Sample records for vortex interactions bvi

  1. Advancing-side directivity and retreating-side interactions of model rotor blade-vortex interaction noise

    NASA Technical Reports Server (NTRS)

    Martin, R. M.; Splettstoesser, W. R.; Elliott, J. W.; Schultz, K.-J.

    1988-01-01

    Acoustic data are presented from a 40 percent scale model of the four-bladed BO-105 helicopter main rotor, tested in a large aerodynamic wind tunnel. Rotor blade-vortex interaction (BVI) noise data in the low-speed flight range were acquired using a traversing in-flow microphone array. Acoustic results presented are used to assess the acoustic far field of BVI noise, to map the directivity and temporal characteristics of BVI impulsive noise, and to show the existence of retreating-side BVI signals. The characterics of the acoustic radiation patterns, which can often be strongly focused, are found to be very dependent on rotor operating condition. The acoustic signals exhibit multiple blade-vortex interactions per blade with broad impulsive content at lower speeds, while at higher speeds, they exhibit fewer interactions per blade, with much sharper, higher amplitude acoustic signals. Moderate-amplitude BVI acoustic signals measured under the aft retreating quadrant of the rotor are shown to originate from the retreating side of the rotor.

  2. Helicopter Non-Unique Trim Strategies for Blade-Vortex Interaction (BVI) Noise Reduction

    DTIC Science & Technology

    2016-01-22

    levels of harmonic rotor noise are one of the key technical barriers preventing the widespread public acceptance of helicopters for commercial...transportation. Blade-Vortex Interaction (BVI) is one such mechanism of rotor noise. BVI noise is a problem for civilian helicopter terminal area...non-rotating frame) on the vehicle trim which in turn affects noise generation. For example, conventional single main rotor helicopters commonly

  3. Effects of Vehicle Weight and True Versus Indicated Airspeed on BVI Noise During Steady Descending Flight

    NASA Technical Reports Server (NTRS)

    Stephenson, James H.; Greenwood, Eric

    2015-01-01

    Blade-vortex interaction noise measurements are analyzed for an AS350B helicopter operated at 7000 ft elevation above sea level. Blade-vortex interaction (BVI) noise from four, 6 degree descent conditions are investigated with descents flown at 80 knot true and indicated airspeed, as well as 4400 and 3915 pound take-off weights. BVI noise is extracted from the acquired acoustic signals by way of a previously developed time-frequency analysis technique. The BVI extraction technique is shown to provide a better localization of BVI noise, compared to the standard Fourier transform integration method. Using this technique, it was discovered that large changes in BVI noise amplitude occurred due to changes in vehicle gross weight. Changes in BVI noise amplitude were too large to be due solely to changes in the vortex strength caused by varying vehicle weight. Instead, it is suggested that vehicle weight modifies the tip-path-plane angle of attack, as well as induced inflow, resulting in large variations of BVI noise. It was also shown that defining flight conditions by true airspeed, rather than indicated airspeed, provides more consistent BVI noise signals.

  4. Tip-path-plane angle effects on rotor blade-vortex interaction noise levels and directivity

    NASA Technical Reports Server (NTRS)

    Burley, Casey L.; Martin, Ruth M.

    1988-01-01

    Acoustic data of a scale model BO-105 main rotor acquired in a large aeroacoustic wind tunnel are presented to investigate the parametric effects of rotor operating conditions on blade-vortex interaction (BVI) impulsive noise. Contours of a BVI noise metric are employed to quantify the effects of rotor advance ratio and tip-path-plane angle on BVI noise directivity and amplitude. Acoustic time history data are presented to illustrate the variations in impulsive characteristics. The directionality, noise levels and impulsive content of both advancing and retreating side BVI are shown to vary significantly with tip-path-plane angle and advance ratio over the range of low and moderate flight speeds considered.

  5. Helicopter Non-Unique Trim Strategies for Blade-Vortex Interaction (BVI) Noise Reduction

    NASA Technical Reports Server (NTRS)

    Malpica, Carlos; Greenwood, Eric; Sim, Ben W.

    2016-01-01

    An acoustics parametric analysis of the effect of fuselage drag and pitching moment on the Blade-Vortex Interaction (BVI) noise radiated by a medium lift helicopter (S-70UH-60) in a descending flight condition was conducted. The comprehensive analysis CAMRAD II was used for the calculation of vehicle trim, wake geometry and integrated air loads on the blade. The acoustics prediction code PSU-WOPWOP was used for calculating acoustic pressure signatures for a hemispherical grid centered at the hub. This paper revisits the concept of the X-force controller for BVI noise reduction, and investigates its effectiveness on an S-70 helicopter. The analysis showed that further BVI noise reductions were achievable by controlling the fuselage pitching moment. Reductions in excess of 6 dB of the peak BVI noise radiated towards the ground were demonstrated by compounding the effect of airframe drag and pitching moment simultaneously.

  6. Evaluation of a doubly-swept blade tip for rotorcraft noise reduction

    NASA Technical Reports Server (NTRS)

    Wake, Brian E.; Egolf, T. Alan

    1992-01-01

    A computational study was performed for a doubly-swept rotor blade tip to determine its benefit for high-speed impulsive (HSI) and blade-vortex interaction (BVI) noise. This design consists of aft and forward sweep. For the HSI-noise computations, unsteady Euler calculations were performed for several variations to a rotor blade geometry. A doubly-swept planform was predicted to increase the delocalizing Mach number to 0.94 (representative of a 200+ kt helicopter). For the BVI-noise problem, it had been hypothesized that the doubly-swept blade tip, by producing a leading-edge vortex, would reduce the tip-vortex effect on BVI noise. A procedure was used in which the tip vortex velocity profile computed by a Navier-Stokes solver was used to compute the inflow associated with BVI. This inflow was used by a Euler solver to compute the unsteady pressures for an acoustic analysis. The results of this study were inconclusive due to the difficulty in accurately predicting the viscous tip vortex downstream of the blade. Also, for the condition studied, no leading-edge vortex formed at the tip.

  7. A parametric study of transonic blade-vortex interaction noise

    NASA Technical Reports Server (NTRS)

    Lyrintzis, A. S.

    1991-01-01

    Several parameters of transonic blade-vortex interactions (BVI) are being studied and some ideas for noise reduction are introduced and tested using numerical simulation. The model used is the two-dimensional high frequency transonic small disturbance equation with regions of distributed vorticity (VTRAN2 code). The far-field noise signals are obtained by using the Kirchhoff method with extends the numerical 2-D near-field aerodynamic results to the linear acoustic 3-D far-field. The BVI noise mechanisms are explained and the effects of vortex type and strength, and angle of attack are studied. Particularly, airfoil shape modifications which lead to noise reduction are investigated. The results presented are expected to be helpful for better understanding of the nature of the BVI noise and better blade design.

  8. Transonic blade-vortex interactions - The far field

    NASA Astrophysics Data System (ADS)

    Lyrintzis, A. S.; George, A. R.

    Numerical techniques are developed to predict midfield and far-field helicopter noise due to main-rotor blade-vortex interaction (BVI). The extension of the two-dimensional small-disturbance transonic flow code VTRAN2 (George and Chang, 1983) to the three-dimensional far field (via the Green-function approach of Kirchhoff) is described, and the treatment of oblique BVIs is discussed. Numerical results for a NACA 64A006 airfoil at Mach 0.82 are presented in extensive graphs and characterized in detail. The far-field BVI signature is shown to begin with a strongly forward-directed primary wave (from the original BVI), with an additional downward-directed wave in the case of type C shock motion on the blade.

  9. Wake Geometry Effects on Rotor Blade-Vortex Interaction Noise Directivity

    NASA Technical Reports Server (NTRS)

    Martin, R. M.; Marcolini, Michael A.; Splettstoesser, W. R.; Schultz, K.-J.

    1990-01-01

    Acoustic measurements from a model rotor wind tunnel test are presented which show that the directionality of rotor blade vortex interaction (BVI) noise is strongly dependent on the rotor advance ratio and disk attitude. A rotor free wake analysis is used to show that the general locus of interactions on the rotor disk is also strongly dependent on advance ratio and disk attitude. A comparison of the changing directionality of the BVI noise with changes in the interaction locations shows that the strongest noise radiation occurs in the direction of motion normal to the blade span at the time of interaction, for both advancing and retreating side BVI. For advancing side interactions, the BVI radiation angle down from the tip-path plane appears relatively insensitive to rotor operating condition and is typically between 40 and 55 deg below the disk. However, the azimuthal radiation direction shows a clear trend with descent speed, moving towards the right of the flight path with increasing descent speed. The movement of the strongest radiation direction is attributed to the movement of the interaction locations on the rotor disk with increasing descent speed.

  10. Blade-mounted trailing edge flap control for BVI noise reduction

    NASA Technical Reports Server (NTRS)

    Hassan, A. A.; Charles, B. D.; Tadghighi, H.; Sankar, L. N.

    1992-01-01

    Numerical procedures based on the 2-D and 3-D full potential equations and the 2-D Navier-Stokes equations were developed to study the effects of leading and trailing edge flap motions on the aerodynamics of parallel airfoil-vortex interactions and on the aerodynamics and acoustics of the more general self-generated rotor blade vortex interactions (BVI). For subcritical interactions, the 2-D results indicate that the trailing edge flap can be used to alleviate the impulsive loads experienced by the airfoil. For supercritical interactions, the results show the necessity of using a leading edge flap, rather than a trailing edge flap, to alleviate the interaction. Results for various time dependent flap motions and their effect on the predicted temporal sectional loads, differential pressures, and the free vortex trajectories are presented. For the OLS model rotor, contours of a BVI noise metric were used to quantify the effects of the trailing edge flap on the size and directivity of the high/low intensity noise region(s). Average reductions in the BVI noise levels on the order of 5 dB with moderate power penalties on the order of 18 pct. for a four bladed rotor and 58 pct. for a two bladed rotor were obtained.

  11. Parametric Investigation of the Effect of Hub Pitching Moment on Blade Vortex Interaction (BVI) Noise of an Isolated Rotor

    DTIC Science & Technology

    2016-05-19

    1 Parametric Investigation of the Effect of Hub Pitching Moment on Blade Vortex Interaction (BVI) Noise of an Isolated Rotor Carlos Malpica...changing the hub pitching moment for an isolated rotor, trimmed in nominal 80 knot, 6 and 12 deg descent, flight conditions, alters the miss distance...compensate for the uncomfortable change in fuselage pitch attitude introduced by a fuselage-mounted X-force controller. NOMENCLATURE xM C rolling

  12. Helicopter Blade-Vortex Interaction Noise with Comparisons to CFD Calculations

    NASA Technical Reports Server (NTRS)

    McCluer, Megan S.

    1996-01-01

    A comparison of experimental acoustics data and computational predictions was performed for a helicopter rotor blade interacting with a parallel vortex. The experiment was designed to examine the aerodynamics and acoustics of parallel Blade-Vortex Interaction (BVI) and was performed in the Ames Research Center (ARC) 80- by 120-Foot Subsonic Wind Tunnel. An independently generated vortex interacted with a small-scale, nonlifting helicopter rotor at the 180 deg azimuth angle to create the interaction in a controlled environment. Computational Fluid Dynamics (CFD) was used to calculate near-field pressure time histories. The CFD code, called Transonic Unsteady Rotor Navier-Stokes (TURNS), was used to make comparisons with the acoustic pressure measurement at two microphone locations and several test conditions. The test conditions examined included hover tip Mach numbers of 0.6 and 0.7, advance ratio of 0.2, positive and negative vortex rotation, and the vortex passing above and below the rotor blade by 0.25 rotor chords. The results show that the CFD qualitatively predicts the acoustic characteristics very well, but quantitatively overpredicts the peak-to-peak sound pressure level by 15 percent in most cases. There also exists a discrepancy in the phasing (about 4 deg) of the BVI event in some cases. Additional calculations were performed to examine the effects of vortex strength, thickness, time accuracy, and directionality. This study validates the TURNS code for prediction of near-field acoustic pressures of controlled parallel BVI.

  13. Signal Analysis of Helicopter Blade-Vortex-Interaction Acoustic Noise Data

    NASA Technical Reports Server (NTRS)

    Rogers, James C.; Dai, Renshou

    1998-01-01

    Blade-Vortex-Interaction (BVI) produces annoying high-intensity impulsive noise. NASA Ames collected several sets of BVI noise data during in-flight and wind tunnel tests. The goal of this work is to extract the essential features of the BVI signals from the in-flight data and examine the feasibility of extracting those features from BVI noise recorded inside a large wind tunnel. BVI noise generating mechanisms and BVI radiation patterns an are considered and a simple mathematical-physical model is presented. It allows the construction of simple synthetic BVI events that are comparable to free flight data. The boundary effects of the wind tunnel floor and ceiling are identified and more complex synthetic BVI events are constructed to account for features observed in the wind tunnel data. It is demonstrated that improved recording of BVI events can be attained by changing the geometry of the rotor hub, floor, ceiling and microphone. The Euclidean distance measure is used to align BVI events from each blade and improved BVI signals are obtained by time-domain averaging the aligned data. The differences between BVI events for individual blades are then apparent. Removal of wind tunnel background noise by optimal Wiener-filtering is shown to be effective provided representative noise-only data have been recorded. Elimination of wind tunnel reflections by cepstral and optimal filtering deconvolution is examined. It is seen that the cepstral method is not applicable but that a pragmatic optimal filtering approach gives encouraging results. Recommendations for further work include: altering measurement geometry, real-time data observation and evaluation, examining reflection signals (particularly those from the ceiling) and performing further analysis of expected BVI signals for flight conditions of interest so that microphone placement can be optimized for each condition.

  14. Full-Potential Modeling of Blade-Vortex Interactions. Degree awarded by George Washington Univ., Feb. 1987

    NASA Technical Reports Server (NTRS)

    Jones, Henry E.

    1997-01-01

    A study of the full-potential modeling of a blade-vortex interaction was made. A primary goal of this study was to investigate the effectiveness of the various methods of modeling the vortex. The model problem restricts the interaction to that of an infinite wing with an infinite line vortex moving parallel to its leading edge. This problem provides a convenient testing ground for the various methods of modeling the vortex while retaining the essential physics of the full three-dimensional interaction. A full-potential algorithm specifically tailored to solve the blade-vortex interaction (BVI) was developed to solve this problem. The basic algorithm was modified to include the effect of a vortex passing near the airfoil. Four different methods of modeling the vortex were used: (1) the angle-of-attack method, (2) the lifting-surface method, (3) the branch-cut method, and (4) the split-potential method. A side-by-side comparison of the four models was conducted. These comparisons included comparing generated velocity fields, a subcritical interaction, and a critical interaction. The subcritical and critical interactions are compared with experimentally generated results. The split-potential model was used to make a survey of some of the more critical parameters which affect the BVI.

  15. Parametric Investigation of the Effect of Hub Pitching Moment on Blade Vortex Interaction (BVI) Noise of an Isolated Rotor

    NASA Technical Reports Server (NTRS)

    Malpica, Carlos; Greenwood, Eric; Sim, Ben

    2016-01-01

    At the most fundamental level, main rotor loading noise is caused by the harmonically-varying aerodynamic loads (acoustic pressures) exerted by the rotating blades on the air. Rotorcraft main rotor noise is therefore, in principle, a function of rotor control inputs, and thus the forces and moments required to achieve steady, or "trim", flight equilibrium. In certain flight conditions, the ensuing aerodynamic loading on the rotor(s) can result in highly obtrusive harmonic noise. The effect of the propulsive force, or X-force, on Blade-Vortex Interaction (BVI) noise is well documented. This paper presents an acoustics parametric sensitivity analysis of the effect of varying rotor aerodynamic pitch hub trim moments on BVI noise radiated by an S-70 helicopter main rotor. Results show that changing the hub pitching moment for an isolated rotor, trimmed in nominal 80 knot, 6 and 12 deg descent, flight conditions, alters the miss distance between the blades and the vortex in ways that have varied and noticeable effects on the BVI radiated-noise directionality. Peak BVI noise level is however not significantly altered. The application of hub pitching moment allows the attitude of the fuselage to be controlled; for example, to compensate for the uncomfortable change in fuselage pitch attitude introduced by a fuselage-mounted X-force controller.

  16. Helicopter model rotor-blade vortex interaction impulsive noise: Scalability and parametric variations

    NASA Technical Reports Server (NTRS)

    Splettstoesser, W. R.; Schultz, K. J.; Boxwell, D. A.; Schmitz, F. H.

    1984-01-01

    Acoustic data taken in the anechoic Deutsch-Niederlaendischer Windkanal (DNW) have documented the blade vortex interaction (BVI) impulsive noise radiated from a 1/7-scale model main rotor of the AH-1 series helicopter. Averaged model scale data were compared with averaged full scale, inflight acoustic data under similar nondimensional test conditions. At low advance ratios (mu = 0.164 to 0.194), the data scale remarkable well in level and waveform shape, and also duplicate the directivity pattern of BVI impulsive noise. At moderate advance ratios (mu = 0.224 to 0.270), the scaling deteriorates, suggesting that the model scale rotor is not adequately simulating the full scale BVI noise; presently, no proved explanation of this discrepancy exists. Carefully performed parametric variations over a complete matrix of testing conditions have shown that all of the four governing nondimensional parameters - tip Mach number at hover, advance ratio, local inflow ratio, and thrust coefficient - are highly sensitive to BVI noise radiation.

  17. Blade vortex interaction noise reduction techniques for a rotorcraft

    NASA Technical Reports Server (NTRS)

    Charles, Bruce D. (Inventor); Hassan, Ahmed A. (Inventor); Tadghighi, Hormoz (Inventor); JanakiRam, Ram D. (Inventor); Sankar, Lakshmi N. (Inventor)

    1996-01-01

    An active control device for reducing blade-vortex interactions (BVI) noise generated by a rotorcraft, such as a helicopter, comprises a trailing edge flap located near the tip of each of the rotorcraft's rotor blades. The flap may be actuated in any conventional way, and is scheduled to be actuated to a deflected position during rotation of the rotor blade through predetermined regions of the rotor azimuth, and is further scheduled to be actuated to a retracted position through the remaining regions of the rotor azimuth. Through the careful azimuth-dependent deployment and retraction of the flap over the rotor disk, blade tip vortices which are the primary source for BVI noise are (a) made weaker and (b) pushed farther away from the rotor disk (that is, larger blade-vortex separation distances are achieved).

  18. Blade vortex interaction noise reduction techniques for a rotorcraft

    NASA Technical Reports Server (NTRS)

    Charles, Bruce D. (Inventor); JanakiRam, Ram D. (Inventor); Hassan, Ahmed A. (Inventor); Tadghighi, Hormoz (Inventor); Sankar, Lakshmi N. (Inventor)

    1998-01-01

    An active control device for reducing blade-vortex interactions (BVI) noise generated by a rotorcraft, such as a helicopter, comprises a trailing edge flap located near the tip of each of the rotorcraft's rotor blades. The flap may be actuated in any conventional way, and is scheduled to be actuated to a deflected position during rotation of the rotor blade through predetermined regions of the rotor azimuth, and is further scheduled to be actuated to a retracted position through the remaining regions of the rotor azimuth. Through the careful azimuth-dependent deployment and retraction of the flap over the rotor disk, blade tip vortices which are the primary source for BVI noise are (a) made weaker and (b) pushed farther away from the rotor disk (that is, larger blade-vortex separation distances are achieved).

  19. HHC study in the DNW to reduce BVI noise - An analysis

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas F.; Booth, Earl R., Jr.; Boyd, D. D., Jr.; Splettstoesser, Wolf R.; Schultz, Klaus -J.; Kube, Roland; Niesl, Georg H.; Streby, Olivier

    1991-01-01

    The noise of an aeroelastically scaled helicopter rotor has been studied in the German-Dutch wind tunnel in order to assess the utility of higher-harmonic control (HHC) in reducing blade-vortex interaction (BVI) noise. Acoustic data are presented for 3/rev, 4/rev, and 5/rev HHC, as applied to a typical landing approach rotor operating condition; noise reduction of up to 6 dB were found for advancing-blade BVI noise radiating upstream of the rotor, as well as for retreating blade BVI noise radiating below and downstream of the rotor.

  20. Tracking Blade Tip Vortices for Numerical Flow Simulations of Hovering Rotorcraft

    NASA Technical Reports Server (NTRS)

    Kao, David L.

    2016-01-01

    Blade tip vortices generated by a helicopter rotor blade are a major source of rotor noise and airframe vibration. This occurs when a vortex passes closely by, and interacts with, a rotor blade. The accurate prediction of Blade Vortex Interaction (BVI) continues to be a challenge for Computational Fluid Dynamics (CFD). Though considerable research has been devoted to BVI noise reduction and experimental techniques for measuring the blade tip vortices in a wind tunnel, there are only a handful of post-processing tools available for extracting vortex core lines from CFD simulation data. In order to calculate the vortex core radius, most of these tools require the user to manually select a vortex core to perform the calculation. Furthermore, none of them provide the capability to track the growth of a vortex core, which is a measure of how quickly the vortex diffuses over time. This paper introduces an automated approach for tracking the core growth of a blade tip vortex from CFD simulations of rotorcraft in hover. The proposed approach offers an effective method for the quantification and visualization of blade tip vortices in helicopter rotor wakes. Keywords: vortex core, feature extraction, CFD, numerical flow visualization

  1. Studies of blade-vortex interaction noise reduction by rotor blade modification

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas F.

    1993-01-01

    Blade-vortex interaction (BVI) noise is one of the most objectionable types of helicopter noise. This impulsive blade-slap noise can be particularly intense during low-speed landing approach and maneuvers. Over the years, a number of flight and model rotor tests have examined blade tip modification and other blade design changes to reduce this noise. Many times these tests have produced conflicting results. In the present paper, a number of these studies are reviewed in light of the current understanding of the BVI noise problem. Results from one study in particular are used to help establish the noise reduction potential and to shed light on the role of blade design. Current blade studies and some new concepts under development are also described.

  2. Acoustic Aspects of Active-Twist Rotor Control

    NASA Technical Reports Server (NTRS)

    Booth, Earl R., Jr.; Wilbur, Matthew L.

    2002-01-01

    The use of an Active Twist Rotor system to provide both vibration reduction and performance enhancement has been explored in recent analytical and experimental studies. Effects of active-twist control on rotor noise, however, had not been determined. During a recent wind tunnel test of an active-twist rotor system, a set of acoustic measurements were obtained to assess the effects of active-twist control on noise produced by the rotor, especially blade-vortex interaction (BVI) noise. It was found that for rotor operating conditions where BVI noise is dominant, active-twist control provided a reduction in BVI noise level. This BVI noise reduction was almost, but not quite, as large as that obtained in a similar test using HHC. However, vibration levels were usually adversely affected at operating conditions favoring minimum BVI noise. Conversely, operating conditions favoring minimum vibration levels affected BVI noise levels, but not always adversely.

  3. Effect of wake structure on blade-vortex interaction phenomena: Acoustic prediction and validation

    NASA Technical Reports Server (NTRS)

    Gallman, Judith M.; Tung, Chee; Schultz, Klaus J.; Splettstoesser, Wolf; Buchholz, Heino

    1995-01-01

    During the Higher Harmonic Control Aeroacoustic Rotor Test, extensive measurements of the rotor aerodynamics, the far-field acoustics, the wake geometry, and the blade motion for powered, descent, flight conditions were made. These measurements have been used to validate and improve the prediction of blade-vortex interaction (BVI) noise. The improvements made to the BVI modeling after the evaluation of the test data are discussed. The effects of these improvements on the acoustic-pressure predictions are shown. These improvements include restructuring the wake, modifying the core size, incorporating the measured blade motion into the calculations, and attempting to improve the dynamic blade response. A comparison of four different implementations of the Ffowcs Williams and Hawkings equation is presented. A common set of aerodynamic input has been used for this comparison.

  4. Investigation of helicopter rotor blade/wake interactive impulsive noise

    NASA Technical Reports Server (NTRS)

    Miley, S. J.; Hall, G. F.; Vonlavante, E.

    1987-01-01

    An analysis of the Tip Aerodynamic/Aeroacoustic Test (TAAT) data was performed to identify possible aerodynamic sources of blade/vortex interaction (BVI) impulsive noise. The identification is based on correlation of measured blade pressure time histories with predicted blade/vortex intersections for the flight condition(s) where impulsive noise was detected. Due to the location of the recording microphones, only noise signatures associated with the advancing blade were available, and the analysis was accordingly restricted to the first and second azimuthal quadrants. The results show that the blade tip region is operating transonically in the azimuthal range where previous BVI experiments indicated the impulsive noise to be. No individual blade/vortex encounter is identifiable in the pressure data; however, there is indication of multiple intersections in the roll-up region which could be the origin of the noise. Discrete blade/vortex encounters are indicated in the second quadrant; however, if impulsive noise were produced here, the directivity pattern would be such that it was not recorded by the microphones. It is demonstrated that the TAAT data base is a valuable resource in the investigation of rotor aerodynamic/aeroacoustic behavior.

  5. Mach number scaling of helicopter rotor blade/vortex interaction noise

    NASA Technical Reports Server (NTRS)

    Leighton, Kenneth P.; Harris, Wesley L.

    1985-01-01

    A parametric study of model helicopter rotor blade slap due to blade vortex interaction (BVI) was conducted in a 5 by 7.5-foot anechoic wind tunnel using model helicopter rotors with two, three, and four blades. The results were compared with a previously developed Mach number scaling theory. Three- and four-bladed rotor configurations were found to show very good agreement with the Mach number to the sixth power law for all conditions tested. A reduction of conditions for which BVI blade slap is detected was observed for three-bladed rotors when compared to the two-bladed baseline. The advance ratio boundaries of the four-bladed rotor exhibited an angular dependence not present for the two-bladed configuration. The upper limits for the advance ratio boundaries of the four-bladed rotors increased with increasing rotational speed.

  6. Effect of higher harmonic control on helicopter rotor blade-vortex interaction noise: Prediction and initial validation

    NASA Technical Reports Server (NTRS)

    Beaumier, P.; Prieur, J.; Rahier, G.; Spiegel, P.; Demargne, A.; Tung, C.; Gallman, J. M.; Yu, Y. H.; Kube, R.; Vanderwall, B. G.

    1995-01-01

    The paper presents a status of theoretical tools of AFDD, DLR, NASA and ONERA for prediction of the effect of HHC on helicopter main rotor BVI noise. Aeroacoustic predictions from the four research centers, concerning a wind tunnel simulation of a typical descent flight case without and with HHC are presented and compared. The results include blade deformation, geometry of interacting vortices, sectional loads and noise. Acoustic predictions are compared to experimental data. An analysis of the results provides a first insight of the mechanisms by which HHC may affect BVI noise.

  7. Results of the 1986 NASA/FAA/DFVLR main rotor test entry in the German-Dutch wind tunnel (DNW)

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas F.; Martin, Ruth M.

    1987-01-01

    An acoustics test of a 40%-scale MBB BO-105 helicopter main rotor was conducted in the Deutsch-Niederlandischer Windkanal (DNW). The research, directed by NASA Langley Research Center, concentrated on the generation and radiation of broadband noise and impulsive blade-vortex interaction (BVI) noise over ranges of pertinent rotor operational envelopes. Both the broadband and BVI experimental phases are reviewed, along with highlights of major technical results. For the broadband portion, significant advancement is the demonstration of the accuracy of prediction methods being developed for broadband self noise, due to boundary layer turbulence. Another key result is the discovery of rotor blade-wake interaction (BWI) as an important contributor to mid frequency noise. Also the DNW data are used to determine for full scale helicopters the relative importance of the different discrete and broadband noise sources. For the BVI test portion, a comprehensive data base documents the BVI impulsive noise character and directionality as functions of rotor flight conditions. The directional mapping of BVI noise emitted from the advancing side as well as the retreating side of the rotor constitutes a major advancement in the understanding of this dominant discrete mechanism.

  8. Acoustic measurements from a rotor blade-vortex interaction noise experiment in the German-Dutch Wind Tunnel (DNW)

    NASA Technical Reports Server (NTRS)

    Martin, Ruth M.; Splettstoesser, W. R.; Elliott, J. W.; Schultz, K.-J.

    1988-01-01

    Acoustic data are presented from a 40 percent scale model of the 4-bladed BO-105 helicopter main rotor, measured in the large European aeroacoustic wind tunnel, the DNW. Rotor blade-vortex interaction (BVI) noise data in the low speed flight range were acquired using a traversing in-flow microphone array. The experimental apparatus, testing procedures, calibration results, and experimental objectives are fully described. A large representative set of averaged acoustic signals is presented.

  9. Vortex dynamics during blade-vortex interactions

    NASA Astrophysics Data System (ADS)

    Peng, Di; Gregory, James W.

    2015-05-01

    Vortex dynamics during parallel blade-vortex interactions (BVIs) were investigated in a subsonic wind tunnel using particle image velocimetry (PIV). Vortices were generated by applying a rapid pitch-up motion to an airfoil through a pneumatic system, and the subsequent interactions with a downstream, unloaded target airfoil were studied. The blade-vortex interactions may be classified into three categories in terms of vortex behavior: close interaction, very close interaction, and collision. For each type of interaction, the vortex trajectory and strength variation were obtained from phase-averaged PIV data. The PIV results revealed the mechanisms of vortex decay and the effects of several key parameters on vortex dynamics, including separation distance (h/c), Reynolds number, and vortex sense. Generally, BVI has two main stages: interaction between vortex and leading edge (vortex-LE interaction) and interaction between vortex and boundary layer (vortex-BL interaction). Vortex-LE interaction, with its small separation distance, is dominated by inviscid decay of vortex strength due to pressure gradients near the leading edge. Therefore, the decay rate is determined by separation distance and vortex strength, but it is relatively insensitive to Reynolds number. Vortex-LE interaction will become a viscous-type interaction if there is enough separation distance. Vortex-BL interaction is inherently dominated by viscous effects, so the decay rate is dependent on Reynolds number. Vortex sense also has great impact on vortex-BL interaction because it changes the velocity field and shear stress near the surface.

  10. Rotorcraft acoustic radiation prediction based on a refined blade-vortex interaction model

    NASA Astrophysics Data System (ADS)

    Rule, John Allen

    1997-08-01

    The analysis of rotorcraft aerodynamics and acoustics is a challenging problem, primarily due to the fact that a rotorcraft continually flies through its own wake. The generation mechanism for a rotorcraft wake, which is dominated by strong, concentrated blade-tip trailing vortices, is similar to that in fixed wing aerodynamics. However, following blades encounter shed vortices from previous blades before they are swept downstream, resulting in sharp, impulsive loading on the blades. The blade/wake encounter, known as Blade-Vortex Interaction, or BVI, is responsible for a significant amount of vibratory loading and the characteristic rotorcraft acoustic signature in certain flight regimes. The present work addressed three different aspects of this interaction at a fundamental level. First, an analytical model for the prediction of trailing vortex structure is discussed. The model as presented is the culmination of a lengthy research effort to isolate the key physical mechanisms which govern vortex sheet rollup. Based on the Betz model, properties of the flow such as mass flux, axial momentum flux, and axial flux of angular momentum are conserved on either a differential or integral basis during the rollup process. The formation of a viscous central core was facilitated by the assumption of a turbulent mixing process with final vortex velocity profiles chosen to be consistent with a rotational flow mixing model and experimental observation. A general derivation of the method is outlined, followed by a comparison of model predictions with experimental vortex measurements, and finally a viscous blade drag model to account for additional effects of aerodynamic drag on vortex structure. The second phase of this program involved the development of a new formulation of lifting surface theory with the ultimate goal of an accurate, reduced order hybrid analytical/numerical model for fast rotorcraft load calculations. Currently, accurate rotorcraft airload analyses are limited by the massive computational power required to capture the small time scale events associated with BVI. This problem has two primary facets: accurate knowledge of the wake geometry, and accurate resolution of the impulsive loading imposed by a tip vortex on a blade. The present work addressed the second facet, providing a mathematical framework for solving the impulsive loading problem analytically, then asymptotically matching this solution to a low-resolution numerical calculation. A method was developed which uses continuous sheets of integrated boundary elements to model the lifting surface and wake. Special elements were developed to capture local behavior in high-gradient regions of the flow, thereby reducing the burden placed on the surrounding numerical method. Unsteady calculations for several classical cases were made in both frequency and time domain to demonstrate the performance of the method. Finally, a new unsteady, compressible boundary element method was applied to the problem of BVI acoustic radiation prediction. This numerical method, combined with the viscous core trailing vortex model, was used to duplicate the geometry and flight configuration of a detailed experimental BVI study carried out at NASA Ames Research Center. Blade surface pressure and near- and far-field acoustic radiation calculations were made. All calculations were shown to compare favorably with experimentally measured values. The linear boundary element method with non-linear corrections proved sufficient over most of the rotor azimuth, and particular in the region of the blade vortex interaction, suggesting that full non-linear CFD schemes are not necessary for rotorcraft noise prediction.

  11. Aeroacoustic Codes for Rotor Harmonic and BVI Noise. CAMRAD.Mod1/HIRES: Methodology and Users' Manual

    NASA Technical Reports Server (NTRS)

    Boyd, D. Douglas, Jr.; Brooks, Thomas F.; Burley, Casey L.; Jolly, J. Ralph, Jr.

    1998-01-01

    This document details the methodology and use of the CAMRAD.Mod1/HIRES codes, which were developed at NASA Langley Research Center for the prediction of helicopter harmonic and Blade-Vortex Interaction (BVI) noise. CANMAD.Mod1 is a substantially modified version of the performance/trim/wake code CANMAD. High resolution blade loading is determined in post-processing by HIRES and an associated indicial aerodynamics code. Extensive capabilities of importance to noise prediction accuracy are documented, including a new multi-core tip vortex roll-up wake model, higher harmonic and individual blade control, tunnel and fuselage correction input, diagnostic blade motion input, and interfaces for acoustic and CFD aerodynamics codes. Modifications and new code capabilities are documented with examples. A users' job preparation guide and listings of variables and namelists are given.

  12. Acoustic characteristics of 1/20-scale model helicopter rotors

    NASA Technical Reports Server (NTRS)

    Shenoy, Rajarama K.; Kohlhepp, Fred W.; Leighton, Kenneth P.

    1986-01-01

    A wind tunnel test to study the effects of geometric scale on acoustics and to investigate the applicability of very small scale models for the study of acoustic characteristics of helicopter rotors was conducted in the United Technologies Research Center Acoustic Research Tunnel. The results show that the Reynolds number effects significantly alter the Blade-Vortex-Interaction (BVI) Noise characteristics by enhancing the lower frequency content and suppressing the higher frequency content. In the time domain this is observed as an inverted thickness noise impulse rather than the typical positive-negative impulse of BVI noise. At higher advance ratio conditions, in the absence of BVI, the 1/20 scale model acoustic trends with Mach number follow those of larger scale models. However, the 1/20 scale model acoustic trends appear to indicate stall at higher thrust and advance ratio conditions.

  13. Wavy-Planform Helicopter Blades Make Less Noise

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas F.

    2004-01-01

    Wavy-planform rotor blades for helicopters have been investigated for the first time in an effort to reduce noise. Two of the main sources of helicopter noise are blade/vortex interaction (BVI) and volume displacement. (The noise contributed by volume displacement is termed thickness noise.) The reduction in noise generated by a wavyplanform blade, relative to that generated by an otherwise equivalent straight-planform blade, affects both main sources: (1) the BVI noise is reduced through smoothing and defocusing of the aerodynamic loading on the blade and (2) the thickness noise is reduced by reducing gradients of thickness with respect to listeners on the ground.

  14. The Effect of Non-Harmonic Active Twist Actuation on BVI Noise

    NASA Technical Reports Server (NTRS)

    Fogarty, David E.; Wilbur, Matthew L.; Sekula, Martin K.

    2011-01-01

    The results of a computational study examining the effects of non-harmonic active-twist control on blade-vortex interaction (BVI) noise for the Apache Active Twist Rotor are presented. Rotor aeroelastic behavior was modeled using the Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics code and the rotor noise was predicted using the acoustics code PSU-WOPWOP. The application of non-harmonic active-twist inputs to the main rotor blade system comprised three parameters: azimuthal location to start actuation, azimuthal duration of actuation, and magnitude of actuation. The acoustic analysis was conducted for a single low-speed flight condition of advance ratio mu=0.14 and shaft angle-of-attack, a(sub s)=+6deg. BVI noise levels were predicted on a flat plane of observers located 1.1 rotor diameters beneath the rotor. The results indicate significant reductions of up to 10dB in BVI noise using a starting azimuthal location for actuation of 90?, an azimuthal duration of actuation of 90deg, and an actuation magnitude of +1.5 ft-lb.

  15. Descriptive Summaries of the Research, Development, Test and Evaluation, Army Appropriation. Supporting Data FY 1994, Budget Estimates Submitted to Congress, April 1993

    DTIC Science & Technology

    1993-04-01

    determining effective group functioning, leader-group interaction , and decision making; (2) factors that determine effective, low error human performance...infectious disease and biological defense vaccines and drugs , vision, neurotxins, neurochemistry, molecular neurobiology, neurodegenrative diseases...Potential Rotor/Comprehensive Analysis Model for Rotor Aerodynamics-Johnson Aeronautics (FPR/CAMRAD-JA) code to predict Blade Vortex Interaction (BVI

  16. A Parameter Identification Method for Helicopter Noise Source Identification and Physics-Based Semi-Empirical Modeling

    NASA Technical Reports Server (NTRS)

    Greenwood, Eric, II; Schmitz, Fredric H.

    2010-01-01

    A new physics-based parameter identification method for rotor harmonic noise sources is developed using an acoustic inverse simulation technique. This new method allows for the identification of individual rotor harmonic noise sources and allows them to be characterized in terms of their individual non-dimensional governing parameters. This new method is applied to both wind tunnel measurements and ground noise measurements of two-bladed rotors. The method is shown to match the parametric trends of main rotor Blade-Vortex Interaction (BVI) noise, allowing accurate estimates of BVI noise to be made for operating conditions based on a small number of measurements taken at different operating conditions.

  17. Numerical simulation and validation of helicopter blade-vortex interaction using coupled CFD/CSD and three levels of aerodynamic modeling

    NASA Astrophysics Data System (ADS)

    Amiraux, Mathieu

    Rotorcraft Blade-Vortex Interaction (BVI) remains one of the most challenging flow phenomenon to simulate numerically. Over the past decade, the HART-II rotor test and its extensive experimental dataset has been a major database for validation of CFD codes. Its strong BVI signature, with high levels of intrusive noise and vibrations, makes it a difficult test for computational methods. The main challenge is to accurately capture and preserve the vortices which interact with the rotor, while predicting correct blade deformations and loading. This doctoral dissertation presents the application of a coupled CFD/CSD methodology to the problem of helicopter BVI and compares three levels of fidelity for aerodynamic modeling: a hybrid lifting-line/free-wake (wake coupling) method, with modified compressible unsteady model; a hybrid URANS/free-wake method; and a URANS-based wake capturing method, using multiple overset meshes to capture the entire flow field. To further increase numerical correlation, three helicopter fuselage models are implemented in the framework. The first is a high resolution 3D GPU panel code; the second is an immersed boundary based method, with 3D elliptic grid adaption; the last one uses a body-fitted, curvilinear fuselage mesh. The main contribution of this work is the implementation and systematic comparison of multiple numerical methods to perform BVI modeling. The trade-offs between solution accuracy and computational cost are highlighted for the different approaches. Various improvements have been made to each code to enhance physical fidelity, while advanced technologies, such as GPU computing, have been employed to increase efficiency. The resulting numerical setup covers all aspects of the simulation creating a truly multi-fidelity and multi-physics framework. Overall, the wake capturing approach showed the best BVI phasing correlation and good blade deflection predictions, with slightly under-predicted aerodynamic loading magnitudes. However, it proved to be much more expensive than the other two methods. Wake coupling with RANS solver had very good loading magnitude predictions, and therefore good acoustic intensities, with acceptable computational cost. The lifting-line based technique often had over-predicted aerodynamic levels, due to the degree of empiricism of the model, but its very short run-times, thanks to GPU technology, makes it a very attractive approach.

  18. A higher harmonic control test in the DNW to reduce impulsive BVI noise

    NASA Technical Reports Server (NTRS)

    Splettstoesser, Wolf R.; Schultz, KLAUS-J.; Kube, Roland; Brooks, Thomas F.; Booth, Earl R., Jr.; Niesl, Georg; Streby, Olivier

    1994-01-01

    A model rotor acoustic test was performed to examine the benefit of higher control (HHC) of blade pitch to reduce blade-vortex interaction (BVI) impulse noise. A 40-percent dynamically scaled, four-bladed model of a BO-105 main rotor was tested in the German-Dutch Wind Tunnel (DNW). Acoustic measurements were made in a large plane underneath the rotor employing a traversing in-flow microphone array in the anechoic environment of the open test section. Noise characteristics and noise directivity patterns as well as vibratory loads were measured and used to demonstrate the changes when different HHC schedules (different modes, amplitudes, phases) were applied. Dramatic changes of the acoustic signatures and the noise radiation directivity with HHC phase variations are found. Compared to the baseline conditions (without HHD), significant mid-frequency noise reductions of as much as 6 dB are obtained for low speed descent conditions where BVI is most intensive. For other rotor operating conditions with less intense BVI there is less or no benefit from the use of HHC. Low frequency loading noise and vibratory loads, especially at optimum noise reduction control settings, are found to increase.

  19. Aeroacoustic flowfield and acoustics of a model helicopter tail rotor at high advance ratio

    NASA Technical Reports Server (NTRS)

    Shenoy, Rajarama K.

    1989-01-01

    Some results, relevant to rotorcraft noise generation process at high advance ratio, are presented in this paper from schlieren flow visualization and acoustic tests of a model tail rotor. The measured in-plane noise trends are consistent with the growth of the tip supersonic region seen in the schlieren visuals. Schlieren flow visuals reveal a propagating pressure wave in the second quadrant. Simultaneously measured acoustic data and the results of two-dimensional transonic Blade-Vortex Interaction analysis code ATRAN-2 indicate that this pressure wave is attributable to BVI activity in the first quadrant. This paper establishes that the transonic Blade-Vortex Interactions contribute to noise at high advance ratio level flight conditions.

  20. Development and Hover Testing of the Active Elevon Rotor

    DTIC Science & Technology

    2012-05-01

    typically aimed at reducing vibration, improving rotor performance, and/or reducing blade -vortex interaction (BVI) or in-plane noise . These efforts...will become unstable, either through a 1-DOF (degree of freedom) flutter or some kind of aeroservoelastic coupling with the rotor blade and/or wake ... blade CAEAs did exhibit electrical arcing (audible noise ), even at oscillatory voltages below ±200 V. This arcing/ noise suggests a latent deficiency

  1. Modeling Helicopter Near-Horizon Harmonic Noise Due to Transient Maneuvers

    DTIC Science & Technology

    2013-01-01

    heading. The PPDG system also 23 includes an Apollo /Garmin CNX80 GPS receiver and an Ashtech Z-Sensor GPS receiver with a Radio Technical Commission...contributions of main rotor thickness noise, low frequency loading noise, and blade-vortex interaction (BVI) noise during maneuvering flight for the...PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 11 . SPONSOR

  2. BVI induced vibration and noise alleviation by active and passive approaches

    NASA Astrophysics Data System (ADS)

    Liu, Li

    This dissertation describes the development of a comprehensive aeroelastic/aeroacoustic simulation capability for the modeling of vibration and noise in rotorcraft induced by blade-vortex interaction (BVI). Subsequently this capability is applied to study vibration and noise reduction, using active and passive control approaches. The active approach employed is the actively controlled partial span trailing edge flaps (ACF), implemented in single and dual, servo and plain flap configurations. The passive approach is based on varying the sweep and anhedral on the tip of the rotor. Two different modern helicopters are chosen as the baseline for the implementation of ACF approach, one resembling a four-bladed MBB BO-105 hingeless rotor and the other similar to a five-bladed MD-900 bearingless rotor. The structural model is based on a finite element approach capable of simulating composite helicopter blades with swept tips, and representing multiple load paths at the blade root which is a characteristic of bearingless rotors. An unsteady compressible aerodynamic model based on a rational function approximation (RFA) approach is combined with a free wake analysis which has been enhanced by improving the wake analysis resolution and modeling a dual vortex structure. These enhancements are important for capturing BVI effects. A method for predicting compressible unsteady blade surface pressure distribution on rotor blades has been developed, which is required by the acoustic analysis. A modified version of helicopter noise code WOPWOP with provisions for blade flexibility has been combined with the aeroelastic analysis to predict the BVI noise. Several variants of the higher harmonic control (HHC) algorithm have been applied for the active noise control, as well as the simultaneous vibration and noise control. Active control of BVI noise is accomplished using feedback from an onboard microphone. The simulation has been extensively validated against experimental data and other comprehensive rotorcraft codes, and overall good correlation is obtained. Subsequently, the effectiveness of the ACF approach for vibration and BVI noise reduction has been explored, using the two different helicopter configurations. Vibration reductions of up to 86% and 60% are shown for the hingeless and bearingless rotor, respectively. Noise reductions of up to 6dB and 3dB are also demonstrated for these two configurations. (Abstract shortened by UMI.)

  3. BVI impulsive noise reduction by higher harmonic pitch control - Results of a scaled model rotor experiment in the DNW

    NASA Technical Reports Server (NTRS)

    Splettstoesser, Wolf R.; Schultz, KLAUS-J.; Kube, Roland; Brooks, Thomas F.; Booth, Earl R., Jr.; Niesl, Georg; Streby, Olivier

    1991-01-01

    Results are presented of a model rotor acoustics test performed to examine the benefit of higher harmonic control (HHC) of blade pitch to reduce blade-vortex interaction (BVI) impulsive noise. A dynamically scaled, four-bladed, rigid rotor model, a 40-percent replica of the B0-105 main rotor, was tested in the German Dutch Wind Tunnel. Noise characteristics and noise directivity patterns as well as vibratory loads were measured and used to demonstrate the changes when different HHC schedules were applied. Dramatic changes of the acoustic signatures and the noise radiation directivity with the HHC phase variations are found. Compared to the baseline conditions (without HHC), significant mid-frequency noise reductions of locally 6 dB are obtained for low-speed descent conditions where GVI is most intense. For other rotor operating conditions with less intense BVI there is less or no benefit from the use of HHC. LF noise and vibratory loads, especially at optimum noise reduction control settings, are found to increase.

  4. The Effects of Crosswind Flight on Rotor Harmonic Noise Radiation

    NASA Technical Reports Server (NTRS)

    Greenwood, Eric; Sim, Ben W.

    2013-01-01

    In order to develop recommendations for procedures for helicopter source noise characterization, the effects of crosswinds on main rotor harmonic noise radiation are assessed using a model of the Bell 430 helicopter. Crosswinds are found to have a significant effect on Blade-Vortex Interaction (BVI) noise radiation when the helicopter is trimmed with the fuselage oriented along the inertial flight path. However, the magnitude of BVI noise remains unchanged when the pilot orients the fuselage along the aerodynamic velocity vector, crabbing for zero aerodynamic sideslip. The effects of wind gradients on BVI noise are also investigated and found to be smaller in the crosswind direction than in the headwind direction. The effects of crosswinds on lower harmonic noise sources at higher flight speeds are also assessed. In all cases, the directivity of radiated noise is somewhat changed by the crosswind. The model predictions agree well with flight test data for the Bell 430 helicopter captured under various wind conditions. The results of this investigation would suggest that flight paths for future acoustic flight testing are best aligned across the prevailing wind direction to minimize the effects of winds on noise measurements when wind cannot otherwise be avoided.

  5. Rotor Wake Vortex Definition: Initial Evaluation of 3-C PIV Results of the Hart-II Study

    NASA Technical Reports Server (NTRS)

    Burley, Casey L.; Brooks, Thomas F.; vanderWall, Berend; Richard, Hughes; Raffel, Markus; Beaumier, Philippe; Delrieux, Yves; Lim, Joon W.; Yu, Yung H.; Tung, Chee

    2002-01-01

    An initial evaluation is made of extensive three-component (3C) particle image velocimetry (PIV) measurements within the wake across a rotor disk plane. The model is a 40 percent scale BO-105 helicopter main rotor in forward flight simulation. This study is part of the HART II test program conducted in the German-Dutch Wind Tunnel (DNW). Included are wake vortex field measurements over the advancing and retreating sides of the rotor operating at a typical descent landing condition important for impulsive blade-vortex interaction (BVI) noise. Also included are advancing side results for rotor angle variations from climb to steep descent. Using detailed PIV vector maps of the vortex fields, methods of extracting key vortex parameters are examined and a new method was developed and evaluated. An objective processing method, involving a center-of-vorticity criterion and a vorticity 'disk' integration, was used to determine vortex core size, strength, core velocity distribution characteristics, and unsteadiness. These parameters are mapped over the rotor disk and offer unique physical insight for these parameters of importance for rotor noise and vibration prediction.

  6. A Semi-Empirical Noise Modeling Method for Helicopter Maneuvering Flight Operations

    NASA Technical Reports Server (NTRS)

    Greenwood, Eric; Schmitz, Fredric; Sickenberger, Richard D.

    2012-01-01

    A new model for Blade-Vortex Interaction noise generation during maneuvering flight is developed in this paper. Acoustic and performance data from both flight and wind tunnels are used to derive a non-dimensional and analytical performance/acoustic model that describes BVI noise in steady flight. The model is extended to transient maneuvering flight (pure pitch and roll transients) by using quasisteady assumptions throughout the prescribed maneuvers. Ground noise measurements, taken during maneuvering flight of a Bell 206B helicopter, show that many of the noise radiation details are captured. The result is a computationally efficient Blade-Vortex Interaction noise model with sufficient accuracy to account for transient maneuvering flight. The code can be run in real time to predict transient maneuver noise and is suitable for use in an acoustic mission-planning tool.

  7. Reduction of Helicopter BVI Noise, Vibration, and Power Consumption Through Individual Blade Control

    NASA Technical Reports Server (NTRS)

    Jacklin, Stephen A.; Blaas, Achim; Teves, Dietrich; Kube, Roland; Warmbrodt, William (Technical Monitor)

    1994-01-01

    A wind tunnel test was conducted with a full-scale BO 105 helicopter rotor to evaluate the potential of open-loop individual blade control (IBC) to improve rotor performance, to reduce blade vortex interaction (BVI) noise, and to alleviate helicopter vibrations. The wind tunnel test was an international collaborative effort between NASA/U.S. Army AFDD, ZF Luftfahrttechnik, Eurocopter Deutschland, and the German Aerospace Laboratory (DLR) and was conducted under the auspices of the U.S./German MOU on Rotorcraft Aeromechanics. In this test the normal blade pitch links of the rotor were replaced by servo-actuators so that the pitch of each blade could be controlled independently of the other blades. The specially designed servoactuators and IBC control system were designed and manufactured by ZF Luftfahrttechnik, GmbH. The wind tunnel test was conducted in the 40- by 80-Foot Wind Tunnel at the NASA Ames Research Center. An extensive amount of measurement information was acquired for each IBC data point. These data include rotor performance, static and dynamic hub forces and moments, rotor loads, control loads, inboard and outboard blade pitch motion, and BVI noise data. The data indicated very significant (80 percent) simultaneous reductions in both BVI noise and hub vibrations could be obtained using multi-harmonic input at the critical descent (terminal approach) condition. The data also showed that performance improvements of up to 7 percent could be obtained using 2P input at high-speed forward flight conditions.

  8. An Assessment of CFD/CSD Prediction State-of-the-Art by Using the HART II International Workshop Data

    NASA Technical Reports Server (NTRS)

    Smith, Marilyn J.; Lim, Joon W.; vanderWall, Berend G.; Baeder, James D.; Biedron, Robert T.; Boyd, D. Douglas, Jr.; Jayaraman, Buvana; Jung, Sung N.; Min, Byung-Young

    2012-01-01

    Over the past decade, there have been significant advancements in the accuracy of rotor aeroelastic simulations with the application of computational fluid dynamics methods coupled with computational structural dynamics codes (CFD/CSD). The HART II International Workshop database, which includes descent operating conditions with strong blade-vortex interactions (BVI), provides a unique opportunity to assess the ability of CFD/CSD to capture these physics. In addition to a baseline case with BVI, two additional cases with 3/rev higher harmonic blade root pitch control (HHC) are available for comparison. The collaboration during the workshop permits assessment of structured, unstructured, and hybrid overset CFD/CSD methods from across the globe on the dynamics, aerodynamics, and wake structure. Evaluation of the plethora of CFD/CSD methods indicate that the most important numerical variables associated with most accurately capturing BVI are a two-equation or detached eddy simulation (DES)-based turbulence model and a sufficiently small time step. An appropriate trade-off between grid fidelity and spatial accuracy schemes also appears to be pertinent for capturing BVI on the advancing rotor disk. Overall, the CFD/CSD methods generally fall within the same accuracy; cost-effective hybrid Navier-Stokes/Lagrangian wake methods provide accuracies within 50% the full CFD/CSD methods for most parameters of interest, except for those highly influenced by torsion. The importance of modeling the fuselage is observed, and other computational requirements are discussed.

  9. Rotor Wake Vortex Definition Using 3C-PIV Measurements: Corrected for Vortex Orientation

    NASA Technical Reports Server (NTRS)

    Burley, Casey L.; Brooks, Thomas F.; vanderWall, Berend; Richard, Hughues Richard; Raffel, Markus; Beaumier, Philippe; Delrieux, Yves; Lim, Joon W.; Yu, Yung H.; Tung, Chee

    2003-01-01

    Three-component (3-C) particle image velocimetry (PIV) measurements, within the wake across a rotor disk plane, are used to determine wake vortex definitions important for BVI (Blade Vortex Interaction) and broadband noise prediction. This study is part of the HART II test program conducted using a 40 percent scale BO-105 helicopter main rotor in the German-Dutch Wind Tunnel (DNW). In this paper, measurements are presented of the wake vortex field over the advancing side of the rotor operating at a typical descent landing condition. The orientations of the vortex (tube) axes are found to have non-zero tilt angles with respect to the chosen PIV measurement cut planes, often on the order of 45 degrees. Methods for determining the orientation of the vortex axis and reorienting the measured PIV velocity maps (by rotation/projection) are presented. One method utilizes the vortex core axial velocity component, the other utilizes the swirl velocity components. Key vortex parameters such as vortex core size, strength, and core velocity distribution characteristics are determined from the reoriented PIV velocity maps. The results are compared with those determined from velocity maps that are not corrected for orientation. Knowledge of magnitudes and directions of the vortex axial and swirl velocity components as a function of streamwise location provide a basis for insight into the vortex evolution.

  10. Time frequency analysis of sound from a maneuvering rotorcraft

    NASA Astrophysics Data System (ADS)

    Stephenson, James H.; Tinney, Charles E.; Greenwood, Eric; Watts, Michael E.

    2014-10-01

    The acoustic signatures produced by a full-scale, Bell 430 helicopter during steady-level-flight and transient roll-right maneuvers are analyzed by way of time-frequency analysis. The roll-right maneuvers comprise both a medium and a fast roll rate. Data are acquired using a single ground based microphone that are analyzed by way of the Morlet wavelet transform to extract the spectral properties and sound pressure levels as functions of time. The findings show that during maneuvering operations of the helicopter, both the overall sound pressure level and the blade-vortex interaction sound pressure level are greatest when the roll rate of the vehicle is at its maximum. The reduced inflow in the region of the rotor disk where blade-vortex interaction noise originates is determined to be the cause of the increase in noise. A local decrease in inflow reduces the miss distance of the tip vortex and thereby increases the BVI noise signature. Blade loading and advance ratios are also investigated as possible mechanisms for increased sound production, but are shown to be fairly constant throughout the maneuvers.

  11. Acoustic flight tests of rotorcraft noise-abatement approaches using local differential GPS guidance

    NASA Technical Reports Server (NTRS)

    Chen, Robert T. N.; Hindson, William S.; Mueller, Arnold W.

    1995-01-01

    This paper presents the test design, instrumentation set-up, data acquisition, and the results of an acoustic flight experiment to study how noise due to blade-vortex interaction (BVI) may be alleviated. The flight experiment was conducted using the NASA/Army Rotorcraft Aircrew Systems Concepts Airborne Laboratory (RASCAL) research helicopter. A Local Differential Global Positioning System (LDGPS) was used for precision navigation and cockpit display guidance. A laser-based rotor state measurement system on board the aircraft was used to measure the main rotor tip-path-plane angle-of-attack. Tests were performed at Crows Landing Airfield in northern California with an array of microphones similar to that used in the standard ICAO/FAA noise certification test. The methodology used in the design of a RASCAL-specific, multi-segment, decelerating approach profile for BVI noise abatement is described, and the flight data pertaining to the flight technical errors and the acoustic data for assessing the noise reduction effectiveness are reported.

  12. Parametric Investigation on the Use of Lateral and Logitudinal Rotor Trim Flapping for Tiltrotor Noise Reduction

    NASA Technical Reports Server (NTRS)

    Malpica, Carlos

    2017-01-01

    This paper presents an acoustics parametric study of the effect of varying lateral and longitudinal rotor trim flapping angles (tip-path-plane tilt) on noise radiated by an isolated 26-ft diameter proprotor, similar to that of the AW609 tiltrotor, in edgewise flight. Three tip-path-plane angle of attack operating conditions of -9, 0 and 6 deg, at 80 knots, were investigated. Results showed that: 1) minimum noise was attained for the tip-path-plane angle of attack value of -9 deg, and 2) changing the cyclic trim state (i.e., controls) altered the airloads and produced noticeable changes to the low-frequency (LF) and blade-vortex interaction (BVI) radiated-noise magnitude and directionality. In particular, by trimming the rotor to a positive (inboard) lateral flapping angle of 4 deg, further reductions up to 3 dB in the low-frequency noise sound pressure level were attained without significantly impacting the BVI noise for longitudinal tip-path-plane angles of -9 and 6 deg.

  13. Tiltrotor noise reduction through flight trajectory management and aircraft configuration control

    NASA Astrophysics Data System (ADS)

    Gervais, Marc

    A tiltrotor can hover, takeoff and land vertically as well as cruise at high speeds and fly long distances. Because of these unique capabilities, tiltrotors are envisioned as an aircraft that could provide a solution to the issue of airport gridlock by operating on stub runways, helipads, or from smaller regional airports. However, during an approach-to-land a tiltrotor is susceptible to radiating strong impulsive noise, in particular, Blade-Vortex Interaction noise (BVI), a phenomenon highly dependent on the vehicle's performance-state. A mathematical model was developed to predict the quasi-static performance characteristics of a tiltrotor during a converting approach in the longitudinal plane. Additionally, a neural network was designed to model the acoustic results from a flight test of the XV-15 tiltrotor as a function of the aircraft's performance parameters. The performance model was linked to the neural network to yield a combined performance/acoustic model that is capable of predicting tiltrotor noise emitted during a decelerating approach. The model was then used to study noise trends associated with different combinations of airspeed, nacelle tilt, and flight path angle. It showed that BVI noise is the dominant noise source during a descent and that its strength increases with steeper descent angles. Strong BVI noise was observed at very steep flight path angles, suggesting that the tiltrotor's high downwash prevents the wake from being pushed above the rotor, even at such steep descent angles. The model was used to study the effects of various aircraft configuration and flight trajectory parameters on the rotor inflow, which adequately captured the measured BVI noise trends. Flight path management effectively constrained the rotor inflow during a converting approach and thus limited the strength of BVI noise. The maximum deceleration was also constrained by controlling the nacelle tilt-rate during conversion. By applying these constraints, low BVI noise approaches that take into account the first-order effects of deceleration on the acoustics were systematically designed and compared to a baseline approach profile. The low-noise approaches yielded substantial noise reduction benefits on a hemisphere surrounding the aircraft and on a ground plane below the aircraft's trajectory.

  14. Rotorcraft Aeromechanics Branch Home Page on the World Wide Web

    NASA Technical Reports Server (NTRS)

    Peterson, Randall L.; Warmbrodt, William (Technical Monitor)

    1996-01-01

    The tilt rotor aircraft holds great promise for improving air travel in the future. It's benefits include vertical take off and landing combined with airspeeds comparable to propeller driven aircraft. However, the noise from a tilt rotor during approach to a landing is potentially a significant barrier to widespread acceptance of these aircraft. This approach noise is primarily caused by Blade Vortex Interactions (BVI), which are created when the blade passes near or through the vortex trailed by preceding blades. The XV- 15 Aeroacoustic test will measure the noise from a tilt rotor during descent conditions and demonstrate several possible techniques to reduce the noise. The XV- 15 Aeroacoustic test at NASA Ames Research Center will measure acoustics and performance for a full-scale XV-15 rotor. A single XV-15 rotor will be mounted on the Ames Rotor Test Apparatus (RTA) in the 80- by 120-Foot Wind Tunnel. The test will be conducted in helicopter mode with forward flight speeds up to 100 knots and tip path plane angles up to +/- 15 degrees. These operating conditions correspond to a wide range of tilt rotor descent and transition to forward flight cases. Rotor performance measurements will be made with the RTA rotor balance, while acoustic measurements will be made using an acoustic traverse and four fixed microphones. The acoustic traverse will provide limited directionality measurements on the advancing side of the rotor, where BVI noise is expected to be the highest. Baseline acoustics and performance measurements for the three-bladed rotor will be obtained over the entire test envelope. Acoustic measurements will also be obtained for correlation with the XV-15 aircraft Inflight Rotor Aeroacoustic Program (IRAP) recently conducted by Ames. Several techniques will be studied in an attempt to reduce the highest measured BVI noise conditions. The first of these techniques will use sub-wings mounted on the blade tips. These subwings are expected to alter the size, strength, and location of the tip vortex, therefore changing the BVI acoustics of the rotor. The subwings are approximately 20% of the blade chord and increase the rotor radius by about 3 percent. Four different subwing configurations will be tested, including square tipped subwings with different angles of incidence. The ability of active controls to reduce BVI acoustics will also be assessed. The dynamic control system of the RTA will be used to implement open- and closed-loop active control techniques, including individual blade control. Open-loop testing will be conducted using a personal computer based, automated, real-time data acquisition system. This system features combined automated output of open loop control signals and automated data acquisition of the resulting test data. A final technique to alter the noise of the rotor will be examined. This will involve changing the number of blades from three to four. A four-bladed rotor hub has been fabricated on which the XV-15 blades will be mounted. While the solidity of the rotor will increase, much useful information can be gained by examining the changes in the thrust and RPM with four blades.

  15. Wind-tunnel acoustic results of two rotor models with several tip designs

    NASA Technical Reports Server (NTRS)

    Martin, R. M.; Connor, A. B.

    1986-01-01

    A three-phase research program has been undertaken to study the acoustic signals due to the aerodynamic interaction of rotorcraft main rotors and tail rotors. During the first phase, two different rotor models with several interchangeable tips were tested in the Langley 4- by 7-Meter Tunnel on the U.S. Army rotor model system. An extensive acoustic data base was acquired, with special emphasis on blade-vortex interaction (BVI) noise. The details of the experimental procedure, acoustic data acquisition, and reduction are documented. The overall sound pressure level (OASPL) of the high-twist rotor systems is relatively insensitive to flight speed but generally increases with rotor tip-path-plane angle. The OASPL of the high-twist rotors is dominated by acoustic energy in the low-frequency harmonics. The OASPL of the low-twist rotor systems shows more dependence on flight speed than the high-twist rotors, in addition to being quite sensitive to tip-path-plane angle. An integrated band-limited sound pressure level, limited by 500 to 3000 Hz, is a useful metric to quantify the occurrence of BVI noise. The OASPL of the low-twist rotors is strongly influenced by the band-limited sound levels, indicating that the blade-vortex impulsive noise is a dominant noise source for this rotor design. The midfrequency acoustic levels for both rotors show a very strong dependence on rotor tip-path-plane angle. The tip-path-plane angle at which the maximum midfrequency sound level occurs consistently decreases with increasing flight speed. The maximum midfrequency sound level measured at a given location is constant regardless of the flight speed.

  16. Aeroacoustic Codes For Rotor Harmonic and BVI Noise--CAMRAD.Mod1/HIRES

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas F.; Boyd, D. Douglas, Jr.; Burley, Casey L.; Jolly, J. Ralph, Jr.

    1996-01-01

    This paper presents a status of non-CFD aeroacoustic codes at NASA Langley Research Center for the prediction of helicopter harmonic and Blade-Vortex Interaction (BVI) noise. The prediction approach incorporates three primary components: CAMRAD.Mod1 - a substantially modified version of the performance/trim/wake code CAMRAD; HIRES - a high resolution blade loads post-processor; and WOPWOP - an acoustic code. The functional capabilities and physical modeling in CAMRAD.Mod1/HIRES will be summarized and illustrated. A new multi-core roll-up wake modeling approach is introduced and validated. Predictions of rotor wake and radiated noise are compared with to the results of the HART program, a model BO-105 windtunnel test at the DNW in Europe. Additional comparisons are made to results from a DNW test of a contemporary design four-bladed rotor, as well as from a Langley test of a single proprotor (tiltrotor) three-bladed model configuration. Because the method is shown to help eliminate the necessity of guesswork in setting code parameters between different rotor configurations, it should prove useful as a rotor noise design tool.

  17. Helicopter main-rotor noise: Determination of source contributions using scaled model data

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas F.; Jolly, J. Ralph, Jr.; Marcolini, Michael A.

    1988-01-01

    Acoustic data from a test of a 40 percent model MBB BO-105 helicopter main rotor are scaled to equivalent full-scale flyover cases. The test was conducted in the anechoic open test section of the German-Dutch Windtunnel (DNW). The measured data are in the form of acoustic pressure time histories and spectra from two out-of-flow microphones underneath and foward of the model. These are scaled to correspond to measurements made at locations 150 m below the flight path of a full-scale rotor. For the scaled data, a detailed analysis is given for the identification in the data of the noise contributions from different rotor noise sources. Key results include a component breakdown of the noise contributions, in terms of noise criteria calculations of a weighted sound pressure level (dBA) and perceived noise level (PNL), as functions of rotor advance ratio and descent angle. It is shown for the scaled rotor that, during descent, impulsive blade-vortex interaction (BVI) noise is the dominant contributor to the noise. In level flight and mild climb, broadband blade-turbulent wake interaction (BWI) noise is dominant due to the absence of BVI activity. At high climb angles, BWI is reduced and self-noise from blade boundary-layer turbulence becomes the most prominent.

  18. Blade-Mounted Flap Control for BVI Noise Reduction Proof-of-Concept Test

    NASA Technical Reports Server (NTRS)

    Dawson, Seth; Hassan, Ahmed; Straub, Friedrich; Tadghighi, Hormoz

    1995-01-01

    This report describes a wind tunnel test of the McDonnell Douglas Helicopter Systems (MDHS) Active Flap Model Rotor at the NASA Langley 14- by 22-Foot Subsonic Tunnel. The test demonstrated that BVI noise reductions and vibration reductions were possible with the use of an active flap. Aerodynamic results supported the acoustic data trends, showing a reduction in the strength of the tip vortex with the deflection of the flap. Acoustic results showed that the flap deployment, depending on the peak deflection angle and azimuthal shift in its deployment schedule, can produce BVI noise reductions as much as 6 dB on the advancing and retreating sides. The noise reduction was accompanied by an increase in low frequency harmonic noise and high frequency broadband noise. A brief assessment of the effect of the flap on vibration showed that significant reductions were possible. The greatest vibration reductions (as much as 76%) were found in the four per rev pitching moment at the hub. Performance improvement cam results were inconclusive, as the improvements were predicted to be smaller than the resolution of the rotor balance.

  19. A Novel Method for Reducing Rotor Blade-Vortex Interaction

    NASA Technical Reports Server (NTRS)

    Glinka, A. T.

    2000-01-01

    One of the major hindrances to expansion of the rotorcraft market is the high-amplitude noise they produce, especially during low-speed descent, where blade-vortex interactions frequently occur. In an attempt to reduce the noise levels caused by blade-vortex interactions, the flip-tip rotor blade concept was devised. The flip-tip rotor increases the miss distance between the shed vortices and the rotor blades, reducing BVI noise. The distance is increased by rotating an outboard portion of the rotor tip either up or down depending on the flight condition. The proposed plan for the grant consisted of a computational simulation of the rotor aerodynamics and its wake geometry to determine the effectiveness of the concept, coupled with a series of wind tunnel experiments exploring the value of the device and validating the computer model. The computational model did in fact show that the miss distance could be increased, giving a measure of the effectiveness of the flip-tip rotor. However, the wind experiments were not able to be conducted. Increased outside demand for the 7'x lO' wind tunnel at NASA Ames and low priority at Ames for this project forced numerous postponements of the tests, eventually pushing the tests beyond the life of the grant. A design for the rotor blades to be tested in the wind tunnel was completed and an analysis of the strength of the model blades based on predicted loads, including dynamic forces, was done.

  20. Helicopter noise prediction - The current status and future direction

    NASA Technical Reports Server (NTRS)

    Brentner, Kenneth S.; Farassat, F.

    1992-01-01

    The paper takes stock of the progress, assesses the current prediction capabilities, and forecasts the direction of future helicopter noise prediction research. The acoustic analogy approach, specifically, theories based on the Ffowcs Williams-Hawkings equations, are the most widely used for deterministic noise sources. Thickness and loading noise can be routinely predicted given good plane motion and blade loading inputs. Blade-vortex interaction noise can also be predicted well with measured input data, but prediction of airloads with the high spatial and temporal resolution required for BVI is still difficult. Current semiempirical broadband noise predictions are useful and reasonably accurate. New prediction methods based on a Kirchhoff formula and direct computation appear to be very promising, but are currently very demanding computationally.

  1. Forward sweep, low noise rotor blade

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas F. (Inventor)

    1994-01-01

    A forward-swept, low-noise rotor blade includes an inboard section, an aft-swept section, and a forward-swept outboard section. The rotor blade reduces the noise of rotorcraft, including both standard helicopters and advanced systems such as tiltrotors. The primary noise reduction feature is the forward sweep of the planform over a large portion of the outer blade radius. The rotor blade also includes an aft-swept section. The purpose of the aft-swept region is to provide a partial balance to pitching moments produced by the outboard forward-swept portion of the blade. The noise source showing maximum noise reduction is blade-vortex interaction (BVI) noise. Also reduced are thickness, noise, high speed impulsive noise, cabin vibration, and loading noise.

  2. Effect of individual blade control on noise radiation

    NASA Technical Reports Server (NTRS)

    Swanson, S. M.; Jacklin, Stephen A.; Niesl, G.; Blaas, Achim; Kube, R.

    1995-01-01

    In a joint research program of NASA Ames Research Center, ZF Luftfahrttechnik, the German Aerospace Research Establishment (DLR), and EUROCOPTER Deutschland, a wind tunnel test was performed to evaluate the effects of Individual Blade Control (IBC) on rotor noise. This test was conducted in the 40x80 ft wind tunnel at NASA Ames Research Center, utilizing a full scale MBB-BO 105 four-bladed rotor system. Three microphones were installed for determination of the radiated noise, two of them on a moveable traverse below the advancing blade side and one in a fixed location below the retreating side. Acoustic results are presented for flight conditions with Blade-Vortex-Interaction (BVI) noise radiation. High noise level reductions were measured for single harmonic control inputs. In addition to the single harmonic inputs, multi-harmonic inputs were evaluated by superimposing 2/rev to 6/rev harmonics. For the first time the efficiency of sharp wavelets (60 deg and 90 deg width) on acoustic noise were measured. In order to achieve an adequate wavelet shape at the blade tip, corrections were made to account for the blade torsional behavior. In parallel with the acoustic measurements, vibratory loads were measured during the BVI flight condition to correlate the effects of IBC on noise and vibrations. It is shown how noise levels and vibrations are affected by specific IBC control inputs. In addition, correlations are made between noise levels and acoustic time histories with IBC phase and amplitude variations. For one IBC input mode with high noise reducing efficiency, a sweep of the moveable microphone traverse below the advancing side shows the effect on BVI noise directivity.

  3. Analysis of helicopter blade vortex structure by laser velocimetry

    NASA Astrophysics Data System (ADS)

    Boutier, A.; Lefèvre, J.; Micheli, F.

    1996-05-01

    In descent flight, helicopter external noise is mainly generated by the Blade Vortex Interaction (BVI). To under-stand the dynamics of this phenomenon, the vortex must be characterized before its interaction with the blade, which means that its viscous core radius, its strength and its distance to the blade have to be determined by non-intrusive measurement techniques. As part of the HART program (Higher Harmonic Control Aeroacoustic Rotor Test, jointly conducted by US Army, NASA, DLR, DNW and ONERA), a series of tests have been made in the German Dutch Wind Tunnel (DNW) on a helicopter rotor with 2 m long blades, rotating at 1040 rpm; several flight configurations, with an advance ratio of 0.15 and a shaft angle of 5.3°, have been studied with different higher harmonic blade pitch angles superposed on the conventional one (corresponding to the baseline case). The flow on the retreating side has been analyzed with an especially designed 3D laser velocimeter, and, simultaneously, the blade tip attitude has been determined in order to get the blade-vortex miss distance, which is a crucial parameter in the noise reduction. A 3D laser velocimeter, in backscatter mode with a working distance of 5 m, was installed on a platform 9 m high, and flow seeding with submicron incense smoke was achieved in the settling chamber using a remotely controlled displacement device. Acquisition of instantaneous velocity vectors by an IFA 750 yielded mean velocity and turbulence maps across the vortex as well as the vortex position, intensity and viscous radius. The blade tip attitude (altitude, jitter, angle of incidence) was recorded by the TART method (Target Attitude in Real Time) which makes use of a CCD camera on which is formed the image of two retroreflecting targets attached to the blade tip and lighted by a flash lamp. In addition to the mean values of the aforementioned quantities, spectra of their fluctuations have been established up to 8 Hz.

  4. Navier-Stokes Simulation of UH-60A Rotor/Wake Interaction Using Adaptive Mesh Refinement

    NASA Technical Reports Server (NTRS)

    Chaderjian, Neal M.

    2017-01-01

    High-resolution simulations of rotor/vortex-wake interaction for a UH60-A rotor under BVI and dynamic stallconditions were carried out with the OVERFLOW Navier-Stokes code.a. The normal force and pitching moment variation with azimuth angle were in good overall agreementwith flight-test data, similar to other CFD results reported in the literature.b. The wake-grid resolution did not have a significant effect on the rotor-blade airloads. This surprisingresult indicates that a wake grid spacing of (Delta)S=10% ctip is sufficient for engineering airloads predictionfor hover and forward flight. This assumes high-resolution body grids, high-order spatial accuracy, anda hybrid RANS/DDES turbulence model.c. Three-dimensional dynamic stall was found to occur due the presence of blade-tip vortices passing overa rotor blade on the retreating side. This changed the local airfoil angle of attack, causing stall, unlikethe 2D perspective of pure pitch oscillation of the local airfoil section.

  5. The Effects of Ambient Conditions on Helicopter Rotor Source Noise Modeling

    NASA Technical Reports Server (NTRS)

    Schmitz, Frederic H.; Greenwood, Eric

    2011-01-01

    A new physics-based method called Fundamental Rotorcraft Acoustic Modeling from Experiments (FRAME) is used to demonstrate the change in rotor harmonic noise of a helicopter operating at different ambient conditions. FRAME is based upon a non-dimensional representation of the governing acoustic and performance equations of a single rotor helicopter. Measured external noise is used together with parameter identification techniques to develop a model of helicopter external noise that is a hybrid between theory and experiment. The FRAME method is used to evaluate the main rotor harmonic noise of a Bell 206B3 helicopter operating at different altitudes. The variation with altitude of Blade-Vortex Interaction (BVI) noise, known to be a strong function of the helicopter s advance ratio, is dependent upon which definition of airspeed is flown by the pilot. If normal flight procedures are followed and indicated airspeed (IAS) is held constant, the true airspeed (TAS) of the helicopter increases with altitude. This causes an increase in advance ratio and a decrease in the speed of sound which results in large changes to BVI noise levels. Results also show that thickness noise on this helicopter becomes more intense at high altitudes where advancing tip Mach number increases because the speed of sound is decreasing and advance ratio increasing for the same indicated airspeed. These results suggest that existing measurement-based empirically derived helicopter rotor noise source models may give incorrect noise estimates when they are used at conditions where data were not measured and may need to be corrected for mission land-use planning purposes.

  6. [Comparative Study on Evaluating the Bladder Volume between BladderScan BVI9400 and Ultrasound System iU22].

    PubMed

    Luo, Huanli; Wang, Ying; Li, Fang; Ling, Yun; Yang, Dingyi; Jin, Fu

    2015-07-01

    To evaluate the accuracy of the latest BladderScan BVI9400 on measuring bladder volume. Two bladder phantoms were selected for investigating the accuracy of BVI9400. 341 patients with the iU22 ultrasound examinations were followed by BVI 9400. The difference and correlation between BVI9400 and iU22 were contrastively analyzed. The relative difference between results from BVI9400 and phantom volume was 2.5% and 1.36%. There was a strong correlation for patients between BVI9400 and iU22 (R = 0.96, P < 0.001). The relative difference between BVI9400 and iU22 decreased with the increasing of bladder volume and had no significant difference with patient's gender (P > 0.1). BladderScan BVI9400 had the ability of high accuracy and good stability of measured data. In view of quick and conveniences, BVI9400 could be as auxiliary equipment on pelvic tumor to evaluate whether the bladder volume during fractional radiotherapy was consistency with that during CT positioning.

  7. The validation and application of a rotor acoustic prediction computer program

    NASA Technical Reports Server (NTRS)

    Gallman, Judith M.

    1990-01-01

    An essential prerequisite to reducing the acoustic detectability of military rotorcraft is a better understanding of main rotor noise which is the major contributor to the overall noise. A simple, yet accurate, Rotor Acoustic Prediction Program (RAPP) was developed to advance the understanding of main rotor noise. This prediction program uses the Ffowcs Williams and Hawkings (FW-H) equation. The particular form of the FW-H equation used is well suited for the coupling of the measured blade surface pressure to the prediction of acoustic pressure. The FW-H equation is an inhomogeneous wave equation that is valid in all space and governs acoustic pressure generated by thin moving bodies. The nonhomogeneous terms describe mass displacement due to surface motion and forces due to local surface stresses, such as viscous stress and pressure distribution on the surface. This paper examines two of the four types of main rotor noise: BVI noise and low-frequency noise. Blade-vortex interaction noise occurs when a tip vortex, previously shed by a rotor blade, passes close enough to a rotor blade to cause large variations in the blade surface pressures. This event is most disturbing when it happens on the advancing side of the rotor disk. Low-frequency noise includes hover and low to moderate speed forward flight. For these flight conditions, the low frequency components of the acoustic signal dominate.

  8. Full-scale S-76 rotor performance and loads at low speeds in the NASA Ames 80- by 120-Foot Wind Tunnel. Vol. 1

    NASA Technical Reports Server (NTRS)

    Shinoda, Patrick M.

    1996-01-01

    A full-scale helicopter rotor test was conducted in the NASA Ames 80- by 120-Foot Wind Tunnel with a four-bladed S-76 rotor system. Rotor performance and loads data were obtained over a wide range of rotor shaft angles-of-attack and thrust conditions at tunnel speeds ranging from 0 to 100 kt. The primary objectives of this test were (1) to acquire forward flight rotor performance and loads data for comparison with analytical results; (2) to acquire S-76 forward flight rotor performance data in the 80- by 120-Foot Wind Tunnel to compare with existing full-scale 40- by 80-Foot Wind Tunnel test data that were acquired in 1977; (3) to evaluate the acoustic capability of the 80- by 120- Foot Wind Tunnel for acquiring blade vortex interaction (BVI) noise in the low speed range and compare BVI noise with in-flight test data; and (4) to evaluate the capability of the 80- by 120-Foot Wind Tunnel test section as a hover facility. The secondary objectives were (1) to evaluate rotor inflow and wake effects (variations in tunnel speed, shaft angle, and thrust condition) on wind tunnel test section wall and floor pressures; (2) to establish the criteria for the definition of flow breakdown (condition where wall corrections are no longer valid) for this size rotor and wind tunnel cross-sectional area; and (3) to evaluate the wide-field shadowgraph technique for visualizing full-scale rotor wakes. This data base of rotor performance and loads can be used for analytical and experimental comparison studies for full-scale, four-bladed, fully articulated rotor systems. Rotor performance and structural loads data are presented in this report.

  9. Rotor Broadband Noise Prediction with Comparison to Model Data

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas F.; Burley, Casey L.

    2001-01-01

    This paper reports an analysis and prediction development of rotor broadband noise. The two primary components of this noise are Blade-Wake Interaction (BWI) noise, due to the blades' interaction with the turbulent wakes of the preceding blades, and "Self" noise, due to the development and shedding of turbulence within the blades' boundary layers. Emphasized in this report is the new code development for Self noise. The analysis and validation employs data from the HART program, a model BO-105 rotor wind tunnel test conducted in the German-Dutch Wind Tunnel (DNW). The BWI noise predictions are based on measured pressure response coherence functions using cross-spectral methods. The Self noise predictions are based on previously reported semiempirical modeling of Self noise obtained from isolated airfoil sections and the use of CAMRAD.Modl to define rotor performance and local blade segment flow conditions. Both BWI and Self noise from individual blade segments are Doppler shifted and summed at the observer positions. Prediction comparisons with measurements show good agreement for a range of rotor operating conditions from climb to steep descent. The broadband noise predictions, along with those of harmonic and impulsive Blade-Vortex Interaction (BVI) noise predictions, demonstrate a significant advance in predictive capability for main rotor noise.

  10. XV-15 Tiltrotor Aircraft: 1997 Acoustic Testing

    NASA Technical Reports Server (NTRS)

    Edwards, Bryan D.; Conner, David A.

    2003-01-01

    XV-15 acoustic test is discussed, and measured results are presented. The test was conducted by NASA Langley and Bell Helicopter Textron, Inc., during June - July 1997, at the BHTI test site near Waxahachie, Texas. This was the second in a series of three XV-15 tests to document the acoustic signature of the XV-15 tiltrotor aircraft for a variety of flight conditions and minimize the noise signature during approach. Tradeoffs between flight procedures and the measured noise are presented to illustrate the noise abatement flight procedures. The test objectives were to: (1) support operation of future tiltrotors by further developing and demonstrating low-noise flight profiles, while maintaining acceptable handling and ride qualities, and (2) refine approach profiles, selected from previous (1995) tiltrotor testing, to incorporate Instrument Flight Rules (IFR), handling qualities constraints, operations and tradeoffs with sound. Primary emphasis was given to the approach flight conditions where blade-vortex interaction (BVI) noise dominates, because this condition influences community noise impact more than any other. An understanding of this part of the noise generating process could guide the development of low noise flight operations and increase the tiltrotor's acceptance in the community.

  11. Flowfield And Download Measurements And Computation of a Tiltrotor Aircraft In Hover

    NASA Technical Reports Server (NTRS)

    Brand, Albert G.; Peryea, Martin A.; Wood, Tom L.; Meakin, Robert L.

    2001-01-01

    A multipart study of the V-22 hover flowfield was conducted. Testing involved a 0.15-scale semispan model with multiple independent force balance systems. The velocity flowfield surrounding the airframe was measured using a robotic positioning system and anemometer. Both time averaged and cycle-averaged results are reported. It is shown that the fuselage download in hover can be significantly reduced using a small download reduction device. Measurements indicate that the success of the device is attributed to the substantial elimination of tiltrotor fountain flow. As part of.the study, an unsteady CFD prediction is time-averaged, and shown to have excellent agreement in predicting the baseline configuration fountain flow. Some discrepancies at the outboard edge of the rotor are discussed. An &&sessment of an advanced tip shape rotor comp"'Ietes the study. Derived from a nonrotating study, the advanced tip shape rotor was developed and tested on the Bell 0.15 scale semi-span V-22 model. The tip shape was intended to diffuse the tip vortex and reduce BVI noise. Rotor wake vorticity is extracted from the measured velocity dam to show that the advanced tip shape produces a tip vortex that is only slightly more diffuse than the baseline tip blade. The results indicate that nonrotating tests may overpredict the amount of tip vortex diffusion achieved by tip shape design in a rotating environment.

  12. Probing Nucleobase Interactions and Predicting Mechanisms of Synthetic Interest Using Computational Chemistry, and Furthering the Development of BVI Education in Chemistry

    ERIC Educational Resources Information Center

    Harrison, Jason Gordon

    2013-01-01

    Quantum mechanical (QM) and molecular docking methods are used to probe systems of biological and synthetic interest. Probing interactions of nucleobases within proteins, and properly modeling said interactions toward novel nucleobase development, is extremely difficult, and of great utility in RNA interference (RNAi) therapeutics. The issues in…

  13. Nobody Can See Atoms: Science Camps Highlighting Approaches for Making Chemistry Accessible to Blind and Visually Impaired Students

    ERIC Educational Resources Information Center

    Wedler, Henry B.; Boyes, Lee; Davis, Rebecca L.; Flynn, Dan; Franz, Annaliese; Hamann, Christian S.; Harrison, Jason G.; Lodewyk, Michael W.; Milinkevich, Kristin A.; Shaw, Jared T.; Tantillo, Dean J.; Wang, Selina C.

    2014-01-01

    Curricula for three chemistry camp experiences for blind and visually impaired (BVI) individuals that incorporated single- and multiday activities and experiments accessible to BVI students are described. Feedback on the camps from students, mentors, and instructors indicates that these events allowed BVI students, who in many cases have been…

  14. Blood vessel invasion and other variables as predictors of long-term survival in Japanese and British patients with primary invasive breast cancer

    PubMed Central

    Kato, Takao; Pezzella, Francesco; Steers, Graham; Campo, Leticia; Leek, Russell D; Turley, Helen; Kameoka, Shingo; Nishikawa, Toshio; Harris, Adrian L; Gatter, Kevin C; Fox, Stephen

    2014-01-01

    This study was undertaken to investigate the associations of blood vessel invasion (BVI), lymphatic vessel invasion (LVI) or other variables and long-term survival in 173 Japanese and 184 British patients with primary invasive breast cancer, and whether they are associated with survival differences between Japanese and British patients. BVI was detected by objective methods, using both factor VIII-related antigen (F-VIII) staining and elastica van Gieson (E v G) staining. BVI was classified into three subtypes. 1) BVI e, BVI detected by E v G staining alone, 2) BVI f, BVI detected by F-VIII staining alone, 3) BVIef, BVI evaluated by combining BVIf and BVIe. LVI was also detected by objective methods, using lymphatic vessel endothelial hyaluronan receptor-1 (LYVE-1) staining alone. There was a borderline significance between the frequencies for BVIef of British patients and those of Japanese patients (8.2% vs 3.5%; P = 0.06) but not for LVI (P = 0.36). British patients had a significantly worse relapse-free survival (RFS) and overall survival (OS) than Japanese patients (P < 0.01, P < 0.01, respectively) even though their tumors were smaller and more ER-positive with a similar prevalence of lymph-node involvement. LVI was not significantly associated with RFS and OS, however, BVIef positive tumors had a significantly worse RFS and OS compared with BVIef negative patients, after statistical adjustment for the other variables (P = 0.02, P = 0.01, respectively). The present study shows that BVIef variability might contribute to the Japanese and British disparities in breast cancer outcomes. PMID:25550840

  15. Visually impaired researchers get their hands on quantum chemistry: application to a computational study on the isomerization of a sterol.

    PubMed

    Lounnas, Valère; Wedler, Henry B; Newman, Timothy; Schaftenaar, Gijs; Harrison, Jason G; Nepomuceno, Gabriella; Pemberton, Ryan; Tantillo, Dean J; Vriend, Gert

    2014-11-01

    In molecular sciences, articles tend to revolve around 2D representations of 3D molecules, and sighted scientists often resort to 3D virtual reality software to study these molecules in detail. Blind and visually impaired (BVI) molecular scientists have access to a series of audio devices that can help them read the text in articles and work with computers. Reading articles published in this journal, though, is nearly impossible for them because they need to generate mental 3D images of molecules, but the article-reading software cannot do that for them. We have previously designed AsteriX, a web server that fully automatically decomposes articles, detects 2D plots of low molecular weight molecules, removes meta data and annotations from these plots, and converts them into 3D atomic coordinates. AsteriX-BVI goes one step further and converts the 3D representation into a 3D printable, haptic-enhanced format that includes Braille annotations. These Braille-annotated physical 3D models allow BVI scientists to generate a complete mental model of the molecule. AsteriX-BVI uses Molden to convert the meta data of quantum chemistry experiments into BVI friendly formats so that the entire line of scientific information that sighted people take for granted-from published articles, via printed results of computational chemistry experiments, to 3D models-is now available to BVI scientists too. The possibilities offered by AsteriX-BVI are illustrated by a project on the isomerization of a sterol, executed by the blind co-author of this article (HBW).

  16. Visually impaired researchers get their hands on quantum chemistry: application to a computational study on the isomerization of a sterol

    NASA Astrophysics Data System (ADS)

    Lounnas, Valère; Wedler, Henry B.; Newman, Timothy; Schaftenaar, Gijs; Harrison, Jason G.; Nepomuceno, Gabriella; Pemberton, Ryan; Tantillo, Dean J.; Vriend, Gert

    2014-11-01

    In molecular sciences, articles tend to revolve around 2D representations of 3D molecules, and sighted scientists often resort to 3D virtual reality software to study these molecules in detail. Blind and visually impaired (BVI) molecular scientists have access to a series of audio devices that can help them read the text in articles and work with computers. Reading articles published in this journal, though, is nearly impossible for them because they need to generate mental 3D images of molecules, but the article-reading software cannot do that for them. We have previously designed AsteriX, a web server that fully automatically decomposes articles, detects 2D plots of low molecular weight molecules, removes meta data and annotations from these plots, and converts them into 3D atomic coordinates. AsteriX-BVI goes one step further and converts the 3D representation into a 3D printable, haptic-enhanced format that includes Braille annotations. These Braille-annotated physical 3D models allow BVI scientists to generate a complete mental model of the molecule. AsteriX-BVI uses Molden to convert the meta data of quantum chemistry experiments into BVI friendly formats so that the entire line of scientific information that sighted people take for granted—from published articles, via printed results of computational chemistry experiments, to 3D models—is now available to BVI scientists too. The possibilities offered by AsteriX-BVI are illustrated by a project on the isomerization of a sterol, executed by the blind co-author of this article (HBW).

  17. XV-15 Tiltrotor Aircraft: 1999 Acoustic Testing - Test Report

    NASA Technical Reports Server (NTRS)

    Edwards, Bryan D.; Conner, David A.

    2003-01-01

    An XV-15 acoustic test is discussed, and measured results are presented. The test was conducted by NASA Langley and Bell Helicopter Textron, Inc., during October 1999, at the BHTI test site near Waxahachie, Texas. As part of the NASA-sponsored Short Haul Civil Tiltrotor noise reduction initiative, this was the third in a series of three major XV-15 acoustic tests. Their purpose was to document the acoustic signature of the XV-15 tiltrotor aircraft for a variety of flight conditions and to minimize the noise signature during approach. Tradeoffs between flight procedures and the measured noise are presented to illustrate the noise abatement flight procedures. The test objectives were to support operation of future tiltrotors by further developing and demonstrating low-noise flight profiles, while maintaining acceptable handling and ride qualities, and refine approach profiles, selected from previous (1995 & 1997) tiltrotor testing, to incorporate Instrument Flight Rules (IFR), handling qualities constraints, operations and tradeoffs with sound. Primary emphasis was given to the approach flight conditions where blade-vortex interaction (BVI) noise dominates, because this condition influences community noise impact more than any other. An understanding of this part of the noise generating process could guide the development of low noise flight operations and increase the tiltrotor's acceptance in the community.

  18. [Efficacy and problems of bladder volume measurement using portable three dimensional ultrasound scanning device--in particular, on measuring bladder volume lower than 100ml].

    PubMed

    Oh-Oka, Hitoshi; Nose, Ryuichiro

    2005-09-01

    Using a portable three dimensional ultrasound scanning device (The Bladder Scan BVI6100, Diagnostic Ultrasound Corporation), we examined measured values of bladder volume, especially focusing on volume lower than 100 ml. A total of 100 patients (male: 66, female: 34) were enrolled in the study. We made a comparison study between the measured value (the average of three measurements of bladder urine volume after a trial in male and female modes) using BVI6100, and the actual measured value of the sample obtained by urethral catheterization in each patient. We examined the factors which could increase the error rate. We also introduced the effective techniques to reduce measurement errors. The actual measured values in all patients correlated well with the average value of three measurements after a trial in a male mode of the BVI6100. The correlation coefficient was 0.887, the error rate was--4.6 +/- 24.5%, and the average coefficient of variation was 15.2. It was observed that the measurement result using the BVI6100 is influenced by patient side factors (extracted edges between bladder wall and urine, thickened bladder wall, irregular bladder wall, flattened rate of bladder, mistaking prostate for bladder in male, mistaking bladder for uterus in a female mode, etc.) or examiner side factors (angle between BVI and abdominal wall, compatibility between abdominal wall and ultrasound probe, controlling deflection while using probe, etc). When appropriate patients are chosen and proper measurement is performed, BVI6100 provides significantly higher accuracy in determining bladder volume, compared with existing abdominal ultrasound methods. BVI6100 is a convenient and extremely effective device also for the measurement of bladder urine over 100 ml.

  19. The effect of concomitant vascular disruption in patients with iatrogenic biliary injuries.

    PubMed

    Bilge, Orhan; Bozkiran, Süheyla; Ozden, Ilgin; Tekant, Yaman; Acarli, Koray; Alper, Aydin; Emre, Ali; Arioğul, Orhan

    2003-09-01

    To evaluate treatment results in iatrogenic biliary injuries with concomitant vascular injuries. Between January 1998 and May 2002 (inclusive), angiography was performed in 45 of the 105 patients treated for iatrogenic biliary tract injury. The charts of these 45 patients and 5 other patients in whom vascular injury was diagnosed at operation were evaluated retrospectively. Twenty-nine patients had concomitant vascular injury, the biliovascular injury group (BVI), and the remaining 21 patients had isolated biliary tract injury (IBTI). The most frequent initial operation was a cholecystectomy. The frequency of high-level (Bismuth III or IV) strictures was 90% in the BVI group and 62% in the IBTI group ( P<0.05). Perioperative mortality was 7% in the BVI group and 5% in the IBTI group ( P>0.05). The morbidity in the BVI group was significantly higher ( P<0.05). Two patients in each group were lost to follow up. During a median (range) follow up of 31 months (5-51 months), a successful functional outcome was achieved in 96% of the BVI group and 100% of the IBTI group with a multimodal approach ( P>0.05). The frequency of high-level biliary injury and morbidity were significantly higher in the BVI group. However, concomitant vascular injury had no significant effect on mortality and medium-term outcome of biliary reconstruction. Thus, routine preoperative angiography is not recommended.

  20. Seeing Science

    ERIC Educational Resources Information Center

    Miles, Rhea; Zambone, Alana

    2017-01-01

    Students who are blind or visually impaired (BVI), like all students, need to conduct scientific investigations that involve measurements and reading experimental procedures. Best instructional practices for BVI students include touch and hearing experiences. Related strategies and tools include electronic textbooks, assistive technologies such as…

  1. Vortex-Surface Interactions: Vortex Dynamics and Instabilities

    DTIC Science & Technology

    2015-10-16

    31 May 2015 4. TITLE AND SUBTITLE VORTEX -SURFACE INTERACTIONS: VORTEX DYNAMICS AND INSTABILITIES Sa. CONTRACT NUMBER Sb. GRANT NUMBER N00014-12...new natural instabilities coming from vortex - vortex or vortex -surface interactions, but also ultimately the possibility to control these flows...design of vortex generators to modify surface pressures. We find a short wave instability of the secondary vortices that are created by the

  2. Rotating hot-wire investigation of the vortex responsible for blade-vortex interaction noise

    NASA Technical Reports Server (NTRS)

    Fontana, Richard Remo

    1988-01-01

    This distribution of the circumferential velocity of the vortex responsible for blade-vortex interaction noise was measured using a rotating hot-wire rake synchronously meshed with a model helicopter rotor at the blade passage frequency. Simultaneous far-field acoustic data and blade differential pressure measurements were obtained. Results show that the shape of the measured far-field acoustic blade-vortex interaction signature depends on the blade-vortex interaction geometry. The experimental results are compared with the Widnall-Wolf model for blade-vortex interaction noise.

  3. Mathematically Derived Body Volume and Risk of Musculoskeletal Pain among Housewives in North India

    PubMed Central

    Bihari, Vipin; Kesavachandran, Chandrasekharan Nair; Mathur, Neeraj; Pangtey, Balram Singh; Kamal, Ritul; Pathak, Manoj Kumar; Srivastava, Anup Kumar

    2013-01-01

    Background Global Burden of Disease Study 2010 demonstrates the impact of musculoskeletal diseases as the second greatest cause of disability globally in all regions of the world. The study was conducted to determine the role of mathematically derived body volume (BV), body volume index (BVI), body mass index (BMI), body surface area (BSA) and body fat % (BF %) on musculoskeletal pain (MSP) among housewives in National Capital Region (NCR). Methods A cross sectional study was undertaken among 495 housewives from Gurgaon and New Okhla Industrial Development Area (NOIDA) in National Capital Region (NCR), New Delhi, India. The study includes questionnaire survey, clinical examination and body composition monitoring among housewives. Results A significantly higher BMI, BVI, BV and BSA were observed in subjects with MSP as compared to those who had no MSP. This was also true for subjects with pain in knee for BMI category for overweight. Subjects with pain in limbs had significantly high BMI and BVI as compared to subjects with no MSP. A significant positive correlation of age with BMI, BVI, BV and BSA was observed among subjects having no MSP denoting a direct relationship of age and these body factors. Conclusions The prevalence of MSP among housewives is associated with increasing age, BMI and BVI. This can possibly be used for formulating a strategy for prevention of MSP. PMID:24223218

  4. Vortex/boundary layer interactions

    NASA Technical Reports Server (NTRS)

    Cutler, A. D.; Bradshaw, P.

    1989-01-01

    Detailed and high quality measurements with hot-wires and pressure probes are presented for two different interactions between a vortex pair with common flow down and a turbulent boundary layer. The interactions studied have larger values of the vortex circulation parameter than those studied previously. The results indicate that the boundary layer under the vortex pair is thinned by lateral divergence and that boundary layer fluid is entrained into the vortex. The effect of the interaction on the vortex core (other than the inviscid effect of the image vortices behind the surface) is small.

  5. Interaction of a turbulent vortex with a lifting surface

    NASA Technical Reports Server (NTRS)

    Lee, D. J.; Roberts, L.

    1985-01-01

    The impulsive noise due to blade-vortex-interaction is analyzing in the time domain for the extreme case when the blade cuts through the center of the vortex core with the assumptions of no distortion of the vortex path or of the vortex core. An analytical turbulent vortex core model, described in terms of the tip aerodynamic parameters, is used and its effects on the unsteady loading and maximum acoustic pressure during the interaction are determined.

  6. The effect of tip vortex structure on helicopter noise due to blade/vortex interaction

    NASA Technical Reports Server (NTRS)

    Wolf, T. L.; Widnall, S. E.

    1978-01-01

    A potential cause of helicopter impulsive noise, commonly called blade slap, is the unsteady lift fluctuation on a rotor blade due to interaction with the vortex trailed from another blade. The relationship between vortex structure and the intensity of the acoustic signal is investigated. The analysis is based on a theoretical model for blade/vortex interaction. Unsteady lift on the blades due to blade/vortex interaction is calculated using linear unsteady aerodynamic theory, and expressions are derived for the directivity, frequency spectrum, and transient signal of the radiated noise. An inviscid rollup model is used to calculate the velocity profile in the trailing vortex from the spanwise distribution of blade tip loading. A few cases of tip loading are investigated, and numerical results are presented for the unsteady lift and acoustic signal due to blade/vortex interaction. The intensity of the acoustic signal is shown to be quite sensitive to changes in tip vortex structure.

  7. A new look at sound generation by blade/vortex interaction

    NASA Technical Reports Server (NTRS)

    Hardin, J. C.; Mason, J. P.

    1985-01-01

    As a preliminary attempt to understand the dynamics of blade/vortex interaction, the two-dimensional problem of a rectilinear vortex filament interacting with a Joukowski airfoil is analyzed in both the lifting and nonlifting cases. The vortex velocity components could be obtained analytically and integrated to determine the vortex trajectory. With this information, the aeroacoustic low-frequency Green's function approach could then be employed to calculate the sound produced during the encounter. The results indicate that the vortex path deviates considerably from simple convection due to the presence of the airfoil and that a reasonably sharp sound pulse is radiated during the interaction whose fundamental frequency is critically dependent upon whether the vortex passes above or below the airfoil. Determination of this gross parameter of the interaction is shown to be highly nonlinearly dependent upon airfoil circulation, vortex circulation, and initial position.

  8. Interaction of a vortex and a premixed flame

    NASA Technical Reports Server (NTRS)

    Ferziger, Joel H.; Rutland, Christopher J.

    1989-01-01

    The interaction of a vortex structure and a premixed flame is studied. The presence of pressure gradients in the vortex and density gradients in the flame result in a complicated interaction. This interaction has been examined when the flame and vortex are fully coupled and in two special cases where they are decoupled: a frozen flame case and a frozen vortex case. In the frozen flame case the main effect of the flame on the vortex is through the barocline torque term. This has been modeled for high Damkoehler numbers. In the frozen vortex case the main effect, at moderate Damkoehler numbers, is to convect the flame around the vortex. At low Damkoehler numbers, depending on the length scales, pockets of unburned gas can form or the flame structure can be significantly changed. The two frozen cases provide a basis for understanding the full interaction.

  9. Non-equilibrium effects of diatomic and polyatomic gases on the shock-vortex interaction based on the second-order constitutive model of the Boltzmann-Curtiss equation

    NASA Astrophysics Data System (ADS)

    Singh, S.; Karchani, A.; Myong, R. S.

    2018-01-01

    The rotational mode of molecules plays a critical role in the behavior of diatomic and polyatomic gases away from equilibrium. In order to investigate the essence of the non-equilibrium effects, the shock-vortex interaction problem was investigated by employing an explicit modal discontinuous Galerkin method. In particular, the first- and second-order constitutive models for diatomic and polyatomic gases derived rigorously from the Boltzmann-Curtiss kinetic equation were solved in conjunction with the physical conservation laws. As compared with a monatomic gas, the non-equilibrium effects result in a substantial change in flow fields in both macroscale and microscale shock-vortex interactions. Specifically, the computational results showed three major effects of diatomic and polyatomic gases on the shock-vortex interaction: (i) the generation of the third sound waves and additional reflected shock waves with strong and enlarged expansion, (ii) the dominance of viscous vorticity generation, and (iii) an increase in enstrophy with increasing bulk viscosity, related to the rotational mode of gas molecules. Moreover, it was shown that there is a significant discrepancy in flow fields between the microscale and macroscale shock-vortex interactions in diatomic and polyatomic gases. The quadrupolar acoustic wave source structures, which are typically observed in macroscale shock-vortex interactions, were not found in any microscale shock-vortex interactions. The physics of the shock-vortex interaction was also investigated in detail to examine vortex deformation and evolution dynamics over an incident shock wave. A comparative study of first- and second-order constitutive models was also conducted for the enstrophy and dissipation rate. Finally, the study was extended to the shock-vortex pair interaction case to examine the effects of pair interaction on vortex deformation and evolution dynamics.

  10. Vortex-Airfoil Interaction and Application of Methods for Digital Fringe Analysis.

    DTIC Science & Technology

    1986-03-15

    angles of attack. Different kinds of bluff bodies are used as vortex generators. Their wake is a Karman vortex street consisting of strong vortices of...Table of Contents 1. Introduction 1 2. A model for vortex paths around a profile and the sound generated by vortex -profile interaction 2"-- 3...I’ S.TTE(d~,t. TYPE OF PIrPORT a PERID COWERED ’. * Vortex -airfoil interaction and application of *methods for digital fringe analysis . 1 6

  11. Vortex matter stabilized by many-body interactions

    NASA Astrophysics Data System (ADS)

    Wolf, S.; Vagov, A.; Shanenko, A. A.; Axt, V. M.; Aguiar, J. Albino

    2017-10-01

    This work investigates interactions of vortices in superconducting materials between standard types I and II, in the domain of the so-called intertype (IT) superconductivity. Contrary to common expectations, the many-body (many-vortex) contribution is not a correction to the pair-vortex interaction here but plays a crucial role in the formation of the IT vortex matter. In particular, the many-body interactions stabilize vortex clusters that otherwise could not exist. Furthermore, clusters with large numbers of vortices become more stable when approaching the boundary between the intertype domain and type I. This indicates that IT superconductors develop a peculiar unconventional type of the vortex matter governed by the many-body interactions of vortices.

  12. On the formation modes in vortex interaction for multiple co-axial co-rotating vortex rings

    NASA Astrophysics Data System (ADS)

    Qin, Suyang; Liu, Hong; Xiang, Yang

    2018-01-01

    Interaction among multiple vortices is of particular importance to biological locomotion. It plays an essential role in the force and energy capture. This study examines the motion and dynamics of multiple co-axial co-rotating vortex rings. The vortex rings, which have the same formation time, are successively generated in a piston-cylinder apparatus by accurately controlling the interval time. The flow fields are visualized by the finite-time Lyapunov exponent and then repelling Lagrangian coherent structures (r-LCSs) are determined. Two types of vortex interactions ("strong" and "weak") are defined by investigating the r-LCSs: a strong interaction is indicated by connected r-LCSs showing a channel for fluid transport (termed as a "flux window"); a weak interaction is indicated by disconnected r-LCSs between the vortex rings. For strong interaction, leapfrogging and merger of vortex rings can happen in the later stage of the evolution process; however, the rings are separated for weak interaction. Two distinct formation modes, the formation enhancement mode (FEM) and formation restraint mode (FRM), refer to the effect of one or multiple vortex ring(s) on the initial circulation of the subsequently formed vortex ring. In the FEM, the circulation of a vortex ring is larger than that of an isolated (without interaction) vortex ring. On the other hand, the situation is opposite in the FRM. A dimensionless number reflecting the interaction mechanism, "structure stretching number" S*, is proposed, which evaluates the induced effect of the wake vortices on the formation of a vortex ring. A limiting S* (SL*=(2 ±0.4 ) ×1 0-4) is the bifurcation point of the two formation modes. The augmentation of circulation reaches up to 10% for the FEM when S*SL*), the circulation decreases for at most 20%. The newly defined formation modes and number could shed light on the understanding of the dynamics of multiple vortex ring flows.

  13. Vortex formation and instability in the left ventricle

    NASA Astrophysics Data System (ADS)

    Le, Trung Bao; Sotiropoulos, Fotis; Coffey, Dane; Keefe, Daniel

    2012-09-01

    We study the formation of the mitral vortex ring during early diastolic filling in a patient-specific left ventricle (LV) using direct numerical simulation. The geometry of the left ventricle is reconstructed from Magnetic Resonance Imaging (MRI) data of a healthy human subject. The left ventricular kinematics is modeled via a cell-based activation methodology, which is inspired by cardiac electro-physiology and yields physiologic LV wall motion. In the fluid dynamics videos, we describe in detail the three-dimensional structure of the mitral vortex ring, which is formed during early diastolic filling. The ring starts to deform as it propagates toward the apex of the heart and becomes inclined. The trailing secondary vortex tubes are formed as the result of interaction between the vortex ring and the LV wall. These vortex tubes wrap around the circumference and begin to interact with and destabilize the mitral vortex ring. At the end of diastole, the vortex ring impinges on the LV wall and the large-scale intraventricular flow rotates in clockwise direction. We show for the first time that the mitral vortex ring evolution is dominated by a number of vortex-vortex and vortex-wall interactions, including lateral straining and deformation of vortex ring, the interaction of two vortex tubes with unequal strengths, helicity polarization of vortex tubes and twisting instabilities of the vortex cores.

  14. Developing an Understanding of the Nature of Accessibility and Usability Problems Blind Students Face in Web-Enhanced Instruction Environments

    ERIC Educational Resources Information Center

    Babu, Rakesh

    2011-01-01

    The central premise of this research is that blind and visually impaired (BVI) people cannot use the Internet effectively due to accessibility and usability problems. Use of the Internet is indispensable in today's education system that relies on Web-enhanced instruction (WEI). Therefore, BVI students cannot participate effectively in WEI. Extant…

  15. Active control system for a rotor blade trailing-edge flap

    NASA Astrophysics Data System (ADS)

    Duvernier, Marc; Reithler, Livier; Guerrero, Jean Y.; Rossi, Rinaldo A.

    2000-06-01

    Reducing the external noise is becoming a major issue for helicopter manufacturers. The idea beyond this goal is to reduce or even avoid the blade vortex interaction (BVI), especially during descent and flights over inhabited areas. This can be achieved by changing locally the lift of the blade. Several strategies to reach this goal are under investigation at EUROCOPTER such as the control of the local incidence of the blade by a direct lift flap. AEROSPATIALE MATRA Corporate Research Centre and AEROSPATIALE MATRA MISSILES proposed an actuator system able to answer EUROCOPTER's needs for moving a direct lift flap. The present paper describes the definition, manufacturing and testing of this new actuator system. This actuator is based on an electromagnetic patented actuation system developed by AEROSPATIALE MATRA MISSILES for missile and aeronautic applications. The particularity of this actuator is its ability to produce the desired force on its whole range of stroke. The flap is designed to be fitted on a DAUPHIN type blade produced by EUROCOPTER and the actuator system was designed to fit the room available within the blade and to produce the right amount of stroke and force within the required frequency range. Other constraints such as centrifugal loading were also taken into account. This paper describes briefly the specifications and the major characteristics of the actuating system and presents some results of its behavior on a representative composite test-bed manufactured by EUROCOPTER when subjected to realistic mechanical loads.

  16. Computational study of the interaction between a shock and a near-wall vortex using a weighted compact nonlinear scheme

    NASA Astrophysics Data System (ADS)

    Zuo, Zhifeng; Maekawa, Hiroshi

    2014-02-01

    The interaction between a moderate-strength shock wave and a near-wall vortex is studied numerically by solving the two-dimensional, unsteady compressible Navier-Stokes equations using a weighted compact nonlinear scheme with a simple low-dissipation advection upstream splitting method for flux splitting. Our main purpose is to clarify the development of the flow field and the generation of sound waves resulting from the interaction. The effects of the vortex-wall distance on the sound generation associated with variations in the flow structures are also examined. The computational results show that three sound sources are involved in this problem: (i) a quadrupolar sound source due to the shock-vortex interaction; (ii) a dipolar sound source due to the vortex-wall interaction; and (iii) a dipolar sound source due to unsteady wall shear stress. The sound field is the combination of the sound waves produced by all three sound sources. In addition to the interaction of the incident shock with the vortex, a secondary shock-vortex interaction is caused by the reflection of the reflected shock (MR2) from the wall. The flow field is dominated by the primary and secondary shock-vortex interactions. The generation mechanism of the third sound, which is newly discovered, due to the MR2-vortex interaction is presented. The pressure variations generated by (ii) become significant with decreasing vortex-wall distance. The sound waves caused by (iii) are extremely weak compared with those caused by (i) and (ii) and are negligible in the computed sound field.

  17. Supersonic shock wave/vortex interaction

    NASA Technical Reports Server (NTRS)

    Settles, G. S.; Cattafesta, L.

    1993-01-01

    Although shock wave/vortex interaction is a basic and important fluid dynamics problem, very little research has been conducted on this topic. Therefore, a detailed experimental study of the interaction between a supersonic streamwise turbulent vortex and a shock wave was carried out at the Penn State Gas Dynamics Laboratory. A vortex is produced by replaceable swirl vanes located upstream of the throat of various converging-diverging nozzles. The supersonic vortex is then injected into either a coflowing supersonic stream or ambient air. The structure of the isolated vortex is investigated in a supersonic wind tunnel using miniature, fast-response, five-hole and total temperature probes and in a free jet using laser Doppler velocimetry. The cases tested have unit Reynolds numbers in excess of 25 million per meter, axial Mach numbers ranging from 2.5 to 4.0, and peak tangential Mach numbers from 0 (i.e., a pure jet) to about 0.7. The results show that the typical supersonic wake-like vortex consists of a non-isentropic, rotational core, where the reduced circulation distribution is self similar, and an outer isentropic, irrotational region. The vortex core is also a region of significant turbulent fluctuations. Radial profiles of turbulent kinetic energy and axial-tangential Reynolds stress are presented. The interactions between the vortex and both oblique and normal shock waves are investigated using nonintrusive optical diagnostics (i.e. schlieren, planar laser scattering, and laser Doppler velocimetry). Of the various types, two Mach 2.5 overexpanded-nozzle Mach disc interactions are examined in detail. Below a certain vortex strength, a 'weak' interaction exists in which the normal shock is perturbed locally into an unsteady 'bubble' shock near the vortex axis, but vortex breakdown (i.e., a stagnation point) does not occur. For stronger vortices, a random unsteady 'strong' interaction results that causes vortex breakdown. The vortex core reforms downstream of the rear stagnation point, and the reduced circulation distribution once again becomes self-similar in this region. A-new model of this interaction is proposed. Finally, a curve defining the approximate limits of supersonic vortex breakdown is presented.

  18. Vortex generation and wave-vortex interaction over a concave plate with roughness and suction

    NASA Technical Reports Server (NTRS)

    Bertolotti, Fabio

    1993-01-01

    The generation and amplification of vortices by surface homogeneities, both in the form of surface waviness and of wall-normal velocity, is investigated using the nonlinear parabolic stability equations. Transients and issues of algebraic growth are avoided through the use of a similarity solution as initial condition for the vortex. In the absence of curvature, the vortex decays as the square root of 1/x when flowing over streamwise aligned riblets of constant height, and grows as the square root of x when flowing over a corresponding streamwise aligned variation of blowing/suction transpiration velocity. However, in the presence of wall inhomogeneities having both streamwise and spanwise periodicity, the growth of the vortex can be much larger. In the presence of curvature, the vortex develops into a Gortler vortex. The 'direct' and 'indirect' interaction mechanisms possible in wave-vortex interaction are presented. The 'direct' interaction does not lead to strong resonance with the flow conditions investigated. The 'indirect' interaction leads to K-type transition.

  19. Interaction of N-vortex structures in a continuum, including atmosphere, hydrosphere and plasma

    NASA Astrophysics Data System (ADS)

    Belashov, Vasily Yu.

    2017-10-01

    The results of analysis and numerical simulation of evolution and interaction of the N-vortex structures of various configuration and different vorticities in the continuum including atmosphere, hydrosphere and plasma are presented. It is found that in dependence on initial conditions the regimes of weak interaction with quasi-stationary evolution and active interaction with the "phase intermixing", when the evolution can lead to formation of complex forms of vorticity regions, are realized in the N-vortex systems. For the 2-vortex interaction the generalized critical parameter determining qualitative character of interaction of vortices is introduced. It is shown that for given initial conditions its value divides modes of active interaction and quasi-stationary evolution. The results of simulation of evolution and interaction of the two-dimensional and three-dimensional vortex structures, including such phenomena as dynamics of the atmospheric synoptic vortices of cyclonic types and tornado, hydrodynamic 4-vortex interaction and also interaction in the systems of a type of "hydrodynamic vortex - dust particles" are presented. The applications of undertaken approach to the problems of such plasma systems as streams of charged particles in a uniform magnetic field B and plasma clouds in the ionosphere are considered. It is shown that the results obtained have obvious applications in studies of the dynamics of the vortex structures dynamics in atmosphere, hydrosphere and plasma.

  20. A theoretical formulation of wave-vortex interactions

    NASA Technical Reports Server (NTRS)

    Wu, J. Z.; Wu, J. M.

    1989-01-01

    A unified theoretical formulation for wave-vortex interaction, designated the '(omega, Pi) framework,' is presented. Based on the orthogonal decomposition of fluid dynamic interactions, the formulation can be used to study a variety of problems, including the interaction of a longitudinal (acoustic) wave and/or transverse (vortical) wave with a main vortex flow. Moreover, the formulation permits a unified treatment of wave-vortex interaction at various approximate levels, where the normal 'piston' process and tangential 'rubbing' process can be approximated dfferently.

  1. Flow structure generated by perpendicular blade-vortex interaction and implications for helicopter noise prediction. Volume 1: Measurements

    NASA Technical Reports Server (NTRS)

    Wittmer, Kenneth S.; Devenport, William J.

    1996-01-01

    The perpendicular interaction of a streamwise vortex with an infinite span helicopter blade was modeled experimentally in incompressible flow. Three-component velocity and turbulence measurements were made using a sub-miniature four sensor hot-wire probe. Vortex core parameters (radius, peak tangential velocity, circulation, and centerline axial velocity deficit) were determined as functions of blade-vortex separation, streamwise position, blade angle of attack, vortex strength, and vortex size. The downstream development of the flow shows that the interaction of the vortex with the blade wake is the primary cause of the changes in the core parameters. The blade sheds negative vorticity into its wake as a result of the induced angle of attack generated by the passing vortex. Instability in the vortex core due to its interaction with this negative vorticity region appears to be the catalyst for the magnification of the size and intensity of the turbulent flowfield downstream of the interaction. In general, the core radius increases while peak tangential velocity decreases with the effect being greater for smaller separations. These effects are largely independent of blade angle of attack; and if these parameters are normalized on their undisturbed values, then the effects of the vortex strength appear much weaker. Two theoretical models were developed to aid in extending the results to other flow conditions. An empirical model was developed for core parameter prediction which has some rudimentary physical basis, implying usefulness beyond a simple curve fit. An inviscid flow model was also created to estimate the vorticity shed by the interaction blade, and to predict the early stages of its incorporation into the interacting vortex.

  2. Manipulation of upstream rotor leading edge vortex and its effects on counter rotating propeller noise

    NASA Technical Reports Server (NTRS)

    Squires, Becky

    1993-01-01

    The leading edge vortex of a counter rotating propeller (CRP) model was altered by using shrouds and by turning the upstream rotors to a forward sweep configuration. Performance, flow, and acoustic data were used to determine the effect of vortex impingement on the noise signature of the CRP system. Forward sweep was found to eliminate the leading edge vortex of the upstream blades. Removal of the vortex had little effect on the tone noise at the forward and rear blade passing frequencies (BPF's) but significantly altered both the sound pressure level and directivity of the interaction tone which occurs at the sum of the two BPF's. A separate manipulation of the leading edge vortex performed by installing shrouds of various inlet length on the CRP verified that diverting the vortex path increases the noise level of the interaction tone. An unexpected link has been established between the interaction tone and the leading edge vortex-blade interaction phenomenon.

  3. The calculation of rotor/fuselage interaction for two-dimensional bodies

    NASA Technical Reports Server (NTRS)

    Stremel, Paul M.

    1990-01-01

    Unsteady rotor wake interactions with the empennage, tail boom, and other aerodynamic surfaces have a significant influence on the aerodynamic performance of the helicopter, ride quality, and vibration. A Computational Fluid Dynamic (CFD) method for computing the aerodynamic interaction between an interacting vortex wake and the viscous flow about arbitrary 2-D bodies was developed to address this helicopter problem. The vorticity and flow field velocities are calculated on a body-fitted computational mesh using an uncoupled iterative solution. The interacting vortex wake is represented by an array of discrete vortices which, in turn, are represented by a finite core model. The evolution of the interacting vortex wake is calculated by Lagrangian techniques. The flow around circular and elliptic cylinders in the absence of an interacting vortex wake was calculated. These results compare very well with other numerical results and with results obtained from experiment and thereby demonstrate the accuracy of the viscous solution. The interaction of a simulated rotor wake with the flow about 2-D bodies, representing cross sections of fuselage components, was calculated to address the vortex interaction problem. The vortex interaction was calculated for the flow about a circular and an elliptic cylinder at 45 and 90 degrees incidence. The results demonstrate the significant variation in lift and drag on the 2-D bodies during the vortex interaction.

  4. Phase diagrams of vortex matter with multi-scale inter-vortex interactions in layered superconductors.

    PubMed

    Meng, Qingyou; Varney, Christopher N; Fangohr, Hans; Babaev, Egor

    2017-01-25

    It was recently proposed to use the stray magnetic fields of superconducting vortex lattices to trap ultracold atoms for building quantum emulators. This calls for new methods for engineering and manipulating of the vortex states. One of the possible routes utilizes type-1.5 superconducting layered systems with multi-scale inter-vortex interactions. In order to explore the possible vortex states that can be engineered, we present two phase diagrams of phenomenological vortex matter models with multi-scale inter-vortex interactions featuring several attractive and repulsive length scales. The phase diagrams exhibit a plethora of phases, including conventional 2D lattice phases, five stripe phases, dimer, trimer, and tetramer phases, void phases, and stable low-temperature disordered phases. The transitions between these states can be controlled by the value of an applied external field.

  5. Vortex Ring Interaction With a Coaxially Aligned Cylinderical Rod

    NASA Astrophysics Data System (ADS)

    Arakeri, Jaywant H.; Rajmanoharan, P.; Koochesfahani, Manoochehr

    1998-11-01

    We present results of experiments of a fully developed vortex ring interacting with a cylinderical rod, having a rounded nose, placed coaxially in line with the motion of the ring. The pressure field of the translating ring causes unsteady boundary layer separation and results in the formation of one or more ( secondary ) vortex rings, that subsequently interact. The nature and strength of the interaction depends on the ratio of the cylinder diameter to the ring diameter. For the larger diameter cylinders the vortex ring travels a few ring diameters before it breaks up. For the smaller diameter cylinders the vortex ring speed decreases slowly and, simultaneously, its diameter increases.

  6. A computational study on the interaction between a vortex and a shock wave

    NASA Technical Reports Server (NTRS)

    Meadows, Kristine R.; Kumar, Ajay; Hussaini, M. Y.

    1989-01-01

    A computational study of two-dimensional shock vortex interaction is discussed in this paper. A second order upwind finite volume method is used to solve the Euler equations in conservation form. In this method, the shock wave is captured rather than fitted so that the cases where shock vortex interaction may cause secondary shocks can also be investigated. The effects of vortex strength on the computed flow and acoustic field generated by the interaction are qualitatively evaluated.

  7. Vortices in a rotating two-component Bose–Einstein condensate with tunable interactions and harmonic potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xiao-Fei, E-mail: xfzhang@ntsc.ac.cn; Du, Zhi-Jing; Tan, Ren-Bing

    We consider a pair of coupled nonlinear Schrödinger equations modeling a rotating two-component Bose–Einstein condensate with tunable interactions and harmonic potential, with emphasis on the structure of vortex states by varying the strength of inter-component interaction, rotational frequency, and the aspect ratio of the harmonic potential. Our results show that the inter-component interaction greatly enhances the effect of rotation. For the case of isotropic harmonic potential and small inter-component interaction, the initial vortex structure remains unchanged. As the ratio of inter- to intra-component interactions increases, each component undergoes a transition from a vortex lattice (vortex line) in an isotropic (anisotropic)more » harmonic potential to an alternatively arranged stripe pattern, and eventually to the interwoven “serpentine” vortex sheets. Moreover, in the case of anisotropic harmonic potential the system can develop to a rotating droplet structure. -- Highlights: •Different vortex structures are obtained within the full parameter space. •Effects of system parameters on the ground state structure are discussed. •Phase transition between different vortex structures is also examined. •Present one possible way to obtain the rotating droplet structure. •Provide many possibilities to manipulate vortex in two-component BEC.« less

  8. Compressible Vortex Ring

    NASA Astrophysics Data System (ADS)

    Elavarasan, Ramasamy; Arakeri, Jayawant; Krothapalli, Anjaneyulu

    1999-11-01

    The interaction of a high-speed vortex ring with a shock wave is one of the fundamental issues as it is a source of sound in supersonic jets. The complex flow field induced by the vortex alters the propagation of the shock wave greatly. In order to understand the process, a compressible vortex ring is studied in detail using Particle Image Velocimetry (PIV) and shadowgraphic techniques. The high-speed vortex ring is generated from a shock tube and the shock wave, which precedes the vortex, is reflected back by a plate and made to interact with the vortex. The shadowgraph images indicate that the reflected shock front is influenced by the non-uniform flow induced by the vortex and is decelerated while passing through the vortex. It appears that after the interaction the shock is "split" into two. The PIV measurements provided clear picture about the evolution of the vortex at different time interval. The centerline velocity traces show the maximum velocity to be around 350 m/s. The velocity field, unlike in incompressible rings, contains contributions from both the shock and the vortex ring. The velocity distribution across the vortex core, core diameter and circulation are also calculated from the PIV data.

  9. Mechanics of Individual, Isolated Vortices in a Cuprate Superconductor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Auslaender, M.

    2010-05-25

    Superconductors often contain quantized microscopic whirlpools of electrons, called vortices, that can be modeled as one-dimensional elastic objects. Vortices are a diverse playground for condensed matter because of the interplay between thermal fluctuations, vortex-vortex interactions, and the interaction of the vortex core with the three-dimensional disorder landscape. While vortex matter has been studied extensively, the static and dynamic properties of an individual vortex have not. Here we employ magnetic force microscopy (MFM) to image and manipulate individual vortices in detwinned, single crystal YBa{sub 2}Cu{sub 3}O{sub 6.991} (YBCO), directly measuring the interaction of a moving vortex with the local disorder potential.more » We find an unexpected and dramatic enhancement of the response of a vortex to pulling when we wiggle it transversely. In addition, we find enhanced vortex pinning anisotropy that suggests clustering of oxygen vacancies in our sample and demonstrates the power of MFM to probe vortex structure and microscopic defects that cause pinning.« less

  10. Rotor Vortex Filaments: Living on the Slipstream's Edge

    NASA Technical Reports Server (NTRS)

    Young, Larry A.

    1997-01-01

    The purpose of this paper is to gain a better understanding of rotor wake evolution in hover and axial flow by deriving an analytical solution for the time dependent behavior of vortex filament circulation and core size. This solution is applicable only for vortex filaments in the rotor far-wake. A primarily inviscid vortex/shear layer interaction (where the slipstream boundary is modeled as a shear layer) has been identified in this analytical treatment. This vortex/shear layer interaction results in decreasing, vortex filament circulation and core size with time. The inviscid vortex/shear layer interaction is shown, in a first-order treatment, to be of greater magnitude than viscous diffusion effects. The rate of contraction, and ultimate collapse, of the vortex filament core is found to be directly proportional to the rotor inflow velocity. This new insight into vortex filament decay promises to help reconcile several disparate observations made in the literature and will, hopefully, promote new advances in theoretical modeling of rotor wakes.

  11. Theoretical and Numerical Studies of a Vortex - Interaction Problem

    NASA Astrophysics Data System (ADS)

    Hsu, To-Ming

    The problem of vortex-airfoil interaction has received considerable interest in the helicopter industry. This phenomenon has been shown to be a major source of noise, vibration, and structural fatigue in helicopter flight. Since unsteady flow is always associated with vortex shedding and movement of free vortices, the problem of vortex-airfoil interaction also serves as a basic building block in unsteady aerodynamics. A careful study of the vortex-airfoil interaction reveals the major effects of the vortices on the generation of unsteady aerodynamic forces, especially the lift. The present work establishes three different flow models to study the vortex-airfoil interaction problem: a theoretical model, an inviscid flow model, and a viscous flow model. In the first two models, a newly developed aerodynamic force theorem has been successfully applied to identify the contributions to unsteady forces from various vortical systems in the flow field. Through viscous flow analysis, different features of laminar interaction, turbulent attached interaction, and turbulent separated interaction are examined. Along with the study of the vortex-airfoil interaction problem, several new schemes are developed for inviscid and viscous flow solutions. New formulas are derived to determine the trailing edge flow conditions, such as flow velocity and direction, in unsteady inviscid flow. A new iteration scheme that is faster for higher Reynolds number is developed for solving the viscous flow problem.

  12. Experimental study of interaction between a vortex ring and a solid surface for a wide range of ring velocities

    NASA Astrophysics Data System (ADS)

    Nikulin, V. V.

    2014-12-01

    Experiments were carried out for interaction of water-travelling vortex ring with a solid surface with the normal impingement to the surface; the vortex velocity was varied by factor of 30 and the Reynolds number had 60-times span. Laminar and turbulent vortex rings have been studied. The ratio of the vortex diameter at the moment of rebound from the surface to the vortex diameter before impingement is almost independent of the vortex velocity and Reynolds number. Within the experimental accuracy, the diameter of the vortex ring after rebound equals the footprint of the vortex on the solid surface. This brings assumption that the previously observed restrictions on the trace were related to the vortex rebound from the solid surface.

  13. Validation of a White-light 3D Body Volume Scanner to Assess Body Composition.

    PubMed

    Medina-Inojosa, Jose; Somers, Virend; Jenkins, Sarah; Zundel, Jennifer; Johnson, Lynne; Grimes, Chassidy; Lopez-Jimenez, Francisco

    2017-01-01

    Estimating body fat content has shown to be a better predictor of adiposity-related cardiovascular risk than the commonly used body mass index (BMI). The white-light 3D body volume index (BVI) scanner is a non-invasive device normally used in the clothing industry to assess body shapes and sizes. We assessed the hypothesis that volume obtained by BVI is comparable to the volume obtained by air displacement plethysmography (Bod-Pod) and thus capable of assessing body fat mass using the bi-compartmental principles of body composition. We compared BVI to Bod-pod, a validated bicompartmental method to assess body fat percent that uses pressure/volume relationships in isothermal conditions to estimate body volume. Volume is then used to calculate body density (BD) applying the formula density=Body Mass/Volume. Body fat mass percentage is then calculated using the Siri formula (4.95/BD - 4.50) × 100. Subjects were undergoing a wellness evaluation. Measurements from both devices were obtained the same day. A prediction model for total Bod-pod volume was developed using linear regression based on 80% of the observations (N=971), as follows: Predicted Bod-pod Volume (L)=9.498+0.805*(BVI volume, L)-0.0411*(Age, years)-3.295*(Male=0, Female=1)+0.0554*(BVI volume, L)*(Male=0, Female=1)+0.0282*(Age, years)*(Male=0, Female=1). Predictions for Bod-pod volume based on the estimated model were then calculated for the remaining 20% (N=243) and compared to the volume measured by the Bod-pod. Mean age among the 971 individuals was 41.5 ± 12.9 years, 39.4% were men, weight 81.6 ± 20.9 kg, BMI was 27.8 ± 6.3kg/m 2 . Average difference between volume measured by Bod-pod- predicted volume by BVI was 0.0 L, median: -0.4 L, IQR: -1.8 L to 1.5 L, R2=0.9845. Average difference between body fat measured-predicted was-1%, median: -2.7%, IQR: -13.2 to 9.9, R2=0.9236. Volume and BFM can be estimated by using volume measurements obtained by a white- light 3D body scanner and the prediction model developed in this study.

  14. Spectrum study on unsteadiness of shock wave-vortex ring interaction

    NASA Astrophysics Data System (ADS)

    Dong, Xiangrui; Yan, Yonghua; Yang, Yong; Dong, Gang; Liu, Chaoqun

    2018-05-01

    Shock oscillation with low-frequency unsteadiness commonly occurs in supersonic flows and is a top priority for the control of flow separation caused by shock wave and boundary layer interaction. In this paper, the interaction of the shock caused by the compression ramp and the vortex rings generated by a micro-vortex generator (MVG) in a supersonic flow at Ma = 2.5 is simulated by the implicit large eddy simulation method. The analysis of observation and the frequency of both the vortex ring motion and the shock oscillation is carried out. The results show that the shock produced by a compression ramp flow at Ma = 2.5 has a dominant non-dimensional low frequency, which is around St = 0.002, while the vortex rings behind the MVG have a dominant high frequency which is around St = 0.038. The dominant low frequency of the shock, which is harmful, can be removed or weakened through the shock-vortex ring interaction by the vortex rings which generate high frequency fluctuations. In the shock and vortex ring interaction region, a dominant high frequency St = 0.037-0.038 has been detected rather than the low frequency St = 0.002, which indicates that the vortex ring is stiff enough to break or weaken the shock. This analysis could provide an effective tool to remove or weaken the low frequency pressure fluctuation below 500 Hz, which has a negative effect on the flight vehicle structures and the environmental protection, through the high frequency vortex generation.

  15. Flow visualizations of perpendicular blade vortex interactions

    NASA Technical Reports Server (NTRS)

    Rife, Michael C.; Davenport, William J.

    1992-01-01

    Helium bubble flow visualizations have been performed to study perpendicular interaction of a turbulent trailing vortex and a rectangular wing in the Virginia Tech Stability Tunnel. Many combinations of vortex strength, vortex-blade separation (Z(sub s)) and blade angle of attack were studied. Photographs of representative cases are presented. A range of phenomena were observed. For Z(sub s) greater than a few percent chord the vortex is deflected as it passes the blade under the influence of the local streamline curvature and its image in the blade. Initially the interaction appears to have no influence on the core. Downstream, however, the vortex core begins to diffuse and grow, presumably as a consequence of its interaction with the blade wake. The magnitude of these effects increases with reduction in Z(sub s). For Z(sub s) near zero the form of the interaction changes and becomes dependent on the vortex strength. For lower strengths the vortex appears to split into two filaments on the leading edge of the blade, one passing on the pressure and one passing on the suction side. At higher strengths the vortex bursts in the vicinity of the leading edge. In either case the core of its remnants then rapidly diffuse with distance downstream. Increase in Reynolds number did not qualitatively affect the flow apart from decreasing the amplitude of the small low-frequency wandering motions of the vortex. Changes in wing tip geometry and boundary layer trip had very little effect.

  16. On nonlinear Tollmien-Schlichting/vortex interaction in three-dimensional boundary layers

    NASA Technical Reports Server (NTRS)

    Davis, Dominic A. R.; Smith, Frank T.

    1993-01-01

    The instability of an incompressible three-dimensional boundary layer (that is, one with cross-flow) is considered theoretically and computationally in the context of vortex/wave interactions. Specifically the work centers on two low amplitude, lower-branch Tollmien-Schlichting waves which mutually interact to induce a weak longitudinal vortex flow; the vortex motion, in turn, gives rise to significant wave-modulation via wall-shear forcing. The characteristic Reynolds number is taken as a large parameter and, as a consequence, the waves' and the vortex motion are governed primarily by triple-deck theory. The nonlinear interaction is captured by a viscous partial-differential system for the vortex coupled with a pair of amplitude equations for each wave pressure. Three distinct possibilities were found to emerge for the nonlinear behavior of the flow solution downstream - an algebraic finite-distance singularity, far downstream saturation or far-downstream wave-decay (leaving pure vortex flow) - depending on the input conditions, the wave angles, and the size of the cross-flow.

  17. Aeroacoustic interaction of a distributed vortex with a lifting Joukowski airfoil

    NASA Technical Reports Server (NTRS)

    Hardin, J. C.; Lamkin, S. L.

    1984-01-01

    A first principles computational aeroacoustics calculation of the flow and noise fields produced by the interaction of a distributed vortex with a lifting Joukowski airfoil is accomplished at the Reynolds number of 200. The case considered is that where the circulations of the vortex and the airfoil are of opposite sign, corresponding to blade vortex interaction on the retreating side of a single helicopter rotor. The results show that the flow is unsteady, even in the absence of the incoming vortex, resulting in trailing edge noise generation. After the vortex is input, it initially experiences a quite rapid apparent diffusion rate produced by stretching in the airfoil velocity gradients. Consideration of the effects of finite vortex size and viscosity causes the noise radiation during the encounter to be much less impulsive than predicted by previous analyses.

  18. Vortex/Body Interaction and Sound Generation in Low-Speed Flow

    NASA Technical Reports Server (NTRS)

    Kao, Hsiao C.

    1998-01-01

    The problem of sound generation by vortices interacting with an arbitrary body in a low-speed flow has been investigated by the method of matched asymptotic expansions. For the purpose of this report, it is convenient to divide the problem into three parts. In the first part the mechanism of the vortex/body interaction, which is essentially the inner solution in the inner region, is examined. The trajectories for a system of vortices rotating about their centroid are found to undergo enormous changes after interaction; from this, some interesting properties emerged. In the second part, the problem is formulated, the outer solution is found, matching is implemented, and solutions for acoustic pressure are obtained. In the third part, Fourier integrals are evaluated and predicated results presented. An examination of these results reveals the following: (a) the background noise can be either augmented or attenuated by a body after interaction, (b) sound generated by vortex/body interaction obeys a scaling factor, (C) sound intensity can be reduced substantially by positioning the vortex system in the "favorable" side of the body instead of the "unfavorable" side, and (d) acoustic radiation from vortex/bluff-body interaction is less than that from vortex/airfoil interaction under most circumstances.

  19. Numerical analysis on interactions of vortex, shock wave, and exothermal reaction in a supersonic planar shear layer laden with droplets

    NASA Astrophysics Data System (ADS)

    Ren, Zhaoxin; Wang, Bing; Zheng, Longxi

    2018-03-01

    The analysis on the interactions of a large-scale shearing vortex, an incident oblique shock wave, and a chemical reaction in a planar shear layer is performed by numerical simulations. The reacting flows are obtained by directly solving the multi-species Navier-Stokes equations in the Eulerian frame, and the motions of individual point-mass fuel droplets are tracked in the Lagrangian frame considering the two-way coupling. The influences of shock strength and spray equivalence ratio on the shock-vortex interaction and the induced combustion are further studied. Under the present conditions, the incident shock is distorted by the vortex evolution to form the complicated waves including an incident shock wave, a multi-refracted wave, a reflected wave, and a transmitted wave. The local pressure and temperature are elevated by the shock impingement on the shearing vortex, which carries flammable mixtures. The chemical reaction is mostly accelerated by the refracted shock across the vortex. Two different exothermal reaction modes could be distinguished during the shock-vortex interaction as a thermal mode, due to the additional energy from the incident shock, and a local quasi detonation mode, due to the coupling of the refracted wave with reaction. The former mode detaches the flame and shock wave, whereas the latter mode tends to occur when the incident shock strength is higher and local equivalence ratio is higher approaching to the stoichiometric value. The numerical results illustrate that those two modes by shock-vortex interaction depend on the structure of the post-shock flame kernel, which may be located either in the vortex-braids of post-shock flows or in the shock-vortex interaction regime.

  20. Vortex Ring Dynamics in Radially Confined Domains

    NASA Astrophysics Data System (ADS)

    Stewart, Kelley; Niebel, Casandra; Jung, Sunghwan; Vlachos, Pavlos

    2010-11-01

    Vortex ring dynamics have been studied extensively in semi-infinite quiescent volumes. However, very little is known about vortex-ring formation in wall-bounded domains where vortex wall interaction will affect both the vortex ring pinch-off and propagation velocity. This study addresses this limitation and studies vortex formation in radially confined domains to analyze the affect of vortex-ring wall interaction on the formation and propagation of the vortex ring. Vortex rings were produced using a pneumatically driven piston cylinder arrangement and were ejected into a long cylindrical tube which defined the confined downstream domain. A range of confinement domains were studied with varying confinement diameters Velocity field measurements were performed using planar Time Resolved Digital Particle Image Velocimetry (TRDPIV) and were processed using an in-house developed cross-correlation PIV algorithm. The experimental analysis was used to facilitate the development of a theoretical model to predict the variations in vortex ring circulation over time within confined domains.

  1. The formation of new quasi-stationary vortex patterns from the interaction of two identical vortices in a rotating fluid

    NASA Astrophysics Data System (ADS)

    Sokolovskiy, Mikhail A.; Verron, Jacques; Carton, Xavier J.

    2018-06-01

    Within the framework of the quasi-geostrophic approximation, the interactions of two identical initially circular vortex patches are studied using the contour dynamics/surgery method. The cases of barotropic vortices and of vortices in the upper layer of a two-layer fluid are considered. Diagrams showing the end states of vortex interactions and, in particular, the new regime of vortex triplet formation are constructed for a wide range of external parameters. This paper shows that, in the nonlinear evolution of two such (like-signed) vortices, the filaments and vorticity fragments surrounding the merged vortex often collapse into satellite vortices. Therefore, the conditions for the formation and the quasi-steady motions of a new type of triplet-shaped vortex structure are obtained.

  2. Antisymmetric vortex interactions in the wake behind a step cylinder

    NASA Astrophysics Data System (ADS)

    Tian, Cai; Jiang, Fengjian; Pettersen, Bjørnar; Andersson, Helge I.

    2017-10-01

    Flow around a step cylinder at the Reynolds number 150 was simulated by directly solving the full Navier-Stokes equations. The configuration was adopted from the work of Morton and Yarusevych ["Vortex shedding in the wake of a step cylinder," Phys. Fluids 22, 083602 (2010)], in which the wake dynamics were systematically described. A more detailed investigation of the vortex dislocation process has now been performed. Two kinds of new loop vortex structures were identified. Additionally, antisymmetric vortex interactions in two adjacent vortex dislocation processes were observed and explained. The results in this letter serve as a supplement for a more thorough understanding of the vortex dynamics in the step cylinder wake.

  3. Influence of air-jet vortex generator diameter on separation region

    NASA Astrophysics Data System (ADS)

    Szwaba, Ryszard

    2013-08-01

    Control of shock wave and boundary layer interaction continues to attract a lot of attention. In recent decades several methods of interaction control have been investigated. The research has mostly concerned solid (vane type) vortex generators and transpiration methods of suction and blowing. This investigation concerns interaction control using air-jets to generate streamwise vortices. The effectiveness of air-jet vortex generators in controlling separation has been proved in a previous research. The present paper focuses on the influence of the vortex generator diameter on the separation region. It presents the results of experimental investigations and provides new guidelines for the design of air-jet vortex generators to obtain more effective separation control.

  4. An analysis of blade vortex interaction aerodynamics and acoustics

    NASA Technical Reports Server (NTRS)

    Lee, D. J.

    1985-01-01

    The impulsive noise associated with helicopter flight due to Blade-Vortex Interaction, sometimes called blade slap is analyzed especially for the case of a close encounter of the blade-tip vortex with a following blade. Three parts of the phenomena are considered: the tip-vortex structure generated by the rotating blade, the unsteady pressure produced on the following blade during the interaction, and the acoustic radiation due to the unsteady pressure field. To simplify the problem, the analysis was confined to the situation where the vortex is aligned parallel to the blade span in which case the maximum acoustic pressure results. Acoustic radiation due to the interaction is analyzed in space-fixed coordinates and in the time domain with the unsteady pressure on the blade surface as the source of chordwise compact, but spanwise non-compact radiation. Maximum acoustic pressure is related to the vortex core size and Reynolds number which are in turn functions of the blade-tip aerodynamic parameters. Finally noise reduction and performance are considered.

  5. Point vortex interactions on a toroidal surface.

    PubMed

    Sakajo, Takashi; Shimizu, Yuuki

    2016-07-01

    Owing to non-constant curvature and a handle structure, it is not easy to imagine intuitively how flows with vortex structures evolve on a toroidal surface compared with those in a plane, on a sphere and a flat torus. In order to cultivate an insight into vortex interactions on this manifold, we derive the evolution equation for N -point vortices from Green's function associated with the Laplace-Beltrami operator there, and we then formulate it as a Hamiltonian dynamical system with the help of the symplectic geometry and the uniformization theorem. Based on this Hamiltonian formulation, we show that the 2-vortex problem is integrable. We also investigate the point vortex equilibria and the motion of two-point vortices with the strengths of the same magnitude as one of the fundamental vortex interactions. As a result, we find some characteristic interactions between point vortices on the torus. In particular, two identical point vortices can be locally repulsive under a certain circumstance.

  6. Point vortex interactions on a toroidal surface

    PubMed Central

    Shimizu, Yuuki

    2016-01-01

    Owing to non-constant curvature and a handle structure, it is not easy to imagine intuitively how flows with vortex structures evolve on a toroidal surface compared with those in a plane, on a sphere and a flat torus. In order to cultivate an insight into vortex interactions on this manifold, we derive the evolution equation for N-point vortices from Green's function associated with the Laplace–Beltrami operator there, and we then formulate it as a Hamiltonian dynamical system with the help of the symplectic geometry and the uniformization theorem. Based on this Hamiltonian formulation, we show that the 2-vortex problem is integrable. We also investigate the point vortex equilibria and the motion of two-point vortices with the strengths of the same magnitude as one of the fundamental vortex interactions. As a result, we find some characteristic interactions between point vortices on the torus. In particular, two identical point vortices can be locally repulsive under a certain circumstance. PMID:27493577

  7. Interactions between vortex tubes and magnetic-flux rings at high kinetic and magnetic Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Kivotides, Demosthenes

    2018-03-01

    The interactions between vortex tubes and magnetic-flux rings in incompressible magnetohydrodynamics are investigated at high kinetic and magnetic Reynolds numbers, and over a wide range of the interaction parameter. The latter is a measure of the turnover time of the large-scale fluid motions in units of the magnetic damping time, or of the strength of the Lorentz force in units of the inertial force. The small interaction parameter results, which are related to kinematic turbulent dynamo studies, indicate the evolution of magnetic rings into flattened spirals wrapped around the vortex tubes. This process is also observed at intermediate interaction parameter values, only now the Lorentz force creates new vortical structures at the magnetic spiral edges, which have a striking solenoid vortex-line structure, and endow the flattened magnetic-spiral surfaces with a curvature. At high interaction parameter values, the decisive physical factor is Lorentz force effects. The latter create two (adjacent to the magnetic ring) vortex rings that reconnect with the vortex tube by forming an intriguing, serpentinelike, vortex-line structure, and generate, in turn, two new magnetic rings, adjacent to the initial one. In this regime, the morphologies of the vorticity and magnetic field structures are similar. The effects of these structures on kinetic and magnetic energy spectra, as well as on the direction of energy transfer between flow and magnetic fields, are also indicated.

  8. Interaction of Vortex Rings and Steady Jets with Permeable Screens of Varied Porosity

    NASA Astrophysics Data System (ADS)

    Musta, Mustafa

    2013-11-01

    Vortex ring and steady jet interaction with a porous matrix formed from several parallel, transparent permeable screens with the same grid geometry for open area ratios (φ) 49.5% - 83.8% was studied previously using digital particle image velocimetry (DPIV) at jet Reynolds number (Re) of 1000-3000. Vortex ring results showed that unlike the experiments with thin screens, a transmitted vortex ring, which has a similar diameter to the primary one, wasn't formed. Instead a centerline vortex ring like structure formed and its diameter, circulation, and dissipation time decreased as φ decreased. However, for the case of screens φ = 55.7% with large screen spacing, reformation of large scale weak vortex rings was observed downstream of the first screen. The present work experimentally investigates the interaction of vortex rings and steady jets with screens of decreasing φ (83.8%-49.5%) in the flow direction. A piston type vortex ring generator was used and measurements were made using DPIV. The vortex ring results show that the size and circulation of the vortex ring like flow structure was changed based on the screen φ within the permeable screen matrix. Similarly, steady jet flow structure and the local turbulent kinetic energy was changed based on the local screen φ.

  9. Numerical investigation of a vortex ring impinging on a coaxial aperture

    NASA Astrophysics Data System (ADS)

    Hu, Jiacheng; Peterson, Sean D.

    2017-11-01

    Recent advancements in smart materials have sparked an interest in the development of small scale fluidic energy harvesters for powering distributed applications in aquatic environments, where coherent vortex structures are prevalent. Thus, it is crucial to investigate the interaction of viscous vortices in the proximity of a thin plate (a common harvester configuration). Hence, the present study systematically examines the interaction of a vortex ring impinging on an infinitesimally thin wall with a coaxially aligned annular aperture. The rigid aperture serves as an axisymmetric counterpart of the thin plate, and the vortex ring represents a typical coherent vortex structure. The results indicate that the vortex dynamics can be categorized into two regimes based on the aperture to ring radius ratio (Rr). The rebound regime (Rr < 0.9) exhibits the classical unsteady boundary layer interaction in a vortex ring-wall collision. The vortex ring is able to slip past the aperture when Rr >= 0.9 , and an increase in the vortex ring impulse is observed for 1.0 <= Rr <= 1.3 due to fluid entrainment. Furthermore, pressure loadings are also compared to elucidate an optimal energy harvesting strategy in vortex impact configurations. This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant (RGPIN-05778) and Alexander Graham Bell Canada Graduate Scholarship (CGS-D).

  10. Further studies of turbulence structure resulting from interactions between embedded vortices and wall jets at high blowing ratios

    NASA Astrophysics Data System (ADS)

    Doner, William D.

    1989-12-01

    Interactions of wall jets and vortices embedded in turbulent layers commonly occur near gas turbine blades and endwalls where film cooling is employed. These interactions frequently result in undesirable heat transfer effects at blade and endwall surfaces. In this thesis, a crossed hot-wire probe is used to measure the turbulence structure resulting from this type of interaction. The vortex is generated using a half delta-wing vortex generator mounted 12 deg with respect to a 10 m/s mean velocity flow over a flat plate. A single injection hole, 0.95 cm in diameter, inclined 30 deg to the horizontal, is positioned 59.3 cm downstream of the vortex generator. The vortex generator is positioned so that vortex upwash and downwash could be located over the injection hole. Streamwise development of the turbulent boundary layer was investigated for the following cases: (1) boundary layer with jet only (m = 1.5), and (2) boundary layer with vortex only. Measurement of interaction between the boundary layer, vortex upwash, and the wall jet was made at one station with various blowing ratios. At low blowing ratios (m = 0.5 and 1.5) the vortex dominates the flow. Significant alterations to the turbulent structure are seen in the Reynolds stress components, vorticity distributions and mean velocities. At higher blowing ratios (m = 2.5 and 3.5) the jet dominates the flow, the vortex is blown away from the wall, and its turbulence effects are dispersed over a larger area.

  11. Filtered Rayleigh scattering mixing measurements of merging and non-merging streamwise vortex interactions in supersonic flow

    NASA Astrophysics Data System (ADS)

    Ground, Cody R.; Gopal, Vijay; Maddalena, Luca

    2018-04-01

    By introducing large-scale streamwise vortices into a supersonic flow it is possible to enhance the rate of mixing between two fluid streams. However, increased vorticity content alone does not explicitly serve as a predictor of mixing enhancement. Additional factors, particularly the mutual interactions occurring between neighboring vortical structures, affect the underlying fundamental physics that influence the rate at which the fluids mix. As part of a larger systematic study on supersonic streamwise vortex interactions, this work experimentally quantifies the average rate of mixing of helium and air in the presence of two separate modes of vortex interaction, the merging and non-merging of a pair of co-rotating vortices. In these experiments vortex-generating expansion ramps are placed on a strut injector. The freestream Mach number is set at 2.5 and helium is injected as a passive scalar. Average injectant mole fractions at selected flow planes downstream of the injector are measured utilizing the filtered Rayleigh scattering technique. The filtered Rayleigh scattering measurements reveal that, in the domain surveyed, the merging vortex interaction strongly displaces the plume from its initial horizontal orientation while the non-merging vortex interaction more rapidly mixes the helium and air. The results of the current experiments are consistent with associated knowledge derived from previous analyses of the two studied configurations which have included the detailed experimental characterization of entrainment, turbulent kinetic energy, and vorticity of both modes of vortex interaction.

  12. An experimental investigation of the chopping of helicopter main rotor tip vortices by the tail rotor. Part 2: High speed photographic study

    NASA Technical Reports Server (NTRS)

    Cary, Charles M.

    1987-01-01

    The interaction of a free vortex and a rotor was recorded photographically using oil smoke and stroboscopic illumination. The incident vortex is normal to the plane of the rotor and crosses the rotor plane. This idealized aerodynamic experiment most nearly corresponds to helicopter flight conditions in which a tip vortex from the main rotor is incident upon the tail rotor while hovering. The high speed photographs reveal important features not observed using conventional photography where the image is the time average of varying instantaneous images. Most prominent is the strong interaction between the rotor tip vortex system and the incident vortex, resulting in the roll-up of the incident vortex around the (stronger) tip vortices and the resulting rapid destabilization of the deformed incident vortex. The viscous interaction is clearly shown also. Other forms of instabilities or wave-like behavior may be apparent from further analysis of the photographs.

  13. Forward rotor vortex effects on counter rotating propeller noise

    NASA Technical Reports Server (NTRS)

    Laur, Michele; Squires, Becky; Nagel, Robert T.

    1992-01-01

    Three configurations of a model counter rotating propeller manipulate the blade tip flow by: placing the CRP at angle of attack, installing shrouds, and turning the upstream blades to provide forward sweep. Flow visualization and flow measurements with thermal anemometry show no evidence of a tip vortex; however, a leading edge vortex was detected on aft swept blades. The modifications served to alter the strength and/or path of the leading edge vortex. The vortical flow is eliminated by forward sweep on the upstream propeller blades. Far field acoustic data from each test indicate only small influences on the level and directivity of the BPFs. The interaction tone at the sum of the two BPF's was significantly altered in a consistent manner. As the vortex system varied, the interaction tone was affected: far field noise levels in the forward quandrant increased and the characteristic noise minimum near the plane of rotation became less pronounced and in some cases were eliminated. If the forward propeller leading edge vortex system does not impact the rear propeller in the standard manner, a net increase in the primary interaction tone occurs for the model tested. If the leading edge vortex is removed, the interaction tone increases.

  14. Interaction of Vortex Ring with Cutting Plate

    NASA Astrophysics Data System (ADS)

    Musta, Mustafa

    2015-11-01

    The interaction of a vortex ring impinging on a thin cutting plate was made experimentally using Volumetric 3-component Velocitmetry (v3v) technique. The vortex rings were generated with piston-cylinder vortex ring generator using piston stroke-to-diameter ratios and Re at 2-3 and 1500 - 3000, respectively. The cutting of vortex rings below center line leads to the formation of secondary vortices on each side of the plate which is look like two vortex rings, and a third vortex ring propagates further downstream in the direction of the initial vortex ring, which is previously showed by flow visualization study of Weigand (1993) and called ``trifurcation''. Trifurcation is very sensitive to the initial Reynolds number and the position of the plate with respect to the vortex ring generator pipe. The present work seeks more detailed investigation on the trifurcation using V3V technique. Conditions for the formation of trifurcation is analyzed and compared with Weigand (1993). The formed secondary vortex rings and the propagation of initial vortex ring in the downstream of the plate are analyzed by calculating their circulation, energy and trajectories.

  15. Wind tunnel investigation of the interaction and breakdown characteristics of slender wing vortices at subsonic, transonic, and supersonic speeds

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.

    1991-01-01

    The vortex dominated aerodynamic characteristics of a generic 65 degree cropped delta wing model were studied in a wind tunnel at subsonic through supersonic speeds. The lee-side flow fields over the wing-alone configuration and the wing with leading edge extension (LEX) added were observed at M (infinity) equals 0.40 to 1.60 using a laser vapor screen technique. These results were correlated with surface streamline patterns, upper surface static pressure distributions, and six-component forces and moments. The wing-alone exhibited vortex breakdown and asymmetry of the breakdown location at the subsonic and transonic speeds. An earlier onset of vortex breakdown over the wing occurred at transonic speeds due to the interaction of the leading edge vortex with the normal shock wave. The development of a shock wave between the vortex and wing surface caused an early separation of the secondary boundary layer. With the LEX installed, wing vortex breakdown asymmetry did not occur up to the maximum angle of attack in the present test of 24 degrees. The favorable interaction of the LEX vortex with the wing flow field reduced the effects of shock waves on the wing primary and secondary vortical flows. The direct interaction of the wing and LEX vortex cores diminished with increasing Mach number. The maximum attainable vortex-induced pressure signatures were constrained by the vacuum pressure limit at the transonic and supersonic speeds.

  16. A comparison with theory of peak to peak sound level for a model helicopter rotor generating blade slap at low tip speeds

    NASA Technical Reports Server (NTRS)

    Fontana, R. R.; Hubbard, J. E., Jr.

    1983-01-01

    Mini-tuft and smoke flow visualization techniques have been developed for the investigation of model helicopter rotor blade vortex interaction noise at low tip speeds. These techniques allow the parameters required for calculation of the blade vortex interaction noise using the Widnall/Wolf model to be determined. The measured acoustics are compared with the predicted acoustics for each test condition. Under the conditions tested it is determined that the dominating acoustic pulse results from the interaction of the blade with a vortex 1-1/4 revolutions old at an interaction angle of less than 8 deg. The Widnall/Wolf model predicts the peak sound pressure level within 3 dB for blade vortex separation distances greater than 1 semichord, but it generally over predicts the peak S.P.L. by over 10 dB for blade vortex separation distances of less than 1/4 semichord.

  17. Strain-induced intervortex interaction and vortex lattices in tetragonal superconductors

    DOE PAGES

    Lin, Shi -Zeng; Kogan, Vladimir G.

    2017-02-22

    In superconductors with strong coupling between superconductivity and elasticity manifested in a strong dependence of transition temperature on pressure, there is an additional contribution to intervortex interactions due to the strain field generated by vortices. When vortex lines are along the c axis of a tetragonal crystal, a square vortex lattice (VL) is favored at low vortex densities, because the vortex-induced strains contribution to the intervortex interactions is long range. At intermediate magnetic fields, the triangular lattice is stabilized. Furthermore, the triangular lattice evolves to the square lattice upon increasing magnetic field, and eventually the system locks to the squaremore » structure. We argue, however, that as magnetic field approaches the upper critical field H c2 the elastic intervortex interactions disappear faster than the standard London interactions, so that VL should return to the triangular structure. Our results are compared to VLs observed in the heavy fermion superconductor CeCoIn 5.« less

  18. Vortex rings

    NASA Technical Reports Server (NTRS)

    Shariff, Karim; Leonard, Anthony

    1992-01-01

    The vortex-ring problem in fluid mechanics is examined generally in terms of formation, the steady state, the duration of the rings, and vortex interactions. The formation is studied by examining the generation of laminar and turbulent vortex rings and their resulting structures with attention given to the three stages of laminar ring development. Inviscid dynamics is addressed to show how core dynamics affects overall ring motion, and laminar vortex structures are described in two dimensions. Viscous and inviscid structures are related in terms of 'leapfrogging', head-on collisions, and collisions with a no-slip wall. Linear instability theory is shown to successfully describe observational data, although late stages in the breakdown are not completely understood. This study of vortex rings has important implications for key aerodynamic issues including sound generation, transport and mixing, and vortex interactions.

  19. Non-invasive determination of external forces in vortex-pair-cylinder interactions

    NASA Astrophysics Data System (ADS)

    Hartmann, D.; Schröder, W.; Shashikanth, B. N.

    2012-06-01

    Expressions for the conserved linear and angular momenta of a dynamically coupled fluid + solid system are derived. Based on the knowledge of the flow velocity field, these expressions allow the determination of the external forces exerted on a body moving in the fluid such as, e.g., swimming fish. The verification of the derived conserved quantities is done numerically. The interaction of a vortex pair with a circular cylinder in various configurations of motions representing a generic test case for a dynamically coupled fluid + solid system is investigated in a weakly compressible Navier-Stokes setting using a Cartesian cut-cell method, i.e., the moving circular cylinder is represented by cut cells on a moving mesh. The objectives of this study are twofold. The first objective is to show the robustness of the derived expressions for the conserved linear and angular momenta with respect to bounded and discrete data sets. The second objective is to study the coupled dynamics of the vortex pair and a neutrally buoyant cylinder free to move in response to the fluid stresses exerted on its surface. A comparison of the vortex-body interaction with the case of a fixed circular cylinder evidences significant differences in the vortex dynamics. When the cylinder is fixed strong secondary vorticity is generated resulting in a repeating process between the primary vortex pair and the cylinder. In the neutrally buoyant cylinder case, a stable structure consisting of the primary vortex pair and secondary vorticity shear layers stays attached to the moving cylinder. In addition to these fundamental cases, the vortex-pair-cylinder interaction is studied for locomotion at constant speed and locomotion at constant thrust. It is shown that a similar vortex structure like in the neutrally buoyant cylinder case is obtained when the cylinder moves away from the approaching vortex pair at a constant speed smaller than the vortex pair translational velocity. Finally, the idealized symmetric settings are complemented by an asymmetric interaction of a vortex pair and a cylinder. This case is discussed for a fixed and a neutrally buoyant cylinder to show the validity of the derived relations for multi-dimensional body dynamics.

  20. New techniques for experimental generation of two-dimensional blade-vortex interaction at low Reynolds numbers

    NASA Technical Reports Server (NTRS)

    Booth, E., Jr.; Yu, J. C.

    1986-01-01

    An experimental investigation of two dimensional blade vortex interaction was held at NASA Langley Research Center. The first phase was a flow visualization study to document the approach process of a two dimensional vortex as it encountered a loaded blade model. To accomplish the flow visualization study, a method for generating two dimensional vortex filaments was required. The numerical study used to define a new vortex generation process and the use of this process in the flow visualization study were documented. Additionally, photographic techniques and data analysis methods used in the flow visualization study are examined.

  1. Flow structure generated by perpendicular blade vortex interaction and implications for helicopter noise predictions

    NASA Technical Reports Server (NTRS)

    Devenport, William J.; Glegg, Stewart A. L.

    1995-01-01

    This report summarizes accomplishments and progress for the period ending April 1995. Much of the work during this period has concentrated on preparation for an analysis of data produced by an extensive wind tunnel test. Time has also been spent further developing an empirical theory to account for the effects of blade-vortex interaction upon the circulation distribution of the vortex and on preliminary measurements aimed at controlling the vortex core size.

  2. Numerical Simulation of the Interaction of a Vortex with Stationary Airfoil in Transonic Flow,

    DTIC Science & Technology

    1984-01-12

    Goorjian, P. M., "Implicit Vortex Wakes ," AIAA Journal, Vol. 15, No. 4, April Finite- Difference Computations of Unsteady Transonic 1977, pp. 581-590... Difference Simulations of Three- tion of Wing- Vortex Interaction in Transonic Flow Dimensional Flow," AIAA Journal, Vol. 18, No. 2, Using Implicit...assumptions are made in p = density modeling the nonlinear vortex wake structure. Numerical algorithms based on the Euler equations p_ = free stream density

  3. Vortex interaction with a leading-edge of finite thickness

    NASA Technical Reports Server (NTRS)

    Sohn, D.; Rockwell, Donald

    1987-01-01

    Vortex interaction with a thick elliptical leading-edge at zero relative offset produces a pronounced secondary vortes of opposite sense that travels with the same phase speed as the primaty vortex along the lower surface of the edge. The edge thickness (scale) relative to the incident vorticity field has a strong effect on the distortion of the incident primary vortex during the impingement processs. When the thickness is sufficiently small, there is a definite severing of the incident vortex and the portion of the incident vortex that travels along the upper part of the elliptical surface has a considerably larger phase speed than that along the lower surface; this suggests that the integrated loading along the upper surface is more strongly correlated. When the thickness becomes too large, then most, if not all, of the incident vortex passes below the leading-edge. On the other hand, the relative tranverse offset of the edge with respect to the center of the incident vortex has a significant effect on the secondary vortex formation.

  4. Perpendicular blade vortex interaction and its implications for helicopter noise prediction: Wave-number frequency spectra in a trailing vortex for BWI noise prediction

    NASA Technical Reports Server (NTRS)

    Devenport, William J.; Glegg, Stewart A. L.

    1993-01-01

    Perpendicular blade vortex interactions are a common occurrence in helicopter rotor flows. Under certain conditions they produce a substantial proportion of the acoustic noise. However, the mechanism of noise generation is not well understood. Specifically, turbulence associated with the trailing vortices shed from the blade tips appears insufficient to account for the noise generated. The hypothesis that the first perpendicular interaction experienced by a trailing vortex alters its turbulence structure in such a way as to increase the acoustic noise generated by subsequent interactions is examined. To investigate this hypothesis a two-part investigation was carried out. In the first part, experiments were performed to examine the behavior of a streamwise vortex as it passed over and downstream of a spanwise blade in incompressible flow. Blade vortex separations between +/- one eighth chord were studied for at a chord Reynolds number of 200,000. Three-component velocity and turbulence measurements were made in the flow from 4 chord lengths upstream to 15 chordlengths downstream of the blade using miniature 4-sensor hot wire probes. These measurements show that the interaction of the vortex with the blade and its wake causes the vortex core to loose circulation and diffuse much more rapidly than it otherwise would. Core radius increases and peak tangential velocity decreases with distance downstream of the blade. True turbulence levels within the core are much larger downstream than upstream of the blade. The net result is a much larger and more intense region of turbulent flow than that presented by the original vortex and thus, by implication, a greater potential for generating acoustic noise. In the second part, the turbulence measurements described above were used to derive the necessary inputs to a Blade Wake Interaction (BWI) noise prediction scheme. This resulted in significantly improved agreement between measurements and calculations of the BWI noise spectrum especially for the spectral peak at low frequencies, which previously was poorly predicted.

  5. Experiments on tip vortices interacting with downstream wings

    NASA Astrophysics Data System (ADS)

    Chen, C.; Wang, Z.; Gursul, I.

    2018-05-01

    The interaction of meandering tip vortices shed from a leading wing with a downstream wing was investigated experimentally in a water tunnel using flow visualization, particle image velocimetry measurements, and volumetric velocity measurements. Counter-rotating upstream vortices may exhibit sudden variations of the vortex core location when the wing-tip separation is within approximately twice the vortex core radius. This is caused by the formation of vortex dipoles near the wing tip. In contrast, co-rotating upstream vortices do not exhibit such sensitivity. Large spanwise displacement of the trajectory due to the image vortex is possible when the incident vortex is further inboard. For both co-rotating and counter-rotating vortices, as long as there is no direct impingement upon the wing, there is a little change in the structure of the time-averaged vortex past the wing, even though the tip vortex shed from the downstream wing may be substantially weakened or strengthened. In the absence of the downstream wing, as well as for weak interactions, the most energetic unsteady modes represent the first helical mode | m| = 1, which is estimated from the three-dimensional Proper Orthogonal Decomposition modes and has a very large wavelength, on the order of 102 times the vortex core radius, λ/ a = O(102). Instantaneous vorticity measurements as well as flow visualization suggest the existence of a smaller wavelength, λ/ a = 5-6, which is not among the most energetic modes. These two-orders of magnitude different wavelengths are in agreement with the previous measurements of tip vortices and also exhibit qualitative agreement with the transient energy growth analysis. The very long wavelength mode in the upstream vortex may persist during the interaction, and reveal coupling with the trailing vortex as well as increased meandering.

  6. Fundamental Characterization of Spanwise Loading and Trailed Wake Vortices

    DTIC Science & Technology

    2016-07-01

    the close interaction of the tip vortex with a following blade . Such vortex interactions are fundamental determinants of rotor performance, loads, and...wing loading distribution differs from a typical loading on a hovering rotor blade in that the maximum bound circulation occurs at the blade root...and not close to the tip; this is similar to a very highly twisted rotor blade , like a tilt-rotor, in hover. The wing-vortex interaction alters the

  7. Atmospheric study of the impact of Borneo vortex and Madden-Julian oscillation over Western Indonesian maritime area

    NASA Astrophysics Data System (ADS)

    Saragih, R. M.; Fajarianti, R.; Winarso, P. A.

    2018-03-01

    During the Asian winter Monsoon (November-March), the Indonesia Maritime Continent is an area of deep convection. In that period, there is a synoptic scale disturbance over Northwest of Borneo Island called Borneo vortex. In addition to the impact of Asian Winter Monsoon, Madden-Julian Oscillation (MJO) also have an impact on deep convection during an active period. This study aims to study the impact of interaction Borneo vortex and MJO (during MJO active period in phase 3, 4 and 5) and rainfall condition over the western part of Indonesia Maritime Continent using compositing technique in the period of November-March 2015/2016. The parameters used to identify the incidence of Borneo vortex, MJO, and its interaction is vertical velocity. When MJO is active, Borneo vortex occurs most often in phase 5 and at least in phase 3. However, Borneo vortex occurs most often when the MJO is inactive. The interaction between Borneo vortex and MJO seems may affect not so much rainfall occurrence in the western part of IMC.

  8. Point vortex model for prediction of sound generated by a wing with flap interacting with a passing vortex.

    PubMed

    Manela, A; Huang, L

    2013-04-01

    Acoustic signature of a rigid wing, equipped with a movable downstream flap and interacting with a line vortex, is studied in a two-dimensional low-Mach number flow. The flap is attached to the airfoil via a torsion spring, and the coupled fluid-structure interaction problem is analyzed using thin-airfoil methodology and application of the emended Brown and Michael equation. It is found that incident vortex passage above the airfoil excites flap motion at the system natural frequency, amplified above all other frequencies contained in the forcing vortex. Far-field radiation is analyzed using Powell-Howe analogy, yielding the leading order dipole-type signature of the system. It is shown that direct flap motion has a negligible effect on total sound radiation. The characteristic acoustic signature of the system is dominated by vortex sound, consisting of relatively strong leading and trailing edge interactions of the airfoil with the incident vortex, together with late-time wake sound resulting from induced flap motion. In comparison with the counterpart rigid (non-flapped) configuration, it is found that the flap may act as sound amplifier or absorber, depending on the value of flap-fluid natural frequency. The study complements existing analyses examining sound radiation in static- and detached-flap configurations.

  9. Flow structure of vortex-wing interaction

    NASA Astrophysics Data System (ADS)

    McKenna, Christopher K.

    Impingement of a streamwise-oriented vortex upon a fin, tail, blade or wing represents a fundamental class of flow-structure interaction that extends across a range of applications. This interaction can give rise to time-averaged loading, as well as unsteady loading known as buffeting. The loading is sensitive to parameters of the incident vortex as well as the location of vortex impingement on the downstream aerodynamic surface, generically designated as a wing. Particle image velocimetry is employed to determine patterns of velocity, vorticity, swirl ratio, and streamlines on successive cross-flow planes upstream of and along the wing, which lead to volume representations and thereby characterization of the interaction. At locations upstream of the leading edge of the wing, the evolution of the incident vortex is affected by the presence of the wing, and is highly dependent on the spanwise location of vortex impingement. Even at spanwise locations of impingement well outboard of the wing tip, a substantial influence on the structure of the incident vortex at locations significantly upstream of the leading edge of the wing was observed. For spanwise locations close to or intersecting the vortex core, the effects of upstream influence of the wing on the vortex are to: decrease the swirl ratio; increase the streamwise velocity deficit; decrease the streamwise vorticity; increase the azimuthal vorticity; increase the upwash; decrease the downwash; and increase the root-mean-square fluctuations of both streamwise velocity and vorticity. The interrelationship between these effects is addressed, including the rapid attenuation of axial vorticity in presence of an enhanced defect of axial velocity in the central region of the vortex. Moreover, when the incident vortex is aligned with, or inboard of, the tip of the wing, the swirl ratio decreases to values associated with instability of the vortex, giving rise to enhanced values of azimuthal vorticity relative to the streamwise (axial) vorticity, as well as relatively large root-mean-square values of streamwise velocity and vorticity. Along the chord of the wing, the vortex interaction gives rise to distinct modes, which may involve either enhancement or suppression of the vortex generated at the tip of the wing. These modes are classified and interpreted in conjunction with computed modes at the Air Force Research Laboratory. Occurrence of a given mode of interaction is predominantly determined by the dimensionless location of the incident vortex relative to the tip of the wing and is generally insensitive to the Reynolds number and dimensionless circulation of the incident vortex. The genesis of the basic modes of interaction is clarified using streamline topology with associated critical points. Whereas formation of an enhanced tip vortex involves a region of large upwash in conjunction with localized flow separation, complete suppression of the tip vortex is associated with a small-scale separation-attachment bubble bounded by downwash at the wing tip. Oscillation of the wing at an amplitude and velocity nearly two orders of magnitude smaller than the wing chord and free stream velocity respectively can give rise to distinctive patterns of upwash, downwash, and shed vorticity, which are dependent on the outboard displacement of the incident vortex relative to the wing tip. Moreover, these patterns are a strong function of the phase of the wing motion during its oscillation cycle. At a given value of phase, the wing oscillation induces upwash that is reinforced by the upwash of the incident vortex, giving a maximum value of net upwash. Conversely, when these two origins of upwash counteract, rather than reinforce, one another during the oscillation cycle, the net upwash has its minimum value. Analogous interpretations hold for regions of maximum and minimum net downwash located outboard of the regions of upwash. During the oscillation cycle of the wing, the magnitude and scale of the vorticity shed from the tip of the wing are directly correlated with the net upwash, which takes different forms related to the outboard displacement of the incident vortex. As the location of the incident vortex is displaced towards the wing tip, both the maximum upwash and the maximum vorticity of the tip vortex initially increase, then decrease. For the limiting case where the incident vortex impinges directly upon the tip of the wing, there is no tip vortex or induced region of upwash. Furthermore, at small values of vortex displacement from the wing tip, the position of the incident vortex varies significantly from its nominal position during the oscillation cycle. For all locations of the incident vortex, it is shown that, despite the small amplitude of the wing motion, the flow topology is fundamentally different at maximum positive and negative values of the wing velocity, that is, they are not symmetric.

  10. Longitudinal vortex control - Techniques and applications (The 32nd Lanchester Lecture)

    NASA Technical Reports Server (NTRS)

    Bushnell, D. M.

    1992-01-01

    A summary is presented of vortex control applications and current techniques for the control of longitudinal vortices produced by bodies, leading edges, tips and intersections. Vortex control has up till now been performed by many approaches in an empirical fashion, assisted by the essentially inviscid nature of much of longitudinal vortex behavior. Attention is given to Reynolds number sensitivities, vortex breakdown and interactions, vortex control on highly swept wings, and vortex control in juncture flows.

  11. The interaction between a propagating coastal vortex and topographic waves

    NASA Astrophysics Data System (ADS)

    Parry, Simon Wyn

    This thesis investigates the motion of a point vortex near coastal topography in a rotating frame of reference at constant latitude (f-plane) in the linear and weakly nonlinear limits. Topography is considered in the form of an infinitely long escarpment running parallel to a wall. The vortex motion and topographic waves are governed by the conservation of quasi-geostrophic potential vorticity in shallow water, from which a nonlinear system of equations is derived. First the linear limit is studied for three cases; a weak vortex on- and off-shelf and a weak vortex close to the wall. For the first two cases it is shown that to leading order the vortex motion is stationary and a solution for the topographic waves at the escarpment can be found in terms of Fourier integrals. For a weak vortex close to a wall, the leading order solution is a steadily propagating vortex with a topographic wavetrain at the step. Numerical results for the higher order interactions are also presented and explained in terms of conservation of momentum in the along-shore direction. For the second case a resonant interaction between the vortex and the waves occurs when the vortex speed is equal to the maximum group velocity of the waves and the linear response becomes unbounded at large times. Thus it becomes necessary to examine the weakly nonlinear near-resonant case. Using a long wave approximation a nonlinear evolution equation for the interface separating the two regions of differing relative potential vorticity is derived and has similar form to the BDA (Benjamin, Davies, Acrivos 1967) equation. Results for the leading order steadily propagating vortex and for the vortex-wave feedback problem are calculated numerically using spectral multi-step Adams methods.

  12. Nonlinear Tollmien-Schlichting/vortex interaction in boundary layers

    NASA Technical Reports Server (NTRS)

    Hall, P.; Smith, F. T.

    1988-01-01

    The nonlinear reaction between two oblique 3-D Tollmein-Schlichting (TS) waves and their induced streamwise-vortex flow is considered theoretically for an imcompressible boundary layer. The same theory applies to the destabilization of an incident vortex motion by subharmonic TS waves, followed by interaction. The scales and flow structure involved are addressed for high Reynolds numbers. The nonlionear interaction is powerful, starting at quite low amplitudes with a triple-deck structure for the TS waves but a large-scale structure for the induced vortex, after which strong nonlinear amplification occurs. This includes nonparallel-flow effects. The nonlinear interaction is governed by a partial differential system for the vortex flow coupled with an ordinary-differential one for the TS pressure. The solution properties found sometimes produce a breakup within a finite distance and sometimes further downstream, depending on the input amplitudes upstream and on the wave angles, and that then leads to the second stages of interaction associated with higher amplitudes, the main second stages giving either long-scale phenomena significantly affected by nonparallelism or shorter quasi-parallel ones governed by the full nonlinear triple-deck response.

  13. Ignition dynamics of a laminar diffusion flame in the field of a vortex embedded in a shear flow

    NASA Technical Reports Server (NTRS)

    Macaraeg, Michele G.; Jackson, T. L.; Hussaini, M. Y.

    1994-01-01

    The role of streamwise-spanwise vorticity interactions that occur in turbulent shear flows on flame/vortex interactions is examined by means of asymptotic analysis and numerical simulation in the limit of small Mach number. An idealized model is employed to describe the interaction process. The model consists of a one-step, irreversible Arrhenius reaction between initially unmixed species occupying adjacent half-planes which are then allowed to mix and react in the presence of a streamwise vortex embedded in a shear flow. It is found that the interaction of the streamwise vortex with shear gives rise to small-scale velocity oscillations which increase in magnitude with shear strength. These oscillations give rise to regions of strong temperature gradients via viscous heating, which can lead to multiple ignition points and substantially decrease ignition times. The evolution in time of the temperature and mass-fraction fields is followed, and emphasis is placed on the ignition time and structure as a function of vortex and shear strength.

  14. Vortex Lattices in the Bose-Fermi Superfluid Mixture.

    PubMed

    Jiang, Yuzhu; Qi, Ran; Shi, Zhe-Yu; Zhai, Hui

    2017-02-24

    In this Letter we show that the vortex lattice structure in the Bose-Fermi superfluid mixture can undergo a sequence of structure transitions when the Fermi superfluid is tuned from the BCS regime to the BEC regime. This is due to the difference in the vortex core structure of a Fermi superfluid in the BCS regime and in the BEC regime. In the BCS regime the vortex core is nearly filled, while the density at the vortex core gradually decreases until it empties out in the BEC regime. Therefore, with the density-density interaction between the Bose and the Fermi superfluids, interaction between the two sets of vortex lattices gets stronger in the BEC regime, which yields the structure transition of vortex lattices. In view of the recent realization of this superfluid mixture and vortices therein, our theoretical predication can be verified experimentally in the near future.

  15. Giant moving vortex mass in thick magnetic nanodots

    PubMed Central

    Guslienko, K. Y.; Kakazei, G. N.; Ding, J.; Liu, X. M.; Adeyeye, A. O.

    2015-01-01

    Magnetic vortex is one of the simplest topologically non-trivial textures in condensed matter physics. It is the ground state of submicron magnetic elements (dots) of different shapes: cylindrical, square etc. So far, the vast majority of the vortex dynamics studies were focused on thin dots with thickness 5–50 nm and only uniform across the thickness vortex excitation modes were observed. Here we explore the fundamental vortex mode in relatively thick (50–100 nm) dots using broadband ferromagnetic resonance and show that dimensionality increase leads to qualitatively new excitation spectra. We demonstrate that the fundamental mode frequency cannot be explained without introducing a giant vortex mass, which is a result of the vortex distortion due to interaction with spin waves. The vortex mass depends on the system geometry and is non-local because of important role of the dipolar interaction. The mass is rather small for thin dots. However, its importance increases drastically with the dot thickness increasing. PMID:26355430

  16. Giant moving vortex mass in thick magnetic nanodots.

    PubMed

    Guslienko, K Y; Kakazei, G N; Ding, J; Liu, X M; Adeyeye, A O

    2015-09-10

    Magnetic vortex is one of the simplest topologically non-trivial textures in condensed matter physics. It is the ground state of submicron magnetic elements (dots) of different shapes: cylindrical, square etc. So far, the vast majority of the vortex dynamics studies were focused on thin dots with thickness 5-50 nm and only uniform across the thickness vortex excitation modes were observed. Here we explore the fundamental vortex mode in relatively thick (50-100 nm) dots using broadband ferromagnetic resonance and show that dimensionality increase leads to qualitatively new excitation spectra. We demonstrate that the fundamental mode frequency cannot be explained without introducing a giant vortex mass, which is a result of the vortex distortion due to interaction with spin waves. The vortex mass depends on the system geometry and is non-local because of important role of the dipolar interaction. The mass is rather small for thin dots. However, its importance increases drastically with the dot thickness increasing.

  17. Flow visualization study of a vortex-wing interaction

    NASA Technical Reports Server (NTRS)

    Mehta, R. D.; Lim, T. T.

    1984-01-01

    A flow visualization study in water was completed on the interaction of a streamwise vortex with a laminar boundary layer on a two-dimensional wing. The vortex was generated at the tip of a finite wing at incidence, mounted perpendicular to the main wing, and having the same chord as the main wing. The Reynolds number based on wing chord was about 5000. Two different visualization techniques were used. One involved the injection of two different colored dyes into the vortex and the boundary layer. The other technique utilized hydrogen bubbles as an indicator. The position of the vortex was varied in a directional normal to the wing. The angle of attack of the main wing was varied from -5 to +12.5 deg. The vortex induced noticeable cross flows in the wing boundary layer from a distance equivalent to 0.75 chords. When very close to the wing, the vortex entrained boundary layer fluid and caused a cross flow separation which resulted in a secondary vortex.

  18. Experimental framework to study tip vortex interactions in multirotor wakes

    NASA Astrophysics Data System (ADS)

    Yao, Rongnan; Araya, Daniel

    2017-11-01

    We present an experimental study to compare the dynamic characteristics of tip vortices shed from a propeller in a crossflow to similar characteristics of an isolated vortex column generated in a closed system. Our aim is to evaluate the feasibility of using this simple isolated system to study the more complicated three-dimensional vortex interactions inherent to multirotor wakes, where the local unsteadiness generated by one rotor can strongly impact the performance of nearby rotors. Time-resolved particle image velocimetry is used to measure the velocity field of the propeller wake flow in a wind tunnel and the vortex column in a water tank. Specific attention is placed on analyzing the observed vortex core precession in the isolated system and comparing this to characteristic tip-vortex wandering phenomenon.

  19. Vortex coupling in trailing vortex-wing interactions

    NASA Astrophysics Data System (ADS)

    Chen, C.; Wang, Z.; Gursul, I.

    2018-03-01

    The interaction of trailing vortices of an upstream wing with rigid and flexible downstream wings has been investigated experimentally in a wind tunnel, using particle image velocimetry, hot-wire, force, and deformation measurements. Counter-rotating upstream vortices exhibit increased meandering when they are close to the tip of the downstream wing. The upstream vortex forms a pair with the vortex shed from the downstream wing and then exhibits large displacements around the wing tip. This coupled motion of the pair has been found to cause large lift fluctuations on the downstream wing. The meandering of the vortex pair occurs at the natural meandering frequency of the isolated vortex, with a low Strouhal number, and is not affected by the frequency of the large-amplitude wing oscillations if the downstream wing is flexible. The displacement of the leading vortex is larger than that of the trailing vortex; however, it causes highly correlated variations of the core radius, core vorticity, and circulation of the trailing vortex with the coupled meandering motion. In contrast, co-rotating vortices do not exhibit any increased meandering.

  20. Structural transitions in vortex systems with anisotropic interactions

    DOE PAGES

    Olszewski, Maciej W.; Eskildsen, M. R.; Reichhardt, Charles; ...

    2017-12-29

    We introduce a model of vortices in type-II superconductors with a four-fold anisotropy in the vortex–vortex interaction potential. Using numerical simulations we show that the vortex lattice undergoes structural transitions as the anisotropy is increased, with a triangular lattice at low anisotropy, a rhombic intermediate state, and a square lattice for high anisotropy. In some cases we observe a multi-q state consisting of an Archimedean tiling that combines square and triangular local ordering. At very high anisotropy, domains of vortex chain states appear. We discuss how this model can be generalized to higher order anisotropy as well as its applicabilitymore » to other particle-based systems with anisotropic particle–particle interactions.« less

  1. Magnetic Shocks and Substructures Excited by Torsional Alfvén Wave Interactions in Merging Expanding Flux Tubes

    NASA Astrophysics Data System (ADS)

    Snow, B.; Fedun, V.; Gent, F. A.; Verth, G.; Erdélyi, R.

    2018-04-01

    Vortex motions are frequently observed on the solar photosphere. These motions may play a key role in the transport of energy and momentum from the lower atmosphere into the upper solar atmosphere, contributing to coronal heating. The lower solar atmosphere also consists of complex networks of flux tubes that expand and merge throughout the chromosphere and upper atmosphere. We perform numerical simulations to investigate the behavior of vortex-driven waves propagating in a pair of such flux tubes in a non-force-free equilibrium with a realistically modeled solar atmosphere. The two flux tubes are independently perturbed at their footpoints by counter-rotating vortex motions. When the flux tubes merge, the vortex motions interact both linearly and nonlinearly. The linear interactions generate many small-scale transient magnetic substructures due to the magnetic stress imposed by the vortex motions. Thus, an initially monolithic tube is separated into a complex multithreaded tube due to the photospheric vortex motions. The wave interactions also drive a superposition that increases in amplitude until it exceeds the local Mach number and produces shocks that propagate upward with speeds of approximately 50 km s‑1. The shocks act as conduits transporting momentum and energy upward, and heating the local plasma by more than an order of magnitude, with a peak temperature of approximately 60,000 K. Therefore, we present a new mechanism for the generation of magnetic waveguides from the lower solar atmosphere to the solar corona. This wave guide appears as the result of interacting perturbations in neighboring flux tubes. Thus, the interactions of photospheric vortex motions is a potentially significant mechanism for energy transfer from the lower to upper solar atmosphere.

  2. Navier-Stokes solutions of unsteady separation induced by a vortex: Comparison with theory and influence of a moving wall

    NASA Astrophysics Data System (ADS)

    Obabko, Aleksandr Vladimirovich

    Numerical solutions of the unsteady Navier-Stokes equations are considered for the flow induced by a thick-core vortex convecting along an infinite surface in a two-dimensional incompressible flow. The formulation is considered as a model problem of the dynamic-stall vortex and is relevant to other unsteady separation phenomena including vorticity ejections in juncture flows and the vorticity production mechanism in turbulent boundary-layers. Induced by an adverse streamwise pressure gradient due to the presence of the vortex above the wall, a primary recirculation region forms and evolves toward a singular solution of the unsteady non-interacting boundary-layer equations. The resulting eruptive spike provokes a small-scale viscous-inviscid interaction in the high-Reynolds-number regime. In the moderate-Reynolds-numbers regime, the growing recirculation region initiates a large-scale interaction in the form of local changes in the streamwise pressure gradient accelerating the spike formation and resulting small-scale interaction through development of a region of streamwise compression. It also was found to induce regions of streamwise expansion and "child" recirculation regions that contribute to ejections of near-wall vorticity and splitting of the "parent" region into multiple co-rotating eddies. These eddies later merge into a single amalgamated eddy that is observed to pair with the detaching vortex similar to the low-Reynolds-number regime where the large-scale interaction occurs, but there is no spike or subsequent small-scale interaction. It is also found that increasing the wall speed or vortex convection velocity toward a critical value results in solutions that are indicative of flows at lower Reynolds numbers eventually leading to suppression of unsteady separation and vortex detachment processes.

  3. Interactions of a co-rotating vortex pair at multiple offsets

    NASA Astrophysics Data System (ADS)

    Forster, Kyle J.; Barber, Tracie J.; Diasinos, Sammy; Doig, Graham

    2017-05-01

    Two NACA0012 vanes at various lateral offsets were investigated by wind tunnel testing to observe the interactions between the streamwise vortices. The vanes were separated by nine chord lengths in the streamwise direction to allow the upstream vortex to impact on the downstream geometry. These vanes were evaluated at an angle of incidence of 8° and a Reynolds number of 7 ×104 using particle image velocimetry. A helical motion of the vortices was observed, with rotational rate increasing as the offset was reduced to the point of vortex merging. Downstream meandering of the weaker vortex was found to increase in magnitude near the point of vortex merging. The merging process occurred more rapidly when the upstream vortex was passed on the pressure side of the vane, with the downstream vortex being produced with less circulation and consequently merging into the upstream vortex. The merging distance was found to be statistical rather than deterministic quantity, indicating that the meandering of the vortices affected their separations and energies. This resulted in a fluctuation of the merging location. A loss of circulation associated with the merging process was identified, with the process of achieving vortex circularity causing vorticity diffusion, however all merged cases maintained higher circulation than a single vortex condition. The presence of the upstream vortex was found to reduce the strength of the downstream vortex in all offsets evaluated.

  4. Reduction of Helicopter Blade-Vortex Interaction Noise by Active Rotor Control Technology

    NASA Technical Reports Server (NTRS)

    Yu, Yung H.; Gmelin, Bernd; Splettstoesser, Wolf; Brooks, Thomas F.; Philippe, Jean J.; Prieur, Jean

    1997-01-01

    Helicopter blade-vortex interaction noise is one of the most severe noise sources and is very important both in community annoyance and military detection. Research over the decades has substantially improved basic physical understanding of the mechanisms generating rotor blade-vortex interaction noise and also of controlling techniques, particularly using active rotor control technology. This paper reviews active rotor control techniques currently available for rotor blade vortex interaction noise reduction, including higher harmonic pitch control, individual blade control, and on-blade control technologies. Basic physical mechanisms of each active control technique are reviewed in terms of noise reduction mechanism and controlling aerodynamic or structural parameters of a blade. Active rotor control techniques using smart structures/materials are discussed, including distributed smart actuators to induce local torsional or flapping deformations, Published by Elsevier Science Ltd.

  5. Current induced vortex wall dynamics in helical magnetic systems

    NASA Astrophysics Data System (ADS)

    Roostaei, Bahman

    2015-03-01

    Nontrivial topology of interfaces separating phases with opposite chirality in helical magnetic metals result in new effects as they interact with spin polarized current. These interfaces or vortex walls consist of a one dimensional array of vortex lines. We predict that adiabatic transfer of angular momentum between vortex array and spin polarized current will result in topological Hall effect in multi-domain samples. Also we predict that the motion of the vortex array will result in a new damping mechanism for magnetic moments based on Lenz's law. We study the dynamics of these walls interacting with electric current and use fundamental electromagnetic laws to quantify those predictions. On the other hand discrete nature of vortex walls affects their pinning and results in low depinning current density. We predict the value of this current using collective pinning theory.

  6. Mechanism of transient force augmentation varying with two distinct timescales for interacting vortex rings

    NASA Astrophysics Data System (ADS)

    Fu, Zhidong; Qin, Suyang; Liu, Hong

    2014-01-01

    The dynamics of dual vortex ring flows is studied experimentally and numerically in a model system that consists of a piston-cylinder apparatus. The flows are generated by double identical strokes which have the velocity profile characterized by the sinusoidal function of half the period. By calculating the total wake impulse in two strokes in the experiments, it is found that the average propulsive force increases by 50% in the second stroke for the sufficiently small stroke length, compared with the first stroke. In the numerical simulations, two types of transient force augmentation are revealed, there being the transient force augmentation for the small stroke lengths and the absolute transient force augmentation for the large stroke lengths. The relative transient force augmentation increases to 78% for L/D = 1, while the absolute transient force augmentation for L/D = 4 is twice as much as that for L/D = 1. Further investigation demonstrates that the force augmentation is attributed to the interaction between vortex rings, which induces transport of vortex impulse and more evident fluid entrainment. The critical situation of vortex ring separation is defined and indicated, with vortex spacing falling in a narrow gap when the stroke lengths vary. A new model is proposed concerning the limiting process of impulse, further suggesting that apart from vortex formation timescale, vortex spacing should be interpreted as an independent timescale to reflect the dynamics of vortex interaction.

  7. Wave-vortex interactions in the nonlinear Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Guo, Yuan; Bühler, Oliver

    2014-02-01

    This is a theoretical study of wave-vortex interaction effects in the two-dimensional nonlinear Schrödinger equation, which is a useful conceptual model for the limiting dynamics of superfluid quantum condensates at zero temperature. The particular wave-vortex interaction effects are associated with the scattering and refraction of small-scale linear waves by the straining flows induced by quantized point vortices and, crucially, with the concomitant nonlinear back-reaction, the remote recoil, that these scattered waves exert on the vortices. Our detailed model is a narrow, slowly varying wavetrain of small-amplitude waves refracted by one or two vortices. Weak interactions are studied using a suitable perturbation method in which the nonlinear recoil force on the vortex then arises at second order in wave amplitude, and is computed in terms of a Magnus-type force expression for both finite and infinite wavetrains. In the case of an infinite wavetrain, an explicit asymptotic formula for the scattering angle is also derived and cross-checked against numerical ray tracing. Finally, under suitable conditions a wavetrain can be so strongly refracted that it collapses all the way onto a zero-size point vortex. This is a strong wave-vortex interaction by definition. The conditions for such a collapse are derived and the validity of ray tracing theory during the singular collapse is investigated.

  8. Equilibrium vortex structures of type-II/1 superconducting films with washboard pinning landscapes

    NASA Astrophysics Data System (ADS)

    Wei, C. A.; Xu, X. B.; Xu, X. N.; Wang, Z. H.; Gu, M.

    2018-05-01

    We numerically study the equilibrium vortex structures of type-II/1 superconducting films with a periodic quasi-one-dimensional corrugated substrate. We show as a function of substrate period and pinning strength that, the vortex system displays a variety of vortex phases including arrays consisted of vortex clumps with different morphologies, ordered vortex stripes parallel and perpendicular to pinning troughs, and ordered one-dimensional vortex chains. Our simulations are helpful in understanding the structural modulations for extensive systems with both competing interactions and competing periodicities.

  9. Interaction of vortex rings with multiple permeable screens

    NASA Astrophysics Data System (ADS)

    Musta, Mustafa N.; Krueger, Paul S.

    2014-11-01

    Interaction of a vortex ring impinging on multiple permeable screens orthogonal to the ring axis was studied to experimentally investigate the persistence and decay of vortical structures inside the screen array using digital particle image velocimetry in a refractive index matched environment. The permeable screens had porosities (open area ratios) of 83.8%, 69.0%, and 55.7% and were held by a transparent frame that allowed the screen spacing to be changed. Vortex rings were generated using a piston-cylinder mechanism at nominal jet Reynolds numbers of 1000, 2000, and 3000 with piston stroke length-to-diameter ratios of 2 and 3. The interaction of vortex rings with the porous medium showed a strong dependence of the overall flow evolution on the screen porosity, with a central flow being preserved and vortex ring-like structures (with smaller diameter than the primary vortex ring) being generated near the centerline. Due to the large rod size used in the screens, immediate reformation of the transmitted vortex ring with size comparable to the primary ring (as has been observed with thin screens) was not observed in most cases. Since the screens have lower complexity and high open area ratios, centerline vortex ring-like flow structures formed with comparable size to the screen pore size and penetrated through the screens. In the case of low porosity screens (55.7%) with large screen spacing, re-emergence of large scale (large separation), weak vortical structures/pairs (analogous to a transmitted vortex ring) was observed downstream of the first screen. Additional smaller scale vortical structures were generated by the interaction of the vortex ring with subsequent screens. The size distribution of the generated vortical structures were shown to be strongly affected by porosity, with smaller vortical structures playing a stronger role as porosity decreased. Finally, porosity significantly affected the decay of total energy, but the effect of screen spacing decreased as porosity decreased.

  10. Prognostic value of S100/CD31 and S100/podoplanin double immunostaining in mucosal malignant melanoma of the head and neck.

    PubMed

    Wermker, Kai; Brauckmann, Till; Klein, Martin; Haßfeld, Stefan; Schulze, Hans-Joachim; Hallermann, Christian

    2015-09-01

    In uncommon mucosal melanomas of the head and neck established prognostic factors are rare and controversially discussed. The purpose of this study was to evaluate outcome and value of S100/podoplanin and S100/CD31 double immunostaining in head and neck mucosal melanomas. Retrospectively, patients with head and neck mucosal melanomas treated between 1973 and 2008 were analyzed. S100/podoplanin and S100/CD31 immunostaining were performed to detect lymph vessel invasion (LVI) and blood vessel invasion (BVI). Predictive parameters for disease-specific survival (DSS) were identified using univariate and multivariate statistics. Forty-two patients with head and neck mucosal melanoma were included. Three-year, 5-year, and 10-year DSS rates were 59%, 44%, and 20%, respectively. Age above 70 years, occurrence of distant metastasis, LVI, and BVI were significantly associated with shorter DSS time (p < .05), whereas localization at the conjunctiva showed better outcome. S100/podoplanin and S100/CD31 double immunostaining detect reliable LVI and BVI in head and neck mucosal melanoma and both are associated significantly with worse prognosis. © 2014 Wiley Periodicals, Inc.

  11. Physical Realization of von Neumann Lattices in Rotating Bose Gases with Dipole Interatomic Interactions.

    PubMed

    Cheng, Szu-Cheng; Jheng, Shih-Da

    2016-08-22

    This paper reports a novel type of vortex lattice, referred to as a bubble crystal, which was discovered in rapidly rotating Bose gases with long-range interactions. Bubble crystals differ from vortex lattices which possess a single quantum flux per unit cell, while atoms in bubble crystals are clustered periodically and surrounded by vortices. No existing model is able to describe the vortex structure of bubble crystals; however, we identified a mathematical lattice, which is a subset of coherent states and exists periodically in the physical space. This lattice is called a von Neumann lattice, and when it possesses a single vortex per unit cell, it presents the same geometrical structure as an Abrikosov lattice. In this report, we extend the von Neumann lattice to one with an integral number of flux quanta per unit cell and demonstrate that von Neumann lattices well reproduce the translational properties of bubble crystals. Numerical simulations confirm that, as a generalized vortex, a von Neumann lattice can be physically realized using vortex lattices in rapidly rotating Bose gases with dipole interatomic interactions.

  12. Scattering and propagation of a Laguerre-Gaussian vortex beam by uniaxial anisotropic bispheres

    NASA Astrophysics Data System (ADS)

    Qu, Tan; Wu, Zhensen; Shang, Qingchao; Li, Zhengjun; Wu, Jiaji; Li, Haiying

    2018-04-01

    Within the framework of the generalized multi-particle Mie (GMM) theory, analytical solution to electromagnetic scattering of two interacting homogeneous uniaxial anisotropic spheres by a Laguerre-Gaussian (LG) vortex beam is investigated. The particles with different size and dielectric parameter tensor elements are arbitrarily configured. Based on the continuous boundary conditions at each sphere surface, the interactive scattering coefficients are derived. The internal and near-surface field is investigated to describe the propagation of LG vortex beam through the NaCl crystal. In addition, the far fields of some typical anisotropic medium such as LiNbO3, TiO2 bispheres illuminated by an LG vortex beam are numerically presented in detail to analyze the influence of the anisotropic parameters, sphere positions, separation distance and topological charge etc. The results show that LG vortex beam has a better recovery after interacting with a spherical particle compared with Gaussian beam. The study in the paper are useful for the further research on the scattering and propagation characteristics of arbitrary vortex beam in anisotropic chains and periodic structure.

  13. Vortex Ring Interaction with a Heated Screen

    NASA Astrophysics Data System (ADS)

    Smith, Jason; Krueger, Paul S.

    2008-11-01

    Previous examinations of vortex rings impinging on porous screens has shown the reformation of the vortex ring with a lower velocity after passing through the screen, the creation of secondary vortices, and mixing. A heated screen could, in principle, alter the vortex-screen interaction by changing the local liquid viscosity and density. In the present investigation, a mechanical piston-cylinder vortex ring generator was used to create vortex rings in an aqueous sucrose solution. The rings impinged on a screen of horizontal wires that were heated using electrical current. The flow was visualized with food color and video imaging. Tests with and without heat were conducted at a piston stroke-to-jet diameter ratio of 4 and a jet Reynolds number (Re) of 1000. The vortex rings slowed after passing through the screen, but in tests with heat, they maintained a higher fraction of their before-screen velocity due to reduction in fluid viscosity near the wires. In addition, small ``fingers'' that developed on the front of the vortex rings as they passed through the screen exhibited positive buoyancy effects in the heated case.

  14. The challenges of simulating wake vortex encounters and assessing separation criteria

    NASA Technical Reports Server (NTRS)

    Dunham, R. E.; Stuever, Robert A.; Vicroy, Dan D.

    1993-01-01

    During landings and take-offs, the longitudinal spacing between airplanes is in part determined by the safe separation required to avoid the trailing vortex wake of the preceding aircraft. Safe exploration of the feasibility of reducing longitudinal separation standards will require use of aircraft simulators. This paper discusses the approaches to vortex modeling, methods for modeling the aircraft/vortex interaction, some of the previous attempts of defining vortex hazard criteria, and current understanding of the development of vortex hazard criteria.

  15. Three-dimensional vortex-bright solitons in a spin-orbit-coupled spin-1 condensate

    NASA Astrophysics Data System (ADS)

    Gautam, Sandeep; Adhikari, S. K.

    2018-01-01

    We demonstrate stable and metastable vortex-bright solitons in a three-dimensional spin-orbit-coupled three-component hyperfine spin-1 Bose-Einstein condensate (BEC) using numerical solution and variational approximation of a mean-field model. The spin-orbit coupling provides attraction to form vortex-bright solitons in both attractive and repulsive spinor BECs. The ground state of these vortex-bright solitons is axially symmetric for weak polar interaction. For a sufficiently strong ferromagnetic interaction, we observe the emergence of a fully asymmetric vortex-bright soliton as the ground state. We also numerically investigate moving solitons. The present mean-field model is not Galilean invariant, and we use a Galilean-transformed mean-field model for generating the moving solitons.

  16. Magnetic Radial Vortex Stabilization and Efficient Manipulation Driven by the Dzyaloshinskii-Moriya Interaction and Spin-Transfer Torque.

    PubMed

    Siracusano, G; Tomasello, R; Giordano, A; Puliafito, V; Azzerboni, B; Ozatay, O; Carpentieri, M; Finocchio, G

    2016-08-19

    Solitons are very promising for the design of the next generation of ultralow power devices for storage and computation. The key ingredient to achieving this goal is the fundamental understanding of their stabilization and manipulation. Here, we show how the interfacial Dzyaloshinskii-Moriya Interaction (IDMI) is able to lift the energy degeneracy of a magnetic vortex state by stabilizing a topological soliton with radial chirality, hereafter called radial vortex. It has a noninteger Skyrmion number S (0.5<|S|<1) due to both the vortex core polarity and the magnetization tilting induced by the IDMI boundary conditions. Micromagnetic simulations predict that a magnetoresistive memory based on the radial vortex state in both free and polarizer layers can be efficiently switched by a threshold current density smaller than 10^{6}  A/cm^{2}. The switching processes occur via the nucleation of topologically connected vortices and vortex-antivortex pairs, followed by spin-wave emissions due to vortex-antivortex annihilations.

  17. On the three-dimensional interaction of a rotor-tip vortex with a cylindrical surface

    NASA Astrophysics Data System (ADS)

    Radcliff, Thomas D.; Burggraf, Odus R.; Conlisk, A. T.

    2000-12-01

    The collision of a strong vortex with a surface is an important problem because significant impulsive loads may be generated. Prediction of helicopter fatigue lifetime may be limited by an inability to predict these loads accurately. Experimental results for the impingement of a helicopter rotor-tip vortex on a cylindrical airframe show a suction peak on the top of the airframe that strengthens and then weakens within milliseconds. A simple line-vortex model can predict the experimental results if the vortex is at least two vortex-core radii away from the airframe. After this, the model predicts continually deepening rather than lessening suction as the vortex stretches. Experimental results suggest that axial flow within the core of a tip vortex has an impact on the airframe pressure distribution upon close approach. The mechanism for this is hypothesized to be the inviscid redistribution of the vorticity field within the vortex as the axial velocity stagnates. Two models of a tip vortex with axial flow are considered. First, a classical axisymmetric line vortex with a cutoff parameter is superimposed with vortex ringlets suitably placed to represent the helically wound vortex shed by the rotor tip. Thus, inclusion of axial flow is found to advect vortex core thinning away from the point of closest interaction as the vortex stretches around the cylindrical surface during the collision process. With less local thinning, vorticity in the cutoff parameter model significantly overlaps the solid cylinder in an unphysical manner, highlighting the fact that the vortex core must deform from its original cylindrical shape. A second model is then developed in which axial and azimuthal vorticity are confined within a rectangular-section vortex. Area and aspect ratio of this vortex can be varied independently to simulate deformation of the vortex core. Both axial velocity and core deformation are shown to be important to calculate the local induced pressure loads properly. The computational results are compared with experiments conducted at the Georgia Institute of Technology.

  18. The growth and breakdown of a vortex-pair in a stably stratified fluid

    NASA Astrophysics Data System (ADS)

    Advaith, S.; Tinaikar, Aashay; Manu, K. V.; Basu, Saptarshi

    2017-11-01

    Vortex interaction with density stratification is ubiquitous in nature and applied to various engineering applications. Present study have characterized the spatial and temporal dynamics of the interaction between a vortex and a density stratified interface. The present work is prompted by our research on single tank Thermal Energy Storage (TES) system used in concentrated solar power (CSP) plants where hot and cold fluids are separated by means of density stratification. Rigorous qualitative (High speed Shadowgraph) and quantitative (high speed PIV) studies enable us to have great understanding about vortex formation, propagation, interaction dynamics with density stratified interface, resulted plume characteristics and so on. We have categorized this interaction phenomena in to three different cases based on its nature as non-penetrative, partial penetrative and extensively penetrative. Along with that we have proposed a regime map consisting non-dimensional parameters like Reynolds, Richardson and Atwood numbers which predicts the occurrence above mentioned cases.

  19. Experiments on Diffusion Flame Structure of a Laminar Vortex Ring

    NASA Technical Reports Server (NTRS)

    Chen, Shin-Juh; Dahm, Werner J. A.

    1999-01-01

    The study of flame-vortex interactions provides one of the means to better understand turbulent combustion, and allows for canonical configurations that contain the fundamental elements found in turbulent flames, These include concentrated vorticity, entrainment and mixing, strain and nonequilibrium phenomena, diffusion and differential diffusion, partial premixing and diluent effects, and heat release effects. In flame- vortex configurations, these fundamental elements can be studied under more controlled conditions than is possible in direct investigations of turbulent flames. Since the paper of Marble, the problem of the flame-vortex interaction has received considerable attention theoretically, numerically and experimentally. Several configurations exist for study of the premixed flame/vortex ring interaction but more limited results have been obtained to date for the diffusion flame/vortex ring case. The setup of Chen and Dahm, which is conceptually similar to that of Karagozian and Manda and Karagozian, Suganuma and Strom where the ring is composed of fuel and air and combustion begins during the ring formation process, is used in the current study. However, it is essential to conduct the experiments in microgravity to remove the asymmetries caused by buoyancy and thus obtain highly symmetric and repeatable interactions. In previous studies it was found that the flame structure of the vortex ring was similar to that obtained analytically by Karagozian and Manda. Dilution of propane with nitrogen led mainly to a reduction in flame luminosities, flame burnout times were affected by both fuel volumes and amount of dilution, and a simple model of the burnout times was developed. In this paper, a discussion on reacting ring displacement and flame burnout time will be given, and the flame structures of vortex rings containing ethane and air will be compared to those of propane reacting in air.

  20. Vortex dynamics of in-line twin synthetic jets in a laminar boundary layer

    NASA Astrophysics Data System (ADS)

    Wen, Xin; Tang, Hui; Duan, Fei

    2015-08-01

    An experimental investigation is conducted on the vortices induced by twin synthetic jets (SJs) in line with a laminar boundary layer flow over a flat plate. The twin SJs operating at four different phase differences, i.e., Δϕ = 0°, 90°, 180°, and 270°, are visualized using a stereoscopic color dye visualization system and measured using a two-dimensional particle image velocimetry (PIV) system. It is found that depending on the phase difference of twin SJs, three types of vortex structures are produced. At Δϕ = 90°, the two hairpin vortices interact in a very constructive way in terms of the vortex size, strength, and celerity, forming one combined vortex. At Δϕ = 270°, the two individual hairpin vortices do not have much interaction, forming two completely separated hairpin vortices that behave like doubling the frequency of the single SJ case. At Δϕ = 0° and 180°, the two hairpin vortices produced by the twin SJ actuators are close enough, with the head of one hairpin vortex coupled with the legs of the other, forming partially interacting vortex structures. Quantitative analysis of the twin SJs is conducted, including the time histories of vortex circulation in the mid-span plane as well as a selected spanwise-wall-normal plane, and the influence of the twin SJs on the boundary layer flow filed. In addition, dynamic mode decomposition analysis of the PIV data is conducted to extract representative coherent structures. Through this study, a better understanding in the vortex dynamics associated with the interaction of in-line twin SJs in laminar boundary layers is achieved, which provides useful information for future SJ-array applications.

  1. Animating Wall-Bounded Turbulent Smoke via Filament-Mesh Particle-Particle Method.

    PubMed

    Liao, Xiangyun; Si, Weixin; Yuan, Zhiyong; Sun, Hanqiu; Qin, Jing; Wang, Qiong; Heng, Pheng-Ann; Xiangyun Liao; Weixin Si; Zhiyong Yuan; Hanqiu Sun; Jing Qin; Qiong Wang; Pheng-Ann Heng

    2018-03-01

    Turbulent vortices in smoke flows are crucial for a visually interesting appearance. Unfortunately, it is challenging to efficiently simulate these appealing effects in the framework of vortex filament methods. The vortex filaments in grids scheme allows to efficiently generate turbulent smoke with macroscopic vortical structures, but suffers from the projection-related dissipation, and thus the small-scale vortical structures under grid resolution are hard to capture. In addition, this scheme cannot be applied in wall-bounded turbulent smoke simulation, which requires efficiently handling smoke-obstacle interaction and creating vorticity at the obstacle boundary. To tackle above issues, we propose an effective filament-mesh particle-particle (FMPP) method for fast wall-bounded turbulent smoke simulation with ample details. The Filament-Mesh component approximates the smooth long-range interactions by splatting vortex filaments on grid, solving the Poisson problem with a fast solver, and then interpolating back to smoke particles. The Particle-Particle component introduces smoothed particle hydrodynamics (SPH) turbulence model for particles in the same grid, where interactions between particles cannot be properly captured under grid resolution. Then, we sample the surface of obstacles with boundary particles, allowing the interaction between smoke and obstacle being treated as pressure forces in SPH. Besides, the vortex formation region is defined at the back of obstacles, providing smoke particles flowing by the separation particles with a vorticity force to simulate the subsequent vortex shedding phenomenon. The proposed approach can synthesize the lost small-scale vortical structures and also achieve the smoke-obstacle interaction with vortex shedding at obstacle boundaries in a lightweight manner. The experimental results demonstrate that our FMPP method can achieve more appealing visual effects than vortex filaments in grids scheme by efficiently simulating more vivid thin turbulent features.

  2. Effect of perforation on flow past a conic cylinder at \\varvec{Re} = 100 : wavy vortex and sign laws

    NASA Astrophysics Data System (ADS)

    Lin, L. M.; Zhong, X. F.; Wu, Y. X.

    2018-04-01

    In order to find the intrinsic physical mechanism of the original Kármán vortex wavily distorted across the span due to the introduction of three-dimensional (3-D) geometric disturbances, a flow past a peak-perforated conic shroud is numerically simulated at a Reynolds number of 100. Based on previous work by Meiburg and Lasheras (1988), the streamwise and vertical interactions with spanwise vortices are introduced and analyzed. Then vortex-shedding patterns in the near wake for different flow regimes are reinspected and illustrated from the view of these two interactions. Generally, in regime I, spanwise vortices are a little distorted due to the weak interaction. Then in regime II, spanwise vortices, even though curved obviously, are still shed synchronously with moderate streamwise and vertical interactions. But in regime III, violently wavy spanwise vortices in some vortex-shedding patterns, typically an Ω -type vortex, are mainly attributed to the strong vertical interactions, while other cases, such as multiple vortex-shedding patterns in sub-regime III-D, are resulted from complex streamwise and vertical interactions. A special phenomenon, spacial distribution of streamwise and vertical components of vorticity with specific signs in the near wake, is analyzed based on two models of streamwise and vertical vortices in explaining physical reasons of top and bottom shear layers wavily varied across the span. Then these two models and above two interactions are unified. Finally two sign laws are summarized: the first sign law for streamwise and vertical components of vorticity is positive in the upper shear layer, but negative in the lower shear layer, while the second sign law for three vorticity components is always negative in the wake.

  3. Numerical investigation of influence of tip leakage flow on secondary flow in transonic centrifugal compressor at design condition

    NASA Astrophysics Data System (ADS)

    Kaneko, Masanao; Tsujita, Hoshio

    2015-04-01

    In a centrifugal compressor, the leakage flow through the tip clearance generates the tip leakage vortex by the interaction with the main flow, and consequently makes the flow in the impeller passage more complex by the interaction with the passage vortex. In addition, the tip leakage vortex interacts with the shock wave on the suction surface near the blade tip in the transonic centrifugal compressor impeller. Therefore, the detailed examination for the influence of the tip leakage vortex becomes seriously important to improve the aerodynamic performance especially for the transonic centrifugal compressor. In this study, the flows in the transonic centrifugal compressor with and without the tip clearance at the design condition were analyzed numerically by using the commercial CFD code. The computed results revealed that the tip leakage vortex induced by the high loading at the blade tip around the leading edge affected the loss generation by the reduction or the suppression of the shock wave on the suction surface of the blade.

  4. Behavior of streamwise rib vortices in a three-dimensional mixing layer

    NASA Technical Reports Server (NTRS)

    Lopez, J. M.; Bulbeck, C. J.

    1992-01-01

    The structure and behavior of a streamwise rib vortex in a direct numerical simulation of a time-developing three-dimensional incompressible plane mixing layer is examined. Where the rib vortex is being stretched, the vorticity vector is primarily directed in the vortex axial direction and the radial and azimuthal velocity distribution is similar to that of a Burger's vortex. In the region where the vortex stretching is negative, there is a change in the local topology of the vortex. The axial flow is decelerated and a negative azimuthal component of vorticity is induced. These features are characteristic of vortex breakdown. The temporal evolution of the rib vortex is similar to the evolution of an axisymmetric vortex in the early stages of vortex breakdown. The effect of vortex breakdown on other parts of the flow is, however, not as significant as the interaction between the rib vortex and other vortices.

  5. Lift distribution and velocity field measurements for a three-dimensional, steady blade/vortex interaction

    NASA Technical Reports Server (NTRS)

    Dunagan, Stephen E.; Norman, Thomas R.

    1987-01-01

    A wind tunnel experiment simulating a steady three-dimensional helicopter rotor blade/vortex interaction is reported. The experimental configuration consisted of a vertical semispan vortex-generating wing, mounted upstream of a horizontal semispan rotor blade airfoil. A three-dimensional laser velocimeter was used to measure the velocity field in the region of the blade. Sectional lift coefficients were calculated by integrating the velocity field to obtain the bound vorticity. Total lift values, obtained by using an internal strain-gauge balance, verified the laser velocimeter data. Parametric variations of vortex strength, rotor blade angle of attack, and vortex position relative to the rotor blade were explored. These data are reported (with attention to experimental limitations) to provide a dataset for the validation of analytical work.

  6. On the Scattering of Sound by a Rectilinear Vortex

    NASA Astrophysics Data System (ADS)

    HOWE, M. S.

    1999-11-01

    A re-examination is made of the two-dimensional interaction of a plane, time-harmonic sound wave with a rectilinear vortex of small core diameter at low Mach number. Sakov [1] and Ford and Smith [2] have independently resolved the “infinite forward scatter” paradox encountered in earlier applications of the Born approximation to this problem. The first order scattered field (Born approximation) has nulls in the forward and back scattering directions, but the interaction of the wave with non-acoustically compact components of the vortex velocity field causes wavefront distortion, and the phase of the incident wave to undergo a significant variation across a parabolic domain whose axis extends along the direction of forward scatter from the vortex core. The transmitted wave crests of the incident wave become concave and convex, respectively, on opposite sides of the axis of the parabola, and focusing and defocusing of wave energy produces corresponding increases and decreases in wave amplitude. Wave front curvature decreases with increasing distance from the vortex core, with the result that the wave amplitude and phase are asymptotically equal to the respective values they would have attained in the absence of the vortex. The transverse acoustic dipole generated by translational motion of the vortex at the incident wave acoustic particle velocity, and the interaction of the incident wave with acoustically compact components of the vortex velocity field, are responsible for a system of cylindrically spreading, scattered waves outside the parabolic domain.

  7. Vortex multiplication in applied flow: A precursor to superfluid turbulence.

    PubMed

    Finne, A P; Eltsov, V B; Eska, G; Hänninen, R; Kopu, J; Krusius, M; Thuneberg, E V; Tsubota, M

    2006-03-03

    A surface-mediated process is identified in 3He-B which generates vortices at a roughly constant rate. It precedes a faster form of turbulence where intervortex interactions dominate. This precursor becomes observable when vortex loops are introduced in low-velocity rotating flow at sufficiently low mutual friction dissipation at temperatures below 0.5Tc. Our measurements indicate that the formation of new loops is associated with a single vortex interacting in the applied flow with the sample boundary. Numerical calculations show that the single-vortex instability arises when a helical Kelvin wave expands from a reconnection kink at the wall and then intersects again with the wall.

  8. Non-coaxial superposition of vector vortex beams.

    PubMed

    Aadhi, A; Vaity, Pravin; Chithrabhanu, P; Reddy, Salla Gangi; Prabakar, Shashi; Singh, R P

    2016-02-10

    Vector vortex beams are classified into four types depending upon spatial variation in their polarization vector. We have generated all four of these types of vector vortex beams by using a modified polarization Sagnac interferometer with a vortex lens. Further, we have studied the non-coaxial superposition of two vector vortex beams. It is observed that the superposition of two vector vortex beams with same polarization singularity leads to a beam with another kind of polarization singularity in their interaction region. The results may be of importance in ultrahigh security of the polarization-encrypted data that utilizes vector vortex beams and multiple optical trapping with non-coaxial superposition of vector vortex beams. We verified our experimental results with theory.

  9. VizieR Online Data Catalog: HST BVI catalogue of star clusters in 5 HCGs (Fedotov+, 2015)

    NASA Astrophysics Data System (ADS)

    Fedotov, K.; Gallagher, S. C.; Durrell, P. R.; Bastian, N.; Konstantopoulos, I. S.; Charlton, J.; Johnson, K. E.; Chandar, R.

    2015-11-01

    The data for this project were obtained with the Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) and Wide Field Camera 3 (WFC3). These observations are part of two programmes: ID 10787 (PI J. Charlton) and ID 11502 (PI K. Noll). The observations were carried out in the F435W (F438W for WFC3), F606W, and F814W filters, which are similar to the Johnson BVI bands. Hereafter, we refer to the HST filters as B435, B438, V606, and I814, although we did not make transformations to the Johnson-Cousins system. (2 data files).

  10. Simulation of self-induced unsteady motion in the near wake of a Joukowski airfoil

    NASA Technical Reports Server (NTRS)

    Ghia, K. N.; Osswald, G. A.; Ghia, U.

    1986-01-01

    The unsteady Navier-Stokes analysis is shown to be capable of analyzing the massively separated, persistently unsteady flow in the post-stall regime of a Joukowski airfoil for an angle of attack as high as 53 degrees. The analysis has provided the detailed flow structure, showing the complex vortex interaction for this configuration. The aerodynamic coefficients for lift, drag, and moment were calculated. So far only the spatial structure of the vortex interaction was computed. It is now important to potentially use the large-scale vortex interactions, an additional energy source, to improve the aerodynamic performance.

  11. Numerical studies of interacting vortices

    NASA Technical Reports Server (NTRS)

    Liu, G. C.; Hsu, C. H.

    1985-01-01

    To get a basic understanding of the physics of flowfields modeled by vortex filaments with finite vortical cores, systematic numerical studies of the interactions of two dimensional vortices and pairs of coaxial axisymmetric circular vortex rings were made. Finite difference solutions of the unsteady incompressible Navier-Stokes equations were carried out using vorticity and stream function as primary variables. Special emphasis was placed on the formulation of appropriate boundary conditions necessary for the calculations in a finite computational domain. Numerical results illustrate the interaction of vortex filaments, demonstrate when and how they merge with each other, and establish the region of validity for an asymptotic analysis.

  12. Turbulent Flame Processes Via Diffusion Flame-Vortex Ring Interactions

    NASA Technical Reports Server (NTRS)

    Dahm, Werner J. A.; Chen, Shin-Juh; Silver, Joel A.; Piltch, Nancy D.; VanderWal, Randall L.

    2001-01-01

    Flame-vortex interactions are canonical configurations that can be used to study the underlying processes occurring in turbulent reacting flows. This configuration contains many of the fundamental aspects of the coupling between fluid dynamics and combustion that could be investigated with more controllable conditions than are possible under direct investigations of turbulent flames. Diffusion flame-vortex ring interaction contains many of the fundamental elements of flow, transport, combustion, and soot processes found in turbulent diffusion flames. Some of these elements include concentrated vorticity, entrainment and mixing, strain and nonequilibrium phenomena, diffusion and differential diffusion, partial premixing and diluent effects, soot formation and oxidation, and heat release effects. Such simplified flowfield allows the complex processes to be examined more closely and yet preserving the physical processes present in turbulent reacting flows. Furthermore, experimental results from the study of flame-vortex interactions are useful for the validation of numerical simulations and more importantly to deepen our understanding of the fundamental processes present in reacting flows. Experimental and numerical results obtained under microgravity conditions of the diffusion flame-vortex ring interaction are summarized in this paper. Results are obtained using techniques that include Flame Luminosity Imaging (FLI), Laser Soot-Mie Scattering (LSMS), Computational Fluid Dynamics and Combustion (CFDC), and Diode Laser Spectroscopy/Iterative Temperature with Assumed Chemistry (DLS/ITAC).

  13. Spontaneous symmetry breaking in vortex systems with two repulsive lengthscales.

    PubMed

    Curran, P J; Desoky, W M; Milosević, M V; Chaves, A; Laloë, J-B; Moodera, J S; Bending, S J

    2015-10-23

    Scanning Hall probe microscopy (SHPM) has been used to study vortex structures in thin epitaxial films of the superconductor MgB2. Unusual vortex patterns observed in MgB2 single crystals have previously been attributed to a competition between short-range repulsive and long-range attractive vortex-vortex interactions in this two band superconductor; the type 1.5 superconductivity scenario. Our films have much higher levels of disorder than bulk single crystals and therefore both superconducting condensates are expected to be pushed deep into the type 2 regime with purely repulsive vortex interactions. We observe broken symmetry vortex patterns at low fields in all samples after field-cooling from above Tc. These are consistent with those seen in systems with competing repulsions on disparate length scales, and remarkably similar structures are reproduced in dirty two band Ginzburg-Landau calculations, where the simulation parameters have been defined by experimental observations. This suggests that in our dirty MgB2 films, the symmetry of the vortex structures is broken by the presence of vortex repulsions with two different lengthscales, originating from the two distinct superconducting condensates. This represents an entirely new mechanism for spontaneous symmetry breaking in systems of superconducting vortices, with important implications for pinning phenomena and high current density applications.

  14. Investigate the shock focusing under a single vortex disturbance using 2D Saint-Venant equations with a shock-capturing scheme

    NASA Astrophysics Data System (ADS)

    Zhao, Jiaquan; Li, Renfu; Wu, Haiyan

    2018-02-01

    In order to characterize the flow structure and the effect of acoustic waves caused by the shock-vortex interaction on the performance of the shock focusing, the incident plane shock wave with a single disturbance vortex focusing in a parabolic cavity is simulated systematically through solving the two-dimensional, unsteady Saint-Venant equations with the two order HLL scheme of Riemann solvers. The simulations show that the dilatation effect to be dominant in the net vorticity generation, while the baroclinic effect is dominate in the absence of initial vortex disturbance. Moreover, the simulations show that the time evolution of maximum focusing pressure with initial vortex is more complicate than that without initial vortex, which has a lot of relevance with the presence of quadrupolar acoustic wave structure induced by shock-vortex interaction and its propagation in the cavity. Among shock and other disturbance parameters, the shock Mach number, vortex Mach number and the shape of parabolic reflector proved to play a critical role in the focusing of shock waves and the strength of viscous dissipation, which in turn govern the evolution of maximum focusing pressure due to the gas dynamic focus, the change in dissipation rate and the coincidence of motion disturbance vortex with aerodynamic focus point.

  15. Vortex information display system program description manual. [data acquisition from laser Doppler velocimeters and real time operation

    NASA Technical Reports Server (NTRS)

    Conway, R.; Matuck, G. N.; Roe, J. M.; Taylor, J.; Turner, A.

    1975-01-01

    A vortex information display system is described which provides flexible control through system-user interaction for collecting wing-tip-trailing vortex data, processing this data in real time, displaying the processed data, storing raw data on magnetic tape, and post processing raw data. The data is received from two asynchronous laser Doppler velocimeters (LDV's) and includes position, velocity, and intensity information. The raw data is written onto magnetic tape for permanent storage and is also processed in real time to locate vortices and plot their positions as a function of time. The interactive capability enables the user to make real time adjustments in processing data and provides a better definition of vortex behavior. Displaying the vortex information in real time produces a feedback capability to the LDV system operator allowing adjustments to be made in the collection of raw data. Both raw data and processing can be continually upgraded during flyby testing to improve vortex behavior studies. The post-analysis capability permits the analyst to perform in-depth studies of test data and to modify vortex behavior models to improve transport predictions.

  16. Vorticity Transfer in Shock Wave Interactions with Turbulence and Vortices

    NASA Astrophysics Data System (ADS)

    Agui, J. H.; Andreopoulos, J.

    1998-11-01

    Time-dependent, three-dimensional vorticity measurements of shock waves interacting with grid generated turbulence and concentrated tip vortices were conducted in a large diameter shock tube facility. Two different mesh size grids and a NACA-0012 semi-span wing acting as a tip vortex generator were used to carry out different relative Mach number interactions. The turbulence interactions produced a clear amplification of the lateral and spanwise vorticity rms, while the longitudinal component remained mostly unaffected. By comparison, the tip vortex/shock wave interactions produced a two fold increase in the rms of longitudinal vorticity. Considerable attention was given to the vorticity source terms. The mean and rms of the vorticity stretching terms dominated by 5 to 7 orders of magnitude over the dilitational compression terms in all the interactions. All three signals of the stretching terms manifested very intermittent, large amplitude peak events which indicated the bursting character of the stretching process. Distributions of these signals were characterized by extremely large levels of flatness with varying degrees of skewness. These distribution patterns were found to change only slightly through the turbulence interactions. However, the tip vortex/shock wave interactions brought about significant changes in these distributions which were associated with the abrupt structural changes of the vortex after the interaction.

  17. Aerodynamic interaction between vortical wakes and lifting two-dimensional bodies

    NASA Technical Reports Server (NTRS)

    Stremel, Paul M.

    1989-01-01

    Unsteady rotor wake interactions with the empennage, tail boom, and other aerodynamic surfaces of a helicopter have a significant influence on its aerodynamic performance, the ride quality, and vibration. A numerical method for computing the aerodynamic interaction between an interacting vortex wake and the viscous flow about arbitrary two-dimensional bodies was developed to address this helicopter problem. The method solves for the flow field velocities on a body-fitted computational mesh using finite-difference techniques. The interacting vortex wake is represented by an array of discrete vortices which, in turn, are represented by a finite-core model. The evolution of the interacting vortex wake is calculated by Lagrangian techniques. The viscous flow field of the two-dimensional body is calculated on an Eulerian grid. The flow around circular and elliptic cylinders in the absence of an interacting vortex wake was calculated. These results compare very well with other numerical results and with results obtained from experiment and thereby demonstrate the accuracy of the viscous solution. The interaction of a rotor wake with the flow about a 4 to 1 elliptic cylinder at 45 degree incidence was calculated for a Reynolds number of 3000. The results demonstrate the significant variations in the lift and drag on the elliptic cylinder in the presence of the interacting rotor wake.

  18. Vertical structure use by the Stout Iguana (Cyclura pinguis) on Guana Island, BVI

    USGS Publications Warehouse

    Cheek, Christopher A.; Hlavaty, Shay; Perkins, Rebecca N.; Peyton, Mark A.; Ryan, Caitlin N.; Zavaleta, Jennifer C.; Boal, Clint W.; Perry, Gad

    2013-01-01

    The Stout Iguana (Cyclura pinguis) is a critically endangered species endemic to the Puerto Rico Bank and currently restricted to the British Virgin Islands (BVI). Our study on Guana Island, BVI, focused on vertical structure use. Based on previous incidental observations, we hypothesized that Stout Iguanas use vertical structures and that adults and juveniles use such structures differently. In October 2011, we documented movement and vertical structure use by adult (n = 4) and juvenile (n = 11) iguanas with tracking bobbins. We recorded structure types used, heights attained on structures, distances between structures, and structure sizes. We found that Stout Iguanas used vertical structure more than previously documented. Trees comprised a significantly greater (P < 0.001) proportion of structures used by juveniles than by adults, whereas rocks comprised the greatest proportion of structures used by adults. In addition to differential structure use, juveniles climbed significantly higher (2.4 vs. 0.9 m on average; P < 0.001) than adults. We found no difference in the diameter or distance between structures used by adults and juveniles. Our results suggest that vertical structure use may be an important habitat element for free-ranging juvenile Stout Iguanas. Habitat management that provides vertical structure may be advantageous for the conservation of this species.

  19. Vortex/surface interaction

    NASA Technical Reports Server (NTRS)

    Bodstein, G. C. R.; George, A. R.; Hui, C. Y.

    1993-01-01

    This paper considers the interaction of a vortex generated upstream in a flow field with a downstream aerodynamic surface that possesses a large chord. The flow is assumed to be steady, incompressible, inviscid and irrotational, and the surface to be semiinfinite. The vortex is considered to be a straight vortex filament. To lowest order the problem is modeled using potential theory, where the 3D Laplace's equation for the velocity potential on the surface is solved exactly. The closed-form equation for pressure distribution obtained from this theory is found to have a square root singularity at the leading-edge. It also converges, as x goes to infinity, to the solution of the 2D point-vortex/infinite plane problem. The pressure coefficient presents an anti-symmetric behavior, near the leading-edge and a symmetric behavior as x goes to infinity.

  20. Getting a Feel for Eclipses: A Tactile Discovery of an Awe-inspiring Celestial Event

    NASA Astrophysics Data System (ADS)

    Runyon, C. R.; Hall, C.; Hurd, D.; Minafra, J.; Williams, M. N.; Quinn, K.

    2017-12-01

    Solar eclipses provide a unique viewing opportunity for people across the world. August 21, 2017 was no exception. From Oregon to South Carolina, viewers were able to witness this remarkable phenomenon as the Moon comes between the Sun and Earth, casting a shadow on Earth. From a personal social / emotional standpoint seeing a total solar eclipse is indescribable and unforgettable. For the sighted, such an event is experienced through a combination of multiple senses, not just sight. For those people who are Blind / visually impaired (B/VI), the experience is different. While they may sense changes in the intensity of the sunlight, temperature, and animal noises, they are unable to "see" what is happening. How might this remarkable experience be brought to life for the B/VI? The NASA Solar System Exploration Research Virtual Institute Center for Lunar and Asteroid Surface Science (SSERVI CLASS) education/public engagement team developed a tactile book to do just this. The tactile book, Getting a Feel for Eclipses, provides users who are B/VI a means to see and experience the total solar eclipse through their fingertips. The unique, hand-made, tactile graphics are created from various textured materials such that each feature is readily identified. A QR code associated with the book provides access to digital content describing each tactile. Through this delivery mechanism, users who are B/VI, or even sighted may access the content with any smart device. Distributed to Schools for the Blind, national organizations for the Blind, Libraries, Museums and Science Centers across the country, the book helped bring a rare event to life for thousands of people who may not have otherwise been able to experience the eclipse. We look forward to 2024 when the U.S. will once again host the "path of totality." Until then, Getting a Feel for Eclipses will continue to serve as a guide to those interested, and an updated eclipse path map will continue to make the book pertinent.

  1. Tollmien-Schlichting/vortex interactions in compressible boundary layer flows

    NASA Technical Reports Server (NTRS)

    Blackaby, Nicholas D.

    1993-01-01

    The weakly nonlinear interaction of oblique Tollmien-Schlichting waves and longitudinal vortices in compressible, high Reynolds number, boundary-layer flow over a flat plate is considered for all ranges of the Mach number. The interaction equations comprise of equations for the vortex which is indirectly forced by the waves via a boundary condition, whereas a vortex term appears in the amplitude equation for the wave pressure. The downstream solution properties of interaction equations are found to depend on the sign of an interaction coefficient. Compressibility is found to have a significant effect on the interaction properties; principally through its impact on the waves and their governing mechanism, the triple-deck structure. It is found that, in general, the flow quantities will grow slowly with increasing downstream co-ordinate; i.e. in general, solutions do not terminate in abrupt, finite-distance 'break-ups'.

  2. Interaction of a vortex ring and a bubble

    NASA Astrophysics Data System (ADS)

    Jha, Narsing K.; Govardhan, Raghuraman N.

    2014-11-01

    Micro-bubble injection in to boundary layers is one possible method for reducing frictional drag of ships. Although this has been studied for some time, the physical mechanisms responsible for drag reduction using microbubbles in turbulent boundary layers is not yet fully understood. Previous studies suggest that bubble-vortical structure interaction seems to be one of the important physical mechanisms for frictional drag reduction using microbubbles. In the present work, we study a simplification of this problem, namely, the interaction of a single vortical structure, in particular a vortex ring, with a single bubble for better understanding of the physics. The vortex ring is generated using a piston-cylinder arrangement and the bubble is generated by connecting a capillary to an air pump. The bubble dynamics is directly visualized using a high speed camera, while the vorticity modification is measured using time resolved PIV. The results show that significant deformations can occur of both the bubble and the vortex ring. Effect of different non-dimensional parameters on the interaction will be presented in the meeting.

  3. The Aerodynamic and Dynamic Loading of a Slender Structure by an Impacting Tornado-Like Vortex: The Influence of Relative Vortex-to-Structure Size on Structural Loading

    NASA Astrophysics Data System (ADS)

    Strasser, Matthew N.

    Structural loading produced by an impacting vortex is a hazardous phenomenon that is encountered in numerous applications ranging from the destruction of residences by tornados to the chopping of tip vortices by rotors. Adequate design of structures to resist vortex-induced structural loading necessitates study of the phenomenon that control the structural loading produced by an impacting vortex. This body of work extends the current knowledge base of vortex-structure interaction by evaluating the influence of the relative vortex-to-structure size on the structural loading that the vortex produces. A computer model is utilized to directly simulate the two-dimensional impact of an impinging vortex with a slender, cylindrical structure. The vortex's tangential velocity profile (TVP) is defined by a normalization of the Vatistas analytical (TVP) which realistically replicates the documented spectrum of measured vortex TVPs. The impinging vortex's maximum tangential velocity is fixed, and the vortex's critical radius is incremented from one to one-hundred times the structure's diameter. When the impinging vortex is small, it interacts with vortices produced on the structure by the free stream, and maximum force coefficient amplitudes vary by more than 400% when the impinging vortex impacts the structure at different times. Maximum drag and lift force coefficient amplitudes reach asymptotic values as the impinging vortex's size increases that are respectively 94.77% and 10.66% less than maximum force coefficients produced by an equivalent maximum velocity free stream. The vortex produces maximum structural loading when its path is shifted above the structure's centerline, and maximum drag and lift force coefficients are respectively up to 4.80% and 34.07% greater than maximum force coefficients produced by an equivalent-velocity free stream. Finally, the dynamic load factor (DLF) concept is used to develop a generalized methodology to assess the dynamic amplification of a structure's response to vortex loading and to assess the dynamic loading threat that tornados pose. Typical civil and residential structures will not experience significant response amplification, but responses of very flexible structures may be amplified by up to 2.88 times.

  4. A study of the vortex structures around circular cylinder mounted on vertical heated plate

    NASA Astrophysics Data System (ADS)

    Malah, Hamid; Chumakov, Yurii S.; Levchenya, Alexander M.

    2018-05-01

    In recent years, studies of natural convection boundary layer interacting with obstacles draw much of attention, because of its practical applications. Pressure gradient resulting from this interaction leads to separation of the boundary layer. The formation of vortex structure around obstacle is characteristic to any kind of convection flow. In this paper, we describe the formation of three-dimensional vortex structure for the case of natural convection flow around the circular cylinder mounted on vertical heated plate. Navier-Stokes equations were used for numerical computations. The results proved the presence of a horseshoe vortex system in the case of natural convection flow as in the forced convection flow.

  5. Characterisation of the Interaction between Toroidal Vortex Structures and Flame Front Propagation

    NASA Astrophysics Data System (ADS)

    Long, E. J.; Hargrave, G. K.; Jarvis, S.; Justham, T.; Halliwell, N.

    2006-07-01

    Experimental laser diagnostic data is presented for flame characterisation during interactions with toroidal vortices generated in the wake of an annular obstacle. A novel twin section combustion chamber has been utilised to allow the controlled formation of stable eddy structures into which a flame front can propagate. High speed laser sheet visualisation was employed to record the flow field and flame front temporal development and high-speed digital particle image velocimetry was used to quantify the velocity field of the unburnt mixture ahead of the flame front. Results provide characterisation of the toroidal vortex/flame front interaction for a range of vortex scales of and recirculation strengths.

  6. Magneto-optical observation of twisted vortices in type-II superconductors

    NASA Astrophysics Data System (ADS)

    Indenbom, M. V.; van der Beek, C. J.; Berseth, V.; Benoit, W.; D'Anna, G.; Erb, A.; Walker, E.; Flükiger, R.

    1997-02-01

    When magnetic flux penetrates a type-II superconductor, it does so as quantized flux lines or vortex lines, so called because each is surrounded by a supercurrent vortex. Interactions between such vortices lead to a very rich and well characterized phenomenology for this 'mixed state'. But an outstanding question remains: are individual vortex lines 'strong', or can they easily be cut and made to pass through one another? The concept of vortex cutting was originally proposed to account for dissipation observed in superconducting wires oriented parallel to an applied magnetic field, where the vortex lines and transport current should be in a force-free configuration1-6. Previous experiments, however, have been unable to establish the vortex topology in the force-free configuration or the size of the energy barrier for vortex cutting. Here we report magneto-optical images of YBa2Cu3O7-δ samples in the force-free configuration which show that thousands of vortex lines can twist together to form highly stable structures. In some cases, these 'vortex twisters' interact with one another to produce wave-like dynamics. Our measurements also determine directly the current required to initiate vortex cutting, and show that it is much higher than that needed to overcome the pinning of vortices by material defects. This implies that thermodynamic phases of entangled vortices7-10 are intrinsically stable and may occupy a significant portion of the mixed-state phase diagram for type-II superconductors.

  7. BKT phase transition in a 2D system with long-range dipole-dipole interaction

    NASA Astrophysics Data System (ADS)

    Fedichev, P. O.; Men'shikov, L. I.

    2012-01-01

    We consider phase transitions in 2D XY-like systems with long-range dipole-dipole interactions and demonstrate that BKT-type phase transition always occurs separating the ordered (ferroelectric) and the disordered (paraelectric) phases. The low-temperature phase corresponds to a thermal state with bound vortex-antivortex pairs characterized by linear attraction at large distances. Using the Maier-Schwabl topological charge model, we show that bound vortex pairs polarize and screen the vortex-antivortex interaction, leaving only the logarithmic attraction at sufficiently large separations between the vortices. At higher temperatures the pairs dissociate and the phase transition similar to BKT occurs, though at a larger temperature than in a system without the dipole-dipole interaction.

  8. A temporal PIV study of flame/obstacle generated vortex interactions within a semi-confined combustion chamber

    NASA Astrophysics Data System (ADS)

    Jarvis, S.; Hargrave, G. K.

    2006-01-01

    Experimental data obtained using a new multiple-camera digital particle image velocimetry (PIV) technique are presented for the interaction between a propagating flame and the turbulent recirculating velocity field generated during flame-solid obstacle interaction. The interaction between the gas movement and the obstacle creates turbulence by vortex shedding and local wake recirculations. The presence of turbulence in a flammable gas mixture can wrinkle a flame front, increasing the flame surface area and enhancing the burning rate. To investigate propagating flame/turbulence interaction, a novel multiple-camera digital PIV technique was used to provide high spatial and temporal characterization of the phenomenon for the turbulent flow field in the wake of three sequential obstacles. The technique allowed the quantification of the local flame speed and local flow velocity. Due to the accelerating nature of the explosion flow field, the wake flows develop 'transient' turbulent fields. Multiple-camera PIV provides data to define the spatial and temporal variation of both the velocity field ahead of the propagating flame and the flame front to aid the understanding of flame-vortex interaction. Experimentally obtained values for flame displacement speed and flame stretch are presented for increasing vortex complexity.

  9. Anomalous matching effect and attractive vortex interaction in 7.5-/μm triangular microhole lattice on Pb film

    NASA Astrophysics Data System (ADS)

    Ishida, Takekazu; Yoshida, Masaaki; Nakata, Shin'ichiro; Koyama, Tomio

    2002-10-01

    It is considerably exciting to explore the novel vortex physics in multiply connected superconductors. We prepare triangular microhole lattice on Pb film (TriMHoLP) by evaporation of a type-I superconductor Pb upon a capillary plate (6-μm hole and 7.5-μm pitch) in vacuum. We measure the magnetization of TriMHoLP in the RSO mode under low fields (| H|⩽4.7 G). The polarity of magnetization peaks is identical against the field reversal. The magnetization curves as a function of temperature taken in a field-cooling mode of RSO are always positive irrelevant to the field polarity. We show that a vortex-vortex interaction is not always repulsive in a low- κ superconductor. We consider that a spontaneous magnetization and an anomalous matching effect near Tc are relevant to the attractive interaction between vortices.

  10. Interactions and scattering of quantum vortices in a polariton fluid.

    PubMed

    Dominici, Lorenzo; Carretero-González, Ricardo; Gianfrate, Antonio; Cuevas-Maraver, Jesús; Rodrigues, Augusto S; Frantzeskakis, Dimitri J; Lerario, Giovanni; Ballarini, Dario; De Giorgi, Milena; Gigli, Giuseppe; Kevrekidis, Panayotis G; Sanvitto, Daniele

    2018-04-13

    Quantum vortices, the quantized version of classical vortices, play a prominent role in superfluid and superconductor phase transitions. However, their exploration at a particle level in open quantum systems has gained considerable attention only recently. Here we study vortex pair interactions in a resonant polariton fluid created in a solid-state microcavity. By tracking the vortices on picosecond time scales, we reveal the role of nonlinearity, as well as of density and phase gradients, in driving their rotational dynamics. Such effects are also responsible for the split of composite spin-vortex molecules into elementary half-vortices, when seeding opposite vorticity between the two spinorial components. Remarkably, we also observe that vortices placed in close proximity experience a pull-push scenario leading to unusual scattering-like events that can be described by a tunable effective potential. Understanding vortex interactions can be useful in quantum hydrodynamics and in the development of vortex-based lattices, gyroscopes, and logic devices.

  11. Computational Study of a Vortex-Ring Pair Interacting with a Constant-Temperature Heated Wall

    NASA Astrophysics Data System (ADS)

    Jabbar, Hussam; Naguib, Ahmed

    2017-11-01

    Impinging jets are used widely in industrial and manufacturing processes because of their ability to increase the heat transfer rate from the impingement surface. The vortical structures of these jets have an important influence on the heat transfer; by affecting the thermal boundary layer (TBL) during their interaction with the wall. In order to better understand the physics of this interaction, particularly when pairing of two vortices happens near the wall, a simplified model problem of two isolated vortex rings interacting with a flat wall is investigated computationally using ANSYS FLUENT 17.1. Observations of the vorticity field, the temperature field, the wall shear stress, the TBL and the Nusselt number (Nu) provide insight into the association of local Nu maxima/minima with different flow features. The results provide physical understanding of the flow processes leading to enhancement/deterioration of Nu due to vortex-wall interaction. Additionally, the characteristics of the vortical structures are quantified, and possible correlations between the temporal development of these characteristics and the evolution of the maximum/minimum Nu are investigated. The results are compared to those involving a single vortex ring in order to understand the effect of vortex pairing. This work is supported by NSF Grant Number CBET-1603720. Hussam Jabbar also acknowledges the fellowship support from Higher Committee for Education Development in Iraq (HCED).

  12. CCD BVI c observations of Cepheids

    NASA Astrophysics Data System (ADS)

    Berdnikov, L. N.; Kniazev, A. Yu.; Sefako, R.; Kravtsov, V. V.; Zhujko, S. V.

    2014-02-01

    In 2008-2013, we obtained 11333 CCD BVI c frames for 57 Cepheids from the General Catalogue of Variable Stars. We performed our observations with the 76-cm telescope of the South African Astronomical Observatory (SAAO, South Africa) and the 40-cm telescope of the Cerro Armazones Astronomical Observatory of the Universidad Católica del Norte (OCA, Chile) using the SBIG ST-10XME CCD camera. The tables of observations, the plots of light curves, and the current light elements are presented. Comparison of our light curves with those constructed from photoelectric observations shows that the differences between their mean magnitudes exceed 0ṃ05 in 20% of the cases. This suggests the necessity of performing CCD observations for all Cepheids.

  13. Full-Potential Modeling of Blade-Vortex Interactions

    DTIC Science & Technology

    1997-12-01

    modeled by any arbitrary distribution. Stremel (ref. 23) uses a method in which the vortex is modeled with an area-weighted distribution of vorticity. A...Helicopter Rotor. Ph.D. Thesis, StanfordUniv., 1978. 23. Stremel , P. M.: Computational Methods for Non-Planar Vortex Wake Flow Fields. M.S. Thesis

  14. Vortex dynamics and frequency splitting in vertically coupled nanomagnets

    DOE PAGES

    Stebliy, M. E.; Jain, S.; Kolesnikov, A. G.; ...

    2017-04-25

    Here, we explored the dynamic response of a vortex core in a circular nanomagnet by manipulating its dipole-dipole interaction with another vortex core confined locally on top of the nanomagnet. A clear frequency splitting is observed corresponding to the gyrofrequencies of the two vortex cores. The peak positions of the two resonance frequencies can be engineered by controlling the magnitude and direction of the external magnetic field. Both experimental and micromagnetic simulations show that the frequency spectra for the combined system is significantly dependent on the chirality of the circular nanomagnet and is asymmetric with respect to the external biasmore » field. We attribute this result to the strong dynamic dipole-dipole interaction between the two vortex cores, which varies with the distance between them. The possibility of having multiple states in a single nanomagnet with vertical coupling could be of interest for magnetoresistive memories.« less

  15. On random pressure pulses in the turbine draft tube

    NASA Astrophysics Data System (ADS)

    Kuibin, P. A.; Shtork, S. I.; Skripkin, S. G.; Tsoy, M. A.

    2017-04-01

    The flow in the conical part of the hydroturbine draft tube undergoes various instabilities due to deceleration and flow swirling at off-design operation points. In particular, the precessing vortex rope develops at part-load regimes in the draft tube. This rope induces periodical low-frequency pressure oscillations in the draft tube. Interaction of rotational (asynchronous) mode of disturbances with the elbow can bring to strong oscillations in the whole hydrodynamical system. Recent researches on flow structure in the discharge cone in a regime of free runner had revealed that helical-like vortex rope can be unstable itself. Some coils of helix close to each other and reconnection appears with generation of a vortex ring. The vortex ring moves toward the draft tube wall and downstream. The present research is focused on interaction of vortex ring with wall and generation of pressure pulses.

  16. Rotorcraft Blade-Vortex Interaction Controller

    NASA Technical Reports Server (NTRS)

    Schmitz, Fredric H. (Inventor)

    1995-01-01

    Blade-vortex interaction noises, sometimes referred to as 'blade slap', are avoided by increasing the absolute value of inflow to the rotor system of a rotorcraft. This is accomplished by creating a drag force which causes the angle of the tip-path plane of the rotor system to become more negative or more positive.

  17. Fluid-Structure Interactions as Flow Propagates Tangentially Over a Flexible Plate with Application to Voiced Speech Production

    NASA Astrophysics Data System (ADS)

    Westervelt, Andrea; Erath, Byron

    2013-11-01

    Voiced speech is produced by fluid-structure interactions that drive vocal fold motion. Viscous flow features influence the pressure in the gap between the vocal folds (i.e. glottis), thereby altering vocal fold dynamics and the sound that is produced. During the closing phases of the phonatory cycle, vortices form as a result of flow separation as air passes through the divergent glottis. It is hypothesized that the reduced pressure within a vortex core will alter the pressure distribution along the vocal fold surface, thereby aiding in vocal fold closure. The objective of this study is to determine the impact of intraglottal vortices on the fluid-structure interactions of voiced speech by investigating how the dynamics of a flexible plate are influenced by a vortex ring passing tangentially over it. A flexible plate, which models the medial vocal fold surface, is placed in a water-filled tank and positioned parallel to the exit of a vortex generator. The physical parameters of plate stiffness and vortex circulation are scaled with physiological values. As vortices propagate over the plate, particle image velocimetry measurements are captured to analyze the energy exchange between the fluid and flexible plate. The investigations are performed over a range of vortex formation numbers, and lateral displacements of the plate from the centerline of the vortex trajectory. Observations show plate oscillations with displacements directly correlated with the vortex core location.

  18. Polar-Core Spin Vortex of Quasi-2D Spin-2 Condensate in a Flat-Bottomed Optical Trap

    NASA Astrophysics Data System (ADS)

    Zheng, Gong-Ping; Chang, Gao-Zhan; Li, Pin; Li, Ting

    2017-10-01

    Motivated by the recent experiments realized in a flat-bottomed optical trap [Science 347 (2015) 167; Nat. Commun. 6 (2015) 6162], we study the ground state of polar-core spin vortex of quasi-2D spin-2 condensate in a homogeneous trap plus a weak magnetic field. The exact spatial distribution of local spin is obtained and the vortex core are observed to decrease with the growth of the effective spin-spin interaction. For the larger effective spin-spin interaction, the spatial distribution of spin magnitude in spin-2 condensate we obtained agrees well with that of spin-1 condensate in a homogeneous trap, where a polar-core spin vortex was schematically demonstrated as a fully-magnetized planar spin texture with a zero-spin core. The effective spin-spin interaction is proportional to both the bare spin-spin interaction and the radius of the homogeneous trap, simultaneously. Thus the polar-core spin vortex we obtained can be easily controlled by the radius of the trap. Supported by the National Natural Science Foundation of China under Grant No. 11274095, the Key Scientific Research Project of Henan Province of China under Grant No. 16A140011, and the High Performance Computing Center of Henan Normal University

  19. Parallel Vortex Body Interaction Enabled by Active Flow Control

    NASA Astrophysics Data System (ADS)

    Weingaertner, Andre; Tewes, Philipp; Little, Jesse

    2017-11-01

    An experimental study was conducted to explore the flow physics of parallel vortex body interaction between two NACA 0012 airfoils. Experiments were carried out at chord Reynolds numbers of 740,000. Initially, the leading airfoil was characterized without the target one being installed. Results are in good agreement with thin airfoil theory and data provided in the literature. Afterward, the leading airfoil was fixed at 18° incidence and the target airfoil was installed 6 chord lengths downstream. Plasma actuation (ns-DBD), originating close to the leading edge, was used to control vortex shedding from the leading airfoil at various frequencies (0.04

  20. Prediction and control of vortex-dominated and vortex-wake flows

    NASA Technical Reports Server (NTRS)

    Kandil, Osama

    1993-01-01

    This progress report documents the accomplishments achieved in the period from December 1, 1992 until November 30, 1993. These accomplishments include publications, national and international presentations, NASA presentations, and the research group supported under this grant. Topics covered by documents incorporated into this progress report include: active control of asymmetric conical flow using spinning and rotary oscillation; supersonic vortex breakdown over a delta wing in transonic flow; shock-vortex interaction over a 65-degree delta wing in transonic flow; three dimensional supersonic vortex breakdown; numerical simulation and physical aspects of supersonic vortex breakdown; and prediction of asymmetric vortical flows around slender bodies using Navier-Stokes equations.

  1. Leading-edge vortex research: Some nonplanar concepts and current challenges

    NASA Technical Reports Server (NTRS)

    Campbell, J. F.; Osborn, R. F.

    1986-01-01

    Some background information is provided for the Vortex Flow Aerodynamics Conference and that current slender wing airplanes do not use variable leading edge geometry to improve transonic drag polar is shown. Highlights of some of the initial studies combining wing camber, or flaps, with vortex flow are presented. Current vortex flap studies were reviewed to show that there is a large subsonic data base and that transonic and supersonic generic studies have begun. There is a need for validated flow field solvers to calculate vortex/shock interactions at transonic and supersonic speeds. Many important research opportunities exist for fundamental vortex flow investigations and for designing advanced fighter concepts.

  2. Symmetry-broken states in a system of interacting bosons on a two-leg ladder with a uniform Abelian gauge field

    NASA Astrophysics Data System (ADS)

    Greschner, S.; Piraud, M.; Heidrich-Meisner, F.; McCulloch, I. P.; Schollwöck, U.; Vekua, T.

    2016-12-01

    We study the quantum phases of bosons with repulsive contact interactions on a two-leg ladder in the presence of a uniform Abelian gauge field. The model realizes many interesting states, including Meissner phases, vortex fluids, vortex lattices, charge density waves, and the biased-ladder phase. Our work focuses on the subset of these states that breaks a discrete symmetry. We use density matrix renormalization group simulations to demonstrate the existence of three vortex-lattice states at different vortex densities and we characterize the phase transitions from these phases into neighboring states. Furthermore, we provide an intuitive explanation of the chiral-current reversal effect that is tied to some of these vortex lattices. We also study a charge-density-wave state that exists at 1/4 particle filling at large interaction strengths and flux values close to half a flux quantum. By changing the system parameters, this state can transition into a completely gapped vortex-lattice Mott-insulating state. We elucidate the stability of these phases against nearest-neighbor interactions on the rungs of the ladder relevant for experimental realizations with a synthetic lattice dimension. A charge-density-wave state at 1/3 particle filling can be stabilized for flux values close to half a flux quantum and for very strong on-site interactions in the presence of strong repulsion on the rungs. Finally, we analytically describe the emergence of these phases in the low-density regime, and, in particular, we obtain the boundaries of the biased-ladder phase, i.e., the phase that features a density imbalance between the legs. We make contact with recent quantum-gas experiments that realized related models and discuss signatures of these quantum states in experimentally accessible observables.

  3. The application of experimental data to blade wake interaction noise prediction

    NASA Technical Reports Server (NTRS)

    Glegg, Stewart A. L.; Devenport, William J.

    1991-01-01

    Blade wake interaction noise (BWI) has been defined as the broadband noise generated by the ingestion of turbulent trailing tip vortices by helicopter rotors. This has been shown to be the dominant contributor to the subjectively important part of the acoustic spectrum for the approach stage of a helicopter flyover. A prediction method for BWI noise based on the calculated trailing vortex trajectories has been developed and estimates of the vortex turbulence have been made. These measurements were made on a trailing vortex from a split wing arrangement and did not give the spectrum of the velocity fluctuations. A recent experiment carried out to measure the turbulence associated with a trailing vortex and the application of the results to BWI noise prediction is described.

  4. Several examples where turbulence models fail in inlet flow field analysis

    NASA Technical Reports Server (NTRS)

    Anderson, Bernhard H.

    1993-01-01

    Computational uncertainties in turbulence modeling for three dimensional inlet flow fields include flows approaching separation, strength of secondary flow field, three dimensional flow predictions of vortex liftoff, and influence of vortex-boundary layer interactions; computational uncertainties in vortex generator modeling include representation of generator vorticity field and the relationship between generator and vorticity field. The objectives of the inlet flow field studies presented in this document are to advance the understanding, prediction, and control of intake distortion and to study the basic interactions that influence this design problem.

  5. Rotor blade system with reduced blade-vortex interaction noise

    NASA Technical Reports Server (NTRS)

    Leishman, John G. (Inventor); Han, Yong Oun (Inventor)

    2005-01-01

    A rotor blade system with reduced blade-vortex interaction noise includes a plurality of tube members embedded in proximity to a tip of each rotor blade. The inlets of the tube members are arrayed at the leading edge of the blade slightly above the chord plane, while the outlets are arrayed at the blade tip face. Such a design rapidly diffuses the vorticity contained within the concentrated tip vortex because of enhanced flow mixing in the inner core, which prevents the development of a laminar core region.

  6. Resonant-spin-ordering of vortex cores in interacting mesomagnets

    NASA Astrophysics Data System (ADS)

    Jain, Shikha

    2013-03-01

    The magnetic system of interacting vortex-state elements have a dynamically reconfigurable ground state characterized by different relative polarities and chiralities of the individual disks; and have a corresponding dynamically controlled spectrum of collective excitation modes that determine the microwave absorption of the crystal. The development of effective methods for dynamic control of the ground state in this vortex-type magnonic crystal is of interest both from fundamental and technological viewpoints. Control of vortex chirality has been demonstrated previously using various techniques; however, control and manipulation of vortex polarities remain challenging. In this work, we present a robust and efficient way of selecting the ground state configuration of interacting magnetic elements using resonant-spin-ordering approach. This is achieved by driving the system from the linear regime of constant vortex gyrations to the non-linear regime of vortex-core reversals at a fixed excitation frequency of one of the coupled modes. Subsequently reducing the excitation field to the linear regime stabilizes the system to a polarity combination whose resonant frequency is decoupled from the initialization frequency. We have utilized the resonant approach to transition between the two polarity combinations (parallel or antiparallel) in a model system of connected dot-pairs which may form the building blocks of vortex-based magnonic crystals. Taking a step further, we have extended the technique by studying many-particle system for its potential as spin-torque oscillators or logic devices. Work at Argonne was supported by the U. S. DOE, Office of BES, under Contract No. DE-AC02-06CH11357. This work was in part supported by grant DMR-1015175 from the U. S. National Science Foundation, by a Contract from the U.S. Army TARDEC and RDECOM.

  7. Interaction of vortex ring with a stratified finite thickness interface

    NASA Astrophysics Data System (ADS)

    Advaith, S.; Manu, K. V.; Tinaikar, Aashay; Chetia, Utpal Kumar; Basu, Saptarshi

    2017-09-01

    This work experimentally investigates the dynamics of interaction between a propagating vortex ring and density stratified interface of finite thickness. The flow evolution has been quantified using a high speed shadowgraph technique and particle image velocimetry. The spatial and temporal behaviours of the vortex in the near and far field of the interface and the plume structure formed due to buoyancy are investigated systematically by varying the vortex strength (Reynolds number, Re) and the degree of stratification (Atwood number, At). Maximum penetration length (Lpmax) of the vortex ring through the interface is measured over a range of Reynolds (1350 ≤ Re ≤ 4600) and Richardson (0.1 ≤ Ri ≤ 4) numbers. It is found that for low Froude number values, the maximum penetration length varies linearly with the Froude number as in the study of Orlandi et al. ["Vortex rings descending in a stratified fluid," Phys. Fluids 10, 2819-2827 (1998)]. However, for high Reynolds and Richardson numbers (Ri), anomalous behaviour in maximum penetration is observed. The Lpmax value is used to characterize the vortex-interface interactions into non-penetrative, partially-penetrative, and extensively penetrative regimes. Flow visualization revealed the occurrence of short-wavelength instability of a plume structure, particularly in a partially penetrative regime. Fluid motion exhibits chaotic behaviour in an extensively penetrative regime. Detailed analyses of plume structure propagation are performed by measuring the plume length and plume rise. Appropriate scaling for the plume length and plume rise is derived, which allows universal collapse of the data for different flow conditions. Some information concerning the instability of the plume structure and decay of the vortex ring is obtained using proper orthogonal decomposition.

  8. Simulation of Rotary-Wing Near-Wake Vortex Structures Using Navier-Stokes CFD Methods

    NASA Technical Reports Server (NTRS)

    Kenwright, David; Strawn, Roger; Ahmad, Jasim; Duque, Earl; Warmbrodt, William (Technical Monitor)

    1997-01-01

    This paper will use high-resolution Navier-Stokes computational fluid dynamics (CFD) simulations to model the near-wake vortex roll-up behind rotor blades. The locations and strengths of the trailing vortices will be determined from newly-developed visualization and analysis software tools applied to the CFD solutions. Computational results for rotor nearwake vortices will be used to study the near-wake vortex roll up for highly-twisted tiltrotor blades. These rotor blades typically have combinations of positive and negative spanwise loading and complex vortex wake interactions. Results of the computational studies will be compared to vortex-lattice wake models that are frequently used in rotorcraft comprehensive codes. Information from these comparisons will be used to improve the rotor wake models in the Tilt-Rotor Acoustic Code (TRAC) portion of NASA's Short Haul Civil Transport program (SHCT). Accurate modeling of the rotor wake is an important part of this program and crucial to the successful design of future civil tiltrotor aircraft. The rotor wake system plays an important role in blade-vortex interaction noise, a major problem for all rotorcraft including tiltrotors.

  9. Thermal coupling effect on the vortex dynamics of superconducting thin films: time-dependent Ginzburg–Landau simulations

    NASA Astrophysics Data System (ADS)

    Jing, Ze; Yong, Huadong; Zhou, Youhe

    2018-05-01

    In this paper, vortex dynamics of superconducting thin films are numerically investigated by the generalized time-dependent Ginzburg–Landau (TDGL) theory. Interactions between vortex motion and the motion induced energy dissipation is considered by solving the coupled TDGL equation and the heat diffusion equation. It is found that thermal coupling has significant effects on the vortex dynamics of superconducting thin films. Branching in the vortex penetration path originates from the coupling between vortex motion and the motion induced energy dissipation. In addition, the environment temperature, the magnetic field ramp rate and the geometry of the superconducting film also greatly influence the vortex dynamic behaviors. Our results provide new insights into the dynamics of superconducting vortices, and give a mesoscopic understanding on the channeling and branching of vortex penetration paths during flux avalanches.

  10. Scattering of a vortex pair by a single quantum vortex in a Bose–Einstein condensate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smirnov, L. A., E-mail: smirnov-lev@allp.sci-nnov.ru; Smirnov, A. I., E-mail: smirnov@appl.sci-nnov.ru; Mironov, V. A.

    We analyze the scattering of vortex pairs (the particular case of 2D dark solitons) by a single quantum vortex in a Bose–Einstein condensate with repulsive interaction between atoms. For this purpose, an asymptotic theory describing the dynamics of such 2D soliton-like formations in an arbitrary smoothly nonuniform flow of a ultracold Bose gas is developed. Disregarding the radiation loss associated with acoustic wave emission, we demonstrate that vortex–antivortex pairs can be put in correspondence with quasiparticles, and their behavior can be described by canonical Hamilton equations. For these equations, we determine the integrals of motion that can be used tomore » classify various regimes of scattering of vortex pairs by a single quantum vortex. Theoretical constructions are confirmed by numerical calculations performed directly in terms of the Gross–Pitaevskii equation. We propose a method for estimating the radiation loss in a collision of a soliton-like formation with a phase singularity. It is shown by direct numerical simulation that under certain conditions, the interaction of vortex pairs with a core of a single quantum vortex is accompanied by quite intense acoustic wave emission; as a result, the conditions for applicability of the asymptotic theory developed here are violated. In particular, it is visually demonstrated by a specific example how radiation losses lead to a transformation of a vortex–antivortex pair into a vortex-free 2D dark soliton (i.e., to the annihilation of phase singularities).« less

  11. Interaction of ions, atoms, and small molecules with quantized vortex lines in superfluid (4)He.

    PubMed

    Mateo, David; Eloranta, Jussi; Williams, Gary A

    2015-02-14

    The interaction of a number of impurities (H2, Ag, Cu, Ag2, Cu2, Li, He3 (+), He(*) ((3)S), He2 (∗) ((3)Σu), and e(-)) with quantized rectilinear vortex lines in superfluid (4)He is calculated by using the Orsay-Trento density functional theory (DFT) method at 0 K. The Donnelly-Parks (DP) potential function binding ions to the vortex is combined with DFT data, yielding the impurity radius as well as the vortex line core parameter. The vortex core parameter at 0 K (0.74 Å) obtained either directly from the vortex line geometry or through the DP potential fitting is smaller than previously suggested but is compatible with the value obtained from re-analysis of the Rayfield-Reif experiment. All of the impurities have significantly higher binding energies to vortex lines below 1 K than the available thermal energy, where the thermally assisted escape process becomes exponentially negligible. Even at higher temperatures 1.5-2.0 K, the trapping times for larger metal clusters are sufficiently long that the previously observed metal nanowire assembly in superfluid helium can take place at vortex lines. The binding energy of the electron bubble is predicted to decrease as a function of both temperature and pressure, which allows adjusting the trap depth for either permanent trapping or to allow thermally assisted escape. Finally, a new scheme for determining the trapping of impurities on vortex lines by optical absorption spectroscopy is outlined and demonstrated for He(*).

  12. Interaction of ions, atoms, and small molecules with quantized vortex lines in superfluid 4He

    NASA Astrophysics Data System (ADS)

    Mateo, David; Eloranta, Jussi; Williams, Gary A.

    2015-02-01

    The interaction of a number of impurities (H2, Ag, Cu, Ag2, Cu2, Li, He3 + , He* (3S), He2∗ (3Σu), and e-) with quantized rectilinear vortex lines in superfluid 4He is calculated by using the Orsay-Trento density functional theory (DFT) method at 0 K. The Donnelly-Parks (DP) potential function binding ions to the vortex is combined with DFT data, yielding the impurity radius as well as the vortex line core parameter. The vortex core parameter at 0 K (0.74 Å) obtained either directly from the vortex line geometry or through the DP potential fitting is smaller than previously suggested but is compatible with the value obtained from re-analysis of the Rayfield-Reif experiment. All of the impurities have significantly higher binding energies to vortex lines below 1 K than the available thermal energy, where the thermally assisted escape process becomes exponentially negligible. Even at higher temperatures 1.5-2.0 K, the trapping times for larger metal clusters are sufficiently long that the previously observed metal nanowire assembly in superfluid helium can take place at vortex lines. The binding energy of the electron bubble is predicted to decrease as a function of both temperature and pressure, which allows adjusting the trap depth for either permanent trapping or to allow thermally assisted escape. Finally, a new scheme for determining the trapping of impurities on vortex lines by optical absorption spectroscopy is outlined and demonstrated for He*.

  13. Three scales of motions associated with tornadoes. [Cyclones, tornadoes, and suction vortexs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forbes, G.S.

    1978-03-01

    This dissertation explores three scales of motion commonly associated with tornadoes, and the interaction of these scales: the tornado cyclone, the tornado, and the suction vortex. The goal of the research is to specify in detail the character and interaction of these scales of motion to explain tornadic phenomena.

  14. Computational investigation of large-scale vortex interaction with flexible bodies

    NASA Astrophysics Data System (ADS)

    Connell, Benjamin; Yue, Dick K. P.

    2003-11-01

    The interaction of large-scale vortices with flexible bodies is examined with particular interest paid to the energy and momentum budgets of the system. Finite difference direct numerical simulation of the Navier-Stokes equations on a moving curvilinear grid is coupled with a finite difference structural solver of both a linear membrane under tension and linear Euler-Bernoulli beam. The hydrodynamics and structural dynamics are solved simultaneously using an iterative procedure with the external structural forcing calculated from the hydrodynamics at the surface and the flow-field velocity boundary condition given by the structural motion. We focus on an investigation into the canonical problem of a vortex-dipole impinging on a flexible membrane. It is discovered that the structural properties of the membrane direct the interaction in terms of the flow evolution and the energy budget. Pressure gradients associated with resonant membrane response are shown to sustain the oscillatory motion of the vortex pair. Understanding how the key mechanisms in vortex-body interactions are guided by the structural properties of the body is a prerequisite to exploiting these mechanisms.

  15. Acoustics and dynamics of coaxial interacting vortex rings

    NASA Technical Reports Server (NTRS)

    Shariff, Karim; Leonard, Anthony; Zabusky, Norman J.; Ferziger, Joel H.

    1988-01-01

    Using a contour dynamics method for inviscid axisymmetric flow we examine the effects of core deformation on the dynamics and acoustic signatures of coaxial interacting vortex rings. Both 'passage' and 'collision' (head-on) interactions are studied for initially identical vortices. Good correspondence with experiments is obtained. A simple model which retains only the elliptic degree of freedom in the core shape is used to explain some of the calculated features.

  16. The Vortex Lattice Method for the Rotor-Vortex Interaction Problem

    NASA Technical Reports Server (NTRS)

    Padakannaya, R.

    1974-01-01

    The rotor blade-vortex interaction problem and the resulting impulsive airloads which generate undesirable noise levels are discussed. A numerical lifting surface method to predict unsteady aerodynamic forces induced on a finite aspect ratio rectangular wing by a straight, free vortex placed at an arbitrary angle in a subsonic incompressible free stream is developed first. Using a rigid wake assumption, the wake vortices are assumed to move downsteam with the free steam velocity. Unsteady load distributions are obtained which compare favorably with the results of planar lifting surface theory. The vortex lattice method has been extended to a single bladed rotor operating at high advance ratios and encountering a free vortex from a fixed wing upstream of the rotor. The predicted unsteady load distributions on the model rotor blade are generally in agreement with the experimental results. This method has also been extended to full scale rotor flight cases in which vortex induced loads near the tip of a rotor blade were indicated. In both the model and the full scale rotor blade airload calculations a flat planar wake was assumed which is a good approximation at large advance ratios because the downwash is small in comparison to the free stream at large advance ratios. The large fluctuations in the measured airloads near the tip of the rotor blade on the advance side is predicted closely by the vortex lattice method.

  17. Helicity conservation under quantum reconnection of vortex rings.

    PubMed

    Zuccher, Simone; Ricca, Renzo L

    2015-12-01

    Here we show that under quantum reconnection, simulated by using the three-dimensional Gross-Pitaevskii equation, self-helicity of a system of two interacting vortex rings remains conserved. By resolving the fine structure of the vortex cores, we demonstrate that the total length of the vortex system reaches a maximum at the reconnection time, while both writhe helicity and twist helicity remain separately unchanged throughout the process. Self-helicity is computed by two independent methods, and topological information is based on the extraction and analysis of geometric quantities such as writhe, total torsion, and intrinsic twist of the reconnecting vortex rings.

  18. Vortical flow management for improved configuration aerodynamics: Recent experiences

    NASA Technical Reports Server (NTRS)

    Rao, D. M.

    1983-01-01

    Recent progress in vortex-control applications for alleviating the adverse consequences of three dimensional separation and vortical interactions on slender body/swept wing configurations is reported. Examples include helical separation trip to alleviate the side force due to forebody vortex asymmetry; hinged strakes to avoid vortex breakdown effects; compartmentation of swept leading edge separation to delay the pitch-up instability; under wing vortex trip and vortex trip and vortex flaps for drag reduction at high lift; and an apex-flap trimmer to fully utilize the lift capability of trailing-edge flaps for take off and landing of delta wings. Experimental results on generic wind-tunnel models are presented to illustrate the vortex-management concepts involved and to indicate their potential for enhancing the subsonic aerodynamics of supersonic-cruise type vehicles.

  19. Shock/vortex interaction and vortex-breakdown modes

    NASA Technical Reports Server (NTRS)

    Kandil, Osama A.; Kandil, H. A.; Liu, C. H.

    1992-01-01

    Computational simulation and study of shock/vortex interaction and vortex-breakdown modes are considered for bound (internal) and unbound (external) flow domains. The problem is formulated using the unsteady, compressible, full Navier-Stokes (NS) equations which are solved using an implicit, flux-difference splitting, finite-volume scheme. For the bound flow domain, a supersonic swirling flow is considered in a configured circular duct and the problem is solved for quasi-axisymmetric and three-dimensional flows. For the unbound domain, a supersonic swirling flow issued from a nozzle into a uniform supersonic flow of lower Mach number is considered for quasi-axisymmetric and three-dimensional flows. The results show several modes of breakdown; e.g., no-breakdown, transient single-bubble breakdown, transient multi-bubble breakdown, periodic multi-bubble multi-frequency breakdown and helical breakdown.

  20. Flame-vortex interactions imaged in microgravity

    NASA Technical Reports Server (NTRS)

    Driscoll, James F.; Dahm, Werner J. A.; Sichel, Martin

    1995-01-01

    The scientific objective is to obtain high quality color-enhanced digital images of a vortex exerting aerodynamic strain on premixed and nonpremixed flames with the complicating effects of buoyancy removed. The images will provide universal (buoyancy free) scaling relations that are required to improve several types of models of turbulent combustion, including KIVA-3, discrete vortex, and large-eddy simulations. The images will be used to help quantify several source terms in the models, including those due to flame stretch, flame-generated vorticity, flame curvature, and preferential diffusion, for a range of vortex sizes and flame conditions. The experiment is an ideal way to study turbulence-chemistry interactions and isolate the effect of vortices of different sizes and strengths in a repeatable manner. A parallel computational effort is being conducted which considers full chemistry and preferential diffusion.

  1. Subsonic aerodynamic characteristics of interacting lifting surfaces with separated flow around sharp edges predicted by a vortex-lattice method

    NASA Technical Reports Server (NTRS)

    Lamar, J. E.; Gloss, B. B.

    1975-01-01

    Because the potential flow suction along the leading and side edges of a planform can be used to determine both leading- and side-edge vortex lift, the present investigation was undertaken to apply the vortex-lattice method to computing side-edge suction force for isolated or interacting planforms. Although there is a small effect of bound vortex sweep on the computation of the side-edge suction force, the results obtained for a number of different isolated planforms produced acceptable agreement with results obtained from a method employing continuous induced-velocity distributions. By using the method outlined, better agreement between theory and experiment was noted for a wing in the presence of a canard than was previously obtained.

  2. Influence of columnar defects on the thermodynamic properties of BSCCO

    NASA Astrophysics Data System (ADS)

    van der Beek, C. J.; Indenbom, M. V.; Berseth, V.; Konczykowski, M.; Li, T. W.; Kes, P. H.; Benoit, W.

    1996-03-01

    Amorphous columnar defects strongly affect the reversible magnetization of Bi2Sr2CaCu2O8+δ single crystals both in the vortex solid, where the change reflects the change in vortex energy due to pinning, and in the vortex liquid, where the randomly positioned columns disrupt the interaction between superconducting fluctuations.

  3. Influence of Initial Vorticity Distribution on Axisymmetric Vortex Breakdown and Reconnection

    NASA Technical Reports Server (NTRS)

    Young, Larry A.

    2007-01-01

    An analytical treatment has been developed to study some of the axisymmetric vortex breakdown and reconnection fluid dynamic processes underlying body-vortex interactions that are frequently manifested in rotorcraft and propeller-driven fixed-wing aircraft wakes. In particular, the presence of negative vorticity in the inner core of a vortex filament (one example of which is examined in this paper) subsequent to "cutting" by a solid body has a profound influence on the vortex reconnection, leading to analog flow behavior similar to vortex breakdown phenomena described in the literature. Initial vorticity distributions (three specific examples which are examined) without an inner core of negative vorticity do not exhibit vortex breakdown and instead manifest diffusion-like properties while undergoing vortex reconnection. Though this work focuses on laminar vortical flow, this work is anticipated to provide valuable insight into rotary-wing aerodynamics as well as other types of vortical flow phenomena.

  4. Observation of orbital angular momentum transfer between acoustic and optical vortices in optical fiber.

    PubMed

    Dashti, Pedram Z; Alhassen, Fares; Lee, Henry P

    2006-02-03

    Acousto-optic interaction in optical fiber is examined from the perspective of copropagating optical and acoustic vortex modes. Calculation of the acousto-optic coupling coefficient between different optical modes leads to independent conservation of spin and orbital angular momentum of the interacting photons and phonons. We show that the orbital angular momentum of the acoustic vortex can be transferred to a circularly polarized fundamental optical mode to form a stable optical vortex in the fiber carrying orbital angular momentum. The technique provides a useful way of generating stable optical vortices in the fiber medium.

  5. The structure and development of streamwise vortex arrays embedded in a turbulent boundary layer. Ph.D. Thesis - Case Western Reserve Univ.

    NASA Technical Reports Server (NTRS)

    Wendt, Bruce J.; Greber, Isaac; Hingst, Warren R.

    1991-01-01

    An investigation of the structure and development of streamwise vortices embedded in a turbulent boundary layer was conducted. The vortices were generated by a single spanwise row of rectangular vortex generator blades. A single embedded vortex was examined, as well as arrays of embedded counter rotating vortices produced by equally spaced vortex generators. Measurements of the secondary velocity field in the crossplane provided the basis for characterization of vortex structure. Vortex structure was characterized by four descriptors. The center of each vortex core was located at the spanwise and normal position of peak streamwise vorticity. Vortex concentration was characterized by the magnitude of the peak streamwise vorticity, and the vortex strength by its circulation. Measurements of the secondary velocity field were conducted at two crossplane locations to examine the streamwise development of the vortex arrays. Large initial spacings of the vortex generators produced pairs of strong vortices which tended to move away from the wall region while smaller spacings produced tight arrays of weak vortices close to the wall. A model of vortex interaction and development is constructed using the experimental results. The model is based on the structure of the Oseen Vortex. Vortex trajectories are modelled by including the convective effects of neighbors.

  6. Vortex with fourfold defect lines in a simple model of self-propelled particles

    NASA Astrophysics Data System (ADS)

    Seyed-Allaei, Hamid; Ejtehadi, Mohammad Reza

    2016-03-01

    We study the formation of a vortex with fourfold symmetry in a minimal model of self-propelled particles, confined inside a squared box, using computer simulations and also theoretical analysis. In addition to the vortex pattern, we observe five other regimes in the system: a homogeneous gaseous phase, band structures, moving clumps, moving clusters, and vibrating rings. All six regimes emerge from controlling the strength of noise and from the contribution of repulsion and alignment interactions. We study the shape of the vortex and its symmetry in detail. The pattern shows exponential defect lines where incoming and outgoing flows of particles collide. We show that alignment and repulsion interactions between particles are necessary to form such patterns. We derive hydrodynamical equations with an introduction of the "small deviation" technique to describe the vortex phase. The method is applicable to other systems as well. Finally, we compare the theory with the results of both computer simulations and an experiment using Quincke rotors. A good agreement between the three is observed.

  7. Interaction of a shock with a longitudinal vortex

    NASA Technical Reports Server (NTRS)

    Erlebacher, Gordon; Hussaini, M. Y.; Shu, Chi-Wang

    1996-01-01

    In this paper we study the shock/longitudinal vortex interaction problem in axisymmetric geometry. Linearized analysis for small vortex strength is performed, and compared with results from a high order axisymmetric shock-fitted Euler solution obtained for this purpose. It is confirmed that for weak vortices, predictions from linear theory agree well with results from nonlinear numerical simulations at the shock location. To handle very strong longitudinal vortices, which may ultimately break the shock, we use an axisymmetric high order essentially non-oscillatory (ENO) shock capturing scheme. Comparison of shock-captured and shock-fitted results are performed in their regions of common validity. We also study the vortex breakdown as a function of Mach number ranging from 1.3 to 10, thus extending the range of existing results. For vortex strengths above a critical value. a triple point forms on the shock and a secondary shock forms to provide the necessary deceleration so that the fluid velocity can adjust to downstream conditions at the shock.

  8. Recent NASA Wake-Vortex Flight Tests, Flow-Physics Database and Wake-Development Analysis

    NASA Technical Reports Server (NTRS)

    Vicroy, Dan D.; Vijgen, Paul M.; Reimer, Heidi M.; Gallegos, Joey L.; Spalart, Philippe R.

    1998-01-01

    A series of flight tests over the ocean of a four engine turboprop airplane in the cruise configuration have provided a data set for improved understanding of wake vortex physics and atmospheric interaction. An integrated database has been compiled for wake characterization and validation of wake-vortex computational models. This paper describes the wake-vortex flight tests, the data processing, the database development and access, and results obtained from preliminary wake-characterization analysis using the data sets.

  9. Full-potential modeling of blade-vortex interactions

    NASA Technical Reports Server (NTRS)

    Jones, H. E.; Caradonna, F. X.

    1986-01-01

    A comparison is made of four different models for predicting the unsteady loading induced by a vortex passing close to an airfoil. (1) The first model approximates the vortex effect as a change in the airfoil angle of attack. (2) The second model is related to the first but, instead of imposing only a constant velocity on the airfoil, the distributed effect of the vortex is computed and used. This is analogous to a lifting surface method. (3) The third model is to specify a branch cut discontinuity in the potential field. The vortex is modeled as a jump in potential across the branch cut, the edge of which represents the center of the vortex. (4) The fourth method models the vortex expressing the potential as the sum of a known potential due to the vortex and an unknown perturbation due to the airfoil. The purpose of the current study is to investigate the four vortex models described above and to determine their relative merits and suitability for use in large three-dimensional codes.

  10. Comparison study of portable bladder scanner versus cone-beam CT scan for measuring bladder volumes in post-prostatectomy patients undergoing radiotherapy.

    PubMed

    Ung, K A; White, R; Mathlum, M; Mak-Hau, V; Lynch, R

    2014-01-01

    In post-prostatectomy radiotherapy to the prostatic bed, consistent bladder volume is essential to maintain the position of treatment target volume. We assessed the differences between bladder volume readings from a portable bladder scanner (BS-V) and those obtained from planning CT (CT-V) or cone-beam CT (CBCT-V). Interfraction bladder volume variation was also determined. BS-V was recorded before and after planning CT or CBCT. The percentage differences between the readings using the two imaging modalities, standard deviations and 95% confidence intervals were determined. Data were analysed for the whole patient cohort and separately for the older BladderScan™ BVI3000 and newer BVI9400 model. Interfraction bladder volume variation was determined from the percentage difference between the CT-V and CBCT-V. Treatment duration, incorporating the time needed for BS and CBCT, was recorded. Fourteen patients were enrolled, producing 133 data sets for analysis. BS-V was taken using the BVI9400 in four patients (43 data sets). The mean BS-V was 253.2 mL, and the mean CT-V or CBCT-V was 199 cm(3). The mean percentage difference between the two modalities was 19.7% (SD 42.2; 95%CI 12.4 to 26.9). The BVI9400 model produced more consistent readings, with a mean percentage difference of -6.2% (SD 27.8; 95% CI -14.7 to -2.4%). The mean percentage difference between CT-V and CBCT-V was 31.3% (range -48% to 199.4%). Treatment duration from time of first BS reading to CBCT was, on average, 12 min (range 6-27). The BS produces bladder volume readings of an average 19.7% difference from CT-V or CBCT-V and can potentially be used to screen for large interfraction bladder volume variations in radiotherapy to prostatic bed. The observed interfraction bladder volume variation suggests the need to improve bladder volume consistency. Incorporating the BS into practice is feasible. © 2014 The Royal Australian and New Zealand College of Radiologists.

  11. Determining the vortex tilt relative to a superconductor surface

    DOE PAGES

    Kogan, V. G.; Kirtley, J. R.

    2017-11-20

    Here, it is of interest to determine the exit angle of a vortex from a superconductor surface, since this affects the intervortex interactions and their consequences. Two ways to determine this angle are to image the vortex magnetic fields above the surface, or the vortex core shape at the surface. In this work we evaluate the field h(x,y,z) above a flat superconducting surface x,y and the currents J(x,y) at that surface for a straight vortex tilted relative to the normal to the surface, for both the isotropic and anisotropic cases. In principle, these results can be used to determine themore » vortex exit tilt angle from analyses of magnetic field imaging or density of states data.« less

  12. Vortex energy landscape from real space imaging analysis of YBa2Cu3O7 with different defect structures

    NASA Astrophysics Data System (ADS)

    Luccas, R. F.; Granados, X.; Obradors, X.; Puig, T.

    2014-10-01

    A methodology based on real space vortex image analysis is presented able to estimate semi-quantitatively the relevant energy densities of an arbitrary array of vortices, map the interaction energy distributions and evaluate the pinning energy associated to particular defects. The combined study using nanostructuration tools, a vortex visualization technique and the energy method is seen as an opportunity to estimate vortex pinning potentials strengths. Particularly, spatial distributions of vortex energy densities induced by surface nanoindented scratches are evaluated and compared to those of twin boundaries. This comparative study underlines the remarkable role of surface nanoscratches in pinning vortices and its potentiality in the design of novel devices for pinning and guiding vortex motion.

  13. Review of the physics of enhancing vortex lift by unsteady excitation

    NASA Technical Reports Server (NTRS)

    Wu, J. Z.; Vakili, A. D.; Wu, J. M.

    1991-01-01

    A review aimed at providing a physical understanding of the crucial mechanisms for obtaining super lift by means of unsteady excitations is presented. Particular attention is given to physical problems, including rolled-up vortex layer instability and receptivity, wave-vortex interaction and resonance, nonlinear streaming, instability of vortices behind bluff bodies and their shedding, and vortex breakdown. A general theoretical framework suitable for handling the unsteady vortex flows is introduced. It is suggested that wings with swept and sharp leading edges, equipped with devices for unsteady excitations, could yield the first breakthrough of the unsteady separation barrier and provide super lift at post-stall angle of attack.

  14. Experimental Investigation of the Influence of a Reverse Delta Type Add-on Device on the Flap-tip Vortex of a Wing

    NASA Astrophysics Data System (ADS)

    Altaf, A.; Thong, T. B.; Omar, A. A.; Asrar, W.

    2017-03-01

    Particle Image Velocimetry was used in a low speed wind tunnel to investigate the effect of interactions of vortices produced by an outboard flap-tip of a half wing (NACA 23012 in landing configuration) and a slender reverse delta type add-on device, placed in the proximity of the outboard flap-tip, on the upper surface of the half wing. This work investigates the characteristics of the vortex interactions generated downstream in planes perpendicular to the free stream direction at a chord-based Reynolds number of Rec=2.74×105 . It was found that the add-on device significantly reduces the tangential velocity magnitude and enlarges the vortex core of the resultant vortex by up to 36.1% and 36.8%, respectively.

  15. Modeling quantum fluid dynamics at nonzero temperatures

    PubMed Central

    Berloff, Natalia G.; Brachet, Marc; Proukakis, Nick P.

    2014-01-01

    The detailed understanding of the intricate dynamics of quantum fluids, in particular in the rapidly growing subfield of quantum turbulence which elucidates the evolution of a vortex tangle in a superfluid, requires an in-depth understanding of the role of finite temperature in such systems. The Landau two-fluid model is the most successful hydrodynamical theory of superfluid helium, but by the nature of the scale separations it cannot give an adequate description of the processes involving vortex dynamics and interactions. In our contribution we introduce a framework based on a nonlinear classical-field equation that is mathematically identical to the Landau model and provides a mechanism for severing and coalescence of vortex lines, so that the questions related to the behavior of quantized vortices can be addressed self-consistently. The correct equation of state as well as nonlocality of interactions that leads to the existence of the roton minimum can also be introduced in such description. We review and apply the ideas developed for finite-temperature description of weakly interacting Bose gases as possible extensions and numerical refinements of the proposed method. We apply this method to elucidate the behavior of the vortices during expansion and contraction following the change in applied pressure. We show that at low temperatures, during the contraction of the vortex core as the negative pressure grows back to positive values, the vortex line density grows through a mechanism of vortex multiplication. This mechanism is suppressed at high temperatures. PMID:24704874

  16. A Numerical Study of Cavitation Inception in Complex Flow Fields

    DTIC Science & Technology

    2007-12-01

    field in a tip vortex flow of an open propeller to better describe the interaction between the blade wake and the tip vortex (i.e. the roll-up... WAKE INTERACTION ON CAVITATION INCEPTION IN AN OPEN PROPELLER ................15 2.5 NON-SPHERICAL BUBBLE EFFECTS ON CAVITATION INCEPTION [14,15...18 2.6 STUDY OF CAVITATION INCEPTION NOISE [16,17,18

  17. On vortex-airfoil interaction noise including span-end effects, with application to open-rotor aeroacoustics

    NASA Astrophysics Data System (ADS)

    Roger, Michel; Schram, Christophe; Moreau, Stéphane

    2014-01-01

    A linear analytical model is developed for the chopping of a cylindrical vortex by a flat-plate airfoil, with or without a span-end effect. The major interest is the contribution of the tip-vortex produced by an upstream rotating blade in the rotor-rotor interaction noise mechanism of counter-rotating open rotors. Therefore the interaction is primarily addressed in an annular strip of limited spanwise extent bounding the impinged blade segment, and the unwrapped strip is described in Cartesian coordinates. The study also addresses the interaction of a propeller wake with a downstream wing or empennage. Cylindrical vortices are considered, for which the velocity field is expanded in two-dimensional gusts in the reference frame of the airfoil. For each gust the response of the airfoil is derived, first ignoring the effect of the span end, assimilating the airfoil to a rigid flat plate, with or without sweep. The corresponding unsteady lift acts as a distribution of acoustic dipoles, and the radiated sound is obtained from a radiation integral over the actual extent of the airfoil. In the case of tip-vortex interaction noise in CRORs the acoustic signature is determined for vortex trajectories passing beyond, exactly at and below the tip radius of the impinged blade segment, in a reference frame attached to the segment. In a second step the same problem is readdressed accounting for the effect of span end on the aerodynamic response of a blade tip. This is achieved through a composite two-directional Schwarzschild's technique. The modifications of the distributed unsteady lift and of the radiated sound are discussed. The chained source and radiation models provide physical insight into the mechanism of vortex chopping by a blade tip in free field. They allow assessing the acoustic benefit of clipping the rear rotor in a counter-rotating open-rotor architecture.

  18. Hearing Color

    NASA Astrophysics Data System (ADS)

    Bieryla, Allyson; Diaz Merced, Wanda; Davis, Daniel

    2018-06-01

    In astronomy, the relationship between color and temperature is an important concept. This concept can be demonstrated in a laboratory or seen at telescope when observing stars. A blind/visually-impaired (B/VI) person would not be able to engage in the same observational demonstrations that are typically done to explain this concept. We’ve developed a tool for B/VI students to participate in these types of observational activities. Using an arduino compatible micro controller with and RGB light sensor, we are able to convert filtered light into sound. The device will produce different timbres for different wavelengths of light, which can then be used to distinguish the temperature of an object. The device is handheld, easy to program and inexpensive to reproduce (< $50). It is also fitted to mount on a telescope for observing. The design schematic and code will be open source and available for download.

  19. Point vortex modelling of the wake dynamics behind asymmetric vortex generator arrays

    NASA Astrophysics Data System (ADS)

    Baldacchino, D.; Ferreira, C.; Ragni, D.; van Bussel, G. J. W.

    2016-09-01

    In this work, we present a simple inviscid point vortex model to study the dynamics of asymmetric vortex rows, as might appear behind misaligned vortex generator vanes. Starting from the existing solution of the infinite vortex cascade, a numerical model of four base-vortices is chosen to represent two primary counter-rotating vortex pairs and their mirror plane images, introducing the vortex strength ratio as a free parameter. The resulting system of equations is also defined in terms of the vortex row separation and the qualitative features of the ensuing motion are mapped. A translating and orbiting regime are identified for different cascade separations. The latter occurs for all unequal strength vortex pairs. Thus, the motion is further classified by studying the cyclic behaviour of the orbiting regime and it is shown that for small mismatches in vortex strength, the orbiting length and time scales are sufficiently large as to appear, in the near wake, as translational (non-orbiting). However, for larger mismatches in vortex strength, the orbiting motion approaches the order of the starting height of the vortex. Comparisons between experimental data and the potential flow model show qualitative agreement whilst viscous effects account for the major discrepancies. Despite this, the model captures the orbital mode observed in the measurements and provides an impetus for considering the impact of these complex interactions on vortex generator designs.

  20. Aircraft wake vortex transport model

    DOT National Transportation Integrated Search

    1974-03-31

    A wake vortex transport model has been developed which includes the effects of wind and wind : shear, buoyancy, mutual and self-induction, ground plane interaction, viscous decay, finite core : and Crow instability effects. Photographic and ground-wi...

  1. A Critical Review of the Transport and Decay of Wake Vortices in Ground Effect

    NASA Technical Reports Server (NTRS)

    Sarpkaya, T.

    2004-01-01

    This slide presentation reviews the transport and decay of wake vortices in ground effect and cites a need for a physics-based parametric model. The encounter of a vortex with a solid body is always a complex event involving turbulence enhancement, unsteadiness, and very large gradients of velocity and pressure. Wake counter in ground effect is the most dangerous of them all. The interaction of diverging, area-varying, and decaying aircraft wake vortices with the ground is very complex because both the vortices and the flow field generated by them are altered to accommodate the presence of the ground (where there is very little room to maneuver) and the background turbulent flow. Previous research regarding vortex models, wake vortex decay mechanisms, time evolution within in ground effect of a wake vortex pair, laminar flow in ground effect, and the interaction of the existing boundary layer with a convected vortex are reviewed. Additionally, numerical simulations, 3-dimensional large-eddy simulations, a probabilistic 2-phase wake vortex decay and transport model and a vortex element method are discussed. The devising of physics-based, parametric models for the prediction of (operational) real-time response, mindful of the highly three-dimensional and unsteady structure of vortices, boundary layers, atmospheric thermodynamics, and weather convective phenomena is required. In creating a model, LES and field data will be the most powerful tools.

  2. Periodic vortex pinning by regular structures in Nb thin films: magnetic vs. structural effects

    NASA Astrophysics Data System (ADS)

    Montero, Maria Isabel; Jonsson-Akerman, B. Johan; Schuller, Ivan K.

    2001-03-01

    The defects present in a superconducting material can lead to a great variety of static and dynamic vortex phases. In particular, the interaction of the vortex lattice with regular arrays of pinning centers such as holes or magnetic dots gives rise to commensurability effects. These commensurability effects can be observed in the magnetoresistance and in the critical current dependence with the applied field. In recent years, experimental results have shown that there is a dependence of the periodic pinning effect on the properties of the vortex lattice (i.e. vortex-vortex interactions, elastic energy and vortex velocity) and also on the dots characteristics (i.e. dot size, distance between dots, magnetic character of the dot material, etc). However, there is not still a good understanding of the nature of the main pinning mechanisms by the magnetic dots. To clarify this important issue, we have studied and compared the periodic pinning effects in Nb films with rectangular arrays of Ni, Co and Fe dots, as well as the pinning effects in a Nb film deposited on a hole patterned substrate without any magnetic material. We will discuss the differences on pinning energies arising from magnetic effects as compared to structural effects of the superconducting film. This work was supported by NSF and DOE. M.I. Montero acknowledges postdoctoral fellowship by the Secretaria de Estado de Educacion y Universidades (Spain).

  3. Vortex line in the unitary Fermi gas

    DOE PAGES

    Madeira, Lucas; Vitiello, Silvio A.; Gandolfi, Stefano; ...

    2016-04-06

    Here, we report diffusion Monte Carlo results for the ground state of unpolarized spin-1/2 fermions in a cylindrical container and properties of the system with a vortex-line excitation. The density profile of the system with a vortex line presents a nonzero density at the core. We also calculate the ground-state energy per particle, the superfluid pairing gap, and the excitation energy per particle. Finally, these simulations can be extended to calculate the properties of vortex excitations in other strongly interacting systems such as superfluid neutron matter using realistic nuclear Hamiltonians.

  4. Summary of an experimental investigation on the ground vortex

    NASA Technical Reports Server (NTRS)

    Billet, Michael L.; Cimbala, John M.

    1988-01-01

    The results of an experimental investigation into the position and characteristics of the ground vortex are summarized. A 48-inch wind tunnel was modified to create a testing environment suitable for the ground vortex study. Flow visualization was used to document the jet-crossflow interaction and a two-component Laser Doppler Velocimeter (LDV) was used to survey the flowfield in detail. Measurements of the ground vortex characteristics and location as a function of freestream-to-jet velocity ratio, jet height, pressure gradient and upstream boundary layer thickness were obtained.

  5. Vortex-Body Interactions: A Critical Assessment. Coupled Gap-Wake Instabilities/Turbulence: A Source of Noise

    NASA Technical Reports Server (NTRS)

    Rockwell, Donald

    1999-01-01

    This program has involved, first of all, a critical state-of-the-art assessment of vortex-body interactions. Then, efforts were focused on experimental investigation on coupled-wake instabilities and turbulence occurring in a two-cylinder system. An extensive review was undertaken on the effect of incident vortices on various types of bodies. These incident vortices have a length scale of the same order of magnitude as the scale of the body. The body can take on various forms, including, for example, a circular cylinder, a blade or a wing. The classes of vortex-body interaction that were critically assessed include: (1) Periodic distortion of the incident (primary) vortex and shedding of secondary vorticity from the surface of the body. (2) Modulated vortex distortion and shedding at a leading-edge or surface due to incidence of a complex system of vortices. (3) Vortex distortion and shedding in presence of body oscillation. (4) Three-dimensional vortex interaction and shedding. For all of these classes of vortex-body interaction, quantitative topologies of the vorticity distributions and streamline patterns were found to be central to a unified description of mechanisms of vortex distortion and shedding. In most cases, it was possible to define relationships between vortex interactions and unsteady loading at the body surface. This phase of the program was an experimental investigation of a two-cylinder system, which simulated a central aspect of a four-wheel bogie on a large-scale commercial aircraft. The overall aim of this experimental research program was to determine the crucial elements of the unsteadiness in the gap and near-wake regions as a function of time using cinema-based techniques. During the research program, various image evaluation techniques were employed. They involved assessment of instantaneous velocity fields, streamline topology and patterns of vorticity. Experiments were performed in a large-scale water channel using a high-resolution version of digital particle image velocimetry. The program has focused on acquisition of images of velocity and vorticity for varying gap widths between the two-cylinder system. As a result of analysis of a relatively large number of images, it is demonstrated that low frequency instabilities can occur in the gap region between the cylinder. These low frequency instabilities are hypothesized to influence the near-wake structure of the entire two-cylinder system. The nature of the unstable shear layers in the gap region involves generation of small-scale Kelvin-Helmholtz instabilities. These unsteady shear layers then impinge upon the upper and lower surfaces of the cylinders, thereby influencing both the unsteady structure and the time-averaged patterns of the near-wake. Initial efforts have focused on characterization of the patterns of instantaneous and averaged streamlines using topological concepts. The end result of this investigation is a series of documented instantaneous images. They will serve as a basis for various types of post-processing, which will lead to a fuller understanding of the instantaneous and time-averaged unstable-turbulent fields in the gap region and downstream of the two-cylinder system. This further assessment is the focus of a subsequent program.

  6. Viscous and Interacting Flow Field Effects.

    DTIC Science & Technology

    1980-06-01

    in the inviscid flow analysis using free vortex sheets whose shapes are determined by iteration. The outer iteration employs boundary layer...Methods, Inc. which replaces the source distribution in the separation zone by a vortex wake model . This model is described in some detail in (2), but...in the potential flow is obtained using linearly varying vortex singularities distributed on planar panels. The wake is represented by sheets of

  7. High-speed schlieren videography of vortex-ring impact on a wall

    NASA Astrophysics Data System (ADS)

    Kissner, Benjamin; Hargather, Michael; Settles, Gary

    2011-11-01

    Ring vortices of approximately 20 cm diameter are generated through the use of an Airzooka toy. To make the vortex visible, it is seeded with difluoroethane gas, producing a refractive-index difference with the air. A 1-meter-diameter, single-mirror, double-pass schlieren system is used to visualize the ring-vortex motion, and also to provide the wall with which the vortex collides. High-speed imaging is provided by a Photron SA-1 digital video camera. The Airzooka is fired toward the mirror almost along the optical axis of the schlieren system, so that the view of the vortex-mirror collision is normal to the path of vortex motion. Vortex-wall interactions similar to those first observed by Walker et al. (JFM 181, 1987) are recorded at high speed. The presentation will consist of a screening and discussion of these video results.

  8. Numerical Study of Wake Vortex Interaction with the Ground Using the Terminal Area Simulation System

    NASA Technical Reports Server (NTRS)

    Proctor, Fred H.; Han, Jongil

    1999-01-01

    A sensitivity study for the in-ground effect on aircraft wake vortices has been conducted using a validated large eddy simulation model. The numerical results are compared with observed data and show good agreement for vortex decay and lateral vortex transport. The vortex decay rate is strongly influenced by the ground, but appears somewhat insensitive to ambient turbulence. In addition, the results show that the ground can affect the trajectory and descent-rate of a wake vortex pair at elevations up to about 3 b(sub o) (where b(sub o) is the initial vortex separation). However, the ground does not influence the average circulation of the vortices until the cores descend to within about 0.6 b(sub o), after which time the ground greatly enhances their rate of demise. Vortex rebound occurs in the simulations, but is more subtle than shown in previous numerical studies.

  9. A comprehensive HST BVI catalogue of star clusters in five Hickson compact groups of galaxies

    NASA Astrophysics Data System (ADS)

    Fedotov, K.; Gallagher, S. C.; Durrell, P. R.; Bastian, N.; Konstantopoulos, I. S.; Charlton, J.; Johnson, K. E.; Chandar, R.

    2015-05-01

    We present a photometric catalogue of star cluster candidates in Hickson compact groups (HCGs) 7, 31, 42, 59, and 92, based on observations with the Advanced Camera for Surveys and the Wide Field Camera 3 on the Hubble Space Telescope. The catalogue contains precise cluster positions (right ascension and declination), magnitudes, and colours in the BVI filters. The number of detected sources ranges from 2200 to 5600 per group, from which we construct the high-confidence sample by applying a number of criteria designed to reduce foreground and background contaminants. Furthermore, the high-confidence cluster candidates for each of the 16 galaxies in our sample are split into two subpopulations: one that may contain young star clusters and one that is dominated by globular older clusters. The ratio of young star cluster to globular cluster candidates varies from group to group, from equal numbers to the extreme of HCG 31 which has a ratio of 8 to 1, due to a recent starburst induced by interactions in the group. We find that the number of blue clusters with MV < -9 correlates well with the current star formation rate in an individual galaxy, while the number of globular cluster candidates with MV < -7.8 correlates well (though with large scatter) with the stellar mass. Analyses of the high-confidence sample presented in this paper show that star clusters can be successfully used to infer the gross star formation history of the host groups and therefore determine their placement in a proposed evolutionary sequence for compact galaxy groups.

  10. Maxwell-Higgs vortices with internal structure

    NASA Astrophysics Data System (ADS)

    Bazeia, D.; Marques, M. A.; Menezes, R.

    2018-05-01

    Vortices are considered in relativistic Maxwell-Higgs systems in interaction with a neutral scalar field. The gauge field interacts with the neutral field via the presence of generalized permeability, and the charged and neutral scalar fields interact in a way dictated by the presence of first order differential equations that solve the equations of motion. The neutral field may be seen as the source field of the vortex, and we study some possibilities, which modify the standard Maxwell-Higgs solution and include internal structure to the vortex.

  11. Orbit-induced localized spin angular momentum in strong focusing of optical vectorial vortex beams

    NASA Astrophysics Data System (ADS)

    Li, Manman; Cai, Yanan; Yan, Shaohui; Liang, Yansheng; Zhang, Peng; Yao, Baoli

    2018-05-01

    Light beams may carry optical spin or orbital angular momentum, or both. The spin and orbital parts manifest themselves by the ellipticity of the state of polarization and the vortex structure of phase of light beams, separately. Optical spin and orbit interaction, arising from the interaction between the polarization and the spatial structure of light beams, has attracted enormous interest recently. The optical spin-to-orbital angular momentum conversion under strong focusing is well known, while the converse process, orbital-to-spin conversion, has not been reported so far. In this paper, we predict in theory that the orbital angular momentum can induce a localized spin angular momentum in strong focusing of a spin-free azimuthal polarization vortex beam. This localized longitudinal spin of the focused field can drive the trapped particle to spin around its own axis. This investigation provides a new degree of freedom for spinning particles by using a vortex phase, which may have considerable potentials in optical spin and orbit interaction, light-beam shaping, or optical manipulation.

  12. Vortex ring behavior provides the epigenetic blueprint for the human heart

    PubMed Central

    Arvidsson, Per M.; Kovács, Sándor J.; Töger, Johannes; Borgquist, Rasmus; Heiberg, Einar; Carlsson, Marcus; Arheden, Håkan

    2016-01-01

    The laws of fluid dynamics govern vortex ring formation and precede cardiac development by billions of years, suggesting that diastolic vortex ring formation is instrumental in defining the shape of the heart. Using novel and validated magnetic resonance imaging measurements, we show that the healthy left ventricle moves in tandem with the expanding vortex ring, indicating that cardiac form and function is epigenetically optimized to accommodate vortex ring formation for volume pumping. Healthy hearts demonstrate a strong coupling between vortex and cardiac volumes (R2 = 0.83), but this optimized phenotype is lost in heart failure, suggesting restoration of normal vortex ring dynamics as a new, and possibly important consideration for individualized heart failure treatment. Vortex ring volume was unrelated to early rapid filling (E-wave) velocity in patients and controls. Characteristics of vortex-wall interaction provide unique physiologic and mechanistic information about cardiac diastolic function that may be applied to guide the design and implantation of prosthetic valves, and have potential clinical utility as therapeutic targets for tailored medicine or measures of cardiac health. PMID:26915473

  13. Vortex ring behavior provides the epigenetic blueprint for the human heart.

    PubMed

    Arvidsson, Per M; Kovács, Sándor J; Töger, Johannes; Borgquist, Rasmus; Heiberg, Einar; Carlsson, Marcus; Arheden, Håkan

    2016-02-26

    The laws of fluid dynamics govern vortex ring formation and precede cardiac development by billions of years, suggesting that diastolic vortex ring formation is instrumental in defining the shape of the heart. Using novel and validated magnetic resonance imaging measurements, we show that the healthy left ventricle moves in tandem with the expanding vortex ring, indicating that cardiac form and function is epigenetically optimized to accommodate vortex ring formation for volume pumping. Healthy hearts demonstrate a strong coupling between vortex and cardiac volumes (R(2) = 0.83), but this optimized phenotype is lost in heart failure, suggesting restoration of normal vortex ring dynamics as a new, and possibly important consideration for individualized heart failure treatment. Vortex ring volume was unrelated to early rapid filling (E-wave) velocity in patients and controls. Characteristics of vortex-wall interaction provide unique physiologic and mechanistic information about cardiac diastolic function that may be applied to guide the design and implantation of prosthetic valves, and have potential clinical utility as therapeutic targets for tailored medicine or measures of cardiac health.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kogan, V. G.; Kirtley, J. R.

    Here, it is of interest to determine the exit angle of a vortex from a superconductor surface, since this affects the intervortex interactions and their consequences. Two ways to determine this angle are to image the vortex magnetic fields above the surface, or the vortex core shape at the surface. In this work we evaluate the field h(x,y,z) above a flat superconducting surface x,y and the currents J(x,y) at that surface for a straight vortex tilted relative to the normal to the surface, for both the isotropic and anisotropic cases. In principle, these results can be used to determine themore » vortex exit tilt angle from analyses of magnetic field imaging or density of states data.« less

  15. Synthetic Landau Levels and Spinor Vortex Matter on a Haldane Spherical Surface with a Magnetic Monopole.

    PubMed

    Zhou, Xiang-Fa; Wu, Congjun; Guo, Guang-Can; Wang, Ruquan; Pu, Han; Zhou, Zheng-Wei

    2018-03-30

    We present a flexible scheme to realize exact flat Landau levels on curved spherical geometry in a system of spinful cold atoms. This is achieved by applying the Floquet engineering of a magnetic quadrupole field to create a synthetic monopole field in real space. The system can be exactly mapped to the electron-monopole system on a sphere, thus realizing Haldane's spherical geometry for fractional quantum Hall physics. This method works for either bosons or fermions. We investigate the ground-state vortex pattern for an s-wave interacting atomic condensate by mapping this system to the classical Thompson's problem. The distortion and stability of the vortex pattern are further studied in the presence of dipolar interaction. Our scheme is compatible with the current experimental setup, and may serve as a promising route of investigating quantum Hall physics and exotic spinor vortex matter on curved space.

  16. Reduction of vortex induced forces and motion through surface roughness control

    DOEpatents

    Bernitsas, Michael M; Raghavan, Kamaldev

    2014-04-01

    Roughness is added to the surface of a bluff body in a relative motion with respect to a fluid. The amount, size, and distribution of roughness on the body surface is controlled passively or actively to modify the flow around the body and subsequently the Vortex Induced Forces and Motion (VIFM). The added roughness, when designed and implemented appropriately, affects in a predetermined way the boundary layer, the separation of the boundary layer, the level of turbulence, the wake, the drag and lift forces, and consequently the Vortex Induced Motion (VIM), and the fluid-structure interaction. The goal of surface roughness control is to decrease/suppress Vortex Induced Forces and Motion. Suppression is required when fluid-structure interaction becomes destructive as in VIM of flexible cylinders or rigid cylinders on elastic support, such as underwater pipelines, marine risers, tubes in heat exchangers, nuclear fuel rods, cooling towers, SPAR offshore platforms.

  17. Synthetic Landau Levels and Spinor Vortex Matter on a Haldane Spherical Surface with a Magnetic Monopole

    NASA Astrophysics Data System (ADS)

    Zhou, Xiang-Fa; Wu, Congjun; Guo, Guang-Can; Wang, Ruquan; Pu, Han; Zhou, Zheng-Wei

    2018-03-01

    We present a flexible scheme to realize exact flat Landau levels on curved spherical geometry in a system of spinful cold atoms. This is achieved by applying the Floquet engineering of a magnetic quadrupole field to create a synthetic monopole field in real space. The system can be exactly mapped to the electron-monopole system on a sphere, thus realizing Haldane's spherical geometry for fractional quantum Hall physics. This method works for either bosons or fermions. We investigate the ground-state vortex pattern for an s -wave interacting atomic condensate by mapping this system to the classical Thompson's problem. The distortion and stability of the vortex pattern are further studied in the presence of dipolar interaction. Our scheme is compatible with the current experimental setup, and may serve as a promising route of investigating quantum Hall physics and exotic spinor vortex matter on curved space.

  18. Jet Interactions in a Feedback-Free Fluidic Oscillator in the Transition Region

    NASA Astrophysics Data System (ADS)

    Tomac, Mehmet; Gregory, James

    2013-11-01

    The details of the jet interactions and oscillation mechanism of a feedback-free type fluidic oscillator are studied in this work. Flow rate-frequency measurements indicate the existence of three distinct operating regimes: low flow rate, transition, and high flow rate regions. This study presents results from the transition regime, extracted by using refractive index-matched particle image velocimetry (PIV). A newly-developed sensor configuration for frequency measurements in the refractive index-matched fluid and a phase-averaging method that minimizes jitter will be discussed. Experimental results indicate that the interactions of the two jets create three main vortices in the mixing chamber. One vortex vanishes and forms depending on the oscillation phase and plays a key role in the oscillation mechanism. The other two vortices sustain their existence throughout the oscillation cycle; however, both continuously change their size and strength. The resulting complex flow field with self-sustained oscillations is a result of the combination of many interesting phenomena such as jet interactions and bifurcations, viscous effects, vortex-shear layer interactions, vortex-wall interactions, instabilities, and saddle point creations.

  19. An ocean large-eddy simulation of Langmuir circulations and convection in the surface mixed layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skyllingstad, E.D.; Denbo, D.W.

    Numerical experiments were performed using a three-dimensional large-eddy simulation model of the ocean surface mixed layer that includes the Craik-Leibovich vortex force to parameterize the interaction of surface waves with mean currents. Results from the experiments show that the vortex force generates Langmuir circulations that can dominate vertical mixing. The simulated vertical velocity fields show linear, small-scale, coherent structures near the surface that extend downwind across the model domain. In the interior of the mixed layer, scales of motion increase to eddy sizes that are roughly equivalent to the mixed-layer depth. Cases with the vortex force have stronger circulations nearmore » the surface in contrast to cases with only heat flux and wind stress, particularly when the heat flux is positive. Calculations of the velocity variance and turbulence dissipation rates for cases with and without the vortex force, surface cooling, and wind stress indicate that wave-current interactions are a dominant mixing process in the upper mixed layer. Heat flux calculations show that the entrainment rate at the mixed-layer base can be up to two times greater when the vortex force is included. In a case with reduced wind stress, turbulence dissipation rates remained high near the surface because of the vortex force interaction with preexisting inertial currents. In deep mixed layers ({approximately}250 m) the simulations show that Langmuir circulations can vertically transport water 145 m during conditions of surface heating. Observations of turbulence dissipation rates and the vertical temperature structure support the model results. 42 refs., 20 figs., 21 tabs.« less

  20. Development of an Unmanned Air Research Vehicle for Supermaneuverability Studies

    DTIC Science & Technology

    1990-03-29

    VORTEX CONTROL Another emerging concept involves strake- generated vortex interactions, which improves maneuverability using non-linear lift generated by...undisturbed flow and is capable of prcJucing powerful vortex flow fields at high angles of attack. Asymmetrical vort ,;x control is feasible with actuated...control configuration, serves as an initial test vehicle for supermaneuverability analysis . Due to the relatively small scale of the UAV and the use of

  1. Transmission of singularities through a shock wave and the sound generation

    NASA Technical Reports Server (NTRS)

    Ting, L.

    1974-01-01

    The interaction of a plane shock wave of finite strength with a vortex line, point vortex, doublet or quadrupole of weak strength is studied. Based upon the physical condition that a free vortex line cannot support a pressure difference, rules are established which define the change of the linear intensity of the segment of the vortex line after its passage through the shock. The rules for point vortex, doublet, and quadrupole are then established as limiting cases. These rules can be useful for the construction of the solution of the entire flow field and for its physical interpretation. However, the solution can be obtained directly by the technique developed for shock diffraction problems. Explicit solutions and the associated sound generation are obtained for the passage of a point vortex through the shock wave.

  2. Three-dimensional simulation of the free shear layer using the vortex-in-cell method

    NASA Technical Reports Server (NTRS)

    Couet, B.; Buneman, O.; Leonard, A.

    1979-01-01

    We present numerical simulations of the evolution of a mixing layer from an initial state of uniform vorticity with simple two- and three-dimensional small perturbations. A new method for tracing a large number of three-dimensional vortex filaments is used in the simulations. Vortex tracing by Biot-Savart interaction originally implied ideal (non-viscous) flow, but we use a 3-d mesh, Fourier transforms and filtering for vortex tracing, which implies 'modeling' of subgrid scale motion and hence some viscosity. Streamwise perturbations lead to the usual roll-up of vortex patterns with spanwise uniformity maintained. Remarkably, spanwise perturbations generate streamwise distortions of the vortex filaments and the combination of both perturbations leads to patterns with interesting features discernable in the movies and in the records of enstrophy and energy for the three components of the flow.

  3. Vortex cutting in superconductors

    DOE PAGES

    Glatz, A.; Vlasko-Vlasov, V. K.; Kwok, W. K.; ...

    2016-08-09

    Vortex cutting and reconnection is an intriguing and still-unsolved problem central to many areas of classical and quantum physics, including hydrodynamics, astrophysics, and superconductivity. Here, in this paper, we describe a comprehensive investigation of the crossing of magnetic vortices in superconductors using time dependent Ginsburg-Landau modeling. Within a macroscopic volume, we simulate initial magnetization of an anisotropic high temperature superconductor followed by subsequent remagnetization with perpendicular magnetic fields, creating the crossing of the initial and newly generated vortices. The time resolved evolution of vortex lines as they approach each other, contort, locally conjoin, and detach, elucidates the fine details ofmore » the vortex-crossing scenario under practical situations with many interacting vortices in the presence of weak pinning. Finally, our simulations also reveal left-handed helical vortex instabilities that accompany the remagnetization process and participate in the vortex crossing events.« less

  4. An Improved Wake Vortex Tracking Algorithm for Multiple Aircraft

    NASA Technical Reports Server (NTRS)

    Switzer, George F.; Proctor, Fred H.; Ahmad, Nashat N.; LimonDuparcmeur, Fanny M.

    2010-01-01

    The accurate tracking of vortex evolution from Large Eddy Simulation (LES) data is a complex and computationally intensive problem. The vortex tracking requires the analysis of very large three-dimensional and time-varying datasets. The complexity of the problem is further compounded by the fact that these vortices are embedded in a background turbulence field, and they may interact with the ground surface. Another level of complication can arise, if vortices from multiple aircrafts are simulated. This paper presents a new technique for post-processing LES data to obtain wake vortex tracks and wake intensities. The new approach isolates vortices by defining "regions of interest" (ROI) around each vortex and has the ability to identify vortex pairs from multiple aircraft. The paper describes the new methodology for tracking wake vortices and presents application of the technique for single and multiple aircraft.

  5. Vortex cutting in superconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glatz, A.; Vlasko-Vlasov, V. K.; Kwok, W. K.

    Vortex cutting and reconnection is an intriguing and still-unsolved problem central to many areas of classical and quantum physics, including hydrodynamics, astrophysics, and superconductivity. Here, in this paper, we describe a comprehensive investigation of the crossing of magnetic vortices in superconductors using time dependent Ginsburg-Landau modeling. Within a macroscopic volume, we simulate initial magnetization of an anisotropic high temperature superconductor followed by subsequent remagnetization with perpendicular magnetic fields, creating the crossing of the initial and newly generated vortices. The time resolved evolution of vortex lines as they approach each other, contort, locally conjoin, and detach, elucidates the fine details ofmore » the vortex-crossing scenario under practical situations with many interacting vortices in the presence of weak pinning. Finally, our simulations also reveal left-handed helical vortex instabilities that accompany the remagnetization process and participate in the vortex crossing events.« less

  6. The effects of micro-vortex generators on normal shock wave/boundary layer interactions

    NASA Astrophysics Data System (ADS)

    Herges, Thomas G.

    Shock wave/boundary-layer interactions (SWBLIs) are complex flow phenomena that are important in the design and performance of internal supersonic and transonic flow fields such as engine inlets. This investigation was undertaken to study the effects of passive flow control devices on normal shock wave/boundary layer interactions in an effort to gain insight into the physics that govern these complex interactions. The work concentrates on analyzing the effects of vortex generators (VGs) as a flow control method by contributing a greater understanding of the flowfield generated by these devices and characterizing their effects on the SWBLI. The vortex generators are utilized with the goal of improving boundary layer health (i.e., reducing/increasing the boundary-layer incompressible shape factor/skin friction coefficient) through a SWBLI, increasing pressure recovery, and reducing flow distortion at the aerodynamic interface plane while adding minimal drag to the system. The investigation encompasses experiments in both small-scale and large-scale inlet testing, allowing multiple test beds for improving the characterization and understanding of vortex generators. Small-scale facility experiments implemented instantaneous schlieren photography, surface oil-flow visualization, pressure-sensitive paint, and particle image velocimetry to characterize the effects of an array of microramps on a normal shock wave/boundary-layer interaction. These diagnostics measured the time-averaged and instantaneous flow organization in the vicinity of the microramps and SWBLI. The results reveal that a microramp produces a complex vortex structure in its wake with two primary counter-rotating vortices surrounded by a train of Kelvin- Helmholtz (K-H) vortices. A streamwise velocity deficit is observed in the region of the primary vortices in addition to an induced upwash/downwash which persists through the normal shock with reduced strength. The microramp flow control also increased the spanwise-averaged skin-friction coefficient and reduced the spanwise-averaged incompressible shape factor, thereby improving the health of the boundary layer. The velocity in the near-wall region appears to be the best indicator of microramp effectiveness at controlling SWBLIs. Continued analysis of additional micro-vortex generator designs in the small-scale facility revealed reduced separation within a subsonic diffuser downstream of the normal shock wave/boundary layer interaction. The resulting attached flow within the diffuser from the micro-vortex generator control devices reduces shock wave position and pressure RMS fluctuations within the diffuser along with increased pressure recovery through the shock and at the entrance of the diffuser. The largest effect was observed by the micro-vortex generators that produce the strongest streamwise vortices. High-speed pressure measurements also indicated that the vortex generators shift the energy of the pressure fluctuations to higher frequencies. Implementation of micro-vortex generators into a large-scale, supersonic, axisymmetric, relaxed-compression inlet have been investigated with the use of a unique and novel flow-visualization measurement system designed and successfully used for the analysis of both upstream micro-VGs (MVGs) and downstream VGs utilizing surface oil-flow visualization and pressure-sensitive paint measurements. The inlet centerbody and downstream diffuser vortex-generator regions were imaged during wind-tunnel testing internally through the inlet cowl with the diagnostic system attached to the cowl. Surface-flow visualization revealed separated regions along the inlet centerbody for large mass-flow rates without vortex generators. Upstream vortex generators did reduce separation in the subsonic diffuser, and a unique perspective of the flowfield produced by the downstream vortex generators was obtained. In addition, pressure distributions on the inlet centerbody and vortex generators were measured with pressure-sensitive paint. At low mass-flow ratios the onset of buzz occurs in the large-scale low-boom inlet. Inlet buzz and how it is affected by vortex generators was characterized using shock tracking through high-speed schlieren imaging and pressure fluctuation measurements. The analysis revealed a dominant low frequency oscillation at 21.0 Hz for the single-stream inlet, corresponding with the duration of one buzz cycle. Pressure oscillations prior to the onset of buzz were not detected, leaving the location where the shock wave triggers large separation on the compression spike as the best indicator for the onset of buzz. The driving mechanism for a buzz cycle has been confirmed as the rate of depressurization and repressurization of the inlet as the buzz cycle fluctuates between an effectively unstarted (blocked) inlet and supercritical operation (choked flow), respectively. High-frequency shock position oscillations/pulsations (spike buzz) were also observed throughout portions of the inlet buzz cycle. The primary effect of the VGs was to trigger buzz at a higher mass-flow ratio.

  7. Experimental Study of Shock-Induced Compression and Vortex Generation in the Shock-Bubble Interaction

    NASA Astrophysics Data System (ADS)

    Ranjan, Devesh; Motl, Bradley; Niederhaus, John; Oakley, Jason; Anderson, Mark; Bonazza, Riccardo; Greenough, Jeffrey

    2006-11-01

    Results are presented from experiments studying the interaction of a planar shock wave of strength 1.4

  8. Interaction of a weak shock wave with a discontinuous heavy-gas cylinder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xiansheng; Yang, Dangguo; Wu, Junqiang

    2015-06-15

    The interaction between a cylindrical inhomogeneity and a weak planar shock wave is investigated experimentally and numerically, and special attention is given to the wave patterns and vortex dynamics in this scenario. A soap-film technique is realized to generate a well-controlled discontinuous cylinder (SF{sub 6} surrounded by air) with no supports or wires in the shock-tube experiment. The symmetric evolving interfaces and few disturbance waves are observed in a high-speed schlieren photography. Numerical simulations are also carried out for a detailed analysis. The refracted shock wave inside the cylinder is perturbed by the diffracted shock waves and divided into threemore » branches. When these shock branches collide, the shock focusing occurs. A nonlinear model is then proposed to elucidate effects of the wave patterns on the evolution of the cylinder. A distinct vortex pair is gradually developing during the shock-cylinder interaction. The numerical results show that a low pressure region appears at the vortex core. Subsequently, the ambient fluid is entrained into the vortices which are expanding at the same time. Based on the relation between the vortex motion and the circulation, several theoretical models of circulation in the literature are then checked by the experimental and numerical results. Most of these theoretical circulation models provide a reasonably good prediction of the vortex motion in the present configuration.« less

  9. An holistic approach to beach erosion vulnerability assessment.

    PubMed

    Alexandrakis, George; Poulos, Serafim Ε

    2014-08-15

    Erosion is a major threat for coasts worldwide, beaches in particular, which constitute one of the most valuable coastal landforms. Vulnerability assessments related to beach erosion may contribute to planning measures to counteract erosion by identifying, quantifying and ranking vulnerability. Herein, we present a new index, the Beach Vulnerability Index (BVI), which combines simplicity in calculations, easily obtainable data and low processing capacity. This approach provides results not only for different beaches, but also for different sectors of the same beach and enables the identification of the relative significance of the processes involved. It functions through the numerical approximation of indicators that correspond to the mechanisms related to the processes that control beach evolution, such as sediment availability, wave climate, beach morhodynamics and sea level change. The BVI is also intended to be used as a managerial tool for beach sustainability, including resilience to climate change impact on beach erosion.

  10. The effect of butterfly scales on flight efficiency and leading edge vortex formation

    NASA Astrophysics Data System (ADS)

    Lang, Amy; Wilroy, Jacob; Wahidi, Redha; Slegers, Nathan; Heilman, Micahel; Cranford, Jacob

    2016-11-01

    It is hypothesized that the scales on a butterfly wing lead to increased flight efficiency. Recent testing of live butterflies tracked their motion over 246 flights for 11 different specimens. Results show a 37.8 percent mean decrease in flight efficiency and a flapping amplitude reduction of 6.7 percent once the scales were removed. This change could be largely a result of how the leading edge vortex (LEV) interacts with the wing. To simplify this complex flow problem, an experiment was designed to focus on the alteration of 2-D vortex development with a variation in surface patterning. Specifically, the secondary vorticity generated by the LEV interacting at the patterned surface was studied, as well as the subsequent effect on the LEV's growth rate and peak circulation. For this experiment butterfly inspired grooves were created using additive manufacturing and were attached to a flat plate with a chordwise orientation, thus increasing plate surface area. The vortex generated by the grooved plate was then compared to a smooth case as the plate translated vertically through a tow tank at Re = 1500, 3000, and 6000. Using DPIV, the vortex formation was documented and a maximum vortex formation time of 4.22 was found based on the flat plate travel distance and chord length. Results indicate that the patterned surface slows down the growth of the vortex which corroborates the flight test results. Funding from NSF CBET Fluid Dynamcis is gratefully acknowledged.

  11. Interaction of a Vortex with Axial Flow and a Cylindrical Surface

    NASA Astrophysics Data System (ADS)

    Radcliff, T. D.; Burgraff, O. R.; Conlisk, A. T.

    1998-11-01

    The direct collision of a vortex with a surface is an important problem because significant impulsive loads may be generated leading to premature fatigue. Experimental results for the impingement of a tip-vortex on a cylindrical airframe indicate that a suction peak forms on the top of the airframe which is subsequently reduced within milliseconds of vortex-surface contact. A simple line-vortex model can predict the experimental results until the vortex is within a vortex-core radius of the airframe. After this the model predicts continually deepening rather than lessening suction. Study of the experimental results suggests that axial flow within the core of a tip-vortex has an impact on the airframe pressure distribution upon close approach. The mechanism for this is hypothesized to be the inviscid redistribution of the vorticity field within the vortex coupled with deformation of the vortex core. Two models of a tip-vortex with axial flow are considered. First a classical line vortex with a cut-off parameter is superimposed with suitably placed vortex rings. This model simulates the helically wound vortex shed by the rotor tip. Inclusion of axial flow is found to prevent thinning of the vortex core as the vortex stretches around the cylindrical surface during the collision process. With less thinning, vorticity is observed to overlap the solid cylinder, highlighting the fact that the vortex core must deform from its original cylindrical shape. A second model is developed in which axial and azimuthal vorticity are uniformly distributed throughout a rectangular-section vortex. Area and aspect ratio of this vortex can be varied independently to simulate deformation of the vortex core. Both vorticity redistribution and core deformation are shown to be important to properly calculate the local induced pressure loads. The computational results are compared with the results of experiments conducted at the Georgia Institute of Technology.

  12. Full Capability Formation Flight Control

    DTIC Science & Technology

    2005-02-01

    and ≤ 5 feet during thunderstorm level turbulence. Next, the 4 vortex wake of the lead aircraft will be modeled and the controller will be...be used to simulate the random effects of wind turbulence on the system. This model allows for the input of wind turbulence at three different ...Formation Vortex Interactions The other significant disturbance to be included in the two aircraft dynamic model is the effect of lead’s vortex wake on

  13. Impact of long-range interactions on the disordered vortex lattice

    NASA Astrophysics Data System (ADS)

    Koopmann, J. A.; Geshkenbein, V. B.; Blatter, G.

    2003-07-01

    The interaction between the vortex lines in a type-II superconductor is mediated by currents. In the absence of transverse screening this interaction is long ranged, stiffening up the vortex lattice as expressed by the dispersive elastic moduli. The effect of disorder is strongly reduced, resulting in a mean-squared displacement correlator ≡<[u(R,L)-u(0,0)]2> characterized by a mere logarithmic growth with distance. Finite screening cuts the interaction on the scale of the London penetration depth λ and limits the above behavior to distances R<λ. Using a functional renormalization-group approach, we derive the flow equation for the disorder correlation function and calculate the disorder-averaged mean-squared relative displacement ∝ ln2σ(R/a0). The logarithmic growth (2σ=1) in the perturbative regime at small distances [A. I. Larkin and Yu. N. Ovchinnikov, J. Low Temp. Phys. 34, 409 (1979)] crosses over to a sub-logarithmic growth with 2σ=0.348 at large distances.

  14. Structure of vortices in superfluid 3He A-like phase in uniaxially stretched aerogel

    NASA Astrophysics Data System (ADS)

    Aoyama, Kazushi; Ikeda, Ryusuke

    2009-02-01

    Possible vortex-core transitions in A-like phase of superfluid 3He in uniaxially stretched aerogel are investigated. Since the global anisotropy in this system induces the polar pairing state in a narrow range close to the superfluid transition in addition to the A-like and B-like phases, the polar state may occur in the core of a vortex in the A-like phase identified with the ABM pairing state, like in the case of the bulk B phase where a core including the ABM state is realized at higher pressures. We examine the core structure of a single vortex under the boundary condition compatible with the Mermin-Ho vortex in the presence of the dipole interaction. Following Salomaa and Volovik's approach, we numerically solve the Ginzburg-Landau equation for an axially symmetric vortex and, by examining its stability against nonaxisymmetric perturbations, discuss possible vortex core states. It is found that a first order transition on core states may occur on warming from an axisymmetric vortex with a nonunitary core to a singular vortex with the polar core.

  15. A water tunnel flow visualization study of the vortex flow structures on the F/A-18 aircraft

    NASA Technical Reports Server (NTRS)

    Sandlin, Doral R.; Ramirez, Edgar J.

    1991-01-01

    The vortex flow structures occurring on the F/A-18 aircraft at high angles of attack were studied. A water tunnel was used to gather flow visualization data on the forebody vortex and the wing leading edge extension vortex. The longitudinal location of breakdown of the leading edge vortex was found to be consistently dependent on the angle of attack. Other parameters such as Reynolds number, model scale, and model fidelity had little influence on the overall behavior of the flow structures studied. The lateral location of the forebody vortex system was greatly influenced by changes in the angle of sideslip. Strong interactions can occur between the leading edge extension vortex and the forebody vortex. Close attention was paid to vortex induced flows on various airframe components of the F/A-18. Reynolds number and angle of attack greatly affected the swirling intensity, and therefore the strength of the studied vortices. Water tunnel results on the F/A-18 correlated well with those obtained in similar studies at both full and sub scale levels. The water tunnel can provide, under certain conditions, good simulations of realistic flows in full scale configurations.

  16. Large-scale vortex structures and local heat release in lean turbulent swirling jet-flames under vortex breakdown conditions

    NASA Astrophysics Data System (ADS)

    Chikishev, Leonid; Lobasov, Aleksei; Sharaborin, Dmitriy; Markovich, Dmitriy; Dulin, Vladimir; Hanjalic, Kemal

    2017-11-01

    We investigate flame-flow interactions in an atmospheric turbulent high-swirl methane/air lean jet-flame at Re from 5,000 to 10,000 and equivalence ratio below 0.75 at the conditions of vortex breakdown. The focus is on the spatial correlation between the propagation of large-scale vortex structures, including precessing vortex core, and the variations of the local heat release. The measurements are performed by planar laser-induced fluorescence of hydroxyl and formaldehyde, applied simultaneously with the stereoscopic particle image velocimetry technique. The data are processed by the proper orthogonal decomposition. The swirl rate exceeded critical value for the vortex breakdown resulting in the formation of a processing vortex core and secondary helical vortex filaments that dominate the unsteady flow dynamics both of the non-reacting and reacting jet flows. The flame front is located in the inner mixing layer between the recirculation zone and the annular swirling jet. A pair of helical vortex structures, surrounding the flame, stretch it and cause local flame extinction before the flame is blown away. This work is supported by Russian Science Foundation (Grant No 16-19-10566).

  17. The effect of butterfly-scale inspired patterning on leading-edge vortex growth

    NASA Astrophysics Data System (ADS)

    Wilroy, Jacob Aaron

    Leading edge vortices (LEVs) are important for generating thrust and lift in flapping flight, and the surface patterning (scales) on butterfly wings is hypothesized to play a role in the vortex formation of the LEV. To simplify this complex flow problem, an experiment was designed to focus on the alteration of 2-D vortex development with a variation in surface patterning. Specifically, the secondary vorticity generated by the LEV interacting at the patterned surface was studied, as well as the subsequent effect on the LEV's growth rate and peak circulation. For this experiment, rapid-prototyped grooves based on the scale geometry of the Monarch butterfly (Danaus plexippus) were created using additive manufacturing and were attached to a flat plate with a chordwise orientation, thus increasing plate surface area. The vortex generated by the grooved plate was then compared to a smooth plate case in an experiment where the plate translated vertically through a 2 x 3 x 5 cubic foot tow tank. The plate was impulsively started in quiescent water and flow fields at Rec = 1416, 2833, and 5667 are examined using Digital Particle Image Velocimetry (DPIV). The maximum vortex formation number is 2.8 and is based on the flat plate travel length and chord length. Flow fields from each case show the generation of a secondary vortex whose interaction with the shear layer and LEV caused different behaviors depending upon the surface type. The vortex development process varied for each Reynolds number and it was found that for the lowest Reynolds number case a significant difference does not exist between surface types, however, for the other two cases the grooves affected the secondary vortex's behavior and the LEV's ability to grow at a rate similar to the smooth plate case.

  18. Energy Transition Initiative, Island Energy Snapshot - British Virgin Islands (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2015-03-01

    This profile provides a snapshot of the energy landscape of the British Virgin Islands (BVI), one of three sets of the Virgin Island territories in an archipelago making up the northern portion of the Lesser Antilles.

  19. Patient-reported utilities in bilateral visual impairment from amblyopia and age-related macular degeneration.

    PubMed

    van de Graaf, Elizabeth S; Despriet, Dominiek D G; Klaver, Caroline C W; Simonsz, Huibert J

    2016-05-17

    Utility of visual impairment caused by amblyopia is important for the cost-effectiveness of screening for amblyopia (lazy eye, prevalence 3-3.5 %). We previously measured decrease of utility in 35-year-old persons with unilateral persistent amblyopia. The current observational case-control study aimed to measure loss of utility in patients with amblyopia with recent decrease of vision in their better eye. As these patients are rare, the sample was supplemented by patients with bilateral age-related macular degeneration with similar decrease of vision. From our out-patient department, two groups of patients with recent deterioration to bilateral visual acuity less than Snellen 0.5 (bilateral visual impairment, BVI) were recruited, with either persistent amblyopia and age-related macular degeneration (AMB + AMD), or with bilateral age-related macular degeneration (BAMD). To measure utility, the time trade-off method and the standard gamble method were applied through interviews. Correlations were sought between utility values and visual acuity, age and Visual Function Questionnaire-25 scores. Seventeen AMB + AMD patients (mean age 72.9 years), and 63 BAMD patients (mean age 79.6 years) were included in the study. Among AMB + AMD, 80 % were willing to trade lifetime in exchange for cure. The overall mean time trade-off utility was 0.925. Among BAMD, 75 % were willing to trade, utility was 0.917. Among AMB + AMD, 38 % accepted risk of death in exchange for cure, overall mean standard gamble utility was 0.999. Among BAMD, 49 % accepted risk of death, utility was 0.998. Utility was not related to visual acuity but it was to age (p = 0.02). Elderly patients with BVI, caused by persistent amblyopia and age-related macular degeneration (AMD) or by bilateral AMD, had an approximately 8 % loss of TTO utility. Notably, the 8 % loss in elderly with BVI differs little from the 3.7 % loss we found previously in 35-year-old persons with unilateral amblyopia with good vision in the other eye. The moderate impact of BVI in senescence could be explained by adaptation, comorbidity, avoidance of risk and a changed percept of cure.

  20. Vortex/boundary-layer interactions: Data report, volume 1

    NASA Technical Reports Server (NTRS)

    Cutler, A. D.; Bradshaw, P.

    1987-01-01

    This report summarizes the work done under NASA Grant NAGw-581, Vortex/Boundary Layer Interactions. The experimental methods are discussed in detail and numerical results are presented, but are not fully interpreted. This report should be useful to anyone who wishes to make further use of the data (available on floppy disc or magnetic tape) for the development of turbulence models or the validation of predictive methods. Journal papers are in course of preparation.

  1. Crystallized and amorphous vortices in rotating atomic-molecular Bose-Einstein condensates

    PubMed Central

    Liu, Chao-Fei; Fan, Heng; Gou, Shih-Chuan; Liu, Wu-Ming

    2014-01-01

    Vortex is a topological defect with a quantized winding number of the phase in superfluids and superconductors. Here, we investigate the crystallized (triangular, square, honeycomb) and amorphous vortices in rotating atomic-molecular Bose-Einstein condensates (BECs) by using the damped projected Gross-Pitaevskii equation. The amorphous vortices are the result of the considerable deviation induced by the interaction of atomic-molecular vortices. By changing the atom-molecule interaction from attractive to repulsive, the configuration of vortices can change from an overlapped atomic-molecular vortices to carbon-dioxide-type ones, then to atomic vortices with interstitial molecular vortices, and finally into independent separated ones. The Raman detuning can tune the ratio of the atomic vortex to the molecular vortex. We provide a phase diagram of vortices in rotating atomic-molecular BECs as a function of Raman detuning and the strength of atom-molecule interaction. PMID:24573303

  2. Daphnia swarms: from single agent dynamics to collective vortex formation

    NASA Astrophysics Data System (ADS)

    Ordemann, Anke; Balazsi, Gabor; Caspari, Elizabeth; Moss, Frank

    2003-05-01

    Swarm theories have become fashionable in theoretical physics over the last decade. They span the range of interactions from individual agents moving in a mean field to coherent collective motions of large agent populations, such as vortex-swarming. But controlled laboratory tests of these theories using real biological agents have been problematic due primarily to poorly known agent-agent interactions (in the case of e.g. bacteria and slime molds) or the large swarm size (e.g. for flocks of birds and schools of fish). Moreover, the entire range of behaviors from single agent interactions to collective vortex motions of the swarm have here-to-fore not been observed with a single animal. We present the results of well defined experiments with the zooplankton Daphnia in light fields showing this range of behaviors. We interpret our results with a theory of the motions of self-propelled agents in a field.

  3. Far-Field Turbulent Vortex-Wake/Exhaust Plume Interaction for Subsonic and HSCT Airplanes

    NASA Technical Reports Server (NTRS)

    Kandil, Osama A.; Adam, Ihab; Wong, Tin-Chee

    1996-01-01

    Computational study of the far-field turbulent vortex-wake/exhaust plume interaction for subsonic and high speed civil transport (HSCT) airplanes is carried out. The Reynolds-averaged Navier-Stokes (NS) equations are solved using the implicit, upwind, Roe-flux-differencing, finite-volume scheme. The two-equation shear stress transport model of Menter is implemented with the NS solver for turbulent-flow calculation. For the far-field study, the computations of vortex-wake interaction with the exhaust plume of a single engine of a Boeing 727 wing in a holding condition and two engines of an HSCT in a cruise condition are carried out using overlapping zonal method for several miles downstream. These results are obtained using the computer code FTNS3D. The results of the subsonic flow of this code are compared with those of a parabolized NS solver known as the UNIWAKE code.

  4. Single-vortex pinning and penetration depth in superconducting NdFeAsO 1-xF x

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jessie T.; Kim, Jeehoon; Huefner, Magdalena

    2015-10-12

    We use a magnetic force microscope (MFM) to investigate single vortex pinning and penetration depth in NdFeAsO 1-xF x, one of the highest-T c iron-based superconductors. In fields up to 20 Gauss, we observe a disordered vortex arrangement, implying that the pinning forces are stronger than the vortex-vortex interactions. We measure the typical force to depin a single vortex, F depin ≃ 4.5 pN, corresponding to a critical current up to J c ≃ 7×10 5 A/cm 2. As a result, our MFM measurements allow the first local and absolute determination of the superconducting in-plane penetration depth in NdFeAsO 1-xFmore » x, λ ab = 320 ± 60 nm, which is larger than previous bulk measurements.« less

  5. Magnetic vortex core reversal by excitation of spin waves.

    PubMed

    Kammerer, Matthias; Weigand, Markus; Curcic, Michael; Noske, Matthias; Sproll, Markus; Vansteenkiste, Arne; Van Waeyenberge, Bartel; Stoll, Hermann; Woltersdorf, Georg; Back, Christian H; Schuetz, Gisela

    2011-01-01

    Micron-sized magnetic platelets in the flux-closed vortex state are characterized by an in-plane curling magnetization and a nanometer-sized perpendicularly magnetized vortex core. Having the simplest non-trivial configuration, these objects are of general interest to micromagnetics and may offer new routes for spintronics applications. Essential progress in the understanding of nonlinear vortex dynamics was achieved when low-field core toggling by excitation of the gyrotropic eigenmode at sub-GHz frequencies was established. At frequencies more than an order of magnitude higher vortex state structures possess spin wave eigenmodes arising from the magneto-static interaction. Here we demonstrate experimentally that the unidirectional vortex core reversal process also occurs when such azimuthal modes are excited. These results are confirmed by micromagnetic simulations, which clearly show the selection rules for this novel reversal mechanism. Our analysis reveals that for spin-wave excitation the concept of a critical velocity as the switching condition has to be modified.

  6. PREFACE: Special section on vortex rings Special section on vortex rings

    NASA Astrophysics Data System (ADS)

    Fukumoto, Yasuhide

    2009-10-01

    This special section of Fluid Dynamics Research includes five articles on vortex rings in both classical and quantum fluids. The leading scientists of the field describe the trends in and the state-of-the-art development of experiments, theories and numerical simulations of vortex rings. The year 2008 was the 150th anniversary of 'vortex motion' since Hermann von Helmholtz opened up this field. In 1858, Helmholtz published a paper in Crelle's Journal which put forward the concept of 'vorticity' and made the first analysis of vortex motion. Fluid mechanics before that was limited to irrotational motion. In the absence of vorticity, the motion of an incompressible homogeneous fluid is virtually equivalent to a rigid-body motion in the sense that the fluid motion is determined once the boundary configuration is specified. Helmholtz proved, among other things, that, without viscosity, a vortex line is frozen into the fluid. This Helmholtz's law immediately implies the preservation of knots and links of vortex lines and its implication is enormous. One of the major trends of fluid mechanics since the latter half of the 20th century is to clarify the topological meaning of Helmholtz's law and to exploit it to develop theoretical and numerical methods to find the solutions of the Euler equations and to develop experimental techniques to gain an insight into fluid motion. Vortex rings are prominent coherent structures in a variety of fluid motions from the microscopic scale, through human and mesoscale to astrophysical scales, and have attracted people's interest. The late professor Philip G Saffman (1981) emphasized the significance of studies on vortex rings. One particular motion exemplifies the whole range of problems of vortex motion and is also a commonly known phenomenon, namely the vortex ring or smoke ring. Vortex rings are easily produced by dropping drops of one liquid into another, or by puffing fluid out of a hole, or by exhaling smoke if one has the skill. Their formation is a problem of vortex sheet dynamics, the steady state is a problem of existence, their duration is a problem of stability, and if there are several we have the problem of vortex interactions. Helmholtz himself, in the same paper (1858), devoted a few pages to an analysis of the motion of a vortex ring, and made substantial contributions. Since then, theoretical, experimental and numerical treatments of vortex rings have been developing continuously, yet we encounter mysteries and novel phenomena, with which vortex rings find new applications in, say, bio-fluid mechanics. Recently vortex rings have enlarged their scope beyond classical fluids to encompass super-fluids and Bose-Einstein condensates. On the occasion of the 150th anniversary of Helmholtz's theory on a vortex ring, it is worthwhile to bring together, in one issue, the latest understandings of and open problems in vortex rings from various aspects. The topics in this issue include development of theories and experiments for motion of vortex rings and their interaction with other vortex rings, flows and boundaries, with application to vortex-ring manipulation for flow control, original experiments on collision of vortex rings with a porous boundary, a novel numerical technique to simulate three-dimensional motion of vortex rings and new theories of dynamics of quantum vortex rings governed by nonlinear Schrödinger equations. I hope that this special section gives a sketch, in some proportion, of the current frontier of the field and provides a means to tackle future problems. References Saffman P G 1981 Dynamics of vorticity J. Fluid Mech. 106 49-58 von Helmholtz H 1858 Über Integrale der hydrodynamischen Gleichungen welche den Wirbelbewegungen entsprechen J. Reine Angew. Math. 55 25-55 (Engl. transl.: Tait P G 1867 On the integrals of the hydrodynamical equations which express vortex-motion Phil. Mag. 33 (4) 485-512)

  7. Development of a cyber physical apparatus for investigating fluid structure interaction on leading edge vortex evolution

    NASA Astrophysics Data System (ADS)

    Raghu Gowda, Belagumba Venkatachalaiah

    This dissertation examines how simple structural compliance impacts a specific transient vortex phenomenon that occurs on high angle of attack lifting surfaces termed dynamic stall. In many Fluid structure interaction (FSI) research efforts, a purely physical or purely computational approach is taken. In this work a low cost cyber-physical (CPFD) system is designed and developed for representing the FSI in the leading edge vortex (LEV) development problem. The leading edge compliance appears to be favorable in a specific spring constant range for a given wing. When the leading edge compliance prescribed via CPFD system is too low compared with the moment due to dynamic pressure or fluid unsteady effect, the LEV behavior is similar to that of a rigid wing system. When the leading edge compliance is too high, excessive compliance is introduced into the wing system and the leading edge vortex evolution is affected by the large change in wing angle. At moderate leading edge compliance, a balance appears to be achieved in which the leading edge vorticity shedding rate supports the long term evolution of the leading edge vortex. Further investigation is required to determine specific parameters governing these leading edge compliance ranges.

  8. Numerical Investigation of an Oscillating Flat Plate Airfoil

    NASA Astrophysics Data System (ADS)

    Mohaghegh, Fazlolah; Janechek, Matthew; Buchholz, James; Udaykumar, Hs

    2017-11-01

    This research investigates the vortex dynamics of a plunging flat plate airfoil by analyzing the vorticity transport in 2D simulations. A horizontal airfoil is subject to a freestream flow at Re =10000. A prescribed vertical sinusoidal motion is applied to the airfoil. Smoothed Profile Method (SPM) models the fluid-structure interaction. SPM as a diffuse interface model considers a thickness for the interface and applies a smooth transition from solid to fluid. As the forces on the airfoil are highly affected by the interaction of the generated vortices from the surface, it is very important to find out whether a diffuse interface solver can model a flow dominated by vorticities. The results show that variation of lift coefficient with time agrees well with the experiment. Study of vortex evolution shows that similar to experiments, when the plate starts moving downward from top, the boundary layer is attached to the surface and the leading-edge vortex (LEV) is very small. By time, LEV grows and rolls up and a secondary vortex emerges. Meanwhile, the boundary layer starts to separate and finally LEV detaches from the surface. In overall, SPM as a diffuse interface model can predict the lift force and vortex pattern accurately.

  9. String cavitation formation inside fuel injectors

    NASA Astrophysics Data System (ADS)

    Reid, B. A.; Gavaises, M.; Mitroglou, N.; Hargrave, G. K.; Garner, C. P.; McDavid, R. M.

    2015-12-01

    The formation of vortex or ‘string’ cavitation has been visualised at pressures up to 2000 bar in an automotive-sized optical diesel fuel injector nozzle. The multi-hole nozzle geometry studied allowed observation of the hole-to-hole vortex interaction and, in particular, that of a bridging vortex in the sac region between the holes. Above a threshold Reynolds number, their formation and appearance during a 2 ms injection event was repeatable and independent of upstream pressure and cavitation number. In addition, two different hole layouts and threedimensional flow simulations have been employed to describe how, the relative positions of adjacent holes influenced the formation and hole-to-hole interaction of the observed string cavitation vortices, with good agreement between the experimental and simulation results being achieved.

  10. A stochastic vortex structure method for interacting particles in turbulent shear flows

    NASA Astrophysics Data System (ADS)

    Dizaji, Farzad F.; Marshall, Jeffrey S.; Grant, John R.

    2018-01-01

    In a recent study, we have proposed a new synthetic turbulence method based on stochastic vortex structures (SVSs), and we have demonstrated that this method can accurately predict particle transport, collision, and agglomeration in homogeneous, isotropic turbulence in comparison to direct numerical simulation results. The current paper extends the SVS method to non-homogeneous, anisotropic turbulence. The key element of this extension is a new inversion procedure, by which the vortex initial orientation can be set so as to generate a prescribed Reynolds stress field. After validating this inversion procedure for simple problems, we apply the SVS method to the problem of interacting particle transport by a turbulent planar jet. Measures of the turbulent flow and of particle dispersion, clustering, and collision obtained by the new SVS simulations are shown to compare well with direct numerical simulation results. The influence of different numerical parameters, such as number of vortices and vortex lifetime, on the accuracy of the SVS predictions is also examined.

  11. Experimental demonstration of free-space optical vortex transmutation with polygonal lenses.

    PubMed

    Gao, Nan; Xie, Changqing

    2012-08-01

    Vortex transmutation was predicted to take place when vortices interact with systems possessing discrete rotational symmetries of finite order [Phys. Rev. Lett.95, 123901 (2005)]. Here we report what is believed to be the first experimental demonstration of vortex transmutation. We show that in free space, by simply inserting polygonal lenses into the optical path, the central vorticity of a coaxially incident optical vortex can be changed following the modular transmutation rule. We generate the wavefront at the exit face of the lenses with computer generated holograms and measure the output vorticity using the interference patterns at the focal plane. The results agree well with theoretical predictions.

  12. Experimental Investigation of the Unsteady Flow Structures of Two Interacting Pitching Wings

    NASA Astrophysics Data System (ADS)

    Kurt, Melike; Moored, Keith

    2015-11-01

    Birds, insects and fish propel themselves with unsteady motions of their wings and fins. Many of these animals are also found to fly or swim in three-dimensional flocks and schools. Numerous studies have explored the three-dimensional steady flow interactions and the two-dimensional unsteady flow interactions in collectives. Yet, the characterization of the three-dimensional unsteady interactions remains relatively unexplored. This study aims to characterize the flow structures and interactions between two sinusoidally pitching finite-span wings. The arrangement of the wings varies from a tandem to a bi-plane configuration. The vortex structures for these various arrangements are quantified by using particle image velocimetry. The vortex-wing interactions are also characterized as the synchrony between the wings is modified.

  13. A link between nonlinear self-organization and dissipation in drift-wave turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manz, P.; Birkenmeier, G.; Stroth, U.

    Structure formation and self-organization in two-dimensional drift-wave turbulence show up in many different faces. Fluctuation data from a magnetized plasma are analyzed and three mechanisms transferring kinetic energy to large-scale structures are identified. Beside the common vortex merger, clustering of vortices constituting a large-scale strain field and vortex thinning, where due to the interactions of vortices of different scales larger vortices are amplified by the smaller ones, are observed. The vortex thinning mechanism appears to be the most efficient one to generate large scale structures in drift-wave turbulence. Vortex merging as well as vortex clustering are accompanied by strong energymore » transfer to small-scale noncoherent fluctuations (dissipation) balancing the negative entropy generation due to the self-organization process.« less

  14. 75 FR 39259 - Change in Bank Control Notices; Acquisition of Shares of Bank or Bank Holding Companies

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-08

    ..., Philippines; to acquire voting shares of Oceanic Holding (BVI) Limited, Tortola, British Virgin Islands, and... Francisco, California. Board of Governors of the Federal Reserve System, July 2, 2010. Jennifer J. Johnson...

  15. The NASA-Langley Wake Vortex Modelling Effort in Support of an Operational Aircraft Spacing System

    NASA Technical Reports Server (NTRS)

    Proctor, Fred H.

    1998-01-01

    Two numerical modelling efforts, one using a large eddy simulation model and the other a numerical weather prediction model, are underway in support of NASA's Terminal Area Productivity program. The large-eddy simulation model (LES) has a meteorological framework and permits the interaction of wake vortices with environments characterized by crosswind shear, stratification, humidity, and atmospheric turbulence. Results from the numerical simulations are being used to assist in the development of algorithms for an operational wake-vortex aircraft spacing system. A mesoscale weather forecast model is being adapted for providing operational forecast of winds, temperature, and turbulence parameters to be used in the terminal area. This paper describes the goals and modelling approach, as well as achievements obtained to date. Simulation results will be presented from the LES model for both two and three dimensions. The 2-D model is found to be generally valid for studying wake vortex transport, while the 3-D approach is necessary for realistic treatment of decay via interaction of wake vortices and atmospheric boundary layer turbulence. Meteorology is shown to have an important affect on vortex transport and decay. Presented are results showing that wake vortex transport is unaffected by uniform fog or rain, but wake vortex transport can be strongly affected by nonlinear vertical change in the ambient crosswind. Both simulation and observations show that atmospheric vortices decay from the outside with minimal expansion of the core. Vortex decay and the onset three-dimensional instabilities are found to be enhanced by the presence of ambient turbulence.

  16. Experimental investigation of starting characteristics and wave propagation from a shallow open cavity and its acoustic emission at supersonic speed

    NASA Astrophysics Data System (ADS)

    Pandian, S.; Desikan, S. L. N.; Niranjan, Sahoo

    2018-01-01

    Experiments were carried out on a shallow open cavity (L/D = 5) at a supersonic Mach number (M = 1.8) to understand its transient starting characteristics, wave propagation (inside and outside the cavity) during one vortex shedding cycle, and acoustic emission. Starting characteristics and wave propagation were visualized through time resolved schlieren images, while acoustic emissions were captured through unsteady pressure measurements. Results showed a complex shock system during the starting process which includes characteristics of the bifurcated shock system, shock train, flow separation, and shock wave boundary layer interaction. In one vortex shedding cycle, vortex convection from cavity leading edge to cavity trailing edge was observed. Flow features outside the cavity demonstrated the formation and downstream movement of a λ-shock due to the interaction of shock from the cavity leading edge and shock due to vortex and generation of waves on account of shear layer impingement at the cavity trailing edge. On the other hand, interesting wave structures and its propagation were monitored inside the cavity. In one vortex shedding cycle, two waves such as a reflected compression wave from a cavity leading edge in the previous vortex shedding cycle and a compression wave due to the reflection of Mach wave at the cavity trailing edge corner in the current vortex shedding cycle were visualized. The acoustic emission from the cavity indicated that the 2nd to 4th modes/tones are dominant, whereas the 1st mode contains broadband spectrum. In the present studies, the cavity feedback mechanism was demonstrated through a derived parameter coherence coefficient.

  17. On the interaction of stationary crossflow vortices and Tollmien-Schlichting waves in the boundary layer on a rotating disc

    NASA Technical Reports Server (NTRS)

    Bassom, Andrew P.; Hall, Philip

    1989-01-01

    There are many fluid flows where the onset of transition can be caused by different instability mechanisms which compete among themselves. The interaction is considered of two types of instability mode (at an asymptotically large Reynolds number) which can occur in the flow above a rotating disc. In particular, the interaction is examined between lower branch Tollmien-Schlichting (TS) waves and the upper branch, stationary, inviscid crossflow vortex whose asymptotic structure has been described by Hall (1986). This problem is studied in the context of investigating the effect of the vortex on the stability characteristics of a small TS wave. Essentially, it is found that the primary effect is felt through the modification to the mean flow induced by the presence of the vortex. Initially, the TS wave is taken to be linear in character and it is shown (for the cases of both a linear and a nonlinear stationary vortex) that the vortex can exhibit both stabilizing and destabilizing effects on the TS wave and the nature of this influence is wholly dependent upon the orientation of this latter instability. Further, the problem is examined with a larger TS wave, whose size is chosen so as to ensure that this mode is nonlinear in its own right. An amplitude equation for the evolution of the TS wave is derived which admits solutions corresponding to finite amplitude, stable, traveling waves.

  18. Vortex formation and saturation for low-aspect-ratio rotating flat-plate fins

    NASA Astrophysics Data System (ADS)

    Devoria, Adam C.; Ringuette, Matthew J.

    2012-02-01

    We investigate experimentally the unsteady, three-dimensional vortex formation of low-aspect-ratio, trapezoidal flat-plate fins undergoing rotation from rest at a 90° angle of attack and Reynolds numbers of O(103). The objectives are to characterize the unsteady three-dimensional vortex structure, examine vortex saturation, and understand the effects of the root-to-tip flow for different velocity programs. The experiments are conducted in a water tank facility, and the diagnostic tools are dye flow visualization and digital particle image velocimetry. The dye visualizations show that the low-aspect-ratio plate produces symmetric ring-like vortices comprised mainly of tip-edge vorticity. They also indicate the presence of the root-to-tip velocity. For large rotational amplitudes, the primary ring-like vortex sheds and a secondary ring-like vortex is generated while the plate is still in motion, indicating saturation of the leading vortex. The time-varying vortex circulation in the flow symmetry plane provides quantitative evidence of vortex saturation. The phenomenon of saturation is observed for several plate velocity programs. The temporal development of the vortex circulation is often complex, which prevents an objective determination of an exact saturation time. This is the result of an interaction between the developing vortex and the root-to-tip flow, which breaks apart the vortex. However, it is possible to define a range of time during which the vortex reaches saturation. A formation-parameter definition is investigated and is found to reasonably predict the state corresponding to the pinch-off of the initial tip vortex across the velocity programs tested. This event is the lower bound on the saturation time range.

  19. A new methodology for free wake analysis using curved vortex elements

    NASA Technical Reports Server (NTRS)

    Bliss, Donald B.; Teske, Milton E.; Quackenbush, Todd R.

    1987-01-01

    A method using curved vortex elements was developed for helicopter rotor free wake calculations. The Basic Curve Vortex Element (BCVE) is derived from the approximate Biot-Savart integration for a parabolic arc filament. When used in conjunction with a scheme to fit the elements along a vortex filament contour, this method has a significant advantage in overall accuracy and efficiency when compared to the traditional straight-line element approach. A theoretical and numerical analysis shows that free wake flows involving close interactions between filaments should utilize curved vortex elements in order to guarantee a consistent level of accuracy. The curved element method was implemented into a forward flight free wake analysis, featuring an adaptive far wake model that utilizes free wake information to extend the vortex filaments beyond the free wake regions. The curved vortex element free wake, coupled with this far wake model, exhibited rapid convergence, even in regions where the free wake and far wake turns are interlaced. Sample calculations are presented for tip vortex motion at various advance ratios for single and multiple blade rotors. Cross-flow plots reveal that the overall downstream wake flow resembles a trailing vortex pair. A preliminary assessment shows that the rotor downwash field is insensitive to element size, even for relatively large curved elements.

  20. Reconfigurable superconducting vortex pinning potential for magnetic disks in hybrid structures

    NASA Astrophysics Data System (ADS)

    Marchiori, Estefani; Curran, Peter J.; Kim, Jangyong; Satchell, Nathan; Burnell, Gavin; Bending, Simon J.

    2017-03-01

    High resolution scanning Hall probe microscopy has been used to directly visualise the superconducting vortex behavior in hybrid structures consisting of a square array of micrometer-sized Py ferromagnetic disks covered by a superconducting Nb thin film. At remanence the disks exist in almost fully flux-closed magnetic vortex states, but the observed cloverleaf-like stray fields indicate the presence of weak in-plane anisotropy. Micromagnetic simulations suggest that the most likely origin is an unintentional shape anisotropy. We have studied the pinning of added free superconducting vortices as a function of the magnetisation state of the disks, and identified a range of different phenomena arising from competing energy contributions. We have also observed clear differences in the pinning landscape when the superconductor and the ferromagnet are electron ically coupled or insulated by a thin dielectric layer, with an indication of non-trivial vortex-vortex interactions. We demonstrate a complete reconfiguration of the vortex pinning potential when the magnetisation of the disks evolves from the vortex-like state to an onion-like one under an in-plane magnetic field. Our results are in good qualitative agreement with theoretical predictions and could form the basis of novel superconducting devices based on reconfigurable vortex pinning sites.

  1. Reconfigurable superconducting vortex pinning potential for magnetic disks in hybrid structures.

    PubMed

    Marchiori, Estefani; Curran, Peter J; Kim, Jangyong; Satchell, Nathan; Burnell, Gavin; Bending, Simon J

    2017-03-24

    High resolution scanning Hall probe microscopy has been used to directly visualise the superconducting vortex behavior in hybrid structures consisting of a square array of micrometer-sized Py ferromagnetic disks covered by a superconducting Nb thin film. At remanence the disks exist in almost fully flux-closed magnetic vortex states, but the observed cloverleaf-like stray fields indicate the presence of weak in-plane anisotropy. Micromagnetic simulations suggest that the most likely origin is an unintentional shape anisotropy. We have studied the pinning of added free superconducting vortices as a function of the magnetisation state of the disks, and identified a range of different phenomena arising from competing energy contributions. We have also observed clear differences in the pinning landscape when the superconductor and the ferromagnet are electron ically coupled or insulated by a thin dielectric layer, with an indication of non-trivial vortex-vortex interactions. We demonstrate a complete reconfiguration of the vortex pinning potential when the magnetisation of the disks evolves from the vortex-like state to an onion-like one under an in-plane magnetic field. Our results are in good qualitative agreement with theoretical predictions and could form the basis of novel superconducting devices based on reconfigurable vortex pinning sites.

  2. On the scaling and dynamics of periodically generated vortex rings

    NASA Astrophysics Data System (ADS)

    Asadi, Hossein; Asgharzadeh, Hafez; Borazjani, Iman; Scientific Computing; Biofluids Team

    2017-11-01

    Periodically generated vortex rings are observed in nature, e.g., left ventricle or jellyfish, but their scaling and dynamics is not completely well understood. We are interested in identifying the main parameters governing the propagation and dynamics of periodically generated vortex rings. Therefore, vortex rings, generated periodically through a circular cylinder into a tank, is numerically investigated for a range of Reynolds numbers (Re), non-dimensional periods (T), and stroke ratios (stroke time to period) for a simple square wave. Based on the results, by using the averaged inflow velocity in definition of Reynolds number and non-dimensional period, vortex ring velocity becomes approximately independent of the stroke ratio. The results also show that reducing Reynolds number or increasing non-dimensional period increases the translational velocity of vortex ring. Based on our test cases, an empirical relation is proposed to predict the location of vortex cores propagating into domain which shows good agreement with other experimental data. The vortex instabilities and interactions are also visualized and discussed. This work was supported by AHA Grant 13SDG17220022, NIH Grant R03EB014860, and the Center of Computational Research (CCR) of University at Buffalo.

  3. Transfer of Orbital and Spin angular momentum from non-paraxial optical vortex to atomic BEC

    NASA Astrophysics Data System (ADS)

    Bhowmik, Anal; Mondal, Pradip Kumar; Majumder, Sonjoy; Deb, Bimalendu

    2017-04-01

    Allen and co-workers first brought up the realization that optical vortex can carry well defined orbital angular momentum (OAM) associated with its spatial mode. Spin angular momentum (SAM) of the light, associated with the polarization, interacts with the internal electronic motion of the atom. The exchange of orbital angular momentum (OAM) between optical vortex and the center-of-mass (CM) motion of an atom or molecule is well known in paraxial approximation. We show that, how the total angular momentum (TAM) of non-paraxial optical vortex is shared with atom, in terms of OAM and SAM. Both the angular momenta are now possible to be transferred to the internal electronic and external CM motion of atom. Here we have studied how the Rabi frequencies of the excitations of two-photon Raman transitions with respect to focusing angles. Also, we investigate the properties of the vortex superposed state for a Bose-Einstein condensate condensate by a single non-paraxial vortex beam. The density distribution of the vortex-antivortex superposed state has a petal structure which is determined by the quantum circulations and proportion of the vortex and antivortex.

  4. Enhancing the safety of visually impaired travelers in and around transit stations.

    DOT National Transportation Integrated Search

    2016-01-01

    The TechBridge World research group at Carnegie Mellon University has been exploring specific needs and constraints encountered by blind or visually impaired (B/VI) adults when using transit stations. Through this work, the findings indicated a stron...

  5. Evolution of supersonic corner vortex in a hypersonic inlet/isolator model

    NASA Astrophysics Data System (ADS)

    Huang, He-Xia; Tan, Hui-Jun; Sun, Shu; Ling, Yu

    2016-12-01

    There are complex corner vortex flows in a rectangular hypersonic inlet/isolator. The corner vortex propagates downstream and interacts with the shocks and expansion waves in the isolator repeatedly. The supersonic corner vortex in a generic hypersonic inlet/isolator model is theoretically and numerically analyzed at a freestream Mach number of 4.92. The cross-flow topology of the corner vortex flow is found to obey Zhang's theory ["Analytical analysis of subsonic and supersonic vortex formation," Acta Aerodyn. Sin. 13, 259-264 (1995)] strictly, except for the short process with the vortex core situated in a subsonic flow which is surrounded by a supersonic flow. In general, the evolution history of the corner vortex under the influence of the background waves in the hypersonic inlet/isolator model can be classified into two types, namely, from the adverse pressure gradient region to the favorable pressure gradient region and the reversed one. For type 1, the corner vortex is a one-celled vortex with the cross-sectional streamlines spiraling inwards at first. Then the Hopf bifurcation occurs and the streamlines in the outer part of the limit cycle switch to spiraling outwards, yielding a two-celled vortex. The limit cycle shrinks gradually and finally vanishes with the streamlines of the entire corner vortex spiraling outwards. For type 2, the cross-sectional streamlines of the corner vortex spiral outwards first. Then a stable limit cycle is formed, yielding a two-celled vortex. The short-lived limit cycle forces the streamlines in the corner vortex to change the spiraling trends rapidly. Although it is found in this paper that there are some defects on the theoretical proof of the limit cycle, Zhang's theory is proven useful for the prediction and qualitative analysis of the complex corner vortex in a hypersonic inlet/isolator. In addition, three conservation laws inside the limit cycle are obtained.

  6. Optical diagnostics and computational modeling of reacting and non-reacting single and multiphase flows

    NASA Astrophysics Data System (ADS)

    Basu, Saptarshi

    Three critical problem domains namely water transport in PEM fuel cell, interaction of vortices with diffusion flames and laminar diffusion layers and thermo-physical processes in droplets heated by a plasma or monochromatic radiation have been analyzed in this dissertation. The first part of the dissertation exhibits a unique, in situ, line-of-sight measurements of water vapor partial pressure and temperature in single and multiple gas channels on the cathode side of an operating PEM fuel cell. Tunable diode laser absorption spectroscopy was employed for these measurements for which water transitions sensitive to temperature and partial pressure were utilized. The technique was demonstrated in a PEM fuel cell operating under both steady state and time-varying load conditions. The second part of the dissertation is dedicated to the study of vortex interaction with laminar diffusion flame and non-reacting diffusion layers. For the non-reacting case, a detailed computational study of scalar mixing in a laminar vortex is presented for vortices generated between two gas streams. A detailed parametric study was conducted to determine the effects of vortex strength, convection time, and non-uniform temperature on scalar mixing characteristics. For the reacting case, an experimental study of the interaction of a planar diffusion flame with a line vortex is presented. The flame-vortex interactions are diagnosed by laser induced incandescence for soot yield and by particle image velocimetry for vortex flow characterization. The soot topography was studied as a function of the vortex strength, residence time, flame curvature and the reactant streams from which vortices are initiated. The third part of the dissertation is modeling of thermo-physical processes in liquid ceramic precursor droplets injected into plasma as used in the thermal spray industry to generate thermal barrier coatings on high value materials. Models include aerodynamic droplet break-up process, mixing of droplets in the high temperature plasma, heat and mass transfer within individual droplets as well as droplet precipitation and internal pressurization. The last part of the work is also concerned with the modeling of thermo-physical processes in liquid ceramic precursor droplets heated by monochromatic radiation. Purpose of this work was to evaluate the feasibility of studying precipitation kinetics and morphological changes in a droplet by mimicking similar heating rates as the plasma.

  7. Predicting aerodynamic characteristics of vortical flows on three-dimensional configurations using a surface-singularity panel method

    NASA Technical Reports Server (NTRS)

    Maskew, B.

    1983-01-01

    A general low-order surface-singularity panel method is used to predict the aerodynamic characteristics of a problem where a wing-tip vortex from one wing closely interacts with an aft mounted wing in a low Reynolds Number flow; i.e., 125,000. Nonlinear effects due to wake roll-up and the influence of the wings on the vortex path are included in the calculation by using a coupled iterative wake relaxation scheme. The interaction also affects the wing pressures and boundary layer characteristics: these effects are also considered using coupled integral boundary layer codes and preliminary calculations using free vortex sheet separation modelling are included. Calculated results are compared with water tunnel experimental data with generally remarkably good agreement.

  8. Visual impairment attributable to uncorrected refractive error and other causes in the Ghanaian youth: The University of Cape Coast Survey.

    PubMed

    Abokyi, Samuel; Ilechie, Alex; Nsiah, Peter; Darko-Takyi, Charles; Abu, Emmanuel Kwasi; Osei-Akoto, Yaw Jnr; Youfegan-Baanam, Mathurin

    2016-01-01

    To determine the prevalence of visual impairment attributable to refractive error and other causes in a youthful Ghanaian population. A prospective survey of all consecutive visits by first-year tertiary students to the Optometry clinic between August, 2013 and April, 2014. Of the 4378 first-year students aged 16-39 years enumerated, 3437 (78.5%) underwent the eye examination. The examination protocol included presenting visual acuity (PVA), ocular motility, and slit-lamp examination of the external eye, anterior segment and media, and non-dilated fundus examination. Pinhole acuity and fundus examination were performed when the PVA≤6/12 in one or both eyes to determine the principal cause of the vision loss. The mean age of participants was 21.86 years (95% CI: 21.72-21.99). The prevalence of bilateral visual impairment (BVI; PVA in the better eye ≤6/12) and unilateral visual impairment UVI; PVA in the worse eye ≤6/12) were 3.08% (95% CI: 2.56-3.72) and 0.79% (95% CI: 0.54-1.14), respectively. Among 106 participants with BVI, refractive error (96.2%) and corneal opacity (3.8%) were the causes. Of the 27 participants with UVI, refractive error (44.4%), maculopathy (18.5%) and retinal disease (14.8%) were the major causes. There was unequal distribution of BVI in the different age groups, with those above 20 years having a lesser burden. Eye screening and provision of affordable spectacle correction to the youth could be timely to eliminate visual impairment. Copyright © 2014 Spanish General Council of Optometry. Published by Elsevier Espana. All rights reserved.

  9. Visual impairment attributable to uncorrected refractive error and other causes in the Ghanaian youth: The University of Cape Coast Survey

    PubMed Central

    Abokyi, Samuel; Ilechie, Alex; Nsiah, Peter; Darko-Takyi, Charles; Abu, Emmanuel Kwasi; Osei-Akoto, Yaw Jnr; Youfegan-Baanam, Mathurin

    2015-01-01

    Purpose To determine the prevalence of visual impairment attributable to refractive error and other causes in a youthful Ghanaian population. Methods A prospective survey of all consecutive visits by first-year tertiary students to the Optometry clinic between August, 2013 and April, 2014. Of the 4378 first-year students aged 16–39 years enumerated, 3437 (78.5%) underwent the eye examination. The examination protocol included presenting visual acuity (PVA), ocular motility, and slit-lamp examination of the external eye, anterior segment and media, and non-dilated fundus examination. Pinhole acuity and fundus examination were performed when the PVA ≤ 6/12 in one or both eyes to determine the principal cause of the vision loss. Results The mean age of participants was 21.86 years (95% CI: 21.72–21.99). The prevalence of bilateral visual impairment (BVI; PVA in the better eye ≤6/12) and unilateral visual impairment UVI; PVA in the worse eye ≤6/12) were 3.08% (95% CI: 2.56–3.72) and 0.79% (95% CI: 0.54–1.14), respectively. Among 106 participants with BVI, refractive error (96.2%) and corneal opacity (3.8%) were the causes. Of the 27 participants with UVI, refractive error (44.4%), maculopathy (18.5%) and retinal disease (14.8%) were the major causes. There was unequal distribution of BVI in the different age groups, with those above 20 years having a lesser burden. Conclusion Eye screening and provision of affordable spectacle correction to the youth could be timely to eliminate visual impairment. PMID:26025809

  10. Comparision between Brain Atrophy and Subdural Volume to Predict Chronic Subdural Hematoma: Volumetric CT Imaging Analysis

    PubMed Central

    Ju, Min-Wook; Kwon, Hyon-Jo; Choi, Seung-Won; Koh, Hyeon-Song; Youm, Jin-Young; Song, Shi-Hun

    2015-01-01

    Objective Brain atrophy and subdural hygroma were well known factors that enlarge the subdural space, which induced formation of chronic subdural hematoma (CSDH). Thus, we identified the subdural volume that could be used to predict the rate of future CSDH after head trauma using a computed tomography (CT) volumetric analysis. Methods A single institution case-control study was conducted involving 1,186 patients who visited our hospital after head trauma from January 1, 2010 to December 31, 2014. Fifty-one patients with delayed CSDH were identified, and 50 patients with age and sex matched for control. Intracranial volume (ICV), the brain parenchyme, and the subdural space were segmented using CT image-based software. To adjust for variations in head size, volume ratios were assessed as a percentage of ICV [brain volume index (BVI), subdural volume index (SVI)]. The maximum depth of the subdural space on both sides was used to estimate the SVI. Results Before adjusting for cranium size, brain volume tended to be smaller, and subdural space volume was significantly larger in the CSDH group (p=0.138, p=0.021, respectively). The BVI and SVI were significantly different (p=0.003, p=0.001, respectively). SVI [area under the curve (AUC), 77.3%; p=0.008] was a more reliable technique for predicting CSDH than BVI (AUC, 68.1%; p=0.001). Bilateral subdural depth (sum of subdural depth on both sides) increased linearly with SVI (p<0.0001). Conclusion Subdural space volume was significantly larger in CSDH groups. SVI was a more reliable technique for predicting CSDH. Bilateral subdural depth was useful to measure SVI. PMID:27169071

  11. Comparision between Brain Atrophy and Subdural Volume to Predict Chronic Subdural Hematoma: Volumetric CT Imaging Analysis.

    PubMed

    Ju, Min-Wook; Kim, Seon-Hwan; Kwon, Hyon-Jo; Choi, Seung-Won; Koh, Hyeon-Song; Youm, Jin-Young; Song, Shi-Hun

    2015-10-01

    Brain atrophy and subdural hygroma were well known factors that enlarge the subdural space, which induced formation of chronic subdural hematoma (CSDH). Thus, we identified the subdural volume that could be used to predict the rate of future CSDH after head trauma using a computed tomography (CT) volumetric analysis. A single institution case-control study was conducted involving 1,186 patients who visited our hospital after head trauma from January 1, 2010 to December 31, 2014. Fifty-one patients with delayed CSDH were identified, and 50 patients with age and sex matched for control. Intracranial volume (ICV), the brain parenchyme, and the subdural space were segmented using CT image-based software. To adjust for variations in head size, volume ratios were assessed as a percentage of ICV [brain volume index (BVI), subdural volume index (SVI)]. The maximum depth of the subdural space on both sides was used to estimate the SVI. Before adjusting for cranium size, brain volume tended to be smaller, and subdural space volume was significantly larger in the CSDH group (p=0.138, p=0.021, respectively). The BVI and SVI were significantly different (p=0.003, p=0.001, respectively). SVI [area under the curve (AUC), 77.3%; p=0.008] was a more reliable technique for predicting CSDH than BVI (AUC, 68.1%; p=0.001). Bilateral subdural depth (sum of subdural depth on both sides) increased linearly with SVI (p<0.0001). Subdural space volume was significantly larger in CSDH groups. SVI was a more reliable technique for predicting CSDH. Bilateral subdural depth was useful to measure SVI.

  12. Robust vortex lines, vortex rings, and hopfions in three-dimensional Bose-Einstein condensates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bisset, R. N.; Wang, Wenlong; Ticknor, Christopher

    Performing a systematic Bogoliubov–de Gennes spectral analysis, we illustrate that stationary vortex lines, vortex rings, and more exotic states, such as hopfions, are robust in three-dimensional atomic Bose-Einstein condensates, for large parameter intervals. Importantly, we find that the hopfion can be stabilized in a simple parabolic trap, without the need for trap rotation or inhomogeneous interactions. We supplement our spectral analysis by studying the dynamics of such stationary states; we find them to be robust against significant perturbations of the initial state. In the unstable regimes, we not only identify the unstable mode, such as a quadrupolar or hexapolar mode,more » but we also observe the corresponding instability dynamics. Moreover, deep in the Thomas-Fermi regime, we investigate the particlelike behavior of vortex rings and hopfions.« less

  13. Robust vortex lines, vortex rings, and hopfions in three-dimensional Bose-Einstein condensates

    DOE PAGES

    Bisset, R. N.; Wang, Wenlong; Ticknor, Christopher; ...

    2015-12-07

    Performing a systematic Bogoliubov–de Gennes spectral analysis, we illustrate that stationary vortex lines, vortex rings, and more exotic states, such as hopfions, are robust in three-dimensional atomic Bose-Einstein condensates, for large parameter intervals. Importantly, we find that the hopfion can be stabilized in a simple parabolic trap, without the need for trap rotation or inhomogeneous interactions. We supplement our spectral analysis by studying the dynamics of such stationary states; we find them to be robust against significant perturbations of the initial state. In the unstable regimes, we not only identify the unstable mode, such as a quadrupolar or hexapolar mode,more » but we also observe the corresponding instability dynamics. Moreover, deep in the Thomas-Fermi regime, we investigate the particlelike behavior of vortex rings and hopfions.« less

  14. Enhancement of vortex induced forces and motion through surface roughness control

    DOEpatents

    Bernitsas, Michael M [Saline, MI; Raghavan, Kamaldev [Houston, TX

    2011-11-01

    Roughness is added to the surface of a bluff body in a relative motion with respect to a fluid. The amount, size, and distribution of roughness on the body surface is controlled passively or actively to modify the flow around the body and subsequently the Vortex Induced Forces and Motion (VIFM). The added roughness, when designed and implemented appropriately, affects in a predetermined way the boundary layer, the separation of the boundary layer, the level of turbulence, the wake, the drag and lift forces, and consequently the Vortex Induced Motion (VIM), and the fluid-structure interaction. The goal of surface roughness control is to increase Vortex Induced Forces and Motion. Enhancement is needed in such applications as harnessing of clean and renewable energy from ocean/river currents using the ocean energy converter VIVACE (Vortex Induced Vibration for Aquatic Clean Energy).

  15. Preemptive vortex-loop proliferation in multicomponent interacting Bose-Einstein condensates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dahl, E. K.; Kragset, S.; Sudboe, A.

    2008-04-01

    We use analytical arguments and large-scale Monte Carlo calculations to investigate the nature of the phase transitions between distinct complex superfluid phases in a two-component Bose-Einstein condensate when a nondissipative drag between the two components is being varied. We focus on understanding the role of topological defects in various phase transitions and develop vortex-matter arguments, allowing an analytical description of the phase diagram. We find the behavior of fluctuation induced vortex matter to be much more complex and substantially different from that of single-component superfluids. We propose and numerically investigate a drag-induced ''preemptive vortex loop proliferation'' scenario. Such a transitionmore » may be a quite generic feature in many multicomponent systems where symmetry is restored by a gas of several kinds of competing vortex loops.« less

  16. Valley Vortex States in Sonic Crystals

    NASA Astrophysics Data System (ADS)

    Lu, Jiuyang; Qiu, Chunyin; Ke, Manzhu; Liu, Zhengyou

    2016-03-01

    Valleytronics is quickly emerging as an exciting field in fundamental and applied research. In this Letter, we study the acoustic version of valley states in sonic crystals and reveal a vortex nature of such states. In addition to the selection rules established for exciting valley polarized states, a mimicked valley Hall effect of sound is proposed further. The extraordinary chirality of valley vortex states, detectable in experiments, may open a new possibility in sound manipulations. This is appealing to scalar acoustics that lacks a spin degree of freedom inherently. In addition, the valley selection enables a handy way to create vortex matter in acoustics, in which the vortex chirality can be controlled flexibly. Potential applications can be anticipated with the exotic interaction of acoustic vortices with matter, such as to trigger the rotation of the trapped microparticles without contact.

  17. Universality of the Berezinskii-Kosterlitz-Thouless type of phase transition in the dipolar XY-model

    NASA Astrophysics Data System (ADS)

    Vasiliev, A. Yu; Tarkhov, A. E.; Menshikov, L. I.; Fedichev, P. O.; Fischer, Uwe R.

    2014-05-01

    We investigate the nature of the phase transition occurring in a planar XY-model spin system with dipole-dipole interactions. It is demonstrated that a Berezinskii-Kosterlitz-Thouless (BKT) type of phase transition always takes place at a finite temperature separating the ordered (ferro) and the disordered (para) phases. The low-temperature phase corresponds to an ordered state with thermal fluctuations, composed of a ‘gas’ of bound vortex-antivortex pairs, which would, when considered isolated, be characterized by a constant vortex-antivortex attraction force which is due to the dipolar interaction term in the Hamiltonian. Using a topological charge model, we show that small bound pairs are easily polarized, and screen the vortex-antivortex interaction in sufficiently large pairs. Screening changes the linear attraction potential of vortices to a logarithmic one, and leads to the familiar pair dissociation mechanism of the BKT type phase transition. The topological charge model is confirmed by numerical simulations, in which we demonstrate that the transition temperature slightly increases when compared with the BKT result for short-range interactions.

  18. Analysis of turbulent synthetic jet by dynamic mode decomposition

    NASA Astrophysics Data System (ADS)

    Hyhlík, Tomáš; Netřebská, Hana; Devera, Jakub; Kalinay, Radomír

    The article deals with the analysis of CFD results of the turbulent synthetic jet. The numerical simulation of Large Eddy Simulation (LES) using commercial solver ANSYS CFX has been performed. The unsteady flow field is studied from the point of view of identification of the moving vortex ring, which has been identified both on the snapshots of flow field using swirling-strength criterion and using the Dynamic Mode Decomposition (DMD) of five periods. It is shown that travelling vortex ring vanishes due to interaction with vortex structures in the synthesised turbulent jet. DMD modes with multiple of the basic frequency of synthetic jet, which are connected with travelling vortex structure, have largest DMD amplitudes.

  19. Superfluid Boundary Layer.

    PubMed

    Stagg, G W; Parker, N G; Barenghi, C F

    2017-03-31

    We model the superfluid flow of liquid helium over the rough surface of a wire (used to experimentally generate turbulence) profiled by atomic force microscopy. Numerical simulations of the Gross-Pitaevskii equation reveal that the sharpest features in the surface induce vortex nucleation both intrinsically (due to the raised local fluid velocity) and extrinsically (providing pinning sites to vortex lines aligned with the flow). Vortex interactions and reconnections contribute to form a dense turbulent layer of vortices with a nonclassical average velocity profile which continually sheds small vortex rings into the bulk. We characterize this layer for various imposed flows. As boundary layers conventionally arise from viscous forces, this result opens up new insight into the nature of superflows.

  20. The characteristics of the ground vortex and its effect on the aerodynamics of the STOL configuration

    NASA Technical Reports Server (NTRS)

    Stewart, Vearle R.

    1988-01-01

    The interaction of the free stream velocity on the wall jet formed by the impingement of deflected engine thrust results in a rolled up vortex which exerts sizable forces on a short takeoff (STOL) airplane configuration. Some data suggest that the boundary layer under the free stream ahead of the configuration may be important in determining the extent of the travel of the wall jet into the oncoming stream. Here, early studies of the ground vortex are examined, and those results are compared to some later data obtained with moving a model over a fixed ground board. The effect of the ground vortex on the aerodynamic characteristics are discussed.

  1. A review of the use of vortex generators for mitigating shock-induced separation

    NASA Astrophysics Data System (ADS)

    Titchener, Neil; Babinsky, Holger

    2015-09-01

    This article reviews research into the potential of vortex generators to mitigate shock-induced separation. Studies ranging from those conducted in the early post-war era to those performed recently are discussed. On the basis of the investigations described in this report, it is clear that vortex generators can alleviate shock-induced boundary layer separation. Yet, it will be shown that their potential and efficiency varies considerably in practical applications. Much more success is reported in transonic test cases compared to separation induced in purely supersonic interactions. Under a variety of flow conditions, the best performance is achieved with vortex generators with a height of roughly half the boundary layer thickness and a shape similar to a swept vane. Notwithstanding this, vortex generator performance is not as consistent as it is in low-speed applications. Further work is required before vortex generators can be implemented into the design process for eliminating shock-induced separation on transonic wings and in supersonic inlets.

  2. Development of Hairpin Vortices in Turbulent Spots and End-Wall Transition

    NASA Technical Reports Server (NTRS)

    Smith, Charles R.

    2007-01-01

    The end-stage phase of boundary layer transition is characterized by the development of hairpin-like vortices which evolve rapidly into patches of turbulent behavior. In general, the characteristics of the evolution form this hairpin stage to the turbulent stage is poorly understood, which has prompted the present experimental examination of hairpin vortex development and growth processes. Two topics of particular relevance to the workshop focus will be covered: 1) the growth of turbulent spots through the generatio and amalgamation of hairpin-like vortices, and 2) the development of hairpin vortices during transition in an end-wall junction flow. Brief summaries of these studies are described below. Using controlled generation of hairpin vortices by surface injection in a critical laminar boundary layer, detailed flow visualization studies have been done of the phases of growth of single hairpin vortices, from the initial hairgin generation, through the systematic generation of secondary hairpin-like flow structures, culminating in the evolution to a turbulent spot. The key to the growth process is strong vortex-surface interactions, which give rise to strong eruptive events adjacent to the surface, which results in the generation of subsequent hairpin vortex structures due to inviscid-viscuous interactions between the eruptive events and the free steam fluid. The general process of vortex-surface fluid interaction, coupled with subsequent interactions and amalgamation of the generated multiple hairpin-type vortices, is demonstrated as a physical mechanism for the growth and development of turbulent spots. When a boundary layer flow along a surface encounters a bluff body obstruction extending from the surface (such as cylinder or wing), the strong adverse pressure gradients generated by these types of flows result in the concentration of the impinging vorticity into a system of discrete vortices near the end-wall juncture of the obstruction, with the extensions of the vortices engirdling the obstruction to form "necklace" or "horseshoe" vortices. Recent hydrogen bubble and particle image visualization have shown that as Reynolds number is increased for a laminar approach flow, the flow will become critical, and a destabilization of the necklace vortices results in the development of an azimuthal waviness, or "kinks", in the vortices. These vortex kinks are accentuated by Biot-Savart effects, causing portions of a distorted necklace vortex to make a rapid approach to the surface, precipitating processes of localized, three-dimensional surface interactions. These interactions result in the rapid generation, focussing, and ejection of thin tongues of surface fluid, which rapidly roll-over and appear as hairpin vortices in the junction region. Subsequent amalgamation of these hairpin vortices with the necklace vortices produces a complex transitional-type flow. A presentation of key results from both these studies will be done, emphasizing both the ubiquity of such hairpin-type flow structures in manifold transitional-type flows, and the importance of vortex-surface interactions n the development of hairpin vortices.

  3. Effect of the Mitral Valve's Anterior Leaflet on Axisymmetry of Transmitral Vortex Ring.

    PubMed

    Falahatpisheh, Ahmad; Pahlevan, Niema M; Kheradvar, Arash

    2015-10-01

    The shape and formation of transmitral vortex ring are shown to be associated with diastolic function of the left ventricle (LV). Transmitral vortex ring is a flow feature that is observed to be non-axisymmetric in a healthy heart and its inherent asymmetry in the LV assists in efficient ejection of the blood during systole. This study is a first step towards understanding the effects of the mitral valve's anterior leaflet on transmitral flow. We experimentally study a single-leaflet model of the mitral valve to investigate the effect of the anterior leaflet on the axisymmetry of the generated vortex ring based on the three-dimensional data acquired using defocusing digital particle image velocimetry. Vortex rings form downstream of a D-shaped orifice in presence or absence of the anterior leaflet in various physiological stroke ratios. The results of the statistical analysis indicate that the formed vortex ring downstream of a D-shaped orifice is markedly non-axisymmetric, and presence of the anterior leaflet improves the ring's axisymmetry. This study suggests that the improvement of axisymmetry in presence of the anterior leaflet might be due to coupled dynamic interaction between rolling-up of the shear layer at the edges of the D-shaped orifice and the borders of the anterior leaflet. This interaction can reduce the non-uniformity in vorticity generation, which results in more axisymmetric behavior compared to the D-shaped orifice without the anterior leaflet.

  4. Pitching effect on transonic wing stall of a blended flying wing with low aspect ratio

    NASA Astrophysics Data System (ADS)

    Tao, Yang; Zhao, Zhongliang; Wu, Junqiang; Fan, Zhaolin; Zhang, Yi

    2018-05-01

    Numerical simulation of the pitching effect on transonic wing stall of a blended flying wing with low aspect ratio was performed using improved delayed detached eddy simulation (IDDES). To capture the discontinuity caused by shock wave, a second-order upwind scheme with Roe’s flux-difference splitting is introduced into the inviscid flux. The artificial dissipation is also turned off in the region where the upwind scheme is applied. To reveal the pitching effect, the implicit approximate-factorization method with sub-iterations and second-order temporal accuracy is employed to avoid the time integration of the unsteady Navier-Stokes equations solved by finite volume method at Arbitrary Lagrange-Euler (ALE) form. The leading edge vortex (LEV) development and LEV circulation of pitch-up wings at a free-stream Mach number M = 0.9 and a Reynolds number Re = 9.6 × 106 is studied. The Q-criterion is used to capture the LEV structure from shear layer. The result shows that a shock wave/vortex interaction is responsible for the vortex breakdown which eventually causes the wing stall. The balance of the vortex strength and axial flow, and the shock strength, is examined to provide an explanation of the sensitivity of the breakdown location. Pitching motion has great influence on shock wave and shock wave/vortex interactions, which can significantly affect the vortex breakdown behavior and wing stall onset of low aspect ratio blended flying wing.

  5. Helicopter rotor wake geometry and its influence in forward flight. Volume 1: Generalized wake geometry and wake effect on rotor airloads and performance

    NASA Technical Reports Server (NTRS)

    Egolf, T. A.; Landgrebe, A. J.

    1983-01-01

    An analytic investigation to generalize wake geometry of a helicopter rotor in steady level forward flight and to demonstrate the influence of wake deformation in the prediction of rotor airloads and performance is described. Volume 1 presents a first level generalized wake model based on theoretically predicted tip vortex geometries for a selected representative blade design. The tip vortex distortions are generalized in equation form as displacements from the classical undistorted tip vortex geometry in terms of vortex age, blade azimuth, rotor advance ratio, thrust coefficient, and number of blades. These equations were programmed to provide distorted wake coordinates at very low cost for use in rotor airflow and airloads prediction analyses. The sensitivity of predicted rotor airloads, performance, and blade bending moments to the modeling of the tip vortex distortion are demonstrated for low to moderately high advance ratios for a representative rotor and the H-34 rotor. Comparisons with H-34 rotor test data demonstrate the effects of the classical, predicted distorted, and the newly developed generalized wake models on airloads and blade bending moments. Use of distorted wake models results in the occurrence of numerous blade-vortex interactions on the forward and lateral sides of the rotor disk. The significance of these interactions is related to the number and degree of proximity to the blades of the tip vortices. The correlation obtained with the distorted wake models (generalized and predicted) is encouraging.

  6. Transient interaction between a reaction control jet and a hypersonic crossflow

    NASA Astrophysics Data System (ADS)

    Miller, Warrick A.; Medwell, Paul R.; Doolan, Con J.; Kim, Minkwan

    2018-04-01

    This paper presents a numerical study that focuses on the transient interaction between a reaction control jet and a hypersonic crossflow with a laminar boundary layer. The aim is to better understand the underlying physical mechanisms affecting the resulting surface pressure and control force. Implicit large-eddy simulations were performed with a round, sonic, perfect air jet issuing normal to a Mach 5 crossflow over a flat plate with a laminar boundary layer, at a jet-to-crossflow momentum ratio of 5.3 and a pressure ratio of 251. The pressure distribution induced on the flat plate is unsteady and is influenced by vortex structures that form around the jet. A horseshoe vortex structure forms upstream and consists of six vortices: two quasi-steady vortices and two co-rotating vortex pairs that periodically coalesce. Shear-layer vortices shed periodically and cause localised high pressure regions that convect downstream with constant velocity. A longitudinal counter-rotating vortex pair is present downstream of the jet and is formed from a series of trailing vortices which rotate about a common axis. Shear-layer vortex shedding causes periodic deformation of barrel and bow shocks. This changes the location of boundary layer separation which also affects the normal force on the plate.

  7. Prediction of the Aero-Acoustic Performance of Open Rotors

    NASA Technical Reports Server (NTRS)

    VanZante, Dale; Envia, Edmane

    2014-01-01

    The rising cost of jet fuel has renewed interest in contrarotating open rotor propulsion systems. Contemporary design methods offer the potential to maintain the inherently high aerodynamic efficiency of open rotors while greatly reducing their noise output, something that was not feasible in the 1980's designs. The primary source mechanisms of open rotor noise generation are thought to be the front rotor wake and tip vortex interacting with the aft rotor. In this paper, advanced measurement techniques and high-fidelity prediction tools are used to gain insight into the relative importance of the contributions to the open rotor noise signature of the front rotor wake and rotor tip vortex. The measurements include three-dimensional particle image velocimetry of the intra-rotor flowfield and the acoustic field of a model-scale open rotor. The predictions provide the unsteady flowfield and the associated acoustic field. The results suggest that while the front rotor tip vortex can have a significant influence on the blade passing tone noise produced by the aft rotor, the front rotor wake plays the decisive role in the generation of the interaction noise produced as a result of the unsteady aerodynamic interaction of the two rotors. At operating conditions typical of takeoff and landing operations, the interaction noise level is easily on par with that generated by the individual rotors, and in some cases is even higher. This suggests that a comprehensive approach to reducing open rotor noise should include techniques for mitigating the wake of the front rotor as well as eliminating the interaction of the front rotor tip vortex with the aft rotor blade tip.

  8. VizieR Online Data Catalog: OGLE RR Lyrae in LMC (Soszynski+, 2003)

    NASA Astrophysics Data System (ADS)

    Soszynski, I.; Udalski, A.; Szymanski, M.; Kubiak, M.; Pietrzynski, G.; Wozniak, P.; Zebrun, K.; Szewczyk, O.; Wyrzykowski, L.

    2003-11-01

    We present the catalog of RR Lyr stars discovered in a 4.5 square degrees area in the central parts of the Large Magellanic Cloud (LMC). Presented sample contains 7612 objects, including 5455 fundamental mode pulsators (RRab), 1655 first-overtone (RRc), 272 second-overtone (RRe) and 230 double-mode RR Lyr stars (RRd). Additionally we attach alist of several dozen other short-period pulsating variables. The catalog data include astrometry, periods, BVI photometry, amplitudes, and parameters of the Fourier decomposition of the I-band light curve of each object. We provide a list of six LMC star clusters which contain RR Lyr stars. The richest cluster, NGC 1835, hosts 84 RR Lyr variables. The period distribution of these stars suggests that NGC1835 shares features of Oosterhoff type I and type II groups. All presented data, including individual BVI observations and finding charts are available from the OGLE Internet archive at ftp://sirius.astrouw.edu.pl/ogle/ogle2/var_stars/lmc/rrlyr (6 data files).

  9. Quantum turbulence in cold multicomponent matter

    NASA Astrophysics Data System (ADS)

    Pshenichnyuk, Ivan A.

    2018-02-01

    Quantum vortices are pivotal for understanding of phenomena in quantum hydrodynamics. Vortices were observed in different physical systems like trapped dilute Bose-Einstein condensates, liquid helium, exciton-polariton condensates and other types of systems. Foreign particles attached to the vortices often serve for a visualization of the vortex shape and kinematics in superfluid experiments. Fascinating discoveries were made in the field of cold quantum mixtures, where vortices created in one component may interact with the other component. This works raise the fundamental question of the interaction between quantum vortices and matter. The generalized nonlinear Schrodinger equation based formalism is applied here to model three different processes involving the interaction of quantum vortices with foreign particles: propagation of a fast classical particle in a superfluid under the influence of sound waves, scattering of a single fermion by a quantized vortex line and dynamics of vortex pairs doped with heavy bosonic matter. The obtained results allow to to clarify the details of recent experiments and acquire a better understanding of the multicomponent quantum turbulence.

  10. Fluid Structure Interaction Analysis on Sidewall Aneurysm Models

    NASA Astrophysics Data System (ADS)

    Hao, Qing

    2016-11-01

    Wall shear stress is considered as an important factor for cerebral aneurysm growth and rupture. The objective of present study is to evaluate wall shear stress in aneurysm sac and neck by a fluid-structure-interaction (FSI) model, which was developed and validated against the particle image velocimetry (PIV) data. In this FSI model, the flow characteristics in a straight tube with different asymmetric aneurysm sizes over a range of Reynolds numbers from 200 to 1600 were investigated. The FSI results agreed well with PIV data. It was found that at steady flow conditions, when Reynolds number above 700, one large recirculating vortex would be formed, occupying the entire aneurysm sac. The center of the vortex is located at region near to the distal neck. A pair of counter rotating vortices would however be formed at Reynolds number below 700. Wall shear stresses reached highest level at the distal neck of the aneurysmal sac. The vortex strength, in general, is stronger at higher Reynolds number. Fluid Structure Interaction Analysis on Sidewall Aneurysm Models.

  11. Investigation of corner shock boundary layer interactions to understand inlet unstart

    NASA Astrophysics Data System (ADS)

    Funderburk, Morgan

    2015-11-01

    Inlet unstart is a detrimental phenomenon in dual-mode ramjet/scramjet engines that causes severe loss of thrust, large transient structural load, and potentially a loss of the aircraft. In order to analyze the effects that the corner shock boundary layer interaction (SBLI) has on initiating and perpetuating inlet unstart, a qualitative and quantitative investigation into mean and dynamic features of corner SBLI at various Mach numbers is made. Surface streakline visualization showed that the corner SBLI is highly three-dimensional with a dominant presence of corner separation vortex. Further, the peak r.m.s. pressure was located at the periphery of corner separation vortex, suggesting that the unsteady loading is caused by the corner vortex. Power spectral densities of wall-pressure fluctuations in the peak r.m.s. location were analyzed in order to characterize the dominant frequencies of oscillation of the flow structures and to unravel the dynamic interactions between them in order to expand the operating margin of future hypersonic air breathing vehicles.

  12. Influence of wing tip morphology on vortex dynamics of flapping flight

    NASA Astrophysics Data System (ADS)

    Krishna, Swathi; Mulleners, Karen

    2013-11-01

    The mechanism of flapping wing flight provides insects with extraordinary flight capabilities. The uniquely shaped wing tips give insects an edge in flight performance and the interaction between the leading edge vortices and wing tip vortices enhance their propelling efficiencies and manoeuvrability. These are qualities that are sought after in current-day Micro Air Vehicles. A detailed understanding of the vortex dynamics of flapping flight and the influence of the wing tip planform is imperative for technical application. An experimental study is conducted to investigate the effects of different wing tip planforms on the formation, evolution and interaction of vortical structures. We thereby focus on the interaction between the coherent structures evolving from the leading edge and the wing tip during pitching and flapping motions.The spatial and temporal evolution of the three-dimensional flow structures are determined using Scanning (Stereo) Particle Image Velocimetry and an in-depth coherent structure analysis. By comparing the vortex dynamics, the aerodynamic performance of various wing tip planforms are evaluated.

  13. Nonequilibrium dynamic phases in driven vortex lattices with periodic pinning

    NASA Astrophysics Data System (ADS)

    Reichhardt, Charles Michael

    1998-12-01

    We present the results of an extensive series of simulations of flux-gradient and current driven vortices interacting with either random or periodically arranged pinning sites. First, we consider flux-gradient-driven simulations of superconducting vortices interacting with strong randomly-distributed columnar pinning defects, as an external field H(t) is quasi-statically swept from zero through a matching field Bsb{phi}. Here, we find significant changes in the behavior of the local flux density B(x, y, H(t)), magnetization M(H(t)), critical current Jsb{c}(B(t)), and the individual vortex flow paths, as the local flux density crosses Bsb{phi}. Further, we find that for a given pin density, Jsb{c}(B) can be enhanced by maximizing the distance between the pins for B < Bsb{phi}. For the case of periodic pinning sites as a function of applied field, we find a rich variety of ordered and partially-ordered vortex lattice configurations. We present formulas that predict the matching fields at which commensurate vortex configurations occur and the vortex lattice orientation with respect to the pinning lattice. Our results are in excellent agreement with recent imaging experiments on square pinning arrays (K. Harada et al., Science 274, 1167 (1996)). For current driven simulations with periodic pinning we find a remarkable number of dynamical plastic flow phases. Signatures of the transitions between these different dynamical phases include sudden jumps in the current-voltage curves, hysteresis, as well as marked changes in the vortex trajectories and vortex lattice order. These phases are outlined in a series of dynamic phase diagrams. We show that several of these phases and their phase-boundaries can be understood in terms of analytical arguments. Finally, when the vortex lattice is driven at varying angles with respect to the underlying periodic pinning array, the transverse voltage-current V(I) curves show a series of mode-locked plateaus with the overall V(I) forming a devil's staircase structure.

  14. The Spectral and Statistical Properties of Turbulence Generated by a Vortex/Blade-Tip Interaction

    NASA Technical Reports Server (NTRS)

    Devenport, William J.; Wittmer, Kenneth S.; Wenger, Christian W.

    1997-01-01

    The perpendicular interaction of a streamwise vortex with the tip of a lifting blade was studied in incompressible flow to provide information useful to the accurate prediction of helicopter rotor noise and the understanding of vortex dominated turbulent flows. The vortex passed 0.3 chord lengths to the suction side of the blade tip, providing a weak interaction. Single and two-point turbulence measurements were made using sub-miniature four sensor hot-wire probes 15 chord lengths downstream of the blade trailing edge; revealing the mean velocity and Reynolds stress tensor distributions of the turbulence, as well as its spanwise length scales as a function of frequency. The single point measurements show the flow downstream of the blade to be dominated by the interaction of the original tip vortex and the vortex shed by the blade. These vortices rotate about each other under their mutual induction, winding up the turbulent wakes of the blades. This interaction between the vortices appears to be the source of new turbulence in their cores and in the region between them. This turbulence appears to be responsible for some decay in the core of the original vortex, not seen when the blade is removed. The region between the vortices is not only a region of comparatively large stresses, but also one of intense turbulence production. Velocity autospectra measured near its center suggests the presence quasi-periodic large eddies with axes roughly parallel to a line joining the vortex cores. Detailed two-point measurements were made on a series of spanwise cuts through the flow so as to reveal the turbulence scales as they would be seen along the span of an intersecting airfoil. The measurements were made over a range of probe separations that enabled them to be analyzed not only in terms of coherence and phase spectra but also in terms of wave-number frequency (kappa-omega) spectra, computed by transforming the measured cross-spectra with respect to the spanwise separation of the probes. These data clearly show the influence of the coherent eddies in the spiral wake and the turbulent region between the cores. These eddies produce distinct peaks in the upwash velocity kappa-omega spectra, and strong anisotropy manifested both in the decay of the kappa-omega spectrum at larger wave-numbers and in differences between the kappa-omega spectra of different components. None of these features are represented in the von Karman spectrum for isotropic turbulence that is often used in broadband noise computations. Wave-number frequency spectra measured in the cores appear to show some evidence that the turbulence outside sets tip core waves, as has previously been hypothesized. These spectra also provide for the first time a truly objective method for distinguishing velocity fluctuations produced by core wandering from other motions.

  15. Experimental and computational investigation of the tip clearance flow in a transonic axial compressor rotor

    NASA Astrophysics Data System (ADS)

    Suder, Kenneth L.; Celestina, Mark L.

    1995-06-01

    Experimental and computational techniques are used to investigate tip clearance flows in a transonic axial compressor rotor at design and part speed conditions. Laser anemometer data acquired in the endwall region are presented for operating conditions near peak efficiency and near stall at 100% design speed and at near peak efficiency at 60% design speed. The role of the passage shock/leakage vortex interaction in generating endwall blockage is discussed. As a result of the shock/vortex interaction at design speed, the radial influence of the tip clearance flow extends to 20 times the physical tip clearance height. At part speed, in the absence of the shock, the radial extent is only 5 times the tip clearance height. Both measurements and analysis indicate that under part-speed operating conditions a second vortex, which does not originate from the tip leakage flow, forms in the endwall region within the blade passage and exits the passage near midpitch. Mixing of the leakage vortex with primary flow downstream of the rotor at both design and part speed conditions is also discussed.

  16. Experimental and Computational Investigation of the Tip Clearance Flow in a Transonic Axial Compressor Rotor

    NASA Technical Reports Server (NTRS)

    Suder, Kenneth L.; Celestina, Mark L.

    1995-01-01

    Experimental and computational techniques are used to investigate tip clearance flows in a transonic axial compressor rotor at design and part speed conditions. Laser anemometer data acquired in the endwall region are presented for operating conditions near peak efficiency and near stall at 100% design speed and at near peak efficiency at 60% design speed. The role of the passage shock/leakage vortex interaction in generating endwall blockage is discussed. As a result of the shock/vortex interaction at design speed, the radial influence of the tip clearance flow extends to 20 times the physical tip clearance height. At part speed, in the absence of the shock, the radial extent is only 5 times the tip clearance height. Both measurements and analysis indicate that under part-speed operating conditions a second vortex, which does not originate from the tip leakage flow, forms in the endwall region within the blade passage and exits the passage near midpitch. Mixing of the leakage vortex with primary flow downstream of the rotor at both design and part speed conditions is also discussed.

  17. Technical Evaluation Report, Part A - Vortex Flow and High Angle of Attack

    NASA Technical Reports Server (NTRS)

    Luckring, James M.

    2003-01-01

    A symposium entitled Vortex Flow and High Angle of Attack was held in Loen, Norway, from May 7 through May 11, 2001. The Applied Vehicle Technology (AVT) panel, under the auspices of the Research and Technology Organization (RTO), sponsored this symposium. Forty-eight papers, organized into nine sessions, addressed computational and experimental studies of vortex flows pertinent to both aircraft and maritime applications. The studies also ranged from fundamental fluids investigations to flight test results, and significant results were contributed from a broad range of countries. The principal emphasis of this symposium was on "the understanding and prediction of separation-induced vortex flows and their effects on military vehicle performance, stability, control, and structural design loads." It was further observed by the program committee that "separation- induced vortex flows are an important part of the design and off-design performance of conventional fighter aircraft and new conventional or unconventional manned or unmanned advanced vehicle designs (UAVs, manned aircraft, missiles, space planes, ground-based vehicles, and ships)." The nine sessions addressed the following topics: vortical flows on wings and bodies, experimental techniques for vortical flows, numerical simulations of vortical flows, vortex stability and breakdown, vortex flows in maritime applications, vortex interactions and control, vortex dynamics, flight testing, and vehicle design. The purpose of this paper is to provide brief reviews of these papers along with some synthesizing perspectives toward future vortex flow research opportunities. The paper includes the symposium program. (15 refs.)

  18. On the formation of vortex rings in coaxial tubes

    NASA Astrophysics Data System (ADS)

    Gan, Lian

    2011-11-01

    The formation of vortex rings within coaxial tubes of different diameter is investigated experimentally and numerically. PIV measurements were carried out in a water tank equipped with a piston-cylinder apparatus used to generate vortex rings inside a series of coaxial tubes with tube to piston diameter ratios, DT / D , ranging from 4 to 1.5. In order to distinguish between the effect confinement has on the formation of isolated vortex rings from those formed with a trailing jet flow, non- dimensional stroke ratios below and above the formation number were investigated, L / D = 2 . 5 and 10 respectively. For DT / D > 2 and L / D s below the formation number the kinematics of the vortex rings follow classical inviscid theory in so much as their self-induced velocity decreases linearly with decreasing tube diameter in accordance with the image theorem. For DT / D <= 2 boundary layer separation along the tube wall begins to interfere with the vortex during its roll-up phase. For vortex rings below the formation number, the vortex core is briefly arrested upon completion of the piston stroke. On the other hand, long L / D s give rise to even more complex dynamics. When DT / D = 2 the interaction between boundary layer and the starting jet acts to suppress vortex ring formation altogether. However, as confinement is increased further to DT / D = 1 . 5 the formation of a lead vortex ring re-appears but with a circulation lower than the formation number before rapidly decaying.

  19. Inclined Jet in Crossflow Interacting with a Vortex Generator

    NASA Technical Reports Server (NTRS)

    Zaman, K. B. M. Q.; Rigby, D .L.; Heidmann, J. D.

    2011-01-01

    An experiment is conducted on the effectiveness of a vortex generator in preventing liftoff of a jet in crossflow, with possible relevance to film-cooling applications. The jet issues into the boundary layer at an angle of 20 degreees to the freestream. The effect of a triangular ramp-shaped vortex generator is studied while varying its geometry and location. Detailed flowfield properties are obtained for a case in which the height of the vortex generator and the diameter of the orifice are comparable with the approach boundary-layer thickness. The vortex generator produces a streamwise vortex pair with a vorticity magnitude 3 times larger (and of opposite sense) than that found in the jet in crossflow alone. Such a vortex generator appears to be most effective in keeping the jet attached to the wall. The effect of parametric variation is studied mostly from surveys 10 diameters downstream from the orifice. Results over a range of jet-to-freestream momentum flux ratio (1 < J < 11) show that the vortex generator has a significant effect even at the highest J covered in the experiment. When the vortex generator height is halved, there is a liftoff of the jet. On the other hand, when the height is doubled, the jet core is dissipated due to larger turbulence intensity. Varying the location of the vortex generator, over a distance of three diameters from the orifice, is found to have little impact. Rounding off the edges of the vortex generator with the increasing radius of curvature progressively diminishes its effect. However, allowing for a small radius of curvature may be quite tolerable in practice.

  20. The VOrtex Ring Transit EXperiment (VORTEX) GAS project

    NASA Technical Reports Server (NTRS)

    Bilen, Sven G.; Langenderfer, Lynn S.; Jardon, Rebecca D.; Cutlip, Hansford H.; Kazerooni, Alexander C.; Thweatt, Amber L.; Lester, Joseph L.; Bernal, Luis P.

    1995-01-01

    Get Away Special (GAS) payload G-093, also called VORTEX (VOrtex Ring Transit EXperiment), is an investigation of the propagation of a vortex ring through a liquid-gas interface in microgravity. This process results in the formation of one or more liquid droplets similar to earth based liquid atomization systems. In the absence of gravity, surface tension effects dominate the drop formation process. The Shuttle's microgravity environment allows the study of the same fluid atomization processes as using a larger drop size than is possible on Earth. This enables detailed experimental studies of the complex flow processes encountered in liquid atomization systems. With VORTEX, deformations in both the vortex ring and the fluid surface will be measured closely for the first time in a parameters range that accurately resembles liquid atomization. The experimental apparatus will record images of the interactions for analysis after the payload has been returned to earth. The current design of the VORTEX payload consists of a fluid test cell with a vortex ring generator, digital imaging system, laser illumination system, computer based controller, batteries for payload power, and an array of housekeeping and payload monitoring sensors. It is a self-contained experiment and will be flown on board the Space Shuttle in a 5 cubic feet GAS canister. The VORTEX Project is entirely run by students at the University of Michigan but is overseen by a faculty advisor acting as the payload customer and the contact person with NASA. This paper summarizes both the technical and programmatic aspects of the VORTEX Project.

  1. Energy loss from a moving vortex in superfluid helium

    NASA Astrophysics Data System (ADS)

    Zieve, R. J.; Frei, C. M.; Wolfson, D. L.

    2012-11-01

    We present measurements on both energy loss and pinning for a vortex terminating on the curved surface of a cylindrical container. We vary surface roughness, cell diameter, fluid velocity, and temperature. Although energy loss and pinning both arise from interactions between the vortex and the surface, their dependences on the experimental parameters differ, suggesting that different mechanisms govern the two effects. We propose that the energy loss stems from reconnections with a mesh of microscopic vortices that covers the cell wall, while pinning is dominated by other influences such as the local fluid velocity.

  2. Bound states and interactions of vortex solitons in the discrete Ginzburg-Landau equation

    NASA Astrophysics Data System (ADS)

    Mejía-Cortés, C.; Soto-Crespo, J. M.; Vicencio, Rodrigo A.; Molina, Mario I.

    2012-08-01

    By using different continuation methods, we unveil a wide region in the parameter space of the discrete cubic-quintic complex Ginzburg-Landau equation, where several families of stable vortex solitons coexist. All these stationary solutions have a symmetric amplitude profile and two different topological charges. We also observe the dynamical formation of a variety of “bound-state” solutions composed of two or more of these vortex solitons. All of these stable composite structures persist in the conservative cubic limit for high values of their power content.

  3. Navier-Stokes, dynamics and aeroelastic computations for vortical flows, buffet and flutter applications

    NASA Technical Reports Server (NTRS)

    Kandil, Osama A.

    1993-01-01

    Research on Navier-Stokes, dynamics, and aeroelastic computations for vortical flows, buffet, and flutter applications was performed. Progress during the period from 1 Oct. 1992 to 30 Sep. 1993 is included. Papers on the following topics are included: vertical tail buffet in vortex breakdown flows; simulation of tail buffet using delta wing-vertical tail configuration; shock-vortex interaction over a 65-degree delta wing in transonic flow; supersonic vortex breakdown over a delta wing in transonic flow; and prediction and control of slender wing rock.

  4. Vortex generating flow passage design for increased film-cooling effectiveness and surface coverage. [aircraft engine blade cooling

    NASA Technical Reports Server (NTRS)

    Papell, S. S.

    1984-01-01

    The fluid mechanics of the basic discrete hole film cooling process is described as an inclined jet in crossflow and a cusp shaped coolant flow channel contour that increases the efficiency of the film cooling process is hypothesized. The design concept requires the channel to generate a counter rotating vortex pair secondary flow within the jet stream by virture of flow passage geometry. The interaction of the vortex structures generated by both geometry and crossflow was examined in terms of film cooling effectiveness and surface coverage. Comparative data obtained with this vortex generating coolant passage showed up to factors of four increases in both effectiveness and surface coverage over that obtained with a standard round cross section flow passage. A streakline flow visualization technique was used to support the concept of the counter rotating vortex pair generating capability of the flow passage design.

  5. Direct Numerical Simulation of a Coolant Jet in a Periodic Crossflow

    NASA Technical Reports Server (NTRS)

    Sharma, Chirdeep; Acharya, Sumanta

    1998-01-01

    A Direct Numerical Simulation of a coolant jet injected normally into a periodic crossflow is presented. The physical situation simulated represents a periodic module in a coolant hole array with a heated crossflow. A collocated finite difference scheme is used which is fifth-order accurate spatially and second-order accurate temporally. The scheme is based on a fractional step approach and requires the solution of a pressure-Poisson equation. The simulations are obtained for a blowing ratio of 0.25 and a channel Reynolds number of 5600. The simulations reveal the dynamics of several large scale structures including the Counter-rotating Vortex Pair (CVP), the horse-shoe vortex, the shear layer vortex, the wall vortex and the wake vortex. The origins and the interactions of these vortical structures are identified and explored. Also presented are the turbulence statistics and how they relate to the flow structures.

  6. Large-Scale Coherent Vortex Formation in Two-Dimensional Turbulence

    NASA Astrophysics Data System (ADS)

    Orlov, A. V.; Brazhnikov, M. Yu.; Levchenko, A. A.

    2018-04-01

    The evolution of a vortex flow excited by an electromagnetic technique in a thin layer of a conducting liquid was studied experimentally. Small-scale vortices, excited at the pumping scale, merge with time due to the nonlinear interaction and produce large-scale structures—the inverse energy cascade is formed. The dependence of the energy spectrum in the developed inverse cascade is well described by the Kraichnan law k -5/3. At large scales, the inverse cascade is limited by cell sizes, and a large-scale coherent vortex flow is formed, which occupies almost the entire area of the experimental cell. The radial profile of the azimuthal velocity of the coherent vortex immediately after the pumping was switched off has been established for the first time. Inside the vortex core, the azimuthal velocity grows linearly along a radius and reaches a constant value outside the core, which agrees well with the theoretical prediction.

  7. Vortex generating flow passage design for increased film-cooling effectiveness and surface coverage

    NASA Astrophysics Data System (ADS)

    Papell, S. S.

    The fluid mechanics of the basic discrete hole film cooling process is described as an inclined jet in crossflow and a cusp shaped coolant flow channel contour that increases the efficiency of the film cooling process is hypothesized. The design concept requires the channel to generate a counter rotating vortex pair secondary flow within the jet stream by virture of flow passage geometry. The interaction of the vortex structures generated by both geometry and crossflow was examined in terms of film cooling effectiveness and surface coverage. Comparative data obtained with this vortex generating coolant passage showed up to factors of four increases in both effectiveness and surface coverage over that obtained with a standard round cross section flow passage. A streakline flow visualization technique was used to support the concept of the counter rotating vortex pair generating capability of the flow passage design.

  8. Separation control by vortex generator devices in a transonic channel flow

    NASA Astrophysics Data System (ADS)

    Bur, Reynald; Coponet, Didier; Carpels, Yves

    2009-12-01

    An experimental study was conducted in a transonic channel to control by mechanical vortex generator devices the strong interaction between a shock wave and a separated turbulent boundary layer. Control devices—co-rotating and counter-rotating vane-type vortex generators—were implemented upstream of the shock foot region and tested both on a steady shock wave and on a forced shock oscillation configurations. The spanwise spacing of vortex generator devices along the channel appeared to be an important parameter to control the flow separation region. When the distance between each device is decreased, the vortices merging is more efficient to reduce the separation. Their placement upstream of the shock wave is determinant to ensure that vortices have mixed momentum all spanwise long before they reach the separation line, so as to avoid separation cells. Then, vortex generators slightly reduced the amplitude of the forced shock wave oscillation by delaying the upstream displacement of the leading shock.

  9. Commensurability and stability in nonperiodic systems

    PubMed Central

    Fasano, Y.; De Seta, M.; Menghini, M.; Pastoriza, H.; de la Cruz, F.

    2005-01-01

    We have investigated the response of 3D Bi2Sr2CaCu2O8 vortex structures to a weak perturbation induced by 2D Fe pinning structures acting on one extremity of vortex lines. The pinning patterns were nano-engineered at the sample surface by means of either a Bitter decoration of the vortex lattice or electron-beam lithography. The commensurability conditions between 2D rigid pinning potentials and 3D elastic structures with short-range positional and long-range orientational correlation have been experimentally determined. When the 2D potential is a replica of the nonperiodic vortex structure an amplification of its interaction with the vortex structure takes place. This effect is detected only for the first matching field, becoming negligible for other matching fields. On the other hand, a periodic 2D perturbation is shown to transform the nonperiodic Bragg glass-like structure into an Abrikosov crystal with an effective Debye–Waller factor. PMID:16576763

  10. Hub vortex instability within wind turbine wakes: Effects of wind turbulence, loading conditions, and blade aerodynamics

    NASA Astrophysics Data System (ADS)

    Ashton, Ryan; Viola, Francesco; Camarri, Simone; Gallaire, Francois; Iungo, Giacomo Valerio

    2016-11-01

    The near wake of wind turbines is characterized by the presence of the hub vortex, which is a coherent vorticity structure generated from the interaction between the root vortices and the boundary layer evolving over the turbine nacelle. By moving downstream, the hub vortex undergoes an instability with growth rate, azimuthal and axial wavenumbers determined by the characteristics of the incoming wind and turbine aerodynamics. Thus, a large variability of the hub vortex instability is expected for wind energy applications with consequent effects on wake downstream evolution, wake interactions within a wind farm, power production, and fatigue loads on turbines invested by wakes generated upstream. In order to predict characteristics of the hub vortex instability for different operating conditions, linear stability analysis is carried out by considering different statistics of the incoming wind turbulence, thrust coefficient, tip speed ratio, and blade lift distribution of a wind turbine. Axial and azimuthal wake velocity fields are modeled through Carton-McWilliams velocity profiles by mimicking the presence of the hub vortex, helicoidal tip vortices, and matching the wind turbine thrust coefficient predicted through the actuator disk model. The linear stability analysis shows that hub vortex instability is strongly affected by the wind turbine loading conditions, and specifically it is promoted by a larger thrust coefficient. A higher load of the wind turbines produces an enhanced axial velocity deficit and, in turn, higher shear in the radial direction of the streamwise velocity. The axial velocity shear within the turbine wake is also the main physical mechanism promoting the hub vortex instability when varying the lift distribution over the blade span for a specific loading condition. Cases with a larger velocity deficit in proximity of the wake center and less aerodynamic load towards the blade tip result to be more unstable. Moreover, wake swirl promotes hub vortex instability, and it can also affect the azimuthal wave number of the most unstable mode. Finally, higher Reynolds stresses and turbulent eddy viscosity decrease both growth rate and azimuthal wave number of the most unstable mode.

  11. Aging processes in disordered materials: High-Tc superconductors and ferromagnets

    NASA Astrophysics Data System (ADS)

    Pleimling, Michel

    2013-03-01

    Physical aging is generically encountered in systems far from equilibrium that evolve with slow dynamics. Well known examples can be found in structural glasses, spin glasses, magnetic systems, and colloids. Recent years have seen major breakthroughs in our understanding of aging processes in non-disordered systems. Progress in understanding aging in disordered systems has been much slower though. In this talk I discuss non-equilibrium relaxation in two different types of disordered systems: coarsening ferromagnets with disorder, characterized by a crossover from an initial power-law like growth of domains to a slower logarithmic growth regime, and interacting vortex lines in disordered type-II superconductors, where the interplay of vortex-vortex interaction and pinning results in a very rich non-equilibrium behavior. This work is supported by the US Department of Energy through grant DE-FG02-09ER46613.

  12. Non-Abelian vortex lattices

    NASA Astrophysics Data System (ADS)

    Tallarita, Gianni; Peterson, Adam

    2018-04-01

    We perform a numerical study of the phase diagram of the model proposed in [M. Shifman, Phys. Rev. D 87, 025025 (2013)., 10.1103/PhysRevD.87.025025], which is a simple model containing non-Abelian vortices. As per the case of Abrikosov vortices, we map out a region of parameter space in which the system prefers the formation of vortices in ordered lattice structures. These are generalizations of Abrikosov vortex lattices with extra orientational moduli in the vortex cores. At sufficiently large lattice spacing the low energy theory is described by a sum of C P (1 ) theories, each located on a vortex site. As the lattice spacing becomes smaller, when the self-interaction of the orientational field becomes relevant, only an overall rotation in internal space survives.

  13. Vortex-flow aerodynamics - An emerging design capability

    NASA Technical Reports Server (NTRS)

    Campbell, J. F.

    1981-01-01

    Promising current theoretical and simulational developments in the field of leading edge vortex-generating delta, arrow ogival wings are reported, along with the history of theory and experiment leading to them. The effects of wing slenderness, leading edge nose radius, Mach number and incidence variations, and planform on the onset of vortex generation and redistribution of aerodynamic loads are considered. The range of design possibilities in this field are consequential for the future development of strategic aircraft, supersonic transports and commercial cargo aircraft which will possess low-speed, high-lift capability by virtue of leading edge vortex generation and control without recourse to heavy and expensive leading edge high-lift devices and compound airfoils. Attention is given to interactive graphics simulation devices recently developed.

  14. Evolution of a Collection of Bubbles with Application to Wakes, Bubble Screens, and Cloud Noise

    DTIC Science & Technology

    1994-08-01

    Hydrodynamics", Santa Barbara, CA, August 1994.. 2. G.L. CHAIIINE, "Bubble Interactions with Vortices," in "Vortex Flows," S. GREEN , ed., to be published by...2. G.L. CHAHINE, "Bubble Interactions with Vortices," in "Vortex Flows," S. GREEN , ed., to be published by Klttwer Academic, (1993). 3. G.L. CHAHINE...Tip Vortei, ASME Cavitation and Multiphase Flow Forum, Washington D.C., FED-VoL 153, pp. 93-99. (24] Green , S.I., 1991, "Correlatiag Single Phase Flow

  15. Sound transmission through the walls of light aircraft: An investigation of structure-borne noise in a Handley Page 137 Jetstream 3 aircraft

    NASA Technical Reports Server (NTRS)

    Bernhard, R. J.; Wohlever, C.

    1988-01-01

    This study indicates that the structureborne noise due to wing/vortex interation for the Handley Page-137 Jetstream may be significant at frequencies above 500 Hz. It was found that by preventing such interaction, noise reductions between 1 to 3 dB were attainable. However, this study did not show any significant contribution due to this phenomena at the first blade passage tone. It is suspected that the wing/vortex interaction effect varies from plane to plane.

  16. Advanced Electric Propulsion MPD (Magnetoplasmadynamic)

    DTIC Science & Technology

    1988-05-01

    mTnNT ’Pt rafii V! topw -i’r-o’ ;mind t’e*- deposited h’eatnl m ,!-2’ ! v1’ th, to’r o b-Vi- , i’ ,’i cro~\\-\\ ’ i ri 1 Theae vale; I, Zil ~ -C. W I) >nt

  17. VizieR Online Data Catalog: Berkeley 32 BVI photometry and spectroscopy (D'Orazi+, 2006)

    NASA Astrophysics Data System (ADS)

    D'Orazi, V.; Bragaglia, A.; Tosi, M.; Fabrizio, L. D.; Held, E. V.

    2010-05-01

    Our data were acquired at the Italian Telescopio Nazionale Galileo, on the Canary Islands, using DOLORES (device optimized for the low resolution), a focal reducer capable of imaging and low-resolution spectroscopy, on UT 2000 November 26 and 2004 February 14. (2 data files).

  18. Control of Interacting Vortex Flows at Subsonic and Transonic Speeds Using Passive Porosity

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.

    2003-01-01

    A wind tunnel experiment was conducted in the NASA Langley Research Center (LaRC) 8-foot Transonic Pressure Tunnel (TPT) to determine the effects of passive surface porosity on vortex flow interactions about a general research fighter configuration at subsonic and transonic speeds. Flow- through porosity was applied to a wind leading-edge extension (LEX) mounted to a 65 deg cropped delta wind model to promote large nose-down pitching moment increments at high angles of attack. Porosity decreased the vorticity shed from the LEX, which weakened the LEX vortex and altered the global interactions of the LEX and wing vortices at high angles of attack. Six-component forces and moments and wing upper surface static pressure distributions were obtained at free- stream Mach numbers of 0.50, 0.85, and 1.20, Reynolds number of 2.5(10(exp-6) per foot, angles of attack up to 30 deg and angles of sideslip to plus or minus 8 deg. The off-surface flow field was visualized in selected cross-planes using a laser vapor screen flow visualization technique. Test data were obtained with a centerline vertical tail and with alternate twin, wing-mounted vertical fins having 0 deg and 30 deg cant angles. In addition, the porosity of the LEX was compartmentalized to determine the sensitivity of the vortex- dominated aerodynamics to the location and level of porosity applied to the LEX.

  19. Control of Interacting Vortex Flows at Subsonic and Transonic Speeds Using Passive Porosity

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.

    2003-01-01

    A wind tunnel experiment was conducted in the NASA Langley Research Center (LaRC) 8-Foot Transonic Pressure Tunnel (TPT) to determine the effects of passive surface porosity on vortex flow interactions about a general research fighter configuration at subsonic and transonic speeds. Flow-through porosity was applied to a wing leading-edge extension (LEX) mounted to a 65 deg cropped delta wing model to promote large nose-down pitching moment increments at high angles of attack. Porosity decreased the vorticity shed from the LEX, which weakened the LEX vortex and altered the global interactions of the LEX and wing vortices at high angles of attack. Six-component forces and moments and wing upper surface static pressure distributions were obtained at free-stream Mach numbers of 0.50, 0.85, and 1.20, Reynolds number of 2.5(10(exp 6)) per foot, angles of attack up to 30 deg, and angles of sideslip to +/- 8 deg. The off-surface flow field was visualized in selected cross-planes using a laser vapor screen flow visualization technique. Test data were obtained with a centerline vertical tail and with alternate twin, wing-mounted vertical fins having 0 deg and 30 deg cant angles. In addition, the porosity of the LEX was compartmentalized to determine the sensitivity of the vortex-dominated aerodynamics to the location and level of porosity applied to the LEX.

  20. Quantitative Species Measurements in Microgravity Combustion Flames

    NASA Technical Reports Server (NTRS)

    Silver, Joel A.; Wood, William R.; Chen, Shin-Juh; Dahm, Werner J. A.; Piltch, Nancy D.

    2001-01-01

    Flame-vortex interactions are canonical configurations that can be used to study the underlying processes occurring in complicated turbulent reacting flows. The elegant simplicity of the flame-vortex interaction permits the study of these complex interactions under relatively controllable experimental configurations, in contrast to direct measurements in turbulent flames. The ability to measure and model the fundamental phenomena that occur in a turbulent flame, but with time and spatial scales which are amenable to our diagnostics, permits significant improvements in the understanding of turbulent combustion under both normal and reduced gravity conditions. In this paper, we report absolute mole fraction measurements of methane in a reacting vortex ring. These microgravity experiments are performed in the 2.2-sec drop tower at NASA Glenn Research Center. In collaboration with Drs. Chen and Dahm at the University of Michigan, measured methane absorbances are incorporated into a new model from which the temperature and concentrations of all major gases in the flame can be determined at all positions and times in the development of the vortex ring. This is the first demonstration of the ITAC (Iterative Temperature with Assumed Chemistry) approach, and the results of these computations and analyses are presented in a companion paper by Dahm and Chen at this Workshop. We believe that the ITAC approach will become a powerful tool in understanding a wide variety of combustion flames under both equilibrium and non-equilibrium conditions.

  1. Onset of chaos in helical vortex breakdown at low Reynolds number

    NASA Astrophysics Data System (ADS)

    Pasche, S.; Avellan, F.; Gallaire, F.

    2018-06-01

    The nonlinear dynamics of a swirling wake flow stemming from a Graboswksi-Berger vortex [Grabowski and Berger, J. Fluid Mech. 75, 525 (1976), 10.1017/S0022112076000360] in a semi-infinite domain is addressed at low Reynolds numbers for a fixed swirl number S =1.095 , defined as the ratio between the characteristic tangential velocity and the centerline axial velocity. In this system, only pure hydrodynamic instabilities develop and interact through the quadratic nonlinearities of the Navier-Stokes equations. Such interactions lead to the onset of chaos at a Reynolds value of Re=220 . This chaotic state is reached by following a Ruelle-Takens-Newhouse scenario, which is initiated by a Hopf bifurcation (the spiral vortex breakdown) as the Reynolds number increases. At larger Reynolds value, a frequency synchronization regime appears followed by a chaotic state again. This scenario is corroborated by nonlinear time series analyses. Stability analysis around the time-average flow and temporal-azimuthal Fourier decomposition of the nonlinear flow distributions both identify successfully the developing vortices and provide deeper insight into the development of the flow patterns leading to this route to chaos. Three single-helical vortices are involved: the primary spiral associated with the spiral vortex breakdown, a downstream spiral, and a near-wake spiral. As the Reynolds number increases, the frequencies of these vortices become closer, increasing their interactions by nonlinearity to eventually generate a strong chaotic axisymmetric oscillation.

  2. Experimental investigation of forebody and wing leading-edge vortex interactions at high angles of attack

    NASA Technical Reports Server (NTRS)

    Erickson, G. E.; Gilbert, W. P.

    1983-01-01

    An experimental investigation was conducted to assess the vortex flow-field interactions on an advanced, twin-jet fighter aircraft configuration at high angles of attack. Flow-field surveys were conducted on a small-scale model in the Northrop 0.41 - by 0.60-meter water tunnel and, where appropriate, the qualitative observations were correlated with low-speed wind tunnel data trends obtained on a large-scale model of the advanced fighter in the NASA Langley Research Center 30- by 60-foot (9.1- by 18.3-meter) facility. Emphasis was placed on understanding the interactions of the forebody and LEX-wing vortical flows, defining the effects on rolling moment variation with sideslip, and identifying modifications to control or regulate the vortex interactions at high angles of attack. The water tunnel flow visualization results and wind tunnel data trend analysis revealed the potential for strong interactions between the forebody and LEX vortices at high angles of attack. In particular, the forebody flow development near the nose could be controlled by means of carefully-positioned radome strakes. The resultant strake-induced flow-field changes were amplified downstream by the more powerful LEX vortical motions with subsequent large effects on wing flow separation characteristics.

  3. Interaction of in-phase and out-of-phase flexible filament in fish schooling

    NASA Astrophysics Data System (ADS)

    Ud Din, Emad; Sung, Hyung

    2011-11-01

    Fish schooling is not merely a social behavior; schooling improves the efficiency of movement within the fluid environment. Inspired by the schooling from a hydrodynamic perspective, a group of aquatic animals is modeled as a collection of individuals arranged in a combination of tandem and side-by-side (diamond) formation. The downstream bodies are strongly influenced by the vortices shed by the upstream body shown by vortex-vortex and vortex-body interactions. Trailing fish takes advantage of this flow pattern for energy economy. To investigate the interactions between flexible bodies and vortices, in the present study three flexible flags in viscous flow are solved by numerical simulation using an improved version of the immersed boundary method for in-phase and out-of-phase filaments. The drag coefficient of the downstream filaments drops even below the value of a single flag. Such drag variations are influenced by the interactions between vortices shed by the upstream flexible body and vortices surrounding the downstream filaments. Interaction of the flexible flags is investigated as a function of the gap distance between flags and different bending coefficients, for in-phase and out-of-phase cases at intermediate Reynolds numbers. This study was supported by the Creative Research Initiatives of NRF/MEST (No. 2011-0000423) of Korea.

  4. Vortex dynamics and surface pressure fluctuations on a normal flat plate

    NASA Astrophysics Data System (ADS)

    Hemmati, Arman; Wood, David H.; Martinuzzi, Robert J.; Ferrari, Simon W.; Hu, Yaoping

    2016-11-01

    The effect of vortex formation and interactions on surface pressure fluctuations is examined in the wake of a normal flat plate by analyzing Direct Numerical Simulations at Re =1200. A novel local maximum score-based 3D method is used to track vortex development in the region close to the plate where the major contributions to the surface pressure are generated. Three distinct vortex shedding regimes are identified by changes in the lift and drag fluctuations. The instances of maximum drag coincide with impingement of newly formed vortices on the plate. This results in large and concentrated areas of rotational and strain contributions to generation of pressure fluctuations. Streamwise vortex straining and chordwise stretching are correlated with the large ratios of streamwise to chordwise normal stresses and regions of significant rotational contribution to the pressure. In contrast at the minimum drag, the vorticity field close to the plate is disorganized, and vortex roll-up occurs farther downstream. This leads to a uniform distribution of pressure. This study was supported by Alberta Innovates Technology Futures (AITF) and Natural Sciences and Engineering Research Council of Canada (NSERC).

  5. Cut-cell method based large-eddy simulation of tip-leakage flow

    NASA Astrophysics Data System (ADS)

    Pogorelov, Alexej; Meinke, Matthias; Schröder, Wolfgang

    2015-07-01

    The turbulent low Mach number flow through an axial fan at a Reynolds number of 9.36 × 105 based on the outer casing diameter is investigated by large-eddy simulation. A finite-volume flow solver in an unstructured hierarchical Cartesian setup for the compressible Navier-Stokes equations is used. To account for sharp edges, a fully conservative cut-cell approach is applied. A newly developed rotational periodic boundary condition for Cartesian meshes is introduced such that the simulations are performed just for a 72° segment, i.e., the flow field over one out of five axial blades is resolved. The focus of this numerical analysis is on the development of the vortical flow structures in the tip-gap region. A detailed grid convergence study is performed on four computational grids with 50 × 106, 250 × 106, 1 × 109, and 1.6 × 109 cells. Results of the instantaneous and the mean fan flow field are thoroughly analyzed based on the solution with 1 × 109 cells. High levels of turbulent kinetic energy and pressure fluctuations are generated by a tip-gap vortex upstream of the blade, the separating vortices inside the tip gap, and a counter-rotating vortex on the outer casing wall. An intermittent interaction of the turbulent wake, generated by the tip-gap vortex, with the downstream blade, leads to a cyclic transition with high pressure fluctuations on the suction side of the blade and a decay of the tip-gap vortex. The disturbance of the tip-gap vortex results in an unsteady behavior of the turbulent wake causing the intermittent interaction. For this interaction and the cyclic transition, two dominant frequencies are identified which perfectly match with the characteristic frequencies in the experimental sound power level and therefore explain their physical origin.

  6. Three Dimensional Compressible Turbulent Flow Computations for a Diffusing S-Duct With/Without Vortex Generators

    NASA Technical Reports Server (NTRS)

    Cho, Soo-Yong; Greber, Isaac

    1994-01-01

    Numerical investigations on a diffusing S-duct with/without vortex generators and a straight duct with vortex generators are presented. The investigation consists of solving the full three-dimensional unsteady compressible mass averaged Navier-Stokes equations. An implicit finite volume lower-upper time marching code (RPLUS3D) has been employed and modified. A three-dimensional Baldwin-Lomax turbulence model has been modified in conjunction with the flow physics. A model for the analysis of vortex generators in a fully viscous subsonic internal flow is evaluated. A vortical structure for modeling the shed vortex is used as a source term in the computation domain. The injected vortex paths in the straight duct are compared with the analysis by two kinds of prediction models. The flow structure by the vortex generators are investigated along the duct. Computed results of the flow in a circular diffusing S-duct provide an understanding of the flow structure within a typical engine inlet system. These are compared with the experimental wall static-pressure, static- and total-pressure field, and secondary velocity profiles. Additionally, boundary layer thickness, skin friction values, and velocity profiles in wall coordinates are presented. In order to investigate the effect of vortex generators, various vortex strengths are examined in this study. The total-pressure recovery and distortion coefficients are obtained at the exit of the S-duct. The numerical results clearly depict the interaction between the low velocity flow by the flow separation and the injected vortices.

  7. Pair interactions of heavy vortices in quantum fluids

    NASA Astrophysics Data System (ADS)

    Pshenichnyuk, Ivan A.

    2018-02-01

    The dynamics of quantum vortex pairs carrying heavy doping matter trapped inside their cores is studied. The nonlinear classical matter field formalism is used to build a universal mathematical model of a heavy vortex applicable to different types of quantum mixtures. It is shown how the usual vortex dynamics typical for undoped pairs qualitatively changes when heavy dopants are used: heavy vortices with opposite topological charges (chiralities) attract each other, while vortices with the same charge are repelled. The force responsible for such behavior appears as a result of superposition of vortices velocity fields in the presence of doping substance and can be considered as a special realization of the Magnus effect. The force is evaluated quantitatively and its inverse proportionality to the distance is demonstrated. The mechanism described in this paper gives an example of how a light nonlinear classical field may realize repulsive and attractive interactions between embedded heavy impurities.

  8. HART-II: Prediction of Blade-Vortex Interaction Loading

    NASA Technical Reports Server (NTRS)

    Lim, Joon W.; Tung, Chee; Yu, Yung H.; Burley, Casey L.; Brooks, Thomas; Boyd, Doug; vanderWall, Berend; Schneider, Oliver; Richard, Hugues; Raffel, Markus

    2003-01-01

    During the HART-I data analysis, the need for comprehensive wake data was found including vortex creation and aging, and its re-development after blade-vortex interaction. In October 2001, US Army AFDD, NASA Langley, German DLR, French ONERA and Dutch DNW performed the HART-II test as an international joint effort. The main objective was to focus on rotor wake measurement using a PIV technique along with the comprehensive data of blade deflections, airloads, and acoustics. Three prediction teams made preliminary correlation efforts with HART-II data: a joint US team of US Army AFDD and NASA Langley, German DLR, and French ONERA. The predicted results showed significant improvements over the HART-I predicted results, computed about several years ago, which indicated that there has been better understanding of complicated wake modeling in the comprehensive rotorcraft analysis. All three teams demonstrated satisfactory prediction capabilities, in general, though there were slight deviations of prediction accuracies for various disciplines.

  9. Dynamics and Instabilities of Vortex Pairs

    NASA Astrophysics Data System (ADS)

    Leweke, Thomas; Le Dizès, Stéphane; Williamson, Charles H. K.

    2016-01-01

    This article reviews the characteristics and behavior of counter-rotating and corotating vortex pairs, which are seemingly simple flow configurations yet immensely rich in phenomena. Since the reviews in this journal by Widnall (1975) and Spalart (1998) , who studied the fundamental structure and dynamics of vortices and airplane trailing vortices, respectively, there have been many analytical, computational, and experimental studies of vortex pair flows. We discuss two-dimensional dynamics, including the merging of same-sign vortices and the interaction with the mutually induced strain, as well as three-dimensional displacement and core instabilities resulting from this interaction. Flows subject to combined instabilities are also considered, in particular the impingement of opposite-sign vortices on a ground plane. We emphasize the physical mechanisms responsible for the flow phenomena and clearly present the key results that are useful to the reader for predicting the dynamics and instabilities of parallel vortices.

  10. Tactical missile aerodynamics

    NASA Technical Reports Server (NTRS)

    Hemsch, Michael J. (Editor); Nielsen, Jack N. (Editor)

    1986-01-01

    The present conference on tactical missile aerodynamics discusses autopilot-related aerodynamic design considerations, flow visualization methods' role in the study of high angle-of-attack aerodynamics, low aspect ratio wing behavior at high angle-of-attack, supersonic airbreathing propulsion system inlet design, missile bodies with noncircular cross section and bank-to-turn maneuvering capabilities, 'waverider' supersonic cruise missile concepts and design methods, asymmetric vortex sheding phenomena from bodies-of-revolution, and swept shock wave/boundary layer interaction phenomena. Also discussed are the assessment of aerodynamic drag in tactical missiles, the analysis of supersonic missile aerodynamic heating, the 'equivalent angle-of-attack' concept for engineering analysis, the vortex cloud model for body vortex shedding and tracking, paneling methods with vorticity effects and corrections for nonlinear compressibility, the application of supersonic full potential method to missile bodies, Euler space marching methods for missiles, three-dimensional missile boundary layers, and an analysis of exhaust plumes and their interaction with missile airframes.

  11. Investigating chaotic wake dynamics past a flapping airfoil and the role of vortex interactions behind the chaotic transition

    NASA Astrophysics Data System (ADS)

    Bose, Chandan; Sarkar, Sunetra

    2018-04-01

    The present study investigates the complex vortex interactions in two-dimensional flow-field behind a symmetric NACA0012 airfoil undergoing a prescribed periodic pitching-plunging motion in low Reynolds number regime. The flow-field transitions from periodic to chaotic through a quasi-periodic route as the plunge amplitude is gradually increased. This study unravels the role of the complex interactions that take place among the main vortex structures in making the unsteady flow-field transition from periodicity to chaos. The leading-edge separation plays a key role in providing the very first trigger for aperiodicity. Subsequent mechanisms like shredding, merging, splitting, and collision of vortices in the near-field that propagate and sustain the disturbance have also been followed and presented. These fundamental mechanisms are seen to give rise to spontaneous and irregular formation of new vortex couples at arbitrary locations, which are the primary agencies for sustaining chaos in the flow-field. The interactions have been studied for each dynamical state to understand the course of transition in the flow-field. The qualitative changes observed in the flow-field are manifestation of changes in the underlying dynamical system. The overall dynamics are established in the present study by means of robust quantitative measures derived from classical and non-classical tools from the dynamical system theory. As the present analysis involves a high fidelity multi-unknown system, non-classical dynamical tools such as recurrence-based time series methods are seen to be very efficient. Moreover, their application is novel in the context of pitch-plunge flapping flight.

  12. Stable vortex-bright-soliton structures in two-component Bose-Einstein condensates.

    PubMed

    Law, K J H; Kevrekidis, P G; Tuckerman, Laurette S

    2010-10-15

    We report the numerical realization of robust two-component structures in 2D and 3D Bose-Einstein condensates with nontrivial topological charge in one component. We identify a stable symbiotic state in which a higher-dimensional bright soliton exists even in a homogeneous setting with defocusing interactions, due to the effective potential created by a stable vortex in the other component. The resulting vortex-bright-solitons, generalizations of the recently experimentally observed dark-bright solitons, are found to be very robust both in the homogeneous medium and in the presence of external confinement.

  13. Flame deformation and entrainment associated with an isothermal transverse fuel jet

    NASA Technical Reports Server (NTRS)

    Jenkins, D. W.; Karagozian, A. R.

    1992-01-01

    This paper describes an analytical model of an incompressible, isothermal reacting jet in crossflow. The model represents the flow in the jet cross-section by a counter rotating vortex pair, a flow structure that has been observed to dominate the jet behavior. The reaction surface surrounding the fuel jet is represented as a composite of strained diffusion flames that are stretched and deformed by the vortex pair flow. The results shed new light on the interaction between the vortex pair circulation and flame structure evolution and their relation to the concept of entrainment.

  14. Self-induced pinning of vortices in the presence of ac driving force in magnetic superconductors

    NASA Astrophysics Data System (ADS)

    Bulaevskii, Lev N.; Lin, Shi-Zeng

    2012-12-01

    We derive the response of the magnetic superconductors in the vortex state to the ac Lorentz force, FL(t)=Facsin(ωt), taking into account the interaction of vortices with the magnetic moments described by the relaxation dynamics (polaronic effect). At low amplitudes of the driving force Fac the dissipation in the system is suppressed due to the enhancement of the effective viscosity at low frequencies and due to formation of the magnetic pinning at high frequencies ω. In the adiabatic limit with low frequencies ω and high amplitude of the driving force Fac, the vortex and magnetic polarization form a vortex polaron when FL(t) is small. When FL increases, the vortex polaron accelerates and at a threshold driving force, the vortex polaron dissociates and the motion of vortex and the relaxation of magnetization are decoupled. When FL decreases, the vortex is retrapped by the background of remnant magnetization and they again form vortex polaron. This process repeats when FL(t) increases in the opposite direction. Remarkably, after dissociation, decoupled vortices move in the periodic potential induced by magnetization which remains for some periods of time due to retardation after the decoupling. At this stage vortices oscillate with high frequencies determined by the Lorentz force at the moment of dissociation. We derive also the creep rate of vortices and show that magnetic moments suppress creep rate.

  15. Numerical investigations of two-degree-of-freedom vortex-induced vibration in shear flow

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Liu, Mengke; Han, Yang; Li, Jian; Gui, Mingyue; Chen, Zhihua

    2017-06-01

    Exponential-polar coordinates attached to a moving cylinder are used to deduce the stream function-vorticity equations for two-degree-of-freedom vortex-induced vibration, the initial and boundary conditions, and the distribution of the hydrodynamic force, which consists of the vortex-induced force, inertial force, and viscous damping force. The fluid-structure interactions occurring from the motionless cylinder to the steady vibration are investigated numerically, and the variations of the flow field, pressure, lift/drag, and cylinder displacement are discussed. Both the dominant vortex and the cylinder shift, whose effects are opposite, affect the shear layer along the transverse direction and the secondary vortex along the streamwise direction. However, the effect of the cylinder shift is larger than that of the dominant vortices. Therefore, the former dominates the total effects of the flow field. Moreover, the symmetry of the flow field is broken with the increasing shear rate. With the effect of the background vortex, the upper vortices are strengthened, and the lower vortices are weakened; thus, the shear layer and the secondary vortices induced by the upper shedding vortices are strengthened, while the shear layer and the secondary vortices induced by the lower shedding vortices are weakened. Therefore, the amplitudes of the displacement and drag/lift dominated by the upper vortex are larger than those of the displacement and drag/lift dominated by the lower vortex.

  16. Vortex dynamics of very low aspect ratio rectangular orifice synthetic jets

    NASA Astrophysics Data System (ADS)

    Straccia, Joseph; Farnsworth, John; Experimental Aerodynamics Laboratory Team

    2017-11-01

    The vast majority of prior synthetic jet research has focused on actuators with either circular orifices or rectangular orifices with high aspect ratios (AR), i.e. AR >=25. The results reported in these studies have also been biased towards bulk and time averaged statistics of the jet, viewing them in a steady sense as a source of momentum addition. Recent work has revealed that the unsteady vortex dynamics in a synthetic jet can be very relevant to how the jet interacts with and influences the base flow. In this study the synthetic jet issued into a quiescent fluid by an actuator with low orifice aspect ratios (i.e. AR =2-18) was studied using Stereoscopic Particle Image Velocimetry (SPIV) with a special focus on the vortex dynamics. The progression of vortex ring axis switching is presented and a distinct difference between the axis switching dynamics of very low AR (AR <=6) and moderate AR (AR =6-24) vortex rings is discussed. The high resolution SPIV vector fields are also used to extract details of the vortex core structure which are compared to theoretical vortex models. Furthermore, the influence of axis switching on the circulation magnitude around the vortex ring is reported in addition to how circulation varies with time as the ring advects. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. (DGE 1144083).

  17. Dynamics of the vortex wakes of flying and swimming vertebrates.

    PubMed

    Rayner, J M

    1995-01-01

    The vortex wakes of flying and swimming animals provide evidence of the history of aero- and hydrodynamic force generation during the locomotor cycle. Vortex-induced momentum flux in the wake is the reaction of forces the animal imposes on its environment, which must be in equilibrium with inertial and external forces. In flying birds and bats, the flapping wings generate lift both to provide thrust and to support the weight. Distinct wingbeat and wake movement patterns can be identified as gaits. In flow visualization experiments, only two wake patterns have been identified: a vortex ring gait with inactive upstroke, and a continuous vortex gait with active upstroke. These gaits may be modelled theoretically by free vortex and lifting line theory to predict mechanical energy consumption, aerodynamic forces and muscle activity. Longer-winged birds undergo a distinct gait change with speed, but shorter-winged species use the vortex ring gait at all speeds. In swimming fish, the situation is more complex: the wake vortices form a reversed von Kármán vortex street, but little is known about the mechanism of generation of the wake, or about how it varies with speed and acceleration or with body form and swimming mode. An unresolved complicating factor is the interaction between the drag wake of the flapping fish body and the thrusting wake from the tail.

  18. Tip Vortex and Wake Characteristics of a Counterrotating Open Rotor

    NASA Technical Reports Server (NTRS)

    VanZante, Dale E.; Wernet, Mark P.

    2012-01-01

    One of the primary noise sources for Open Rotor systems is the interaction of the forward rotor tip vortex and blade wake with the aft rotor. NASA has collaborated with General Electric on the testing of a new generation of low noise, counterrotating Open Rotor systems. Three-dimensional particle image velocimetry measurements were acquired in the intra-rotor gap of the Historical Baseline blade set. The velocity measurements are of sufficient resolution to characterize the tip vortex size and trajectory as well as the rotor wake decay and turbulence character. The tip clearance vortex trajectory is compared to results from previously developed models. Forward rotor wake velocity profiles are shown. Results are presented in a form as to assist numerical modeling of Open Rotor system aerodynamics and acoustics.

  19. A Family of Vortices to Study Axisymmetric Vortex Breakdown and Reconnection

    NASA Technical Reports Server (NTRS)

    Young, Larry A.

    2007-01-01

    A new analytic model describing a family of vortices has been developed to study some of the axisymmetric vortex breakdown and reconnection fluid dynamic processes underlying body-vortex interactions that are frequently manifested in rotorcraft and propeller-driven fixed-wing aircraft wakes. The family of vortices incorporates a wide range of prescribed initial vorticity distributions -- including single or dual-core vorticity distributions. The result is analytical solutions for the vorticity and velocities for each member of the family of vortices. This model is of sufficient generality to further illustrate the dependence of vortex reconnection and breakdown on initial vorticity distribution as was suggested by earlier analytical work. This family of vortices, though laminar in nature, is anticipated to provide valuable insight into the vortical evolution of large-scale rotor and propeller wakes.

  20. Identification of vortices in complex flows

    NASA Astrophysics Data System (ADS)

    Chakraborty, P.; Balachandar, S.; Adrian, R. J.

    2007-12-01

    Dating back to Leonardo da Vinci's famous sketches of vortices in turbulent flows, fluid dynamicists for over five centuries have continued to visualize and interpret complex flows in terms of motion of vortices. Nevertheless, much debate surrounds the question of how to unambiguously define vortices in complex flows. This debate has resulted in the availability of many vortex identification criteria---mathematical statements of what constitutes a vortex. Here we review the popularly used local or point- wise vortex identification criteria. Based on local flow kinematics, we describe a unified framework to interpret the similarities and differences in the usage of these criteria. We discuss the limitations on the applicability of these criteria when there is a significant component of vortex interactions. Finally, we provide guidelines for applying these criteria to geophysical flows.

  1. Real fuel effects on flame extinction and re-ignition

    NASA Astrophysics Data System (ADS)

    Zhao, Xinyu; Wu, Bifen; Xu, Chao; Lu, Tianfeng; Chen, Jacqueline H.

    2016-11-01

    Flame-vortex interactions have significant implications in studying combustion in practical aeronautical engines, and can be used to facilitate the model development in capturing local extinction and re-ignition. To study the interactions between the complex fuel and the intense turbulence that are commonly encountered in engines, direct numerical simulations of the interactions between a flame and a vortex pair are carried out using a recently-developed 24-species reduced chemistry for n-dodecane. Both non-premixed and premixed flames with different initial and inlet thermochemical conditions are studied. Parametric studies of different vortex strengths and orientations are carried out to induce maximum local extinction and re-ignition. Chemical-explosive-mode-analysis based flame diagnostic tools are used to identify different modes of combustion, including auto-ignition and extinction. Results obtained from the reduced chemistry are compared with those obtained from one-step chemistry to quantify the effect of fuel pyrolysis on the extinction limit. Effects of flame curvature, heat loss and unsteadiness on flame extinction are also explored. Finally, the validity of current turbulent combustion models to capture the local extinction and re-ignition will be discussed.

  2. Crossflow-Vortex Breakdown on Swept Wings: Correlation of Nonlinear Physics

    NASA Technical Reports Server (NTRS)

    Joslin, R. D.; Streett, C. L.

    1994-01-01

    The spatial evolution of cross flow-vortex packets in a laminar boundary layer on a swept wing are computed by the direct numerical simulation of the incompressible Navier- Stokes equations. A wall-normal velocity distribution of steady suction and blowing at the wing surface is used to generate a strip of equally spaced and periodic disturbances along the span. Three simulations are conducted to study the effect of initial amplitude on the disturbance evolution, to determine the role of traveling cross ow modes in transition, and to devise a correlation function to guide theories of transition prediction. In each simulation, the vortex packets first enter a chordwise region of linear independent growth, then, the individual packets coalesce downstream and interact with adjacent packets, and, finally, the vortex packets nonlinearly interact to generate inflectional velocity profiles. As the initial amplitude of the disturbance is increased, the length of the evolution to breakdown decreases. For this pressure gradient, stationary modes dominate the disturbance evolution. A two-coeffcient function was devised to correlate the simulation results. The coefficients, combined with a single simulation result, provide sufficient information to generate the evolution pattern for disturbances of any initial amplitude.

  3. Pressurized air injection in an axial hydro-turbine model for the mitigation of tip leakage cavitation

    NASA Astrophysics Data System (ADS)

    Rivetti, A.; Angulo, M.; Lucino, C.; Liscia, S.

    2015-12-01

    Tip leakage vortex cavitation in axial hydro-turbines may cause erosion, noise and vibration. Damage due to cavitation can be found at the tip of the runner blades on the low pressure side and the discharge ring. In some cases, the erosion follows an oscillatory pattern that is related to the number of guide vanes. That might suggest that a relationship exists between the flow through the guide vanes and the tip vortex cavitating core that induces this kind of erosion. On the other hand, it is known that air injection has a beneficial effect on reducing the damage by cavitation. In this paper, a methodology to identify the interaction between guide vanes and tip vortex cavitation is presented and the effect of air injection in reducing this particular kind of erosion was studied over a range of operating conditions on a Kaplan scale model. It was found that air injection, at the expense of slightly reducing the efficiency of the turbine, mitigates the erosive potential of tip leakage cavitation, attenuates the interaction between the flow through the guide vanes and the tip vortex and decreases the level of vibration of the structural components.

  4. Numerical Study of Steady and Unsteady Canard-Wing-Body Aerodynamics

    NASA Technical Reports Server (NTRS)

    Eugene, L. Tu

    1996-01-01

    The use of canards in advanced aircraft for control and improved aerodynamic performance is a topic of continued interest and research. In addition to providing maneuver control and trim, the influence of canards on wing aerodynamics can often result in increased maximum lift and decreased trim drag. In many canard-configured aircraft, the main benefits of canards are realized during maneuver or other dynamic conditions. Therefore, the detailed study and understanding of canards requires the accurate prediction of the non-linear unsteady aerodynamics of such configurations. For close-coupled canards, the unsteady aerodynamic performance associated with the canard-wing interaction is of particular interest. The presence of a canard in close proximity to the wing results in a highly coupled canard-wing aerodynamic flowfield which can include downwash/upwash effects, vortex-vortex interactions and vortex-surface interactions. For unsteady conditions, these complexities of the canard-wing flowfield are further increased. The development and integration of advanced computational technologies provide for the time-accurate Navier-Stokes simulations of the steady and unsteady canard-wing-body flox,fields. Simulation, are performed for non-linear flight regimes at transonic Mach numbers and for a wide range of angles of attack. For the static configurations, the effects of canard positioning and fixed deflection angles on aerodynamic performance and canard-wing vortex interaction are considered. For non-static configurations, the analyses of the canard-wing body flowfield includes the unsteady aerodynamics associated with pitch-up ramp and pitch oscillatory motions of the entire geometry. The unsteady flowfield associated with moving canards which are typically used as primary control surfaces are considered as well. The steady and unsteady effects of the canard on surface pressure integrated forces and moments, and canard-wing vortex interaction are presented in detail including the effects of the canard on the static and dynamic stability characteristics. The current study provides an understanding of the steady and unsteady canard-wing-body flowfield. Emphasis is placed on the effects of the canard on aerodynamic performance as well as the detailed flow physics of the canard-wing flowfield interactions. The computational tools developed to accurately predict the time-accurate flowfield of moving canards provides for the capability of coupled fluids-controls simulations desired in the detailed design and analysis of advanced aircraft.

  5. The effect of vortex merging and non-merging on the transfer of modal turbulent kinetic energy content

    NASA Astrophysics Data System (ADS)

    Ground, Cody; Vergine, Fabrizio; Maddalena, Luca

    2016-08-01

    A defining feature of the turbulent free shear layer is that its growth is hindered by compressibility effects, thus limiting its potential to sufficiently mix the injected fuel and surrounding airstream at the supersonic Mach numbers intrinsic to the combustor of air-breathing hypersonic vehicles. The introduction of streamwise vorticity is often proposed in an attempt to counteract these undesired effects. This fact makes the strategy of introducing multiple streamwise vortices and imposing upon them certain modes of mutual interaction in order to potentially enhance mixing an intriguing concept. However, many underlying fundamental characteristics of the flowfields in the presence such interactions are not yet well understood; therefore, the fundamental physics of these flowfields should be independently investigated before the explicit mixing performance is characterized. In this work, experimental measurements are taken with the stereoscopic particle image velocimetry technique on two specifically targeted modes of vortex interaction—the merging and non-merging of two corotating vortices. The fluctuating velocity fields are analyzed utilizing the proper orthogonal decomposition (POD) in order to identify the content, organization, and distribution of the modal turbulent kinetic energy content of the fluctuating velocity eigenmodes. The effects of the two modes of vortex interaction are revealed by the POD analysis which shows distinct differences in the modal features of the two cases. When comparing the low-order eigenmodes of the two cases, the size of the structures contained within the first ten modes is seen to increase as the flow progresses downstream for the merging case, whereas the opposite is true for the non-merging case. Additionally, the relative modal energy contribution of the first ten eigenmodes increases as the vortices evolve downstream for the merging case, whereas in the non-merging case the relative modal energy contribution decreases. The POD results show that the vortex merging process reorients and redistributes the relative turbulent kinetic energy content toward the larger-scale structures within the low-order POD eigenmodes. This result suggests that by specifically designing the vortex generation system to impose preselected modes of vortex interaction upon the flow it is possible to exert some form of control over the downstream evolution and distribution of the global and modal turbulent kinetic energy content.

  6. Thermally Driven Inhibition of Superconducting Vortex Avalanches

    NASA Astrophysics Data System (ADS)

    Lara, Antonio; Aliev, Farkhad G.; Moshchalkov, Victor V.; Galperin, Yuri M.

    2017-09-01

    Complex systems close to their critical state can exhibit abrupt transitions—avalanches—between their metastable states. It is a challenging task to understand the mechanism of the avalanches and control their behavior. Here, we investigate microwave stimulation of avalanches in the so-called vortex matter of type-II superconductors—a system of interacting Abrikosov vortices close to the critical (Bean) state. Our main finding is that the avalanche incubation strongly depends on the excitation frequency, a completely unexpected behavior observed close to the so-called depinning frequencies. Namely, the triggered vortex avalanches in Pb superconducting films become effectively inhibited approaching the critical temperature or critical magnetic field when the microwave stimulus is close to the vortex depinning frequency. We suggest a simple model explaining the observed counterintuitive behaviors as a manifestation of the strongly nonlinear dependence of the driven vortex core size on the microwave excitation intensity. This paves the way to controlling avalanches in superconductor-based devices through their nonlinear response.

  7. Jet and Vortex Projectile Flows in Shock/bubble-on-wall Configuration

    NASA Astrophysics Data System (ADS)

    Peng, Gaozhu; Zabusky, Norman

    2001-11-01

    We observe intense coaxial upstream and radial flow structures from a shock in air interacting with a SF6 half-bubble placed against an ideally reflecting wall. Our axisymmetric numerical simulations were done with PPM and models a spherical bubble struck symmetrically by two identical approaching shocks . A "dual" vorticity deposition arises at early time and a coaxial upstream moving primary jet and radial vortex ring flow appears. A coherent vortex ring or vortex projectile (VP), with entrained shocklets originates from the vortex layer produced at the Mach stem (which arises from the primary reflected shock). This VP moves ahead of the jet. The original transmitted wave and other trapped waves in the expanding axial jet causes a collapsing and expanding cavity and other instabilities on the complex bubble interface. We present and analyze our results with different diagnostics: vorticity, density, divergence of velocity, and numerical shadowgraph patterns; global quantification of circulation, enstrophy and r-integrated vorticity; etc. We also discuss data projection and filtering for quantifying and validating complex flows.

  8. Dynamics of vortex penetration, jumpwise instabilities, and nonlinear surface resistance of type-II superconductors in strong rf fields

    NASA Astrophysics Data System (ADS)

    Gurevich, A.; Ciovati, G.

    2008-03-01

    We consider the nonlinear dynamics of a single vortex in a superconductor in a strong rf magnetic field B0sinωt . Using the London theory, we calculate the dissipated power Q(B0,ω) and the transient time scales of vortex motion. For the linear Bardeen-Stephen viscous drag force, vortex velocities reach unphysically high values during vortex penetration through the oscillating surface barrier. It is shown that penetration of a single vortex through the ac surface barrier always involves penetration of an antivortex and the subsequent annihilation of the vortex-antivortex pairs. Using the nonlinear Larkin-Ovchinnikov (LO) viscous drag force at higher vortex velocities v(t) results in a jumpwise vortex penetration through the surface barrier and a significant increase of the dissipated power. We calculate the effect of dissipation on the nonlinear vortex viscosity η(v) and the rf vortex dynamics and show that it can also result in the LO-type behavior, instabilities, and thermal localization of penetrating vortex channels. We propose a thermal feedback model of η(v) , which not only results in the LO dependence of η(v) for a steady-state motion, but also takes into account retardation of the temperature field around a rapidly accelerating vortex and a long-range interaction with the surface. We also address the effect of pinning on the nonlinear rf vortex dynamics and the effect of trapped magnetic flux on the surface resistance Rs calculated as a function of rf frequency and field. It is shown that trapped flux can result in a temperature-independent residual resistance Ri at low T and a hysteretic low-field dependence of Ri(B0) , which can decrease as B0 is increased, reaching a minimum at B0 much smaller than the thermodynamic critical field Bc . We propose that cycling of the rf field can reduce Ri due to rf annealing of the magnetic flux which is pumped out by the rf field from a thin surface layer of the order of the London penetration depth.

  9. Generation of dark solitons and their instability dynamics in two-dimensional condensates

    NASA Astrophysics Data System (ADS)

    Verma, Gunjan; Rapol, Umakant D.; Nath, Rejish

    2017-04-01

    We analyze numerically the formation and the subsequent dynamics of two-dimensional matter wave dark solitons in a Thomas-Fermi rubidium condensate using various techniques. An initially imprinted sharp phase gradient leads to the dynamical formation of a stationary soliton as well as very shallow gray solitons, whereas a smooth gradient only creates gray solitons. The depth and hence, the velocity of the soliton is provided by the spatial width of the phase gradient, and it also strongly influences the snake-instability dynamics of the two-dimensional solitons. The vortex dipoles stemming from the unstable soliton exhibit rich dynamics. Notably, the annihilation of a vortex dipole via a transient dark lump or a vortexonium state, the exchange of vortices between either a pair of vortex dipoles or a vortex dipole and a single vortex, and so on. For sufficiently large width of the initial phase gradient, the solitons may decay directly into vortexoniums instead of vortex pairs, and also the decay rate is augmented. Later, we discuss alternative techniques to generate dark solitons, which involve a Gaussian potential barrier and time-dependent interactions, both linear and periodic. The properties of the solitons can be controlled by tuning the amplitude or the width of the potential barrier. In the linear case, the number of solitons and their depths are determined by the quench time of the interactions. For the periodic modulation, a transient soliton lattice emerges with its periodicity depending on the modulation frequency, through a wave number selection governed by the local Bogoliubov spectrum. Interestingly, for sufficiently low barrier potential, both Faraday pattern and soliton lattice coexist. The snake instability dynamics of the soliton lattice is characteristically modified if the Faraday pattern is present.

  10. Copepods' Response to Burgers' Vortex: Deconstructing Interactions of Copepods with Turbulence.

    PubMed

    Webster, D R; Young, D L; Yen, J

    2015-10-01

    This study examined the behavioral response of two marine copepods, Acartia tonsa and Temora longicornis, to a Burgers' vortex intended to mimic the characteristics of a turbulent vortex that a copepod is likely to encounter in the coastal or near-surface zone. Behavioral assays of copepods were conducted for two vortices that correspond to turbulent conditions with mean dissipation rates of turbulence of 0.009 and 0.096 cm(2) s(-3) (denoted turbulence level 2 and level 3, respectively). In particular, the Burgers' vortex parameters (i.e., circulation and rate of axial strain rate) were specified to match a vortex corresponding to the median rate of dissipation due to viscosity for each target level of turbulence. Three-dimensional trajectories were quantified for analysis of swimming kinematics and response to hydrodynamic cues. Acartia tonsa did not significantly respond to the vortex corresponding to turbulence level 2. In contrast, A. tonsa significantly altered their swimming behavior in the turbulence-level-3 vortex, including increased relative speed of swimming, angle of alignment of the trajectory with the axis of the vortex, ratio of net-to-gross displacement, and acceleration during escape, along with decreased turn frequency (relative to stagnant control conditions). Further, the location of A. tonsa escapes was preferentially in the core of the stronger vortex, indicating that the hydrodynamic cue triggering the distinctive escape behavior was vorticity. In contrast, T. longicornis did not reveal a behavioral response to either the turbulence level 2 or the level 3 vortex. © The Author 2015. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  11. Dynamics of circular arrangements of vorticity in two dimensions

    NASA Astrophysics Data System (ADS)

    Swaminathan, Rohith V.; Ravichandran, S.; Perlekar, Prasad; Govindarajan, Rama

    2016-07-01

    The merger of two like-signed vortices is a well-studied problem, but in a turbulent flow, we may often have more than two like-signed vortices interacting. We study the merger of three or more identical corotating vortices initially arranged on the vertices of a regular polygon. At low to moderate Reynolds numbers, we find an additional stage in the merger process, absent in the merger of two vortices, where an annular vortical structure is formed and is long lived. Vortex merger is slowed down significantly due to this. Such annular vortices are known at far higher Reynolds numbers in studies of tropical cyclones, which have been noticed to a break down into individual vortices. In the preannular stage, vortical structures in a viscous flow are found here to tilt and realign in a manner similar to the inviscid case, but the pronounced filaments visible in the latter are practically absent in the former. Five or fewer vortices initially elongate radially, and then reorient their long axis closer to the azimuthal direction so as to form an annulus. With six or more vortices, the initial alignment is already azimuthal. Interestingly at higher Reynolds numbers, the merger of an odd number of vortices is found to proceed very differently from that of an even number. The former process is rapid and chaotic whereas the latter proceeds more slowly via pairing events. The annular vortex takes the form of a generalized Lamb-Oseen vortex (GLO), and diffuses inward until it forms a standard Lamb-Oseen vortex. For lower Reynolds number, the numerical (fully nonlinear) evolution of the GLO vortex follows exactly the analytical evolution until merger. At higher Reynolds numbers, the annulus goes through instabilities whose nonlinear stages show a pronounced difference between even and odd mode disturbances. Here again, the odd mode causes an early collapse of the annulus via decaying turbulence into a single central vortex, whereas the even mode disturbance causes a more orderly progression into a single vortex. Results from linear stability analysis agree with the nonlinear simulations, and predict the frequencies of the most unstable modes better than they predict the growth rates. It is hoped that the present findings, that multiple vortex merger is qualitatively different from the merger of two vortices, will motivate studies on how multiple vortex interactions affect the inverse cascade in two-dimensional turbulence.

  12. Dynamic mode decomposition of separated flow over a finite blunt plate: time-resolved particle image velocimetry measurements

    NASA Astrophysics Data System (ADS)

    Liu, Yingzheng; Zhang, Qingshan

    2015-07-01

    Dynamic mode decomposition (DMD) analysis was performed on a large number of realizations of the separated flow around a finite blunt plate, which were determined by using planar time-resolved particle image velocimetry (TR-PIV). Three plates with different chord-to-thickness ratios corresponding to globally different flow patterns were particularly selected for comparison: L/D = 3.0, 6.0 and 9.0. The main attention was placed on dynamic variations in the dominant events and their interactive influences on the global fluid flow in terms of the DMD analysis. Toward this end, a real-time data transfer from the high-speed camera to the arrayed disks was built to enable continuous sampling of the spatiotemporally varying flows at the frequency of 250 Hz for a long run. The spectra of the wall-normal velocity fluctuation, the energy spectra of the DMD modes, and their spatial patterns convincingly determined the energetic unsteady events, i.e., St = 0.051 (Karman vortex street), 0.109 (harmonic event of Karman vortex street) and 0.197 (leading-edge vortex) in the shortest system L/D = 3.0, St = 0.159 (Karman vortex street) and 0.242 (leading-edge vortex) in the system L/D = 6.0, and St = 0.156 (Karman vortex street) and 0.241 (leading-edge vortex) in the longest system L/D = 9.0. In the shortest system L/D = 3.0, the first DMD mode pattern demonstrated intensified entrainment of the massive fluid above and below the whole plate by the Karman vortex street. The phase-dependent variation in the low-order flow field elucidated that this motion was sustained by the consecutive mechanisms of the convective leading-edge vortices near the upper and lower trailing edges, and the large-scale vortical structures occurring immediately behind the trailing edge, whereas the leading-edge vortices were entrained and decayed into the near wake. For the system L/D = 6.0, the closely approximated energy spectra at St = 0.159 and 0.242 indicated the balanced dominance of dual unsteady events in the measurement region. The Karman vortex street was found to induce considerable localized movement of the fluid near the trailing edges of the plate. However, the leading-edge vortices near the trailing edge were found to detach away from the plate and fully decay around 0.5 D behind the trailing edge, where a well-ordered origination of the downstream large-scale vortical structures (the Karman vortex street) was established and might be locally energized by the decayed leading-edge vortex. In the longest system L/D = 9.0, the phase-dependent variations in the low-order flow disclosed a rapid decay of the leading-edge vortices beyond the reattachment zone, reaching the fully diffused state near the trailing edges. Accordingly, no clear signature of the interaction between the Karman vortex street and the leading-edge vortex could be found in the dynamic process of the leading-edge vortex.

  13. Fluid flows created by swimming bacteria drive self-organization in confined suspensions

    PubMed Central

    Lushi, Enkeleida; Wioland, Hugo; Goldstein, Raymond E.

    2014-01-01

    Concentrated suspensions of swimming microorganisms and other forms of active matter are known to display complex, self-organized spatiotemporal patterns on scales that are large compared with those of the individual motile units. Despite intensive experimental and theoretical study, it has remained unclear the extent to which the hydrodynamic flows generated by swimming cells, rather than purely steric interactions between them, drive the self-organization. Here we use the recent discovery of a spiral-vortex state in confined suspensions of Bacillus subtilis to study this issue in detail. Those experiments showed that if the radius of confinement in a thin cylindrical chamber is below a critical value, the suspension will spontaneously form a steady single-vortex state encircled by a counter-rotating cell boundary layer, with spiral cell orientation within the vortex. Left unclear, however, was the flagellar orientation, and hence the cell swimming direction, within the spiral vortex. Here, using a fast simulation method that captures oriented cell–cell and cell–fluid interactions in a minimal model of discrete particle systems, we predict the striking, counterintuitive result that in the presence of collectively generated fluid motion, the cells within the spiral vortex actually swim upstream against those flows. This prediction is then confirmed by the experiments reported here, which include measurements of flagella bundle orientation and cell tracking in the self-organized state. These results highlight the complex interplay between cell orientation and hydrodynamic flows in concentrated suspensions of microorganisms. PMID:24958878

  14. NERNST Vortex Potential Of A Genetic Oscillator

    NASA Astrophysics Data System (ADS)

    Garnett, Merrill; Jones, Bill

    The vortex is a dynamic spiral. In molecular biology these have not been reported. We report a vortex compound, with oscillating energy. Toroglobulin (1) transfers 416 mv. to histone. This histone reductase enriches charge in the chromosome in spool proteins around which DNA is coiled. Controlling chromosome charge introduces energetics to gene compression. Impedance spectroscopy shows symmetric oscillations. Specific frequencies show amplitude increases. The Mott-Schottky scans show frequency bands. Histone bands are electronically reduced by Toroglobulin by 416 mv. The Nernst potentials of chemical systems correlate electric gradient to concentration gradients of charged particles. Charge polarization refers to laminar alignment. In formation of the Toroglobulin Ginzburg-Landau vortex, the polarization follows filament curvatures which spiral back on themselves. The magnetic dipoles achieve interactive resonance (esr). This spiral resonator with magnetic interfaces produces the measured Nernst potential.

  15. Critical current density and vortex pinning in tetragonal FeS 1 ₋ x Se x ( x = 0 , 0.06 )

    DOE PAGES

    Wang, Aifeng; Wu, Lijun; Ivanovski, V. N.; ...

    2016-09-07

    Here we report critical current density (J c) in tetragonal FeS single crystals, similar to iron-based superconductors with much higher superconducting critical temperatures (T c). The J c is enhanced three times by 6% Se doping. We observe scaling of the normalized vortex pinning force as a function of reduced field at all temperatures. Vortex pinning in FeS and FeS 0.94Se 0.06 shows contribution of core-normal surfacelike pinning. Lastly, reduced temperature dependence of J c indicates that dominant interaction of vortex cores and pinning centers is via scattering of charge carriers with reduced mean free path (δl), in contrast tomore » K xFe 2₋ySe 2 where spatial variations in T c (δT c) prevails.« less

  16. Multi-Sensory Approach to Search for Young Stellar Objects in CG4

    NASA Astrophysics Data System (ADS)

    Hoette, Vivian L.; Rebull, L. M.; McCarron, K.; Johnson, C. H.; Gartner, C.; VanDerMolen, J.; Gamble, L.; Matche, L.; McCartney, A.; Doering, M.; Crump, R.; Laorr, A.; Mork, K.; Steinbergs, E.; Wigley, E.; Caruso, S.; Killingstad, N.; McCanna, T.

    2011-01-01

    Individuals with disabilities - specifically individuals who are deaf or hard of hearing (DHH) and/or blind and visually-impaired (BVI) - have traditionally been underrepresented in the fields of Science, Technology, Engineering, and Math (STEM). The low incidence rate of these populations, coupled with geographic isolation, creates limited opportunities for students to work with and receive mentoring by professionals who not only have specialty knowledge in disability areas but also work in STEM fields. Yerkes Observatory scientists, along with educators from the Wisconsin School for the Deaf, the Wisconsin Center for the Blind and Visually Impaired, Breck School, and Oak Park and River Forest High School, are engaged in active research with a Spitzer Science Center (SSC) scientist. Our ultimate goals are threefold; to engage DHH and BVI students with equal success as their sighted and hearing peers, to share our techniques to make astronomy more accessible to DHH and BVI youth, and to generate a life-long interest which will lead our students to STEM careers. This poster tracks our work with an SSC scientist during the spring, summer, and fall of 2010. The group coauthored another AAS poster on finding Young Stellar Objects (YSO) in the CG4 Nebula in Puppis. During the project, the students, scientists and teachers developed a number of techniques for learning the necessary science as well as doing the required data acquisition and analysis. Collaborations were formed between students with disabilities and their non-disabled peers to create multi-media projects. Ultimately, the projects created for our work with NITARP will be disseminated through our professional connections in order to ignite a passion for astronomy in all students - with and without disabilities. This research was made possible through the NASA/IPAC Teacher Archive Research Project (NITARP) and was funded by NASA Astrophysics Data Program and Archive Outreach funds.

  17. Spatial confinement of active microtubule networks induces large-scale rotational cytoplasmic flow

    PubMed Central

    Suzuki, Kazuya; Miyazaki, Makito; Takagi, Jun; Itabashi, Takeshi; Ishiwata, Shin’ichi

    2017-01-01

    Collective behaviors of motile units through hydrodynamic interactions induce directed fluid flow on a larger length scale than individual units. In cells, active cytoskeletal systems composed of polar filaments and molecular motors drive fluid flow, a process known as cytoplasmic streaming. The motor-driven elongation of microtubule bundles generates turbulent-like flow in purified systems; however, it remains unclear whether and how microtubule bundles induce large-scale directed flow like the cytoplasmic streaming observed in cells. Here, we adopted Xenopus egg extracts as a model system of the cytoplasm and found that microtubule bundle elongation induces directed flow for which the length scale and timescale depend on the existence of geometrical constraints. At the lower activity of dynein, kinesins bundle and slide microtubules, organizing extensile microtubule bundles. In bulk extracts, the extensile bundles connected with each other and formed a random network, and vortex flows with a length scale comparable to the bundle length continually emerged and persisted for 1 min at multiple places. When the extracts were encapsulated in droplets, the extensile bundles pushed the droplet boundary. This pushing force initiated symmetry breaking of the randomly oriented bundle network, leading to bundles aligning into a rotating vortex structure. This vortex induced rotational cytoplasmic flows on the length scale and timescale that were 10- to 100-fold longer than the vortex flows emerging in bulk extracts. Our results suggest that microtubule systems use not only hydrodynamic interactions but also mechanical interactions to induce large-scale temporally stable cytoplasmic flow. PMID:28265076

  18. Elliptical vortex and oblique vortex lattice in the FeSe superconductor based on the nematicity and mixed superconducting orders

    NASA Astrophysics Data System (ADS)

    Lu, Da-Chuan; Lv, Yang-Yang; Li, Jun; Zhu, Bei-Yi; Wang, Qiang-Hua; Wang, Hua-Bing; Wu, Pei-Heng

    2018-03-01

    The electronic nematic phase is characterized as an ordered state of matter with rotational symmetry breaking, and has been well studied in the quantum Hall system and the high-Tc superconductors, regardless of cuprate or pnictide family. The nematic state in high-Tc systems often relates to the structural transition or electronic instability in the normal phase. Nevertheless, the electronic states below the superconducting transition temperature is still an open question. With high-resolution scanning tunneling microscope measurements, direct observation of vortex core in FeSe thin films revealed the nematic superconducting state by Song et al. Here, motivated by the experiment, we construct the extended Ginzburg-Landau free energy to describe the elliptical vortex, where a mixed s-wave and d-wave superconducting order is coupled to the nematic order. The nematic order induces the mixture of two superconducting orders and enhances the anisotropic interaction between the two superconducting orders, resulting in a symmetry breaking from C4 to C2. Consequently, the vortex cores are stretched into an elliptical shape. In the equilibrium state, the elliptical vortices assemble a lozenge-like vortex lattice, being well consistent with experimental results.

  19. A flight investigation of blade section aerodynamics for a helicopter main rotor having NLR-1T airfoil sections

    NASA Technical Reports Server (NTRS)

    Morris, C. E. K., Jr.; Stevens, D. D.; Tomaine, R. L.

    1980-01-01

    A flight investigation was conducted using a teetering-rotor AH-1G helicopter to obtain data on the aerodynamic behavior of main-rotor blades with the NLR-1T blade section. The data system recorded blade-section aerodynamic pressures at 90 percent rotor radius as well as vehicle flight state, performance, and loads. The test envelope included hover, forward flight, and collective-fixed maneuvers. Data were obtained on apparent blade-vortex interactions, negative lift on the advancing blade in high-speed flight and wake interactions in hover. In many cases, good agreement was achieved between chordwise pressure distributions predicted by airfoil theory and flight data with no apparent indications of blade-vortex interactions.

  20. Attraction between pancake vortices and vortex molecule formation in the crossing lattices in thin films of layered superconductors

    NASA Astrophysics Data System (ADS)

    Samokhvalov, A. V.; Mel'nikov, A. S.; Buzdin, A. I.

    2012-05-01

    We study the intervortex interaction in thin films of layered superconductors for the magnetic field tilted with respect to the c axis. In such a case, the crossing lattice of Abrikosov vortices (AVs) and Josephson vortices appears. The interaction between pancake vortices, forming the AVs, with Josephson ones, produces the zigzag deformation of the AV line. This deformation induces a long-range attraction between Abrikosov vortices and, in thin films, it competes with another long-range interaction, i.e., with Pearl's repulsion. This interplay results in the formation of clusters of Abrikosov vortices, which can be considered as vortex molecules. The number of vortices in such clusters depends on field tilting angle and film thickness.

  1. CERT: Center of Excellence in Rotorcraft Technology

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The research objectives of this effort are to understand the physical processes that influence the formation of the tip vortex of a rotor in advancing flight, and to develop active and passive means of weakening the tip vortex during conditions when strong blade-vortex-interaction effects are expected. A combined experimental, analytical, and computational effort is being employed. Specifically, the following efforts are being pursued: 1. Analytical evaluation and design of combined elastic tailoring and active material actuators applicable to rotor blade tips. 2. Numerical simulations of active and passive tip devices. 3. LDV Measurement of the near and far wake behind rotors in forward flight.

  2. Improved Helicopter Rotor Performance Prediction through Loose and Tight CFD/CSD Coupling

    NASA Astrophysics Data System (ADS)

    Ickes, Jacob C.

    Helicopters and other Vertical Take-Off or Landing (VTOL) vehicles exhibit an interesting combination of structural dynamic and aerodynamic phenomena which together drive the rotor performance. The combination of factors involved make simulating the rotor a challenging and multidisciplinary effort, and one which is still an active area of interest in the industry because of the money and time it could save during design. Modern tools allow the prediction of rotorcraft physics from first principles. Analysis of the rotor system with this level of accuracy provides the understanding necessary to improve its performance. There has historically been a divide between the comprehensive codes which perform aeroelastic rotor simulations using simplified aerodynamic models, and the very computationally intensive Navier-Stokes Computational Fluid Dynamics (CFD) solvers. As computer resources become more available, efforts have been made to replace the simplified aerodynamics of the comprehensive codes with the more accurate results from a CFD code. The objective of this work is to perform aeroelastic rotorcraft analysis using first-principles simulations for both fluids and structural predictions using tools available at the University of Toledo. Two separate codes are coupled together in both loose coupling (data exchange on a periodic interval) and tight coupling (data exchange each time step) schemes. To allow the coupling to be carried out in a reliable and efficient way, a Fluid-Structure Interaction code was developed which automatically performs primary functions of loose and tight coupling procedures. Flow phenomena such as transonics, dynamic stall, locally reversed flow on a blade, and Blade-Vortex Interaction (BVI) were simulated in this work. Results of the analysis show aerodynamic load improvement due to the inclusion of the CFD-based airloads in the structural dynamics analysis of the Computational Structural Dynamics (CSD) code. Improvements came in the form of improved peak/trough magnitude prediction, better phase prediction of these locations, and a predicted signal with a frequency content more like the flight test data than the CSD code acting alone. Additionally, a tight coupling analysis was performed as a demonstration of the capability and unique aspects of such an analysis. This work shows that away from the center of the flight envelope, the aerodynamic modeling of the CSD code can be replaced with a more accurate set of predictions from a CFD code with an improvement in the aerodynamic results. The better predictions come at substantially increased computational costs between 1,000 and 10,000 processor-hours.

  3. Oscillatory vortex formation behind a movable plat

    NASA Astrophysics Data System (ADS)

    Vukicevic, Marija; Pedrizzetti, Gianni

    2010-11-01

    INTRODUCTION: A wide spectra of application, from industrial to environmental and biological, involve fluid-structure interaction (FSI) at a fundamental level. We investigate a 2D FSI problem for a rigid structure hinged on a wall, freely rotating by the action of an oscillatory fluid flow. METHODS: The Navier-Stokes equations are solved simultaneously with the body dynamics. An accurate numerical solution is developed on the conformal map of the time-varying physical domain. RESULTS: The FSI is primarily influenced by the vortex formation process and by the interaction between vortices generated during the sequential flow oscillations. The emerging bodies can be arranged into a three main groups. The first, made of heavy bodies, terminates the motion during the first few oscillations with the impact of the body on the wall. On the other extreme, the third group made of relatively light bodies presents a flow-driven motion that oscillates periodically in time. In a wide intermediate range, the body oscillates in time presenting non periodic features. CONCLUSIONS: The process of oscillatory vortex formation in presence of fluid-structure interaction shows the emergence of various phenomena that were analyzed in details. In this specific application the results demonstrate that the FSI range from linear to chaotic interaction and finite-time collapse.

  4. Vortex Formation and Foraging in Polyphenic Spadefoot Toad Tadpoles.

    PubMed

    Bazazi, Sepideh; Pfennig, Karin S; Handegard, Nils Olav; Couzin, Iain D

    2012-06-01

    Animal aggregations are widespread in nature and can exhibit complex emergent properties not found at an individual level. We investigate one such example here, collective vortex formation by congeneric spadefoot toad tadpoles: Spea bombifrons and S. multiplicata. Tadpoles of these species develop into either an omnivorous or a carnivorous (cannibalistic) morph depending on diet. Previous studies show S. multiplicata are more likely to develop into omnivores and feed on suspended organic matter in the water body. The omnivorous morph is frequently social, forming aggregates that move and forage together, and form vortices in which they adopt a distinctive slowly-rotating circular formation. This behaviour has been speculated to act as a means to agitate the substratum in ponds and thus could be a collective foraging strategy. Here we perform a quantitative investigation of the behaviour of tadpoles within aggregates. We found that only S. multiplicata groups exhibited vortex formation, suggesting that social interactions differ between species. The probability of collectively forming a vortex, in response to introduced food particles, increased for higher tadpole densities and when tadpoles were hungry. Individuals inside a vortex moved faster and exhibited higher (by approximately 27%) tailbeat frequencies than those outside the vortex, thus incurring a personal energetic cost. The resulting environmental modification, however, suggests vortex behaviour may be an adaptation to actively create, and exploit, a resource patch within the environment.

  5. Falling, flapping, flying, swimming,...: High-Re fluid-solid interactions with vortex shedding

    NASA Astrophysics Data System (ADS)

    Michelin, Sebastien Honore Roland

    The coupling between the motion of a solid body and the dynamics of the surrounding flow is essential to the understanding of a large number of engineering and physical problems, from the stability of a slender structure exposed to the wind to the locomotion of insects, birds and fishes. Because of the strong coupling on a moving boundary of the equations for the solid and fluid, the simulation of such problems is computationally challenging and expensive. This justifies the development of simplified models for the fluid-solid interactions to study their physical properties and behavior. This dissertation proposes a reduced-order model for the interaction of a sharp-edged solid body with a strongly unsteady high Reynolds number flow. In such a case, viscous forces in the fluid are often negligible compared to the fluid inertia or the pressure forces, and the thin boundary layers separate from the solid at the edges, leading to the shedding of large and persistent vortices in the solid's wake. A general two-dimensional framework is presented based on complex potential flow theory. The formation of the solid's vortical wake is accounted for by the shedding of point vortices with unsteady intensity from the solid's sharp edges, and the fluid-solid problem is reformulated exclusively as a solid-vortex interaction problem. In the case of a rigid solid body, the coupled problem is shown to reduce to a set of non-linear ordinary differential equations. This model is used to study the effect of vortex shedding on the stability of falling objects. The solid-vortex model is then generalized to study the fluttering instability and non-linear flapping dynamics of flexible plates or flags. The uttering instability and resulting flapping motion result from the competing effects of the fluid forcing and of the solid's flexural rigidity and inertia. Finally, the solid-vortex model is applied to the study of the fundamental effect of bending rigidity on the flapping performance of flapping appendages such as insect wings or fish fins.

  6. Interlocking Toy Building Blocks as Hands-On Learning Modules for Blind and Visually Impaired Chemistry Students

    ERIC Educational Resources Information Center

    Melaku, Samuel; Schreck, James O.; Griffin, Kameron; Dabke, Rajeev B.

    2016-01-01

    Interlocking toy building blocks (e.g., Lego) as chemistry learning modules for blind and visually impaired (BVI) students in high school and undergraduate introductory or general chemistry courses are presented. Building blocks were assembled on a baseplate to depict the relative changes in the periodic properties of elements. Modules depicting…

  7. 78 FR 48532 - Self-Regulatory Organizations; Chicago Board Options Exchange, Incorporated; Notice of Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-08

    ... ``Act'').\\3\\ The Plan is primarily designed to, among other things, address extraordinary market... No. 67091 (May 31, 2012) 77 FR 33498 (June 6, 2012). Though the Plan was primarily designed for... filing are, ``No-Bid Series'' which are actually found in Exchange Rule 6.13(b)(vi) and not Exchange Rule...

  8. Adaptive Positive Position Feedback Control of Flexible Aircraft Structures Using Piezoelectric Actuators

    DTIC Science & Technology

    2014-03-27

    2 1.3 NASA F/A-18 investigating high AOA vortex generation [1] . . . . . . . . . . 3 1.4 F-15 with vortex formations in front...AOA angle of attack HW hot wire NASA National Aeronautics and Space Administration LANTIRN Low Altitude Navigation and Targeting Infrared for Night...National Aeronautics and Space Administration ( NASA ) investigation into the interaction of vortices generated at high AOA and aircraft structure

  9. Flame-Vortex Interactions in Microgravity to Improve Models of Turbulent Combustion

    NASA Technical Reports Server (NTRS)

    Driscoll, James F.

    1999-01-01

    A unique flame-vortex interaction experiment is being operated in microgravity in order to obtain fundamental data to assess the Theory of Flame Stretch which will be used to improve models of turbulent combustion. The experiment provides visual images of the physical process by which an individual eddy in a turbulent flow increases the flame surface area, changes the local flame propagation speed, and can extinguish the reaction. The high quality microgravity images provide benchmark data that are free from buoyancy effects. Results are used to assess Direct Numerical Simulations of Dr. K. Kailasanath at NRL, which were run for the same conditions.

  10. Effects of Passive Porosity on Interacting Vortex Flows At Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.

    2000-01-01

    A wind tunnel experiment was conducted in the NASA Langley Research Center (LaRC) Unitary Plan Wind Tunnel (UPWT) to determine the effects of passive surface porosity on vortex flow interaction about a general research fighter configuration at supersonic speeds. Optical flow measurement and flow visualization techniques were used and included pressure-sensitive paint (PSP), schlieren, and laser vapor screen (LVS) These techniques were combined with force and moment and conventional electronically-scanned pressure (ESP) measurements to quantify and to visualize the effects of flow-through porosity applied to a wing leading-edge extension (LEX) mounted to a 65 deg cropped delta wing model.

  11. Inside out: Speed-dependent barriers to reactive mixing

    NASA Astrophysics Data System (ADS)

    Kelley, Douglas; Nevins, Thomas

    2015-11-01

    Reactive mixing occurs wherever fluid flow and chemical or biological growth interact over time and space. Those interactions often lead to steep gradients in reactant and product concentration, arranged in complex spatial structures that can cause wide variation in the global reaction rate and concentrations. By simultaneously measuring fluid velocity and reaction front locations in laboratory experiments with the Belousov-Zhabotinsky reaction, we find that the barriers defining those structures vary dramatically with speed. In particular, we find that increasing flow speed causes reacted regions to move from vortex edges to vortex cores, thus turning the barriers ``inside out''. This observation has implications for reactive mixing of phytoplankton in global oceans.

  12. Behaviour of Rotating Bose Einstein Condensates Under Shrinking

    NASA Astrophysics Data System (ADS)

    Zhai, Hui; Zhou, Qi

    2005-01-01

    When the repulsive interaction strength between atoms decreases, the size of a rotating Bose-Einstein condensate will consequently shrink. We find that the rotational frequency will increase during the shrinking of condensate, which is a quantum mechanical analogy to ballet dancing. Compared to a non-rotating condensate, the size of a rotating BEC will eventually be saturated at a finite value when the interaction strength is gradually reduced. We also calculate the vortex dynamics induced by the atomic current, and discuss the difference of vortex dynamics in this case and that observed in a recent experiment carried out by the JILA group [Phys. Rev. Lett. 90 (2003) 170405].

  13. Vortex Interactions from a Finite Span Cylinder with a Laminar Boundary Layer for Varied Parameters

    NASA Astrophysics Data System (ADS)

    Gildersleeve, Samantha; Amitay, Michael

    2017-11-01

    Flow structures around a stationary, wall-mounted, finite-span cylindrical pin were investigated experimentally over a flat plate to explore the effects of varied aspect ratio and pin mean height with respect to the local boundary layer. Nine static pin configurations were tested where the pin's mean height to the local boundary layer thickness were 0.5, 1, and 1.5 for a range of aspect ratios between 0.125 and 1.125. The freestream velocity was fixed at 11 m/s, corresponding to ReD 2800, 5600, and 8400, respectively. Three-dimensional flowfields were reconstructed and analyzed from SPIV measurements where data were collected along cross-stream planes in the wake of the pin. This study focuses on three dominant vortical patterns associated with a finite span cylinder: the arch-type vortex horseshoe vortex, and the tip vortices Results indicate that both the aspect ratio and mean height play an important role in the behavior and interactions of these vortex structures which alter the wake characteristics significantly. Understanding the mechanisms by which the vortical structures may be strengthened while reducing adverse local pressure drag are key for developing more efficient means of passive and/or active flow control through finite span cylindrical pins and will be discussed in further detail. NDSEG Fellowship for Samantha Gildersleeve.

  14. Coherent and turbulent process analysis of the effects of a longitudinal vortex on boundary layer detachment on a NACA0015 foil

    NASA Astrophysics Data System (ADS)

    Prothin, Sebastien; Djeridi, Henda; Billard, Jean-Yves

    2014-05-01

    In this paper, the influence of a single tip vortex on boundary layer detachment is studied. This study offers a preliminary approach in order to better understand the interaction between a propeller hub vortex and the rudder installed in its wake. This configuration belongs to the field of marine propulsion and encompasses such specific problem as cavitation inception, modification of propulsive performances and induced vibrations. To better understand the complex mechanisms due to propeller-rudder interactions it was decided to emphasize configurations where the hub vortex is generated by an elliptical 3-D foil and is located upstream of a 2-D NACA0015 foil at high incidences for a Reynolds number of 5×105. The physical mechanisms were studied using Time Resolved Stereoscopic Particle Image Velocimetry (TR-SPIV) techniques. Particular attention was paid to the detachment at 25° incidence and a detailed cartography of the mean and turbulent properties of the wake is presented. Proper Orthogonal Decomposition (POD) analysis was applied in order to highlight the unsteady nature of the flow using phase averaging based on the first POD coefficients to characterize the turbulent and coherent process in the near wake of the rudder.

  15. Polar-core spin vortex of quasi-2D ferromagnetic spin-1 condensate in a flat-bottomed optical trap with a weak magnetic field

    NASA Astrophysics Data System (ADS)

    Zheng, Gong-Ping; Li, Pin; Li, Ting; Xue, Ya-Jie

    2018-02-01

    Motivated by the recent experiments realized in a flat-bottomed optical trap (Navon et al., 2015; Chomaz et al., 2015), we study the ground state of polar-core spin vortex of quasi-2D ferromagnetic spin-1 condensate in a finite-size homogeneous trap with a weak magnetic field. The exact spatial distribution of local spin is obtained with a variational method. Unlike the fully-magnetized planar spin texture with a zero-spin core, which was schematically demonstrated in previous studies for the ideal polar-core spin vortex in a homogeneous trap with infinitely large boundary, some plateaus and two-cores structure emerge in the distribution curves of spin magnitude in the polar-core spin vortex we obtained for the larger effective spin-dependent interaction. More importantly, the spin values of the plateaus are not 1 as expected in the fully-magnetized spin texture, except for the sufficiently large spin-dependent interaction and the weak-magnetic-field limit. We attribute the decrease of spin value to the effect of finite size of the system. The spin values of the plateaus can be controlled by the quadratic Zeeman energy q of the weak magnetic field, which decreases with the increase of q.

  16. Interaction of vortices with flexible piezoelectric beams

    NASA Astrophysics Data System (ADS)

    Goushcha, Oleg; Akaydin, Huseyin Dogus; Elvin, Niell; Andreopoulos, Yiannis

    2012-11-01

    A cantilever piezoelectric beam immersed in a flow is used to harvest fluidic energy. Pressure distribution induced by naturally present vortices in a turbulent fluid flow can force the beam to oscillate producing electrical output. Maximizing the power output of such an electromechanical fluidic system is a challenge. In order to understand the behavior of the beam in a fluid flow where vortices of different scales are present, an experimental facility was set up to study the interaction of individual vortices with the beam. In our set up, vortex rings produced by an audio speaker travel at specific distances from the beam or impinge on it, with a frequency varied up to the natural frequency of the beam. Depending on this frequency both constructive and destructive interactions between the vortices and the beam are observed. Vortices traveling over the beam with a frequency multiple of the natural frequency of the beam cause the beam to resonate and larger deflection amplitudes are observed compared to excitation from a single vortex. PIV is used to compute the flow field and circulation of each vortex and estimate the effect of pressure distribution on the beam deflection. Sponsored by NSF Grant: CBET #1033117.

  17. Final report: Mapping Interactions in Hybrid Systems with Active Scanning Probes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berezovsky, Jesse

    2017-09-29

    This project aimed to study and map interactions between components of hybrid nanodevices using a novel scanning probe approach. To enable this work, we initially constructed a flexible experimental apparatus allowing for simultaneous scanning probe and confocal optical microscopy measurements. This setup was first used for all-optical measurements of nanostructures, with the focus then shifting to hybrid devices in which single coherent electron spins are coupled to micron-scale ferromagnetic elements, which may prove useful for addressing single spins, enhanced sensing, or spin-wave-mediated coupling of spins for quantum information applications. A significant breakthrough was the realization that it is not necessarymore » to fabricate a magnetic structure on a scanning probe – instead a ferromagnetic vortex core can act as an integrated, solid state, scanning probe. The core of the vortex produces a very strong, localized fringe field which can be used analogously to an MFM tip. Unlike a traditional MFM tip, however, the vortex core is scanned within an integrated device (eliminating drift), and can be moved on vastly faster timescales. This approach allows the detailed investigation of interactions between single spins and complex driven ferromagnetic dynamics.« less

  18. Simulation of Vortex Structure in Supersonic Free Shear Layer Using Pse Method

    NASA Astrophysics Data System (ADS)

    Guo, Xin; Wang, Qiang

    The method of parabolized stability equations (PSE) are applied in the analysis of nonlinear stability and the simulation of flow structure in supersonic free shear layer. High accuracy numerical techniques including self-similar basic flow, high order differential method, appropriate transformation and decomposition of nonlinear terms are adopted and developed to solve the PSE effectively for free shear layer. The spatial evolving unstable waves which dominate the flow structure are investigated through nonlinear coupling spatial marching methods. The nonlinear interactions between harmonic waves are further analyzed and instantaneous flow field are obtained by adding the harmonic waves into basic flow. Relevant data agree well with that of DNS. The results demonstrate that T-S wave does not keeping growing exponential as the linear evolution, the energy transfer to high order harmonic modes and finally all harmonic modes get saturation due to the nonlinear interaction; Mean flow distortion is produced by the nonlinear interaction between the harmonic and its conjugate harmonic, makes great change to the average flow and increases the thickness of shear layer; PSE methods can well capture the large scale nonlinear flow structure in the supersonic free shear layer such as vortex roll-up, vortex pairing and nonlinear saturation.

  19. Experimental and Numerical Investigation of Vortical Structures in Lean Premixed Swirl-Stabilized Combustion

    NASA Astrophysics Data System (ADS)

    Taamallah, Soufien; Chakroun, Nadim; Shanbhogue, Santosh; Kewlani, Gaurav; Ghoniem, Ahmed

    2015-11-01

    A combined experimental and LES investigation is performed to identify the origin of major flow dynamics and vortical structures in a model gas turbine's swirl-stabilized turbulent combustor. Swirling flows in combustion lead to the formation of complex flow dynamics and vortical structures that can interact with flames and influence its stabilization. Our experimental results for non-reacting flow show the existence of large scale precession motion. The precessing vortex core (PVC) dynamics disappears with combustion but only above a threshold of equivalence ratio. In addition, large scale vortices along the inner shear layer (ISL) are observed. These structures interact with the ISL stabilized flame and contribute to its wrinkling. Next, the LES setup is validated against the flow field's low-order statistics and point temperature measurement in relevant areas of the chamber. Finally, we show that LES is capable of predicting the precession motion as well as the ISL vortices in the reacting case: we find that ISL vortices originate from a vortex core that is formed right downstream of the swirler's centerbody. The vortex core has a conical spiral shape resembling a corkscrew that interacts - as it winds out - with the flame when it reaches the ISL.

  20. Effects of Double-Leakage Tip Clearance Flow on the Performance of a Compressor Stage with a Large Rotor Tip Gap

    NASA Technical Reports Server (NTRS)

    Hah, Chunill

    2016-01-01

    Effects of a large rotor tip gap on the performance of a one and half stage axial compressor are investigated in detail with a numerical simulation based on LES and available PIV data. The current paper studies the main flow physics, including why and how the loss generation is increased with the large rotor tip gap. The present study reveals that when the tip gap becomes large, tip clearance fluid goes over the tip clearance core vortex and enters into the next blade's tip gap, which is called double-leakage tip clearance flow. As the tip clearance flow enters into the adjacent blade's tip gap, a vortex rope with a lower pressure core is generated. This vortex rope breaks up the tip clearance core vortex of the adjacent blade, resulting in a large additional mixing. This double-leakage tip clearance flow occurs at all operating conditions, from design flow to near stall condition, with the large tip gap for the current compressor stage. The double-leakage tip clearance flow, its interaction with the tip clearance core vortex of the adjacent blade, and the resulting large mixing loss are the main flow mechanism of the large rotor tip gap in the compressor. When the tip clearance is smaller, flow near the end wall follows more closely with the main passage flow and this double-leakage tip clearance flow does not happen near the design flow condition for the current compressor stage. When the compressor with a large tip gap operates at near stall operation, a strong vortex rope is generated near the leading edge due to the double-leakage flow. Part of this vortex separates from the path of the tip clearance core vortex and travels from the suction side of the blade toward the pressure side of the blade. This vortex is generated periodically at near stall operation with a large tip gap. As the vortex travels from the suction side to the pressure side of the blade, a large fluctuation of local pressure forces blade vibration. Nonsynchronous blade vibration occurs due to this vortex as the frequency of this vortex generation is not the same as the rotor. The present investigation confirms that this vortex is a part of separated tip clearance vortex, which is caused by the double-leakage tip clearance flow.

  1. Application of the Bernoulli enthalpy concept to the study of vortex noise and jet impingement noise

    NASA Technical Reports Server (NTRS)

    Yates, J. E.

    1978-01-01

    A complete theory of aeroacoustics of homentropic fluid media is developed and compared with previous theories. The theory is applied to study the interaction of sound with vortex flows, for the DC-9 in a standard take-off configuration. The maximum engine-wake interference noise is estimated to be 3 or 4 db in the ground plane. It is shown that the noise produced by a corotating vortex pair departs significantly from the compact M scaling law for eddy Mach numbers (M) greater than 0.1. An estimate of jet impingement noise is given that is in qualitative agreement with experimental results. The increased noise results primarily from the nonuniform acceleration of turbulent eddies through the stagnation point flow. It is shown that the corotating vortex pair can be excited or de-excited by an externally applied sound field. The model is used to qualitatively explain experimental results on excited jets.

  2. Centre vortex removal restores chiral symmetry

    NASA Astrophysics Data System (ADS)

    Trewartha, Daniel; Kamleh, Waseem; Leinweber, Derek B.

    2017-12-01

    The influence of centre vortices on dynamical chiral symmetry breaking is investigated through the light hadron spectrum on the lattice. Recent studies of the quark propagator and other quantities have provided evidence that centre vortices are the fundamental objects underpinning dynamical chiral symmetry breaking in {SU}(3) gauge theory. For the first time, we use the chiral overlap fermion action to study the low-lying hadron spectrum on lattice ensembles consisting of Monte Carlo, vortex-removed, and vortex-projected gauge fields. We find that gauge field configurations consisting solely of smoothed centre vortices are capable of reproducing all the salient features of the hadron spectrum, including dynamical chiral symmetry breaking. The hadron spectrum on vortex-removed fields shows clear signals of chiral symmetry restoration at light values of the bare quark mass, while at heavy masses the spectrum is consistent with a theory of weakly interacting constituent quarks.

  3. Magnetic gates and guides for superconducting vortices

    DOE PAGES

    Vlasko-Vlasov, V. K.; Colauto, F.; Buzdin, A. I.; ...

    2017-04-04

    Here, we image the motion of superconducting vortices in niobium film covered with a regular array of thin permalloy stripes. By altering the magnetization orientation in the stripes using a small in-plane magnetic field, we can tune the strength of interactions between vortices and the stripe edges, enabling acceleration or retardation of the superconducting vortices in the sample and consequently introducing strong tunable anisotropy into the vortex dynamics. We discuss our observations in terms of the attraction/repulsion between point magnetic charges carried by vortices and lines of magnetic charges at the stripe edges, and derive analytical formulas for the vortex-magneticmore » stripes coupling. Our approach demonstrates the analogy between the vortex motion regulated by the magnetic stripe array and electric carrier flow in gated semiconducting devices. Scaling down the geometrical features of the proposed design may enable controlled manipulation of single vortices, paving the way for Abrikosov vortex microcircuits and memories.« less

  4. Evidence of small-scale magnetic concentrations dragged by vortex motion of solar photospheric plasma

    NASA Astrophysics Data System (ADS)

    Balmaceda, L.; Vargas Domínguez, S.; Palacios, J.; Cabello, I.; Domingo, V.

    2010-04-01

    Vortex-type motions have been measured by tracking bright points in high-resolution observations of the solar photosphere. These small-scale motions are thought to be determinant in the evolution of magnetic footpoints and their interaction with plasma and therefore likely to play a role in heating the upper solar atmosphere by twisting magnetic flux tubes. We report the observation of magnetic concentrations being dragged towards the center of a convective vortex motion in the solar photosphere from high-resolution ground-based and space-borne data. We describe this event by analyzing a series of images at different solar atmospheric layers. By computing horizontal proper motions, we detect a vortex whose center appears to be the draining point for the magnetic concentrations detected in magnetograms and well-correlated with the locations of bright points seen in G-band and CN images.

  5. Magnetic monopole versus vortex as gauge-invariant topological objects for quark confinement

    NASA Astrophysics Data System (ADS)

    Kondo, Kei-Ichi; Sasago, Takaaki; Shinohara, Toru; Shibata, Akihiro; Kato, Seikou

    2017-12-01

    First, we give a gauge-independent definition of chromomagnetic monopoles in SU(N) Yang-Mills theory which is derived through a non-Abelian Stokes theorem for the Wilson loop operator. Then we discuss how such magnetic monopoles can give a nontrivial contribution to the Wilson loop operator for understanding the area law of the Wilson loop average. Next, we discuss how the magnetic monopole condensation picture are compatible with the vortex condensation picture as another promising scenario for quark confinement. We analyze the profile function of the magnetic flux tube as the non-Abelian vortex solution of U(N) gauge-Higgs model, which is to be compared with numerical simulations of the SU(N) Yang-Mills theory on a lattice. This analysis gives an estimate of the string tension based on the vortex condensation picture, and possible interactions between two non-Abelian vortices.

  6. Magnetic gates and guides for superconducting vortices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vlasko-Vlasov, V. K.; Colauto, F.; Buzdin, A. I.

    Here, we image the motion of superconducting vortices in niobium film covered with a regular array of thin permalloy stripes. By altering the magnetization orientation in the stripes using a small in-plane magnetic field, we can tune the strength of interactions between vortices and the stripe edges, enabling acceleration or retardation of the superconducting vortices in the sample and consequently introducing strong tunable anisotropy into the vortex dynamics. We discuss our observations in terms of the attraction/repulsion between point magnetic charges carried by vortices and lines of magnetic charges at the stripe edges, and derive analytical formulas for the vortex-magneticmore » stripes coupling. Our approach demonstrates the analogy between the vortex motion regulated by the magnetic stripe array and electric carrier flow in gated semiconducting devices. Scaling down the geometrical features of the proposed design may enable controlled manipulation of single vortices, paving the way for Abrikosov vortex microcircuits and memories.« less

  7. Centre vortex removal restores chiral symmetry

    DOE PAGES

    Trewartha, Daniel; Kamleh, Waseem; Leinweber, Derek B.

    2017-11-15

    The influence of centre vortices on dynamical chiral symmetry breaking is investigated through the light hadron spectrum on the lattice. Recent studies of the quark propagator and other quantities have provided evidence that centre vortices are the fundamental objects underpinning dynamical chiral symmetry breaking in SU(3) gauge theory. For the first time, we use the chiral overlap fermion action to study the low-lying hadron spectrum on lattice ensembles consisting of Monte Carlo, vortex-removed, and vortex-projected gauge fields. We find that gauge field configurations consisting solely of smoothed centre vortices are capable of reproducing all the salient features of the hadronmore » spectrum, including dynamical chiral symmetry breaking. In conclusion, the hadron spectrum on vortex-removed fields shows clear signals of chiral symmetry restoration at light values of the bare quark mass, while at heavy masses the spectrum is consistent with a theory of weakly-interacting constituent quarks.« less

  8. Properties and applications of submicron magnetic structures

    NASA Astrophysics Data System (ADS)

    Silevitch, Daniel Marc

    The interactions between an array of magnetic dots and a superconducting thin film were studied using transport measurements and magnetic imaging. The transport measurements examined the enhancement in the pinning of flux vortices when the vortex lattice was commensurate with the dot array. The degradation of the pinning enhancement due to the controlled introduction of disorder into the dot lattice was studied. Enhanced pinning was observed to persist in disordered arrays when the vortex lattice had the same density as the dot lattice. When the vortex density was an integral multiple of the dot lattice density, the enhanced pinning was suppressed with increasing disorder. Magnetic imaging was carried out on superconductors with ordered arrays of pinning sites. The vortices were observed to form regions of local order even when the vortex density was less than the dot density. There were also a significant number of vortices pinned in the interstitials of the dot lattice, indicating that the pinning potential is comparable in strength to the inter-vortex repulsion. The transport properties of ferromagnetic nanowires were also investigated. The behavior of straight nanowires was studied as a function of the magnitude and angle of the applied magnetic field. A model was developed for the magnetization behavior of the nanowire which reproduced the observed transport properties. The magnetic reversal properties were examined and found to be consistent with the curling mode of reversal, and an estimate for the initial nucleation volume was obtained. This behavior was compared to the behavior of mechanically bent nanowires. The bent wires were qualitatively similar to two independent straight wires. The bent wires, however, also showed interaction effects due to the domain configuration that had an effect on the magnetization behavior. An estimate for the energy barrier of nucleating a domain wall in a nanowire was derived from these interaction effects. A resistance contribution due to the domain configuration was isolated; the resistance was found to decrease in the presence of a domain wall.

  9. Autoignition of hydrogen and air using direct numerical simulation

    NASA Astrophysics Data System (ADS)

    Doom, Jeffrey; Mahesh, Krishnan

    2008-11-01

    Direct numerical simulation (DNS) is used to study to auto--ignition in laminar vortex rings and turbulent diffusion flames. A novel, all--Mach number algorithm developed by Doom et al (J. Comput. Phys. 2007) is used. The chemical mechanism is a nine species, nineteen reaction mechanism for H2 and Air from Mueller at el (Int. J. Chem. Kinet. 1999). The vortex ring simulations inject diluted H2 at ambient temperature into hot air, and study the effects of stroke ratio, air to fuel ratio and Lewis number. At smaller stroke ratios, ignition occurs in the wake of the vortex ring and propagates into the vortex core. At larger stroke ratios, ignition occurs along the edges of the trailing column before propagating towards the vortex core. The turbulent diffusion flame simulations are three--dimensional and consider the interaction of initially isotropic turbulence with an unstrained diffusion flame. The simulations examine the nature of distinct ignition kernels, the relative roles of chemical reactions, and the relation between the observed behavior and laminar flames and the perfectly stirred reactor problem. These results will be discussed.

  10. Numerical Modeling Studies of Wake Vortex Transport and Evolution Within the Planetary Boundary Layer

    NASA Technical Reports Server (NTRS)

    Lin, Yuh-Lang; Arya, S. Pal; Kaplan, Michael L.; Han, Jongil

    2000-01-01

    The fundamental objective of this research is study behavior of aircraft wake vortices within atmospheric boundary layer (ABL) in support of developing the system, Aircraft VOrtex Spacing System (AVOSS), under NASA's Terminal Area Productivity (TAR) program that will control aircraft spacing within the narrow approach corridors of airports. The purpose of the AVOSS system is to increase airport capacity by providing a safe reduction in separation of aircraft compared to the now-existing flight rules. In our first funding period (7 January 19994 - 6 April 1997), we have accomplished extensive model development and validation of ABL simulations. Using the validated model, in our second funding period (7 April 1997 - 6 April 2000) we have investigated the effects of ambient atmospheric turbulence on vortex decay and descent, Crow instability, and wake vortex interaction with the ground. Recognizing the crucial influence of ABL turbulence on wake vortex behavior, we have also developed a software generating vertical profiles of turbulent kinetic energy (TKE) or energy dissipation rate (EDR), which are, in turn, used as input data in the AVOSS prediction algorithms.

  11. The effect of butterfly-scale inspired patterning on leading-edge vortex growth

    NASA Astrophysics Data System (ADS)

    Wilroy, Jacob; Lang, Amy; Wahidi, Redha

    2014-11-01

    Leading edge vortices (LEVs) are important for generating thrust and lift in flapping flight, and the surface patterning (scales) on butterfly wings is hypothesized to play a role in the vortex formation of the LEV. To simplify this complex flow problem, we designed an experiment to focus on the alteration of 2-D vortex development with a variation in surface patterning. Specifically we are interested in the secondary vorticity generated by the LEV interacting at the patterned surface and how this can affect the growth rate of the circulation in the LEV. For this experiment we used rapid-prototyped longitudinal and transverse square grooves attached to a flat plate and compared the vortex formation as the plate moved vertically. The plate is impulsively started in quiescent water and flow fields at Re = 1500, 3000, and 6000 are examined using Digital Particle Image Velocimetry (DPIV). The vortex formation time is 0.6 and is based on the flat plate travel length and chord length. Support for this research came from NSF REU Grant 1358991 and CBET 1335848.

  12. The effect of butterfly-scale inspired patterning on leading-edge vortex growth

    NASA Astrophysics Data System (ADS)

    Wilroy, Jacob; Lang, Amy

    2015-11-01

    Leading edge vortices (LEVs) are important for generating thrust and lift in flapping flight, and the surface patterning (scales) on butterfly wings is hypothesized to play a role in the vortex formation of the LEV. To simplify this complex flow problem, an experiment was designed to focus on the alteration of 2-D vortex development with a variation in surface patterning. Specifically, the secondary vorticity generated by the LEV interacting at the patterned surface was studied and the subsequent affect on the growth rate of the circulation in the LEV. For this experiment we used butterfly inspired grooves attached to a flat plate and compared the vortex formation to a smooth plate case as the plate moved vertically. The plate is impulsively started in quiescent water and flow fields at Re = 1500, 3000, and 6000 are examined using Digital Particle Image Velocimetry (DPIV). The vortex formation time is 3.0 and is based on the flat plate travel length and chord length. We would like to thank the National Science Foundation REU Site Award 1358991 for funding this research.

  13. A comparison of hypersonic vehicle flight and prediction results

    NASA Technical Reports Server (NTRS)

    Iliff, Kenneth W.; Shafer, Mary F.

    1995-01-01

    Aerodynamic and aerothermodynamic comparisons between flight and ground test for four hypersonic vehicles are discussed. The four vehicles are the X-15, the Reentry F, the Sandia Energetic Reentry Vehicle Experiment (SWERVE), and the Space Shuttle. The comparisons are taken from papers published by researchers active in the various programs. Aerodynamic comparisons include reaction control jet interaction on the Space Shuttle. Various forms of heating including catalytic, boundary layer, shock interaction and interference, and vortex impingement are compared. Predictions were significantly exceeded for the heating caused by vortex impingement (on the Space Shuttle OMS pods) and for heating caused by shock interaction and interference on the X-15 and the Space Shuttle. Predictions of boundary-layer state were in error on the X-15, the SWERVE, and the Space Shuttle vehicles.

  14. A planetary-scale disturbance in a long living three vortex coupled system in Saturn's atmosphere

    NASA Astrophysics Data System (ADS)

    del Río-Gaztelurrutia, T.; Sánchez-Lavega, A.; Antuñano, A.; Legarreta, J.; García-Melendo, E.; Sayanagi, K. M.; Hueso, R.; Wong, M. H.; Pérez-Hoyos, S.; Rojas, J. F.; Simon, A. A.; de Pater, I.; Blalock, J.; Barry, T.

    2018-03-01

    The zonal wind profile of Saturn has a unique structure at 60°N with a double-peaked jet that reaches maximum zonal velocities close to 100 ms-1. In this region, a singular group of vortices consisting of a cyclone surrounded by two anticyclones was active since 2012 until the time of this report. Our observation demonstrates that vortices in Saturn can be long-lived. The three-vortex system drifts at u = 69.0 ± 1.6 ms-1, similar to the speed of the local wind. Local motions reveal that the relative vorticity of the vortices comprising the system is ∼2-3 times the ambient zonal vorticity. In May 2015, a disturbance developed at the location of the triple vortex system, and expanded eastwards covering in two months a third of the latitudinal circle, but leaving the vortices essentially unchanged. At the time of the onset of the disturbance, a fourth vortex was present at 55°N, south of the three vortices and the evolution of the disturbance proved to be linked to the motion of this vortex. Measurements of local motions of the disturbed region show that cloud features moved essentially at the local wind speeds, suggesting that the disturbance consisted of passively advecting clouds generated by the interaction of the triple vortex system with the fourth vortex to the south. Nonlinear simulations are able to reproduce the stability and longevity of the triple vortex system under low vertical wind shear and high static stability in the upper troposphere of Saturn.

  15. Vortex boundary-layer interactions

    NASA Technical Reports Server (NTRS)

    Bradshaw, P.

    1986-01-01

    Parametric studies to identify a vortex generator were completed. Data acquisition in the first chosen configuration, in which a longitudinal vortex pair generated by an isolated delta wing starts to merge with a turbulent boundary layer on a flat plate fairly close to the leading edge is nearly completed. Work on a delta-wing/flat-plate combination, consisting of a flow visualization and hot wire measurements taken with a computer controlled traverse gear and data logging system were completed. Data taking and analysis have continued, and sample results for another cross stream plane are presented. Available data include all mean velocity components, second order mean products of turbulent fluctuations, and third order mean products. Implementation of a faster data logging system was accomplished.

  16. Magnetic vortex chirality determination via local hysteresis loops measurements with magnetic force microscopy

    PubMed Central

    Coïsson, Marco; Barrera, Gabriele; Celegato, Federica; Manzin, Alessandra; Vinai, Franco; Tiberto, Paola

    2016-01-01

    Magnetic vortex chirality in patterned square dots has been investigated by means of a field-dependent magnetic force microscopy technique that allows to measure local hysteresis loops. The chirality affects the two loop branches independently, giving rise to curves that have different shapes and symmetries as a function of the details of the magnetisation reversal process in the square dot, that is studied both experimentally and through micromagnetic simulations. The tip-sample interaction is taken into account numerically, and exploited experimentally, to influence the side of the square where nucleation of the vortex preferably occurs, therefore providing a way to both measure and drive chirality with the present technique. PMID:27426442

  17. Three-Phased Wake Vortex Decay

    NASA Technical Reports Server (NTRS)

    Proctor, Fred H.; Ahmad, Nashat N.; Switzer, George S.; LimonDuparcmeur, Fanny M.

    2010-01-01

    A detailed parametric study is conducted that examines vortex decay within turbulent and stratified atmospheres. The study uses a large eddy simulation model to simulate the out-of-ground effect behavior of wake vortices due to their interaction with atmospheric turbulence and thermal stratification. This paper presents results from a parametric investigation and suggests improvements for existing fast-time wake prediction models. This paper also describes a three-phased decay for wake vortices. The third phase is characterized by a relatively slow rate of circulation decay, and is associated with the ringvortex stage that occurs following vortex linking. The three-phased decay is most prevalent for wakes imbedded within environments having low-turbulence and near-neutral stratification.

  18. Vortex Generators to Control Boundary Layer Interactions

    NASA Technical Reports Server (NTRS)

    Babinsky, Holger (Inventor); Loth, Eric (Inventor); Lee, Sang (Inventor)

    2014-01-01

    Devices for generating streamwise vorticity in a boundary includes various forms of vortex generators. One form of a split-ramp vortex generator includes a first ramp element and a second ramp element with front ends and back ends, ramp surfaces extending between the front ends and the back ends, and vertical surfaces extending between the front ends and the back ends adjacent the ramp surfaces. A flow channel is between the first ramp element and the second ramp element. The back ends of the ramp elements have a height greater than a height of the front ends, and the front ends of the ramp elements have a width greater than a width of the back ends.

  19. Magnetic vortex chirality determination via local hysteresis loops measurements with magnetic force microscopy.

    PubMed

    Coïsson, Marco; Barrera, Gabriele; Celegato, Federica; Manzin, Alessandra; Vinai, Franco; Tiberto, Paola

    2016-07-18

    Magnetic vortex chirality in patterned square dots has been investigated by means of a field-dependent magnetic force microscopy technique that allows to measure local hysteresis loops. The chirality affects the two loop branches independently, giving rise to curves that have different shapes and symmetries as a function of the details of the magnetisation reversal process in the square dot, that is studied both experimentally and through micromagnetic simulations. The tip-sample interaction is taken into account numerically, and exploited experimentally, to influence the side of the square where nucleation of the vortex preferably occurs, therefore providing a way to both measure and drive chirality with the present technique.

  20. Magnetic vortex chirality determination via local hysteresis loops measurements with magnetic force microscopy

    NASA Astrophysics Data System (ADS)

    Coïsson, Marco; Barrera, Gabriele; Celegato, Federica; Manzin, Alessandra; Vinai, Franco; Tiberto, Paola

    2016-07-01

    Magnetic vortex chirality in patterned square dots has been investigated by means of a field-dependent magnetic force microscopy technique that allows to measure local hysteresis loops. The chirality affects the two loop branches independently, giving rise to curves that have different shapes and symmetries as a function of the details of the magnetisation reversal process in the square dot, that is studied both experimentally and through micromagnetic simulations. The tip-sample interaction is taken into account numerically, and exploited experimentally, to influence the side of the square where nucleation of the vortex preferably occurs, therefore providing a way to both measure and drive chirality with the present technique.

  1. Navier-Stokes Simulation of UH-60A Rotor/Wake Interaction Using Adaptive Mesh Refinement

    NASA Technical Reports Server (NTRS)

    Chaderjian, Neal M.

    2017-01-01

    Time-dependent Navier-Stokes simulations have been carried out for a flexible UH-60A rotor in forward flight, where the rotor wake interacts with the rotor blades. These flow conditions involved blade vortex interaction and dynamic stall, two common conditions that occur as modern helicopter designs strive to achieve greater flight speeds and payload capacity. These numerical simulations utilized high-order spatial accuracy and delayed detached eddy simulation. Emphasis was placed on understanding how improved rotor wake resolution affects the prediction of the normal force, pitching moment, and chord force of the rotor. Adaptive mesh refinement was used to highly resolve the turbulent rotor wake in a computationally efficient manner. Moreover, blade vortex interaction was found to trigger dynamic stall. Time-dependent flow visualization was utilized to provide an improved understanding of the numerical and physical mechanisms involved with three-dimensional dynamic stall.

  2. Remote recoil: a new wave mean interaction effect

    NASA Astrophysics Data System (ADS)

    Bühler, Oliver; McIntyre, Michael E.

    2003-10-01

    We present a theoretical study of a fundamentally new wave mean or wave vortex interaction effect able to force persistent, cumulative change in mean flows in the absence of wave breaking or other kinds of wave dissipation. It is associated with the refraction of non-dissipating waves by inhomogeneous mean (vortical) flows. The effect is studied in detail in the simplest relevant model, the two-dimensional compressible flow equations with a generic polytropic equation of state. This includes the usual shallow-water equations as a special case. The refraction of a narrow, slowly varying wavetrain of small-amplitude gravity or sound waves obliquely incident on a single weak (low Froude or Mach number) vortex is studied in detail. It is shown that, concomitant with the changes in the waves' pseudomomentum due to the refraction, there is an equal and opposite recoil force that is felt, in effect, by the vortex core. This effective force is called a ‘remote recoil’ to stress that there is no need for the vortex core and wavetrain to overlap in physical space. There is an accompanying ‘far-field recoil’ that is still more remote, as in classical vortex-impulse problems. The remote-recoil effects are studied perturbatively using the wave amplitude and vortex weakness as small parameters. The nature of the remote recoil is demonstrated in various set-ups with wavetrains of finite or infinite length. The effective recoil force {bm R}_V on the vortex core is given by an expression resembling the classical Magnus force felt by moving cylinders with circulation. In the case of wavetrains of infinite length, an explicit formula for the scattering angle theta_* of waves passing a vortex at a distance is derived correct to second order in Froude or Mach number. To this order {bm R}_V {~} theta_*. The formula is cross-checked against numerical integrations of the ray-tracing equations. This work is part of an ongoing study of internal-gravity-wave dynamics in the atmosphere and may be important for the development of future gravity-wave parametrization schemes in numerical models of the global atmospheric circulation. At present, all such schemes neglect remote-recoil effects caused by horizontally inhomogeneous mean flows. Taking these effects into account should make the parametrization schemes significantly more accurate.

  3. Three-dimensional imaging of vortex structure in a ferroelectric nanoparticle driven by an electric field.

    PubMed

    Karpov, D; Liu, Z; Rolo, T Dos Santos; Harder, R; Balachandran, P V; Xue, D; Lookman, T; Fohtung, E

    2017-08-17

    Topological defects of spontaneous polarization are extensively studied as templates for unique physical phenomena and in the design of reconfigurable electronic devices. Experimental investigations of the complex topologies of polarization have been limited to surface phenomena, which has restricted the probing of the dynamic volumetric domain morphology in operando. Here, we utilize Bragg coherent diffractive imaging of a single BaTiO 3 nanoparticle in a composite polymer/ferroelectric capacitor to study the behavior of a three-dimensional vortex formed due to competing interactions involving ferroelectric domains. Our investigation of the structural phase transitions under the influence of an external electric field shows a mobile vortex core exhibiting a reversible hysteretic transformation path. We also study the toroidal moment of the vortex under the action of the field. Our results open avenues for the study of the structure and evolution of polar vortices and other topological structures in operando in functional materials under cross field configurations.Imaging of topological states of matter such as vortex configurations has generally been limited to 2D surface effects. Here Karpov et al. study the volumetric structure and dynamics of a vortex core mediated by electric-field induced structural phase transition in a ferroelectric BaTiO 3 nanoparticle.

  4. Characterizing the wake vortex signature for an active line of sight remote sensor. M.S. Thesis Technical Report No. 19

    NASA Technical Reports Server (NTRS)

    Heil, Robert Milton

    1994-01-01

    A recurring phenomenon, described as a wake vortex, develops as an aircraft approaches the runway to land. As the aircraft moves along the runway, each of the wing tips generates a spiraling and expanding cone of air. During the lifetime of this turbulent event, conditions exist over the runway which can be hazardous to following aircraft, particularly when a small aircraft is following a large aircraft. Left to themselves, these twin vortex patterns will converge toward each other near the center of the runway, harmlessly dissipating through interaction with each other or by contact with the ground. Unfortunately, the time necessary to disperse the vortex is often not predictable, and at busy airports can severely impact terminal area productivity. Rudimentary methods of avoidance are in place. Generally, time delays between landing aircraft are based on what is required to protect a small aircraft. Existing ambient wind conditions can complicate the situation. Reliable detection and tracking of a wake vortex hazard is a major technical problem which can significantly impact runway productivity. Landing minimums could be determined on the basis of the actual hazard rather than imposed on the basis of a worst case scenario. This work focuses on using a windfield description of a wake vortex to generate line-of-sight Doppler velocity truth data appropriate to an arbitrarily located active sensor such as a high resolution radar or lidar. The goal is to isolate a range Doppler signature of the vortex phenomenon that can be used to improve detection. Results are presented based on use of a simplified model of a wake vortex pattern. However, it is important to note that the method of analysis can easily be applied to any vortex model used to generate a windfield snapshot. Results involving several scan strategies are shown for a point sensor with a range resolution of 1 to 4 meters. Vortex signatures presented appear to offer potential for detection and tracking.

  5. Longitudinal Plasmoid in High-Speed Vortex Gas Flow Created by Capacity HF Discharge

    DTIC Science & Technology

    2010-10-28

    interferometer with high space resolution, PIV method, FTIR spectrometer, optical spectrometer, pressure sensors with high time resolution, IR pyrometer and...of strong LP-vortex interaction. Intensive acoustic waves are created by CHFD in swirl flow in this regime. 38. Study of control of a longitudinal...quartz tube, 4- HF ball electrode, 5- Tesla’s transformer, 6- microwave interferometer, 7- video camera, 8-optical pyrometer , 9-pressure sensor, 10

  6. Interaction of pressure and momentum driven flows with thin porous media: Experiments and modeling

    NASA Astrophysics Data System (ADS)

    Naaktgeboren, Christian

    Flow interaction with thin porous media arise in a variety of natural and man-made settings. Examples include flow through thin grids in electronics cooling, and NOx emissions reduction by means of ammonia injection grids, pulsatile aquatic propulsion with complex trailing anatomy (e.g., jellyfish with tentacles) and microbursts from thunderstorm activity over dense vegetation, unsteady combustion in or near porous materials, pulsatile jet-drying of textiles, and pulsed jet agitation of clothing for trace contaminant sampling. Two types of interactions with thin porous media are considered: (i) forced convection or pressure-driven flows, where fluid advection is maintained by external forces, and (ii) inertial or momentum-driven flows, in which fluid motion is generated but not maintained by external forces. Forced convection analysis through thin permeable media using a porous continuum approach requires the knowledge of porous medium permeability and form coefficients, K and C, respectively, which are defined by the Hazen-Dupuit-Darcy (HDD) equation. Their determination, however, requires the measurement of the pressure-drop per unit of porous medium length. The pressure-drop caused by fluid entering and exiting the porous medium, however, is not related to the porous medium length. Hence, for situations in which the inlet and outlet pressure-drops are not negligible, e.g., for short porous media, the definition of Kand C via the HDD equation becomes ambiguous. This aspect is investigated analytically and numerically using the flow through a restriction in circular pipe and parallel plates channels as preliminary models. Results show that inlet and outlet pressure-drop effects become increasingly important when the inlet and outlet fluid surface fraction φ decreases and the Reynolds number Re increases for both laminar and turbulent flow regimes. A conservative estimate of the minimum porous medium length beyond which the core pressure-drop predominates over the inlet and outlet pressure-drop is obtained by considering a least restrictive porous medium core. Finally, modified K and C are proposed and predictive equations, accurate to within 2.5%, are obtained for both channel configurations with Re ranging from 10-2 to 102 and φ from 6% to 95%. When momentum driven flows interact with thin porous media, the interaction of vortices with the media's complex structure gives way to a number of phenomena of fundamental and applied interest, such as unsteady flow separation. A special case that embodies many of the key features of these flows is the interaction of a vortex ring with a permeable flat surface. Although fundamental, this complex flow configuration has never been considered. The present investigation experimentally studies the fluid mechanics of the interaction of a vortex ring impinging directly on thin permeable flat targets. The vortex ring is formed in water using a piston-cylinder mechanism and visualized using planar laser-induced fluorescence (PLIF). The rings are formed for jet Reynolds numbers of 3000 and 6000, and piston stroke-to-diameter ratios of 1.0, 3.0, and 6.0. Thin screens of similar geometry having surface opening fractions of 44, 60, 69, and 79% are targeted by the rings. The flow that emerges downstream of the screens reforms into a new, "transmitted" vortex ring. For the lower porosity targets, features that are characteristic of vortex ring impingement on walls are also observed, such as primary vortex ring rebound and reversal, flow separation, formation of secondary vortices and mixing. As the interaction proceeds, however, the primary vortex ring and secondary vortices are drawn toward the symmetry axis of the flow by fluid passing through the permeable screen. Quantitative flow measurements using digital particle image velocimetry (DPIV), indicate the transmitted vortex ring has lower velocity and less (total) kinetic energy than the incident ring. Ring trajectories and total kinetic energy relationships between vortices upstream and downstream the porous targets as a function of the porosity are presented, based on the velocity field from the DPIV measurements. Results show that kinetic energy dissipation is more intense for the low porosity targets and that flows with higher initial kinetic energy impacting on the same target loose a smaller percentage of their initial energy.

  7. Service Delivery for Persons with Blindness or Visual Impairment and Addiction as Coexisting Disabilities: Implications for Addiction Science Education

    ERIC Educational Resources Information Center

    Koch, D. Shane; Shearer, Brenda; Nelipovich, Mike

    2004-01-01

    Although research strongly suggests that individuals who are blind or visually impaired (BVI) experience alcohol and other drug abuse (AODA) disorders at rates higher than those expected within the general population (NAADD, 1999), less is known about specific barriers that influence AODA treatment for these consumers (Koch & Nelipovich, 1999).…

  8. Enhancing Learning Management Systems Utility for Blind Students: A Task-Oriented, User-Centered, Multi-Method Evaluation Technique

    ERIC Educational Resources Information Center

    Babu, Rakesh; Singh, Rahul

    2013-01-01

    This paper presents a novel task-oriented, user-centered, multi-method evaluation (TUME) technique and shows how it is useful in providing a more complete, practical and solution-oriented assessment of the accessibility and usability of Learning Management Systems (LMS) for blind and visually impaired (BVI) students. Novel components of TUME…

  9. Pseudococcus saccharicola Takahashi (Hemiptera: Pseudococcidae) in the British Virgin Islands: first Western Hemisphere records, with records of a co-occurring lady beetle, Hyperaspis Scutifera (Mulsant)

    USDA-ARS?s Scientific Manuscript database

    Pseudococcus saccharicola Takahashi was collected on Guana Island, and nearby Beef Island and Tortola, in the British Virgin Islands (BVI). The records are the first in the Western Hemisphere for this potentially important Old World pest of sugarcane and certain other graminoid crops. Host plants on...

  10. New BVI C Photometry of Low-Mass Pleiades Stars: Exploring the Effects of Rotation on Broadband Colors

    DTIC Science & Technology

    2014-08-01

    could be distance uncertain- ties and/or metallicity effects. The Hyades is much closer than the Pleiades and Praesepe, and consequently one cannot...statistical significance, the sug- gestion of Stauffer et al. (2003) that for K and early M dwarfs (1.0 < B−V < 1.45) in the Pleiades rapid rotation

  11. A complex analysis approach to the motion of uniform vortices

    NASA Astrophysics Data System (ADS)

    Riccardi, Giorgio

    2018-02-01

    A new mathematical approach to kinematics and dynamics of planar uniform vortices in an incompressible inviscid fluid is presented. It is based on an integral relation between Schwarz function of the vortex boundary and induced velocity. This relation is firstly used for investigating the kinematics of a vortex having its Schwarz function with two simple poles in a transformed plane. The vortex boundary is the image of the unit circle through the conformal map obtained by conjugating its Schwarz function. The resulting analysis is based on geometric and algebraic properties of that map. Moreover, it is shown that the steady configurations of a uniform vortex, possibly in presence of point vortices, can be also investigated by means of the integral relation. The vortex equilibria are divided in two classes, depending on the behavior of the velocity on the boundary, measured in a reference system rotating with this curve. If it vanishes, the analysis is rather simple. However, vortices having nonvanishing relative velocity are also investigated, in presence of a polygonal symmetry. In order to study the vortex dynamics, the definition of Schwarz function is then extended to a Lagrangian framework. This Lagrangian Schwarz function solves a nonlinear integrodifferential Cauchy problem, that is transformed in a singular integral equation. Its analytical solution is here approached in terms of successive approximations. The self-induced dynamics, as well as the interactions with a point vortex, or between two uniform vortices are analyzed.

  12. Topological vortex formation in a Bose-Einstein condensate under gravitational field

    NASA Astrophysics Data System (ADS)

    Kawaguchi, Yuki; Nakahara, Mikio; Ohmi, Tetsuo

    2004-10-01

    Topological phase imprinting is a unique technique for vortex formation in a Bose-Einstein condensate (BEC) of an alkali-metal gas, in that it does not involve rotation: the BEC is trapped in a quadrupole field with a uniform bias field which is reversed adiabatically leading to vortex formation at the center of the magnetic trap. The scenario has been experimentally verified by Leanhardt employing Na23 atoms. Recently similar experiments have been conducted by Hirotani in which a BEC of Rb87 atoms was used. In the latter experiments the authors found that fine-tuning of the field reverse time Trev is required to achieve stable vortex formation. Otherwise, they often observed vortex fragmentation or a condensate without a vortex. It is shown in this paper that this behavior can be attributed to the heavy mass of the Rb atom. The confining potential, which depends on the eigenvalue mB of the hyperfine spin F along the magnetic field, is now shifted by the gravitational field perpendicular to the vortex line. Then the positions of two weak-field-seeking states with mB=1 and 2 deviate from each other. This effect is more prominent for BECs with a heavy atomic mass, for which the deviation is greater and, moreover, the Thomas-Fermi radius is smaller. We found, by solving the Gross-Pitaevskii equation numerically, that two condensates interact in a very complicated way leading to fragmentation of vortices, unless Trev is properly tuned.

  13. The ground vortex flow field associated with a jet in a cross flow impinging on a ground plane for uniform and annular turbulent axisymmetric jets. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Cavage, William M.; Kuhlman, John M.

    1993-01-01

    An experimental study was conducted of the impingement of a single circular jet on a ground plane in a cross flow. This geometry is a simplified model of the interaction of propulsive jet exhaust from a V/STOL aircraft with the ground in forward flight. Jets were oriented normal to the cross flow and ground plane. Jet size, cross flow-to-jet velocity ratio, ground plane-to-jet board spacing, and jet exit turbulence level and mean velocity profile shape were all varied to determine their effects on the size of the ground vortex interaction region which forms on the ground plane, using smoke injection into the jet. Three component laser Doppler velocimeter measurements were made with a commercial three color system for the case of a uniform jet with exit spacing equal to 5.5 diameters and cross flow-to-jet velocity ratio equal to 0.11. The flow visualization data compared well for equivalent runs of the same nondimensional jet exit spacing and the same velocity ratio for different diameter nozzles, except at very low velocity ratios and for the larger nozzle, where tunnel blockage became significant. Variation of observed ground vortex size with cross flow-to-jet velocity ratio was consistent with previous studies. Observed effects of jet size and ground plane-to-jet board spacing were relatively small. Jet exit turbulence level effects were also small. However, an annular jet with a low velocity central core was found to have a significantly smaller ground vortex than an equivalent uniform jet at the same values of cross flow-to-jet velocity ratio and jet exit-to-ground plane spacing. This may suggest a means of altering ground vortex behavior somewhat, and points out the importance of proper simulation of jet exit velocity conditions. LV data indicated unsteady turbulence levels in the ground vortex in excess of 70 percent.

  14. Vortex/Flame Interactions in Microgravity Pulsed Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Bahadori, M. Y.; Hegde, U.; Stocker, D. P.

    1999-01-01

    The problem of vortex/flame interaction is of fundamental importance to turbulent combustion. These interactions have been studied in normal gravity. It was found that due to the interactions between the imposed disturbances and buoyancy induced instabilities, several overall length scales dominated the flame. The problem of multiple scales does not exist in microgravity for a pulsed laminar flame, since there are no buoyancy induced instabilities. The absence of buoyant convection therefore provides an environment to study the role of vortices interacting with flames in a controlled manner. There are strong similarities between imposed and naturally occurring perturbations, since both can be described by the same spatial instability theory. Hence, imposing a harmonic disturbance on a microgravity laminar flame creates effects similar to those occurring naturally in transitional/turbulent diffusion flames observed in microgravity. In this study, controlled, large-scale, axisymmetric vortices are imposed on a microgravity laminar diffusion flame. The experimental results and predictions from a numerical model of transient jet diffusion flames are presented and the characteristics of pulsed flame are described.

  15. Internal structure of vortices in a dipolar spinor Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Borgh, Magnus O.; Lovegrove, Justin; Ruostekoski, Janne

    2017-04-01

    We demonstrate how dipolar interactions (DI) can have pronounced effects on the structure of vortices in atomic spinor Bose-Einstein condensates and illustrate generic physical principles that apply across dipolar spinor systems. We then find and analyze the cores of singular non-Abelian vortices in a spin-3 52Cr condensate. Using a simpler spin-1 model system, we analyze the underlying dipolar physics and show how a dipolar healing length interacts with the hierarchy of healing lengths of the contact interaction and leads to simple criteria for the core structure: vortex core size is restricted to the shorter spin-dependent healing length when the interactions both favor the ground-state spin condition, but can conversely be enlarged by DI when interactions compete. We further demonstrate manifestations of spin-ordering induced by the DI anisotropy, including DI-dependent angular momentum of nonsingular vortices, as a result of competition with adaptation to rotation, and potentially observable internal vortex-core spin textures. We acknowledge financial support from the EPSRC.

  16. Flame-Generated Vorticity Production in Premixed Flame-Vortex Interactions

    NASA Technical Reports Server (NTRS)

    Patnaik, G.; Kailasanath, K.

    2003-01-01

    In this study, we use detailed time-dependent, multi-dimensional numerical simulations to investigate the relative importance of the processes leading to FGV in flame-vortex interactions in normal gravity and microgravity and to determine if the production of vorticity in flames in gravity is the same as that in zero gravity except for the contribution of the gravity term. The numerical simulations will be performed using the computational model developed at NRL, FLAME3D. FLAME3D is a parallel, multi-dimensional (either two- or three-dimensional) flame model based on FLIC2D, which has been used extensively to study the structure and stability of premixed hydrogen and methane flames.

  17. Vortex loops and Majoranas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chesi, Stefano; CEMS, RIKEN, Wako, Saitama 351-0198; Jaffe, Arthur

    2013-11-15

    We investigate the role that vortex loops play in characterizing eigenstates of interacting Majoranas. We give some general results and then focus on ladder Hamiltonian examples as a test of further ideas. Two methods yield exact results: (i) A mapping of certain spin Hamiltonians to quartic interactions of Majoranas shows that the spectra of these two examples coincide. (ii) In cases with reflection-symmetric Hamiltonians, we use reflection positivity for Majoranas to characterize vortices in the ground states. Two additional methods suggest wider applicability of these results: (iii) Numerical evidence suggests similar behavior for certain systems without reflection symmetry. (iv) Amore » perturbative analysis also suggests similar behavior without the assumption of reflection symmetry.« less

  18. Subcritical Transition in Channel Flows

    NASA Astrophysics Data System (ADS)

    Maestri, Joseph; Hall, Philip

    2014-11-01

    Exact-coherent structures, or colloquially non-linear solutions to the Navier-Stokes equations, have been the subject of great interest over the past decade due to their relevance in understanding the process of transition to turbulence in shear flows. Over the past few years the relationship between high Reynolds number vortex-wave interaction theory and such states has been elucidated in a number of papers and has provided a solid asymptotic framework to understand the so-called self-sustaining process that maintains such structures. In this talk, we will discuss this relationship before talking about recent work on solving the vortex-wave interaction equations using numerical techniques in order to propose laminar-flow control techniques.

  19. Interaction of a trailing vortex with an oscillating wing

    NASA Astrophysics Data System (ADS)

    McKenna, C.; Fishman, G.; Rockwell, D.

    2018-01-01

    A technique of particle image velocimetry is employed to characterize the flow structure of a trailing vortex incident upon the tip region of an oscillating wing (plate). The amplitude and velocity of the wing are nearly two orders of magnitude smaller than the wing chord and free stream velocity, respectively. Depending upon the outboard displacement of the incident vortex relative to the wing tip, distinctive patterns of upwash, downwash, and shed vorticity are observed. These patterns are a strong function of the phase of the wing motion during its oscillation cycle. At a given phase, the wing oscillation induces upwash that is reinforced by the upwash of the incident vortex, giving a maximum net upwash. Conversely, when these two origins of upwash counteract, rather than reinforce, one another during the oscillation cycle, the net upwash attains minimum value. Analogous interpretations hold for regions of maximum and minimum net downwash located outboard of the regions of upwash. The magnitude and scale of the vorticity shed from the tip of the wing are directly correlated with the net upwash, which takes different forms related to the outboard displacement of the incident vortex. As the location of the incident vortex is displaced towards the wing tip, both the maximum upwash and the maximum vorticity of the tip vortex initially increase and then decrease. For the limiting case where the incident vortex impinges directly upon the tip of the wing, there is no tip vortex or induced region of upwash. Furthermore, at small values of vortex displacement from the wing tip, the position of the incident vortex varies significantly from its nominal position during the oscillation cycle. All of the foregoing features are interpreted in conjunction with the flow topology in the form of streamlines and critical points, superposed on patterns of vorticity. It is shown that despite the small amplitude of the wing motion, the flow topology is fundamentally different at maximum positive and negative values of the velocity of the wing tip, that is, they are not symmetric.

  20. A low-speed wind tunnel study of vortex interaction control techniques on a chine-forebody/delta-wing configuration

    NASA Technical Reports Server (NTRS)

    Rao, Dhanvada M.; Bhat, M. K.

    1992-01-01

    A low speed wind tunnel evaluation was conducted of passive and active techniques proposed as a means to impede the interaction of forebody chine and delta wing vortices, when such interaction leads to undesirable aerodynamic characteristics particularly in the post stall regime. The passive method was based on physically disconnecting the chine/wing junction; the active technique employed deflection of inboard leading edge flaps. In either case, the intent was to forcibly shed the chine vortices before they encountered the downwash of wing vortices. Flow visualizations, wing pressures, and six component force/moment measurements confirmed the benefits of forced vortex de-coupling at post stall angles of attack and in sideslip, viz., alleviation of post stall zero beta asymmetry, lateral instability and twin tail buffet, with insignificant loss of maximum lift.

  1. Skin friction fields on delta wings

    NASA Astrophysics Data System (ADS)

    Woodiga, S. A.; Liu, Tianshu

    2009-12-01

    The normalized skin friction fields on a 65° delta wing and a 76°/40° double-delta wing are measured by using a global luminescent oil-film skin friction meter. The detailed topological structures of skin friction fields on the wings are revealed for different angles of attack and the important features are detected such as reattachment lines, secondary separation lines, vortex bursting and vortex interaction. The comparisons with the existing flow visualization results are discussed.

  2. Inertial migration of particles in Taylor-Couette flows

    NASA Astrophysics Data System (ADS)

    Majji, Madhu V.; Morris, Jeffrey F.

    2018-03-01

    An experimental study of inertial migration of neutrally buoyant particles in the circular Couette flow (CCF), Taylor vortex flow (TVF) and wavy vortex flow (WVF) is reported. This work considers a concentric cylinder Taylor-Couette device with a stationary outer cylinder and rotating inner cylinder. The device has a radius ratio of η = ri/ro = 0.877, where ri and ro are the inner and outer radii of the flow annulus. The ratio of the annular width between the cylinders (δ = ro - ri) and the particle diameter (dp) is α = δ/dp = 20. For η = 0.877, the flow of a Newtonian fluid undergoes transitions from CCF to TVF and TVF to WVF at Reynolds numbers Re = 120 and 151, respectively, and for the dilute suspensions studied here, these critical Reynolds numbers are almost unchanged. In CCF, particles were observed to migrate, due to the competition between the shear gradient of the flow and the wall interactions, to an equilibrium location near the middle of the annulus with an offset toward the inner cylinder. In TVF, the vortex motion causes the particles to be exposed to the shear gradient and wall interactions in a different manner, resulting in a circular equilibrium region in each vortex. The radius of this circular region grows with increase in Re. In WVF, the azimuthal waviness results in fairly well-distributed particles across the annulus.

  3. Pinning, flux diodes and ratchets for vortices interacting with conformal pinning arrays

    DOE PAGES

    Olson Reichhardt, C. J.; Wang, Y. L.; Xiao, Z. L.; ...

    2016-05-31

    A conformal pinning array can be created by conformally transforming a uniform triangular pinning lattice to produce a new structure in which the six-fold ordering of the original lattice is conserved but where there is a spatial gradient in the density of pinning sites. Here we examine several aspects of vortices interacting with conformal pinning arrays and how they can be used to create a flux flow diode effect for driving vortices in different directions across the arrays. Under the application of an ac drive, a pronounced vortex ratchet effect occurs where the vortices flow in the easy direction ofmore » the array asymmetry. When the ac drive is applied perpendicular to the asymmetry direction of the array, it is possible to realize a transverse vortex ratchet effect where there is a generation of a dc flow of vortices perpendicular to the ac drive due to the creation of a noise correlation ratchet by the plastic motion of the vortices. We also examine vortex transport in experiments and compare the pinning effectiveness of conformal arrays to uniform triangular pinning arrays. In conclusion, we find that a triangular array generally pins the vortices more effectively at the first matching field and below, while the conformal array is more effective at higher fields where interstitial vortex flow occurs.« less

  4. Comparison of hydrophobic properties of thoracic duct lymph chylomicrons from rats given different fats or oils by gavage.

    PubMed

    Kaya, K; Işıkgil; Güldür, T

    2014-06-01

    Lipoprotein aggregation is generated by hydrophobic nature of lipoproteins that is known to be one of the causes of atherosclerosis. Low density lipoproteins (LDL) has been extensively studied in this respect but not chylomicrons. There is strong evidence that post-prandial triacylglycerol-rich lipoproteins are atherogenic. Because biophysical properties of lipoproteins are largely determined by their lipid compositions, hydrophobic nature of thoracic lymph duct chylomicrons obtained from rats given different fats or oils by gavage was investigated by vortexing-induced aggregation and hydrophobic interaction chromatography. Contrary to LDL, vortexing did not cause aggregation in chylomicrons. Vortexing of fish oil and butter chylomicrons resulted in more prominent reduction in absorbances compared with chylomicrons from other sources that might indicate less micelle stability. Hydrophobic interaction chromatography of fish oil, palm oil and olive oil chylomicrons yielded three fractions, whereas that of sunflower, margarine and butter chylomicrons gave rise to two fractions. These results suggest that surface hydrophobicity of chylomicrons might be heterogenous. Our results also demonstrate that fish oil chylomicrons have less hydrophobicity and lower stability against vortexing compared with chylomicrons from other sources. Considering beneficial effects of fish oil in cardiovascular health, less hydrophobicity together with lower stability might provide an additional atherogeneicity index for lipoproteins. Journal of Animal Physiology and Animal Nutrition © 2013 Blackwell Verlag GmbH.

  5. Dynamic stall - The case of the vertical axis wind turbine

    NASA Astrophysics Data System (ADS)

    Laneville, A.; Vittecoq, P.

    1986-05-01

    This paper presents the results of an experimental investigation on a driven Darrieus turbine rotating at different tip speed ratios. For a Reynolds number of 3.8 x 10 to the 4th, the results indicate the presence of dynamic stall at tip speed ratio less than 4, and that helicopter blade aerodynamics can be used in order to explain some aspects of the phenomenon. It was observed that in deep stall conditions, a vortex is formed at the leading edge; this vortex moves over the airfoil surface with 1/3 of the airfoil speed and then is shed at the trailing edge. After its shedding, the vortex can interact with the airfoil surface as the blade passes downstream.

  6. Numerical investigations of non-collinear optical parametric chirped pulse amplification for Laguerre-Gaussian vortex beam

    NASA Astrophysics Data System (ADS)

    Xu, Lu; Yu, Lianghong; Liang, Xiaoyan

    2016-04-01

    We present for the first time a scheme to amplify a Laguerre-Gaussian vortex beam based on non-collinear optical parametric chirped pulse amplification (OPCPA). In addition, a three-dimensional numerical model of non-collinear optical parametric amplification was deduced in the frequency domain, in which the effects of non-collinear configuration, temporal and spatial walk-off, group-velocity dispersion and diffraction were also taken into account, to trace the dynamics of the Laguerre-Gaussian vortex beam and investigate its critical parameters in the non-collinear OPCPA process. Based on the numerical simulation results, the scheme shows promise for implementation in a relativistic twisted laser pulse system, which will diversify the light-matter interaction field.

  7. Propeller tip and hub vortex dynamics in the interaction with a rudder

    NASA Astrophysics Data System (ADS)

    Felli, Mario; Falchi, Massimo

    2011-11-01

    In the present paper, the interaction mechanisms of the vortices shed by a single-screw propeller with a rudder installed in its wake are addressed; in particular, following the works by Felli et al. (Exp Fluids 6(1):1-11, 2006a, Exp Fluids 46(1):147-1641, 2009a, Proceedings of the 8th international symposium on particle image velocimetry: Piv09, Melbourne, 2009b), the attention is focused on the analysis of the evolution, instability, breakdown and recovering mechanisms of the propeller tip and hub vortices during the interaction with the rudder. To investigate these mechanisms in detail, a wide experimental activity consisting in time-resolved visualizations, velocity measurements by particle image velocimetry (PIV) and laser Doppler velocimetry (LDV) along horizontal chordwise, vertical chordwise and transversal sections of the wake have been performed in the Cavitation Tunnel of the Italian Navy. Collected data allows to investigate the major flow features that distinguish the flow field around a rudder operating in the wake of a propeller, as, for example, the spiral breakdown of the vortex filaments, the rejoining mechanism of the tip vortices behind the rudder and the mechanisms governing the different spanwise misalignment of the vortex filaments in the pressure and suction sides of the appendage.

  8. Dynamics of a class of vortex rings. Ph.D. Thesis - Stanford Univ.

    NASA Technical Reports Server (NTRS)

    Shariff, Karim; Leonard, Anthony; Ferziger, Joel H.

    1989-01-01

    The contour dynamics method is extended to vortex rings with vorticity varying linearly from the symmetry axis. An elliptic core model is also developed to explain some of the basic physics. Passage and collisions of two identical rings are studied focusing on core deformation, sound generation and stirring of fluid elements. With respect to core deformation, not only the strain rate but how rapidly it varies is important and accounts for greater susceptibility to vortex tearing than in two dimensions. For slow strain, as a passage interaction is completed and the strain relaxes, the cores return to their original shape while permanent deformations remain for rapidly varying strain. For collisions, if the strain changes slowly the core shapes migrate through a known family of two-dimensional steady vortex pairs up to the limiting member of the family. Thereafter energy conservation does not allow the cores to maintain a constant shape. For rapidly varying strain, core deformation is severe and a head-tail structure in good agreement with experiments is formed. With respect to sound generation, good agreement with the measured acoustic signal for colliding rings is obtained and a feature previously thought to be due to viscous effects is shown to be an effect of inviscid core deformation alone. For passage interactions, a component of high frequency is present. Evidence for the importance of this noise source in jet noise spectra is provided. Finally, processes of fluid engulfment and rejection for an unsteady vortex ring are studied using the stable and unstable manifolds. The unstable manifold shows excellent agreement with flow visualization experiments for leapfrogging rings suggesting that it may be a good tool for numerical flow visualization in other time periodic flows.

  9. Vortex survival in 3D self-gravitating accretion discs

    NASA Astrophysics Data System (ADS)

    Lin, Min-Kai; Pierens, Arnaud

    2018-07-01

    Large-scale, dust-trapping vortices may account for observations of asymmetric protoplanetary discs. Disc vortices are also potential sites for accelerated planetesimal formation by concentrating dust grains. However, in 3D discs vortices are subject to destructive `elliptic instabilities', which reduces their viability as dust traps. The survival of vortices in 3D accretion discs is thus an important issue to address. In this work, we perform shearing box simulations to show that disc self-gravity enhances the survival of 3D vortices, even when self-gravity is weak in the classic sense (e.g. with a Toomre Q ≃ 5). We find a 3D self-gravitating vortex can grow on secular time-scales in spite of the elliptic instability. The vortex aspect ratio decreases as it strengthens, which feeds the elliptic instability. The result is a 3D vortex with a turbulent core that persists for ˜103 orbits. We find when gravitational and hydrodynamic stresses become comparable, the vortex may undergo episodic bursts, which we interpret as an interaction between elliptic and gravitational instabilities. We estimate the distribution of dust particles in self-gravitating, turbulent vortices. Our results suggest large-scale vortices in protoplanetary discs are more easily observed at large radii.

  10. Symmetrical collision of multiple vortex rings

    NASA Astrophysics Data System (ADS)

    Hernández, R. H.; Reyes, T.

    2017-10-01

    In this work, we investigate the motion, interaction, and simultaneous collision between many initially stable vortex rings arranged symmetrically in two initial configurations, three and six rings making an angle of 60 and 120° between their straight path lines, respectively. We report results for laminar vortex rings in air obtained through numerical simulations of the ring velocity, pressure, and vorticity fields, both in free flight and during the entire collision. Each collision was studied for small Reynolds numbers R e <1 03 based on both the self-induced velocity and diameter of the ring. The case of three rings produces secondary vortical structures formed by laterally expanding dipolar arms with top and bottom secondary vortex rings. The case of six colliding rings produces, as secondary structures, two big rings moving in opposite directions, a process that reminds us of the head-on collision of two rings [T. T. Lim and T. B. Nickels, "Instability and reconnection in the head-on collision of two vortex rings," Nature 357, 225-227 (1992)] under a hypothetical time reversal transformation. Both collisions display a characteristic kinetic energy evolution where mean collision stages can be identified within the range of Reynolds numbers investigated here.

  11. Flow regimes in a trapped vortex cell

    NASA Astrophysics Data System (ADS)

    Lasagna, D.; Iuso, G.

    2016-03-01

    This paper presents results of an experimental investigation on the flow in a trapped vortex cell, embedded into a flat plate, and interacting with a zero-pressure-gradient boundary layer. The objective of the work is to describe the flow features and elucidate some of the governing physical mechanisms, in the light of recent investigations on flow separation control using vortex cells. Hot-wire velocity measurements of the shear layer bounding the cell and of the boundary layers upstream and downstream are reported, together with spectral and correlation analyses of wall-pressure fluctuation measurements. Smoke flow visualisations provide qualitative insight into some relevant features of the internal flow, namely a large-scale flow unsteadiness and possible mechanisms driving the rotation of the vortex core. Results are presented for two very different regimes: a low-Reynolds-number case where the incoming boundary layer is laminar and its momentum thickness is small compared to the cell opening, and a moderately high-Reynolds-number case, where the incoming boundary layer is turbulent and the ratio between the momentum thickness and the opening length is significantly larger than in the first case. Implications of the present findings to flow control applications of trapped vortex cells are also discussed.

  12. Vortex survival in 3D self-gravitating accretion discs

    NASA Astrophysics Data System (ADS)

    Lin, Min-Kai; Pierens, Arnaud

    2018-04-01

    Large-scale, dust-trapping vortices may account for observations of asymmetric protoplanetary discs. Disc vortices are also potential sites for accelerated planetesimal formation by concentrating dust grains. However, in 3D discs vortices are subject to destructive `elliptic instabilities', which reduces their viability as dust traps. The survival of vortices in 3D accretion discs is thus an important issue to address. In this work, we perform shearing box simulations to show that disc self-gravity enhances the survival of 3D vortices, even when self-gravity is weak in the classic sense (e.g. with a Toomre Q ≃ 5). We find a 3D, self-gravitating vortex can grow on secular timescales in spite of the elliptic instability. The vortex aspect-ratio decreases as it strengthens, which feeds the elliptic instability. The result is a 3D vortex with a turbulent core that persists for ˜103 orbits. We find when gravitational and hydrodynamic stresses become comparable, the vortex may undergo episodic bursts, which we interpret as interaction between elliptic and gravitational instabilities. We estimate the distribution of dust particles in self-gravitating, turbulent vortices. Our results suggest large-scale vortices in protoplanetary discs are more easily observed at large radii.

  13. Effect of wing flexibility in dragonfly hovering flight

    NASA Astrophysics Data System (ADS)

    Naidu, Vishal; Young, John; Lai, Joseph

    2011-11-01

    Dragonflies have two pairs of tandem wings, which can be operated independently. Most studies on tandem wings are based on rigid wings, which is in strong contradiction to the natural, flexible dragonfly wings. The effect of wing flexibility in tandem wings is little known. We carry out a comparative, computational study between rigid and flexible, dragonfly shaped wings for hovering flight. In rigid wings during downstroke, a leading edge vortex (LEV) is formed on the upper surface, which forms a low pressure zone. This conical LEV joins the tip vortex and shortly after the mid downstroke when the wing starts to rotate, these vortices are gradually shed resulting in a drop in lift. The vortex system creates a net downwards momentum in the form of a jet. The flexible wings while in motion deform due to aerodynamic and inertial forces. Since there is a strong interaction between wing deformation and air flow around the deformed wings, flexible wing simulations are carried out using a two way fluid structure interaction. The effect of wing flexibility on the flow structure and the subsequent effect on the aerodynamic forces will be studied and presented.

  14. Coherent structures in interacting vortex rings

    NASA Astrophysics Data System (ADS)

    Deng, Jian; Xue, Jingyu; Mao, Xuerui; Caulfield, C. P.

    2017-02-01

    We investigate experimentally the nonlinear structures that develop from interacting vortex rings induced by a sinusoidally oscillating ellipsoidal disk in fluid at rest. We vary the scaled amplitude or Keulegan-Carpenter number 0.3

  15. Flow Structures and Interactions of a Fail-Safe Actuator

    NASA Astrophysics Data System (ADS)

    Khan, Wasif; Elimelech, Yoseph; Amitay, Michael

    2010-11-01

    Vortex generators are passive devices that are commonly used in many aerodynamic applications. In their basic concept, they enhance mixing, reduce or mitigate flow separation; however, they cause drag penalties at off design conditions. Micro vanes implement the same basic idea of vortex generators but their physical dimensions are much smaller. To achieve the same effect on the baseline flow field, micro vanes are combined with an active flow control device, so their net effect is comparable to that of vortex generators when the active device is energized. As a result of their small size, micro vanes have significantly less drag penalty at off design conditions. This concept of "dual-action" is the reason why such actuation is commonly called hybrid or fail-safe actuation. The present study explores experimentally the flow interaction of a synthetic-jet with a micro vane in a zero pressure gradient flow over a flat plate. Using the stereo particle image velocimetry technique a parametric study was conducted, where the effects of the micro vane shape, height and its angle with respect to the flow were examined, at several blowing ratios and synthetic-jet configurations.

  16. TASS Model Application for Testing the TDWAP Model

    NASA Technical Reports Server (NTRS)

    Switzer, George F.

    2009-01-01

    One of the operational modes of the Terminal Area Simulation System (TASS) model simulates the three-dimensional interaction of wake vortices within turbulent domains in the presence of thermal stratification. The model allows the investigation of turbulence and stratification on vortex transport and decay. The model simulations for this work all assumed fully-periodic boundary conditions to remove the effects from any surface interaction. During the Base Period of this contract, NWRA completed generation of these datasets but only presented analysis for the neutral stratification runs of that set (Task 3.4.1). Phase 1 work began with the analysis of the remaining stratification datasets, and in the analysis we discovered discrepancies with the vortex time to link predictions. This finding necessitated investigating the source of the anomaly, and we found a problem with the background turbulence. Using the most up to date version TASS with some important defect fixes, we regenerated a larger turbulence domain, and verified the vortex time to link with a few cases before proceeding to regenerate the entire 25 case set (Task 3.4.2). The effort of Phase 2 (Task 3.4.3) concentrated on analysis of several scenarios investigating the effects of closely spaced aircraft. The objective was to quantify the minimum aircraft separations necessary to avoid vortex interactions between neighboring aircraft. The results consist of spreadsheets of wake data and presentation figures prepared for NASA technical exchanges. For these formation cases, NASA carried out the actual TASS simulations and NWRA performed the analysis of the results by making animations, line plots, and other presentation figures. This report contains the description of the work performed during this final phase of the contract, the analysis procedures adopted, and sample plots of the results from the analysis performed.

  17. Tailoring optical complex field with spiral blade plasmonic vortex lens

    PubMed Central

    Rui, Guanghao; Zhan, Qiwen; Cui, Yiping

    2015-01-01

    Optical complex fields have attracted increasing interests because of the novel effects and phenomena arising from the spatially inhomogeneous state of polarizations and optical singularities of the light beam. In this work, we propose a spiral blade plasmonic vortex lens (SBPVL) that offers unique opportunities to manipulate these novel fields. The strong interaction between the SBPVL and the optical complex fields enable the synthesis of highly tunable plasmonic vortex. Through theoretical derivations and numerical simulations we demonstrated that the characteristics of the plasmonic vortex are determined by the angular momentum (AM) of the light, and the geometrical topological charge of the SBPVL, which is govern by the nonlinear superposition of the pitch and the number of blade element. In addition, it is also shown that by adjusting the geometric parameters, SBPVL can be utilized to focus and manipulate optical complex field with fractional AM. This miniature plasmonic device may find potential applications in optical trapping, optical data storage and many other related fields. PMID:26335894

  18. Vortex dynamics and heat transfer behind self-oscillating inverted flags of various lengths in channel flow

    NASA Astrophysics Data System (ADS)

    Yu, Yuelong; Liu, Yingzheng; Chen, Yujia

    2018-04-01

    The influence of an inverted flag's length-to-channel-width ratio (C* = L/W) on its oscillating behavior in a channel flow and the resultant vortex dynamics and heat transfer are determined experimentally. Three systems with C* values of 0.125, 0.250, and 0.375 were chosen for comparison. The interaction of highly unsteady flow with the inverted flag is measured with time-resolved particle image velocimetry. Variations in the underlying flow physics are discussed in terms of the statistical flow quantities, flag displacement, phase-averaged flow field, and vortex dynamics. The results show that the increase in C* shifts the occurrence of the flapping regime at high dimensionless bending stiffness. With the flag in the flapping region, three distinct vortex dynamics—the von Kármán vortex street, the G mode, and the singular mode—are identified at C* values of 0.375, 0.250, and 0.125, respectively. Finally, the heat transfer enhancement from the self-oscillating inverted flag is measured to serve as complementary information to quantify the cause-and-effect relationship between vortex dynamics and wall heat transfer. The increase in C* strongly promotes wall heat removal because disruption of the boundary layer by the energetic vortices is substantially intensified. Among all systems, wall heat transfer removal is most efficient at the intermediate C* value of 0.250.

  19. Generation of “perfect” vortex of variable size and its effect in angular spectrum of the down-converted photons

    NASA Astrophysics Data System (ADS)

    Jabir, M. V.; Apurv Chaitanya, N.; Aadhi, A.; Samanta, G. K.

    2016-02-01

    The “perfect” vortex is a new class of optical vortex beam having ring radius independent of its topological charge (order). One of the simplest techniques to generate such beams is the Fourier transformation of the Bessel-Gauss beams. The variation in ring radius of such vortices require Fourier lenses of different focal lengths and or complicated imaging setup. Here we report a novel experimental scheme to generate perfect vortex of any ring radius using a convex lens and an axicon. As a proof of principle, using a lens of focal length f = 200 mm, we have varied the radius of the vortex beam across 0.3-1.18 mm simply by adjusting the separation between the lens and axicon. This is also a simple scheme to measure the apex angle of an axicon with ease. Using such vortices we have studied non-collinear interaction of photons having orbital angular momentum (OAM) in spontaneous parametric down-conversion (SPDC) process and observed that the angular spectrum of the SPDC photons are independent of OAM of the pump photons rather depends on spatial profile of the pump beam. In the presence of spatial walk-off effect in nonlinear crystals, the SPDC photons have asymmetric angular spectrum with reducing asymmetry at increasing vortex radius.

  20. New Analysis Scheme of Flow-Acoustic Coupling for Gas Ultrasonic Flowmeter with Vortex near the Transducer.

    PubMed

    Sun, Yanzhao; Zhang, Tao; Zheng, Dandan

    2018-04-10

    Ultrasonic flowmeters with a small or medium diameter are widely used in process industries. The flow field disturbance on acoustic propagation caused by a vortex near the transducer inside the sensor as well as the mechanism and details of flow-acoustic interaction are needed to strengthen research. For that reason, a new hybrid scheme is proposed; the theories of computational fluid dynamics (CFD), wave acoustics, and ray acoustics are used comprehensively by a new step-by-step method. The flow field with a vortex near the transducer, and its influence on sound propagation, receiving, and flowmeter performance are analyzed in depth. It was found that, firstly, the velocity and vortex intensity distribution were asymmetric on the sensor cross-section and acoustic path. Secondly, when passing through the vortex zone, the central ray trajectory was deflected significantly. The sound pressure on the central line of the sound path also changed. Thirdly, the pressure deviation becomes larger with as the flow velocity increases. The deviation was up to 17% for different velocity profiles in a range of 0.6 m/s to 53 m/s. Lastly, in comparison to the theoretical value, the relative deviation of the instrument coefficient for the velocity profile with a vortex near the transducer reached up to -17%. In addition, the rationality of the simulation was proved by experiments.

Top