the rapid elongation of air columns injected into vortices by dolphins, we present an exact inviscid solution for the axial speed (assumed steady) of propagation of the tip of a semi-infinite cylindrical bubble along the axis of a cylindrical vortex. The bubble is assumed to be held at constant pressure by being connected to a reservoir, the lungs of the dolphin, say. For a given bubble pressure, there is a modest critical rotation rate above which steadily propagating bubbles exist. For a bubble at ambient pressure, the propagation speed of the bubble (relative to axial velocity within the vortex) varies between 0.5 and 0.6 of the maximum rotational speed of the vortex. Surprisingly, the bubble tip can propagate (almost as rapidly) even when the pressure minimum in the vortex core is greater than the bubble pressure; in this case, solutions exhibit a dimple on the nose of the bubble. A situation important for incipient vortex cavitation, and one which dolphins also demonstrate, is elongation of a free bubble, i.e., one whose internal pressure may vary. Under the assumption that the acceleration term is small (checked a posteriori), the steady solution is applied at each instant during the elongation. Three types of behavior are then possible depending on physical parameters and initial conditions: (A) Unabated elongation with slowly increasing bubble pressure, and nearly constant volume. Volume begins to decrease in the late stages. (B1) Elongation with decreasing bubble pressure. A limit point of the steady solution is encountered at a finite bubble length. (B2) Unabated elongation with decreasing bubble pressure and indefinite creation of volume. This is made possible by the existence of propagating solutions at bubble pressures below the minimum vortex pressure. As the bubble stretches, its radius initially decreases but then becomes constant; this is also observed in experiments on incipient vortex cavitation.
Internal structure of a vortex breakdown
NASA Technical Reports Server (NTRS)
Nakamura, Y.; Leonard, A.; Spalart, P. R.
1986-01-01
An axisymmetric vortex breakdown was well simulated by the vortex filament method. The agreement with the experiment was qualitatively good. In particular, the structure in the interior of the vortex breakdown was ensured to a great degree by the present simulation. The second breakdown, or spiral type, which occurs downstream of the first axisymmetric breakdown, was simulated more similarly to the experiment than before. It shows a kink of the vortex filaments and strong three-dimensionality. Furthermore, a relatively low velocity region was observed near the second breakdown. It was also found that it takes some time for this physical phenomenon to attain its final stage. The comparison with the experiment is getting better as time goes on. In this paper, emphasis is placed on the comparison of the simulated results with the experiment. The present results help to make clear the mechanism of a vortex breakdown.
Influence of Initial Vorticity Distribution on Axisymmetric Vortex Breakdown and Reconnection
NASA Technical Reports Server (NTRS)
Young, Larry A.
2007-01-01
An analytical treatment has been developed to study some of the axisymmetric vortex breakdown and reconnection fluid dynamic processes underlying body-vortex interactions that are frequently manifested in rotorcraft and propeller-driven fixed-wing aircraft wakes. In particular, the presence of negative vorticity in the inner core of a vortex filament (one example of which is examined in this paper) subsequent to "cutting" by a solid body has a profound influence on the vortex reconnection, leading to analog flow behavior similar to vortex breakdown phenomena described in the literature. Initial vorticity distributions (three specific examples which are examined) without an inner core of negative vorticity do not exhibit vortex breakdown and instead manifest diffusion-like properties while undergoing vortex reconnection. Though this work focuses on laminar vortical flow, this work is anticipated to provide valuable insight into rotary-wing aerodynamics as well as other types of vortical flow phenomena.
NASA Technical Reports Server (NTRS)
Shariff, Karim; Marten, Ken; Psarakos, Suchi; White, Don J.; Merriam, Marshal (Technical Monitor)
1996-01-01
The article discusses how dolphins create and play with three types of air-filled vortices. The underlying physics is discussed. Photographs and sketches illustrating the dolphin's actions and physics are presented. The dolphins engage in this behavior on their own initiative without food reward. These behaviors are done repeatedly and with singleminded effort. The first type is the ejection of bubbles which, after some practice on the part of the dolphin, turn into toroidal vortex ring bubbles by the mechanism of baroclinic torque. These bubbles grow in radius and become thinner as they rise vertically to the surface. One dolphin would blow two in succession and guide them to fuse into one. Physicists call this a vortex reconnection. In the second type, the dolphins first create an invisible vortex ring in the water by swimming on their side and waving their tail fin (also called flukes) vigorously. This vortex ring travels horizontally in the water. The dolphin then turns around, finds the vortex and injects a stream of air into it from its blowhole. The air "fills-out" the core of the vortex ring. Often, the dolphin would knock-off a smaller ring bubble from the larger ring (this also involves vortex reconnection) and steer the smaller ring around the tank. One other dolphin employed a few other techniques for planting air into the fluke vortex. One technique included standing vertically in the water with tail-up, head-down and tail piercing the free surface. As the fluke is waved to create the vortex ring, air is entrained from above the surface. Another technique was gulping air in the mouth, diving down, releasing air bubbles from the mouth and curling them into a ring when they rose to the level of the fluke. In the third type, demonstrated by only one dolphin, the longitudinal vortex created by the dorsal fin on the back is used to produce 10-15 foot long helical bubbles. In one technique she swims in a curved path. This creates a dorsal fin vortex since centrifugal force has to be balanced by a lift-like force. She then re-traces her path and injects air into the vortex from her blowhole. She can even make a ring reconnect from the helix. In the second technique, demonstrated a few times, she again swims in a curved path, releases a cloud or group of bubbles from her blowhole and turns sharply away (Which presumably strengthens the vortex). As the bubbles encounter the vortex, they travel to the center of the vortex, merge and, in a flash, elongate along the core of the vortex. In all the three types, the air-water interface is shiny smooth and stable because the pressure gradient in the vortex flow around the bubble stabilizes it. A lot of the interesting physics still remains to be explored.
Behavior of streamwise rib vortices in a three-dimensional mixing layer
NASA Technical Reports Server (NTRS)
Lopez, J. M.; Bulbeck, C. J.
1992-01-01
The structure and behavior of a streamwise rib vortex in a direct numerical simulation of a time-developing three-dimensional incompressible plane mixing layer is examined. Where the rib vortex is being stretched, the vorticity vector is primarily directed in the vortex axial direction and the radial and azimuthal velocity distribution is similar to that of a Burger's vortex. In the region where the vortex stretching is negative, there is a change in the local topology of the vortex. The axial flow is decelerated and a negative azimuthal component of vorticity is induced. These features are characteristic of vortex breakdown. The temporal evolution of the rib vortex is similar to the evolution of an axisymmetric vortex in the early stages of vortex breakdown. The effect of vortex breakdown on other parts of the flow is, however, not as significant as the interaction between the rib vortex and other vortices.
Study on Prediction of Underwater Radiated Noise from Propeller Tip Vortex Cavitation
NASA Astrophysics Data System (ADS)
Yamada, Takuyoshi; Sato, Kei; Kawakita, Chiharu; Oshima, Akira
2015-12-01
The method to predict underwater radiated noise from tip vortex cavitation was studied. The growth of a single cavitation bubble in tip vortex was estimated by substituting the tip vortex to Rankine combined vortex. The ideal spectrum function for the sound pressure generated by a single cavitation bubble was used, also the empirical factor for the number of collapsed bubbles per unit time was introduced. The estimated noise data were compared with measured ship's ones and it was found out that this method can estimate noise data within 3dB difference.
Prediction and control of vortex-dominated and vortex-wake flows
NASA Technical Reports Server (NTRS)
Kandil, Osama
1993-01-01
This progress report documents the accomplishments achieved in the period from December 1, 1992 until November 30, 1993. These accomplishments include publications, national and international presentations, NASA presentations, and the research group supported under this grant. Topics covered by documents incorporated into this progress report include: active control of asymmetric conical flow using spinning and rotary oscillation; supersonic vortex breakdown over a delta wing in transonic flow; shock-vortex interaction over a 65-degree delta wing in transonic flow; three dimensional supersonic vortex breakdown; numerical simulation and physical aspects of supersonic vortex breakdown; and prediction of asymmetric vortical flows around slender bodies using Navier-Stokes equations.
Interaction of a vortex ring and a bubble
NASA Astrophysics Data System (ADS)
Jha, Narsing K.; Govardhan, Raghuraman N.
2014-11-01
Micro-bubble injection in to boundary layers is one possible method for reducing frictional drag of ships. Although this has been studied for some time, the physical mechanisms responsible for drag reduction using microbubbles in turbulent boundary layers is not yet fully understood. Previous studies suggest that bubble-vortical structure interaction seems to be one of the important physical mechanisms for frictional drag reduction using microbubbles. In the present work, we study a simplification of this problem, namely, the interaction of a single vortical structure, in particular a vortex ring, with a single bubble for better understanding of the physics. The vortex ring is generated using a piston-cylinder arrangement and the bubble is generated by connecting a capillary to an air pump. The bubble dynamics is directly visualized using a high speed camera, while the vorticity modification is measured using time resolved PIV. The results show that significant deformations can occur of both the bubble and the vortex ring. Effect of different non-dimensional parameters on the interaction will be presented in the meeting.
Cheng, Szu-Cheng; Jheng, Shih-Da
2016-08-22
This paper reports a novel type of vortex lattice, referred to as a bubble crystal, which was discovered in rapidly rotating Bose gases with long-range interactions. Bubble crystals differ from vortex lattices which possess a single quantum flux per unit cell, while atoms in bubble crystals are clustered periodically and surrounded by vortices. No existing model is able to describe the vortex structure of bubble crystals; however, we identified a mathematical lattice, which is a subset of coherent states and exists periodically in the physical space. This lattice is called a von Neumann lattice, and when it possesses a single vortex per unit cell, it presents the same geometrical structure as an Abrikosov lattice. In this report, we extend the von Neumann lattice to one with an integral number of flux quanta per unit cell and demonstrate that von Neumann lattices well reproduce the translational properties of bubble crystals. Numerical simulations confirm that, as a generalized vortex, a von Neumann lattice can be physically realized using vortex lattices in rapidly rotating Bose gases with dipole interatomic interactions.
NASA Technical Reports Server (NTRS)
Fisher, David F.; Delfrate, John H.; Richwine, David M.
1991-01-01
Surface and off-surface flow visualization techniques were used to visualize the 3-D separated flows on the NASA F-18 high alpha research vehicle at high angles of attack. Results near the alpha = 25 to 26 deg and alpha = 45 to 49 deg are presented. Both the forebody and leading edge extension (LEX) vortex cores and breakdown locations were visualized using smoke. Forebody and LEX vortex separation lines on the surface were defined using an emitted fluid technique. A laminar separation bubble was also detected on the nose cone using the emitted fluid technique and was similar to that observed in the wind tunnel test, but not as extensive. Regions of attached, separated, and vortical flow were noted on the wing and the leading edge flap using tufts and flow cones, and compared well with limited wind tunnel results.
Effects of streamwise vortex breakdown on supersonic combustion.
Hiejima, Toshihiko
2016-04-01
This paper presents a numerical simulation study of the combustion structure of streamwise vortex breakdown at Mach number 2.48. Hydrogen fuel is injected into a combustor at sonic speed from the rear of a hypermixer strut that can generate streamwise vortices. The results show that the burning behavior is enhanced at the points of the shock waves that are incident on the vortex and therefore the vortex breakdown in the subsonic region occurs due to combustion. The breakdown domain in the mainstream is found to form a flame-holding region suited to combustion and to lead to a stable combustion field with detached flames. In this way, streamwise vortex breakdown has an essential role in combustion enhancement and the formation of flames that hold under supersonic inflow conditions. Finally, the combustion property defined here is shown to coincide with the produced-water mass flow. This property shows that the amount of combustion is saturated at equivalence ratios over 0.4, although there is a slight increase beyond 1.
Flow-field in a vortex with breakdown above sharp edged delta wings
NASA Technical Reports Server (NTRS)
Hayashi, Y.; Nakaya, T.
1978-01-01
The behavior of vortex-flow, accompanied with breakdown, formed above sharp-edged delta wings, was studied experimentally as well as theoretically. Emphasis is placed particularly on the criterion for the breakdown at sufficiently large Reynolds numbers
NASA Technical Reports Server (NTRS)
Erickson, Gary E.
1991-01-01
The vortex dominated aerodynamic characteristics of a generic 65 degree cropped delta wing model were studied in a wind tunnel at subsonic through supersonic speeds. The lee-side flow fields over the wing-alone configuration and the wing with leading edge extension (LEX) added were observed at M (infinity) equals 0.40 to 1.60 using a laser vapor screen technique. These results were correlated with surface streamline patterns, upper surface static pressure distributions, and six-component forces and moments. The wing-alone exhibited vortex breakdown and asymmetry of the breakdown location at the subsonic and transonic speeds. An earlier onset of vortex breakdown over the wing occurred at transonic speeds due to the interaction of the leading edge vortex with the normal shock wave. The development of a shock wave between the vortex and wing surface caused an early separation of the secondary boundary layer. With the LEX installed, wing vortex breakdown asymmetry did not occur up to the maximum angle of attack in the present test of 24 degrees. The favorable interaction of the LEX vortex with the wing flow field reduced the effects of shock waves on the wing primary and secondary vortical flows. The direct interaction of the wing and LEX vortex cores diminished with increasing Mach number. The maximum attainable vortex-induced pressure signatures were constrained by the vacuum pressure limit at the transonic and supersonic speeds.
NASA Technical Reports Server (NTRS)
Visser, Kenneth D.
1991-01-01
Experimental crosswire measurements of the flowfield above a 70 and 75 degree flat plate delta wing were performed at a Reynolds number of 250,000. Survey grids were taken normal to the platform at a series of chordwise locations for angles of attack of 20 and 30 degrees. Axial and azimuthal vorticity distributions were derived from the velocity fields. The dependence of circulation on distance from the vortex core as well as on chordwise location was examined. The effects of nondimensionalization in comparison with other experimental data was made. The circulation distribution scales with the local semispan and grows approximately linearly in the chordwise direction. For regions of the flow outside of the vortex subcore, the circulation at any chordwise station was observed to vary logarithmically with distance from the vortex axis. The circulation was also found to increase linearly with angle of incidence at a given chordwise station. A reduction in the local circulation about the vortex axis occurred at breakdown. The spanwise distribution of axial vorticity was severely altered through the breakdown region and the spanwise distribution of axial vorticity present appeared to reach a maximum immediately preceding breakdown. The local concentration of axial vorticity about the vortex axis was reduced while the magnitude of the azimuthal vorticity decreased throughout the breakdown zone. The axial vorticity components with a negative sense, found in the secondary vortex, remained unaffected by changes in wing sweep or angle of attack, in direct contrast to the positive components. The inclusion of the local wing geometry into a previously derived correlation parameter indicated that the circulation of growing leading edge vortex flows were similar at corresponding radii from the vortex axis. It was concluded that the flow over a delta wing, upstream of the breakdown regions and away from the apex and trailing edge regions, is conical. In addition, the dominating factors leading to the onset of breakdown are felt to be the local circulation of the vortex and the accompanying pressure field.
NASA Astrophysics Data System (ADS)
Ranjan, Devesh; Motl, Bradley; Niederhaus, John; Oakley, Jason; Anderson, Mark; Bonazza, Riccardo; Greenough, Jeffrey
2006-11-01
Results are presented from experiments studying the interaction of a planar shock wave of strength 1.4
An experimental study of the nonlinear dynamic phenomenon known as wing rock
NASA Technical Reports Server (NTRS)
Arena, A. S., Jr.; Nelson, R. C.; Schiff, L. B.
1990-01-01
An experimental investigation into the physical phenomena associated with limit cycle wing rock on slender delta wings has been conducted. The model used was a slender flat plate delta wing with 80-deg leading edge sweep. The investigation concentrated on three main areas: motion characteristics obtained from time history plots, static and dynamic flow visualization of vortex position, and static and dynamic flow visualization of vortex breakdown. The flow visualization studies are correlated with model motion to determine the relationship between vortex position and vortex breakdown with the dynamic rolling moments. Dynamic roll moment coefficient curves reveal rate-dependent hysteresis, which drives the motion. Vortex position correlated with time and model motion show a time lag in the normal position of the upward moving wing vortex. This time lag may be the mechanism responsible for the hysteresis. Vortex breakdown is shown to have a damping effect on the motion.
Pre-breakdown phenomena and discharges in a gas-liquid system
NASA Astrophysics Data System (ADS)
Tereshonok, D. V.; Babaeva, N. Yu; Naidis, G. V.; Panov, V. A.; Smirnov, B. M.; Son, E. E.
2018-04-01
In this paper, we investigate pre-breakdown and breakdown phenomena in gas-liquid systems. Cavitation void formation and breakdown in bubbles immersed in liquids are studied numerically, while complete breakdown of bubbled water is studied in experiments. It is shown that taking into account the dependence of water dielectric constant on electric field strength plays the same important role for cavitation void appearance under the action of electrostriction forces as the voltage rise time. It is also shown that the initial stage of breakdown in deformed bubbles immersed in liquid strongly depends on spatial orientation of the bubbles relative to the external electric field. The effect of immersed microbubbles, distributed in bulk water, on breakdown time and voltage is studied experimentally. At the breakdown voltage, the slow ‘thermal’ mechanism is changed by the fast ‘streamer-leader’ showing a decrease in breakdown time by two orders of magnitude by introducing microbubbles (0.1% of volumetric gas content) into the water. In addition, the plasma channel is found to pass between nearby microbubbles, exhibiting some ‘guidance’ effect.
Analysis of the breakdown of the Antarctic circumpolar vortex using TOMS ozone data
NASA Technical Reports Server (NTRS)
Bowman, Kenneth P.
1987-01-01
Climatological analysis of data from the Total Ozone Mapping Spectrometer (TOMS) on the Nimbus 7 satellite has shown that the annual cycles of ozone are very different in the Arctic and Antarctic. The annual cycle in the Arctic is a relatively smooth annual sine wave; but in the Antarctic the circumpolar vortex breaks down rapidly during the Southern Hemisphere spring (September through November), producing a rapid rise in total ozone and a sawtooth-shaped annual cycle. The evolution of the Antarctic total ozone field during the vortex breakdown was studied by computing areally-integrated ozone amounts from the TOMS data. This technique avoids substantial difficulties with using zonally-averaged ozone amounts to study the asymmetric breakdown phenomenon. Variability of total ozone is found to be large both within an individual year and between different years. During the last decade monthly-mean total ozone values in the Antarctic during the springtime vortex breakdown period have decreased dramatically. The ozone-area statistics indicate that the decrease has resulted in part from changes in the timing of the vortex breakdown and resultant ozone increase, which have occurred later during recent years. Analysis of the spatial scales involved in the ozone transport and mixing that occur during the vortex breakdown is now underway. Reliable calculation of diagnostic quantities like areally-integrated ozone is possible only with the high-resolution, two-dimensional, daily coverage provided by the TOMS instrument.
Jet and Vortex Projectile Flows in Shock/bubble-on-wall Configuration
NASA Astrophysics Data System (ADS)
Peng, Gaozhu; Zabusky, Norman
2001-11-01
We observe intense coaxial upstream and radial flow structures from a shock in air interacting with a SF6 half-bubble placed against an ideally reflecting wall. Our axisymmetric numerical simulations were done with PPM and models a spherical bubble struck symmetrically by two identical approaching shocks . A "dual" vorticity deposition arises at early time and a coaxial upstream moving primary jet and radial vortex ring flow appears. A coherent vortex ring or vortex projectile (VP), with entrained shocklets originates from the vortex layer produced at the Mach stem (which arises from the primary reflected shock). This VP moves ahead of the jet. The original transmitted wave and other trapped waves in the expanding axial jet causes a collapsing and expanding cavity and other instabilities on the complex bubble interface. We present and analyze our results with different diagnostics: vorticity, density, divergence of velocity, and numerical shadowgraph patterns; global quantification of circulation, enstrophy and r-integrated vorticity; etc. We also discuss data projection and filtering for quantifying and validating complex flows.
NASA Technical Reports Server (NTRS)
Gaugler, R. E.; Russell, L. M.
1980-01-01
Neutrally buoyant helium-filled bubbles were observed as they followed the streamlines in a horseshoe vortex system around the vane leading edge in a large-scale, two-dimensional, turbine stator cascade. Bubbles were introduced into the endwall boundary layer through a slot upstream of the vane leading edge. The paths of the bubbles were recorded photographically as streaklines on 16-mm movie film. Individual frames from the film have been selected, and overlayed to show the details of the horseshoe vortex around the leading edge. The transport of the vortex across the passage near the leading edge is clearly seen when compared to the streaks formed by bubbles carried in the main stream. Limiting streamlines on the endwall surface were traced by the flow of oil drops.
Reducing bubbles in glass coatings improves electrical breakdown strength
NASA Technical Reports Server (NTRS)
Banks, B.
1968-01-01
Helium reduces bubbles in glass coatings of accelerator grids for ion thrustors. Fusing the coating in a helium atmosphere creates helium bubbles in the glass. In an argon atmosphere, entrapped helium diffuses out of the glass and the bubbles collapse. The resultant coating has a substantially enhanced electrical breakdown strength.
NASA Technical Reports Server (NTRS)
Gaugler, R. E.; Russell, L. M.
1979-01-01
Neutrally bouyant helium-filled bubbles were observed as they followed the streamlines in a horseshoe vortex system around the vane leading edge in a large scale, two dimensional, turbine stator cascade. Inlet Reynolds number, based on true chord, ranged between 100,000 to 300,000. Bubbles were introduced into the endwall boundary layer through a slot upstream of the vane leading edge. The paths of the bubbles were recorded photographically as streaklines on 16 mm movie film. Individual frames from the film were selected, and overlayed to show the details of the horseshoe vortex around the leading edge. The transport of the vortex across the passage near the leading edge is clearly seen when compared to the streaks formed by bubbles carried in the main stream. Limiting streamlines on the endwall surface were traced by the flow of oil drops.
Investigation of the Relationship of Vortex-Generated Sound and Airframe Noise
NASA Technical Reports Server (NTRS)
Smith, Sonya T.
1998-01-01
Airframe noise contributes the most to the environmental contamination from airports during take-off and landing. Two sources of noise are from the vortex-system associated with the slat and flap of multi-element wing designs. The flap-side edge vortex experiences bursting, known as vortex breakdown, at a critical deflection angle and experimental results show that this event may be one source of increased noise levels. Understanding of the edge roll-up phenomenon has increased but further focused studies on the role of the growth and bursting of the vortex structure are needed. The goal of the research is to plan a research program that will contribute to the understanding of the fluid physics of vortex breakdown and its relationship to noise production. The success of this program will lead to a priori predictions of when vortex breakdown will occur on the flap side-edge and accurate calculations of its effect on the noise level experienced by an observer near the aircraft during take-off and landing.
Vortex breakdown incipience: Theoretical considerations
NASA Technical Reports Server (NTRS)
Berger, Stanley A.; Erlebacher, Gordon
1992-01-01
The sensitivity of the onset and the location of vortex breakdowns in concentrated vortex cores, and the pronounced tendency of the breakdowns to migrate upstream have been characteristic observations of experimental investigations; they have also been features of numerical simulations and led to questions about the validity of these simulations. This behavior seems to be inconsistent with the strong time-like axial evolution of the flow, as expressed explicitly, for example, by the quasi-cylindrical approximate equations for this flow. An order-of-magnitude analysis of the equations of motion near breakdown leads to a modified set of governing equations, analysis of which demonstrates that the interplay between radial inertial, pressure, and viscous forces gives an elliptic character to these concentrated swirling flows. Analytical, asymptotic, and numerical solutions of a simplified non-linear equation are presented; these qualitatively exhibit the features of vortex onset and location noted above.
NASA Astrophysics Data System (ADS)
Chikishev, Leonid; Lobasov, Aleksei; Sharaborin, Dmitriy; Markovich, Dmitriy; Dulin, Vladimir; Hanjalic, Kemal
2017-11-01
We investigate flame-flow interactions in an atmospheric turbulent high-swirl methane/air lean jet-flame at Re from 5,000 to 10,000 and equivalence ratio below 0.75 at the conditions of vortex breakdown. The focus is on the spatial correlation between the propagation of large-scale vortex structures, including precessing vortex core, and the variations of the local heat release. The measurements are performed by planar laser-induced fluorescence of hydroxyl and formaldehyde, applied simultaneously with the stereoscopic particle image velocimetry technique. The data are processed by the proper orthogonal decomposition. The swirl rate exceeded critical value for the vortex breakdown resulting in the formation of a processing vortex core and secondary helical vortex filaments that dominate the unsteady flow dynamics both of the non-reacting and reacting jet flows. The flame front is located in the inner mixing layer between the recirculation zone and the annular swirling jet. A pair of helical vortex structures, surrounding the flame, stretch it and cause local flame extinction before the flame is blown away. This work is supported by Russian Science Foundation (Grant No 16-19-10566).
An experimental investigation of delta wing vortex flow with and without external jet blowing
NASA Technical Reports Server (NTRS)
Iwanski, Kenneth P.; Ng, T. Terry; Nelson, Robert C.
1989-01-01
A visual and quantitative study of the vortex flow field over a 70-deg delta wing with an external jet blowing parallel to and at the leading edge was conducted. In the experiment, the vortex core was visually marked with TiCl4, and LDA was used to measure the velocity parallel and normal to the wing surface. It is found that jet blowing moved vortex breakdown farther downstream from its natural position and influenced the breakdown characteristics.
Single bubble of an electronegative gas in transformer oil in the presence of an electric field
NASA Astrophysics Data System (ADS)
Gadzhiev, M. Kh.; Tyuftyaev, A. S.; Il'ichev, M. V.
2017-10-01
The influence of the electric field on a single air bubble in transformer oil has been studied. It has been shown that, depending on its size, the bubble may initiate breakdown. The sizes of air and sulfur hexafluoride bubbles at which breakdown will not be observed have been estimated based on the condition for the avalanche-to-streamer transition.
Flow visualization study of the HiMAT RPRV
NASA Technical Reports Server (NTRS)
Lorincz, D. J.
1980-01-01
Water tunnel studies were performed to qualitatively define the flow field of the highly maneuverable aircraft technology remotely piloted research vehicle (HiMAT RPRV). Particular emphasis was placed on defining the vortex flows generated at high angles of attack. The flow visualization tests were conducted in the Northrop water tunnel using a 1/15 scale model of the HiMAT RPRV. Flow visualization photographs were obtained for angles of attack up to 40 deg and sideslip angles up to 5 deg. The HiMAT model was investigated in detail to determine the canard and wing vortex flow field development, vortex paths, and vortex breakdown characteristics as a function of angle of attack and sideslip. The presence of the canard caused the wing vortex to form further outboard and delayed the breakdown of the wing vortex to higher angles of attack. An increase in leading edge camber of the maneuver configuration delayed both the formation and the breakdown of the wing and canard vortices. Additional tests showed that the canard vortex was sensitive to variations in inlet mass flow ratio and canard flap deflection angle.
Evolution of a Collection of Bubbles with Application to Wakes, Bubble Screens, and Cloud Noise
1994-08-01
Hydrodynamics", Santa Barbara, CA, August 1994.. 2. G.L. CHAIIINE, "Bubble Interactions with Vortices," in "Vortex Flows," S. GREEN , ed., to be published by...2. G.L. CHAHINE, "Bubble Interactions with Vortices," in "Vortex Flows," S. GREEN , ed., to be published by Klttwer Academic, (1993). 3. G.L. CHAHINE...Tip Vortei, ASME Cavitation and Multiphase Flow Forum, Washington D.C., FED-VoL 153, pp. 93-99. (24] Green , S.I., 1991, "Correlatiag Single Phase Flow
A Family of Vortices to Study Axisymmetric Vortex Breakdown and Reconnection
NASA Technical Reports Server (NTRS)
Young, Larry A.
2007-01-01
A new analytic model describing a family of vortices has been developed to study some of the axisymmetric vortex breakdown and reconnection fluid dynamic processes underlying body-vortex interactions that are frequently manifested in rotorcraft and propeller-driven fixed-wing aircraft wakes. The family of vortices incorporates a wide range of prescribed initial vorticity distributions -- including single or dual-core vorticity distributions. The result is analytical solutions for the vorticity and velocities for each member of the family of vortices. This model is of sufficient generality to further illustrate the dependence of vortex reconnection and breakdown on initial vorticity distribution as was suggested by earlier analytical work. This family of vortices, though laminar in nature, is anticipated to provide valuable insight into the vortical evolution of large-scale rotor and propeller wakes.
A Carbon Dioxide Bubble-Induced Vortex Triggers Co-Assembly of Nanotubes with Controlled Chirality.
Zhang, Ling; Zhou, Laicheng; Xu, Na; Ouyang, Zhenjie
2017-07-03
It is challenging to prepare co-organized nanotube systems with controlled nanoscale chirality in an aqueous liquid flow field. Such systems are responsive to a bubbled external gas. A liquid vortex induced by bubbling carbon dioxide (CO 2 ) gas was used to stimulate the formation of nanotubes with controlled chirality; two kinds of achiral cationic building blocks were co-assembled in aqueous solution. CO 2 -triggered nanotube formation occurs by formation of metastable intermediate structures (short helical ribbons and short tubules) and by transition from short tubules to long tubules in response to chirality matching self-assembly. Interestingly, the chirality sign of these assemblies can be selected for by the circulation direction of the CO 2 bubble-induced vortex during the co-assembly process. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Supersonic quasi-axisymmetric vortex breakdown
NASA Technical Reports Server (NTRS)
Kandil, Osama A.; Kandil, Hamdy A.; Liu, C. H.
1991-01-01
An extensive computational study of supersonic quasi-axisymmetric vortex breakdown in a configured circular duct is presented. The unsteady, compressible, full Navier-Stokes (NS) equations are used. The NS equations are solved for the quasi-axisymmetric flows using an implicit, upwind, flux difference splitting, finite volume scheme. The quasi-axisymmetric solutions are time accurate and are obtained by forcing the components of the flowfield vector to be equal on two axial planes, which are in close proximity of each other. The effect of Reynolds number, for laminar flows, on the evolution and persistence of vortex breakdown, is studied. Finally, the effect of swirl ration at the duct inlet is investigated.
Swirl effect on flow structure and mixing in a turbulent jet
NASA Astrophysics Data System (ADS)
Kravtsov, Z. D.; Sharaborin, D. K.; Dulin, V. M.
2018-03-01
The paper reports on experimental study of turbulent transport in the initial region of swirling turbulent jets. The particle image velocimetry and planar laser-induced fluorescence techniques are used to investigate the flow structure and passive scalar concentration, respectively, in free air jet with acetone vapor. Three flow cases are considered, viz., non-swirling jets and swirling jets with and without vortex breakdown and central recirculation zone. Without vortex breakdown, the swirl is shown to promote jet mixing with surrounding air and to decrease the jet core length. The vortex core breakdown further enhances mixing as the jet core disintegrates at the nozzle exit.
Vortex breakdown and control experiments in the Ames-Dryden water tunnel
NASA Technical Reports Server (NTRS)
Owen, F. K.; Peake, D. J.
1986-01-01
Flow-field measurements have been made to determine the effects of core blowing on vortex breakdown and control. The results of these proof-of-concept experiments clearly demonstrate the usefulness of water tunnels as test platforms for advanced flow-field simulation and measurement.
Study of three-dimensional effects on vortex breakdown
NASA Technical Reports Server (NTRS)
Salas, M. D.; Kuruvila, G.
1988-01-01
The incompressible axisymmetric steady Navier-Stokes equations in primitive variables are used to simulate vortex breakdown. The equations, discretized using a second-order, central-difference scheme, are linearized and then solved using an exact LU decomposition, Gaussian elimination, and Newton iteration. Solutions are presented for Reynolds numbers, based on vortex-core radius, as high as 1500. An attempt to study the stability of the axisymmetric solutions against three-dimensional perturbations is discussed.
Vortex equations: Singularities, numerical solution, and axisymmetric vortex breakdown
NASA Technical Reports Server (NTRS)
Bossel, H. H.
1972-01-01
A method of weighted residuals for the computation of rotationally symmetric quasi-cylindrical viscous incompressible vortex flow is presented and used to compute a wide variety of vortex flows. The method approximates the axial velocity and circulation profiles by series of exponentials having (N + 1) and N free parameters, respectively. Formal integration results in a set of (2N + 1) ordinary differential equations for the free parameters. The governing equations are shown to have an infinite number of discrete singularities corresponding to critical values of the swirl parameters. The computations point to the controlling influence of the inner core flow on vortex behavior. They also confirm the existence of two particular critical swirl parameter values: one separates vortex flow which decays smoothly from vortex flow which eventually breaks down, and the second is the first singularity of the quasi-cylindrical system, at which point physical vortex breakdown is thought to occur.
An experimental investigation of vortex breakdown on a delta wing
NASA Technical Reports Server (NTRS)
Payne, F. M.; Nelson, R. C.
1986-01-01
An experimental investigation of vortex breakdown on delta wings at high angles is presented. Thin delta wings having sweep angles of 70, 75, 80 and 85 degrees are being studied. Smoke flow visualization and the laser light sheet technique are being used to obtain cross-sectional views of the leading edge vortices as they break down. At low tunnel speeds (as low as 3 m/s) details of the flow, which are usually imperceptible or blurred at higher speeds, can be clearly seen. A combination of lateral and longitudinal cross-sectional views provides information on the three dimensional nature of the vortex structure before, during and after breakdown. Whereas details of the flow are identified in still photographs, the dynamic characteristics of the breakdown process were recorded using high speed movies. Velocity measurements were obtained using a laser Doppler anemometer with the 70 degree delta wing at 30 degrees angle of attack. The measurements show that when breakdown occurs the core flow transforms from a jet-like flow to a wake-like flow.
Investigation of aerodynamic characteristics of subsonic wings
NASA Technical Reports Server (NTRS)
Dejarnette, F. R.; Frink, N. T.
1979-01-01
An analytical strake design procedure is investigated. A numerical solution to the governing strake design equation is used to generate a series of strakes which are tested in a water tunnel to study their vortex breakdown characteristics. The strakes are scaled for use on a half-scale model of the NASA-LaRC general research fuselage with a 44 degrees trapezoidal wing. An analytical solution to the governing design equation is obtained. The strake design procedure relates the potential-flow leading-edge suction and pressure distributions to vortex stability. Several suction distributions are studied and those which are more triangular and peak near the tip generate strakes that reach higher angles of attack before vortex breakdown occurs at the wing trailing edge. For the same suction distribution, a conical rather than three dimensional pressure specification results in a better strake shape as judged from its vortex breakdown characteristics.
Dynamics and noise emission of laser induced cavitation bubbles in a vortical flow field
NASA Astrophysics Data System (ADS)
Oweis, Ghanem F.; Choi, Jaehyug; Ceccio, Steven L.
2004-03-01
The sound produced by the collapse of discrete cavitation bubbles was examined. Laser-generated cavitation bubbles were produced in both a quiescent and a vortical flow. The sound produced by the collapse of the cavitation bubbles was recorded, and its spectral content was determined. It was found that the risetime of the sound pulse produced by the collapse of single, spherical cavitation bubbles in quiescent fluid exceeded that of the slew rate of the hydrophone, which is consistent with previously published results. It was found that, as collapsing bubbles were deformed by the vortical flow, the acoustic impulse of the bubbles was reduced. Collapsing nonspherical bubbles often created a sound pulse with a risetime that exceeded that of the hydrophone slew rate, although the acoustic impulse created by the bubbles was influenced largely by the degree to which the bubbles became nonspherical before collapse. The noise produced by the slow growth of cavitation bubbles in the vortex core was not detectable. These results have implications for the interpretation of hydrodynamic cavitation noise produced by vortex cavitation.
A simple hydrodynamic model of tornado-like vortices
NASA Astrophysics Data System (ADS)
Kurgansky, M. V.
2015-05-01
Based on similarity arguments, a simple fluid dynamic model of tornado-like vortices is offered that, with account for "vortex breakdown" at a certain height above the ground, relates the maximal azimuthal velocity in the vortex, reachable near the ground surface, to the convective available potential energy (CAPE) stored in the environmental atmosphere under pre-tornado conditions. The relative proportion of the helicity (kinetic energy) destruction (dissipation) in the "vortex breakdown" zone and, accordingly, within the surface boundary layer beneath the vortex is evaluated. These considerations form the basis of the dynamic-statistical analysis of the relationship between the tornado intensity and the CAPE budget in the surrounding atmosphere.
Analysis and control of supersonic vortex breakdown flows
NASA Technical Reports Server (NTRS)
Kandil, Osama A.
1990-01-01
Analysis and computation of steady, compressible, quasi-axisymmetric flow of an isolated, slender vortex are considered. The compressible, Navier-Stokes equations are reduced to a simpler set by using the slenderness and quasi-axisymmetry assumptions. The resulting set along with a compatibility equation are transformed from the diverging physical domain to a rectangular computational domain. Solving for a compatible set of initial profiles and specifying a compatible set of boundary conditions, the equations are solved using a type-differencing scheme. Vortex breakdown locations are detected by the failure of the scheme to converge. Computational examples include isolated vortex flows at different Mach numbers, external axial-pressure gradients and swirl ratios.
Intensity of vortices: from soap bubbles to hurricanes
Meuel, T.; Xiong, Y. L.; Fischer, P.; Bruneau, C. H.; Bessafi, M.; Kellay, H.
2013-01-01
By using a half soap bubble heated from below, we obtain large isolated single vortices whose properties as well as their intensity are measured under different conditions. By studying the effects of rotation of the bubble on the vortex properties, we found that rotation favors vortices near the pole. Rotation also inhibits long life time vortices. The velocity and vorticity profiles of the vortices obtained are well described by a Gaussian vortex. Besides, the intensity of these vortices can be followed over long time spans revealing periods of intensification accompanied by trochoidal motion of the vortex center, features which are reminiscent of the behavior of tropical cyclones. An analysis of this intensification period suggests a simple relation valid for both the vortices observed here and for tropical cyclones. PMID:24336410
NASA Technical Reports Server (NTRS)
Kandil, Osama A.
1993-01-01
Research on Navier-Stokes, dynamics, and aeroelastic computations for vortical flows, buffet, and flutter applications was performed. Progress during the period from 1 Oct. 1992 to 30 Sep. 1993 is included. Papers on the following topics are included: vertical tail buffet in vortex breakdown flows; simulation of tail buffet using delta wing-vertical tail configuration; shock-vortex interaction over a 65-degree delta wing in transonic flow; supersonic vortex breakdown over a delta wing in transonic flow; and prediction and control of slender wing rock.
Topology and stability of a water-soybean-oil swirling flow
NASA Astrophysics Data System (ADS)
Carrión, Luis; Herrada, Miguel A.; Shtern, Vladimir N.
2017-02-01
This paper reveals and explains the flow topology and instability hidden in an experimental study by Tsai et al. [Tsai et al., Phys. Rev. E 92, 031002(R) (2015)], 10.1103/PhysRevE.92.031002. Water and soybean oil fill a sealed vertical cylindrical container. The rotating top disk induces the meridional circulation and swirl of both fluids. The experiment shows a flattop interface shape and vortex breakdown in the oil flow developing as the rotation strength R eo increases. Our numerical study shows that vortex breakdown occurs in the water flow at R eo=300 and in the oil flow at R eo=941 . As R eo increases, the vortex breakdown cell occupies most of the water domain and approaches the interface at R eo around 600. The rest of the (countercirculating) water separates from the axis as the vortex breakdown cells in the oil and water meet at the interface-axis intersection. This topological transformation of water flow significantly contributes to the development of the flattop shape. It is also shown that the steady axisymmetric flow suffers from shear-layer instability, which emerges in the water domain at R eo=810 .
NASA Technical Reports Server (NTRS)
Luckring, J. M.
1985-01-01
A theory is presented for calculating the flow in the core of a separation-induced leading-edge vortex. The method is based on matching inner and outer representations of the vortex. The inner model of the vortex is based on the quasicylindrical Navier-Stokes equations; the flow is assumed to be steady, axially symmetric, and incompressible and in addition, gradients in the radial direction are assumed to be much larger then gradients in the axial direction. The outer model is based on the three-dimensional free-vortex-sheet theory, a higher-order panel method which solves the Prandtl-Glauert equation including nonlinear boundary conditions pertinent to the concentrated vorticity representation of the leading edge vortex. The resultant flow is evaluated a posteriori for evidence of incipient vortex breakdown and the critical helix angle concept, in conjunction with an adverse longitudinal pressure gradient, is found to correlate well with the occurrence of vortex breakdown at the trailing edge of delta, arrow, and diamond wings.
1985-03-01
solved by the use of finite - .- core vortex filament models (Chorin and Bernard, 1973). A recent paper by Stremel (1984) briefly reviewed this...history of vortex sheet numerical modeling and presented a ’state of the art’ numerical technique. Stremel compared his numerical results with experimental
Experimental study of vortex breakdown in a cylindrical, swirling flow
NASA Technical Reports Server (NTRS)
Stevens, J. L.; Celik, Z. Z.; Cantwell, B. J.; Lopez, J. M.
1996-01-01
The stability of a steady, vortical flow in a cylindrical container with one rotating endwall has been experimentally examined to gain insight into the process of vortex breakdowwn. The dynamics of the flow are governed by the Reynolds number (Re) and the aspect ratio of the cylinder. Re is given by Omega R(sup 2)/nu, where Omega is the speed of rotation of the endwall, R is the cylinder radius, and nu is the kinematic viscosity of the fluid filling the cylinder. The aspect ratio is H/R, where H is the height of the cylinder. Numerical simulation studies disagree whether or not the steady breakdown is stable beyond a critical Reynolds number, Re(sub c). Previous experimental researches have considered the steady and unsteady flows near Re(sub c), but have not explored the stability of the steady breakdown structures beyond this value. In this investigation, laser induced fluorescence was utilized to observe both steady and unsteady vortex breakdown at a fixed H/R of 2.5 with Re varying around Re(sub c). When the Re of a steady flow was slowly increased beyond Re(sub c), the breakdown structure remained steady even though unsteadiness was possible. In addition, a number of hysteresis events involving the oscillation periods of the unsteady flow were noted. The results show that both steady and unsteady vortex breakdown occur for a limited range of Re above Re(sub c). Also, with increasing Re, complex flow transformations take place that alter the period at which the unsteady flow oscillates.
Investigation of laser induced breakdown in liquid nitromethane using nanosecond shadowgraphy
NASA Astrophysics Data System (ADS)
Guo, Wencan; Zheng, Xianxu; Yu, Guoyang; Zhao, Jun; Zeng, Yangyang; Liu, Cangli
2016-09-01
A nanosecond time-resolved shadowgraphy is performed to observe a laser-induced breakdown in nitromethane. The digital delays are introduced between a pump beam and an illumination light to achieve a measuring range from 40 ns to 100 ms, which enable us to study the shock wave propagation, bubble dynamics, and other process of the laser-induced breakdown. Compared with distilled water, there are two obvious differences observed in nitromethane: (1) the production of a non-evaporative gas at the final stage, and (2) an absence of the secondary shock wave after the first collapse of the bubble. We also calculated the bubble energy in nitromethane and distilled water under a different incident energy. The results indicate that the bubble energy in nitromethane is more than twice as large as that in water. It is suggested that chemical reactions contribute to the releasing of energy.
Longitudinal vortex control - Techniques and applications (The 32nd Lanchester Lecture)
NASA Technical Reports Server (NTRS)
Bushnell, D. M.
1992-01-01
A summary is presented of vortex control applications and current techniques for the control of longitudinal vortices produced by bodies, leading edges, tips and intersections. Vortex control has up till now been performed by many approaches in an empirical fashion, assisted by the essentially inviscid nature of much of longitudinal vortex behavior. Attention is given to Reynolds number sensitivities, vortex breakdown and interactions, vortex control on highly swept wings, and vortex control in juncture flows.
Numerical studies of incompressible flow around delta and double-delta wings
NASA Technical Reports Server (NTRS)
Krause, E.; Liu, C. H.
1989-01-01
The subject has been jointly investigated at NASA Langley Research Center and the Aerodynamisches Institut of the RWTH Aachen over a substantial period. The aim of this investigation has been to develop numerical integration procedures for the Navier-Stokes equations - particularly for incompressible three-dimensional viscous flows about simple and double delta wings - and to study the low speed flow behavior, with its complex vortex structures on the leeward side of the wing. The low speed flight regime poses unusual problems because high incidence flight conditions may, for example, encounter symmetric and asymmetric vortex breakdown. Because of the many difficulties to be expected in solving the problem, it was divided into two - analysis of the flow without vortex breakdown and analysis of the breakdown of isolated vortices. The major results obtained so far on the two topics are briefly described.
Arita, Y.; Antkowiak, M.; Venugopalan, V.; Gunn-Moore, F. J.; Dholakia, K.
2012-01-01
Laser-induced breakdown of an optically trapped nanoparticle is a unique system for studying cavitation dynamics. It offers additional degrees of freedom, namely the nanoparticle material, its size, and the relative position between the laser focus and the center of the optically trapped nanoparticle. We quantify the spatial and temporal dynamics of the cavitation and secondary bubbles created in this system and use hydrodynamic modeling to quantify the observed dynamic shear stress of the expanding bubble. In the final stage of bubble collapse, we visualize the formation of multiple submicrometer secondary bubbles around the toroidal bubble on the substrate. We show that the pattern of the secondary bubbles typically has its circular symmetry broken along an axis whose unique angle rotates over time. This is a result of vorticity along the jet towards the boundary upon bubble collapse near solid boundaries. PMID:22400669
NASA Astrophysics Data System (ADS)
Grocke, S. B.; Andrews, B. J.; Manga, M.; Quinn, E. T.
2015-12-01
Dacite lavas from Chaos Crags, Lassen Volcanic Center, CA contain inclusions of more mafic magmas, suggesting that mixing or mingling of magmas occurred just prior to lava dome extrusion, and perhaps triggered the eruption. The timescales between the mixing event and eruption are unknown, but reaction rims on biotite grains hosted in the Chaos Crags dacite may provide a record of the timescale (i.e., chronometer) between mixing and eruption. To quantify the effect of pre-eruptive heating on the formation of reaction rims on biotite, we conducted isobaric (150 MPa), H2O-saturated, heating experiments on the dacite end-member. In heating experiments, we held the natural dacite at 800°C and 150MPa for 96 hours and then isobarically heated the experiments to 825 and 850°C (temperatures above the biotite liquidus, <815°C at 150MPa) for durations ≤96 hours. We analyzed run products using high-resolution SEM imaging and synchrotron-based X-ray tomography, which provides a 3-dimensional rendering of biotite breakdown reaction products and textures. X-ray tomography images of experimental run products reveal that in all heating experiments, biotite breakdown occurs and reaction products include orthopyroxenes, Fe-Ti oxides, and vapor (inferred from presence of bubbles). Experiments heated to 850°C for 96 h show extensive breakdown, consisting of large orthopyroxene crystals, Fe-Ti oxide laths (<100μm), and bubbles. When the process of biotite breakdown goes to completion, the resulting H2O bubble comprises roughly the equivalent volume of the original biotite crystal. This observation suggests that biotite breakdown can add significant water to the melt and lead to extensive bubble formation. Although bubble expansion and magma flow may disrupt the reaction products in some magmas, our experiments suggest that biotite breakdown textures in natural samples can be used as a chronometer for pre-eruptive magma mixing.
Numerical study of gravity effects on phase separation in a swirl chamber.
Hsiao, Chao-Tsung; Ma, Jingsen; Chahine, Georges L
2016-01-01
The effects of gravity on a phase separator are studied numerically using an Eulerian/Lagrangian two-phase flow approach. The separator utilizes high intensity swirl to separate bubbles from the liquid. The two-phase flow enters tangentially a cylindrical swirl chamber and rotate around the cylinder axis. On earth, as the bubbles are captured by the vortex formed inside the swirl chamber due to the centripetal force, they also experience the buoyancy force due to gravity. In a reduced or zero gravity environment buoyancy is reduced or inexistent and capture of the bubbles by the vortex is modified. The present numerical simulations enable study of the relative importance of the acceleration of gravity on the bubble capture by the swirl flow in the separator. In absence of gravity, the bubbles get stratified depending on their sizes, with the larger bubbles entering the core region earlier than the smaller ones. However, in presence of gravity, stratification is more complex as the two acceleration fields - due to gravity and to rotation - compete or combine during the bubble capture.
Three-dimensional simulation of vortex breakdown
NASA Technical Reports Server (NTRS)
Kuruvila, G.; Salas, M. D.
1990-01-01
The integral form of the complete, unsteady, compressible, three-dimensional Navier-Stokes equations in the conservation form, cast in generalized coordinate system, are solved, numerically, to simulate the vortex breakdown phenomenon. The inviscid fluxes are discretized using Roe's upwind-biased flux-difference splitting scheme and the viscous fluxes are discretized using central differencing. Time integration is performed using a backward Euler ADI (alternating direction implicit) scheme. A full approximation multigrid is used to accelerate the convergence to steady state.
Pitching effect on transonic wing stall of a blended flying wing with low aspect ratio
NASA Astrophysics Data System (ADS)
Tao, Yang; Zhao, Zhongliang; Wu, Junqiang; Fan, Zhaolin; Zhang, Yi
2018-05-01
Numerical simulation of the pitching effect on transonic wing stall of a blended flying wing with low aspect ratio was performed using improved delayed detached eddy simulation (IDDES). To capture the discontinuity caused by shock wave, a second-order upwind scheme with Roe’s flux-difference splitting is introduced into the inviscid flux. The artificial dissipation is also turned off in the region where the upwind scheme is applied. To reveal the pitching effect, the implicit approximate-factorization method with sub-iterations and second-order temporal accuracy is employed to avoid the time integration of the unsteady Navier-Stokes equations solved by finite volume method at Arbitrary Lagrange-Euler (ALE) form. The leading edge vortex (LEV) development and LEV circulation of pitch-up wings at a free-stream Mach number M = 0.9 and a Reynolds number Re = 9.6 × 106 is studied. The Q-criterion is used to capture the LEV structure from shear layer. The result shows that a shock wave/vortex interaction is responsible for the vortex breakdown which eventually causes the wing stall. The balance of the vortex strength and axial flow, and the shock strength, is examined to provide an explanation of the sensitivity of the breakdown location. Pitching motion has great influence on shock wave and shock wave/vortex interactions, which can significantly affect the vortex breakdown behavior and wing stall onset of low aspect ratio blended flying wing.
Methane gas seepage - Disregard of significant water column filter processes?
NASA Astrophysics Data System (ADS)
Schneider von Deimling, Jens; Schmale, Oliver
2016-04-01
Marine methane seepage represents a potential contributor for greenhouse gas in the atmosphere and is discussed as a driver for climate change. The ultimate question is how much methane is released from the seafloor on a global scale and what fraction may reach the atmosphere? Dissolved fluxes from methane seepage sites on the seabed were found to be very efficiently reduced by benthic microbial oxidation, whereas transport of free gas bubbles from the seabed is considered to bypass the effective benthic methane filter. Numerical models are available today to predict the fate of such methane gas bubble release to the water column in regard to gas exchange with the ambient water column, respective bubble lifetime and rise height. However, the fate of rising gas bubbles and dissolved methane in the water column is not only governed by dissolution, but is also affected by lateral oceanographic currents and vertical bubble-induced upwelling, microbial oxidation, and physico-chemical processes that remain poorly understood so far. According to this gap of knowledge we present data from two study sites - the anthropogenic North Sea 22/4b Blowout and the natural Coal Oil point seeps - to shed light into two new processes gathered with hydro-acoustic multibeam water column imaging and microbial investigations. The newly discovered processes are hereafter termed Spiral Vortex and Bubble Transport Mechanism. Spiral Vortex describes the evolution of a complex vortical fluid motion of a bubble plume in the wake of an intense gas release site (Blowout, North Sea). It appears very likely that it dramatically changes the dissolution kinetics of the seep gas bubbles. Bubble Transport Mechanism prescribes the transport of sediment-hosted bacteria into the water column via rising gas bubbles. Both processes act as filter mechanisms in regard to vertical transport of seep related methane, but have not been considered before. Spiral Vortex and Bubble Transport Mechanism represent the basis for a follow up research scheduled for August 2016 with the R/V POSEIDON with the aim to better constrain their mechanisms and to quantify their overall importance.
Wu, Xiaohua; Moin, Parviz; Adrian, Ronald J; Baltzer, Jon R
2015-06-30
The precise dynamics of breakdown in pipe transition is a century-old unresolved problem in fluid mechanics. We demonstrate that the abruptness and mysteriousness attributed to the Osborne Reynolds pipe transition can be partially resolved with a spatially developing direct simulation that carries weakly but finitely perturbed laminar inflow through gradual rather than abrupt transition arriving at the fully developed turbulent state. Our results with this approach show during transition the energy norms of such inlet perturbations grow exponentially rather than algebraically with axial distance. When inlet disturbance is located in the core region, helical vortex filaments evolve into large-scale reverse hairpin vortices. The interaction of these reverse hairpins among themselves or with the near-wall flow when they descend to the surface from the core produces small-scale hairpin packets, which leads to breakdown. When inlet disturbance is near the wall, certain quasi-spanwise structure is stretched into a Lambda vortex, and develops into a large-scale hairpin vortex. Small-scale hairpin packets emerge near the tip region of the large-scale hairpin vortex, and subsequently grow into a turbulent spot, which is itself a local concentration of small-scale hairpin vortices. This vortex dynamics is broadly analogous to that in the boundary layer bypass transition and in the secondary instability and breakdown stage of natural transition, suggesting the possibility of a partial unification. Under parabolic base flow the friction factor overshoots Moody's correlation. Plug base flow requires stronger inlet disturbance for transition. Accuracy of the results is demonstrated by comparing with analytical solutions before breakdown, and with fully developed turbulence measurements after the completion of transition.
Wu, Xiaohua; Moin, Parviz; Adrian, Ronald J.; Baltzer, Jon R.
2015-01-01
The precise dynamics of breakdown in pipe transition is a century-old unresolved problem in fluid mechanics. We demonstrate that the abruptness and mysteriousness attributed to the Osborne Reynolds pipe transition can be partially resolved with a spatially developing direct simulation that carries weakly but finitely perturbed laminar inflow through gradual rather than abrupt transition arriving at the fully developed turbulent state. Our results with this approach show during transition the energy norms of such inlet perturbations grow exponentially rather than algebraically with axial distance. When inlet disturbance is located in the core region, helical vortex filaments evolve into large-scale reverse hairpin vortices. The interaction of these reverse hairpins among themselves or with the near-wall flow when they descend to the surface from the core produces small-scale hairpin packets, which leads to breakdown. When inlet disturbance is near the wall, certain quasi-spanwise structure is stretched into a Lambda vortex, and develops into a large-scale hairpin vortex. Small-scale hairpin packets emerge near the tip region of the large-scale hairpin vortex, and subsequently grow into a turbulent spot, which is itself a local concentration of small-scale hairpin vortices. This vortex dynamics is broadly analogous to that in the boundary layer bypass transition and in the secondary instability and breakdown stage of natural transition, suggesting the possibility of a partial unification. Under parabolic base flow the friction factor overshoots Moody’s correlation. Plug base flow requires stronger inlet disturbance for transition. Accuracy of the results is demonstrated by comparing with analytical solutions before breakdown, and with fully developed turbulence measurements after the completion of transition. PMID:26080447
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Xiaohua; Moin, Parviz; Adrian, Ronald J.
We report that the precise dynamics of breakdown in pipe transition is a century-old unresolved problem in fluid mechanics. We demonstrate that the abruptness and mysteriousness attributed to the Osborne Reynolds pipe transition can be partially resolved with a spatially developing direct simulation that carries weakly but finitely perturbed laminar inflow through gradual rather than abrupt transition arriving at the fully developed turbulent state. Our results with this approach show during transition the energy norms of such inlet perturbations grow exponentially rather than algebraically with axial distance. When inlet disturbance is located in the core region, helical vortex filaments evolvemore » into large-scale reverse hairpin vortices. The interaction of these reverse hairpins among themselves or with the near-wall flow when they descend to the surface from the core produces small-scale hairpin packets, which leads to breakdown. When inlet disturbance is near the wall, certain quasi-spanwise structure is stretched into a Lambda vortex, and develops into a large-scale hairpin vortex. Small-scale hairpin packets emerge near the tip region of the large-scale hairpin vortex, and subsequently grow into a turbulent spot, which is itself a local concentration of small-scale hairpin vortices. This vortex dynamics is broadly analogous to that in the boundary layer bypass transition and in the secondary instability and breakdown stage of natural transition, suggesting the possibility of a partial unification. Under parabolic base flow the friction factor overshoots Moody’s correlation. Plug base flow requires stronger inlet disturbance for transition. Finally, accuracy of the results is demonstrated by comparing with analytical solutions before breakdown, and with fully developed turbulence measurements after the completion of transition.« less
Wu, Xiaohua; Moin, Parviz; Adrian, Ronald J.; ...
2015-06-15
We report that the precise dynamics of breakdown in pipe transition is a century-old unresolved problem in fluid mechanics. We demonstrate that the abruptness and mysteriousness attributed to the Osborne Reynolds pipe transition can be partially resolved with a spatially developing direct simulation that carries weakly but finitely perturbed laminar inflow through gradual rather than abrupt transition arriving at the fully developed turbulent state. Our results with this approach show during transition the energy norms of such inlet perturbations grow exponentially rather than algebraically with axial distance. When inlet disturbance is located in the core region, helical vortex filaments evolvemore » into large-scale reverse hairpin vortices. The interaction of these reverse hairpins among themselves or with the near-wall flow when they descend to the surface from the core produces small-scale hairpin packets, which leads to breakdown. When inlet disturbance is near the wall, certain quasi-spanwise structure is stretched into a Lambda vortex, and develops into a large-scale hairpin vortex. Small-scale hairpin packets emerge near the tip region of the large-scale hairpin vortex, and subsequently grow into a turbulent spot, which is itself a local concentration of small-scale hairpin vortices. This vortex dynamics is broadly analogous to that in the boundary layer bypass transition and in the secondary instability and breakdown stage of natural transition, suggesting the possibility of a partial unification. Under parabolic base flow the friction factor overshoots Moody’s correlation. Plug base flow requires stronger inlet disturbance for transition. Finally, accuracy of the results is demonstrated by comparing with analytical solutions before breakdown, and with fully developed turbulence measurements after the completion of transition.« less
Dynamic and interaction of fs-laser induced cavitation bubbles for analyzing the cutting effect
NASA Astrophysics Data System (ADS)
Tinne, N.; Schumacher, S.; Nuzzo, V.; Ripken, T.; Lubatschowski, H.
2009-07-01
A prominent laser based treatment in ophthalmology is the LASIK procedure which nowadays includes a cutting of the corneal tissue based on ultra short pulses. Focusing an ultra short laser pulse below the surface of biological tissue an optical breakdown is caused and hence a dissection is obtained. The laser energy of the laser pulses is absorbed by nonlinear processes. As a result a cavitation bubble expands and ruptures the tissue. Hence positioning of several optical breakdowns side by side generates an incision. Due to a reduction of the duration of the treatment the current development of ultra short laser systems points to higher repetition rates in the range of hundreds of KHz or even MHz instead of tens of kHz. This in turn results in a probable occurrence of interaction between different optical breakdowns and respectively cavitation bubbles of adjacent optical breakdowns. While the interaction of one single laser pulse with biological tissue is analyzed reasonably well experimentally and theoretically, the interaction of several spatial and temporal following pulses is scarcely determined yet. Thus the aim of this study is to analyse the dynamic and interaction of two cavitation bubbles by using high speed photography. The applied laser pulse energy, the energy ratio and the spot distance between different cavitation bubbles were varied. Depending on a change of these parameters different kinds of interactions such as a flattening and deformation of bubble shape or jet formation are observed. Based on these results a further research seems to be inevitable to comprehend and optimize the cutting effect of ultra short pulse laser systems with high (> 1 MHz) repetition rates.
NASA Technical Reports Server (NTRS)
Anderson, William E.; Lucht, Robert P.; Mongia, Hukam
2015-01-01
Concurrent simulation and experiment was undertaken to assess the ability of a hybrid RANS-LES model to predict combustion dynamics in a single-element lean direct-inject (LDI) combustor showing self-excited instabilities. High frequency pressure modes produced by Fourier and modal decomposition analysis were compared quantitatively, and trends with equivalence ratio and inlet temperature were compared qualitatively. High frequency OH PLIF and PIV measurements were also taken. Submodels for chemical kinetics and primary and secondary atomization were also tested against the measured behavior. For a point-wise comparison, the amplitudes matched within a factor of two. The dependence on equivalence ratio was matched. Preliminary results from simulation using an 18-reaction kinetics model indicated instability amplitudes closer to measurement. Analysis of the simulations suggested a band of modes around 1400 Hz were due to a vortex bubble breakdown and a band of modes around 6 kHz were due to a precessing vortex core hydrodynamic instability. The primary needs are directly coupled and validated ab initio models of the atomizer free surface flow and the primary atomization processes, and more detailed study of the coupling between the 3D swirling flow and the local thermoacoustics in the diverging venturi section.
Aircraft Vortex Wake Decay Near the Ground
DOT National Transportation Integrated Search
1977-05-01
A multi-faceted experimental and analytical research program was carried out to explore the details of aircraft wake vortex breakdown under conditions representative of those which prevail at low altitudes in the vicinity of airports. Three separate ...
Visualizing Time-Varying Phenomena In Numerical Simulations Of Unsteady Flows
NASA Technical Reports Server (NTRS)
Lane, David A.
1996-01-01
Streamlines, contour lines, vector plots, and volume slices (cutting planes) are commonly used for flow visualization. These techniques are sometimes referred to as instantaneous flow visualization techniques because calculations are based on an instant of the flowfield in time. Although instantaneous flow visualization techniques are effective for depicting phenomena in steady flows,they sometimes do not adequately depict time-varying phenomena in unsteady flows. Streaklines and timelines are effective visualization techniques for depicting vortex shedding, vortex breakdown, and shock waves in unsteady flows. These techniques are examples of time-dependent flow visualization techniques, which are based on many instants of the flowfields in time. This paper describes the algorithms for computing streaklines and timelines. Using numerically simulated unsteady flows, streaklines and timelines are compared with streamlines, contour lines, and vector plots. It is shown that streaklines and timelines reveal vortex shedding and vortex breakdown more clearly than instantaneous flow visualization techniques.
2006-07-01
precision of the determination of Rmax, we established a refined method based on the model of bubble formation described above in section 3.6.1 and the...development can be modeled by hydrodynamic codes based on tabulated equation-of-state data . This has previously demonstrated on ps optical breakdown...per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and
Sun, Jie; Fan, Xing; Guo, Weiling; Liu, Lihui; Liu, Xin; Deng, Jun; Xu, Chen
2015-01-01
A capacitor-based circuit model is proposed to explain the electrochemical delamination of two-dimensional materials from their native substrates where produced gas bubbles squeeze into the interface. The delamination is actually the electric breakdown of the capacitor formed between the solution and substrate. To facilitate the procedure, the backside of the ubstrate has to be shielded so that the capacitor breakdown voltage can be reached. The screening effect can be induced either by nonreactive ions around the electrode or, more effectively, by an undetachable insulator. This mechanism serves as a guideline for the surface science and applications involving the bubbling delamination. PMID:26694406
Sun, Jie; Fan, Xing; Guo, Weiling; Liu, Lihui; Liu, Xin; Deng, Jun; Xu, Chen
2015-12-16
A capacitor-based circuit model is proposed to explain the electrochemical delamination of two-dimensional materials from their native substrates where produced gas bubbles squeeze into the interface. The delamination is actually the electric breakdown of the capacitor formed between the solution and substrate. To facilitate the procedure, the backside of the ubstrate has to be shielded so that the capacitor breakdown voltage can be reached. The screening effect can be induced either by nonreactive ions around the electrode or, more effectively, by an undetachable insulator. This mechanism serves as a guideline for the surface science and applications involving the bubbling delamination.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vogel, A.; Scammon, R.J.; Godwin, R.P.
Biological tissue is more susceptible to damage from tensile stress than to compressive stress. Tensile stress may arise through the thermoelastic response of laser-irradiated media. Optical breakdown, however, has to date been exclusively associated with compressive stress. The authors show that this is appropriate for water, but not for tissues for which the elastic-plastic material response needs to be considered. The acoustic transients following optical breakdown in water and cornea were measured with a fast hydrophone and the cavitation bubble dynamics, which is closely linked to the stress wave generation, was documented by flash photography. Breakdown in water produced amore » monopolar acoustic signal and a bubble oscillation in which the expansion and collapse phases were symmetric. Breakdown in cornea produced a bipolar acoustic signal coupled with a pronounced shortening of the bubble expansion phase and a considerable prolongation of its collapse phase. The tensile stress wave is related to the abrupt end of the bubble expansion. Numerical simulations using the MESA-2D code were performed assuming elastic-plastic material behavior in a wide range of values for the shear modulus and yield strength. The calculations revealed that consideration of the elastic-plastic material response is essential to reproduce the experimentally observed bipolar stress waves. The tensile stress evolves during the outward propagation of the acoustic transient and reaches an amplitude of 30--40% of the compressive pulse.« less
Delta wing vortex manipulation using pulsed and steady blowing during ramp pitching
NASA Technical Reports Server (NTRS)
Moreira, J.; Johari, H.
1995-01-01
The effectiveness of steady and pulsed blowing as a method of controlling delta wing vortices during ramp pitching has been investigated in flow visualization experiments conducted in a water tunnel. The recessed angled spanwise blowing technique was utilized for vortex manipulation. This technique was implemented on a beveled 60 delta wing using a pair of blowing ports located beneath the vortex core at 40% chord. The flow was injected primarily in the spanwise direction but was also composed of a component normal to the wing surface. The location of vortex burst was measured as a function of blowing intensity and pulsing frequency under static conditions, and the optimum blowing case was applied at three different wing pitching rates. Experimental results have shown that, when the burst location is upstream of the blowing port, pulsed blowing delays vortex breakdown in static and dynamic cases. Dynamic tests verified the existence of a hysteresis effect and demonstrated the improvements offered by pulsed blowing over both steady blowing and no-blowing scenarios. The application of blowing, at the optimum pulsing frequency, made the vortex breakdown location comparable in static and ramp pitch-up conditions.
From Rising Bubble to RNA/DNA and Bacteria
NASA Astrophysics Data System (ADS)
Marks, Roman; Cieszyńska, Agata; Wereszka, Marzena; Borkowski, Wojciech
2017-04-01
In this study we have focused on the movement of rising bubbles in a salty water body. Experiments reviled that free buoyancy movement of bubbles forces displacement of ions, located on the outer side of the bubble wall curvatures. During the short moment of bubble passage, all ions in the vicinity of rising bubble, are separated into anions that are gathered on the bubble upper half sphere and cations that slip along the bottom concave half-sphere of a bubble and develop a sub-bubble vortex. The principle of ions separation bases on the differences in displacement resistance. In this way, relatively heavier and larger, thus more resistant to displacement anions are gathered on the rising bubble upper half sphere, while smaller and lighter cations are assembled on the bottom half sphere and within the sub-bubble vortex. The acceleration of motion generates antiparallel rotary of bi-ionic domains, what implies that anions rotate in clockwise (CW) and cationic in counter-clockwise (CCW) direction. Then, both rotational systems may undergo splicing and extreme condensing by bi-pirouette narrowing of rotary. It is suggested that such double helix motion of bi-ionic domains creates RNA/DNA molecules. Finally, when the bubble reaches the water surface it burst and the preprocessed RNA/DNA matter is ejected into the droplets. Since that stage, droplet is suspended in positively charged troposphere, thus the cationic domain is located in the droplet center, whilst negative ions are attracted to configure the outer areola. According to above, the present study implies that the rising bubbles in salty waters may incept synergistic processing of matter resulting in its rotational/spherical organization that led to assembly of RNA/DNA molecules and bacteria cells.
Bubbling and foaming assisted clearing of mucin plugs in microfluidic Y-junctions.
Abdula, Daner; Lerud, Ryan; Rananavare, Shankar
2017-11-07
Microfluidic Y-junctions were used to study mechanical mechanisms involved in pig gastric mucin (PGM) plug removal from within one of two bifurcation branches with 2-phase air and liquid flow. Water control experiments showed moderate plug removal due to shear from vortex formation in the blockage branch and suggest a PGM yield stress of 35Pa, as determined by computational fluid dynamics. Addition of hexadecyltrimethylammonium bromide (CTAB) surfactant improved clearing effectiveness due to bubbling in 1mm diameter channels and foaming in 500μm diameter channels. Plug removal mechanisms have been identified as vortex shear, bubble scouring, and then foam scouring as air flow rate is increased with constant liquid flow. The onset of bubbling and foaming is attributed to a flow regime transition from slug to slug-annular. Flow rates explored for 1mm channels are typically experienced by bronchioles in generations 8 and 9 of lungs. Results have implications on treatment of cystic fibrosis and other lung diseases. Copyright © 2016 Elsevier Ltd. All rights reserved.
Role of vortices in growth of microbubbles at mitral mechanical heart valve closure.
Rambod, Edmond; Beizai, Masoud; Sahn, David J; Gharib, Morteza
2007-07-01
This study is aimed at refining our understanding of the role of vortex formation at mitral mechanical heart valve (MHV) closure and its association with the high intensity transient signals (HITS) seen in echocardiographic studies with MHV recipients. Previously reported numerical results described a twofold process leading to formation of gas-filled microbubbles in-vitro: (1) nucleation and (2) growth of micron size bubbles. The growth itself consists of two processes: (a) diffusion and (b) sudden pressure drop due to valve closure. The role of diffusion has already been shown to govern the initial growth of nuclei. Pressure drop at mitral MHV closure may be attributed to other phenomena such as squeezed flow, water hammer and primarily, vortex cavitation. Mathematical analysis of vortex formation at mitral MHV closure revealed that a closing velocity of approximately 12 m/s can induce a strong regurgitant vortex which in return can instigate a local pressure drop of about 0.9 atm. A 2D experimental model of regurgitant flows was used to substantiate the impact of vortices. At simulated flow and pressure conditions, a regurgitant vortex was observed to drastically enlarge micron size hydrogen bubbles at its core.
NASA Astrophysics Data System (ADS)
Tinne, N.; Ripken, T.; Lubatschowski, H.; Heisterkamp, A.
2011-07-01
A today well-known laser based treatment in ophthalmology is the LASIK procedure which nowadays includes cutting of the corneal tissue with ultra-short laser pulses. Instead of disposing a microkeratome for cutting a corneal flap, a focused ultra-short laser pulse is scanned below the surface of biological tissue causing the effect of an optical breakdown and hence obtaining a dissection. Inside the tissue, the energy of the laser pulses is absorbed by non-linear processes; as a result a cavitation bubble expands and ruptures the tissue. Hence, positioning of several optical breakdowns side by side generates an incision. Due to a reduction of the amount of laser energy, with a moderate duration of treatment at the same time, the current development of ultra-short pulse laser systems points to higher repetition rates in the range of even Megahertz instead of tens or hundreds of Kilohertz. In turn, this results in a pulse overlap and therefor a probable occurrence of interaction between different optical breakdowns and respectively cavitation bubbles of adjacent optical breakdowns. While the interaction of one single laser pulse with biological tissue is analyzed reasonably well experimentally and theoretically, the interaction of several spatial and temporal following pulses is scarcely determined yet. Thus, the aim of this study is to analyse the dynamic and interaction of two cavitation bubbles by using high speed photography. The applied laser pulse energy, the energy ratio and the spot distance between different cavitation bubbles were varied. Depending on a change of these parameters different kinds of interactions such as a flattening and deformation of bubble shape or jet formation are observed. The effects will be discussed regarding the medical ophthalmic application of fs-lasers. Based on these results a further research seems to be inevitable to comprehend and optimize the cutting effect of ultra-short pulse laser systems with high (> 500 kHz) repetition rates.
Interaction dynamics of temporal and spatial separated cavitation bubbles in water
NASA Astrophysics Data System (ADS)
Tinne, N.; Ripken, T.; Lubatschowski, H.
2010-02-01
The LASIK procedure is a well established laser based treatment in ophthalmology. Nowadays it includes a cutting of the corneal tissue bases on ultra short pulses which are focused below the tissue surface to create an optical breakdown and hence a dissection of the tissue. The energy of the laser pulse is absorbed by non-linear processes that result in an expansion of a cavitation bubble and rupturing of the tissue. Due to a reduction of the duration of treatment the current development of ultra short laser systems points to higher repetition rates. This in turn results in a probable interaction between different cavitation bubbles of adjacent optical breakdowns. While the interaction of one single laser pulse with biological tissue is analyzed reasonably well experimentally and theoretically, the interaction of several spatial and temporal following pulses is scarcely determined yet. We present a high-speed photography analysis of cavitation bubble interaction for two spatial separated laser-induced optical breakdowns varying the laser pulse energy as well as the spatial distance. Depending on a change of these parameters different kinds of interactions such as a flattening and deformation of bubble shape, asymmetric water streams and jet formation were observed. The results of this research can be used to comprehend and optimize the cutting effect of ultra short pulse laser systems with high repetition rates (> 1 MHz).
Gutierrez, Eric; Quinn, Daniel B; Chin, Diana D; Lentink, David
2016-12-06
There are three common methods for calculating the lift generated by a flying animal based on the measured airflow in the wake. However, these methods might not be accurate according to computational and robot-based studies of flapping wings. Here we test this hypothesis for the first time for a slowly flying Pacific parrotlet in still air using stereo particle image velocimetry recorded at 1000 Hz. The bird was trained to fly between two perches through a laser sheet wearing laser safety goggles. We found that the wingtip vortices generated during mid-downstroke advected down and broke up quickly, contradicting the frozen turbulence hypothesis typically assumed in animal flight experiments. The quasi-steady lift at mid-downstroke was estimated based on the velocity field by applying the widely used Kutta-Joukowski theorem, vortex ring model, and actuator disk model. The calculated lift was found to be sensitive to the applied model and its different parameters, including vortex span and distance between the bird and laser sheet-rendering these three accepted ways of calculating weight support inconsistent. The three models predict different aerodynamic force values mid-downstroke compared to independent direct measurements with an aerodynamic force platform that we had available for the same species flying over a similar distance. Whereas the lift predictions of the Kutta-Joukowski theorem and the vortex ring model stayed relatively constant despite vortex breakdown, their values were too low. In contrast, the actuator disk model predicted lift reasonably accurately before vortex breakdown, but predicted almost no lift during and after vortex breakdown. Some of these limitations might be better understood, and partially reconciled, if future animal flight studies report lift calculations based on all three quasi-steady lift models instead. This would also enable much needed meta studies of animal flight to derive bioinspired design principles for quasi-steady lift generation with flapping wings.
Observational and Model Studies of Large-Scale Mixing Processes in the Stratosphere
NASA Technical Reports Server (NTRS)
Bowman, Kenneth P.
1997-01-01
The following is the final technical report for grant NAGW-3442, 'Observational and Model Studies of Large-Scale Mixing Processes in the Stratosphere'. Research efforts in the first year concentrated on transport and mixing processes in the polar vortices. Three papers on mixing in the Antarctic were published. The first was a numerical modeling study of wavebreaking and mixing and their relationship to the period of observed stratospheric waves (Bowman). The second paper presented evidence from TOMS for wavebreaking in the Antarctic (Bowman and Mangus 1993). The third paper used Lagrangian trajectory calculations from analyzed winds to show that there is very little transport into the Antarctic polar vortex prior to the vortex breakdown (Bowman). Mixing is significantly greater at lower levels. This research helped to confirm theoretical arguments for vortex isolation and data from the Antarctic field experiments that were interpreted as indicating isolation. A Ph.D. student, Steve Dahlberg, used the trajectory approach to investigate mixing and transport in the Arctic. While the Arctic vortex is much more disturbed than the Antarctic, there still appears to be relatively little transport across the vortex boundary at 450 K prior to the vortex breakdown. The primary reason for the absence of an ozone hole in the Arctic is the earlier warming and breakdown of the vortex compared to the Antarctic, not replenishment of ozone by greater transport. Two papers describing these results have appeared (Dahlberg and Bowman; Dahlberg and Bowman). Steve Dahlberg completed his Ph.D. thesis (Dahlberg and Bowman) and is now teaching in the Physics Department at Concordia College. We also prepared an analysis of the QBO in SBUV ozone data (Hollandsworth et al.). A numerical study in collaboration with Dr. Ping Chen investigated mixing by barotropic instability, which is the probable origin of the 4-day wave in the upper stratosphere (Bowman and Chen). The important result from this paper is that even in the presence of growing, unstable waves, the mixing barriers around
Analysis and control of asymmetric vortex flows and supersonic vortex breakdown
NASA Technical Reports Server (NTRS)
Kandil, Osama A.
1992-01-01
The accomplishments which have been achieved in the present year covering the period from Dec. 1, 1991 until Nov. 30, 1992 are given. These accomplishments include publications, national and international presentations, NASA Research Highlights and presentations, and the research group supported under this grant.
Onset of chaos in helical vortex breakdown at low Reynolds number
NASA Astrophysics Data System (ADS)
Pasche, S.; Avellan, F.; Gallaire, F.
2018-06-01
The nonlinear dynamics of a swirling wake flow stemming from a Graboswksi-Berger vortex [Grabowski and Berger, J. Fluid Mech. 75, 525 (1976), 10.1017/S0022112076000360] in a semi-infinite domain is addressed at low Reynolds numbers for a fixed swirl number S =1.095 , defined as the ratio between the characteristic tangential velocity and the centerline axial velocity. In this system, only pure hydrodynamic instabilities develop and interact through the quadratic nonlinearities of the Navier-Stokes equations. Such interactions lead to the onset of chaos at a Reynolds value of Re=220 . This chaotic state is reached by following a Ruelle-Takens-Newhouse scenario, which is initiated by a Hopf bifurcation (the spiral vortex breakdown) as the Reynolds number increases. At larger Reynolds value, a frequency synchronization regime appears followed by a chaotic state again. This scenario is corroborated by nonlinear time series analyses. Stability analysis around the time-average flow and temporal-azimuthal Fourier decomposition of the nonlinear flow distributions both identify successfully the developing vortices and provide deeper insight into the development of the flow patterns leading to this route to chaos. Three single-helical vortices are involved: the primary spiral associated with the spiral vortex breakdown, a downstream spiral, and a near-wake spiral. As the Reynolds number increases, the frequencies of these vortices become closer, increasing their interactions by nonlinearity to eventually generate a strong chaotic axisymmetric oscillation.
NASA Astrophysics Data System (ADS)
Gyllenram, W.; Nilsson, H.; Davidson, L.
2007-04-01
This paper analyzes the properties of viscous swirling flow in a pipe. The analysis is based on the time-averaged quasicylindrical Navier-Stokes equations and is applicable to steady, unsteady, and turbulent swirling flow. A method is developed to determine the critical level of swirl (vortex breakdown) for an arbitrary vortex. The method can also be used for an estimation of the radial velocity profile if the other components are given or measured along a single radial line. The quasicylindrical equations are rearranged to yield a single ordinary differential equation for the radial distribution of the radial velocity component. The equation is singular for certain levels of swirl. It is shown that the lowest swirl level at which the equation is singular corresponds exactly to the sufficient condition for axisymmetric vortex breakdown as derived by Wang and Rusak [J. Fluid Mech. 340, 177 (1997)] and Rusak et al. [AIAA J. 36, 1848 (1998)]. In narrow regions around the critical levels of swirl, the solution violates the quasicylindrical assumptions and the flow must undergo a drastic change of structure. The critical swirl level is determined by the sign change of the smallest eigenvalue of the discrete linear operator which relates the radial velocities to effects of viscosity and turbulence. It is shown that neither viscosity nor turbulence directly alters the critical level of swirl.
CFD simulations of a wind turbine for analysis of tip vortex breakdown
NASA Astrophysics Data System (ADS)
Kimura, K.; Tanabe, Y.; Aoyama, T.; Matsuo, Y.; Arakawa, C.; Iida, M.
2016-09-01
This paper discusses about the wake structure of wind turbine via the use of URANS and Quasi-DNS, focussing on the tip vortex breakdown. The moving overlapped structured grids CFD Solver based on a fourth-order reconstruction and an all-speed scheme, rFlow3D is used for capturing the characteristics of tip vortices. The results from the Model Experiments in Controlled Conditions project (MEXICO) was accordingly selected for executing wake simulations through the variation of tip speed ratio (TSR); in an operational wind turbine, TSR often changes in value. Therefore, it is important to assess the potential effects of TSR on wake characteristics. The results obtained by changing TSR show the variations of the position of wake breakdown and wake expansion. The correspondence between vortices and radial/rotational flow is also confirmed.
NASA Technical Reports Server (NTRS)
Arena, A. S., Jr.; Nelson, R. C.
1989-01-01
An experimental investigation into the fluid mechanisms responsible for wing rock on a slender delta wing with 80 deg leading edge sweep has been conducted. Time history and flow visualization data are presented for a wide angle-of-attack range. The use of an air bearing spindle has allowed the motion of the wing to be free from bearing friction or mechanical hysteresis. A bistable static condition has been found in vortex breakdown at an angle of attack of 40 deg which causes an overshoot of the steady state rocking amplitude. Flow visualization experiments also reveal a difference in static and dynamic breakdown locations on the wing. A hysteresis loop in dynamic breakdown location similar to that seen on pitching delta wings was observed as the wing was undergoing the limit cycle oscillation.
Influence of ultrasound on the electrical breakdown of transformer oil
NASA Astrophysics Data System (ADS)
Isakaev, E. Kh; Tyuftyaev, A. S.; Gadzhiev, M. Kh; Demirov, N. A.; Akimov, P. L.
2018-01-01
When the transformer oil is exposed to low power ultrasonic waves (< 2 W/cm2) at initial moment the breakdown voltage of transformer oil is reduced relative to the breakdown voltage of pure oil due to degassing and the occurrence of cavitation bubbles. With the increase of sonication time the breakdown voltage also increases, nonlinearly. The experimental data indicate the possibility of using ultrasonic waves of low power for degassing of transformer oil.
Role of vortices in cavitation formation in the flow across a mechanical heart valve.
Li, Chi-Pei; Lu, Po-Chien; Liu, Jia-Shing; Lo, Chi-Wen; Hwang, Ned H
2008-07-01
Cavitation occurs during mechanical heart valve closure when the local pressure drops below vapor pressure. The formation of stable gas bubbles may result in gaseous emboli, and secondarily cause transient ischemic attacks or strokes. It is noted that instantaneous valve closure, occluder rebound and high-speed leakage flow generate vortices that promote low-pressure regions in favor of stable bubble formation; however, to date no studies have been conducted for the quantitative measurement and analysis of these vortices. A Björk-Shiley Monostrut (BSM) monoleaflet valve was placed in the mitral position of a pulsatile mock circulatory loop. Particle image velocimetry (PIV) and pico coulomb (PCB) pressure measurements were applied. Flow field measurements were carried out at t = -5, -3, -1, -0.5, 0 (valve closure), 0.3, 0.5, 0.75, 1.19, 1.44, 1.69, 1.94, 2, 2.19, 2.54, 2.79, 3.04, 3.29, 3.54, 5 and 10 ms. The vortices were quantitatively analyzed using the Rankine vortex model. A single counter-clockwise vortex was The instantaneous formation of cavitation bubbles at mechanical heart valve (MHV) closure, which subsequently damage blood cells and valve integrity, is a well-known and widely studied phenomenon (1-4). Contributing factors seem to include the water-hammer, squeeze flow and Venturi effects, all of which are short-lived. Both, Dauzat et al. (5) and Sliwka et al. (6) have detected high-intensity transient signals (HITS) with transcranial Doppler ultrasound in the carotid and cerebral arteries of MHV recipients, while Deklunder (7) observed clinical occurrences of cerebral gas emboli that were not seen with bioprosthetic valves. These detected over the major orifice, while a pair of counter-rotating vortices was found over the minor orifice. Velocity profiles were consistent with Rankine vortices. The vortex strength and magnitude of the pressure drop peaked shortly after initial occluder-housing impact and rapidly decreased after 0.5 ms, indicating viscous dissipation, with a less significant contribution from the occluder rebound effect. The maximum pressure drop was on the order of magnitude of 40 mmHg. Detailed PIV measurements and quantitative analysis of the BSM mechanical heart valve revealed large-scale vortex formation immediately after valve closure. Of note, the vortices were typical of a Rankine vortex and the maximum pressure change at the vortex center was only 40 mmHg. These data support the conclusion that vortex formation alone cannot generate the magnitude of pressure drop required for cavitation bubble formation.
Minnowbrook VI: 2009 Workshop on Flow Physics and Control for Internal and External Aerodynamics
NASA Technical Reports Server (NTRS)
LaGraff, John E.; Povinelli, Louis A.; Gostelow, J. Paul; Glauser, Mark
2010-01-01
Topics covered include: Flow Physics and control for Internal and External Aerodynamics (not in TOC...starts on pg13); Breaking CFD Bottlenecks in Gas-Turbine Flow-Path Design; Streamwise Vortices on the Convex Surfaces of Circular Cylinders and Turbomachinery Blading; DNS and Embedded DNS as Tools for Investigating Unsteady Heat Transfer Phenomena in Turbines; Cavitation, Flow Structure and Turbulence in the Tip Region of a Rotor Blade; Development and Application of Plasma Actuators for Active Control of High-Speed and High Reynolds Number Flows; Active Flow Control of Lifting Surface With Flap-Current Activities and Future Directions; Closed-Loop Control of Vortex Formation in Separated Flows; Global Instability on Laminar Separation Bubbles-Revisited; Very Large-Scale Motions in Smooth and Rough Wall Boundary Layers; Instability of a Supersonic Boundary-Layer With Localized Roughness; Active Control of Open Cavities; Amplitude Scaling of Active Separation Control; U.S. Air Force Research Laboratory's Need for Flow Physics and Control With Applications Involving Aero-Optics and Weapon Bay Cavities; Some Issues Related to Integrating Active Flow Control With Flight Control; Active Flow Control Strategies Using Surface Pressure Measurements; Reduction of Unsteady Forcing in a Vaned, Contra-Rotating Transonic Turbine Configuration; Active Flow Control Stator With Coanda Surface; Controlling Separation in Turbomachines; Flow Control on Low-Pressure Turbine Airfoils Using Vortex Generator Jets; Reduced Order Modeling Incompressible Flows; Study and Control of Flow Past Disk, and Circular and Rectangular Cylinders Aligned in the Flow; Periodic Forcing of a Turbulent Axisymmetric Wake; Control of Vortex Breakdown in Critical Swirl Regime Using Azimuthal Forcing; External and Turbomachinery Flow Control Working Group; Boundary Layers, Transitions and Separation; Efficiency Considerations in Low Pressure Turbines; Summary of Conference; and Final Plenary Session Transcript.
Review of the physics of enhancing vortex lift by unsteady excitation
NASA Technical Reports Server (NTRS)
Wu, J. Z.; Vakili, A. D.; Wu, J. M.
1991-01-01
A review aimed at providing a physical understanding of the crucial mechanisms for obtaining super lift by means of unsteady excitations is presented. Particular attention is given to physical problems, including rolled-up vortex layer instability and receptivity, wave-vortex interaction and resonance, nonlinear streaming, instability of vortices behind bluff bodies and their shedding, and vortex breakdown. A general theoretical framework suitable for handling the unsteady vortex flows is introduced. It is suggested that wings with swept and sharp leading edges, equipped with devices for unsteady excitations, could yield the first breakthrough of the unsteady separation barrier and provide super lift at post-stall angle of attack.
NASA Technical Reports Server (NTRS)
Stoll, F.; Koenig, D. G.
1983-01-01
Data obtained through very high angles of attack from a large-scale, subsonic wind-tunnel test of a close-coupled canard-delta-wing fighter model are analyzed. The canard delays wing leading-edge vortex breakdown, even for angles of attack at which the canard is completely stalled. A vortex-lattice method was applied which gave good predictions of lift and pitching moment up to an angle of attack of about 20 deg, where vortex-breakdown effects on performance become significant. Pitch-control inputs generally retain full effectiveness up to the angle of attack of maximum lift, beyond which, effectiveness drops off rapidly. A high-angle-of-attack prediction method gives good estimates of lift and drag for the completely stalled aircraft. Roll asymmetry observed at zero sideslip is apparently caused by an asymmetry in the model support structure.
Vortical flow management for improved configuration aerodynamics: Recent experiences
NASA Technical Reports Server (NTRS)
Rao, D. M.
1983-01-01
Recent progress in vortex-control applications for alleviating the adverse consequences of three dimensional separation and vortical interactions on slender body/swept wing configurations is reported. Examples include helical separation trip to alleviate the side force due to forebody vortex asymmetry; hinged strakes to avoid vortex breakdown effects; compartmentation of swept leading edge separation to delay the pitch-up instability; under wing vortex trip and vortex trip and vortex flaps for drag reduction at high lift; and an apex-flap trimmer to fully utilize the lift capability of trailing-edge flaps for take off and landing of delta wings. Experimental results on generic wind-tunnel models are presented to illustrate the vortex-management concepts involved and to indicate their potential for enhancing the subsonic aerodynamics of supersonic-cruise type vehicles.
NASA Technical Reports Server (NTRS)
Shariff, Karim; Leonard, Anthony
1992-01-01
The vortex-ring problem in fluid mechanics is examined generally in terms of formation, the steady state, the duration of the rings, and vortex interactions. The formation is studied by examining the generation of laminar and turbulent vortex rings and their resulting structures with attention given to the three stages of laminar ring development. Inviscid dynamics is addressed to show how core dynamics affects overall ring motion, and laminar vortex structures are described in two dimensions. Viscous and inviscid structures are related in terms of 'leapfrogging', head-on collisions, and collisions with a no-slip wall. Linear instability theory is shown to successfully describe observational data, although late stages in the breakdown are not completely understood. This study of vortex rings has important implications for key aerodynamic issues including sound generation, transport and mixing, and vortex interactions.
Mechanisms of mechanical heart valve cavitation: investigation using a tilting disk valve model.
He, Z; Xi, B; Zhu, K; Hwang, N H
2001-09-01
The induction of mechanical heart valve (MHV) cavitation was investigated using a 27 mm Medtronic Hall (MH27) tilting disk valve. The MH27 valve was mounted in the mitral position of a simulating pulse flow system, and stroboscopic lighting used to visualize cavitation bubbles on the occluder inflow surface at the instant of valve closure. MHV cavitation was monitored using a digital camera with 0.04 mm/pixel resolution sufficient to render the tiny bubbles clearly visible on the computer monitor screen. Cavitation on MH27 valve was classified as five types according to the time, site and shape of the cavitation bubbles. Valve cavitation occurred at the instant of occluder impact with the valve seat at closing. The impact motion was subdivided into three temporal phases: (i) squeezing flow; (ii) elastic collision; and (iii) leaflet rebound. MHV cavitation caused by vortices was found to be initiated by the squeezing jet and/or by the transvalvular leakage jets. By using a tension wave which swept across the occluder surface immediately upon elastic impact, nuclei in the vortex core were expanded to form cavitation bubbles. Analysis of the shape and location of the cavitation bubbles permitted a better understanding of MHV cavitation mechanisms, based on the fluid dynamics of jet vortex and tension wave propagations.
2015-04-29
bubble generation and shock wave emission in water for femtosecond to nanosecond laser pulses . ...breakdown threshold in water for nanosecond (ns) IR laser pulses . Avalanche ionization (AI) is the most powerful mechanism driving IR ns laser-induced...acknowledged that femtosecond (fs) and picosecond (ps) IR breakdown is initiated by photoionization because ultrashort pulses are sufficiently
NASA Technical Reports Server (NTRS)
Lan, C. Edward
1985-01-01
A computer program based on the Quasi-Vortex-Lattice Method of Lan is presented for calculating longitudinal and lateral-directional aerodynamic characteristics of nonplanar wing-body combination. The method is based on the assumption of inviscid subsonic flow. Both attached and vortex-separated flows are treated. For the vortex-separated flow, the calculation is based on the method of suction analogy. The effect of vortex breakdown is accounted for by an empirical method. A summary of the theoretical method, program capabilities, input format, output variables and program job control set-up are described. Three test cases are presented as guides for potential users of the code.
2009-10-01
636.7 115,418 0 2500 5000 7500 10000 12500 iterations -5 -4 -3 -2 -1 0 lo g( dρ /d t) SA EARSM EARSM + CC Hellsten EARSM Hellsten EARSM + CC DRSM...VORTEX BREAKDOWN RTO-TR-AVT-113 29 - 13 θU URo axial= (1) As a vortex passes through a normal shock, the tangential velocity is
A Numerical Study of Cavitation Inception in Complex Flow Fields
2007-12-01
field in a tip vortex flow of an open propeller to better describe the interaction between the blade wake and the tip vortex (i.e. the roll-up... WAKE INTERACTION ON CAVITATION INCEPTION IN AN OPEN PROPELLER ................15 2.5 NON-SPHERICAL BUBBLE EFFECTS ON CAVITATION INCEPTION [14,15...18 2.6 STUDY OF CAVITATION INCEPTION NOISE [16,17,18
Numerical Simulation of Forced and Free-to-Roll Delta-Wing Motions
NASA Technical Reports Server (NTRS)
Chaderjian, Neal M.; Schiff, Lewis B.
1996-01-01
The three-dimensional, Reynolds-averaged, Navier-Stokes (RANS) equations are used to numerically simulate nonsteady vortical flow about a 65-deg sweep delta wing at 30-deg angle of attack. Two large-amplitude, high-rate, forced-roll motions, and a damped free-to-roll motion are presented. The free-to-roll motion is computed by coupling the time-dependent RANS equations to the flight dynamic equation of motion. The computed results are in good agreement with the forces, moments, and roll-angle time histories. Vortex breakdown is present in each case. Significant time lags in the vortex breakdown motions relative to the body motions strongly influence the dynamic forces and moments.
Some observations of separated flow on finite wings
NASA Technical Reports Server (NTRS)
Winkelmann, A. E.; Ngo, H. T.; De Seife, R. C.
1982-01-01
Wind tunnel test results for aspects of flow over airfoils exhibiting single and multiple trailing edge stall 'mushroom' cells are reported. Rectangular wings with aspect ratios of 4.0 and 9.0 were tested at Reynolds numbers of 480,000 and 257,000, respectively. Surface flow patterns were visualized by means of a fluorescent oil flow technique, separated flow was observed with a tuft wand and a water probe, spanwise flow was studied with hot-wire anemometry, smoke flow and an Ar laser illuminated the centerplane flow, and photographs were made of the oil flow patterns. Swirl patterns on partially and fully stalled wings suggested vortex flow attachments in those regions, and a saddle point on the fully stalled AR=4.0 wing indicated a secondary vortex flow at the forward region of the separation bubble. The separation wake decayed downstream, while the tip vortex interacted with the separation bubble on the fully stalled wing. Three mushroom cells were observed on the AR=9.0 wing.
NASA Astrophysics Data System (ADS)
Sun, Hui; Li, Xin; Hu, Mingyong
2017-08-01
The unique spatial distribution of corneal elasticity is shown by the nonhomogeneous structure of the cornea. It is critical to understanding how biomechanics control corneal stability and refraction and one way to do this job is non-invasive measurement of this distribution. Femtosecond laser pulses have the ability to induce optical breakdown and produced cavitation in the anterior and posterior cornea. A confocal ultrasonic transducer applied 6.5 ms acoustic radiation forcechirp bursts to the bubble at 1.5 MHz while monitoring bubble position using pulse-echoes at 20 MHz. The laser induced breakdown spectroscopy (LIBS) were measured in the anterior and posterior cornea with the plasmas that induced by the same femtosecond laser to see whether the laser induced plasmas signals will show relationship to Young's modulus.
Discrete-vortex simulation of pulsating flow on a turbulent leading-edge separation bubble
NASA Technical Reports Server (NTRS)
Sung, Hyung Jin; Rhim, Jae Wook; Kiya, Masaru
1992-01-01
Studies are made of the turbulent separation bubble in a two-dimensional semi-infinite blunt plate aligned to a uniform free stream with a pulsating component. The discrete-vortex method is applied to simulate this flow situation because this approach is effective for representing the unsteady motions of the turbulent shear layer and the effect of viscosity near the solid surface. The numerical simulation provides reasonable predictions when compared with the experimental results. A particular frequency with a minimum reattachment is related to the drag reduction. The most effective frequency is dependent on the amplified shedding frequency. The turbulent flow structure is scrutinized. This includes the time-mean and fluctuations of the velocity and the surface pressure, together with correlations between the fluctuating components. A comparison between the pulsating flow and the non-pulsating flow at the particular frequency of the minimum reattachment length of the separation bubble suggests that the large-scale vortical structure is associated with the shedding frequency and the flow instabilities.
Liquid Nitrogen as Fast High Voltage Switching Medium
NASA Astrophysics Data System (ADS)
Dickens, J.; Neuber, A.; Haustein, M.; Krile, J.; Krompholz, H.
2002-12-01
Compact pulsed power systems require new switching technologies. For high voltages, liquid nitrogen seems to be a suitable switching medium, with high hold-off voltage, low dielectric constant, and no need for pressurized systems as in high pressure gas switches. The discharge behavior in liquid nitrogen, such as breakdown voltages, formative times, current rise as function of voltage, recovery, etc. are virtually unknown, however. The phenomenology of breakdown in liquid nitrogen is investigated with high speed (temporal resolution < 1 ns) electrical and optical diagnostics, in a coaxial system with 50-Ohm impedance. Discharge current and voltage are determined with transmission line type current sensors and capacitive voltage dividers. The discharge luminosity is measured with photomultiplier tubes. Preliminary results of self-breakdown investigations (gap 1 mm, breakdown voltage 44 kV, non-boiling supercooled nitrogen) show a fast (2 ns) transition from an unknown current level to several mA, a long-duration (100 ns) phase with constant current superimposed by ns-spikes, and a final fast transition to the impedance limited current during several nanoseconds. The optical measurements will be expanded toward spectroscopy and high speed photography with the aim of clarifying the overall breakdown mechanisms, including electronic initiation, bubble formation, bubble dynamics, and their role in breakdown, for different electrode geometries (different macroscopic field enhancements).
NASA Astrophysics Data System (ADS)
Akiyoshi, H.; Sugita, T.; Kanzawa, H.; Kawamoto, N.
2004-02-01
Ozone concentration perturbations in the high-latitude lower stratosphere in the Northern Hemisphere were observed by Improved Limb Atmospheric Spectrometer (ILAS) after the polar vortex breakdown at the beginning of May 1997 and until the end of June of that same year. Simulations and a passive tracer experiment using the Center for Climate System Research/National Institute for Environmental Studies (CCSR/NIES) nudging chemical transport model (CTM) show that the low-ozone perturbations observed in May were caused by the Arctic polar vortex debris, while those after the end of May resulted from a dynamical elongation due to zonal wave number 2 planetary waves of the low-ozone region in the summer polar stratosphere, which had been developed by the catalytic ozone destruction cycle of NOX. These low-O3 air masses of different origin were advected or elongated from the polar region to the ILAS measurement points. An episodic event of a dynamical O3 perturbation in June 1997 on a chemically induced meridional O3 gradient is described. These results show that a timing of the polar vortex breakdown and activity of planetary waves after the breakdown may affect the O3 background gradient in the summer lower stratosphere at middle and high latitudes.
Mathematical Fluid Dynamics of Plasma Flow Control Over High Speed Wings
2009-02-01
decreased voltage; e= 8, d= 1 mm. electrode u fe ^mmm^^n/* Fyd electrode Fig. 23 Schematics of momentum and heat source distributions for...For a>25°, the influence of DBD on the vortex breakdown is not so clear, because the breakdown point is very close to the wing apex in all three
Rigorous buoyancy driven bubble mixing for centrifugal microfluidics.
Burger, S; Schulz, M; von Stetten, F; Zengerle, R; Paust, N
2016-01-21
We present batch-mode mixing for centrifugal microfluidics operated at fixed rotational frequency. Gas is generated by the disk integrated decomposition of hydrogen peroxide (H2O2) to liquid water (H2O) and gaseous oxygen (O2) and inserted into a mixing chamber. There, bubbles are formed that ascent through the liquid in the artificial gravity field and lead to drag flow. Additionaly, strong buoyancy causes deformation and rupture of the gas bubbles and induces strong mixing flows in the liquids. Buoyancy driven bubble mixing is quantitatively compared to shake mode mixing, mixing by reciprocation and vortex mixing. To determine mixing efficiencies in a meaningful way, the different mixers are employed for mixing of a lysis reagent and human whole blood. Subsequently, DNA is extracted from the lysate and the amount of DNA recovered is taken as a measure for mixing efficiency. Relative to standard vortex mixing, DNA extraction based on buoyancy driven bubble mixing resulted in yields of 92 ± 8% (100 s mixing time) and 100 ± 8% (600 s) at 130g centrifugal acceleration. Shake mode mixing yields 96 ± 11% and is thus equal to buoyancy driven bubble mixing. An advantage of buoyancy driven bubble mixing is that it can be operated at fixed rotational frequency, however. The additional costs of implementing buoyancy driven bubble mixing are low since both the activation liquid and the catalyst are very low cost and no external means are required in the processing device. Furthermore, buoyancy driven bubble mixing can easily be integrated in a monolithic manner and is compatible to scalable manufacturing technologies such as injection moulding or thermoforming. We consider buoyancy driven bubble mixing an excellent alternative to shake mode mixing, in particular if the processing device is not capable of providing fast changes of rotational frequency or if the low average rotational frequency is challenging for the other integrated fluidic operations.
A model for foam formation, stability, and breakdown in glass-melting furnaces.
van der Schaaf, John; Beerkens, Ruud G C
2006-03-01
A dynamic model for describing the build-up and breakdown of a glass-melt foam is presented. The foam height is determined by the gas flux to the glass-melt surface and the drainage rate of the liquid lamellae between the gas bubbles. The drainage rate is determined by the average gas bubble radius and the physical properties of the glass melt: density, viscosity, surface tension, and interfacial mobility. Neither the assumption of a fully mobile nor the assumption of a fully immobile glass-melt interface describe the observed foam formation on glass melts adequately. The glass-melt interface appears partially mobile due to the presence of surface active species, e.g., sodium sulfate and silanol groups. The partial mobility can be represented by a single, glass-melt composition specific parameter psi. The value of psi can be estimated from gas bubble lifetime experiments under furnace conditions. With this parameter, laboratory experiments of foam build-up and breakdown in a glass melt are adequately described, qualitatively and quantitatively by a set of ordinary differential equations. An approximate explicit relationship for the prediction of the steady-state foam height is derived from the fundamental model.
Crossflow-Vortex Breakdown on Swept Wings: Correlation of Nonlinear Physics
NASA Technical Reports Server (NTRS)
Joslin, R. D.; Streett, C. L.
1994-01-01
The spatial evolution of cross flow-vortex packets in a laminar boundary layer on a swept wing are computed by the direct numerical simulation of the incompressible Navier- Stokes equations. A wall-normal velocity distribution of steady suction and blowing at the wing surface is used to generate a strip of equally spaced and periodic disturbances along the span. Three simulations are conducted to study the effect of initial amplitude on the disturbance evolution, to determine the role of traveling cross ow modes in transition, and to devise a correlation function to guide theories of transition prediction. In each simulation, the vortex packets first enter a chordwise region of linear independent growth, then, the individual packets coalesce downstream and interact with adjacent packets, and, finally, the vortex packets nonlinearly interact to generate inflectional velocity profiles. As the initial amplitude of the disturbance is increased, the length of the evolution to breakdown decreases. For this pressure gradient, stationary modes dominate the disturbance evolution. A two-coeffcient function was devised to correlate the simulation results. The coefficients, combined with a single simulation result, provide sufficient information to generate the evolution pattern for disturbances of any initial amplitude.
NASA Technical Reports Server (NTRS)
Nelson, Robert C.; Visser, Kenneth D.
1990-01-01
Experimental x-wire measurements of the flowfield above a 70 and 75 deg flat plate delta wing were performed at a Reynolds number of 250,000. Grids were taken normal to the wing at various chordwise locations for angles of attack of 20 and 30 deg. Axial and azimuthal vorticity distributions were derived from the velocity fields. The dependence of circulation on distance from the vortex core and on chordwise location was also examined. The effects of nondimensionalization in comparison with other experimental data is made. The results indicate that the circulation distribution scales with the local semispan and grows in a nearly linear fashion in the chordwise direction. The spanwise distribution of axial vorticity is severely altered through the breakdown. The axial vorticity components with a negative sense, such as that found in the secondary vortex, seem to remain unaffected by changes in wind sweep or angle of attack, in direct contrast to the positive components. In addition, the inclusion of the local wing geometry into a previously derived correlation parameter allows the circulation of growing leading edge vortex flows to be reduced into a single curve.
Acoustically-Enhanced Direct Contact Vapor Bubble Condensation
NASA Astrophysics Data System (ADS)
Boziuk, Thomas; Smith, Marc; Glezer, Ari
2017-11-01
Rate-limited, direct contact vapor condensation of vapor bubbles that are formed by direct steam injection through a nozzle in a quiescent subcooled liquid bath is accelerated using ultrasonic (MHz-range) actuation. A submerged, low power actuator produces an acoustic beam whose radiation pressure deforms the liquid-vapor interface, leading to the formation of a liquid spear that penetrates the vapor bubble to form a vapor torus with a significantly larger surface area and condensation rate. Ultrasonic focusing along the spear leads to the ejection of small, subcooled droplets through the vapor volume that impact the vapor-liquid interface and further enhance the condensation. High-speed Schlieren imaging of the formation and collapse of the vapor bubbles in the absence and presence of actuation shows that the impulse associated with the collapse of the toroidal volume leads to the formation of a turbulent vortex ring in the liquid phase. Liquid motions near the condensing vapor volume are investigated in the absence and presence of acoustic actuation using high-magnification PIV and show the evolution of a liquid jet through the center of the condensing toroidal volume and the formation and advection of vortex ring structures whose impulse appear to increase with temperature difference between the liquid and vapor phases. High-speed image processing is used to assess the effect of the actuation on the temporal and spatial variations in the characteristic scales and condensation rates of the vapor bubbles.
Assessment of swirl spray interaction in lab scale combustor using time-resolved measurements
NASA Astrophysics Data System (ADS)
Rajamanickam, Kuppuraj; Jain, Manish; Basu, Saptarshi
2017-11-01
Liquid fuel injection in highly turbulent swirling flows becomes common practice in gas turbine combustors to improve the flame stabilization. It is well known that the vortex bubble breakdown (VBB) phenomenon in strong swirling jets exhibits complicated flow structures in the spatial domain. In this study, the interaction of hollow cone liquid sheet with such coaxial swirling flow field has been studied experimentally using time-resolved measurements. In particular, much attention is focused towards the near field breakup mechanism (i.e. primary atomization) of liquid sheet. The detailed swirling gas flow field characterization is carried out using time-resolved PIV ( 3.5 kHz). Furthermore, the complicated breakup mechanisms and interaction of the liquid sheet are imaged with the help of high-speed shadow imaging system. Subsequently, proper orthogonal decomposition (POD) and dynamic mode decomposition (DMD) is implemented over the instantaneous data sets to retrieve the modal information associated with the interaction dynamics. This helps to delineate more quantitative nature of interaction process between the liquid sheet and swirling gas phase flow field.
Flow visualization study of a vortex-wing interaction
NASA Technical Reports Server (NTRS)
Mehta, R. D.; Lim, T. T.
1984-01-01
A flow visualization study in water was completed on the interaction of a streamwise vortex with a laminar boundary layer on a two-dimensional wing. The vortex was generated at the tip of a finite wing at incidence, mounted perpendicular to the main wing, and having the same chord as the main wing. The Reynolds number based on wing chord was about 5000. Two different visualization techniques were used. One involved the injection of two different colored dyes into the vortex and the boundary layer. The other technique utilized hydrogen bubbles as an indicator. The position of the vortex was varied in a directional normal to the wing. The angle of attack of the main wing was varied from -5 to +12.5 deg. The vortex induced noticeable cross flows in the wing boundary layer from a distance equivalent to 0.75 chords. When very close to the wing, the vortex entrained boundary layer fluid and caused a cross flow separation which resulted in a secondary vortex.
An airborne system for vortex flow visualization on the F-18 high-alpha research vehicle
NASA Technical Reports Server (NTRS)
Curry, Robert E.; Richwine, David M.
1988-01-01
A flow visualization system for the F-18 high-alpha research vehicle is described which allows direct observation of the separated vortex flows over a wide range of flight conditions. The system consists of a smoke generator system, on-board photographic and video systems, and instrumentation. In the present concept, smoke is entrained into the low-pressure vortex core, and vortice breakdown is indicated by a rapid diffusion of the smoke. The resulting pattern is observed using photographic and video images and is correlated with measured flight conditions.
Development and Breakdown of Goertler Vortices in High Speed Boundary Layers
NASA Technical Reports Server (NTRS)
Li, Fei; Choudhari, Meelan; Chang, Chau-Lyan; Wu, Minwei; Greene, Ptrick T.
2010-01-01
The nonlinear development of G rtler instability over a concave surface gives rise to a highly distorted stationary flow in the boundary layer that has strong velocity gradients in both spanwise and wall-normal directions. This distorted flow is susceptible to strong, high frequency secondary instability that leads to the onset of transition. For high Mach number flows, the boundary layer is also subject to the second mode instability. The nonlinear development of G rtler vortices and the ensuing growth and breakdown of secondary instability, the G rtler vortex interactions with second mode instabilities as well as oblique second mode interactions are examined in the context of both internal and external hypersonic configurations using nonlinear parabolized stability equations, 2-D eigenvalue analysis and direct numerical simulation. For G rtler vortex development inside the Purdue Mach 6 Ludwieg tube wind tunnel, multiple families of unstable secondary eigenmodes are identified and their linear and nonlinear evolution is examined. The computation of secondary instability is continued past the onset of transition to elucidate the physical mechanisms underlying the laminar breakdown process. Nonlinear breakdown scenarios associated with transition over a Mach 6 compression cone configuration are also explored.
On the inlet vortex system. [preventing jet engine damage caused by debris pick-up
NASA Technical Reports Server (NTRS)
Bissinger, N. C.; Braun, G. W.
1974-01-01
The flow field of a jet engine with an inlet vortex, which can pick up heavy debris from the ground and damage the engine, was simulated in a small water tunnel by means of the hydrogen bubble technique. It was found that the known engine inlet vortex is accompained by a vortex system, consisting of two inlet vortices (the ground based and the trailing one), secondary vortices, and ground vortices. Simulation of the ground effect by an inlet image proved that the inlet vortex feeds on free stream vorticity and can exist without the presence of a ground boundary layer. The structural form of the inlet vortex system was explained by a simple potential flow model, which showed the number, location, and the importance of the stagnation points. A retractable horizontal screen or an up-tilt of the engine is suggested as countermeasure against debris ingestion.
Negative vortices: The formation of vortex rings with reversed rotation in viscoelastic liquids
NASA Astrophysics Data System (ADS)
Palacios-Morales, Carlos; Barbosa, Christophe; Solorio, Francisco; Zenit, Roberto
2015-05-01
The formation process of vortex rings in a viscoelastic liquid is studied experimentally considering a piston-cylinder arrangement. Initially, a vortex ring begins to form as fluid is injected from the cylinder into the tank in a manner similar to that observed for Newtonian liquids. For later times, when the piston ceases its motion, the flow changes dramatically. A secondary vortex with reversed spinning direction appears and grows to be as large in size as the original one. The formation process is studied by contrasting the evolution with that obtained for Newtonian liquids with equivalent Reynolds numbers and stroke ratios. We argue that the reversing flow, or negative vortex, results from the combined action of shear and extension rates produced during the vortex formation, in a process similar to that observed behind ascending bubbles and falling spheres in viscoelastic media.
Comparison of cavitation bubbles evolution in viscous media
NASA Astrophysics Data System (ADS)
Jasikova, Darina; Schovanec, Petr; Kotek, Michal; Kopecky, Vaclav
2018-06-01
There have been tried many types of liquids with different ranges of viscosity values that have been tested to form a single cavitation bubble. The purpose of these experiments was to observe the behaviour of cavitation bubbles in media with different ranges of absorbance. The most of the method was based on spark to induced superheat limit of liquid. Here we used arrangement of the laser-induced breakdown (LIB) method. There were described the set cavitation setting that affects the size bubble in media with different absorbance. We visualized the cavitation bubble with a 60 kHz high speed camera. We used here shadowgraphy setup for the bubble visualization. There were observed time development and bubble extinction in various media, where the size of the bubble in the silicone oil was extremely small, due to the absorbance size of silicon oil.
Time-resolved imaging of electrical discharge development in underwater bubbles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tu, Yalong; Xia, Hualei; Yang, Yong, E-mail: yangyong@hust.edu.cn, E-mail: luxinpei@hust.edu.cn
2016-01-15
The formation and development of plasma in single air bubbles submerged in water were investigated. The difference in the discharge dynamics and the after-effects on the bubble were investigated using a 900 000 frame per second high-speed charge-coupled device camera. It was observed that depending on the position of the electrodes, the breakdown could be categorized into two modes: (1) direct discharge mode, where the high voltage and ground electrodes were in contact with the bubble, and the streamer would follow the shortest path and propagate along the axis of the bubble and (2) dielectric barrier mode, where the groundmore » electrode was not in touch with the bubble surface, and the streamer would form along the inner surface of the bubble. The oscillation of the bubble and the development of instabilities on the bubble surface were also discussed.« less
Tip leakage vortex dynamics and inception
NASA Astrophysics Data System (ADS)
Oweis, Ghanem; Ceccio, Steven; Jessup, Stuart; Chesnakas, Christopher; Fry, David
2002-11-01
The McCormick rule for tip vortex cavitation scaling predicts that cavitation should take place in the vortex where the average core pressure deficit from the free stream is the largest along the vortex tube. The average core pressure deficit can be calculated from the vortex core size and circulation and these can be measured by LDV or hot wire, among other methods. The same rule applies to the tip vortex from a wall-bounded hydrofoil. Recent cavitation inception experiments on a ducted propeller in the NSWCCD 36 inch water tunnel combined with PIV and LDV measurements of the tip vortex flow are described. These tests reveal a disagreement between the actual inception location and that predicted by the McCormick rule. It is hypothesized that in this case the inception mechanism is related to local flow phenomena associated with local vortex unsteadiness, as opposed to the average vortex parameters (core size and circulation) used in the viscous scaling rule of McCormick. Discussion of the flow field measurements, bubble population, and the noise production from the inception events is given.
2013-12-01
providing the opportunity to teach complex subjects related to stable and unstable equilibrium, stochastic systems, and conservation laws. The...bubbles through adjustment of three variables. The seal pressure, actuating pressure, and cycle time of the triggering solenoid valve each contribute to...stable and unstable equilibrium, stochastic systems, and conservation laws. The diaphragm valve designed in this thesis provides the centerpiece for
NASA Astrophysics Data System (ADS)
Liang, Xiao-Xuan; Freidank, Sebastian; Linz, Norbert; Paltauf, Günther; Zhang, Zhenxi; Vogel, Alfred
2017-03-01
We developed modeling tools for optical breakdown events in water that span various phases reaching from breakdown initiation via solvated electron generation, through laser induced-plasma formation and temperature evolution in the focal spot to the later phases of cavitation bubble dynamics and shock wave emission and applied them to a large parameter space of pulse durations, wavelengths, and pulse energies. The rate equation model considers the interplay of linear absorption, photoionization, avalanche ionization and recombination, traces thermalization and temperature evolution during the laser pulse, and portrays the role of thermal ionization that becomes relevant for T > 3000 K. Modeling of free-electron generation includes recent insights on breakdown initiation in water via multiphoton excitation of valence band electrons into a solvated state at Eini = 6.6 eV followed by up-conversion into the conduction band level that is located at 9.5 eV. The ability of tracing the temperature evolution enabled us to link the model of laser-induced plasma formation with a hydrodynamic model of plasma-induced pressure evolution and phase transitions that, in turn, traces bubble generation and dynamics as well as shock wave emission. This way, the amount of nonlinear energy deposition in transparent dielectrics and the resulting material modifications can be assessed as a function of incident laser energy. The unified model of plasma formation and bubble dynamics yields an excellent agreement with experimental results over the entire range of investigated pulse durations (femtosecond to nanosecond), wavelengths (UV to IR) and pulse energies.
Investigation on the mode of AC discharge in H2O affected by temperature
NASA Astrophysics Data System (ADS)
Siyuan, DONG; Shaomeng, GUO; Dan, WEN; Xiaoliang, TANG; Gao, QIU
2018-04-01
In this paper, some experimental equipment has been set up for kHz frequency AC liquid phase discharge, and the temperature of the deionized water was regulated during discharge. The electrical characteristics and spectra of liquid phase H2O discharge have been investigated. Two discharge modes, high temperature and low temperature, were both found. The results show that there are two mechanisms in liquid phase discharge: the field ionization mechanism and the breakdown mechanism of bubbles, and these two mechanisms are always developed simultaneously; the temperature is the key factor determining the discharge type. At high temperature, the breakdown of bubbles is the main discharge mechanism, and the field ionization mechanism occurs mainly at low temperature.
Forced convection in the wakes of sliding bubbles
NASA Astrophysics Data System (ADS)
Meehan, O'Reilly; Donnelly, B.; Persoons, T.; Nolan, K.; Murray, D. B.
2016-09-01
Both vapour and gas bubbles are known to significantly increase heat transfer rates between a heated surface and the surrounding fluid, even with no phase change. However, the complex wake structures means that the surface cooling is not fully understood. The current study uses high speed infra-red thermography to measure the surface temperature and convective heat flux enhancement associated with an air bubble sliding under an inclined surface, with a particular focus on the wake. Enhancement levels of 6 times natural convection levels are observed, along with cooling patterns consistent with a possible hairpin vortex structure interacting with the thermal boundary layer. Local regions of suppressed convective heat transfer highlight the complexity of the bubble wake in two-phase applications.
Small-bubble transport and splitting dynamics in a symmetric bifurcation.
Qamar, Adnan; Warnez, Matthew; Valassis, Doug T; Guetzko, Megan E; Bull, Joseph L
2017-08-01
Simulations of small bubbles traveling through symmetric bifurcations are conducted to garner information pertinent to gas embolotherapy, a potential cancer treatment. Gas embolotherapy procedures use intra-arterial bubbles to occlude tumor blood supply. As bubbles pass through bifurcations in the blood stream nonhomogeneous splitting and undesirable bioeffects may occur. To aid development of gas embolotherapy techniques, a volume of fluid method is used to model the splitting process of gas bubbles passing through artery and arteriole bifurcations. The model reproduces the variety of splitting behaviors observed experimentally, including the bubble reversal phenomenon. Splitting homogeneity and maximum shear stress along the vessel walls is predicted over a variety of physical parameters. Small bubbles, having initial length less than twice the vessel diameter, were found unlikely to split in the presence of gravitational asymmetry. Maximum shear stresses were found to decrease exponentially with increasing Reynolds number. Vortex-induced shearing near the bifurcation is identified as a possible mechanism for endothelial cell damage.
NASA Technical Reports Server (NTRS)
Muirhead, V. U.
1975-01-01
Optimization of L/D through minimizing induced drag through a detailed flow study together with force, pressure and vorticity measurements is considered. Flow visualization with neutral helium bubbles provides an excellent means of observing the effects of configuration changes.
The effect of wing dihedral and section suction distribution on vortex bursting
NASA Technical Reports Server (NTRS)
Washburn, K. E.; Gloss, B. B.
1975-01-01
Eleven semi-span wing models were tested in the 1/8-scale model of the Langley V/STOL tunnel to qualitatively study vortex bursting. Flow visualization was achieved by using helium filled soap bubbles introduced upstream of the model. The angle of attack range was from 0 deg to 45 deg. The results show that the vortex is unstable, that is, the bursting point location is not fixed at a given angle of attack but moves within certain bounds. Upstream of the trailing edge, the bursting point location has a range of two inches; downstream, the range is about six inches. Anhedral and dihedral appear to have an insignificant effect on the vortex and its bursting point location. Altering the section suction distribution by improving the triangularity generally increases the angle of attack at which vortex bursting occurs at the trailing edge.
NASA Astrophysics Data System (ADS)
Borisenok, V. A.; Medvedev, A. B.
2017-12-01
The results of numerical simulation of the behavior of a system consisting of a spherical bubble filled with nitrogen or its mixtures with argon and surrounding water under external influence typical of experimental study of single-bubble sonoluminescence are presented. Comparison of the results of calculations and experiments shows that gas heated at the bubble compression stage cannot be regarded as the only source of radiation. This circumstance requires the presence of other, basic, sources. In the polarization model, this is the channel of electrical breakdown in a liquid. Possible electrical effects accompanying the liquid-solid phase transformation in water near the moment of the maximum compression of the bubble are assumed.
Plasma Discharges in Gas Bubbles in Liquid Water: Breakdown Mechanisms and Resultant Chemistry
NASA Astrophysics Data System (ADS)
Gucker, Sarah M. N.
The use of atmospheric pressure plasmas in gases and liquids for purification of liquids has been investigated by numerous researchers, and is highly attractive due to their strong potential as a disinfectant and sterilizer. However, the fundamental understanding of plasma production in liquid water is still limited. Despite the decades of study dedicated to electrical discharges in liquids, many physical aspects of liquids, such as the high inhomogeneity of liquids, complicate analyses. For example, the complex nonlinearities of the fluid have intricate effects on the electric field of the propagating streamer. Additionally, the liquid material itself can vaporize, leading to discontinuous liquid-vapor boundaries. Both can and do often lead to notable hydrodynamic effects. The chemistry of these high voltage discharges on liquid media can have circular effects, with the produced species having influence on future discharges. Two notable examples include an increase in liquid conductivity via charged species production, which affects the discharge. A second, more complicated scenario seen in some liquids (such as water) is the doubling or tripling of molecular density for a few molecule layers around a high voltage electrode. These complexities require technological advancements in optical diagnostics that have only recently come into being. This dissertation investigates several aspects of electrical discharges in gas bubbles in liquids. Two primary experimental configurations are investigated: the first allows for single bubble analysis through the use of an acoustic trap. Electrodes may be brought in around the bubble to allow for plasma formation without physically touching the bubble. The second experiment investigates the resulting liquid phase chemistry that is driven by the discharge. This is done through a dielectric barrier discharge with a central high voltage surrounded by a quartz discharge tube with a coil ground electrode on the outside. The plasma is created either through flowing gas around the high voltage electrode in the discharge tube or self-generated by the plasma as in the steam discharge. This second method allows for large scale processing of contaminated water and for bulk chemical and optical analysis. Breakdown mechanisms of attached and unattached gas bubbles in liquid water were investigated using the first device. The breakdown scaling relation between breakdown voltage, pressure and dimensions of the discharge was studied. A Paschen-like voltage dependence for air bubbles in liquid water was discovered. The results of high-speed photography suggest the physical charging of the bubble due to a high voltage pulse; this charging can be significant enough to produce rapid kinetic motion of the bubble about the electrode region as the applied electric field changes over a voltage pulse. Physical deformation of the bubble is observed. This charging can also prevent breakdown from occurring, necessitating higher applied voltages to overcome the phenomenon. This dissertation also examines the resulting chemistry from plasma interacting with the bubble-liquid system. Through the use of optical emission spectroscopy, plasma parameters such as electron density, gas temperature, and molecular species production and intensity are found to have a time-dependence over the ac voltage cycle. This dependence is also source gas type dependent. These dependencies afford effective control over plasma-driven decomposition. The effect of plasma-produced radicals on various wastewater simulants is studied. Various organic dyes, halogenated compounds, and algae water are decomposed and assessed. Toxicology studies with melanoma cells exposed to plasma-treated dye solutions are completed, demonstrating the non-cytotoxic quality of the decomposition process. Thirdly, this dissertation examines the steam plasma system, developed through this research to circumvent the acidification associated with gas-feed discharges. This steam plasma creates its own gas pocket via field emission. This steam plasma is shown to have strong decontamination properties, with residual effects lasting beyond two weeks that continue to decompose contaminants. Finally, a "two-dimensional bubble" was developed and demonstrated as a novel diagnostic device to study the gas-water interface, the reaction zone. This device is shown to provide convenient access to the reaction zone and decomposition of various wastewater simulants is investigated.
Optodynamic characterization of shock waves after laser-induced breakdown in water.
Petkovsek, Rok; Mozina, Janez; Mocnik, Grisa
2005-05-30
Plasma and a cavitation bubble develop at the site of laser-induced breakdown in water. Their formation and the propagation of the shock wave were monitored by a beam-deflection probe and an arm-compensated interferometer. The interferometer part of the setup was used to determine the relative position of the laser-induced breakdown. The time-of-flight data from the breakdown site to the probe beam yielded the velocity, and from the velocity the shock-wave pressure amplitudes were calculated. Two regions were found where the pressure decays with different exponents, pointing to a strong attenuation mechanism in the initial phase of the shock-wave propagation.
Study of the far wake vortex field generated by a rectangular airfoil in a water tank
NASA Technical Reports Server (NTRS)
Lezius, D. K.
1973-01-01
Underwater towing experiments were carried out with a rectangular airfoil of aspect ratio 5.3 at 4 and 8 deg angles of attack and at chord-based Reynolds numbers between 2 x 100,000 and 7.5 x 100,000. Quantitative measurements by means of the hydrogen bubble technique indicated lower peak swirl velocities in the range of 100 to 1000 lenghts downstream than have been measured in wind tunnel of flight tests. The maximum circumferential velocity decayed whereas the turbulent eddy viscosity increased. This behavior and other known rates of vortex decay are explained in terms of an analytical solution for the vortex problem with time varying eddy viscosity. It is shown that this case corresponds to nonequilibrium turbulent vortex flow.
NASA Technical Reports Server (NTRS)
Hafez, M.; Ahmad, J.; Kuruvila, G.; Salas, M. D.
1987-01-01
In this paper, steady, axisymmetric inviscid, and viscous (laminar) swirling flows representing vortex breakdown phenomena are simulated using a stream function-vorticity-circulation formulation and two numerical methods. The first is based on an inverse iteration, where a norm of the solution is prescribed and the swirling parameter is calculated as a part of the output. The second is based on direct Newton iterations, where the linearized equations, for all the unknowns, are solved simultaneously by an efficient banded Gaussian elimination procedure. Several numerical solutions for inviscid and viscous flows are demonstrated, followed by a discussion of the results. Some improvements on previous work have been achieved: first order upwind differences are replaced by second order schemes, line relaxation procedure (with linear convergence rate) is replaced by Newton's iterations (which converge quadratically), and Reynolds numbers are extended from 200 up to 1000.
Generation of abnormal acoustic noise: Singing of a cavitating tip vortex
NASA Astrophysics Data System (ADS)
Peng, Xiaoxing; Wang, Benlong; Li, Haoyu; Xu, Lianghao; Song, Mingtai
2017-05-01
We present experimental results and a theoretical analysis for the singing of a cavitating tip vortex (SCTV), which has been occasionally observed under special conditions in a few experimental facilities around the world since the 1990s. Due to lack of repeatability, little is known about the generation mechanism of SCTV [R. E. A. Arndt, Annu. Rev. Fluid Mech. 34, 143 (2002), 10.1146/annurev.fluid.34.082301.114957]. In the present work we propose an experimental procedure to produce the SCTV phenomenon at selected flow conditions in the China Ship Scientific Research Center cavitation mechanism tunnel. By analyzing the frequency characteristics of the acoustical signal and the bubble dynamics, it is found that the tone of SCTV matches the natural frequency of radial oscillation of the cylinder bubble and a formulation to predict SCTV is developed. Good agreement is obtained between the proposed formulation and the experimental data from different facilities.
Low-density plasma formation in aqueous biological media using sub-nanosecond laser pulses
NASA Astrophysics Data System (ADS)
Genc, Suzanne L.; Ma, Huan; Venugopalan, Vasan
2014-08-01
We demonstrate the formation of low- and high-density plasmas in aqueous media using sub-nanosecond laser pulses delivered at low numerical aperture (NA = 0.25). We observe two distinct regimes of plasma formation in deionized water, phosphate buffered saline, Minimum Essential Medium (MEM), and MEM supplemented with phenol red. Optical breakdown is first initiated in a low-energy regime and characterized by bubble formation without plasma luminescence with threshold pulse energies in the range of Ep ≈ 4-5 μJ, depending on media formulation. The onset of this regime occurs over a very narrow interval of pulse energies and produces small bubbles (Rmax = 2-20 μm) due to a tiny conversion (η < 0.01%) of laser energy to bubble energy EB. The lack of visible plasma luminescence, sharp energy onset, and low bubble energy conversion are all hallmarks of low-density plasma (LDP) formation. At higher pulse energies (Ep = 11-20 μJ), the process transitions to a second regime characterized by plasma luminescence and large bubble formation. Bubbles formed in this regime are 1-2 orders of magnitude larger in size ( R max ≳ 100 μ m ) due to a roughly two-order-of-magnitude increase in bubble energy conversion (η ≳ 3%). These characteristics are consistent with high-density plasma formation produced by avalanche ionization and thermal runaway. Additionally, we show that supplementation of MEM with fetal bovine serum (FBS) limits optical breakdown to this high-energy regime. The ability to produce LDPs using sub-nanosecond pulses focused at low NA in a variety of cell culture media formulations without FBS can provide for cellular manipulation at high throughput with precision approaching that of femtosecond pulses delivered at high NA.
A water tunnel flow visualization study of the vortex flow structures on the F/A-18 aircraft
NASA Technical Reports Server (NTRS)
Sandlin, Doral R.; Ramirez, Edgar J.
1991-01-01
The vortex flow structures occurring on the F/A-18 aircraft at high angles of attack were studied. A water tunnel was used to gather flow visualization data on the forebody vortex and the wing leading edge extension vortex. The longitudinal location of breakdown of the leading edge vortex was found to be consistently dependent on the angle of attack. Other parameters such as Reynolds number, model scale, and model fidelity had little influence on the overall behavior of the flow structures studied. The lateral location of the forebody vortex system was greatly influenced by changes in the angle of sideslip. Strong interactions can occur between the leading edge extension vortex and the forebody vortex. Close attention was paid to vortex induced flows on various airframe components of the F/A-18. Reynolds number and angle of attack greatly affected the swirling intensity, and therefore the strength of the studied vortices. Water tunnel results on the F/A-18 correlated well with those obtained in similar studies at both full and sub scale levels. The water tunnel can provide, under certain conditions, good simulations of realistic flows in full scale configurations.
Vortices and turbulence (The 23rd Lanchester Memorial Lecture)
NASA Astrophysics Data System (ADS)
Lilley, G. M.
1983-12-01
A comprehensive discussion is presented concerning the phenomena characteristically treated in vortex and turbulence theory, as well as the degree of success achieved by various computation and visualization methods and theoretical models developed for vortex flow behavior prediction. Note is taken of the pioneering research conducted by F. W. Lanchester in 1893-1907, and attention is given to vortex tip and edge generation by rectangular and delta wings, the cool core effect of the Ranque-Hilsch vortex tube, the modeling of shear flows by means of vortex array methods, the classification and modelling of turbulent flows (together with a taxonomy of their calculation methods), and NASA ILLIAC IV computations of two-dimensional channel flow. Also noted are recent results concerning the boundary layer coherent structure of a flat plate at zero pressure gradient, including the regeneration structure and flow distortion and breakdown of a turbulent boundary layer.
A water tunnel flow visualization study of the F-15
NASA Technical Reports Server (NTRS)
Lorincz, D. J.
1978-01-01
Water tunnel studies were performed to qualitatively define the flow field of the F-15 aircraft. Two lengthened forebodies, one with a modified cross-sectional shape, were tested in addition to the basic forebody. Particular emphasis was placed on defining vortex flows generated at high angles of attack. The flow visualization tests were conducted in the Northrop diagnostic water tunnel using a 1/48-scale model of the F-15. Flow visualization pictures were obtained over an angle-of-attack range to 55 deg and sideslip angles up to 10 deg. The basic aircraft configuration was investigated in detail to determine the vortex flow field development, vortex path, and vortex breakdown characteristics as a function of angle of attack and sideslip. Additional tests showed that the wing upper surface vortex flow fields were sensitive to variations in inlet mass flow ratio and inlet cowl deflection angle. Asymmetries in the vortex systems generated by each of the three forebodies were observed in the water tunnel at zero sideslip and high angles of attack.
Identification and tracking of hairpin vortex auto-generation in turbulent wall-bounded flow
NASA Astrophysics Data System (ADS)
Huang, Yangzi; Green, Melissa
2016-11-01
Hairpin vortices have been widely accepted as component structures of turbulent boundary layers. Their properties (size, vorticity, energy) and dynamic phenomena (origin, growth, breakdown) have been shown to correlate to the complex, multi-scaled turbulent motions observed in both experiments and simulations. As established in the literature, the passage of a hairpin vortex creates a wall-normal ejection of fluid, which encounters the high-speed freestream resulting in near-wall shear and increased drag. A previously generated simulation of an isolated hairpin vortex is used to study the auto-generation of a secondary vortex structure. Eulerian methods such as the Q criterion and Γ2 function, as well as Lagrangian methods are used to visualize the three-dimensional hairpin vortices and the auto-generation process. The circulation development and wall-normal location of both primary and secondary hairpin heads are studied to determine if there is a correlation between the strength and height of the primary hairpin vortex with the secondary hairpin vortex auto-generation.
Investigation of compressible vortex flow characteristics
NASA Technical Reports Server (NTRS)
Muirhead, V. U.
1977-01-01
The nature of intense air vortices was studied and the factors which determine the intensity and rate of decay of both single and pairs of vortices were investigated. Vortex parameters of axial pressure differential, circulation, outflow rates, separation distance and directions of rotation were varied. Unconfined vortices, generated by a single rotating cage, were intensified by an increasing axial pressure gradient. Breakdown occurred when the axial gradient became negligible. The core radius was a function of the axial gradient. Dual vortices, generated by two counterrotating cages, rotated opposite to the attached cages. With minimum spacing only one vortex was formed which rotated in a direction opposite to the attached cage. When one cage rotated at half the speed of the other cage, one vortex formed at the higher speed cage rotating in the cage direction.
NASA Technical Reports Server (NTRS)
Grugel, Richard N.; Brush, Lucien N.; Anilkumar, Amrutur V.
2013-01-01
Pore Formation and Mobility Investigation (PFMI) experiments were conducted in the microgravity environment aboard the International Space Station with the intent of better understanding the role entrained porosity/bubbles play during controlled directional solidification. The planar interface in a slowing growing succinonitrile - 0.24 wt% water alloy was being observed when a nitrogen bubble traversed the mushy zone and remained at the solid-liquid interface. Breakdown of the interface to shallow cells subsequently occurred, and was later evaluated using down-linked data from a nearby thermocouple. These results and other detrimental effects due to the presence of bubbles during solidification processing in a microgravity environment are presented and discussed.
Translational velocity oscillations of piston generated vortex rings
NASA Astrophysics Data System (ADS)
Kumar, Manoj; Arakeri, J. H.; Shankar, P. N.
1995-11-01
Experimental results are presented that show that the translational velocities of piston generated vortex rings often undergo oscillations, similar to those recently discovered for drop generated rings. An attempt has been made to minimize uncertainties by utilizing both dye and hydrogen bubbles for visualization and carefully repeating measurements on the same ring and on different realizations under the same nominal piston conditions. The results unambiguously show that under most conditions, both for laminar and turbulent rings and for rings generated from pipes and orifices, the oscillations are present. The present results, together with the earlier results on drop generated rings, give support to the view that translational velocity oscillations are probably an inherent feature of translating vortex ring fields.
Vortex dynamics of collapsing bubbles: Impact on the boundary layer measured by chronoamperometry.
Reuter, Fabian; Cairós, Carlos; Mettin, Robert
2016-11-01
Cavitation bubbles collapsing in the vicinity to a solid substrate induce intense micro-convection at the solid. Here we study the transient near-wall flows generated by single collapsing bubbles by chronoamperometric measurements synchronously coupled with high-speed imaging. The individual bubbles are created at confined positions by a focused laser pulse. They reach a maximum expansion radius of approximately 425μm. Several stand-off distances to the flat solid boundary are investigated and all distances are chosen sufficiently large that no gas phase of the expanding and collapsing bubble touches the solid directly. With a microelectrode embedded into the substrate, the time-resolved perturbations in the liquid shear layer are probed by means of a chronoamperometric technique. The measurements of electric current are synchronized with high-speed imaging of the bubble dynamics. The perturbations of the near-wall layer are found to result mainly from ring vortices created by the jetting bubble. Other bubble induced flows, such as the jet and flows following the radial bubble oscillations are perceptible with this technique, but show a minor influence at the stand-off distances investigated. Copyright © 2016 Elsevier B.V. All rights reserved.
Acoustic response of vortex breakdown modes in a coaxial isothermal unconfined swirling jet
NASA Astrophysics Data System (ADS)
Santhosh, R.; Basu, Saptarshi
2015-03-01
The present experimental work is concerned with the study of amplitude dependent acoustic response of an isothermal coaxial swirling jet. The excitation amplitude is increased in five distinct steps at the burner's Helmholtz resonator mode (i.e., 100 Hz). Two flow states are compared, namely, sub-critical and super-critical vortex breakdown (VB) that occur before and after the critical conical sheet breakdown, respectively. The geometric swirl number is varied in the range 2.14-4.03. Under the influence of external pulsing, global response characteristics are studied based on the topological changes observed in time-averaged 2D flow field. These are obtained from high resolution 2D PIV (particle image velocimetry) in the longitudinal-mid plane. PIV results also illustrate the changes in the normalized vortex core coordinates (rvcc/(rvcc)0 Hz, yvcc/(yvcc)0 Hz) of internal recirculation zone (IRZ). A strong forced response is observed at 100 Hz (excitation frequency) in the convectively unstable region which get amplified based on the magnitude of external forcing. The radial extent of this forced response region at a given excitation amplitude is represented by the acoustic response region (b). The topological placement of the responsive convectively unstable region is a function of both the intensity of imparted swirl (characterized by swirl number) and forcing amplitude. It is observed that for sub-critical VB mode, an increase in the excitation amplitude till a critical value shifts the vortex core centre (particularly, the vortex core moves downstream and radially outwards) leading to drastic fanning-out/widening of the IRZ. This is accompanied by ˜30% reduction in the recirculation velocity of the IRZ. It is also observed that b < R (R: radial distance from central axis to outer shear layer-OSL). At super-critical amplitudes, the sub-critical IRZ topology transits back (the vortex core retracts upstream and radially inwards) and finally undergoes a transverse shrinkage ((4vcc)/(rvcc) 0 Hz decreases by ˜20%) when b ≥ R. In contrast, the vortex core of super-critical breakdown mode consistently spreads radially outwards and is displaced further downstream. Finally, the IRZ fans-out at the threshold excitation amplitude. However, the acoustic response region b is still less than R. This is explained based on the characteristic geometric swirl number (SG) of the flow regimes. The super-critical flow mode with higher SG (hence, higher radial pressure drop due to rotational effect which scales as ΔP ˜ ρuθ2 and acts inwards towards the center line) compared to sub-critical state imposes a greater resistance to the radial outward spread of b. As a result, the acoustic energy supplied to the super-critical flow mode increases the degree of acoustic response at the pulsing frequency and energizes its harmonics (evident from power spectra). As a disturbance amplifier, the stronger convective instability mode within the flow structure of super-critical VB causes the topology to widen/fan-out severely at threshold excitation amplitude.
Sheikhzada, Ahmad; Gurevich, Alex
2015-12-07
Topological defects such as vortices, dislocations or domain walls define many important effects in superconductivity, superfluidity, magnetism, liquid crystals, and plasticity of solids. Here we address the breakdown of the topologically-protected stability of such defects driven by strong external forces. We focus on Josephson vortices that appear at planar weak links of suppressed superconductivity which have attracted much attention for electronic applications, new sources of THz radiation, and low-dissipative computing. Our numerical simulations show that a rapidly moving vortex driven by a constant current becomes unstable with respect to generation of vortex-antivortex pairs caused by Cherenkov radiation. As a result,more » vortices and antivortices become spatially separated and accumulate continuously on the opposite sides of an expanding dissipative domain. This effect is most pronounced in thin film edge Josephson junctions at low temperatures where a single vortex can switch the whole junction into a resistive state at currents well below the Josephson critical current. In conclusion, our work gives a new insight into instability of a moving topological defect which destroys global long-range order in a way that is remarkably similar to the crack propagation in solids.« less
Laser-generated Micro-bubbles for Molecular Delivery to Adherent Cells
NASA Astrophysics Data System (ADS)
Genc, Suzanne Lee
We examine the use of optical breakdown in aqueous media as a means to deliver molecules into live adherent cell cultures. This process, called optoinjection (OI), is affected both by the media composition and the cellular exposure to hydrodynamic stresses associated with the cavitation bubble formed by the optical breakdown process. Here we explore the possibility of performing OI using laser microbeams focused at low numerical aperture to provide conditions where OI can be performed at high-throughput. We first investigate the effect of media composition on plasma and cavitation bubble formation. We make the discovery that irradiation of minimal essential media, supports the formation of low-density plasmas (LDP) resulting in the generation of small (2--20 mum radius) cavitation bubbles. This provides gentle specific hydrodynamic perturbations to single or small groups of cells. The addition of supplemental fetal bovine serum to the medium prevents the formation LDPs and the resulting avalanche ionization generates larger (> 100 mum radius) bubbles and more violent hydrodynamic effects. Second, using high-speed photography we provide the first visualization of LDP-generated cavitation bubbles at precise offset locations relative to a boundary on which a cell monolayer can be cultured. These images depict the cellular exposure to different hydrodynamic conditions depending on the normalized offset distance (gamma = s/Rmax) and show how it affects the cellular exposure to shear stresses upon bubble expansion and different distributions of bubble energy upon collapse. Lastly, we examine the effects of pulse energy, parameters, and single vs. multiple laser exposures on the ability to deliver 3-5 kDa dextrans into adherent cells using both small (< 20 mum) and large (100mu m) radius bubbles. For single exposures, we identify several conditions under which OI can be optimized: (a) conditions where cell viability is maximized (˜90%) but optoinjection of viable cells is relatively low (˜30%) and (b) conditions where cell viability is compromised (˜80%) but where the optoinjection of viable cells is higher (˜50%). For multiple exposures in a grid pattern, we generally found reduced optoinjection efficacy but do identify conditions where we achieve injection of viable cells approaching 50%. We correlate these results to the cavitation bubble dynamics.
Nonparallel linear stability analysis of unconfined vortices
NASA Astrophysics Data System (ADS)
Herrada, M. A.; Barrero, A.
2004-10-01
Parabolized stability equations [F. P. Bertolotti, Th. Herbert, and P. R. Spalart, J. Fluid. Mech. 242, 441 (1992)] have been used to study the stability of a family of swirling jets at high Reynolds numbers whose velocity and pressure fields decay far from the axis as rm-2 and r2(m-2), respectively [M. Pérez-Saborid, M. A. Herrada, A. Gómez-Barea, and A. Barrero, J. Fluid. Mech. 471, 51 (2002)]; r is the radial distance and m is a real number in the interval 0
NON-SPHERICAL BUBBLE BEHAVIOR IN VORTEX FLOW FIELDS (68D03066)
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Energy Flow in Dense Off-Equilibrium Plasma
2016-07-15
akT e in our system100 i e T T Teller 1966 Smoking Gun Experiment: Laser Breakdown in COLD gas In going from room to liquid Nitrogen temperature...oflaser breakdown have revealed a new phase of off-equilibrium plasma that has a tensile strength similar to a liquid , and reduced ion-electron...approved for public release. Part 1: Energy Balance in Sonoluminescing Dense Plasma Sonoluminescence occurs from rapid implosion of gas bubbles caused to
Bubble generation during transformer overload
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oommen, T.V.
1990-03-01
Bubble generation in transformers has been demonstrated under certain overload conditions. The release of large quantities of bubbles would pose a dielectric breakdown hazard. A bubble prediction model developed under EPRI Project 1289-4 attempts to predict the bubble evolution temperature under different overload conditions. This report details a verification study undertaken to confirm the validity of the above model using coil structures subjected to overload conditions. The test variables included moisture in paper insulation, gas content in oil, and the type of oil preservation system. Two aged coils were also tested. The results indicated that the observed bubble temperatures weremore » close to the predicted temperatures for models with low initial gas content in the oil. The predicted temperatures were significantly lower than the observed temperatures for models with high gas content. Some explanations are provided for the anomalous behavior at high gas levels in oil. It is suggested that the dissolved gas content is not a significant factor in bubble evolution. The dominant factor in bubble evolution appears to be the water vapor pressure which must reach critical levels before bubbles can be released. Further study is needed to make a meaningful revision of the bubble prediction model. 8 refs., 13 figs., 11 tabs.« less
NASA Technical Reports Server (NTRS)
Richwine, David M.; Fisher, David F.
1992-01-01
Flow-field measurements on the leading-edge extension (LEX) of the F-18 High Alpha Research Vehicle (HARV) were obtained using a rotating rake with 16 hemispherical-tipped five-hole probes. Detailed pressure, velocity, and flow direction data were obtained through the LEX vortex core. Data were gathered during 1-g quasi-stabilized flight conditions at angles of attack alpha from 10 degrees to 52 degrees and at Reynolds numbers based on mean aerodynamic cord up to 16 x 10(exp 6). Normalized dynamic pressures and crossflow velocities clearly showed the primary vortex above the LEX and formation of a secondary vortex at higher angles of attack. The vortex was characterized by a ring of high dynamic pressure surrounding a region of low dynamic pressure at the vortex core center. The vortex core, subcore diameter, and vertical location of the core above the LEX increased with angle of attack. Minimum values for static pressure were obtained in the vortex subcore and decreased nearly linearly with increasing angle of attack until vortex breakdown. Rake-measured static pressures were consistent with previously documented surface pressures and showed good agreement with flow visualization flight test results. Comparison of the LEX vortex flight test data to computational solutions at alpha approximately equals 19 degrees and 30 degrees showed fair correlation.
Interaction of a shock with a longitudinal vortex
NASA Technical Reports Server (NTRS)
Erlebacher, Gordon; Hussaini, M. Y.; Shu, Chi-Wang
1996-01-01
In this paper we study the shock/longitudinal vortex interaction problem in axisymmetric geometry. Linearized analysis for small vortex strength is performed, and compared with results from a high order axisymmetric shock-fitted Euler solution obtained for this purpose. It is confirmed that for weak vortices, predictions from linear theory agree well with results from nonlinear numerical simulations at the shock location. To handle very strong longitudinal vortices, which may ultimately break the shock, we use an axisymmetric high order essentially non-oscillatory (ENO) shock capturing scheme. Comparison of shock-captured and shock-fitted results are performed in their regions of common validity. We also study the vortex breakdown as a function of Mach number ranging from 1.3 to 10, thus extending the range of existing results. For vortex strengths above a critical value. a triple point forms on the shock and a secondary shock forms to provide the necessary deceleration so that the fluid velocity can adjust to downstream conditions at the shock.
Visualization of the wake behind a sliding bubble
NASA Astrophysics Data System (ADS)
O'Reilly Meehan, R.; Grennan, K.; Davis, I.; Nolan, K.; Murray, D. B.
2017-10-01
In this work, Schlieren measurements are presented for the wake of an air bubble sliding under a heated, inclined surface in quiescent water to provide new insights into the intricate sliding bubble wake structure and the associated convective cooling process. This is a two-phase flow configuration that is pertinent to thermal management solutions, where the fundamental flow physics have yet to be fully described. In this work, we present an experimental apparatus that enables high-quality Schlieren images for different bubble sizes and measurement planes. By combining these visualizations with an advanced bubble tracking technique, we can simultaneously quantify the symbiotic relationship that exists between the sliding bubble dynamics and its associated wake. An unstable, dynamic wake structure is revealed, consisting of multiple hairpin-shaped vortex structures interacting within the macroscopic area affected by the bubble. As vorticity is generated in the near wake, the bubble shape is observed to recoil and rebound. This also occurs normal to the surface and is particularly noticeable for larger bubble sizes, with a periodic ejection of material from the near wake corresponding to significant shape changes. These findings, along with their implications from a thermal management perspective, provide information on the rich dynamics of this natural flow that cannot be obtained using alternate experimental techniques.
Identification of vortex structures in a cohort of 204 intracranial aneurysms
Trylesinski, Gabriel; Xiang, Jianping; Snyder, Kenneth; Meng, Hui
2017-01-01
An intracranial aneurysm (IA) is a cerebrovascular pathology that can lead to death or disability if ruptured. Abnormal wall shear stress (WSS) has been associated with IA growth and rupture, but little is known about the underlying flow physics related to rupture-prone IAs. Previous studies, based on analysis of a few aneurysms or partial views of three-dimensional vortex structures, suggest that rupture is associated with complex vortical flow inside IAs. To further elucidate the relevance of vortical flow in aneurysm pathophysiology, we studied 204 patient IAs (56 ruptured and 148 unruptured). Using objective quantities to identify three-dimensional vortex structures, we investigated the characteristics associated with aneurysm rupture and if these features correlate with previously proposed WSS and morphological characteristics indicative of IA rupture. Based on the Q-criterion definition of a vortex, we quantified the degree of the aneurysmal region occupied by vortex structures using the volume vortex fraction (vVF) and the surface vortex fraction (sVF). Computational fluid dynamics simulations showed that the sVF, but not the vVF, discriminated ruptured from unruptured aneurysms. Furthermore, we found that the near-wall vortex structures co-localized with regions of inflow jet breakdown, and significantly correlated to previously proposed haemodynamic and morphologic characteristics of ruptured IAs. PMID:28539480
Identification of vortex structures in a cohort of 204 intracranial aneurysms.
Varble, Nicole; Trylesinski, Gabriel; Xiang, Jianping; Snyder, Kenneth; Meng, Hui
2017-05-01
An intracranial aneurysm (IA) is a cerebrovascular pathology that can lead to death or disability if ruptured. Abnormal wall shear stress (WSS) has been associated with IA growth and rupture, but little is known about the underlying flow physics related to rupture-prone IAs. Previous studies, based on analysis of a few aneurysms or partial views of three-dimensional vortex structures, suggest that rupture is associated with complex vortical flow inside IAs. To further elucidate the relevance of vortical flow in aneurysm pathophysiology, we studied 204 patient IAs (56 ruptured and 148 unruptured). Using objective quantities to identify three-dimensional vortex structures, we investigated the characteristics associated with aneurysm rupture and if these features correlate with previously proposed WSS and morphological characteristics indicative of IA rupture. Based on the Q -criterion definition of a vortex, we quantified the degree of the aneurysmal region occupied by vortex structures using the volume vortex fraction ( vVF ) and the surface vortex fraction ( sVF ). Computational fluid dynamics simulations showed that the sVF , but not the vVF , discriminated ruptured from unruptured aneurysms. Furthermore, we found that the near-wall vortex structures co-localized with regions of inflow jet breakdown, and significantly correlated to previously proposed haemodynamic and morphologic characteristics of ruptured IAs. © 2017 The Author(s).
The growth and breakdown of a vortex-pair in a stably stratified fluid
NASA Astrophysics Data System (ADS)
Advaith, S.; Tinaikar, Aashay; Manu, K. V.; Basu, Saptarshi
2017-11-01
Vortex interaction with density stratification is ubiquitous in nature and applied to various engineering applications. Present study have characterized the spatial and temporal dynamics of the interaction between a vortex and a density stratified interface. The present work is prompted by our research on single tank Thermal Energy Storage (TES) system used in concentrated solar power (CSP) plants where hot and cold fluids are separated by means of density stratification. Rigorous qualitative (High speed Shadowgraph) and quantitative (high speed PIV) studies enable us to have great understanding about vortex formation, propagation, interaction dynamics with density stratified interface, resulted plume characteristics and so on. We have categorized this interaction phenomena in to three different cases based on its nature as non-penetrative, partial penetrative and extensively penetrative. Along with that we have proposed a regime map consisting non-dimensional parameters like Reynolds, Richardson and Atwood numbers which predicts the occurrence above mentioned cases.
Quasi-horizontal transport and mixing in the Antarctic stratosphre
NASA Technical Reports Server (NTRS)
Chen, Ping; Holton, James R.; O'Neill, Alan; Swinbank, Richard
1994-01-01
The quasi-horizontal transport and mixing properties of the Antarctic stratosphere are investigated with a simi-Lagrangian transport model and a 'contour advection' technique for the winter and spring of 1992 using analyzed winds from the United Kingdom Meteorological Office data assimiliation system. Transport calculations show that passive tracers are well mixed inside the polar vortex as well as in the midlatitude 'surf zone.' A the vortex edge, strong radial gradients in the tracer fields are well preserved, and their evolutions follow that of the potential vorticity until some time after the breakdown of the polar vortex. In the middle stratosphere there is little tracer exchange across the vortex edge in August and September. Some vortex air is eroded into the surf zone in filamentary form in October, and very strong exchange of air occurs between high and middle latitudes in November. In the lower stratosphere the vortex is not so isolated from the midlatitudes as in the middle stratosphere, and there is more mass exchange across the vortex edge. Calculations of the lengthening of material contours using the contour advection technique show that in the middle stratosphere, strong stirring (i.e., stretching and folding of material elements) occurs in the inner vortex, while the strongest stirring occurs in the midlatitude surf zone and the weakest occurs at the vortex edge. In the lower strtosphere, strong stirring occurs in the inner vortex. Stirring is moderate at the vortex edge and in the midlatitudes.
Propeller tip and hub vortex dynamics in the interaction with a rudder
NASA Astrophysics Data System (ADS)
Felli, Mario; Falchi, Massimo
2011-11-01
In the present paper, the interaction mechanisms of the vortices shed by a single-screw propeller with a rudder installed in its wake are addressed; in particular, following the works by Felli et al. (Exp Fluids 6(1):1-11, 2006a, Exp Fluids 46(1):147-1641, 2009a, Proceedings of the 8th international symposium on particle image velocimetry: Piv09, Melbourne, 2009b), the attention is focused on the analysis of the evolution, instability, breakdown and recovering mechanisms of the propeller tip and hub vortices during the interaction with the rudder. To investigate these mechanisms in detail, a wide experimental activity consisting in time-resolved visualizations, velocity measurements by particle image velocimetry (PIV) and laser Doppler velocimetry (LDV) along horizontal chordwise, vertical chordwise and transversal sections of the wake have been performed in the Cavitation Tunnel of the Italian Navy. Collected data allows to investigate the major flow features that distinguish the flow field around a rudder operating in the wake of a propeller, as, for example, the spiral breakdown of the vortex filaments, the rejoining mechanism of the tip vortices behind the rudder and the mechanisms governing the different spanwise misalignment of the vortex filaments in the pressure and suction sides of the appendage.
Blackbody emission from laser breakdown in high-pressure gases.
Bataller, A; Plateau, G R; Kappus, B; Putterman, S
2014-08-15
Laser induced breakdown of pressurized gases is used to generate plasmas under conditions where the atomic density and temperature are similar to those found in sonoluminescing bubbles. Calibrated streak spectroscopy reveals that a blackbody persists well after the exciting femtosecond laser pulse has turned off. Deviation from Saha's equation of state and an accompanying large reduction in ionization potential are observed at unexpectedly low atomic densities-in parallel with sonoluminescence. In laser breakdown, energy input proceeds via excitation of electrons whereas in sonoluminescence it is initiated via the atoms. The similar responses indicate that these systems are revealing the thermodynamics and transport of a strongly coupled plasma.
Blackbody Emission from Laser Breakdown in High-Pressure Gases
NASA Astrophysics Data System (ADS)
Bataller, A.; Plateau, G. R.; Kappus, B.; Putterman, S.
2014-08-01
Laser induced breakdown of pressurized gases is used to generate plasmas under conditions where the atomic density and temperature are similar to those found in sonoluminescing bubbles. Calibrated streak spectroscopy reveals that a blackbody persists well after the exciting femtosecond laser pulse has turned off. Deviation from Saha's equation of state and an accompanying large reduction in ionization potential are observed at unexpectedly low atomic densities—in parallel with sonoluminescence. In laser breakdown, energy input proceeds via excitation of electrons whereas in sonoluminescence it is initiated via the atoms. The similar responses indicate that these systems are revealing the thermodynamics and transport of a strongly coupled plasma.
A physics based multiscale modeling of cavitating flows.
Ma, Jingsen; Hsiao, Chao-Tsung; Chahine, Georges L
2017-03-02
Numerical modeling of cavitating bubbly flows is challenging due to the wide range of characteristic lengths of the physics at play: from micrometers (e.g., bubble nuclei radius) to meters (e.g., propeller diameter or sheet cavity length). To address this, we present here a multiscale approach which integrates a Discrete Singularities Model (DSM) for dispersed microbubbles and a two-phase Navier Stokes solver for the bubbly medium, which includes a level set approach to describe large cavities or gaseous pockets. Inter-scale schemes are used to smoothly bridge the two transitioning subgrid DSM bubbles into larger discretized cavities. This approach is demonstrated on several problems including cavitation inception and vapor core formation in a vortex flow, sheet-to-cloud cavitation over a hydrofoil, cavitation behind a blunt body, and cavitation on a propeller. These examples highlight the capabilities of the developed multiscale model in simulating various form of cavitation.
A physics based multiscale modeling of cavitating flows
Ma, Jingsen; Hsiao, Chao-Tsung; Chahine, Georges L.
2018-01-01
Numerical modeling of cavitating bubbly flows is challenging due to the wide range of characteristic lengths of the physics at play: from micrometers (e.g., bubble nuclei radius) to meters (e.g., propeller diameter or sheet cavity length). To address this, we present here a multiscale approach which integrates a Discrete Singularities Model (DSM) for dispersed microbubbles and a two-phase Navier Stokes solver for the bubbly medium, which includes a level set approach to describe large cavities or gaseous pockets. Inter-scale schemes are used to smoothly bridge the two transitioning subgrid DSM bubbles into larger discretized cavities. This approach is demonstrated on several problems including cavitation inception and vapor core formation in a vortex flow, sheet-to-cloud cavitation over a hydrofoil, cavitation behind a blunt body, and cavitation on a propeller. These examples highlight the capabilities of the developed multiscale model in simulating various form of cavitation. PMID:29720773
Flow visualizations of perpendicular blade vortex interactions
NASA Technical Reports Server (NTRS)
Rife, Michael C.; Davenport, William J.
1992-01-01
Helium bubble flow visualizations have been performed to study perpendicular interaction of a turbulent trailing vortex and a rectangular wing in the Virginia Tech Stability Tunnel. Many combinations of vortex strength, vortex-blade separation (Z(sub s)) and blade angle of attack were studied. Photographs of representative cases are presented. A range of phenomena were observed. For Z(sub s) greater than a few percent chord the vortex is deflected as it passes the blade under the influence of the local streamline curvature and its image in the blade. Initially the interaction appears to have no influence on the core. Downstream, however, the vortex core begins to diffuse and grow, presumably as a consequence of its interaction with the blade wake. The magnitude of these effects increases with reduction in Z(sub s). For Z(sub s) near zero the form of the interaction changes and becomes dependent on the vortex strength. For lower strengths the vortex appears to split into two filaments on the leading edge of the blade, one passing on the pressure and one passing on the suction side. At higher strengths the vortex bursts in the vicinity of the leading edge. In either case the core of its remnants then rapidly diffuse with distance downstream. Increase in Reynolds number did not qualitatively affect the flow apart from decreasing the amplitude of the small low-frequency wandering motions of the vortex. Changes in wing tip geometry and boundary layer trip had very little effect.
1996-04-01
levels were high a strong modulating frequency was recovered at the periodic vortex shedding rate. Experimental study of cavitation in hydroturbines ...of a Francis Model and Prototype Hydroturbine ," ASME Winter Annual Meeting, International Symposium on Bubble Noise Cavitation Erosion in Fluid Systems
Aerodynamics of wings at low Reynolds numbers: Boundary layer separation and reattachment
NASA Astrophysics Data System (ADS)
McArthur, John
Due to advances in electronics technology, it is now possible to build small scale flying and swimming vehicles. These vehicles will have size and velocity scales similar to small birds and fish, and their characteristic Reynolds number will be between 104 and 105. Currently, these flying and swimming vehicles do not perform well, and very little research has been done to characterize them, or to explain why they perform so poorly. This dissertation documents three basic investigations into the performance of small scale lifting surfaces, with Reynolds numbers near 104. Part I. Low Reynolds number aerodynamics. Three airfoil shapes were studied at Reynolds numbers of 1 and 2x104: a flat plate airfoil, a circular arc cambered airfoil, and the Eppler 387 airfoil. Lift and drag force measurements were made on both 2D and 3D conditions, with the 3D wings having an aspect ratio of 6, and the 2D condition being approximated by placing end plates at the wing tips. Comparisons to the limited number of previous measurements show adequate agreement. Previous studies have been inconclusive on whether lifting line theory can be applied to this range of Re, but this study shows that lifting line theory can be applied when there are no sudden changes in the slope of the force curves. This is highly dependent on the airfoil shape of the wing, and explains why previous studies have been inconclusive. Part II. The laminar separation bubble. The Eppler 387 airfoil was studied at two higher Reynolds numbers: 3 and 6x10 4. Previous studies at a Reynolds number of 6x104 had shown this airfoil experiences a drag increase at moderate lift, and a subsequent drag decrease at high lift. Previous studies suggested that the drag increase is caused by a laminar separation bubble, but the experiments used to show this were conducted at higher Reynolds numbers and extrapolated down. Force measurements were combined with flow field measurements at Reynolds numbers 3 and 6x104 to determine whether the drag increase is really caused by the formation of a laminar separation bubble. The results clearly indicate that the reverse is true, and that the subsequent drag decrease is caused by the laminar separation bubble. Part III. The leading edge vortex. Four wings with different sweep angles were studied at Reynolds number 5x104: sweep angles of 0, 20, 40, and 60 degrees. The wings had a simple cambered plate airfoil similar to the cambered airfoil of part I above. Each wing was built to have the same aspect ratio, wing area, and streamwise airfoil shape. Previous studies on bird wings speculate that simply sweeping the wings can cause a leading edge vortex to form, which could cause substantial improvements in performance. However, these studies were not well controlled, and were conducted from a biological perspective. Qualitative and quantitative flow field measurements were combined with force measurements to conduct a well controlled engineering experiment on the formation and effect of a leading edge vortex on simple swept wings. A stable vortex was found to form over the 60 degree swept wing at one particular angle of attack, but it was not similar to the traditional notion of a leading edge vortex. The vortex has a small radius, and extends over little of the span. Force measurements indicate that the vortex has no significant impact on the forces measured. Thus, simply sweeping a wing is not sufficient to form a significant leading edge vortex, and other effects must be considered.
Flow Behavior in Side-View Plane of Pitching Delta Wing
NASA Astrophysics Data System (ADS)
Pektas, Mehmet Can; Tasci, Mehmet Oguz; Karasu, Ilyas; Sahin, Besir; Akilli, Huseyin
2018-06-01
In the present investigation, a delta wing which has 70° sweep angle, Λ was oscillated on its midcord according to the equation of α(t)=αm+α0sin(ωet). This study focused on understanding the effect of pitching and characterizing the interaction of vortex breakdown with oscillating leading edges under different yaw angles, β over a slender delta wing. The value of mean angle of attack, αm was taken as 25°. The yaw angle, β was varied with an interval of 4° over the range of 0°≤β≤ 16°. The delta wing was sinusoidally pitched within the range of period of time 5s≤Te≤60s and reduced frequency was set as K=0.16, 0.25, 0.49, 1.96 and lastly amplitude of pitching motion was arranged as α0=±5°.Formations and locations of vortex breakdown were investigated by using the dye visualization technique in side view plane.
Study on Formation of Plasma Nanobubbles in Water
NASA Astrophysics Data System (ADS)
Sato, Takehiko; Nakatani, Tatsuyuki; Miyahara, Takashi; Ochiai, Shiroh; Oizumi, Masanobu; Fujita, Hidemasa; Miyazaki, Takamichi
2015-12-01
Nanobubbles of less than 400 nm in diameter were formed by plasma in pure water. Pre-breakdown plasma termed streamer discharges, generated gas channels shaped like fine dendritic coral leading to the formation of small bubbles. Nanobubbles were visualized by an optical microscope and measured by dynamic laser scattering. However, it is necessary to verify that these nanobubbles are gas bubbles, not solid, because contamination such as platinum particles and organic compounds from electrode and residue in ultrapure water were also observed.
Technical Evaluation Report, Part A - Vortex Flow and High Angle of Attack
NASA Technical Reports Server (NTRS)
Luckring, James M.
2003-01-01
A symposium entitled Vortex Flow and High Angle of Attack was held in Loen, Norway, from May 7 through May 11, 2001. The Applied Vehicle Technology (AVT) panel, under the auspices of the Research and Technology Organization (RTO), sponsored this symposium. Forty-eight papers, organized into nine sessions, addressed computational and experimental studies of vortex flows pertinent to both aircraft and maritime applications. The studies also ranged from fundamental fluids investigations to flight test results, and significant results were contributed from a broad range of countries. The principal emphasis of this symposium was on "the understanding and prediction of separation-induced vortex flows and their effects on military vehicle performance, stability, control, and structural design loads." It was further observed by the program committee that "separation- induced vortex flows are an important part of the design and off-design performance of conventional fighter aircraft and new conventional or unconventional manned or unmanned advanced vehicle designs (UAVs, manned aircraft, missiles, space planes, ground-based vehicles, and ships)." The nine sessions addressed the following topics: vortical flows on wings and bodies, experimental techniques for vortical flows, numerical simulations of vortical flows, vortex stability and breakdown, vortex flows in maritime applications, vortex interactions and control, vortex dynamics, flight testing, and vehicle design. The purpose of this paper is to provide brief reviews of these papers along with some synthesizing perspectives toward future vortex flow research opportunities. The paper includes the symposium program. (15 refs.)
Interaction of ions, atoms, and small molecules with quantized vortex lines in superfluid (4)He.
Mateo, David; Eloranta, Jussi; Williams, Gary A
2015-02-14
The interaction of a number of impurities (H2, Ag, Cu, Ag2, Cu2, Li, He3 (+), He(*) ((3)S), He2 (∗) ((3)Σu), and e(-)) with quantized rectilinear vortex lines in superfluid (4)He is calculated by using the Orsay-Trento density functional theory (DFT) method at 0 K. The Donnelly-Parks (DP) potential function binding ions to the vortex is combined with DFT data, yielding the impurity radius as well as the vortex line core parameter. The vortex core parameter at 0 K (0.74 Å) obtained either directly from the vortex line geometry or through the DP potential fitting is smaller than previously suggested but is compatible with the value obtained from re-analysis of the Rayfield-Reif experiment. All of the impurities have significantly higher binding energies to vortex lines below 1 K than the available thermal energy, where the thermally assisted escape process becomes exponentially negligible. Even at higher temperatures 1.5-2.0 K, the trapping times for larger metal clusters are sufficiently long that the previously observed metal nanowire assembly in superfluid helium can take place at vortex lines. The binding energy of the electron bubble is predicted to decrease as a function of both temperature and pressure, which allows adjusting the trap depth for either permanent trapping or to allow thermally assisted escape. Finally, a new scheme for determining the trapping of impurities on vortex lines by optical absorption spectroscopy is outlined and demonstrated for He(*).
Interaction of ions, atoms, and small molecules with quantized vortex lines in superfluid 4He
NASA Astrophysics Data System (ADS)
Mateo, David; Eloranta, Jussi; Williams, Gary A.
2015-02-01
The interaction of a number of impurities (H2, Ag, Cu, Ag2, Cu2, Li, He3 + , He* (3S), He2∗ (3Σu), and e-) with quantized rectilinear vortex lines in superfluid 4He is calculated by using the Orsay-Trento density functional theory (DFT) method at 0 K. The Donnelly-Parks (DP) potential function binding ions to the vortex is combined with DFT data, yielding the impurity radius as well as the vortex line core parameter. The vortex core parameter at 0 K (0.74 Å) obtained either directly from the vortex line geometry or through the DP potential fitting is smaller than previously suggested but is compatible with the value obtained from re-analysis of the Rayfield-Reif experiment. All of the impurities have significantly higher binding energies to vortex lines below 1 K than the available thermal energy, where the thermally assisted escape process becomes exponentially negligible. Even at higher temperatures 1.5-2.0 K, the trapping times for larger metal clusters are sufficiently long that the previously observed metal nanowire assembly in superfluid helium can take place at vortex lines. The binding energy of the electron bubble is predicted to decrease as a function of both temperature and pressure, which allows adjusting the trap depth for either permanent trapping or to allow thermally assisted escape. Finally, a new scheme for determining the trapping of impurities on vortex lines by optical absorption spectroscopy is outlined and demonstrated for He*.
Investigation of Turbulent Tip Leakage Vortex in an Axial Water Jet Pump with Large Eddy Simulation
NASA Technical Reports Server (NTRS)
Hah, Chunill; Katz, Joseph
2012-01-01
Detailed steady and unsteady numerical studies were performed to investigate tip clearance flow in an axial water jet pump. The primary objective is to understand physics of unsteady tip clearance flow, unsteady tip leakage vortex, and cavitation inception in an axial water jet pump. Steady pressure field and resulting steady tip leakage vortex from a steady flow analysis do not seem to explain measured cavitation inception correctly. The measured flow field near the tip is unsteady and measured cavitation inception is highly transient. Flow visualization with cavitation bubbles shows that the leakage vortex is oscillating significantly and many intermittent vortex ropes are present between the suction side of the blade and the tip leakage core vortex. Although the flow field is highly transient, the overall flow structure is stable and a characteristic frequency seems to exist. To capture relevant flow physics as much as possible, a Reynolds-averaged Navier-Stokes (RANS) calculation and a Large Eddy Simulation (LES) were applied for the current investigation. The present study reveals that several vortices from the tip leakage vortex system cross the tip gap of the adjacent blade periodically. Sudden changes in local pressure field inside tip gap due to these vortices create vortex ropes. The instantaneous pressure filed inside the tip gap is drastically different from that of the steady flow simulation. Unsteady flow simulation which can calculate unsteady vortex motion is necessary to calculate cavitation inception accurately even at design flow condition in such a water jet pump.
NASA Technical Reports Server (NTRS)
Manney, Gloria L.; Schwartz, Michael J.; Krueger, Kirstin; Santee, Michelle L.; Pawson, Steven; Lee, Jae N.; Daffer, William H.; Fuller, Ryan A.; Livesey, Nathaniel J.
2009-01-01
A major stratospheric sudden warming (SSW) in January 2009 was the strongest and most prolonged on record. Aura Microwave Limb Sounder (MLS) observations are used to provide an overview of dynamics and transport during the 2009 SSW, and to compare with the intense, long-lasting SSW in January 2006. The Arctic polar vortex split during the 2009 SSW, whereas the 2006 SSW was a vortex displacement event. Winds reversed to easterly more rapidly and reverted to westerly more slowly in 2009 than in 2006. More mixing of trace gases out of the vortex during the decay of the vortex fragments, and less before the fulfillment of major SSW criteria, was seen in 2009 than in 2006; persistent well-defined fragments of vortex and anticyclone air were more prevalent in 2009. The 2009 SSW had a more profound impact on the lower stratosphere than any previously observed SSW, with no significant recovery of the vortex in that region. The stratopause breakdown and subsequent reformation at very high altitude, accompanied by enhanced descent into a rapidly strengthening upper stratospheric vortex, were similar in 2009 and 2006. Many differences between 2006 and 2009 appear to be related to the different character of the SSWs in the two years.
Non-degeneracy, Mean Field Equations and the Onsager Theory of 2D Turbulence
NASA Astrophysics Data System (ADS)
Bartolucci, Daniele; Jevnikar, Aleks; Lee, Youngae; Yang, Wen
2018-04-01
The understanding of some large energy, negative specific heat states in the Onsager description of 2D turbulence seem to require the analysis of a subtle open problem about bubbling solutions of the mean field equation. Motivated by this application we prove that, under suitable non-degeneracy assumptions on the associated m-vortex Hamiltonian, the m-point bubbling solutions of the mean field equation are non-degenerate as well. Then we deduce that the Onsager mean field equilibrium entropy is smooth and strictly convex in the high energy regime on domains of second kind.
Experimental investigation of sound generation by a protuberance in a laminar boundary layer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kobayashi, M.; Asai, M.; Inasawa, A.
2014-08-15
Sound radiation from a two-dimensional protuberance glued on the wall in a laminar boundary layer was investigated experimentally at low Mach numbers. When the protuberance was as high as the boundary-layer thickness, a feedback-loop mechanism set in between protuberance-generated sound and Tollmien-Schlichting (T-S) waves generated by the leading-edge receptivity to the upstream-propagating sound. Although occurrence of a separation bubble immediately upstream of the protuberance played important roles in the evolution of instability waves into vortices interacting with the protuberance, the frequency of tonal vortex sound was determined by the selective amplification of T-S waves in the linear instability stage upstreammore » of the separation bubble and was not affected by the instability of the separation bubble.« less
Effect of synthetic jet modulation schemes on the reduction of a laminar separation bubble
NASA Astrophysics Data System (ADS)
Seo, J. H.; Cadieux, F.; Mittal, R.; Deem, E.; Cattafesta, L.
2018-03-01
The response of a laminar separation bubble to synthetic jet forcing with various modulation schemes is investigated via direct numerical simulations. A simple sinusoidal waveform is considered as a reference case, and various amplitude modulation schemes, including the square-wave "burst" modulation, are employed in the simulations. The results indicate that burst modulation is less effective at reducing the length of the flow separation than the sinusoidal forcing primarily because burst modulation is associated with a broad spectrum of input frequencies that are higher than the target frequency for the flow control. It is found that such high-frequency forcing delays vortex roll-up and promotes vortex pairing and merging, which have an adverse effect on reducing the separation bubble length. A commonly used amplitude modulation scheme is also found to have reduced effectiveness due to its spectral content. A new amplitude modulation scheme which is tailored to impart more energy at the target frequency is proposed and shown to be more effective than the other modulation schemes. Experimental measurements confirm that modulation schemes can be preserved through the actuator and used to enhance the energy content at the target modulation frequency. The present study therefore suggests that the effectiveness of synthetic jet-based flow control could be improved by carefully designing the spectral content of the modulation scheme.
NASA Astrophysics Data System (ADS)
Lazic, V.; Laserna, J. J.; Jovicevic, S.
2013-04-01
Influence of time delay between two laser pulses on the LIBS (laser induced breakdown spectroscopy) signal inside liquids was investigated and the results are compared with data from literature. Plasma was produced by laser ablation (LA) of aluminum inside water and its emission after the second laser pulse was characterized by spectrally and time resolved detection. Light propagation through the vapor bubble formed by the first laser pulse was studied by measurements of beam scattering and transmission. Optical absorption by the evolving bubble is not significant, but its growth is accompanied by lowering of its refraction index nb with respect to surrounding liquid; this effect increases defocusing both of the incident beam and of the out-coming plasma radiation. Collection efficiency of the secondary plasma emission rapidly degrades with the cavity growth, but close to its full expansion the LIBS signal partially recovers through Snell's reflections at the liquid-vapor interface, which produce a bright spot close to the bubble center. Such a light redistribution allows detecting of the emission from external plasma volume, otherwise deflected out of the collection system. Except for strong line transitions from the main sample constituents, self-absorbed inside the high-pressure cavity, we observed the highest LIBS signal when sending the second pulse well before the bubble is fully expanded. Transitions of the pressure wave through the focal volume, formed by the first laser pulse and reflected from the cell's walls and sample back-plane, enhances the LIBS signal importantly. The measured lifetime of the secondary plasma rapidly decreases with the bubble expansion. Here, we also discuss the optimization of the optical collection system and some analytical aspects of double-pulse (DP) LIBS inside liquids.
Dielectric polarization in the Planck theory of sonoluminescence.
Prevenslik, T V
1998-11-01
Sonoluminescence observed in the cavitation of liquid H2O may be explained by the Planck theory of SL, which treats the bubbles as collapsing miniature masers having optical waves standing in resonance with the dimensions of the bubble cavity. Microwaves are shown to be created from the Planck energy of the standing waves, provided the bubble wall can be treated as a perfect blackbody surface. Liquid H2O is strongly absorbent in the ultraviolet and there the bubble approaches a Planck blackbody enclosure. The microwaves are created at frequencies proportional to the bubble collapse velocity only to be promptly absorbed by the rotation quantum states of the H2O and other bubble wall molecules. The microwaves are absorbed discretely at rotation line frequencies, or continuously by dipole rotation at frequencies from 1 to 30 GHz. In the liquid state, molecular rotation of the H2O molecule is hindered and the microwave energy is rapidly turned into bending energy by intermolecular collisions. Subsequently, the bubble wall molecules may thereby ionize and produce visible photons. The microwaves create intense electrical fields in the bubble wall by dielectric polarization. If the gases adjacent to the bubble wall undergo electrical breakdown, free electrons are created, thereby providing sonoluminescence with a magnetic field effect.
Vortex Breakdown over Slender Delta Wings (Eclatement tourbillonnaire sur les ailes delta effil es)
2009-11-01
flow patterns for a) experiments of Mitchell et. al ., b) grid G9A4 fully 15-12 turbulent, c) grid G9A4 laminar to turbulent transition at 30% root...tourbillonnaires et en particulier les tourbillons de bord d’attaque subissent une désorganisation soudaine connue sous le nom de rupture du vortex. Ce...attack in the range of –10° to 36°, an amplitude of 5° to 26° and an oscillation frequency of 0.2 to 1.5 Hz. 8) TPI Test Case De Luca et al . tested a
Vortex breakdown simulation - A circumspect study of the steady, laminar, axisymmetric model
NASA Technical Reports Server (NTRS)
Salas, M. D.; Kuruvila, G.
1989-01-01
The incompressible axisymmetric steady Navier-Stokes equations are written using the streamfunction-vorticity formulation. The resulting equations are discretized using a second-order central-difference scheme. The discretized equations are linearized and then solved using an exact LU decomposition, Gaussian elimination, and Newton iteration. Solutions are presented for Reynolds numbers (based on vortex core radius) 100-1800 and swirl parameter 0.9-1.1. The effects of inflow boundary conditions, the location of farfield and outflow boundaries, and mesh refinement are examined. Finally, the stability of the steady solutions is investigated by solving the time-dependent equations.
Vogel, A; Freidank, S; Linz, N
2014-06-01
In refractive corneal surgery femtosecond (fs) lasers are used for creating LASIK flaps, dissecting lenticules and for astigmatism correction by limbal incisions. Femtosecond laser systems are complex and expensive and cutting precision is compromised by the large focal length associated with the commonly used infrared (IR) wavelengths. Based on investigations of the cutting dynamics, novel approaches for corneal dissection using ultraviolet A (UVA) picosecond (ps) pulses and ring foci from vortex beams are presented. Laser-induced bubble formation in corneal stroma was investigated by high-speed photography at 1-50 million frames/s. Using Gaussian and vortex beams of UVA pulses with durations between 200 and 850 ps the laser energy needed for easy removal of flaps created in porcine corneas was determined and the quality of the cuts by scanning electron microscopy was documented. Cutting parameters for 850 ps are reported also for rabbit eyes. The UV-induced and mechanical stress were evaluated for Gaussian and vortex beams. The results show that UVA picosecond lasers provide better cutting precision than IR femtosecond lasers, with similar processing times. Cutting energy decreases by >50 % when the laser pulse duration is reduced to 200 ps. Vortex beams produce a short, donut-shaped focus allowing efficient and precise dissection along the corneal lamellae which results in a dramatic reduction of the absorbed energy needed for cutting and of mechanical side effects as well as in less bubble formation in the cutting plane. A combination of novel approaches for corneal dissection provides the option to replace femtosecond lasers by compact UVA microchip laser technology. Ring foci are also of interest for femtosecond laser surgery, especially for improved lenticule excision.
Electrical Breakdown in Water Vapor
NASA Astrophysics Data System (ADS)
Škoro, N.; Marić, D.; Malović, G.; Graham, W. G.; Petrović, Z. Lj.
2011-11-01
In this paper investigations of the voltage required to break down water vapor are reported for the region around the Paschen minimum and to the left of it. In spite of numerous applications of discharges in biomedicine, and recent studies of discharges in water and vapor bubbles and discharges with liquid water electrodes, studies of the basic parameters of breakdown are lacking. Paschen curves have been measured by recording voltages and currents in the low-current Townsend regime and extrapolating them to zero current. The minimum electrical breakdown voltage for water vapor was found to be 480 V at a pressure times electrode distance (pd) value of around 0.6 Torr cm (˜0.8 Pa m). The present measurements are also interpreted using (and add additional insight into) the developing understanding of relevant atomic and particularly surface processes associated with electrical breakdown.
Flow visualization study of the horseshoe vortex in a turbine stator cascade
NASA Technical Reports Server (NTRS)
Gaugler, R. E.; Russell, L. M.
1982-01-01
Flow visualization techniques were used to show the behavior of the horseshoe vortex in a large scale turbine stator cascade. Oil drops on the end wall surface flowed in response to local shear stresses, indicating the limiting flow streamlines at the surface. Smoke injected into the flow and photographed showed time averaged flow behavior. Neutrally bouyant helium filled soap bubbles followed the flow and showed up on photographs as streaks, indicating the paths followed by individual fluid particles. Preliminary attempts to control the vortex were made by injecting air through control jets drilled in the end wall near the vane leading edge. Seventeen different hole locations were tested, one at a time, and the effect of the control jets on the path follwed by smoke in the boundary layer was recorded photographically.
NASA Technical Reports Server (NTRS)
Campbell, Bryan A.; Applin, Zachary T.; Kemmerly, Guy T.
1999-01-01
An experimental investigation of the effects of leading-edge vortex management devices on the subsonic performance of a high-speed civil transport (HSCT) configuration was conducted in the Langley 14- by 22-Foot Subsonic Tunnel. Data were obtained over a Mach number range of 0.14 to 0.27, with corresponding chord Reynolds numbers of 3.08 x 10 (sup 6) to 5.47 x 10 (sup 6). The test model was designed for a cruise Mach number of 2.7. During the subsonic high-lift phase of flight, vortical flow dominates the upper surface flow structure, and during vortex breakdown, this flow causes adverse pitch-up and a reduction of usable lift. The experimental results showed that the beneficial effects of small leading-edge vortex management devices located near the model reference center were insufficient to substantially affect the resulting aerodynamic forces and moments. However, devices located at or near the wiring apex region demonstrated potential for pitch control with little effect on overall lift.
Mixing device for materials with large density differences
Gregg, David W.
1994-01-01
An auger-tube pump mixing device for mixing materials with large density differences while maintaining low stirring RPM and low power consumption. The mixing device minimizes the formation of vortexes and minimizes the incorporation of small bubbles in the liquid during mixing. By avoiding the creation of a vortex the device provides efficient stirring of full containers without spillage over the edge. Also, the device solves the problem of effective mixing in vessels where the liquid height is large compared to the diameter. Because of the gentle stirring or mixing by the device, it has application for biomedical uses where cell damage is to be avoided.
Mixing device for materials with large density differences
Gregg, D.W.
1994-08-16
An auger-tube pump mixing device is disclosed for mixing materials with large density differences while maintaining low stirring RPM and low power consumption. The mixing device minimizes the formation of vortexes and minimizes the incorporation of small bubbles in the liquid during mixing. By avoiding the creation of a vortex the device provides efficient stirring of full containers without spillage over the edge. Also, the device solves the problem of effective mixing in vessels where the liquid height is large compared to the diameter. Because of the gentle stirring or mixing by the device, it has application for biomedical uses where cell damage is to be avoided. 2 figs.
Observations of stimulated Raman scattering and laser-induced breakdown in millimeter-sized droplets
NASA Technical Reports Server (NTRS)
Biswas, A.; Pinnick, R. G.; Xie, J.-G.; Ruekgauer, T. E.; Armstrong, R. L.
1992-01-01
We report the first observations, to our knowledge, of nonlinear optical effects in large (millimeter-sized) droplets. Stimulated Raman scattering (SRS) and laser-induced breakdown (LIB) are simultaneously observed in acoustically levitated millimeter-sized glycerol droplets irradiated by either a frequency-doubled (532-nm) or a frequency-tripled (355-nm) Nd:YAG laser. The two processes, which occur above a nearby coincident irradiation threshold, are conjectured to arise from a common initiation mechanism: self-focusing. LIB generates vapor bubbles within the droplet, resulting in the quenching of SRS emission.
Effect of added mass on the interaction of bubbles in a low-Reynolds-number shear flow.
Lavrenteva, Olga; Prakash, Jai; Nir, Avinoam
2016-02-01
Equal size air bubbles that are entrapped by a Taylor vortex of the secondary flow in a Couette device, thereby defying buoyancy, slowly form a stable ordered ring with equal separation distances between all neighbors. We present two models of the process dynamics based on force balance on a bubble in the presence of other bubbles positioned on the same streamline in a simple shear flow. The forces taken into account are the viscous resistance, the added mass force, and the inertia-induced repulsing force between two bubbles in a low-Reynolds-number shear flow obtained in Prakash et al. [J. Prakash et al., Phys. Rev. E 87, 043002 (2013)]. The first model of the process assumes that each bubble interacts solely with its nearest neighbors. The second model takes into account pairwise interactions among all the bubbles in the ring. The performed dynamic simulations were compared to the experimental results reported in Prakash et al. [J. Prakash et al., Phys. Rev. E 87, 043002 (2013)] and to the results of quasistationary models (ignoring the added mass effect) suggested in that paper. It is demonstrated that taking into account the effect of added mass, the models describe the major effect of the bubbles' ordering, provide good estimation of the relaxation time, and also predict nonmonotonic behavior of the separation distance between the bubbles, which exhibit over- and undershooting of equilibrium separations. The latter effects were observed in experiments, but are not predicted by the quasistationary models.
Toytman, I; Silbergleit, A; Simanovski, D; Palanker, D
2010-10-01
Transparent biological tissues can be precisely dissected with ultrafast lasers using optical breakdown in the tight focal zone. Typically, tissues are cut by sequential application of pulses, each of which produces a single cavitation bubble. We investigate the hydrodynamic interactions between simultaneous cavitation bubbles originating from multiple laser foci. Simultaneous expansion and collapse of cavitation bubbles can enhance the cutting efficiency, by increasing the resulting deformations in tissue, and the associated rupture zone. An analytical model of the flow induced by the bubbles is presented and experimentally verified. The threshold strain of the material rupture is measured in a model tissue. Using the computational model and the experimental value of the threshold strain one can compute the shape of the rupture zone in tissue resulting from application of multiple bubbles. With the threshold strain of 0.7 two simultaneous bubbles produce a continuous cut when applied at the distance 1.35 times greater than that required in sequential approach. Simultaneous focusing of the laser in multiple spots along the line of intended cut can extend this ratio to 1.7. Counterpropagating jets forming during collapse of two bubbles in materials with low viscosity can further extend the cutting zone-up to approximately a factor of 1.5.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakka, Tetsuo; Institute of Sustainability Science, Kyoto University, Uji, Kyoto 611-0011; Tamura, Ayaka
2012-05-07
We experimentally study the dynamics of the plasma induced by the double-laser-pulse irradiation of solid target in water, and find that an appropriate choice of the pulse energies and pulse interval results in the production of an unprecedentedly mild (low-density) plasma, the emission spectra of which are very narrow even without the time-gated detection. The optimum pulse interval and pulse energies are 15-30 {mu}s and about {approx}1 mJ, respectively, where the latter values are much smaller than those typically employed for this kind of study. In order to clarify the mechanism for the formation of mild plasma we examine themore » role of the first and second laser pulses, and find that the first pulse produces the cavitation bubble without emission (and hence plasma), and the second pulse induces the mild plasma in the cavitation bubble. These findings may present a new phase of underwater laser-induced breakdown spectroscopy.« less
Tse, Christine; Zohdy, Marwa J.; Ye, Jing Yong; O'Donnell, Matthew; Lesniak, Wojciech; Balogh, Lajos
2010-01-01
Enhanced optical breakdown of KB cells (a human oral epidermoid cancer cell known to overexpress folate receptors) targeted with silver/dendrimer composite nanodevices (CNDs) is described. CNDs {(Ag0}25-PAMAM_E5.(NH2)42(NGly)74(NFA)2.7} were fabricated by reactive encapsulation, using a biocompatible template of dendrimer-folic acid (FA) conjugates. Preferential uptake of the folate-targeted CNDs (of various treatment concentrations and surface functionality) by KB cells was visualized with confocal microscopy and transmission electron microscopy (TEM). Intracellular laser-induced optical breakdown (LIOB) threshold and dynamics were detected and characterized by high-frequency ultrasonic monitoring of resulting transient bubble events. When irradiated with a near-infrared (NIR), femtosecond laser, the CND-targeted KB cells acted as well-confined activators of laser energy, enhancing nonlinear energy absorption, exhibiting a significant reduction in breakdown threshold, and thus selectively promoting intracellular LIOB. PMID:20883823
Dynamics of two-dimensional bubbles.
Piedra, Saúl; Ramos, Eduardo; Herrera, J Ramón
2015-06-01
The dynamics of two-dimensional bubbles ascending under the influence of buoyant forces is numerically studied with a one-fluid model coupled with the front-tracking technique. The bubble dynamics are described by recording the position, shape, and orientation of the bubbles as functions of time. The qualitative properties of the bubbles and their terminal velocities are described in terms of the Eötvos (ratio of buoyancy to surface tension) and Archimedes numbers (ratio of buoyancy to viscous forces). The terminal Reynolds number result from the balance of buoyancy and drag forces and, consequently, is not an externally fixed parameter. In the cases that yield small Reynolds numbers, the bubbles follow straight paths and the wake is steady. A more interesting behavior is found at high Reynolds numbers where the bubbles follow an approximately periodic zigzag trajectory and an unstable wake with properties similar to the Von Karman vortex street is formed. The dynamical features of the motion of single bubbles are compared to experimental observations of air bubbles ascending in a water-filled Hele-Shaw cell. Although the comparison is not strictly valid in the sense that the effect of the lateral walls is not incorporated in the model, most of the dynamical properties observed are in good qualitative agreement with the numerical calculations. Hele-Shaw cells with different gaps have been used to determine the degree of approximation of the numerical calculation. It is found that for the relation between the terminal Reynolds number and the Archimedes number, the numerical calculations are closer to the observations of bubble dynamics in Hele-Shaw cells of larger gaps.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tamura, Ayaka, E-mail: atamura@hiroshima-u.ac.jp; Matsumoto, Ayumu; Nishi, Naoya
2015-05-07
We investigate the effects of pulse duration on the dynamics of the nascent plasma and bubble induced by laser ablation in water. To examine the relationship between the nascent plasma and the bubble without disturbed by shot-to-shot fluctuation, we observe the images of the plasma and the bubble simultaneously by using two intensified charge coupled device detectors. We successfully observe the images of the plasma and bubble during the pulsed-irradiation, when the bubble size is as small as 20 μm. The light-emitting region of the plasma during the laser irradiation seems to exceed the bubble boundary in the case of themore » short-pulse (30-ns pulse) irradiation, while the size of the plasma is significantly smaller than that of the bubble in the case of the long-pulse (100-ns pulse) irradiation. The results suggest that the extent of the plasma quenching in the initial stage significantly depends on the pulse duration. Also, we investigate how the plasma-bubble relationship in the very early stage affects the shape of the atomic spectral lines observed at the later delay time of 600 ns. The present work gives important information to obtain high quality spectra in the application of underwater laser-induced breakdown spectroscopy, as well as to clarify the mechanism of liquid-phase laser ablation.« less
An exploratory study of apex fence flaps on a 74 deg delta wing
NASA Technical Reports Server (NTRS)
Wahls, R. A.; Vess, R. J.
1985-01-01
An exploratory wind tunnel investigation was performed to observe the flow field effects produced by vertically deployed apex fences on a planar 74 degree delta wing. The delta shaped fences, each comprising approximately 3.375 percent of the wing area, were affixed along the first 25 percent of the wing leading edge in symmetric as well as asymmetric (i.e., fence on one side only) arrangements. The vortex flow field was visualized at angles of attack from 0 to 20 degrees using helium bubble and oil flow techniques; upper surface pressures were also measured along spanwise rows. The results were used to construct a preliminary description of the vortex patterns and induced pressures associated with vertical apex fence deployment. The objective was to obtain an initial evaluation of the potential of apex fences as vortex devices for subsonic lift modulation as well as lateral directional control of delta wing aircraft.
Variable-gravity anti-vortex and vapor-ingestion-suppression device
NASA Technical Reports Server (NTRS)
Grayson, Gary D. (Inventor)
2003-01-01
A liquid propellant management device for placement in a liquid storage tank adjacent an outlet of the storage tank to substantially reduce or eliminate the formation of a dip and vortex in the liquid of the tank, as well as prevent vapor ingestion into the outlet, as the liquid drains out through the outlet. The liquid propellant management device has a first member adapted to suppress the formation of a vortex of a liquid exiting the storage tank. A plate is affixed generally perpendicular to the first member, wherein the plate is adapted to suppress vapor ingestion into the outlet by reducing a dip in a surface level of the liquid leaving the tank. A second member is affixed to the second side of the plate. The second member ensures that the plate is wet with liquid and assists in positioning bubbles away from the outlet.
Advances in numerical and applied mathematics
NASA Technical Reports Server (NTRS)
South, J. C., Jr. (Editor); Hussaini, M. Y. (Editor)
1986-01-01
This collection of papers covers some recent developments in numerical analysis and computational fluid dynamics. Some of these studies are of a fundamental nature. They address basic issues such as intermediate boundary conditions for approximate factorization schemes, existence and uniqueness of steady states for time dependent problems, and pitfalls of implicit time stepping. The other studies deal with modern numerical methods such as total variation diminishing schemes, higher order variants of vortex and particle methods, spectral multidomain techniques, and front tracking techniques. There is also a paper on adaptive grids. The fluid dynamics papers treat the classical problems of imcompressible flows in helically coiled pipes, vortex breakdown, and transonic flows.
Turbulence production due to secondary vortex cutting in a turbine rotor
NASA Astrophysics Data System (ADS)
Binder, A.
1985-10-01
Measurements of the unsteady flow field near and within a turbine rotor were made by means of a Laser-2-Focus velocimeter. The testing was performed in a single-stage cold-air turbine at part-load and near-design conditions. Random unsteadiness and flow angle results indicate that the secondary vortices of the stator break down after being cut and deformed by the rotor blades. A quantitative comparison shows that some of the energy contained in these secondary vortices is thereby converted into turbulence energy in the front part of the rotor. An attempt is made to explain this turbulence energy production as caused by the vortex breakdown.
Numerical Studies of Three-dimensional Breakdown in Trailing Vortex Wakes
NASA Technical Reports Server (NTRS)
Evans, P. F.; Hackett, J. E.
1976-01-01
Finite element, three dimensional relaxation methods are used to calculate the development of vortex wakes behind aircraft for a considerable downstream distance. The inclusion of a self-induction term in the solution, dependent upon local curvature and vortex core radius, permits calculation of finite lifetimes for systems for which infinite life would be predicted two dimensionally. The associated computer program is described together with single-pair, twin-pair, and multiple-pair studies carried out using it. It is found, in single-pair studies, that there is a lower limit to the wavelengths at which the Crow-type of instability can occur. Below this limit, self-induction effects cause the plane of the disturbance waves to rotate counter to the vortex direction. Self induction in two dimensionally generated twin spiral waves causes an increase in axial length which becomes more marked with decreasing initial wavelength. The time taken for vortex convergence toward the center plane is correspondingly increased. The limited parametric twin-pair study performed suggests that time-to-converge increases with increasing flap span. Limited studies of Boeing 747 configurations show correct qualitative response to removal of the outer flap and to gear deployment, as compared with wind tunnel and flight test experience.
Water tunnel flow visualization study of a 4.4 percent scale X-31 forebody
NASA Technical Reports Server (NTRS)
Cobleigh, Brent R.; Delfrate, John
1994-01-01
A water-tunnel test of a 4.4 percent-scale, forebody-only model of the X-31 aircraft with different forebody strakes and nosebooms has been performed in the Flow Visualization Facility at the NASA Dryden Flight Research Center. The focus of the study was to determine the relative effects of the different configurations on the stability and symmetry of the high-angle-of-attack forebody vortex flow field. The clean, noseboom-off configuration resisted the development of asymmetries in the primary vortices through 70 deg angle of attack. The wake of the X-31 flight test noseboom configuration significantly degraded the steadiness of the primary vortex cores and promoted asymmetries. An alternate L-shaped noseboom mounted underneath the forebody had results similar to those seen with the configuration, enabling stable, symmetrical vortices up to 70 deg angle of attack. The addition of strakes near the radome tip along the waterline increased the primary vortex strength while it simultaneously caused the vortex breakdown location co move forward. Forebody strakes did not appear to significantly reduce the asymmetries in the forebody vortex field in the presence of the flight test noseboom.
Streaming driven by sessile microbubbles: Explaining flow patterns and frequency response
NASA Astrophysics Data System (ADS)
Rallabandi, Bhargav; Wang, Cheng; Guo, Lin; Hilgenfeldt, Sascha
2013-11-01
Ultrasound excitation of bubbles drives powerful steady streaming flows which have found widespread applications in microfluidics, where bubbles are typically of semicircular cross section and attached to walls of the device (sessile). While bubble-driven streaming in bulk fluid is well understood, this practically relevant case presents additional complexity introduced by the wall and contact lines. We develop an asymptotic theory that takes into account the presence of the wall as well as the oscillation dynamics of the bubble, providing a complete description of the streaming flow as a function only of the driving frequency, the bubble size, and the physical properties of the fluid. We show that the coupling between different bubble oscillation modes sustains the experimentally observed streaming flow vortex pattern over a broad range of frequencies, greatly exceeding the widths of individual mode resonances. Above a threshold frequency, we predict, and observe in experiment, reversal of the flow direction. Our analytical theory can be used to guide the design of microfluidic devices, both in situations where robust flow patterns insensitive to parameter changes are desired (e.g. lab-on-a-chip sorters), and in cases where intentional modulation of the flow field appearance is key (e.g. efficient mixers). Current address: Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology.
Magnetic targeting to enhance microbubble delivery in an occluded microarterial bifurcation
NASA Astrophysics Data System (ADS)
de Saint Victor, M.; Carugo, D.; Barnsley, L. C.; Owen, J.; Coussios, C.-C.; Stride, E.
2017-09-01
Ultrasound and microbubbles have been shown to accelerate the breakdown of blood clots both in vitro and in vivo. Clinical translation of this technology is still limited, however, in part by inefficient microbubble delivery to the thrombus. This study examines the obstacles to delivery posed by fluid dynamic conditions in occluded vasculature and investigates whether magnetic targeting can improve microbubble delivery. A 2D computational fluid dynamic model of a fully occluded Y-shaped microarterial bifurcation was developed to determine: (i) the fluid dynamic field in the vessel with inlet velocities from 1-100 mm s-1 (corresponding to Reynolds numbers 0.25-25) (ii) the transport dynamics of fibrinolytic drugs; and (iii) the flow behavior of microbubbles with diameters in the clinically-relevant range (0.6-5 µm). In vitro experiments were carried out in a custom-built microfluidic device. The flow field was characterized using tracer particles, and fibrinolytic drug transport was assessed using fluorescence microscopy. Lipid-shelled magnetic microbubbles were fluorescently labelled to determine their spatial distribution within the microvascular model. In both the simulations and experiments, the formation of laminar vortices and an abrupt reduction of fluid velocity were observed in the occluded branch of the bifurcation, severely limiting drug transport towards the occlusion. In the absence of a magnetic field, no microbubbles reached the occlusion, remaining trapped in the first vortex, within 350 µm from the bifurcation center. The number of microbubbles trapped within the vortex decreased as the inlet velocity increased, but was independent of microbubble size. Application of a magnetic field (magnetic flux density of 76 mT, magnetic flux density gradient of 10.90 T m-1 at the centre of the bifurcation) enabled delivery of microbubbles to the occlusion and the number of microbubbles delivered increased with bubble size and with decreasing inlet velocity.
HFSB-seeding for large-scale tomographic PIV in wind tunnels
NASA Astrophysics Data System (ADS)
Caridi, Giuseppe Carlo Alp; Ragni, Daniele; Sciacchitano, Andrea; Scarano, Fulvio
2016-12-01
A new system for large-scale tomographic particle image velocimetry in low-speed wind tunnels is presented. The system relies upon the use of sub-millimetre helium-filled soap bubbles as flow tracers, which scatter light with intensity several orders of magnitude higher than micron-sized droplets. With respect to a single bubble generator, the system increases the rate of bubbles emission by means of transient accumulation and rapid release. The governing parameters of the system are identified and discussed, namely the bubbles production rate, the accumulation and release times, the size of the bubble injector and its location with respect to the wind tunnel contraction. The relations between the above parameters, the resulting spatial concentration of tracers and measurement of dynamic spatial range are obtained and discussed. Large-scale experiments are carried out in a large low-speed wind tunnel with 2.85 × 2.85 m2 test section, where a vertical axis wind turbine of 1 m diameter is operated. Time-resolved tomographic PIV measurements are taken over a measurement volume of 40 × 20 × 15 cm3, allowing the quantitative analysis of the tip-vortex structure and dynamical evolution.
NASA Technical Reports Server (NTRS)
Otto, S. R.; Bassom, Andrew P.
1992-01-01
The nonlinear development is studied of the most unstable Gortler mode within a general 3-D boundary layer upon a suitably concave surface. The structure of this mode was first identified by Denier, Hall and Seddougui (1991) who demonstrated that the growth rate of this instability is O(G sup 3/5) where G is the Gortler number (taken to be large here), which is effectively a measure of the curvature of the surface. Previous researchers have described the fate of the most unstable mode within a 2-D boundary layer. Denier and Hall (1992) discussed the fully nonlinear development of the vortex in this case and showed that the nonlinearity causes a breakdown of the flow structure. The effect of crossflow and unsteadiness upon an infinitesimal unstable mode was elucidated by Bassom and Hall (1991). They demonstrated that crossflow tends to stabilize the most unstable Gortler mode, and for certain crossflow/frequency combinations the Gortler mode may be made neutrally stable. These vortex configurations naturally lend themselves to a weakly nonlinear stability analysis; work which is described in a previous article by the present author. Here we extend the ideas of Denier and Hall (1992) to the three-dimensional boundary layer problem. It is found that the numerical solution of the fully nonlinear equations is best conducted using a method which is essentially an adaption of that utilized by Denier and Hall (1992). The influence of crossflow and unsteadiness upon the breakdown of the flow is described.
NASA Technical Reports Server (NTRS)
Wood, Richard M.; Wilcox, Floyd J., Jr.; Bauer, Steven X. S.; Allen, Jerry M.
2000-01-01
A review of the research conducted at the National Aeronautics and Space Administration (NASA), Langley Research Center (LaRC) into high-speed vortex flows during the 1970s, 1980s, and 1990s is presented. The data reviewed is for flat plates, cavities, bodies, missiles, wings, and aircraft. These data are presented and discussed relative to the design of future vehicles. Also presented is a brief historical review of the extensive body of high-speed vortex flow research from the 1940s to the present in order to provide perspective of the NASA LaRC's high-speed research results. Data are presented which show the types of vortex structures which occur at supersonic speeds and the impact of these flow structures to vehicle performance and control is discussed. The data presented shows the presence of both small- and large scale vortex structures for a variety of vehicles, from missiles to transports. For cavities, the data show very complex multiple vortex structures exist at all combinations of cavity depth to length ratios and Mach number. The data for missiles show the existence of very strong interference effects between body and/or fin vortices and the downstream fins. It was shown that these vortex flow interference effects could be both positive and negative. Data are shown which highlights the effect that leading-edge sweep, leading-edge bluntness, wing thickness, location of maximum thickness, and camber has on the aerodynamics of and flow over delta wings. The observed flow fields for delta wings (i.e. separation bubble, classical vortex, vortex with shock, etc.) are discussed in the context of' aircraft design. And data have been shown that indicate that aerodynamic performance improvements are available by considering vortex flows as a primary design feature. Finally a discussing of a design approach for wings which utilize vortex flows for improved aerodynamic performance at supersonic speed is presented.
Lift enhancement by trapped vortex
NASA Technical Reports Server (NTRS)
Rossow, Vernon J.
1992-01-01
The viewgraphs and discussion of lift enhancement by trapped vortex are provided. Efforts are continuously being made to find simple ways to convert wings of aircraft from an efficient cruise configuration to one that develops the high lift needed during landing and takeoff. The high-lift configurations studied here consist of conventional airfoils with a trapped vortex over the upper surface. The vortex is trapped by one or two vertical fences that serve as barriers to the oncoming stream and as reflection planes for the vortex and the sink that form a separation bubble on top of the airfoil. Since the full three-dimensional unsteady flow problem over the wing of an aircraft is so complicated that it is hard to get an understanding of the principles that govern the vortex trapping process, the analysis is restricted here to the flow field illustrated in the first slide. It is assumed that the flow field between the two end plates approximates a streamwise strip of the flow over a wing. The flow between the endplates and about the airfoil consists of a spanwise vortex located between the suction orifices in the endplates. The spanwise fence or spoiler located near the nose of the airfoil serves to form a separated flow region and a shear layer. The vorticity in the shear layer is concentrated into the vortex by withdrawal of fluid at the suction orifices. As the strength of the vortex increases with time, it eventually dominates the flow in the separated region so that a shear or vertical layer is no longer shed from the tip of the fence. At that point, the vortex strength is fixed and its location is such that all of the velocity contributions at its center sum to zero thereby making it an equilibrium point for the vortex. The results of a theoretical analysis of such an idealized flow field are described.
Impact of the cavitation bubble on a plasma emission following laser ablation in liquid
NASA Astrophysics Data System (ADS)
Gavrilović, Marijana R.
2017-12-01
In this work, the impact of the cavitation bubble on a plasma emission produced after the interaction of the strong focused laser radiation with the target in the liquid was studied. Several experimental techniques were applied to assess different aspects of the complex phenomena of the laser induced breakdown in the liquid media. The results of the fast photography, Schlieren and shadowgraphy techniques were compared with the results of simpler probe beam techniques, transmission and scattering. In addition, emission from the plasma was analysed using optical emission spectroscopy, with aim to relate the quality of the recorded spectral lines to the bubble properties. Bubble had proved to be more convenient surrounding than the liquid for the long lasting plasma emission, due to the high temperature and pressure state inside of it and significantly lower density, which causes less confined plasma. Changes in refractive index of the bubble were also monitored, although in the limited time interval, when the bubble was sufficiently expanded and the refractive index difference between the bubble and the water was large enough to produce glory rings and the bright spot in the bubble's centre. Reshaping of the plasma emission due to the optical properties of the bubble was detected and the need for careful optimization of the optical system was stressed. Contribution to the "Topical Issue: Physics of Ionized Gases (SPIG 2016)", edited by Goran Poparic, Bratislav Obradovic, Dragana Maric and Aleksandar Milosavljevic.
NASA Astrophysics Data System (ADS)
López-Claros, M.; Dell'Aglio, M.; Gaudiuso, R.; Santagata, A.; De Giacomo, A.; Fortes, F. J.; Laserna, J. J.
2017-07-01
There is a growing interest in the development of sensors use in exploration of the deep ocean. Techniques for the chemical analysis of submerged solids are of special interest, as they show promise for subsea mining applications where a rapid sorting of materials found in the sea bottom would improve efficiency. Laser-Induced Breakdown Spectroscopy (LIBS) has demonstrated potential for this application thanks to its unique capability of providing the atomic composition of submerged solids. Here we present a study on the parameters that affect the spectral response of metallic targets in an oceanic pressure environment. Following laser excitation of the solid, the plasma persistence and the cavitation bubble size are considerably reduced as the hydrostatic pressure increases. These effects are of particular concern in dual pulse excitation as reported here, where a careful choice of the interpulse timing is required. Shadowgraphic images of the plasma demonstrate that cavitation bubbles are formed early after the plasma onset and that the effect of hydrostatic pressure is negligible during the early stage of plasma expansion. Contrarily to what is observed at atmospheric pressure, emission spectra observed at high pressures are characterized by self-absorbed atomic lines on continuum radiation resulting from strong radiative recombination in the electron-rich confined environment. This effect is much less evident with ionic lines due to the much higher energy of the levels involved and ionization energy of ions, as well as to the lower extent of absorption effects occurring in the inner part of the plasma, where ionized species are more abundant. As a result of the smaller shorter-lived cavitation bubble, the LIBS intensity enhancement resulting from dual pulse excitation is reduced when the applied pressure increases.
NASA Technical Reports Server (NTRS)
Adler, R. F.
1974-01-01
The general circulations of the Northern and Southern Hemispheres are compared with regard to the upper troposphere and stratosphere using atmospheric structure obtained from satellite, multi-channel radiance data. Specifically, the data are from the Satellite Infrared Spectrometer (SIRS) instrument aboard the Nimbus 3 spacecraft. The inter-hemispheric comparisons are based on two months of data (one summer month and one winter month) in each hemisphere. Topics studied include: mean meridional circulation in the Southern Hemisphere stratosphere; magnitude and distribution of tropospheric eddy heat flux; magnitudes of energy cycle components; and the relation of vortex structure to the breakdown climatology of the Antarctic stratospheric polar vortex.
On the upper part load vortex rope in Francis turbine: Experimental investigation
NASA Astrophysics Data System (ADS)
Nicolet, C.; Zobeiri, A.; Maruzewski, P.; Avellan, F.
2010-08-01
The swirling flow developing in Francis turbine draft tube under part load operation leads to pressure fluctuations usually in the range of 0.2 to 0.4 times the runner rotational frequency resulting from the so-called vortex breakdown. For low cavitation number, the flow features a cavitation vortex rope animated with precession motion. Under given conditions, these pressure fluctuations may lead to undesirable pressure fluctuations in the entire hydraulic system and also produce active power oscillations. For the upper part load range, between 0.7 and 0.85 times the best efficiency discharge, pressure fluctuations may appear in a higher frequency range of 2 to 4 times the runner rotational speed and feature modulations with vortex rope precession. It has been pointed out that for this particular operating point, the vortex rope features elliptical cross section and is animated of a self-rotation. This paper presents an experimental investigation focusing on this peculiar phenomenon, defined as the upper part load vortex rope. The experimental investigation is carried out on a high specific speed Francis turbine scale model installed on a test rig of the EPFL Laboratory for Hydraulic Machines. The selected operating point corresponds to a discharge of 0.83 times the best efficiency discharge. Observations of the cavitation vortex carried out with high speed camera have been recorded and synchronized with pressure fluctuations measurements at the draft tube cone. First, the vortex rope self rotation frequency is evidenced and the related frequency is deduced. Then, the influence of the sigma cavitation number on vortex rope shape and pressure fluctuations is presented. The waterfall diagram of the pressure fluctuations evidences resonance effects with the hydraulic circuit. The time evolution of the vortex rope volume is compared with pressure fluctuations time evolution using image processing. Finally, the influence of the Froude number on the vortex rope shape and the associated pressure fluctuations is analyzed by varying the rotational speed.
Recent research on V/STOL test limits at the University of Washington aeronautical laboratory
NASA Technical Reports Server (NTRS)
Shindo, S.; Rae, W. H., Jr.
1980-01-01
The occurence of flow breakdown during the wind tunnel testing of a powered V/STOL aircraft was studied. Flow breakdown is the low forward speed test limit in a solid wall wind tunnel and is characterized by a vortex which forms on the floor and walls of the wind tunnel thereby failing to simulate free air conditions. The flow is caused by the interaction of the model wake and tunnel boundary layer and affects the model's aerodynamic characteristics in such fashion as to negate their reliability as correctable wind tunnel data. The low speed test limit was examined using a model that possessed a discretely concentrated powered lift system using a pair of lift jets. The system design is discussed and the tests and results which show that flow breakdown occurs at a velocity ratio of approximately 0.20 are reported.
Sonar gas seepage characterization using high resolution systems at short ranges
NASA Astrophysics Data System (ADS)
Schneider von Deimling, J.; Lohrberg, A.; Mücke, I.
2017-12-01
Sonar is extremely sensitive in regard to submarine remote sensing of free gas bubbles. Known reasons for this are (1) high impedance contrast between water and gas, holding true also at larger depths with higher hydrostatic pressures and thus greater mole density in a gas bubble; (2) resonating behavior at a specific depth-frequency-size/shape relation with highly non-linear behavior; (3) an overlooked property being valuable for gas seepage detection and characterization is the movement of bubbles controlled by their overall trajectory governed by buoyancy, upwelling effects, tides, eddies, and currents. Moving objects are an unusual seismo-acoustic target in solid earth geophysics, and most processors hardly consider such short term movement. However, analyzing movement pattern over time and space highly improves human and algorithmic bubble detection and helps mitigation of false alarms often caused by fish's swim bladders. We optimized our sonar surveys for gas bubble trajectory analyses using calibrated split-beam and broadband/short pulse multibeam to gather very high quality sonar images. Thus we present sonar data patterns of gas seepage sites recorded at shorter ranges showing individual bubbles or groups of bubbles. Subsequent analyses of bubble trajectories and sonar strength can be used to quantify minor gas fluxes with high accuracy. Moreover, we analyzed strong gas bubble seepage sites with significant upwelling. Acoustic inversion of such major seep fluxes is extremely challenging if not even impossible given uncertainties in bubble size spectra, upwelling velocities, and beam geometry position of targets. Our 3D analyses of the water column multibeam data unraveled that some major bubble flows prescribe spiral vortex trajectories. The phenomenon was first found at an abandoned well site in the North Sea, but our recent investigations confirm such complex bubble trajectories exist at natural seeps, i.e. at the CO2 seep site Panarea (Italy). We hypothesize that accurate 3D analyses of plume shape and trajectory analyses might help to estimate threshold for fluxes.
Verma, Vikrant; Li, Tingwen; De Wilde, Juray
2017-05-26
Vortex chambers allow the generation of rotating fluidized beds, offering high-G intensified gas-solid contact, gas-solids separation and solids-solids segregation. Focusing on binary particle mixtures and fixing the density and diameter of the heavy/large particles, transient batch CFD-coarse-grained DPM simulations were carried out with varying densities or sizes of the light/small particles to evaluate to what extent combining these three functionalities is possible within a vortex chamber of given design. Both the rate and quality of segregation were analyzed. Within a relatively wide density and size range, fast and efficient segregation takes place, with an inner and slower rotating bed ofmore » the lighter/small particles forming within the outer and faster rotating bed of the heavier/large particles. Simulations show that the contamination of the outer bed with lighter particles occurs more easily than contamination of the inner bed with heavier particles and increases with decreasing difference in size or density of the particles. Bubbling in the inner bed is observed with an inner bed of very low density or small particles. Porosity plots show that vortex chambers with a sufficient number of gas inlet slots have to be used to guarantee a uniform gas distribution and particle bed. Lastly, the flexibility of particle segregation in vortex chambers with respect to the gas flow rate is demonstrated.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verma, Vikrant; Li, Tingwen; De Wilde, Juray
Vortex chambers allow the generation of rotating fluidized beds, offering high-G intensified gas-solid contact, gas-solids separation and solids-solids segregation. Focusing on binary particle mixtures and fixing the density and diameter of the heavy/large particles, transient batch CFD-coarse-grained DPM simulations were carried out with varying densities or sizes of the light/small particles to evaluate to what extent combining these three functionalities is possible within a vortex chamber of given design. Both the rate and quality of segregation were analyzed. Within a relatively wide density and size range, fast and efficient segregation takes place, with an inner and slower rotating bed ofmore » the lighter/small particles forming within the outer and faster rotating bed of the heavier/large particles. Simulations show that the contamination of the outer bed with lighter particles occurs more easily than contamination of the inner bed with heavier particles and increases with decreasing difference in size or density of the particles. Bubbling in the inner bed is observed with an inner bed of very low density or small particles. Porosity plots show that vortex chambers with a sufficient number of gas inlet slots have to be used to guarantee a uniform gas distribution and particle bed. Lastly, the flexibility of particle segregation in vortex chambers with respect to the gas flow rate is demonstrated.« less
Tunneling decay of false vortices
NASA Astrophysics Data System (ADS)
Lee, Bum-Hoon; Lee, Wonwoo; MacKenzie, Richard; Paranjape, M. B.; Yajnik, U. A.; Yeom, Dong-han
2013-10-01
We consider the decay of vortices trapped in the false vacuum of a theory of scalar electrodynamics in 2+1 dimensions. The potential is inspired by models with intermediate symmetry breaking to a metastable vacuum that completely breaks a U(1) symmetry, while in the true vacuum, the symmetry is unbroken. The false vacuum is unstable through the formation of true vacuum bubbles; however, the rate of decay can be extremely long. On the other hand, the false vacuum can contain metastable vortex solutions. These vortices contain the true vacuum inside in addition to a unit of magnetic flux and the appropriate topologically nontrivial false vacuum outside. We numerically establish the existence of vortex solutions which are classically stable; however, they can decay via tunneling. In general terms, they tunnel to a configuration which is a large, thin-walled vortex configuration that is now classically unstable to the expansion of its radius. We compute an estimate for the tunneling amplitude in the semiclassical approximation. We believe our analysis would be relevant to superconducting thin films or superfluids.
Determination of Wind Turbine Near-Wake Length Based on Stability Analysis
NASA Astrophysics Data System (ADS)
Sørensen, Jens N.; Mikkelsen, Robert; Sarmast, Sasan; Ivanell, Stefan; Henningson, Dan
2014-06-01
A numerical study on the wake behind a wind turbine is carried out focusing on determining the length of the near-wake based on the instability onset of the trailing tip vortices shed from the turbine blades. The numerical model is based on large-eddy simulations (LES) of the Navier-Stokes equations using the actuator line (ACL) method. The wake is perturbed by applying stochastic or harmonic excitations in the neighborhood of the tips of the blades. The flow field is then analyzed to obtain the stability properties of the tip vortices in the wake of the wind turbine. As a main outcome of the study it is found that the amplification of specific waves (traveling structures) along the tip vortex spirals is responsible for triggering the instability leading to wake breakdown. The presence of unstable modes in the wake is related to the mutual inductance (vortex pairing) instability where there is an out-of-phase displacement of successive helix turns. Furthermore, using the non-dimensional growth rate, it is found that the pairing instability has a universal growth rate equal to π/2. Using this relationship, and the assumption that breakdown to turbulence occurs once a vortex has experienced sufficient growth, we provide an analytical relationship between the turbulence intensity and the stable wake length. The analysis leads to a simple expression for determining the length of the near wake. This expression shows that the near wake length is inversely proportional to thrust, tip speed ratio and the logarithmic of the turbulence intensity.
Experimental and numerical studies of beetle-inspired flapping wing in hovering flight.
Van Truong, Tien; Le, Tuyen Quang; Park, Hoon Cheol; Byun, Doyoung
2017-05-17
In this paper, we measure unsteady forces and visualize 3D vortices around a beetle-like flapping wing model in hovering flight by experiment and numerical simulation. The measurement of unsteady forces and flow patterns around the wing were conducted using a dynamically scaled wing model in the mineral-oil tank. The wing kinematics were directly derived from the experiment of a real beetle. The 3D flow structures of the flapping wing were captured by using air bubble visualization while forces were measured by a sensor attached at the wing base. In comparison, the size and topology of spiral leading edge vortex, trailing edge vortex and tip vortex are well matched from experimental and numerical studies. In addition, the time history of forces calculated from numerical simulation is also similar to that from theforce measurement. A difference of average force is in order of 10 percent. The results indicate that the leading edge vortex due to rotational acceleration at the end of the stroke during flapping wing causes significant reduction of lift. The present study provides useful information on hover flight to develop a beetle-like flapping wing Micro Air Vehicle.
NASA Astrophysics Data System (ADS)
Ancilotto, Francesco; Barranco, Manuel; Eloranta, Jussi; Pi, Martí
2017-08-01
Two-dimensional flow past an infinitely long cylinder of nanoscopic radius in superfluid 4He at zero temperature is studied using time-dependent density-functional theory. The calculations reveal two distinct critical phenomena for the onset of dissipation: (i) vortex-antivortex pair shedding from the periphery of the moving cylinder, and (ii) the appearance of cavitation in the wake, which possesses similar geometry to that observed experimentally for fast-moving micrometer-scale particles in superfluid 4He. The formation of cavitation bubbles behind the cylinder is accompanied by a sudden jump in the drag exerted on the moving cylinder by the fluid. Vortex pairs with the same circulation are occasionally emitted in the form of dimers, which constitute the building blocks for the Benard-von Karman vortex street structure observed in classical turbulent fluids and Bose-Einstein condensates. The cavitation-induced dissipation mechanism should be common to all superfluids that are self-bound and have a finite surface tension, which include the recently discovered self-bound droplets in ultracold Bose gases. These systems would provide an ideal testing ground for further exploration of this mechanism experimentally.
NASA Astrophysics Data System (ADS)
TANASA, C.; MUNTEAN, S.; CIOCAN, T.; SUSAN-RESIGA, R. F.
2016-11-01
The hydraulic turbines operated at partial discharge (especially hydraulic turbines with fixed blades, i.e. Francis turbine), developing a swirling flow in the conical diffuser of draft tube. As a result, the helical vortex breakdown, also known in the literature as “precessing vortex rope” is developed. A passive method to mitigate the pressure pulsations associated to the vortex rope in the draft tube cone of hydraulic turbines is presented in this paper. The method involves the development of a progressive and controlled throttling (shutter), of the flow cross section at the bottom of the conical diffuser. The adjustable cross section is made on the basis of the shutter-opening of circular diaphragms, while maintaining in all positions the circular cross-sectional shape, centred on the axis of the turbine. The stagnant region and the pressure pulsations associated to the vortex rope are mitigated when it is controlled with the turbine operating regime. Consequently, the severe flow deceleration and corresponding central stagnant are diminished with an efficient mitigation of the precessing helical vortex. Four cases (one without diaphragm and three with diaphragm), are numerically and experimentally investigated, respectively. The present paper focuses on a 3D turbulent swirling flow simulation in order to evaluate the control method. Numerical results are compared against measured pressure recovery coefficient and Fourier spectra. The results prove the vortex rope mitigation and its associated pressure pulsations when employing the diaphragm.
Large Eddy Simulation of Supersonic Inlet Flows
1998-04-01
shock/turbulence interaction in order to identify and explain factors important in shock/boundary layer interaction. Direct numerical simulation of a... factors : increase in the adverse pressure rise (due to pm2 increasing while pcl decreases) and decrease in streamwise momentum flux (due to pc...momentum flux. Both factors make the vortex more susceptible to breakdown. This implies that if the free-stream pressure rise exceeds the axial
Aeroelastic, CFD, and Dynamic Computation and Optimization for Buffet and Flutter Application
NASA Technical Reports Server (NTRS)
Kandil, Osama A.
1997-01-01
The work presented in this paper include: 'Coupled and Uncoupled Bending-Torsion Responses of Twin-Tail Buffet'; 'Fluid/Structure Twin Tail Buffet Response Over a Wide Range of Angles of Attack'; 'Resent Advances in Multidisciplinary Aeronautical Problems of Fluids/Structures/Dynamics Interaction'; and'Development of a Coupled Fluid/Structure Aeroelastic Solver with Applications to Vortex Breakdown induced Twin Tail Buffeting.
Izotov, I V; Razin, S V; Sidorov, A V; Skalyga, V A; Zorin, V G; Bagryansky, P A; Beklemishev, A D; Prikhodko, V V
2012-02-01
Influence of shear flows of the dense plasma created under conditions of the electron cyclotron resonance (ECR) gas breakdown on the plasma confinement in the axisymmetric mirror trap ("vortex" confinement) was studied experimentally and theoretically. A limiter with bias potential was set inside the mirror trap for plasma rotation. The limiter construction and the optimal value of the potential were chosen according to the results of the preliminary theoretical analysis. This method of "vortex" confinement realization in an axisymmetric mirror trap for non-equilibrium heavy-ion plasmas seems to be promising for creation of ECR multicharged ion sources with high magnetic fields, more than 1 T.
A smoke generator system for aerodynamic flight research
NASA Technical Reports Server (NTRS)
Richwine, David M.; Curry, Robert E.; Tracy, Gene V.
1989-01-01
A smoke generator system was developed for in-flight vortex flow studies on the F-18 high alpha research vehicle (HARV). The development process included conceptual design, a survey of existing systems, component testing, detailed design, fabrication, and functional flight testing. Housed in the forebody of the aircraft, the final system consists of multiple pyrotechnic smoke cartridges which can be fired simultaneously or in sequence. The smoke produced is ducted to desired locations on the aircraft surface. The smoke generator system (SGS) has been used successfully to identify vortex core and core breakdown locations as functions of flight condition. Although developed for a specific vehicle, this concept may be useful for other aerodynamic flight research which requires the visualization of local flows.
Assessment of computational prediction of tail buffeting
NASA Technical Reports Server (NTRS)
Edwards, John W.
1990-01-01
Assessments of the viability of computational methods and the computer resource requirements for the prediction of tail buffeting are made. Issues involved in the use of Euler and Navier-Stokes equations in modeling vortex-dominated and buffet flows are discussed and the requirement for sufficient grid density to allow accurate, converged calculations is stressed. Areas in need of basic fluid dynamics research are highlighted: vorticity convection, vortex breakdown, dynamic turbulence modeling for free shear layers, unsteady flow separation for moderately swept, rounded leading-edge wings, vortex flows about wings at high subsonic speeds. An estimate of the computer run time for a buffeting response calculation for a full span F-15 aircraft indicates that an improvement in computer and/or algorithm efficiency of three orders of magnitude is needed to enable routine use of such methods. Attention is also drawn to significant uncertainties in the estimates, in particular with regard to nonlinearities contained within the modeling and the question of the repeatability or randomness of buffeting response.
Seghilani, Mohamed S.; Myara, Mikhael; Sellahi, Mohamed; Legratiet, Luc; Sagnes, Isabelle; Beaudoin, Grégoire; Lalanne, Philippe; Garnache, Arnaud
2016-01-01
The generation of a coherent state, supporting a large photon number, with controlled orbital-angular-momentum L = ħl (of charge l per photon) presents both fundamental and technological challenges: we demonstrate a surface-emitting laser, based on III-V semiconductor technology with an integrated metasurface, generating vortex-like coherent state in the Laguerre-Gauss basis. We use a first order phase perturbation to lift orbital degeneracy of wavefunctions, by introducing a weak anisotropy called here “orbital birefringence”, based on a dielectric metasurface. The azimuthal symmetry breakdown and non-linear laser dynamics create “orbital gain dichroism” allowing selecting vortex handedness. This coherent photonic device was characterized and studied, experimentally and theoretically. It exhibits a low divergence (<1°) diffraction limited beam, emitting 49 mW output power in the near-IR at λ ≃ 1 μm, a charge l = ±1, … ±4 (>50 dB vortex purity), and single frequency operation in a stable low noise regime (0.1% rms). Such high performance laser opens the path to widespread new photonic applications. PMID:27917885
Numerical study of delta wing leading edge blowing
NASA Technical Reports Server (NTRS)
Yeh, David; Tavella, Domingo; Roberts, Leonard
1988-01-01
Spanwise and tangential leading edge blowing as a means of controlling the position and strength of the leading edge vortices are studied by numerical solution of the three-dimensional Navier-Stokes equations. The leading edge jet is simulated by defining a permeable boundary, corresponding to the jet slot, where suitable boundary conditions are implemented. Numerical results are shown to compare favorably with experimental measurements. It is found that the use of spanwise leading edge blowing at moderate angle of attack magnifies the size and strength of the leading edge vortices, and moves the vortex cores outboard and upward. The increase in lift primarily comes from the greater nonlinear vortex lift. However, spanwise blowing causes earlier vortex breakdown, thus decreasing the stall angle. The effects of tangential blowing at low to moderate angles of attack tend to reduce the pressure peaks associated with leading edge vortices and to increase the suction peak around the leading edge, so that the integrated value of the surface pressure remains about the same. Tangential leading edge blowing in post-stall conditions is shown to re-establish vortical flow and delay vortex bursting, thus increasing C sub L sub max and stall angle.
Rodríguez-Rodríguez, Javier; Casado-Chacón, Almudena; Fuster, Daniel
2014-11-21
The popular bar prank known in colloquial English as beer tapping consists in hitting the top of a beer bottle with a solid object, usually another bottle, to trigger the foaming over of the former within a few seconds. Despite the trick being known for a long time, to the best of our knowledge, the phenomenon still lacks scientific explanation. Although it seems natural to think that shock-induced cavitation enhances the diffusion of CO2 from the supersaturated bulk liquid into the bubbles by breaking them up, the subtle mechanism by which this happens remains unknown. Here, we show that the overall foaming-over process can be divided into three stages where different physical phenomena take place in different time scales: namely, the bubble-collapse (or cavitation) stage, the diffusion-driven stage, and the buoyancy-driven stage. In the bubble-collapse stage, the impact generates a train of expansion-compression waves in the liquid that leads to the fragmentation of preexisting gas cavities. Upon bubble fragmentation, the sudden increase of the interface-area-to-volume ratio enhances mass transfer significantly, which makes the bubble volume grow by a large factor until CO2 is locally depleted. At that point buoyancy takes over, making the bubble clouds rise and eventually form buoyant vortex rings whose volume grows fast due to the feedback between the buoyancy-induced rising speed and the advection-enhanced CO2 transport from the bulk liquid to the bubble. The physics behind this explosive process sheds insight into the dynamics of geological phenomena such as limnic eruptions.
NASA Astrophysics Data System (ADS)
Rodríguez-Rodríguez, Javier; Casado-Chacón, Almudena; Fuster, Daniel
2014-11-01
The popular bar prank known in colloquial English as beer tapping consists in hitting the top of a beer bottle with a solid object, usually another bottle, to trigger the foaming over of the former within a few seconds. Despite the trick being known for a long time, to the best of our knowledge, the phenomenon still lacks scientific explanation. Although it seems natural to think that shock-induced cavitation enhances the diffusion of CO2 from the supersaturated bulk liquid into the bubbles by breaking them up, the subtle mechanism by which this happens remains unknown. Here, we show that the overall foaming-over process can be divided into three stages where different physical phenomena take place in different time scales: namely, the bubble-collapse (or cavitation) stage, the diffusion-driven stage, and the buoyancy-driven stage. In the bubble-collapse stage, the impact generates a train of expansion-compression waves in the liquid that leads to the fragmentation of preexisting gas cavities. Upon bubble fragmentation, the sudden increase of the interface-area-to-volume ratio enhances mass transfer significantly, which makes the bubble volume grow by a large factor until CO2 is locally depleted. At that point buoyancy takes over, making the bubble clouds rise and eventually form buoyant vortex rings whose volume grows fast due to the feedback between the buoyancy-induced rising speed and the advection-enhanced CO2 transport from the bulk liquid to the bubble. The physics behind this explosive process sheds insight into the dynamics of geological phenomena such as limnic eruptions.
Forced convection in the wakes of impacting and sliding bubbles
NASA Astrophysics Data System (ADS)
O'Reilly Meehan, R.; Williams, N. P.; Donnelly, B.; Persoons, T.; Nolan, K.; Murray, D. B.
2017-09-01
Both vapour and gas bubbles are known to significantly increase heat transfer rates between a heated surface and the surrounding fluid, even with no phase change. The cooling structures observed are highly temporal, intricate and complex, with a full description of the surface cooling phenomena not yet available. The current study uses high speed infrared thermography to measure the surface temperature and determine the convective heat flux enhancement associated with the interaction of a single air bubble with a heated, inclined surface. This process can be discretised into the initial impact, in which enhancement levels in excess of 20 times natural convection are observed, and the subsequent sliding behaviour, with more moderate maximum enhancement levels of 8 times natural convection. In both cases, localised regions of suppressed heat transfer are also observed due to the recirculation of warm fluid displaced from the thermal boundary layer with the surface. The cooling patterns observed herein are consistent with the interaction between an undulating wake containing multiple hairpin vortex loops and the thermal boundary layer that exists under the surface, with the initial nature of this enhancement and suppression dependent on the particular point on its rising path at which the bubble impacts the surface.
Vortices revealed: Swimming faster
NASA Astrophysics Data System (ADS)
van Houwelingen, Josje; van de Water, Willem; Kunnen, Rudie; van Heijst, Gertjan; Clercx, Herman
2016-11-01
Understanding and optimizing the propulsion in human swimming requires insight into the hydrodynamics of the flow around the swimmer. Experiments and simulations addressing the hydrodynamics of swimming have been conducted in studies before, including the visualization of the flow using particle image velocimetry (PIV). The main objective in this study is to develop a system to visualize the flow around a swimmer in practice inspired by this technique. The setup is placed in a regular swimming pool. The use of tracer particles and lasers to illuminate the particles is not allowed. Therefore, we choose to work with air bubbles with a diameter of 4 mm, illuminated by ambient light. Homogeneous bubble curtains are produced by tubes implemented in the bottom of the pool. The bubble motion is captured by six cameras placed in underwater casings. A first test with the setup has been conducted by pulling a cylinder through the bubbles and performing a PIV analysis. The vorticity plots of the resulting data show the expected vortex street behind the cylinder. The shedding frequency of the vortices resembles the expected frequency. Thus, it is possible to identify and follow the coherent structures. We will discuss these results and the first flow measurements around swimmers.
Experiment on smooth, circular cylinders in cross-flow in the critical Reynolds number regime
NASA Astrophysics Data System (ADS)
Miau, J. J.; Tsai, H. W.; Lin, Y. J.; Tu, J. K.; Fang, C. H.; Chen, M. C.
2011-10-01
Experiments were conducted for 2D circular cylinders at Reynolds numbers in the range of 1.73 × 105-5.86 × 105. In the experiment, two circular cylinder models made of acrylic and stainless steel, respectively, were employed, which have similar dimensions but different surface roughness. Particular attention was paid to the unsteady flow behaviors inferred by the signals obtained from the pressure taps on the cylinder models and by a hot-wire probe in the near-wake region. At Reynolds numbers pertaining to the initial transition from the subcritical to the critical regimes, pronounced pressure fluctuations were measured on the surfaces of both cylinder models, which were attributed to the excursion of unsteady flow separation over a large circumferential region. At the Reynolds numbers almost reaching the one-bubble state, it was noted that the development of separation bubble might switch from one side to the other with time. Wavelet analysis of the pressure signals measured simultaneously at θ = ±90° further revealed that when no separation bubble was developed, the instantaneous vortex-shedding frequencies could be clearly resolved, about 0.2, in terms of the Strouhal number. The results of oil-film flow visualization on the stainless steel cylinder of the one-bubble and two-bubble states showed that the flow reattachment region downstream of a separation bubble appeared not uniform along the span of the model. Thus, the three dimensionality was quite evident.
Ergodic theory and experimental visualization of chaos in 3D flows
NASA Astrophysics Data System (ADS)
Sotiropoulos, Fotis; Mezic, Igor
2000-11-01
In his motivation for the ergodic hypothesis Gibbs invoked an analogy with fluid mixing: “…Yet no fact is more familiar to us than that stirring tends to bring a liquid to a state of uniform mixture, or uniform densities of its components…”. Although proof of the ergodic hypothesis is possible only for the simplest of systems using methods from ergodic theory, the use of the hypothesis has led to many accurate predictions in statistical mechanics. The problem of fluid mixing, however, turned out to be considerably more complicated than Gibbs envisioned. Chaotic advection can indeed lead to efficient mixing even in non-turbulent flows, but many non-mixed islands are known to persist within well-mixed regions. In numerical studies, Poincaré maps can be used to reveal the structure of such islands but their visualization in the laboratory requires laborious experimental procedures and is possible only for certain types of flows. Here we propose the first non-intrusive, simple to implement, and generally applicable technique for constructing experimental Poincaré maps and apply it to a steady, 3D, vortex breakdown bubble. We employ standard laser-induced fluorescence (LIF) and construct Poincaré maps by time averaging a sufficiently long sequence of instantaneous LIF images. We also show that ergodic theory methods provide a rigorous theoretical justification for this approach whose main objective is to reveal the non-ergodic regions of the flow.
NASA Technical Reports Server (NTRS)
Bever, R. S.
1975-01-01
Electric breakdown prevention in vacuum and encapsulation of high voltage electronic circuits was studied. The lap shear method was used to measure adhesive strengths. The permeation constants of air at ambient room temperature through four different space-grade encapsulants was measured. Order of magnitude was calculated for the time that air bubble pressures drop to the corona region. High voltage connectors with L-type cable attached were tested in a vacuum system at various pressures. The cable system was shown to suppress catastrophic breakdown when filled with and surrounded by gas in the corona region of pressures, but did not prove to be completely noise free.
Toroidal ferroelectricity in PbTiO3 nanoparticles.
Stachiotti, M G; Sepliarsky, M
2011-04-01
We report from first-principles-based atomistic simulations that ferroelectricity can be sustained in PbTiO(3) nanoparticles of only a few lattice constants in size as a result of a toroidal ordering. We find that size-induced topological transformations lead to the stabilization of a ferroelectric bubble by the alignment of vortex cores along a closed path. These transformations, which are driven by the aspect ratio of the nanostructure, change the topology of the polarization field, producing a rich variety of polar configurations. For sufficiently flat nanostructures, a multibubble state bridges the gap between 0D nanodots and 2D ultrathin films. The thermal properties of the ferroelectric bubbles indicate that this state is suitable for the development of nanometric devices. © 2011 American Physical Society
Detection of cavitation vortex in hydraulic turbines using acoustic techniques
NASA Astrophysics Data System (ADS)
Candel, I.; Bunea, F.; Dunca, G.; Bucur, D. M.; Ioana, C.; Reeb, B.; Ciocan, G. D.
2014-03-01
Cavitation phenomena are known for their destructive capacity in hydraulic machineries and are caused by the pressure decrease followed by an implosion when the cavitation bubbles find an adverse pressure gradient. A helical vortex appears in the turbine diffuser cone at partial flow rate operation and can be cavitating in its core. Cavity volumes and vortex frequencies vary with the under-pressure level. If the vortex frequency comes close to one of the eigen frequencies of the turbine, a resonance phenomenon may occur, the unsteady fluctuations can be amplified and lead to important turbine and hydraulic circuit damage. Conventional cavitation vortex detection techniques are based on passive devices (pressure sensors or accelerometers). Limited sensor bandwidths and low frequency response limit the vortex detection and characterization information provided by the passive techniques. In order to go beyond these techniques and develop a new active one that will remove these drawbacks, previous work in the field has shown that techniques based on acoustic signals using adapted signal content to a particular hydraulic situation, can be more robust and accurate. The cavitation vortex effects in the water flow profile downstream hydraulic turbines runner are responsible for signal content modifications. Basic signal techniques use narrow band signals traveling inside the flow from an emitting transducer to a receiving one (active sensors). Emissions of wide band signals in the flow during the apparition and development of the vortex embeds changes in the received signals. Signal processing methods are used to estimate the cavitation apparition and evolution. Tests done in a reduced scale facility showed that due to the increasing flow rate, the signal -- vortex interaction is seen as modifications on the received signal's high order statistics and bandwidth. Wide band acoustic transducers have a higher dynamic range over mechanical elements; the system's reaction time is reduced, resulting in a faster detection of the unwanted effects. The paper will present an example of this new investigation technique on a vortex generator in the test facility that belongs to ICPE- CA.
The dynamics of gas bubbles in conduits of vascular plants and implications for embolism repair.
Konrad, W; Roth-Nebelsick, A
2003-09-07
Pressure-induced tensions in the xylem, the water conducting tissue of vascular plants, can lead to embolism in the water-conducting cells. The details and mechanisms of embolism repair in vascular plants are still not well understood. In particular, experimental results which indicate that embolism repair may occur during xylem tension cause great problems with respect to current paradigms of plant water transport. The present paper deals with a theoretical analysis of interfacial effects at the pits (pores in the conduit walls), because it was suggested that gas-water interfaces at the pit pores may be involved in the repair process by hydraulically isolating the embolized conduit. The temporal behaviour of bubbles at the pit pores was especially studied since the question of whether these pit bubbles are able to persist is of crucial importance for the suggested mechanism to work. The results indicate that (1) the physical preconditions which are necessary for the suggested mechanism appear to be satisfied, (2) pit bubbles can achieve temporal stability and therefore persist and (3) dissolving of bubbles in the conduit lumen may lead to the final breakdown of the hydraulic isolation. The whole process is, however, complex and strongly dependent on the detailed anatomy of the pit and the contact angle.
The development of a mixing layer under the action of weak streamwise vortices
NASA Technical Reports Server (NTRS)
Goldstein, M. E.; Mathew, Joseph
1993-01-01
The action of weak, streamwise vortices on a plane, incompressible, steady mixing layer is examined in the large Reynolds number limit. The outer, inviscid region is bounded by a vortex sheet to which the viscous region is confined. It is shown that the local linear analysis becomes invalid at streamwise distances O(epsilon sup -1), where (epsilon much less than 1) is the crossflow amplitude, and a new nonlinear analysis is constructed for this region. Numerical solutions of the nonlinear problem show that the vortex sheet undergoes an O(1) change in position and that the solution is ultimately terminated by a breakdown in the numerical procedure. The corresponding viscous layer shows downstream thickening, but appears to remain well behaved up to the terminal location.
Identifying a Superfluid Reynolds Number via Dynamical Similarity.
Reeves, M T; Billam, T P; Anderson, B P; Bradley, A S
2015-04-17
The Reynolds number provides a characterization of the transition to turbulent flow, with wide application in classical fluid dynamics. Identifying such a parameter in superfluid systems is challenging due to their fundamentally inviscid nature. Performing a systematic study of superfluid cylinder wakes in two dimensions, we observe dynamical similarity of the frequency of vortex shedding by a cylindrical obstacle. The universality of the turbulent wake dynamics is revealed by expressing shedding frequencies in terms of an appropriately defined superfluid Reynolds number, Re(s), that accounts for the breakdown of superfluid flow through quantum vortex shedding. For large obstacles, the dimensionless shedding frequency exhibits a universal form that is well-fitted by a classical empirical relation. In this regime the transition to turbulence occurs at Re(s)≈0.7, irrespective of obstacle width.
Control of Vortex Breakdown in Critical Swirl Regime Using Azimuthal Forcing
NASA Technical Reports Server (NTRS)
Oberleithner, Kilian; Lueck, Martin; Paschereit, Christian Oliver; Wygnanski, Israel
2010-01-01
We finally go back to the four swirl cases and see how the flow responds to either forcing m = -1 or m = -2. On the left we see the flow forced at m = -1 We see that the PVC locks onto the applied forcing also for lower swirl number causing this high TKE at the jet center. The amplification of this instability causes VB to occur at a lower swirl number. The opposite can be seen when forcing the flow at m=-2 which is basically growing in the outer shear layer causing VB to move downstream . There is no energy at the center of the vortex showing that the precessing has been damped. The mean flow is most altered at the swirl numbers were VB is unstable.
Finite-span rotating wings: three-dimensional vortex formation and variations with aspect ratio
NASA Astrophysics Data System (ADS)
Carr, Z. R.; Chen, C.; Ringuette, M. J.
2013-02-01
We investigate experimentally the effect of aspect ratio ( [InlineMediaObject not available: see fulltext.] ) on the time-varying, three-dimensional flow structure of flat-plate wings rotating from rest at 45° angle of attack. Plates of [InlineMediaObject not available: see fulltext.] = 2 and 4 are tested in a 50 % by mass glycerin-water mixture, with a total rotation of ϕ = 120° and a matched tip Reynolds number of 5,000. The time-varying, three-component volumetric velocity field is reconstructed using phase-locked, phase-averaged stereoscopic digital particle image velocimetry in multiple, closely-spaced chordwise planes. The vortex structure is analyzed using the {Q}-criterion, helicity density, and spanwise quantities. For both [InlineMediaObject not available: see fulltext.] s, the flow initially consists of a connected and coherent leading-edge vortex (LEV), tip vortex (TV), and trailing-edge vortex (TEV) loop; the LEV increases in size with span and tilts aft. Smaller, discrete vortices are present in the separated shear layers at the trailing and tip edges, which wrap around the primary TEV and TV. After about ϕ = 20°, the outboard-span LEV lifts off the plate and becomes arch-like. A second, smaller LEV and the formation of corner vortex structures follow. For [InlineMediaObject not available: see fulltext.] = 4, the outboard LEV moves farther aft, multiple LEVs form ahead of it, and after about ϕ = 50° a breakdown of the lifted-off LEV and the TV occurs. However, for [InlineMediaObject not available: see fulltext.] = 2, the outboard LEV lift-off is not progressive, and the overall LEV-TV flow remains more coherent and closer to the plate, with evidence of breakdown late in the motion. Inboard of about 50 % span, the [InlineMediaObject not available: see fulltext.] = 4 LEV is stable for the motion duration. Up to approximately 60 % span, the [InlineMediaObject not available: see fulltext.] = 2 LEV is distinct from the TV and is similarly stable. The [InlineMediaObject not available: see fulltext.] = 2 LEV exhibits substantially higher spanwise vorticity and velocity. The latter possesses a "four-lobed" distribution at the periphery of the LEV core having adjacent positive (outboard) and negative (inboard) components, corresponding to a helical streamline structure. Both [InlineMediaObject not available: see fulltext.] s show substantial root-to-tip velocity aft of the stable LEV, which drives outboard spanwise vorticity flux; flux toward the root is also present in the front portion of the LEV. For [InlineMediaObject not available: see fulltext.] = 2, there is a strong flux of spanwise vorticity from the outboard LEV to the tip, which may mitigate LEV lift-off and is not found for [InlineMediaObject not available: see fulltext.] = 4. The TV circulation for each [InlineMediaObject not available: see fulltext.] is similar in magnitude and growth when plotted versus the chord lengths travelled by the tip, prior to breakdown. Streamwise vorticity due to the TV induces high spanwise velocity, and for [InlineMediaObject not available: see fulltext.] = 2, the tilted LEV creates further streamwise vorticity which corresponds well to spanwise-elongated regions of spanwise velocity. For [InlineMediaObject not available: see fulltext.] = 2, the TV influences a relatively greater portion of the span and is more coherent at later times, which coupled with the tilted LEV strongly contributes to the higher overall spanwise velocity and vorticity flux.
NASA Astrophysics Data System (ADS)
Hecht, J. H.; Fritts, D. C.; Wang, L.; Gelinas, L. J.; Rudy, R. J.; Walterscheid, R. L.; Taylor, M. J.; Pautet, P. D.; Smith, S.; Franke, S. J.
2018-01-01
Although mountain waves (MWs) are thought to be a ubiquitous feature of the wintertime southern Andes stratosphere, it was not known whether these waves propagated up to the mesopause region until Smith et al. (2009) confirmed their presence via airglow observations. The new Andes Lidar Observatory at Cerro Pachon in Chile provided the opportunity for a further study of these waves. Since MWs have near-zero phase speed, and zero wind lines often occur in the winter upper mesosphere (80 to 100 km altitude) region due to the reversal of the zonal mean and tidal wind, MW breakdown may routinely occur at these altitudes. Here we report on very high spatial/temporal resolution observations of the initiation of MW breakdown in the mesopause region. Because the waves are nearly stationary, the breakdown process was observed over several hours; a much longer interval than has previously been observed for any gravity wave breakdown. During the breakdown process observations were made of initial horseshoe-shaped vortices, leading to successive vortex rings, as is also commonly seen in Direct Numerical Simulations (DNS) of idealized and multiscale gravity wave breaking. Kelvin-Helmholtz instability (KHI) structures were also observed to form. Comparing the structure of observed KHI with the results of existing DNS allowed an estimate of the turbulent kinematic viscosity. This viscosity was found to be around 25 m2/s, a value larger than the nominal viscosity that is used in models.
Computational Study of Porous Treatment for Altering Flap Side-Edge Flowfield
NASA Technical Reports Server (NTRS)
Choudhari, Meelan; Khorrami, Mehdi R.
2003-01-01
Reynolds-averaged Navier-Stokes calculations are used to investigate porous side-edge treatment as a passive means for flap noise reduction. Steady-state simulations are used to infer effects of the treatment on acoustically relevant features of the mean flow near the flap side edge. Application of the porous treatment over a miniscule fraction of the wetted flap area (scaling with the flap thickness) results in significantly weaker side-edge vortex structures via modification of the vortex initiation and roll-up processes. At high flap deflections, the region of axial flow reversal associated with the breakdown of the side-edge vortex is also eliminated, indicating an absence of vortex bursting in the presence of the treatment. Potential ramifications of the mean-flow modifications for flap-noise reduction are examined in the light of lessons learned from recent studies on flap noise. Computations confirm that any noise reduction benefit via the porous treatment would be achieved without compromising the aerodynamic effectiveness of the flap. Results of the parameter study contribute additional insight into the measured data from the 7x10 wind tunnel at NASA Ames and provide preliminary guidance for specifying optimal treatment characteristics in terms of treatment location, spatial extent, and flow resistance of the porous skin.
NASA Astrophysics Data System (ADS)
Wu, Huixuan; Miorini, Rinaldo L.; Katz, Joseph
2011-04-01
Particle image velocimetry (PIV) measurements at varying resolutions focus on the flow structures in the tip region of a water-jet pump rotor, including the tip-clearance flow and the rollup process of a tip leakage vortex (TLV). Unobstructed views of these regions are facilitated by matching the optical refractive index of the transparent pump with that of the fluid. High-magnification data reveal the flow non-uniformities and associated turbulence within the tip gap. Instantaneous data and statistics of spatial distributions and strength of vortices in the rotor passage reveal that the leakage flow emerges as a wall jet with a shear layer containing a train of vortex filaments extending from the tip of the blade. These vortices are entrained into the TLV, but do not have time to merge. TLV breakdown in the aft part of the blade passage further fragments these structures, increasing their number and reducing their size. Analogy is made between the circumferential development of the TLV in the blade passage and that of the starting jet vortex ring rollup. Subject to several assumptions, these flows display similar trends, including conditions for TLV separation from the shear layer feeding vorticity into it.
Flow Structure along the 1303 UCAV
NASA Astrophysics Data System (ADS)
Kosoglu, Mehmet A.; Rockwell, Donald
2007-11-01
The 1303 Unmanned Combat Air Vehicle is representative of a variety of UCAVs with blended wing-body configurations. Flow structure along a scale model of this configuration was investigated using dye visualization and particle image velocimetry for variations of Reynolds number and angle-of-attack. Both of these parameters substantially influence onset and structure of the leading-edge vortex (LEV) and a separation bubble/stall region along the tip. The onset of formation of the LEV initially occurs at a location well downstream of the apex and moves upstream for increasing values of either Reynolds number or angle-of-attack. In cases where a separation bubble or stall region exists, quantitative information on its structure was obtained via PIV imaging on a plane nearly parallel to the surface of the wing. By acquiring images on planes at successively larger elevations from the surface, it was possible to gain insight into the space-time features of the three-dimensional and highly time-dependent structure of the bubble or stall region. Time-averaged images indicate that maximum velocity defect decreases in magnitude and moves downstream with increasing elevation from the surface.
Wall shear stress characterization of a 3D bluff-body separated flow
NASA Astrophysics Data System (ADS)
Fourrié, Grégoire; Keirsbulck, Laurent; Labraga, Larbi
2013-10-01
Efficient flow control strategies aimed at reducing the aerodynamic drag of road vehicles require a detailed knowledge of the reference flow. In this work, the flow around the rear slanted window of a generic car model was experimentally studied through wall shear stress measurements using an electrochemical method. The mean and fluctuating wall shear stress within the wall impact regions of the recirculation bubble and the main longitudinal vortex structures which develop above the rear window are presented. Correlations allow a more detailed characterization of the recirculation phenomenon within the separation bubble. In the model symmetry plane the recirculation structure compares well with simpler 2D configurations; specific lengths, flapping motion and shedding of large-scale vortices are observed, these similarities diminish when leaving the middle plane due to the strong three-dimensionality of the flow. A specific attention is paid to the convection processes occurring within the recirculation: a downstream convection velocity is observed, in accordance with 2D recirculations from the literature, and an upstream convection is highlighted along the entire bubble length which has not been underlined in some previous canonical configurations.
NASA Technical Reports Server (NTRS)
Schwind, R. G.; Allen, H. J.
1973-01-01
High frequency surface pressure measurements were obtained from wind-tunnel tests over the Reynolds number range 1.2 times one million to 6.2 times one million on a rectangular wing of NACA 63-009 airfoil section. Measurements were also obtained with a wide selection of leading-edge serrations added to the basic airfoil. Under a two-dimensional laminar bubble very close to the leading edge of the basic airfoil there is a large apatial peak in rms pressure. Frequency analysis of the pressure signals in this region show a large, high-frequency energy peak which is interpreted as an oscillation in size and position of the bubble. The serrations divide the bubble into segments and reduce the peak rms pressures. A low Reynolds number flow visualization test on a hydrofoil in water was also conducted. A von Karman vortex street was found trailing from the rear of the foil. Its frequency is at a much lower Strouhal number than in the high Reynolds number experiment, and is related to the trailing-edge and boundary-layer thicknesses.
NASA Astrophysics Data System (ADS)
Lee, Kern; Chung, Kyoung-Jae; Hwang, Y. S.
2018-03-01
This paper presents a method for enhancement of shock waves generated from underwater pulsed spark discharges with negative (anode-directed) subsonic streamers, for which the pre-breakdown process is accelerated by preconditioning a gap with water electrolysis. Hydrogen microbubbles are produced at the cathode by the electrolysis and move towards the anode during the preconditioning phase. The numbers and spatial distributions of the microbubbles vary with the amplitude and duration of each preconditioning pulse. Under our experimental conditions, the optimum pulse duration is determined to be ˜250 ms at a pulse voltage of 400 V, where the buoyancy force overwhelms the electric force and causes the microbubbles to be swept out from the water gap. When a high-voltage pulse is applied to the gap just after the preconditioning pulse, the pre-breakdown process is significantly accelerated in the presence of the microbubbles. At the optimum preconditioning pulse duration, the average breakdown delay is reduced by 87% and, more importantly, the energy consumed during the pre-breakdown period decreases by 83%. This reduced energy consumption during the pre-breakdown period, when combined with the morphological advantages of negative streamers, such as thicker and longer stalks, leads to a significant improvement in the measured peak pressure (˜40%) generated by the underwater pulsed spark discharge. This acceleration of pre-breakdown using electrolysis overcomes the biggest drawback of negative subsonic discharges, which is slow vapor bubble formation due to screening effects, and thus enhances the efficiency of the shock wave generation process using pulsed spark discharges in water.
A factor involved in efficient breakdown of supersonic streamwise vortices
NASA Astrophysics Data System (ADS)
Hiejima, Toshihiko
2015-03-01
Spatially developing processes in supersonic streamwise vortices were numerically simulated at Mach number 5.0. The vortex evolution largely depended on the azimuthal vorticity thickness of the vortices, which governs the negative helicity profile. Large vorticity thickness greatly enhanced the centrifugal instability, with consequent development of perturbations with competing wavenumbers outside the vortex core. During the transition process, supersonic streamwise vortices could generate large-scale spiral structures and a number of hairpin like vortices. Remarkably, the transition caused a dramatic increase in the total fluctuation energy of hypersonic flows, because the negative helicity profile destabilizes the flows due to helicity instability. Unstable growth might also relate to the correlation length between the axial and azimuthal vorticities of the streamwise vortices. The knowledge gained in this study is important for realizing effective fuel-oxidizer mixing in supersonic combustion engines.
NASA Astrophysics Data System (ADS)
Istvan, Mark S.; Yarusevych, Serhiy
2018-03-01
The laminar-to-turbulent transition process in a laminar separation bubble formed over a NACA 0018 airfoil is investigated experimentally. All experiments are performed for an angle of attack of 4°, chord Reynolds numbers of 80,000 and 125,000, and free-stream turbulence intensities between 0.06 and 1.99%. The results show that increasing the level of free-stream turbulence intensity leads to a decrease in separation bubble length, attributed to a downstream shift in mean separation and an upstream shift in mean reattachment, the later ascribed to an upstream shift in mean transition. Maximum spatial amplification rates of disturbances in the separated shear layer decrease with increasing free-stream turbulence intensity, implying that the larger initial amplitudes of disturbances are solely responsible for the upstream shift in mean transition and as a result mean reattachment. At the baseline level of turbulence intensity, coherent structures forming in the aft portion of the bubble are characterized by strong spanwise coherence at formation, and undergo spanwise deformations leading to localized breakup in the vicinity of mean reattachment. As the level of free-stream turbulence intensity is increased, the spanwise coherence of the shear layer rollers is reduced, and spanwise undulations in the vortex filaments start to take place at the mean location of roll-up. At the highest level of turbulence intensity investigated, streamwise streaks originating in the boundary layer upstream of the separation bubble are observed within the bubble. These streaks signify an onset of bypass transition upstream of the separation bubble, which gives rise to a highly three-dimensional shear layer roll-up. A quantitative analysis of the associated changes in salient characteristics of the coherent structures is presented, connecting the effect of elevated free-stream turbulence intensity on the time-averaged and dynamic characteristics of the separation bubble.
NASA Astrophysics Data System (ADS)
Sun, Hui; Li, Xin; Fan, Zhongwei; Kurtz, Ron; Juhasz, Tibor
2017-02-01
Corneal biomechanics plays an important role in determining the eye's structural integrity, optical power and the overall quality of vision. It also plays an increasingly recognized role in corneal transplant and refractive surgery, affecting the predictability, quality and stability of final visual outcome [1]. A critical limitation to increasing our understanding of how corneal biomechanics controls corneal stability and refraction is the lack of non-invasive technologies that microscopically measure local biomechanical properties, such as corneal elasticity within the 3D space. Bubble based acoustic radiation force elastic microscopy (ARFEM) introduce the opportunity to measure the inhomogeneous elastic properties of the cornea by the movement of a micron size cavitation bubble generated by a low energy femtosecond laser pulse [2, 3]. Laser induced breakdown spectroscopy (LIBS) also known as laser induced plasma spectroscopy (LIPS) or laser spark spectrometry (LSS) is an atomic emission spectroscopy [4]. The LIBS principle of operation is quite simple, although the physical processes involved in the laser matter interaction are complex and still not completely understood. In one sentence for description, the laser pulses are focused down to a target so as to generate plasma that vaporizes a small amount of material which the emitted spectrum is measured to analysis the elements of the target.
NASA Astrophysics Data System (ADS)
Zhang, Yanfeng; Lu, Xingen; Chu, Wuli; Zhu, Junqiang
2010-08-01
It is well known that tip leakage flow has a strong effect on the compressor performance and stability. This paper reports on a numerical investigation of detailed flow structures in an isolated transonic compressor rotor-NASA Rotor 37 at near stall and stalled conditions aimed at improving understanding of changes in 3D tip leakage flow structures with rotating stall inception. Steady and unsteady 3D Navier-Stokes analyses were conducted to investigate flow structures in the same rotor. For steady analysis, the predicted results agree well with the experimental data for the estimation of compressor rotor global performance. For unsteady flow analysis, the unsteady flow nature caused by the breakdown of the tip leakage vortex in blade tip region in the transonic compressor rotor at near stall condition has been captured with a single blade passage. On the other hand, the time-accurate unsteady computations of multi-blade passage at near stall condition indicate that the unsteady breakdown of the tip leakage vortex triggered the short length-scale — spike type rotating stall inception at blade tip region. It was the forward spillage of the tip leakage flow at blade leading edge resulting in the spike stall inception. As the mass flow ratio is decreased, the rotating stall cell was further developed in the blade passage.
Effectiveness of Flow Control for Alleviation of Twin-Tail Buffet
NASA Technical Reports Server (NTRS)
Sheta, Essam F.; Kandil, Osama A.; Yang, Zhi
1998-01-01
Effectiveness of active flow control for twin- tail buffet alleviation is investigated. Tangen- tial leading-edge blowing (TLEB) and flow suction along the vortex cores (FSVC) of the lead- ing edges of the delta wing are used to delay the vortex breakdown flow upstream of the twin tail. The combined effect of the TLEB and FSVC is also investigated. A parametric study of the effects of the spanwise position of the suction tubes and volumetric suction flow rate on the twin-tail buffet response are also investigated. The TLEB moves the path of leading-edge vortices laterally towards the twin tail, which increases the aero- dynamic damping on the tails. The FSVC effectively delays the breakdown location at high angles of attack. The computational model consists of a sharp-edged delta wing of aspect ratio one and swept-back flexible twin tail with taper ratio of 0.23. This complex multidisciplinary problem is solved sequentially using three sets of equations for the fluid flow, aeroelastic response and grid deformation, on a dynamic multi-block grid structure. The computational model is pitched at 30 deg. angle of attack. The freestream Mach number and Reynolds number are 0.3 and 1.25 million, respectively. The model is investigated for the inboard position of the twin tails, which corresponds to a separation distance between the twin tails of 33% of the wing span.
NASA Technical Reports Server (NTRS)
Bushnell, D. M.; Moore, K. J.
1991-01-01
Recent studies on the drag-reducing shapes, structures, and behaviors of swimming and flying animals are reviewed, with an emphasis on potential analogs in vehicle design. Consideration is given to form drag reduction (turbulent flow, vortex generation, mass transfer, and adaptations for body-intersection regions), skin-friction drag reduction (polymers, surfactants, and bubbles as surface 'additives'), reduction of the drag due to lift, drag-reduction studies on porpoises, and drag-reducing animal behavior (e.g., leaping out of the water by porpoises). The need for further research is stressed.
Controllable bioeffects of laser-generated intracellular microbubbles
NASA Astrophysics Data System (ADS)
Zohdy, Marwa Joy
Laser-induced optical breakdown (LIOB) is a nonlinear energy absorption process that can generate precise damage in biological tissues. With femtosecond laser pulses, disruption is highly localized with minimal thermal and mechanical effects to the surrounding region. Cavitation bubbles are produced as a result of LIOB, and these bubbles can be detected and monitored with high-frequency ultrasound. In this work, the controllable viability effects of LIOB bubbles in single cells were characterized. Using a high-frequency acoustic transducer synchronized with a 793 nm, 100 fs laser pulsed at 250 kHz, thermal effects in the vicinity of an LIOB event were directly assessed. Temperaturedependent pulse-echo displacements were calculated using phase-sensitive correlation tracking and fit to a finite-element heat transfer model to estimate thermal distribution. Results indicate a minimal temperature increase (<1 degree C) within 100 microns of a bubble created with multiple laser pulses, confirming that LIOB can be controlled to be thermally noninvasive in the bubble vicinity. Acoustically detectable microbubbles were generated in individual cells with femtosecond LIOB. By adjusting laser fluence, exposure time, and focal location, LIOB could be controlled to produce distinctly different cellular effects. Small (1-2 micron) bubbles with short lifetimes (10100 ms) could be generated in cells without affecting their viability; and, alternatively, large (510 micron) bubbles with long lifetimes (1-5 s) could be generated for selective cell killing without affecting immediately neighboring cells. Experiments were performed in Chinese hamster ovary (CHO) cells in vitro, and LIOB was detected with both optical and acoustic microscopy. A long-term proliferation assay was also performed using green-fluorescent MCA207 mouse sarcoma cells targeted for LIOB. This assay confirmed that nondestructive bubbles did not affect target cell proliferation over several generations, and that destructive bubbles could indeed eliminate target cells and prevent further proliferation with no effect on immediately neighboring cells. These studies help to outline future applications for site-activated, acoustically monitored intracellular microbubbles. Nondestructive bubbles can potentially be used for functional cell measurements without introducing exogenous agents or affecting subsequent cell proliferation, and destructive bubbles can be used for highly precise biologically-targeted cancer cell therapy with real-time acoustic validation.
NASA Astrophysics Data System (ADS)
Zhang, Gaoming; Hung, David L. S.; Xu, Min
2014-08-01
Flash boiling sprays of liquid injection under superheated conditions provide the novel solutions of fast vaporization and better air-fuel mixture formation for internal combustion engines. However, the physical mechanisms of flash boiling spray vaporization are more complicated than the droplet surface vaporization due to the unique bubble generation and boiling process inside a superheated bulk liquid, which are not well understood. In this study, the vaporization of flash boiling sprays was investigated experimentally through the quantitative measurements of vapor concentration and liquid temperature. Specifically, the laser-induced exciplex fluorescence technique was applied to distinguish the liquid and vapor distributions. Quantitative vapor concentration was obtained by correlating the intensity of vapor-phase fluorescence with vapor concentration through systematic corrections and calibrations. The intensities of two wavelengths were captured simultaneously from the liquid-phase fluorescence spectra, and their intensity ratios were correlated with liquid temperature. The results show that both liquid and vapor phase of multi-hole sprays collapse toward the centerline of the spray with different mass distributions under the flash boiling conditions. Large amount of vapor aggregates along the centerline of the spray to form a "gas jet" structure, whereas the liquid distributes more uniformly with large vortexes formed in the vicinity of the spray tip. The vaporization process under the flash boiling condition is greatly enhanced due to the intense bubble generation and burst. The liquid temperature measurements show strong temperature variations inside the flash boiling sprays with hot zones present in the "gas jet" structure and vortex region. In addition, high vapor concentration and closed vortex motion seem to have inhibited the heat and mass transfer in these regions. In summary, the vapor concentration and liquid temperature provide detailed information concerning the heat and mass transfer inside flash boiling sprays, which is important for the understanding of its unique vaporization process.
NASA Astrophysics Data System (ADS)
Maines, Brant H.; Arndt, Roger E. A.
2000-11-01
Cavitation in vortical flows is a problem of practical importance, that is relatively unexplored. Vortical structures of importance range from the eddies occurring randomly in space and time in turbulent flows to the developed vortices that occur at the tips of lifting surfaces and at the hubs of propellers and hydraulic turbines. A variety of secondary flow phenomena such as the horse shoe vortices that form around bridge piers, chute blocks and struts, and the secondary vortices found in the clearance passages of turbomachinery are also important cavitation sites. Tip vortex cavitation can be viewed as a canonical problem that captures many of the essential physics associated with vortex cavitation in general. This paper describes the inception process and focuses on the high levels of tension that can be sustained in the flow, which appears to scale with the blade loading. High speed video visualization indicates that the details of how free stream nuclei are ingested plays a major role in the nucleation and inception process. A new photographic technique was used to obtain high quality images of the bubble growth process at framing rates as high as 40,000 fps. Sponsored by the Office of Naval Research
Investigation of Positively Curved Blade in Compressor Cascade Based on Transition Model
NASA Astrophysics Data System (ADS)
Chen, Shaowen; Lan, Yunhe; Zhou, Zhihua; Wang, Songtao
2016-06-01
Experiment and numerical simulation of flow transition in a compressor cascade with positively curved blade is carried out in a low speed. In the experimental investigation, the outlet aerodynamic parameters are measured using a five-hole aerodynamic probe, and an ink-trace flow visualization is applied to the cascade surface. The effects of transition flow on the boundary layer development, three-dimensional flow separation and aerodynamic performance are studied. The feasibility of a commercial computational fluid dynamic code is validated and the numerical results show a good agreement with experimental data. The blade-positive curving intensifies the radial force from the endwalls to the mid-span near the suction surface, which leads to the smaller scope of the intermittent region, the lesser extents of turbulence intensity and the shorter radial height of the separation bubble near the endwalls, but has little influence on the flow near the mid-span. The large passage vortex is divided into two smaller shedding vortexes under the impact of the radial pressure gradient due to the positively curved blade. The new concentrated shedding vortex results in an increase in the turbulence intensity and secondary flow loss of the corresponding region.
Tunneling decay of false vortices with gravitation
NASA Astrophysics Data System (ADS)
Dupuis, Éric; Gobeil, Yan; Lee, Bum-Hoon; Lee, Wonwoo; MacKenzie, Richard; Paranjape, Manu B.; Yajnik, Urjit A.; Yeom, Dong-han
2017-11-01
We study the effect of vortices on the tunneling decay of a symmetry-breaking false vacuum in three spacetime dimensions with gravity. The scenario considered is one in which the initial state, rather than being the homogeneous false vacuum, contains false vortices. The question addressed is whether, and, if so, under which circumstances, the presence of vortices has a significant catalyzing effect on vacuum decay. After studying the existence and properties of vortices, we study their decay rate through quantum tunneling using a variety of techniques. In particular, for so-called thin-wall vortices we devise a one-parameter family of configurations allowing a quantum-mechanical calculation of tunneling. Also for thin-wall vortices, we employ the Israel junction conditions between the interior and exterior spacetimes. Matching these two spacetimes reveals a decay channel which results in an unstable, expanding vortex. We find that the tunneling exponent for vortices, which is the dominant factor in the decay rate, is half that for Coleman-de Luccia bubbles. This implies that vortices are short-lived, making them cosmologically significant even for low vortex densities. In the limit of the vanishing gravitational constant we smoothly recover our earlier results for the decay of the false vortex in a model without gravity.
NASA Astrophysics Data System (ADS)
Cano-Lozano, José Carlos; Martínez-Bazán, Carlos; Magnaudet, Jacques; Tchoufag, Joël
2016-09-01
We report on a series of results provided by three-dimensional numerical simulations of nearly spheroidal bubbles freely rising and deforming in a still liquid in the regime close to the transition to path instability. These results improve upon those of recent computational studies [Cano-Lozano et al., Int. J. Multiphase Flow 51, 11 (2013), 10.1016/j.ijmultiphaseflow.2012.11.005; Phys. Fluids 28, 014102 (2016), 10.1063/1.4939703] in which the neutral curve associated with this transition was obtained by considering realistic but frozen bubble shapes. Depending on the dimensionless parameters that characterize the system, various paths geometries are observed by letting an initially spherical bubble starting from rest rise under the effect of buoyancy and adjust its shape to the surrounding flow. These include the well-documented rectilinear axisymmetric, planar zigzagging, and spiraling (or helical) regimes. A flattened spiraling regime that most often eventually turns into either a planar zigzagging or a helical regime is also frequently observed. Finally, a chaotic regime in which the bubble experiences small horizontal displacements (typically one order of magnitude smaller than in the other regimes) is found to take place in a region of the parameter space where no standing eddy exists at the back of the bubble. The discovery of this regime provides evidence that path instability does not always result from a wake instability as previously believed. In each regime, we examine the characteristics of the path, bubble shape, and vortical structure in the wake, as well as their couplings. In particular, we observe that, depending on the fluctuations of the rise velocity, two different vortex shedding modes exist in the zigzagging regime, confirming earlier findings with falling spheres. The simulations also reveal that significant bubble deformations may take place along zigzagging or spiraling paths and that, under certain circumstances, they dramatically alter the wake structure. The instability thresholds that can be inferred from the computations compare favorably with experimental data provided by various sets of recent experiments guaranteeing that the bubble surface is free of surfactants.
Self-sustained radial oscillating flows between parallel disks
NASA Astrophysics Data System (ADS)
Mochizuki, S.; Yang, W.-J.
1985-05-01
It is pointed out that radial flow between parallel circular disks is of interest in a number of physical systems such as hydrostatic air bearings, radial diffusers, and VTOL aircraft with centrally located downward-positioned jets. The present investigation is concerned with the problem of instability in radial flow between parallel disks. A time-dependent numerical study and experiments are conducted. Both approaches reveal the nucleation, growth, migration, and decay of annular separation bubbles (i.e. vortex or recirculation zones) in the laminar-flow region. A finite-difference technique is utilized to solve the full unsteady vorticity transport equation in the theoretical procedure, while the flow patterns in the experiments are visualized with the aid of dye-injection, hydrogen-bubble, and paraffin-mist methods. It is found that the separation and reattachment of shear layers in the radial flow through parallel disks are unsteady phenomena. The sequence of nucleation, growth, migration, and decay of the vortices is self-sustained.
NASA Astrophysics Data System (ADS)
Matsumoto, Daichi; Fukudome, Koji; Wada, Hirofumi
2016-10-01
Understanding the hydrodynamic properties of fluid flow in a curving pipe and channel is important for controlling the flow behavior in technologies and biomechanics. The nature of the resulting flow in a bent pipe is extremely complicated because of the presence of a cross-stream secondary flow. In an attempt to disentangle this complexity, we investigate the fluid dynamics in a bent channel via the direct numerical simulation of the Navier-Stokes equation in two spatial dimensions. We exploit the absence of secondary flow from our model and systematically investigate the flow structure along the channel as a function of both the bend angle and Reynolds number of the laminar-to-turbulent regime. We numerically suggest a scaling relation between the shape of the separation bubble and the flow conductance, and construct an integrated phase diagram.
NASA Technical Reports Server (NTRS)
Reiter, E. R.; Adler, R.; Fields, A.
1974-01-01
The general circulations of the Northern and Southern Hemispheres are compared with regard to the upper troposphere and stratosphere, using atmospheric structure obtained from multi-channel radiance data from the satellite infrared spectrometer instrument aboard the Nimbus 3 spacecraft. The inter-hemispheric comparisons are based on two months of data (one summer month and one winter month) in each hemisphere. Topics studied include: (1) mean meridional circulation in the Southern Hemisphere stratosphere; (2) magnitude and distribution of tropospheric eddy heat flux; (3) relative importance of standing and transient eddies in the two hemispheres; (4) magnitudes of energy cycle components; and (5) the relation of vortex structure to the breakdown climatology of the Antarctic stratospheric polar vortex.
BURST OF STAR FORMATION DRIVES BUBBLE IN GALAXY'S CORE
NASA Technical Reports Server (NTRS)
2002-01-01
These NASA Hubble Space Telescope snapshots reveal dramatic activities within the core of the galaxy NGC 3079, where a lumpy bubble of hot gas is rising from a cauldron of glowing matter. The picture at left shows the bubble in the center of the galaxy's disk. The structure is more than 3,000 light-years wide and rises 3,500 light-years above the galaxy's disk. The smaller photo at right is a close-up view of the bubble. Astronomers suspect that the bubble is being blown by 'winds' (high-speed streams of particles) released during a burst of star formation. Gaseous filaments at the top of the bubble are whirling around in a vortex and are being expelled into space. Eventually, this gas will rain down upon the galaxy's disk where it may collide with gas clouds, compress them, and form a new generation of stars. The two white dots just above the bubble are probably stars in the galaxy. The close-up reveals that the bubble's surface is lumpy, consisting of four columns of gaseous filaments that tower above the galaxy's disk. The filaments disperse at a height of 2,000 light-years. Each filament is about 75 light-years wide. Velocity measurements taken by the Canada-France-Hawaii Telescope in Hawaii show that the gaseous filaments are ascending at more than 4 million miles an hour (6 million kilometers an hour). According to theoretical models, the bubble formed when ongoing winds from hot stars mixed with small bubbles of very hot gas from supernova explosions. Observations of the core's structure by radio telescopes indicate that those processes are still active. The models suggest that this outflow began about a million years ago. They occur about every 10 million years. Eventually, the hot stars will die, and the bubble's energy source will fade away. Astronomers have seen evidence of previous outbursts from radio and X-ray observations. Those studies show rings of dust and gas and long plumes of material, all of which are larger than the bubble. NGC 3079 is 50 million light-years from Earth in the constellation Ursa Major. The colors in this image accentuate important details in the bubble. Glowing gas is red and starlight is blue/green. Hubble's Wide Field and Planetary Camera 2 snapped this picture in 1998. The results appear in the July 1, 2001 issue of the Astrophysical Journal. Credits: NASA, Gerald Cecil (University of North Carolina), Sylvain Veilleux (University of Maryland), Joss Bland-Hawthorn (Anglo-Australian Observatory), and Alex Filippenko (University of California at Berkeley).
Measurement of hydrodynamic force generation by swimming dolphins using bubble DPIV.
Fish, Frank E; Legac, Paul; Williams, Terrie M; Wei, Timothy
2014-01-15
Attempts to measure the propulsive forces produced by swimming dolphins have been limited. Previous uses of computational hydrodynamic models and gliding experiments have provided estimates of thrust production by dolphins, but these were indirect tests that relied on various assumptions. The thrust produced by two actively swimming bottlenose dolphins (Tursiops truncatus) was directly measured using digital particle image velocimetry (DPIV). For dolphins swimming in a large outdoor pool, the DPIV method used illuminated microbubbles that were generated in a narrow sheet from a finely porous hose and a compressed air source. The movement of the bubbles was tracked with a high-speed video camera. Dolphins swam at speeds of 0.7 to 3.4 m s(-1) within the bubble sheet oriented along the midsagittal plane of the animal. The wake of the dolphin was visualized as the microbubbles were displaced because of the action of the propulsive flukes and jet flow. The oscillations of the dolphin flukes were shown to generate strong vortices in the wake. Thrust production was measured from the vortex strength through the Kutta-Joukowski theorem of aerodynamics. The dolphins generated up to 700 N during small amplitude swimming and up to 1468 N during large amplitude starts. The results of this study demonstrated that bubble DPIV can be used effectively to measure the thrust produced by large-bodied dolphins.
The Structure of the Blue Whirl
NASA Astrophysics Data System (ADS)
Hariharan, Sriram Bharath; Hu, Yu; Xiao, Huahua; Gollner, Michael; Oran, Elaine
2017-11-01
Recent experiments have led to the discovery of the blue whirl, a small, stable regime of the fire whirl that burns typically sooty liquid hydrocarbons without producing soot. The physical structure consists of three regions - the blue cone, the vortex rim and the purple haze. The physical nature of the flame was further investigated through digital imaging techniques, which suggest that the transition (from the fire whirl to the blue whirl) and shape of the flame may be influenced by vortex breakdown. The flame was found to develop over a variety of surfaces, which indicates that the formation of the blue whirl is strongly influenced by the flow structure over the incoming boundary layer. The thermal structure was investigated using micro-thermocouples, thin-filament pyrometry and OH* spectroscopy. These revealed a peak temperature around 2000 K, and that most of the combustion occurs in the relatively small, visibly bright vortex rim. The results of these investigations provide a platform to develop a theory on the structure of the blue whirl, a deeper understanding of which may affirm potential for applications in the energy industry. This work was supported by an NSF EAGER award and Minta Martin Endowment Funds in the Department of Aerospace Engineering at the University of Maryland.
NASA Technical Reports Server (NTRS)
Hall, Philip
1989-01-01
Goertler vortices are thought to be the cause of transition in many fluid flows of practical importance. A review of the different stages of vortex growth is given. In the linear regime, nonparallel effects completely govern this growth, and parallel flow theories do not capture the essential features of the development of the vortices. A detailed comparison between the parallel and nonparallel theories is given and it is shown that at small vortex wavelengths, the parallel flow theories have some validity; otherwise nonparallel effects are dominant. New results for the receptivity problem for Goertler vortices are given; in particular vortices induced by free stream perturbations impinging on the leading edge of the walls are considered. It is found that the most dangerous mode of this type can be isolated and it's neutral curve is determined. This curve agrees very closely with the available experimental data. A discussion of the different regimes of growth of nonlinear vortices is also given. Again it is shown that, unless the vortex wavelength is small, nonparallel effects are dominant. Some new results for nonlinear vortices of 0(1) wavelengths are given and compared to experimental observations.
Experimental Study of Transitional Flow Behavior in a Simulated Low Pressure Turbine
NASA Technical Reports Server (NTRS)
Sohn, Ki Hyeon; DeWitt, Kenneth J.
1998-01-01
A detailed investigation of the flow physics occurring on the suction side of a simulated Low Pressure Turbine (LPT) blade was performed. A contoured upper wall was designed to simulate the pressure distribution of an actual LPT airfoil onto a flat lower plate. The experiments were carried out for the Reynolds numbers of 35,000, 70,000, 100,000 and 250,000 with four levels of freestream turbulence ranging from 1% to 4%. For the three lower Reynolds numbers, the boundary layer on the flat plate was separated and formed a bubble. The size of laminar separation bubble was measured to be inversely proportional to the freestream turbulence levels and Reynolds numbers. However, no separation was observed for the Re = 250,000 case. The transition on a separated flow was found to proceed through the formation of turbulent spots in the free shear layer as evidenced in the intermittency profiles for Re = 35,000, 70,000 and 100,000. Spectral data show no evidence of Kelvin-Helmholtz or Tollmien-Schlichting instability waves in the free shear layer over a separation bubble (bypass transition). However, the flow visualization revealed the large vortex structures just outside of the bubble and their development to turbulent flow for Re = 50,000, which is similar to that in the free shear layer (separated-flow transition). Therefore, it is fair to say that the bypass and separated-flow transition modes coexist in the transitional flows over the separation bubble for certain conditions. Transition onset and end locations and length determined from intermittency profiles decrease as Reynolds number and freestream turbulence levels increase.
Experimental Study of Transitional Flow Behavior in a Simulated Low Pressure Turbine
NASA Technical Reports Server (NTRS)
Sohn, Ki Hyeon; DeWitt, Kenneth J.
2007-01-01
A detailed investigation of the flow physics occurring on the suction side of a simulated Low Pressure Turbine (LPT) blade was performed. A contoured upper wall was designed to simulate the pressure distribution of an actual LPT airfoil onto a flat lower plate. The experiments were carried out for the Reynolds numbers of 35,000, 70,000, 100,000, and 250,000 with four levels of freestream turbulence ranging from 1 to 4 percent. For the three lower Reynolds numbers, the boundary layer on the flat plate was separated and formed a bubble. The size of laminar separation bubble was measured to be inversely proportional to the freestream turbulence levels and Reynolds numbers. However, no separation was observed for the Re = 250,000 case. The transition on a separated flow was found to proceed through the formation of turbulent spots in the free shear layer as evidenced in the intermittency profiles for Re = 35,000, 70,000, and 100,000. Spectral data show no evidence of Kelvin-Helmholtz of Tollmien-Schlichting instability waves in the free shear layer over a separation bubble (bypass transition). However, the flow visualization revealed the large vortex structures just outside of the bubble and their development to turbulent flow for Re = 50,000, which is similar to that in the free shear layer (separated-flow transition). Therefore, it is fair to say that the bypass and separated-flow transition modes coexist in the transition flows over the separation bubble of certain conditions. Transition onset and end locations and length determined from intermittency profiles decreased as Reynolds number and freestream turbulence levels increase.
How a short double-stranded DNA bends
NASA Astrophysics Data System (ADS)
Shin, Jaeoh; Lee, O.-Chul; Sung, Wokyung
2015-04-01
A recent experiment using fluorescence microscopy showed that double-stranded DNA fragments shorter than 100 base pairs loop with the probabilities higher by the factor of 102-106 than predicted by the worm-like chain (WLC) model [R. Vafabakhsh and T. Ha, Science 337, 1101(2012)]. Furthermore, the looping probabilities were found to be nearly independent of the loop size. The results signify a breakdown of the WLC model for DNA mechanics which works well on long length scales and calls for fundamental understanding for stressed DNA on shorter length scales. We develop an analytical, statistical mechanical model to investigate what emerges to the short DNA under a tight bending. A bending above a critical level initiates nucleation of a thermally induced bubble, which could be trapped for a long time, in contrast to the bubbles in both free and uniformly bent DNAs, which are either transient or unstable. The trapped bubble is none other than the previously hypothesized kink, which releases the bending energy more easily as the contour length decreases. It leads to tremendous enhancement of the cyclization probabilities, in a reasonable agreement with experiment.
Mechanisms of single bubble cleaning.
Reuter, Fabian; Mettin, Robert
2016-03-01
The dynamics of collapsing bubbles close to a flat solid is investigated with respect to its potential for removal of surface attached particles. Individual bubbles are created by nanosecond Nd:YAG laser pulses focused into water close to glass plates contaminated with melamine resin micro-particles. The bubble dynamics is analysed by means of synchronous high-speed recordings. Due to the close solid boundary, the bubble collapses with the well-known liquid jet phenomenon. Subsequent microscopic inspection of the substrates reveals circular areas clean of particles after a single bubble generation and collapse event. The detailed bubble dynamics, as well as the cleaned area size, is characterised by the non-dimensional bubble stand-off γ=d/Rmax, with d: laser focus distance to the solid boundary, and Rmax: maximum bubble radius before collapse. We observe a maximum of clean area at γ≈0.7, a roughly linear decay of the cleaned circle radius for increasing γ, and no cleaning for γ>3.5. As the main mechanism for particle removal, rapid flows at the boundary are identified. Three different cleaning regimes are discussed in relation to γ: (I) For large stand-off, 1.8<γ<3.5, bubble collapse induced vortex flows touch down onto the substrate and remove particles without significant contact of the gas phase. (II) For small distances, γ<1.1, the bubble is in direct contact with the solid. Fast liquid flows at the substrate are driven by the jet impact with its subsequent radial spreading, and by the liquid following the motion of the collapsing and rebounding bubble wall. Both flows remove particles. Their relative timing, which depends sensitively on the exact γ, appears to determine the extension of the area with forces large enough to cause particle detachment. (III) At intermediate stand-off, 1.1<γ<1.8, only the second bubble collapse touches the substrate, but acts with cleaning mechanisms similar to an effective small γ collapse: particles are removed by the jet flow and the flow induced by the bubble wall oscillation. Furthermore, the observations reveal that the extent of direct bubble gas phase contact to the solid is partially smaller than the cleaned area, and it is concluded that three-phase contact line motion is not a major cause of particle removal. Finally, we find a relation of cleaning area vs. stand-off γ that deviates from literature data on surface erosion. This indicates that different effects are responsible for particle removal and for substrate damage. It is suggested that a trade-off of cleaning potential and damage risk for sensible surfaces might be achieved by optimising γ. Copyright © 2015 Elsevier B.V. All rights reserved.
New applications of laser-induced breakdown and stand-off Raman spectroscopy
NASA Astrophysics Data System (ADS)
Snyder, Marion Lawrence
Two novel spectroscopic applications, with the common theme of remote spectroscopy are described. In one application, laser-induced breakdown spectroscopy (LIBS) is investigated for deep ocean measurements of hydrothermal vent chemistry. This technique is demonstrated for the first time for solution measurements at pressures corresponding to those found at hydrothermal vent sites, at ocean depths of one to three kilometers. In the other application, Raman spectroscopy is investigated for stand-off detection of high explosive (HE) materials. We demonstrate several HE materials in silica can be measured at 50-meter range under ambient light conditions, a new record for this application. Chapters one through three of this dissertation contain published and recently submitted articles describing LIBS for in situ multi-elemental detection in high-pressure aqueous environments such as the deep ocean. Initial work shows the potential of single-pulse LIBS (SP-LIBS) to measure dissolved elements (e.g., Na, Ca, Li, K, and Mn) at the part-per-million level in aqueous solutions at pressures exceeding 276 bar. Dual-pulse LIBS (DP-LIBS) of high-pressure aqueous solutions is also presented. We show significant DP-LIBS enhancements are achieved through excitation of a vapor bubble formed by laser-induced breakdown of the solution with a previous laser pulse, thereby increasing the sensitivity of LIBS and allowing additional elements to be measured. Preliminary findings show that increasing solution pressure has a detrimental effect on DP-LIBS emission intensities, such that little if any DP-LIBS emission was observed above approximately 100 bar. Recent results suggest a direct relationship exists between the size of the bubble and the resulting DP-LIBS emission, and that reduction in bubble size and lifetime at elevated pressure lead to the decreased DP-LIBS emission. Chapter four contains published work examining the potential of stand-off Raman spectroscopy for remote HE detection. A small, transportable, telescope-based standoff Raman system is demonstrated for detection of HE materials, including RDX, TNT, and PETN, and simulants at distances up to 50 meters in ambient light conditions. Possible detection limits on the hundreds of parts-per-million level and detection ranges of hundreds of meters are suggested. Merits of pulsed laser excitation sources and intensified charge-coupled devices (ICCD) for detection are discussed.
Finesse of transparent tissue cutting by ultrafast lasers at various wavelengths.
Wang, Jenny; Schuele, Georg; Palanker, Daniel
2015-01-01
Transparent ocular tissues, such as the cornea and crystalline lens, can be ablated or dissected using short-pulse lasers. In refractive and cataract surgeries, the cornea, lens, and lens capsule can be cut by producing dielectric breakdown in the focus of a near-infrared (IR) femtosecond laser, which results in explosive vaporization of the interstitial water, causing mechanical rupture of the surrounding tissue. Here, we compare the texture of edges of lens capsule cut by femtosecond lasers with IR and ultraviolet (UV) wavelengths and explore differences in interactions of these lasers with biological molecules. Scanning electron microscopy indicates that a 400-nm laser is capable of producing very smooth cut edges compared to 800 or 1030 nm at a similar focusing angle. Using gel electrophoresis and liquid chromatography/mass spectrometry, we observe laser-induced nonlinear breakdown of proteins and polypeptides by 400-nm femtosecond pulses above and below the dielectric breakdown threshold. On the other hand, 800-nm femtosecond lasers do not produce significant dissociation even above the threshold of dielectric breakdown. However, despite this additional interaction of UV femtosecond laser with proteins, we determine that efficient cutting requires plasma-mediated bubble formation and that remarkably smooth edges are the result of reduced thresholds and smaller focal volume.
An Experimental Study of Vortex Flow Formation and Dynamics in Confined Microcavities
NASA Astrophysics Data System (ADS)
Khojah, Reem; di Carlo, Dino
2017-11-01
New engineering solutions for bioparticle separation invites revisiting classic fluid dynamics problems. Previous studies investigated cavity vortical flow that occurs in 2D with the formation of a material flux boundary or separatrix between the main flow and cavity flow. We demonstrate the concept of separatrix breakdown, in which the cavity flow becomes connected to the main flow, occurs as the cavity is confined in 3D, and is implicated in particle capture and rapid mass exchange in cavities. Understanding the convective flux between the channel and a side cavity provides insight into size-dependent particle capture and release from the cavity flow. The process of vortex formation and separatrix breakdown between the main channel to the side cavity is Reynolds number dependent and can be described by dissecting the flow streamlines from the main channel that enter and spiral out of the cavity. Laminar streamlines from incremented initial locations in the main flow are observed inside the cavity under different flow conditions. Experimentally, we provide the Reynolds number threshold to generate certain flow geometry. We found the optimal flow conditions that enable rapid convective transfer through the cavity flow and exposure and interaction between soluble factors with captured cells. By tuning which fraction of the main flow has solute, we can create a dynamic gate between the cavity and channel flow that potentially serves as a time-dependent fluid exchange approach for objects within the cavity.
Experimental study of dynamic stall on Darrieus wind turbine blades
NASA Astrophysics Data System (ADS)
Brochier, G.; Fraunie, P.; Beguier, C.; Paraschivoiu, I.
1985-12-01
An experimental study of periodic vortex phenomena was performed on a model of a two straight-bladed Darrieus wind turbine under controlled-rotation conditions in the IMST water tunnel. The main focus of interest was the tip-speed ratios at which dynamic stall appears. Observations of this phenomenon from dye emission and the formation of hydrogen bubbles were made in the form of photographs, film and video recordings. Velocity measurements were obtained using the Laser-Doppler Velocimeter and components of velocity fluctuations could be determined quantitatively.
Computational studies of an impulsively started viscous flow
NASA Technical Reports Server (NTRS)
Davis, Sanford S.
1988-01-01
Progress in validating incompressible Navier-Stokes codes is described using a predictor/corrector scheme. The flow field under study is the impulsive start of a circular cylinder and the unsteady evolution of the separation bubble. In the current code, a uniform asymptotic expansion is used as an initial condition in order to correctly capture the initial growth of the vortex sheet. Volocity fields at selected instants of time are decomposed into vectorial representations of Navier-Stokes equations which are then used to analyze dominant contributions in the boundary-layer region.
CAVITATION DAMAGE STUDY VIA A NOVEL REPETITIVE PRESSURE PULSE APPROACH
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jy-An John; Ren, Fei; Wang, Hong
2010-01-01
Cavitation damage can significantly affect system performance. Thus, there is great interest in characterizing cavitation damage and improving materials resistance to cavitation damage. In this paper, we present a novel methodology to simulate cavitation environment. A pulsed laser is utilized to induce optical breakdown in the cavitation media, with the emission of shock wave and the generation of bubbles. The pressure waves induced by the optical breakdown fluctuate/propagate within the media, which enables the cavitation to occur and to further develop cavitation damage at the solid boundary. Using the repetitive pulsed-pressure apparatus developed in the current study, cavitation damage inmore » water media was verified on stainless steel and aluminum samples. Characteristic cavitation damages such as pitting and indentation are observed on sample surfaces using scanning electron microscopy.« less
Three-dimensional short-wavelength instabilities in the near-wake of a circular cylinder
NASA Astrophysics Data System (ADS)
Jethani, Yogesh; Kumar, Kamal; Sameen, A.; Mathur, Manikandan
2017-11-01
We perform local stability analysis of the near-wake region of two-dimensional flow past a circular cylinder for Reynolds number in the range Re ∈ [ 10 , 300 ] . The local stability equations that govern the leading-order amplitude of short-wavelength perturbations are solved along closed fluid particle trajectories in the numerically simulated flow-fields for both the steady (Re <= 45) and unsteady vortex-shedding (Re > 45) regimes; the study is further complemented with analysis on time-averaged flows for 50 <= Re <= 300 . For steady and time-averaged flow, the inviscidly most unstable regions occur either at the core or at the edge of the separation bubble, with elliptic instability as the dominant mode for all Re . The effectiveness of viscous damping in eliminating the inviscid instabilities and the validity of the WKBJ approximation in the present context are studied. In the unsteady vortex-shedding regime, two types (I and II) of closed trajectories are identified for all Re and the inviscid growth rates as a function of Re are plotted for both. For type I trajectory, a bifurcation occurs at Re 250 . Potential relevance of our results in understanding the transition from steady flow to vortex-shedding and the subsequent secondary instabilities are discussed.
2013-01-04
plane electrode setup. The discharge cell had a point- to-plate geometry with the high-voltage electrode being either stain-less steel needle with...influence of the electrode properties were investigated using 2 different electrodes : a stainless steel needle with a 20μm radius of curvature tip, and an...breakdown phenomena developing around a needle -like high voltage electrode , with a typical radius of curvature r0 ~ 0.01- 0.1mm. The volumetric force
NASA Astrophysics Data System (ADS)
Siddiqui, T. A.; Yamazaki, Y.; Stolle, C.; Lühr, H.; Matzka, J.
2017-12-01
A number of studies in recent years have reported about the lunar tidal enhancements in the equatorial electrojet (EEJ) from ground- and space-based magnetometer measurements during stratospheric sudden warming (SSW) events. In this study, we make use of the ground magnetometer recordings at Huancayo observatory in Peru for the years 1978 - 2013 to derive a relationship between the lunar tidal enhancements in the EEJ and tropospheric eddy heat fluxes at 100 hPa during the SSW events. Tropospheric eddy heat fluxes are used to quantify the amount of wave activity entering the stratosphere. Anomalously large upward wave activity is known to precede the polar vortex breakdown during SSWs. We make use of the superposed epoch analysis method to determine the temporal relations between lunar tidal enhancements and eddy heat flux anomalies during SSWs, in order to demonstrate the causal relationship between these two phenomena. We also compare the lunar tidal enhancements and eddy heat flux anomalies for vortex split and for vortex displaced SSWs. It is found that larger lunar tidal enhancements are recorded for vortex split events, as compared to vortex displaced events. This confirms earlier observation; larger heat flux anomalies are recorded during vortex split SSW events than the heat flux anomalies during vortex displaced SSW events. Further, the temporal relations of lunar tidal enhancements in the EEJ have been compared separately for both the QBO phases and with the phases of the moon with respect to the central epoch of SSWs by means of the superposed epoch analysis approach. The EEJ lunar tidal enhancements in the east phase of QBO are found to be larger than the lunar tidal enhancements in the west phase of QBO. The phase of moon relative to the central SSW epoch also affects the lunar tidal enhancement in the EEJ. It is found that the lunar tidal enhancements are significantly larger when the day of new or full moon lies near the central SSW epoch, as compared to cases when new or full moon occur further away from the central SSW epoch.
Finite-sized gas bubble motion in a blood vessel: Non-Newtonian effects
Mukundakrishnan, Karthik; Ayyaswamy, Portonovo S.; Eckmann, David M.
2009-01-01
We have numerically investigated the axisymmetric motion of a finite-sized nearly occluding air bubble through a shear-thinning Casson fluid flowing in blood vessels of circular cross section. The numerical solution entails solving a two-layer fluid model—a cell-free layer and a non-Newtonian core together with the gas bubble. This problem is of interest to the field of rheology and for gas embolism studies in health sciences. The numerical method is based on a modified front-tracking method. The viscosity expression in the Casson model for blood (bulk fluid) includes the hematocrit [the volume fraction of red blood cells (RBCs)] as an explicit parameter. Three different flow Reynolds numbers, Reapp=ρlUmaxd/μapp, in the neighborhood of 0.2, 2, and 200 are investigated. Here, ρl is the density of blood, Umax is the centerline velocity of the inlet Casson profile, d is the diameter of the vessel, and μapp is the apparent viscosity of whole blood. Three different hematocrits have also been considered: 0.45, 0.4, and 0.335. The vessel sizes considered correspond to small arteries, and small and large arterioles in normal humans. The degree of bubble occlusion is characterized by the ratio of bubble to vessel radius (aspect ratio), λ, in the range 0.9≤λ≤1.05. For arteriolar flow, where relevant, the Fahraeus-Lindqvist effects are taken into account. Both horizontal and vertical vessel geometries have been investigated. Many significant insights are revealed by our study: (i) bubble motion causes large temporal and spatial gradients of shear stress at the “endothelial cell” (EC) surface lining the blood vessel wall as the bubble approaches the cell, moves over it, and passes it by; (ii) rapid reversals occur in the sign of the shear stress (+ → − → +) imparted to the cell surface during bubble motion; (iii) large shear stress gradients together with sign reversals are ascribable to the development of a recirculation vortex at the rear of the bubble; (iv) computed magnitudes of shear stress gradients coupled with their sign reversals may correspond to levels that cause injury to the cell by membrane disruption through impulsive compression and stretching; and (v) for the vessel sizes and flow rates investigated, gravitational effects are negligible. PMID:18851139
NASA Astrophysics Data System (ADS)
Yarusevych, Serhiy; Kurelek, John; Kotsonis, Marios
2017-11-01
The effects of controlled acoustic excitation on the transition process in a laminar separation bubble formed on the suction side of a NACA 0018 airfoil at a chord Reynolds number of 125,000 and an angle of attack of 4 degrees are studied experimentally. The investigation is carried out using time-resolved, planar, two-component Particle Image Velocimetry. Two types of excitation are considered: (i) tonal excitation at the frequency of the most unstable disturbances in the natural flow, and (ii) broadband excitation consisting bandpass filtered to the natural unstable frequency range, modelling two common types of airfoil self-noise production. For equal energy input levels, the results show that tonal and broadband types of excitation have equivalent effects on the mean flow field. Specifically, both cause the streamwise extent and height of the bubble to decrease. However, further analysis reveals notable differences in the underlying physics. For the tonal case, the transition process is dominated by the growth of disturbances at the excitation frequency that damps the growth of all other disturbances, leading to the formation of strongly coherent vortices in the aft portion of the separation bubble. On the other hand, broadband excitation promotes more moderate growth of all disturbances within the unstable frequency band, producing less coherent shear layer structures that experience earlier breakdown. Thus, the frequency content of acoustic excitation has a strong influence on the transition process in laminar separation bubbles. The authors gratefully acknowledge the Natural Sciences and Engineering Research Council of Canada (NSERC) for funding this work.
The leading-edge vortex of swift-wing shaped delta wings
NASA Astrophysics Data System (ADS)
Muir, Rowan; Arredondo-Galeana, Abel; Viola, Ignazio Maria
2017-11-01
Recent investigations on the aerodynamics of natural fliers have illuminated the significance of the Leading-Edge Vortex (LEV) for lift generation in a variety of flight conditions. In this investigation, a model non-slender delta shaped wing with a sharp leading-edge is tested at low Reynolds Number, along with a delta wing of the same design, but with a modified trailing edge inspired by the wing of a common swift Apus apus. The effect of the tapering swift wing on LEV development and stability is compared with the flow structure over the un-modified delta wing model through particle image velocimetry. For the first time, a leading-edge vortex system consisting of a dual or triple LEV is recorded on a swift-wing shaped delta wing, where such a system is found across all tested conditions. It is shown that the spanwise location of LEV breakdown is governed by the local chord rather than Reynolds Number or angle of attack. These findings suggest that the trailing-edge geometry of the swift wing alone does not prevent the common swift from generating an LEV system comparable with that of a delta shaped wing. This work received funding from the Engineering and Physical Sciences Research Council [EP/M506515/1] and the Consejo Nacional de Ciencia y Tecnología (CONACYT).
NASA Technical Reports Server (NTRS)
Fisher, David F.; Banks, Daniel W.; Richwine, David M.
1990-01-01
Pressure distributions measured on the forebody and the leading-edge extensions (LEX's) of the NASA F-18 high alpha research vehicle (HARV) were reported at 10 and 50 degree angles of attack and at Mach 0.20 to 0.60. The results were correlated with HARV flow visualization and 6-percent scale F-18 wind-tunnel-model test results. The general trend in the data from the forebody was for the maximum suction pressure peaks to first appear at an angle of attack (alpha) of approximately 19 degrees and increase in magnitude with angle of attack. The LEX pressure distribution general trend was the inward progression and increase in magnitude of the maximum suction peaks up to vortex core breakdown and then the decrease and general flattening of the pressure distribution beyond that. No significant effect of Mach number was noted for the forebody results. However, a substantial compressibility effect on the LEX's resulted in a significant reduction in vortex-induced suction pressure as Mach number increased. The forebody primary and the LEX secondary vortex separation lines, from surface flow visualization, correlated well with the end of pressure recovery, leeward and windward, respectively, of maximum suction pressure peaks. The flight to wind-tunnel correlations were generally good with some exceptions.
Slow transition of the Osborne Reynolds pipe flow: A direct numerical simulation study.
NASA Astrophysics Data System (ADS)
Wu, Xiaohua; Moin, Parviz; Adrian, Ronald J.; Baltzer, Jon R.
2015-11-01
Osborne Reynolds' pipe transition experiment marked the onset of fundamental turbulence research, yet the precise dynamics carrying the laminar state to fully-developed turbulence has been quite elusive. Our spatially-developing direct numerical simulation of this problem reveals interesting connections with theory and experiments. In particular, during transition the energy norms of localized, weakly finite inlet perturbations grow exponentially, rather than algebraically, with axial distance, in agreement with the edge-state based temporal results of Schneider et al. (PRL, 034502, 2007). When inlet disturbance is the core region, helical vortex filaments evolve into large-scale reverse hairpin vortices. The interaction of these reverse hairpins among themselves or with the near-wall flow produces small-scale hairpin packets. When inlet disturbance is near the wall, optimally positioned quasi-spanwise structure is stretched into a Lambda vortex, which grows into a turbulent spot of concentrated small-scale hairpin vortices. Waves of hairpin-like structures were observed by Mullin (Ann. Rev. Fluid Mech., Vol.43, 2011) in their experiment with very weak blowing and suction. This vortex dynamics is broadly analogous to that in the boundary layer bypass transition and in the secondary instability and breakdown stage of natural transition. Further details of our simulation are reported in Wu et al. (PNAS, 1509451112, 2015).
Arcjet thruster research and technology, phase 1
NASA Technical Reports Server (NTRS)
Knowles, Steven C.
1987-01-01
The objectives of Phase 1 were to evaluate analytically and experimentally the operation, performance, and lifetime of arcjet thrusters operating between 0.5 and 3.0 kW with catalytically decomposed hydrazine (N2H4) and to begin development of the requisite power control unit (PCU) technology. Fundamental analyses were performed of the arcjet nozzle, the gas kinetic reaction effects, the thermal environment, and the arc stabilizing vortex. The VNAP2 flow code was used to analyze arcjet nozzle performance with non-uniform entrance profiles. Viscous losses become dominant beyond expansion ratios of 50:1 because of the low Reynolds numbers. A survey of vortex phenomena and analysis techniques identified viscous dissipation and vortex breakdown as two flow instabilities that could affect arcjet operation. The gas kinetics code CREK1D was used to study the gas kinetics of high temperature N2H4 decomposition products. The arc/gas energy transfer is a non-equilibrium process because of the reaction rate constants and the short gas residence times. A thermal analysis code was used to guide design work and to provide a means to back out power losses at the anode fall based on test thermocouple data. The low flow rate and large thermal masses made optimization of a regenerative heating scheme unnecessary.
NASA Technical Reports Server (NTRS)
Erickson, Gary E.; Rogers, Lawrence W.
1992-01-01
A wind tunnel data base was established for the effects of chine-like forebody strakes and Mach number on the longitudinal and lateral-directional characteristics of a generalized 55 degree cropped delta wing-fuselage-centerline vertical tail configuration. The testing was conducted in the 7- by 10-Foot Transonic Tunnel at the David Taylor Research Center at free-stream Mach numbers of 0.40 to 1.10 and Reynolds numbers based on the wing mean aerodynamic chord of 1.60 x 10(exp 6) to 2.59 x 10(exp 6). The best matrix included angles of attack from 0 degree to a maximum of 28 degree, angles of sidesip of 0, +5, and -5 degrees, and wing leading-edge flat deflection angles of 0 and 30 degrees. Key flow phenomena at subsonic and transonic conditions were identified by measuring off-body flow visualization with a laser screen technique. These phenomena included coexisting and interacting vortex flows and shock waves, vortex breakdown, vortex flow interactions with the vertical tail, and vortices induced by flow separation from the hinge line of the deflected wing flap. The flow mechanisms were correlated with the longitudinal and lateral-directional aerodynamic data trends.
Synthetic Vortex Generator Jets Used to Control Separation on Low-Pressure Turbine Airfoils
NASA Technical Reports Server (NTRS)
Ashpis, David E.; Volino, Ralph J.
2005-01-01
Low-pressure turbine (LPT) airfoils are subject to increasingly stronger pressure gradients as designers impose higher loading in an effort to improve efficiency and lower cost by reducing the number of airfoils in an engine. When the adverse pressure gradient on the suction side of these airfoils becomes strong enough, the boundary layer will separate. Separation bubbles, particularly those that fail to reattach, can result in a significant loss of lift and a subsequent degradation of engine efficiency. The problem is particularly relevant in aircraft engines. Airfoils optimized to produce maximum power under takeoff conditions may still experience boundary layer separation at cruise conditions because of the thinner air and lower Reynolds numbers at altitude. Component efficiency can drop significantly between takeoff and cruise conditions. The decrease is about 2 percent in large commercial transport engines, and it could be as large as 7 percent in smaller engines operating at higher altitudes. Therefore, it is very beneficial to eliminate, or at least reduce, the separation bubble.
2017-01-01
We report the construction and use of a vortex reactor which uses a rapidly rotating cylinder to generate Taylor vortices for continuous flow thermal and photochemical reactions. The reactor is designed to operate under conditions required for vortex generation. The flow pattern of the vortices has been represented using computational fluid dynamics, and the presence of the vortices can be easily visualized by observing streams of bubbles within the reactor. This approach presents certain advantages for reactions with added gases. For reactions with oxygen, the reactor offers an alternative to traditional setups as it efficiently draws in air from the lab without the need specifically to pressurize with oxygen. The rapid mixing generated by the vortices enables rapid mass transfer between the gas and the liquid phases allowing for a high efficiency dissolution of gases. The reactor has been applied to several photochemical reactions involving singlet oxygen (1O2) including the photo-oxidations of α-terpinene and furfuryl alcohol and the photodeborylation of phenyl boronic acid. The rotation speed of the cylinder proved to be key for reaction efficiency, and in the operation we found that the uptake of air was highest at 4000 rpm. The reactor has also been successfully applied to the synthesis of artemisinin, a potent antimalarial compound; and this three-step synthesis involving a Schenk-ene reaction with 1O2, Hock cleavage with H+, and an oxidative cyclization cascade with triplet oxygen (3O2), from dihydroartemisinic acid was carried out as a single process in the vortex reactor. PMID:28781513
The fish tail motion forms an attached leading edge vortex
Borazjani, Iman; Daghooghi, Mohsen
2013-01-01
The tail (caudal fin) is one of the most prominent characteristics of fishes, and the analysis of the flow pattern it creates is fundamental to understanding how its motion generates locomotor forces. A mechanism that is known to greatly enhance locomotor forces in insect and bird flight is the leading edge vortex (LEV) reattachment, i.e. a vortex (separation bubble) that stays attached at the leading edge of a wing. However, this mechanism has not been reported in fish-like swimming probably owing to the overemphasis on the trailing wake, and the fact that the flow does not separate along the body of undulating swimmers. We provide, to our knowledge, the first evidence of the vortex reattachment at the leading edge of the fish tail using three-dimensional high-resolution numerical simulations of self-propelled virtual swimmers with different tail shapes. We show that at Strouhal numbers (a measure of lateral velocity to the axial velocity) at which most fish swim in nature (approx. 0.25) an attached LEV is formed, whereas at a higher Strouhal number of approximately 0.6 the LEV does not reattach. We show that the evolution of the LEV drastically alters the pressure distribution on the tail and the force it generates. We also show that the tail's delta shape is not necessary for the LEV reattachment and fish-like kinematics is capable of stabilising the LEV. Our results suggest the need for a paradigm shift in fish-like swimming research to turn the focus from the trailing edge to the leading edge of the tail. PMID:23407826
Engineered bio-inspired coating for passive flow control
Bocanegra Evans, Humberto; Hamed, Ali M.; Gorumlu, Serdar; Doosttalab, Ali; Aksak, Burak; Castillo, Luciano
2018-01-01
Flow separation and vortex shedding are some of the most common phenomena experienced by bluff bodies under relative motion with the surrounding medium. They often result in a recirculation bubble in regions with adverse pressure gradient, which typically reduces efficiency in vehicles and increases loading on structures. Here, the ability of an engineered coating to manipulate the large-scale recirculation region was tested in a separated flow at moderate momentum thickness Reynolds number, Reθ=1,200. We show that the coating, composed of uniformly distributed cylindrical pillars with diverging tips, successfully reduces the size of, and shifts downstream, the separation bubble. Despite the so-called roughness parameter, k+≈1, falling within the hydrodynamic smooth regime, the coating is able to modulate the large-scale recirculating motion. Remarkably, this modulation does not induce noticeable changes in the near-wall turbulence levels. Supported with experimental data and theoretical arguments based on the averaged equations of motion, we suggest that the inherent mechanism responsible for the bubble modulation is essentially unsteady suction and blowing controlled by the increasing cross-section of the tips. The coating can be easily fabricated and installed and works under dry and wet conditions, increasing its potential impact on a diverse range of applications. PMID:29367420
Formation and evolution of anodic TiO2 nanotube embryos
NASA Astrophysics Data System (ADS)
Jin, Rong; Liao, Maoying; Lin, Tong; Zhang, Shaoyu; Shen, Xiaoping; Song, Ye; Zhu, Xufei
2017-06-01
Anodic TiO2 nanotubes (ATNTs) have been widely investigated for decades due to their interesting nanostructures and various applications. However, the formation mechanism of ATNTs still remains unclear. To date, most of researches focus on the tubular structure but neglect the formation process of initial nanotube embryos. Herein, polyethylene glycol (PEG) is added into the traditional electrolyte to moderate the transformation process from compact layer to porous layer. Based on ‘oxygen bubble mould’ and ‘plastic flow model’ theory, the formation and evolution process of nanotube embryo is clarified firstly. Results validate the effect of ‘oxygen bubble mould’ on the formation of nanotube embryo, which has a great effect on regulating the morphology of ATNT arrays. Besides, nanotubes prepared in electrolytes with PEG show shorter tube length with larger diameter than that prepared in traditional electrolytes. The addition of PEG can also effectively avoid the breakdown phenomenon. Highlights Transformation from compact layer into porous layer is observed in PEG electrolyte. The effect of oxygen bubble mould is first demonstrated and observed. The formation process of TiO2 nanotube embryo is described systematically. TiO2 nanotubes prepared in PEG electrolyte show short length and large diameter.
NASA Astrophysics Data System (ADS)
Li, Y.; Lu, Z.; Chen, C.; Cheng, M.; Yin, H.; Wang, W.; Li, C.; Liu, Y.; Xiong, R.; Shi, J.
2018-06-01
The dynamic behaviors of vortex domain walls (VDWs) in ferromagnetic nanowires driven by a magnetic field above Walker breakdown field (Hw) were investigated using micromagnetic simulation. It was found when nanowire has proper geometrical dimensions, the VDW may oscillate in a chirality invariant mode or a chirality switching mode depending on applied field and damping constant. At fixed damping constant, the oscillation mode can be controlled by applied field - with the increase of applied field, the oscillation of VDW change from a chirality invariant mode to a variant one. As the oscillation of VDW changes from chirality invariant regime to chirality switching regime, the oscillation frequency and amplification will undergo an abnormal change, which may offer a fingerprint for the switch of oscillation mode. Our finding proposes a simple way to control the chirality of a VDW by properly manipulating nanowire geometry and applied field, which may have important applications in VDW-based devices.
Dynamics of focused femtosecond laser pulse during photodisruption of crystalline lens
NASA Astrophysics Data System (ADS)
Gupta, Pradeep Kumar; Singh, Ram Kishor; Sharma, R. P.
2018-04-01
Propagation of laser pulses of femtosecond time duration (focused through a focusing lens inside the crystalline lens) has been investigated in this paper. Transverse beam diffraction, group velocity dispersion, graded refractive index structure of the crystalline lens, self-focusing, and photodisruption in which plasma is formed due to the high intensity of laser pulses through multiphoton ionization have been taken into account. The model equations are the modified nonlinear Schrödinger equation along with a rate equation that takes care of plasma generation. A close analysis of model equations suggests that the femtosecond laser pulse duration is critical to the breakdown in the lens. Our numerical simulations reveal that the combined effect of self-focusing and multiphoton ionization provides the breakdown threshold. During the focusing of femtosecond laser pulses, additional spatial pulse splitting arises along with temporal splitting. This splitting of laser pulses arises on account of self-focusing, laser induced breakdown, and group velocity distribution, which modifies the shape of laser pulses. The importance of the present study in cavitation bubble generation to improve the elasticity of the eye lens has also been discussed in this paper.
Wake meandering statistics of a model wind turbine: Insights gained by large eddy simulations
NASA Astrophysics Data System (ADS)
Foti, Daniel; Yang, Xiaolei; Guala, Michele; Sotiropoulos, Fotis
2016-08-01
Wind tunnel measurements in the wake of an axial flow miniature wind turbine provide evidence of large-scale motions characteristic of wake meandering [Howard et al., Phys. Fluids 27, 075103 (2015), 10.1063/1.4923334]. A numerical investigation of the wake, using immersed boundary large eddy simulations able to account for all geometrical details of the model wind turbine, is presented here to elucidate the three-dimensional structure of the wake and the mechanisms controlling near and far wake instabilities. Similar to the findings of Kang et al. [Kang et al., J. Fluid Mech. 744, 376 (2014), 10.1017/jfm.2014.82], an energetic coherent helical hub vortex is found to form behind the turbine nacelle, which expands radially outward downstream of the turbine and ultimately interacts with the turbine tip shear layer. Starting from the wake meandering filtering used by Howard et al., a three-dimensional spatiotemporal filtering process is developed to reconstruct a three-dimensional meandering profile in the wake of the turbine. The counterwinding hub vortex undergoes a spiral vortex breakdown and the rotational component of the hub vortex persists downstream, contributing to the rotational direction of the wake meandering. Statistical characteristics of the wake meandering profile, along with triple decomposition of the flow field separating the coherent and incoherent turbulent fluctuations, are used to delineate the near and far wake flow structures and their interactions. In the near wake, the nacelle leads to mostly incoherent turbulence, while in the far wake, turbulent coherent structures, especially the azimuthal velocity component, dominate the flow field.
NASA Technical Reports Server (NTRS)
1999-01-01
A lumpy bubble of hot gas rises from a cauldron of glowing matter in a distant galaxy, as seen by NASA's Hubble Space Telescope.
The new images, taken by Hubble's Wide Field and Planetary Camera 2, are online at http://oposite.stsci.edu/pubinfo/pr/2001/28 and http://www.jpl.nasa.gov/images/wfpc. The camera was designed and built by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Galaxy NGC 3079, located 50 million light-years from Earth in the constellation Ursa Major, has a huge bubble in the center of its disc, as seen in the image on the left. The smaller photo at right shows a close-up of the bubble. The two white dots are stars. Astronomers suspect the bubble is being blown by 'winds,' or high-speed streams of particles, released during a burst of star formation. The bubble's lumpy surface has four columns of gaseous filaments towering above the galaxy's disc. The filaments whirl around in a vortex and are expelled into space. Eventually, this gas will rain down on the disc and may collide with gas clouds, compress them and form a new generation of stars. Theoretical models indicate the bubble formed when winds from hot stars mixed with small bubbles of hot gas from supernova explosions. Radio telescope observations indicate those processes are still active. Eventually, the hot stars will die, and the bubble's energy source will fade away. The images, taken in 1998, show glowing gas as red and starlight as blue/green. Results appear in the July 1, 2001 issue of the Astrophysical Journal. More information about the Hubble Space Telescope is at http://www.stsci.edu. More information about the Wide Field and Planetary Camera 2 is at http://wfpc2.jpl.nasa.gov. The Space Telescope Science Institute, Baltimore, Md., manages space operations for Hubble for NASA's Office of Space Science, Washington, D.C. The institute is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract with the Goddard Space Flight Center, Greenbelt, Md. The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. JPL is a division of the California Institute of Technology in Pasadena.Flow structure of vortex-wing interaction
NASA Astrophysics Data System (ADS)
McKenna, Christopher K.
Impingement of a streamwise-oriented vortex upon a fin, tail, blade or wing represents a fundamental class of flow-structure interaction that extends across a range of applications. This interaction can give rise to time-averaged loading, as well as unsteady loading known as buffeting. The loading is sensitive to parameters of the incident vortex as well as the location of vortex impingement on the downstream aerodynamic surface, generically designated as a wing. Particle image velocimetry is employed to determine patterns of velocity, vorticity, swirl ratio, and streamlines on successive cross-flow planes upstream of and along the wing, which lead to volume representations and thereby characterization of the interaction. At locations upstream of the leading edge of the wing, the evolution of the incident vortex is affected by the presence of the wing, and is highly dependent on the spanwise location of vortex impingement. Even at spanwise locations of impingement well outboard of the wing tip, a substantial influence on the structure of the incident vortex at locations significantly upstream of the leading edge of the wing was observed. For spanwise locations close to or intersecting the vortex core, the effects of upstream influence of the wing on the vortex are to: decrease the swirl ratio; increase the streamwise velocity deficit; decrease the streamwise vorticity; increase the azimuthal vorticity; increase the upwash; decrease the downwash; and increase the root-mean-square fluctuations of both streamwise velocity and vorticity. The interrelationship between these effects is addressed, including the rapid attenuation of axial vorticity in presence of an enhanced defect of axial velocity in the central region of the vortex. Moreover, when the incident vortex is aligned with, or inboard of, the tip of the wing, the swirl ratio decreases to values associated with instability of the vortex, giving rise to enhanced values of azimuthal vorticity relative to the streamwise (axial) vorticity, as well as relatively large root-mean-square values of streamwise velocity and vorticity. Along the chord of the wing, the vortex interaction gives rise to distinct modes, which may involve either enhancement or suppression of the vortex generated at the tip of the wing. These modes are classified and interpreted in conjunction with computed modes at the Air Force Research Laboratory. Occurrence of a given mode of interaction is predominantly determined by the dimensionless location of the incident vortex relative to the tip of the wing and is generally insensitive to the Reynolds number and dimensionless circulation of the incident vortex. The genesis of the basic modes of interaction is clarified using streamline topology with associated critical points. Whereas formation of an enhanced tip vortex involves a region of large upwash in conjunction with localized flow separation, complete suppression of the tip vortex is associated with a small-scale separation-attachment bubble bounded by downwash at the wing tip. Oscillation of the wing at an amplitude and velocity nearly two orders of magnitude smaller than the wing chord and free stream velocity respectively can give rise to distinctive patterns of upwash, downwash, and shed vorticity, which are dependent on the outboard displacement of the incident vortex relative to the wing tip. Moreover, these patterns are a strong function of the phase of the wing motion during its oscillation cycle. At a given value of phase, the wing oscillation induces upwash that is reinforced by the upwash of the incident vortex, giving a maximum value of net upwash. Conversely, when these two origins of upwash counteract, rather than reinforce, one another during the oscillation cycle, the net upwash has its minimum value. Analogous interpretations hold for regions of maximum and minimum net downwash located outboard of the regions of upwash. During the oscillation cycle of the wing, the magnitude and scale of the vorticity shed from the tip of the wing are directly correlated with the net upwash, which takes different forms related to the outboard displacement of the incident vortex. As the location of the incident vortex is displaced towards the wing tip, both the maximum upwash and the maximum vorticity of the tip vortex initially increase, then decrease. For the limiting case where the incident vortex impinges directly upon the tip of the wing, there is no tip vortex or induced region of upwash. Furthermore, at small values of vortex displacement from the wing tip, the position of the incident vortex varies significantly from its nominal position during the oscillation cycle. For all locations of the incident vortex, it is shown that, despite the small amplitude of the wing motion, the flow topology is fundamentally different at maximum positive and negative values of the wing velocity, that is, they are not symmetric.
Stationary Crossflow Breakdown due to Mixed Mode Spectra of Secondary Instabilities
NASA Technical Reports Server (NTRS)
Li, Fei; Choudhari, Meelan M.; Duan, Lian
2016-01-01
Numerical simulations are used to study laminar breakdown characteristics associated with stationary crossflow instability in the boundary-layer flow over a subsonic swept-wing configuration. Previous work involving the linear and nonlinear development of individual, fundamental modes of secondary instability waves is extended by considering the role of more complex, yet controlled, spectra of the secondary instability modes. Direct numerical simulations target a mixed mode transition scenario involving the simultaneous presence of Y and Z modes of secondary instability. For the initial amplitudes investigated in this paper, the Y modes are found to play an insignificant role during the onset of transition, in spite of achieving rather large, O(5%), amplitudes of RMS velocity fluctuation prior to transition. Analysis of the numerical simulations shows that this rather surprising finding can be attributed to the fact that the Y modes are concentrated near the top of the crossflow vortex and exert relatively small influence on the Z modes that reside closer to the surface and can lead to transition via nonlinear spreading that does not involve interactions with the Y mode. Finally, secondary instability calculations reveal that subharmonic modes of secondary instability have substantially lower growth rates than those of the fundamental modes, and hence, are less likely to play an important role during the breakdown process involving complex initial spectra.
Design of a Compact Coaxial Magnetized Plasma Gun for Magnetic Bubble Expansion Experiments
2009-06-01
a peak a current Igun~ 80 kA and gun voltages Vgun~1 kV utine operation at a bank voltage of 7.5 kV yiel plasm after breakdown. Typical Igun and...and D2 are power electronic diodes, SW is the dump relay and C is the bias flux capacitor bank. The SCR, controlled by a 1 kV Trigger Pulse...capacitor charging circuit is shown in Figure 8. Figure 8. Gas valve capacitor charging circuit diagram 0 kΩ. 1, D2 and D3 are power electronic
NASA Technical Reports Server (NTRS)
Menzies, Margaret Anne
1996-01-01
The unsteady, three-dimensional Navier-Stokes equations coupled with the Euler equations of rigid-body dynamics are sequentially solved to simulate and analyze the aerodynamic response of a high angle of attack delta wing undergoing oscillatory motion. The governing equations of fluid flow and dynamics of the multidisciplinary problem are solved using a time-accurate solution of the laminar, unsteady, compressible, full Navier- Stokes equations with the implicit, upwind, Roe flux-difference splitting, finite-volume scheme and a four-stage Runge-Kutta scheme, respectively. The primary model under consideration consists of a 65 deg swept, sharp-edged, cropped delta wing of zero thickness at 20 deg angle of attack. In a freestream of Mach 0.85 and Reynolds number of 3.23 x 10(exp 6), the flow over the upper surface of the wing develops a complex shock system which interacts with the leading-edge primary vortices producing vortex breakdown. The effect of the oscillatory motion of the wing on the vortex breakdown and overall aerodynamic response is detailed to provide insight to the complicated physics associated with unsteady flows and the phenomenon of wing rock. Forced sinusoidal single and coupled mode rolling and pitching motion is presented for the wing in a transonic freestream. The Reynolds number, frequency of oscillation, and the phase angle are varied. Comparison between the single and coupled mode forced rolling and pitching oscillation cases illustrate the effects of coupling the motion. This investigation shows that even when coupled, forced rolling oscillation at a reduced frequency of 2(pi) eliminates the vortex breakdown which results in an increase in lift. The coupling effect for in phase forced oscillations show that the lift coefficient of the pitching-alone case and the rolling-moment coefficient of the rolling-alone case dominate the resulting response. However, with a phase lead in the pitching motion, the coupled motion results in a non-periodic response of the rolling moment. The second class of problems involve releasing the wing in roll to respond to the flowfield. Two models of sharp-edged delta wings, the previous 65 deg swept model and an 80 deg swept, sharp-edged delta wing, are used to observe the aerodynamic response of a wing free to roll in a transonic and subsonic freestream, respectively. These cases demonstrate damped oscillations, self-sustained limit cycle oscillations, and divergent rolling oscillations. Ultimately, an active control model using a mass injection system was applied on the surface of the wing to suppress the self-sustained limit cycle oscillation known as wing rock. Comparisons with experimental investigations complete this study, validating the analysis and illustrating the complex details afforded by computational investigations.
NASA Astrophysics Data System (ADS)
Kumar, Rajeev; King, Justin; Green, Melissa
2017-11-01
Three-dimensional Lagrangian analysis using the finite-time Lyapunov exponent (FTLE) field has been carried out on experimentally captured wake downstream of an oscillating trapezoidal panel. The trapezoidal geometry of the panel served as a simple model of a fish caudal fin. Three-dimensional FTLE isosurface appears as a shell wrapped around the wake vortex structures. A slice through the isosurfaces results in the familiar two-dimensional FTLE ridges. The attracting ridges (nFTLE) and the repelling ridges (pFTLE) are near-material lines and their intersections are analogous to topological saddle points in the flow field. A vortex-ring-based wake structure induces a streamwise momentum jet, evolution of which appears to be related to the timing of saddle point generation and behavior at the trailing edge. The time of release of these saddles at the trailing edge inside a pitching period appears to coincide with thrust extrema in similar experimental and numerical studies on foils and fins published in the literature. The merger of a pair of saddles from two consecutively shed vortices at a downstream location coincides with the occurrence of wake breakdown and precedes the formation of interconnected vortex loops and beginning of momentum-deficit zone in the time-averaged sense. This work was supported by the Office of Naval Research under ONR Award No. N00014-14-1-0418.
Hansen, Anja; Géneaux, Romain; Günther, Axel; Krüger, Alexander; Ripken, Tammo
2013-06-01
In femtosecond laser ophthalmic surgery tissue dissection is achieved by photodisruption based on laser induced optical breakdown. In order to minimize collateral damage to the eye laser surgery systems should be optimized towards the lowest possible energy threshold for photodisruption. However, optical aberrations of the eye and the laser system distort the irradiance distribution from an ideal profile which causes a rise in breakdown threshold energy even if great care is taken to minimize the aberrations of the system during design and alignment. In this study we used a water chamber with an achromatic focusing lens and a scattering sample as eye model and determined breakdown threshold in single pulse plasma transmission loss measurements. Due to aberrations, the precise lower limit for breakdown threshold irradiance in water is still unknown. Here we show that the threshold energy can be substantially reduced when using adaptive optics to improve the irradiance distribution by spatial beam shaping. We found that for initial aberrations with a root-mean-square wave front error of only one third of the wavelength the threshold energy can still be reduced by a factor of three if the aberrations are corrected to the diffraction limit by adaptive optics. The transmitted pulse energy is reduced by 17% at twice the threshold. Furthermore, the gas bubble motions after breakdown for pulse trains at 5 kilohertz repetition rate show a more transverse direction in the corrected case compared to the more spherical distribution without correction. Our results demonstrate how both applied and transmitted pulse energy could be reduced during ophthalmic surgery when correcting for aberrations. As a consequence, the risk of retinal damage by transmitted energy and the extent of collateral damage to the focal volume could be minimized accordingly when using adaptive optics in fs-laser surgery.
Hansen, Anja; Géneaux, Romain; Günther, Axel; Krüger, Alexander; Ripken, Tammo
2013-01-01
In femtosecond laser ophthalmic surgery tissue dissection is achieved by photodisruption based on laser induced optical breakdown. In order to minimize collateral damage to the eye laser surgery systems should be optimized towards the lowest possible energy threshold for photodisruption. However, optical aberrations of the eye and the laser system distort the irradiance distribution from an ideal profile which causes a rise in breakdown threshold energy even if great care is taken to minimize the aberrations of the system during design and alignment. In this study we used a water chamber with an achromatic focusing lens and a scattering sample as eye model and determined breakdown threshold in single pulse plasma transmission loss measurements. Due to aberrations, the precise lower limit for breakdown threshold irradiance in water is still unknown. Here we show that the threshold energy can be substantially reduced when using adaptive optics to improve the irradiance distribution by spatial beam shaping. We found that for initial aberrations with a root-mean-square wave front error of only one third of the wavelength the threshold energy can still be reduced by a factor of three if the aberrations are corrected to the diffraction limit by adaptive optics. The transmitted pulse energy is reduced by 17% at twice the threshold. Furthermore, the gas bubble motions after breakdown for pulse trains at 5 kilohertz repetition rate show a more transverse direction in the corrected case compared to the more spherical distribution without correction. Our results demonstrate how both applied and transmitted pulse energy could be reduced during ophthalmic surgery when correcting for aberrations. As a consequence, the risk of retinal damage by transmitted energy and the extent of collateral damage to the focal volume could be minimized accordingly when using adaptive optics in fs-laser surgery. PMID:23761849
A new flow model for highly separated airfoil flows at low speeds
NASA Technical Reports Server (NTRS)
Zumwalt, G. W.; Naik, S. N.
1979-01-01
An analytical model for separated airfoil flows is presented which is based on experimentally observed physical phenomena. These include a free stagnation point aft of the airfoil and a standing vortex in the separated region. A computer program is described which iteratively matches the outer potential flow, the airfoil turbulent boundary layer, the separated jet entrainment, mass conservation in the separated bubble, and the rear stagnation pressure. Separation location and pressure are not specified a priori. Results are presented for surface pressure coefficient and compared with experiment for three angles of attack for a GA(W)-1, 17% thick airfoil.
Turbulent swirling jets with excitation
NASA Technical Reports Server (NTRS)
Taghavi, Rahmat; Farokhi, Saeed
1988-01-01
An existing cold-jet facility at NASA Lewis Research Center was modified to produce swirling flows with controllable initial tangential velocity distribution. Two extreme swirl profiles, i.e., one with solid-body rotation and the other predominated by a free-vortex distribution, were produced at identical swirl number of 0.48. Mean centerline velocity decay characteristics of the solid-body rotation jet flow exhibited classical decay features of a swirling jet with S - 0.48 reported in the literature. However, the predominantly free-vortex distribution case was on the verge of vortex breakdown, a phenomenon associated with the rotating flows of significantly higher swirl numbers, i.e., S sub crit greater than or equal to 0.06. This remarkable result leads to the conclusion that the integrated swirl effect, reflected in the swirl number, is inadequate in describing the mean swirling jet behavior in the near field. The relative size (i.e., diameter) of the vortex core emerging from the nozzle and the corresponding tangential velocity distribution are also controlling factors. Excitability of swirling jets is also investigated by exciting a flow with a swirl number of 0.35 by plane acoustic waves at a constant sound pressure level and at various frequencies. It is observed that the cold swirling jet is excitable by plane waves, and that the instability waves grow about 50 percent less in peak r.m.s. amplitude and saturate further upstream compared to corresponding waves in a jet without swirl having the same axial mass flux. The preferred Strouhal number based on the mass-averaged axial velocity and nozzle exit diameter for both swirling and nonswirling flows is 0.4.
NASA Technical Reports Server (NTRS)
Erickson, Gary E.
1991-01-01
A wind tunnel experiment was conducted in the David Taylor Research Center 7- by 10-Foot Transonic Tunnel of the wing leading-edge extension (LEX) and forebody vortex flows at subsonic and transonic speeds about a 0.06-scale model of the F/A-18. The primary goal was to improve the understanding and control of the vortical flows, including the phenomena of vortex breakdown and vortex interactions with the vertical tails. Laser vapor screen flow visualizations, LEX, and forebody surface static pressures, and six-component forces and moments were obtained at angles of attack of 10 to 50 degrees, free-stream Mach numbers of 0.20 to 0.90, and Reynolds numbers based on the wing mean aerodynamic chord of 0.96 x 10(exp 6) to 1.75 x 10(exp 6). The wind tunnel results were correlated with in-flight flow visualizations and handling qualities trends obtained by NASA using an F-18 High-Alpha Research Vehicle (HARV) and by the Navy and McDonnell Douglas on F-18 aircraft with LEX fences added to improve the vertical tail buffet environment. Key issues that were addressed include the sensitivity of the vortical flows to the Reynolds number and Mach number; the reduced vertical tail excitation, and the corresponding flow mechanism, in the presence of the LEX fence; the repeatability of data obtained during high angle-of-attack wind tunnel testing of F-18 models; the effects of particle seeding for flow visualization on the quantitative model measurements; and the interpretation of off-body flow visualizations obtained using different illumination and particle seeding techniques.
Rapidly prototyped three-dimensional nanofluidic channel networks in glass substrates.
Ke, Kevin; Hasselbrink, Ernest F; Hunt, Alan J
2005-08-15
Microfluidic and nanofluidic technologies have long sought a fast, reliable method to overcome the creative limitations of planar fabrication methods, the resolution limits of lithography, and the materials limitations for fast prototyping. In the present work, we demonstrate direct 3D machining of submicrometer diameter, subsurface fluidic channels in glass, via optical breakdown near critical intensity, using a femtosecond pulsed laser. No postexposure etching or bonding is required; the channel network (or almost any arbitrary-shaped cavity below the surface) is produced directly from "art-to-part". The key to this approach is to use very low energy, highly focused, pulses in the presence of liquid. Microbubbles that result from laser energy deposition gently expand and extrude machining debris from the channels. These bubbles are in a highly damped, low Reynolds number regime, implying that surface spalling due to bubble collapse is unimportant. We demonstrate rapid prototyping of three-dimensional "jumpers", mixers, and other key components of complex 3D microscale analysis systems in glass substrates.
Modern developments in shear flow control with swirl
NASA Technical Reports Server (NTRS)
Farokhi, Saeed; Taghavi, R.
1990-01-01
Passive and active control of swirling turbulent jets is experimentally investigated. Initial swirl distribution is shown to dominate the free jet evolution in the passive mode. Vortex breakdown, a manifestation of high intensity swirl, was achieved at below critical swirl number (S = 0.48) by reducing the vortex core diameter. The response of a swirling turbulent jet to single frequency, plane wave acoustic excitation was shown to depend strongly on the swirl number, excitation Strouhal number, amplitude of the excitation wave, and core turbulence in a low speed cold jet. A 10 percent reduction of the mean centerline velocity at x/D = 9.0 (and a corresponding increase in the shear layer momentum thickness) was achieved by large amplitude internal plane wave acoustic excitation. Helical instability waves of negative azimuthal wave numbers exhibit larger amplification rates than the plane waves in swirling free jets, according to hydrodynamic stability theory. Consequently, an active swirling shear layer control is proposed to include the generation of helical instability waves of arbitrary helicity and the promotion of modal interaction, through multifrequency forcing.
Sudden Appearance of Water in Flowmeter During Air/Oxygen and Sevoflurane Anaesthesia.
Kandemir, Tünay; Muslu, Selda; Kandemir, Erbin
2015-02-01
Endotracheal intubation was performed, and a water bubbling sound was heard from the anaesthesia device immediately after the release of gases to administer the O2-air-sevoflurane mixture. The flowmeter on the anaesthesia device was then found to be filled with water. The breakdown of the dryer in the medical air compressor system was determined as the source of the problem, since a greasy fluid mixture was released from the air-wall outlets in all rooms. Consequently, the anaesthesia team should keep in mind that problems as seen in the current case might emerge and should be alert.
Increased instrument intelligence--can it reduce laboratory error?
Jekelis, Albert W
2005-01-01
Recent literature has focused on the reduction of laboratory errors and the potential impact on patient management. This study assessed the intelligent, automated preanalytical process-control abilities in newer generation analyzers as compared with older analyzers and the impact on error reduction. Three generations of immuno-chemistry analyzers were challenged with pooled human serum samples for a 3-week period. One of the three analyzers had an intelligent process of fluidics checks, including bubble detection. Bubbles can cause erroneous results due to incomplete sample aspiration. This variable was chosen because it is the most easily controlled sample defect that can be introduced. Traditionally, lab technicians have had to visually inspect each sample for the presence of bubbles. This is time consuming and introduces the possibility of human error. Instruments with bubble detection may be able to eliminate the human factor and reduce errors associated with the presence of bubbles. Specific samples were vortexed daily to introduce a visible quantity of bubbles, then immediately placed in the daily run. Errors were defined as a reported result greater than three standard deviations below the mean and associated with incomplete sample aspiration of the analyte of the individual analyzer Three standard deviations represented the target limits of proficiency testing. The results of the assays were examined for accuracy and precision. Efficiency, measured as process throughput, was also measured to associate a cost factor and potential impact of the error detection on the overall process. The analyzer performance stratified according to their level of internal process control The older analyzers without bubble detection reported 23 erred results. The newest analyzer with bubble detection reported one specimen incorrectly. The precision and accuracy of the nonvortexed specimens were excellent and acceptable for all three analyzers. No errors were found in the nonvortexed specimens. There were no significant differences in overall process time for any of the analyzers when tests were arranged in an optimal configuration. The analyzer with advanced fluidic intelligence demostrated the greatest ability to appropriately deal with an incomplete aspiration by not processing and reporting a result for the sample. This study suggests that preanalytical process-control capabilities could reduce errors. By association, it implies that similar intelligent process controls could favorably impact the error rate and, in the case of this instrument, do it without negatively impacting process throughput. Other improvements may be realized as a result of having an intelligent error-detection process including further reduction in misreported results, fewer repeats, less operator intervention, and less reagent waste.
Initial in vitro evaluation of a pediatric vortex-mixing membrane lung.
Peacock, J A; Bellhouse, B J; Abel, K; Bellhouse, E L; Bellhouse, F H; Jeffree, M A; Sykes, M K; Gardaz, J P
1983-05-01
A new design for a pediatric membrane lung is described in this paper. The lung consists of eight blood compartments, each having six U-shaped blood channels, with microporous PTFE membranes supported on rigid plates in such a way that the membranes form furrowed blood channels. Two rolling diaphragm pumps are attached to the open ends of the U-shaped blood channels; these pumps are operated in antiphase. Mean flow is provided by a roller pump placed at the inlet end of the membrane lung. Pulsatile blood flow within the blood channels produces successive vortex formation and ejection, leading to good blood mixing and high efficiency in gas transport. The design of the rolling diaphragm piston pumps ensures that the blood prime volume is low (280 ml), and the grouping of the pumps at one end of the oxygenator allows the driving mechanism to be simple and compact. The relatively wide blood channels (minimum width 0.5 mm) and vortex mixing make priming the membrane lung particularly easy. The membrane area is 0.39 m2. Preliminary performance testing of the pediatric membrane lung was undertaken by pumping blood around a circuit containing a roller pump, the membrane lung, and a bubble oxygenator (to adjust the blood gases at the inlet to the membrane lung). In five such experiments it was shown that the membrane lung transferred 80 ml O2/min and 120 ml CO2/min at a blood flow rate of 1.5 L/min.
Numerical evaluation of gas core length in free surface vortices
NASA Astrophysics Data System (ADS)
Cristofano, L.; Nobili, M.; Caruso, G.
2014-11-01
The formation and evolution of free surface vortices represent an important topic in many hydraulic intakes, since strong whirlpools introduce swirl flow at the intake, and could cause entrainment of floating matters and gas. In particular, gas entrainment phenomena are an important safety issue for Sodium cooled Fast Reactors, because the introduction of gas bubbles within the core causes dangerous reactivity fluctuation. In this paper, a numerical evaluation of the gas core length in free surface vortices is presented, according to two different approaches. In the first one, a prediction method, developed by the Japanese researcher Sakai and his team, has been applied. This method is based on the Burgers vortex model, and it is able to estimate the gas core length of a free surface vortex starting from two parameters calculated with single-phase CFD simulations. The two parameters are the circulation and the downward velocity gradient. The other approach consists in performing a two-phase CFD simulation of a free surface vortex, in order to numerically reproduce the gas- liquid interface deformation. Mapped convergent mesh is used to reduce numerical error and a VOF (Volume Of Fluid) method was selected to track the gas-liquid interface. Two different turbulence models have been tested and analyzed. Experimental measurements of free surface vortices gas core length have been executed, using optical methods, and numerical results have been compared with experimental measurements. The computational domain and the boundary conditions of the CFD simulations were set consistently with the experimental test conditions.
The leading-edge vortex of swift wing-shaped delta wings
NASA Astrophysics Data System (ADS)
Muir, Rowan Eveline; Arredondo-Galeana, Abel; Viola, Ignazio Maria
2017-08-01
Recent investigations on the aerodynamics of natural fliers have illuminated the significance of the leading-edge vortex (LEV) for lift generation in a variety of flight conditions. A well-documented example of an LEV is that generated by aircraft with highly swept, delta-shaped wings. While the wing aerodynamics of a manoeuvring aircraft, a bird gliding and a bird in flapping flight vary significantly, it is believed that this existing knowledge can serve to add understanding to the complex aerodynamics of natural fliers. In this investigation, a model non-slender delta-shaped wing with a sharp leading edge is tested at low Reynolds number, along with a delta wing of the same design, but with a modified trailing edge inspired by the wing of a common swift Apus apus. The effect of the tapering swift wing on LEV development and stability is compared with the flow structure over the unmodified delta wing model through particle image velocimetry. For the first time, a leading-edge vortex system consisting of a dual or triple LEV is recorded on a swift wing-shaped delta wing, where such a system is found across all tested conditions. It is shown that the spanwise location of LEV breakdown is governed by the local chord rather than Reynolds number or angle of attack. These findings suggest that the trailing-edge geometry of the swift wing alone does not prevent the common swift from generating an LEV system comparable with that of a delta-shaped wing.
The leading-edge vortex of swift wing-shaped delta wings
Muir, Rowan Eveline; Arredondo-Galeana, Abel
2017-01-01
Recent investigations on the aerodynamics of natural fliers have illuminated the significance of the leading-edge vortex (LEV) for lift generation in a variety of flight conditions. A well-documented example of an LEV is that generated by aircraft with highly swept, delta-shaped wings. While the wing aerodynamics of a manoeuvring aircraft, a bird gliding and a bird in flapping flight vary significantly, it is believed that this existing knowledge can serve to add understanding to the complex aerodynamics of natural fliers. In this investigation, a model non-slender delta-shaped wing with a sharp leading edge is tested at low Reynolds number, along with a delta wing of the same design, but with a modified trailing edge inspired by the wing of a common swift Apus apus. The effect of the tapering swift wing on LEV development and stability is compared with the flow structure over the unmodified delta wing model through particle image velocimetry. For the first time, a leading-edge vortex system consisting of a dual or triple LEV is recorded on a swift wing-shaped delta wing, where such a system is found across all tested conditions. It is shown that the spanwise location of LEV breakdown is governed by the local chord rather than Reynolds number or angle of attack. These findings suggest that the trailing-edge geometry of the swift wing alone does not prevent the common swift from generating an LEV system comparable with that of a delta-shaped wing. PMID:28878968
The leading-edge vortex of swift wing-shaped delta wings.
Muir, Rowan Eveline; Arredondo-Galeana, Abel; Viola, Ignazio Maria
2017-08-01
Recent investigations on the aerodynamics of natural fliers have illuminated the significance of the leading-edge vortex (LEV) for lift generation in a variety of flight conditions. A well-documented example of an LEV is that generated by aircraft with highly swept, delta-shaped wings. While the wing aerodynamics of a manoeuvring aircraft, a bird gliding and a bird in flapping flight vary significantly, it is believed that this existing knowledge can serve to add understanding to the complex aerodynamics of natural fliers. In this investigation, a model non-slender delta-shaped wing with a sharp leading edge is tested at low Reynolds number, along with a delta wing of the same design, but with a modified trailing edge inspired by the wing of a common swift Apus apus . The effect of the tapering swift wing on LEV development and stability is compared with the flow structure over the unmodified delta wing model through particle image velocimetry. For the first time, a leading-edge vortex system consisting of a dual or triple LEV is recorded on a swift wing-shaped delta wing, where such a system is found across all tested conditions. It is shown that the spanwise location of LEV breakdown is governed by the local chord rather than Reynolds number or angle of attack. These findings suggest that the trailing-edge geometry of the swift wing alone does not prevent the common swift from generating an LEV system comparable with that of a delta-shaped wing.
Design and Predictions for High-Altitude (Low Reynolds Number) Aerodynamic Flight Experiment
NASA Technical Reports Server (NTRS)
Greer, Donald; Harmory, Phil; Krake, Keith; Drela, Mark
2000-01-01
A sailplane being developed at NASA Dryden Flight Research Center will support a high-altitude flight experiment. The experiment will measure the performance parameters or an airfoil at high altitudes (70,000 - 100,000 ft), low Reynolds numbers (2 x 10(exp 5) - 7 x 10(exp 5)), and high subsonic Mach numbers (0.5 and 0.65). The airfoil section lift and drag are determined from pilot and static pressure measurements. The locations of the separation bubble, Tollmien-Schlichting boundary-layer instability frequencies, and vortex shedding are measured from a hot-film strip. The details of the planned flight experiment are presented as well as several predictions of the airfoil performance.
An RF Sensor for Gauging Screen-Channel Liquid Acquisition Devices for Cryogenic Propellants
NASA Technical Reports Server (NTRS)
Zimmerli, Gregory A.; Metzger, Scott; Asipauskas, Marius
2014-01-01
A key requirement of a low-gravity screen-channel liquid acquisition device (LAD) is the need to retain 100% liquid in the channel in response to propellant outflow and spacecraft maneuvers. The point at which a screen-channel LAD ingests vapor is known as breakdown, and can be measured several different ways such as: visual observation of bubbles in the LAD channel outflow; a sudden change in pressure drop between the propellant tank and LAD sump outlet; or, an indication by wet-dry sensors placed in the LAD channel or outflow stream. Here we describe a new type of sensor for gauging a screen-channel LAD, the Radio Frequency Mass Gauge (RFMG). The RFMG measures the natural electromagnetic modes of the screen-channel LAD, which is very similar to an RF waveguide, to determine the amount of propellant in the channel. By monitoring several of the RF modes, we show that the RFMG acts as a global sensor of the LAD channel propellant fill level, and enables detection of LAD breakdown even in the absence of outflow. This paper presents the theory behind the RFMG-LAD sensor, measurements and simulations of the RF modes of a LAD channel, and RFMG detection of LAD breakdown in a channel using a simulant fluid during inverted outflow and long-term stability tests.
2003-03-01
moins développé que le tourbillon expérimental. En moyenne, par effet de compensation entre la région de bord d’attaque et la région proche de ...que les effets d’anisotropie de la turbulence. Un premier élément de réponse peut être obtenu en utilisant un modèle de turbulence un plus élaboré, tel...que l’EARSM (Explicit Algebraïc Reynolds Stress Model) qui prend en compte les effets de rotation et d’anisotropie [Ref 6]. Nous verrons au paragraphe
Flow-separation patterns on symmetric forebodies
NASA Technical Reports Server (NTRS)
Keener, Earl R.
1986-01-01
Flow-visualization studies of ogival, parabolic, and conical forebodies were made in a comprehensive investigation of the various types of flow patterns. Schlieren, vapor-screen, oil-flow, and sublimation flow-visualization tests were conducted over an angle-of-attack range from 0 deg. to 88 deg., over a Reynolds-number range from 0.3X10(6) to 2.0X10(6) (based on base diameter), and over a Mach number range from 0.1 to 2. The principal effects of angle of attack, Reynolds number, and Mach number on the occurrence of vortices, the position of vortex shedding, the principal surface-flow-separation patterns, the magnitude of surface-flow angles, and the extent of laminar and turbulent flow for symmetric, asymmetric, and wake-like flow-separation regimes are presented. It was found that the two-dimensional cylinder analogy was helpful in a qualitative sense in analyzing both the surface-flow patterns and the external flow field. The oil-flow studies showed three types of primary separation patterns at the higher Reynolds numbers owing to the influence of boundary-layer transition. The effect of angle of attack and Reynolds number is to change the axial location of the onset and extent of the primary transitional and turbulent separation regions. Crossflow inflectional-instability vortices were observed on the windward surface at angles of attack from 5 deg. to 55 deg. Their effect is to promote early transition. At low angles of attack, near 10 deg., an unexpected laminar-separation bubble occurs over the forward half of the forebody. At high angles of attack, at which vortex asymmetry occurs, the results support the proposition that the principal cause of vortex asymmetry is the hydrodynamic instability of the inviscid flow field. On the other hand, boundary-layer asymmetries also occur, especially at transitional Reynolds numbers. The position of asymmetric vortex shedding moves forward with increasing angle of attack and with increasing Reynolds number, and moves rearward with increasing Mach number.
Unsteady forces on a circular cylinder at critical Reynolds numbers
NASA Astrophysics Data System (ADS)
Lehmkuhl, O.; Rodríguez, I.; Borrell, R.; Chiva, J.; Oliva, A.
2014-12-01
It is well known that the flow past a circular cylinder at critical Reynolds number combines flow separation, turbulence transition, reattachment of the flow, and further turbulent separation of the boundary layer. The transition to turbulence in the boundary layer causes the delaying of the separation point and an important reduction of the drag force on the cylinder surface known as the drag crisis. In the present work, large-eddy simulations of the flow past a cylinder at Reynolds numbers in the range 2.5 × 105-6.5 × 105 are performed. It is shown how the pressure distribution changes as the Reynolds number increases in an asymmetric manner, occurring first on one side of the cylinder and then on the other side to complete the drop in the drag up to 0.23 at Re = 6.5 × 105. These variations in the pressure profile are accompanied by the presence of a small recirculation bubble, observed as a small plateau in the pressure, and located around ϕ = 105∘ (measured from the stagnation point). This small recirculation bubble anticipated by the experimental measurements is here well captured by the present computations and its position and size measured at every Reynolds number. The changes in the wake configuration as the Reynolds number increases are also shown and their relation to the increase in the vortex shedding frequency is discussed. The power spectra for the velocity fluctuations are computed. The analysis of the resulting spectrum showed the footprint of Kelvin-Helmholtz instabilities in the whole range. It is found that the ratio of these instabilities frequency to the primary vortex shedding frequency matches quite well the scaling proposed by Prasad and Williamson ["The instability of the separated shear layer from a bluff body," Phys. Fluids 8, 1347 (1996); "The instability of the shear layer separating from a bluff body," J. Fluid Mech. 333, 375-492 (1997)] (fKH/fvs ∝ Re0.67).
Partial discharge testing of bulk transformer oil
NASA Astrophysics Data System (ADS)
Rohwein, G. J.
The generation of partial discharges in bulk transformer oil was investigated experimentally to determine the dominant conditions which contribute to their formation and growth under repetitive impulse stresses. The motivation for conducting these experiments arose from a problem with partial discharges and breakdowns occurring in the insulating oil around the high voltage switch in a continuous running 1.5 MV repetitive pulser system. From the experiment it was found tht repetitive stressing caused low level field ionization around the electrodes which led to bubble formation and eventually partial discharges. There were also qualitative indications of charge accumulation in the oil. Photographic records of numerous shot sequences were used to study the phenomena.
A simple mass-conserved level set method for simulation of multiphase flows
NASA Astrophysics Data System (ADS)
Yuan, H.-Z.; Shu, C.; Wang, Y.; Shu, S.
2018-04-01
In this paper, a modified level set method is proposed for simulation of multiphase flows with large density ratio and high Reynolds number. The present method simply introduces a source or sink term into the level set equation to compensate the mass loss or offset the mass increase. The source or sink term is derived analytically by applying the mass conservation principle with the level set equation and the continuity equation of flow field. Since only a source term is introduced, the application of the present method is as simple as the original level set method, but it can guarantee the overall mass conservation. To validate the present method, the vortex flow problem is first considered. The simulation results are compared with those from the original level set method, which demonstrates that the modified level set method has the capability of accurately capturing the interface and keeping the mass conservation. Then, the proposed method is further validated by simulating the Laplace law, the merging of two bubbles, a bubble rising with high density ratio, and Rayleigh-Taylor instability with high Reynolds number. Numerical results show that the mass is a well-conserved by the present method.
Formation of a cavitation cluster in the vicinity of a quasi-empty rupture
NASA Astrophysics Data System (ADS)
Bol'shakova, E. S.; Kedrinskiy, V. K.
2017-09-01
The presentation deals with one of the experimental and numerical models of a quasi-empty rupture in the magma melt. This rupture is formed in the liquid layer of a distilled cavitating fluid under shock loading within the framework of the problem formulation with a small electromagnetic hydrodynamic shock tube. It is demonstrated that the rupture is shaped as a spherical segment, which retains its topology during the entire process of its evolution and collapsing. The dynamic behavior of the quasi-empty rupture is analyzed, and the growth of cavitating nuclei in the form of the boundary layer near the entire rupture interface is found. It is shown that rupture implosion is accompanied by the transformation of the bubble boundary layer to a cavitating cluster, which takes the form of a ring-shaped vortex floating upward to the free surface of the liquid layer. A p-κ mathematical model is formulated, and calculations are performed to investigate the implosion of a quasi-empty spherical cavity in the cavitating liquid, generation of a shock wave by this cavity, and dynamics of the bubble density growth in the cavitating cluster by five orders of magnitude.
Probing the Bioeffects of Cavitation at the Single-Cell Level
NASA Astrophysics Data System (ADS)
Yuan, Fang
The primary goal of this dissertation research is to develop an experimental system and associated techniques that can be used to investigate the bioeffects produced by cavitation bubbles at the single cell level. Such information has been lacking due to the randomness and complexity in cavitation inception and subsequent bubble-bubble interaction generated by an acoustic field typically used in therapeutic ultrasound applications. Connection between cavitation activities and bioeffects produced in cells nearby presents another challenge that has not been resolved satisfactorily. In this work, we developed a laser-based system for generating tandem bubbles with a maximum diameter about 50 microm (i.e., on the scale of a single cell) in a microfluidic channel of 25 microm in height and 800 microm in width. We further developed techniques for micropatterning of individual gold dots (15 nm thick and 6 microm in diameter) used for bubble generation, which are precisely aligned at various stand-off distances (SD) from individual islands (32 x 32 microm2) coated with fibronectin used for cell adhesion. The dynamics of tandem bubble interaction with resultant jet formation, microstreaming and vortex flow in the microfluidic channel were captured by high-speed imaging and particle image velocimetry (PIV). The deformation of the target cell was recorded by high-speed imaging as well (using a second camera) immediately after the tandem bubble interaction and assessment of membrane strain was aided with 2 microm sized polystyrene beads attached to the cell membrane. Membrane poration was characterized by uptake of fluorescent propodium iodide (PI) into the target cell, from which the normalized maximum pore size was estimated. Using this experimental system, we have observed the complete process of bubble-bubble interaction with resultant jetting flow, cell deformation, and localized pinpoint membrane rupture with progressive diffusion of macromolecules into the target cell. Furthermore, we observed a clear SD dependence in the treatment outcome produced by the tandem bubbles. At short SD of 10 microm, all treated cells underwent necrosis with high yet unsaturated level of PI uptake, indicating that the cell could not reseal the poration site. At intermediate SD of 20 ˜ 30 microm, 58% to 80% of the cells were observed to have repairable membrane poration with low to medium but saturated level of PI uptake. At long SD of 40 microm, no detectable PI uptake was observed, corresponding to no membrane compromise. Within the repairable membrane poration group, the sub-population of cells that eventually survived without apoptosis increased from about 9% at SD of 20 microm with strong adhesion to about 70% at SD of 30 microm with no adhesion at the leading edge facing the jetting flow. The maximum PI uptake, pore size, and membrane strain estimated could vary by more than an order of magnitude, which is similar to the magnitude of variations in pore size (0.2 ˜ 2 microm) produced by tandem bubbles observed by SEM. The large principal strain (> 500%) with associated high strain-rate (> 106·s -1) produced by the tandem bubbles provide a unique tool to examine the bioeffects of cavitation at the single cell level and potentially a diverse range of applications to be explored.
From fire whirls to blue whirls and combustion with reduced pollution.
Xiao, Huahua; Gollner, Michael J; Oran, Elaine S
2016-08-23
Fire whirls are powerful, spinning disasters for people and surroundings when they occur in large urban and wildland fires. Whereas fire whirls have been studied for fire-safety applications, previous research has yet to harness their potential burning efficiency for enhanced combustion. This article presents laboratory studies of fire whirls initiated as pool fires, but where the fuel sits on a water surface, suggesting the idea of exploiting the high efficiency of fire whirls for oil-spill remediation. We show the transition from a pool fire, to a fire whirl, and then to a previously unobserved state, a "blue whirl." A blue whirl is smaller, very stable, and burns completely blue as a hydrocarbon flame, indicating soot-free burning. The combination of fast mixing, intense swirl, and the water-surface boundary creates the conditions leading to nearly soot-free combustion. With the worldwide need to reduce emissions from both wanted and unwanted combustion, discovery of this state points to possible new pathways for reduced-emission combustion and fuel-spill cleanup. Because current methods to generate a stable vortex are difficult, we also propose that the blue whirl may serve as a research platform for fundamental studies of vortices and vortex breakdown in fluid mechanics.
Dynamical behavior of lean swirling premixed flame generated by change in gravitational orientation
NASA Astrophysics Data System (ADS)
Gotoda, Hiroshi; Miyano, Takaya; Shepherd, Ian
2010-11-01
The dynamic behavior of flame front instability in lean swirling premixed flame generated by the effect of gravitational orientation has been experimentally investigated in this work. When the gravitational direction is changed relative to the flame front, i.e., in inverted gravity, an unstably fluctuating flame (unstable flame) is formed in a limited domain of equivalence ratio and swirl number (Gotoda. H et al., Physical Review E, vol. 81, 026211, 2010). The time history of flame front fluctuations show that in the buoyancy-dominated region, chaotic irregular fluctuation with low frequencies is superimposed on the dominant periodic oscillation of the unstable flame. This periodic oscillation is produced by unstable large-scale vortex motion in combustion products generated by a change in the buoyancy/swirl interaction due to the inversion of gravitational orientation. As a result, the dynamic behavior of the unstable flame becomes low-dimensional deterministic chaos. Its dynamics maintains low-dimensional deterministic chaos even in the momentum-dominated region, in which vortex breakdown in the combustion products clearly occurs. These results were clearly demonstrated by the use of nonlinear time series analysis based on chaos theory, which has not been widely applied to the investigation of combustion phenomena.
The Physics of Twisted Magnetic Tubes Rising in a Stratified Medium: Two-dimensional Results
NASA Astrophysics Data System (ADS)
Emonet, T.; Moreno-Insertis, F.
1998-01-01
The physics of a twisted magnetic flux tube rising in a stratified medium is studied using a numerical magnetohydrodynamic (MHD) code. The problem considered is fully compressible (has no Boussinesq approximation), includes ohmic resistivity, and is two-dimensional, i.e., there is no variation of the variables in the direction of the tube axis. We study a high-plasma β-case with a small ratio of radius to external pressure scale height. The results obtained will therefore be of relevance to understanding the transport of magnetic flux across the solar convection zone. We confirm that a sufficient twist of the field lines around the tube axis can suppress the conversion of the tube into two vortex rolls. For a tube with a relative density deficit on the order of 1/β (the classical Parker buoyancy) and a radius smaller than the pressure scale height (R2<
Boundary-layer exchange by bubble: A novel method for generating transient nanofluidic layers
NASA Astrophysics Data System (ADS)
Jennissen, Herbert P.
2005-10-01
Unstirred layers (i.e., Nernst boundary layers) occur on every dynamic solid-liquid interface, constituting a diffusion barrier, since the velocity of a moving liquid approaches zero at the surface (no slip). If a macromolecule-surface reaction rate is higher than the diffusion rate, the Nernst layer is solute depleted and the reaction rate becomes mass-transport limited. The thickness of a Nernst boundary layer (δN) generally lies between 5 and 50μm. In an evanescent wave rheometer, measuring fibrinogen adsorption to fused silica, we made the fundamental observation that an air bubble preceding the sample through the flow cell abolishes the mass-transport limitation of the Nernst diffusion layer. Instead exponential kinetics are found. Experimental and simulation studies strongly indicate that these results are due to the elimination of the Nernst diffusion layer and its replacement by a dynamic nanofluidic layer (δν) maximally 200-300nm thick. It is suggested that the air bubble leads to a transient boundary-layer separation into a novel nanoboundary layer on the surface and the bulk fluid velocity profile separated by a vortex sheet with an estimated lifetime of 30-60s. A bubble-induced boundary-layer exchange from the Nernst to the nanoboundary layer and back is obtained, giving sufficient time for the measurement of unbiased exponential surface kinetics. Noteworthy is that the nanolayer can exist at all and displays properties such as (i) a long persistence and resistance to dissipation by the bulk liquid (boundary-layer-exchange-hysteresis) and (ii) a lack of solute depletion in spite of boundary-layer separation. The boundary-layer-exchange by bubble (BLEB) method therefore appears ideal for enhancing the rates of all types of diffusion-limited macromolecular reactions on surfaces with contact angles between 0° and 90° and only appears limited by slippage due to nanobubbles or an air gap beneath the nanofluidic layer on very hydrophobic surfaces. The possibility of producing nanoboundary layers without any nanostructuring or nanomachining should also be useful for fundamental physical studies in nanofluidics.
Investigation of Unsteady Flow Behavior in Transonic Compressor Rotors with LES and PIV Measurements
NASA Technical Reports Server (NTRS)
Hah, Chunill; Voges, Melanie; Mueller, Martin; Schiffer, Heinz-Peter
2009-01-01
In the present study, unsteady flow behavior in a modern transonic axial compressor rotor is studied in detail with large eddy simulation (LES) and particle image velocimetry (PIV). The main purpose of the study is to advance the current understanding of the flow field near the blade tip in an axial transonic compressor rotor near the stall and peak-efficiency conditions. Flow interaction between the tip leakage vortex and the passage shock is inherently unsteady in a transonic compressor. Casing-mounted unsteady pressure transducers have been widely applied to investigate steady and unsteady flow behavior near the casing. Although many aspects of flow have been revealed, flow structures below the casing cannot be studied with casing-mounted pressure transducers. In the present study, unsteady velocity fields are measured with a PIV system and the measured unsteady flow fields are compared with LES simulations. The currently applied PIV measurements indicate that the flow near the tip region is not steady even at the design condition. This self-induced unsteadiness increases significantly as the compressor rotor operates near the stall condition. Measured data from PIV show that the tip clearance vortex oscillates substantially near stall. The calculated unsteady characteristics of the flow from LES agree well with the PIV measurements. Calculated unsteady flow fields show that the formation of the tip clearance vortex is intermittent and the concept of vortex breakdown from steady flow analysis does not seem to apply in the current flow field. Fluid with low momentum near the pressure side of the blade close to the leading edge periodically spills over into the adjacent blade passage. The present study indicates that stall inception is heavily dependent on unsteady behavior of the flow field near the leading edge of the blade tip section for the present transonic compressor rotor.
Dynamic stall experiments on the NACA 0012 airfoil
NASA Technical Reports Server (NTRS)
Mcalister, K. W.; Carr, L. W.; Mccroskey, W. J.
1978-01-01
The flow over a NACA 0012 airfoil undergoing large oscillations in pitch was experimentally studied at a Reynolds number of and over a range of frequencies and amplitudes. Hot-wire probes and surface-pressure transducers were used to clarify the role of the laminar separation bubble, to delineate the growth and shedding of the stall vortex, and to quantify the resultant aerodynamic loads. In addition to the pressure distributions and normal force and pitching moment data that have often been obtained in previous investigations, estimates of the unsteady drag force during dynamic stall have been derived from the surface pressure measurements. Special characteristics of the pressure response, which are symptomatic of the occurrence and relative severity of moment stall, have also been examined.
Interfacial patterns in magnetorheological fluids: Azimuthal field-induced structures.
Dias, Eduardo O; Lira, Sérgio A; Miranda, José A
2015-08-01
Despite their practical and academic relevance, studies of interfacial pattern formation in confined magnetorheological (MR) fluids have been largely overlooked in the literature. In this work, we present a contribution to this soft matter research topic and investigate the emergence of interfacial instabilities when an inviscid, initially circular bubble of a Newtonian fluid is surrounded by a MR fluid in a Hele-Shaw cell apparatus. An externally applied, in-plane azimuthal magnetic field produced by a current-carrying wire induces interfacial disturbances at the two-fluid interface, and pattern-forming structures arise. Linear stability analysis, weakly nonlinear theory, and a vortex sheet approach are used to access early linear and intermediate nonlinear time regimes, as well as to determine stationary interfacial shapes at fully nonlinear stages.
Experimental and numerical investigation of HyperVapotron heat transfer
NASA Astrophysics Data System (ADS)
Wang, Weihua; Deng, Haifei; Huang, Shenghong; Chu, Delin; Yang, Bin; Mei, Luoqin; Pan, Baoguo
2014-12-01
The divertor first wall and neutral beam injection (NBI) components of tokamak devices require high heat flux removal up to 20-30 MW m-2 for future fusion reactors. The water cooled HyperVapotron (HV) structure, which relies on internal grooves or fins and boiling heat transfer to maximize the heat transfer capability, is the most promising candidate. The HV devices, that are able to transfer large amounts of heat (1-20 MW m-2) efficiently, have therefore been developed specifically for this application. Until recently, there have been few attempts to observe the detailed bubble characteristics and vortex evolvement of coolant flowing inside their various parts and understand of the internal two-phase complex heat transfer mechanism behind the vapotron effect. This research builds the experimental facilities of HyperVapotron Loop-I (HVL-I) and Pressure Water HyperVapotron Loop-II (PWHL-II) to implement the subcooled boiling principle experiment in terms of typical flow parameters, geometrical parameters of test section and surface heat flux, which are similar to those of the ITER-like first wall and NBI components (EAST and MAST). The multiphase flow and heat transfer phenomena on the surface of grooves and triangular fins when the subcooled water flowed through were observed and measured with the planar laser induced fluorescence (PLIF) and high-speed photography (HSP) techniques. Particle image velocimetry (PIV) was selected to reveal vortex formation, the flow structure that promotes the vapotron effect during subcooled boiling. The coolant flow data for contributing to the understanding of the vapotron phenomenon and the assessment of how the design and operational conditions that might affect the thermal performance of the devices were collected and analysed. The subcooled flow boiling model and methods of HV heat transfer adopted in the considered computational fluid dynamics (CFD) code were evaluated by comparing the calculated wall temperatures with the experimentally measured values. It was discovered that the bubble and vortex characteristics in the HV are clearly heavily dependent on the internal geometry, flow conditions and input heat flux. The evaporation latent heat is the primary heat transfer mechanism of HV flow under the condition of high heat flux, and the heat transfer through convection is very limited. The percentage of wall heat flux going into vapour production is almost 70%. These relationships between the flow phenomena and thermal performance of the HV device are essential to study the mechanisms for the flow structure alterations for design optimization and improvements of the ITER-like devices' water cooling structure and plasma facing components for future fusion reactors.
The Wake Vortex Prediction and Monitoring System WSVBS
NASA Astrophysics Data System (ADS)
Gerz, T.; Holzäpfel, F.
2009-09-01
Design and performance of the Wake Vortex Prediction and Monitoring System WSVBS are described. The WSVBS has been developed to tactically increase airport capacity for approach and landing on closely-spaced parallel runways. It is thought to dynamically adjust aircraft separations dependent on weather conditions and the resulting wake vortex behaviour without compromising safety. The WSVBS consists of components that consider meteorological conditions, aircraft glide path adherence, aircraft parameter combinations representing aircraft weight categories, the resulting wake-vortex behaviour, the surrounding safety areas, wake vortex monitoring, and the integration of the predictions into the arrival manager. The WSVBS has been designed and applied to Frankfurt Airport. However, its components are generic and can well be adjusted to any runway system and or airport location. The prediction horizon is larger than 45 min (as required by air traffic control) and updated every 10 minutes. It predicts the concepts of operations and procedures established by DFS and it further predicts additional temporal separations for in-trail traffic. A specific feature of the WSVBS is the usage of both measured and predicted meteorological quantities as input to wake vortex prediction. In ground proximity where the probability to encounter wake vortices is highest, the wake predictor employs measured environmental parameters that yield superior prediction results. For the less critical part aloft, which can not be monitored completely by instrumentation, the meteorological parameters are taken from dedicated numerical terminal weather predictions. The wake vortex model predicts envelopes for vortex position and strength which implicitly consider the quality of the meteorological input data. This feature is achieved by a training procedure which employs statistics of measured and predicted meteorological parameters and the resulting wake vortex behaviour. The WSVBS combines various conservative elements that presumably lead to a very high overall safety level of the WSVBS. The combination of these conservative measures certainly leads to a very high but currently unknown overall safety. Once the methodology of a comprehensive risk analysis will be established, it is planned to adjust all components to appropriate and consistent confidence levels. The WSVBS has demonstrated its functionality at Frankfurt airport during 66 days in the period from 18/12/06 until 28/02/07. The performance test indicates that (i) the system ran stable - no forecast breakdowns occurred, (ii) aircraft separations could have been reduced in 75% of the time compared to ICAO standards, (iii) reduced separation procedures could have been continuously applied for at least several tens of minutes and up to several hours occasionally, (iv) the predictions were correct as for about 1100 landings observed during 16 days no warnings occurred from the LIDAR. Fast-time simulations reveal that adapted concepts of operation yield significant reductions in delay and/or an increase in capacity to 3% taking into account the real traffic mix and operational constraints in the period of one month. Before the WSVBS can be handed over for final adaptations to become a customized fully operational system some further steps are planned. A risk analysis needs to be pursued to convince all stakeholders of the usefulness and capabilities of the system.
Unsteady fluid dynamics around a hovering wing
NASA Astrophysics Data System (ADS)
Krishna, Swathi; Green, Melissa; Mulleners, Karen
2017-11-01
The unsteady flow around a hovering flat plate wing has been investigated experimentally using particle image velocimetry and direct force measurements. The measurements are conducted on a wing that rotates symmetrically about the stroke reversal at a reduced frequency of k = 0.32 and Reynolds number of Re = 220 . The Lagrangian finite-time Lyapunov exponent method is used to analyse the unsteady flow fields by identifying dynamically relevant flow features such as the primary leading edge vortex (LEV), secondary vortices, and topological saddles, and their evolution within a flapping cycle. The flow evolution is divided into four stages that are characterised by the LEV (a)emergence, (b)growth, (c)lift-off, and (d)breakdown and decay. Tracking saddle points is shown to be helpful in defining the LEV lift-off which occurs at the maximum stroke velocity. The flow fields are correlated with the aerodynamic forces revealing that the maximum lift and drag are observed just before LEV lift-off. The end of wing rotation in the beginning of the stroke stimulates a change in the direction of the LEV growth and the start of rotation at the end of the stroke triggers the breakdown of the LEV.
Safety of Microbubbles and Transcranial Ultrasound in Rabbits
NASA Astrophysics Data System (ADS)
Culp, William C.; Brown, Aliza T.; Hennings, Leah; Lowery, John; Culp, Benjamin C.; Erdem, Eren; Roberson, Paula; Matsunaga, Terry O.
2007-05-01
The object of this study was to evaluate the safety of large doses of microbubbles and ultrasound administered to the head of rabbits as if they were receiving acute stroke therapy of a similar nature. Materials and Methods: Female New Zealand White rabbits were used, N=24, in three groups 1] n=4 control (no treatment), 2] n=10 bubble control (ultrasound plus aspirin), and 3] n=10 target group (ultrasound plus aspirin plus MRX-815 microbubbles). Group 3 was infused with IV bubbles over 1 hour at 0.16cc/kg. Ultrasound was delivered to the dehaired side of the head during bubble infusion and for 1 additional hour at 0.8 W/cm2 20% pulsed wave. Rabbits survived for 22 to 24 hours, were imaged with computerized tomography and 3 Tesla magnetic resonance imaging including contrast studies, and sacrificed. Tetrazolium (TTC) and Hematoxylin and Eosin (H&E) sections were made for pathological examination. Results: All 24 animals showed absence of bleeding, endothelial damage, EKG abnormalities, stroke, blood-brain-barrier breakdown, or other acute abnormalities. CT and MRI showed no bleeding or signs of stroke, but two animals had mild hydrocephalus. The EKGs showed normal variation in QTc. Rabbit behavior was normal in all. Minimal chronic inflammation unrelated to the study was seen in 5. Two animals were excluded because of protocol violations and replaced during the study. Conclusion: The administered dose of microbubbles and ultrasound demonstrated no detrimental effects on the healthy rabbit animal model.
Laser-driven electron beam acceleration and future application to compact light sources
NASA Astrophysics Data System (ADS)
Hafz, N.; Jeong, T. M.; Lee, S. K.; Pae, K. H.; Sung, J. H.; Choi, I. W.; Yu, T. J.; Jeong, Y. U.; Lee, J.
2009-07-01
Laser-driven plasma accelerators are gaining much attention by the advanced accelerator community due to the potential these accelerators hold in miniaturizing future high-energy and medium-energy machines. In the laser wakefield accelerator (LWFA), the ponderomotive force of an ultrashort high intensity laser pulse excites a longitudinal plasma wave or bubble. Due to huge charge separation, electric fields created in the plasma bubble can be several orders of magnitude higher than those available in conventional microwave and RF-based accelerator facilities which are limited (up to ˜100 MV/m) by material breakdown. Therefore, if an electron bunch is injected into the bubble in phase with its field, it will gain relativistic energies within an extremely short distance. Here, in the LWFA we show the generation of high-quality and high-energy electron beams up to the GeV-class within a few millimeters of gas-jet plasmas irradiated by tens of terawatt ultrashort laser pulses. Thus we realize approximately four orders of magnitude acceleration gradients higher than available by conventional technology. As a practical application of the stable high-energy electron beam generation, we are planning on injecting the electron beams into a few-meters long conventional undulator in order to realize compact X-ray synchrotron (immediate) and FEL (future) light sources. Stable laser-driven electron beam and radiation devices will surely open a new era in science, medicine and technology and will benefit a larger number of users in those fields.
A numerical study of axisymmetric compressible non-isothermal and reactive swirling flow
NASA Astrophysics Data System (ADS)
Tavernetti, William E.; Hafez, Mohamed M.
2017-09-01
Non-linear dynamical phenomena in combustion processes is an active area of experimental and theoretical research. This is in large part due to increasingly strict environmental pressures to make gas turbine engines and industrial burners more efficient. Using numerical methods, for steady and unsteady confined and unconfined compressible flow, this study examines the modeling influence of compressibility for axisymmetric swirling flow. The compressible reactive Navier-Stokes equations in terms of stream function, vorticity, circulation are used. Results, details of the numerical algorithms, as well as numerical verification techniques and validation with sources from the literature will be presented. Understanding how vortex breakdown phenomena are affected by modeling reactant consumption with compressibility effect is the main goal of this study.
Jumping liquid metal droplet in electrolyte triggered by solid metal particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Jianbo; University of Chinese Academy of Sciences, Beijing 100049; Wang, Junjie
2016-05-30
We report the electron discharge effect due to point contact between liquid metal and solid metal particles in electrolyte. Adding nickel particles induces drastic hydrogen generating and intermittent jumping of a sub-millimeter EGaIn droplet in NaOH solution. Observations from different orientations disclose that such jumping behavior is triggered by pressurized bubbles under the assistance of interfacial interactions. Hydrogen evolution around particles provides clear evidence that such electric instability originates from the varied electric potential and morphology between the two metallic materials. The point-contact-induced charge concentration significantly enhances the near-surface electric field intensity at the particle tips and thus causes electricmore » breakdown of the electrolyte.« less
NASA Technical Reports Server (NTRS)
Khodadoust, Abdollah
1994-01-01
Wind tunnel experiments were conducted in order to study the effect of a simulated glaze ice accretion on the flowfield of a semispan, reflection-plane, rectangular wing at Re = 1.5 million and M = 0.12. A laser Doppler velocimeter was used to map the flowfield on the upper surface of the model in both the clean and iced configurations at alpha = 0, 4, and 8 degrees angle of attack. At low angles of attack, the massive separation bubble aft of the leading edge ice horn was found to behave in a manner similar to laminar separation bubbles. At alpha = 0 and 4 degrees, the locations of transition and reattachment, as deduced from momentum thickness distributions, were found to be in good agreement with transition and reattachment locations in laminar separation bubbles. These values at y/b = 0.470, the centerline measurement location, matched well with data obtained on a similar but two dimensional model. The measured velocity profiles on the iced wing compared reasonably with the predicted profiles from Navier-Stokes computations. The iced-induced separation bubble was also found to have features similar to the recirculating region aft of rearward-facing steps. At alpha = 0 degrees and 4 degrees, reverse flow magnitudes and turbulence intensity levels were typical of those found in the recirculating region aft of rearward-facing steps. The calculated separation streamline aft of the ice horn at alpha = 4 degrees, y/b = 0.470 coincided with the locus of the maximum Reynolds normal stress. The maximum Reynolds normal stress peaked at two locations along the separation streamline. The location of the first peak-value coincided with the transition location, as deduced from the momentum thickness distributions. The location of the second peak was just upstream of reattachment, in good agreement with measurements of flows over similar obstacles. The intermittency factor in the vicinity of reattachment at alpha = 4 degrees, y/b = 0.470, revealed the time-dependent nature of the reattachment process. The size and extent of the separation bubble were found to be a function of angle of attack and the spanwise location. Three dimensional effects were found to be strongest at alpha = 8 degrees. The calculated separation and stagnation streamlines were found to vary little with spanwise location at alpha = 0 degrees. The calculated separation streamlines at alpha = 4 degrees revealed that the bubble was largest near the centerline measurement plane, whereas the tip-induced vortex flow and the model root-tunnel wall boundary-layer interaction reduced the size of the bubble. These effects were found to be most dramatic at alpha = 8 degrees.
Jet Simulation in a Diesel Engine
NASA Astrophysics Data System (ADS)
Xu, Zhiliang
2005-03-01
We present a numerical study of the jet breakup and spray formation in a diesel engine by the Front Tracking method. The mechanisms of jet breakup and spray formation of a high speed diesel jet injected through a circular nozzle are the key to design a fuel efficient, nonpolluting diesel engine. We conduct the simulations for the jet breakup within a 2D axis-symmetric geometry. Our goal is to model the spray at a micro-physical level, with the creation of individual droplets. The problem is multiscale. The droplets are a few microns in size. The nozzle is about 0.2 mm in diameter and 1 mm in length. To resolve various physical patterns such as vortex, shock waves, vacuum and track droplets and spray, the Burger-Colella adaptive mesh refinement technique is used. To simulate the spray formation, we model mixed vapor-liquid region through a heterogeneous model with dynamic vapor bubble insertion. The formation of the cavitation is represented by the dynamic creation of vapor bubbles. On the liquid/vapor interface, a phase transition problem is solved numerically. The phase transition is governed by the compressible Euler equations with heat diffusion. Our solution is a new description for the Riemann problem associated with a phase transition in a fully compressible fluid.
Comparison of visualized turbine endwall secondary flows and measured heat transfer patterns
NASA Technical Reports Server (NTRS)
Gaugler, R. E.; Russell, L. M.
1983-01-01
Various flow visualization techniques were used to define the secondary flows near the endwall in a large heat transfer data. A comparison of the visualized flow patterns and the measured Stanton number distribution was made for cases where the inlet Reynolds number and exit Mach number were matched. Flows were visualized by using neutrally buoyant helium-filled soap bubbles, by using smoke from oil soaked cigars, and by a few techniques using permanent marker pen ink dots and synthetic wintergreen oil. Details of the horseshoe vortex and secondary flows can be directly compared with heat transfer distribution. Near the cascade entrance there is an obvious correlation between the two sets of data, but well into the passage the effect of secondary flow is not as obvious.
From fire whirls to blue whirls and combustion with reduced pollution
NASA Astrophysics Data System (ADS)
Xiao, Huahua; Gollner, Michael J.; Oran, Elaine S.
2016-08-01
Fire whirls are powerful, spinning disasters for people and surroundings when they occur in large urban and wildland fires. Whereas fire whirls have been studied for fire-safety applications, previous research has yet to harness their potential burning efficiency for enhanced combustion. This article presents laboratory studies of fire whirls initiated as pool fires, but where the fuel sits on a water surface, suggesting the idea of exploiting the high efficiency of fire whirls for oil-spill remediation. We show the transition from a pool fire, to a fire whirl, and then to a previously unobserved state, a “blue whirl.” A blue whirl is smaller, very stable, and burns completely blue as a hydrocarbon flame, indicating soot-free burning. The combination of fast mixing, intense swirl, and the water-surface boundary creates the conditions leading to nearly soot-free combustion. With the worldwide need to reduce emissions from both wanted and unwanted combustion, discovery of this state points to possible new pathways for reduced-emission combustion and fuel-spill cleanup. Because current methods to generate a stable vortex are difficult, we also propose that the blue whirl may serve as a research platform for fundamental studies of vortices and vortex breakdown in fluid mechanics.
From fire whirls to blue whirls and combustion with reduced pollution
Xiao, Huahua; Oran, Elaine S.
2016-01-01
Fire whirls are powerful, spinning disasters for people and surroundings when they occur in large urban and wildland fires. Whereas fire whirls have been studied for fire-safety applications, previous research has yet to harness their potential burning efficiency for enhanced combustion. This article presents laboratory studies of fire whirls initiated as pool fires, but where the fuel sits on a water surface, suggesting the idea of exploiting the high efficiency of fire whirls for oil-spill remediation. We show the transition from a pool fire, to a fire whirl, and then to a previously unobserved state, a “blue whirl.” A blue whirl is smaller, very stable, and burns completely blue as a hydrocarbon flame, indicating soot-free burning. The combination of fast mixing, intense swirl, and the water–surface boundary creates the conditions leading to nearly soot-free combustion. With the worldwide need to reduce emissions from both wanted and unwanted combustion, discovery of this state points to possible new pathways for reduced-emission combustion and fuel-spill cleanup. Because current methods to generate a stable vortex are difficult, we also propose that the blue whirl may serve as a research platform for fundamental studies of vortices and vortex breakdown in fluid mechanics. PMID:27493219
NASA Technical Reports Server (NTRS)
Tripathi, Om Prakash; Leblanc, Thierry; McDermid, I. Stuart; Lefevre, Frank; Marchand, Marion; Hauchecorne, Alain
2006-01-01
In mid-March 2005 the northern lower stratospheric polar vortex experienced a severe stretching episode, bringing a large polar filament far south of Alaska toward Hawaii. This meridional intrusion of rare extent, coinciding with the polar vortex final warming and breakdown, was followed by a zonal stretching in the wake of the easterly propagating subtropical main flow. This caused polar air to remain over Hawaii for several days before diluting into the subtropics. After being successfully forecasted to pass over Hawaii by the high-resolution potential vorticity advection model Modele Isentrope du transport Meso-echelle de l'Ozone Stratospherique par Advection (MIMOSA), the filament was observed on isentropic surfaces between 415 K and 455 K (17-20 km) by the Jet Propulsion Laboratory stratospheric ozone lidar measurements at Mauna Loa Observatory, Hawaii, between 16 and 19 March 2005. It was materialized as a thin layer of enhanced ozone peaking at 1.6 ppmv in a region where the climatological values usually average 1.0 ppmv. These values were compared to those obtained by the three dimensional Chemistry-Transport Model MIMOSA-CHIM. Agreement between lidar and model was excellent, particularly in the similar appearance of the ozone peak near 435 K (18.5 km) on 16 March, and the persistence of this layer at higher isentropic levels for the following three days. Passive ozone, also modeled by MIMOSA-CHIM, was at about 3-4 ppmv inside the filament while above Hawaii. A detailed history of the modeled chemistry inside the filament suggests that the air mass was still polar ozone- depleted when passing over Hawaii. The filament quickly separated from the main vortex after its Hawaiian overpass. It never reconnected and, in less than 10 days, dispersed entirely in the subtropics.
NASA Astrophysics Data System (ADS)
Sengupta, Tapan K.; Sharma, Nidhi; Sengupta, Aditi
2018-05-01
An enstrophy-based non-linear instability analysis of the Navier-Stokes equation for two-dimensional (2D) flows is presented here, using the Taylor-Green vortex (TGV) problem as an example. This problem admits a time-dependent analytical solution as the base flow, whose instability is traced here. The numerical study of the evolution of the Taylor-Green vortices shows that the flow becomes turbulent, but an explanation for this transition has not been advanced so far. The deviation of the numerical solution from the analytical solution is studied here using a high accuracy compact scheme on a non-uniform grid (NUC6), with the fourth-order Runge-Kutta method. The stream function-vorticity (ψ, ω) formulation of the governing equations is solved here in a periodic square domain with four vortices at t = 0. Simulations performed at different Reynolds numbers reveal that numerical errors in computations induce a breakdown of symmetry and simultaneous fragmentation of vortices. It is shown that the actual physical instability is triggered by the growth of disturbances and is explained by the evolution of disturbance mechanical energy and enstrophy. The disturbance evolution equations have been traced by looking at (a) disturbance mechanical energy of the Navier-Stokes equation, as described in the work of Sengupta et al., "Vortex-induced instability of an incompressible wall-bounded shear layer," J. Fluid Mech. 493, 277-286 (2003), and (b) the creation of rotationality via the enstrophy transport equation in the work of Sengupta et al., "Diffusion in inhomogeneous flows: Unique equilibrium state in an internal flow," Comput. Fluids 88, 440-451 (2013).
Aero-acoustics of Drag Generating Swirling Exhaust Flows
NASA Technical Reports Server (NTRS)
Shah, P. N.; Mobed, D.; Spakovszky, Z. S.; Brooks, T. F.; Humphreys, W. M. Jr.
2007-01-01
Aircraft on approach in high-drag and high-lift configuration create unsteady flow structures which inherently generate noise. For devices such as flaps, spoilers and the undercarriage there is a strong correlation between overall noise and drag such that, in the quest for quieter aircraft, one challenge is to generate drag at low noise levels. This paper presents a rigorous aero-acoustic assessment of a novel drag concept. The idea is that a swirling exhaust flow can yield a steady, and thus relatively quiet, streamwise vortex which is supported by a radial pressure gradient responsible for pressure drag. Flows with swirl are naturally limited by instabilities such as vortex breakdown. The paper presents a first aero-acoustic assessment of ram pressure driven swirling exhaust flows and their associated instabilities. The technical approach combines an in-depth aerodynamic analysis, plausibility arguments to qualitatively describe the nature of acoustic sources, and detailed, quantitative acoustic measurements using a medium aperture directional microphone array in combination with a previously established Deconvolution Approach for Mapping of Acoustic Sources (DAMAS). A model scale engine nacelle with stationary swirl vanes was designed and tested in the NASA Langley Quiet Flow Facility at a full-scale approach Mach number of 0.17. The analysis shows that the acoustic signature is comprised of quadrupole-type turbulent mixing noise of the swirling core flow and scattering noise from vane boundary layers and turbulent eddies of the burst vortex structure near sharp edges. The exposed edges are the nacelle and pylon trailing edge and the centerbody supporting the vanes. For the highest stable swirl angle setting a nacelle area based drag coefficient of 0.8 was achieved with a full-scale Overall Sound Pressure Level (OASPL) of about 40dBA at the ICAO approach certification point.
[Fatigue damage analysis of porcelain in all-ceramic crowns].
Liu, Yi-hong; Feng, Hai-lan; Liu, Guang-hua; Shen, Zhi-jian
2010-02-18
To investigate the fatigue damage mechanism of porcelain, and its relation with the microscopic defects in clinically failed all-ceramic crowns. Collecting the bilayered all-ceramic crowns failed in vivo. The fractured surfaces and occlusial surfaces of failed crowns were examined by an optical microscope followed by detailed fractography investigations using a field emission scanning electron microscope. When chemical impurities were of concern, energy-dispersive X-ray spectroscopy analysis was performed to examine chemical composition. A standard practice for fractography failure analysis of advanced ceramics is applied to disclose the fracture mode, and damage character. Three types of fracture features are defined as breakdown of the entire crown, and porcelain chipping-off/delamination. Alumina crowns were usually characterized by breakdown of the entire crown, while zirconia crowns by porcelain chipping-off and delamination. The fatigue damage of porcelain was classified into surface wear, cone crack, and porcelain delamination. The observed microscopic defects in this study included air bubbles and impurity particles. The multi-point occlusial contacts were recommended in all-ceramic restorations clinically. The thickness of porcelain is important for the anti-fatigue ability of porcelain. Cautions have to be taken to avoid contaminations during the veneering processes.
Development of Hairpin Vortices in Turbulent Spots and End-Wall Transition
NASA Technical Reports Server (NTRS)
Smith, Charles R.
2007-01-01
The end-stage phase of boundary layer transition is characterized by the development of hairpin-like vortices which evolve rapidly into patches of turbulent behavior. In general, the characteristics of the evolution form this hairpin stage to the turbulent stage is poorly understood, which has prompted the present experimental examination of hairpin vortex development and growth processes. Two topics of particular relevance to the workshop focus will be covered: 1) the growth of turbulent spots through the generatio and amalgamation of hairpin-like vortices, and 2) the development of hairpin vortices during transition in an end-wall junction flow. Brief summaries of these studies are described below. Using controlled generation of hairpin vortices by surface injection in a critical laminar boundary layer, detailed flow visualization studies have been done of the phases of growth of single hairpin vortices, from the initial hairgin generation, through the systematic generation of secondary hairpin-like flow structures, culminating in the evolution to a turbulent spot. The key to the growth process is strong vortex-surface interactions, which give rise to strong eruptive events adjacent to the surface, which results in the generation of subsequent hairpin vortex structures due to inviscid-viscuous interactions between the eruptive events and the free steam fluid. The general process of vortex-surface fluid interaction, coupled with subsequent interactions and amalgamation of the generated multiple hairpin-type vortices, is demonstrated as a physical mechanism for the growth and development of turbulent spots. When a boundary layer flow along a surface encounters a bluff body obstruction extending from the surface (such as cylinder or wing), the strong adverse pressure gradients generated by these types of flows result in the concentration of the impinging vorticity into a system of discrete vortices near the end-wall juncture of the obstruction, with the extensions of the vortices engirdling the obstruction to form "necklace" or "horseshoe" vortices. Recent hydrogen bubble and particle image visualization have shown that as Reynolds number is increased for a laminar approach flow, the flow will become critical, and a destabilization of the necklace vortices results in the development of an azimuthal waviness, or "kinks", in the vortices. These vortex kinks are accentuated by Biot-Savart effects, causing portions of a distorted necklace vortex to make a rapid approach to the surface, precipitating processes of localized, three-dimensional surface interactions. These interactions result in the rapid generation, focussing, and ejection of thin tongues of surface fluid, which rapidly roll-over and appear as hairpin vortices in the junction region. Subsequent amalgamation of these hairpin vortices with the necklace vortices produces a complex transitional-type flow. A presentation of key results from both these studies will be done, emphasizing both the ubiquity of such hairpin-type flow structures in manifold transitional-type flows, and the importance of vortex-surface interactions n the development of hairpin vortices.
NASA Astrophysics Data System (ADS)
Simoni, Daniele; Lengani, Davide; Ubaldi, Marina; Zunino, Pietro; Dellacasagrande, Matteo
2017-06-01
The effects of free-stream turbulence intensity (FSTI) on the transition process of a pressure-induced laminar separation bubble have been studied for different Reynolds numbers (Re) by means of time-resolved (TR) PIV. Measurements have been performed along a flat plate installed within a double-contoured test section, designed to produce an adverse pressure gradient typical of ultra-high-lift turbine blade profiles. A test matrix spanning 3 FSTI levels and 3 Reynolds numbers has been considered allowing estimation of cross effects of these parameters on the instability mechanisms driving the separated flow transition process. Boundary layer integral parameters, spatial growth rate and saturation level of velocity fluctuations are discussed for the different cases in order to characterize the base flow response as well as the time-mean properties of the Kelvin-Helmholtz instability. The inspection of the instantaneous velocity vector maps highlights the dynamics of the large-scale structures shed near the bubble maximum displacement, as well as the low-frequency motion of the fore part of the separated shear layer. Proper Orthogonal Decomposition (POD) has been implemented to reduce the large amount of data for each condition allowing a rapid evaluation of the group velocity, spatial wavelength and dominant frequency of the vortex shedding process. The dimensionless shedding wave number parameter makes evident that the modification of the shear layer thickness at separation due to Reynolds number variation mainly drives the length scale of the rollup vortices, while higher FSTI levels force the onset of the shedding phenomenon to occur upstream due to the higher velocity fluctuations penetrating into the separating boundary layer.
Correct numerical simulation of a two-phase coolant
NASA Astrophysics Data System (ADS)
Kroshilin, A. E.; Kroshilin, V. E.
2016-02-01
Different models used in calculating flows of a two-phase coolant are analyzed. A system of differential equations describing the flow is presented; the hyperbolicity and stability of stationary solutions of the system is studied. The correctness of the Cauchy problem is considered. The models' ability to describe the following flows is analyzed: stable bubble and gas-droplet flows; stable flow with a level such that the bubble and gas-droplet flows are observed under and above it, respectively; and propagation of a perturbation of the phase concentration for the bubble and gas-droplet media. The solution of the problem about the breakdown of an arbitrary discontinuity has been constructed. Characteristic times of the development of an instability at different parameters of the flow are presented. Conditions at which the instability does not make it possible to perform the calculation are determined. The Riemann invariants for the nonlinear problem under consideration have been constructed. Numerical calculations have been performed for different conditions. The influence of viscosity on the structure of the discontinuity front is studied. Advantages of divergent equations are demonstrated. It is proven that a model used in almost all known investigating thermohydraulic programs, both in Russia and abroad, has significant disadvantages; in particular, it can lead to unstable solutions, which makes it necessary to introduce smoothing mechanisms and a very small step for describing regimes with a level. This does not allow one to use efficient numerical schemes for calculating the flow of two-phase currents. A possible model free from the abovementioned disadvantages is proposed.
A theory of modern cultural shifts and meltdowns.
Hochberg, Michael E
2004-08-07
Many cultural attributes such as adornment, language slang, mannerisms and rituals are thought to have little or no influence on individual survival and reproduction, functioning rather as markers of cultural identity that promote group cohesion. Here, I show that if cultural markers are under weak selection and subject to loss or substitution, then the breakdown of cultural cohesiveness may proceed without stabilizing reactions until many or most of a culture's identifiers are forever lost. This may culminate in a 'cultural meltdown', whereby the culture is caught in a vortex of ever-decreasing membership and insufficient selection against the accumulation of unfamiliar markers. In progressively altering the topology of communication from diffusion to broadcasting, globalization may be both accelerating the erosion of cultural identities and amplifying dominance behaviours above their normal adaptive levels.
Works on theory of flapping wing. [considering boundary layer
NASA Technical Reports Server (NTRS)
Golubev, V. V.
1980-01-01
It is shown mathematically that taking account of the boundary layer is the only way to develop a theory of flapping wings without violating the basic observations and mathematics of hydromechanics. A theory of thrust generation by flapping wings can be developed if the conventional downstream velocity discontinuity surface is replaced with the observed Karman type vortex streets behind a flapping wing. Experiments show that the direction of such vortices is the reverse of that of conventional Karman streets. The streets form by breakdown of the boundary layer. Detailed analysis of the movements of certain birds and insects during flight 'in place' is fully consistent with this theory of the lift, thrust and drag of flapping wings. Further directions for research into flight with flapping wings are indicated.
A theory of modern cultural shifts and meltdowns.
Hochberg, Michael E
2004-01-01
Many cultural attributes such as adornment, language slang, mannerisms and rituals are thought to have little or no influence on individual survival and reproduction, functioning rather as markers of cultural identity that promote group cohesion. Here, I show that if cultural markers are under weak selection and subject to loss or substitution, then the breakdown of cultural cohesiveness may proceed without stabilizing reactions until many or most of a culture's identifiers are forever lost. This may culminate in a 'cultural meltdown', whereby the culture is caught in a vortex of ever-decreasing membership and insufficient selection against the accumulation of unfamiliar markers. In progressively altering the topology of communication from diffusion to broadcasting, globalization may be both accelerating the erosion of cultural identities and amplifying dominance behaviours above their normal adaptive levels. PMID:15504004
NASA Technical Reports Server (NTRS)
Manney, Gloria L.; Krueger, Kirstin; Pawson, Steven; Minschwaner, Ken; Schwartz, Michael J.; Daffer, William H.; Livesey, Nathaniel J.; Mlynczak, Martin G.; Remsberg, Ellis E.; Russell, James M., III;
2008-01-01
Microwave Limb Sounder and Sounding of the Atmosphere with Broadband Emission Radiometry data provide the first opportunity to characterize the four-dimensional stratopause evolution throughout the life-cycle of a major stratospheric sudden warming (SSW). The polar stratopause, usually higher than that at midlatitudes, dropped by 30 km and warmed during development of a major "wave 1" SSW in January 2006, with accompanying mesospheric cooling. When the polar vortex broke down, the stratopause cooled and became ill-defined, with a nearly isothermal stratosphere. After the polar vortex started to recover in the upper stratosphere/lower mesosphere (USLM), a cool stratopause reformed above 75 km, then dropped and warmed; both the mesosphere above and the stratosphere below cooled at this time. The polar stratopause remained separated from that at midlatitudes across the core of the polar night jet. In the early stages of the SSW, the strongly tilted (westward with increasing altitude) polar vortex extended into the mesosphere, and enclosed a secondary temperature maximum extending westward and slightly equatorward from the highest altitude part of the polar stratopause over the cool stratopause near the vortex edge. The temperature evolution in the USLM resulted in strongly enhanced radiative cooling in the mesosphere during the recovery from the SSW, but significantly reduced radiative cooling in the upper stratosphere. Assimilated meteorological analyses from the European Centre for Medium-Range weather Forecasts (ECMWF) and Goddard Earth Observing System Version 5.0.1 (GEOS-5), which are not constrained by data at polar stratopause altitudes and have model tops near 80 km, could not capture the secondary temperature maximum or the high stratopause after the SSW; they also misrepresent polar temperature structure during and after the stratopause breakdown, leading to large biases in their radiative heating rates. ECMWF analyses represent the stratospheric temperature structure more accurately, suggesting a better representation of vertical motion; GEOS-5 analyses more faithfully describe stratopause level wind and wave amplitudes. The high-quality satellite temperature data used here provide the first daily, global, multiannual data sets suitable for assessing and, eventually, improving representation of the USLM in models and assimilation systems.
Flow and coherent structures around circular cylinders in shallow water
NASA Astrophysics Data System (ADS)
Zeng, Jie; Constantinescu, George
2017-06-01
Eddy-resolving numerical simulations are conducted to investigate the dynamics of the large-scale coherent structures around a circular cylinder in an open channel under very shallow flow conditions where the bed friction significantly affects the wake structure. Results are reported for three test cases, for which the ratio between the cylinder diameter, D, and the channel depth, H, is D/H = 10, 25, and 50, respectively. Simulation results show that a horseshoe vortex system forms in all test cases and the dynamics of the necklace vortices is similar to that during the breakaway sub-regime observed for cases when a laminar horseshoe vortex forms around the base of the cylinder. Given the shallow conditions and turbulence in the incoming channel flow, the necklace vortices occupy a large fraction of the flow depth (they penetrate until the free surface in the shallower cases with D/H = 25 and 50). The oscillations of the necklace vortices become less regular with increasing polar angle magnitude and can induce strong amplification of the bed shear stress beneath their cores. Strong interactions are observed between the legs of the necklace vortices and the eddies shed in the separated shear layers in the cases with D/H = 25 and 50. In these two cases, a vortex-street type wake is formed and strong three-dimensional effects are observed in the near-wake flow. A secondary instability in the form of arrays of co-rotating parallel horizontal vortices develops. Once the roller vortices get away from the cylinder, the horizontal vortices in the array orient themselves along the streamwise direction. This instability is not present for moderately shallow conditions (e.g., D/H ≈ 1) nor for very shallow cases when the wake changes to an unsteady bubble type (e.g., D/H = 50). For cases when this secondary instability is present, the horizontal vortices extend vertically over a large fraction of the flow depth and play an important role in the vertical mixing of fluid situated at the wake edges (e.g., by transporting the near-bed, lower-velocity fluid toward the free surface and vice versa). The largest amplification of the bed shear stress in the near-wake region is observed beneath these horizontal vortices, which means that they would play an important role in promoting bed erosion behind the cylinder in the case of a loose bed. Simulation results suggest that these co-rotating vortices form as a result of the interactions between the legs of the main necklace vortices and the vortical eddies contained into the newly forming roller at the back of the cylinder. The paper also analyzes how D/H affects the separation angle on the cylinder, the size of the recirculation bubble, the bed friction velocity distributions, and turbulence statistics.
Bose, Ranendra K.
2002-06-04
Exhaust gases from an internal combustion engine operating with leaded or unleaded gasoline or diesel or natural gas, are used for energizing a high-speed gas turbine. The convoluting gas discharge causes a first separation stage by stratifying of heavier and lighter exhaust gas components that exit from the turbine in opposite directions, the heavier components having a second stratifying separation in a vortex tube to separate combustible pollutants from non-combustible components. The non-combustible components exit a vortex tube open end to atmosphere. The lighter combustible, pollutants effected in the first separation are bubbled through a sodium hydroxide solution for dissolving the nitric oxide, formaldehyde impurities in this gas stream before being piped to the engine air intake for re-combustion, thereby reducing the engine's exhaust pollution and improving its fuel economy. The combustible, heavier pollutants from the second separation stage are piped to air filter assemblies. This gas stream convoluting at a high-speed through the top stator-vanes of the air filters, centrifugally separates the coalescent water, aldehydes, nitrogen dioxides, sulfates, sulfur, lead particles which collect at the bottom of the bowl, wherein it is periodically released to the roadway. Whereas, the heavier hydrocarbon, carbon particles are piped through the air filter's porous element to the engine air intake for re-combustion, further reducing the engine's exhaust pollution and improving its fuel economy.
NASA Astrophysics Data System (ADS)
Gómez, Eudoxio Ramos; Zenit, Roberto; Rivera, Carlos González; Trápaga, Gerardo; Ramírez-Argáez, Marco A.
2013-04-01
In this work, a 3D numerical simulation using a Euler-Euler-based model implemented into a commercial CFD code was used to simulate fluid flow and turbulence structure in a water physical model of an aluminum ladle equipped with an impeller for degassing treatment. The effect of critical process parameters such as rotor speed, gas flow rate, and the point of gas injection (conventional injection through the shaft vs a novel injection through the bottom of the ladle) on the fluid flow and vortex formation was analyzed with this model. The commercial CFD code PHOENICS 3.4 was used to solve all conservation equations governing the process for this two-phase fluid flow system. The mathematical model was reasonably well validated against experimentally measured liquid velocity and vortex sizes in a water physical model built specifically for this investigation. From the results, it was concluded that the angular speed of the impeller is the most important parameter in promoting better stirred baths and creating smaller and better distributed bubbles in the liquid. The pumping effect of the impeller is increased as the impeller rotation speed increases. Gas flow rate is detrimental to bath stirring and diminishes the pumping effect of the impeller. Finally, although the injection point was the least significant variable, it was found that the "novel" injection improves stirring in the ladle.
Improvement of Subsonic Basic Research Tunnel Flow Quality as Applied to Wall Mounted Testing
NASA Technical Reports Server (NTRS)
Howerton, Brian M.
1995-01-01
A survey to determine the characteristics of a boundary layer that forms on the wall of the Subsonic Basic Research Tunnel has been performed. Early results showed significant differences in the velocity profiles as measured spanwise across the wall. An investigation of the flow in the upstream contraction revealed the presence of a separation bubble at the beginning of the contraction which caused much of the observed unsteadiness. Vortex generators were successfully applied to the contraction inlet to alleviate the separation. A final survey of the wall boundary layer revealed variations in the displacement and momentum thicknesses to be less than +/- 5% for all but the most upper portion of the wall. The flow quality was deemed adequate to continue the planned follow-on tests to help develop the semi-span test technique.
NASA Astrophysics Data System (ADS)
Meledin, V.; Anikin, Yu.; Bakakin, G.; Glavniy, V.; Dvoinishnikov, S.; Kulikov, D.; Naumov, I.; Okulov, V.; Pavlov, V.; Rakhmanov, V.; Sadbakov, O.; Mostovskiy, N.; Ilyin, S.
2006-05-01
For hydrodynamic examinations of the turbid three-phase streams with air bubbles and with a depth more than 500 mm for the first time it is developed 2D Laser Doppler Semiconductor Anemometer LADO5-LMZ. Anemometer signal processor base on <
NASA Technical Reports Server (NTRS)
Olsen, J. H.; Liu, H. T.
1973-01-01
The water tunnel which was constructed at the NASA Ames Research Center is described along with the flow field adjacent to an oscillating airfoil. The design and operational procedures of the tunnel are described in detail. Hydrogen bubble and thymol blue techniques are used to visualize the flow field. Results of the flow visualizations are presented in a series of still pictures and a high speed movie. These results show that time stall is more complicated than simple shedding from the leading edge or the trailing edge, particularly at relatively low frequency oscillations comparable to those of a helicopter blade. Therefore, any successful theory for predicting the stall loads on the helicopter blades must treat an irregular separated region rather than a discrete vortex passing over each blade surface.
Experimental study of the laminar-turbulent transition of a concave wall in a parallel flow
NASA Technical Reports Server (NTRS)
Bippes, H.
1978-01-01
The instability of the laminar boundary layer flow along a concave wall was studied. Observations of these three-dimensional boundary layer phenomena were made using the hydrogen-bubble visualization technique. With the application of stereo-photogrammetric methods in the air-water system it was possible to investigate the flow processes qualitatively and quantitatively. In the case of a concave wall of sufficient curvature, a primary instability occurs first in the form of Goertler vortices with wave lengths depending upon the boundary layer thickness and the wall curvature. At the onset the amplification rate is in agreement with the linear theory. Later, during the non-linear amplification stage, periodic spanwise vorticity concentrations develop in the low velocity region between the longitudinal vortices. Then a meandering motion of the longitudinal vortex streets subsequently ensues, leading to turbulence.
Comparison of visualized turbine endwall secondary flows and measured heat transfer patterns
NASA Technical Reports Server (NTRS)
Gaugler, R. E.; Russell, L. M.
1984-01-01
Various flow visualization techniques were used to define the seondary flows near the endwall in a large heat transfer data. A comparison of the visualized flow patterns and the measured Stanton number distribution was made for cases where the inlet Reynolds number and exit Mach number were matched. Flows were visualized by using neutrally buoyant helium-filled soap bubbles, by using smoke from oil soaked cigars, and by a few techniques using permanent marker pen ink dots and synthetic wintergreen oil. Details of the horseshoe vortex and secondary flows can be directly compared with heat transfer distribution. Near the cascade entrance there is an obvious correlation between the two sets of data, but well into the passage the effect of secondary flow is not as obvious. Previously announced in STAR as N83-14435
Conference on Fluid Machinery, 8th, Budapest, Hungary, Sept. 1987, Proceedings. Volumes 1 & 2
NASA Astrophysics Data System (ADS)
Szabo, A.; Kisbocskoi, L.
The present conference on turbomachine fluid mechanics gives attention to the analysis of labyrinth seals, irrigation turbomachinery, axial-flow fans, poppet valves, the generation of Karman vortices, self-rectifying Wells-type air turbines, computer simulations for water-supply systems, the computation of meridional flow in turbomachines, entrained air effects on vortex pump performance, the three-dimensional potential flow in a draft tube, and hydro powerplant diagnostic methods. Also discussed are a mathematical model for the initiation of cavitation wear, cryogenic flow in ejectors, flow downstream of guide vanes in a Kaplan turbine, unsteady flow in rotating cascades, novel methods for turbomachine vibration monitoring, cavitation breakdown in centrifugal pumps, test results for Banki turbines, centrifugal compressor return-channel flow, performance predictions for regenerative turbomachines, and secondary flows in a centrifugal pump.
Exhaust gas emissions of a vortex breakdown stabilized combustor
NASA Technical Reports Server (NTRS)
Yetter, R. A.; Gouldin, F. C.
1976-01-01
Exhaust gas emission data are described for a swirl stabilized continuous combustor. The combustor consists of confined concentric jets with premixed fuel and air in the inner jet and air in the outer jet. Swirl may be induced in both inner and outer jets with the sense of rotation in the same or opposite directions (co-swirl and counter-swirl). The combustor limits NO emissions by lean operation without sacrificing CO and unburned hydrocarbon emission performance, when commercial-grade methane and air fired at one atmosphere without preheat are used. Relative swirl direction and magnitude are found to have significant effects on exhaust gas concentrations, exit temperatures, and combustor efficiencies. Counter-swirl gives a large recirculation zone, a short luminous combustion zone, and large slip velocities in the interjet shear layer. For maximum counter-swirl conditions, the efficiency is low.
NASA Technical Reports Server (NTRS)
Koklu, Mehti
2017-01-01
Flow separation control over a wall-mounted hump model was studied experimentally to assess the performance of sweeping jet actuators. Results were compared to that of the 2004 CFD validation experiment (CFDVAL2004), which examined flow separation control with steady suction and unsteady zero-net-mass-flow actuators. Comparisons were carried out at low and high amplitude excitations. In addition to the active flow control methods, a passive flow control method (i.e., vortex generator) was used to complement the dataset. Steady/unsteady surface pressure measurements and surface oilflow visualization were used in the performance assessment of the actuators. The results indicated that the sweeping jet actuators are more effective than the steady suction and unsteady zero-net-mass-flow actuators. For the same momentum coefficient, the sweeping jet actuators produced more flow acceleration upstream of separation, more pressure recovery downstream, and consistently a smaller separation bubble.
Unsteady separation and vortex shedding from a laminar separation bubble over a bluff body
NASA Astrophysics Data System (ADS)
Das, S. P.; Srinivasan, U.; Arakeri, J. H.
2013-07-01
Boundary layers are subject to favorable and adverse pressure gradients because of both the temporal and spatial components of the pressure gradient. The adverse pressure gradient may cause the flow to separate. In a closed loop unsteady tunnel we have studied the initiation of separation in unsteady flow past a constriction (bluff body) in a channel. We have proposed two important scalings for the time when boundary layer separates. One is based on the local pressure gradient and the other is a convective time scale based on boundary layer parameters. The flow visualization using a dye injection technique shows the flow structure past the body. Nondimensional shedding frequency (Strouhal number) is calculated based on boundary layer and momentum thicknesses. Strouhal number based on the momentum thickness shows a close agreement with that for flat plate and circular cylinder.
High-resolution method for evolving complex interface networks
NASA Astrophysics Data System (ADS)
Pan, Shucheng; Hu, Xiangyu Y.; Adams, Nikolaus A.
2018-04-01
In this paper we describe a high-resolution transport formulation of the regional level-set approach for an improved prediction of the evolution of complex interface networks. The novelty of this method is twofold: (i) construction of local level sets and reconstruction of a global level set, (ii) local transport of the interface network by employing high-order spatial discretization schemes for improved representation of complex topologies. Various numerical test cases of multi-region flow problems, including triple-point advection, single vortex flow, mean curvature flow, normal driven flow, dry foam dynamics and shock-bubble interaction show that the method is accurate and suitable for a wide range of complex interface-network evolutions. Its overall computational cost is comparable to the Semi-Lagrangian regional level-set method while the prediction accuracy is significantly improved. The approach thus offers a viable alternative to previous interface-network level-set method.
Design and Predictions for a High-Altitude (Low-Reynolds-Number) Aerodynamic Flight Experiment
NASA Technical Reports Server (NTRS)
Greer, Donald; Hamory, Phil; Krake, Keith; Drela, Mark
1999-01-01
A sailplane being developed at NASA Dryden Flight Research Center will support a high-altitude flight experiment. The experiment will measure the performance parameters of an airfoil at high altitudes (70,000 to 100,000 ft), low Reynolds numbers (200,000 to 700,000), and high subsonic Mach numbers (0.5 and 0.65). The airfoil section lift and drag are determined from pitot and static pressure measurements. The locations of the separation bubble, Tollmien-Schlichting boundary layer instability frequencies, and vortex shedding are measured from a hot-film strip. The details of the planned flight experiment are presented. Several predictions of the airfoil performance are also presented. Mark Drela from the Massachusetts Institute of Technology designed the APEX-16 airfoil, using the MSES code. Two-dimensional Navier-Stokes analyses were performed by Mahidhar Tatineni and Xiaolin Zhong from the University of California, Los Angeles, and by the authors at NASA Dryden.
NASA Astrophysics Data System (ADS)
Tripathi, Om Prakash; Leblanc, Thierry; McDermid, I. Stuart; LefèVre, Frank; Marchand, Marion; Hauchecorne, Alain
2006-10-01
In mid-March 2005 the northern lower stratospheric polar vortex experienced a severe stretching episode, bringing a large polar filament far south of Alaska toward Hawaii. This meridional intrusion of rare extent, coinciding with the polar vortex final warming and breakdown, was followed by a zonal stretching in the wake of the easterly propagating subtropical main flow. This caused polar air to remain over Hawaii for several days before diluting into the subtropics. After being successfully forecasted to pass over Hawaii by the high-resolution potential vorticity advection model Modèle Isentrope du transport Méso-échelle de l'Ozone Stratosphérique par Advection (MIMOSA), the filament was observed on isentropic surfaces between 415 K and 455 K (17-20 km) by the Jet Propulsion Laboratory stratospheric ozone lidar measurements at Mauna Loa Observatory, Hawaii, between 16 and 19 March 2005. It was materialized as a thin layer of enhanced ozone peaking at 1.6 ppmv in a region where the climatological values usually average 1.0 ppmv. These values were compared to those obtained by the three-dimensional Chemistry-Transport Model MIMOSA-CHIM. Agreement between lidar and model was excellent, particularly in the similar appearance of the ozone peak near 435 K (18.5 km) on 16 March, and the persistence of this layer at higher isentropic levels for the following three days. Passive ozone, also modeled by MIMOSA-CHIM, was at about 3-4 ppmv inside the filament while above Hawaii. A detailed history of the modeled chemistry inside the filament suggests that the air mass was still polar ozone-depleted when passing over Hawaii. The filament quickly separated from the main vortex after its Hawaiian overpass. It never reconnected and, in less than 10 days, dispersed entirely in the subtropics.
NASA Astrophysics Data System (ADS)
Thiéblemont, R.; Huret, N.; Orsolini, Y.; Hauchecorne, A.; Drouin, M.
2010-12-01
During winter, the polar vortex forms in arctic stratosphere a dynamical barrier which prevents large scale exchanges between high latitude and tropical regions. However, thin tropical air mass intrusions at the edge of the polar vortex have already been detected and modelled. These structures could play an important role for the knowledge of the balance between chemistry and dynamical processes associated with ozone budget. During springtime, after the final stratospheric warming, the breakdown of the polar vortex occurs and the summer circulation starts to develop. Air mass intrusions from the tropics can be trapped into the polar latitudes in an anticyclone which can persist until August, advected by summer easterlies. These structures, named “Frozen In Anticyclones” (FrIAC’s), have already been observed in 2003 and 2005 by MIPAS-ENVISAT and MLS-AURA instruments. We present here a new case of FrIAC in 2007 highlighted using MLS-AURA measurements. Time evolution of N2O and H2O mixing ratios in the core of this FRIAC are compared with the 2005 similar event. In addition, we perform a climatology of tropical air mass intrusions during the last decade based on the results of the potential vorticity contour advection model MIMOSA (Hauchecorne et al., 2002) and MLS-AURA measurements. This climatology reveals a favourite path for exchanges between polar and tropical stratosphere allowing us to establish closed links between FrIAC’s occurrence and Rossby wave activity. Using wind and temperature fields from ECMWF, we performed a study to understand dynamical processes responsible of such dynamical structures. Discussion on the link between them and Sudden Stratospheric Warming, Final Stratsopheric Warming and Quasi Biennal Oscillation will be presented. This study is made in the framework the STRAPOLETE project which has started on January 2009 to study the Arctic stratosphere in the summertime.
The effect of aspect ratio on the leading-edge vortex over an insect-like flapping wing.
Phillips, Nathan; Knowles, Kevin; Bomphrey, Richard J
2015-10-09
Insect wing shapes are diverse and a renowned source of inspiration for the new generation of autonomous flapping vehicles, yet the aerodynamic consequences of varying geometry is not well understood. One of the most defining and aerodynamically significant measures of wing shape is the aspect ratio, defined as the ratio of wing length (R) to mean wing chord (c). We investigated the impact of aspect ratio, AR, on the induced flow field around a flapping wing using a robotic device. Rigid rectangular wings ranging from AR = 1.5 to 7.5 were flapped with insect-like kinematics in air with a constant Reynolds number (Re) of 1400, and a dimensionless stroke amplitude of 6.5c (number of chords traversed by the wingtip). Pseudo-volumetric, ensemble-averaged, flow fields around the wings were captured using particle image velocimetry at 11 instances throughout simulated downstrokes. Results confirmed the presence of a high-lift, separated flow field with a leading-edge vortex (LEV), and revealed that the conical, primary LEV grows in size and strength with increasing AR. In each case, the LEV had an arch-shaped axis with its outboard end originating from a focus-sink singularity on the wing surface near the tip. LEV detachment was observed for AR > 1.5 around mid-stroke at ~70% span, and initiated sooner over higher aspect ratio wings. At AR > 3 the larger, stronger vortex persisted under the wing surface well into the next half-stroke leading to a reduction in lift. Circulatory lift attributable to the LEV increased with AR up to AR = 6. Higher aspect ratios generated proportionally less lift distally because of LEV breakdown, and also less lift closer to the wing root due to the previous LEV's continuing presence under the wing. In nature, insect wings go no higher than AR ~ 5, likely in part due to architectural and physiological constraints but also because of the reducing aerodynamic benefits of high AR wings.
Compressibility effects on dynamic stall of airfoils undergoing rapid transient pitching motion
NASA Technical Reports Server (NTRS)
Chandrasekhara, M. S.; Platzer, M. F.
1992-01-01
The research was carried out in the Compressible Dynamic Stall Facility, CDSF, at the Fluid Mechanics Laboratory (FML) of NASA Ames Research Center. The facility can produce realistic nondimensional pitch rates experienced by fighter aircraft, which on model scale could be as high as 3600/sec. Nonintrusive optical techniques were used for the measurements. The highlight of the effort was the development of a new real time interferometry method known as Point Diffraction Interferometry - PDI, for use in unsteady separated flows. This can yield instantaneous flow density information (and hence pressure distributions in isentropic flows) over the airfoil. A key finding is that the dynamic stall vortex forms just as the airfoil leading edge separation bubble opens-up. A major result is the observation and quantification of multiple shocks over the airfoil near the leading edge. A quantitative analysis of the PDI images shows that pitching airfoils produce larger suction peaks than steady airfoils at the same Mach number prior to stall. The peak suction level reached just before stall develops is the same at all unsteady rates and decreases with increase in Mach number. The suction is lost once the dynamic stall vortex or vortical structure begins to convect. Based on the knowledge gained from this preliminary analysis of the data, efforts to control dynamic stall were initiated. The focus of this work was to arrive at a dynamically changing leading edge shape that produces only 'acceptable' airfoil pressure distributions over a large angle of attack range.
The influence of surface roughness on cloud cavitation flow around hydrofoils
NASA Astrophysics Data System (ADS)
Hao, Jiafeng; Zhang, Mindi; Huang, Xu
2018-02-01
The aim of this study is to investigate experimentally the effect of surface roughness on cloud cavitation around Clark-Y hydrofoils. High-speed video and particle image velocimetry (PIV) were used to obtain cavitation patterns images (Prog. Aerosp. Sci. 37: 551-581, 2001), as well as velocity and vorticity fields. Results are presented for cloud cavitating conditions around a Clark-Y hydrofoil fixed at angle of attack of α =8{°} for moderate Reynolds number of Re=5.6 × 105. The results show that roughness had a great influence on the pattern, velocity and vorticity distribution of cloud cavitation. For cavitating flow around a smooth hydrofoil (A) and a rough hydrofoil (B), cloud cavitation occurred in the form of finger-like cavities and attached subulate cavities, respectively. The period of cloud cavitation around hydrofoil A was shorter than for hydrofoil B. Surface roughness had a great influence on the process of cloud cavitation. The development of cloud cavitation around hydrofoil A consisted of two stages: (1) Attached cavities developed along the surface to the trailing edge; (2) A reentrant jet developed, resulting in shedding and collapse of cluster bubbles or vortex structure. Meanwhile, its development for hydrofoil B included three stages: (1) Attached cavities developed along the surface to the trailing edge, with accumulation and rotation of bubbles at the trailing edge of the hydrofoil affecting the flow field; (2) Development of a reentrant jet resulted in the first shedding of cavities. Interaction and movement of flows from the pressure side and suction side brought liquid water from the pressure side to the suction side of the hydrofoil, finally forming a reentrant jet. The jet kept moving along the surface to the leading edge of the hydrofoil, resulting in large-scale shedding of cloud bubbles. Several vortices appeared and dissipated during the process; (3) Cavities grew and shed again.
Ozone vertical profile changes over South Pole
NASA Technical Reports Server (NTRS)
Oltmans, S. J.; Hofmann, D. J.; Komhyr, W. D.; Lathrop, J. A.
1994-01-01
Important changes in the ozone vertical profile over South Pole, Antarctica have occurred both during the recent period of measurements, 1986-1991, and since an earlier set of soundings was carried out from 1967-1971. From the onset of the 'ozone hole' over Antarctica in the early 1980s, there has been a tendency for years with lower spring ozone amounts to alternate with years with somewhat higher (although still depleted) ozone amounts. Beginning in 1989 there have been three consecutive years of strong depletion although the timing of the breakdown of the vortex has varied from year to year. Comparison of the vertical profiles between the two periods of study reveals the dramatic decreases in the ozone amounts in the stratosphere between 15-21 km during the spring. In addition, it appears that summer values are also now much lower in this altitude region.
Transitional–turbulent spots and turbulent–turbulent spots in boundary layers
Wu, Xiaohua; Moin, Parviz; Wallace, James M.; Skarda, Jinhie; Lozano-Durán, Adrián; Hickey, Jean-Pierre
2017-01-01
Two observations drawn from a thoroughly validated direct numerical simulation of the canonical spatially developing, zero-pressure gradient, smooth, flat-plate boundary layer are presented here. The first is that, for bypass transition in the narrow sense defined herein, we found that the transitional–turbulent spot inception mechanism is analogous to the secondary instability of boundary-layer natural transition, namely a spanwise vortex filament becomes a Λ vortex and then, a hairpin packet. Long streak meandering does occur but usually when a streak is infected by a nearby existing transitional–turbulent spot. Streak waviness and breakdown are, therefore, not the mechanisms for the inception of transitional–turbulent spots found here. Rather, they only facilitate the growth and spreading of existing transitional–turbulent spots. The second observation is the discovery, in the inner layer of the developed turbulent boundary layer, of what we call turbulent–turbulent spots. These turbulent–turbulent spots are dense concentrations of small-scale vortices with high swirling strength originating from hairpin packets. Although structurally quite similar to the transitional–turbulent spots, these turbulent–turbulent spots are generated locally in the fully turbulent environment, and they are persistent with a systematic variation of detection threshold level. They exert indentation, segmentation, and termination on the viscous sublayer streaks, and they coincide with local concentrations of high levels of Reynolds shear stress, enstrophy, and temperature fluctuations. The sublayer streaks seem to be passive and are often simply the rims of the indentation pockets arising from the turbulent–turbulent spots. PMID:28630304
NASA Astrophysics Data System (ADS)
Kikuchi, H.
2007-05-01
Laboratory Experiments of Helicity or Vortex Generation in an Electric Quadrupole: Simulation of Tornadoes with and without Lightning H. Kikuchi Institute for Environmental Electromagnetics 3-8-18, Komagome, Toshima-ku, Tokyo 170, Japan e-mail: hkikuchi@mars.dti.ne.jp Abstract Usually the source-origins of helicity or vortex generation have been considered to be thermohydrodynamic in the hydrodynamic (HD) regime and/or magnetohydrodynamic in the magnetohydrodynamic (MHD) regime. It has been shown, however, by the present author that an electric quadrupole is also capable for helicity or vortex generation and a new electric helic- ity defined as hE= v·E (v: flow velocity; E: electric field) has been introduced. Accordingly, we have now three kinds of helicity, namely fluid, magnetic, and electric helicity. In many cases of atmospheric and space electricity phenomena in nature, electric helicity or vortex generation of electric origin is involved as typically seen in tornadic thunderstorms. Conventional theory of tornadoes, however, space- charge and electric fields have never been considered properly so far, surprisingly in spite of their effects of significance, because of no theorv for such cases, although those effects have been recognized implicitly by field experiments. This paper fills up these demands by newly introducing the concept of 'Electric Helicity' based on 'Electrohydrodynamics' (EHD) established and developed over the last more than two decades and such a whole theory is applied to tornadioes with and without lightning. Further, experimental evidence of this theory is presented for the first time by using a 'universal electric-cusp type plasma reactor' designed more than a decade ago [1]. This device is composed of two positive and negative electrodes of lead spheres 1.5 cm in diameter suspended 2~5 cm above a copper plane on which a semispherical lead 1.25 cm in diameter or its modified object is placed. A whole setup is arranged in a wooden box whose back and both sides are covered by black papers to prevent scattered and reflected light while its front side is open. We are particularly focusing on 'significance of electric quadrupole(s) in helicity and vortex generation',taking photos of wind flows with the use of a bunch of incense sticks burned and placed on the semispherical lead at the cusp center in the reactor. With increasing both electrode voltages from zero to a certain kV, ascending straight wind flows turn to be cyclonic separately toward the both electrodes. As soon as electric discharge from both electrodes to object starts at a certain breakdown voltage, typically 20~30 kV, wind flows suddenly turn to be violent and wind flows toward negative electrode are still cyclonic but wind flows toward positive electrode become anticyclonic. These results are shown by a number of photos taken and provide at the same time 'laboratory simulation of tonadoes with and without lightning'. [1] Kikuchi, H. Electrohydrodynamics in Dusty and Dirty Plasmas, Kluwer Academic Publishers, Dordrecht/The Netherlands, 2001, pp.93-94.
Numerical simulation of the flow about the F-18 HARV at high angle of attack
NASA Technical Reports Server (NTRS)
Murman, Scott M.
1994-01-01
This report summarizes research done over the past two years as part of NASA Grant NCC 2-729. This research has been aimed at validating numerical methods for computing the flow about the complete F-18 HARV at alpha = 30 deg and alpha = 45 deg. At 30 deg angle of attack, the flow about the F-18 is dominated by the formation, and subsequent breakdown, of strong vortices over the wing leading-edge extensions (LEX). As the angle of attack is increased to alpha = 45 deg, the fuselage forebody of the F-18 contains significant laminar and transitional regions which are not present at alpha = 30 deg. Further, the flow over the LEX at alpha = 45 deg is dominated by an unsteady shedding in time, rather than strong coherent vortices. This complex physics, combined with the complex geometry of a full aircraft configuration, provides a challenge for current computational fluid dynamics (CFD) techniques. The following sections present the numerical method and grid generation scheme that was used, a review of prior research done to numerically model the F-18 HARV, and a discussion of the current research. The current research is broken into two main topics: the effect of engine-inlet mass-flow rate on the F-18 vortex breakdown position, and the results using a refined F-18 computational model to compute the flow at alpha = 30 deg and alpha = 45 deg.
Numerical simulation of the flow about the F-18 HARV at high angle of attack
NASA Technical Reports Server (NTRS)
Murman, Scott M.
1995-01-01
This research has been aimed at validating numerical methods for computing the flow about the complete F-18 HARV at alpha = 30 deg and alpha = 45 deg. At 30 deg angle of attack, the flow about the F-18 is dominated by the formation, and subsequent breakdown, of strong vortices over the wing leading-edge extensions (LEX). As the angle of attack is increased to alpha = 45 deg, the fuselage forebody of the F-18 contains significant laminar and transitional regions which are not present at alpha = 30 deg. Further, the flow over the LEX at alpha = 45 deg is dominated by an unsteady shedding in time, rather than strong coherent vortices. This complex physics, combined with the complex geometry of a full-aircraft configuration, provides a challenge for current computational fluid dynamics (CFD) techniques. The following sections present the numerical method and grid generation scheme that was used, a review of prior research done to numerically model the F-18 HARV, and a discussion of the current research. The current research is broken into three main topics; the effect of engine-inlet mass-flow rate on the F-18 vortex breakdown position, the results using a refined F-18 computational model to compute the flow at alpha = 30 deg and alpha = 45 deg, and research done using the simplified geometry of an ogive-cylinder configuration to investigate the physics of unsteady shear-layer shedding. The last section briefly summarizes the discussion.
Influence of Stationary Crossflow Modulation on Secondary Instability
NASA Technical Reports Server (NTRS)
Choudhari, Meelan M.; Li, Fei; Paredes, Pedro
2016-01-01
A likely scenario for swept wing transition on subsonic aircraft with natural laminar flow involves the breakdown of stationary crossflow vortices via high frequency secondary instability. A majority of the prior research on this secondary instability has focused on crossflow vortices with a single dominant spanwise wavelength. This paper investigates the effects of the spanwise modulation of stationary crossflow vortices at a specified wavelength by a subharmonic stationary mode. Secondary instability of the modulated crossflow pattern is studied using planar, partial-differential-equation based eigenvalue analysis. Computations reveal that weak modulation by the first subharmonic of the input stationary mode leads to mode splitting that is particularly obvious for Y-type secondary modes that are driven by the wall-normal shear of the basic state. Thus, for each Y mode corresponding to the fundamental wavelength of results in unmodulated train of crossflow vortices, the modulated flow supports a pair of secondary modes with somewhat different amplification rates. The mode splitting phenomenon suggests that a more complex stationary modulation such as that induced by natural surface roughness would yield a considerably richer spectrum of secondary instability modes. Even modest levels of subharmonic modulation are shown to have a strong effect on the overall amplification of secondary disturbances, particularly the Z-modes driven by the spanwise shear of the basic state. Preliminary computations related to the nonlinear breakdown of these secondary disturbances provide interesting insights into the process of crossflow transition in the presence of the first subharmonic of the dominant stationary vortex.
Direct Numerical Simulation of Transition in a Swept-Wing Boundary Layer
NASA Technical Reports Server (NTRS)
Duan, Lian; Choudhari, Meelan M.; Li, Fei
2013-01-01
Direct numerical simulation (DNS) is performed to examine laminar to turbulent transition due to high-frequency secondary instability of stationary crossflow vortices in a subsonic swept-wing boundary layer for a realistic natural-laminar-flow airfoil configuration. The secondary instability is introduced via inflow forcing derived from a two-dimensional, partial-differential-equation based eigenvalue computation; and the mode selected for forcing corresponds to the most amplified secondary instability mode which, in this case, derives a majority of its growth from energy production mechanisms associated with the wall-normal shear of the stationary basic state. Both the growth of the secondary instability wave and the resulting onset of laminar-turbulent transition are captured within the DNS computations. The growth of the secondary instability wave in the DNS solution compares well with linear secondary instability theory when the amplitude is small; the linear growth is followed by a region of reduced growth resulting from nonlinear effects before an explosive onset of laminar breakdown to turbulence. The peak fluctuations are concentrated near the boundary layer edge during the initial stage of transition, but rapidly propagates towards the surface during the process of laminar breakdown. Both time-averaged statistics and flow visualization based on the DNS reveal a sawtooth transition pattern that is analogous to previously documented surface flow visualizations of transition due to stationary crossflow instability. The memory of the stationary crossflow vortex is found to persist through the transition zone and well beyond the location of the maximum skin friction.
Size invariance of the granular Rayleigh-Taylor instability.
Vinningland, Jan Ludvig; Johnsen, Øistein; Flekkøy, Eirik G; Toussaint, Renaud; Måløy, Knut Jørgen
2010-04-01
The size scaling behavior of the granular Rayleigh-Taylor instability [J. L. Vinningland, Phys. Rev. Lett. 99, 048001 (2007)] is investigated experimentally, numerically, and theoretically. An upper layer of grains displaces a lower gap of air by organizing into dense fingers of falling grains separated by rising bubbles of air. The dependence of these structures on the system and grain sizes is investigated. A spatial measurement of the finger structures is obtained by the Fourier power spectrum of the wave number k. As the size of the grains increases the wave number decreases accordingly which leaves the dimensionless product of wave number and grain diameter, dk, invariant. A theoretical interpretation of the invariance, based on the scaling properties of the model equations, suggests a gradual breakdown of the invariance for grains smaller than approximately 70 microm or greater than approximately 570 microm in diameter.
Wave structure in the radial film flow with a circular hydraulic jump
NASA Astrophysics Data System (ADS)
Rao, A.; Arakeri, J. H.
A circular hydraulic jump is commonly seen when a circular liquid jet impinges on a horizontal plate. Measurements of the film thickness, jump radius and the wave structure for various jet Reynolds numbers are reported. Film thickness measurements are made using an electrical contact method for regions both upstream and downstream of the jump over circular plates without a barrier at the edge. The jump radius and the separation bubble length are measured for various flow rates, plate edge conditions, and radii. Flow visualization using high-speed photography is used to study wave structure and transition. Waves on the jet amplify in the film region upstream of the jump. At high flow rates, the waves amplify enough to cause three-dimensional breakdown and what seems like transition to turbulence. This surface wave induced transition is different from the traditional route and can be exploited to enhance heat and mass transfer rates.
Discharge ignition in the diaphragm configuration supplied by DC non-pulsing voltage
NASA Astrophysics Data System (ADS)
Hlochová, L.; Hlavatá, L.; Kozáková, Z.; Krčma, F.
2016-05-01
This work deals with the ignition of the discharge in the diaphragm configuration generated in water solutions containing supporting NaCl electrolyte. The reactor has volume of 110 ml and it is made of polycarbonate. HV electrodes made of stainless steel are placed in this reactor. Ceramic (Shapal-MTM) diaphragm is placed in the barrier separating the cathode and the anode space. An electric power source supplies the reactor by constant DC voltage up to 4 kV and electric current up to 300 mA. The discharge ignition is compared in the reactor with different sizes of diaphragms. Measurements are carried out in electrolyte solutions with the same conductivity. Images of plasma streamers and bubble formation are taken by an ICCD camera iStar 734. Electrical characteristics are measured by an oscilloscope LeCroy LT 374 L in order to determine breakdown moments at different experimental conditions.
Drag reduction and thrust generation by tangential surface motion in flow past a cylinder
NASA Astrophysics Data System (ADS)
Mao, Xuerui; Pearson, Emily
2018-03-01
Sensitivity of drag to tangential surface motion is calculated in flow past a circular cylinder in both two- and three-dimensional conditions at Reynolds number Re ≤ 1000 . The magnitude of the sensitivity maximises in the region slightly upstream of the separation points where the contour lines of spanwise vorticity are normal to the cylinder surface. A control to reduce drag can be obtained by (negatively) scaling the sensitivity. The high correlation of sensitivities of controlled and uncontrolled flow indicates that the scaled sensitivity is a good approximation of the nonlinear optimal control. It is validated through direct numerical simulations that the linear range of the steady control is much higher than the unsteady control, which synchronises the vortex shedding and induces lock-in effects. The steady control injects angular momentum into the separating boundary layer, stabilises the flow and increases the base pressure significantly. At Re=100 , when the maximum tangential motion reaches 50% of the free-stream velocity, the vortex shedding, boundary-layer separation and recirculation bubbles are eliminated and 32% of the drag is reduced. When the maximum tangential motion reaches 2.5 times of the free-stream velocity, thrust is generated and the power savings ratio, defined as the ratio of the reduced drag power to the control input power, reaches 19.6. The mechanism of drag reduction is attributed to the change of the radial gradient of spanwise vorticity (partial r \\hat{ζ } ) and the subsequent accelerated pressure recovery from the uncontrolled separation points to the rear stagnation point.
Anomalous Chained Turbulence in Actively Driven Flows on Spheres
NASA Astrophysics Data System (ADS)
Mickelin, Oscar; Słomka, Jonasz; Burns, Keaton J.; Lecoanet, Daniel; Vasil, Geoffrey M.; Faria, Luiz M.; Dunkel, Jörn
2018-04-01
Recent experiments demonstrate the importance of substrate curvature for actively forced fluid dynamics. Yet, the covariant formulation and analysis of continuum models for nonequilibrium flows on curved surfaces still poses theoretical challenges. Here, we introduce and study a generalized covariant Navier-Stokes model for fluid flows driven by active stresses in nonplanar geometries. The analytical tractability of the theory is demonstrated through exact stationary solutions for the case of a spherical bubble geometry. Direct numerical simulations reveal a curvature-induced transition from a burst phase to an anomalous turbulent phase that differs distinctly from externally forced classical 2D Kolmogorov turbulence. This new type of active turbulence is characterized by the self-assembly of finite-size vortices into linked chains of antiferromagnetic order, which percolate through the entire fluid domain, forming an active dynamic network. The coherent motion of the vortex chain network provides an efficient mechanism for upward energy transfer from smaller to larger scales, presenting an alternative to the conventional energy cascade in classical 2D turbulence.
Transitional-turbulent spots and turbulent-turbulent spots in boundary layers
NASA Astrophysics Data System (ADS)
Wu, Xiaohua; Moin, Parviz; Wallace, James M.; Skarda, Jinhie; Lozano-Durán, Adrián; Hickey, Jean-Pierre
2017-07-01
Two observations drawn from a thoroughly validated direct numerical simulation of the canonical spatially developing, zero-pressure gradient, smooth, flat-plate boundary layer are presented here. The first is that, for bypass transition in the narrow sense defined herein, we found that the transitional-turbulent spot inception mechanism is analogous to the secondary instability of boundary-layer natural transition, namely a spanwise vortex filament becomes a
Warm-Core Intensification Through Horizontal Eddy Heat Transports into the Eye
NASA Technical Reports Server (NTRS)
Braun, Scott A.; Montgomery, Michael T.; Fulton, John; Nolan, David S.; Starr, David OC (Technical Monitor)
2001-01-01
A simulation of Hurricane Bob (1991) using the PSU/NCAR MM5 mesoscale model with a finest mesh spacing of 1.3 km is used to diagnose the heat budget of the hurricane. Heat budget terms, including latent and radiative heating, boundary layer forcing, and advection terms were output directly from the model for a 6-h period with 2-min frequency. Previous studies of warm core formation have emphasized the warming associated with gentle subsidence within the eye. The simulation of Hurricane Bob confirms subsidence warming as a major factor for eye warming, but also shows a significant contribution from horizontal advective terms. When averaged over the area of the eye, subsidence is found to strongly warm the mid-troposphere (2-9 km) while horizontal advection warms the mid to upper troposphere (5-13 km) with about equal magnitude. Partitioning of the horizontal advective terms into azimuthal mean and eddy components shows that the mean radial circulation does not, as expected, generally contribute to this warming, but that it is produced almost entirely by the horizontal eddy transport of heat into the eye. A further breakdown of the eddy components into azimuthal wave numbers 1, 2, and higher indicates that the warming is dominated by wave number 1 asymmetries, with smaller coming from higher wave numbers. Warming by horizontal eddy transport is consistent with idealized modeling of vortex Rossby waves and work is in progress to identify and clarify the role of vortex Rossby waves in warm-core intensification in both the full-physics model and idealized models.
Vortex dynamics during blade-vortex interactions
NASA Astrophysics Data System (ADS)
Peng, Di; Gregory, James W.
2015-05-01
Vortex dynamics during parallel blade-vortex interactions (BVIs) were investigated in a subsonic wind tunnel using particle image velocimetry (PIV). Vortices were generated by applying a rapid pitch-up motion to an airfoil through a pneumatic system, and the subsequent interactions with a downstream, unloaded target airfoil were studied. The blade-vortex interactions may be classified into three categories in terms of vortex behavior: close interaction, very close interaction, and collision. For each type of interaction, the vortex trajectory and strength variation were obtained from phase-averaged PIV data. The PIV results revealed the mechanisms of vortex decay and the effects of several key parameters on vortex dynamics, including separation distance (h/c), Reynolds number, and vortex sense. Generally, BVI has two main stages: interaction between vortex and leading edge (vortex-LE interaction) and interaction between vortex and boundary layer (vortex-BL interaction). Vortex-LE interaction, with its small separation distance, is dominated by inviscid decay of vortex strength due to pressure gradients near the leading edge. Therefore, the decay rate is determined by separation distance and vortex strength, but it is relatively insensitive to Reynolds number. Vortex-LE interaction will become a viscous-type interaction if there is enough separation distance. Vortex-BL interaction is inherently dominated by viscous effects, so the decay rate is dependent on Reynolds number. Vortex sense also has great impact on vortex-BL interaction because it changes the velocity field and shear stress near the surface.
[Crystalline lens photodisruption using femtosecond laser: experimental study].
Chatoux, O; Touboul, D; Buestel, C; Balcou, P; Colin, J
2010-09-01
The aim of this study was to analyze the interactions during femtosecond (fs) laser photodisruption in ex vivo porcine crystalline lenses and to study the parameters for laser interaction optimization. An experimental femtosecond laser was used. The laser characteristics were: 1030 nm wavelength; pulse duration, 400 fs; and numerical aperture, 0.13. Specific software was created to custom and monitor any type of photoablation pattern for treatment purposes. Porcine crystalline lenses were placed in an open sky holder filled with physiological liquid (BSS) covered by a glass plate. A numerical camera was associated with metrological software in order to magnify and quantify the results. Transmission electron microscopy (TEM) was performed on some samples to identify the microscopic plasma interactions with the lens. The optimization of parameters was investigated in terms of the optical breakdown threshold, the sizing of interactions, and the best pattern for alignments. More than 150 crystalline lenses of freshly enucleated pigs were treated. The optical breakdown threshold (OBT) was defined as the minimal energy level per pulse necessary to observe a physical interaction. In our study, the OBT varied according to the following parameters: the crystalline lens itself, varying from 4.2 to 7.6 μJ (mean, 5.1 μJ), and the depth of laser focus, varying up to 1 μJ, increasing in the depth of the tissue. Analyzing the distance between impacts, we observed that the closer the impacts were the less power was needed to create a clear well-drawn defect pattern (lines), i.e., with a 4-μJ optimized OBT, when the impacts were placed every 2 μm for the x,y directions and 60 μm for the z direction. Coalescent bubbles created by plasma formation always disappeared in less than 24h. The nonthermal effect of plasma and the innocuousness on surrounding tissues were proven by the TEM results. The crystalline lens photodisruption by the femtosecond laser seems an innovative technique usable in the ultra precise crystalline lens cutting. Experimental studies in vivo are necessary in order to define of them the applications (surgery of the cataract and presbyopia) and limits in the cavitations bubbles kinetic and transfer. Copyright © 2010 Elsevier Masson SAS. All rights reserved.
NASA Technical Reports Server (NTRS)
Zimmerli, Greg; Statham, Geoff; Garces, Rachel; Cartagena, Will
2015-01-01
As part of the NASA Cryogenic Propellant Storage and Transfer (CPST) Engineering Design Unit (EDU) testing with liquid hydrogen, screen-channel liquid acquisition devices (LADs) were tested during liquid hydrogen outflow from the EDU tank. A stainless steel screen mesh (325x2300 Dutch T will weave) was welded to a rectangular cross-section channel to form the basic LAD channel. Three LAD channels were tested, each having unique variations in the basic design. The LADs fed a common outflow sump at the aft end of the 151 cu. ft. volume aluminum tank, and included a curved section along the aft end and a straight section along the barrel section of the tank. Wet-dry sensors were mounted inside the LAD channels to detect when vapor was ingested into the LADs during outflow. The use of warm helium pressurant during liquid hydrogen outflow, supplied through a diffuser at the top of the tank, always led to early breakdown of the liquid column. When the tank was pressurized through an aft diffuser, resulting in cold helium in the ullage, LAD column hold-times as long as 60 minutes were achieved, which was the longest duration tested. The highest liquid column height at breakdown was 58 cm, which is 23 less than the isothermal bubble-point model value of 75 cm. This paper discusses details of the design, construction, operation and analysis of LAD test data from the CPST EDU liquid hydrogen test.
Transition to turbulence in plane channel flows
NASA Technical Reports Server (NTRS)
Biringen, S.
1984-01-01
Results obtained from a numerical simulation of the final stages of transition to turbulence in plane channel flow are described. Three dimensional, incompressible Navier-Stokes equations are numerically integrated to obtain the time evolution of two and three dimensional finite amplitude disturbances. Computations are performed on CYBER-203 vector processor for a 32x51x32 grid. Results are presented for no-slip boundary conditions at the solid walls as well as for periodic suction blowing to simulate active control of transition by mass transfer. Solutions indicate that the method is capable of simulating the complex character of vorticity dynamics during the various stages of transition and final breakdown. In particular, evidence points to the formation of a lambda-shape vortex and the subsequent system of horseshoe vortices inclined to the main flow direction as the main elements of transition. Calculations involving periodic suction-blowing indicate that interference with a wave of suitable phase and amplitude reduces the disturbance growth rates.
NASA Technical Reports Server (NTRS)
Thompson, Scott A.
1989-01-01
Wind tunnel experiments were performed on a 70 deg sweep delta wing to determine the effect of a sinusoidal pitching motion on the pressure field on the suction side of the wing. Twelve pressure taps were placed from 35 to 90 percent of the chord, at 60 percent of the local semi-span. Pressure coefficients were measured as a function of Reynolds number and pitch rate. The pressure coefficient was seen to vary at approximately the same frequency as the pitching frequency. The relative pressure variation at each chord location was comparable for each case. The average pressure distribution through each periodic motion was near the static distribution for the average angle of attack. Upon comparing the upstroke and downstroke pressures for a specific angle of attack, the downstroke pressures were slightly larger. Vortex breakdown was seen to have the most significant effect at the 40 to 45 percent chord location, where a decrease in pressure was apparent.
EHD Approach to Tornadic Thunderstorms and Methods of Their Destruction
NASA Astrophysics Data System (ADS)
Kikuchi, H.
2005-05-01
In many cases, tornadoes are accompanied or involved by lightning discharges and are thought to be com- posed of uncharged and charged components different from each other in terms of velocity, vorticity, heli- city, and appearance (shape and luminosity). Their visible dark portion may correspond to uncharged tor- nadoes, while luminous or bright part may involve charged tornadoes with return strokes. Usually, un- charged tornadoes have been considered to be ascending hot streams of thermohydrodynamic origin. This is the conventional theory of tornadoes, based on hydrodynamics (HD) or thermohydrodynamics (THD) but does not consider electrical effects that are really significant in tornadic thunderstorms..It has been shown, however, that a new electrohydrodynamics (EHD) established and developed over the last more than a decade is applicable to tornadic thunderstorms with lightning. This paper summarizes such an EHD approach and proposes the methods of tornado destruction based on EHD. Space charge and electric field configurations in tornadic thunderstorms are considered to be quadrupole-like, taking into account the cloud-charge images onto the ground. Accordingly, dynamics of particles and EHD flows in an electric quadrupole forming an electric cusp and mirror can straightly apply to those circumstances. When the gas pressure is below the breakdown threshold, there occur helical motion of particles, not only charged but also even uncharged, and/or vortex generation. While for gases whose pressure is beyond the breakdown threshold, the following basic processes succeed one after another. When the grain is uncharged, a dis- charge channel is formed towards each pole as a result of X-type reconnection. For a negatively or posi- tively charged grain, I-type reconnection occurs between the grain and positive or negative poles, respect- ively. For uncharged two grains, O-type reconnection between both grains could be involved in addition to X-type between each pole, while for oppositely charged two grains, F-type reconnection could be in- volved between grains in addition to I-type between each grain and a pole with opposite polarity. Thus one can say that the uncharged component of tornadic thunderstorms is composed of conventional ascending hot streams of thermohydrodynamic origin and particle flows of new EHD origin produced by a quadru- pole-like cloud-base, funnel-top charge distributions, while the charged component is a bunch of return strokes including charged flows due to dust-related electric reconnection and EHD vortices in large-scale generated by EHD helical turbulence where there may occur self-organization to coalescence of fluid vor- tex and electric displacement field lines at least in an initial stage of return stroke (rise time of some ms), since earth's magnetic field could be ignored. This also indicates that fluid vortex breakdown points also tend to merge electric cusps, X-type and O-type. Then the principle of dust-related electric reconnection could be replaced by dust cluster injection into electric cusps (X-type and O-type) in several ways just mentioned above. Thus a variety of such dust cluster injection could cause additional cloud-to-dust cluster discharges, expending electrostatic energy accumulated in thunderclouds considerably and destructing tornadoes consequently.
Vortex-Surface Interactions: Vortex Dynamics and Instabilities
2015-10-16
31 May 2015 4. TITLE AND SUBTITLE VORTEX -SURFACE INTERACTIONS: VORTEX DYNAMICS AND INSTABILITIES Sa. CONTRACT NUMBER Sb. GRANT NUMBER N00014-12...new natural instabilities coming from vortex - vortex or vortex -surface interactions, but also ultimately the possibility to control these flows...design of vortex generators to modify surface pressures. We find a short wave instability of the secondary vortices that are created by the
Vortex formation and instability in the left ventricle
NASA Astrophysics Data System (ADS)
Le, Trung Bao; Sotiropoulos, Fotis; Coffey, Dane; Keefe, Daniel
2012-09-01
We study the formation of the mitral vortex ring during early diastolic filling in a patient-specific left ventricle (LV) using direct numerical simulation. The geometry of the left ventricle is reconstructed from Magnetic Resonance Imaging (MRI) data of a healthy human subject. The left ventricular kinematics is modeled via a cell-based activation methodology, which is inspired by cardiac electro-physiology and yields physiologic LV wall motion. In the fluid dynamics videos, we describe in detail the three-dimensional structure of the mitral vortex ring, which is formed during early diastolic filling. The ring starts to deform as it propagates toward the apex of the heart and becomes inclined. The trailing secondary vortex tubes are formed as the result of interaction between the vortex ring and the LV wall. These vortex tubes wrap around the circumference and begin to interact with and destabilize the mitral vortex ring. At the end of diastole, the vortex ring impinges on the LV wall and the large-scale intraventricular flow rotates in clockwise direction. We show for the first time that the mitral vortex ring evolution is dominated by a number of vortex-vortex and vortex-wall interactions, including lateral straining and deformation of vortex ring, the interaction of two vortex tubes with unequal strengths, helicity polarization of vortex tubes and twisting instabilities of the vortex cores.
Vortex shedding noise of a cylinder with hairy flaps
NASA Astrophysics Data System (ADS)
Kamps, Laura; Geyer, Thomas F.; Sarradj, Ennes; Brücker, Christoph
2017-02-01
This study describes the modification of acoustic noise emitted from cylinders in a stationary subsonic flow for a cylinder equipped with flexible hairy flaps at the aft part as a passive way to manipulate the flow and acoustics. The study was motivated by the results from previous water tunnel measurements, which demonstrated that hairy flaps can modify the shedding cycle behind the cylinder and can reduce the wake deficit. In the present study, wind tunnel experiments were conducted on such a modified cylinder and the results were compared to the reference case of a plain cylinder. The acoustic spectrum was measured using two microphones while simultaneously recording the flap motion. To further examine the flow structures in the downstream vicinity of the cylinder, constant temperature anemometry measurements as well as flow visualizations were also performed. The results show that, above a certain Reynolds number, the hairy flaps lead to a jump in the vortex shedding frequency. This phenomenon is similarly observed in the water flow experiments as a jump in the non-dimensional Strouhal number that is related to the change of the shedding cycle. This jump appears to be coupled to a resonant excitation of the flaps. The specific Reynolds number at which the jump occurs is higher in the present case, which is attributed to the lower added mass in air as compared with the one in water. The flow visualizations confirmed that such action of the flaps lead to a more slender elongated shape of the time-averaged separation bubble. In addition, the hairy flaps induce a noticeable reduction of the tonal noise as well as broadband noise as long as the flaps do not touch each other.
Interaction of a Vortex with Axial Flow and a Cylindrical Surface
NASA Astrophysics Data System (ADS)
Radcliff, T. D.; Burgraff, O. R.; Conlisk, A. T.
1998-11-01
The direct collision of a vortex with a surface is an important problem because significant impulsive loads may be generated leading to premature fatigue. Experimental results for the impingement of a tip-vortex on a cylindrical airframe indicate that a suction peak forms on the top of the airframe which is subsequently reduced within milliseconds of vortex-surface contact. A simple line-vortex model can predict the experimental results until the vortex is within a vortex-core radius of the airframe. After this the model predicts continually deepening rather than lessening suction. Study of the experimental results suggests that axial flow within the core of a tip-vortex has an impact on the airframe pressure distribution upon close approach. The mechanism for this is hypothesized to be the inviscid redistribution of the vorticity field within the vortex coupled with deformation of the vortex core. Two models of a tip-vortex with axial flow are considered. First a classical line vortex with a cut-off parameter is superimposed with suitably placed vortex rings. This model simulates the helically wound vortex shed by the rotor tip. Inclusion of axial flow is found to prevent thinning of the vortex core as the vortex stretches around the cylindrical surface during the collision process. With less thinning, vorticity is observed to overlap the solid cylinder, highlighting the fact that the vortex core must deform from its original cylindrical shape. A second model is developed in which axial and azimuthal vorticity are uniformly distributed throughout a rectangular-section vortex. Area and aspect ratio of this vortex can be varied independently to simulate deformation of the vortex core. Both vorticity redistribution and core deformation are shown to be important to properly calculate the local induced pressure loads. The computational results are compared with the results of experiments conducted at the Georgia Institute of Technology.
Elbaz, Mohammed S M; Calkoen, Emmeline E; Westenberg, Jos J M; Lelieveldt, Boudewijn P F; Roest, Arno A W; van der Geest, Rob J
2014-09-27
LV diastolic vortex formation has been suggested to critically contribute to efficient blood pumping function, while altered vortex formation has been associated with LV pathologies. Therefore, quantitative characterization of vortex flow might provide a novel objective tool for evaluating LV function. The objectives of this study were 1) assess feasibility of vortex flow analysis during both early and late diastolic filling in vivo in normal subjects using 4D Flow cardiovascular magnetic resonance (CMR) with retrospective cardiac gating and 3D vortex core analysis 2) establish normal quantitative parameters characterizing 3D LV vortex flow during both early and late ventricular filling in normal subjects. With full ethical approval, twenty-four healthy volunteers (mean age: 20±10 years) underwent whole-heart 4D Flow CMR. The Lambda2-method was used to extract 3D LV vortex ring cores from the blood flow velocity field during early (E) and late (A) diastolic filling. The 3D location of the center of vortex ring core was characterized using cylindrical cardiac coordinates (Circumferential, Longitudinal (L), Radial (R)). Comparison between E and A filling was done with a paired T-test. The orientation of the vortex ring core was measured and the ring shape was quantified by the circularity index (CI). Finally, the Spearman's correlation between the shapes of mitral inflow pattern and formed vortex ring cores was tested. Distinct E- and A-vortex ring cores were observed with centers of A-vortex rings significantly closer to the mitral valve annulus (E-vortex L=0.19±0.04 versus A-vortex L=0.15±0.05; p=0.0001), closer to the ventricle's long-axis (E-vortex: R=0.27±0.07, A-vortex: R=0.20±0.09, p=0.048) and more elliptical in shape (E-vortex: CI=0.79±0.09, A-vortex: CI=0.57±0.06; <0.001) compared to E-vortex. The circumferential location and orientation relative to LV long-axis for both E- and A-vortex ring cores were similar. Good to strong correlation was found between vortex shape and mitral inflow shape through both the annulus (r=0.66) and leaflet tips (r=0.83). Quantitative characterization and comparison of 3D vortex rings in LV inflow during both early and late diastolic phases is feasible in normal subjects using retrospectively-gated 4D Flow CMR, with distinct differences between early and late diastolic vortex rings.
NASA Astrophysics Data System (ADS)
Wei, Xianggeng; Li, Jiang; He, Guoqiang
2017-04-01
The vortex valve solid variable thrust motor is a new solid motor which can achieve Vehicle system trajectory optimization and motor energy management. Numerical calculation was performed to investigate the influence of vortex chamber diameter, vortex chamber shape, and vortex chamber height of the vortex valve solid variable thrust motor on modulation performance. The test results verified that the calculation results are consistent with laboratory results with a maximum error of 9.5%. The research drew the following major conclusions: the optimal modulation performance was achieved in a cylindrical vortex chamber, increasing the vortex chamber diameter improved the modulation performance of the vortex valve solid variable thrust motor, optimal modulation performance could be achieved when the height of the vortex chamber is half of the vortex chamber outlet diameter, and the hot gas control flow could result in an enhancement of modulation performance. The results can provide the basis for establishing the design method of the vortex valve solid variable thrust motor.
Investigation of the Vortex Tab. M.S. Thesis
NASA Technical Reports Server (NTRS)
Hoffler, K. D.
1985-01-01
An investigation was made into the drag reduction capability of vortex tabs on delta wing vortex flaps. The vortex tab is an up-deflected leading edge portion of the vortex flap. Tab deflection augments vortex suction on the flap, thus improving its thrust, but the tab itself is drag producing. Whether a net improvement in the drag reduction can be obtained with vortex tabs, in comparison with plane vortex flaps of the same total area, was the objective of this investigation. Wind tunnel tests were conducted on two models, and analytical studies were performed on one of them using a free vortex sheet theory.
Experimental examination of vorticity stripping from a wing-tip vortex in free-stream turbulence
NASA Astrophysics Data System (ADS)
Ghimire, Hari C.; Bailey, Sean C. C.
2018-03-01
Time-resolved stereoscopic particle image velocimetry measurements were conducted of a wing-tip vortex decaying in free-stream turbulence. The objective of the research was to experimentally investigate the mechanism causing the increased rate of decay of the vortex in the presence of turbulence. It was observed that the circulation of the vortex core experienced periods of rapid loss and recovery when immersed in free-stream turbulence. These events were not observed when the vortex was in a laminar free stream. A connection was made between these events and distortion of the vortex, coinciding with stripping of core fluid from the vortex core. Specifically, vortex stripping events were connected to asymmetry in the vortex core, and this asymmetry was associated with instances of rapid circulation loss. The increased rate of decay of the vortex in turbulence coincided with the formation of secondary vortical structures which wrapped azimuthally around the primary vortex.
DOT National Transportation Integrated Search
1974-04-01
A unifying wake vortex transport model is developed and applied to a wake vortex predictive system concept. The fundamentals of vortex motion underlying the predictive model are discussed including vortex decay, bursting and instability phenomena. A ...
On the three-dimensional interaction of a rotor-tip vortex with a cylindrical surface
NASA Astrophysics Data System (ADS)
Radcliff, Thomas D.; Burggraf, Odus R.; Conlisk, A. T.
2000-12-01
The collision of a strong vortex with a surface is an important problem because significant impulsive loads may be generated. Prediction of helicopter fatigue lifetime may be limited by an inability to predict these loads accurately. Experimental results for the impingement of a helicopter rotor-tip vortex on a cylindrical airframe show a suction peak on the top of the airframe that strengthens and then weakens within milliseconds. A simple line-vortex model can predict the experimental results if the vortex is at least two vortex-core radii away from the airframe. After this, the model predicts continually deepening rather than lessening suction as the vortex stretches. Experimental results suggest that axial flow within the core of a tip vortex has an impact on the airframe pressure distribution upon close approach. The mechanism for this is hypothesized to be the inviscid redistribution of the vorticity field within the vortex as the axial velocity stagnates. Two models of a tip vortex with axial flow are considered. First, a classical axisymmetric line vortex with a cutoff parameter is superimposed with vortex ringlets suitably placed to represent the helically wound vortex shed by the rotor tip. Thus, inclusion of axial flow is found to advect vortex core thinning away from the point of closest interaction as the vortex stretches around the cylindrical surface during the collision process. With less local thinning, vorticity in the cutoff parameter model significantly overlaps the solid cylinder in an unphysical manner, highlighting the fact that the vortex core must deform from its original cylindrical shape. A second model is then developed in which axial and azimuthal vorticity are confined within a rectangular-section vortex. Area and aspect ratio of this vortex can be varied independently to simulate deformation of the vortex core. Both axial velocity and core deformation are shown to be important to calculate the local induced pressure loads properly. The computational results are compared with experiments conducted at the Georgia Institute of Technology.
NASA Astrophysics Data System (ADS)
Nikulin, V. V.
2014-12-01
Experiments were carried out for interaction of water-travelling vortex ring with a solid surface with the normal impingement to the surface; the vortex velocity was varied by factor of 30 and the Reynolds number had 60-times span. Laminar and turbulent vortex rings have been studied. The ratio of the vortex diameter at the moment of rebound from the surface to the vortex diameter before impingement is almost independent of the vortex velocity and Reynolds number. Within the experimental accuracy, the diameter of the vortex ring after rebound equals the footprint of the vortex on the solid surface. This brings assumption that the previously observed restrictions on the trace were related to the vortex rebound from the solid surface.
NASA Technical Reports Server (NTRS)
Wendt, Bruce J.; Greber, Isaac; Hingst, Warren R.
1991-01-01
An investigation of the structure and development of streamwise vortices embedded in a turbulent boundary layer was conducted. The vortices were generated by a single spanwise row of rectangular vortex generator blades. A single embedded vortex was examined, as well as arrays of embedded counter rotating vortices produced by equally spaced vortex generators. Measurements of the secondary velocity field in the crossplane provided the basis for characterization of vortex structure. Vortex structure was characterized by four descriptors. The center of each vortex core was located at the spanwise and normal position of peak streamwise vorticity. Vortex concentration was characterized by the magnitude of the peak streamwise vorticity, and the vortex strength by its circulation. Measurements of the secondary velocity field were conducted at two crossplane locations to examine the streamwise development of the vortex arrays. Large initial spacings of the vortex generators produced pairs of strong vortices which tended to move away from the wall region while smaller spacings produced tight arrays of weak vortices close to the wall. A model of vortex interaction and development is constructed using the experimental results. The model is based on the structure of the Oseen Vortex. Vortex trajectories are modelled by including the convective effects of neighbors.
NASA Astrophysics Data System (ADS)
Sahoo, Dipankar
Improved basic understanding, predictability, and controllability of vortex-dominated and unsteady aerodynamic flows are important in enhancement of the performance of next generation helicopters. The primary objective of this research project was improved understanding of the fundamental vorticity and turbulent flow physics for a dynamically stalling airfoil at realistic helicopter flight conditions. An experimental program was performed on a large-scale (C = 0.45 m) dynamically pitching NACA 0012 wing operating in the Texas A&M University large-scale wind tunnel. High-resolution particle image velocimetry data were acquired on the first 10-15% of the wing. Six test cases were examined including the unsteady (k>0) and steady (k=0) conditions. The relevant mechanical, shear and turbulent time-scales were all of comparable magnitude, which indicated that the flow was in a state of mechanical non-equilibrium, and the expected flow separation and reattachment hystersis was observed. Analyses of the databases provided new insights into the leading-edge Reynolds stress structure and the turbulent transport processes. Both of which were previously uncharacterized. During the upstroke motion of the wing, a bubble structure formed in the leading-edge Reynolds shear stress. The size of the bubble increased with increasing angle-of-attack before being diffused into a shear layer at full separation. The turbulent transport analyses indicated that the axial stress production was positive, where the transverse production was negative. This implied that axial turbulent stresses were being produced from the axial component of the mean flow. A significant portion of the energy was transferred to the transverse stress through the pressure-strain redistribution, and then back to the transverse mean flow through the negative transverse production. An opposite trend was observed further downstream of this region.
NASA Astrophysics Data System (ADS)
Zheng, H. W.; Shu, C.; Chew, Y. T.
2008-07-01
In this paper, an object-oriented and quadrilateral-mesh based solution adaptive algorithm for the simulation of compressible multi-fluid flows is presented. The HLLC scheme (Harten, Lax and van Leer approximate Riemann solver with the Contact wave restored) is extended to adaptively solve the compressible multi-fluid flows under complex geometry on unstructured mesh. It is also extended to the second-order of accuracy by using MUSCL extrapolation. The node, edge and cell are arranged in such an object-oriented manner that each of them inherits from a basic object. A home-made double link list is designed to manage these objects so that the inserting of new objects and removing of the existing objects (nodes, edges and cells) are independent of the number of objects and only of the complexity of O( 1). In addition, the cells with different levels are further stored in different lists. This avoids the recursive calculation of solution of mother (non-leaf) cells. Thus, high efficiency is obtained due to these features. Besides, as compared to other cell-edge adaptive methods, the separation of nodes would reduce the memory requirement of redundant nodes, especially in the cases where the level number is large or the space dimension is three. Five two-dimensional examples are used to examine its performance. These examples include vortex evolution problem, interface only problem under structured mesh and unstructured mesh, bubble explosion under the water, bubble-shock interaction, and shock-interface interaction inside the cylindrical vessel. Numerical results indicate that there is no oscillation of pressure and velocity across the interface and it is feasible to apply it to solve compressible multi-fluid flows with large density ratio (1000) and strong shock wave (the pressure ratio is 10,000) interaction with the interface.
Warm-Core Intensification of a Hurricane Through Horizontal Eddy Heat Transports Inside the Eye
NASA Technical Reports Server (NTRS)
Braun, Scott A.; Montgomery, Michael T.; Fulton, John; Nolan, David S.
2001-01-01
A simulation of Hurricane Bob (1991) using the PSU/NCAR MM5 mesoscale model with a finest mesh spacing of 1.3 km is used to diagnose the heat budget of the hurricane. Heat budget terms, including latent and radiative heating, boundary layer forcing, and advection terms were output directly from the model for a 6-h period with 2-min frequency. Previous studies of warm core formation have emphasized the warming associated with gentle subsidence within the eye. The simulation of Hurricane Bob also identifies subsidence warming as a major factor for eye warming, but also shows a significant contribution from horizontal advective terms. When averaged over the area of the eye, excluding the eyewall (at least in an azimuthal mean sense), subsidence is found to strongly warm the mid-troposphere (2-9 km) while horizontal advection warms the mid to upper troposphere (5-13 km) with about equal magnitude. Partitioning of the horizontal advective terms into azimuthal mean and eddy components shows that the mean radial circulation cannot, as expected, generally contribute to this warming, but that it is produced almost entirely by the horizontal eddy transport of heat into the eye. A further breakdown of the eddy components into azimuthal wave numbers 1, 2, and higher indicates that the warming is dominated by wave number 1 asymmetries, with smaller contributions coming from higher wave numbers. Warming by horizontal eddy transport is consistent with idealized modeling of vortex Rossby waves and work is in progress to identify and clarify the role of vortex Rossby waves in warm-core intensification in both the full-physics model and idealized models.
NASA Technical Reports Server (NTRS)
Loewenstein, Max; Russell, Philip B. (Technical Monitor)
1994-01-01
The Airborne Tunable Laser Absorption Spectrometer - ATLAS - was designed and built at the NASA Ames Research Center and operates on the NASA ER-2 high altitude research aircraft. ATLAS has taken part in a number of important polar and mid-latitude research campaigns, since 1987, focused on various aspects of stratospheric ozone chemistry and dynamics. The chief measurement carried out by the ATLAS second harmonic diode laser spectrometer is of the important atmospheric tracer N2O. Using N2O as an inert tracer we have been able to gain significant new information on polar vortex dynamics and on the correlations of several important long-lived tracers in the stratosphere. The correlation of N2O with NOy (total reactive nitrogen) has been shown to be linear for a great variety of unperturbed stratospheric conditions, and the breakdown of this correlation has been used to detect denitrification by PSCs in the polar vortex, especially in the Antarctic spring. Denitrification is an important step in the process of ozone hole formation in the austral spring. Correlations of N2O with CFCs and CH4 have led to improved estimates of atmospheric lifetimes of these important molecules. Finally the correlation of N2O with CO2, the latter now being measured with great precision by a new instrument on the ER-2, has led to a significant new tool for studying horizontal and vertical mixing in the lower stratosphere, a tool which is very useful in assessing the potential effects of high speed civil transport aircraft in the lower stratosphere. A new, light-weight version of ATLAS is currently being built for unmanned high altitude aircraft, specifically the new Perseus vehicle. We will give a brief description of this effort.
Study of Near-Stall Flow Behavior in a Modern Transonic Fan with Composite Sweep
NASA Technical Reports Server (NTRS)
Hah, Chunill; Shin, Hyoun-Woo
2011-01-01
Detailed flow behavior in a modern transonic fan with a composite sweep is investigated in this paper. Both unsteady Reynolds-averaged Navier-Stokes (URANS) and Large Eddy Simulation (LES) methods are applied to investigate the flow field over a wide operating range. The calculated flow fields are compared with the data from an array of high-frequency response pressure transducers embedded in the fan casing. The current study shows that a relatively fine computational grid is required to resolve the flow field adequately and to calculate the pressure rise across the fan correctly. The calculated flow field shows detailed flow structure near the fan rotor tip region. Due to the introduction of composite sweep toward the rotor tip, the flow structure at the rotor tip is much more stable compared to that of the conventional blade design. The passage shock stays very close to the leading edge at the rotor tip even at the throttle limit. On the other hand, the passage shock becomes stronger and detaches earlier from the blade passage at the radius where the blade sweep is in the opposite direction. The interaction between the tip clearance vortex and the passage shock becomes intense as the fan operates toward the stall limit, and tip clearance vortex breakdown occurs at near-stall operation. URANS calculates the time-averaged flow field fairly well. Details of measured RMS static pressure are not calculated with sufficient accuracy with URANS. On the other hand, LES calculates details of the measured unsteady flow features in the current transonic fan with composite sweep fairly well and reveals the flow mechanism behind the measured unsteady flow field.
NASA Astrophysics Data System (ADS)
Moeck, Jonas P.; Bourgouin, Jean-François; Durox, Daniel; Schuller, Thierry; Candel, Sébastien
2013-04-01
Swirl flows with vortex breakdown are widely used in industrial combustion systems for flame stabilization. This type of flow is known to sustain a hydrodynamic instability with a rotating helical structure, one common manifestation of it being the precessing vortex core. The role of this unsteady flow mode in combustion is not well understood, and its interaction with combustion instabilities and flame stabilization remains unclear. It is therefore important to assess the structure of the perturbation in the flame that is induced by this helical mode. Based on principles of tomographic reconstruction, a method is presented to determine the 3-D distribution of the heat release rate perturbation associated with the helical mode. Since this flow instability is rotating, a phase-resolved sequence of projection images of light emitted from the flame is identical to the Radon transform of the light intensity distribution in the combustor volume and thus can be used for tomographic reconstruction. This is achieved with one stationary camera only, a vast reduction in experimental and hardware requirements compared to a multi-camera setup or camera repositioning, which is typically required for tomographic reconstruction. Different approaches to extract the coherent part of the oscillation from the images are discussed. Two novel tomographic reconstruction algorithms specifically tailored to the structure of the heat release rate perturbations related to the helical mode are derived. The reconstruction techniques are first applied to an artificial field to illustrate the accuracy. High-speed imaging data acquired in a turbulent swirl-stabilized combustor setup with strong helical mode oscillations are then used to reconstruct the 3-D structure of the associated perturbation in the flame.
Gavrilović, M R; Cvejić, M; Lazic, V; Jovićević, S
2016-06-07
In this work we present studies of spatial and temporal plasma evolution after single pulse ablation of an aluminium target in water. The laser ablation was performed using 20 ns long pulses emitted at 1064 nm. The plasma characterization was performed by fast photography, the Schlieren technique, shadowgraphy and optical emission spectroscopy. The experimental results indicate the existence of two distinct plasma stages: the first stage has a duration of approximately 500 ns from the laser pulse, and is followed by a new plasma growth starting from the crater center. The secondary plasma slowly evolves inside the growing vapor bubble, and its optical emission lasts over several tens of microseconds. Later, the hot glowing particles, trapped inside the vapor cavity, were detected during the whole cycle of the bubble, where the first collapse occurs after 475 μs from the laser pulse. Differences in the plasma properties during the two evolution phases are discussed, with an accent on the optical emission since its detection is of primary importance for LIBS. Here we demonstrate that the LIBS signal quality in single pulse excitation underwater can be greatly enhanced by detecting only the secondary plasma emission, and also by applying long acquisition gates (in the order of 10-100 μs). The presented results are of great importance for LIBS measurements inside a liquid environment, since they prove that a good analytical signal can be obtained by using nanosecond pulses from a single commercial laser source and by employing cost effective, not gated detectors.
Vortex Flow Aerodynamics, volume 1
NASA Technical Reports Server (NTRS)
Campbell, J. F. (Editor); Osborn, R. F. (Editor); Foughner, J. T., Jr. (Editor)
1986-01-01
Vortex modeling techniques and experimental studies of research configurations utilizing vortex flows are discussed. Also discussed are vortex flap investigations using generic and airplane research models and vortex flap theoretical analysis and design studies.
Vortex line topology during vortex tube reconnection
NASA Astrophysics Data System (ADS)
McGavin, P.; Pontin, D. I.
2018-05-01
This paper addresses reconnection of vortex tubes, with particular focus on the topology of the vortex lines (field lines of the vorticity). This analysis of vortex line topology reveals key features of the reconnection process, such as the generation of many small flux rings, formed when reconnection occurs in multiple locations in the vortex sheet between the tubes. Consideration of three-dimensional reconnection principles leads to a robust measurement of the reconnection rate, even once instabilities break the symmetry. It also allows us to identify internal reconnection of vortex lines within the individual vortex tubes. Finally, the introduction of a third vortex tube is shown to render the vortex reconnection process fully three-dimensional, leading to a fundamental change in the topological structure of the process. An additional interesting feature is the generation of vorticity null points.
ProFile Vortex and Vortex Blue Nickel-Titanium Rotary Instruments after Clinical Use.
Shen, Ya; Zhou, Huimin; Coil, Jeffrey M; Aljazaeri, Bassim; Buttar, Rene; Wang, Zhejun; Zheng, Yu-feng; Haapasalo, Markus
2015-06-01
The aim of this study was to analyze the incidence and mode of ProFile Vortex and Vortex Blue instrument defects after clinical use in a graduate endodontic program and to examine the impact of clinical use on the instruments' metallurgical properties. A total of 330 ProFile Vortex and 1136 Vortex Blue instruments from the graduate program were collected after each had been used in 3 teeth. The incidence and type of instrument defects were analyzed. The lateral surfaces and fracture surfaces of the fractured files were examined by using scanning electron microscopy. Unused and used instruments were examined by full and partial differential scanning calorimetry. No fractures were observed in the 330 ProFile Vortex instruments, whereas 20 (6.1%) revealed bent or blunt defects. Only 2 of the 1136 Vortex Blue files fractured during clinical use. The cause of fracture was shear stress. The fractures occurred at the tip end of the spirals. Only 1.8% (21 of 1136) of the Vortex Blue files had blunt tips. Austenite-finish temperatures were very similar for unused and used ProFile Vortex files and were all greater than 50°C. The austenite-finish temperatures of used and unused Vortex Blue files (38.5°C) were lower than those in ProFile Vortex instruments (P < .001). However, the transformation behavior of Vortex Blue files had an obvious 2-stage transformation, martensite-to-R phase and R-to-austenite phase. The trends of differential scanning calorimetry plots of unused Vortex Blue instruments and clinically used instruments were very similar. The risk of ProFile Vortex and Vortex Blue instrument fracture is very low when instruments are discarded after clinical use in the graduate endodontic program. The Vortex Blue files have metallurgical behavior different from ProFile Vortex instruments. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Preliminary study of the three-dimensional deformation of the vortex in Karman vortex street
NASA Astrophysics Data System (ADS)
Ling, Guocan; Guo, Liang; Wu, Zuobin; Ma, Huiyang
1992-03-01
The mechanism for 3D evolution of the isolated Karman vortex and the thin-vortex filament in a circular cylinder wake is studied numerically using the LIA method. The results show that the vortex motion is unstable for small 3D disturbances in the separated wake of a circular cylinder. Karman vortex in the time-averaged wake flowfield wolves into a horseshoe-spoon-like 3D structure. The thin vortex filament deforms three-dimensionally in the braid and generates streamwise vortex structures which incline to the region maximum-deformation direction of the flowfield.
Rewritable ferroelectric vortex pairs in BiFeO3
NASA Astrophysics Data System (ADS)
Li, Yang; Jin, Yaming; Lu, Xiaomei; Yang, Jan-Chi; Chu, Ying-Hao; Huang, Fengzhen; Zhu, Jinsong; Cheong, Sang-Wook
2017-08-01
Ferroelectric vortex in multiferroic materials has been considered as a promising alternative to current memory cells for the merit of high storage density. However, the formation of regular natural ferroelectric vortex is difficult, restricting the achievement of vortex memory device. Here, we demonstrated the creation of ferroelectric vortex-antivortex pairs in BiFeO3 thin films by using local electric field. The evolution of the polar vortex structure is studied by piezoresponse force microscopy at nanoscale. The results reveal that the patterns and stability of vortex structures are sensitive to the poling position. Consecutive writing and erasing processes cause no influence on the original domain configuration. The Z4 proper coloring vortex-antivortex network is then analyzed by graph theory, which verifies the rationality of artificial vortex-antivortex pairs. This study paves a foundation for artificial regulation of vortex, which provides a possible pathway for the design and realization of non-volatile vortex memory devices and logical devices.
Advance Ratio Effects on the Dynamic-stall Vortex of a Rotating Blade in Steady Forward Flight
2014-08-06
dependence on advance ratio is used to relate the stability of the dynamic-stall vortex to Coriolis effects . Advance ratio effects on the dynamic-stall vortex...relate the stability of the dynamic-stall vortex to Coriolis effects . Keywords: Leading-edge vortex, Dynamic stall vortex, Vortex flows, Rotating wing...Reynolds number are not decoupled. 3. Radial flow field In the rotating environment the coupled effect of centripetal and Coriolis accelerations is ex
Point vortex modelling of the wake dynamics behind asymmetric vortex generator arrays
NASA Astrophysics Data System (ADS)
Baldacchino, D.; Ferreira, C.; Ragni, D.; van Bussel, G. J. W.
2016-09-01
In this work, we present a simple inviscid point vortex model to study the dynamics of asymmetric vortex rows, as might appear behind misaligned vortex generator vanes. Starting from the existing solution of the infinite vortex cascade, a numerical model of four base-vortices is chosen to represent two primary counter-rotating vortex pairs and their mirror plane images, introducing the vortex strength ratio as a free parameter. The resulting system of equations is also defined in terms of the vortex row separation and the qualitative features of the ensuing motion are mapped. A translating and orbiting regime are identified for different cascade separations. The latter occurs for all unequal strength vortex pairs. Thus, the motion is further classified by studying the cyclic behaviour of the orbiting regime and it is shown that for small mismatches in vortex strength, the orbiting length and time scales are sufficiently large as to appear, in the near wake, as translational (non-orbiting). However, for larger mismatches in vortex strength, the orbiting motion approaches the order of the starting height of the vortex. Comparisons between experimental data and the potential flow model show qualitative agreement whilst viscous effects account for the major discrepancies. Despite this, the model captures the orbital mode observed in the measurements and provides an impetus for considering the impact of these complex interactions on vortex generator designs.
Water-tunnel experiments on an oscillating airfoil at RE equals 21,000
NASA Technical Reports Server (NTRS)
Mcalister, K. W.; Carr, L. W.
1978-01-01
Flow visualization experiments were performed in a water tunnel on a modified NACA 0012 airfoil undergoing large amplitude harmonic oscillations in pitch. Hydrogen bubbles were used to: (1) create a conveniently striated and well preserved set of inviscid flow markers; and (2) to expose the succession of events occurring within the viscous domain during the onset of dynamic stall. Unsteady effects were shown to have an important influence on the progression of flow reversal along the airfoil surface prior to stall. A region of reversed flow underlying a free shear layer was found to momentarily exist over the entire upper surface without any appreciable disturbance of the viscous-inviscid boundary. A flow protuberance was observed to develop near the leading edge, while minor vortices evolve from an expanding instability of the free shear layer over the rear portion of the airfoil. The complete breakdown of this shear layer culminates in the successive formation of two dominant vortices.
NASA Astrophysics Data System (ADS)
Margulis, M. A.; Pil'Gunov, V. N.
2009-10-01
The mechanism of the effects observed in hydrodynamic unit throttles was studied. These effects included luminescence in the visible range localized in a microscopic toroidal volume and electric pulses when a dielectric liquid flew through a narrow passage orifice. Equations for charging and conduction currents were obtained. The stationary electric charge, potential, and field strength on the internal surface of a passage orifice were calculated. It was shown theoretically that the appearance of luminescence most probably occurred in electrical breakdowns in cavitation bubbles in the initial flow section inside the passage orifice. Electric charge formed not only during hydrodynamic cavitation but also in a laminar throttle in the absence of cavitation in the liquid; the electrokinetic mechanism applied to this phenomenon too. It was shown experimentally that electric charges appeared not only in plastic but also in metallic throttles. The suggested mechanism of light emission and electric charge appearance was in agreement with the experimental results.
Zhang, Ruo-Bing; Wu, Yan; Li, Guo-Feng; Wang, Ning-Hui; Li, Jie
2004-01-01
Degradation of the Indigo Carmine (IC) by the bipolar pulsed DBD in water-air mixture was studied. Effects of various parameters such as gas flow rate, solution conductivity, pulse repetitive rate and ect., on color removal efficiency of dying wastewater were investigated. Concentrations of gas phase o3 and aqueous phase H2O2 under various conditions were measured. Experimental results showed that air bubbling facilitates the breakdown of water and promotes generation of chemically active species. Color removal efficiency of IC solution can be greatly improved by the air aeration under various solution conductivities. Decolorization efficiency increases with the increase of the gas flow rate, and decreases with the increase of the initial solution conductivity. A higher pulse repetitive rate and a larger pulse capacitor C(p) are favorable for the decolorization process. Ozone and hydrogen peroxide formed decreases with the increase of initial solution conductivity. In addition, preliminary analysis of the decolorization mechanisms is given.
Maxwell, Adam D; Owens, Gabe; Gurm, Hitinder S; Ives, Kimberly; Myers, Daniel D; Xu, Zhen
2011-03-01
This study evaluated histotripsy as a noninvasive, image-guided method of thrombolysis in a porcine model of deep vein thrombosis. Histotripsy therapy uses short, high-intensity, focused ultrasound pulses to cause mechanical breakdown of targeted soft tissue by acoustic cavitation, which is guided by real-time ultrasound imaging. This is an in vivo feasibility study of histotripsy thrombolysis. Acute thrombi were formed in the femoral vein of juvenile pigs weighing 30-40 kg by balloon occlusion with two catheters and thrombin infusion. A 10-cm-diameter 1-MHz focused transducer was used for therapy. An 8-MHz ultrasound imager was used to align the clot with the therapy focus. Therapy consisted of five cycle pulses delivered at a rate of 1 kHz and peak negative pressure between 14 and 19 MPa. The focus was scanned along the long axis of the vessel to treat the entire visible clot during ultrasound exposure. The targeted region identified by a hyperechoic cavitation bubble cloud was visualized via ultrasound during treatment. Thrombus breakdown was apparent as a decrease in echogenicity within the vessel in 10 of 12 cases and in 7 cases improved flow through the vein as measured by color Doppler. Vessel histology found denudation of vascular endothelium and small pockets of hemorrhage in the vessel adventitia and underlying muscle and fatty tissue, but perforation of the vessel wall was never observed. The results indicate histotripsy has potential for development as a noninvasive treatment for deep vein thrombosis. Copyright © 2011 SIR. Published by Elsevier Inc. All rights reserved.
Vortex Ring Dynamics in Radially Confined Domains
NASA Astrophysics Data System (ADS)
Stewart, Kelley; Niebel, Casandra; Jung, Sunghwan; Vlachos, Pavlos
2010-11-01
Vortex ring dynamics have been studied extensively in semi-infinite quiescent volumes. However, very little is known about vortex-ring formation in wall-bounded domains where vortex wall interaction will affect both the vortex ring pinch-off and propagation velocity. This study addresses this limitation and studies vortex formation in radially confined domains to analyze the affect of vortex-ring wall interaction on the formation and propagation of the vortex ring. Vortex rings were produced using a pneumatically driven piston cylinder arrangement and were ejected into a long cylindrical tube which defined the confined downstream domain. A range of confinement domains were studied with varying confinement diameters Velocity field measurements were performed using planar Time Resolved Digital Particle Image Velocimetry (TRDPIV) and were processed using an in-house developed cross-correlation PIV algorithm. The experimental analysis was used to facilitate the development of a theoretical model to predict the variations in vortex ring circulation over time within confined domains.
NASA Astrophysics Data System (ADS)
Simula, Tapio
2018-02-01
We consider the inertial mass of a vortex in a superfluid. We obtain a vortex mass that is well defined and is determined microscopically and self-consistently by the elementary excitation energy of the kelvon quasiparticle localized within the vortex core. The obtained result for the vortex mass is found to be consistent with experimental observations on superfluid quantum gases and vortex rings in water. We propose a method to measure the inertial rest mass and Berry phase of a vortex in superfluid Bose and Fermi gases.
NASA Astrophysics Data System (ADS)
Elavarasan, Ramasamy; Arakeri, Jayawant; Krothapalli, Anjaneyulu
1999-11-01
The interaction of a high-speed vortex ring with a shock wave is one of the fundamental issues as it is a source of sound in supersonic jets. The complex flow field induced by the vortex alters the propagation of the shock wave greatly. In order to understand the process, a compressible vortex ring is studied in detail using Particle Image Velocimetry (PIV) and shadowgraphic techniques. The high-speed vortex ring is generated from a shock tube and the shock wave, which precedes the vortex, is reflected back by a plate and made to interact with the vortex. The shadowgraph images indicate that the reflected shock front is influenced by the non-uniform flow induced by the vortex and is decelerated while passing through the vortex. It appears that after the interaction the shock is "split" into two. The PIV measurements provided clear picture about the evolution of the vortex at different time interval. The centerline velocity traces show the maximum velocity to be around 350 m/s. The velocity field, unlike in incompressible rings, contains contributions from both the shock and the vortex ring. The velocity distribution across the vortex core, core diameter and circulation are also calculated from the PIV data.
Persistence of metastable vortex lattice domains in MgB2 in the presence of vortex motion.
Rastovski, C; Schlesinger, K J; Gannon, W J; Dewhurst, C D; DeBeer-Schmitt, L; Zhigadlo, N D; Karpinski, J; Eskildsen, M R
2013-09-06
Recently, extensive vortex lattice metastability was reported in MgB2 in connection with a second-order rotational phase transition. However, the mechanism responsible for these well-ordered metastable vortex lattice phases is not well understood. Using small-angle neutron scattering, we studied the vortex lattice in MgB2 as it was driven from a metastable to the ground state through a series of small changes in the applied magnetic field. Our results show that metastable vortex lattice domains persist in the presence of substantial vortex motion and directly demonstrate that the metastability is not due to vortex pinning. Instead, we propose that it is due to the jamming of counterrotated vortex lattice domains which prevents a rotation to the ground state orientation.
Interfacial gauge methods for incompressible fluid dynamics
Saye, Robert
2016-01-01
Designing numerical methods for incompressible fluid flow involving moving interfaces, for example, in the computational modeling of bubble dynamics, swimming organisms, or surface waves, presents challenges due to the coupling of interfacial forces with incompressibility constraints. A class of methods, denoted interfacial gauge methods, is introduced for computing solutions to the corresponding incompressible Navier-Stokes equations. These methods use a type of “gauge freedom” to reduce the numerical coupling between fluid velocity, pressure, and interface position, allowing high-order accurate numerical methods to be developed more easily. Making use of an implicit mesh discontinuous Galerkin framework, developed in tandem with this work, high-order results are demonstrated, including surface tension dynamics in which fluid velocity, pressure, and interface geometry are computed with fourth-order spatial accuracy in the maximum norm. Applications are demonstrated with two-phase fluid flow displaying fine-scaled capillary wave dynamics, rigid body fluid-structure interaction, and a fluid-jet free surface flow problem exhibiting vortex shedding induced by a type of Plateau-Rayleigh instability. The developed methods can be generalized to other types of interfacial flow and facilitate precise computation of complex fluid interface phenomena. PMID:27386567
Acoustic microstreaming due to an ultrasound contrast microbubble near a wall
NASA Astrophysics Data System (ADS)
Mobadersany, Nima; Sarkar, Kausik
2017-11-01
In an ultrasound field, in addition to the sinusoidal motion of fluid particles, particles experience a steady streaming velocity due to nonlinear second order effects. Here, we have simulated the microstreaming flow near a plane rigid wall caused by the pulsations of contrast microbubbles. Although these microbubbles were initially developed as a contrast enhancing agents for ultrasound imaging, they generate additional therapeutic effects that can be harnessed for targeted drug delivery or blood brain barrier (BBB) opening. The microbubbles have a gas core coated with a stabilizing layer of lipids or proteins. We use analytical models as well as boundary element (BEM) simulation to simulate the flow around these bubbles implementing interfacial rheology models for the coating. The microstreaming flow is characterized by two wall bounded vortices. The size of the vortices decreases with the decrease of the separation from the wall. The vortex-induced shear stress is simulated and analyzed as a function of excitation parameters and geometry. These microstreaming shear stress plays a critical role in increasing the membrane permeability facilitating drug delivery or rupturing biological tissues.
Parameterizing Urban Canopy Layer transport in an Lagrangian Particle Dispersion Model
NASA Astrophysics Data System (ADS)
Stöckl, Stefan; Rotach, Mathias W.
2016-04-01
The percentage of people living in urban areas is rising worldwide, crossed 50% in 2007 and is even higher in developed countries. High population density and numerous sources of air pollution in close proximity can lead to health issues. Therefore it is important to understand the nature of urban pollutant dispersion. In the last decades this field has experienced considerable progress, however the influence of large roughness elements is complex and has as of yet not been completely described. Hence, this work studied urban particle dispersion close to source and ground. It used an existing, steady state, three-dimensional Lagrangian particle dispersion model, which includes Roughness Sublayer parameterizations of turbulence and flow. The model is valid for convective and neutral to stable conditions and uses the kernel method for concentration calculation. As most Lagrangian models, its lower boundary is the zero-plane displacement, which means that roughly the lower two-thirds of the mean building height are not included in the model. This missing layer roughly coincides with the Urban Canopy Layer. An earlier work "traps" particles hitting the lower model boundary for a recirculation period, which is calculated under the assumption of a vortex in skimming flow, before "releasing" them again. The authors hypothesize that improving the lower boundary condition by including Urban Canopy Layer transport could improve model predictions. This was tested herein by not only trapping the particles, but also advecting them with a mean, parameterized flow in the Urban Canopy Layer. Now the model calculates the trapping period based on either recirculation due to vortex motion in skimming flow regimes or vertical velocity if no vortex forms, depending on incidence angle of the wind on a randomly chosen street canyon. The influence of this modification, as well as the model's sensitivity to parameterization constants, was investigated. To reach this goal, the model was initialized and compared with meteorological and SF6 tracer measurements from the Basel UrBan Boundary Layer Experiment (BUBBLE). The proposed modification does not improve the model's agreement with concentration observations, even though the trapping time shows promising agreement with measurements. Additionally, the modification's influence is smaller than those of different turbulence profiles, zero-plane displacement height and Roughness Sublayer height.
Motion of vortices in inhomogeneous Bose-Einstein condensates
NASA Astrophysics Data System (ADS)
Groszek, Andrew J.; Paganin, David M.; Helmerson, Kristian; Simula, Tapio P.
2018-02-01
We derive a general and exact equation of motion for a quantized vortex in an inhomogeneous two-dimensional Bose-Einstein condensate. This equation expresses the velocity of a vortex as a sum of local ambient density and phase gradients in the vicinity of the vortex. We perform Gross-Pitaevskii simulations of single-vortex dynamics in both harmonic and hard-walled disk-shaped traps, and find excellent agreement in both cases with our analytical prediction. The simulations reveal that, in a harmonic trap, the main contribution to the vortex velocity is an induced ambient phase gradient, a finding that contradicts the commonly quoted result that the local density gradient is the only relevant effect in this scenario. We use our analytical vortex velocity formula to derive a point-vortex model that accounts for both density and phase contributions to the vortex velocity, suitable for use in inhomogeneous condensates. Although good agreement is obtained between Gross-Pitaevskii and point-vortex simulations for specific few-vortex configurations, the effects of nonuniform condensate density are in general highly nontrivial, and are thus difficult to efficiently and accurately model using a simplified point-vortex description.
Interaction of Vortex Ring with Cutting Plate
NASA Astrophysics Data System (ADS)
Musta, Mustafa
2015-11-01
The interaction of a vortex ring impinging on a thin cutting plate was made experimentally using Volumetric 3-component Velocitmetry (v3v) technique. The vortex rings were generated with piston-cylinder vortex ring generator using piston stroke-to-diameter ratios and Re at 2-3 and 1500 - 3000, respectively. The cutting of vortex rings below center line leads to the formation of secondary vortices on each side of the plate which is look like two vortex rings, and a third vortex ring propagates further downstream in the direction of the initial vortex ring, which is previously showed by flow visualization study of Weigand (1993) and called ``trifurcation''. Trifurcation is very sensitive to the initial Reynolds number and the position of the plate with respect to the vortex ring generator pipe. The present work seeks more detailed investigation on the trifurcation using V3V technique. Conditions for the formation of trifurcation is analyzed and compared with Weigand (1993). The formed secondary vortex rings and the propagation of initial vortex ring in the downstream of the plate are analyzed by calculating their circulation, energy and trajectories.
NASA Astrophysics Data System (ADS)
Strasser, Matthew N.
Structural loading produced by an impacting vortex is a hazardous phenomenon that is encountered in numerous applications ranging from the destruction of residences by tornados to the chopping of tip vortices by rotors. Adequate design of structures to resist vortex-induced structural loading necessitates study of the phenomenon that control the structural loading produced by an impacting vortex. This body of work extends the current knowledge base of vortex-structure interaction by evaluating the influence of the relative vortex-to-structure size on the structural loading that the vortex produces. A computer model is utilized to directly simulate the two-dimensional impact of an impinging vortex with a slender, cylindrical structure. The vortex's tangential velocity profile (TVP) is defined by a normalization of the Vatistas analytical (TVP) which realistically replicates the documented spectrum of measured vortex TVPs. The impinging vortex's maximum tangential velocity is fixed, and the vortex's critical radius is incremented from one to one-hundred times the structure's diameter. When the impinging vortex is small, it interacts with vortices produced on the structure by the free stream, and maximum force coefficient amplitudes vary by more than 400% when the impinging vortex impacts the structure at different times. Maximum drag and lift force coefficient amplitudes reach asymptotic values as the impinging vortex's size increases that are respectively 94.77% and 10.66% less than maximum force coefficients produced by an equivalent maximum velocity free stream. The vortex produces maximum structural loading when its path is shifted above the structure's centerline, and maximum drag and lift force coefficients are respectively up to 4.80% and 34.07% greater than maximum force coefficients produced by an equivalent-velocity free stream. Finally, the dynamic load factor (DLF) concept is used to develop a generalized methodology to assess the dynamic amplification of a structure's response to vortex loading and to assess the dynamic loading threat that tornados pose. Typical civil and residential structures will not experience significant response amplification, but responses of very flexible structures may be amplified by up to 2.88 times.
DOT National Transportation Integrated Search
1974-04-01
A unifying wake vortex transport model is developed and applied to a wake vortex predictive system concept. The fundamentals of vortex motion underlying the predictive model are discussed including vortex decay, bursting and instability phenomena. A ...
Rotating hot-wire investigation of the vortex responsible for blade-vortex interaction noise
NASA Technical Reports Server (NTRS)
Fontana, Richard Remo
1988-01-01
This distribution of the circumferential velocity of the vortex responsible for blade-vortex interaction noise was measured using a rotating hot-wire rake synchronously meshed with a model helicopter rotor at the blade passage frequency. Simultaneous far-field acoustic data and blade differential pressure measurements were obtained. Results show that the shape of the measured far-field acoustic blade-vortex interaction signature depends on the blade-vortex interaction geometry. The experimental results are compared with the Widnall-Wolf model for blade-vortex interaction noise.
Equilibrium vortex structures of type-II/1 superconducting films with washboard pinning landscapes
NASA Astrophysics Data System (ADS)
Wei, C. A.; Xu, X. B.; Xu, X. N.; Wang, Z. H.; Gu, M.
2018-05-01
We numerically study the equilibrium vortex structures of type-II/1 superconducting films with a periodic quasi-one-dimensional corrugated substrate. We show as a function of substrate period and pinning strength that, the vortex system displays a variety of vortex phases including arrays consisted of vortex clumps with different morphologies, ordered vortex stripes parallel and perpendicular to pinning troughs, and ordered one-dimensional vortex chains. Our simulations are helpful in understanding the structural modulations for extensive systems with both competing interactions and competing periodicities.
Non-coaxial superposition of vector vortex beams.
Aadhi, A; Vaity, Pravin; Chithrabhanu, P; Reddy, Salla Gangi; Prabakar, Shashi; Singh, R P
2016-02-10
Vector vortex beams are classified into four types depending upon spatial variation in their polarization vector. We have generated all four of these types of vector vortex beams by using a modified polarization Sagnac interferometer with a vortex lens. Further, we have studied the non-coaxial superposition of two vector vortex beams. It is observed that the superposition of two vector vortex beams with same polarization singularity leads to a beam with another kind of polarization singularity in their interaction region. The results may be of importance in ultrahigh security of the polarization-encrypted data that utilizes vector vortex beams and multiple optical trapping with non-coaxial superposition of vector vortex beams. We verified our experimental results with theory.
Front propagation in a vortex lattice: dependence on boundary conditions and vortex depth.
Beauvier, E; Bodea, S; Pocheau, A
2016-11-04
We experimentally address the propagation of reaction-diffusion fronts in vortex lattices by combining, in a Hele-Shaw cell and at low Reynolds number, forced electroconvective flows and an autocatalytic reaction in solution. We consider both vortex chains and vortex arrays, the former referring to mixed free/rigid boundary conditions for vortices and the latter to free boundary conditions. Varying the depth of the fluid layer, we observe no variation of the mean front velocities for vortex arrays and a noticeable variation for vortex chains. This questions the two-dimensional character of front propagation in low Reynolds number vortex lattices, as well as the mechanisms of this dependence.
NASA Technical Reports Server (NTRS)
Pao, J. L.; Mehrotra, S. C.; Lan, C. E.
1982-01-01
A computer code base on an improved vortex filament/vortex core method for predicting aerodynamic characteristics of slender wings with edge vortex separations is developed. The code is applicable to camber wings, straked wings or wings with leading edge vortex flaps at subsonic speeds. The prediction of lifting pressure distribution and the computer time are improved by using a pair of concentrated vortex cores above the wing surface. The main features of this computer program are: (1) arbitrary camber shape may be defined and an option for exactly defining leading edge flap geometry is also provided; (2) the side edge vortex system is incorporated.
Vortex Filaments in Grids for Scalable, Fine Smoke Simulation.
Meng, Zhang; Weixin, Si; Yinling, Qian; Hanqiu, Sun; Jing, Qin; Heng, Pheng-Ann
2015-01-01
Vortex modeling can produce attractive visual effects of dynamic fluids, which are widely applicable for dynamic media, computer games, special effects, and virtual reality systems. However, it is challenging to effectively simulate intensive and fine detailed fluids such as smoke with fast increasing vortex filaments and smoke particles. The authors propose a novel vortex filaments in grids scheme in which the uniform grids dynamically bridge the vortex filaments and smoke particles for scalable, fine smoke simulation with macroscopic vortex structures. Using the vortex model, their approach supports the trade-off between simulation speed and scale of details. After computing the whole velocity, external control can be easily exerted on the embedded grid to guide the vortex-based smoke motion. The experimental results demonstrate the efficiency of using the proposed scheme for a visually plausible smoke simulation with macroscopic vortex structures.
An experimental investigation of S-duct flow control using arrays of low-profile vortex generators
NASA Technical Reports Server (NTRS)
Reichert, Bruce A.; Wendt, Bruce J.
1993-01-01
An experimental investigation was undertaken to measure the effect of various configurations of low-profile vortex generator arrays on the flow in a diffusing S-duct. Three parameters that characterize the vortex generator array were systematically varied to determine their effect: (1) the vortex generator height; (2) the streamwise location of the vortex generator array; and (3) the vortex generator spacing. Detailed measurements of total pressure at the duct exit, surface static pressure, and surface flow visualization were gathered for each vortex generator configuration. These results are reported here along with total pressure recovery and distortion coefficients determined from the experimental data. Each array of vortex generators tested improved total pressure recovery. The configuration employing the largest vortex generators was the most effective in reducing total pressure recovery. No configuration of vortex generators completely eliminated the flow separation that naturally occurs in the S-duct, however the extent of the separated flow region was reduced.
Symmetry breaking motion of a vortex pair in a driven cavity
NASA Astrophysics Data System (ADS)
McHugh, John; Osman, Kahar; Farias, Jason
2002-11-01
The two-dimensional driven cavity problem with an anti-symmetric sinusoidal forcing has been found to exhibit a subcritical symmetry breaking bifurcation (Farias and McHugh, Phys. Fluids, 2002). Equilibrium solutions are either a symmetric vortex pair or an asymmetric motion. The asymmetric motion is an asymmetric vortex pair at low Reynolds numbers, but merges into a three vortex motion at higher Reynolds numbers. The asymmetric solution is obtained by initiating the flow with a single vortex centered in the domain. Symmetric motion is obtained with no initial vortex, or weak initial vortex. The steady three-vortex motion occurs at a Reynolds number of approximately 3000, where the symmetric vortex pair has already gone through a Hopf bifurcation. Further two-dimensional results show that forcing with two full oscillations across the top of the cavity results in two steady vortex motions, depending on initial conditions. Three-dimensional results have even more steady solutions. The results are computational and theoretical.
Experimental Study of Shock Generated Compressible Vortex Ring
NASA Astrophysics Data System (ADS)
Das, Debopam; Arakeri, Jaywant H.; Krothapalli, Anjaneyulu
2000-11-01
Formation of a compressible vortex ring and generation of sound associated with it is studied experimentally. Impulse of a shock wave is used to generate a vortex ring from the open end of a shock-tube. Vortex ring formation process has been studied in details using particle image Velocimetry (PIV). As the shock wave exits the tube it diffracts and expands. A circular vortex sheet forms at the edge and rolls up into a vortex ring. Far field microphone measurement shows that the acoustic pressure consists of a spike due to shock wave followed by a low frequency pressure wave of decaying nature, superimposed with high frequency pressure wave. Acoustic waves consist of waves due to expansion, waves formed in the tube during diaphragm breakage and waves associated with the vortex ring and shear-layer vortices. Unsteady evolution of the vortex ring and shear-layer vortices in the jet behind the ring is studied by measuring the velocity field using PIV. Corresponding vorticity field, circulation around the vortex core and growth rate of the vortex core is calculated from the measured velocity field. The velocity field in a compressible vortex ring differs from that of an incompressible ring due to the contribution from both shock and vortex ring.
The role of crystallization-driven exsolution on the sulfur mass balance in volcanic arc magmas
Su, Yanqing; Huber, Christian; Bachmann, Olivier; Zajacz, Zoltán; Wright, Heather M.; Vazquez, Jorge A.
2016-01-01
The release of large amounts of sulfur to the stratosphere during explosive eruptions affects the radiative balance in the atmosphere and consequentially impacts climate for up to several years after the event. Quantitative estimations of the processes that control the mass balance of sulfur between melt, crystals, and vapor bubbles is needed to better understand the potential sulfur yield of individual eruption events and the conditions that favor large sulfur outputs to the atmosphere. The processes that control sulfur partitioning in magmas are (1) exsolution of volatiles (dominantly H2O) during decompression (first boiling) and during isobaric crystallization (second boiling), (2) the crystallization and breakdown of sulfide or sulfate phases in the magma, and (3) the transport of sulfur-rich vapor (gas influx) from deeper unerupted regions of the magma reservoir. Vapor exsolution and the formation/breakdown of sulfur-rich phases can all be considered as closed-system processes where mass balance arguments are generally easier to constrain, whereas the contribution of sulfur by vapor transport (open system process) is more difficult to quantify. The ubiquitous “excess sulfur” problem, which refers to the much higher sulfur mass released during eruptions than what can be accounted for by amount of sulfur originally dissolved in erupted melt, as estimated from melt inclusion sulfur concentrations (the “petrologic estimate”), reflects the challenges in closing the sulfur mass balance between crystals, melt, and vapor before and during a volcanic eruption. In this work, we try to quantify the relative importance of closed- and open-system processes for silicic arc volcanoes using kinetic models of sulfur partitioning during exsolution. Our calculations show that crystallization-induced exsolution (second boiling) can generate a significant fraction of the excess sulfur observed in crystal-rich arc magmas. This result does not negate the important role of vapor migration in sulfur mass balance but rather points out that second boiling (in situ exsolution) can provide the necessary yield to drive the excess sulfur to the levels observed for crystal-rich systems. In contrast, in crystal-poor systems, magma recharge that releases sulfur-rich bubbles is necessary and most likely the primary contributor to sulfur mass balance. Finally, we apply our model to account for the effect of sulfur partitioning during second boiling and its impact on sulfur released during the Cerro Galan supereruption in Argentina (2.08 Ma) and show the potential importance of second boiling in releasing a large amount of sulfur to the atmosphere during the eruption of large crystal-rich ignimbrites.
Evolution of supersonic corner vortex in a hypersonic inlet/isolator model
NASA Astrophysics Data System (ADS)
Huang, He-Xia; Tan, Hui-Jun; Sun, Shu; Ling, Yu
2016-12-01
There are complex corner vortex flows in a rectangular hypersonic inlet/isolator. The corner vortex propagates downstream and interacts with the shocks and expansion waves in the isolator repeatedly. The supersonic corner vortex in a generic hypersonic inlet/isolator model is theoretically and numerically analyzed at a freestream Mach number of 4.92. The cross-flow topology of the corner vortex flow is found to obey Zhang's theory ["Analytical analysis of subsonic and supersonic vortex formation," Acta Aerodyn. Sin. 13, 259-264 (1995)] strictly, except for the short process with the vortex core situated in a subsonic flow which is surrounded by a supersonic flow. In general, the evolution history of the corner vortex under the influence of the background waves in the hypersonic inlet/isolator model can be classified into two types, namely, from the adverse pressure gradient region to the favorable pressure gradient region and the reversed one. For type 1, the corner vortex is a one-celled vortex with the cross-sectional streamlines spiraling inwards at first. Then the Hopf bifurcation occurs and the streamlines in the outer part of the limit cycle switch to spiraling outwards, yielding a two-celled vortex. The limit cycle shrinks gradually and finally vanishes with the streamlines of the entire corner vortex spiraling outwards. For type 2, the cross-sectional streamlines of the corner vortex spiral outwards first. Then a stable limit cycle is formed, yielding a two-celled vortex. The short-lived limit cycle forces the streamlines in the corner vortex to change the spiraling trends rapidly. Although it is found in this paper that there are some defects on the theoretical proof of the limit cycle, Zhang's theory is proven useful for the prediction and qualitative analysis of the complex corner vortex in a hypersonic inlet/isolator. In addition, three conservation laws inside the limit cycle are obtained.
PREFACE: Special section on vortex rings Special section on vortex rings
NASA Astrophysics Data System (ADS)
Fukumoto, Yasuhide
2009-10-01
This special section of Fluid Dynamics Research includes five articles on vortex rings in both classical and quantum fluids. The leading scientists of the field describe the trends in and the state-of-the-art development of experiments, theories and numerical simulations of vortex rings. The year 2008 was the 150th anniversary of 'vortex motion' since Hermann von Helmholtz opened up this field. In 1858, Helmholtz published a paper in Crelle's Journal which put forward the concept of 'vorticity' and made the first analysis of vortex motion. Fluid mechanics before that was limited to irrotational motion. In the absence of vorticity, the motion of an incompressible homogeneous fluid is virtually equivalent to a rigid-body motion in the sense that the fluid motion is determined once the boundary configuration is specified. Helmholtz proved, among other things, that, without viscosity, a vortex line is frozen into the fluid. This Helmholtz's law immediately implies the preservation of knots and links of vortex lines and its implication is enormous. One of the major trends of fluid mechanics since the latter half of the 20th century is to clarify the topological meaning of Helmholtz's law and to exploit it to develop theoretical and numerical methods to find the solutions of the Euler equations and to develop experimental techniques to gain an insight into fluid motion. Vortex rings are prominent coherent structures in a variety of fluid motions from the microscopic scale, through human and mesoscale to astrophysical scales, and have attracted people's interest. The late professor Philip G Saffman (1981) emphasized the significance of studies on vortex rings. One particular motion exemplifies the whole range of problems of vortex motion and is also a commonly known phenomenon, namely the vortex ring or smoke ring. Vortex rings are easily produced by dropping drops of one liquid into another, or by puffing fluid out of a hole, or by exhaling smoke if one has the skill. Their formation is a problem of vortex sheet dynamics, the steady state is a problem of existence, their duration is a problem of stability, and if there are several we have the problem of vortex interactions. Helmholtz himself, in the same paper (1858), devoted a few pages to an analysis of the motion of a vortex ring, and made substantial contributions. Since then, theoretical, experimental and numerical treatments of vortex rings have been developing continuously, yet we encounter mysteries and novel phenomena, with which vortex rings find new applications in, say, bio-fluid mechanics. Recently vortex rings have enlarged their scope beyond classical fluids to encompass super-fluids and Bose-Einstein condensates. On the occasion of the 150th anniversary of Helmholtz's theory on a vortex ring, it is worthwhile to bring together, in one issue, the latest understandings of and open problems in vortex rings from various aspects. The topics in this issue include development of theories and experiments for motion of vortex rings and their interaction with other vortex rings, flows and boundaries, with application to vortex-ring manipulation for flow control, original experiments on collision of vortex rings with a porous boundary, a novel numerical technique to simulate three-dimensional motion of vortex rings and new theories of dynamics of quantum vortex rings governed by nonlinear Schrödinger equations. I hope that this special section gives a sketch, in some proportion, of the current frontier of the field and provides a means to tackle future problems. References Saffman P G 1981 Dynamics of vorticity J. Fluid Mech. 106 49-58 von Helmholtz H 1858 Über Integrale der hydrodynamischen Gleichungen welche den Wirbelbewegungen entsprechen J. Reine Angew. Math. 55 25-55 (Engl. transl.: Tait P G 1867 On the integrals of the hydrodynamical equations which express vortex-motion Phil. Mag. 33 (4) 485-512)
Chaotic bubbling and nonstagnant foams.
Tufaile, Alberto; Sartorelli, José Carlos; Jeandet, Philippe; Liger-Belair, Gerard
2007-06-01
We present an experimental investigation of the agglomeration of bubbles obtained from a nozzle working in different bubbling regimes. This experiment consists of a continuous production of bubbles from a nozzle at the bottom of a liquid column, and these bubbles create a two-dimensional (2D) foam (or a bubble raft) at the top of this column. The bubbles can assemble in various dynamically stable arrangement, forming different kinds of foams in a liquid mixture of water and glycerol, with the effect that the bubble formation regimes influence the foam obtained from this agglomeration of bubbles. The average number of bubbles in the foam is related to the bubble formation frequency and the bubble mean lifetime. The periodic bubbling can generate regular or irregular foam, while a chaotic bubbling only generates irregular foam.
Internal scanning method as unique imaging method of optical vortex scanning microscope
NASA Astrophysics Data System (ADS)
Popiołek-Masajada, Agnieszka; Masajada, Jan; Szatkowski, Mateusz
2018-06-01
The internal scanning method is specific for the optical vortex microscope. It allows to move the vortex point inside the focused vortex beam with nanometer resolution while the whole beam stays in place. Thus the sample illuminated by the focused vortex beam can be scanned just by the vortex point. We show that this method enables high resolution imaging. The paper presents the preliminary experimental results obtained with the first basic image recovery procedure. A prospect of developing more powerful tools for topography recovery with the optical vortex scanning microscope is discussed shortly.
NASA Astrophysics Data System (ADS)
Alekseenko, S. V.; Shtork, S. I.; Yusupov, R. R.
2018-03-01
The effect of the method of gas-phase injection into a swirled fluid flow on parameters of a precessing vortex core is studied experimentally. Conditions of the appearance of the vortex-core precession effect were modeled in a hydrodynamic sudden expansion vortex chamber. The dependences of the vortexcore precession frequency, flow-pulsation level, and full pressure differential in the vortex chamber on the consumption gas content in the flow have been obtained. The results of measurements permit one to determine optimum conditions for the most effective control of vortex-core precession.
Dynamic Control of Collapse in a Vortex Airy Beam
Chen, Rui-Pin; Chew, Khian-Hooi; He, Sailing
2013-01-01
Here we study systematically the self-focusing dynamics and collapse of vortex Airy optical beams in a Kerr medium. The collapse is suppressed compared to a non-vortex Airy beam in a Kerr medium due to the existence of vortex fields. The locations of collapse depend sensitively on the initial power, vortex order, and modulation parameters. The collapse may occur in a position where the initial field is nearly zero, while no collapse appears in the region where the initial field is mainly distributed. Compared with a non-vortex Airy beam, the collapse of a vortex Airy beam can occur at a position away from the area of the initial field distribution. Our study shows the possibility of controlling and manipulating the collapse, especially the precise position of collapse, by purposely choosing appropriate initial power, vortex order or modulation parameters of a vortex Airy beam. PMID:23518858
Calculations of axisymmetric vortex sheet roll-up using a panel and a filament model
NASA Technical Reports Server (NTRS)
Kantelis, J. P.; Widnall, S. E.
1986-01-01
A method for calculating the self-induced motion of a vortex sheet using discrete vortex elements is presented. Vortex panels and vortex filaments are used to simulate two-dimensional and axisymmetric vortex sheet roll-up. A straight forward application using vortex elements to simulate the motion of a disk of vorticity with an elliptic circulation distribution yields unsatisfactroy results where the vortex elements move in a chaotic manner. The difficulty is assumed to be due to the inability of a finite number of discrete vortex elements to model the singularity at the sheet edge and due to large velocity calculation errors which result from uneven sheet stretching. A model of the inner portion of the spiral is introduced to eliminate the difficulty with the sheet edge singularity. The model replaces the outermost portion of the sheet with a single vortex of equivalent circulation and a number of higher order terms which account for the asymmetry of the spiral. The resulting discrete vortex model is applied to both two-dimensional and axisymmetric sheets. The two-dimensional roll-up is compared to the solution for a semi-infinite sheet with good results.
Laminar Horse Shoe Vortex for a Triangular Cylinder Flat Plate Juncture
NASA Astrophysics Data System (ADS)
Younis, Muhammad Yamin; Zhang, H.; Hu, B.; Sohail, Muhammad Amjad; Muhammad, Zaka
2011-09-01
Juncture Flows are 3-D flows which occur when fluid, flowing on a flat surface encounters an obstacle on its way. The flow separates from the surface due to the adverse pressure gradient produced by the obstacle and rolls up to form a vortical structure known as "Horse Shoe Vortex". Studies and research is underway to completely identify and understand different hidden features of the horse shoe vortex. In the present study the structure of horse shoe vortex for a Triangular cylinder flat plate juncture is visualized using particle image velocimetry (PIV). The diameter Reynolds number experimented is within the range of 2 000 ≤ ReA ≤ 8 000. The flow characteristics are studied for the horse shoe vortex and the flow is categorized into different flow regimes. (1) Steady or static vortex system, (2) periodic amalgamating vortex system, and (3) periodic break away vortex system. The range for different vortex systems is also calculated with shedding frequency for the periodic unsteady vortex system. Most importantly the range of Reynolds number for which the above mentioned vortex systems exist is much higher for Sharp leading edge cylinder than for blunt (circular and Elliptical) and flat (Square) leading edge cylinders studied earlier.
Research on aircraft trailing vortex detection based on laser's multiplex information echo
NASA Astrophysics Data System (ADS)
Zhao, Nan-xiang; Wu, Yong-hua; Hu, Yi-hua; Lei, Wu-hu
2010-10-01
Airfoil trailing vortex is an important reason for the crash, and vortex detection is the basic premise for the civil aeronautics boards to make the flight measures and protect civil aviation's security. So a new method of aircraft trailing vortex detection based on laser's multiplex information echo has been proposed in this paper. According to the classical aerodynamics theories, the formation mechanism of the trailing vortex from the airfoil wingtip has been analyzed, and the vortex model of Boeing 737 in the taking-off phase has also been established on the FLUENT software platform. Combining with the unique morphological structure characteristics of trailing vortex, we have discussed the vortex's possible impact on the frequency, amplitude and phase information of laser echo, and expounded the principle of detecting vortex based on fusing this information variation of laser echo. In order to prove the feasibility of this detecting technique, the field experiment of detecting the vortex of civil Boeing 737 by laser has been carried on. The experimental result has shown that the aircraft vortex could be found really in the laser scanning area, and its diffusion characteristic has been very similar to the previous simulation result. Therefore, this vortex detection means based on laser's multiplex information echo was proved to be practicable relatively in this paper. It will provide the detection and identification of aircraft's trailing vortex a new way, and have massive research value and extensive application prospect as well.
Approaching behavior of a pair of spherical bubbles in quiescent liquids
NASA Astrophysics Data System (ADS)
Sanada, Toshiyuki; Kusuno, Hiroaki
2015-11-01
Some unique motions related bubble-bubble interaction, such as equilibrium distance, wake induced lift force, have been proposed by theoretical analysis or numerical simulations. These motions are different from the solid spheres like DKT model (Drafting, Kissing and Tumbling). However, there is a lack of the experimental verification. In this study, we experimentally investigated the motion of a pair of bubbles initially positioned in-line configuration in ultrapure water or an aqueous surfactant solution. The bubble motion were observed by two high speed video cameras. The bubbles Reynolds number was ranged from 50 to 300 and bubbles hold the spherical shape in this range. In ultrapure water, initially the trailing bubble deviated from the vertical line on the leading bubble owing to the wake of the leading bubble. And then, the slight difference of the bubble radius changed the relative motion. When the trailing bubble slightly larger than the leading bubble, the trailing bubble approached to the leading bubble due to it's buoyancy difference. The bubbles attracted and collided only when the bubbles rising approximately side by side configuration. In addition, we will also discuss the motion of bubbles rising in an aqueous surfactant solution.
Hysteretic growth and decay of a waterspout column
NASA Astrophysics Data System (ADS)
Naumov, Igor V.; Herrada, Miguel A.; Sharifullin, Bulat R.; Shtern, Vladimir N.
2018-02-01
This work explores a model waterspout: a flow of water and sunflower oil driven by the rotating lid in a sealed vertical cylindrical container. The experiments reveal the hysteretic growth and decay of a water column. The numerical simulations uncover vortex breakdown (VB) in the water and oil flows. As the rotation speeds up, (1) a VB water cell emerges near the bottom center, (2) it expands and occupies almost the entire water volume except a thin layer adjusted to the interface, (3) a VB oil cell emerges and disappears above the interface-axis intersection, (4) the interface rises near the axis, descends at the periphery, and shifts from the sidewall to the bottom, (5) the water touches the lid near the axis and forms a column, extending from the bottom up to the lid. As the rotation decelerates, the process reverses, but the flow states differ from those for the direct process at same rotation speeds. It is argued that the hysteresis is a capillary phenomenon and occurs because the interface-wall contact angle differs in the direct and reverse processes.
Investigation of turbulent swirling jet-flames by PIV / OH PLIF / HCHO PLIF
NASA Astrophysics Data System (ADS)
Lobasov, A. S.; Chikishev, L. M.
2018-03-01
The present paper reports on the investigation of fuel-lean and fuel-rich turbulent combustion in a high-swirl jet. Swirl rate of the flow exceeded a critical value for breakdown of the swirling jet’s vortex core and formation of the recirculation zone at the jet axis. The measurements were performed by the stereo PIV, OH PLIF and HCHO PLIF techniques, simultaneously. The Reynolds number based on the flow rate and viscosity of the air was fixed as 5 000 (the bulk velocity was U 0 = 5 m/s). Three cases of the equivalence ratio ϕ of the mixture issuing from the nozzle-burner were considered, viz., 0.7, 1.4 and 2.5. The latter case corresponded to a lifted flame of fuel-rich swirling jet flow, partially premixed with the surrounding air. In all cases the flame front was subjected to deformations due to large-scale vortices, which rolled-up in the inner (around the central recirculation zone) and outer (between the annular jet core and surrounding air) mixing layers.
Vortex formation and saturation for low-aspect-ratio rotating flat-plate fins
NASA Astrophysics Data System (ADS)
Devoria, Adam C.; Ringuette, Matthew J.
2012-02-01
We investigate experimentally the unsteady, three-dimensional vortex formation of low-aspect-ratio, trapezoidal flat-plate fins undergoing rotation from rest at a 90° angle of attack and Reynolds numbers of O(103). The objectives are to characterize the unsteady three-dimensional vortex structure, examine vortex saturation, and understand the effects of the root-to-tip flow for different velocity programs. The experiments are conducted in a water tank facility, and the diagnostic tools are dye flow visualization and digital particle image velocimetry. The dye visualizations show that the low-aspect-ratio plate produces symmetric ring-like vortices comprised mainly of tip-edge vorticity. They also indicate the presence of the root-to-tip velocity. For large rotational amplitudes, the primary ring-like vortex sheds and a secondary ring-like vortex is generated while the plate is still in motion, indicating saturation of the leading vortex. The time-varying vortex circulation in the flow symmetry plane provides quantitative evidence of vortex saturation. The phenomenon of saturation is observed for several plate velocity programs. The temporal development of the vortex circulation is often complex, which prevents an objective determination of an exact saturation time. This is the result of an interaction between the developing vortex and the root-to-tip flow, which breaks apart the vortex. However, it is possible to define a range of time during which the vortex reaches saturation. A formation-parameter definition is investigated and is found to reasonably predict the state corresponding to the pinch-off of the initial tip vortex across the velocity programs tested. This event is the lower bound on the saturation time range.
Numerical Simulations of Vortex Generator Vanes and Jets on a Flat Plate
NASA Technical Reports Server (NTRS)
Allan, Brian G.; Yao, Chung-Sheng; Lin, John C.
2002-01-01
Numerical simulations of a single low-profile vortex generator vane, which is only a small fraction of the boundary-layer thickness, and a vortex generating jet have been performed for flows over a flat plate. The numerical simulations were computed by solving the steady-state solution to the Reynolds-averaged Navier-Stokes equations. The vortex generating vane results were evaluated by comparing the strength and trajectory of the streamwise vortex to experimental particle image velocimetry measurements. From the numerical simulations of the vane case, it was observed that the Shear-Stress Transport (SST) turbulence model resulted in a better prediction of the streamwise peak vorticity and trajectory when compared to the Spalart-Allmaras (SA) turbulence model. It is shown in this investigation that the estimation of the turbulent eddy viscosity near the vortex core, for both the vane and jet simulations, was higher for the SA model when compared to the SST model. Even though the numerical simulations of the vortex generating vane were able to predict the trajectory of the stream-wise vortex, the initial magnitude and decay of the peak streamwise vorticity were significantly under predicted. A comparison of the positive circulation associated with the streamwise vortex showed that while the numerical simulations produced a more diffused vortex, the vortex strength compared very well to the experimental observations. A grid resolution study for the vortex generating vane was also performed showing that the diffusion of the vortex was not a result of insufficient grid resolution. Comparisons were also made between a fully modeled trapezoidal vane with finite thickness to a simply modeled rectangular thin vane. The comparisons showed that the simply modeled rectangular vane produced a streamwise vortex which had a strength and trajectory very similar to the fully modeled trapezoidal vane.
Interaction of a turbulent vortex with a lifting surface
NASA Technical Reports Server (NTRS)
Lee, D. J.; Roberts, L.
1985-01-01
The impulsive noise due to blade-vortex-interaction is analyzing in the time domain for the extreme case when the blade cuts through the center of the vortex core with the assumptions of no distortion of the vortex path or of the vortex core. An analytical turbulent vortex core model, described in terms of the tip aerodynamic parameters, is used and its effects on the unsteady loading and maximum acoustic pressure during the interaction are determined.
Control of submersible vortex flows
NASA Technical Reports Server (NTRS)
Bushnell, D. M.; Donaldson, C. D.
1990-01-01
Vortex flows produced by submersibles typically unfavorably influence key figures of merit such as acoustic and nonacoustic stealth, control effectiveness/maneuverability, and propulsor efficiency/body drag. Sources of such organized, primarily longitudinal, vorticity include the basic body (nose and sides) and appendages (both base/intersection and tip regions) such as the fairwater, dive planes, rear control surfaces, and propulsor stators/tips. Two fundamentally different vortex control approaches are available: (1) deintensification of the amplitude and/or organization of the vortex during its initiation process; and (2) downstream vortex disablement. Vortex control techniques applicable to the initiation region (deintensification approach) include transverse pressure gradient minimization via altered body cross section, appendage dillets, fillets, and sweep, and various appendage tip and spanload treatment along with the use of active controls to minimize control surface size and motions. Vortex disablement can be accomplished either via use of control vortices (which can also be used to steer the vortices off-board), direct unwinding, inducement of vortex bursting, or segmentation/tailoring for enhanced dissipation. Submersible-applicable vortex control technology is also included derived from various aeronautical applications such as mitigation of the wing wake vortex hazard and flight aircraft maneuverability at high angle of attack as well as the status of vortex effects upon, and mitigation of, nonlinear control forces on submersibles. Specific suggestions for submersible-applicable vortex control techniques are presented.
Rotor Wake Vortex Definition Using 3C-PIV Measurements: Corrected for Vortex Orientation
NASA Technical Reports Server (NTRS)
Burley, Casey L.; Brooks, Thomas F.; vanderWall, Berend; Richard, Hughues Richard; Raffel, Markus; Beaumier, Philippe; Delrieux, Yves; Lim, Joon W.; Yu, Yung H.; Tung, Chee
2003-01-01
Three-component (3-C) particle image velocimetry (PIV) measurements, within the wake across a rotor disk plane, are used to determine wake vortex definitions important for BVI (Blade Vortex Interaction) and broadband noise prediction. This study is part of the HART II test program conducted using a 40 percent scale BO-105 helicopter main rotor in the German-Dutch Wind Tunnel (DNW). In this paper, measurements are presented of the wake vortex field over the advancing side of the rotor operating at a typical descent landing condition. The orientations of the vortex (tube) axes are found to have non-zero tilt angles with respect to the chosen PIV measurement cut planes, often on the order of 45 degrees. Methods for determining the orientation of the vortex axis and reorienting the measured PIV velocity maps (by rotation/projection) are presented. One method utilizes the vortex core axial velocity component, the other utilizes the swirl velocity components. Key vortex parameters such as vortex core size, strength, and core velocity distribution characteristics are determined from the reoriented PIV velocity maps. The results are compared with those determined from velocity maps that are not corrected for orientation. Knowledge of magnitudes and directions of the vortex axial and swirl velocity components as a function of streamwise location provide a basis for insight into the vortex evolution.
Interactions of a co-rotating vortex pair at multiple offsets
NASA Astrophysics Data System (ADS)
Forster, Kyle J.; Barber, Tracie J.; Diasinos, Sammy; Doig, Graham
2017-05-01
Two NACA0012 vanes at various lateral offsets were investigated by wind tunnel testing to observe the interactions between the streamwise vortices. The vanes were separated by nine chord lengths in the streamwise direction to allow the upstream vortex to impact on the downstream geometry. These vanes were evaluated at an angle of incidence of 8° and a Reynolds number of 7 ×104 using particle image velocimetry. A helical motion of the vortices was observed, with rotational rate increasing as the offset was reduced to the point of vortex merging. Downstream meandering of the weaker vortex was found to increase in magnitude near the point of vortex merging. The merging process occurred more rapidly when the upstream vortex was passed on the pressure side of the vane, with the downstream vortex being produced with less circulation and consequently merging into the upstream vortex. The merging distance was found to be statistical rather than deterministic quantity, indicating that the meandering of the vortices affected their separations and energies. This resulted in a fluctuation of the merging location. A loss of circulation associated with the merging process was identified, with the process of achieving vortex circularity causing vorticity diffusion, however all merged cases maintained higher circulation than a single vortex condition. The presence of the upstream vortex was found to reduce the strength of the downstream vortex in all offsets evaluated.
Son, Jang-Won; Hong, Geu-Ru; Hong, Woosol; Kim, Minji; Houle, Helene; Vannan, Mani A; Pedrizzetti, Gianni; Chung, Namsik
2016-06-01
The flow in the aorta forms a vortex, which is a critical determinant of the flow dynamics in the aorta. Arteriosclerosis can alter the blood flow pattern of the aorta and cause characteristic alterations of the vortex. However, this change in aortic vortex has not yet been studied. This study aimed to characterize aortic vortex flow pattern using transesophageal contrast echocardiography in normal and stroke patients. A total of 85 patients who diagnosed with ischemic stroke and 16 normal controls were recruited for this study. The 16 normal control subjects were designated as the control group, and the 85 ischemic stroke patients were designated as the stroke group. All subjects underwent contrast transesophageal echocardiography (TEE), and particle image velocimetry was used to assess aortic vortex flow. Qualitative and quantitative analyses of vortex flow morphology, location, phasic variation, and pulsatility were undertaken and compared between the groups. In the control group, multiple irregularly-shaped vortices were observed in a peripheral location in the descending thoracic aorta. In contrast, the stroke group had a single, round, merged, and more centrally located aortic vortex flow. In the quantitative analysis of vortex, vortex depth, which represents the location of the major vortex in the aorta, was significantly higher in the control group than in the stroke group (0.599 ± 0.159 vs. 0.522 ± 0.101, respectively, P = 0.013). Vortex relative strength, which is the pulsatility parameter of the vortex itself, was significantly higher in the stroke group than in the control group (0.367 ± 0.148 vs. 0.304 ± 0.087, respectively, P = 0.025). It was feasible to visualize and quantify the characteristic morphology and pulsatility of the aortic vortex flow using contrast TEE, and aortic vortex pattern significantly differed between normal and stroke patients.
Devices that Alter the Tip Vortex of a Rotor
NASA Technical Reports Server (NTRS)
McAlister, Kenneth W.; Tung, Chee; Heineck, James T.
2001-01-01
Small devices were attached near the tip of a hovering rotor blade 'in order to alter the structure and trajectory of the trailing vortex. Stereo particle image velocimetry (PIV) images were used to quantify the wake behind the rotor blade during the first revolution. A procedure for analyzing the 3D-velocity field is presented that includes a method for accounting for vortex wander. The results show that a vortex generator can alter the trajectory of the trailing vortex and that a major change in the size and intensity of the trailing vortex can be achieved by introducing a high level of turbulence into the core of the vortex.
Experimental and analytical results of a liquid-gas separator in microgravity
NASA Astrophysics Data System (ADS)
Best, Frederick; Ellis, Michael
1999-01-01
The microgravity phase separator designed and fabricated at Texas A&M University relies on centripetally driven buoyancy forces to form a gas-liquid vortex within a fixed, right-circular cylinder. Two phase flow is injected tangentially along the inner wall of this cylinder. Centripetal acceleration is produced from the intrinsic momentum of the resulting rotating flow and drives the buoyancy process. Gas travels under density gradients through the rotating liquid, eventually forming a gaseous core along the centerline of the cylinder. Gas core stability, the presence of liquid in the air line, and the presence of air in the liquid line determine whether a successful core results. To predict separation failure, these three factors were examined both analytically and empirically with the goal of determining what operating circumstances would generate them. The centripetal acceleration profile was determined from angular velocity measurements taken using a paddle wheel assembly. To aid in understanding the nature of the rotating flow, these results were compared to analytical results provided by solving simplified Navier-Stokes equations. The theoretical velocity profile indicated a linear dependence on radius, which with the experimental data agreed, although two distinctly different slopes were observed. As injection nozzle width increased, the difference between the slopes lessened. For all three nozzles tested, the discontinuity between the linear sections occurred at a radius of approximately 3.8 cm. The maximum centripetal acceleration generated by the flow was greatest for the 0.0635 cm wide, 0.516 cm tall injection nozzle and least for the 0.102 cm wide, 1.02 cm tall injection nozzle. The circumstances leading to carry-under are dictated by the relationship between axial and radial bubble transit times. To determine the radial and axial transit times, the radial velocity profile was solved analytically by relating the buoyancy and drag forces for a 0.0635 cm radius bubble. This velocity profile was then used to produce a numerical solution for the radial transit time. Volumetric flowrate analysis provided the axial velocity and bubble transit time. 33.4, 50.1, 66.8, and 83.5 cm3/s flowrates were tested and only the 33.4 cm3/s flowrate resulted in conditions which would lead to carry under.
The challenges of simulating wake vortex encounters and assessing separation criteria
NASA Technical Reports Server (NTRS)
Dunham, R. E.; Stuever, Robert A.; Vicroy, Dan D.
1993-01-01
During landings and take-offs, the longitudinal spacing between airplanes is in part determined by the safe separation required to avoid the trailing vortex wake of the preceding aircraft. Safe exploration of the feasibility of reducing longitudinal separation standards will require use of aircraft simulators. This paper discusses the approaches to vortex modeling, methods for modeling the aircraft/vortex interaction, some of the previous attempts of defining vortex hazard criteria, and current understanding of the development of vortex hazard criteria.
Vortex-Airfoil Interaction and Application of Methods for Digital Fringe Analysis.
1986-03-15
angles of attack. Different kinds of bluff bodies are used as vortex generators. Their wake is a Karman vortex street consisting of strong vortices of...Table of Contents 1. Introduction 1 2. A model for vortex paths around a profile and the sound generated by vortex -profile interaction 2"-- 3...I’ S.TTE(d~,t. TYPE OF PIrPORT a PERID COWERED ’. * Vortex -airfoil interaction and application of *methods for digital fringe analysis . 1 6
Interaction mechanism of double bubbles in hydrodynamic cavitation
NASA Astrophysics Data System (ADS)
Li, Fengchao; Cai, Jun; Huai, Xiulan; Liu, Bin
2013-06-01
Bubble-bubble interaction is an important factor in cavitation bubble dynamics. In this paper, the dynamic behaviors of double cavitation bubbles driven by varying pressure field downstream of an orifice plate in hydrodynamic cavitation reactor are examined. The bubble-bubble interaction between two bubbles with different radii is considered. We have shown the different dynamic behaviors between double cavitation bubbles and a single bubble by solving two coupling nonlinear equations using the Runge-Kutta fourth order method with adaptive step size control. The simulation results indicate that, when considering the role of the neighbor smaller bubble, the oscillation of the bigger bubble gradually exhibits a lag in comparison with the single-bubble case, and the extent of the lag becomes much more obvious as time goes by. This phenomenon is more easily observed with the increase of the initial radius of the smaller bubble. In comparison with the single-bubble case, the oscillation of the bigger bubble is enhanced by the neighbor smaller bubble. Especially, the pressure pulse of the bigger bubble rises intensely when the sizes of two bubbles approach, and a series of peak values for different initial radii are acquired when the initial radius ratio of two bubbles is in the range of 0.9˜1.0. Although the increase of the center distance between two bubbles can weaken the mutual interaction, it has no significant influence on the enhancement trend. On the one hand, the interaction between two bubbles with different radii can suppress the growth of the smaller bubble; on the other hand, it also can enhance the growth of the bigger one at the same time. The significant enhancement effect due to the interaction of multi-bubbles should be paid more attention because it can be used to reinforce the cavitation intensity for various potential applications in future.
Vortex creep at very low temperatures in single crystals of the extreme type-II Rh 9In 4S 4
Herrera, Edwin; Bemito-Llorens, Jose; Kalarachchi, Udhara; ...
2017-04-07
Here, we image vortex creep at very low temperatures using scanning tunneling microscopy in the superconductor Rh 9In 4S 4 (T c = 2.25 K). We measure the superconducting gap of Rh 9In 4S 4, finding Δ ≈ 0.33 meV, and image a hexagonal vortex lattice up to close to H c2 observing slow vortex creep at temperatures as low as 150 mK. We estimate thermal and quantum barriers for vortex motion and show that thermal fluctuations likely cause vortex creep, in spite of being at temperatures T/T c < 0.1. We study creeping vortex lattices by making images duringmore » long times and show that the vortex lattice remains hexagonal during creep with vortices moving along one of the high-symmetry axes of the vortex lattice. Furthermore, the creep velocity changes with the scanning window suggesting that creep depends on the local arrangements of pinning centers. Vortices fluctuate on small-scale erratic paths, indicating that the vortex lattice makes jumps trying different arrangements during its travel along the main direction for creep. Lastly, the images provide a visual account of how vortex lattice motion maintains hexagonal order, while showing dynamic properties characteristic of a glass.« less
Numerical study of the properties of optical vortex array laser tweezers.
Kuo, Chun-Fu; Chu, Shu-Chun
2013-11-04
Chu et al. constructed a kind of Ince-Gaussian modes (IGM)-based vortex array laser beams consisting of p x p embedded optical vortexes from Ince-Gaussian modes, IG(e)(p,p) modes [Opt. Express 16, 19934 (2008)]. Such an IGM-based vortex array laser beams maintains its vortex array profile during both propagation and focusing, and is applicable to optical tweezers. This study uses the discrete dipole approximation (DDA) method to study the properties of the IGM-based vortex array laser tweezers while it traps dielectric particles. This study calculates the resultant force exerted on the spherical dielectric particles of different sizes situated at the IGM-based vortex array laser beam waist. Numerical results show that the number of trapping spots of a structure light (i.e. IGM-based vortex laser beam), is depended on the relation between the trapped particle size and the structure light beam size. While the trapped particle is small comparing to the beam size of the IGM-based vortex array laser beams, the IGM-based vortex array laser beams tweezers are suitable for multiple traps. Conversely, the tweezers is suitable for single traps. The results of this study is useful to the future development of the vortex array laser tweezers applications.
Signatures of two-step impurity mediated vortex lattice melting in Bose-Einstein condensate
NASA Astrophysics Data System (ADS)
Dey, Bishwajyoti
2017-04-01
We study impurity mediated vortex lattice melting in a rotating two-dimensional Bose-Einstein condensate (BEC). Impurities are introduced either through a protocol in which vortex lattice is produced in an impurity potential or first creating the vortex lattice in the absence of random pinning and then cranking up the impurity potential. These two protocols have obvious relation with the two commonly known protocols of creating vortex lattice in a type-II superconductor: zero field cooling protocol and the field cooling protocol respectively. Time-splitting Crank-Nicolson method has been used to numerically simulate the vortex lattice dynamics. It is shown that the vortex lattice follows a two-step melting via loss of positional and orientational order. This vortex lattice melting process in BEC closely mimics the recently observed two-step melting of vortex matter in weakly pinned type-II superconductor Co-intercalated NbSe2. Also, using numerical perturbation analysis, we compare between the states obtained in two protocols and show that the vortex lattice states are metastable and more disordered when impurities are introduced after the formation of an ordered vortex lattice. The author would like to thank SERB, Govt. of India and BCUD-SPPU for financial support through research Grants.
NASA Astrophysics Data System (ADS)
Herrera, Edwin; Benito-Llorens, José; Kaluarachchi, Udhara S.; Bud'ko, Sergey L.; Canfield, Paul C.; Guillamón, Isabel; Suderow, Hermann
2017-04-01
We image vortex creep at very low temperatures using scanning tunneling microscopy in the superconductor Rh9In4S4 (Tc=2.25 K ). We measure the superconducting gap of Rh9In4S4 , finding Δ ≈0.33 meV , and image a hexagonal vortex lattice up to close to Hc 2, observing slow vortex creep at temperatures as low as 150 mK. We estimate thermal and quantum barriers for vortex motion and show that thermal fluctuations likely cause vortex creep, in spite of being at temperatures T /Tc<0.1 . We study creeping vortex lattices by making images during long times and show that the vortex lattice remains hexagonal during creep with vortices moving along one of the high-symmetry axes of the vortex lattice. Furthermore, the creep velocity changes with the scanning window suggesting that creep depends on the local arrangements of pinning centers. Vortices fluctuate on small-scale erratic paths, indicating that the vortex lattice makes jumps trying different arrangements during its travel along the main direction for creep. The images provide a visual account of how vortex lattice motion maintains hexagonal order, while showing dynamic properties characteristic of a glass.
NASA Astrophysics Data System (ADS)
Xue, C.; Ge, J.-Y.; He, A.; Zharinov, V. S.; Moshchalkov, V. V.; Zhou, Y. H.; Silhanek, A. V.; Van de Vondel, J.
2018-04-01
Theoretical proposals for spin-ice analogs based on nanostructured superconductors have suggested larger flexibility for probing the effects of fluctuations and disorder than in the magnetic systems. In this paper, we unveil the particularities of a vortex ice system by direct observation of the vortex distribution in a kagome lattice of paired antidots using scanning Hall probe microscopy. The theoretically suggested vortex ice distribution, lacking long-range order, is observed at half matching field (H1/2 ). Moreover, the vortex ice state formed by the pinned vortices is still preserved at 2 H1/3 . This unexpected result is attributed to the introduction of interstitial vortices at these magnetic-field values. Although the interstitial vortices increase the number of possible vortex configurations, it is clearly shown that the vortex ice state observed at 2 H1/3 is less prone to defects than at H1/2 . In addition, the nonmonotonic variations of the vortex ice quality on the lattice spacing indicates that a highly ordered vortex ice state cannot be attained by simply reducing the lattice spacing. The optimal design to observe defect-free vortex ice is discussed based on the experimental statistics. The direct observations of a tunable vortex ice state provides new opportunities to explore the order-disorder transition in artificial ice systems.
The research on the drag reduction of a transport aircraft with upswept afterbody using long fins
2016-03-30
drag. A pair of fins installed under the fuselage extruding the core of the vortices effectively damp the vortex. Parametric study shows that the length...space near the body and move downstream. The vortex system shifts from lower vortexes, none vortex to upper vortexes when the AOA change from negative to
Full-potential modeling of blade-vortex interactions
NASA Technical Reports Server (NTRS)
Jones, H. E.; Caradonna, F. X.
1986-01-01
A comparison is made of four different models for predicting the unsteady loading induced by a vortex passing close to an airfoil. (1) The first model approximates the vortex effect as a change in the airfoil angle of attack. (2) The second model is related to the first but, instead of imposing only a constant velocity on the airfoil, the distributed effect of the vortex is computed and used. This is analogous to a lifting surface method. (3) The third model is to specify a branch cut discontinuity in the potential field. The vortex is modeled as a jump in potential across the branch cut, the edge of which represents the center of the vortex. (4) The fourth method models the vortex expressing the potential as the sum of a known potential due to the vortex and an unknown perturbation due to the airfoil. The purpose of the current study is to investigate the four vortex models described above and to determine their relative merits and suitability for use in large three-dimensional codes.
Modeling Vortex Generators in the Wind-US Code
NASA Technical Reports Server (NTRS)
Dudek, Julianne C.
2010-01-01
A source term model which simulates the effects of vortex generators was implemented into the Wind-US Navier Stokes code. The source term added to the Navier-Stokes equations simulates the lift force which would result from a vane-type vortex generator in the flowfield. The implementation is user-friendly, requiring the user to specify only three quantities for each desired vortex generator: the range of grid points over which the force is to be applied and the planform area and angle of incidence of the physical vane. The model behavior was evaluated for subsonic flow in a rectangular duct with a single vane vortex generator, supersonic flow in a rectangular duct with a counterrotating vortex generator pair, and subsonic flow in an S-duct with 22 co-rotating vortex generators. The validation results indicate that the source term vortex generator model provides a useful tool for screening vortex generator configurations and gives comparable results to solutions computed using a gridded vane.
Mechanics of Individual, Isolated Vortices in a Cuprate Superconductor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Auslaender, M.
2010-05-25
Superconductors often contain quantized microscopic whirlpools of electrons, called vortices, that can be modeled as one-dimensional elastic objects. Vortices are a diverse playground for condensed matter because of the interplay between thermal fluctuations, vortex-vortex interactions, and the interaction of the vortex core with the three-dimensional disorder landscape. While vortex matter has been studied extensively, the static and dynamic properties of an individual vortex have not. Here we employ magnetic force microscopy (MFM) to image and manipulate individual vortices in detwinned, single crystal YBa{sub 2}Cu{sub 3}O{sub 6.991} (YBCO), directly measuring the interaction of a moving vortex with the local disorder potential.more » We find an unexpected and dramatic enhancement of the response of a vortex to pulling when we wiggle it transversely. In addition, we find enhanced vortex pinning anisotropy that suggests clustering of oxygen vacancies in our sample and demonstrates the power of MFM to probe vortex structure and microscopic defects that cause pinning.« less
The effect of tip vortex structure on helicopter noise due to blade/vortex interaction
NASA Technical Reports Server (NTRS)
Wolf, T. L.; Widnall, S. E.
1978-01-01
A potential cause of helicopter impulsive noise, commonly called blade slap, is the unsteady lift fluctuation on a rotor blade due to interaction with the vortex trailed from another blade. The relationship between vortex structure and the intensity of the acoustic signal is investigated. The analysis is based on a theoretical model for blade/vortex interaction. Unsteady lift on the blades due to blade/vortex interaction is calculated using linear unsteady aerodynamic theory, and expressions are derived for the directivity, frequency spectrum, and transient signal of the radiated noise. An inviscid rollup model is used to calculate the velocity profile in the trailing vortex from the spanwise distribution of blade tip loading. A few cases of tip loading are investigated, and numerical results are presented for the unsteady lift and acoustic signal due to blade/vortex interaction. The intensity of the acoustic signal is shown to be quite sensitive to changes in tip vortex structure.
Rotor Vortex Filaments: Living on the Slipstream's Edge
NASA Technical Reports Server (NTRS)
Young, Larry A.
1997-01-01
The purpose of this paper is to gain a better understanding of rotor wake evolution in hover and axial flow by deriving an analytical solution for the time dependent behavior of vortex filament circulation and core size. This solution is applicable only for vortex filaments in the rotor far-wake. A primarily inviscid vortex/shear layer interaction (where the slipstream boundary is modeled as a shear layer) has been identified in this analytical treatment. This vortex/shear layer interaction results in decreasing, vortex filament circulation and core size with time. The inviscid vortex/shear layer interaction is shown, in a first-order treatment, to be of greater magnitude than viscous diffusion effects. The rate of contraction, and ultimate collapse, of the vortex filament core is found to be directly proportional to the rotor inflow velocity. This new insight into vortex filament decay promises to help reconcile several disparate observations made in the literature and will, hopefully, promote new advances in theoretical modeling of rotor wakes.
NASA Technical Reports Server (NTRS)
Sugioka, I.; Widnall, S. E.
1985-01-01
The self induced evolution of a vortex sheet was simulated by modeling the sheet using an integration of discrete elements of vorticity. Replacing small sections of a vortex sheet by flat panels of constant vorticity is found to reproduce more accurately the initial conditions for the Lagrangian simulation technique than replacement by point vortices. The flat panel method for the vortex sheet was then extended to model axisymmetric vortex sheets. The local and far field velocities induced by the axisymmetric panels were obtained using matched asymptotic analysis, and some of the uncertainties involved in other models of the axisymmetric vortex sheet have been eliminated. One important result of this analysis is the determination of the proper choice of core size for a circular vortex filament which may replace a section of an axisymmetric vortex sheet. Roll-up of both two dimensional and axisymmetric vortex sheets was computed using the panel methods developed in the report.
Vortex interaction with a leading-edge of finite thickness
NASA Technical Reports Server (NTRS)
Sohn, D.; Rockwell, Donald
1987-01-01
Vortex interaction with a thick elliptical leading-edge at zero relative offset produces a pronounced secondary vortes of opposite sense that travels with the same phase speed as the primaty vortex along the lower surface of the edge. The edge thickness (scale) relative to the incident vorticity field has a strong effect on the distortion of the incident primary vortex during the impingement processs. When the thickness is sufficiently small, there is a definite severing of the incident vortex and the portion of the incident vortex that travels along the upper part of the elliptical surface has a considerably larger phase speed than that along the lower surface; this suggests that the integrated loading along the upper surface is more strongly correlated. When the thickness becomes too large, then most, if not all, of the incident vortex passes below the leading-edge. On the other hand, the relative tranverse offset of the edge with respect to the center of the incident vortex has a significant effect on the secondary vortex formation.
Wake Vortex and Groundwind Meteorological Measurements
DOT National Transportation Integrated Search
1976-05-01
Wake vortex groundwind and meteorological measurements obtained by DOT-TSC at John F. Kennedy (JKF) International Airport have been reduced, analyzed, and correlated with a theoretical vortex transport model. The predictive Wake Vortex Transport Mode...
Meng, Qingyou; Varney, Christopher N; Fangohr, Hans; Babaev, Egor
2017-01-25
It was recently proposed to use the stray magnetic fields of superconducting vortex lattices to trap ultracold atoms for building quantum emulators. This calls for new methods for engineering and manipulating of the vortex states. One of the possible routes utilizes type-1.5 superconducting layered systems with multi-scale inter-vortex interactions. In order to explore the possible vortex states that can be engineered, we present two phase diagrams of phenomenological vortex matter models with multi-scale inter-vortex interactions featuring several attractive and repulsive length scales. The phase diagrams exhibit a plethora of phases, including conventional 2D lattice phases, five stripe phases, dimer, trimer, and tetramer phases, void phases, and stable low-temperature disordered phases. The transitions between these states can be controlled by the value of an applied external field.
NASA Astrophysics Data System (ADS)
Jing, Ze; Yong, Huadong; Zhou, Youhe
2018-05-01
In this paper, vortex dynamics of superconducting thin films are numerically investigated by the generalized time-dependent Ginzburg–Landau (TDGL) theory. Interactions between vortex motion and the motion induced energy dissipation is considered by solving the coupled TDGL equation and the heat diffusion equation. It is found that thermal coupling has significant effects on the vortex dynamics of superconducting thin films. Branching in the vortex penetration path originates from the coupling between vortex motion and the motion induced energy dissipation. In addition, the environment temperature, the magnetic field ramp rate and the geometry of the superconducting film also greatly influence the vortex dynamic behaviors. Our results provide new insights into the dynamics of superconducting vortices, and give a mesoscopic understanding on the channeling and branching of vortex penetration paths during flux avalanches.
Spin-orbit torque induced magnetic vortex polarity reversal utilizing spin-Hall effect
NASA Astrophysics Data System (ADS)
Li, Cheng; Cai, Li; Liu, Baojun; Yang, Xiaokuo; Cui, Huanqing; Wang, Sen; Wei, Bo
2018-05-01
We propose an effective magnetic vortex polarity reversal scheme that makes use of spin-orbit torque introduced by spin-Hall effect in heavy-metal/ferromagnet multilayers structure, which can result in subnanosecond polarity reversal without endangering the structural stability. Micromagnetic simulations are performed to investigate the spin-Hall effect driven dynamics evolution of magnetic vortex. The mechanism of magnetic vortex polarity reversal is uncovered by a quantitative analysis of exchange energy density, magnetostatic energy density, and their total energy density. The simulation results indicate that the magnetic vortex polarity is reversed through the nucleation-annihilation process of topological vortex-antivortex pair. This scheme is an attractive option for ultra-fast magnetic vortex polarity reversal, which can be used as the guidelines for the choice of polarity reversal scheme in vortex-based random access memory.
Application of Wind Tunnel Free-Flight Technique for Wake Vortex Encounters
NASA Technical Reports Server (NTRS)
Brandon, Jay M.; Jordan, Frank L., Jr.; Stuever, Robert A.; Buttrill, Catherine W.
1997-01-01
A wind tunnel investigation was conducted in the Langley 30- by 60-Foot Tunnel to assess the free-flight test technique as a tool in research on wake vortex encounters. A typical 17.5-percent scale business-class jet airplane model was flown behind a stationary wing mounted in the forward portion of the wind tunnel test section. The span ratio (model span-generating wingspan) was 0.75. The wing angle of attack could be adjusted to produce a vortex of desired strength. The test airplane model was successfully flown in the vortex and through the vortex for a range of vortex strengths. Data obtained included the model airplane body axis accelerations, angular rates, attitudes, and control positions as a function of vortex strength and relative position. Pilot comments and video records were also recorded during the vortex encounters.
Review of Idealized Aircraft Wake Vortex Models
NASA Technical Reports Server (NTRS)
Ahmad, Nashat N.; Proctor, Fred H.; Duparcmeur, Fanny M. Limon; Jacob, Don
2014-01-01
Properties of three aircraft wake vortex models, Lamb-Oseen, Burnham-Hallock, and Proctor are reviewed. These idealized models are often used to initialize the aircraft wake vortex pair in large eddy simulations and in wake encounter hazard models, as well as to define matched filters for processing lidar observations of aircraft wake vortices. Basic parameters for each vortex model, such as peak tangential velocity and circulation strength as a function of vortex core radius size, are examined. The models are also compared using different vortex characterizations, such as the vorticity magnitude. Results of Euler and large eddy simulations are presented. The application of vortex models in the postprocessing of lidar observations is discussed.
Antisymmetric vortex interactions in the wake behind a step cylinder
NASA Astrophysics Data System (ADS)
Tian, Cai; Jiang, Fengjian; Pettersen, Bjørnar; Andersson, Helge I.
2017-10-01
Flow around a step cylinder at the Reynolds number 150 was simulated by directly solving the full Navier-Stokes equations. The configuration was adopted from the work of Morton and Yarusevych ["Vortex shedding in the wake of a step cylinder," Phys. Fluids 22, 083602 (2010)], in which the wake dynamics were systematically described. A more detailed investigation of the vortex dislocation process has now been performed. Two kinds of new loop vortex structures were identified. Additionally, antisymmetric vortex interactions in two adjacent vortex dislocation processes were observed and explained. The results in this letter serve as a supplement for a more thorough understanding of the vortex dynamics in the step cylinder wake.
Transition to Quantum Turbulence and the Propagation of Vortex Loops at Finite Temperatures
NASA Astrophysics Data System (ADS)
Yamamoto, Shinji; Adachi, Hiroyuki; Tsubota, Makoto
2011-02-01
We performed numerical simulation of the transition to quantum turbulence and the propagation of vortex loops at finite temperatures in order to understand the experiments using vibrating wires in superfluid 4He by Yano et al. We injected vortex rings to a finite volume in order to simulate emission of vortices from the wire. When the injected vortices are dilute, they should decay by mutual friction. When they are dense, however, vortex tangle are generated through vortex reconnections and emit large vortex loops. The large vortex loops can travel a long distance before disappearing, which is much different from the dilute case. The numerical results are consistent with the experimental results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herrera, Edwin; Bemito-Llorens, Jose; Kalarachchi, Udhara
Here, we image vortex creep at very low temperatures using scanning tunneling microscopy in the superconductor Rh 9In 4S 4 (T c = 2.25 K). We measure the superconducting gap of Rh 9In 4S 4, finding Δ ≈ 0.33 meV, and image a hexagonal vortex lattice up to close to H c2 observing slow vortex creep at temperatures as low as 150 mK. We estimate thermal and quantum barriers for vortex motion and show that thermal fluctuations likely cause vortex creep, in spite of being at temperatures T/T c < 0.1. We study creeping vortex lattices by making images duringmore » long times and show that the vortex lattice remains hexagonal during creep with vortices moving along one of the high-symmetry axes of the vortex lattice. Furthermore, the creep velocity changes with the scanning window suggesting that creep depends on the local arrangements of pinning centers. Vortices fluctuate on small-scale erratic paths, indicating that the vortex lattice makes jumps trying different arrangements during its travel along the main direction for creep. Lastly, the images provide a visual account of how vortex lattice motion maintains hexagonal order, while showing dynamic properties characteristic of a glass.« less
NASA Astrophysics Data System (ADS)
Kim, Joon Hyun; Kwon, Woo Jin; Shin, Yong-Il
2016-05-01
In a recent experiment, it was found that the dissipative evolution of a corotating vortex pair in a trapped Bose-Einstein condensate is well described by a point vortex model with longitudinal friction on the vortex motion and the thermal friction coefficient was determined as a function of sample temperature. In this poster, we present a numerical study on the relaxation of 2D superfluid turbulence based on the dissipative point vortex model. We consider a homogeneous system in a cylindrical trap having randomly distributed vortices and implement the vortex-antivortex pair annihilation by removing a pair when its separation becomes smaller than a certain threshold value. We characterize the relaxation of the turbulent vortex states with the decay time required for the vortex number to be reduced to a quarter of initial number. We find the vortex decay time is inversely proportional to the thermal friction coefficient. In particular, we observe the decay times obtained from this work show good quantitative agreement with the experimental results in, indicating that in spite of its simplicity, the point vortex model reasonably captures the physics in the relaxation dynamics of the real system.
Wake Vortex Field Measurement Program at Memphis, Tennessee: Data Guide
NASA Technical Reports Server (NTRS)
Campbell, S. D.; Dasey, T. J.; Freehart, R. E.; Heinrichs, R. M.; Mathews, M. P.; Perras, G. H.; Rowe, G. S.
1997-01-01
Eliminating or reducing current restrictions in the air traffic control system due to wake vortex considerations would yield increased capacity, decreased delays, and cost savings. Current wake vortex separation standards are widely viewed as very conservative under most conditions. However, scientific uncertainty about wake vortex behavior under different atmospheric conditions remains a barrier to development of an adaptive vortex spacing system. The objective of the wake vortex field measurement efforts during December, 1994 and August, 1995 at Memphis, TN were to record wake vortex behavior for varying atmospheric conditions and types of aircraft. This effort is part of a larger effort by the NASA Langley Research Center to develop an Aircraft Vortex Spacing System (AVOSS) as an element of the Terminal Area Productivity (TAP) program. The TAP program is being performed in concert with the FAA Terminal Air Traffic Control Automation (TATCA) program and ATC Automation. Wake vortex behavior was observed using a mobile continuous-wave (CW) coherent laser Doppler radar (lidar) developed at Lincoln Laboratory. This lidar features a number of improvements over previous systems, including the first-ever demonstration of an automatic wake vortex detection and tracking algorithm.
Visualization of airflow growing soap bubbles
NASA Astrophysics Data System (ADS)
Al Rahbi, Hamood; Bock, Matthew; Ryu, Sangjin
2016-11-01
Visualizing airflow inside growing soap bubbles can answer questions regarding the fluid dynamics of soap bubble blowing, which is a model system for flows with a gas-liquid-gas interface. Also, understanding the soap bubble blowing process is practical because it can contribute to controlling industrial processes similar to soap bubble blowing. In this study, we visualized airflow which grows soap bubbles using the smoke wire technique to understand how airflow blows soap bubbles. The soap bubble blower setup was built to mimic the human blowing process of soap bubbles, which consists of a blower, a nozzle and a bubble ring. The smoke wire was placed between the nozzle and the bubble ring, and smoke-visualized airflow was captured using a high speed camera. Our visualization shows how air jet flows into the growing soap bubble on the ring and how the airflow interacts with the soap film of growing bubble.