Sample records for vortex pinning potential

  1. Thickness-modulated tungsten-carbon superconducting nanostructures grown by focused ion beam induced deposition for vortex pinning up to high magnetic fields.

    PubMed

    Serrano, Ismael García; Sesé, Javier; Guillamón, Isabel; Suderow, Hermann; Vieira, Sebastián; Ibarra, Manuel Ricardo; De Teresa, José María

    2016-01-01

    We report efficient vortex pinning in thickness-modulated tungsten-carbon-based (W-C) nanostructures grown by focused ion beam induced deposition (FIBID). By using FIBID, W-C superconducting films have been created with thickness modulation properties exhibiting periodicity from 60 to 140 nm, leading to a strong pinning potential for the vortex lattice. This produces local minima in the resistivity up to high magnetic fields (2.2 T) in a broad temperature range due to commensurability effects between the pinning potential and the vortex lattice. The results show that the combination of single-step FIBID fabrication of superconducting nanostructures with built-in artificial pinning landscapes and the small intrinsic random pinning potential of this material produces strong periodic pinning potentials, maximizing the opportunities for the investigation of fundamental aspects in vortex science under changing external stimuli (e.g., temperature, magnetic field, electrical current).

  2. Vortex energy landscape from real space imaging analysis of YBa2Cu3O7 with different defect structures

    NASA Astrophysics Data System (ADS)

    Luccas, R. F.; Granados, X.; Obradors, X.; Puig, T.

    2014-10-01

    A methodology based on real space vortex image analysis is presented able to estimate semi-quantitatively the relevant energy densities of an arbitrary array of vortices, map the interaction energy distributions and evaluate the pinning energy associated to particular defects. The combined study using nanostructuration tools, a vortex visualization technique and the energy method is seen as an opportunity to estimate vortex pinning potentials strengths. Particularly, spatial distributions of vortex energy densities induced by surface nanoindented scratches are evaluated and compared to those of twin boundaries. This comparative study underlines the remarkable role of surface nanoscratches in pinning vortices and its potentiality in the design of novel devices for pinning and guiding vortex motion.

  3. Dynamic Control of the Vortex Pinning Potential in a Superconductor Using Current Injection through Nanoscale Patterns.

    PubMed

    Kalcheim, Yoav; Katzir, Eran; Zeides, Felix; Katz, Nadav; Paltiel, Yossi; Millo, Oded

    2017-05-10

    Control over the vortex potential at the nanoscale in a superconductor is a subject of great interest for both fundamental and technological reasons. Many methods for achieving artificial pinning centers have been demonstrated, for example, with magnetic nanostructures or engineered imperfections, yielding many intriguing effects. However, these pinning mechanisms do not offer dynamic control over the strength of the patterned vortex potential because they involve static nanostructures created in or near the superconductor. Dynamic control has been achieved with scanning probe methods on the single vortex level but these are difficult so scale up. Here, we show that by applying controllable nanopatterned current injection, the superconductor can be locally driven out of equilibrium, creating an artificial vortex potential that can be tuned by the magnitude of the injected current, yielding a unique vortex channeling effect.

  4. Mapping the Landscape of Domain-Wall Pinning in Ferromagnetic Films Using Differential Magneto-Optical Microscopy

    NASA Astrophysics Data System (ADS)

    Badea, Robert; Berezovsky, Jesse

    2016-06-01

    The propagation of domain walls in a ferromagnetic film is largely determined by domain-wall pinning at defects in the material. In this article, we map the effective potential landscape for domain-wall pinning in permalloy films by raster scanning a single ferromagnetic vortex and monitoring the hysteretic vortex displacement vs applied magnetic field. The measurement is carried out using a differential magneto-optical microscopy technique which yields spatial sensitivity of approximately 10 nm. We present a simple algorithm for extracting an effective pinning potential from the measurement of vortex displacement vs applied field. The resulting maps of the pinning potential reveal distinct types of pinning sites, which we attribute to quasi-zero-, one-, and two-dimensional defects in the permalloy film.

  5. Reconfigurable superconducting vortex pinning potential for magnetic disks in hybrid structures

    NASA Astrophysics Data System (ADS)

    Marchiori, Estefani; Curran, Peter J.; Kim, Jangyong; Satchell, Nathan; Burnell, Gavin; Bending, Simon J.

    2017-03-01

    High resolution scanning Hall probe microscopy has been used to directly visualise the superconducting vortex behavior in hybrid structures consisting of a square array of micrometer-sized Py ferromagnetic disks covered by a superconducting Nb thin film. At remanence the disks exist in almost fully flux-closed magnetic vortex states, but the observed cloverleaf-like stray fields indicate the presence of weak in-plane anisotropy. Micromagnetic simulations suggest that the most likely origin is an unintentional shape anisotropy. We have studied the pinning of added free superconducting vortices as a function of the magnetisation state of the disks, and identified a range of different phenomena arising from competing energy contributions. We have also observed clear differences in the pinning landscape when the superconductor and the ferromagnet are electron ically coupled or insulated by a thin dielectric layer, with an indication of non-trivial vortex-vortex interactions. We demonstrate a complete reconfiguration of the vortex pinning potential when the magnetisation of the disks evolves from the vortex-like state to an onion-like one under an in-plane magnetic field. Our results are in good qualitative agreement with theoretical predictions and could form the basis of novel superconducting devices based on reconfigurable vortex pinning sites.

  6. Reconfigurable superconducting vortex pinning potential for magnetic disks in hybrid structures.

    PubMed

    Marchiori, Estefani; Curran, Peter J; Kim, Jangyong; Satchell, Nathan; Burnell, Gavin; Bending, Simon J

    2017-03-24

    High resolution scanning Hall probe microscopy has been used to directly visualise the superconducting vortex behavior in hybrid structures consisting of a square array of micrometer-sized Py ferromagnetic disks covered by a superconducting Nb thin film. At remanence the disks exist in almost fully flux-closed magnetic vortex states, but the observed cloverleaf-like stray fields indicate the presence of weak in-plane anisotropy. Micromagnetic simulations suggest that the most likely origin is an unintentional shape anisotropy. We have studied the pinning of added free superconducting vortices as a function of the magnetisation state of the disks, and identified a range of different phenomena arising from competing energy contributions. We have also observed clear differences in the pinning landscape when the superconductor and the ferromagnet are electron ically coupled or insulated by a thin dielectric layer, with an indication of non-trivial vortex-vortex interactions. We demonstrate a complete reconfiguration of the vortex pinning potential when the magnetisation of the disks evolves from the vortex-like state to an onion-like one under an in-plane magnetic field. Our results are in good qualitative agreement with theoretical predictions and could form the basis of novel superconducting devices based on reconfigurable vortex pinning sites.

  7. Pinning time statistics for vortex lines in disordered environments.

    PubMed

    Dobramysl, Ulrich; Pleimling, Michel; Täuber, Uwe C

    2014-12-01

    We study the pinning dynamics of magnetic flux (vortex) lines in a disordered type-II superconductor. Using numerical simulations of a directed elastic line model, we extract the pinning time distributions of vortex line segments. We compare different model implementations for the disorder in the surrounding medium: discrete, localized pinning potential wells that are either attractive and repulsive or purely attractive, and whose strengths are drawn from a Gaussian distribution; as well as continuous Gaussian random potential landscapes. We find that both schemes yield power-law distributions in the pinned phase as predicted by extreme-event statistics, yet they differ significantly in their effective scaling exponents and their short-time behavior.

  8. Commensurability and stability in nonperiodic systems

    PubMed Central

    Fasano, Y.; De Seta, M.; Menghini, M.; Pastoriza, H.; de la Cruz, F.

    2005-01-01

    We have investigated the response of 3D Bi2Sr2CaCu2O8 vortex structures to a weak perturbation induced by 2D Fe pinning structures acting on one extremity of vortex lines. The pinning patterns were nano-engineered at the sample surface by means of either a Bitter decoration of the vortex lattice or electron-beam lithography. The commensurability conditions between 2D rigid pinning potentials and 3D elastic structures with short-range positional and long-range orientational correlation have been experimentally determined. When the 2D potential is a replica of the nonperiodic vortex structure an amplification of its interaction with the vortex structure takes place. This effect is detected only for the first matching field, becoming negligible for other matching fields. On the other hand, a periodic 2D perturbation is shown to transform the nonperiodic Bragg glass-like structure into an Abrikosov crystal with an effective Debye–Waller factor. PMID:16576763

  9. Method and apparatus for enhancing vortex pinning by conformal crystal arrays

    DOEpatents

    Janko, Boldizsar; Reichhardt, Cynthia; Reichhardt, Charles; Ray, Dipanjan

    2015-07-14

    Disclosed is a method and apparatus for strongly enhancing vortex pinning by conformal crystal arrays. The conformal crystal array is constructed by a conformal transformation of a hexagonal lattice, producing a non-uniform structure with a gradient where the local six-fold coordination of the pinning sites is preserved, and with an arching effect. The conformal pinning arrays produce significantly enhanced vortex pinning over a much wider range of field than that found for other vortex pinning geometries with an equivalent number of vortex pinning sites, such as random, square, and triangular.

  10. Probing dynamics and pinning of single vortices in superconductors at nanometer scales.

    PubMed

    Embon, L; Anahory, Y; Suhov, A; Halbertal, D; Cuppens, J; Yakovenko, A; Uri, A; Myasoedov, Y; Rappaport, M L; Huber, M E; Gurevich, A; Zeldov, E

    2015-01-07

    The dynamics of quantized magnetic vortices and their pinning by materials defects determine electromagnetic properties of superconductors, particularly their ability to carry non-dissipative currents. Despite recent advances in the understanding of the complex physics of vortex matter, the behavior of vortices driven by current through a multi-scale potential of the actual materials defects is still not well understood, mostly due to the scarcity of appropriate experimental tools capable of tracing vortex trajectories on nanometer scales. Using a novel scanning superconducting quantum interference microscope we report here an investigation of controlled dynamics of vortices in lead films with sub-Angstrom spatial resolution and unprecedented sensitivity. We measured, for the first time, the fundamental dependence of the elementary pinning force of multiple defects on the vortex displacement, revealing a far more complex behavior than has previously been recognized, including striking spring softening and broken-spring depinning, as well as spontaneous hysteretic switching between cellular vortex trajectories. Our results indicate the importance of thermal fluctuations even at 4.2 K and of the vital role of ripples in the pinning potential, giving new insights into the mechanisms of magnetic relaxation and electromagnetic response of superconductors.

  11. Probing dynamics and pinning of single vortices in superconductors at nanometer scales

    NASA Astrophysics Data System (ADS)

    Embon, L.; Anahory, Y.; Suhov, A.; Halbertal, D.; Cuppens, J.; Yakovenko, A.; Uri, A.; Myasoedov, Y.; Rappaport, M. L.; Huber, M. E.; Gurevich, A.; Zeldov, E.

    2015-01-01

    The dynamics of quantized magnetic vortices and their pinning by materials defects determine electromagnetic properties of superconductors, particularly their ability to carry non-dissipative currents. Despite recent advances in the understanding of the complex physics of vortex matter, the behavior of vortices driven by current through a multi-scale potential of the actual materials defects is still not well understood, mostly due to the scarcity of appropriate experimental tools capable of tracing vortex trajectories on nanometer scales. Using a novel scanning superconducting quantum interference microscope we report here an investigation of controlled dynamics of vortices in lead films with sub-Angstrom spatial resolution and unprecedented sensitivity. We measured, for the first time, the fundamental dependence of the elementary pinning force of multiple defects on the vortex displacement, revealing a far more complex behavior than has previously been recognized, including striking spring softening and broken-spring depinning, as well as spontaneous hysteretic switching between cellular vortex trajectories. Our results indicate the importance of thermal fluctuations even at 4.2 K and of the vital role of ripples in the pinning potential, giving new insights into the mechanisms of magnetic relaxation and electromagnetic response of superconductors.

  12. Simulating the room-temperature dynamic motion of a ferromagnetic vortex in a bistable potential

    NASA Astrophysics Data System (ADS)

    Haber, E.; Badea, R.; Berezovsky, J.

    2018-05-01

    The ability to precisely and reliably control the dynamics of ferromagnetic (FM) vortices could lead to novel nonvolatile memory devices and logic gates. Intrinsic and fabricated defects in the FM material can pin vortices and complicate the dynamics. Here, we simulated switching a vortex between bistable pinning sites using magnetic field pulses. The dynamic motion was modeled with the Thiele equation for a massless, rigid vortex subject to room-temperature thermal noise. The dynamics were explored both when the system was at zero temperature and at room-temperature. The probability of switching for different pulses was calculated, and the major features are explained using the basins of attraction map of the two pinning sites.

  13. Signatures of two-step impurity mediated vortex lattice melting in Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Dey, Bishwajyoti

    2017-04-01

    We study impurity mediated vortex lattice melting in a rotating two-dimensional Bose-Einstein condensate (BEC). Impurities are introduced either through a protocol in which vortex lattice is produced in an impurity potential or first creating the vortex lattice in the absence of random pinning and then cranking up the impurity potential. These two protocols have obvious relation with the two commonly known protocols of creating vortex lattice in a type-II superconductor: zero field cooling protocol and the field cooling protocol respectively. Time-splitting Crank-Nicolson method has been used to numerically simulate the vortex lattice dynamics. It is shown that the vortex lattice follows a two-step melting via loss of positional and orientational order. This vortex lattice melting process in BEC closely mimics the recently observed two-step melting of vortex matter in weakly pinned type-II superconductor Co-intercalated NbSe2. Also, using numerical perturbation analysis, we compare between the states obtained in two protocols and show that the vortex lattice states are metastable and more disordered when impurities are introduced after the formation of an ordered vortex lattice. The author would like to thank SERB, Govt. of India and BCUD-SPPU for financial support through research Grants.

  14. Mechanics of Individual, Isolated Vortices in a Cuprate Superconductor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Auslaender, M.

    2010-05-25

    Superconductors often contain quantized microscopic whirlpools of electrons, called vortices, that can be modeled as one-dimensional elastic objects. Vortices are a diverse playground for condensed matter because of the interplay between thermal fluctuations, vortex-vortex interactions, and the interaction of the vortex core with the three-dimensional disorder landscape. While vortex matter has been studied extensively, the static and dynamic properties of an individual vortex have not. Here we employ magnetic force microscopy (MFM) to image and manipulate individual vortices in detwinned, single crystal YBa{sub 2}Cu{sub 3}O{sub 6.991} (YBCO), directly measuring the interaction of a moving vortex with the local disorder potential.more » We find an unexpected and dramatic enhancement of the response of a vortex to pulling when we wiggle it transversely. In addition, we find enhanced vortex pinning anisotropy that suggests clustering of oxygen vacancies in our sample and demonstrates the power of MFM to probe vortex structure and microscopic defects that cause pinning.« less

  15. Equilibrium vortex structures of type-II/1 superconducting films with washboard pinning landscapes

    NASA Astrophysics Data System (ADS)

    Wei, C. A.; Xu, X. B.; Xu, X. N.; Wang, Z. H.; Gu, M.

    2018-05-01

    We numerically study the equilibrium vortex structures of type-II/1 superconducting films with a periodic quasi-one-dimensional corrugated substrate. We show as a function of substrate period and pinning strength that, the vortex system displays a variety of vortex phases including arrays consisted of vortex clumps with different morphologies, ordered vortex stripes parallel and perpendicular to pinning troughs, and ordered one-dimensional vortex chains. Our simulations are helpful in understanding the structural modulations for extensive systems with both competing interactions and competing periodicities.

  16. Imaging atomic-scale effects of high-energy ion irradiation on superconductivity and vortex pinning in Fe(Se,Te)

    PubMed Central

    Massee, Freek; Sprau, Peter Oliver; Wang, Yong-Lei; Davis, J. C. Séamus; Ghigo, Gianluca; Gu, Genda D.; Kwok, Wai-Kwong

    2015-01-01

    Maximizing the sustainable supercurrent density, JC, is crucial to high-current applications of superconductivity. To achieve this, preventing dissipative motion of quantized vortices is key. Irradiation of superconductors with high-energy heavy ions can be used to create nanoscale defects that act as deep pinning potentials for vortices. This approach holds unique promise for high-current applications of iron-based superconductors because JC amplification persists to much higher radiation doses than in cuprate superconductors without significantly altering the superconducting critical temperature. However, for these compounds, virtually nothing is known about the atomic-scale interplay of the crystal damage from the high-energy ions, the superconducting order parameter, and the vortex pinning processes. We visualize the atomic-scale effects of irradiating FeSexTe1−x with 249-MeV Au ions and find two distinct effects: compact nanometer-sized regions of crystal disruption or “columnar defects,” plus a higher density of single atomic site “point” defects probably from secondary scattering. We directly show that the superconducting order is virtually annihilated within the former and suppressed by the latter. Simultaneous atomically resolved images of the columnar crystal defects, the superconductivity, and the vortex configurations then reveal how a mixed pinning landscape is created, with the strongest vortex pinning occurring at metallic core columnar defects and secondary pinning at clusters of point-like defects, followed by collective pinning at higher fields. PMID:26601180

  17. Imaging atomic-scale effects of high-energy ion irradiation on superconductivity and vortex pinning in Fe(Se,Te).

    PubMed

    Massee, Freek; Sprau, Peter Oliver; Wang, Yong-Lei; Davis, J C Séamus; Ghigo, Gianluca; Gu, Genda D; Kwok, Wai-Kwong

    2015-05-01

    Maximizing the sustainable supercurrent density, J C, is crucial to high-current applications of superconductivity. To achieve this, preventing dissipative motion of quantized vortices is key. Irradiation of superconductors with high-energy heavy ions can be used to create nanoscale defects that act as deep pinning potentials for vortices. This approach holds unique promise for high-current applications of iron-based superconductors because J C amplification persists to much higher radiation doses than in cuprate superconductors without significantly altering the superconducting critical temperature. However, for these compounds, virtually nothing is known about the atomic-scale interplay of the crystal damage from the high-energy ions, the superconducting order parameter, and the vortex pinning processes. We visualize the atomic-scale effects of irradiating FeSe x Te1-x with 249-MeV Au ions and find two distinct effects: compact nanometer-sized regions of crystal disruption or "columnar defects," plus a higher density of single atomic site "point" defects probably from secondary scattering. We directly show that the superconducting order is virtually annihilated within the former and suppressed by the latter. Simultaneous atomically resolved images of the columnar crystal defects, the superconductivity, and the vortex configurations then reveal how a mixed pinning landscape is created, with the strongest vortex pinning occurring at metallic core columnar defects and secondary pinning at clusters of point-like defects, followed by collective pinning at higher fields.

  18. Simulations of vortices in a star-shaped plate with an artificial pin

    NASA Astrophysics Data System (ADS)

    Miyoshi, Hiroki; Ito, Atsuki; Dang, Vu The; Thanh Huy, Ho; Hayashi, Masahiko; Kato, Masaru; Ishida, Takekazu

    2017-07-01

    Although a triangular vortex lattice is stable in a bulk type-II superconductor, exotic vortex configurations are expected to appear in a small superconducting plate. Theoretical calculations on vortex structures in a star-shaped superconducting plate have been given in our preceding work. In this work, we extended our theoretical studies to the case of having an artificial pin. We performed the Ginzburg-Landau (GL) calculations systematically to compare with the pin-free case by using the finite element method. We found that a vortex tends to accommodate preferentially in an aritificial pin in the star-shaped plate. We found a systematic evolution of vortex structure with increaseing magnetic field. We compare our theoretical calculations with vortices in a star-shaped Mo80Ge20 plate with an artificial pin and without an artificial pin obtained by a scanning SQUID microscope. We reconstructed the vortex image on the sample surface by using the inverse Biot-Savart law and the Fourier transformation.

  19. Abrikosov fluxonics in washboard nanolandscapes

    NASA Astrophysics Data System (ADS)

    Dobrovolskiy, Oleksandr V.

    2017-02-01

    Abrikosov fluxonics, a domain of science and engineering at the interface of superconductivity research and nanotechnology, is concerned with the study of the properties and dynamics of Abrikosov vortices in nanopatterned superconductors, with particular focus on their confinement, manipulation, and exploitation for emerging functionalities. Vortex pinning, guided vortex motion, and the ratchet effect are three main fluxonic ;tools; which allow for the dynamical (pinned or moving), the directional (angle-dependent), and the orientational (current polarity-sensitive) control of the fluxons, respectively. Thanks to the periodicity of the vortex lattice, several groups of effects emerge when the vortices move in a periodic pinning landscape: Spatial commensurability of the location of vortices with the underlying pinning nanolandscape leads to a reduction of the dc resistance and the microwave loss at the so-called matching fields. Temporal synchronization of the displacement of vortices with the number of pinning sites visited during one half ac cycle manifests itself as Shapiro steps in the current-voltage curves. Delocalization of vortices oscillating under the action of a high-frequency ac drive can be tuned by a superimposed dc bias. In this short review a set of experimental results on the vortex dynamics in the presence of periodic pinning potentials in Nb thin films is presented. The consideration is limited to one particular type of artificial pinning structures - directly written nanolandscapes of the washboard type, which are fabricated by focused ion beam milling and focused electron beam induced deposition. The reported results are relevant for the development of fluxonic devices and the reduction of microwave losses in superconducting planar transmission lines.

  20. Strong vortex core pinning and Barkhausen-free magnetization response in thin Permalloy disks induced by implantation of 1 × 10{sup 4} Ga{sup +} ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fani Sani, F., E-mail: fanisani@ualberta.ca, E-mail: mark.freeman@ualberta.ca; Losby, J. E.; Diao, Z.

    2014-05-07

    Artificial vortex core pinning sites are induced in thin Permalloy disks by point exposure to as few as 10 000 ions from a focused Ga{sup +} beam. These pinning sites yield a first-order change in the magnetization response of the disk. A single site can keep the vortex core pinned over an applied field range comparable to the vortex annihilation field of the unaltered disk. Several widely separated sites can work together to keep the core pinned in one place, while the Barkhausen effect is eliminated from the magnetization curve over a range approaching the saturation moment of the disk.

  1. Nonequilibrium dynamic phases in driven vortex lattices with periodic pinning

    NASA Astrophysics Data System (ADS)

    Reichhardt, Charles Michael

    1998-12-01

    We present the results of an extensive series of simulations of flux-gradient and current driven vortices interacting with either random or periodically arranged pinning sites. First, we consider flux-gradient-driven simulations of superconducting vortices interacting with strong randomly-distributed columnar pinning defects, as an external field H(t) is quasi-statically swept from zero through a matching field Bsb{phi}. Here, we find significant changes in the behavior of the local flux density B(x, y, H(t)), magnetization M(H(t)), critical current Jsb{c}(B(t)), and the individual vortex flow paths, as the local flux density crosses Bsb{phi}. Further, we find that for a given pin density, Jsb{c}(B) can be enhanced by maximizing the distance between the pins for B < Bsb{phi}. For the case of periodic pinning sites as a function of applied field, we find a rich variety of ordered and partially-ordered vortex lattice configurations. We present formulas that predict the matching fields at which commensurate vortex configurations occur and the vortex lattice orientation with respect to the pinning lattice. Our results are in excellent agreement with recent imaging experiments on square pinning arrays (K. Harada et al., Science 274, 1167 (1996)). For current driven simulations with periodic pinning we find a remarkable number of dynamical plastic flow phases. Signatures of the transitions between these different dynamical phases include sudden jumps in the current-voltage curves, hysteresis, as well as marked changes in the vortex trajectories and vortex lattice order. These phases are outlined in a series of dynamic phase diagrams. We show that several of these phases and their phase-boundaries can be understood in terms of analytical arguments. Finally, when the vortex lattice is driven at varying angles with respect to the underlying periodic pinning array, the transverse voltage-current V(I) curves show a series of mode-locked plateaus with the overall V(I) forming a devil's staircase structure.

  2. Periodic vortex pinning by regular structures in Nb thin films: magnetic vs. structural effects

    NASA Astrophysics Data System (ADS)

    Montero, Maria Isabel; Jonsson-Akerman, B. Johan; Schuller, Ivan K.

    2001-03-01

    The defects present in a superconducting material can lead to a great variety of static and dynamic vortex phases. In particular, the interaction of the vortex lattice with regular arrays of pinning centers such as holes or magnetic dots gives rise to commensurability effects. These commensurability effects can be observed in the magnetoresistance and in the critical current dependence with the applied field. In recent years, experimental results have shown that there is a dependence of the periodic pinning effect on the properties of the vortex lattice (i.e. vortex-vortex interactions, elastic energy and vortex velocity) and also on the dots characteristics (i.e. dot size, distance between dots, magnetic character of the dot material, etc). However, there is not still a good understanding of the nature of the main pinning mechanisms by the magnetic dots. To clarify this important issue, we have studied and compared the periodic pinning effects in Nb films with rectangular arrays of Ni, Co and Fe dots, as well as the pinning effects in a Nb film deposited on a hole patterned substrate without any magnetic material. We will discuss the differences on pinning energies arising from magnetic effects as compared to structural effects of the superconducting film. This work was supported by NSF and DOE. M.I. Montero acknowledges postdoctoral fellowship by the Secretaria de Estado de Educacion y Universidades (Spain).

  3. Properties and applications of submicron magnetic structures

    NASA Astrophysics Data System (ADS)

    Silevitch, Daniel Marc

    The interactions between an array of magnetic dots and a superconducting thin film were studied using transport measurements and magnetic imaging. The transport measurements examined the enhancement in the pinning of flux vortices when the vortex lattice was commensurate with the dot array. The degradation of the pinning enhancement due to the controlled introduction of disorder into the dot lattice was studied. Enhanced pinning was observed to persist in disordered arrays when the vortex lattice had the same density as the dot lattice. When the vortex density was an integral multiple of the dot lattice density, the enhanced pinning was suppressed with increasing disorder. Magnetic imaging was carried out on superconductors with ordered arrays of pinning sites. The vortices were observed to form regions of local order even when the vortex density was less than the dot density. There were also a significant number of vortices pinned in the interstitials of the dot lattice, indicating that the pinning potential is comparable in strength to the inter-vortex repulsion. The transport properties of ferromagnetic nanowires were also investigated. The behavior of straight nanowires was studied as a function of the magnitude and angle of the applied magnetic field. A model was developed for the magnetization behavior of the nanowire which reproduced the observed transport properties. The magnetic reversal properties were examined and found to be consistent with the curling mode of reversal, and an estimate for the initial nucleation volume was obtained. This behavior was compared to the behavior of mechanically bent nanowires. The bent wires were qualitatively similar to two independent straight wires. The bent wires, however, also showed interaction effects due to the domain configuration that had an effect on the magnetization behavior. An estimate for the energy barrier of nucleating a domain wall in a nanowire was derived from these interaction effects. A resistance contribution due to the domain configuration was isolated; the resistance was found to decrease in the presence of a domain wall.

  4. Systematic study of vortex pinning and liquid-glass phase transition in BaFe2-x Ni x As2 single crystals

    NASA Astrophysics Data System (ADS)

    Vlasenko, V. A.; Sobolevskiy, O. A.; Sadakov, A. V.; Pervakov, K. S.; Gavrilkin, S. Yu.; Dik, A. V.; Eltsev, Yu. F.

    2018-01-01

    The vortex pinning and liquid-glass transition have been studied in BaFe2-x Ni x As2 single crystals with different doping levels (x = 0.065; 0.093; 0.1; 0.14; 0.18). We found that Ni-doped Ba-122 has rather narrow vortex-liquid state region. Our results show that the temperature dependence of the resistivity as well as I-V characteristics of Ni-doped Ba-122 is consistent with 3D vortex-glass model. It was found that δl-pinning gives the main contribution to overall pinning in 122 Ni-doped system. The vortex phase diagrams for different doping levels were built based on the obtained data of temperature of the vortex-glass transition T g and the upper critical magnetic field H c2.

  5. Vortex dynamics in type-II superconductors under strong pinning conditions

    NASA Astrophysics Data System (ADS)

    Thomann, A. U.; Geshkenbein, V. B.; Blatter, G.

    2017-10-01

    We study effects of pinning on the dynamics of a vortex lattice in a type-II superconductor in the strong-pinning situation and determine the force-velocity (or current-voltage) characteristic combining analytical and numerical methods. Our analysis deals with a small density np of defects that act with a large force fp on the vortices, thereby inducing bistable configurations that are a characteristic feature of strong pinning theory. We determine the velocity-dependent average pinning-force density 〈Fp(v ) 〉 and find that it changes on the velocity scale vp˜fp/η a03 , where η is the viscosity of vortex motion and a0 the distance between vortices. In the small pin-density limit, this velocity is much larger than the typical flow velocity vc˜Fc/η of the free vortex system at drives near the critical force density Fc=〈Fp(v =0 ) 〉 ∝npfp . As a result, we find a generic excess-force characteristic, a nearly linear force-velocity characteristic shifted by the critical force density Fc; the linear flux-flow regime is approached only at large drives. Our analysis provides a derivation of Coulomb's law of dry friction for the case of strong vortex pinning.

  6. Vortex pinning and irreversibility fields in FeS1-xSex (x = 0, 0.06)

    NASA Astrophysics Data System (ADS)

    Wang, Aifeng; Petrovic, C.

    2017-06-01

    We report strong vortex pinning and large irreversibility fields in single crystals of tetragonal FeS1-xSex (x = 0, 0.06). Vortex dynamics is characterized by crossover in field dependence of the depinning energy U0, indicative of single flux surface pinning to the region of collective flux pinning on point-like defects. The close proximity of the irreversibility lines to the upper critical field (Hc2) is consistent with strong pinning in FeS and FeS0.94Se0.06, pointing that new materials with building-blocks of FeS4 tetrahedra are likely to host high critical currents.

  7. Critical current density and vortex pinning in tetragonal FeS 1 ₋ x Se x ( x = 0 , 0.06 )

    DOE PAGES

    Wang, Aifeng; Wu, Lijun; Ivanovski, V. N.; ...

    2016-09-07

    Here we report critical current density (J c) in tetragonal FeS single crystals, similar to iron-based superconductors with much higher superconducting critical temperatures (T c). The J c is enhanced three times by 6% Se doping. We observe scaling of the normalized vortex pinning force as a function of reduced field at all temperatures. Vortex pinning in FeS and FeS 0.94Se 0.06 shows contribution of core-normal surfacelike pinning. Lastly, reduced temperature dependence of J c indicates that dominant interaction of vortex cores and pinning centers is via scattering of charge carriers with reduced mean free path (δl), in contrast tomore » K xFe 2₋ySe 2 where spatial variations in T c (δT c) prevails.« less

  8. Vortex pinning landscape in MOD-TFA YBCO nanostroctured films

    NASA Astrophysics Data System (ADS)

    Gutierrez, J.; Puig, T.; Pomar, A.; Obradors, X.

    2008-03-01

    A methodology of general validity to study vortex pinning in YBCO based on Jc transport measurements is described. It permits to identify, separate and quantify three basic vortex pinning contributions associated to anisotropic-strong, isotropic-strong and isotropic-weak pinning centers. Thereof, the corresponding vortex pinning phase diagrams are built up. This methodology is applied to the new solution-derived YBCO nanostructured films, including controlled interfacial pinning by the growth of nanostructured templates by means of self-assembled processes [1] and YBCO-BaZrO3 nanocomposites prepared by modified solution precursors. The application of the methodology and comparison with a standard solution-derived YBCO film [2], enables us to identify the nature and the effect of the additional pinning centers induced. The nanostructured templates films show c-axis pinning strongly increased, controlling most of the pinning phase diagram. On the other hand, the nanocomposites have achieved so far, the highest pinning properties in HTc-superconductors [3], being the isotropic-strong defects contribution the origin of their unique properties. [1] M. Gibert et al, Adv. Mat. vol 19, p. 3937 (2007) [2] Puig.T et al, SuST EUCAS 2007 (to be published) [3] J. Gutierrez et al, Nat. Mat. vol. 6, p. 367 (2007) * Work supported by HIPERCHEM, NANOARTIS and MAT2005-02047

  9. Doping- and irradiation-controlled pinning of vortices in BaFe 2 (As 1 - x P x ) 2 single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, L.; Jia, Y.; Schlueter, J. A.

    We report on the systematic evolution of vortex pinning behavior in isovalent doped single crystals of BaFe 2 (As 1 - x P x ) 2 . Proceeding from optimal doped to overdoped samples, we find a clear transformation of the magnetization hysteresis from a fishtail behavior to a distinct peak effect, followed by a reversible magnetization and Bean-Livingston surface barriers. Strong point pinning dominates the vortex behavior at low fields whereas weak collective pinning determines the behavior at higher fields. In addition to doping effects, we show that particle irradiation by energetic protons can tune vortex pinning in thesemore » materials.« less

  10. Doping- and irradiation-controlled pinning of vortices in BaFe{<_2}(As{<_1-x}P{<_x}){<_2} single crystals.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, L.; Jia, Y.; Schlueter, J. A.

    We report on the systematic evolution of vortex pinning behavior in isovalent doped single crystals of BaFe{sub 2}(As{sub 1-x}P{sub x}){sub 2}. Proceeding from optimal doped to overdoped samples, we find a clear transformation of the magnetization hysteresis from a fishtail behavior to a distinct peak effect, followed by a reversible magnetization and Bean-Livingston surface barriers. Strong point pinning dominates the vortex behavior at low fields whereas weak collective pinning determines the behavior at higher fields. In addition to doping effects, we show that particle irradiation by energetic protons can tune vortex pinning in these materials.

  11. Disentangling vortex pinning landscape in chemical solution deposited superconducting YBa2Cu3O7-x films and nanocomposites

    NASA Astrophysics Data System (ADS)

    Palau, A.; Vallès, F.; Rouco, V.; Coll, M.; Li, Z.; Pop, C.; Mundet, B.; Gàzquez, J.; Guzman, R.; Gutierrez, J.; Obradors, X.; Puig, T.

    2018-07-01

    In-field angular pinning performances at different temperatures have been analysed on chemical solution deposited (CSD) YBa2Cu3O7-x (YBCO) pristine films and nanocomposites. We show that with this analysis we are able to quantify the vortex pinning strength and energies, associated with different kinds of natural and artificial pinning defects, acting as efficient pinning centres at different regions of the H-T phase diagram. A good quantification of the variety of pinning defects active at different temperatures and magnetic fields provides a unique tool to design the best vortex pinning landscape under different operating conditions. We have found that by artificially introducing a unique defect in the YBCO matrix, the stacking faults, we are able to modify three different contributions to vortex pinning (isotropic-strong, anisotropic-strong, and isotropic-weak). The isotropic-strong contribution, widely studied in CSD YBCO nanocomposites, is associated with nanostrained regions induced at the partial dislocations surrounding the stacking faults. Moreover, the stacking fault itself acts as a planar defect which provides a very effective anisotropic-strong pinning at H//ab. Finally, the large presence of Cu-O cluster vacancies found in the stacking faults have been revealed as a source of isotropic-weak pinning sites, very active at low temperatures and high fields.

  12. Pinning, flux diodes and ratchets for vortices interacting with conformal pinning arrays

    DOE PAGES

    Olson Reichhardt, C. J.; Wang, Y. L.; Xiao, Z. L.; ...

    2016-05-31

    A conformal pinning array can be created by conformally transforming a uniform triangular pinning lattice to produce a new structure in which the six-fold ordering of the original lattice is conserved but where there is a spatial gradient in the density of pinning sites. Here we examine several aspects of vortices interacting with conformal pinning arrays and how they can be used to create a flux flow diode effect for driving vortices in different directions across the arrays. Under the application of an ac drive, a pronounced vortex ratchet effect occurs where the vortices flow in the easy direction ofmore » the array asymmetry. When the ac drive is applied perpendicular to the asymmetry direction of the array, it is possible to realize a transverse vortex ratchet effect where there is a generation of a dc flow of vortices perpendicular to the ac drive due to the creation of a noise correlation ratchet by the plastic motion of the vortices. We also examine vortex transport in experiments and compare the pinning effectiveness of conformal arrays to uniform triangular pinning arrays. In conclusion, we find that a triangular array generally pins the vortices more effectively at the first matching field and below, while the conformal array is more effective at higher fields where interstitial vortex flow occurs.« less

  13. Single-vortex pinning and penetration depth in superconducting NdFeAsO 1-xF x

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jessie T.; Kim, Jeehoon; Huefner, Magdalena

    2015-10-12

    We use a magnetic force microscope (MFM) to investigate single vortex pinning and penetration depth in NdFeAsO 1-xF x, one of the highest-T c iron-based superconductors. In fields up to 20 Gauss, we observe a disordered vortex arrangement, implying that the pinning forces are stronger than the vortex-vortex interactions. We measure the typical force to depin a single vortex, F depin ≃ 4.5 pN, corresponding to a critical current up to J c ≃ 7×10 5 A/cm 2. As a result, our MFM measurements allow the first local and absolute determination of the superconducting in-plane penetration depth in NdFeAsO 1-xFmore » x, λ ab = 320 ± 60 nm, which is larger than previous bulk measurements.« less

  14. Energy loss from a moving vortex in superfluid helium

    NASA Astrophysics Data System (ADS)

    Zieve, R. J.; Frei, C. M.; Wolfson, D. L.

    2012-11-01

    We present measurements on both energy loss and pinning for a vortex terminating on the curved surface of a cylindrical container. We vary surface roughness, cell diameter, fluid velocity, and temperature. Although energy loss and pinning both arise from interactions between the vortex and the surface, their dependences on the experimental parameters differ, suggesting that different mechanisms govern the two effects. We propose that the energy loss stems from reconnections with a mesh of microscopic vortices that covers the cell wall, while pinning is dominated by other influences such as the local fluid velocity.

  15. Self-induced pinning of vortices in the presence of ac driving force in magnetic superconductors

    NASA Astrophysics Data System (ADS)

    Bulaevskii, Lev N.; Lin, Shi-Zeng

    2012-12-01

    We derive the response of the magnetic superconductors in the vortex state to the ac Lorentz force, FL(t)=Facsin(ωt), taking into account the interaction of vortices with the magnetic moments described by the relaxation dynamics (polaronic effect). At low amplitudes of the driving force Fac the dissipation in the system is suppressed due to the enhancement of the effective viscosity at low frequencies and due to formation of the magnetic pinning at high frequencies ω. In the adiabatic limit with low frequencies ω and high amplitude of the driving force Fac, the vortex and magnetic polarization form a vortex polaron when FL(t) is small. When FL increases, the vortex polaron accelerates and at a threshold driving force, the vortex polaron dissociates and the motion of vortex and the relaxation of magnetization are decoupled. When FL decreases, the vortex is retrapped by the background of remnant magnetization and they again form vortex polaron. This process repeats when FL(t) increases in the opposite direction. Remarkably, after dissociation, decoupled vortices move in the periodic potential induced by magnetization which remains for some periods of time due to retardation after the decoupling. At this stage vortices oscillate with high frequencies determined by the Lorentz force at the moment of dissociation. We derive also the creep rate of vortices and show that magnetic moments suppress creep rate.

  16. Strong-pinning regimes by spherical inclusions in anisotropic type-II superconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willa, R.; Koshelev, A. E.; Sadovskyy, I. A.

    2017-11-27

    The current-carrying capacity of type-II superconductors is decisively determined by how well material defect structures can immobilize vortex lines. In order to gain deeper insights into intrinsic pinning mechanisms, we have explored the case of vortex trapping by randomly distributed spherical inclusions using large-scale simulations of the time-dependent Ginzburg-Landau equations. We find that for a small density of particles having diameters of two coherence lengths, the vortex lattice preserves its structure and the critical current jc decays with the magnetic field following a power-law B-a with a ~ 0:66, which is consistent with predictions of strong pinning theory. For highermore » density of particles and/or larger inclusions, the lattice becomes progressively more disordered and the exponent smoothly decreases down to a ~ 0:3. At high magnetic fields, all inclusions capture a vortex and the critical current decays faster than B-1 as would be expected by theory. In the case of larger inclusions with diameter of four coherence length, the magnetic-field dependence of the critical current is strongly affected by the ability of inclusions to capture multiple vortex lines. We found that at small densities, the fraction of inclusions trapping two vortex lines rapidly grows within narrow field range leading to a shallow peak in jc(B)-dependence within this range. With increasing inclusion density, this peak transforms into a plateau, which then smooths out. Using the insights gained from simulations, we determine the limits of applicability of strong pinning theory and provide different routes to describe vortex pinning beyond those bounds.« less

  17. Strong-pinning regimes by spherical inclusions in anisotropic type-II superconductors

    NASA Astrophysics Data System (ADS)

    Willa, R.; Koshelev, A. E.; Sadovskyy, I. A.; Glatz, A.

    2018-01-01

    The current-carrying capacity of type-II superconductors is decisively determined by how well material defect structures can immobilize vortex lines. In order to gain deeper insights into the fundamental pinning mechanisms, we have explored the case of vortex trapping by randomly distributed spherical inclusions using large-scale simulations of the time-dependent Ginzburg-Landau equations. We find that for a small density of particles having diameters of two coherence lengths, the vortex lattice preserves its structure and the critical current j c decays with the magnetic field following a power-law {B}-α with α ≈ 0.66, which is consistent with predictions of strong-pinning theory. For a higher density of particles and/or larger inclusions, the lattice becomes progressively more disordered and the exponent smoothly decreases down to α ≈ 0.3. At high magnetic fields, all inclusions capture a vortex and the critical current decays faster than {B}-1 as would be expected by theory. In the case of larger inclusions with a diameter of four coherence lengths, the magnetic-field dependence of the critical current is strongly affected by the ability of inclusions to capture multiple vortex lines. We found that at small densities, the fraction of inclusions trapping two vortex lines rapidly grows within narrow field range leading to a peak in j c(B)-dependence within this range. With increasing inclusion density, this peak transforms into a plateau, which then smooths out. Using the insights gained from simulations, we determine the limits of applicability of strong-pinning theory and provide different routes to describe vortex pinning beyond those bounds.

  18. Polarity-Dependent Vortex Pinning and Spontaneous Vortex-Antivortex Structures in Superconductor/Ferromagnet Hybrids

    NASA Astrophysics Data System (ADS)

    Bending, Simon J.; Milošević, Milorad V.; Moshchalkov, Victor V.

    Hybrid structures composed of superconducting films that are magnetically coupled to arrays of nanoscale ferromagnetic dots have attracted enormous interest in recent years. Broadly speaking, such systems fall into one of two distinct regimes. Ferromagnetic dots with weak moments pin free vortices, leading to enhanced superconducting critical currents, particularly when the conditions for commensurability are satisfied. Dots with strong moments spontaneously generate one or more vortex-antivortex (V-AV) pairs which lead to a rich variety of pinning, anti-pinning and annihilation phenomena. We describe high resolution Hall probe microscopy of flux structures in various hybrid samples composed of superconducting Pb films deposited on arrays of ferromagnetic Co or Co/Pt dots with both weak and strong moments. We show directly that dots with very weak perpendicular magnetic moments do not induce vortex-antivortex pairs, but still act as strong polarity-dependent vortex pinning centres for free vortices. In contrast, we have directly observed spontaneous V-AV pairs induced by large moment dots with both in-plane and perpendicular magnetic anisotropy, and studied the rich physical phenomena that arise when they interact with added "free" (anti)fluxons in an applied magnetic field. The interpretation of our imaging results is supported by bulk magnetometry measurements and state-of-the-art Ginzburg-Landau and London theory calculations.

  19. Vortex Interactions from a Finite Span Cylinder with a Laminar Boundary Layer for Varied Parameters

    NASA Astrophysics Data System (ADS)

    Gildersleeve, Samantha; Amitay, Michael

    2017-11-01

    Flow structures around a stationary, wall-mounted, finite-span cylindrical pin were investigated experimentally over a flat plate to explore the effects of varied aspect ratio and pin mean height with respect to the local boundary layer. Nine static pin configurations were tested where the pin's mean height to the local boundary layer thickness were 0.5, 1, and 1.5 for a range of aspect ratios between 0.125 and 1.125. The freestream velocity was fixed at 11 m/s, corresponding to ReD 2800, 5600, and 8400, respectively. Three-dimensional flowfields were reconstructed and analyzed from SPIV measurements where data were collected along cross-stream planes in the wake of the pin. This study focuses on three dominant vortical patterns associated with a finite span cylinder: the arch-type vortex horseshoe vortex, and the tip vortices Results indicate that both the aspect ratio and mean height play an important role in the behavior and interactions of these vortex structures which alter the wake characteristics significantly. Understanding the mechanisms by which the vortical structures may be strengthened while reducing adverse local pressure drag are key for developing more efficient means of passive and/or active flow control through finite span cylindrical pins and will be discussed in further detail. NDSEG Fellowship for Samantha Gildersleeve.

  20. Giant increase of critical current density and vortex pinning in Mn doped K{sub x}Fe{sub 2−y}Se{sub 2} single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Mingtao; Zhang, Jincang, E-mail: jczhang@staff.shu.edu.cn; Materials Genome Institute, Shanghai University, Shanghai 200444

    2014-11-10

    We report a comparative study of the critical current density (J{sub c}) and vortex pinning among pure and Mn doped K{sub x}Fe{sub 2−y}Se{sub 2} single crystals. It is found that the J{sub c} values can be greatly improved by Mn doping and post-quenching treatment when comparing to pristine pure sample. In contrast to pure samples, an anomalous second magnetization peak (SMP) effect is observed in both 1% and 2% Mn doped samples at T = 3 K for H∥ab but not for H∥c. Referring to Dew-Hughes and Kramer's model, we performed scaling analyses of the vortex pinning force density vs magnetic field inmore » 1% Mn doped and quenched pristine crystals. The results show that the normal point defects are the dominant pinning sources, which probably originate from the variations of intercalated K atoms. We propose that the large nonsuperconducting K-Mn-Se inclusions may contribute to the partial normal surface pinning and give rise to the anomalous SMP effect for H∥ab in Mn doped crystals. These results may facilitate further understanding of the superconductivity and vortex pinning in intercalated iron-selenides superconductors.« less

  1. Critical fields and vortex pinning in overdoped Ba 0.2 K 0.8 Fe 2 As 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, B.; Leroux, M.; Wang, Y. L.

    2015-05-19

    We determine the upper and lower critical fields, the penetration depth and the vortex pinning characteristics of single crystals of overdoped Ba 0.2K 0.8Fe 2As 2 with T c ~ 10 K. We find that bulk vortex pinning is weak and vortex dynamics to be dominated by the geometrical surface barrier. The temperature dependence of the lower critical field, H c1, displays a distinctive upturn at low temperatures, which is suggestive of two distinct superconducting gaps. Furthermore, the penetration depth, λ, varies linearly with temperature below 4 K indicative of line nodes in the superconducting gap. As a result, thesemore » observations can be well described in a model based on a multi-band nodal superconducting gap.« less

  2. ac-driven vortices and the Hall effect in a superconductor with a tilted washboard pinning potential

    NASA Astrophysics Data System (ADS)

    Shklovskij, Valerij A.; Dobrovolskiy, Oleksandr V.

    2008-09-01

    The Langevin equation for a two-dimensional (2D) nonlinear guided vortex motion in a tilted cosine pinning potential in the presence of an ac is exactly solved in terms of a matrix continued fraction at arbitrary value of the Hall effect. The influence of an ac of arbitrary amplitude and frequency on the dc and ac magnetoresistivity tensors is analyzed. The ac density and frequency dependence of the overall shape and the number and position of the Shapiro steps on the anisotropic current-voltage characteristics are considered. The influence of a subcritical or overcritical dc on the time-dependent stationary ac longitudinal and transverse resistive vortex responses (on the frequency of an ac drive Ω ) in terms of the nonlinear impedance tensor Ẑ and the nonlinear ac response at Ω harmonics are studied. Analytical formulas for 2D temperature-dependent linear impedance tensor ẐL in the presence of a dc which depend on the angle α between the current-density vector and the guiding direction of the washboard planar pinning potential are derived and analyzed. Influence of α anisotropy and the Hall effect on the nonlinear power absorption by vortices is discussed.

  3. Commensurate vortex configurations in thin superconducting films nanostructured by square lattice of magnetic dots

    NASA Astrophysics Data System (ADS)

    Milošević, M. V.; Peeters, F. M.

    2004-05-01

    Within the phenomenological Ginzburg-Landau (GL) theory, we investigate the vortex structure of a thin superconducting film (SC) with a regular matrix of ferromagnetic dots (FD) deposited on top of it. The vortex pinning properties of such a magnetic lattice are studied, and the field polarity dependent votex pinning is observed. The exact vortex configuration depends on the size of the magnetic dots, their polarity, periodicity of the FD-rooster and the properties of the SC expressed through the effective Ginzburg-Landau parameter κ*.

  4. Critical current density and mechanism of vortex pinning in K xFe 2-ySe₂ doped with S

    DOE PAGES

    Lei, Hechang; Petrovic, C.

    2011-08-15

    We report the critical current density J c in K xFe 2-ySe 2-zS z crystals. The J c can be enhanced significantly with optimal S doping (z=0.99). For K 0.70(7)Fe 1.55(7)Se 1.01(2)S 0.99(2), the weak fishtail effect is found for H II c. The normalized vortex pinning forces follow the scaling law with a maximum position at 0.41 of the reduced magnetic field. These results demonstrate that the small size normal point defects dominate the vortex pinning mechanism.

  5. Isotropic enhancement in the critical current density of YBCO thin films incorporating nanoscale Y2BaCuO5 inclusions

    NASA Astrophysics Data System (ADS)

    Jha, Alok K.; Matsumoto, Kaname; Horide, Tomoya; Saini, Shrikant; Mele, Paolo; Ichinose, Ataru; Yoshida, Yutaka; Awaji, Satoshi

    2017-09-01

    The effect of incorporation of nanoscale Y2BaCuO5 (Y211) inclusions on the vortex pinning properties of YBa2Cu3O7-δ (YBCO or Y123) superconducting thin films is investigated in detail on the basis of variation of critical current density (JC) with applied magnetic field and also with the orientation of the applied magnetic field at two different temperatures: 77 K and 65 K. Surface modified target approach is employed to incorporate nanoscale Y211 inclusions into the superconducting YBCO matrix. The efficiency of Y211 nanoinclusions in reducing the angular anisotropy of critical current density is found to be significant. The observed angular dependence of the critical current density is discussed on the basis of mutually occupied volume by a vortex and spherical and/or planar defect. A dip in JC near the ab-plane is also observed which has been analyzed on the basis of variation of pinning potential corresponding to a spherical (3-D) or planar (2-D) pinning center and has been attributed to a reduced interaction volume of the vortices with a pinning center and competing nature of the potentials due to spherical and planar defects.

  6. Commensurability effects in the critical forces of a superconducting film with Kagomé pinning array at submatching fields

    NASA Astrophysics Data System (ADS)

    Vizarim, Nicolas P.; Carlone, Maicon; Verga, Lucas G.; Venegas, Pablo A.

    2017-09-01

    Using molecular dynamics simulations, we find the commensurability force peaks in a two-dimensional superconducting thin-film with a Kagomé pinning array. A transport force is applied in two mutually perpendicular directions, and the magnetic field is increased up to the first matching field. Usually the condition to have pronounced force peaks in systems with periodic pinning is associated to the rate between the applied magnetic field and the first matching field, it must be an integer or a rational fraction. Here, we show that another condition must be satisfied, the vortex ground state must be ordered. Our calculations show that the pinning size and strength may dramatically change the vortex ground state. Small pinning radius and high values of pinning strength may lead to disordered vortex configurations, which fade the critical force peaks. The critical forces show anisotropic behavior, but the same dependence on pinning strength and radius is observed for both driven force directions. Different to cases where the applied magnetic field is higher than the first matching field, here the depinning process begins with vortices weakly trapped on top of a pinning site and not with interstitial vortices. Our results are in good agreement with recent experimental results.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lei, Hechang; Petrovic, C.

    The critical current density Jabc of K xFe 2-ySe₂ single crystals can be enhanced by more than one order of magnitude, up to ~2.1×10⁴ A/cm² by the post annealing and quenching technique. A scaling analysis reveals the universal behavior of the normalized pinning force as a function of the reduced field for all temperatures, indicating the presence of a single vortex pinning mechanism. The main pinning sources are three-dimensional (3D) point-like normal cores. The dominant vortex interaction with pinning centers is via spatial variations in critical temperature T c (“δT c pinning”).

  8. Quantitative magneto-optical analysis of the role of finite temperatures on the critical state in YBCO thin films

    NASA Astrophysics Data System (ADS)

    Albrecht, Joachim; Brück, Sebastian; Stahl, Claudia; Ruoß, Stephen

    2016-11-01

    We use quantitative magneto-optical microscopy to investigate the influence of finite temperatures on the critical state of thin YBCO films. In particular, temperature and time dependence of supercurrents in inhomogeneous and anisotropic films are analyzed to extract the role of temperature on the supercurrents themselves and the influence of thermally activated relaxation. We find that inhomogeneities and anisotropies of the current density distribution correspond to a different temperature dependence of local supercurrents. In addition, the thermally activated decay of supercurrents can be used to extract local vortex pinning energies. With these results the modification of vortex pinning introduced by substrate structures is studied. In summary the local investigation of supercurrent densities allows the full description of the vortex pinning landscape with respect to pinning forces and energies in superconducting films with complex properties under the influence of finite temperatures.

  9. Hysteretic Vortex-Matching Effects in High-Tc Superconductors with Nanoscale Periodic Pinning Landscapes Fabricated by He Ion-Beam Projection

    NASA Astrophysics Data System (ADS)

    Zechner, G.; Jausner, F.; Haag, L. T.; Lang, W.; Dosmailov, M.; Bodea, M. A.; Pedarnig, J. D.

    2017-07-01

    Square arrays of submicrometer columnar defects in thin YBa2 Cu3 O7 -δ (YBCO) films with spacings down to 300 nm are fabricated by a He ion-beam projection technique. Pronounced peaks in the critical current and corresponding minima in the resistance demonstrate the commensurate arrangement of flux quanta with the artificial pinning landscape, despite the strong intrinsic pinning in epitaxial YBCO films. While these vortex-matching signatures are exactly at the predicted values in field-cooled experiments, they are displaced in zero-field-cooled, magnetic-field-ramped experiments, conserving the equidistance of the matching peaks and minima. These observations reveal an unconventional critical state in a cuprate superconductor with an artificial, periodic pinning array. The long-term stability of such out-of-equilibrium vortex arrangements paves the way for electronic applications employing fluxons.

  10. Flux pinning in yttrium barium copper oxide coated conductors

    NASA Astrophysics Data System (ADS)

    Chen, Zhijun

    High quality high-temperature-superconducting YBa2Cu 3O7-x (YBCO) films for industrial applications demand very high critical current densities Jc, which can only be achieved by strong three-dimensional (3D) pinning with deliberately introduced nano-precipitates. The purpose of this thesis is to provide an in-depth understanding of the 3D pinning in such YBCO films. In pulsed laser deposition (PLD) prepared YBCO films, a high density of anti-phase boundaries and stacking faults were found to be effective pinning defects for improving Jc in small fields. However, their failure to improve Jc at high fields shows that such naturally generated defects are not strong 3D pinning centers. A demonstration of strong 3D pinning was found in a metal organic chemical vapor deposition (MOCVD) grown YBCO coated conductor (CC) with a high density of (Y,Sm)2O3 nano-precipitates. We observed a significantly enhanced irreversibility field Hirr which, like other superconducting properties was independent of thickness, due to strong vortex-pin interactions. The advantage of 3D pinning was further illustrated by a bi-layer metalorganic deposition (MOD) grown YBCO CC with different 3D pinning structures in each layer. The Jc anisotropy of the bilayer was found to be the thickness-weighted sum of the anisotropy of the two individual layers, demonstrating an applicable way to tune the Jcanisotropy. Moreover, extensive low temperature and high magnetic field evaluations performed on an MOCVD CC with dense 3D (Y,Sm) 2O3 nano-precipitate pinning centers showed that its strong vortex pinning at 77 K correlated well to strong performance at 4.2 K too. YBCO films with quantitatively controlled artificial Y2O 3 nano-precipitates were also grown by PLD, and characterized over wide temperature and field ranges. Their Jc was found to be determined by the vortex pinning mediated by thermal fluctuation effects. In weak thermal-fluctuation situations Jc increased with decreasing effective precipitate spacing Lc. In other situations, Jc depends on both Lc and the size and elementary pinning strength of the nano-precipitates. In summary, this thesis presents detailed pinning studies on several differently grown YBCO films. Our results identify the optimum pinning structures in YBCO films and provide a systematic guidance for optimizing vortex pinning.

  11. Thermal depinning of a single superconducting vortex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sok, Junghyun

    1995-06-19

    Thermal depinning has been studied for a single vortex trapped in a superconducting thin film in order to determine the value of the superconducting order parameter and the superfluid density when the vortex depins and starts to move around the film. For the Pb film in Pb/Al/Al 2O 3/PbBi junction having a gold line, the vortex depins from the artificial pinning site (Au line) and reproducibly moves through the same sequence of other pinning sites before it leaves the junction area of the Pb film. Values of the normalized order parameter Δ/Δ ° vary from Δ/Δ °=0.20 at the firstmore » motion of the vortex to Δ/Δ °=0.16 where the vortex finally leaves the junction. Equivalently, the value of the normalized superfluid density changes from 4% to 2.5% for this sample in this same temperature interval. For the Nb film in Nb/Al/Al 2O 3/Nb junction, thermal depinning occurs when the value of Δ/Δ ° is approximately 0.22 and the value of ρ s/ρ so is approximately 5%. These values are about 20% larger than those of a Pb sample having a gold line, but the values are really very close. For the Nb sample, grain boundaries are important pinning sites whereas, for the Pb sample with a gold line, pinning may have been dominated by an array Pb 3AU precipitates. Because roughly the same answer was obtained for these rather different kinds of pinning site, there is a reasonable chance that this is a general value within factors of 2 for a wide range of materials.« less

  12. Vortex Matter in Highly Strained Nb_{75}Zr_{25}: Analogy with Viscous Flow of Disordered Solids

    NASA Astrophysics Data System (ADS)

    Chandra, Jagdish; Manekar, Meghmalhar; Sharma, V. K.; Mondal, Puspen; Tiwari, Pragya; Roy, S. B.

    2017-01-01

    We present the results of magnetization and magneto-transport measurements in the superconducting state of an as-cast Nb_{75}Zr_{25} alloy. We also report the microstructure of our sample at various length scales by using optical, scanning electron and transmission electron microscopies. The information of microstructure is used to understand the flux pinning properties in the superconducting state within the framework of collective pinning. The magneto-transport measurements show a non-Arrhenius behaviour of the temperature- and field-dependent resistivity across the resistive transition and is understood in terms of a model for viscous flow of disordered solids which is popularly known as the `shoving model'. The activation energy for flux flow is assumed to be mainly the elastic energy stored in the flux-line lattice. The scaling of pinning force density indicates the presence of two pinning mechanisms of different origins. The elastic constants of the flux-line lattice are used to estimate the length scale of vortex lattice movement, or the volume displaced by the flux-line lattice. It appears that the vortex lattice displacement estimated from elastic energy considerations is of the same order of magnitude as that of the flux bundle hopping length during flux flow. Our results could provide possible directions for establishing a framework where vortex matter and glass-forming liquids or amorphous solids can be treated in a similar manner for understanding the phenomenon of viscous flow in disordered solids or more generally the pinning and depinning properties of elastic manifolds in random media. It is likely that the vortex molasses scenario is more suited to explain the vortex dynamics in conventional low-T_C superconductors.

  13. Vortex Flux Pinning in Type-Ii Superconductors

    NASA Astrophysics Data System (ADS)

    Hasan, Mohammad-Khair A. M.

    1995-01-01

    Rotational magnetization vector measurements on polycrystalline samples of rm YBa_2Cu _3O_7 (YBCO) and (Ba, K)BiO _3 at various fixed fields (H) and temperatures (T) reveal that the vortex flux density (B) in a rotational state consists of a component B_{rm R}, which rotates rigidly with sample rotation, and a B_{rm F} component, which stays at a fixed frictional angle (theta _{rm F}) relative to H. Also, B_{rm R} decreases and ultimately vanishes with increasing H, while B _{rm F} grows monotonically, implying that the vortex pinning strength have a broad distribution. This has been confirmed by the measurements on YBCO of the remanent flux density B^ {rm rm} which can be decomposed analogously into B_{R} ^{} and B_ {F}^{} at angle theta_{F}^{} relative to H. The quantity Hsin theta_{rm F},, which at equilibrium equals tau_{rm p}/mu (the average pinning torque per vortex of moment mu) decreases with increasing high H. This result and the distribution in the strength of the pinning are shown to be consistent with the collective pinning process of vortex bundling. At fixed H, tau_{rm p} decreases rapidly with increasing T, varying approximately as T^{-0.8} for both samples. For polycrystalline YBCO at 4.2 K, B_ {rm R} and B_{ rm F} are found to relax differently with time. The negative creep sign of B_ {rm R} indicates that the number of rotational vortices decreases with time, whereas B _{rm F} shows a positive creep with a negative change in theta_ {rm F}, which indicates that more frictional vortices enter the sample with a tendency of alignment in the direction of H. For grain-oriented YBCO at 4.2 K, the vortex creep measurements of B along the c-axis at different fields showed that: whenever the hysteretic changes of H are reversed in sign, the vortex flux creep (dB/dlogt) decreases very rapidly to zero, where it lingers before changing sign. At the same turning values of H, (dB/dH) also goes to zero. These properties are attributable to the reversals of the vortex motion which occur at the turning values of H and cause a reversal of frictional pinning forces.

  14. Current induced vortex wall dynamics in helical magnetic systems

    NASA Astrophysics Data System (ADS)

    Roostaei, Bahman

    2015-03-01

    Nontrivial topology of interfaces separating phases with opposite chirality in helical magnetic metals result in new effects as they interact with spin polarized current. These interfaces or vortex walls consist of a one dimensional array of vortex lines. We predict that adiabatic transfer of angular momentum between vortex array and spin polarized current will result in topological Hall effect in multi-domain samples. Also we predict that the motion of the vortex array will result in a new damping mechanism for magnetic moments based on Lenz's law. We study the dynamics of these walls interacting with electric current and use fundamental electromagnetic laws to quantify those predictions. On the other hand discrete nature of vortex walls affects their pinning and results in low depinning current density. We predict the value of this current using collective pinning theory.

  15. Giant increase in critical current density of K xFe 2-ySe₂ single crystals

    DOE PAGES

    Lei, Hechang; Petrovic, C.

    2011-12-28

    The critical current density Jabc of K xFe 2-ySe₂ single crystals can be enhanced by more than one order of magnitude, up to ~2.1×10⁴ A/cm² by the post annealing and quenching technique. A scaling analysis reveals the universal behavior of the normalized pinning force as a function of the reduced field for all temperatures, indicating the presence of a single vortex pinning mechanism. The main pinning sources are three-dimensional (3D) point-like normal cores. The dominant vortex interaction with pinning centers is via spatial variations in critical temperature T c (“δT c pinning”).

  16. Sequential vortex hopping in an array of artificial pinning centers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keay, J. C.

    2010-02-24

    We use low-temperature magnetic force microscopy (MFM) to study the hopping motion of vortices in an array of artificial pinning centers (APCs). The array consists of nanoscale holes etched in a niobium thin film by Ar-ion sputtering through an anodic aluminum-oxide template. Variable-temperature magnetometry shows a transition temperature of 7.1 K and an enhancement of the magnetization up to the third matching field at 5 K. Using MFM with attractive and repulsive tip-vortex interaction, we measure the vortex-pinning strength and investigate the motion of individual vortices in the APC array. The depinning force for individual vortices at low field rangedmore » from 0.7 to 1.2 pN. The motion of individual vortices was found to be reproducible and consistent with movement between adjacent holes in the film. The movements are repeatable but the sequence of hops depends on the scan direction. This asymmetry in the motion indicates nonuniform local pinning, a consequence of array disorder and hole-size variation.« less

  17. Simulation of the Vortex Dynamics in a Real Pinning Landscape of YBa 2 Cu 3 O 7 - δ Coated Conductors

    DOE PAGES

    Sadovskyy, I. A.; Koshelev, A. E.; Glatz, A.; ...

    2016-01-01

    The ability of high-temperature superconductors (HTSs) to carry very large currents with almost no dissipation makes them irreplaceable for high-power applications. The development and further improvement of HTS-based cables require an in-depth understanding of the superconducting vortex dynamics in the presence of complex pinning landscapes. We present a critical current analysis of a real HTS sample in a magnetic field by combining state-of-the-art large-scale Ginzburg-Landau simulations with reconstructive three-dimensional scanning-transmission-electron-microscopy tomography of the pinning landscape in Dy-doped YBa 2Cu 3O 7-δ. This methodology provides a unique look at the vortex dynamics in the presence of a complex pinning landscape responsiblemore » for the high-current-carrying-capacity characteristic of commercial HTS wires. Finally, our method demonstrates very good functional and quantitative agreement of the critical current between simulation and experiment, providing a new predictive tool for HTS wire designs.« less

  18. Artificial ice using superconducting vortices (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Trastoy Quintela, Juan; Malnou, Maxime; Ulysse, Christian; Bernard, Rozenn; Bergeal, Nicolas; Faini, Giancarlo; Lesueur, Jerome; Briatico, Javier; Villegas, Javier E.

    2016-10-01

    We use magnetic flux quanta (superconducting vortices) on artificial energy landscapes (pinning arrays) to create a new type of artificial ice. This vortex ice shows unusual temperature effects that offer new possibilities in the study of ice systems. We have investigated the matching of the flux lattice to pinning arrays that present geometrical frustration. The pinning arrays are fabricated on YBCO films using masked O+ ion irradiation. The details of the magneto-resistance imply that the flux lattice organizes into a vortex ice. The absence of history-dependent effects suggests that the vortex ice is highly ordered. Due to the technique used for the artificial energy landscape fabrication, we have the ability to change the pinning array geometry using temperature as a control knob. In particular we can switch the geometrical frustration on and off, which opens the door to performing a new type of annealing absent in other artificial ice systems. * Work supported by the French ANR "MASTHER", and the Fundación Barrié (Galicia, Spain)

  19. Simulation of the Vortex Dynamics in a Real Pinning Landscape of YBa 2 Cu 3 O 7 - δ Coated Conductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadovskyy, I. A.; Koshelev, A. E.; Glatz, A.

    The ability of high-temperature superconductors (HTSs) to carry very large currents with almost no dissipation makes them irreplaceable for high-power applications. The development and further improvement of HTS-based cables require an in-depth understanding of the superconducting vortex dynamics in the presence of complex pinning landscapes. We present a critical current analysis of a real HTS sample in a magnetic field by combining state-of-the-art large-scale Ginzburg-Landau simulations with reconstructive three-dimensional scanning-transmission-electron-microscopy tomography of the pinning landscape in Dy-doped YBa 2Cu 3O 7-δ. This methodology provides a unique look at the vortex dynamics in the presence of a complex pinning landscape responsiblemore » for the high-current-carrying-capacity characteristic of commercial HTS wires. Finally, our method demonstrates very good functional and quantitative agreement of the critical current between simulation and experiment, providing a new predictive tool for HTS wire designs.« less

  20. Simulation of the Vortex Dynamics in a Real Pinning Landscape of YBa 2 Cu 3 O 7 - δ Coated Conductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadovskyy, I. A.; Koshelev, A. E.; Glatz, A.

    Tmore » he ability of high-temperature superconductors (HSs) to carry very large currents with almost no dissipation makes them irreplaceable for high-power applications. he development and further improvement of HS-based cables require an in-depth understanding of the superconducting vortex dynamics in the presence of complex pinning landscapes. Here, we present a critical current analysis of a real HS sample in a magnetic field by combining state-of-the-art large-scale Ginzburg-Landau simulations with reconstructive three-dimensional scanning-transmission-electron-microscopy tomography of the pinning landscape in Dy-doped YBa 2 Cu 3 O 7 - δ . his methodology provides a unique look at the vortex dynamics in the presence of a complex pinning landscape responsible for the high-current-carrying-capacity characteristic of commercial HS wires. Our method demonstrates very good functional and quantitative agreement of the critical current between simulation and experiment, providing a new predictive tool for HS wire designs.« less

  1. Experimental investigation into vortex structure and pressure drop across microcavities in 3D integrated electronics

    NASA Astrophysics Data System (ADS)

    Renfer, Adrian; Tiwari, Manish K.; Brunschwiler, Thomas; Michel, Bruno; Poulikakos, Dimos

    2011-09-01

    Hydrodynamics in microcavities with cylindrical micropin fin arrays simulating a single layer of a water-cooled electronic chip stack is investigated experimentally. Both inline and staggered pin arrangements are investigated using pressure drop and microparticle image velocimetry (μPIV) measurements. The pressure drop across the cavity shows a flow transition at pin diameter-based Reynolds numbers ( Re d ) ~200. Instantaneous μPIV, performed using a pH-controlled high seeding density of tracer microspheres, helps visualize vortex structure unreported till date in microscale geometries. The post-transition flow field shows vortex shedding and flow impingement onto the pins explaining the pressure drop increase. The flow fluctuations start at the chip outlet and shift upstream with increasing Re d . No fluctuations are observed for a cavity with pin height-to-diameter ratio h/ d = 1 up to Re d ~330; however, its pressure drop was higher than for a cavity with h/d = 2 due to pronounced influence of cavity walls.

  2. The second peak effect and vortex pinning mechanisms in Ba(Fe,Ni)2As2 superconductors

    NASA Astrophysics Data System (ADS)

    Ghorbani, S. R.; Arabi, H.; Wang, X. L.

    2017-09-01

    Vortex pinning mechanisms have been studied systematically in BaFe1.9Ni0.1As2 single crystal as a function of temperature and magnetic field. The obtained shielding current density, Js, showed a second peak in the intermediate magnetic field range at high temperatures. The temperature dependence of the shielding current density, Js(T), was analysed within the collective pinning model at different magnetic fields. It was found that the second peak reflects the coexistence of both δl pinning, reflecting spatial variation in the mean free path (l), and δTc pinning, reflecting spatial variation in the superconducting critical temperature (Tc) at low temperature and low magnetic fields in BaFe1.9Ni0.1As2 single crystal. The results clearly show that pinning mechanism effects are strongly temperature and magnetic field dependent, and the second peak effect is more powerful at higher temperatures and magnetic fields. It was also found that the magnetic field mainly controls the pinning mechanism effect.

  3. Mechanisms of weak thickness dependence of the critical current density in strong-pinning ex situ metal organic-deposition-route YBa2Cu3O7-x coated conductors

    NASA Astrophysics Data System (ADS)

    Kim, S. I.; Gurevich, A.; Song, X.; Li, X.; Zhang, W.; Kodenkandath, T.; Rupich, M. W.; Holesinger, T. G.; Larbalestier, D. C.

    2006-09-01

    We report on the thickness dependence of the superconducting characteristics including critical current Ic, critical current density Jc, transition temperature Tc, irreversibility field Hirr, bulk pinning force plot Fp(H), and normal state resistivity curve ρ(T) measured after successive ion milling of ~1 µm thick high-Ic YBa2Cu3O7-x films made by an ex situ metal-organic deposition process on Ni-W rolling-assisted biaxially textured substrates (RABiTSTM). In contrast to many recent data, mostly on in situ pulsed laser deposition (PLD) films, which show strong depression of Jc with increasing film thickness t, our films exhibit only a weak dependence of Jc on t. The two better textured samples had full cross-section average Jc,avg (77 K, 0 T) ~4 MA cm-2 near the buffer layer interface and ~3 MA cm-2 at full thickness, despite significant current blocking due to ~30% porosity in the film. Taking account of the thickness dependence of the porosity, we estimate that the local, vortex-pinning current density is essentially independent of thickness, while accounting for the additional current-blocking effects of grain boundaries leads to local, vortex-pinning Jc values well above 5 MA cm-2. Such high local Jc values are produced by strong three-dimensional vortex pinning which subdivides vortex lines into weakly coupled segments much shorter than the film thickness.

  4. Mixed-state Hall effect of high-T(c) superconductors

    NASA Astrophysics Data System (ADS)

    Kang, Byeongwon

    In this dissertation, we presented the study on the mixed-state Hall effect of high-Tc superconductors (HTSs). In order to understand the mechanisms of the puzzling phenomena in the mixed-state Hall effect of HTSs, the Hall sign anomaly and scaling behavior, Hall measurements are conducted in several HTS thin films. We investigate the mechanism of the sign reversal of the Hall resistivity in Tl-2201 films when the electronic band structure is varied through the underdoped, optimally doped, and overdoped regions. It is found that the Hall sign reversals are an intrinsic property of HTSs and determined by electronic band structure. Although pinning is not found to be the mechanism behind sign reversals, pinning can suppress the appearance of the Hall sign reversal. Therefore, it is concluded that two (or more) sign reversals are a generic behavior of HTSs. From a systematic study of the vortex phase diagram, we discover several new features of the vortex liquid. In the presence of pinning, the vortex-liquid phase can be divided into two regions, a glassy liquid (GL) where vortices remain correlated as manifested in non-Ohmic resistivity, and a regular liquid (RL) where resistivity becomes Ohmic as vortices become uncorrelated. The field dependence of the Hall angle is found to be linear in the RL and nonlinear in the GL. Generally the decoupling line (Hk- T), which is defined as a boundary between the GL and the RL, is lower than the depinning line (Hd-T). As pinning increases the Hk-T may approach the Hd-T, thus vortices are decoupled and depinned nearly simultaneously. For a weak pinning system, on the other hand, the Hk-T and the Hd-T are well separated so that single vortices remain pinned in the region Hk ≤ H ≥ Hd. The behavior of s xy is also investigated in the GL and the RL. In the GL s xy is observed to strongly depend on pinning due to the inter-vortex correlation whereas in the RL s xy is independent of pinning since the pinning effect is scaled out.

  5. Vortices in high-performance high-temperature superconductors

    DOE PAGES

    Kwok, Wai-Kwong; Welp, Ulrich; Glatz, Andreas; ...

    2016-09-21

    The behavior of vortex matter in high-temperature superconductors (HTS) controls the entire electromagnetic response of the material, including its current carrying capacity. In this paper, we review the basic concepts of vortex pinning and its application to a complex mixed pinning landscape to enhance the critical current and to reduce its anisotropy. We focus on recent scientific advances that have resulted in large enhancements of the in-field critical current in state-of-the-art second generation (2G) YBCO coated conductors and on the prospect of an isotropic, high-critical current superconductor in the iron-based superconductors. Finally, we discuss an emerging new paradigm of criticalmore » current by design—a drive to achieve a quantitative correlation between the observed critical current density and mesoscale mixed pinning landscapes by using realistic input parameters in an innovative and powerful large-scale time dependent Ginzburg–Landau approach to simulating vortex dynamics.« less

  6. Effect of hexagonal patterned arrays and defect geometry on the critical current of superconducting films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadovskyy, I. A.; Wang, Y. L.; Xiao, Z. -L.

    Understanding the effect of pinning on the vortex dynamics in superconductors is a key factor towards controlling critical current values. Large-scale simulations of vortex dynamics can provide a rational approach to achieve this goal. Here, we use the time-dependent Ginzburg-Landau equations to study thin superconducting films with artificially created pinning centers arranged periodically in hexagonal lattices. We calculate the critical current density for various geometries of the pinning centers—varying their size, strength, and density. Furthermore, we shed light upon the influence of pattern distortion on the magnetic-field-dependent critical current. We compare our result directly with available experimental measurements on patternedmore » molybdenum-germanium films, obtaining good agreement. In conclusion, our results give important systematic insights into the mechanisms of pinning in these artificial pinning landscapes and open a path for tailoring superconducting films with desired critical current behavior.« less

  7. Effect of hexagonal patterned arrays and defect geometry on the critical current of superconducting films

    NASA Astrophysics Data System (ADS)

    Sadovskyy, I. A.; Wang, Y. L.; Xiao, Z.-L.; Kwok, W.-K.; Glatz, A.

    2017-02-01

    Understanding the effect of pinning on the vortex dynamics in superconductors is a key factor towards controlling critical current values. Large-scale simulations of vortex dynamics can provide a rational approach to achieve this goal. Here, we use the time-dependent Ginzburg-Landau equations to study thin superconducting films with artificially created pinning centers arranged periodically in hexagonal lattices. We calculate the critical current density for various geometries of the pinning centers—varying their size, strength, and density. Furthermore, we shed light upon the influence of pattern distortion on the magnetic-field-dependent critical current. We compare our result directly with available experimental measurements on patterned molybdenum-germanium films, obtaining good agreement. Our results give important systematic insights into the mechanisms of pinning in these artificial pinning landscapes and open a path for tailoring superconducting films with desired critical current behavior.

  8. Effect of hexagonal patterned arrays and defect geometry on the critical current of superconducting films

    NASA Astrophysics Data System (ADS)

    Sadovskyy, Ivan; Wang, Yonglei; Xiao, Zhili; Kwok, Wai-Kwong; Glatz, Andreas

    Understanding the effect of pinning on the vortex dynamics in superconductors is a key factor towards controlling critical current values. Large-scale simulations of vortex dynamics can provide a rational approach to achieve this goal. Here, we use the time-dependent Ginzburg-Landau equations to study thin superconducting films with artificially created pinning centers arranged periodically in hexagonal lattices. We calculate the critical current density for various geometries of the pinning centers - varying their size, strength, and density. Furthermore, we shed light upon the influence of pattern distortion on the magnetic field dependent critical current. We compare our result directly with available experimental measurements on patterned molybdenum-germanium films, obtaining good agreement. Our results give important systematic insights into the mechanisms of pinning in these artificial pinning landscapes and open a path for tailoring superconducting films with desired critical current behavior.

  9. Effect of hexagonal patterned arrays and defect geometry on the critical current of superconducting films

    DOE PAGES

    Sadovskyy, I. A.; Wang, Y. L.; Xiao, Z. -L.; ...

    2017-02-07

    Understanding the effect of pinning on the vortex dynamics in superconductors is a key factor towards controlling critical current values. Large-scale simulations of vortex dynamics can provide a rational approach to achieve this goal. Here, we use the time-dependent Ginzburg-Landau equations to study thin superconducting films with artificially created pinning centers arranged periodically in hexagonal lattices. We calculate the critical current density for various geometries of the pinning centers—varying their size, strength, and density. Furthermore, we shed light upon the influence of pattern distortion on the magnetic-field-dependent critical current. We compare our result directly with available experimental measurements on patternedmore » molybdenum-germanium films, obtaining good agreement. In conclusion, our results give important systematic insights into the mechanisms of pinning in these artificial pinning landscapes and open a path for tailoring superconducting films with desired critical current behavior.« less

  10. Campbell penetration depth in Fe-based superconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prommapan, Plegchart

    A 'true' critical current density, j c, as opposite to commonly measured relaxed persistent (Bean) current, j B, was extracted from the Campbell penetration depth, Λ c(T,H) measured in single crystals of LiFeAs, and optimally electron-doped Ba(Fe 0.954Ni 0.046) 2As 2 (FeNi122). In LiFeAs, the effective pinning potential is nonparabolic, which follows from the magnetic field - dependent Labusch parameter α. At the equilibrium (upon field - cooling), α(H) is non-monotonic, but it is monotonic at a finite gradient of the vortex density. This behavior leads to a faster magnetic relaxation at the lower fields and provides a natural dynamicmore » explanation for the fishtail (second peak) effect. We also find the evidence for strong pinning at the lower fields.The inferred field dependence of the pinning potential is consistent with the evolution from strong pinning, through collective pinning, and eventually to a disordered vortex lattice. The value of jc(2 K) ≅ 1.22 x 10 6 A/cm 2 provide an upper estimate of the current carrying capability of LiFeAs. Overall, vortex behavior of almost isotropic, fully-gapped LiFeAs is very similar to highly anisotropic d-wave cuprate superconductors, the similarity that requires further studies in order to understand unconventional superconductivity in cuprates and pnictides. In addition to LiFeAs, we also report the magnetic penetration depth in BaFe 2As 2 based superconductors including irradiation of FeNi122. In unirradiated FeNi122, the maximum critical current value is, j c(2K) ≅ 3.3 x 10 6 A/cm 2. The magnetic-dependent feature was observed near the transition temperature in FeTe 0.53Se 0.47 and irradiated FeNi122. Because of this feature, further studies are required in order to properly calibrate the Campbell penetration depth. Finally, we detected the crossing between the magnetic penetration depth and London penetration depth in optimally hold-doped Ba 0.6K 0.4Fe 2As 2 (BaK122) and isovalent doped BaFe 2(As 0.7P 0.3) 2 (BaP122). These phenomena probably coincide with anomalous Meissner effect reported in pnicitde superconductors [Prozorov et al. (2010b)] however more studies are needed in order to clarify this.« less

  11. Campbell penetration depth in iron-based superconductors

    NASA Astrophysics Data System (ADS)

    Prommapan, Plengchart

    2011-12-01

    A "true" critical current density, jc, as opposite to commonly measured relaxed persistent (Bean) current, jB, was extracted from the Campbell penetration depth, lambda C(T, H) measured in single crystals of LiFeAs, and optimally electron-doped Ba (Fe0.954Ni 0.046)2As2 (FeNi122). In LiFeAs, the effective pinning potential is non-parabolic, which follows from the magnetic field - dependent Labusch parameter alpha. At the equilibrium (upon field - cooling), alpha( H) is non-monotonic, but it is monotonic at a finite gradient of the vortex density. This behavior leads to a faster magnetic relaxation at the lower fields and provides a natural dynamic explanation for the fishtail (second peak) effect. We also find the evidence for strong pinning at the lower fields.The inferred field dependence of the pinning potential is consistent with the evolution from strong pinning, through collective pinning, and eventually to a disordered vortex lattice. The value of j c (2 K) ≃ 1:22 x106 A/cm² provide an upper estimate of the current carrying capability of LiFeAs. Overall, vortex behavior of almost isotropic, fully-gapped LiFeAs is very similar to highly anisotropic d-wave cuprate superconductors, the similarity that requires further studies in order to understand unconventional superconductivity in cuprates and pnictides. In addition to LiFeAs, we also report the magnetic penetration depth in BaFe2As2 based superconductors including irradiation of FeNi122. In unirradiated FeNi122, the maximum critical current value is, jc(2 K) ≃ 3.3 x 106 A/cm². The magnetic-dependent feature was observed near the transition temperature in FeTe0.53Se0.47 and irradiated FeNi122. Because of this feature, further studies are required in order to properly calibrate the Campbell penetration depth. Finally, we detected the crossing between the magnetic penetration depth and London penetration depth in optimally hold-doped Ba0.6K 0.4Fe2As2 (BaK122) and isovalent doped BaFe2(As0.7P0.3)2 (BaP122). These phenomena probably coincide with anomalous Meissner effect reported in pnictide superconductors [Prozorov et al. (2010b)] however more studies are needed in order to clarify this.

  12. Geometrical Vortex Lattice Pinning and Melting in YBaCuO Submicron Bridges.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papari, G. P.; Glatz, A.; Carillo, F.

    Since the discovery of high-temperature superconductors (HTSs), most efforts of researchers have been focused on the fabrication of superconducting devices capable of immobilizing vortices, hence of operating at enhanced temperatures and magnetic fields. Recent findings that geometric restrictions may induce self-arresting hypervortices recovering the dissipation-free state at high fields and temperatures made superconducting strips a mainstream of superconductivity studies. Here in this paper we report on the geometrical melting of the vortex lattice in a wide YBCO submicron bridge preceded by magnetoresistance (MR) oscillations fingerprinting the underlying regular vortex structure. Combined magnetoresistance measurements and numerical simulations unambiguously relate the resistancemore » oscillations to the penetration of vortex rows with intermediate geometrical pinning and uncover the details of geometrical melting. Our findings offer a reliable and reproducible pathway for controlling vortices in geometrically restricted nanodevices and introduce a novel technique of geometrical spectroscopy, inferring detailed information of the structure of the vortex system through a combined use of MR curves and large-scale simulations.« less

  13. Geometrical Vortex Lattice Pinning and Melting in YBaCuO Submicron Bridges.

    DOE PAGES

    Papari, G. P.; Glatz, A.; Carillo, F.; ...

    2016-12-23

    Since the discovery of high-temperature superconductors (HTSs), most efforts of researchers have been focused on the fabrication of superconducting devices capable of immobilizing vortices, hence of operating at enhanced temperatures and magnetic fields. Recent findings that geometric restrictions may induce self-arresting hypervortices recovering the dissipation-free state at high fields and temperatures made superconducting strips a mainstream of superconductivity studies. Here in this paper we report on the geometrical melting of the vortex lattice in a wide YBCO submicron bridge preceded by magnetoresistance (MR) oscillations fingerprinting the underlying regular vortex structure. Combined magnetoresistance measurements and numerical simulations unambiguously relate the resistancemore » oscillations to the penetration of vortex rows with intermediate geometrical pinning and uncover the details of geometrical melting. Our findings offer a reliable and reproducible pathway for controlling vortices in geometrically restricted nanodevices and introduce a novel technique of geometrical spectroscopy, inferring detailed information of the structure of the vortex system through a combined use of MR curves and large-scale simulations.« less

  14. Influence of multiband sign-changing superconductivity on vortex cores and vortex pinning in stoichiometric high- T c   CaKFe 4 As 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fente, Anton; Meier, William R.; Kong, Tai

    We use a scanning tunneling microscope to study the superconducting density of states and vortex lattice of single crystals of CaKFe 4As 4. This material has a critical temperature of T c = 35 K, one of the highest among stoichiometric iron based superconductors (FeBSCs), and is comparable to T c found near optimal doping in other FeBSCs. We observe quasiparticle scattering from defects with a pattern related to interband scattering between zone centered hole sheets. We measure the tunneling conductance in vortex cores and find a peak due to Caroli–de Gennes–Matricon bound states. The peak is located above themore » Fermi level, showing that CaKFe 4As 4 is a clean superconductor with vortex core bound states close to the so-called extreme quantum limit. We identify locations where the superconducting order parameter is strongly suppressed due to pair breaking. Vortices are pinned at these locations, and the length scale of the suppression of the order parameter is of order of the vortex core size. Finally, as a consequence, the vortex lattice is disordered up to 8 T.« less

  15. Influence of multiband sign-changing superconductivity on vortex cores and vortex pinning in stoichiometric high- T c   CaKFe 4 As 4

    DOE PAGES

    Fente, Anton; Meier, William R.; Kong, Tai; ...

    2018-04-02

    We use a scanning tunneling microscope to study the superconducting density of states and vortex lattice of single crystals of CaKFe 4As 4. This material has a critical temperature of T c = 35 K, one of the highest among stoichiometric iron based superconductors (FeBSCs), and is comparable to T c found near optimal doping in other FeBSCs. We observe quasiparticle scattering from defects with a pattern related to interband scattering between zone centered hole sheets. We measure the tunneling conductance in vortex cores and find a peak due to Caroli–de Gennes–Matricon bound states. The peak is located above themore » Fermi level, showing that CaKFe 4As 4 is a clean superconductor with vortex core bound states close to the so-called extreme quantum limit. We identify locations where the superconducting order parameter is strongly suppressed due to pair breaking. Vortices are pinned at these locations, and the length scale of the suppression of the order parameter is of order of the vortex core size. Finally, as a consequence, the vortex lattice is disordered up to 8 T.« less

  16. Influence of multiband sign-changing superconductivity on vortex cores and vortex pinning in stoichiometric high-Tc CaKFe4As4

    NASA Astrophysics Data System (ADS)

    Fente, Antón; Meier, William R.; Kong, Tai; Kogan, Vladimir G.; Bud'ko, Sergey L.; Canfield, Paul C.; Guillamón, Isabel; Suderow, Hermann

    2018-04-01

    We use a scanning tunneling microscope to study the superconducting density of states and vortex lattice of single crystals of CaKFe4As4 . This material has a critical temperature of Tc=35 K, one of the highest among stoichiometric iron based superconductors (FeBSCs), and is comparable to Tc found near optimal doping in other FeBSCs. We observe quasiparticle scattering from defects with a pattern related to interband scattering between zone centered hole sheets. We measure the tunneling conductance in vortex cores and find a peak due to Caroli-de Gennes-Matricon bound states. The peak is located above the Fermi level, showing that CaKFe4As4 is a clean superconductor with vortex core bound states close to the so-called extreme quantum limit. We identify locations where the superconducting order parameter is strongly suppressed due to pair breaking. Vortices are pinned at these locations, and the length scale of the suppression of the order parameter is of order of the vortex core size. As a consequence, the vortex lattice is disordered up to 8 T.

  17. Wave Phenomena in Reaction-Diffusion Systems

    NASA Astrophysics Data System (ADS)

    Steinbock, Oliver; Engel, Harald

    2013-12-01

    Pattern formation in excitable and oscillatory reaction-diffusion systems provides intriguing examples for the emergence of macroscopic order from molecular reaction events and Brownian motion. Here we review recent results on several aspects of excitation waves including anomalous dispersion, vortex pinning, and three-dimensional scroll waves. Anomalies in the speed-wavelength dependence of pulse trains include nonmonotonic behavior, bistability, and velocity gaps. We further report on the hysteresis effects during the pinning-depinning transition of twodimensional spiral waves. The pinning of three-dimensional scroll waves shows even richer dynamic complexity, partly due to the possibility of geometric and topological mismatches between the unexcitable, pinning heterogeneities and the one-dimensional rotation backbone of the vortex. As examples we present results on the pinning of scroll rings to spherical, C-shaped, and genus-2-type heterogeneities. We also review the main results of several experimental studies employing the Belousov-Zhabotinsky reaction and briefly discuss the biomedical relevance of this research especially in the context of cardiology.

  18. Vortex Escape from Columnar Defect in a Current-Loaded Superconductor

    NASA Astrophysics Data System (ADS)

    Fedirko, V. A.; Kasatkin, A. L.; Polyakov, S. V.

    2018-06-01

    The problem of Abrikosov vortices depinning from extended linear (columnar) defect in 3D-anisotropic superconductor film under non-uniformly distributed Lorentz force is studied for the case of low temperatures, disregarding thermal activation processes. We treat it as a problem of mechanical behavior of an elastic vortex string settled in a potential well of a linear defect and exerted to Lorentz force action within the screening layer about the London penetration depth near the specimen surface. The stability problem for the vortex pinning state is investigated by means of numerical modeling, and conditions for the instability threshold are obtained as well as the critical current density j_c and its dependence on the film thickness and magnetic field orientation. The instability leading to vortex depinning from extended linear defect first emerges near the surface and then propagates inside the superconductor. This scenario of vortex depinning mechanism at low temperatures is strongly supported by some recent experiments on high-Tc superconductors and other novel superconducting materials, containing columnar defects of various nature.

  19. Intrinsic and extrinsic pinning in NdFeAs(O,F): vortex trapping and lock-in by the layered structure

    NASA Astrophysics Data System (ADS)

    Tarantini, C.; Iida, K.; Hänisch, J.; Kurth, F.; Jaroszynski, J.; Sumiya, N.; Chihara, M.; Hatano, T.; Ikuta, H.; Schmidt, S.; Seidel, P.; Holzapfel, B.; Larbalestier, D. C.

    2016-10-01

    Fe-based superconductors (FBS) present a large variety of compounds whose properties are affected to different extents by their crystal structures. Amongst them, the REFeAs(O,F) (RE1111, RE being a rare-earth element) is the family with the highest critical temperature Tc but also with a large anisotropy and Josephson vortices as demonstrated in the flux-flow regime in Sm1111 (Tc ∼ 55 K). Here we focus on the pinning properties of the lower-Tc Nd1111 in the flux-creep regime. We demonstrate that for H//c critical current density Jc at high temperatures is dominated by point-defect pinning centres, whereas at low temperatures surface pinning by planar defects parallel to the c-axis and vortex shearing prevail. When the field approaches the ab-planes, two different regimes are observed at low temperatures as a consequence of the transition between 3D Abrikosov and 2D Josephson vortices: one is determined by the formation of a vortex-staircase structure and one by lock-in of vortices parallel to the layers. This is the first study on FBS showing this behaviour in the full temperature, field, and angular range and demonstrating that, despite the lower Tc and anisotropy of Nd1111 with respect to Sm1111, this compound is substantially affected by intrinsic pinning generating a strong ab-peak in Jc.

  20. Possible observation of the Berezinskii-Kosterlitz-Thouless transition in boron-doped diamond films

    NASA Astrophysics Data System (ADS)

    Coleman, Christopher; Bhattacharyya, Somnath

    2017-11-01

    The occurrence of the Berezinskii-Kosterlitz-Thouless (BKT) transition is investigated in heavily boron-doped nanocrystalline diamond films through a combination of current-voltage and resistance measurements. We observe transport features suggesting a robust BKT transition along with transport features related to vortex pinning in nanocrystalline diamond films with smaller grain size. The vortex core energy determined through analysis of the resistance temperature curves was found to be anti-correlated to the BKT transition temperatures. It is also observed that the higher BKT temperature is related to an increased vortex-antivortex binding energy derived from the activated transport regions. Further, the magnetic field induced superconductor insulator transition shows the possibility of the charge glass state. The consequences of granularity such as localization and vortex pinning can lead to tuneable BKT temperatures and strongly affects the field induced insulating state.

  1. Vortex pinning in artificially layered Ba(Fe,Co)2As2 film

    NASA Astrophysics Data System (ADS)

    Oh, M. J.; Lee, Jongmin; Seo, Sehun; Yoon, Sejun; Seo, M. S.; Park, S. Y.; Kim, Ho-Sup; Ha, Dong-Woo; Lee, Sanghan; Jo, Youn Jung

    2018-06-01

    Static high critical current densities (Jc) > 1 MA/cm2 with magnetic field parallel or perpendicular to c-axis were realized in Co-doped/undoped multilayerd BaFe2As2 films. We made a current bridge by FIB to allow precise measurements, and confirmed that the boundary quality using FIB was considerably better than the quality achieved using a laser. The presence of a high in-plane Jc suggested the existence of c-axis correlated vortex pinning centers. To clarify the relationship between the Jc performance and superstructures, we investigated the magnetic flux pinning mechanism using scaling theory of the volume pinning force Fp(H). The Jc(H) curves, Fp/Fp,max vs. h = H/Hirr curves, and parameters p and q depended on the characteristics of the flux pinning mechanism. It was found that the dominant pinning mechanism of Co-doped/undoped multilayerd BaFe2As2 films was Δl-pinning and the inserted undoped BaFe2As2 layers remained non-superconducting. The dominant pin geometry varied when the magnetic field direction changed. It was concluded that the artificially layered BaFe2As2 film is a 3-D superconductor due to its long correlation length compared to the thickness of the non-superconducting layer.

  2. Influence of columnar defects on the thermodynamic properties of BSCCO

    NASA Astrophysics Data System (ADS)

    van der Beek, C. J.; Indenbom, M. V.; Berseth, V.; Konczykowski, M.; Li, T. W.; Kes, P. H.; Benoit, W.

    1996-03-01

    Amorphous columnar defects strongly affect the reversible magnetization of Bi2Sr2CaCu2O8+δ single crystals both in the vortex solid, where the change reflects the change in vortex energy due to pinning, and in the vortex liquid, where the randomly positioned columns disrupt the interaction between superconducting fluctuations.

  3. Self-healing patterns in ferromagnetic-superconducting hybrids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vlasko-Vlasov, V. K.; Palacious, E.; Rosenmann, D.

    We study magnetic flux dynamic effects in a superconducting bridge with thin soft magnetic stripes placed either on top or under the bridge. Voltage-current (VI) measurements reveal that the edges of magnetic stripes oriented transvers or along the bridge introduce channels or barriers for vortex motion, resulting in the decrease or increase of the critical current, respectively. We demonstrate a remarkable self-healing effect whereby the magnetic pinning strength for the longitudinal stripes increases with current. The self-field of the current polarizes the magnetic stripes along their width, which enhances the stray fields at their edges and creates a dynamic vortexmore » pinning landscape to impede vortex flow. Our results highlight new strategies to engineer adaptive pinning topologies in superconducting-ferromagnetic hybrids.« less

  4. Enhancing superconducting critical current by randomness

    DOE PAGES

    Wang, Y. L.; Thoutam, L. R.; Xiao, Z. L.; ...

    2016-01-11

    The key ingredient of high critical currents in a type-II superconductor is defect sites that pin vortices. Here, we demonstrate that a random pinscape, an overlooked pinning system in nanopatterned superconductors, can lead to a substantially larger critical current enhancement at high magnetic fields than an ordered array of vortex pin sites. We reveal that the better performance of a random pinscape is due to the variation of the local density of its pinning sites, which mitigates the motion of vortices. This is confirmed by achieving even higher enhancement of the critical current through a conformally mapped random pinscape, wheremore » the distribution of the local density of pinning sites is further enlarged. Our findings highlight the potential of random pinscapes in enhancing the superconducting critical currents of applied superconductors in which random pin sites of nanoscale defects emerging in the materials synthesis process or through ex-situ irradiation are the only practical choice for large-scale production. Our results may also stimulate research on effects of a random pinscape in other complementary systems such as colloidal crystals, Bose-Einstein condensates, and Luttinger liquids.« less

  5. Vortex creep and the internal temperature of neutron stars. I - General theory

    NASA Technical Reports Server (NTRS)

    Alpar, M. A.; Pines, D.; Anderson, P. W.; Shaham, J.

    1984-01-01

    The theory of a neutron star superfluid coupled to normal matter via thermal creep against pinning forces is developed in some detail. General equations of motion for a pinned rotating superfluid and their form for vortex creep are given. Steady state creep and the way in which the system approaches the steady state are discussed. The developed formalism is applied to the postglitch relaxation of a pulsar, and detailed models are developed which permit explicit calculation of the postglitch response. The energy dissipation associated with creep and glitches is considered.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lei, Hechang; Petrovic, C.

    We report the critical current density J c in K xFe 2-ySe 2-zS z crystals. The J c can be enhanced significantly with optimal S doping (z=0.99). For K 0.70(7)Fe 1.55(7)Se 1.01(2)S 0.99(2), the weak fishtail effect is found for H II c. The normalized vortex pinning forces follow the scaling law with a maximum position at 0.41 of the reduced magnetic field. These results demonstrate that the small size normal point defects dominate the vortex pinning mechanism.

  7. Direct observation of the flux-line vortex glass phase in a type II superconductor.

    PubMed

    Divakar, U; Drew, A J; Lee, S L; Gilardi, R; Mesot, J; Ogrin, F Y; Charalambous, D; Forgan, E M; Menon, G I; Momono, N; Oda, M; Dewhurst, C D; Baines, C

    2004-06-11

    The order of the vortex state in La1.9Sr0.1CuO4 is probed using muon-spin rotation and small-angle neutron scattering. A transition from a Bragg glass to a vortex glass is observed, where the latter is composed of disordered vortex lines. In the vicinity of the transition the microscopic behavior reflects a delicate interplay of thermally induced and pinning-induced disorder.

  8. Superconducting properties and vortex dynamics of bismuth strontium calcium copper oxide nanoribbons with and without periodic array of nanoscale holes

    NASA Astrophysics Data System (ADS)

    Avci, Sevda

    The distinguishing features of high-temperature superconducting materials are the dynamics of vortex matter in the mixed state which are greatly affected by the high anisotropy and the Josephson coupling between layers. Experiments have focused on investigating melting and dynamic phases of vortex matter with random pinning. However, the advancements in sample preparation techniques have made it possible to investigate the vortex matter with periodic pinnings, since it can serve as a model system to study periodic elastic media such as electron crystals driven on substrates with arrays of defects. It also offers the possibility to increase the critical current of a superconductor through a matching effect which represents itself as peaks (dips) in the field dependences of the critical current (magnetoresisance). This effect is due to the enhanced pinning strength at matching fields where the density of the flux quanta is equal to or multiple times that of the pins. This dissertation reports investigation on the dynamics of vortex matter with periodic pinning array by utilizing BSCCO-2212 crystalline nanoribbons containing periodic arrays of nanoscale holes. Systematic transport measurements reveal the existence of possible intermediate phases of a soft solid and/or a mixture of solid and liquid during melting for the melting transition from solid to a pure liquid. The results of this research demonstrate that the matching effect can be an effective tool in revealing the nature of various vortex phases during melting transition. In addition, anomalous resistive peaks below Tc and the effect of magnetic field orientation on superconductivity of BSCCO-2212 nanoribbons with array of nanoscale holes are also investigated. Angle-dependent magnetoresistances are scaled as H=Hthetacostheta. Therefore, only the perpendicular component of the magnetic field affects the superconductivity. Moreover, layers in BSCCO nanoribbons are lying in the a-b plane parallel to each other. Moreover, at large currents and fields, the resistance shows a non-monotonic dependence on temperature, even showing values that are higher than the normal state resistance for certain ranges of parameters. Observed behavior is attributed to the brick-wall morphology of the nanoribbons leading to a competition between normal and superconductive tunneling that is known to take place in granular superconductive systems.

  9. Critical current density, vortex dynamics, and phase diagram of single-crystal FeSe

    NASA Astrophysics Data System (ADS)

    Sun, Yue; Pyon, Sunseng; Tamegai, Tsuyoshi; Kobayashi, Ryo; Watashige, Tatsuya; Kasahara, Shigeru; Matsuda, Yuji; Shibauchi, Takasada

    2015-10-01

    We present a comprehensive study of the vortex pinning and dynamics in a high-quality FeSe single crystal which is free from doping-introduced inhomogeneities and charged quasiparticle scattering because of its innate superconductivity. The critical current density Jc is found to be almost isotropic and reaches a value of ˜3 ×104 A /cm2 at 2 K (self-field) for both H ∥c and a b . The normalized magnetic relaxation rate S (=∣d ln M /d ln t ∣ ) shows a temperature-insensitive plateau behavior in the intermediate temperature range with a relatively high creep rate (S ˜ 0.02 under zero field), which is interpreted in the framework of the collective creep theory. A crossover from the elastic to plastic creep is observed, while the fishtail effect is absent for both H ∥c and a b . Based on this observation, the origin of the fishtail effect is also discussed. Combining the results of Jc and S , the vortex motion in the FeSe single crystal is found to be dominated by sparse, strong pointlike pinning from nanometer-sized defects or imperfections. The weak collective pinning is also observed and proved in the form of large bundles. Besides, the vortex phase diagram of FeSe is also constructed and discussed.

  10. Pinning in BSCCO above the ordinary irreversibility line

    NASA Astrophysics Data System (ADS)

    Indenbom, M. V.; van der Beek, C. J.; Berseth, V.; Konczykowski, M.; Motohira, N.; Berger, H.; Benoit, W.

    1996-12-01

    Frequency-dependent observations of magnetic flux structures are used to show that pinning plays a principal role in the whole mixed state in Bi2Sr2CaCu2O8 (BSCCO) single crystals. We speculate that the random pinning force on the moving vortices may dominate over thermal fluctuations and considerably modify the position of the vortex lattice phase transition.

  11. Stroboscopic phenomena in superconductors with dynamic pinning landscape

    PubMed Central

    Jelić, Ž. L.; Milošević, M. V.; Van de Vondel, J.; Silhanek, A. V.

    2015-01-01

    Introducing artificial pinning centers is a well established strategy to trap quantum vortices and increase the maximal magnetic field and applied electric current that a superconductor can sustain without dissipation. In case of spatially periodic pinning, a clear enhancement of the superconducting critical current arises when commensurability between the vortex configurations and the pinning landscape occurs. With recent achievements in (ultrafast) optics and nanoengineered plasmonics it has become possible to exploit the interaction of light with superconductivity, and create not only spatially periodic imprints on the superconducting condensate, but also temporally periodic ones. Here we show that in the latter case, temporal matching phenomena develop, caused by stroboscopic commensurability between the characteristic frequency of the vortex motion under applied current and the frequency of the dynamic pinning. The matching resonances persist in a broad parameter space, including magnetic field, driving current, or material purity, giving rise to unusual features such as externally variable resistance/impedance and Shapiro steps in current-voltage characteristics. All features are tunable by the frequency of the dynamic pinning landscape. These findings open further exploration avenues for using flashing, spatially engineered, and/or mobile excitations on superconductors, permitting us to achieve advanced functionalities. PMID:26423610

  12. High-temperature change of the creep rate in YBa2Cu3O7-δ films with different pinning landscapes

    NASA Astrophysics Data System (ADS)

    Haberkorn, N.; Miura, M.; Baca, J.; Maiorov, B.; Usov, I.; Dowden, P.; Foltyn, S. R.; Holesinger, T. G.; Willis, J. O.; Marken, K. R.; Izumi, T.; Shiohara, Y.; Civale, L.

    2012-05-01

    Magnetic relaxation measurements in YBa2Cu3O7-δ (YBCO) films at intermediate and high temperatures show that the collective vortex creep based on the elastic motion of the vortex lattice has a crossover to fast creep that significantly reduces the superconducting critical current density (Jc). This crossover occurs at temperatures much lower than the irreversibility field line. We study the influence of different kinds of crystalline defects, such as nanorods, twin boundaries, and nanoparticles, on the high-temperature vortex phase diagram of YBCO films. We found that the magnetization relaxation data is a fundamental tool to understand the pinning at high temperatures. The results indicate that high Jc values are directly associated with small creep rates. Based on the analysis of the depinning temperature in films with columnar defects, our results indicate that the size of the defects is the relevant parameter that determines thermal depinning at high temperatures. Also, the extension of the collective creep regime depends on the density of the pinning centers.

  13. Effective vortex pinning in MgB2 thin films

    NASA Astrophysics Data System (ADS)

    Bugoslavsky, Y.; Cowey, L.; Tate, T. J.; Perkins, G. K.; Moore, J.; Lockman, Z.; Berenov, A.; MacManus-Driscoll, J. L.; Caplin, A. D.; Cohen, L. F.; Zhai, H. Y.; Christen, H. M.; Paranthaman, M. P.; Lowndes, D. H.; Jo, M. H.; Blamire, M. G.

    2002-10-01

    We discuss the pinning properties of MgB2 thin films grown by pulsed-laser deposition (PLD) and by electron-beam (EB) evaporation. Two mechanisms are identified that contribute most effectively to the pinning of vortices in randomly oriented films. The EB process produces low defected crystallites with a small grain size providing enhanced pinning at grain boundaries without any degradation of Tc. The PLD process produces films with structural disorder on a scale less than the coherence length that further improves pinning, but also depresses Tc.

  14. Study of the second magnetization peak and the pinning behaviour in Ba(Fe0.935Co0.065)2As2 pnictide superconductor

    NASA Astrophysics Data System (ADS)

    Sundar, Shyam; Mosqueira, J.; Alvarenga, A. D.; Sóñora, D.; Sefat, A. S.; Salem-Sugui, S., Jr.

    2017-12-01

    Isothermal magnetic field dependence of magnetization and magnetic relaxation measurements were performed for the H\\parallel {{c}} axis on a single crystal of Ba(Fe0.935 Co0.065)2As2 pnictide superconductor having T c = 21.7 K. The second magnetization peak (SMP) for each isothermal M(H) was observed in a wide temperature range from T c to the lowest temperature of measurement (2 K). The magnetic field dependence of relaxation rate R(H), showed a peak (H spt) between H on (onset of SMP in M(H)) and H p (peak field of SMP in M(H)), which is likely to be related to a vortex-lattice structural phase transition, as suggested in the literature for a similar sample. In addition, the magnetic relaxation measured for magnetic fields near H spt showed some noise, which might be the signature of the structural phase transition of the vortex lattice. Analysis of the magnetic relaxation data using Maley’s criterion and the collective pinning theory suggested that the SMP in the sample was due to the collective (elastic) to plastic creep crossover, which was also accompanied by a rhombic to square vortex lattice phase transition. Analysis of the pinning force density suggested a single dominating pinning mechanism in the sample, which did not showing the usual δ {l} and δ {T}{{c}} nature of pinning. The critical current density (J c), estimated using the Bean critical state model, was found to be 5 × 105 A cm- 2 at 2 K in the zero magnetic field limit. Surprisingly, the maximum of the pinning force density was not responsible for the maximum value of the critical current density in the sample.

  15. Superconducting characteristics in purified tantalum-foils

    NASA Astrophysics Data System (ADS)

    Hu, Qinghua; Wang, Zhihe

    2018-07-01

    We have conducted extensive investigations on the electrical transport and magnetization on a purified tantalum foil with extremely sharp resistive transition (transition width ΔTc < 0.02 K) at 0 T and residual resistivity ratio ρ290K/ρ5K= 16.75. Many effects, such as anisotropic field-induced resistive broadening and second peak of the magnetization-hysteresis loop, are observed in the sample. The maximum upper critical field determined by criteria of R/Rn = 0.9 is about 1.08 T rather weak compared to that in cuprate and/or iron-based superconductors. Although the value of upper critical field Hc2(0) and the field dependence of effective pinning energy U show that the flux pinning potential is weaker, the critical current density Jc(2 K, 0 T) = 1.145 × 105 A/cm2 and the effect of second peak indicate that there should be higher collective vortex pinning potential in the tantalum foil. The carriers are dominated by holes with the density n = 6.6 × 1022/cm3.

  16. A Road Towards High Temperature Superconductors

    DTIC Science & Technology

    2013-08-01

    several nanometers in size . However the mechanism by which such particles enhance vortex pinning was unclear, because they are much...coherent with the matrix and induce only weak pinning, while vice‐versa particles of the same size and concentration but with a stronger lattice... behavior of the cuprates under applied fields can be made by using an unconventional pinning mechanism directly based on the Bond Contraction

  17. Relating the ac complex resistivity of the pinned vortex lattice to its shear modulus

    NASA Astrophysics Data System (ADS)

    Ong, N. P.; Wu, Hui

    1997-07-01

    We propose a way to determine the shear rigidity of the pinned vortex lattice in high-purity crystals from the dependence of its complex resistivity ρ⁁ on frequency (ω). The lattice is modeled as an elastic medium pinned by a sparse, random distribution of defects. We relate ρ⁁ to the velocity of the small subset of pinned vortices via the lattice propagator G(R,ω). Measuring ρ⁁ versus ω is equivalent to determining G(R,ω) versus R. The range of G(R,ω) depends sensitively on the shear and tilt moduli. We describe the evaluation of G(R,ω) in two-dimensional (2D) and 3D lattices. The 2D analysis provides a close fit to the frequency dependence of Reρ⁁ measured in an untwinned crystal of YBa2Cu3O7 at 89 K in a field of 0.5 and 1.0 T. We compare our results with earlier models.

  18. Electron mean free path dependence of the vortex surface impedance

    DOE PAGES

    Checchin, M.; Martinello, M.; Grassellino, A.; ...

    2017-01-17

    In the present study the radio-frequency complex response of trapped vortices in superconductors is calculated and compared to experimental data previously published. The motion equation for a magnetic flux line is solved assuming a bi-dimensional and mean-free-path-dependent Lorentzian-shaped pinning potential. The resulting surface resistance shows the unprecedented bell-shaped trend as a function of the mean-free-path observed in our previous experimental work. We demonstrate that such bell-shaped trend of the surface resistance as a function of the mean-free-path may be described as the interplay of the two limiting regimes of the surface resistance, for low and large mean-free-path values: pinning andmore » flux-flow regimes respectively. Since the possibility of defining the pinning potential at different locations from the surface and with different strengths, we discuss how the surface resistance is affected by different configurations of pinning sites. By tackling the frequency dependence of the surface resistance, we also demonstrate that the separation between pinning- and flux-flow-dominated regimes cannot be determined only by the depinning frequency. As a result, the dissipation regime can be tuned either by acting on the frequency or on the mean-free-path value.« less

  19. Electron mean free path dependence of the vortex surface impedance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Checchin, M.; Martinello, M.; Grassellino, A.

    In the present study the radio-frequency complex response of trapped vortices in superconductors is calculated and compared to experimental data previously published. The motion equation for a magnetic flux line is solved assuming a bi-dimensional and mean-free-path-dependent Lorentzian-shaped pinning potential. The resulting surface resistance shows the unprecedented bell-shaped trend as a function of the mean-free-path observed in our previous experimental work. We demonstrate that such bell-shaped trend of the surface resistance as a function of the mean-free-path may be described as the interplay of the two limiting regimes of the surface resistance, for low and large mean-free-path values: pinning andmore » flux-flow regimes respectively. Since the possibility of defining the pinning potential at different locations from the surface and with different strengths, we discuss how the surface resistance is affected by different configurations of pinning sites. By tackling the frequency dependence of the surface resistance, we also demonstrate that the separation between pinning- and flux-flow-dominated regimes cannot be determined only by the depinning frequency. As a result, the dissipation regime can be tuned either by acting on the frequency or on the mean-free-path value.« less

  20. Vortex Flipping in Superconductor-Ferromagnet Spin Valve Structures

    NASA Astrophysics Data System (ADS)

    Patino, Edgar J.; Aprili, Marco; Blamire, Mark; Maeno, Yoshiteru

    2014-03-01

    We report in plane magnetization measurements on Ni/Nb/Ni/CoO and Co/Nb/Co/CoO spin valve structures with one of the ferromagnetic layers pinned by an antiferromagnetic layer. In samples with Ni, below the superconducting transition Tc, our results show strong evidence of vortex flipping driven by the ferromagnets magnetization. This is a direct consequence of proximity effect that leads to vortex supercurrents leakage into the ferromagnets. Here the polarized electron spins are subject to vortices magnetic field occasioning vortex flipping. Such novel mechanism has been made possible for the first time by fabrication of the F/S/F/AF multilayered spin valves with a thin-enough S layer to barely confine vortices inside as well as thin-enough F layers to align and control the magnetization within the plane. When Co is used there is no observation of vortex flipping effect. This is attributed to Co shorter coherence length. Interestingly instead a reduction in pinning field of about 400 Oe is observed when the Nb layer is in superconducting state. This effect cannot be explained in terms of vortex fields. In view of these facts any explanation must be directly related to proximity effect and thus a remarkable phenomenon that deserves further investigation. Programa Nacional de Ciencias Basicas COLCIENCIAS (No. 120452128168).

  1. Possible nodal vortex state in CeRu2

    NASA Astrophysics Data System (ADS)

    Kadono, R.; Higemoto, W.; Koda, A.; Ohishi, K.; Yokoo, T.; Akimitsu, J.; Hedo, M.; Inada, Y.; O¯nuki, Y.; Yamamoto, E.; Haga, Y.

    2001-06-01

    The microscopic property of magnetic vortices in the mixed state of a high-quality CeRu2 crystal has been studied by muon spin rotation. We have found that the spatial distribution of magnetic induction B(r) probed by muons is perfectly described by the London model for the triangular vortex lattice with appropriate modifications to incorporate the high-field cutoff around the vortex core and the effect of long-range defects in the vortex lattice structure at lower fields. The vortex core radius is proportional to H(β-1)/2 with β~=0.53 (H being the magnetic field), which is in good agreement with the recently observed nonlinear field dependence of the electronic specific heat coefficient γ~Hβ. In particular, the anomalous increase of magnetic penetration depth in accordance with the peak effect in dc magnetization (>=H*~=3 T at 2.0 K) has been confirmed; this cannot be explained by the conventional pair-breaking effect due to magnetic field. In addition, the spontaneous enhancement of flux pinning, which is also associated with the peak effect, has been demonstrated microscopically. These results strongly suggest the onset of collective pinning induced by a new vortex state having an anomalously enhanced quasiparticle density of states for H>=H*.

  2. Persistence of metastable vortex lattice domains in MgB2 in the presence of vortex motion.

    PubMed

    Rastovski, C; Schlesinger, K J; Gannon, W J; Dewhurst, C D; DeBeer-Schmitt, L; Zhigadlo, N D; Karpinski, J; Eskildsen, M R

    2013-09-06

    Recently, extensive vortex lattice metastability was reported in MgB2 in connection with a second-order rotational phase transition. However, the mechanism responsible for these well-ordered metastable vortex lattice phases is not well understood. Using small-angle neutron scattering, we studied the vortex lattice in MgB2 as it was driven from a metastable to the ground state through a series of small changes in the applied magnetic field. Our results show that metastable vortex lattice domains persist in the presence of substantial vortex motion and directly demonstrate that the metastability is not due to vortex pinning. Instead, we propose that it is due to the jamming of counterrotated vortex lattice domains which prevents a rotation to the ground state orientation.

  3. Strong pinning regimes explored with large-scale Ginzburg-Landau simulations

    NASA Astrophysics Data System (ADS)

    Willa, Roland; Koshelev, Alexei E.

    Improving the current-carrying capability of superconductors requires a deep understanding of vortex pinning. Within the theory of (3D) strong pinning an ideal vortex lattice is weakly deformed by a low density np of strong defects. In this limit the critical current jc is expected to grow linearly with np and to decrease with the field B according to B-α with α 0 . 5 . In the small-field limit the (1D) strong pinning theory of isolated vortices predicts jc np0 . 5 , independent of B. We explore strong pinning by low defect densities using time-dependent Ginzburg-Landau simulations. Our numerical results suggest the existence of a wide regime, where the lattice order is destroyed and yet interactions between vortices are important. In particular, for large defects we found an extended range of power-law decay of jc (B) with α 0 . 3 , smaller than predicted. This regime requires the development of new analytical models. Exploring the behavior of jc for various defect densities and sizes, we will establish pinning regimes and applicability limits of the conventional theory. This work is supported by the U.S. Department of Energy, Office of Science, Materials Sciences and Engineering Division. R. W. acknowledges support from the Swiss National Science Foundation through the SNSF Early Postdoc Mobility Fellowship.

  4. Reversible ratchet effects for vortices in conformal pinning arrays

    DOE PAGES

    Reichhardt, Charles; Ray, Dipanjan; Reichhardt, Cynthia Jane Olson

    2015-05-04

    A conformal transformation of a uniform triangular pinning array produces a structure called a conformal crystal which preserves the sixfold ordering of the original lattice but contains a gradient in the pinning density. Here we use numerical simulations to show that vortices in type-II superconductors driven with an ac drive over gradient pinning arrays produce the most pronounced ratchet effect over a wide range of parameters for a conformal array, while square gradient or random gradient arrays with equivalent pinning densities give reduced ratchet effects. In the conformal array, the larger spacing of the pinning sites in the direction transversemore » to the ac drive permits easy funneling of interstitial vortices for one driving direction, producing the enhanced ratchet effect. In the square array, the transverse spacing between pinning sites is uniform, giving no asymmetry in the funneling of the vortices as the driving direction switches, while in the random array, there are numerous easy-flow channels present for either direction of drive. We find multiple ratchet reversals in the conformal arrays as a function of vortex density and ac amplitude, and correlate the features with a reversal in the vortex ordering, which is greater for motion in the ratchet direction. In conclusion, the enhanced conformal pinning ratchet effect can also be realized for colloidal particles moving over a conformal array, indicating the general usefulness of conformal structures for controlling the motion of particles.« less

  5. Comparing the dynamics of skyrmions and superconducting vortices

    NASA Astrophysics Data System (ADS)

    Olson Reichhardt, C. J.; Lin, S. Z.; Ray, D.; Reichhardt, C.

    2014-08-01

    Vortices in type-II superconductors have attracted enormous attention as ideal systems in which to study nonequilibrium collective phenomena, since the self-ordering of the vortices competes with quenched disorder and thermal effects. Dynamic effects found in vortex systems include depinning, nonequilibrium phase transitions, creep, structural order-disorder transitions, and melting. Understanding vortex dynamics is also important for applications of superconductors which require the vortices either to remain pinned or to move in a controlled fashion. Recently, topological defects called skyrmions have been realized experimentally in chiral magnets. Here we highlight similarities and differences between skyrmion dynamics and vortex dynamics. Many of the previous ideas and experimental setups that have been applied to superconducting vortices can also be used to study skyrmions. We also discuss some of the differences between the two systems, such as the potentially large contribution of the Magnus force in the skyrmion system that can dramatically alter the dynamics and transport properties.

  6. Irradiation response of commercial, high-Tc superconducting tapes: Electromagnetic transport properties

    DOE PAGES

    Gapud, A. A.; Greenwood, N. T.; Alexander, J. A.; ...

    2015-07-01

    Effects of low dose irradiation on the electrical transport current properties of commercially available high-temperature superconducting, coated-conductor tapes were investigated, in view of potential applications in the irradiative environment of fusion reactors. Three different tapes, each with unique as-grown flux-pinning structures, were irradiated with Au and Ni ions at energies that provide a range of damage effects, with accumulated damage levels near that expected for conductors in a fusion reactor environment. Measurements using transport current determined the pre- and post-irradiation resistivity, critical current density, and pinning force density, yielding critical temperatures, irreversibility lines, and inferred vortex creep rates. Results showmore » that at the irradiation damage levels tested, any detriment to as-grown pre-irradiation properties is modest; indeed in one case already-superior pinning forces are enhanced, leading to higher critical currents.« less

  7. Manipulating Abrikosov vortices with soft magnetic stripes

    DOE PAGES

    Vlasko-Vlasov, V. K.; Colauto, F.; Buzdin, A. I.; ...

    2017-05-22

    Here, tuning the polarization of a periodic array of magnetic stripes on top of a superconducting film allows control of Abrikosov vortex motion. Using direct magneto-optical imaging of the vortex patterns, we demonstrate that the proximity of the magnetic stripe ends to the edges of the superconducting film can strongly alter the vortex dynamics. We observe qualitatively different vortex behavior when the stripes overlap with the film edges. From the resulting unique magnetic flux patterns, we calculate the magnetic pinning strength of our stripe array and study effects of the modified edge barrier on vortex guidance and gating that resultmore » from different polarizations of the stripes .« less

  8. Manipulating Abrikosov vortices with soft magnetic stripes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vlasko-Vlasov, V. K.; Colauto, F.; Buzdin, A. I.

    Here, tuning the polarization of a periodic array of magnetic stripes on top of a superconducting film allows control of Abrikosov vortex motion. Using direct magneto-optical imaging of the vortex patterns, we demonstrate that the proximity of the magnetic stripe ends to the edges of the superconducting film can strongly alter the vortex dynamics. We observe qualitatively different vortex behavior when the stripes overlap with the film edges. From the resulting unique magnetic flux patterns, we calculate the magnetic pinning strength of our stripe array and study effects of the modified edge barrier on vortex guidance and gating that resultmore » from different polarizations of the stripes .« less

  9. Anomalous Josephson effect controlled by an Abrikosov vortex

    NASA Astrophysics Data System (ADS)

    Mironov, S.; Goldobin, E.; Koelle, D.; Kleiner, R.; Tamarat, Ph.; Lounis, B.; Buzdin, A.

    2017-12-01

    The possibility of a fast and precise Abrikosov vortex manipulation by a focused laser beam opens the way to create laser-driven Josephson junctions. We theoretically demonstrate that a vortex pinned in the vicinity of the Josephson junction generates an arbitrary ground state phase which can be equal not only to 0 or π but to any desired φ0 value in between. Such φ0 junctions have many peculiar properties and may be effectively controlled by the optically driven Abrikosov vortex. Also we theoretically show that the Josephson junction with the embedded vortex can serve as an ultrafast memory cell operating at sub THz frequencies.

  10. Vortex properties of two-dimensional superconducting Pb films.

    PubMed

    Ning, Y X; Song, C L; Wang, Y L; Chen, Xi; Jia, J F; Xue, Q K; Ma, X C

    2010-02-17

    Using low temperature scanning tunnelling microscopy/spectroscopy (STM/STS) we have investigated the vortex behaviours of two-dimensional superconducting Pb films at different thicknesses. STS at the vortex core shows an evolution of electronic states with film thickness. Transition from the clean limit to the dirty limit of superconductivity is identified, which can be ascribed to the decreased electronic mean free path induced by stronger scattering from the disordered interface at smaller thicknesses. A magnetic field dependent vortex core size is observed even for such a low- κ superconductor. The weak pinning induced by surface defects leads to the formation of a distorted hexagonal vortex lattice.

  11. Local heterogeneities in cardiac systems suppress turbulence by generating multi-armed rotors

    NASA Astrophysics Data System (ADS)

    Zhang, Zhihui; Steinbock, Oliver

    2016-05-01

    Ventricular fibrillation is an extremely dangerous cardiac arrhythmia that is linked to rotating waves of electric activity and chaotically moving vortex lines. These filaments can pin to insulating, cylindrical heterogeneities which swiftly become the new rotation backbone of the local wave field. For thin cylinders, the stabilized rotation is sufficiently fast to repel the free segments of the turbulent filament tangle and annihilate them at the system boundaries. The resulting global wave pattern is periodic and highly ordered. Our cardiac simulations show that also thicker cylinders can establish analogous forms of tachycardia. This process occurs through the spontaneous formation of pinned multi-armed vortices. The observed number of wave arms N depends on the cylinder radius and is associated to stability windows that for N = 2, 3 partially overlap. For N = 1, 2, we find a small gap in which the turbulence is removed but the pinned rotor shows complex temporal dynamics. The relevance of our findings to human cardiology are discussed in the context of vortex pinning to more complex-shaped anatomical features and remodeled myocardium.

  12. Improved interface growth and enhanced flux pinning in YBCO films deposited on an advanced IBAD-MgO based template

    NASA Astrophysics Data System (ADS)

    Khan, M. Z.; Zhao, Y.; Wu, X.; Malmivirta, M.; Huhtinen, H.; Paturi, P.

    2018-02-01

    The growth mechanism is studied from the flux pinning point of view in small-scale YBa2Cu3O6+x (YBCO) thin films deposited on a polycrystalline hastelloy with advanced IBAD-MgO based buffer layer architecture. When compared the situation with YBCO films grown on single crystal substrates, the most critical issues that affect the suitable defect formation and thus the optimal vortex pinning landscape, have been studied as a function of the growth temperature and the film thickness evolution. We can conclude that the best critical current property in a wide applied magnetic field range is observed in films grown at relatively low temperature and having intermediate thickness. These phenomena are linked to the combination of the improved interface growth, to the film thickness related crystalline relaxation and to the formation of linear array of edge dislocations that forms the low-angle grain boundaries through the entire film thickness and thus improve the vortex pinning properties. Hence, the optimized buffer layer structure proved to be particularly suitable for new coated conductor solutions.

  13. Modeling and simulating vortex pinning and transport currents for high temperature superconductors

    NASA Astrophysics Data System (ADS)

    Sockwell, K. Chad

    Superconductivity is a phenomenon characterized by two hallmark properties, zero electrical resistance and the Meissner effect. These properties give great promise to a new generation of resistance free electronics and powerful superconducting magnets. However this possibility is limited by the extremely low critical temperature the superconductors must operate under, typically close to 0K. The recent discovery of high temperature superconductors has brought the critical temperature closer to room temperature than ever before, making the realization of room temperature superconductivity a possibility. Simulations of superconducting technology and materials will be necessary to usher in the new wave of superconducting electronics. Unfortunately these new materials come with new properties such as effects from multiple electron bands, as is the case for magnesium diboride. Moreover, we must consider that all high temperature superconductors are of a Type II variety, which possess magnetic tubes of flux, known as vortices. These vortices interact with transport currents, creating an electrical resistance through a process known as flux flow. Thankfully this process can be prevented by placing impurities in the superconductor, pinning the vortices, making vortex pinning a necessary aspect of our model. At this time there are no other models or simulations that are aimed at modeling vortex pinning, using impurities, in two-band materials. In this work we modify an existing Ginzburg-Landau model for two-band superconductors and add the ability to model normal inclusions (impurities) with a new approach which is unique to the two-band model. Simulations in an attempt to model the material magnesium diboride are also presented. In particular simulations of vortex pinning and transport currents are shown using the modified model. The qualitative properties of magnesium diboride are used to validate the model and its simulations. One main goal from the computational end of the simulations is to enlarge the domain size to produce more realistic simulations that avoid boundary pinning effects. In this work we also implement the numerical software library Trilinos in order to parallelize the simulation to enlarge the domain size. Decoupling methods are also investigated with a goal of enlarging the domain size as well. The One-Band Ginzburg-Landau model serves as a prototypical problem in this endeavor and the methods shown that enlarge the domain size can be easily implemented in the two-band model.

  14. Transverse ac-driven and geometric ratchet effects for vortices in conformal crystal pinning arrays

    DOE PAGES

    Reichhardt, Charles; Reichhardt, Cynthia Jane Olsen

    2016-02-11

    A conformal pinning array is created by taking a conformal transformation of a uniform hexagonal lattice to create a structure in which the sixfold ordering of the original lattice is preserved but which has a spatial gradient in the pinning site density. With a series of conformal arrays it is possible to create asymmetric substrates, and it was previously shown that when an ac drive is applied parallel to the asymmetry direction, a pronounced ratchet effect occurs with a net dc flow of vortices in the same direction as the ac drive. Here, in this article, we show that whenmore » the ac drive is applied perpendicular to the substrate asymmetry direction, it is possible to realize a transverse ratchet effect where a net dc flow of vortices is generated perpendicular to the ac drive. The conformal transverse ratchet effect is distinct from previous versions of transverse ratchets in that it occurs due to the generation of non-Gaussian transverse vortex velocity fluctuations by the plastic motion of vortices, so that the system behaves as a noise correlation ratchet. The transverse ratchet effect is much more pronounced in the conformal arrays than in random gradient arrays and is absent in square gradient arrays due the different nature of the vortex flow in each geometry. We show that a series of reversals can occur in the transverse ratchet effect due to changes in the vortex flow across the pinning gradient as a function of vortex filling, pinning strength, and ac amplitude. We also consider the case where a dc drive applied perpendicular to the substrate asymmetry direction generates a net flow of vortices perpendicular to the dc drive, producing what is known as a geometric or drift ratchet that again arises due to non-Gaussian dynamically generated fluctuations. The drift ratchet is more efficient than the ac driven ratchet and also exhibits a series of reversals for varied parameters. Lastly, our results should be general to a wide class of systems undergoing nonequilibrium dynamics on conformal substrates, such as colloidal particles on optical traps.« less

  15. Investigation of Vortical Flow Patterns in the Near Field of a Dynamic Low-Aspect-Ratio Cylinder

    NASA Astrophysics Data System (ADS)

    Gildersleeve, Samantha; Amitay, Michael

    2016-11-01

    The flowfield and associated flow structures of a low-aspect-ratio cylindrical pin were investigated experimentally in the near-field as the pin underwent wall-normal periodic oscillations. Under dynamic conditions, the pin is driven at the natural wake shedding frequency with an amplitude of 33% of its mean height. Additionally, a static pin was also tested at various mean heights of 0.5, 1.0, and 1.5 times the local boundary layer thickness to explore the effect of the mean height on the flowfield. Three-dimensional flowfields were reconstructed and analyzed from SPIV measurements where data were collected along streamwise planes for several spanwise locations under static and dynamic conditions. The study focuses on the incoming boundary layer as it interacts with the pin, as well as two main vortical formations: the arch-type vortex and the horseshoe vortex. Under dynamic conditions, the upstream boundary layer is thinner, relative to the baseline, and the downwash in the wake increases, resulting in a reduced wake deficit. These results indicate enhanced strength of the aforementioned vortical flow patterns under dynamic conditions. The flow structures in the near-field of the static/dynamic cylinder will be discussed in further detail. Supported by The Boeing Company.

  16. Pinning, thermally activated depinning and their importance for tuning the nanoprecipitate size and density in high J c YBa 2Cu 3O 7-x films

    NASA Astrophysics Data System (ADS)

    Chen, Zhijun; Kametani, Fumitake; Gurevich, Alex; Larbalestier, David

    2009-12-01

    YBa 2Cu 3O 7-x (Y123) films with quantitatively controlled artificial nanoprecipitate pinning centers were grown by pulsed laser deposition (PLD) and characterized by transport over wide temperature ( T) and magnetic field ( H) ranges and by transmission electron microscopy (TEM). The critical current density J c was found to be determined by the interplay of strong vortex pinning and thermally activated depinning (TAD), which together produced a non-monotonic dependence of J c on c-axis pin spacing d c. At low T and H, J c increased with decreasing d c, reaching the very high J c ∼ 48 MA/cm 2 ∼20% of the depairing current density J d at 10 K, self-field and d c ∼ 10 nm, but at higher T and H when TAD effects become significant, J c was optimized at larger d c because longer vortex segments confined between nanoprecipitates are less prone to thermal fluctuations. We conclude that precipitates should extend at least several coherence lengths along vortices in order to produce irreversibility fields H irr(77 K) greater than 7 T and maximum bulk pinning forces F p,max(77 K) greater than 7-8 GN/m 3 (values appropriate for H parallel to the c-axis). Our results show that there is no universal pin array that optimizes J c at all T and H.

  17. Longitudinal disordering of vortex lattices in anisotropic superconductors

    NASA Astrophysics Data System (ADS)

    Harshman, D. R.; Brandt, E. H.; Fiory, A. T.; Inui, M.; Mitzi, D. B.; Schneemeyer, L. F.; Waszczak, J. V.

    1993-02-01

    Vortex disordering in superconducting crystals is shown to be markedly sensitive to penetration-depth anisotropy. At low temperature and high magnetic field, the muon-spin-rotation spectra for the highly anisotropic Bi2Sr2CaCu2O8+δ material are found to be anomalously narrow and symmetric about the applied field, in a manner consistent with a layered vortex sublattice structure with pinning-induced misalignment between layers. In contrast, spectra for the less-anisotropic YBa2Cu3O7-δ compounds taken at comparable fields are broader and asymmetric, showing that the vortex lattices are aligned parallel to the applied-field direction.

  18. Irreversible magnetization switching at the onset of superconductivity in a superconductor ferromagnet hybrid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curran, P. J.; Bending, S. J.; Kim, J.

    2015-12-28

    We demonstrate that the magnetic state of a superconducting spin valve, that is normally controlled with an external magnetic field, can also be manipulated by varying the temperature which increases the functionality and flexibility of such structures as switching elements. In this case, switching is driven by changes in the magnetostatic energy due to spontaneous Meissner screening currents forming in the superconductor below the critical temperature. Our scanning Hall probe measurements also reveal vortex-mediated pinning of the ferromagnetic domain structure due to the pinning of quantized stray fields in the adjacent superconductor. The ability to use temperature as well asmore » magnetic field to control the local magnetisation structure raises the prospect of potential applications in magnetic memory devices.« less

  19. Spontaneous superfluid unpinning and the inhomogeneous distribution of vortex lines in neutron stars

    NASA Technical Reports Server (NTRS)

    Cheng, K. S.; Pines, D.; Alpar, M. A.; Shaham, J.

    1988-01-01

    The equation of motion of the pinned superfluid which couples to the crust of neutron stars via thermal vortex creep is studied. Spontaneous unpinning at locations characterized by a very inhomogeneous distribution of vortex lines is examined as a possible mechanism for the initiation of glitches. It is suggested that structural inhomogeneities in the crust of neutron stars may be responsible for frequent microglitches which lead to pulsar timing noise. A generalization of the model shows promise for explaining the origin of the giant glitches in pulsars.

  20. Vortex cutting in superconductors

    DOE PAGES

    Glatz, A.; Vlasko-Vlasov, V. K.; Kwok, W. K.; ...

    2016-08-09

    Vortex cutting and reconnection is an intriguing and still-unsolved problem central to many areas of classical and quantum physics, including hydrodynamics, astrophysics, and superconductivity. Here, in this paper, we describe a comprehensive investigation of the crossing of magnetic vortices in superconductors using time dependent Ginsburg-Landau modeling. Within a macroscopic volume, we simulate initial magnetization of an anisotropic high temperature superconductor followed by subsequent remagnetization with perpendicular magnetic fields, creating the crossing of the initial and newly generated vortices. The time resolved evolution of vortex lines as they approach each other, contort, locally conjoin, and detach, elucidates the fine details ofmore » the vortex-crossing scenario under practical situations with many interacting vortices in the presence of weak pinning. Finally, our simulations also reveal left-handed helical vortex instabilities that accompany the remagnetization process and participate in the vortex crossing events.« less

  1. Vortex cutting in superconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glatz, A.; Vlasko-Vlasov, V. K.; Kwok, W. K.

    Vortex cutting and reconnection is an intriguing and still-unsolved problem central to many areas of classical and quantum physics, including hydrodynamics, astrophysics, and superconductivity. Here, in this paper, we describe a comprehensive investigation of the crossing of magnetic vortices in superconductors using time dependent Ginsburg-Landau modeling. Within a macroscopic volume, we simulate initial magnetization of an anisotropic high temperature superconductor followed by subsequent remagnetization with perpendicular magnetic fields, creating the crossing of the initial and newly generated vortices. The time resolved evolution of vortex lines as they approach each other, contort, locally conjoin, and detach, elucidates the fine details ofmore » the vortex-crossing scenario under practical situations with many interacting vortices in the presence of weak pinning. Finally, our simulations also reveal left-handed helical vortex instabilities that accompany the remagnetization process and participate in the vortex crossing events.« less

  2. Superfluid Boundary Layer.

    PubMed

    Stagg, G W; Parker, N G; Barenghi, C F

    2017-03-31

    We model the superfluid flow of liquid helium over the rough surface of a wire (used to experimentally generate turbulence) profiled by atomic force microscopy. Numerical simulations of the Gross-Pitaevskii equation reveal that the sharpest features in the surface induce vortex nucleation both intrinsically (due to the raised local fluid velocity) and extrinsically (providing pinning sites to vortex lines aligned with the flow). Vortex interactions and reconnections contribute to form a dense turbulent layer of vortices with a nonclassical average velocity profile which continually sheds small vortex rings into the bulk. We characterize this layer for various imposed flows. As boundary layers conventionally arise from viscous forces, this result opens up new insight into the nature of superflows.

  3. Neutron Scattering Studies of Vortex Matter in Type-II Superconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xinsheng Ling

    2012-02-02

    The proposed program is an experimental study of the fundamental properties of Abrikosov vortex matter in type-II superconductors. Most superconducting materials used in applications such as MRI are type II and their transport properties are determined by the interplay between random pinning, interaction and thermal fluctuation effects in the vortex state. Given the technological importance of these materials, a fundamental understanding of the vortex matter is necessary. The vortex lines in type-II superconductors also form a useful model system for fundamental studies of a number of important issues in condensed matter physics, such as the presence of a symmetry-breaking phasemore » transition in the presence of random pinning. Recent advances in neutron scattering facilities such as the major upgrade of the NIST cold source and the Spallation Neutron Source are providing unprecedented opportunities in addressing some of the longstanding issues in vortex physics. The core component of the proposed program is to use small angle neutron scattering and Bitter decoration experiments to provide the most stringent test of the Bragg glass theory by measuring the structure factor in both the real and reciprocal spaces. The proposed experiments include a neutron reflectometry experiment to measure the precise Q-dependence of the structure factor of the vortex lattice in the Bragg glass state. A second set of SANS experiments will be on a shear-strained Nb single crystal for testing a recently proposed theory of the stability of Bragg glass. The objective is to artificially create a set of parallel grain boundaries into a Nb single crystal and use SANS to measure the vortex matter diffraction pattern as a function of the changing angle between the applied magnetic field to the grain boundaries. The intrinsic merits of the proposed work are a new fundamental understanding of type-II superconductors on which superconducting technology is based, and a firm understanding of phases and phase transitions in condensed matter systems with random pinning. The broader impact of the program includes the training of future generation of neutron scientists, and further development of neutron scattering and complementary techniques for studies of superconducting materials. The graduate and undergraduate students participating in this project will learn the state-of-the-art neutron scattering techniques, acquire a wide range of materials research experiences, and participate in the frontier research of superconductivity. This should best prepare the students for future careers in academia, industry, or government.« less

  4. Scanning tunneling spectroscopy and vortex imaging in the iron pnictide superconductor BaFe1.8Co0.2As2.

    PubMed

    Yin, Yi; Zech, M; Williams, T L; Wang, X F; Wu, G; Chen, X H; Hoffman, J E

    2009-03-06

    We present an atomic resolution scanning tunneling spectroscopy study of superconducting BaFe1.8Co0.2As2 single crystals in magnetic fields up to 9 T. At zero field, a single gap with coherence peaks at Delta=6.25 meV is observed in the density of states. At 9 and 6 T, we image a disordered vortex lattice, consistent with isotropic, single flux quantum vortices. Vortex locations are uncorrelated with strong-scattering surface impurities, demonstrating bulk pinning. The vortex-induced subgap density of states fits an exponential decay from the vortex center, from which we extract a coherence length xi=27.6+/-2.9 A, corresponding to an upper critical field Hc2=43 T.

  5. Upward shift of the vortex solid phase in high-temperature-superconducting wires through high density nanoparticle addition

    DOE PAGES

    Miura, Masashi; Maiorov, Boris; Balakirev, Fedor F.; ...

    2016-02-08

    Here, we show a simple and effective way to improve the vortex irreversibility line up to very high magnetic fields (60T) by increasing the density of second phase BaZrO 3 nanoparticles. (Y 0.77,Gd 0.23)Ba 2Cu 3O y films were grown on metal substrates with different concentration of BaZrO 3 nanoparticles by the metal organic deposition method. We find that upon increase of the BaZrO 3 concentration, the nanoparticle size remains constant but the twin-boundary density increases. Up to the highest nanoparticle concentration (n ~ 1.3 × 10 22/m 3), the irreversibility field (H irr) continues to increase with no signmore » of saturation up to 60 T, although the vortices vastly outnumber pinning centers. We find extremely high H irr, namely H irr = 30 T (H||45°) and 24 T (H||c) at 65 K and 58 T (H||45°) and 45 T (H||c) at 50K. The difference in pinning landscape shifts the vortex solid-liquid transition upwards, increasing the vortex region useful for power applications, while keeping the upper critical field, critical temperature and electronic mass anisotropy unchanged.« less

  6. Unconventional critical state in YBa2Cu3O7-δ thin films with a vortex-pin lattice fabricated by masked He+ ion beam irradiation

    NASA Astrophysics Data System (ADS)

    Zechner, G.; Mletschnig, K. L.; Lang, W.; Dosmailov, M.; Bodea, M. A.; Pedarnig, J. D.

    2018-04-01

    Thin superconducting YBa2Cu3O7-δ films are patterned with a vortex-pin lattice consisting of columnar defect regions (CDs) with 180 nm diameter and 300 nm spacing. They are fabricated by irradiation with 75 keV He+ ions through a stencil mask. Peaks of the critical current reveal the commensurate trapping of vortices in domains near the edges of the sample. Upon ramping an external magnetic field, the positions of the critical current peaks are shifted from their equilibrium values to lower magnetic fields in virgin and to higher fields in field-saturated down-sweep curves, respectively. Based on previous theoretical predictions, this irreversibility is interpreted as a nonuniform, terrace-like critical state, in which individual domains are occupied by a constant number of vortices per pinning site. The magnetoresistance, probed at low current densities, is hysteretic and angle dependent and exhibits minima that correspond to the peaks of the critical current. The minima’s positions scale with the component of the magnetic field parallel to the axes of the CDs, as long as the tilted vortices can be accommodated within the CDs. This behavior, different from unirradiated films, confirms that the CDs dominate the pinning.

  7. Effect of Quenched Disorder in the Entropy-Jump at the First-Order Vortex Phase Transition of Bi $_{2} 2 Sr _{2} 2 CaCu _{2} 2 O _{8 + delta }$ 8 + δ

    NASA Astrophysics Data System (ADS)

    Dolz, M. I.; Pedrazzini, P.; Pastoriza, H.; Konczykowski, M.; Fasano, Y.

    2015-04-01

    We study the effect of quenched disorder in the thermodynamic magnitudes entailed in the first-order vortex phase transition of the extremely layered BiSrCaCuO compound. We track the temperature-evolution of the enthalpy and the entropy jump at the vortex solidification transition by means of AC local magnetic measurements. Quenched disorder is introduced to the pristine samples by means of heavy-ion irradiation with Pb and Xe producing a random columnar-track pins distribution with different densities (matching field ). In contrast with previous magneto-optical reports, we find that the first-order phase transition persists for samples with up to 100 Gauss. For very low densities of quenched disorder (pristine samples), the evolution of the thermodynamic properties can be satisfactorily explained considering a negligible effect of pinning and only electromagnetic coupling between pancake vortices lying in adjacent CuO planes. This description is not satisfactory on increasing magnitude of quenched disorder.

  8. Collapse of the vortex-lattice inductance and shear modulus at the melting transition in untwinned YBa2Cu3O7

    NASA Astrophysics Data System (ADS)

    Matl, Peter; Ong, N. P.; Gagnon, R.; Taillefer, L.

    2002-06-01

    The complex resistivity ρ^(ω) of the vortex lattice in an untwinned crystal of 93-K YBa2Cu3O7 has been measured at frequencies ω/2π from 100 kHz to 20 MHz in a 2-T field H||c, using a four-probe rf transmission technique that enables continuous measurements versus ω and temperature T. As T is increased, the inductance Ls(ω)=Imρ^(ω)/ω increases steeply to a cusp at the melting temperature Tm, and then undergoes a steep collapse consistent with vanishing of the shear modulus c66. We discuss in detail the separation of the vortex-lattice inductance from the ``volume'' inductance, and other skin-depth effects. To analyze the spectra, we consider a weakly disordered lattice with a low pin density. Close fits are obtained to ρ1(ω) over 2 decades in ω. Values of the pinning parameter κ and shear modulus c66 obtained show that c66 collapses by over 4 decades at Tm, whereas κ remains finite.

  9. Vortex creep and the internal temperature of neutron stars - Linear and nonlinear response to a glitch

    NASA Technical Reports Server (NTRS)

    Alpar, M. A.; Cheng, K. S.; Pines, D.

    1989-01-01

    The dynamics of pinned superfluid in neutron stars is determined by the thermal 'creep' of vortices. Vortex creep can respond to changes in the rotation rate of the neutron star crust and provide the observed types of dynamical relaxation following pulsar glitches. It also gives rise to energy dissipation, which determines the thermal evolution of pulsars once the initial heat content has been radiated away. The different possible regimes of vortex creep are explored, and it is shown that the nature of the dynamical response of the pinned superfluid evolves with a pulsar's age. Younger pulsars display a linear regime, where the response is linear in the initial perturbation and is a simple exponential relaxation as a function of time. A nonliner response, with a characteristic nonlinear dependence on the initial perturbation, is responsible for energy dissipation and becomes the predominant mode of response as the pulsar ages. The transition from the linear to the nonlinear regime depends sensitively on the temperature of the neutron star interior. A preliminary review of existing postglitch observations is given within this general evolutionary framework.

  10. VORTEX CREEP AGAINST TOROIDAL FLUX LINES, CRUSTAL ENTRAINMENT, AND PULSAR GLITCHES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gügercinoğlu, Erbil; Alpar, M. Ali, E-mail: egugercinoglu@gmail.com, E-mail: alpar@sabanciuniv.edu

    2014-06-10

    A region of toroidally oriented quantized flux lines must exist in the proton superconductor in the core of the neutron star. This region will be a site of vortex pinning and creep. Entrainment of the neutron superfluid with the crustal lattice leads to a requirement of superfluid moment of inertia associated with vortex creep in excess of the available crustal moment of inertia. This will bring about constraints on the equation of state. The toroidal flux region provides the moment of inertia necessary to complement the crust superfluid with postglitch relaxation behavior fitting the observations.

  11. Glassy vortex behavior in superconducting SrPd2Ge2 single crystals

    NASA Astrophysics Data System (ADS)

    Sung, N. H.; Jo, Y. J.; Cho, B. K.

    2012-07-01

    In this study we report the vortex-glass behavior of superconducting ternary germanide SrPd2Ge2 single crystals with a ThCr2Si2-type structure. We observed flux trapping and its nonexponential decay with time after the magnetic field was turned off at T = 2 K. In addition, we found that the diamagnetism in the zero field cooling (ZFC) mode below Tc was irreversible, depending on the temperature and field history, whereas the diamagnetism in the field-cooled warming (FCW) mode was reversible if the applied magnetic field was parallel to the c-axis. An irreversibility line Tr(H) was determined by the ZFC and FCW measurements at various magnetic fields, and the temperature dependence of Tr(H) was found to agree with the de Almeida-Thouless relation, H = H0[1-Tr(H)/Tc(0)]γ, where γ = 3/2. Including these vortex-glass behaviors, we discuss the critical current density, Jc(T), determined from isothermal magnetization measurements at various temperatures, and the pinning potential, determined from the slope of an Arrhenius plot, lnR(T,B) versus 1/T.

  12. Flux cutting in high- T c superconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vlasko-Vlasov, V.; Koshelev, A.; Glatz, A.

    We performed magneto-optical study of flux distributions in a YBCO crystal under various applied crossed- field orientations to elucidate the complex nature of magnetic flux cutting in superconductors. Our study reveals unusual vortex patterns induced by the interplay between flux-cutting and vortex pinning. We observe strong flux penetration anisotropy of the normal flux B⊥ in the presence of an in-plane field H|| and associate the modified flux dynamics with staircase structure of tilted vortices in YBCO and the flux-cutting process. We demonstrate that flux-cutting can effectively delay vortex entry in the direction transverse to H||. Finally, we elucidate details ofmore » the vortex-cutting and reconnection process using time-dependent Ginzburg-Landau simulations.« less

  13. Microstructural studies of organic spin valves and superconducting vortex ratchets

    NASA Astrophysics Data System (ADS)

    Liu, Yaohua

    Thin film's microstructure plays important roles in their transport properties. Spin transport in organic semiconductors (OSCs) were studied using spin valves structures, with Fe and Co as the top and bottom ferromagnetic (FM) contacts, respectively. Magnetoresistance (MR) effects have been observed up to room temperature in junctions based on an electron-carrying OSC, tris(8-hyroxyquinoline) aluminum (Alq3) and a hole-carrying OSC, copper phthalocyanine (CuPc). However, junctions based on two other electron-carrying OSCs with higher lateral mobilities showed weaker spin transport effects. Morphological studies indicated that these high mobility films had rougher surfaces than either Alq3 or CuPc, therefore the degradation may originate from enhanced scattering due to the rougher FM/OSC interfaces. FM/OSC interfaces were studied in detail in Alga-based devices. These multilayer films have well-defined layer structures with modest average chemical roughness (3-5 nm) at the FM/A1q3 interfaces. Reflectometry shows that larger MR effects are correlated with sharper FM/OSC interfaces and a magnetically dead layer at the Alq3/Fe boundary. Combined with magnetotransport and magnetometery studies, our results support spin injection and transport in Alq3. A lower bound for the spin diffusion length in Alq3 was estimated as 43 +/- 5 nm at 80 K. However, the subtle correlations between microstructure and magnetotransport indicate the importance of interfacial effects. Thin film's microstructures can also be engineered to study interesting physics phenomena. We studied superconducting vortex motion, especially the vortex ratchet effect, in one-dimensional thickness-modulated granular Al films. The potential profile for a single vortex due to thickness modulation was estimated using the Bardeen-Stephen model, which agrees with the transport results. For a sample with a nearly sawtooth potential profile, the rectification velocity showed a maximum around 4.4B1, where B1 is the first matching field, similar to simulations. We also observed reverse vortex rectification, which originates from the interplay between the pinning potential and vortex-vortex interactions. More interestingly, the rectification effects showed clear frequency dependence at driving frequencies as low as 10 kHz, suggesting the failure of the heavily overdamped model.

  14. Scroll wave filaments self-wrap around unexcitable heterogeneities.

    PubMed

    Jiménez, Zulma A; Steinbock, Oliver

    2012-09-01

    Scroll waves are three-dimensional excitation vortices rotating around one-dimensional phase singularities called filaments. In experiments with a chemical reaction-diffusion system and in numerical simulations, we study the pinning of closed filament loops to inert cylindrical heterogeneities. We show that the filament wraps itself around the heterogeneity and thus avoids contraction and annihilation. This entwining steadily increases the total length of the pinned filament and reshapes the entire rotation backbone of the vortex. Self-pinning is fastest for thin cylinders with radii not much larger than the core of the unpinned rotor. The process ends when the filament is attached to the entire length of the cylinder. The possible importance of self-pinning in cardiac systems is discussed.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herrera, Edwin; Bemito-Llorens, Jose; Kalarachchi, Udhara

    Here, we image vortex creep at very low temperatures using scanning tunneling microscopy in the superconductor Rh 9In 4S 4 (T c = 2.25 K). We measure the superconducting gap of Rh 9In 4S 4, finding Δ ≈ 0.33 meV, and image a hexagonal vortex lattice up to close to H c2 observing slow vortex creep at temperatures as low as 150 mK. We estimate thermal and quantum barriers for vortex motion and show that thermal fluctuations likely cause vortex creep, in spite of being at temperatures T/T c < 0.1. We study creeping vortex lattices by making images duringmore » long times and show that the vortex lattice remains hexagonal during creep with vortices moving along one of the high-symmetry axes of the vortex lattice. Furthermore, the creep velocity changes with the scanning window suggesting that creep depends on the local arrangements of pinning centers. Vortices fluctuate on small-scale erratic paths, indicating that the vortex lattice makes jumps trying different arrangements during its travel along the main direction for creep. Lastly, the images provide a visual account of how vortex lattice motion maintains hexagonal order, while showing dynamic properties characteristic of a glass.« less

  16. Anomalous reduction in the long-time flux creep relaxation in superconducting Ca10(Pt4As8)((Fe1‑x Pt x )2As2)5 (x ≈ 0.05) single crystals

    NASA Astrophysics Data System (ADS)

    Haberkorn, N.; Huang, Silu; Jin, R.

    2018-06-01

    We report the vortex dynamics of superconducting a Ca10(Pt4As8)((Fe1‑x Pt x )2As2)5 (x ≈ 0.05) single crystal with T c = 26 K investigated by performing magnetic measurements. The field dependence of the magnetization displays a second peak (SPM), typically related to a crossover between elastic and plastic vortex relaxation in a weak pinning scenario. Long-time flux creep relaxation measurements for fields smaller that of the SPM show that the vortex dynamics can be separated in two different regions. For magnetic fields smaller than the lower end of the SPM, glassy relaxation (with a characteristic glassy exponent μ) is observed. For magnetic fields between the lower end and the SPM, the flux creep rate decreases systematically to values below to the ones predicted by the collective theory. This effect can be understood by considering a stable vortex lattice configuration. As the field position of the SPM can be adjusted by modifying the quenched potential, our results suggest that extremely low flux creep relaxation rate may be tuned in many other superconducting materials.

  17. Clogging and transport of driven particles in asymmetric funnel arrays

    NASA Astrophysics Data System (ADS)

    Reichhardt, C. J. O.; Reichhardt, C.

    2018-06-01

    We numerically examine the flow and clogging of particles driven through asymmetric funnel arrays when the commensurability ratio of the number of particles per plaquette is varied. The particle–particle interactions are modeled with a soft repulsive potential that could represent vortex flow in type-II superconductors or driven charged colloids. The velocity-force curves for driving in the easy flow direction of the funnels exhibit a single depinning threshold; however, for driving in the hard flow direction, we find that there can be both negative mobility where the velocity decreases with increasing driving force as well as a reentrant pinning effect in which the particles flow at low drives but become pinned at intermediate drives. This reentrant pinning is associated with a transition from smooth 1D flow at low drives to a clogged state at higher drives that occurs when the particles cluster in a small number of plaquettes and block the flow. When the drive is further increased, particle rearrangements occur that cause the clog to break apart. We map out the regimes in which the pinned, flowing, and clogged states appear as a function of plaquette filling and drive. The clogged states remain robust at finite temperatures but develop intermittent bursts of flow in which a clog temporarily breaks apart but quickly reforms.

  18. Vortex manipulation in a superconducting matrix with view on applications

    NASA Astrophysics Data System (ADS)

    Milošević, M. V.; Peeters, F. M.

    2010-05-01

    We show how a single flux quantum can be effectively manipulated in a superconducting film with a matrix of blind holes. Such a sample can serve as a basic memory element, where the position of the vortex in a k ×l matrix of pinning sites defines the desired combination of n bits of information (2n=k×l). Vortex placement is achieved by strategically applied current and the resulting position is read out via generated voltage between metallic contacts on the sample. Such a device can also act as a controllable source of a nanoengineered local magnetic field for, e.g., spintronics applications.

  19. Influence of homogeneous magnetic fields on the flow of a ferrofluid in the Taylor-Couette system.

    PubMed

    Altmeyer, S; Hoffmann, Ch; Leschhorn, A; Lücke, M

    2010-07-01

    We investigate numerically the influence of a homogeneous magnetic field on a ferrofluid in the gap between two concentric, independently rotating cylinders. The full Navier-Stokes equations are solved with a combination of a finite difference method and a Galerkin method. Structure, dynamics, symmetry properties, bifurcation, and stability behavior of different vortex structures are investigated for axial and transversal magnetic fields, as well as combinations of them. We show that a transversal magnetic field modulates the Taylor vortex flow and the spiral vortex flow. Thus, a transversal magnetic field induces wavy structures: wavy Taylor vortex flow (wTVF) and wavy spiral vortex flow. In contrast to the classic wTVF, which is a secondarily bifurcating structure, these magnetically generated wavy Taylor vortices are pinned by the magnetic field, i.e., they are stationary and they appear via a primary forward bifurcation out of the basic state of circular Couette flow.

  20. Diminishing sign anomaly and scaling behavior of the mixed-state Hall resistivity in Tl2Ba2Ca2Cu3O10 films containing columnar defects

    NASA Technical Reports Server (NTRS)

    Budhani, R. C.; Liou, S. H.; Cai, Z. X.

    1993-01-01

    The issues of sign reversal of the Hall voltage and scaling between longitudinal (rho(xx)) and Hall (rho(xy)) resistivities are studied in Tl2Ba2Ca2Cu3O10 films in which the vortex dynamics is drastically changed by flux pinning at heavy-ion-irradiation-induced linear defects. While the sign anomaly diminishes with increasing defect concentration, the power law rho(xy) is approximately equal to rho(xx) exp beta, beta = 1.85 +/- 0.1, holds even after irradiation. This result shows that the scaling is a universal feature of the mixed state in this system. The sign anomaly, on the other hand, is not consistent with a model that invokes pinning-induced backflow in the vortex core as the mechanism for this effect.

  1. Vortex creep at very low temperatures in single crystals of the extreme type-II Rh 9In 4S 4

    DOE PAGES

    Herrera, Edwin; Bemito-Llorens, Jose; Kalarachchi, Udhara; ...

    2017-04-07

    Here, we image vortex creep at very low temperatures using scanning tunneling microscopy in the superconductor Rh 9In 4S 4 (T c = 2.25 K). We measure the superconducting gap of Rh 9In 4S 4, finding Δ ≈ 0.33 meV, and image a hexagonal vortex lattice up to close to H c2 observing slow vortex creep at temperatures as low as 150 mK. We estimate thermal and quantum barriers for vortex motion and show that thermal fluctuations likely cause vortex creep, in spite of being at temperatures T/T c < 0.1. We study creeping vortex lattices by making images duringmore » long times and show that the vortex lattice remains hexagonal during creep with vortices moving along one of the high-symmetry axes of the vortex lattice. Furthermore, the creep velocity changes with the scanning window suggesting that creep depends on the local arrangements of pinning centers. Vortices fluctuate on small-scale erratic paths, indicating that the vortex lattice makes jumps trying different arrangements during its travel along the main direction for creep. Lastly, the images provide a visual account of how vortex lattice motion maintains hexagonal order, while showing dynamic properties characteristic of a glass.« less

  2. Vortex creep at very low temperatures in single crystals of the extreme type-II superconductor Rh9In4S4

    NASA Astrophysics Data System (ADS)

    Herrera, Edwin; Benito-Llorens, José; Kaluarachchi, Udhara S.; Bud'ko, Sergey L.; Canfield, Paul C.; Guillamón, Isabel; Suderow, Hermann

    2017-04-01

    We image vortex creep at very low temperatures using scanning tunneling microscopy in the superconductor Rh9In4S4 (Tc=2.25 K ). We measure the superconducting gap of Rh9In4S4 , finding Δ ≈0.33 meV , and image a hexagonal vortex lattice up to close to Hc 2, observing slow vortex creep at temperatures as low as 150 mK. We estimate thermal and quantum barriers for vortex motion and show that thermal fluctuations likely cause vortex creep, in spite of being at temperatures T /Tc<0.1 . We study creeping vortex lattices by making images during long times and show that the vortex lattice remains hexagonal during creep with vortices moving along one of the high-symmetry axes of the vortex lattice. Furthermore, the creep velocity changes with the scanning window suggesting that creep depends on the local arrangements of pinning centers. Vortices fluctuate on small-scale erratic paths, indicating that the vortex lattice makes jumps trying different arrangements during its travel along the main direction for creep. The images provide a visual account of how vortex lattice motion maintains hexagonal order, while showing dynamic properties characteristic of a glass.

  3. Tunable artificial vortex ice in nanostructured superconductors with a frustrated kagome lattice of paired antidots

    NASA Astrophysics Data System (ADS)

    Xue, C.; Ge, J.-Y.; He, A.; Zharinov, V. S.; Moshchalkov, V. V.; Zhou, Y. H.; Silhanek, A. V.; Van de Vondel, J.

    2018-04-01

    Theoretical proposals for spin-ice analogs based on nanostructured superconductors have suggested larger flexibility for probing the effects of fluctuations and disorder than in the magnetic systems. In this paper, we unveil the particularities of a vortex ice system by direct observation of the vortex distribution in a kagome lattice of paired antidots using scanning Hall probe microscopy. The theoretically suggested vortex ice distribution, lacking long-range order, is observed at half matching field (H1/2 ). Moreover, the vortex ice state formed by the pinned vortices is still preserved at 2 H1/3 . This unexpected result is attributed to the introduction of interstitial vortices at these magnetic-field values. Although the interstitial vortices increase the number of possible vortex configurations, it is clearly shown that the vortex ice state observed at 2 H1/3 is less prone to defects than at H1/2 . In addition, the nonmonotonic variations of the vortex ice quality on the lattice spacing indicates that a highly ordered vortex ice state cannot be attained by simply reducing the lattice spacing. The optimal design to observe defect-free vortex ice is discussed based on the experimental statistics. The direct observations of a tunable vortex ice state provides new opportunities to explore the order-disorder transition in artificial ice systems.

  4. Control of vortex state in cobalt nanorings with domain wall pinning centers

    NASA Astrophysics Data System (ADS)

    Lal, Manohar; Sakshath, S.; Mohanan Parakkat, Vineeth; Anil Kumar, P. S.

    2018-05-01

    Magnetic rings at the mesoscopic scale exhibit new spin configuration states and switching behavior, which can be controlled via geometrical structure, material composition and applied field. Vortex states in magnetic nanorings ensure flux closure, which is necessary for low stray fields in high packing density in memory devices. We performed magnetoresistance measurements on cobalt nanoring devices and show that by attaching nanowires to the ring, the vortex state can be stabilized. When a square pad is attached to the free end of the wire, the domain wall nucleation field in the nanowire is reduced. In addition, the vortex state persists over a larger range of magnetic fields, and exists at all in-plane orientations of the magnetic field. These experimental findings are well supported by our micromagnetic simulations.

  5. Generating and manipulating quantized vortices on-demand in a Bose-Einstein condensate: A numerical study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gertjerenken, B.; Kevrekidis, P. G.; Carretero-González, R.

    Here, we numerically investigate an experimentally viable method for generating and manipulating on-demand several vortices in a highly oblate atomic Bose-Einstein condensate (BEC) in order to initialize complex vortex distributions for studies of vortex dynamics. The method utilizes moving laser beams to generate, capture, and transport vortices inside and outside the BEC. This methodology is examined in detail and shows a wide parameter range of applicability for the prototypical two-vortex case, as well as case examples of producing and manipulating several vortices for which there is no net circulation, corresponding to equal numbers of positive and negative circulation vortices, andmore » cases for which there is one net quantum of circulation. We also find that the presence of dissipation can help stabilize the pinning of the vortices on their respective laser beam pinning sites. Finally, we illustrate how to utilize laser beams as repositories that hold large numbers of vortices and how to deposit individual vortices in a sequential fashion in the repositories in order to construct superfluid flows about the repository beams with several quanta of circulation.« less

  6. Generating and manipulating quantized vortices on-demand in a Bose-Einstein condensate: A numerical study

    DOE PAGES

    Gertjerenken, B.; Kevrekidis, P. G.; Carretero-González, R.; ...

    2016-02-01

    Here, we numerically investigate an experimentally viable method for generating and manipulating on-demand several vortices in a highly oblate atomic Bose-Einstein condensate (BEC) in order to initialize complex vortex distributions for studies of vortex dynamics. The method utilizes moving laser beams to generate, capture, and transport vortices inside and outside the BEC. This methodology is examined in detail and shows a wide parameter range of applicability for the prototypical two-vortex case, as well as case examples of producing and manipulating several vortices for which there is no net circulation, corresponding to equal numbers of positive and negative circulation vortices, andmore » cases for which there is one net quantum of circulation. We also find that the presence of dissipation can help stabilize the pinning of the vortices on their respective laser beam pinning sites. Finally, we illustrate how to utilize laser beams as repositories that hold large numbers of vortices and how to deposit individual vortices in a sequential fashion in the repositories in order to construct superfluid flows about the repository beams with several quanta of circulation.« less

  7. In-plane dissipation maxima and vortex-line distortions in the resistive transitions of oxygen-doped Bi2Sr2CaCu2O(8+delta) single crystals

    NASA Astrophysics Data System (ADS)

    Hsu, J. W. P.; Mitzi, D. B.; Kapitulnik, A.; Lee, Mark

    1991-10-01

    Measurements of the in-plane resistive transition of Bi2Sr2CaCu2O(8+delta) single crystals in perpendicular magnetic fields reveal that in oxygen-reduced samples a giant resistance maximum evolves with field. This is not seen in oxygenated samples with similar metallic normal resistivities. As the peak resistivity may exceed the normal resistivity, it cannot arise from ordinary vortex-motion dissipation. A model is proposed where the excess resistance results from nonrigid vortex motion coupling the out-of-plane dissipation to the in-plane resistance at temperatures where pinning effects are negligible.

  8. Glassiness versus Order in Densely Frustrated Josephson Arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, P.; Teitel, S.; Gingras, M.J.

    1998-01-01

    We carry out extensive Monte Carlo simulations of the Coulomb gas dual to the uniformly frustrated two-dimensional XY model, for a sequence of frustrations f converging to the irrational (3{minus}{radical}(5))/ 2. We find in these systems a sharp first order equilibrium phase transition to an ordered vortex structure at a T{sub c} which varies only slightly with f . This ordered vortex structure remains, in general, phase incoherent until a lower vortex pinning transition T{sub p}(f) that varies with f. We argue that the glassy behaviors reported for this model in earlier simulations are dynamic effects. {copyright} {ital 1997} {italmore » The American Physical Society}« less

  9. Magnetotransport study of topological superconductor Cu0.10Bi2Se3 single crystal

    NASA Astrophysics Data System (ADS)

    Li, M. T.; Fang, Y. F.; Zhang, J. C.; Yi, H. M.; Zhou, X. J.; Lin, C. T.

    2018-03-01

    We report a magnetotransport study of vortex-pinning in Cu0.10Bi2Se3 single crystal. The sample is demonstrated to be in clean limit and absent of Pauli spin-limiting effect. Interestingly, the resistivity versus magnetic field shows an anomalously pronounced increase when approaching the superconducting-normal state boundary for both {{B}app}\\parallel ab and {{B}app}\\parallel c configurations. We have investigated the flux-flowing behavior under various magnetic fields and temperatures, enabling us to establish its anisotropic vortex phase diagram. Our results suggest the Cu0.10Bi2Se3 can be served as one unique material for exploring exotic surface vortex states in topological superconductors.

  10. Critical current and electric transport properties of superconducting epitaxial Nb(Ti)N submicron structures

    NASA Astrophysics Data System (ADS)

    Klimov, A.; Słysz, W.; Guziewicz, M.; Kolkovsky, V.; Wegrzecki, M.; Bar, J.; Marchewka, M.; Seredyński, B.

    2016-12-01

    Critical current and current-voltage characteristics of epitaxial Nb(Ti)N submicron ultrathin structures were measured as function of temperature. For 700-nm-wide bridge we found current-driven vortex de-pinning at low temperatures and thermally activated flux flow closer to the transition temperature, as the limiting factors for the critical current density. For 100-nm-wide meander we observed combination of phase-slip activation and vortex-anti-vortex pair (VAP) thermal excitation. Our Nb(Ti)N meander structure demonstrates high de-pairing critical current densities 107 A/cm2 at low temperatures, but the critical currents are much smaller due to presence of the local constrictions.

  11. Collective vortex pinning and merging of the irreversibility line and second peak effect in optimally doped Ba1-xKxBiO3 single crystals

    NASA Astrophysics Data System (ADS)

    Jiao, Yanjing; Cheng, Wang; Deng, Qiang; Yang, Huan; Wen, Hai-Hu

    2018-02-01

    Measurements on magnetization and relaxation have been carried out on an optimally doped Ba1-xKxBiO3+δ single crystal with Tc = 31.3 K. Detailed analysis is undertaken on the data. Both the dynamical relaxation and conventional relaxation have been measured leading to the self-consistent determination of the magnetization relaxation rate. It is found that the data are well described by the collective pinning model leading to the glassy exponent of about μ ≈ 1.64-1.68 with the magnetic fields of 1 and 3 T. The analysis based on Maley's method combining with the conventional relaxation data allows us to determine the current dependent activation energy U which yields a μ value of about 1.23-1.29 for the magnetic fields of 1 and 3 T. The second magnetization peaks appear in wide temperature region from 2 K to 24 K. The separation between the second peak field and the irreversibility field becomes narrow when temperature is increased. When the two fields are close to each other, we find that the second peak evolves into a step-like transition of magnetization. Finally, we present a vortex phase diagram and demonstrate that the vortex dynamics in Ba1-xKxBiO3 can be used as a model system for studying the collective vortex pining.

  12. Spontaneous symmetry breaking in vortex systems with two repulsive lengthscales.

    PubMed

    Curran, P J; Desoky, W M; Milosević, M V; Chaves, A; Laloë, J-B; Moodera, J S; Bending, S J

    2015-10-23

    Scanning Hall probe microscopy (SHPM) has been used to study vortex structures in thin epitaxial films of the superconductor MgB2. Unusual vortex patterns observed in MgB2 single crystals have previously been attributed to a competition between short-range repulsive and long-range attractive vortex-vortex interactions in this two band superconductor; the type 1.5 superconductivity scenario. Our films have much higher levels of disorder than bulk single crystals and therefore both superconducting condensates are expected to be pushed deep into the type 2 regime with purely repulsive vortex interactions. We observe broken symmetry vortex patterns at low fields in all samples after field-cooling from above Tc. These are consistent with those seen in systems with competing repulsions on disparate length scales, and remarkably similar structures are reproduced in dirty two band Ginzburg-Landau calculations, where the simulation parameters have been defined by experimental observations. This suggests that in our dirty MgB2 films, the symmetry of the vortex structures is broken by the presence of vortex repulsions with two different lengthscales, originating from the two distinct superconducting condensates. This represents an entirely new mechanism for spontaneous symmetry breaking in systems of superconducting vortices, with important implications for pinning phenomena and high current density applications.

  13. Clogging and transport of driven particles in asymmetric funnel arrays

    DOE PAGES

    Olson Reichhardt, Cynthia J.; Reichhardt, Charles

    2018-05-03

    In this paper, we numerically examine the flow and clogging of particles driven through asymmetric funnel arrays when the commensurability ratio of the number of particles per plaquette is varied. The particle-particle interactions are modeled with a soft repulsive potential that could represent vortex flow in type-II superconductors or driven charged colloids. The velocity-force curves for driving in the easy flow direction of the funnels exhibit a single depinning threshold; however, for driving in the hard flow direction, we find that there can be both negative mobility where the velocity decreases with increasing driving force as well as a reentrantmore » pinning effect in which the particles flow at low drives but become pinned at intermediate drives. This reentrant pinning is associated with a transition from smooth one-dimensional flow at low drives to a clogged state at higher drives that occurs when the particles cluster in a small number of plaquettes and block the flow. When the drive is further increased, particle rearrangements occur that cause the clog to break apart. We map out the regimes in which the pinned, flowing, and clogged states appear as a function of plaquette filling and drive. Finally, the clogged states remain robust at finite temperatures but develop intermittent bursts of flow in which a clog temporarily breaks apart but quickly reforms.« less

  14. Clogging and transport of driven particles in asymmetric funnel arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olson Reichhardt, Cynthia J.; Reichhardt, Charles

    In this paper, we numerically examine the flow and clogging of particles driven through asymmetric funnel arrays when the commensurability ratio of the number of particles per plaquette is varied. The particle-particle interactions are modeled with a soft repulsive potential that could represent vortex flow in type-II superconductors or driven charged colloids. The velocity-force curves for driving in the easy flow direction of the funnels exhibit a single depinning threshold; however, for driving in the hard flow direction, we find that there can be both negative mobility where the velocity decreases with increasing driving force as well as a reentrantmore » pinning effect in which the particles flow at low drives but become pinned at intermediate drives. This reentrant pinning is associated with a transition from smooth one-dimensional flow at low drives to a clogged state at higher drives that occurs when the particles cluster in a small number of plaquettes and block the flow. When the drive is further increased, particle rearrangements occur that cause the clog to break apart. We map out the regimes in which the pinned, flowing, and clogged states appear as a function of plaquette filling and drive. Finally, the clogged states remain robust at finite temperatures but develop intermittent bursts of flow in which a clog temporarily breaks apart but quickly reforms.« less

  15. Vortex lines in layered superconductors. II. Pinning and critical currents in high temperature superconductors

    NASA Astrophysics Data System (ADS)

    Manuel, P.

    1994-02-01

    In this article, a qualitative survey is given on the various phenomena which influence the critical current of high temperature superconductors. Critical current is defined as a property related to a non-zero electric field criterion, the level of which is fixed by experimental considerations, or efficiency requirements of applications. The presentation is restricted to extrinsic intragranular critical current, which depends in a complex way on the interplay between the characteristics of pinning centres and the properties of the vortex lattice. The discussion is focussed on the configuration {B} / / {c}, which contains the main elements of this problem. Differences of behaviour between Y(123) and BSCCO (Bi(2212) or Bi(2223)) are analysed in the context of their respective anisotropy factors. Possible regimes for pinning and creep are discussed in various temperature domains. From critical current results, a strong pinning regime is found to occur in BSCCO, whereas the pinning strength in Y(123) is still an open question. The thermal decrease of critical current allows a collective creep regime to appear in both materials, but at different temperature ranges. The disappearance of correlation effects near the irreversibility line results in a fall of the effective pinning energy. We show that in BSCCO, the effective pinning energy deduced from experimental results is not in agreement with pinning by randomly dispersed oxygen vacancies. Finally, we shortly describe the microstructures which could allow a more efficient pinning in future materials. On effectue une présentation qualitative des divers phénomènes qui contrôlent la valeur du courant critique dans les supraconducteurs à haute température. La notion de courant critique qui est utilisée est reliée à un critère de champ électrique non nul, fixé par des considérations expérimentales ou des exigences de rendement pour les applications. On se restreint au problème des courants critiques intragranulaires d'origine extrinsèque, qui dépendent de façon complexe des caractéristiques d'ancrage des défauts présents dans le matériau et des propriétés du réseau de vortex. On privilégie la configuration de champ {B} / / {c} qui est la plus révélatrice à cet égard. On analyse les différences de comportement entre les composés Y(123) et BSCCO (Bi(2212) ou Bi(2223)) en liaison avec leurs degrés d'anisotropie respectifs. Les différents régimes d'ancrage et de ll creep gg possibles pour ces composés sont examinés en fonction de la température. Les courants critiques obtenus pour BSCCO semblent correspondre à un régime d'ancrage fort, alors que la question reste ouverte pour Y(l23). La décroissance en température du courant critique expérimental suscite l'apparition d'un régime de ll creep gg collectif pour ces deux composés, avec cependant des différences notables sur la position et l'étendue des domaines correspondants. Au voisinage de la ligne d'irréversibilité, la disparition progressive des corrélations entre vortex provoque une chute de l'énergie d'ancrage effective. Dans BSCCO, celle-ci ne semble pas compatible avec l'hypothèse d'un ancrage par des lacunes d'oxygène réparties de façon aléatoire. On donne en conclusion quelques indications concernant les microstructures susceptibles d'améliorer les propriétés d'ancrage des futurs matériaux.

  16. Majorana Kramers pair in a nematic vortex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Fengcheng; Martin, Ivar

    A time-reversal (TR) invariant topological superconductor is characterized by a Kramers pair of Majorana zero-energy modes on boundaries and in a core of a TR invariant vortex. A vortex defect that preserves TR symmetry has remained primarily of theoretical interest, since typically a magnetic field, which explicitly breaks TR, needs to be applied to create vortices in superconductors. In this paper, we show that an odd-parity topological superconductor with a nematic pairing order parameter can host a nematic vortex that preserves TR symmetry and binds a Majorana Kramers pair. Such a nematic superconductor could be realized in metal-doped Bi 2Semore » 3, as suggested by recent experiments. We provide an analytic solution for the zero modes in a continuous nematic vortex. In lattice, crystalline anisotropy can pin the two-component order parameter along high-symmetry directions. We show that a discrete nematic vortex, which forms when three nematic domains meet, also supports a TR pair of Majorana modes. Lastly, we discuss possible experiments to probe the zero modes.« less

  17. Majorana Kramers pair in a nematic vortex

    DOE PAGES

    Wu, Fengcheng; Martin, Ivar

    2017-06-05

    A time-reversal (TR) invariant topological superconductor is characterized by a Kramers pair of Majorana zero-energy modes on boundaries and in a core of a TR invariant vortex. A vortex defect that preserves TR symmetry has remained primarily of theoretical interest, since typically a magnetic field, which explicitly breaks TR, needs to be applied to create vortices in superconductors. In this paper, we show that an odd-parity topological superconductor with a nematic pairing order parameter can host a nematic vortex that preserves TR symmetry and binds a Majorana Kramers pair. Such a nematic superconductor could be realized in metal-doped Bi 2Semore » 3, as suggested by recent experiments. We provide an analytic solution for the zero modes in a continuous nematic vortex. In lattice, crystalline anisotropy can pin the two-component order parameter along high-symmetry directions. We show that a discrete nematic vortex, which forms when three nematic domains meet, also supports a TR pair of Majorana modes. Lastly, we discuss possible experiments to probe the zero modes.« less

  18. Subsurface bending and reorientation of tilted vortex lattices in bulk isotropic superconductors due to Coulomb-like repulsion at the surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herrera, E.; Guillamón, I.; Galvis, J. A.

    Here, we study vortex lattices (VLs) in superconducting weak-pinning platelet-like single crystals of β–Bi 2Pd in tilted magnetic fields with a scanning tunneling microscope. We show that vortices exit the sample perpendicular to the surface and are thus bent beneath the surface. The structure and orientation of the tilted VLs in the bulk are, for large tilt angles, strongly affected by Coulomb-type intervortex repulsion at the surface due to stray magnetic fields.

  19. Subsurface bending and reorientation of tilted vortex lattices in bulk isotropic superconductors due to Coulomb-like repulsion at the surface

    DOE PAGES

    Herrera, E.; Guillamón, I.; Galvis, J. A.; ...

    2017-11-03

    Here, we study vortex lattices (VLs) in superconducting weak-pinning platelet-like single crystals of β–Bi 2Pd in tilted magnetic fields with a scanning tunneling microscope. We show that vortices exit the sample perpendicular to the surface and are thus bent beneath the surface. The structure and orientation of the tilted VLs in the bulk are, for large tilt angles, strongly affected by Coulomb-type intervortex repulsion at the surface due to stray magnetic fields.

  20. Vortex pinning properties in Fe-chalcogenides

    NASA Astrophysics Data System (ADS)

    Leo, A.; Grimaldi, G.; Guarino, A.; Avitabile, F.; Nigro, A.; Galluzzi, A.; Mancusi, D.; Polichetti, M.; Pace, S.; Buchkov, K.; Nazarova, E.; Kawale, S.; Bellingeri, E.; Ferdeghini, C.

    2015-12-01

    Among the families of iron-based superconductors, the 11-family is one of the most attractive for high field applications at low temperatures. Optimization of the fabrication processes for bulk, crystalline and/or thin film samples is the first step in producing wires and/or tapes for practical high power conductors. Here we present the results of a comparative study of pinning properties in iron-chalcogenides, investigating the flux pinning mechanisms in optimized Fe(Se{}1-xTe x ) and FeSe samples by current-voltage characterization, magneto-resistance and magnetization measurements. In particular, from Arrhenius plots in magnetic fields up to 9 T, the activation energy is derived as a function of the magnetic field, {U}0(H), whereas the activation energy as a function of temperature, U(T), is derived from relaxation magnetization curves. The high pinning energies, high upper critical field versus temperature slopes near critical temperatures, and highly isotropic pinning properties make iron-chalcogenide superconductors a technological material which could be a real competitor to cuprate high temperature superconductors for high field applications.

  1. In situ hydrostatic pressure induced improvement of critical current density and suppression of magnetic relaxation in Y(Dy0.5)Ba2Cu3O7‑δ coated conductors

    NASA Astrophysics Data System (ADS)

    Sang, Lina; Gutiérrez, Joffre; Cai, Chuanbing; Dou, Shixue; Wang, Xiaolin

    2018-07-01

    We report on the effect of in situ hydrostatic pressure on the enhancement of the in-magnetic-field critical current density parallel to the crystallographic c-axis and vortex pinning in epitaxial Y(Dy0.5)Ba2Cu3O7‑δ coated conductors prepared by metal organic deposition. Our results show that in situ hydrostatic pressure greatly enhances the critical current density at high fields and high temperatures. At 80 K and 5 T we observe a ten-fold increase in the critical current density under the pressure of 1.2 GPa, and the irreversibility line is shifted to higher fields without changing the critical temperature. The normalized magnetic relaxation rate shows that vortex creep rates are strongly suppressed due to applied pressure, and the pinning energy is significantly increased based on the collective creep theory. After releasing the pressure, we recover the original superconducting properties. Therefore, we speculate that the in situ hydrostatic pressure exerted on the coated conductor enhances the pinning of existing extended defects. This is totally different from what has been observed in REBa2Cu3O7‑δ melt-textured crystals, where the effect of pressure generates point-like defects.

  2. Engineering of superconductors and superconducting devices using artificial pinning sites

    NASA Astrophysics Data System (ADS)

    Wördenweber, Roger

    2017-08-01

    Vortex matter in superconducting films and devices is not only an interesting topic for basic research but plays a substantial role in the applications of superconductivity in general. We demonstrate, that in most electronic applications, magnetic flux penetrates the superconductor and affects the performance of superconducting devices. Therefore, vortex manipulation turns out to be a useful tool to avoid degradation of superconducting device properties. Moreover, it can also be used to analyze and understand novel and interesting physical properties and develop new concepts for superconductor applications. In this review, various concepts for vortex manipulation are sketched. For example, the use of micro- and nanopatterns (especially, antidots) for guiding and trapping of vortices in superconducting films and thin film devices is discussed and experimental evidence of their vortex guidance and vortex trapping by various arrangements of antidots is given. We demonstrate, that the vortex state of matter is very important in applications of superconductivity. A better understanding does not only lead to an improvement of the performance of superconductor components, such as reduced noise, better power handling capability, or improved reliability, it also promises deeper insight into the basic physics of vortices and vortex matter.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samoilov, A.V.

    The author extends the model of the flux-flow thermomagnetic transport coefficients of superconductors [A.V. Samoilov, A.A. Yurgens, and N.V. Zavaritsky] to the pinning region. Using a method due to Vinokur, Geshkenbein, Feigel'man, and Blatter, it is shown that if the vortex dynamics in disorder-dominated, N/[rho][sub xx] and S/[rho][sub xx] (where N is the Nernst coefficient, S is the thermopower, and [rho][sub xx] is the longitudinal resistivity) do not depend on the pinning strength. The theoretical consideration is illustrated by experimental results on the high-temperature superconductors.

  4. Vortex-slip transitions in superconducting a-NbGe mesoscopic channels

    NASA Astrophysics Data System (ADS)

    Kokubo, N.; Sorop, T. G.; Besseling, R.; Kes, P. H.

    2006-06-01

    Intriguing and novel physical aspects related to the vortex flow dynamics have been recently observed in mesoscopic channel devices of a-NbGe with NbN channel edges. In this work we have systematically studied the flow properties of vortices confined in such mesoscopic channels as a function of the magnetic field history, using dc-transport and mode-locking (ML) measurements. As opposed to the field-down situation, in the field-up case a kink anomaly in the dc I-V curves is detected. The mode-locking measurements reveal that this anomaly is, in fact, a flow induced vortex slip transition: by increasing the external drive (either dc or ac) a sudden change occurs from n to n+2 moving vortex rows in the channel. The observed features can be explained in terms of an interplay between field focusing due to screening currents and a change in the predominant pinning mechanism.

  5. Vortex relaxation in type-II superconductors following current quenches

    NASA Astrophysics Data System (ADS)

    Chaturvedi, Harsh; Assi, Hiba; Dobramysl, Ulrich; Pleimling, Michel; Täuber, Uwe

    2015-03-01

    The mixed phase in type-II superconductors is characterized by the presence of mutually repulsive magnetic flux lines that are driven by external currents and pinned by point-like or extended material defects. We represent the disordered vortex system in the London limit by an elastic directed line model, whose relaxational dynamics we investigate numerically by means of Langevin Molecular Dynamics. We specifically study the effects of sudden changes of the driving current on the time evolution of the mean flux line gyration radius and the associated transverse displacement correlation functions. Upon quenching from the moving into the pinned glassy phase, we observe algebraically slow relaxation. The associated two-time height-autocorrelations display broken time translation invariance and can be described by a simple aging scaling form, albeit with non-universal scaling exponents. Research supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-FG02-09ER46613.

  6. Distribution of flux-pinning energies in YBa2Cu3O(7-delta) and Bi2Sr2CaCu2O(8+delta) from flux noise

    NASA Astrophysics Data System (ADS)

    Ferrari, M. J.; Johnson, Mark; Wellstood, Frederick C.; Clarke, John; Mitzi, D.

    1990-01-01

    The spectral density of the magnetic flux noise measured in high-temperature superconductors in low magnetic fields scales approximately as the inverse of the frequency and increases with temperature. The temperature and frequency dependence of the noise are used to determine the pinning energies of individual flux vortices in thermal equilibrium. The distribution of pinning energies below 0.1 eV in YBa(2)Cu(3)O(7-delta) and near 0.2 eV in Bi(2)Sr(2)CaCu(2)O(8+delta). The noise power is proportional to the ambient magnetic field, indicating that the vortex motion is uncorrelated.

  7. Magneto-optical observation of twisted vortices in type-II superconductors

    NASA Astrophysics Data System (ADS)

    Indenbom, M. V.; van der Beek, C. J.; Berseth, V.; Benoit, W.; D'Anna, G.; Erb, A.; Walker, E.; Flükiger, R.

    1997-02-01

    When magnetic flux penetrates a type-II superconductor, it does so as quantized flux lines or vortex lines, so called because each is surrounded by a supercurrent vortex. Interactions between such vortices lead to a very rich and well characterized phenomenology for this 'mixed state'. But an outstanding question remains: are individual vortex lines 'strong', or can they easily be cut and made to pass through one another? The concept of vortex cutting was originally proposed to account for dissipation observed in superconducting wires oriented parallel to an applied magnetic field, where the vortex lines and transport current should be in a force-free configuration1-6. Previous experiments, however, have been unable to establish the vortex topology in the force-free configuration or the size of the energy barrier for vortex cutting. Here we report magneto-optical images of YBa2Cu3O7-δ samples in the force-free configuration which show that thousands of vortex lines can twist together to form highly stable structures. In some cases, these 'vortex twisters' interact with one another to produce wave-like dynamics. Our measurements also determine directly the current required to initiate vortex cutting, and show that it is much higher than that needed to overcome the pinning of vortices by material defects. This implies that thermodynamic phases of entangled vortices7-10 are intrinsically stable and may occupy a significant portion of the mixed-state phase diagram for type-II superconductors.

  8. Macrostructure of Friction Stir Welds

    NASA Technical Reports Server (NTRS)

    Aloor, S.; Nowak, B.; Vargas, R.; McClure, J. C.; Murr, L. E.; Nunes, A. C.; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    This paper will discuss two of the well know large scale features of friction stir welds: the "onion rings" seen in transverse sections, and the striations on the surface of the work piece. It will be shown that the surface features (sometimes called "tool marks") are the result of irregularities on the rotating shoulder of the pin tool and disappear when the shoulder is polished. The "onion ring" structure seen in transverse cross sections is formed by parts of the "carousel", the zone of material adjacent to and rotating with the pin tool, that are shed off in each rotation. The relation between the carousel and the "ring vortex", a rotational flow extending both in and out of the carousel and resembling a smoke-ring with the hole centered on the pin tool, will be discussed.

  9. Non-equlibrium relaxation of vortex lines in disordered type-II superconductors

    NASA Astrophysics Data System (ADS)

    Dobramysl, Ulrich; Assi, Hiba; Pleimling, Michel; T&äUber, Uwe C.

    2013-03-01

    Vortex matter in disordered type-II superconductors display a remarkable wealth of behavior, ranging from hexagonally arranged crystals and a vortex liquid to glassy phases. The type and strength of the disorder has a profound influence on the structural properties of the vortex matter: Randomly distributed weak point pinning sites lead to the destruction of long range order and a Bragg glass phase; correlated, columnar disorder can yield a Bose glass phase with infinite tilt modulus. We employ a three-dimensional elastic line model and apply a Langevin molecular dynamics algorithm to simulate the dynamics of vortex lines in a dissipative medium. We investigate the relaxation of a system of lines that were initially prepared in an out-of-equilibrium state and characterize the transient behavior via two-time quantities. We vary the disorder type and strength and compare our results for random and columnar disorder. Research supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-FG02-09ER46613.

  10. Ancrage des vortex dans les supraconducteurs Description phénoménologique de la réponse linéaire d'un de vortex ancré

    NASA Astrophysics Data System (ADS)

    Lütke-Entrup, N.; Plaçais, B.; Mathieu, P.; Simon, Y.

    Vortices pinning in supraconductors In this article we report on the investigation of the dynamics of vortices based on the high frequency linear response. We present a serie of measurements of the complex penetration depth in the mixed state in a variety of samples, including conventional materials (Nb, V, PbIn), the non-conventional heavy fermion UPt3, and the high-T_c cuprate YBaCuO. We have explored a large frequency range (1 kHz 10 MHz) so as to cover the cross-over from the quasi-static response, which is dominated by elastic interactions between vortices and sample defects, to the high-frequency regime, which is governed by viscous damping due to vortex friction against the host crystal. For a quantitative description of the frequency spectrum we start from a phenomenological theory which makes a rigorous distinction between vortex lines, along a vortex field omega, and magnetic field lines B. It predicts a second electrodynamical mode, which is linked to the vortex line tension and has a rather short range. We show that, in the limit of small vortex oscillations, amplitude and phase of the linear response are governed by an additional boundary condition for the vortex lattice at the sample surface ; it takes the form of a slipping condition with a characteristic length that depends on the surface roughness. The frequency spectrum deduced from this mechanism is clearly different from the Campbell spectrum, which is the common signature of all bulk pinning mechanisms. Our results on samples of PbIn, Nb, V, and YBaCuO entirely confirm our model, including some non-intuitive size effects which appear at low frequency when the sample becomes transparent to the flux flow mode. However, our measurements in the B and C phases of UPt3 reveal and important contribution of the bulk to the vortex pinning. Ce travail porte sur l'étude de l'ancrage des vortex par la réponse linéaire haute fréquence. Nous présentons une série de mesures de la profondeur de pénétration complexe dans l'état mixte sur une variété d'échantillons qui va des supraconducteurs classiques (Nb, V, PbIn), aux composés de fermions lourds non-conventionnels (UPt3), en passant par les cuprates à haute température critique (YBaCuO). La large gamme des fréquences explorées (1 kHz 10 MHz) permet de couvrir le changement de régime entre la réponse quasistatique dominée par l'interaction élastique des vortex avec les défauts, et la réponse haute fréquence amortie par la friction visqueuse du réseau de vortex au cristal ionique. Pour décrire quantitativement le spectre de fréquence, nous nous appuyons sur une théorie phénoménologique qui fait une distinction explicite et rigoureuse entre lignes de vortex, décrites par un champ omega, et lignes de champ magnétique B. On prédit ainsi l'existence d'un second mode électrodynamique, évanescent et de courte portée, lié à la tension de ligne des vortex. On montre que la réponse aux petits mouvements, amplitude et phase, est réglée par une condition limite supplémentaire sur le réseau de vortex à la surface ; elle prend la forme d'une condition de glissement avec une longueur phénoménologique contrôlée par la rugosité de l'échantillon. Le spectre de fréquence associé à ce mécanisme se distingue nettement du spectre de Campbell, générique des modèles d'ancrage en volume. Nos mesures sur des échantillons PbIn, Nb, V et YBaCuO confirment entièrement notre modèle, y compris des effets de taille peu intuitifs qui se produisent à basse fréquence quand l'échantillon devient transparent au mode flux flow. En revanche, l'étude des vortex dans les phases B et C d'UPt3 montre une contribution importante du volume à l'ancrage des vortex.

  11. Aging processes in disordered materials: High-Tc superconductors and ferromagnets

    NASA Astrophysics Data System (ADS)

    Pleimling, Michel

    2013-03-01

    Physical aging is generically encountered in systems far from equilibrium that evolve with slow dynamics. Well known examples can be found in structural glasses, spin glasses, magnetic systems, and colloids. Recent years have seen major breakthroughs in our understanding of aging processes in non-disordered systems. Progress in understanding aging in disordered systems has been much slower though. In this talk I discuss non-equilibrium relaxation in two different types of disordered systems: coarsening ferromagnets with disorder, characterized by a crossover from an initial power-law like growth of domains to a slower logarithmic growth regime, and interacting vortex lines in disordered type-II superconductors, where the interplay of vortex-vortex interaction and pinning results in a very rich non-equilibrium behavior. This work is supported by the US Department of Energy through grant DE-FG02-09ER46613.

  12. Significant and stable drag reduction with air rings confined by alternated superhydrophobic and hydrophilic strips

    PubMed Central

    Hu, Haibao; Wen, Jun; Bao, Luyao; Jia, Laibing; Song, Dong; Song, Baowei; Pan, Guang; Scaraggi, Michele; Dini, Daniele; Xue, Qunji; Zhou, Feng

    2017-01-01

    Superhydrophobic surfaces have the potential to reduce the viscous drag of liquids by significantly decreasing friction at a solid-liquid interface due to the formation of air layers between solid walls and interacting liquids. However, the trapped air usually becomes unstable due to the finite nature of the domain over which it forms. We demonstrate for the first time that a large surface energy barrier can be formed to strongly pin the three-phase contact line of air/water/solid by covering the inner rotor of a Taylor-Couette flow apparatus with alternating superhydrophobic and hydrophilic circumferential strips. This prevents the disruption of the air layer, which forms stable and continuous air rings. The drag reduction measured at the inner rotor could be as much as 77.2%. Moreover, the air layers not only significantly reduce the strength of Taylor vortexes but also influence the number and position of the Taylor vortex pairs. This has strong implications in terms of energy efficiency maximization for marine applications and reduction of drag losses in, for example, fluid transport in pipelines and carriers. PMID:28879234

  13. Hydrostatic pressure-induced huge enhancement of critical current density and flux pinning in Fe1-x Co x Se0.5Te0.5 single crystals

    NASA Astrophysics Data System (ADS)

    Sang, Lina; Shabbir, Babar; Maheshwari, Pankaj; Qiu, Wenbin; Ma, Zongqing; Dou, Shixue; Cai, Chuanbing; Awana, V. P. S.; Wang, Xiaolin

    2018-07-01

    We performed a systematic study of the hydrostatic pressure (HP) effect on the supercon-ducting transition temperature (T c), critical current density (J c), irreversibility field (H irr), upper critical field (H c2), and flux pinning mechanism in un-doped and 3 at.% Co-doped FeSe0.5Te0.5 crystals. We found that T c is increased from 11.5 to 17 K as HP increases from 0 to 1.2 GPa. Remarkably, the J c is significantly enhanced by a factor of 3 to 100 for low and high temperature and field, and the H irr line is shifted to higher fields by HP up to 1.2 GPa. Based on the collective pinning model, the δl pinning associated with charge-carrier mean free path fluctuation is responsible for the pinning mechanism of Fe1-x Co x Se0.5Te0.5 samples with or without pressure. A comprehensive vortex phase diagram in the mixed state is constructed and analysed for the 3 at.% Co-doped sample.

  14. Magnetic phase diagram of underdoped YBa 2 Cu 3 O y inferred from torque magnetization and thermal conductivity

    DOE PAGES

    Yu, Fan; Hirschberger, Max; Loew, Toshinao; ...

    2016-10-24

    We obtain the magnetic phase diagram in the underdoped cuprate YBa2Cu3Oy using torque magnetometry at temperatures 0.3–70 K and magnetic fields up to 45 T. At low fields, vortices (quantized flux tubes) form a vortex solid that is strongly pinned to the lattice. At large fields, melting of the solid to a vortex liquid produces nonzero dissipation. However, the vortex liquid persists to fields above 41 T. We have also mapped out the “transition” fields at which the charge-density–wave state (observed in X-ray diffraction experiments) becomes stable. Our results show that, in intense fields, superconductivity adjusts to coexist with themore » charge-density wave, but the Cooper pairs, which define the superconducting fluid, survive to fields well above 41 T.« less

  15. Dynamics of spiral waves rotating around an obstacle and the existence of a minimal obstacle

    NASA Astrophysics Data System (ADS)

    Gao, Xiang; Feng, Xia; Li, Teng-Chao; Qu, Shixian; Wang, Xingang; Zhang, Hong

    2017-05-01

    Pinning of vortices by obstacles plays an important role in various systems. In the heart, anatomical reentry is created when a vortex, also known as the spiral wave, is pinned to an anatomical obstacle, leading to a class of physiologically very important arrhythmias. Previous analyses of its dynamics and instability provide fine estimates in some special circumstances, such as large obstacles or weak excitabilities. Here, to expand theoretical analyses to all circumstances, we propose a general theory whose results quantitatively agree with direct numerical simulations. In particular, when obstacles are small and pinned spiral waves are destabilized, an accurate explanation of the instability in two-dimensional media is provided by the usage of a mapping rule and dimension reduction. The implications of our results are to better understand the mechanism of arrhythmia and thus improve its early prevention.

  16. Flux pinning in nanoparticle doped MgB 2/Cu tapes

    NASA Astrophysics Data System (ADS)

    Babić, E.; Kušević, I.; Husnjak, O.; Soltanian, S.; Wang, X. L.; Dou, S. X.

    2007-09-01

    The irreversibility fields Birr and critical current densities Jc of undoped and Si and SiC nanoparticle doped (5, 10 and 20 wt%) MgB2 tapes were measured in the temperature (T) range 2-38 K and in magnetic fields B ⩽ 16 T. Whereas Birr of undoped tapes varies smoothly with T, those of doped tapes show a change in slope around a crossover field Bcr which increases with nanoparticle content and also depends on their type. This indicates matching effect in vortex pinning, probably associated with Mg2Si nanoprecipitates formed during heat treatment. Indeed, Birr of doped tapes was enhanced in respect to that of undoped one with the highest enhancement for Birr ≈ Bcr, but the enhancement remained high ≈1.4 even for Birr ≫ Bcr (low temperatures). The variations of Jc and the pinning force density Fp = JcB with B and T support the above findings.

  17. Revealing the effect of edge contamination on vortex matter structure in a Nb single crystal with neutron diffraction techniques

    NASA Astrophysics Data System (ADS)

    Hanson, Helen; Wang, Xi; Luk, Michael; Shi, Jing; Ling, Xinsheng; Maranville, Brian; Majkrzak, Charles

    2011-03-01

    The vortex matter of type II superconductors provides a model system to study the effect of quenched random disorder on an elastic lattice, particularly in the framework of Bragg glass theory. Neutron scattering techniques are used to examine the structure of the vortex matter and to quantify the phase diagram. After measuring various thermal-magnetic histories, our data provided evidence for the edge contamination model in a Nb single crystal. Since surface oxidation is known to suppress the Bean-Livingston Surface barrier and the inhomogeneous distribution of surface impurities in Nb, we oxidize our sample surface and repeat our measurements. By comparing the data, we are able isolate the dynamic impact of the edge disorder from the static influence of bulk pinning. We discuss the various experimental obstacles in measuring the predicted Bragg glass state. We also report on Reverse Monte Carlo Refinement simulations modeling possible structures of our vortex matter. This research was supported by the U.S. DOE under grant DE- FG 02 - 07 ER46458.

  18. Magnetization pinning in modulated nanowires: from topological protection to the "corkscrew" mechanism.

    PubMed

    Fernandez-Roldan, Jose Angel; Perez Del Real, Rafael; Bran, Cristina; Vazquez, Manuel; Chubykalo-Fesenko, Oksana

    2018-03-29

    Diameter-modulated nanowires offer an important paradigm to design the magnetization response of 3D magnetic nanostructures by engineering the domain wall pinning. With the aim to understand its nature and to control the process, we analyze the magnetization response in FeCo periodically modulated polycrystalline nanowires varying the minor segment diameter. Our modelling indicates a very complex behavior with a strong dependence on the disorder distribution and an important role of topologically non-trivial magnetization structures. We demonstrate that modulated nanowires with a small diameter difference are characterized by an increased coercive field in comparison to the straight ones, which is explained by a formation of topologically protected walls formed by two 3D skyrmions with opposite chiralities. For a large diameter difference we report the occurrence of a novel pinning type called here the "corkscrew": the magnetization of the large diameter segment forms a skyrmion tube with a core position in a helical modulation along the nanowire. This structure is pinned at the constriction and in order to penetrate the narrow segments the vortex/skyrmion core size should be reduced.

  19. Deformation During Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    White, Henry J.

    2002-01-01

    Friction Stir Welding (FSW) is a solid state welding process that exhibits characteristics similar to traditional metal cutting processes. The plastic deformation that occurs during friction stir welding is due to the superposition of three flow fields: a primary rotation of a radially symmetric solid plug of metal surrounding the pin tool, a secondary uniform translation, and a tertiary ring vortex flow (smoke rings) surrounding the tool. If the metal sticks to the tool, the plug surface extends down into the metal from the outer edge of the tool shoulder, decreases in diameter like a funnel, and closes up beneath the pin. Since its invention, ten years have gone by and still very little is known about the physics of the friction stir welding process. In this experiment, an H13 steel weld tool (shoulder diameter, 0.797 in; pin diameter, 0.312 in; and pin length, 0.2506 in) was used to weld three 0.255 in thick plates. The deformation behavior during friction stir welding was investigated by metallographically preparing a plan view sections of the weldment and taking Vickers hardness test in the key-hole region.

  20. Vortex pinning and rectification effect in a nanostructured superconducting film with a square array of antidot triplets

    NASA Astrophysics Data System (ADS)

    He, An; Xue, Cun; Zhou, Youhe

    2018-05-01

    Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 11702034, 11702218, and 11421062), Fundamental Research Funds for the Central Universities, China (Grant Nos. 310812171011 and G2016KY0305), and the National Key Project of Magneto-Constrained Fusion Energy Development Program, China (Grant No. 2013GB110002).

  1. Fractional Matching Effect due to Pinning of the Vortex Lattice by an Array of Magnetic Dots

    NASA Astrophysics Data System (ADS)

    Stoll, O. M.; Montero, M. I.; Jönsson-Åkerman, B. J.; Schuller, Ivan K.

    2001-03-01

    We have investigated the pinning of magnetic flux quanta by rectangular arrays of nanoscaled magnetic dots. We measured the resistivity vs. magnetic field characteristics using a high magnetic field resolution of up to 0.1 G over the full field range ( 2 kG to 2 kG). By this we the appearance of minima at half and third integer values of the matching field. It is well known that a reconfiguration of the vortex lattice from a rectangular to a square type geometry occurs in rectangular arrays of magnetic dots when the magnetic field is increased over a threshold value H_r. If we lower the magnetic field after crossing H_r, we find that some of the minima at the full integer matching field are missing. This hysteretic behavior occurs only when Hr is exceeded before the subsequent decrease of the magnetic field. We present the experimental results and discuss preliminary models for the explanation of these observations. This work was supported by the grants NSF and DOE. Two of us acknowledge postdoctoral fellowships by the DAAD (Deutscher Akademischer Austauschdienst) (O.M.S.) and the Secretaria De Estado De Educacion Y Universidades (M.I.M.) respectively.

  2. Large effect of columnar defects on the thermodynamic properties of Bi2Sr2CaCu2O8 single crystals

    NASA Astrophysics Data System (ADS)

    van der Beek, C. J.; Konczykowski, M.; Li, T. W.; Kes, P. H.; Benoit, W.

    1996-07-01

    The introduction of columnar defects by irradiation with 5.8-GeV Pb ions is shown to affect significantly the reversible magnetic properties of Bi2Sr2CaCu2O8+δ single crystals. Notably, the suppression of superconducting fluctuations on length scales greater than the separation between columns leads to the disappearance of the ``crossing point'' in the critical fluctuation regime. At lower temperatures, the strong modification of the vortex energy due to pinning leads to an important change of the reversible magnetization. The analysis of the latter permits the direct determination of the pinning energy.

  3. Transport properties and pinning analysis for Co-doped BaFe2As2 thin films on metal tapes

    NASA Astrophysics Data System (ADS)

    Xu, Zhongtang; Yuan, Pusheng; Fan, Fan; Chen, Yimin; Ma, Yanwei

    2018-05-01

    We report on the transport properties and pinning analysis of BaFe1.84Co0.16As2 (Ba122:Co) thin films on metal tapes by pulsed laser deposition. The thin films exhibit a large in-plane misorientation of 5.6°, close to that of the buffer layer SrTiO3 (5.9°). Activation energy U 0(H) analysis reveals a power law relationship with field, having three different exponents at different field regions, indicative of variation from single-vortex pinning to a collective flux creep regime. The Ba122:Co coated conductors present {{T}{{c}}}{{onset}} = 20.2 K and {{T}{{c}}}{{zero}} = 19.0 K along with a self-field J c of 1.14 MA cm‑2 and an in-field J c as high as 0.98 and 0.86 MA cm‑2 up to 9 T at 4.2 K for both major crystallographic directions of the applied field, promising for high field applications. Pinning force analysis indicates a significant enhancement compared with similar Ba122:Co coated conductors. By using the anisotropic scaling approach, intrinsic pinning associated with coupling between superconducting blocks can be identified as the pinning source in the vicinity of H//ab, while for H//c random point defects are likely to play a role but correlated defects start to be active at high temperatures.

  4. Vortex flux dynamics and harmonic ac magnetic response of Ba(Fe 0.94Ni 0.06) 2As 2 bulk superconductor

    DOE PAGES

    Nikolo, Martin; Zapf, Vivien S.; Singleton, John; ...

    2016-07-22

    Vortex dynamics and nonlinear ac response are studied in a Ba(Fe 0.94Ni 0.06) 2As 2( T c= 18.5 K) bulk superconductor in magnetic fields up to 12 T via ac susceptibility measurements of the first ten harmonics. A comprehensive study of the ac magnetic susceptibility and its first ten harmonics finds shifts to higher temperatures with increasing ac measurement frequencies (10 to 10,000 Hz) for a wide range of ac (1, 5, and 10 Oe) and dc fields (0 to 12 T). The characteristic measurement time constant t1 is extracted from the exponential fit of the data and linked tomore » vortex relaxation. The Anderson-Kim Arrhenius law is applied to determine flux activation energy E a/k as a function dc magnetic field. The de-pinning, or irreversibility lines, were determined by a variety of methods and extensively mapped. The ac response shows surprisingly weak higher harmonic components, suggesting weak nonlinear behavior. Lastly, our data does not support the Fisher model; we do not see an abrupt vortex glass to vortex liquid transition and the resistivity does not drop to zero, although it appears to approach zero exponentially.« less

  5. Dynamics of vortex penetration, jumpwise instabilities, and nonlinear surface resistance of type-II superconductors in strong rf fields

    NASA Astrophysics Data System (ADS)

    Gurevich, A.; Ciovati, G.

    2008-03-01

    We consider the nonlinear dynamics of a single vortex in a superconductor in a strong rf magnetic field B0sinωt . Using the London theory, we calculate the dissipated power Q(B0,ω) and the transient time scales of vortex motion. For the linear Bardeen-Stephen viscous drag force, vortex velocities reach unphysically high values during vortex penetration through the oscillating surface barrier. It is shown that penetration of a single vortex through the ac surface barrier always involves penetration of an antivortex and the subsequent annihilation of the vortex-antivortex pairs. Using the nonlinear Larkin-Ovchinnikov (LO) viscous drag force at higher vortex velocities v(t) results in a jumpwise vortex penetration through the surface barrier and a significant increase of the dissipated power. We calculate the effect of dissipation on the nonlinear vortex viscosity η(v) and the rf vortex dynamics and show that it can also result in the LO-type behavior, instabilities, and thermal localization of penetrating vortex channels. We propose a thermal feedback model of η(v) , which not only results in the LO dependence of η(v) for a steady-state motion, but also takes into account retardation of the temperature field around a rapidly accelerating vortex and a long-range interaction with the surface. We also address the effect of pinning on the nonlinear rf vortex dynamics and the effect of trapped magnetic flux on the surface resistance Rs calculated as a function of rf frequency and field. It is shown that trapped flux can result in a temperature-independent residual resistance Ri at low T and a hysteretic low-field dependence of Ri(B0) , which can decrease as B0 is increased, reaching a minimum at B0 much smaller than the thermodynamic critical field Bc . We propose that cycling of the rf field can reduce Ri due to rf annealing of the magnetic flux which is pumped out by the rf field from a thin surface layer of the order of the London penetration depth.

  6. Towards Isotropic Vortex Pinning in YBCO Films with Double-doping BHO-Y2O3 and BZO-Y2O3 Artificial Pining Centers

    NASA Astrophysics Data System (ADS)

    Gautam, Bibek; Sebastian, Mary Ann; Chen, Shihong; Haugan, Timothy; Chen, Yanbin; Xing, Zhongwen; Prestigiacomo, Joseph; Osofsky, Mike; Wu, Judy

    2017-12-01

    Strong and isotropic vortex pinning landscape is demanded for high field applications of YaBa2Cu3O7-x (YBCO) epitaxial thin films. Double-doping (DD) of artificial pinning centers (APCs) of mixed morphologies has been identified as a viable approach for this purpose. This work presents a comparative study on the transport critical current density J c (H, θ) of 3.0 vol.%Y2O3+2.0 (or 6.0) vol.% BaZrO3 (BZO DD) and 3.0 vol.%Y2O3+ 2.0 (or 6.0) vol.% BaHfO3 (BHO DD) films. Based on the elastic strain model, BaHfO3 (BHO) nanorods have lower rigidity than their BaZrO3 (BZO) counterparts, which means their c-axis alignment is more susceptible to the local strain generated by the secondary dopant of Y2O3. Considering the increasing strain field with higher BZO (or BHO doping), the higher susceptibility may result in a large portion of the BHO APCs moving away from perfect c-axis alignment and enhancing isotropic pinning with respect to the H orientation. This is confirmed since the BHO DD films illustrate a less pronounced J c peak at H//c-axis and hence more isotropic J c(θ) than their BZO DD counterparts. At 9.0 T, the variation of the J c across the entire θ range (0-90 degree) is less than 18% for the BHO DD film, in contrast to about 100% for the 2.0 vol.% BZO DD counterpart. At the higher BHO concentration of 6.0 vol.%, this higher tunability of the Y2O3 leads to increased ab-plane aligned BHO APCs and hence enhanced J c at H//ab-plane.

  7. Critical current and flux dynamics in Ag-doped FeSe superconductor

    NASA Astrophysics Data System (ADS)

    Galluzzi, A.; Polichetti, M.; Buchkov, K.; Nazarova, E.; Mancusi, D.; Pace, S.

    2017-02-01

    The measurements of DC magnetization as a function of the temperature M(T), magnetic field M(H), and time M(t) have been performed in order to compare the superconducting and pinning properties of an undoped FeSe0.94 sample and a silver doped FeSe0.94 + 6 wt% Ag sample. The M(T) curves indicate an improvement of the superconducting critical temperature and a reduction of the non-superconducting phase Fe7Se8 due to the silver doping. This is confirmed by the field and temperature dependent critical current density Jc(H,T) extracted from the superconducting hysteresis loops at different temperatures within the Bean critical state model. Moreover, the combined analysis of the Jc(T) and of the pinning force Fp(H/Hirr) indicate that the pinning mechanisms in both samples can be described in the framework of the collective pinning theory. The U*(T, J) curves show a pinning crossover from an elastic creep regime of intermediate size flux bundles, for low temperatures, to a plastic creep regime at higher temperatures for both the samples. Finally, the vortex hopping attempt time has been evaluated for both samples and the results are comparable with the values reported in the literature for high Tc materials.

  8. Superconducting nanowire networks formed on nanoporous membrane substrates

    NASA Astrophysics Data System (ADS)

    Luo, Qiong

    Introducing a regular array of holes into superconducting thin films has been actively pursued to stabilize and pin the vortex lattice against external driving forces, enabling higher current capabilities. If the width of the sections between neighboring holes is comparable to the superconducting coherence length, the circulation of the Cooper pairs in around the holes in the presence of a magnetic field can also produce the Little-Parks effect, i.e. periodic oscillation of the critical temperature. These two mechanisms, commensurate vortex pinning enhancement by the hole-array and the critical temperature oscillations of a wire network due to Little-Parks effect can induce similar experimental observations such as magnetoresistance oscillation and enhancement of the critical current at specific magnetic fields. This dissertation work investigates the effect of a hole-array on the properties of superconducting films deposited onto nanoporous substrates. Experiments on anisotropies of the critical temperature for niobium films on anodic aluminum oxide membrane substrates containing a regular hole-array reveal that the critical temperature exhibits two strong anisotropic effects: Little-Parks oscillations whose period varies with field direction superimposed on a smooth background arising from one dimensional confinement by the finite lateral space between neighboring holes. The two components of the anisotropy are intrinsically linked and appear in concert. That is, the hole-array changes the dimensionality of a two-dimensional (2D) film to a network of 1D nanowire network. Network of superconducting nanowires with transverse dimensions as small as few nanometers were achieved by coating molybdenum germanium (MoGe) layer onto commercially available filtration membranes which have extremely dense nanopores. The magnetoresistance, magnetic field dependence of the critical temperature and the anisotropies of the synthesized MoGe nanowire networks can be consistently attributed to thermal phase slips and Little-Parks effect, revealing new phenomena at extreme conditions. This research significantly advanced our understanding on confinement effects in superconductors. Since AAO membranes of large area can be fabricated easily and filtration membranes are commercially available, the developed fabrication approach provides an alternative but more accessible templating method to achieve samples for exploring phenomena in superconductors with transverse dimensions down to few nanometers. This research also sets limitations on efforts to pursue high commensurate vortex pinning fields by increasing the density of holes in a perforated film: a reduction in the width of superconducting section between neighboring holes can turn a 2D film into a network of 1D nanowires which dissipate energy when conducting electricity due to thermal and possibly also quantum phase slippages, eliminating the desired pinning effect of the introduced hole.

  9. The response of an individual vortex to local mechanical contact

    NASA Astrophysics Data System (ADS)

    Kremen, Anna; Wissberg, Shai; Shperber, Yishai; Kalisky, Beena

    2016-05-01

    Recently we reported a new way to manipulate vortices in thin superconducting films by local mechanical contact without magnetic field, current or altering the pinning landscape [1]. We use scanning superconducting interference device (SQUID) microscopy to image the vortices, and a piezo element to push the tip of a silicon chip into contact with the sample. As a result of the stress applied at the contact point, vortices in the proximity of the contact point change their location. Here we study the characteristics of this vortex manipulation, by following the response of individual vortices to single contact events. Mechanical manipulation of vortices provides local view of the interaction between strain and nanomagnetic objects, as well as controllable, effective, localized, and reproducible manipulation technique.

  10. Method for the detection of a magnetic field utilizing a magnetic vortex

    DOEpatents

    Novosad, Valentyn [Chicago, IL; Buchanan, Kristen [Batavia, IL

    2010-04-13

    The determination of the strength of an in-plane magnetic field utilizing one or more magnetically-soft, ferromagnetic member, having a shape, size and material whereas a single magnetic vortex is formed at remanence in each ferromagnetic member. The preferred shape is a thin circle, or dot. Multiple ferromagnetic members can also be stacked on-top of each other and separated by a non-magnetic spacer. The resulting sensor is hysteresis free. The sensor's sensitivity, and magnetic saturation characteristics may be easily tuned by simply altering the material, size, shape, or a combination thereof to match the desired sensitivity and saturation characteristics. The sensor is self-resetting at remanence and therefore does not require any pinning techniques.

  11. Scaling universality at the dynamic vortex Mott transition

    DOE PAGES

    Lankhorst, M.; Poccia, N.; Stehno, M. P.; ...

    2018-01-17

    The cleanest way to observe a dynamic Mott insulator-to-metal transition (DMT) without the interference from disorder and other effects inherent to electronic and atomic systems, is to employ the vortex Mott states formed by superconducting vortices in a regular array of pinning sites. Here, we report the critical behavior of the vortex system as it crosses the DMT line, driven by either current or temperature. We find universal scaling with respect to both, expressed by the same scaling function and characterized by a single critical exponent coinciding with the exponent for the thermodynamic Mott transition. We develop a theory formore » the DMT based on the parity reflection-time reversal (PT) symmetry breaking formalism and find that the nonequilibrium-induced Mott transition has the same critical behavior as the thermal Mott transition. Our findings demonstrate the existence of physical systems in which the effect of a nonequilibrium drive is to generate an effective temperature and hence the transition belonging in the thermal universality class.« less

  12. Model of vortex dynamics in superconducting films in two-coil measurements of the coherence length

    NASA Astrophysics Data System (ADS)

    Lemberger, Thomas; Loh, Yen Lee

    In two-coil measurements on superconducting films, a magnetic field from a small coil is applied to the center of the film. When the amplitude of the ac field is increased, the film undergoes a transition from the ``Meissner'' state to a state with vortices and antivortices. Ultimately, the vortex density matches the applied magnetic field and field screening is negligible. Experimentally, the field at the transition is related to the superconducting coherence length, although a full theory of the relationship is lacking. We show that the mutual inductance between drive and pickup coils, on opposite sides of the film, as a function of ac field amplitude is well-described by a phenomenological model in which vortices and antivortices appear together in the film at the radius where the induced supercurrent is strongest, and then they move through a landscape of moderately strong vortex pinning sites. Work at OSU supported by DOE-Basic Energy Sciences through Grant No. FG02-08ER46533.

  13. Magnetotransport study of topological superconductor Cu0.10Bi2Se3 single crystal.

    PubMed

    Li, Mingtao; Fang, Yifei; Zhang, Jincang; Yi, Hemian; Zhou, Xingjiang; Lin, Chengtian

    2018-02-02

    We report a magnetotransport study of vortex-pinning in Cu<sub>0.10</sub>Bi<sub>2</sub>Se<sub>3</sub> single crystal. The sample is demonstrated to be in clean limit and absent of Pauli spin-limiting effect. Interestingly, the resistivity versus magnetic field shows an anomalously pronounced increase when approaching the superconducting-normal state boundary for both B∥ab and B∥c configurations. We have investigated the flux-flowing behavior under various magnetic field and temperatures, enabling us to establish its anisotropic vortex phase diagram. Our results suggest the Cu<sub>0.10</sub>Bi<sub>2</sub>Se<sub>3</sub> can be served as one unique material for exploring exotic surface vortex states in topological superconductors. © 2018 IOP Publishing Ltd.

  14. Scaling universality at the dynamic vortex Mott transition

    NASA Astrophysics Data System (ADS)

    Lankhorst, M.; Poccia, N.; Stehno, M. P.; Galda, A.; Barman, H.; Coneri, F.; Hilgenkamp, H.; Brinkman, A.; Golubov, A. A.; Tripathi, V.; Baturina, T. I.; Vinokur, V. M.

    2018-01-01

    The cleanest way to observe a dynamic Mott insulator-to-metal transition (DMT) without the interference from disorder and other effects inherent to electronic and atomic systems, is to employ the vortex Mott states formed by superconducting vortices in a regular array of pinning sites. Here, we report the critical behavior of the vortex system as it crosses the DMT line, driven by either current or temperature. We find universal scaling with respect to both, expressed by the same scaling function and characterized by a single critical exponent coinciding with the exponent for the thermodynamic Mott transition. We develop a theory for the DMT based on the parity reflection-time reversal (P T ) symmetry breaking formalism and find that the nonequilibrium-induced Mott transition has the same critical behavior as the thermal Mott transition. Our findings demonstrate the existence of physical systems in which the effect of a nonequilibrium drive is to generate an effective temperature and hence the transition belonging in the thermal universality class.

  15. Phase-Field Simulations of Topological Structures and Topological Phase Transitions in Ferroelectric Oxide Heterostructures

    NASA Astrophysics Data System (ADS)

    Zijian Hong

    Ferroelectrics are materials that exhibit spontaneous electric polarization which can be switched between energy-degenerated states by external stimuli (e.g., mechanical force and electric field) that exceeds a critical value. They have wide potential applications in memories, capacitors, piezoelectric and pyroelectric sensors, and nanomechanical systems. Topological structures and topological phase transitions have been introduced to the condensed matter physics in the past few decades and have attracted broad attentions in various disciplines due to the rich physical insights and broad potential applications. Ferromagnetic topological structures such as vortex and skyrmion are known to be stabilized by the antisymmetric chiral interaction (e.g., Dzyaloshinskii-Moriya interaction). Without such interaction, ferroelectric topological structures (i.e., vortex, flux-closure, skyrmions, and merons) have been studied only recently with other designing strategies, such as reducing the dimension of the ferroelectrics. The overarching goal of this dissertation is to investigate the topological structures in ferroelectric oxide perovskites as well as the topological phase transitions under external applied forces. Pb(Zr,Ti)O3 (PZT) with morphotropic phase boundary is widely explored for high piezoelectric and dielectric properties. The domain structure of PZT tetragonal/rhombohedral (T/R) bilayer is investigated. Strong interfacial coupling is shown, with large polarization rotation to a lower symmetry phase near the T/R interface. Interlayer domain growth can also be captured, with T-domains in the R layer and R-domains in the T layer. For thin PZT bilayer with 5nm of T-layer and 20 nm of R-layer, the a1/a 2 twin domain structure is formed in the top T layer, which could be fully switched to R domains under applied bias. While a unique flux-closure pattern is observed both theoretically and experimentally in the thick bilayer film with 50 nm of thickness for both T and R layers. It is revealed that the bilayer system could facilitate the motion of the ferroelastic adomain in the top T-layer since the a-domain is not directly embedded in the substrate with high density of defects which can pin the domain wall. Excellent dielectric and piezoelectric responses are demonstrated due to the large polarization rotation and the highly mobile domain walls in both the thick and thin bilayer systems. density of defects which can pin the domain wall. Excellent dielectric and piezoelectric responses are demonstrated due to the large polarization rotation and the highly mobile domain walls in both the thick and thin bilayer systems. The long-range ordered polar vortex array is observed in the (PbTiO 3)n/(SrTiO3)n (PTOn/STOn with n=10˜20) superlattices with combined experimental and theoretical studies. Phase-field simulations reveal the three-dimensional textures of the polar vortex arrays. The neighboring vortices rotate in the opposite directions, which extended into tube-like vortex lines perpendicular to the vortex plane. The thickness-dependent phase diagram is predicted and verified by experimental observations. The energetics (the contributions from elastic, electrostatic, gradient and Landau chemical energies) accompanying the phase transitions are analyzed in details. The dominating depolarization energy at short periodicity (n<10) favors a1/ a2 twin domain, while the large elastic relaxation and Landau energy reduction at large periodicity (n>20) leads to the formation of flux-closure domain with both 90° a/c domain walls and 180° c+/c - domain walls, counterbalancing of the individual energies at intermediate periodicities (n=10˜20) gives rise to the formation of exotic vortex structure with continuous polarization rotation surrounding a singularity-like vortex core. Analytical calculations are performed, showing that the stability of the polar vortex structure is directly related to the length of Pi times bulk domain wall width, where vortex structure can be expected when the geometric length scale of the ferroelectrics is close to this value. The role of insulating STO is further revealed, which shows that a rich phase diagram can be formed by simply tuning the thickness of this layer. Wave-like polar spiral phase is simulated by substituting part of the PTO with BiFeO3 (BFO) in the PTO/STO superlattice (i.e., in a (PTO) 4/(BFO)4/(PTO)4/(STO)12 tricolor system) which has demonstrate ordered polar vortex lattice. This spiral phase is made up of semi-vortex cores that are floating up-down in the ferroelectric PTO layers, giving rise to a net in-plane polarization. An increase of Curie temperature and topological to regular domain transition temperature (over 200 K) is observed, due to the higher Curie temperature and larger spontaneous polarization in BFO layers. This unidirectional spiral state can be reversibly switched by experimentally feasible in-plane field, which evolves into a metastable vortex structure in-between two spiral phases with opposite in-plane directions. (Abstract shortened by ProQuest.).

  16. Theory of flux cutting and flux transport at the critical current of a type-II superconducting cylindrical wire

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clem, John R

    2011-02-17

    I introduce a critical-state theory incorporating both flux cutting and flux transport to calculate the magnetic-field and current-density distributions inside a type-II superconducting cylinder at its critical current in a longitudinal applied magnetic field. The theory is an extension of the elliptic critical-state model introduced by Romero-Salazar and Pérez-Rodríguez. The vortex dynamics depend in detail on two nonlinear effective resistivities for flux cutting (ρ{sub ∥}) and flux flow (ρ{sub ⊥}), and their ratio r=ρ{sub ∥}/ρ{sub ⊥}. When r<1, the low relative efficiency of flux cutting in reducing the magnitude of the internal magnetic-flux density leads to a paramagnetic longitudinal magneticmore » moment. As a model for understanding the experimentally observed interrelationship between the critical currents for flux cutting and depinning, I calculate the forces on a helical vortex arc stretched between two pinning centers when the vortex is subjected to a current density of arbitrary angle Φ. Simultaneous initiation of flux cutting and flux transport occurs at the critical current density J{sub c}(Φ) that makes the vortex arc unstable.« less

  17. Theory of flux cutting and flux transport at the critical current of a type-II superconducting cylindrical wire

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clem, John R.

    2011-02-17

    I introduce a critical-state theory incorporating both flux cutting and flux transport to calculate the magnetic-field and current-density distributions inside a type-II superconducting cylinder at its critical current in a longitudinal applied magnetic field. The theory is an extension of the elliptic critical-state model introduced by Romero-Salazar and Perez-Rodriguez. The vortex dynamics depend in detail on two nonlinear effective resistivities for flux cutting ({rho}{parallel}) and flux flow ({rho}{perpendicular}), and their ratio r = {rho}{parallel}/{rho}{perpendicular}. When r < 1, the low relative efficiency of flux cutting in reducing the magnitude of the internal magnetic-flux density leads to a paramagnetic longitudinal magneticmore » moment. As a model for understanding the experimentally observed interrelationship between the critical currents for flux cutting and depinning, I calculate the forces on a helical vortex arc stretched between two pinning centers when the vortex is subjected to a current density of arbitrary angle {phi}. Simultaneous initiation of flux cutting and flux transport occurs at the critical current density J{sub c}({phi}) that makes the vortex arc unstable.« less

  18. Theory of flux cutting and flux transport at the critical current of a type-II superconducting cylindrical wire

    NASA Astrophysics Data System (ADS)

    Clem, John R.

    2011-06-01

    I introduce a critical-state theory incorporating both flux cutting and flux transport to calculate the magnetic-field and current-density distributions inside a type-II superconducting cylinder at its critical current in a longitudinal applied magnetic field. The theory is an extension of the elliptic critical-state model introduced by Romero-Salazar and Pérez-Rodríguez. The vortex dynamics depend in detail on two nonlinear effective resistivities for flux cutting (ρ∥) and flux flow (ρ⊥), and their ratio r=ρ∥/ρ⊥. When r<1, the low relative efficiency of flux cutting in reducing the magnitude of the internal magnetic-flux density leads to a paramagnetic longitudinal magnetic moment. As a model for understanding the experimentally observed interrelationship between the critical currents for flux cutting and depinning, I calculate the forces on a helical vortex arc stretched between two pinning centers when the vortex is subjected to a current density of arbitrary angle ϕ. Simultaneous initiation of flux cutting and flux transport occurs at the critical current density Jc(ϕ) that makes the vortex arc unstable.

  19. Effects of general relativity on glitch amplitudes and pulsar mass upper bounds

    NASA Astrophysics Data System (ADS)

    Antonelli, M.; Montoli, A.; Pizzochero, P. M.

    2018-04-01

    Pinning of vortex lines in the inner crust of a spinning neutron star may be the mechanism that enhances the differential rotation of the internal neutron superfluid, making it possible to freeze some amount of angular momentum which eventually can be released, thus causing a pulsar glitch. We investigate the general relativistic corrections to pulsar glitch amplitudes in the slow-rotation approximation, consistently with the stratified structure of the star. We thus provide a relativistic generalization of a previous Newtonian model that was recently used to estimate upper bounds on the masses of glitching pulsars. We find that the effect of general relativity on the glitch amplitudes obtained by emptying the whole angular momentum reservoir is less than 30 per cent. Moreover, we show that the Newtonian upper bounds on the masses of large glitchers obtained from observations of their maximum recorded event differ by less than a few percent from those calculated within the relativistic framework. This work can also serve as a basis to construct more sophisticated models of angular momentum reservoir in a relativistic context: in particular, we present two alternative scenarios for macroscopically rigid and slack pinned vortex lines, and we generalize the Feynman-Onsager relation to the case when both entrainment coupling between the fluids and a strong axisymmetric gravitational field are present.

  20. Vortex pinning in ferromagnet-superconductor bilayer with tunable domain patterns

    NASA Astrophysics Data System (ADS)

    Cieplak, Marta Z.

    2011-03-01

    Ferromagnet superconductor hybrids provide a fascinating example of systems in which there is a rich interplay between two seemingly incompatible collective phenomena. Particularly interesting is the impact of the ferromagnet on the dynamics of vortices in the superconductor. The magnetic domains control the location of the vortices. Exquisite control of the dynamics can be achieved by careful tuning of the geometry of the magnetic domains. In this talk I will present the results of recent experiments on superconductor(S)-ferromagnet(F) bilayers with a focus on understanding the hitherto unexplained seemingly unpredictable dependence of the critical current density on the parameters of the experiment. In our experiments the S layer is made of niobium, the F layer is a Co/Pt multilayer with perpendicular magnetic anisotropy, and a thin insulating layer in-between eliminates proximity effect. We use various demagnetization procedures to define different domain patterns in the F layer. We show that some domain patterns produce highly inhomogeneous flux penetration and strong vortex confinement at the sample edge, while for others there is remerkable enhancement of the critical current density in excess of 15. This is the highest value reported to date. We have measured, for the first time in a single tunable structure, the dependence of the activation energy for vortex pinning on the domain width, temperature, and magnetic field. In collaboration with L.Y. Zhu, X. M. Cheng and C. L. Chien (Johns Hopkins), Z. Adamus (Polish Acad. Sci.) and M. Konczykowski (Ecole Polytechnique). Supported by NSF grant DMR05-20491, by the French-Polish Program PICS 4916, and by EU within the European Regional Development Fund, through the Innovative Economy grant POIG.01.01.02-00-108/09.

  1. Electrical and thermal transport properties of the electron-doped cuprate Sm2-x Ce x CuO4-y system

    NASA Astrophysics Data System (ADS)

    Scanderbeg, D. J.; Taylor, B. J.; Baumbach, R. E.; Paglione, J.; Maple, M. B.

    2016-12-01

    Electrical and thermal transport measurements were performed on thin films of the electron-doped superconductor Sm2-x Ce x CuO4-y (x  =  0.13  -  0.19) in order to study the evolving nature of the charge carriers from the under-doped to over-doped regime. A temperature versus cerium content (T  -  x) phase diagram has been constructed from the electrical transport measurements, yielding a superconducting region similar to that found for other electron-doped superconductors. Thermopower measurements show a dramatic change from the underdoped region (x  <  0.15) to the overdoped region (x  >  0.15). Application of the Fisher-Fisher-Huse (FFH) vortex glass scaling model to the magnetoresistance data was found to be insufficient to describe the data in the region of the vortex-solid to vortex-liquid transition. It was found instead that the modified vortex glass scaling model of Rydh, Rapp, and Anderson provided a good description of the data, indicating the importance of the applied field on the pinning landscape. A magnetic field versus temperature (H  -  T) phase diagram has also been constructed for the films with x≥slant 0.14 , displaying the evolution of the vortex glass melting lines H g (T) across the superconducting regime.

  2. Endwall shape modification using vortex generators and fences to improve gas turbine cooling and effectiveness

    NASA Astrophysics Data System (ADS)

    Gokce, Zeki Ozgur

    The gas turbine is one of the most important parts of the air-breathing jet engine. Hence, improving its efficiency and rendering it operable under high temperatures are constant goals for the aerospace industry. Two types of flow within the gas turbine are of critical relevance: The flow around the first row of stator blades (also known as the nozzle guide vane blade - NGV) and the cooling flow inside the turbine blade cooling channel. The subject of this thesis work was to search for methods that could improve the characteristics of these two types of flows, thus enabling superior engine performance. The innovative aspect of our work was to apply an endwall shape modification previously employed by non-aerospace industries for cooling applications, to the gas turbine cooling flow which is vital to aerospace propulsion. Since the costs of investigating the possible benefits of any idea via extensive experiments could be quite high, we decided to use computational fluid dynamics (CFD) followed by experimentation as our methodology. We decided to analyze the potential benefits of using vortex generators (VGs) as well as the rectangular endwall fence. Since the pin-fins used in cooling flow are circular cylinders, and since the boundary layer flow is mainly characterized by the leading edge diameter of the NGV blade, we modeled both the pin-fins and the NGV blade as vertical circular cylinders. The baseline case consisted of the cylinder(s) being subjected to cross flow and a certain amount of freestream turbulence. The modifications we made on the endwall consisted of rectangular fences. In the case of the cooling flow, we used triangular shaped, common flow up oriented, delta winglet type vortex generators as well as rectangular endwall fences. The channel contained singular cylinders as well as staggered rows of multiple cylinders. For the NGV flow, a rectangular endwall fence and a singular cylinder were utilized. Using extensive CFD modeling and analysis, we confirmed that placing a rectangular endwall fence upstream of the cylinder created additional turbulent mixing in the domain. This led to increased mixing of the cooler flow in the freestream and the hotter flow near the endwall. As a result, we showed that adding a rectangular fence created a 10% mean heat transfer increase downstream of the cylinder. When vortex generators are used, as the flow passes over the sharp edges of the vortex generators, it separates and continues downstream in a rolling, helical pattern. Combined with the effect generated by the orientation of the vortex generators, this flow structure mixes the higher momentum fluid in the freestream with lower momentum fluid in the boundary layer. Similar turbulent mixing behavior is observed over the entire domain, near the cylinders and the side walls. As a result, the heat transfer levels over the wall surfaces are increased and improved cooling is achieved. The improvements in heat transfer are obtained at the expense of acceptable pressure losses across the cooling channel. When the vortex generators are used, the CFD modeling studies showed that overall heat transfer improvements as high as 27% compared to the baseline case are observed inside a domain containing multiple rows of cylinders. A price in the form of 13% pressure loss increase across the channel is paid for the heat transfer benefits. Experiments conducted in the open loop wind tunnel of the Turbomachinery Aero-Heat Transfer Laboratory of the Department of Aerospace Engineering of Penn State University supported the general positive trend of these findings, with a 14% overall increase in heat transfer over the constant heat flux surface when vortex generators are installed, accompanied by an 8% increase in pressure loss. (Abstract shortened by UMI.)

  3. Physics of Limiting Phenomena in Superconducting Microwave Resonators: Vortex Dissipation, Ultimate Quench and Quality Factor Degradation Mechanisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Checchin, Mattia

    Superconducting niobium accelerating cavities are devices operating in radio-frequency and able to accelerate charged particles up to energy of tera-electron-volts. Such accelerating structures are though limited in terms of quality factor and accelerating gradient, that translates--in some cases--in higher capital costs of construction and operation of superconducting rf accelerators. Looking forward for a new generation of more affordable accelerators, the physical description of limiting mechanisms in superconducting microwave resonators is discussed. In particular, the physics behind the dissipation introduced by vortices in the superconductor, the ultimate quench limitations and the quality factor degradation mechanism after a quench are described inmore » detail. One of the limiting factor of the quality factor is the dissipation introduced by trapped magnetic flux vortices. The radio-frequency complex response of trapped vortices in superconductors is derived by solving the motion equation for a magnetic flux line, assuming a bi-dimensional and mean free path-dependent Lorentzian-shaped pinning potential. The resulting surface resistance shows the bell-shaped trend as a function of the mean free path, in agreement with the experimental data observed. Such bell-shaped trend of the surface resistance is described in terms of the interplay of the two limiting regimes identified as pinning and flux flow regimes, for low and large mean free path values respectively. The model predicts that the dissipation regime--pinning- or flux-flow-dominated--can be tuned either by acting on the frequency or on the electron mean free path value. The effect of different configurations of pinning sites and strength on the vortex surface resistance are also discussed. Accelerating cavities are also limited by the quench of the superconductive state, which limits the maximum accelerating gradient achievable. The accelerating field limiting factor is usually associate d to the superheating field, which is intimately correlated to the penetration of magnetic flux vortices in the material. Experimental data for N-doped cavities suggest that uniform Ginzburg-Landau parameter cavities are statistically limited by the lower critical field, in terms of accelerating gradient. By introducing a Ginzburg-Landau parameter profile at the cavity rf surface--dirty layer--the accelerating gradient of superconducting resonators can be enhanced. The description of the physics behind the accelerating gradient enhancement as a consequence of the dirty layer is carried out by solving numerically the Ginzburg-Landau equations for the layered system. The enhancement is showed to be promoted by the higher energy barrier to vortex penetration, and by the enhanced lower critical field. Another serious threat to the quality factor during the cavity operation is the extra dissipation introduced by the quench. Such quality factor degradation mechanism due to the quench, is generated by the trapping of external magnetic flux at quench spot. The purely extrinsic origin of such extra dissipation is proven by the impossibility of decrease the quality factor by quenching in a magnetic field-free environment. Also, a clear relation of the dissipation introduced by quenching to the orientation of the applied magnetic field is observed. The full recover of the quality factor by re-quenching in compensated field is possible when the trapped flux at the quench spot is modest. On the contrary, when the trapped magnetic flux is too large, the quality factor degradation may become irreversible by this technique, likely due to the outward flux migration beyond the normal zone opening during the quench.« less

  4. Physics of limiting phenomena in superconducting microwave resonators: Vortex dissipation, ultimate quench and quality factor degradation mechanisms

    NASA Astrophysics Data System (ADS)

    Checchin, Mattia

    Superconducting niobium accelerating cavities are devices operating in radiofrequency and able to accelerate charged particles up to energy of tera-electron-volts. Such accelerating structures are though limited in terms of quality factor and accelerating gradient, that translates--in some cases--in higher capital costs of construction and operation of superconducting rf accelerators. Looking forward for a new generation of more affordable accelerators, the physical description of limiting mechanisms in superconducting microwave resonators is discussed. In particular, the physics behind the dissipation introduced by vortices in the superconductor, the ultimate quench limitations and the quality factor degradation mechanism after a quench are described in detail. One of the limiting factor of the quality factor is the dissipation introduced by trapped magnetic flux vortices. The radio-frequency complex response of trapped vortices in superconductors is derived by solving the motion equation for a magnetic flux line, assuming a bi-dimensional and mean free path-dependent Lorentzian-shaped pinning potential. The resulting surface resistance shows the bell-shaped trend as a function of the mean free path, in agreement with the experimental data observed. Such bell-shaped trend of the surface resistance is described in terms of the interplay of the two limiting regimes identified as pinning and flux flow regimes, for low and large mean free path values respectively. The model predicts that the dissipation regime--pinning- or flux-flow-dominated--can be tuned either by acting on the frequency or on the electron mean free path value. The effect of different configurations of pinning sites and strength on the vortex surface resistance are also discussed. Accelerating cavities are also limited by the quench of the superconductive state, which limits the maximum accelerating gradient achievable. The accelerating field limiting factor is usually associated to the superheating field, which is intimately correlated to the penetration of magnetic flux vortices in the material. Experimental data for N-doped cavities suggest that uniform Ginzburg-Landau parameter cavities are statistically limited by the lower critical field, in terms of accelerating gradient. By introducing a Ginzburg-Landau parameter profile at the cavity rf surface--dirty layer--the accelerating gradient of superconducting resonators can be enhanced. The description of the physics behind the accelerating gradient enhancement as a consequence of the dirty layer is carried out by solving numerically the Ginzburg-Landau equations for the layered system. The enhancement is showed to be promoted by the higher energy barrier to vortex penetration, and by the enhanced lower critical field. Another serious threat to the quality factor during the cavity operation is the extra dissipation introduced by the quench. Such quality factor degradation mechanism due to the quench, is generated by the trapping of external magnetic flux at the quench spot. The purely extrinsic origin of such extra dissipation is proven by the impossibility of decrease the quality factor by quenching in a magnetic field-free environment. Also, a clear relation of the dissipation introduced by quenching to the orientation of the applied magnetic field is observed. The full recover of the quality factor by re-quenching in compensated field is possible when the trapped flux at the quench spot is modest. On the contrary, when the trapped magnetic flux is too large, the quality factor degradation may become irreversible by this technique, likely due to the outward flux migration beyond the normal zone opening during the quench.

  5. Formation of vortex line around the glass transition in YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nojima, T.; Kakinuma, A.; Kuwasawa, Y.

    1996-12-01

    Two components of current-induced electric fields in ab plane, E{sub x} and E{sub y}, have been measured simultaneously on YBCO(123) films around the glass transition temperature T{sub g} in magnetic fields H with components (H{sub 0}, H{sub 0}, 0.1H{sub 0}), where x and y axes are parallel to the direction of the current density and c axis, respectively. In this condition, a finite transverse field E{sub y} almost equal to E{sub x} can be observed if the vortex lines form and move along the Lorentz force. In each H, the ratio {vert_bar}E{sub y}/E{sub x}{vert_bar} at a low current limit, whichmore » is zero far above T{sub g}, increases in the critical region and transfers to unity below T{sub g}. The authors results indicate that the vortices become lines with long range correlation along H direction at the vortex glass transition without receiving the effect of the intrinsic pinning.« less

  6. Trajectory and chirality of vortex domain walls in ferromagnetic nanowires with an asymmetric Y-branch

    NASA Astrophysics Data System (ADS)

    Brandão, J.; Mello, A.; Garcia, F.; Sampaio, L. C.

    2017-03-01

    The motion and trajectory of vortex domain walls (VDWs) driven by magnetic field were investigated in Fe80Ni20 nanowires with an asymmetric Y-shape branch. By using the focused magneto-optical Kerr effect, we have probed the injection, pinning, and propagation of VDWs in the branch and in the wire beyond the branch entrance. Hysteresis cycles measured at these points show 3 and 4 jumps in the magnetization reversal, respectively. Micromagnetic simulations were carried out to obtain the number of jumps in the hysteresis cycles, and the magnetization process involved in each jump. Based on simulations and from the size of the jumps in the measured hysteresis cycles, one obtains the histogram of the domain wall type probability. While in the branch domain walls of different types are equiprobable, in the nanowire vortex domain walls with counter clockwise and clockwise chiralities and transverse-down domain walls are measured with probabilities of 65%, 25%, and 10%, respectively. These results provide an additional route to select the trajectory and chirality of VDWs in magnetic nanostructures.

  7. The Flow Field Downstream of a Dynamic Low Aspect Ratio Circular Cylinder: A Parametric Study

    NASA Astrophysics Data System (ADS)

    Gildersleeve, Samantha; Dan, Clingman; Amitay, Michael

    2015-11-01

    Flow past a static, low aspect ratio cylinder (pin) has shown the formation of vortical structures, namely the horseshoe and arch-type vortex. These vortical structures may have substantial effects in controlling flow separation over airfoils. In the present experiments, the flow field associated with a low aspect ratio cylinder as it interacts with a laminar boundary layer under static and dynamic conditions was investigated through a parametric study over a flat plate. As a result of the pin being actuated in the wall-normal direction, the structures formed in the wake of the pin were seen to be a strong function of actuation amplitude, driving frequency, and aspect ratio of the cylinder. The study was conducted at a Reynolds number of 1875, based on the local boundary layer thickness, with a free stream velocity of 10 m/s. SPIV data were collected for two aspect ratios of 0.75 and 1.125, actuation amplitudes of 6.7% and 16.7%, and driving frequencies of 175 Hz and 350 Hz. Results indicate that the presence and interactions between vortical structures are altered in comparison to the static case and suggest increased large-scale mixing when the pin is driven at the shedding frequency (350 Hz). Supported by the Boeing Company.

  8. Vortex dynamics in β-FeSe single crystals: effects of proton irradiation and small inhomogeneous stress

    NASA Astrophysics Data System (ADS)

    Amigó, M. L.; Haberkorn, N.; Pérez, P.; Suárez, S.; Nieva, G.

    2017-12-01

    We report on the critical current density J c and the vortex dynamics of pristine and 3 MeV proton irradiated (cumulative dose equal to 2× {10}16 cm-2) β-FeSe single crystals. We also analyze a remarkable dependence of the superconducting critical temperature T c, J c and the flux creep rate S on the sample mounting method. Free-standing crystals present T c = 8.4(1) K, which increases to 10.5(1) K when they are fixed to the sample holder by embedding them with GE-7031 varnish. On the other hand, the irradiation has a marginal effect on T c. The pinning scenario can be ascribed to twin boundaries and random point defects. We find that the main effect of irradiation is to increase the density of random point defects, while the embedding mainly reduces the density of twin boundaries. Pristine and irradiated crystals present two outstanding features in the temperature dependence of the flux creep rate: S(T) presents large values at low temperatures, which can be attributed to small pinning energies, and a plateau at intermediate temperatures, which can be associated with glassy relaxation. From Maley analysis, we observe that the characteristic glassy exponent μ changes from ˜1.7 to 1.35-1.4 after proton irradiation.

  9. Full-potential modeling of blade-vortex interactions

    NASA Technical Reports Server (NTRS)

    Jones, H. E.; Caradonna, F. X.

    1986-01-01

    A comparison is made of four different models for predicting the unsteady loading induced by a vortex passing close to an airfoil. (1) The first model approximates the vortex effect as a change in the airfoil angle of attack. (2) The second model is related to the first but, instead of imposing only a constant velocity on the airfoil, the distributed effect of the vortex is computed and used. This is analogous to a lifting surface method. (3) The third model is to specify a branch cut discontinuity in the potential field. The vortex is modeled as a jump in potential across the branch cut, the edge of which represents the center of the vortex. (4) The fourth method models the vortex expressing the potential as the sum of a known potential due to the vortex and an unknown perturbation due to the airfoil. The purpose of the current study is to investigate the four vortex models described above and to determine their relative merits and suitability for use in large three-dimensional codes.

  10. Doping evolution of the second magnetization peak and magnetic relaxation in (B a1 -xKx ) F e2A s2 single crystals

    NASA Astrophysics Data System (ADS)

    Liu, Yong; Zhou, Lin; Sun, Kewei; Straszheim, Warren E.; Tanatar, Makariy A.; Prozorov, Ruslan; Lograsso, Thomas A.

    2018-02-01

    We present a thorough study of doping dependent magnetic hysteresis and relaxation characteristics in single crystals of (B a1 -xKx ) F e2A s2 (0.18 ≤x ≤1 ). The critical current density Jc reaches maximum in the underdoped sample x =0.26 and then decreases in the optimally doped and overdoped samples. Meanwhile, the magnetic relaxation rate S rapidly increases and the flux creep activation barrier U0 sharply decreases in the overdoped sample x =0.70 . These results suggest that vortex pinning is very strong in the underdoped regime, but it is greatly reduced in the optimally doped and overdoped regime. Transmission electron microscope (TEM) measurements reveal the existence of dislocations and inclusions in all three studied samples x =0.38 , 0.46, and 0.65. An investigation of the paramagnetic Meissner effect (PME) suggests that spatial variations in Tc become small in the samples x =0.43 and 0.46, slightly above the optimal doping levels. Our results support that two types of pinning sources dominate the (B a1 -xKx ) F e2A s2 crystals: (i) strong δl pinning, which results from the fluctuations in the mean free path l and δ Tc pinning from the spatial variations in Tc in the underdoped regime, and (ii) weak δ Tc pinning in the optimally doped and overdoped regime.

  11. Doping evolution of the second magnetization peak and magnetic relaxation in ( B a 1 - x K x ) F e 2 A s 2 single crystals

    DOE PAGES

    Liu, Yong; Zhou, Lin; Sun, Kewei; ...

    2018-02-16

    Here, we present a thorough study of doping dependent magnetic hysteresis and relaxation characteristics in single crystals of (Ba 1-xK x) Fe 2As 2 (0.18 ≤ x ≤ 1). The critical current density J c reaches maximum in the underdoped sample x = 0.26 and then decreases in the optimally doped and overdoped samples. Meanwhile, the magnetic relaxation rate S rapidly increases and the flux creep activation barrier U 0 sharply decreases in the overdoped sample x = 0.70. These results suggest that vortex pinning is very strong in the underdoped regime, but it is greatly reduced in the optimallymore » doped and overdoped regime. Transmission electron microscope (TEM) measurements reveal the existence of dislocations and inclusions in all three studied samples x = 0.38, 0.46, and 0.65. An investigation of the paramagnetic Meissner effect (PME) suggests that spatial variations in T c become small in the samples x = 0.43 and 0.46, slightly above the optimal doping levels. Our results support that two types of pinning sources dominate the (Ba 1-xK x) Fe 2As 2 crystals: (i) strong δl pinning, which results from the fluctuations in the mean free path l and δT c pinning from the spatial variations in T c in the underdoped regime, and (ii) weak δT c pinning in the optimally doped and overdoped regime.« less

  12. Doping evolution of the second magnetization peak and magnetic relaxation in ( B a 1 - x K x ) F e 2 A s 2 single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yong; Zhou, Lin; Sun, Kewei

    Here, we present a thorough study of doping dependent magnetic hysteresis and relaxation characteristics in single crystals of (Ba 1-xK x) Fe 2As 2 (0.18 ≤ x ≤ 1). The critical current density J c reaches maximum in the underdoped sample x = 0.26 and then decreases in the optimally doped and overdoped samples. Meanwhile, the magnetic relaxation rate S rapidly increases and the flux creep activation barrier U 0 sharply decreases in the overdoped sample x = 0.70. These results suggest that vortex pinning is very strong in the underdoped regime, but it is greatly reduced in the optimallymore » doped and overdoped regime. Transmission electron microscope (TEM) measurements reveal the existence of dislocations and inclusions in all three studied samples x = 0.38, 0.46, and 0.65. An investigation of the paramagnetic Meissner effect (PME) suggests that spatial variations in T c become small in the samples x = 0.43 and 0.46, slightly above the optimal doping levels. Our results support that two types of pinning sources dominate the (Ba 1-xK x) Fe 2As 2 crystals: (i) strong δl pinning, which results from the fluctuations in the mean free path l and δT c pinning from the spatial variations in T c in the underdoped regime, and (ii) weak δT c pinning in the optimally doped and overdoped regime.« less

  13. Correlated vortex pinning in Si-nanoparticle doped MgB 2

    NASA Astrophysics Data System (ADS)

    Kušević, I.; Babić, E.; Husnjak, O.; Soltanian, S.; Wang, X. L.; Dou, S. X.

    2004-12-01

    The magnetoresistivity and critical current density of well characterized Si-nanoparticle doped and undoped Cu-sheathed MgB 2 tapes have been measured at temperatures T≥28 K in magnetic fields B≤0.9 T. The irreversibility line Birr( T) for doped tape shows a stepwise variation with a kink around 0.3 T. Such Birr( T) variation is typical for high-temperature superconductors with columnar defects (a kink occurs near the matching field Bϕ) and is very different from a smooth Birr( T) variation in undoped MgB 2 samples. The microstructure studies of nanoparticle doped MgB 2 samples show uniformly dispersed nanoprecipitates, which probably act as a correlated disorder. The observed difference between the field variations of the critical current density and pinning force density of the doped and undoped tape supports the above findings.

  14. Superconducting properties of Ba(Fe1-xNix)2As2 thin films in high magnetic fields

    NASA Astrophysics Data System (ADS)

    Richter, Stefan; Kurth, Fritz; Iida, Kazumasa; Pervakov, Kirill; Pukenas, Aurimas; Tarantini, Chiara; Jaroszynski, Jan; Hänisch, Jens; Grinenko, Vadim; Skrotzki, Werner; Nielsch, Kornelius; Hühne, Ruben

    2017-01-01

    We report on the electrical transport properties of epitaxial Ba(Fe1-xNix)2As2 thin films grown by pulsed laser deposition in static magnetic fields up to 35 T. The thin film shows a critical temperature of 17.2 K and a critical current density of 5.7 × 105 A/cm2 in self field at 4.2 K, while the pinning is dominated by elastic pinning at two-dimensional nonmagnetic defects. Compared to the single-crystal data, we find a higher slope of the upper critical field for the thin film at a similar doping level and a small anisotropy. Also, an unusual small vortex liquid phase was observed at low temperatures, which is a striking difference to Co-doped BaFe2As2 thin films.

  15. Thermodynamic evidence for the Bose glass transition in twinned YBa 2 Cu 3 O 7 - δ crystals

    DOE PAGES

    Pérez-Morelo, D. J.; Osquiguil, E.; Kolton, A. B.; ...

    2015-07-21

    We used a micromechanical torsional o scillator to measure the magnetic response of a twinned YBaBa2Cu3O7-δ single crystal disk near the Bose glass transition. We observe an anomaly in the temperature dependence of the magnetization consistent with the appearance of a magnetic shielding perpendicular to the correlated pinning of the twin boundaries. This effect is related to the thermodynamic transition from the vortex liquid phase to a Bose glass state.

  16. Vortex depinning as a nonequilibrium phase transition phenomenon: Scaling of current-voltage curves near the low and the high critical-current states in 2 H -Nb S2 single crystals

    NASA Astrophysics Data System (ADS)

    Bag, Biplab; Sivananda, Dibya J.; Mandal, Pabitra; Banerjee, S. S.; Sood, A. K.; Grover, A. K.

    2018-04-01

    The vortex depinning phenomenon in single crystals of 2 H -Nb S2 superconductors is used as a prototype for investigating properties of the nonequilibrium (NEQ) depinning phase transition. The 2 H -Nb S2 is a unique system as it exhibits two distinct depinning thresholds, viz., a lower critical current Icl and a higher one Ich. While Icl is related to depinning of a conventional, static (pinned) vortex state, the state with Ich is achieved via a negative differential resistance (NDR) transition where the velocity abruptly drops. Using a generalized finite-temperature scaling ansatz, we study the scaling of current (I)-voltage (V) curves measured across Icl and Ich. Our analysis shows that for I >Icl , the moving vortex state exhibits Arrhenius-like thermally activated flow behavior. This feature persists up to a current value where an inflexion in the IV curves is encountered. While past measurements have often reported similar inflexion, our analysis shows that the inflexion is a signature of a NEQ phase transformation from a thermally activated moving vortex phase to a free flowing phase. Beyond this inflection in IV, a large vortex velocity flow regime is encountered in the 2 H -Nb S2 system, wherein the Bardeen-Stephen flux flow limit is crossed. In this regime the NDR transition is encountered, leading to the high Ich state. The IV curves above Ich we show do not obey the generalized finite-temperature scaling ansatz (as obeyed near Icl). Instead, they scale according to the Fisher's scaling form [Fisher, Phys. Rev. B 31, 1396 (1985), 10.1103/PhysRevB.31.1396] where we show thermal fluctuations do not affect the vortex flow, unlike that found for depinning near Icl.

  17. Nanoscale assembly of superconducting vortices with scanning tunnelling microscope tip

    PubMed Central

    Ge, Jun-Yi; Gladilin, Vladimir N.; Tempere, Jacques; Xue, Cun; Devreese, Jozef T.; Van de Vondel, Joris; Zhou, Youhe; Moshchalkov, Victor V.

    2016-01-01

    Vortices play a crucial role in determining the properties of superconductors as well as their applications. Therefore, characterization and manipulation of vortices, especially at the single-vortex level, is of great importance. Among many techniques to study single vortices, scanning tunnelling microscopy (STM) stands out as a powerful tool, due to its ability to detect the local electronic states and high spatial resolution. However, local control of superconductivity as well as the manipulation of individual vortices with the STM tip is still lacking. Here we report a new function of the STM, namely to control the local pinning in a superconductor through the heating effect. Such effect allows us to quench the superconducting state at nanoscale, and leads to the growth of vortex clusters whose size can be controlled by the bias voltage. We also demonstrate the use of an STM tip to assemble single-quantum vortices into desired nanoscale configurations. PMID:27934960

  18. Spatially resolved penetration depth measurements and vortex manipulation in the ferromagnetic superconductor ErNi 2 B 2 C

    DOE PAGES

    Wulferding, Dirk; Yang, Ilkyu; Yang, Jinho; ...

    2015-07-31

    We present a local probe study of the magnetic superconductor ErNi 2B 2C, using magnetic force microscopy at sub-Kelvin temperatures. ErNi 2B 2C is an ideal system to explore the effects of concomitant superconductivity and ferromagnetism. At 500 mK, far below the transition to a weakly ferromagnetic state, we directly observe a structured magnetic background on the micrometer scale. We determine spatially resolved absolute values of the magnetic penetration depth λ and study its temperature dependence as the system undergoes magnetic phase transitions from paramagnetic to antiferromagnetic, and to weak ferromagnetic, all within the superconducting regime. We estimate the absolutemore » pinning force of Abrikosov vortices, which shows a position dependence and temperature dependence as well, and discuss the possibility of the purported spontaneous vortex formation.« less

  19. Gravitational-wave bursts and stochastic background from superfluid vortex avalanches during pulsar glitches

    NASA Astrophysics Data System (ADS)

    Warszawski, L.; Melatos, A.

    2012-07-01

    The current-quadrupole gravitational-wave signal emitted during the spin-up phase of a pulsar glitch is calculated from first principles by modelling the vortex dynamics observed in recent Gross-Pitaevskii simulations of pinned, decelerating quantum condensates. Homogeneous and inhomogeneous unpinning geometries, representing creep- and avalanche-like glitches, provide lower and upper bounds on the gravitational-wave signal strength, respectively. The signal arising from homogeneous glitches is found to scale with the square root of glitch size, whereas the signal from inhomogeneous glitches scales proportional to glitch size. The signal is also computed as a function of vortex travel distance and stellar angular velocity. Convenient amplitude scalings are derived as functions of these parameters. For the typical astrophysical situation, where the glitch duration (in units of the spin period) is large compared to the vortex travel distance (in units of the stellar radius), an individual glitch from an object 1 kpc from Earth generates a wave strain of 10-24[(Δω/ω)/10-7](ω/102 rad s-1)3(Δr/10-2 m)-1, where Δr is the average distance travelled by a vortex during a glitch, Δω/ω is the fractional glitch size and ω is the pulsar angular velocity. The non-detection of a signal from the 2006 Vela glitch in data from the fifth science run conducted by the Laser Interferometer Gravitational-Wave Observatory implies that the glitch duration exceeds ˜10-4 ms. This represents the first observational lower bound on glitch duration to be obtained.

  20. Flux line relaxation kinetics following current quenches in disordered type-II superconductors

    NASA Astrophysics Data System (ADS)

    Chaturvedi, Harshwardhan; Assi, Hiba; Dobramysl, Ulrich; Pleimling, Michel; Täuber, Uwe

    We describe the disordered vortex system in type-II superconductors with an elastic line model, whose dynamics we investigate numerically by means of Langevin Molecular Dynamics. A system of driven interacting flux lines in a sample with randomly distributed point pinning centers is subjected to drive quench from a moving non-equilibrium steady state into one of three regimes viz. moving (steady state), pinned (glassy) or depinning (critical). The first yields fast exponential relaxation to the new non-equilibrium stationary state while the second displays algebraically slow relaxation and aging scaling with non-universal exponents. Our most recent work consists of aging and finite temperature scaling studies for drive quenches into the critical depinning regime. This research is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-FG02-09ER46613.

  1. Mechanisms for Enhanced Supercurrent Across Meandered Grain Boundaries in High-Temperature Superconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feldmann, D. M.; Holesinger, T. G.; Feenstra, Roeland

    2007-01-01

    It has been well established that the critical current density J{sub c} across grain boundaries (GBs) in high-temperature superconductors decreases exponentially with misorientation angle {theta} beyond {approx}2-3 degrees. This rapid decrease is due to a suppression of the superconducting order parameter at the grain boundary, giving rise to weakly pinned Abrikosov-Josephson (AJ) vortices. Here we show that if the GB plane meanders, this exponential dependence no longer holds, permitting greatly enhanced J{sub c} values: up to six times at 0 T and four times at 1 T at {theta}{approx}4-6 degrees. This enhancement is due to an increase in the current-carryingmore » cross section of the GBs and the appearance of short AJ vortex segments in the GB plane, confined by the interaction with strongly pinned Abrikosov (A) vortices in the grains.« less

  2. Sample and length-dependent variability of 77 and 4.2 K properties in nominally identical RE123 coated conductors

    NASA Astrophysics Data System (ADS)

    Rossi, L.; Hu, X.; Kametani, F.; Abraimov, D.; Polyanskii, A.; Jaroszynski, J.; Larbalestier, D. C.

    2016-05-01

    We present a broad study by multiple techniques of the critical current and critical current density of a small but representative set of nominally identical commercial RE123 (REBa2Cu3O7-δ , RE = rare Earth, here Y and Gd) coated conductors (CC) recently fabricated by SuperPower Inc. to the same nominal high pinning specification with BaZrO3 and RE2O3 nanoprecipitate pinning centers. With high-field low-temperature applications to magnet technology in mind, we address the nature of their tape-to-tape variations and length-wise I c inhomogeneities by measurements on a scale of about 2 cm rather than the 5 m scale normally supplied by the vendor and address the question of whether these variations have their origin in cross-sectional or in vortex pinning variations. Our principal method has been a continuous measurement transport critical current tool (YateStar) that applies about 0.5 T perpendicular and parallel to the tape at 77 K, thus allowing variations of c-axis and ab-plane properties to be clearly distinguished in the temperature and field regime where strong pinning defects are obvious. We also find such in-field measurements at 77 K to be more valuable in predicting 4.2 K, high-field properties than self-field, 77 K properties because the pinning centers controlling 77 K performance play a decisive role in introducing point defects that also add strongly to J c at 4.2 K. We find that the dominant source of I c variation is due to pinning center fluctuations that control J c, rather than to production defects that locally reduce the active cross-section. Given the 5-10 nm scale of these pinning centers, it appears that the route to greater I c homogeneity is through more stringent control of the REBCO growth conditions in these Zr-doped coated conductors.

  3. Development of strong vortex pinning and very high Jc in iron based superconductors

    NASA Astrophysics Data System (ADS)

    Tarantini, Chiara

    2015-03-01

    Ba(Fe1-xCox)2 As2 (Ba122) is the most tunable of the Fe-based superconductors (FBS) in terms of its acceptance of high densities of secondary phases capable of acting as effective pinning centers without depressing the properties of the superconducting matrix. It has been demonstrated that self-assembled nanorods made of Ba-Fe-O generate a strong correlated pinning along the c-axis, enhancing the critical current density, Jc, in this direction and reducing the Jc anisotropy. However, when 20% of secondary phases are introduced, the reduction of the cross-section becomes significant, decreasing the low field performance. In order to overcome this issue, artificially introduced pinning centers can be added by multilayer deposition producing an almost isotropic increase of Jc. Moreover, FBS are very sensitive to strain, allowing an important enhancement in the critical temperature, Tc, of the material. It will be shown that strain induced by the substrate can further improve Jc of both single and multilayer films by more than expected because of the Tc increase. The multilayer deposition of Ba122 on CaF2 increases the pinning force density, Fp, by more than 60% compared to a single layer film, reaching a maximum of 84 GN/m3 at 22.5T and 4.2 K, the highest value ever reported in any 122 phase. This work shows that the in-field performance of Ba122 widely exceeds that of Nb3Sn above 10T, attracting attention for possible applications.

  4. Effects of sudden density changes in disordered superconductors and semiconductors

    NASA Astrophysics Data System (ADS)

    Assi, Hiba; Chaturvedi, Harshwardhan; Pleimling, Michel; Täuber, Uwe

    Vortices in type-II superconductors in the presence of extended, linear defects display the strongly pinned Bose glass phase at low temperatures. This disorder-dominated thermodynamic state is characterized by suppressed lateral flux line fluctuations and very slow structural relaxation kinetics: The vortices migrate between different columnar pinning centers to minimize the mutual repulsive interactions and eventually optimize the system's pinning configuration. To monitor the flux lines' late-time structural relaxations, we employ a mapping between an effectively two-dimensional Bose glass system and a modified Coulomb glass model, originally developed to describe disordered semiconductors at low temperatures. By means of Monte Carlo simulations, we investigate the effects of the introduction of random bare site energies and sudden changes in the vortex or charge carrier density on the soft Coulomb gap that appears in the density of states due to the emerging spatial anticorrelations. The non-equilibrium relaxation properties of the Bose and Coulomb glass states and the ensuing aging kinetics are studied through the two-time density autocorrelation function and its various scaling forms. Research supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-FG02-09ER46613.

  5. Development of a Josephson vortex two-state system based on a confocal annular Josephson junction

    NASA Astrophysics Data System (ADS)

    Monaco, Roberto; Mygind, Jesper; Koshelets, Valery P.

    2018-07-01

    We report theoretical and experimental work on the development of a Josephson vortex two-state system based on a confocal annular Josephson tunnel junction (CAJTJ). The key ingredient of this geometrical configuration is a periodically variable width that generates a spatial vortex potential with bistable states. This intrinsic vortex potential can be tuned by an externally applied magnetic field and tilted by a bias current. The two-state system is accurately modeled by a one-dimensional sine-Gordon like equation by means of which one can numerically calculate both the magnetic field needed to set the vortex in a given state as well as the vortex-depinning currents. Experimental data taken at 4.2 {{K}} on high-quality Nb/Al-AlOx/Nb CAJTJs with an individual trapped fluxon advocate the presence of a robust and finely tunable double-well potential for which reliable manipulation of the vortex state has been classically demonstrated. The vortex is prepared in a given potential by means of an externally applied magnetic field, while the state readout is accomplished by measuring the vortex-depinning current in a small magnetic field. Our proof of principle experiment convincingly demonstrates that the proposed vortex two-state system based on CAJTJs is robust and workable.

  6. Vortices in a rotating two-component Bose–Einstein condensate with tunable interactions and harmonic potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xiao-Fei, E-mail: xfzhang@ntsc.ac.cn; Du, Zhi-Jing; Tan, Ren-Bing

    We consider a pair of coupled nonlinear Schrödinger equations modeling a rotating two-component Bose–Einstein condensate with tunable interactions and harmonic potential, with emphasis on the structure of vortex states by varying the strength of inter-component interaction, rotational frequency, and the aspect ratio of the harmonic potential. Our results show that the inter-component interaction greatly enhances the effect of rotation. For the case of isotropic harmonic potential and small inter-component interaction, the initial vortex structure remains unchanged. As the ratio of inter- to intra-component interactions increases, each component undergoes a transition from a vortex lattice (vortex line) in an isotropic (anisotropic)more » harmonic potential to an alternatively arranged stripe pattern, and eventually to the interwoven “serpentine” vortex sheets. Moreover, in the case of anisotropic harmonic potential the system can develop to a rotating droplet structure. -- Highlights: •Different vortex structures are obtained within the full parameter space. •Effects of system parameters on the ground state structure are discussed. •Phase transition between different vortex structures is also examined. •Present one possible way to obtain the rotating droplet structure. •Provide many possibilities to manipulate vortex in two-component BEC.« less

  7. Flux-line response in 2H-NbSe 2 investigated by means of the vibrating superconductor method

    NASA Astrophysics Data System (ADS)

    D'Anna, G.; André, M.-O.; Benoit, W.; Rodríguez, E.; Rodríguez, D. S.; Luzuriaga, J.; Wasczak, J. V.

    1993-12-01

    We measure transverse AC losses in the low- and high-amplitude regime of 2H-NbSe 2 single crystals using vibrating superconductor methods. The measurements are sensitive to small deviations of the critical state. The data constitute evidence for a peak effect of the critical current as a function of the temperature in this compound. We construct in the H- T phase diagram the “peak-effect” line which is supposed to mark an abrupt cross-over in the vortex-pinning regime.

  8. A vortex wake capturing method for potential flow calculations

    NASA Technical Reports Server (NTRS)

    Murman, E. M.; Stremel, P. M.

    1982-01-01

    A method is presented for modifying finite difference solutions of the potential equation to include the calculation of non-planar vortex wake features. The approach is an adaptation of Baker's 'cloud in cell' algorithm developed for the stream function-vorticity equations. The vortex wake is tracked in a Lagrangian frame of reference as a group of discrete vortex filaments. These are distributed to the Eulerian mesh system on which the velocity is calculated by a finite difference solution of the potential equation. An artificial viscosity introduced by the finite difference equations removes the singular nature of the vortex filaments. Computed examples are given for the two-dimensional time dependent roll-up of vortex wakes generated by wings with different spanwise loading distributions.

  9. Full-Potential Modeling of Blade-Vortex Interactions. Degree awarded by George Washington Univ., Feb. 1987

    NASA Technical Reports Server (NTRS)

    Jones, Henry E.

    1997-01-01

    A study of the full-potential modeling of a blade-vortex interaction was made. A primary goal of this study was to investigate the effectiveness of the various methods of modeling the vortex. The model problem restricts the interaction to that of an infinite wing with an infinite line vortex moving parallel to its leading edge. This problem provides a convenient testing ground for the various methods of modeling the vortex while retaining the essential physics of the full three-dimensional interaction. A full-potential algorithm specifically tailored to solve the blade-vortex interaction (BVI) was developed to solve this problem. The basic algorithm was modified to include the effect of a vortex passing near the airfoil. Four different methods of modeling the vortex were used: (1) the angle-of-attack method, (2) the lifting-surface method, (3) the branch-cut method, and (4) the split-potential method. A side-by-side comparison of the four models was conducted. These comparisons included comparing generated velocity fields, a subcritical interaction, and a critical interaction. The subcritical and critical interactions are compared with experimentally generated results. The split-potential model was used to make a survey of some of the more critical parameters which affect the BVI.

  10. Topological dynamics and current-induced motion in a skyrmion lattice

    NASA Astrophysics Data System (ADS)

    Martinez, J. C.; Jalil, M. B. A.

    2016-03-01

    We study the Thiele equation for current-induced motion in a skyrmion lattice through two soluble models of the pinning potential. Comprised by a Magnus term, a dissipative term and a pinning force, Thiele’s equation resembles Newton’s law but in virtue of the topological character to the first, it differs significantly from Newtonian mechanics and because the Magnus force is dominant, unlike its mechanical counterpart—the Coriolis force—skyrmion trajectories do not necessarily have mechanical counterparts. This is important if we are to understand skyrmion dynamics and tap into its potential for data-storage technology. We identify a pinning threshold velocity for the one-dimensional pinning potential and for a two-dimensional attractive potential we find a pinning point and the skyrmion trajectories toward that point are spirals whose frequency (compare Kepler’s second law) and amplitude-decay depend only on the Gilbert constant and potential at the pinning point. Other scenarios, e.g. other choices of initial spin velocity, a repulsive potential, etc are also investigated.

  11. Tunable magnetic vortex resonance in a potential well

    NASA Astrophysics Data System (ADS)

    Warnicke, P.; Wohlhüter, P.; Suszka, A. K.; Stevenson, S. E.; Heyderman, L. J.; Raabe, J.

    2017-11-01

    We use frequency-resolved x-ray microscopy to fully characterize the potential well of a magnetic vortex in a soft ferromagnetic permalloy square. The vortex core is excited with magnetic broadband pulses and simultaneously displaced with a static magnetic field. We observe a frequency increase (blueshift) in the gyrotropic mode of the vortex core with increasing bias field. Supported by micromagnetic simulations, we show that this frequency increase is accompanied by internal deformation of the vortex core. The ability to modify the inner structure of the vortex core provides a mechanism to control the dynamics of magnetic vortices.

  12. Computation of Incompressible Potential Flow over an Airfoil Using a High Order Aerodynamic Panel Method Based on Circular Arc Panels.

    DTIC Science & Technology

    1982-08-01

    Vortex Sheet Figure 4 - Properties of Singularity Sheets they may be used to model different types of flow. Transfer of boundary... Vortex Sheet Equivalence Singularity Behavior Using Green’s theorem it is clear that the problem of potential flow over a body can be modeled using ...that source, doublet, or vortex singularities can be used to model potential flow problems, and that the doublet and vortex singularities are

  13. Mars' Annular Polar Vortices and their Response to Atmospheric Dust Opacity

    NASA Astrophysics Data System (ADS)

    Guzewich, S.; Waugh, D.; Toigo, A. D.

    2016-12-01

    The potential vorticity structure of the martian polar vortices is distinct from Earth's stratospheric or tropospheric vortices. Rather than exhibiting monotonically increasing potential vorticity toward the geographic pole, as on Earth, the martian fall and winter polar vortices are annular with the potential vorticity maximum situated off the pole and a local minimum in potential vorticity at the pole. Using the MarsWRF general circulation model (GCM), we perform a series of simulations to examine the source of this annular structure. We find that latent heat exchange from the formation of CO2 ice aerosols within the vortex, in a region very near the geographic pole, destroys potential vorticity and creates the annular structure. Furthermore, we describe Mars Climate Sounder and Thermal Emission Spectrometer observations of "transient vortex warming" events, where the air inside the northern hemisphere winter polar vortex is briefly warmed. During the Mars Year 28 (2007) global dust storm, the temperature inside the vortex increased by 70 K and dust directly entered the vortex. Using additional GCM simulations, we diagnose the dynamical changes associated with these transient vortex warming events and find that poleward expansion of the descending branch of the meridional overturning circulation during periods of increased dust opacity disrupts the northern hemisphere winter polar vortex. These increased temperatures also suppress CO2 condensation at the pole, creating a more Earth-like polar vortex where potential vorticity is maximized near the geographic pole.

  14. Frequency dependence of trapped flux sensitivity in SRF cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Checchin, M.; Martinello, M.; Grassellino, A.

    In this paper, we present the frequency dependence of the vortex surface resistance of bulk niobium accelerating cavities as a function of different state-of-the-art surface treatments. Higher flux surface resistance per amount of trapped magnetic field - sensitivity - is observed for higher frequencies, in agreement with our theoretical model. Higher sensitivity is observed for N-doped cavities, which possess an intermediate value of electron mean-free-path, compared to 120° C and EP/BCP cavities. Experimental results from our study showed that the sensitivity has a non-monotonic trend as a function of the mean-free-path, including at frequencies other than 1.3 GHz, and thatmore » the vortex response to the rf field can be tuned from the pinning regime to flux-flow regime by manipulating the frequency and/or the mean-free-path of the resonator, as reported in our previous studies. The frequency dependence of the trapped flux sensitivity to the amplitude of the accelerating gradient is also highlighted.« less

  15. Frequency dependence of trapped flux sensitivity in SRF cavities

    DOE PAGES

    Checchin, M.; Martinello, M.; Grassellino, A.; ...

    2018-02-13

    In this paper, we present the frequency dependence of the vortex surface resistance of bulk niobium accelerating cavities as a function of different state-of-the-art surface treatments. Higher flux surface resistance per amount of trapped magnetic field - sensitivity - is observed for higher frequencies, in agreement with our theoretical model. Higher sensitivity is observed for N-doped cavities, which possess an intermediate value of electron mean-free-path, compared to 120° C and EP/BCP cavities. Experimental results from our study showed that the sensitivity has a non-monotonic trend as a function of the mean-free-path, including at frequencies other than 1.3 GHz, and thatmore » the vortex response to the rf field can be tuned from the pinning regime to flux-flow regime by manipulating the frequency and/or the mean-free-path of the resonator, as reported in our previous studies. The frequency dependence of the trapped flux sensitivity to the amplitude of the accelerating gradient is also highlighted.« less

  16. Vortex dynamics in a thin superconducting film with a non-uniform magnetic field applied at its center with a small coil

    DOE PAGES

    Lemberger, Thomas R.; Loh, Yen Lee

    2016-10-27

    This article models the dynamics of vortices that are generated in the middle of a thin, large-area, superconducting film by a low-frequency magnetic field from a small coil, motivated by a desire to better understand measurements of the superconducting coherence length made with a two-coil apparatus. When the applied field exceeds a critical value, vortices and antivortices originate near the middle of the film at the radius where the Lorentz force of the screening supercurrent is largest. The Lorentz force from the screening supercurrent pushes vortices toward the center of the film and antivortices outward. In an experiment, vortices aremore » detected as an increase in mutual inductance between drive coil and a coaxial “pickup” coil on the opposite side of the film. Lastly, the model shows that the essential features of measurements are well described when vortex pinning and the attendant hysteresis are included.« less

  17. High-Temperature High-Current Superconductors: Preparation, Structure, Superconducting Properties, and Flux-Pinning Mechanisms

    NASA Astrophysics Data System (ADS)

    Hu, Shouxiang

    In bulk high-T_{rm c } superconductors, weak links at the grain boundaries and weak flux pinning are the two major causes of low critical current density (J_{ rm c}) at 77 K. In the present study, various processes designed and developed to address these problems are discussed. The novel pressurized-partial -melt-growth process, which leads to a relatively large improvement in the microstructure as well as in the superconducting properties of bulk Y-Ba-Cu-O superconductors, is described. The effects of introducing foreign elements to serve as pinning centers are reported, and the associated anomalous superconducting phenomena are explained on the basis of a detailed study of basic pinning mechanisms related to the presence of small defects. It is demonstrated that in certain cases the pinning force induced by the compression of the vortex line may be comparable to, or even larger than, the usually recognized pinning force due to the condensation energy. Studies of the pinning mechanism corresponding to large boundary defects show that boundary defects associated with certain non-superconducting inclusions and isolated weak links have a very positive role in the enhancement of both the critical current density and the effective activation energy for flux creep. However, even optimized theoretical estimates show that it will be difficult to reach J_ {rm c} values of 5 times 10^5 A/cm^2 at 77 K and H = 1 T by increasing the number of Y_2BaCuO inclusions alone. Although even higher J_{rm c} values may be achieved by introducing other types of defects using alternative approaches such as irradiation, and, probably, chemical doping, the presence of large amount of boundary defects is very important in causing a large increase in the effective activation energy for flux creep. Also studied are the anisotropic electromagnetic features of the grain-aligned YBa_2Cu _3O_{rm x} bulk superconductors. The development of novel processing methods guided by improved understanding of the basic mechanisms involved opens the way for the preparation of high-quality bulk high-T_{rm c} superconducting materials for a wide variety of applications.

  18. Curvature-induced domain wall pinning

    NASA Astrophysics Data System (ADS)

    Yershov, Kostiantyn V.; Kravchuk, Volodymyr P.; Sheka, Denis D.; Gaididei, Yuri

    2015-09-01

    It is shown that a local bend of a nanowire is a source of pinning potential for a transversal head-to-head (tail-to-tail) domain wall. Eigenfrequency of the domain wall free oscillations at the pinning potential and the effective friction are determined as functions of the curvature and domain wall width. The pinning potential originates from the effective curvature-induced Dzyaloshinsky-like term in the exchange energy. The theoretical results are verified by means of micromagnetic simulations for the case of parabolic shape of the wire bend.

  19. Vortex motion and dynamical states in Josephson arrays

    NASA Astrophysics Data System (ADS)

    Trias, Enrique

    Underdamped Josephson junction arrays are used as model systems to study novel nonlinear effects. A combination of experiments, numerical simulations, and analytical analysis is used to probe different nonlinear behavior such as intrinsic localized modes, resonances in fully frustrated arrays, Meissner-like states, and vortex ratchets. Circuit models of Josephson networks are also developed, and applied to the design and measurement of parallel array oscillators. Ladder arrays have been used for an experimental study of intrinsic localized modes, or discrete breathers. Measurements of breather stability indicate that the maximum allowable bias current is proportional to the array depinning current while the minimum current is related to a junction retrapping mechanism. This retrapping instability usually leads to the formation of multi-site breathers. Collisions between the two nonlinear excitations in ladder arrays, discrete breathers and vortices, have also been numerically investigated. Discrete breathers act as pinning centers to vortex motion and the collisions can be modeled by an energy barrier activation process. When vortices are thermally induced over this barrier, a two-site breather is created. Experiments also reveal remarkable similarities among the do current-voltage characteristics of several kinds of square and triangular arrays, where two resonant voltages are observed. Simulations indicate that at full frustration a dynamical checkerboard state underlies these similarities. For such a traveling solution, the governing equations of the arrays are reduced to three coupled pendulum equations that have two characteristic resonant frequencies. Finally, a kink ratchet potential has been designed using a parallel array of Josephson junctions with alternating cell inductances and junctions areas. Experiments show that the depinning current depends on the direction of the applied current. Other properties of the depinning current versus applied field, such as a long period and a lack of reflection symmetry, have been observed and explained analytically. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139- 4307. Ph. 617-253-5668; Fax 617-253-1690.)

  20. Feasibility of wake vortex monitoring systems for air terminals

    NASA Technical Reports Server (NTRS)

    Wilson, D. J.; Shrider, K. R.; Lawrence, T. R.

    1972-01-01

    Wake vortex monitoring systems, especially those using laser Doppler sensors, were investigated. The initial phases of the effort involved talking with potential users (air traffic controllers, pilots, etc.) of a wake vortex monitoring system to determine system requirements from the user's viewpoint. These discussions involved the volumes of airspace to be monitored for vortices, and potential methods of using the monitored vortex data once the data are available. A subsequent task led to determining a suitable mathematical model of the vortex phenomena and developing a mathematical model of the laser Doppler sensor for monitoring the vortex flow field. The mathematical models were used in combination to help evaluate the capability of laser Doppler instrumentation in monitoring vortex flow fields both in the near vicinity of the sensor (within 1 kilometer and at long ranges(10 kilometers).

  1. A new approach to the effect of sound on vortex dynamics

    NASA Technical Reports Server (NTRS)

    Lund, Fernando; Zabusky, Norman J.

    1987-01-01

    Analytical results are presented on the effect of acoustic radiation on three-dimensional vortex motions in a homogeneous, slightly compressible, inviscid fluid. The flow is considered as linear and irrotational everywhere except inside a very thin cylindrical core region around the vortex filament. In the outside region, a velocity potential is introduced that must be multivalued, and it is shown how to compute this scalar potential if the motion of the vortex filament is prescribed. To find the motion of this singularity in an external potential flow, a variational principle involving a volume integral that must exclude the singular region is considered. A functional of the external potential and vortex filament position is obtained whose extrema give equations to determine the sought-after evolution. Thus, a generalization of the Biot-Savart law to flows with constant sound speed at low Mach number is obtained.

  2. Comparison of optical vortex detection methods for use with a Shack-Hartmann wavefront sensor.

    PubMed

    Murphy, Kevin; Dainty, Chris

    2012-02-27

    In this paper we compare experimentally two methods of detecting optical vortices from Shack-Hartmann wavefront sensor (SHWFS) data, the vortex potential and the contour sum methods. The experimental setup uses a spatial light modulator (SLM) to generate turbulent fields with vortices. In the experiment, many fields are generated and detected by a SHWFS, and data is analysed by the two vortex detection methods. We conclude that the vortex potential method is more successful in locating vortices in these fields.

  3. Irreversibility Line Measurement and Vortex Dynamics in High Magnetic Fields in Ni- and Co-Doped Iron Pnictide Bulk Superconductors

    DOE PAGES

    Nikolo, Martin; Singleton, John; Zapf, Vivien S.; ...

    2016-07-20

    The de-pinning or irreversibility lines were determined by ac susceptibility, magnetization, radio-frequency proximity detector oscillator (PDO), and resistivity methods in Ba(Fe 0.92Co 0.08) 2As 2 ( T c = 23.2 K), Ba(Fe 0.95Ni 0.05) 2As 2 ( T c = 20.4 K), and Ba(Fe 0.94Ni 0.06) 2As 2 ( T c = 18.5 K) bulk superconductors in ac, dc, and pulsed magnetic fields up to 65 T. A new method of extracting the irreversibility fields from the radio-frequency proximity detector oscillator induction technique is described. Wide temperature broadening of the irreversibility lines, for any given combination of ac and dcmore » fields, is dependent on the time frame of measurement. Increasing the magnetic field sweep rate (dH/dt) shifts the irreversibility lines to higher temperatures up to about dH/d t = 40,000 Oe/s; for higher dH/dt, there is little impact on the irreversibility line. There is an excellent data match between the irreversibility fields obtained from magnetization hysteresis loops, PDO, and ac susceptibility measurements, but not from resistivity measurements in these materials. Lower critical field vs. temperature phase diagrams are measured. Their very low values near 0 T indicate that these materials are in mixed state in nonzero magnetic fields, and yet the strength of the vortex pinning enables very high irreversibility fields, as high as 51 T at 1.5 K for the Ba(Fe 0.92Co 0.08) 2As 2 polycrystalline sample, showing a promise for liquid helium temperature applications.« less

  4. Potential of pin-by-pin SPN calculations as an industrial reference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fliscounakis, M.; Girardi, E.; Courau, T.

    2012-07-01

    This paper aims at analysing the potential of pin-by-pin SP{sub n} calculations to compute the neutronic flux in PWR cores as an alternative to the diffusion approximation. As far as pin-by-pin calculations are concerned, a SPH equivalence is used to preserve the reactions rates. The use of SPH equivalence is a common practice in core diffusion calculations. In this paper, a methodology to generalize the equivalence procedure in the SP{sub n} equations context is presented. In order to verify and validate the equivalence procedure, SP{sub n} calculations are compared to 2D transport reference results obtained with the APOLL02 code. Themore » validation cases consist in 3x3 analytical assembly color sets involving burn-up heterogeneities, UOX/MOX interfaces, and control rods. Considering various energy discretizations (up to 26 groups) and flux development orders (up to 7) for the SP{sub n} equations, results show that 26-group SP{sub 3} calculations are very close to the transport reference (with pin production rates discrepancies < 1%). This proves the high interest of pin-by-pin SP{sub n} calculations as an industrial reference when relying on 26 energy groups combined with SP{sub 3} flux development order. Additionally, the SP{sub n} results are compared to diffusion pin-by-pin calculations, in order to evaluate the potential benefit of using a SP{sub n} solver as an alternative to diffusion. Discrepancies on pin-production rates are less than 1.6% for 6-group SP{sub 3} calculations against 3.2% for 2-group diffusion calculations. This shows that SP{sub n} solvers may be considered as an alternative to multigroup diffusion. (authors)« less

  5. PinX1 Is a Potential Prognostic Factor for Non-Small-Cell Lung Cancer and Inhibits Cell Proliferation and Migration

    PubMed Central

    Wang, Shengguang; Zhang, Hua; Zhu, Jianquan; Li, Chenguang; Zhu, Jinfang; Shi, Bowen; Zhang, Bin

    2017-01-01

    PinX1 has been identified as a suppressor of telomerase enzymatic activity. However, the tumour-suppressive roles of PinX1 in different types of human cancers are unclear. PinX1 expression status and its correlation with clinicopathological features in non-small-cell lung cancer (NSCLC) have not been investigated. Accordingly, in this study, we aimed to evaluate the roles of PinX1 in NSCLC. PinX1 expression status was examined by immunohistochemistry using tissue microarray from a total of 158 patients. Correlations among PinX1 expression, clinicopathological variables, and patient survival were analysed. Furthermore, we overexpressed PinX1 in NSCLC cells and tested telomerase activity using real-time quantitative telomeric repeat amplification protocol (qTRAP) assays. Proliferation and migration of NSCLC cells were examined using the MTS method, wound healing assays, and transwell assays, respectively. Our results showed that negative PinX1 expression was associated with a poor prognosis in NSCLC. Sex, smoking status, lymph gland status, subcarinal lymph node status, pathological stage, and PinX1 expression were related to survival. PinX1 was not an independent prognostic factor in NSCLC. PinX1 overexpression inhibited proliferation and migration in NSCLC cells by suppressing telomerase activity. Our findings suggested that PinX1 could be a potential tumour suppressor in NSCLC and that loss of PinX1 promoted NSCLC progression. PMID:28815183

  6. The effect of 45° grain boundaries and associated Fe particles on Jc and resistivity in Ba(Fe0.9Co0.1)2As2 thin films

    NASA Astrophysics Data System (ADS)

    Hänisch, J.; Iida, K.; Kurth, F.; Thersleff, T.; Trommler, S.; Reich, E.; Hühne, R.; Schultz, L.; Holzapfel, B.

    2014-01-01

    The anisotropy of the critical current density Jc depends in general on both the properties of the flux lines (such as line tension, coherence length and penetration depth) and the properties of the defects (such as density, shape, orientation etc.). Whereas the Jc anisotropy in microstructurally clean films can be scaled to an effective magnetic field containing the Ginzburg-Landau anisotropy term, it is in general not possible (or only in a limited field range) for samples containing extended defects. Here, the Jc anisotropy of a Co-doped BaFe2As2 sample with 45° [001] tilt grain boundaries (GBs), i.e. grain boundaries created by 45° in-plane rotated grains, as well as extended Fe particles is investigated. This microstructure leads to c-axis correlated pinning, both due to the GBs and the Fe particles and manifests in a c-axis peak in the Jc anisotropy at low magnetic fields and a deviation from the anisotropic Ginzburg-Landau scaling at higher fields. Strong pinning at ellipsoidal extended defects, i.e. the Fe particles, is discussed, and the full Jc anisotropy is fitted successfully with the vortex path model. The results are compared to a sample without GBs and Fe particles. 45° GBs seem to be good pinning centers rather than detrimental to current flow.

  7. Tuning Vortex Creep in Irradiated YBa2Cu3O7-δ Coated Conductors

    NASA Astrophysics Data System (ADS)

    Eley, Serena; Kihlstrom, Karen; Holleis, Sigrid; Leroux, Maxime; Rupich, Martin; Miller, Dean; Kayani, Asghar; Welp, Ulrich; Kwok, Wai-Kwong; Civale, Leonardo

    YBa2Cu3O7-δ coated conductors (CCs) show non-monotonic changes in the temperature-dependent creep rate, S (T) , due to mixed pinning landscapes comprised of twin boundaries, planar defects, point defects, and nanoparticle precipitates. Notably, in low fields, there is a conspicuous dip in S as T increases from ~20K to ~65K. The source of this dip is poorly understood. Moreover, pinning landscapes that are favorable for high critical currents, Jc, are not necessarily optimal for low S. We have found that, though oxygen irradiation introduces few-nm-sized defects that result in significant increases in Jc, it is detrimental to creep, increasing S (reducing the dip depth) for T > 20K. Understanding the source of this dip is crucial to engineering pinning landscapes that concurrently promote high Jc and low S. To this end, we study changes in S (T) as we tune the ratio of smaller (point to few-nm-sized) defects to larger nanoparticles in an oxygen-irradiated CC by annealing in O2 at 250°C to 600°C. We observe a steady decrease in S (T > 20K) with increasing annealing temperature. This suggests that pre-existing nanoparticle precipitates are likely responsible for the dip in S (T) , and underlines the fact that the effects of defects are not additive, but rather can be competitive.

  8. Anisotropy of the Irreversibility Field for Zr-doped (Y,Gd)Ba 2<\\sub>Cu3<\\sub>O<7-x<\\sub> Thin Films up to 45 T

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tarantini, C.; Jaroszynski, J.; Kametani, F.

    2011-01-01

    The anisotropic irreversibility fieldBIrr of twoYBa2Cu3O7 x thin films dopedwith additional rare earth (RE)= (Gd, Y) and Zr and containing strong correlated pins (splayed BaZrO3 nanorods and RE2O3 anoprecipitates) has been measured over a very broad range up to 45 T at temperatures 56 K < T < Tc. We found that the experimental angular dependence of BIrr ( ) does not follow the mass anisotropy scaling BIrr ( ) = BIrr (0)(cos2 + 2 sin2 ) 1/2, where = (mc/mab)1/2 = 5 6 for the RE-doped Ba2Cu3O7 x (REBCO) crystals, mab and mc are the effective masses along themore » ab plane and the c-axis, respectively, and is the angle between B and the c-axis. For B parallel to the ab planes and to the c-axis correlated pinning strongly enhances BIrr , while at intermediate angles, BIrr ( ) follows the scaling behavior BIrr ( ) (cos2 + 2 RP sin2 ) 1/2 with the effective anisotropy factor RP 3 significantly smaller than the ass anisotropy would suggest. In spite of the strong effects of c-axis BaZrO3 nanorods, we found even greater enhancements of BIrr for fields along the ab planes than for fields parallel to the c-axis, as well as different temperature dependences of the correlated pinning contributions to BIrr for B//ab and B//c. Our results show that the dense and strong pins, which can now be incorporated into REBCO thin films in a controlled way, exert major and diverse effects on the measured vortex pinning anisotropy and the irreversibility field over wide ranges of B and T . In particular, we show that the relative contribution of correlated pinning to BIrr for B//c increases as the temperature increases due to the suppression of thermal fluctuations of vortices by splayed distribution of BaZrO3 nanorods.« less

  9. Magnetic-Field-Tunable Superconducting Rectifier

    NASA Technical Reports Server (NTRS)

    Sadleir, John E.

    2009-01-01

    Superconducting electronic components have been developed that provide current rectification that is tunable by design and with an externally applied magnetic field to the circuit component. The superconducting material used in the device is relatively free of pinning sites with its critical current determined by a geometric energy barrier to vortex entry. The ability of the vortices to move freely inside the device means this innovation does not suffer from magnetic hysteresis effects changing the state of the superconductor. The invention requires a superconductor geometry with opposite edges along the direction of current flow. In order for the critical current asymmetry effect to occur, the device must have different vortex nucleation conditions at opposite edges. Alternative embodiments producing the necessary conditions include edges being held at different temperatures, at different local magnetic fields, with different current-injection geometries, and structural differences between opposite edges causing changes in the size of the geometric energy barrier. An edge fabricated with indentations of the order of the coherence length will significantly lower the geometric energy barrier to vortex entry, meaning vortex passage across the device at lower currents causing resistive dissipation. The existing prototype is a two-terminal device consisting of a thin-film su - perconducting strip operating at a temperature below its superconducting transition temperature (Tc). Opposite ends of the strip are connected to electrical leads made of a higher Tc superconductor. The thin-film lithographic process provides an easy means to alter edge-structures, current-injection geo - metries, and magnetic-field conditions at the edges. The edge-field conditions can be altered by using local field(s) generated from dedicated higher Tc leads or even using the device s own higher Tc superconducting leads.

  10. A comparison of airborne wake vortex detection measurements with values predicted from potential theory

    NASA Technical Reports Server (NTRS)

    Stewart, Eric C.

    1991-01-01

    An analysis of flight measurements made near a wake vortex was conducted to explore the feasibility of providing a pilot with useful wake avoidance information. The measurements were made with relatively low cost flow and motion sensors on a light airplane flying near the wake vortex of a turboprop airplane weighing approximately 90000 lbs. Algorithms were developed which removed the response of the airplane to control inputs from the total airplane response and produced parameters which were due solely to the flow field of the vortex. These parameters were compared with values predicted by potential theory. The results indicated that the presence of the vortex could be detected by a combination of parameters derived from the simple sensors. However, the location and strength of the vortex cannot be determined without additional and more accurate sensors.

  11. Rapid doubling of the critical current of YBa 2Cu 3O 7-δ coated conductors for viable high-speed industrial processing

    DOE PAGES

    Leroux, M.; Kihlstrom, K. J.; Holleis, S.; ...

    2015-11-09

    Here, we demonstrate that 3.5-MeV oxygen irradiation can markedly enhance the in-field critical current of commercial second generation superconducting tapes with an exposure time of just 1 s per 0.8 cm 2. Furthermore we demonstrate how speed is now at the level required for an industrial reel-to-reel post-processing. The irradiation is made on production line samples through the protective silver coating and does not require any modification of the growth process. From TEM imaging, we identify small clusters as the main source of increased vortex pinning.

  12. Solution of steady and unsteady transonic-vortex flows using Euler and full-potential equations

    NASA Technical Reports Server (NTRS)

    Kandil, Osama A.; Chuang, Andrew H.; Hu, Hong

    1989-01-01

    Two methods are presented for inviscid transonic flows: unsteady Euler equations in a rotating frame of reference for transonic-vortex flows and integral solution of full-potential equation with and without embedded Euler domains for transonic airfoil flows. The computational results covered: steady and unsteady conical vortex flows; 3-D steady transonic vortex flow; and transonic airfoil flows. The results are in good agreement with other computational results and experimental data. The rotating frame of reference solution is potentially efficient as compared with the space fixed reference formulation with dynamic gridding. The integral equation solution with embedded Euler domain is computationally efficient and as accurate as the Euler equations.

  13. Flux line non-equilibrium relaxation kinetics following current quenches in disordered type-II superconductors

    NASA Astrophysics Data System (ADS)

    Chaturvedi, Harshwardhan; Assi, Hiba; Dobramysl, Ulrich; Pleimling, Michel; Täuber, Uwe

    We investigate the relaxation dynamics of magnetic vortex lines in disordered type-II superconductors following rapid changes in the external driving current by means of Langevin molecular dynamics simulations for an elastic line model. A system of driven interacting flux lines in a sample with randomly distributed point pinning centers is initially relaxed to a moving non-equilibrium steady state. The current is then instantaneously decreased, such that the final stationary state resides either still in the moving regime, or in the pinned Bragg glass phase. The ensuing non-equilibrium relaxation kinetics of the vortices is studied in detail by measuring the mean flux line gyration radius and the two-time transverse height autocorrelation function. The latter allows us to investigate the physical aging properties for quenches from the moving into the glassy phase, and to compare with non-equilibrium relaxation features obtained with different initial configurations. Research supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-FG02-09ER46613.

  14. A route for a strong increase of critical current in nanostrained iron-based superconductors

    DOE PAGES

    Ozaki, Toshinori; Li, Qiang; Wu, Lijun; ...

    2016-10-06

    The critical temperature T c and the critical current density J c determine the limits to large-scale superconductor applications. Superconductivity emerges at T c. The practical current-carrying capability, measured by J c, is the ability of defects in superconductors to pin the magnetic vortices, and that may reduce T c. Simultaneous increase of T c and J c in superconductors is desirable but very difficult to realize. Here we demonstrate a route to raise both T c and J c together in iron-based superconductors. By using low-energy proton irradiation, we create cascade defects in FeSe 0.5Te 0.5 films. Tc ismore » enhanced due to the nanoscale compressive strain and proximity effect, whereas J c is doubled under zero field at 4.2 K through strong vortex pinning by the cascade defects and surrounding nanoscale strain. At 12 K and above 15 T, one order of magnitude of J c enhancement is achieved in both parallel and perpendicular magnetic fields to the film surface.« less

  15. Probing localized strain in solution-derived YB a2C u3O7 -δ nanocomposite thin films

    NASA Astrophysics Data System (ADS)

    Guzman, Roger; Gazquez, Jaume; Mundet, Bernat; Coll, Mariona; Obradors, Xavier; Puig, Teresa

    2017-07-01

    Enhanced pinning due to nanoscale strain is unique to the high-Tc cuprates, where pairing may be modified with lattice distortion. Therefore a comprehensive understanding of the defect landscape is required for a broad range of applications. However, determining the type and distribution of defects and their associated strain constitutes a critical task, and for this aim, real-space techniques for atomic resolution characterization are necessary. Here, we use scanning transmission electron microscopy (STEM) to study the atomic structure of individual defects of solution-derived YB a2C u3O7 (YBCO) nanocomposites, where the inclusion of incoherent secondary phase nanoparticles within the YBCO matrix dramatically increases the density of Y1B a2C u4O8 (Y124) intergrowths, the commonest defect in YBCO thin films. The formation of the Y124 is found to trigger a concatenation of strain-derived interactions with other defects and the concomitant nucleation of intrinsic defects, which weave a web of randomly distributed nanostrained regions that profoundly transform the vortex-pinning landscape of the YBCO nanocomposite thin films.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Checchin, Mattia

    Superconducting niobium accelerating cavities are devices operating in radio-frequency and able to accelerate charged particles up to energy of tera-electron-volts. Such accelerating structures are though limited in terms of quality factor and accelerating gradient, that translates--in some cases--in higher capital costs of construction and operation of superconducting rf accelerators. Looking forward for a new generation of more affordable accelerators, the physical description of limiting mechanisms in superconducting microwave resonators is discussed. In particular, the physics behind the dissipation introduced by vortices in the superconductor, the ultimate quench limitations and the quality factor degradation mechanism after a quench are described inmore » detail. One of the limiting factor of the quality factor is the dissipation introduced by trapped magnetic flux vortices. The radio-frequency complex response of trapped vortices in superconductors is derived by solving the motion equation for a magnetic flux line, assuming a bi-dimensional and mean free path-dependent Lorentzian-shaped pinning potential. The resulting surface resistance shows the bell-shaped trend as a function of the mean free path, in agreement with the experimental data observed. Such bell-shaped trend of the surface resistance is described in terms of the interplay of the two limiting regimes identified as pinning and flux flow regimes, for low and large mean free path values respectively. The model predicts that the dissipation regime--pinning- or flux-flow-dominated--can be tuned either by acting on the frequency or on the electron mean free path value. The effect of different configurations of pinning sites and strength on the vortex surface resistance are also discussed. Accelerating cavities are also limited by the quench of the superconductive state, which limits the maximum accelerating gradient achievable. The accelerating field limiting factor is usually associate d to the superheating field, which is intimately correlated to the penetration of magnetic flux vortices in the material. Experimental data for N-doped cavities suggest that uniform Ginzburg-Landau parameter cavities are statistically limited by the lower critical field, in terms of accelerating gradient. By introducing a Ginzburg-Landau parameter profile at the cavity rf surface--dirty layer--the accelerating gradient of superconducting resonators can be enhanced. The description of the physics behind the accelerating gradient enhancement as a consequence of the dirty layer is carried out by solving numerically the Ginzburg-Landau equations for the layered system. The enhancement is showed to be promoted by the higher energy barrier to vortex penetration, and by the enhanced lower critical field. Another serious threat to the quality factor during the cavity operation is the extra dissipation introduced by the quench. Such quality factor degradation mechanism due to the quench, is generated by the trapping of external magnetic flux at quench spot. The purely extrinsic origin of such extra dissipation is proven by the impossibility of decrease the quality factor by quenching in a magnetic field-free environment. Also, a clear relation of the dissipation introduced by quenching to the orientation of the applied magnetic field is observed. The full recover of the quality factor by re-quenching in compensated field is possible when the trapped flux at the quench spot is modest. On the contrary, when the trapped magnetic flux is too large, the quality factor degradation may become irreversible by this technique, likely due to the outward flux migration beyond the normal zone opening during the quench.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sasaki, Kazuki; Suzuki, Naoya; Saito, Hiroki

    Vortex shedding from an obstacle potential moving in a Bose-Einstein condensate is investigated. Long-lived alternately aligned vortex pairs are found to form in the wake, which is similar to the Benard-von Karman vortex street in classical viscous fluids. Various patterns of vortex shedding are systematically studied and the drag force on the obstacle is calculated. It is shown that the phenomenon can be observed in a trapped system.

  18. Model-based observer and feedback control design for a rigid Joukowski foil in a Kármán vortex street.

    PubMed

    Free, Brian A; Paley, Derek A

    2018-03-14

    Obstacles and swimming fish in flow create a wake with an alternating left/right vortex pattern known as a Kármán vortex street and reverse Kármán vortex street, respectively. An energy-efficient fish behavior resembling slaloming through the vortex street is called Kármán gaiting. This paper describes the use of a bioinspired array of pressure sensors on a Joukowski foil to estimate and control flow-relative position in a Kármán vortex street using potential flow theory, recursive Bayesian filtering, and trajectory-tracking feedback control. The Joukowski foil is fixed in downstream position in a flowing water channel and free to move on air bearings in the cross-stream direction by controlling its angle of attack to generate lift. Inspired by the lateral-line neuromasts found in fish, the sensing and control scheme is validated using off-the-shelf pressure sensors in an experimental testbed that includes a flapping device to create vortices. We derive a potential flow model that describes the flow over a Joukowski foil in a Kármán vortex street and identify an optimal path through a Kármán vortex street using empirical observability. The optimally observable trajectory is one that passes through each vortex in the street. The estimated vorticity and location of the Kármán vortex street are used in a closed-loop control to track either the optimally observable path or the energetically efficient gait exhibited by fish. Results from the closed-loop control experiments in the flow tank show that the artificial lateral line in conjunction with a potential flow model and Bayesian estimator allow the robot to perform fish-like slaloming behavior in a Kármán vortex street. This work is a precursor to an autonomous robotic fish sensing the wake of another fish and/or performing pursuit and schooling behavior.

  19. Einstein–Bose condensation of Onsager vortices

    NASA Astrophysics Data System (ADS)

    Valani, Rahil N.; Groszek, Andrew J.; Simula, Tapio P.

    2018-05-01

    We have studied statistical mechanics of a gas of vortices in two dimensions. We introduce a new observable—a condensate fraction of Onsager vortices—to quantify the emergence of the vortex condensate. The condensation of Onsager vortices is most transparently observed in a single vortex species system and occurs due to a competition between solid body rotation (see vortex lattice) and potential flow (see multiple quantum vortex state). We propose an experiment to observe the condensation transition of the vortices in such a single vortex species system.

  20. Relation between resistivity and temperature in the presence of two magnetic flux pinning mechanisms

    NASA Astrophysics Data System (ADS)

    Hosseinzadeh, Mohammad; Ghorbani, Shaban Reza; Arabi, Hadi

    2018-05-01

    Moving of vortices in type II superconductors leads to energy dissipation, and therefore pinning of them is a significant problem. Determination of pinning potential and pinning mechanism from experimental data of resistivity is an attractive issue in the phenomenological study of superconductors. A new formalism is suggested to determination of two the δTc and δℓ pinning mechanisms from the resistivity as a function of temperature in type II superconductors.

  1. Superfluid Friction and Late-Time Thermal Evolution of Neutron Stars

    NASA Astrophysics Data System (ADS)

    Larson, Michelle B.; Link, Bennett

    1999-08-01

    The recent temperature measurements of the two older isolated neutron stars PSR 1929+10 and PSR 0950+08 (ages of 3×106 and 2×107 yr, respectively) indicate that these objects are heated. A promising candidate heat source is friction between the neutron star crust and the superfluid it is thought to contain. We study the effects of superfluid friction on the long-term thermal and rotational evolution of a neutron star. Differential rotation velocities between the superfluid and the crust (averaged over the inner crust moment of inertia) of ω¯~0.6 rad s-1 for PSR 1929+10 and ~0.02 rad s-1 for PSR 0950+08 would account for their observed temperatures. These differential velocities could be sustained by the pinning of superfluid vortices to the inner crust lattice with strengths of ~1 MeV per nucleus. Pinned vortices can creep outward through thermal fluctuations or quantum tunneling. For thermally activated creep, the coupling between the superfluid and crust is highly sensitive to temperature. If pinning maintains large differential rotation (~30 rad s-1), a feedback instability could occur in stars younger than ~105 yr causing oscillations of the temperature and spin-down rate over a period of ~0.3tage. For stars older than ~106 yr, however, vortex creep occurs through quantum tunneling and the creep velocity is too insensitive to temperature for a thermal-rotational instability to occur. These older stars could be heated through a steady process of superfluid friction.

  2. The interaction between a propagating coastal vortex and topographic waves

    NASA Astrophysics Data System (ADS)

    Parry, Simon Wyn

    This thesis investigates the motion of a point vortex near coastal topography in a rotating frame of reference at constant latitude (f-plane) in the linear and weakly nonlinear limits. Topography is considered in the form of an infinitely long escarpment running parallel to a wall. The vortex motion and topographic waves are governed by the conservation of quasi-geostrophic potential vorticity in shallow water, from which a nonlinear system of equations is derived. First the linear limit is studied for three cases; a weak vortex on- and off-shelf and a weak vortex close to the wall. For the first two cases it is shown that to leading order the vortex motion is stationary and a solution for the topographic waves at the escarpment can be found in terms of Fourier integrals. For a weak vortex close to a wall, the leading order solution is a steadily propagating vortex with a topographic wavetrain at the step. Numerical results for the higher order interactions are also presented and explained in terms of conservation of momentum in the along-shore direction. For the second case a resonant interaction between the vortex and the waves occurs when the vortex speed is equal to the maximum group velocity of the waves and the linear response becomes unbounded at large times. Thus it becomes necessary to examine the weakly nonlinear near-resonant case. Using a long wave approximation a nonlinear evolution equation for the interface separating the two regions of differing relative potential vorticity is derived and has similar form to the BDA (Benjamin, Davies, Acrivos 1967) equation. Results for the leading order steadily propagating vortex and for the vortex-wave feedback problem are calculated numerically using spectral multi-step Adams methods.

  3. A review of the use of vortex generators for mitigating shock-induced separation

    NASA Astrophysics Data System (ADS)

    Titchener, Neil; Babinsky, Holger

    2015-09-01

    This article reviews research into the potential of vortex generators to mitigate shock-induced separation. Studies ranging from those conducted in the early post-war era to those performed recently are discussed. On the basis of the investigations described in this report, it is clear that vortex generators can alleviate shock-induced boundary layer separation. Yet, it will be shown that their potential and efficiency varies considerably in practical applications. Much more success is reported in transonic test cases compared to separation induced in purely supersonic interactions. Under a variety of flow conditions, the best performance is achieved with vortex generators with a height of roughly half the boundary layer thickness and a shape similar to a swept vane. Notwithstanding this, vortex generator performance is not as consistent as it is in low-speed applications. Further work is required before vortex generators can be implemented into the design process for eliminating shock-induced separation on transonic wings and in supersonic inlets.

  4. Nanostructuring superconductors by ion beams: A path towards materials engineering

    NASA Astrophysics Data System (ADS)

    Gerbaldo, Roberto; Ghigo, Gianluca; Gozzelino, Laura; Laviano, Francesco; Amato, Antonino; Rovelli, Alberto; Cherubini, Roberto

    2013-07-01

    The paper deals with nanostructuring of superconducting materials by means of swift heavy ion beams. The aim is to modify their structural, optical and electromagnetic properties in a controlled way, to provide possibility of making them functional for specific applications. Results are presented concerning flux pinning effects (implantation of columnar defects with nanosize cross section to enhance critical currents and irreversibility fields), confined flux-flow and vortex guidance, design of devices by locally tailoring the superconducting material properties, analysis of disorder-induced effects in multi-band superconductors. These studies were carried out on different kinds of superconducting samples, from single crystals to thin films, from superconducting oxides to magnesium diboride, to recently discovered iron-based superconductors.

  5. Vortex/surface interaction

    NASA Technical Reports Server (NTRS)

    Bodstein, G. C. R.; George, A. R.; Hui, C. Y.

    1993-01-01

    This paper considers the interaction of a vortex generated upstream in a flow field with a downstream aerodynamic surface that possesses a large chord. The flow is assumed to be steady, incompressible, inviscid and irrotational, and the surface to be semiinfinite. The vortex is considered to be a straight vortex filament. To lowest order the problem is modeled using potential theory, where the 3D Laplace's equation for the velocity potential on the surface is solved exactly. The closed-form equation for pressure distribution obtained from this theory is found to have a square root singularity at the leading-edge. It also converges, as x goes to infinity, to the solution of the 2D point-vortex/infinite plane problem. The pressure coefficient presents an anti-symmetric behavior, near the leading-edge and a symmetric behavior as x goes to infinity.

  6. Flux Cloning in Josephson Transmission Lines

    NASA Astrophysics Data System (ADS)

    Gulevich, D. R.; Kusmartsev, F. V.

    2006-07-01

    We describe a novel effect related to the controlled birth of a single Josephson vortex. In this phenomenon, the vortex is created in a Josephson transmission line at a T-shaped junction. The “baby” vortex arises at the moment when a “mother” vortex propagating in the adjacent transmission line passes the T-shaped junction. In order to give birth to a new vortex, the mother vortex must have enough kinetic energy. Its motion can also be supported by an externally applied driving current. We determine the critical velocity and the critical driving current for the creation of the baby vortices and briefly discuss the potential applications of the found effect.

  7. Energy transfer between a passing vortex ring and a flexible plate in an ideal quiescent fluid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, JiaCheng; Peterson, Sean D., E-mail: peterson@mme.uwaterloo.ca; Porfiri, Maurizio

    Recent advancements in highly deformable smart materials have lead to increasing interest in small-scale energy harvesting research for powering low consumption electronic devices. One such recent experimental study by Goushcha et al. explored energy harvesting from a passing vortex ring by a cantilevered smart material plate oriented parallel to and offset from the path of the ring in an otherwise quiescent fluid. The present study focuses on modeling this experimental study using potential flow to facilitate optimization of the energy extraction from the passing ring to raise the energy harvesting potential of the device. The problem is modeled in two-dimensionsmore » with the vortex ring represented as a pair of counter-rotating free vortices. Vortex pair parameters are determined to match the convection speed of the ring in the experiments, as well as the imposed pressure loading on the plate. The plate is approximated as a Kirchhoff-Love plate and represented as a finite length vortex sheet in the fluid domain. The analytical model matches experimental measurements, including the tip displacement, the integrated force along the entire plate length as a function of vortex ring position, and the pressure along the plate. The potential flow solution is employed in a parametric study of the governing dimensionless parameters in an effort to guide the selection of plate properties for optimal energy harvesting performance. Results of the study indicate an optimal set of plate properties for a given vortex ring configuration, in which the time-scale of vortex advection matches that of the plate vibration.« less

  8. Straight SU-8 pins

    NASA Astrophysics Data System (ADS)

    Safavieh, R.; Pla Roca, M.; Qasaimeh, M. A.; Mirzaei, M.; Juncker, D.

    2010-05-01

    SU-8 can be patterned with high resolution, is flexible and tough. These characteristics qualify SU-8 as a material for making spotting pins for printing DNA and protein microarrays, and it can potentially replace the commonly used silicon and steel pins that are expensive, brittle in the case of silicon and can damage the substrate during the printing process. SU-8, however, accumulates large internal stress during fabrication and, as a consequence, thin and long SU-8 structures bend and coil up, which precludes using it for long, freestanding structures such as pins. Here we introduce (i) a novel fabrication process that allows the making of 30 mm long, straight spotting pins that feature (ii) a new design and surface chemistry treatments for better capillary flow control and more homogeneous spotting. A key innovation for the fabrication is a post-processing annealing step with slow temperature ramping and mechanical clamping between two identical substrates to minimize stress buildup and render it symmetric, respectively, which together yield a straight SU-8 structure. SU-8 pins fabricated using this process are compliant and resilient and can buckle without damage during printing. The pins comprise a novel flow stop valve for accurate metering of fluids, and their surface was chemically patterned to render the outside of the pin hydrophobic while the inside of the slit is hydrophilic, and the slit thus spontaneously fills when dipped into a solution while preventing droplet attachment on the outside. A single SU-8 pin was used to print 1392 protein spots in one run. SU-8 pins are inexpensive, straightforward to fabricate, robust and may be used as disposable pins for microarray fabrication. These pins serve as an illustration of the potential application of ultralow stress SU-8 for making freestanding microfabricated polymer microstructures.

  9. A Baroclinic Eddy Mixer: Supercritical Transformation of Compensated Eddies

    NASA Astrophysics Data System (ADS)

    Sutyrin, G.

    2016-02-01

    In contrast to many real-ocean rings and eddies, circular vortices with initial lower layer at rest tend to be highly unstable in idealized two-layer models, unless their radius is made small or the lower layer depth is made artificially large. Numerical simulations of unstable vortices with parameters typical for ocean eddies revealed strong deformations and pulsations of the vortex core in the two-layer setup due to development of corotating tripolar structures in the lower layer during their supercritical transformation. The addition of a middle layer with the uniform potential vorticity weakens vertical coupling between the upper and lower layer that enhances vortex stability and makes the vortex lifespan more realistic. Such a three-layer vortex model possesses smaller lower interface slope than the two-layer model that reduces the potential vorticity gradient in the lower layer and provides with less unstable configurations. While cyclonic eddies become only slightly deformed and look nearly circular when the middle layer with uniform potential vorticity is added, anticyclonic eddies tend to corotating and pulsating elongated states through potential vorticity stripping and stirring. Enhanced vortex stability in such three-layer setup has important implications for adequate representation of the energy transfer across scales.

  10. NERNST Vortex Potential Of A Genetic Oscillator

    NASA Astrophysics Data System (ADS)

    Garnett, Merrill; Jones, Bill

    The vortex is a dynamic spiral. In molecular biology these have not been reported. We report a vortex compound, with oscillating energy. Toroglobulin (1) transfers 416 mv. to histone. This histone reductase enriches charge in the chromosome in spool proteins around which DNA is coiled. Controlling chromosome charge introduces energetics to gene compression. Impedance spectroscopy shows symmetric oscillations. Specific frequencies show amplitude increases. The Mott-Schottky scans show frequency bands. Histone bands are electronically reduced by Toroglobulin by 416 mv. The Nernst potentials of chemical systems correlate electric gradient to concentration gradients of charged particles. Charge polarization refers to laminar alignment. In formation of the Toroglobulin Ginzburg-Landau vortex, the polarization follows filament curvatures which spiral back on themselves. The magnetic dipoles achieve interactive resonance (esr). This spiral resonator with magnetic interfaces produces the measured Nernst potential.

  11. To the theory of particle lifting by terrestrial and Martian dust devils

    NASA Astrophysics Data System (ADS)

    Kurgansky, M. V.

    2018-01-01

    The combined Rankine vortex model is applied to describe the radial profile of azimuthal velocity in atmospheric dust devils, and a simplified model version is proposed of the turbulent surface boundary layer beneath the Rankine vortex periphery that corresponds to the potential vortex. Based on the results by Burggraf et al. (1971), it is accepted that the radial velocity near the ground in the potential vortex greatly exceeds the azimuthal velocity, which makes tractable the problem of the surface shear stress determination, including the case of the turbulent surface boundary layer. The constructed model explains exceeding the threshold shear velocity for aeolian transport in typical dust-devil vortices both on Earth and on Mars.

  12. Full-Potential Modeling of Blade-Vortex Interactions

    DTIC Science & Technology

    1997-12-01

    modeled by any arbitrary distribution. Stremel (ref. 23) uses a method in which the vortex is modeled with an area-weighted distribution of vorticity. A...Helicopter Rotor. Ph.D. Thesis, StanfordUniv., 1978. 23. Stremel , P. M.: Computational Methods for Non-Planar Vortex Wake Flow Fields. M.S. Thesis

  13. Spectroscopic scanning tunneling microscopy insights into Fe-based superconductors

    NASA Astrophysics Data System (ADS)

    Hoffman, Jennifer E.

    2011-12-01

    In the first three years since the discovery of Fe-based high Tc superconductors, scanning tunneling microscopy (STM) and spectroscopy have shed light on three important questions. First, STM has demonstrated the complexity of the pairing symmetry in Fe-based materials. Phase-sensitive quasiparticle interference (QPI) imaging and low temperature spectroscopy have shown that the pairing order parameter varies from nodal to nodeless s± within a single family, FeTe1-xSex. Second, STM has imaged C4 → C2 symmetry breaking in the electronic states of both parent and superconducting materials. As a local probe, STM is in a strong position to understand the interactions between these broken symmetry states and superconductivity. Finally, STM has been used to image the vortex state, giving insights into the technical problem of vortex pinning, and the fundamental problem of the competing states introduced when superconductivity is locally quenched by a magnetic field. Here we give a pedagogical introduction to STM and QPI imaging, discuss the specific challenges associated with extracting bulk properties from the study of surfaces, and report on progress made in understanding Fe-based superconductors using STM techniques.

  14. Cold SQUIDs and hot samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, T.S.C.

    1997-05-01

    Low transition temperature (low-{Tc}) and high-{Tc} Superconducting QUantum Interference Devices (SQUIDs) have been used to perform high-resolution magnetic measurements on samples whose temperatures are much higher than the operating temperatures of the devices. Part 1 of this work focuses on measurements of the rigidity of flux vortices in high-{Tc} superconductors using two low-{Tc} SQUIDs, one on either side of a thermally-insulated sample. The correlation between the signals of the SQUIDs is a direct measure of the extent of correlation between the movements of opposite ends of vortices. These measurements were conducted under the previously-unexplored experimental conditions of nominally-zero applied magneticmore » field, such that vortex-vortex interactions were unimportant, and with zero external current. At specific temperatures, the authors observed highly-correlated noise sources, suggesting that the vortices moved as rigid rods. At other temperatures, the noise was mostly uncorrelated, suggesting that the relevant vortices were pinned at more than one point along their length. Part 2 describes the design, construction, performance, and applications of a scanning high-{Tc} SQUID microscope optimized for imaging room-temperature objects with very high spatial resolution and magnetic source sensitivity.« less

  15. Parallel magnetic field suppresses dissipation in superconducting nanostrips

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yong-Lei; Glatz, Andreas; Kimmel, Gregory J.

    The motion of Abrikosov vortices in type-II superconductors results in a finite resistance in the presence of an applied electric current. Elimination or reduction of the resistance via immobilization of vortices is the "holy grail" of superconductivity research. Common wisdom dictates that an increase in the magnetic field escalates the loss of energy since the number of vortices increases. Here we show that this is no longer true if the magnetic field and the current are applied parallel to each other. Our experimental studies on the resistive behavior of a superconducting Mo0.79Ge0.21 nanostrip reveal the emergence of a dissipative statemore » with increasing magnetic field, followed by a pronounced resistance drop, signifying a reentrance to the superconducting state. Large-scale simulations of the 3D time-dependent Ginzburg-Landau model indicate that the intermediate resistive state is due to an unwinding of twisted vortices. When the magnetic field increases, this instability is suppressed due to a better accommodation of the vortex lattice to the pinning configuration. Our findings show that magnetic field and geometrical confinement can suppress the dissipation induced by vortex motion and thus radically improve the performance of superconducting materials.« less

  16. Transformational dynamics of BZO and BHO nanorods imposed by Y2O3 nanoparticles for improved isotropic pinning in YBa2Cu3O7 -δ thin films

    NASA Astrophysics Data System (ADS)

    Gautam, Bibek; Sebastian, Mary Ann; Chen, Shihong; Shi, Jack; Haugan, Timothy; Xing, Zhongwen; Zhang, Wenrui; Huang, Jijie; Wang, Haiyan; Osofsky, Mike; Prestigiacomo, Joseph; Wu, Judy Z.

    2017-07-01

    An elastic strain model was applied to evaluate the rigidity of the c-axis aligned one-dimensional artificial pinning centers (1D-APCs) in YBa2Cu3O7-δ matrix films. Higher rigidity was predicted for BaZrO3 1D-APCs than that of the BaHfO3 1D-APCs. This suggests a secondary APC doping of Y2O3 in the 1D-APC/YBa2Cu3O7-δ nanocomposite films would generate a stronger perturbation to the c-axis alignment of the BaHfO3 1D-APCs and therefore a more isotropic magnetic vortex pinning landscape. In order to experimentally confirm this, we have made a comparative study of the critical current density Jc (H, θ, T) of 2 vol.% BaZrO3 + 3 vol.%Y2O3 and 2 vol.%BaHfO3 + 3 vol.%Y2O3 double-doped (DD) YBa2Cu3O7-δ films deposited at their optimal growth conditions. A much enhanced isotropic pinning was observed in the BaHfO3 DD samples. For example, at 65 K and 9.0 T, the variation of the Jc across the entire θ range from θ=0 (H//c) to θ=90 degree (H//ab) is less than 18% for BaHfO3 DD films, in contrast to about 100% for the BaZrO3 DD counterpart. In addition, lower α values from the Jc(H) ˜ H-α fitting were observed in the BaHfO3 DD films in a large θ range away from the H//c-axis. Since the two samples have comparable Jc values at H//c-axis, the improved isotropic pinning in BaHfO3 DD films confirms the theoretically predicted higher tunability of the BaHfO3 1D-APCs in APC/YBa2Cu3O7-δ nanocomposite films.

  17. Establishing the need for an engineering standard for agricultural hitch pins.

    PubMed

    Deboy, G R; Knapp, W M; Field, W E; Krutz, G W; Corum, C L

    2012-04-01

    Documented incidents have occurred in which failure or unintentional disengagement of agricultural hitch pins has contributed to property damage and personal injury. An examination of current hitch pin use on a convenience sample of farm operations in Indiana revealed a variety of non-standard, worn and damaged, and inappropriately sized hitch pins in use. Informal interviews with the farm operators confirmed that hitch pin misuse, failure, or disengagement is a relatively widespread problem that remains largely unaddressed. On-site observations also suggested a low use of hitch pin retaining devices or safety chains. A review of prior research revealed that little attention has been given to this problem, and currently no documentation allows for an estimate of the frequency or severity of losses associated with hitch pin misuse, failure, or disengagement. No specific engineering standards were found that directly applied to the design, appropriate selection, or loading capacity of agricultural hitch pins. Major suppliers of replacement hitch pins currently provide little or no information on matching hitch pin size to intended applications, and most replacement hitch pins examined were of foreign origin, with the overwhelming majority imported from China or India. These replacement hitch pins provided no specifications other than diameter, length, and, in some cases, labeling that indicated that the pins had been "heat treated. " Testing of a sample of 11 commercially available replacement hitch pins found variation along the length of the pin shaft and between individual pins in surface hardness, a potential predictor of pin failure. Examination of 17 commercially available replacement pins also revealed a variety of identifiers used to describe pin composition and fabrication methods, e.g., "heat treated." None of the pins examined provided any specifications on loading capacity. It was therefore concluded that there is a need to develop an agricultural hitch pin engineering standard that would reflect current agricultural applications and practices and that would be promoted to both original equipment manufacturers and manufacturers and suppliers of replacement hitch pins. The standard should address the design of composite pins, heat treating, surface hardening, loading capacity and labeling of such, incorporation of unintentional disengagement prevention devices, indicators of the need for replacement due to wear, and safety information that should be included in operator instructions. ASABE is the most appropriate organization to develop such a standard. It was also concluded that agricultural safety and health programs and professionals need to raise the awareness of farmers concerning the appropriate selection and use of agricultural hitch pins, including the need to replace non-standard pins with pins less likely to fail or disengage during use, the need to replace hitch pins with indications of potential failure, and the importance of using appropriate safety chains, especially during transport of equipment behind tractors and trucks on public roads.

  18. Apparatus for inspecting fuel elements

    DOEpatents

    Oakley, David J.; Groves, Oliver J.; Kaiser, Bruce J.

    1986-01-01

    Disclosed is an alpha monitor usable in an automated nuclear fuel pin loading and processing unit. Fuel pins or other elongated pins are fed laterally into the alpha monitor in a singular fashion and are translated by a first roller assembly into a weld flare machining and decontamination substation not forming a part of the invention. Pins return and are lifted upwardly and transferred across to a combined pin lifting and electrode operating means which lifts the pins upwardly into a clamshell electrode assembly which is spread open by a combined pin lifting and electrode operating means. Once inserted the clamshell type electrode arrangement closes around the fuel pins so that inspection can occur. Fuel pins are inspected by charging electrodes to a negative potential and measuring the change in charge occurring when positively charged alpha particles strike the negatively charged electrodes. After inspection, the fuel pins are lowered by the pin lifting and electrode operating means into a second roller assembly which longitudinally conveys approved pins from the airtight enclosure in which the alpha monitor is mounted. If the fuel pins are rejected then they are moved laterally by a second transfer means and onto another system for further processing.

  19. Apparatus for inspecting fuel elements

    DOEpatents

    Kaiser, B.J.; Oakley, D.J.; Groves, O.J.

    1984-12-21

    This disclosure describes an alpha monitor usable in an automated nuclear fuel pin loading and processing unit. Fuel pins or other elongated pins are fed laterally into the alpha monitor in a singular fashion and are translated by a first roller assembly into a weld flare machining and decontamination substation not forming a part of the invention. Pins return and are lifted upwardly and transferred across to a combined pin lifting and electrode operating means which lifts the pins upwardly into a clamshell electrode assembly which is spread open by a combined pin lifting and electrode operating means. Once inserted the clamshell type electrode arrangement closes around the fuel pins so that inspection can occur. Fuel pins are inspected by charging electrodes to a negative potential and measuring the change in charge occurring when positively charged alpha particles strike the negatively charged electrodes. After inspection, the fuel pins are lowered by the pin lifting and electrode operating means into a second roller assembly which longitudinally conveys approved pins from the airtight enclosure in which the alpha monitor is mounted. If the fuel pins are rejected then they are moved laterally by a second transfer means and onto another system for further processing.

  20. Vortical flow management for improved configuration aerodynamics: Recent experiences

    NASA Technical Reports Server (NTRS)

    Rao, D. M.

    1983-01-01

    Recent progress in vortex-control applications for alleviating the adverse consequences of three dimensional separation and vortical interactions on slender body/swept wing configurations is reported. Examples include helical separation trip to alleviate the side force due to forebody vortex asymmetry; hinged strakes to avoid vortex breakdown effects; compartmentation of swept leading edge separation to delay the pitch-up instability; under wing vortex trip and vortex trip and vortex flaps for drag reduction at high lift; and an apex-flap trimmer to fully utilize the lift capability of trailing-edge flaps for take off and landing of delta wings. Experimental results on generic wind-tunnel models are presented to illustrate the vortex-management concepts involved and to indicate their potential for enhancing the subsonic aerodynamics of supersonic-cruise type vehicles.

  1. Interaction of ions, atoms, and small molecules with quantized vortex lines in superfluid (4)He.

    PubMed

    Mateo, David; Eloranta, Jussi; Williams, Gary A

    2015-02-14

    The interaction of a number of impurities (H2, Ag, Cu, Ag2, Cu2, Li, He3 (+), He(*) ((3)S), He2 (∗) ((3)Σu), and e(-)) with quantized rectilinear vortex lines in superfluid (4)He is calculated by using the Orsay-Trento density functional theory (DFT) method at 0 K. The Donnelly-Parks (DP) potential function binding ions to the vortex is combined with DFT data, yielding the impurity radius as well as the vortex line core parameter. The vortex core parameter at 0 K (0.74 Å) obtained either directly from the vortex line geometry or through the DP potential fitting is smaller than previously suggested but is compatible with the value obtained from re-analysis of the Rayfield-Reif experiment. All of the impurities have significantly higher binding energies to vortex lines below 1 K than the available thermal energy, where the thermally assisted escape process becomes exponentially negligible. Even at higher temperatures 1.5-2.0 K, the trapping times for larger metal clusters are sufficiently long that the previously observed metal nanowire assembly in superfluid helium can take place at vortex lines. The binding energy of the electron bubble is predicted to decrease as a function of both temperature and pressure, which allows adjusting the trap depth for either permanent trapping or to allow thermally assisted escape. Finally, a new scheme for determining the trapping of impurities on vortex lines by optical absorption spectroscopy is outlined and demonstrated for He(*).

  2. Interaction of ions, atoms, and small molecules with quantized vortex lines in superfluid 4He

    NASA Astrophysics Data System (ADS)

    Mateo, David; Eloranta, Jussi; Williams, Gary A.

    2015-02-01

    The interaction of a number of impurities (H2, Ag, Cu, Ag2, Cu2, Li, He3 + , He* (3S), He2∗ (3Σu), and e-) with quantized rectilinear vortex lines in superfluid 4He is calculated by using the Orsay-Trento density functional theory (DFT) method at 0 K. The Donnelly-Parks (DP) potential function binding ions to the vortex is combined with DFT data, yielding the impurity radius as well as the vortex line core parameter. The vortex core parameter at 0 K (0.74 Å) obtained either directly from the vortex line geometry or through the DP potential fitting is smaller than previously suggested but is compatible with the value obtained from re-analysis of the Rayfield-Reif experiment. All of the impurities have significantly higher binding energies to vortex lines below 1 K than the available thermal energy, where the thermally assisted escape process becomes exponentially negligible. Even at higher temperatures 1.5-2.0 K, the trapping times for larger metal clusters are sufficiently long that the previously observed metal nanowire assembly in superfluid helium can take place at vortex lines. The binding energy of the electron bubble is predicted to decrease as a function of both temperature and pressure, which allows adjusting the trap depth for either permanent trapping or to allow thermally assisted escape. Finally, a new scheme for determining the trapping of impurities on vortex lines by optical absorption spectroscopy is outlined and demonstrated for He*.

  3. Studies on the Origins and Nature of Critical Current Variations in Rare Earth Barium Copper Oxide Coated Conductors

    NASA Astrophysics Data System (ADS)

    Hu, Xinbo

    REBCO (REBa2Cu3O7-delta, RE=rare earth elements) coated conductor (CC) is one of the best candidates for building high-field magnets and it has been improved greatly in recent years. CC overcome the grain boundary problem by using either a rolling assisted biaxially textured substrate (RABiTS) or ion beam assisted deposition (IBAD) of a template for the REBCO. Artificial pinning centers were also introduced to increase critical current density. Despite all these improvements, one significant residual problem is lengthwise critical current (Ic) variations of the CCs. Characterizations of CCs can not only identify the variations, but also provide insight that can help improve the manufacturing process. This study focuses on cross-sectional and vortex pinning variations in CCs. With the reel-to-reel Ic and magnetization measurement system (YateStar), a systematic study has been carried out for CCs made in the last 5-6 years as this technology has rapidly developed. We found that cross-section variations exist for almost all conductors because of width variations. But this contribution to the total Ic variation is small. Vortex pinning variations are found to be the main reason for Ic variations, especially for conductors from different production runs. Even for conductors from the same run, pinning variations are often present. Microscopy studies show that the density and length of BaZrO3 (BZO) nanorods vary between different conductors even though they have nominally the same specifications. Pinning variations in one single tape are mostly attributed to the size variations of BZO nanorods and the configurations of RE2O3 precipitates. Deconstruction of magnet coils and cables were carried out to understand the reasons for in-service degradation. The prototype coil for the 32 T project was safely quenched more than 100 times but it degraded in 3 spontaneous quenches (conducted in an accelerated fatigue testing campaign at ramp rates much larger than service specification). Its pancake coil deconstruction showed three extremely localized burned regions, whose temperature went to over 800°C based on the appearance of a Cu-Ag eutectic above the damaged REBCO layer. Transverse propagation of the damage was almost as effective as longitudinal propagation. Transmission electron microscope images show that thicker BaZrO 3 (BZO) nanorods exist near the centers of damaged zones, compared to longer and thinner BZO nanorods from normal, good regions. Because of the lack of detailed Ic(x) characterizations of the length prior to use, the cause the cause of the coil degradation is not clear. It is possible that local degradation of the vortex pinning initiated the final quenches but another possibility is indicated by deconstruction of a no-insulation coil, which reached 45.5 T in a background field of 31 T. In this case no burn marks were observed but some tapes were heavily deformed on one edge, and some joints delaminated after quenches. Transport measurements show that the deformations correlate to Ic degradations, especially for the outer turns of pancakes. Microstructural studies reveal that the deformed (and cracked) edges are always the one that were slit during manufacturing. It appears that small, pre-existing micro-cracks on slit edges propagate after high-field tests. Study of individual strands of conductor on round core (CORCRTM ) cables demonstrated their steady improvements in the last few years. Overall cable current density, Je, has been greatly improved by replacement of 50 mum by 30 mum thick substrate in CCs and improved winding procedures cause no damage to the tapes. However, some degradation may appear after cables are bent and tested in high-field (20 T). It is found that inner layers are more vulnerable than outer layers. Winding angles and gaps strongly influence where degradations start. To understand the failure mechanisms and establish the limiting winding conditions for CORCRTM cables/wires, tapes were wound on different formers at different angles: 23°, 30°, 45° and 60°. For a 2 mm former diameter, the highest winding angle gives the least degradation while the other three are comparable. A major defect type introduced during winding is propagation of pre-existing edge (slitting) cracks, but some delamination under winding stress can also be seen. For the former with 2.54 mm in diameter, no propagations of pre-existing cracks or delaminations were observed after winding. Our studies of CCs made and tested in different ways has shown that further improvement of CC and of CORCRTM cables/wires can be made and also that some inherent features of the manufacture of CCs exert a strong influence on their service performance.

  4. Quasi-local action of curl-less vector potential on vortex dynamics in superconductors

    NASA Astrophysics Data System (ADS)

    Gulian, Armen M.; Nikoghosyan, Vahan R.; Gulian, Ellen D.; Melkonyan, Gurgen G.

    2018-04-01

    Studies of the Abrikosov vortex motion in superconductors based on time-dependent Ginzburg-Landau equations reveal an opportunity to detect the values of the Aharonov-Bohm type curl-less vector potentials without closed-loop electron trajectories encompassing the magnetic flux.

  5. The effect of tip vortex structure on helicopter noise due to blade/vortex interaction

    NASA Technical Reports Server (NTRS)

    Wolf, T. L.; Widnall, S. E.

    1978-01-01

    A potential cause of helicopter impulsive noise, commonly called blade slap, is the unsteady lift fluctuation on a rotor blade due to interaction with the vortex trailed from another blade. The relationship between vortex structure and the intensity of the acoustic signal is investigated. The analysis is based on a theoretical model for blade/vortex interaction. Unsteady lift on the blades due to blade/vortex interaction is calculated using linear unsteady aerodynamic theory, and expressions are derived for the directivity, frequency spectrum, and transient signal of the radiated noise. An inviscid rollup model is used to calculate the velocity profile in the trailing vortex from the spanwise distribution of blade tip loading. A few cases of tip loading are investigated, and numerical results are presented for the unsteady lift and acoustic signal due to blade/vortex interaction. The intensity of the acoustic signal is shown to be quite sensitive to changes in tip vortex structure.

  6. Statistics of optical vortex wander on propagation through atmospheric turbulence.

    PubMed

    Gu, Yalong

    2013-04-01

    The transverse position of an optical vortex on propagation through atmospheric turbulence is studied. The probability density of the optical vortex position on a transverse plane in the atmosphere is formulated in weak turbulence by using the Born approximation. With these formulas, the effect of aperture averaging on topological charge detection is investigated. These results provide quantitative guidelines for the design of an optimal detector of topological charge, which has potential application in optical vortex communication systems.

  7. Role of Pin1 in UVA-induced cell proliferation and malignant transformation in epidermal cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Chang Yeob; Hien, Tran Thi; Lim, Sung Chul

    2011-06-24

    Highlights: {yields} Pin1 expression is enhanced by low energy UVA irradiation in both skin tissues of hairless mice and JB6 C141 epidermal cells. {yields} UVA irradiation increases activator protein-1 activity and cyclin D1 in a Pin1-dependent manner. {yields} UVA potentiates EGF-inducible, anchorage-independent growth of epidermal cells, and this is suppressed by Pin1 inhibition or by anti-oxidant. -- Abstract: Ultraviolet A (UVA) radiation ({lambda} = 320-400 nm) is considered a major cause of human skin cancer. Pin1, a peptidyl prolyl isomerase, is overexpressed in most types of cancer tissues and plays an important role in cell proliferation and transformation. Here, wemore » demonstrated that Pin1 expression was enhanced by low energy UVA (300-900 mJ/cm{sup 2}) irradiation in both skin tissues of hairless mice and JB6 C141 epidermal cells. Exposure of epidermal cells to UVA radiation increased cell proliferation and cyclin D1 expression, and these changes were blocked by Pin1 inhibition. UVA irradiation also increased activator protein-1 (AP-1) minimal reporter activity and nuclear levels of c-Jun, but not c-Fos, in a Pin1-dependent manner. The increases in Pin1 expression and in AP-1 reporter activity in response to UVA were abolished by N-acetylcysteine (NAC) treatment. Finally, we found that pre-exposure of JB6 C141 cells to UVA potentiated EGF-inducible, anchorage-independent growth, and this effect was significantly suppressed by Pin1inhibition or by NAC.« less

  8. Point vortex modelling of the wake dynamics behind asymmetric vortex generator arrays

    NASA Astrophysics Data System (ADS)

    Baldacchino, D.; Ferreira, C.; Ragni, D.; van Bussel, G. J. W.

    2016-09-01

    In this work, we present a simple inviscid point vortex model to study the dynamics of asymmetric vortex rows, as might appear behind misaligned vortex generator vanes. Starting from the existing solution of the infinite vortex cascade, a numerical model of four base-vortices is chosen to represent two primary counter-rotating vortex pairs and their mirror plane images, introducing the vortex strength ratio as a free parameter. The resulting system of equations is also defined in terms of the vortex row separation and the qualitative features of the ensuing motion are mapped. A translating and orbiting regime are identified for different cascade separations. The latter occurs for all unequal strength vortex pairs. Thus, the motion is further classified by studying the cyclic behaviour of the orbiting regime and it is shown that for small mismatches in vortex strength, the orbiting length and time scales are sufficiently large as to appear, in the near wake, as translational (non-orbiting). However, for larger mismatches in vortex strength, the orbiting motion approaches the order of the starting height of the vortex. Comparisons between experimental data and the potential flow model show qualitative agreement whilst viscous effects account for the major discrepancies. Despite this, the model captures the orbital mode observed in the measurements and provides an impetus for considering the impact of these complex interactions on vortex generator designs.

  9. Pair-density waves, charge-density waves, and vortices in high-Tc cuprates

    NASA Astrophysics Data System (ADS)

    Dai, Zhehao; Zhang, Ya-Hui; Senthil, T.; Lee, Patrick A.

    2018-05-01

    A recent scanning tunneling microscopy (STM) experiment reports the observation of a charge-density wave (CDW) with a period of approximately 8a in the halo region surrounding the vortex core, in striking contrast to the approximately 4a period CDWs that are commonly observed in the cuprates. Inspired by this work, we study a model where a bidirectional pair-density wave (PDW) with period 8 is at play. This further divides into two classes: (1) where the PDW is a competing state of the d -wave superconductor and can exist only near the vortex core where the d -wave order is suppressed and (2) where the PDW is the primary order, the so-called "mother state" that persists with strong phase fluctuations to high temperature and high magnetic field and lies behind the pseudogap phenomenology. We study the charge-density wave structures near the vortex core in these models. We emphasize the importance of the phase winding of the d -wave order parameter. The PDW can be pinned by the vortex core due to this winding and become static. Furthermore, the period-8 CDW inherits the properties of this winding, which gives rise to a special feature of the Fourier transform peak, namely, it is split in certain directions. There is also a line of zeros in the inverse Fourier transform of filtered data. We propose that these are key experimental signatures that can distinguish between the PDW-driven scenario from the more mundane option that the period-8 CDW is primary. We discuss the pro's and con's of the options considered above. Finally, we attempt to place the STM experiment in the broader context of pseudogap physics of underdoped cuprates and relate this observation to the unusual properties of x-ray scattering data on CDW carried out to very high magnetic field.

  10. Topological States in Partially-PT -Symmetric Azimuthal Potentials

    NASA Astrophysics Data System (ADS)

    Kartashov, Yaroslav V.; Konotop, Vladimir V.; Torner, Lluis

    2015-11-01

    We introduce partially-parity-time (p PT ) -symmetric azimuthal potentials composed from individual PT -symmetric cells located on a ring, where two azimuthal directions are nonequivalent in a sense that in such potential excitations carrying topological dislocations exhibit different dynamics for different directions of energy circulation in the initial field distribution. Such nonconservative ratchetlike structures support rich families of stable vortex solitons in cubic nonlinear media, whose properties depend on the sign of the topological charge due to the nonequivalence of azimuthal directions. In contrast, oppositely charged vortex solitons remain equivalent in similar fully-P T -symmetric potentials. The vortex solitons in the p P T - and P T -symmetric potentials are shown to feature qualitatively different internal current distributions, which are described by different discrete rotation symmetries of the intensity profiles.

  11. Intrathoracic migration of an unbent Steinmann pin

    PubMed Central

    R, Estfan; S, Sarkar

    2014-01-01

    Steinmann pins are known to be used as a shoulder stabilisation device in recurrent dislocation. Although rare, their potential to migrate within the thorax has been reported. We present the case of an 87-year-old man who was treated for recurrent left shoulder dislocation with pinning using a Steinmann pin. He presented eight days postoperatively with the pin impaling the aortic adventitia. To our knowledge, this is only the fifth case report of such an event. Awareness of this complication and attempts to prevent its occurrence are critical as the outcome can be fatal. PMID:24780661

  12. WRKY23 is a component of the transcriptional network mediating auxin feedback on PIN polarity

    PubMed Central

    Vasileva, Mina; Sauer, Michael

    2018-01-01

    Auxin is unique among plant hormones due to its directional transport that is mediated by the polarly distributed PIN auxin transporters at the plasma membrane. The canalization hypothesis proposes that the auxin feedback on its polar flow is a crucial, plant-specific mechanism mediating multiple self-organizing developmental processes. Here, we used the auxin effect on the PIN polar localization in Arabidopsis thaliana roots as a proxy for the auxin feedback on the PIN polarity during canalization. We performed microarray experiments to find regulators of this process that act downstream of auxin. We identified genes that were transcriptionally regulated by auxin in an AXR3/IAA17- and ARF7/ARF19-dependent manner. Besides the known components of the PIN polarity, such as PID and PIP5K kinases, a number of potential new regulators were detected, among which the WRKY23 transcription factor, which was characterized in more detail. Gain- and loss-of-function mutants confirmed a role for WRKY23 in mediating the auxin effect on the PIN polarity. Accordingly, processes requiring auxin-mediated PIN polarity rearrangements, such as vascular tissue development during leaf venation, showed a higher WRKY23 expression and required the WRKY23 activity. Our results provide initial insights into the auxin transcriptional network acting upstream of PIN polarization and, potentially, canalization-mediated plant development. PMID:29377885

  13. Local Measurement of the Penetration Depth in the Pnictide Superconductor Ba(Fe_0.95 Co_0.05)_2 As_2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsushita, Y.

    2010-01-11

    We use magnetic force microscopy (MFM) to measure the local penetration depth {lambda} in Ba(Fe{sub 0.95}Co{sub 0.05}){sub 2}As{sub 2} single crystals and use scanning SQUID susceptometry to measure its temperature variation down to 0.4 K. We observe that superfluid density {rho}{sub s} over the full temperature range is well described by a clean two-band fully gapped model. We demonstrate that MFM can measure the important and hard-to-determine absolute value of {lambda}, as well as obtain its temperature dependence and spatial homogeneity. We find {rho}{sub s} to be uniform on the submicron scale despite the highly disordered vortex pinning.

  14. Robust and adjustable C-shaped electron vortex beams

    NASA Astrophysics Data System (ADS)

    Mousley, M.; Thirunavukkarasu, G.; Babiker, M.; Yuan, J.

    2017-06-01

    Wavefront engineering is an important quantum technology, often applied to the production of states carrying orbital angular momentum (OAM). Here, we demonstrate the design and production of robust C-shaped beam states carrying OAM, in which the usual doughnut-shaped transverse intensity structure of the vortex beam contains an adjustable gap. We find that the presence of the vortex lines in the core of the beam is crucial for maintaining the stability of the C-shape structure during beam propagation. The topological charge of the vortex core controls mainly the size of the C-shape, while its opening angle is related to the presence of vortex-anti-vortex loops. We demonstrate the generation and characterisation of C-shaped electron vortex beams, although the result is equally applicable to other quantum waves. C-shaped electron vortex beams have potential applications in nanoscale fabrication of planar split-ring structures and three-dimensional chiral structures as well as depth sensing and magnetic field determination through rotation of the gap in the C-shape.

  15. Self-regulation of charged defect compensation and formation energy pinning in semiconductors

    PubMed Central

    Yang, Ji-Hui; Yin, Wan-Jian; Park, Ji-Sang; Wei, Su-Huai

    2015-01-01

    Current theoretical analyses of defect properties without solving the detailed balance equations often estimate Fermi-level pinning position by omitting free carriers and assume defect concentrations can be always tuned by atomic chemical potentials. This could be misleading in some circumstance. Here we clarify that: (1) Because the Fermi-level pinning is determined not only by defect states but also by free carriers from band-edge states, band-edge states should be treated explicitly in the same footing as the defect states in practice; (2) defect formation energy, thus defect density, could be pinned and independent on atomic chemical potentials due to the entanglement of atomic chemical potentials and Fermi energy, in contrast to the usual expectation that defect formation energy can always be tuned by varying the atomic chemical potentials; and (3) the charged defect compensation behavior, i.e., most of donors are compensated by acceptors or vice versa, is self-regulated when defect formation energies are pinned. The last two phenomena are more dominant in wide-gap semiconductors or when the defect formation energies are small. Using NaCl and CH3NH3PbI3 as examples, we illustrate these unexpected behaviors. Our analysis thus provides new insights that enrich the understanding of the defect physics in semiconductors and insulators. PMID:26584670

  16. Vortex ring behavior provides the epigenetic blueprint for the human heart

    PubMed Central

    Arvidsson, Per M.; Kovács, Sándor J.; Töger, Johannes; Borgquist, Rasmus; Heiberg, Einar; Carlsson, Marcus; Arheden, Håkan

    2016-01-01

    The laws of fluid dynamics govern vortex ring formation and precede cardiac development by billions of years, suggesting that diastolic vortex ring formation is instrumental in defining the shape of the heart. Using novel and validated magnetic resonance imaging measurements, we show that the healthy left ventricle moves in tandem with the expanding vortex ring, indicating that cardiac form and function is epigenetically optimized to accommodate vortex ring formation for volume pumping. Healthy hearts demonstrate a strong coupling between vortex and cardiac volumes (R2 = 0.83), but this optimized phenotype is lost in heart failure, suggesting restoration of normal vortex ring dynamics as a new, and possibly important consideration for individualized heart failure treatment. Vortex ring volume was unrelated to early rapid filling (E-wave) velocity in patients and controls. Characteristics of vortex-wall interaction provide unique physiologic and mechanistic information about cardiac diastolic function that may be applied to guide the design and implantation of prosthetic valves, and have potential clinical utility as therapeutic targets for tailored medicine or measures of cardiac health. PMID:26915473

  17. Vortex ring behavior provides the epigenetic blueprint for the human heart.

    PubMed

    Arvidsson, Per M; Kovács, Sándor J; Töger, Johannes; Borgquist, Rasmus; Heiberg, Einar; Carlsson, Marcus; Arheden, Håkan

    2016-02-26

    The laws of fluid dynamics govern vortex ring formation and precede cardiac development by billions of years, suggesting that diastolic vortex ring formation is instrumental in defining the shape of the heart. Using novel and validated magnetic resonance imaging measurements, we show that the healthy left ventricle moves in tandem with the expanding vortex ring, indicating that cardiac form and function is epigenetically optimized to accommodate vortex ring formation for volume pumping. Healthy hearts demonstrate a strong coupling between vortex and cardiac volumes (R(2) = 0.83), but this optimized phenotype is lost in heart failure, suggesting restoration of normal vortex ring dynamics as a new, and possibly important consideration for individualized heart failure treatment. Vortex ring volume was unrelated to early rapid filling (E-wave) velocity in patients and controls. Characteristics of vortex-wall interaction provide unique physiologic and mechanistic information about cardiac diastolic function that may be applied to guide the design and implantation of prosthetic valves, and have potential clinical utility as therapeutic targets for tailored medicine or measures of cardiac health.

  18. Investigation into Z-Pin Reinforced Composite Skin/Stiffener Debond under Monotonic and Cyclic Bending

    NASA Astrophysics Data System (ADS)

    Zhang, Xiangyang; Li, Yong; Van Hoa, Suong; Xiao, Jun; Chu, Qiyi

    2018-02-01

    Skin/stiffener debonding has been a longstanding concern for the users of stiffened composite panels in long-term service. Z-pinning technology is an emerging solution to reinforce the composite assembly joints. This work experimentally characterizes the progressive debonding of Z-pinned skin/stiffener interface with the skin under static bend loading. The three-stage failure process is identified as: flange edge debonding, pin/laminate debonding, and ultimate structural failure. Three different distribution patterns were compared in terms of the static debonding properties revealed the affirmative fact that locating pins in high normal stress regions, that is close to the flange edges in skin/stiffener structures, is more beneficial to utilize the full potential of Z-pinning reinforcement. The unit strip FE model was developed and demonstrated effective to analysis the effect of Z-pin distribution on the ultimate debond load. On the other hand, the evolution of fatigue cracks at Z-pinned skin/flange interface was investigated with a series of displacement-controlled fatigue bending tests and microscopic observations. Results show that Z-pinning postpones crack initiations at low displacement levels, and the remarkable crack-arresting function of pins enables the structure a prolonged fatigue life. However, pins become less effective when the maximum displacement exceeds the crack initiation level due to gradually pullout of pins.

  19. Evolution of phase singularities of vortex beams propagating in atmospheric turbulence.

    PubMed

    Ge, Xiao-Lu; Wang, Ben-Yi; Guo, Cheng-Shan

    2015-05-01

    Optical vortex beams propagating through atmospheric turbulence are studied by numerical modeling, and the phase singularities of the vortices existing in the turbulence-distorted beams are calculated. It is found that the algebraic sum of topological charges (TCs) of all the phase singularities existing in test aperture is approximately equal to the TC of the input vortex beam. This property provides us a possible approach for determining the TC of the vortex beam propagating through the atmospheric turbulence, which could have potential application in optical communication using optical vortices.

  20. Critical behavior at a dynamic vortex insulator-to-metal transition

    DOE PAGES

    Poccia, Nicola; Baturina, Tatyana I.; Coneri, Francesco; ...

    2015-09-10

    An array of superconducting islands placed on a normal metal film offers a tunable realization of nanopatterned superconductivity. This system enables elucidating open questions concerning the nature of competing vortex states and phase transitions between them. A square array creates the egg crate potential in which magnetic field-induced vortices are frozen into a vortex insulator. We observe a vortex insulator-to-vortex metal transition driven by the applied electric current and determine critical exponents strikingly coinciding with those for thermodynamic liquid-gas transition. Lastly, our findings offer a comprehensive description of dynamic critical behavior and establish a deep connection between equilibrium and nonequilibriummore » phase transitions.« less

  1. Critical behavior at a dynamic vortex insulator-to-metal transition.

    PubMed

    Poccia, Nicola; Baturina, Tatyana I; Coneri, Francesco; Molenaar, Cor G; Wang, X Renshaw; Bianconi, Ginestra; Brinkman, Alexander; Hilgenkamp, Hans; Golubov, Alexander A; Vinokur, Valerii M

    2015-09-11

    An array of superconducting islands placed on a normal metal film offers a tunable realization of nanopatterned superconductivity. This system enables investigation of the nature of competing vortex states and phase transitions between them. A square array creates the eggcrate potential in which magnetic field-induced vortices are frozen into a vortex insulator. We observed a vortex insulator-vortex metal transition driven by the applied electric current and determined critical exponents that coincided with those for thermodynamic liquid-gas transition. Our findings offer a comprehensive description of dynamic critical behavior and establish a deep connection between equilibrium and nonequilibrium phase transitions. Copyright © 2015, American Association for the Advancement of Science.

  2. VORSTAB: A computer program for calculating lateral-directional stability derivatives with vortex flow effect

    NASA Technical Reports Server (NTRS)

    Lan, C. Edward

    1985-01-01

    A computer program based on the Quasi-Vortex-Lattice Method of Lan is presented for calculating longitudinal and lateral-directional aerodynamic characteristics of nonplanar wing-body combination. The method is based on the assumption of inviscid subsonic flow. Both attached and vortex-separated flows are treated. For the vortex-separated flow, the calculation is based on the method of suction analogy. The effect of vortex breakdown is accounted for by an empirical method. A summary of the theoretical method, program capabilities, input format, output variables and program job control set-up are described. Three test cases are presented as guides for potential users of the code.

  3. Connection stiffness and dynamical docking process of flux pinned spacecraft modules

    NASA Astrophysics Data System (ADS)

    Lu, Yong; Zhang, Mingliang; Gao, Dong

    2014-02-01

    This paper describes a novel kind of potential flux pinned docking system that consists of guidance navigation and control system, the traditional extrusion type propulsion system, and a flux pinned docking interface. Because of characteristics of passive stability of flux pinning, the docking control strategy of flux pinned docking system only needs a series of sequential control rather than necessary active feedback control, as well as avoidance of hazardous collision accident. The flux pinned force between YBaCuO (YBCO) high temperature superconductor bulk and permanent magnet is able to be given vent based on the identical current loop model and improved image dipole model, which can be validated experimentally. Thus, the connection stiffness between two flux pinned spacecraft modules can be calculated based on Hooke's law. This connection stiffness matrix at the equilibrium position has the positive definite performance, which can validate the passively stable connection of two flux pinned spacecraft modules theoretically. Furthermore, the relative orbital dynamical equation of two flux pinned spacecraft modules can be established based on Clohessy-Wiltshire's equations and improved image dipole model. The dynamical docking process between two flux pinned spacecraft modules can be obtained by way of numerical simulation, which suggests the feasibility of flux pinned docking system.

  4. Connection stiffness and dynamical docking process of flux pinned spacecraft modules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Yong; Zhang, Mingliang, E-mail: niudun12@126.com; Gao, Dong

    2014-02-14

    This paper describes a novel kind of potential flux pinned docking system that consists of guidance navigation and control system, the traditional extrusion type propulsion system, and a flux pinned docking interface. Because of characteristics of passive stability of flux pinning, the docking control strategy of flux pinned docking system only needs a series of sequential control rather than necessary active feedback control, as well as avoidance of hazardous collision accident. The flux pinned force between YBaCuO (YBCO) high temperature superconductor bulk and permanent magnet is able to be given vent based on the identical current loop model and improvedmore » image dipole model, which can be validated experimentally. Thus, the connection stiffness between two flux pinned spacecraft modules can be calculated based on Hooke's law. This connection stiffness matrix at the equilibrium position has the positive definite performance, which can validate the passively stable connection of two flux pinned spacecraft modules theoretically. Furthermore, the relative orbital dynamical equation of two flux pinned spacecraft modules can be established based on Clohessy-Wiltshire's equations and improved image dipole model. The dynamical docking process between two flux pinned spacecraft modules can be obtained by way of numerical simulation, which suggests the feasibility of flux pinned docking system.« less

  5. Meteorology and Wake Vortex Influence on American Airlines FL-587 Accident

    NASA Technical Reports Server (NTRS)

    Proctor, Fred H.; Hamilton, David W.; Rutishauser, David K.; Switzer, George F.

    2004-01-01

    The atmospheric environment surrounding the crash of American Airlines Flight 587 is investigated. Examined are evidence for any unusual atmospheric conditions and the potential for encounters with aircraft wake vortices. Computer simulations are carried out with two different vortex prediction models and a Large Eddy Simulation model. Wind models are proposed for studying aircraft and pilot response to the wake vortex encounter.

  6. Viscous and Interacting Flow Field Effects.

    DTIC Science & Technology

    1980-06-01

    in the inviscid flow analysis using free vortex sheets whose shapes are determined by iteration. The outer iteration employs boundary layer...Methods, Inc. which replaces the source distribution in the separation zone by a vortex wake model . This model is described in some detail in (2), but...in the potential flow is obtained using linearly varying vortex singularities distributed on planar panels. The wake is represented by sheets of

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grach, I.L.; Kalashnikova, Y.S.; Narodetskii-breve, I.M.

    We use the constituent-quark bag model for describing s-wave ..pi..N amplitudes at low energies. The resulting parameters of the ..pi..N potentials are in good agreement with the theoretical predictions of the MIT bag model.

  8. Ozone decrease outside Arctic polar vortex due to polar vortex processing in 1997

    NASA Astrophysics Data System (ADS)

    Akiyoshi, H.; Sugata, S.; Yoshiki, M.; Sugita, T.

    2006-11-01

    We examine the effect of polar vortex processing on ozone concentrations outside the 1997 Arctic polar vortex. The Arctic vortex in this year was well isolated, cold, and circumpolar, and it broke up unusually late. However, time threshold diagnostics (TTD) analysis using a middle vortex boundary defined by the first derivative of the equivalent latitude gradient of potential vorticity and calculations using the nudging chemical transport model (CTM) of the Center for Climate System Research/National Institute for Environmental Studies (CCSR/NIES) show that there were intermittently several relatively large transport events from the vortex to the outside region in the lower stratosphere, with timescales and spatial scales that can be resolved at T42 CTM horizontal resolution (2.8° by 2.8° grid). These intermittent outflow events of polar air are also identified in TTD analysis using an outer vortex boundary defined by the second derivative of potential vorticity and a boundary defined by the N2O concentration. These intermittent events had a significant effect on the ozone concentration outside the vortex near the boundary in this year. A CTM calculation with a polar chemical ozone tracer shows that the effect on the ozone concentration outside the polar vortex near the vortex boundary in the equivalent latitude band of 55°-65°N and 450 K is 0.3 ppmv (15-20% of the ozone concentration at this height) and that on the total ozone is 12-15 Dobson units (1 DU = 0.001 atm cm) (3-4% of the total ozone) by the end of April just before the final vortex breakup. The effect in the equivalent latitude band of 30°-60°N is much smaller, with a reduction of 2 DU at the end of March and 4 DU by the end of April (less than 1% of the total ozone). The effect is about the half if we use the inner boundary or a boundary of 73°N equivalent latitude for the polar tracer calculations. The CTM calculations also show that these polar vortex processing effects might be masked at midlatitudes by the local gas phase chemical ozone production/loss reactions after mid-April at 450 K and earlier than those at 500 K.

  9. Discrete-vortex model for the symmetric-vortex flow on cones

    NASA Technical Reports Server (NTRS)

    Gainer, Thomas G.

    1990-01-01

    A relatively simple but accurate potential flow model was developed for studying the symmetric vortex flow on cones. The model is a modified version of the model first developed by Bryson, in which discrete vortices and straight-line feeding sheets were used to represent the flow field. It differs, however, in the zero-force condition used to position the vortices and determine their circulation strengths. The Bryson model imposed the condition that the net force on the feeding sheets and discrete vortices must be zero. The proposed model satisfies this zero-force condition by having the vortices move as free vortices, at a velocity equal to at the local crossflow velocity at their centers. When the free-vortex assumption is made, a solution is obtained in the form of two nonlinear algebraic equations that relate the vortex center coordinates and vortex strengths to the cone angle and angle of attack. The vortex center locations calculated using the model are in good agreement with experimental values. The cone normal forces as well as center locations are in good agreement with the vortex cloud method of calculating symmetric flow fields.

  10. Random center vortex lines in continuous 3D space-time

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Höllwieser, Roman; Institute of Atomic and Subatomic Physics, Vienna University of Technology, Operngasse 9, 1040 Vienna; Altarawneh, Derar

    2016-01-22

    We present a model of center vortices, represented by closed random lines in continuous 2+1-dimensional space-time. These random lines are modeled as being piece-wise linear and an ensemble is generated by Monte Carlo methods. The physical space in which the vortex lines are defined is a cuboid with periodic boundary conditions. Besides moving, growing and shrinking of the vortex configuration, also reconnections are allowed. Our ensemble therefore contains not a fixed, but a variable number of closed vortex lines. This is expected to be important for realizing the deconfining phase transition. Using the model, we study both vortex percolation andmore » the potential V(R) between quark and anti-quark as a function of distance R at different vortex densities, vortex segment lengths, reconnection conditions and at different temperatures. We have found three deconfinement phase transitions, as a function of density, as a function of vortex segment length, and as a function of temperature. The model reproduces the qualitative features of confinement physics seen in SU(2) Yang-Mills theory.« less

  11. Self-regulation of charged defect compensation and formation energy pinning in semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Ji -Hui; Yin, Wan -Jian; Park, Ji -Sang

    2015-11-20

    Current theoretical analyses of defect properties without solving the detailed balance equations often estimate Fermi-level pinning position by omitting free carriers and assume defect concentrations can be always tuned by atomic chemical potentials. This could be misleading in some circumstance. Here we clarify that: (1) Because the Fermi-level pinning is determined not only by defect states but also by free carriers from band-edge states, band-edge states should be treated explicitly in the same footing as the defect states in practice; (2) defect formation energy, thus defect density, could be pinned and independent on atomic chemical potentials due to the entanglementmore » of atomic chemical potentials and Fermi energy, in contrast to the usual expectation that defect formation energy can always be tuned by varying the atomic chemical potentials; and (3) the charged defect compensation behavior, i.e., most of donors are compensated by acceptors or vice versa, is self-regulated when defect formation energies are pinned. The last two phenomena are more dominant in wide-gap semiconductors or when the defect formation energies are small. Using NaCl and CH 3NH 3PbI 3 as examples, we illustrate these unexpected behaviors. Furthermore, our analysis thus provides new insights that enrich the understanding of the defect physics in semiconductors and insulators.« less

  12. Probing the low-frequency vortex dynamics in a nanostructured superconducting strip

    NASA Astrophysics Data System (ADS)

    Silva, C. C. de Souza; Raes, B.; Brisbois, J.; Cabral, L. R. E.; Silhanek, A. V.; Van de Vondel, J.; Moshchalkov, V. V.

    2016-07-01

    We investigate by scanning susceptibility microscopy the response of a thin Pb strip, with a square array of submicron antidots, to a low-frequency ac magnetic field applied perpendicularly to the film plane. By mapping the local permeability of the sample within the field range where vortices trapped by the antidots and interstitial vortices coexist, we observed two distinct dynamical regimes occurring at different temperatures. At a temperature just below the superconducting transition, T /Tc=0.96 , the sample response is essentially dominated by the motion of highly mobile interstitial vortices. However, at a slightly lower temperature, T /Tc=0.93 , the interstitial vortices freeze up leading to a strong reduction of the ac screening length. We propose a simple model for the vortex response in this system which fits well to the experimental data. Our analysis suggests that the observed switching to the high mobility regime stems from a resonant effect, where the period of the ac excitation is just large enough to allow interstitial vortices to thermally hop through the weak pinning landscape produced by random material defects. This argument is further supported by the observation of a pronounced enhancement of the out-of-phase response at the crossover between both dynamical regimes.

  13. Theory of current-driven skyrmions in disordered magnets.

    PubMed

    Koshibae, Wataru; Nagaosa, Naoto

    2018-04-20

    An emergent topological particle in magnets, skyrmion, has several unique features distinct from the other magnetic textures such as domain wall, helical structure, and vortex. It is characterized by a topological integer called skyrmion number N sk , which counts how many times the directions of the magnetic moments wrap the unit sphere. This N sk gives the chiral nature of the skyrmion dynamics, and leads to the extremely small critical current density j c for the current-driven motion in terms of spin transfer torque effect. The finite j c indicates the pinning effect due to the disorder such as impurities and defects, and the behaviors of skyrmions under disorder have not been explored well theoretically although it is always relevant in real systems. Here we reveal by a numerical simulation of Landau-Lifshitz-Gilbert equation that there are four different skyrmion phases with the strong disorder, i.e., (A) pinned state, (B) depinned state, (C) skyrmion multiplication/annihilation, and (D) segregation of skyrmions, as the current density increases, while only two phases (A) and (B) appear in the weak disorder case. The microscopic mechanisms of the new phases (C) and (D) are analyzed theoretically. These results offer a coherent understanding of the skyrmion dynamics under current with disorder.

  14. Stable dissipative optical vortex clusters by inhomogeneous effective diffusion.

    PubMed

    Li, Huishan; Lai, Shiquan; Qui, Yunli; Zhu, Xing; Xie, Jianing; Mihalache, Dumitru; He, Yingji

    2017-10-30

    We numerically show the generation of robust vortex clusters embedded in a two-dimensional beam propagating in a dissipative medium described by the generic cubic-quintic complex Ginzburg-Landau equation with an inhomogeneous effective diffusion term, which is asymmetrical in the two transverse directions and periodically modulated in the longitudinal direction. We show the generation of stable optical vortex clusters for different values of the winding number (topological charge) of the input optical beam. We have found that the number of individual vortex solitons that form the robust vortex cluster is equal to the winding number of the input beam. We have obtained the relationships between the amplitudes and oscillation periods of the inhomogeneous effective diffusion and the cubic gain and diffusion (viscosity) parameters, which depict the regions of existence and stability of vortex clusters. The obtained results offer a method to form robust vortex clusters embedded in two-dimensional optical beams, and we envisage potential applications in the area of structured light.

  15. Vectorial diffraction properties of THz vortex Bessel beams.

    PubMed

    Wu, Zhen; Wang, Xinke; Sun, Wenfeng; Feng, Shengfei; Han, Peng; Ye, Jiasheng; Yu, Yue; Zhang, Yan

    2018-01-22

    A vortex Bessel beam combines the merits of an optical vortex and a Bessel beam, including a spiral wave front and a non-diffractive feature, which has immense application potentials in optical trapping, optical fabrication, optical communications, and so on. Here, linearly and circularly polarized vortex Bessel beams in the terahertz (THz) frequency range are generated by utilizing a THz quarter wave plate, a spiral phase plate, and Teflon axicons with different opening angles. Taking advantage of a THz focal-plane imaging system, vectorial diffraction properties of the THz vortex Bessel beams are comprehensively characterized and discussed, including the transverse (Ex, Ey) and longitudinal (Ez) polarization components. The experimental phenomena are accurately simulated by adopting the vectorial Rayleigh diffraction integral. By varying the opening angle of the axicon, the characteristic parameters of these THz vortex Bessel beams are exhibited and compared, including the light spot size, the diffraction-free range, and the phase evolution process. This work provides the precise experimental and theoretical bases for the comprehension and application of a THz vortex Bessel beam.

  16. Nitrous oxide as a dynamical tracer in the 1987 Airborne Antarctic Ozone Experiment

    NASA Technical Reports Server (NTRS)

    Loewenstein, M.; Podolske, J. R.; Chan, K. R.; Strahan, S. E.

    1989-01-01

    In situ N2O measurements were made using an airborne tunable laser absorption spectrometer (ATLAS) on 12 flights into the Antarctic vortex, as well as on five transit flights outside the vortex region in August and September 1987, as part of the Airborne Antartic Ozone Experiment. Vertical profiles of N2O were obtained within the vortex on most of these flights and were obtained outside the vortex on several occasions. Flights into the vortex region show N2O decreasing southward between 53 and 72 S latitude on constant potential temperature surfaces in the lower stratosphere. The data lead to two important conclusions about the vortex region: (1) the lower stratosphere in August/September 1987 was occupied by 'old' air, which had subsided several kilometers during polar winter; (2) the N2O profile in the vortex was in an approximately steady state in August/September 1987, which indicates that the spring upwelling, suggested by several theories, did not occur.

  17. (1) Majorana fermions in pinned vortices; (2) Manipulating and probing Majorana fermions using superconducting circuits; and (3) Controlling a nanowire spin-orbit qubit via electric-dipole spin resonance

    NASA Astrophysics Data System (ADS)

    Nori, Franco

    2014-03-01

    We study a heterostructure which consists of a topological insulator and a superconductor with a hole. This system supports a robust Majorana fermion state bound to the vortex core. We study the possibility of using scanning tunneling spectroscopy (i) to detect the Majorana fermion in this setup and (ii) to study excited states bound to the vortex core. The Majorana fermion manifests itself as an H-dependent zero-bias anomaly of the tunneling conductance. The excited states spectrum differs from the spectrum of a typical Abrikosov vortex, providing additional indirect confirmation of the Majorana state observation. We also study how to manipulate and probe Majorana fermions using super-conducting circuits. In we consider a semiconductor nanowire quantum dot with strong spin-orbit coupling (SOC), which can be used to achieve a spin-orbit qubit. In contrast to a spin qubit, the spin-orbit qubit can respond to an external ac electric field, i.e., electric-dipole spin resonance. We develop a theory that can apply in the strong SOC regime. We find that there is an optimal SOC strength ηopt = √ 2/2, where the Rabi frequency induced by the ac electric field becomes maximal. Also, we show that both the level spacing and the Rabi frequency of the spin-orbit qubit have periodic responses to the direction of the external static magnetic field. These responses can be used to determine the SOC in the nanowire. FN is partly supported by the RIKEN CEMS, iTHES Project, MURI Center for Dynamic Magneto-Optics, JSPS-RFBR Contract No. 12-02-92100, Grant-in-Aid for Scientific Research (S), MEXT Kakenhi on Quantum Cybernetics, and the JSPS via its FIRST program.

  18. Bifurcation and stability of single and multiple vortex rings in three-dimensional Bose-Einstein condensates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bisset, R. N.; Wang, Wenlong; Ticknor, C.

    Here, we investigate how single- and multi-vortex-ring states can emerge from a planar dark soliton in three-dimensional (3D) Bose-Einstein condensates (confined in isotropic or anisotropic traps) through bifurcations. We characterize such bifurcations quantitatively using a Galerkin-type approach and find good qualitative and quantitative agreement with our Bogoliubov–de Gennes (BdG) analysis. We also systematically characterize the BdG spectrum of the dark solitons, using perturbation theory, and obtain a quantitative match with our 3D BdG numerical calculations. We then turn our attention to the emergence of single- and multi-vortex-ring states. We systematically capture these as stationary states of the system and quantifymore » their BdG spectra numerically. We found that although the vortex ring may be unstable when bifurcating, its instabilities weaken and may even eventually disappear for sufficiently large chemical potentials and suitable trap settings. For instance, we demonstrate the stability of the vortex ring for an isotropic trap in the large-chemical-potential regime.« less

  19. Bifurcation and stability of single and multiple vortex rings in three-dimensional Bose-Einstein condensates

    DOE PAGES

    Bisset, R. N.; Wang, Wenlong; Ticknor, C.; ...

    2015-10-01

    Here, we investigate how single- and multi-vortex-ring states can emerge from a planar dark soliton in three-dimensional (3D) Bose-Einstein condensates (confined in isotropic or anisotropic traps) through bifurcations. We characterize such bifurcations quantitatively using a Galerkin-type approach and find good qualitative and quantitative agreement with our Bogoliubov–de Gennes (BdG) analysis. We also systematically characterize the BdG spectrum of the dark solitons, using perturbation theory, and obtain a quantitative match with our 3D BdG numerical calculations. We then turn our attention to the emergence of single- and multi-vortex-ring states. We systematically capture these as stationary states of the system and quantifymore » their BdG spectra numerically. We found that although the vortex ring may be unstable when bifurcating, its instabilities weaken and may even eventually disappear for sufficiently large chemical potentials and suitable trap settings. For instance, we demonstrate the stability of the vortex ring for an isotropic trap in the large-chemical-potential regime.« less

  20. Flow in the Proximity of the Pin-Tool in Friction Stir Welding and Its Relation to Weld Homogeneity

    NASA Technical Reports Server (NTRS)

    Nunes, Arthur C., Jr.

    2000-01-01

    In the Friction Stir Welding (FSW) process a rotating pin inserted into a seam literally stirs the metal from each side of the seam together. It is proposed that the flow in the vicinity of the pin-tool comprises a primary rapid shear over a cylindrical envelope covering the pin-tool and a relatively slow secondary flow taking the form of a ring vortex about the tool circumference. This model is consistent with a plastic characterization of metal flow, where discontinuities in shear flow are allowed but not viscous effects. It is consistent with experiments employing several different kinds of tracer: atomic markers, shot, and wire. If a rotating disc with angular velocity w is superposed on a translating continuum with linear velocity omega, the trajectories of tracer points become circular arcs centered upon a point displaced laterally a distance v/omega from the center of rotation of the disc in the direction of the advancing side of the disc. In the present model a stream of metal approaching the tool (taken as the coordinate system of observation) is sheared at the slip surface, rapidly rotated around the tool, sheared again on the opposite side of the tool, and deposited in the wake of the tool. Local shearing rates are high, comparable to metal cutting in this model. The flow patterns in the vicinity of the pin-tool determine the level of homogenization and dispersal of contaminants that occurs in the FSW process. The approaching metal streams enfold one another as they are rotated around the tool. Neglecting mixing they return to the same lateral position in the wake of the tool preserving lateral tracer positions as if the metal had flowed past the tool like an extrusion instead of being rotated around it. (The seam is, however, obliterated.) The metal stream of thickness approximately that of the tool diameter D is wiped past the tool at elevated temperatures drawn out to a thickness of v/2(omega) in the wiping zone. Mixing distances in the wiping zone are multiplied in the unfolded metal. Inhomogeneities on a smaller scale than the mixing length are obliterated, but structure on a larger scale may be transmitted to the wake of a FSW weld.

  1. Vortical flow management techniques

    NASA Technical Reports Server (NTRS)

    Rao, Dhanvada M.; Campbell, James F.

    1987-01-01

    The aerodynamic performance and controllability of advanced, highly maneuverable supersonic aircraft can be enhanced by means of 'vortex management', which refers to the purposeful manipulation and reordering of stable and concentrated vortical structures due to flow separations from highly swept leading edges and slender forebodies at moderate-to-high angles-of-attack. Attention is presently given to a variety of results obtained in the course of experiments on generic research models at NASA Langley, clarifying their underlying aerodynamics and evaluating their performance-improvement potential. The vortex-management concepts discussed encompass aerodynamic compartmentation of highly swept leading edges, vortex lift augmentation and modulation, and forebody vortex manipulation.

  2. On the inlet vortex system. [preventing jet engine damage caused by debris pick-up

    NASA Technical Reports Server (NTRS)

    Bissinger, N. C.; Braun, G. W.

    1974-01-01

    The flow field of a jet engine with an inlet vortex, which can pick up heavy debris from the ground and damage the engine, was simulated in a small water tunnel by means of the hydrogen bubble technique. It was found that the known engine inlet vortex is accompained by a vortex system, consisting of two inlet vortices (the ground based and the trailing one), secondary vortices, and ground vortices. Simulation of the ground effect by an inlet image proved that the inlet vortex feeds on free stream vorticity and can exist without the presence of a ground boundary layer. The structural form of the inlet vortex system was explained by a simple potential flow model, which showed the number, location, and the importance of the stagnation points. A retractable horizontal screen or an up-tilt of the engine is suggested as countermeasure against debris ingestion.

  3. Wind-tunnel studies of advanced cargo aircraft concepts. [leading edge vortex flaps for drag reduction

    NASA Technical Reports Server (NTRS)

    Rao, D. M.; Goglia, G. L.

    1981-01-01

    Accomplishments in vortex flap research are summarized. A singular feature of the vortex flap is that, throughout the range of angle of attack range, the flow type remains qualitatively unchanged. Accordingly, no large or sudden change in the aerodynamic characteristics, as happens when forcibly maintained attached flow suddenly reverts to separation, will occur with the vortex flap. Typical wind tunnel test data are presented which show the drag reduction potential of the vortex flap concept applied to a supersonic cruise airplane configuration. The new technology offers a means of aerodynamically augmenting roll-control effectiveness on slender wings at higher angles of attack by manipulating the vortex flow generated from leading edge separation. The proposed manipulator takes the form of a flap hinged at or close to the leading edge, normally retracted flush with the wing upper surface to conform to the airfoil shape.

  4. Reactive nitrogen, ozone, and nitrate aerosols observed in the Arctic stratosphere in January 1990

    NASA Technical Reports Server (NTRS)

    Kondo, Y.; Aimedieu, P.; Koike, M.; Iwasaka, Y.; Newman, P. A.; Schmidt, U.; Matthews, W. A.; Hayashi, M.; Sheldon, W. R.

    1992-01-01

    Ozone mixing ratios in the vicinity of the 525-K potential temperature surface in January and early February of 1990 were observed to decrease sharply across the edge of the vortex boundary, where the vortex position was estimated from Ertel's potential vorticity. The changes in NO(y) mixing ratio with respect to altitude measured on January 18 and 31 were quite well correlated with those of ozone between 15 and 24 km, indicating that NO(y) also had a large gradient across the edge of the vortex. This is interpreted as being mainly due to the significant denitrification that occurred inside the vortex. The total amount of gas and particulate phase HNO3 was close to the NO(y) amount at the altitude of the 22- to 23-km region, suggesting that the conversion of non-HNO3 reactive nitrogen to HNO3 had occurred with a PSC.

  5. Hetonic quartets in a two-layer quasi-geostrophic flow: V-states and stability

    NASA Astrophysics Data System (ADS)

    Reinaud, J. N.; Sokolovskiy, M. A.; Carton, X.

    2018-05-01

    We investigate families of finite core vortex quartets in mutual equilibrium in a two-layer quasi-geostrophic flow. The finite core solutions stem from known solutions for discrete (singular) vortex quartets. Two vortices lie in the top layer and two vortices lie in the bottom layer. Two vortices have a positive potential vorticity anomaly, while the two others have negative potential vorticity anomaly. The vortex configurations are therefore related to the baroclinic dipoles known in the literature as hetons. Two main branches of solutions exist depending on the arrangement of the vortices: the translating zigzag-shaped hetonic quartets and the rotating zigzag-shaped hetonic quartets. By addressing their linear stability, we show that while the rotating quartets can be unstable over a large range of the parameter space, most translating quartets are stable. This has implications on the longevity of such vortex equilibria in the oceans.

  6. The plasma membrane recycling pathway and cell polarity in plants: studies on PIN proteins.

    PubMed

    Boutté, Yohann; Crosnier, Marie-Thérèse; Carraro, Nicola; Traas, Jan; Satiat-Jeunemaitre, Béatrice

    2006-04-01

    The PIN-FORMED (PIN) proteins are plasma-membrane-associated facilitators of auxin transport. They are often targeted to one side of the cell only through subcellular mechanisms that remain largely unknown. Here, we have studied the potential roles of the cytoskeleton and endomembrane system in the localisation of PIN proteins. Immunocytochemistry and image analysis on root cells from Arabidopsis thaliana and maize showed that 10-30% of the intracellular PIN proteins mapped to the Golgi network, but never to prevacuolar compartments. The remaining 70-90% were associated with yet to be identified structures. The maintenance of PIN proteins at the plasma membrane depends on a BFA-sensitive machinery, but not on microtubules and actin filaments. The polar localisation of PIN proteins at the plasmamembrane was not reflected by any asymmetric distribution of cytoplasmic organelles. In addition, PIN proteins were inserted in a symmetrical manner at both sides of the cell plate during cytokinesis. Together, the data indicate that the localisation of PIN proteins is a postmitotic event, which depends on local characteristics of the plasma membrane and its direct environment. In this context, we present evidence that microtubule arrays might define essential positional information for PIN localisation. This information seems to require the presence of an intact cell wall.

  7. Purification and characterization of native and recombinant SaPIN2a, a plant sieve element-localized proteinase inhibitor.

    PubMed

    Wang, Zhen-Yu; Ding, Ling-Wen; Ge, Zhi-Juan; Wang, Zhaoyu; Wang, Fanghai; Li, Ning; Xu, Zeng-Fu

    2007-01-01

    SaPIN2a encodes a proteinase inhibitor in nightshade (Solanum americanum), which is specifically localized to the enucleate sieve elements. It has been proposed to play an important role in phloem development by regulating proteolysis in sieve elements. In this study, we purified and characterized native SaPIN2a from nightshade stems and recombinant SaPIN2a expressed in Escherichia coli. Purified native SaPIN2a was found as a charge isomer family of homodimers, and was weakly glycosylated. Native SaPIN2a significantly inhibited serine proteinases such as trypsin, chymotrypsin, and subtilisin, with the most potent inhibitory activity on subtilisin. It did not inhibit cysteine proteinase papain and aspartic proteinase cathepsin D. Recombinant SaPIN2a had a strong inhibitory effect on chymotrypsin, but its inhibitory activities toward trypsin and especially toward subtilisin were greatly reduced. In addition, native SaPIN2a can effectively inhibit midgut trypsin-like activities from Trichoplusia ni and Spodoptera litura larvae, suggesting a potential for the production of insect-resistant transgenic plants.

  8. Decursin exerts anti-cancer activity in MDA-MB-231 breast cancer cells via inhibition of the Pin1 activity and enhancement of the Pin1/p53 association.

    PubMed

    Kim, Ji-Hyun; Jung, Ji Hoon; Kim, Sung-Hoon; Jeong, Soo-Jin

    2014-02-01

    The peptidyl-prolyl cis/trans isomerase Pin1 is overexpressed in a wide variety of cancer cells and thus considered as an important target molecule for cancer therapy. This study demonstrates that decursin, a bioactive compound from Angelica gigas, exert the anti-cancer effect against breast cancer cells via regulation of Pin1 and its related signaling molecules. We observed that decursin induced G1 arrest with decrease in cyclin D1 level in Pin1-expressing breast cancer cells MDA-MB-231, but not Pin1-non-expressing breast cancer cells MDA-MB-157. In addition, decursin significantly reduced protein expression and enzymatic activity of Pin1 in MDA-MB-231 cells. Further, we found that decursin treatment enhanced the p53 expression level and failed to down-regulate Pin1 in the cells transfected with p53 siRNA, indicating the importance of p53 in the decursin-mediated Pin1 inhibition in MDA-MB-231 cells. Decursin stimulated association between Pin1 to p53. Moreover, decursin facilitated p53 transcription in MDA-MB-231 cells. Overall, our current study suggests the potential of decursin as an attractive cancer therapeutic agent for breast cancer by targeting Pin1 protein. Copyright © 2013 John Wiley & Sons, Ltd.

  9. Peptidyl prolyl isomerase Pin1-inhibitory activity of D-glutamic and D-aspartic acid derivatives bearing a cyclic aliphatic amine moiety.

    PubMed

    Nakagawa, Hidehiko; Seike, Suguru; Sugimoto, Masatoshi; Ieda, Naoya; Kawaguchi, Mitsuyasu; Suzuki, Takayoshi; Miyata, Naoki

    2015-12-01

    Pin1 is a peptidyl prolyl isomerase that specifically catalyzes cis-trans isomerization of phosphorylated Thr/Ser-Pro peptide bonds in substrate proteins and peptides. Pin1 is involved in many important cellular processes, including cancer progression, so it is a potential target of cancer therapy. We designed and synthesized a novel series of Pin1 inhibitors based on a glutamic acid or aspartic acid scaffold bearing an aromatic moiety to provide a hydrophobic surface and a cyclic aliphatic amine moiety with affinity for the proline-binding site of Pin1. Glutamic acid derivatives bearing cycloalkylamino and phenylthiazole groups showed potent Pin1-inhibitory activity comparable with that of known inhibitor VER-1. The results indicate that steric interaction of the cyclic alkyl amine moiety with binding site residues plays a key role in enhancing Pin1-inhibitory activity. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Quasi-horizontal transport and mixing in the Antarctic stratosphre

    NASA Technical Reports Server (NTRS)

    Chen, Ping; Holton, James R.; O'Neill, Alan; Swinbank, Richard

    1994-01-01

    The quasi-horizontal transport and mixing properties of the Antarctic stratosphere are investigated with a simi-Lagrangian transport model and a 'contour advection' technique for the winter and spring of 1992 using analyzed winds from the United Kingdom Meteorological Office data assimiliation system. Transport calculations show that passive tracers are well mixed inside the polar vortex as well as in the midlatitude 'surf zone.' A the vortex edge, strong radial gradients in the tracer fields are well preserved, and their evolutions follow that of the potential vorticity until some time after the breakdown of the polar vortex. In the middle stratosphere there is little tracer exchange across the vortex edge in August and September. Some vortex air is eroded into the surf zone in filamentary form in October, and very strong exchange of air occurs between high and middle latitudes in November. In the lower stratosphere the vortex is not so isolated from the midlatitudes as in the middle stratosphere, and there is more mass exchange across the vortex edge. Calculations of the lengthening of material contours using the contour advection technique show that in the middle stratosphere, strong stirring (i.e., stretching and folding of material elements) occurs in the inner vortex, while the strongest stirring occurs in the midlatitude surf zone and the weakest occurs at the vortex edge. In the lower strtosphere, strong stirring occurs in the inner vortex. Stirring is moderate at the vortex edge and in the midlatitudes.

  11. Model of random center vortex lines in continuous 2 +1 -dimensional spacetime

    NASA Astrophysics Data System (ADS)

    Altarawneh, Derar; Engelhardt, Michael; Höllwieser, Roman

    2016-12-01

    A picture of confinement in QCD based on a condensate of thick vortices with fluxes in the center of the gauge group (center vortices) is studied. Previous concrete model realizations of this picture utilized a hypercubic space-time scaffolding, which, together with many advantages, also has some disadvantages, e.g., in the treatment of vortex topological charge. In the present work, we explore a center vortex model which does not rely on such a scaffolding. Vortices are represented by closed random lines in continuous 2 +1 -dimensional space-time. These random lines are modeled as being piecewise linear, and an ensemble is generated by Monte Carlo methods. The physical space in which the vortex lines are defined is a torus with periodic boundary conditions. Besides moving, growing, and shrinking of the vortex configurations, also reconnections are allowed. Our ensemble therefore contains not a fixed but a variable number of closed vortex lines. This is expected to be important for realizing the deconfining phase transition. We study both vortex percolation and the potential V (R ) between the quark and antiquark as a function of distance R at different vortex densities, vortex segment lengths, reconnection conditions, and at different temperatures. We find three deconfinement phase transitions, as a function of density, as a function of vortex segment length, and as a function of temperature.

  12. Electrically controlled pinning of Dzyaloshinskii-Moriya domain walls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sato, Koji; Tretiakov, Oleg A., E-mail: olegt@imr.tohoku.ac.jp; School of Natural Sciences, Far Eastern Federal University, Vladivostok 690950

    We propose a method to all-electrically control a domain-wall position in a ferromagnetic nanowire with Dzyaloshinskii-Moriya interaction. The strength of this interaction can be controlled by an external electric field, which in turn allows a fine tuning of the pinning potential of a spin-spiral domain wall. It allows to create more mobile pinning sites and can also be advantageous for ultra-low power electronics.

  13. Characteristics of dust voids in a strongly coupled laboratory dusty plasma

    NASA Astrophysics Data System (ADS)

    Bailung, Yoshiko; Deka, T.; Boruah, A.; Sharma, S. K.; Pal, A. R.; Chutia, Joyanti; Bailung, H.

    2018-05-01

    A void is produced in a strongly coupled dusty plasma by inserting a cylindrical pin (˜0.1 mm diameter) into a radiofrequency discharge argon plasma. The pin is biased externally below the plasma potential to generate the dust void. The Debye sheath model is used to obtain the sheath potential profile and hence to estimate the electric field around the pin. The electric field force and the ion drag force on the dust particles are estimated and their balance accounts well for the maintenance of the size of the void. The effects of neutral density as well as dust density on the void size are studied.

  14. Observation of superconducting vortex clusters in S/F hybrids

    DOE PAGES

    Di Giorgio, C.; Bobba, F.; Cucolo, A. M.; ...

    2016-12-09

    While Abrikosov vortices repel each other and form a uniform vortex lattice in bulk type-II superconductors, strong confinement potential profoundly affects their spatial distribution eventually leading to vortex cluster formation. The confinement could be induced by the geometric boundaries in mesoscopic-size superconductors or by the spatial modulation of the magnetic field in superconductor/ ferromagnet (S/F) hybrids. Here we study the vortex confinement in S/F thin film heterostructures and we observe that vortex clusters appear near magnetization inhomogeneities in the ferromagnet, called bifurcations. We use magnetic force microscopy to image magnetic bifurcations and superconducting vortices, while high resolution scanning tunneling microscopymore » is used to obtain detailed information of the local electronic density of states outside and inside the vortex cluster. We find an intervortex spacing at the bifurcation shorter than the one predicted for the same superconductor in a uniform magnetic field equal to the thermodynamical upper critical field H c2. This result is due to a local enhanced stray field and a competition between vortex-vortex repulsion and Lorentz force. Here, our findings suggest that special magnetic topologies could result in S/F hybrids that support superconductivity even when locally the vortex density exceeds the thermodynamic critical threshold value beyond which the superconductivity is destroyed.« less

  15. Observation of superconducting vortex clusters in S/F hybrids.

    PubMed

    Di Giorgio, C; Bobba, F; Cucolo, A M; Scarfato, A; Moore, S A; Karapetrov, G; D'Agostino, D; Novosad, V; Yefremenko, V; Iavarone, M

    2016-12-09

    While Abrikosov vortices repel each other and form a uniform vortex lattice in bulk type-II superconductors, strong confinement potential profoundly affects their spatial distribution eventually leading to vortex cluster formation. The confinement could be induced by the geometric boundaries in mesoscopic-size superconductors or by the spatial modulation of the magnetic field in superconductor/ferromagnet (S/F) hybrids. Here we study the vortex confinement in S/F thin film heterostructures and we observe that vortex clusters appear near magnetization inhomogeneities in the ferromagnet, called bifurcations. We use magnetic force microscopy to image magnetic bifurcations and superconducting vortices, while high resolution scanning tunneling microscopy is used to obtain detailed information of the local electronic density of states outside and inside the vortex cluster. We find an intervortex spacing at the bifurcation shorter than the one predicted for the same superconductor in a uniform magnetic field equal to the thermodynamical upper critical field H c2 . This result is due to a local enhanced stray field and a competition between vortex-vortex repulsion and Lorentz force. Our findings suggest that special magnetic topologies could result in S/F hybrids that support superconductivity even when locally the vortex density exceeds the thermodynamic critical threshold value beyond which the superconductivity is destroyed.

  16. Observation of superconducting vortex clusters in S/F hybrids

    PubMed Central

    Di Giorgio, C.; Bobba, F.; Cucolo, A. M.; Scarfato, A.; Moore, S. A.; Karapetrov, G.; D’Agostino, D.; Novosad, V.; Yefremenko, V.; Iavarone, M.

    2016-01-01

    While Abrikosov vortices repel each other and form a uniform vortex lattice in bulk type-II superconductors, strong confinement potential profoundly affects their spatial distribution eventually leading to vortex cluster formation. The confinement could be induced by the geometric boundaries in mesoscopic-size superconductors or by the spatial modulation of the magnetic field in superconductor/ferromagnet (S/F) hybrids. Here we study the vortex confinement in S/F thin film heterostructures and we observe that vortex clusters appear near magnetization inhomogeneities in the ferromagnet, called bifurcations. We use magnetic force microscopy to image magnetic bifurcations and superconducting vortices, while high resolution scanning tunneling microscopy is used to obtain detailed information of the local electronic density of states outside and inside the vortex cluster. We find an intervortex spacing at the bifurcation shorter than the one predicted for the same superconductor in a uniform magnetic field equal to the thermodynamical upper critical field Hc2. This result is due to a local enhanced stray field and a competition between vortex-vortex repulsion and Lorentz force. Our findings suggest that special magnetic topologies could result in S/F hybrids that support superconductivity even when locally the vortex density exceeds the thermodynamic critical threshold value beyond which the superconductivity is destroyed. PMID:27934898

  17. Accidental hijab pin ingestion in Muslim women: an emerging endoscopic emergency?

    PubMed

    Goh, Jason; Patel, Neeral; Boulton, Ralph

    2014-01-03

    Ingested foreign body is an infrequent indication for emergency endoscopy in the adult gastroenterology practice. We describe the clinical features and endoscopic management of the first four cases of accidental ingestion of hijab pins by Muslim women in our unit, all presenting within a 12-month period. The pins were all successfully retrieved without any complications. In this report, we review published guidelines and the current literature, as well as discussing the approach (conservative vs proactive endoscopic retrieval) and timing of endoscopic treatment. The Muslim community may need to be alerted to the potential health hazard of hijab pins.

  18. Targeting Pin1 by inhibitor API-1 regulates microRNA biogenesis and suppresses hepatocellular carcinoma development.

    PubMed

    Pu, Wenchen; Li, Jiao; Zheng, Yuanyuan; Shen, Xianyan; Fan, Xin; Zhou, Jian-Kang; He, Juan; Deng, Yulan; Liu, Xuesha; Wang, Chun; Yang, Shengyong; Chen, Qiang; Liu, Lunxu; Zhang, Guolin; Wei, Yu-Quan; Peng, Yong

    2018-01-30

    Hepatocellular carcinoma (HCC) is a leading cause of cancer death worldwide, but there are few effective treatments. Aberrant microRNA (miRNA) biogenesis is correlated with HCC development. We previously demonstrated that peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (Pin1) participates in miRNA biogenesis and is a potential HCC treatment target. However, how Pin1 modulates miRNA biogenesis remains obscure. Here, we present in vivo evidence that Pin1 overexpression is directly linked to the development of HCC. Administration with the Pin1 inhibitor (API-1), a specific small molecule targeting Pin1 peptidyl-prolyl isomerase domain and inhibiting Pin1 cis-trans isomerizing activity, suppresses in vitro cell proliferation and migration of HCC cells. But API-1-induced Pin1 inhibition is insensitive to HCC cells with low Pin1 expression and/or low exportin-5 (XPO5) phosphorylation. Mechanistically, Pin1 recognizes and isomerizes the phosphorylated serine-proline motif of phosphorylated XPO5 and passivates phosphorylated XPO5. Pin1 inhibition by API-1 maintains the active conformation of phosphorylated XPO5 and restores XPO5-driven precursor miRNA nuclear-to-cytoplasm export, activating anticancer miRNA biogenesis and leading to both in vitro HCC suppression and HCC suppression in xenograft mice. Experimental evidence suggests that Pin1 inhibition by API-1 up-regulates miRNA biogenesis by retaining active XPO5 conformation and suppresses HCC development, revealing the mechanism of Pin1-mediated miRNA biogenesis and unequivocally supporting API-1 as a drug candidate for HCC therapy, especially for Pin1-overexpressing, extracellular signal-regulated kinase-activated HCC. (Hepatology 2018). © 2018 by the American Association for the Study of Liver Diseases.

  19. A Ferris Wheel Accident at a Movable Amusement Park.

    PubMed

    Cho, Young-Jin; Ji, Hong-Keun; Moon, Byung-Sun; Park, Ha-Sun; Goh, Jae-Mo; Park, Nam-Kyu; Choi, Don-Mook

    2017-05-01

    This study presented a Ferris wheel accident case. A Ferris wheel is composed of many parts, and the outmost ring of it is assembled using a lock pin. This accident occurred because the lock pin caught the door of a gondola and the gondola overturned. Five of the seven passengers in the gondola fell to the ground, along with the gondola's viewing window. The investigation revealed that the gondola became stuck when its door was caught by a lock pin at the Ferris wheel's three o'clock position. The contact between the door and the lock pin was due to a structural problem: There was not enough space allotted between the door and the lock pin. Therefore, if a passenger pushed on the gondola's door, the potential existed for contact between the door and the lock pin. © 2016 American Academy of Forensic Sciences.

  20. Measuring Orbital Angular Momentum (OAM) States of Vortex Beams with Annular Gratings

    PubMed Central

    Zheng, Shuang; Wang, Jian

    2017-01-01

    Measuring orbital angular momentum (OAM) states of vortex beams is of great importance in diverse applications employing OAM-carrying vortex beams. We present a simple and efficient scheme to measure OAM states (i.e. topological charge values) of vortex beams with annular gratings. The magnitude of the topological charge value is determined by the number of dark fringes after diffraction, and the sign of the topological charge value is distinguished by the orientation of the diffraction pattern. We first theoretically study the diffraction patterns using both annular amplitude and phase gratings. The annular phase grating shows almost 10-dB better diffraction efficiency compared to the annular amplitude grating. We then experimentally demonstrate the OAM states measurement of vortex beams using annular phase grating. The scheme works well even for high-order vortex beams with topological charge value as high as ± 25. We also experimentally show the evolution of diffraction patterns when slightly changing the fractional topological charge value of vortex beam from 0.1 to 1.0. In addition, the proposed scheme shows potential large tolerance of beam alignment during the OAM states measurement of vortex beams. PMID:28094325

  1. Measuring Orbital Angular Momentum (OAM) States of Vortex Beams with Annular Gratings.

    PubMed

    Zheng, Shuang; Wang, Jian

    2017-01-17

    Measuring orbital angular momentum (OAM) states of vortex beams is of great importance in diverse applications employing OAM-carrying vortex beams. We present a simple and efficient scheme to measure OAM states (i.e. topological charge values) of vortex beams with annular gratings. The magnitude of the topological charge value is determined by the number of dark fringes after diffraction, and the sign of the topological charge value is distinguished by the orientation of the diffraction pattern. We first theoretically study the diffraction patterns using both annular amplitude and phase gratings. The annular phase grating shows almost 10-dB better diffraction efficiency compared to the annular amplitude grating. We then experimentally demonstrate the OAM states measurement of vortex beams using annular phase grating. The scheme works well even for high-order vortex beams with topological charge value as high as ± 25. We also experimentally show the evolution of diffraction patterns when slightly changing the fractional topological charge value of vortex beam from 0.1 to 1.0. In addition, the proposed scheme shows potential large tolerance of beam alignment during the OAM states measurement of vortex beams.

  2. COLLECTIVE VORTEX BEHAVIORS: DIVERSITY, PROXIMATE, AND ULTIMATE CAUSES OF CIRCULAR ANIMAL GROUP MOVEMENTS.

    PubMed

    Delcourt, Johann; Bode, Nikolai W F; Denoël, Mathieu

    2016-03-01

    Ant mill, caterpillar circle, bat doughnut, amphibian vortex, duck swirl, and fish torus are different names for rotating circular animal formations, where individuals turn around a common center. These "collective vortex behaviors" occur at different group sizes from pairs to several million individuals and have been reported in a large number of organisms, from bacteria to vertebrates, including humans. However, to date, no comprehensive review and synthesis of the literature on vortex behaviors has been conducted. Here, we review the state of the art of the proximate and ultimate causes of vortex behaviors. The ubiquity of this behavioral phenomenon could suggest common causes or fundamental underlying principles across contexts. However, we find that a variety of proximate mechanisms give rise to vortex behaviors. We highlight the potential benefits of collective vortex behaviors to individuals involved in them. For example, in some species, vortices increase feeding efficiency and could give protection against predators. It has also been argued that vortices could improve collective decision-making and information transfer. We highlight gaps in our understanding of these ubiquitous behavioral phenomena and discuss future directions for research in vortex studies.

  3. Sound Generation by Aircraft Wake Vortices

    NASA Technical Reports Server (NTRS)

    Hardin, Jay C.; Wang, Frank Y.

    2003-01-01

    This report provides an extensive analysis of potential wake vortex noise sources that might be utilized to aid in their tracking. Several possible mechanisms of aircraft vortex sound generation are examined on the basis of discrete vortex dynamic models and characteristic acoustic signatures calculated by application of vortex sound theory. It is shown that the most robust mechanisms result in very low frequency infrasound. An instability of the vortex core structure is discussed and shown to be a possible mechanism for generating higher frequency sound bordering the audible frequency range. However, the frequencies produced are still low and cannot explain the reasonably high-pitched sound that has occasionally been observed experimentally. Since the robust mechanisms appear to generate only very low frequency sound, infrasonic tracking of the vortices may be warranted.

  4. Convection vortex at dayside of high latitude ionosphere

    NASA Astrophysics Data System (ADS)

    Alexeev, I. I.; Feldstein, Y. I.; Greenwald, R. A.

    Investigation of mesoscale convection in the dayside sector by SuperDARN radars has revealed the existence in afternoon sector a convection vortex whose location, intensity and convection direction coincide with the polar cap geomagnetic disturbances (DPC), which is reviewed thoroughly. Possible mechanism of the DPC generation are also described. Importance of the Earth's co-rotation potential is discussed. The existence of DPC vortex is interpreted in the framework of three dimensional current system with the field-aligned currents of coaxial cable type. In the vortex focus, the current outflowing from the ionosphere is concentrated whereas the inflowing current is distributed along the current system periphery.

  5. A simple hydrodynamic model of tornado-like vortices

    NASA Astrophysics Data System (ADS)

    Kurgansky, M. V.

    2015-05-01

    Based on similarity arguments, a simple fluid dynamic model of tornado-like vortices is offered that, with account for "vortex breakdown" at a certain height above the ground, relates the maximal azimuthal velocity in the vortex, reachable near the ground surface, to the convective available potential energy (CAPE) stored in the environmental atmosphere under pre-tornado conditions. The relative proportion of the helicity (kinetic energy) destruction (dissipation) in the "vortex breakdown" zone and, accordingly, within the surface boundary layer beneath the vortex is evaluated. These considerations form the basis of the dynamic-statistical analysis of the relationship between the tornado intensity and the CAPE budget in the surrounding atmosphere.

  6. Calculation of the force acting on a micro-sized particle with optical vortex array laser beam tweezers

    NASA Astrophysics Data System (ADS)

    Kuo, Chun-Fu; Chu, Shu-Chun

    2013-03-01

    Optical vortices possess several special properties, including carrying optical angular momentum (OAM) and exhibiting zero intensity. Vortex array laser beams have attracts many interests due to its special mesh field distributions, which show great potential in the application of multiple optical traps and dark optical traps. Previously study developed an Ince-Gaussian Mode (IGM)-based vortex array laser beam1. This study develops a simulation model based on the discrete dipole approximation (DDA) method for calculating the resultant force acting on a micro-sized spherical dielectric particle that situated at the beam waist of the IGM-based vortex array laser beams1.

  7. The Development of a Plan for the Assessment, Improvement and Deployment of a Radar Acoustic Sounding System (RASS) for Wake Vortex Detection

    NASA Technical Reports Server (NTRS)

    Morris, Philip J.; McLaughlin, Dennis K.; Gabrielson, Thomas B.; Boluriaan, Said

    2004-01-01

    This report describes the activities completed under a grant from the NASA Langley Research Center to develop a plan for the assessment, improvement, and deployment of a Radar Acoustic Sounding System (RASS) for the detection of wake vortices. A brief review is provided of existing alternative instruments for wake vortex detection. This is followed by a review of previous implementations and assessment of a RASS. As a result of this review, it is concluded that the basic features of a RASS have several advantages over other commonly used wake vortex detection and measurement systems. Most important of these features are the good fidelity of the measurements and the potential for all weather operation. To realize the full potential of this remote sensing instrument, a plan for the development of a RASS designed specifically for wake vortex detection and measurement has been prepared. To keep costs to a minimum, this program would start with the development an inexpensive laboratory-scale version of a RASS system. The new instrument would be developed in several stages, each allowing for a critical assessment of the instrument s potential and limitations. The instrument, in its initial stages of development, would be tested in a controlled laboratory environment. A jet vortex simulator, a prototype version of which has already been fabricated, would be interrogated by the RASS system. The details of the laboratory vortex would be measured using a Particle Image Velocimetry (PIV) system. In the early development stages, the scattered radar signal would be digitized and the signal post-processed to determine how extensively and accurately the RASS could measure properties of the wake vortex. If the initial tests prove to be successful, a real-time, digital signal processing system would be developed as a component of the RASS system. At each stage of the instrument development and testing, the implications of the scaling required for a full-scale instrument would be considered. It is concluded that a RASS system, developed for the specific application of wake vortex detection, could become part of a robust Aircraft Vortex Spacing System (AVOSS). This system, in turn, could contribute to Reduced Spacing Operations (RSO) in US airports and improvements in Terminal Area productivity (TAP).

  8. Depinning of the transverse domain wall trapped at magnetic impurities patterned in planar nanowires: Control of the wall motion using low-intensity and short-duration current pulses

    NASA Astrophysics Data System (ADS)

    Paixão, E. L. M.; Toscano, D.; Gomes, J. C. S.; Monteiro, M. G.; Sato, F.; Leonel, S. A.; Coura, P. Z.

    2018-04-01

    Understanding and controlling of domain wall motion in magnetic nanowires is extremely important for the development and production of many spintronic devices. It is well known that notches are able to pin domain walls, but their pinning potential strength are too strong and it demands high-intensity current pulses to achieve wall depinning in magnetic nanowires. However, traps of pinning can be also originated from magnetic impurities, consisting of located variations of the nanowire's magnetic properties, such as exchange stiffness constant, saturation magnetization, anisotropy constant, damping parameter, and so on. In this work, we have performed micromagnetic simulations to investigate the depinning mechanism of a transverse domain wall (TDW) trapped at an artificial magnetic defect using spin-polarized current pulses. In order to create pinning traps, a simplified magnetic impurity model, only based on a local reduction of the exchange stiffness constant, have been considered. In order to provide a background for experimental studies, we have varied the parameter related to the pinning potential strength of the magnetic impurity. By adjusting the pinning potential of magnetic impurities and choosing simultaneously a suitable current pulse, we have found that it is possible to obtain domain wall depinning by applying low-intensity and short-duration current pulses. Furthermore, it was considered a planar magnetic nanowire containing a linear distribution of equally-spaced magnetic impurities and we have demonstrated the position control of a single TDW by applying sequential current pulses; that means the wall movement from an impurity to another.

  9. In-situ measurements of chlorine activation, nitric acid redistribution and ozone depletion in the Antarctic lower vortex aboard the German research aircraft HALO during TACTS/ESMVal

    NASA Astrophysics Data System (ADS)

    Jurkat, Tina; Voigt, Christiane; Kaufmann, Stefan; Schlage, Romy; Gottschaldt, Klaus-Dirk; Ziereis, Helmut; Hoor, Peter; Bozem, Heiko; Müller, Stefan; Zahn, Andreas; Schlager, Hans; Oelhaf, Hermann; Sinnhuber, Björn-Martin; Dörnbrack, Andreas

    2016-04-01

    In-situ measurements of stratospheric chlorine compounds are rare and exhibit the potential to gain insight into small scale mixing processes where stratospheric air masses of different origin and history interact. In addition, the relationship with chemically stable trace gases helps to identify regions that have been modified by chemical processing on polar stratospheric clouds. To this end, in-situ measurements of ClONO2, HCl, HNO3, NOy, N2O and O3 have been performed in the Antarctic Polar Vortex in September 2012 aboard the German research aircraft HALO (High Altitude and Long Rang research aircraft) during the TACTS/ESMVal (Transport and Composition in the UTLS/Earth System Model Validation) mission. With take-off and landing in Capetown, HALO sampled vortex air with latitudes down to 65°S, at altitudes between 8 and 14.3 km and potential temperatures between 340 and 390 K. Before intering the vortex at 350 K potential temperature, HALO additionally sampled mid-latitude stratospheric air. The trace gas distributions at the edge of the Antarctic polar vortex show distinct signatures of processed upper stratospheric vortex air and chemically different lower stratospheric / upper tropospheric air. Diabatic descend of the vortex transports processed air into the lower stratosphere. Here small scale filaments of only a few kilometers extension form at the lower vortex boundary due to shear stress, ultimately leading to transport and irreversible mixing. Comparison of trace gas relationships with those at the beginning of the polar winter reveals substantial chlorine activation, ozone depletion de- and renitrification with high resolution. Furthermore, the measurements are compared to the chemistry climate models EMAC and supported by ECMWF analysis. Finally, we compare the Antarctic measurements with new measurements of ClONO2, HCl and HNO3 aboard HALO obtained during the Arctic mission POLSTRACC (POLar STratosphere in a Changing Climate) based in Kiruna (Sveden) and Oberpfaffenhofen (Germany) in winter 2015/16. Our measurements give new insights on the lower Arctic and Antarctic stratospheric composition impacted by polar stratospheric clouds and ozone depletion as well as mixing of mid- and high-latitude air.

  10. Turbulence Climatology at Dallas/Ft.Worth (DFW) Airport: Implications for a Departure Wake Vortex Spacing System

    NASA Technical Reports Server (NTRS)

    Perras, G. H.; Dasey, T. J.

    2000-01-01

    Potential adaptive wake vortex spacing systems may need to rely on wake vortex decay rather than wake vortex transport in reducing wake separations. A wake vortex takeoff-spacing system in particular will need to rely on wake decay. Ambient turbulence is the primary influence on wake decay away from the ground. This study evaluated 18 months of ambient turbulence measurements at Dallas/Ft. Worth (DFW) Airport. The measurements show minor variation in the turbulence levels at various times of the year or times of the day for time periods when a departure system could be used. Arrival system operation was also examined, and a slightly lower overall turbulence level was found as compared to departure system benefit periods. The Sarpkaya model, a validated model of wake vortex behavior, was applied to various turbulence levels and compared to the DFW turbulence statistics. The results show that wake vortices from heavy aircraft on takeoff should dissipate within one minute for the majority of the time and will rarely last two minutes. These results will need to be verified by wake vortex measurements on departure.

  11. Peptidyl Prolyl Isomerase PIN1 Directly Binds to and Stabilizes Hypoxia-Inducible Factor-1α

    PubMed Central

    Han, Hyeong-jun; Kwon, Nayoung; Choi, Min-A; Jung, Kyung Oh; Piao, Juan-Yu; Ngo, Hoang Kieu Chi; Kim, Su-Jung; Kim, Do-Hee; Chung, June-Key; Cha, Young-Nam; Youn, Hyewon; Choi, Bu Young; Min, Sang-Hyun; Surh, Young-Joon

    2016-01-01

    Peptidyl prolyl isomerase (PIN1) regulates the functional activity of a subset of phosphoproteins through binding to phosphorylated Ser/Thr-Pro motifs and subsequently isomerization of the phosphorylated bonds. Interestingly, PIN1 is overexpressed in many types of malignancies including breast, prostate, lung and colon cancers. However, its oncogenic functions have not been fully elucidated. Here, we report that PIN1 directly interacts with hypoxia-inducible factor (HIF)-1α in human colon cancer (HCT116) cells. PIN1 binding to HIF-1α occurred in a phosphorylation-dependent manner. We also found that PIN1 interacted with HIF-1α at both exogenous and endogenous levels. Notably, PIN1 binding stabilized the HIF-1α protein, given that their levels were significantly increased under hypoxic conditions. The stabilization of HIF-1α resulted in increased transcriptional activity, consequently upregulating expression of vascular endothelial growth factor, a major contributor to angiogenesis. Silencing of PIN1 or pharmacologic inhibition of its activity abrogated the angiogenesis. By utilizing a bioluminescence imaging technique, we were able to demonstrate that PIN1 inhibition dramatically reduced the tumor volume in a subcutaneous mouse xenograft model and angiogenesis as well as hypoxia-induced transcriptional activity of HIF-1α. These results suggest that PIN1 interacting with HIF-1α is a potential cancer chemopreventive and therapeutic target. PMID:26784107

  12. Aluminum(III) interferes with the structure and the activity of the peptidyl-prolyl cis-trans isomerase (Pin1): a new mechanism contributing to the pathogenesis of Alzheimer's disease and cancers?

    PubMed

    Wang, Jing-Zhang; Liu, Ji; Lin, Tao; Han, Yong-Guang; Luo, Yue; Xi, Lei; Du, Lin-Fang

    2013-09-01

    The enzyme peptidyl-prolyl cis-trans isomerase (Pin1) may play an important role in preventing the development of Alzheimer's disease (AD). The structural and functional stability of Pin1 is extremely important. Previously, we have determined the stability of Pin1 under stressed conditions, such as thermal treatment and acidic-pH. Considering that aluminum (Al(III)) is well known for its potential neurotoxicity in the pathogenesis of AD, we examined whether Al(III) affects the structure and function of Pin1, by means of a PPIase activity assay, intrinsic fluorescence, circular dichroism (CD) spectroscopy, FTIR, and differential scanning calorimetry (DSC). The intrinsic tryptophan fluorescence measurements mainly show that Al(III) may bind to the clusters nearby W11 and W34 in the WW domain of Pin1, quenching the intrinsic fluorescence of the two tryptophan residues, which possibly results in the decreased binding affinity of Pin1 to substrates. The secondary structural analysis as revealed by FTIR and CD measurements indicate that Al(III) induces the increase in β-sheet and the decrease in α-helix in Pin1. Furthermore, the changes of the thermodynamic parameters for Pin1 as monitored by DSC confirm that the thermal stability of Pin1 significantly increases in the presence of Al(III). The Al(III)-induced structural changes of Pin1 result in a sharp decrease of the PPIase activity of Pin1. To some extent, our research is suggestive that Al(III) may inhibit the isomerization activity of Pin1 in vivo, which may contribute to the pathogenesis of AD. Copyright © 2013. Published by Elsevier Inc.

  13. Planting depth effects and water potential effects on oak seedling emergence and acorn germination

    Treesearch

    Wayne A. Smiles; Jeffrey O. Dawson

    1995-01-01

    The effects of four planting depths (0, 3, 7, 11 cm) and acorn size on the percentage seedling emergence of red, pin, and black oak were determined. In a complimentary study, the effects of five water potential treatments (0, -.2, -.4, -.6, -1.0 MPa) on the percentage germination of red, pin, and black oak acorns were measured.

  14. The Evolution of Friction Stir Welding Theory at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Nunes, Arthur C.

    2012-01-01

    From 1995 to the present the friction stir welding (FSW) process has been under study at Marshall Space Flight Center (MSFC). This is an account of the progressive emergence of a set of conceptual tools beginning with the discovery of the shear surface, wiping metal transfer, and the invention of a kinematic model and making possible a treatment of both metallurgical structure formation and process dynamics in friction stir welding from a unified point of view. It is generally observed that the bulk of the deformation of weld metal around the FSW pin takes place in a very narrow, almost discontinuous zone with high deformation rates characteristic of metal cutting. By 1999 it was realized that this zone could be treated as a shear surface like that in simple metal cutting models. At the shear surface the seam is drawn out and compressed and pressure and flow conditions determine whether or not a sound weld is produced. The discovery of the shear surface was followed by the synthesis of a simple 3- flow kinematic model of the FSW process. Relative to the tool the flow components are: (1) an approaching translational flow at weld speed V, (2) a rotating cylindrical plug flow with the angular velocity of the tool , and (3) a relatively slow ring vortex flow (like a smoke ring) encircling the tool and driven by shoulder scrolls and pin threads. The rotating plug flow picks up an element of weld metal, rotates it around with the tool, and deposits it behind the tool ( wiping metal transfer ); it forms plan section loops in tracers cut through by the tool. Radially inward flow from the ring vortex component retains metal longer in the rotating plug and outward flow expels metal earlier; this interaction forms the looping weld seam trace and the tongue and groove bimetallic weld contour. The radial components of the translational and ring vortex flows introduce parent metal intrusions into the small grained nugget material close to the tool shoulder; if this feature is pronounced, nugget collapse may result. Certain weld features, in particular internal banding seen in transverse section as onion rings and associated surface ridges called tool marks , have long implied an oscillation flow component, but have only recently been attributed in the literature to tool eccentricity. Rotating plug shape, typically a hollow cylinder flared at the end where it sticks to the shoulder, varies as pressure distribution on the tool determines where sticking occurs. Simplified power input estimates balanced against heat loss estimates give reasonable temperature estimates, explain why the power requirement changes hardly at all over a wide range of RPM s, and yield isotherms that seem to fall along boundaries of parameter windows of operation.

  15. Campbell response in type-II superconductors under strong pinning conditions

    DOE PAGES

    Willa, R.; Geshkenbein, V. B.; Prozorov, R.; ...

    2015-11-11

    Measuring the ac magnetic response of a type II superconductor provides valuable information on the pinning landscape (pinscape) of the material. We use strong pinning theory to derive a microscopic expression for the Campbell length λC, the penetration depth of the ac signal. We show that λ C is determined by the jump in the pinning force, in contrast to the critical current j c, which involves the jump in pinning energy. We demonstrate that the Campbell lengths generically differ for zero-field-cooled and field-cooled samples and predict that hysteretic behavior can appear in the latter situation. As a result, wemore » compare our findings with new experimental data and show the potential of this technique in providing information on the material’s pinscape.« less

  16. Campbell response in type-II superconductors under strong pinning conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willa, R.; Geshkenbein, V. B.; Prozorov, R.

    Measuring the ac magnetic response of a type II superconductor provides valuable information on the pinning landscape (pinscape) of the material. We use strong pinning theory to derive a microscopic expression for the Campbell length λC, the penetration depth of the ac signal. We show that λ C is determined by the jump in the pinning force, in contrast to the critical current j c, which involves the jump in pinning energy. We demonstrate that the Campbell lengths generically differ for zero-field-cooled and field-cooled samples and predict that hysteretic behavior can appear in the latter situation. As a result, wemore » compare our findings with new experimental data and show the potential of this technique in providing information on the material’s pinscape.« less

  17. Single-screw Fixation of Adolescent Salter-II Proximal Humeral Fractures: Biomechanical Analysis of the "One Pass Door Lock" Technique.

    PubMed

    Miller, Mark Carl; Redman, Christopher N; Mistovich, R Justin; Muriuki, Muturi; Sangimino, Mark J

    2017-09-01

    Pin fixation of Salter-II proximal humeral fractures in adolescents approaching skeletal maturity has potential complications that can be avoided with single-screw fixation. However, the strength of screw fixation relative to parallel and diverging pin fixation is unknown. To compare the biomechanical fixation strength between these fixation modalities, we used synthetic composite humeri, and then compared these results in composite bone with cadaveric humeri specimens. Parallel pinning, divergent pinning, and single-screw fixation repairs were performed on synthetic composite humeri with simulated fractures. Six specimens of each type were tested in axial loading and other 6 were tested in torsion. Five pair of cadaveric humeri were tested with diverging pins and single screws for comparison. Single-screw fixation was statistically stronger than pin fixation in axial and torsional loading in both composite and actual bone. There was no statistical difference between composite and cadaveric bone specimens. Single-screw fixation can offer greater stability to adolescent Salter-II fractures than traditional pinning. Single-screw fixation should be considered as a viable alternative to percutaneous pin fixation in transitional patients with little expected remaining growth.

  18. The Relation Between Dry Vortex Merger and Tropical Cyclone Genesis over the Atlantic Ocean

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Shu-Hua; Liu, Yi-Chin

    2014-10-27

    A strong, convective African tropical disturbance has a greater chance to develop into a Tropical 23 Depression (TD) if it merges with a shallow, dry vortex (D-vortex) from the north of the African 24 easterly jet (AEJ) after leaving the western coast. Using 11-year reanalysis data we found that the 25 western tip of a vortex strip at northwestern Africa can serve as dry vortices for the D-vortex 26 merger if it shifts southward. Another source of D-vortices is the westward propagating lows 27 along the southern edge of the Saharan air. The D-vortex merger process occurred for 63.5% ofmore » 28 tropical cyclones (TCs) or developing systems over the main development region of the Atlantic 29 Ocean, while it occurred for 54% of non-developing systems. TC genesis could be largely 30 controlled by the large-scale environment, but the differences in characteristics of vortices 31 associated with the D-vortex merger between developing and non-developing systems could 32 potentially help determine their destinies; in general, developing systems were dominated by a 33 more intense and moist south vortex, while non-developing systems were dominated by a north 34 vortex which was more intense, drier, and larger in size. Analysis also shows that 74% of intense 35 developing systems were involved with the D-vortex merger process. More attention needs to be 36 paid to the D-vortex merger and the characteristics of those vortices as they can play significant 37 roles or have a strong indication in Atlantic TC genesis.« less

  19. Generation of dark solitons and their instability dynamics in two-dimensional condensates

    NASA Astrophysics Data System (ADS)

    Verma, Gunjan; Rapol, Umakant D.; Nath, Rejish

    2017-04-01

    We analyze numerically the formation and the subsequent dynamics of two-dimensional matter wave dark solitons in a Thomas-Fermi rubidium condensate using various techniques. An initially imprinted sharp phase gradient leads to the dynamical formation of a stationary soliton as well as very shallow gray solitons, whereas a smooth gradient only creates gray solitons. The depth and hence, the velocity of the soliton is provided by the spatial width of the phase gradient, and it also strongly influences the snake-instability dynamics of the two-dimensional solitons. The vortex dipoles stemming from the unstable soliton exhibit rich dynamics. Notably, the annihilation of a vortex dipole via a transient dark lump or a vortexonium state, the exchange of vortices between either a pair of vortex dipoles or a vortex dipole and a single vortex, and so on. For sufficiently large width of the initial phase gradient, the solitons may decay directly into vortexoniums instead of vortex pairs, and also the decay rate is augmented. Later, we discuss alternative techniques to generate dark solitons, which involve a Gaussian potential barrier and time-dependent interactions, both linear and periodic. The properties of the solitons can be controlled by tuning the amplitude or the width of the potential barrier. In the linear case, the number of solitons and their depths are determined by the quench time of the interactions. For the periodic modulation, a transient soliton lattice emerges with its periodicity depending on the modulation frequency, through a wave number selection governed by the local Bogoliubov spectrum. Interestingly, for sufficiently low barrier potential, both Faraday pattern and soliton lattice coexist. The snake instability dynamics of the soliton lattice is characteristically modified if the Faraday pattern is present.

  20. Vector spherical quasi-Gaussian vortex beams

    NASA Astrophysics Data System (ADS)

    Mitri, F. G.

    2014-02-01

    Model equations for describing and efficiently computing the radiation profiles of tightly spherically focused higher-order electromagnetic beams of vortex nature are derived stemming from a vectorial analysis with the complex-source-point method. This solution, termed as a high-order quasi-Gaussian (qG) vortex beam, exactly satisfies the vector Helmholtz and Maxwell's equations. It is characterized by a nonzero integer degree and order (n,m), respectively, an arbitrary waist w0, a diffraction convergence length known as the Rayleigh range zR, and an azimuthal phase dependency in the form of a complex exponential corresponding to a vortex beam. An attractive feature of the high-order solution is the rigorous description of strongly focused (or strongly divergent) vortex wave fields without the need of either the higher-order corrections or the numerically intensive methods. Closed-form expressions and computational results illustrate the analysis and some properties of the high-order qG vortex beams based on the axial and transverse polarization schemes of the vector potentials with emphasis on the beam waist.

  1. Vortex Shedding Inside a Baffled Air Duct

    NASA Technical Reports Server (NTRS)

    Davis, Philip; Kenny, R. Jeremy

    2010-01-01

    Common in the operation of both segmented and un-segmented large solid rocket motors is the occurrence of vortex shedding within the motor chamber. A portion of the energy within a shed vortex is converted to acoustic energy, potentially driving the longitudinal acoustic modes of the motor in a quasi-discrete fashion. This vortex shedding-acoustic mode excitation event occurs for every Reusable Solid Rocket Motor (RSRM) operation, giving rise to subsequent axial thrust oscillations. In order to better understand this vortex shedding/acoustic mode excitation phenomena, unsteady CFD simulations were run for both a test geometry and the full scale RSRM geometry. This paper covers the results from the subscale geometry runs, which were based on work focusing on the RSRM hydrodynamics. Unsteady CFD simulation parameters, including boundary conditions and post-processing returns, are reviewed. The results were further post-processed to identify active acoustic modes and vortex shedding characteristics. Probable locations for acoustic energy generation, and subsequent acoustic mode excitation, are discussed.

  2. How effective is aeration with vortex flow regulators? Pilot scale experiments

    NASA Astrophysics Data System (ADS)

    Wójtowicz, Patryk; Szlachta, Małgorzata

    2017-11-01

    Vortex flow regulators (VFR) are used in urban drainage systems as a replacement for traditional flow throttling devices. Vortex regulators are not only very efficient energy dissipators but also atomizers which are beneficial for sewer aeration. A deficit of dissolved oxygen can be a problem in both natural waters and sewerage. Hydrodynamic flow regulators can boost oxygen concentration preventing putrefaction and improving treatment of stormwater and wastewater. We were first to investigate the aeration efficiency of semi-commercial scale cylindrical vortex flow regulators to determine the potential of their application in environmental engineering and to propose modification to enhance the aeration capacity of basic designs. Different device geometries and arrangements of active outlets for both single and double discharge vortex regulators were tested in a recirculating system. In this study, we present a concise review of the current state of our extensive research on the aeration efficiency of vortex flow regulators and their application in sewerage systems.

  3. Valley Vortex States in Sonic Crystals

    NASA Astrophysics Data System (ADS)

    Lu, Jiuyang; Qiu, Chunyin; Ke, Manzhu; Liu, Zhengyou

    2016-03-01

    Valleytronics is quickly emerging as an exciting field in fundamental and applied research. In this Letter, we study the acoustic version of valley states in sonic crystals and reveal a vortex nature of such states. In addition to the selection rules established for exciting valley polarized states, a mimicked valley Hall effect of sound is proposed further. The extraordinary chirality of valley vortex states, detectable in experiments, may open a new possibility in sound manipulations. This is appealing to scalar acoustics that lacks a spin degree of freedom inherently. In addition, the valley selection enables a handy way to create vortex matter in acoustics, in which the vortex chirality can be controlled flexibly. Potential applications can be anticipated with the exotic interaction of acoustic vortices with matter, such as to trigger the rotation of the trapped microparticles without contact.

  4. Accidental hijab pin ingestion in Muslim women: an emerging endoscopic emergency?

    PubMed Central

    Goh, Jason; Patel, Neeral; Boulton, Ralph

    2014-01-01

    Ingested foreign body is an infrequent indication for emergency endoscopy in the adult gastroenterology practice. We describe the clinical features and endoscopic management of the first four cases of accidental ingestion of hijab pins by Muslim women in our unit, all presenting within a 12-month period. The pins were all successfully retrieved without any complications. In this report, we review published guidelines and the current literature, as well as discussing the approach (conservative vs proactive endoscopic retrieval) and timing of endoscopic treatment. The Muslim community may need to be alerted to the potential health hazard of hijab pins. PMID:24390968

  5. Biological significance of PinX1 telomerase inhibitor in esophageal carcinoma treatment

    PubMed Central

    Fan, Xiang-Kui; Yan, Rui-Hua; Geng, Xiang-Qun; Li, Jing-Shan; Chen, Xiang-Ming; Li, Jian-Zhe

    2016-01-01

    In the present study, to investigate the expression of PinX1 gene and its functional effects in human esophageal carcinoma (Eca)-109 cell line, expression vectors of human PinX1 (pEGFP-C3-PinX1) and its small interfering RNA (PinX1-FAM-siRNA) were constructed and transfected into Eca-109 cells using Lipofectamine 2000. Firstly, the mRNA expression level of PinX1 was examined using reverse transcription-polymerase chain reaction (RT-PCR). Once successful transfection was achieved, the effects on the mRNA level of human telomerase reverse transcriptase (hTERT), telomerase activity, cell proliferation and apoptosis were examined by semi-quantitative RT-PCR, stretch PCR, MTT assay and flow cytometry, respectively. Analysis of restriction and sequencing demonstrated that the recombining plasmids were successfully constructed. The results also indicated that transfection with pEGFP-C3-PinX1 and PinX1-FAM-siRNA into Eca-109 cells significantly increased PinX1 mRNA, decreased hTERT mRNA by 29.9% (P<0.05), and significantly reduced telomerase activity (P<0.05), inhibited cell growth, and increased the cell apoptotic index from 19.27±0.76 to 49.73±2%. The transfected PinX1-FAM-SiRNA exhibited PinX1 mRNA expression levels that were significantly decreased by 70% (P<0.05), whereas the remaining characteristics of Eca-109 cells, including cell growth, mRNA level of hTERT, telomerase activity and cell apoptotic index were not altered. Exogenous PinX1 has been demonstrated to be highly expressed in human Eca. PinX1 can inhibit human telomerase activity and the expression of hTERT mRNA, reduce tumor cell growth and induce apoptosis. Notably, these inhibitory functions were inhibited by silencing PinX1 in Eca with PinX1-FAM-siRNA. PinX1 was successfully increased and decreased in the present study, demonstrating that it may be a potential telomerase activity inhibitor. As PinX1 is an endogenous telomerase inhibitor, it may be used as a novel tumor-targeted gene therapy. PMID:27698711

  6. A planar chiral meta-surface for optical vortex generation and focusing

    PubMed Central

    Ma, Xiaoliang; Pu, Mingbo; Li, Xiong; Huang, Cheng; Wang, Yanqin; Pan, Wenbo; Zhao, Bo; Cui, Jianhua; Wang, Changtao; Zhao, ZeYu; Luo, Xiangang

    2015-01-01

    Data capacity is rapidly reaching its limit in modern optical communications. Optical vortex has been explored to enhance the data capacity for its extra degree of freedom of angular momentum. In traditional means, optical vortices are generated using space light modulators or spiral phase plates, which would sharply decrease the integration of optical communication systems. Here we experimentally demonstrate a planar chiral antenna array to produce optical vortex from a circularly polarized light. Furthermore, the antenna array has the ability to focus the incident light into point, which greatly increases the power intensity of the generated optical vortex. This chiral antenna array may have potential application in highly integrated optical communication systems. PMID:25988213

  7. Structural transitions in vortex systems with anisotropic interactions

    DOE PAGES

    Olszewski, Maciej W.; Eskildsen, M. R.; Reichhardt, Charles; ...

    2017-12-29

    We introduce a model of vortices in type-II superconductors with a four-fold anisotropy in the vortex–vortex interaction potential. Using numerical simulations we show that the vortex lattice undergoes structural transitions as the anisotropy is increased, with a triangular lattice at low anisotropy, a rhombic intermediate state, and a square lattice for high anisotropy. In some cases we observe a multi-q state consisting of an Archimedean tiling that combines square and triangular local ordering. At very high anisotropy, domains of vortex chain states appear. We discuss how this model can be generalized to higher order anisotropy as well as its applicabilitymore » to other particle-based systems with anisotropic particle–particle interactions.« less

  8. Characterization of Antibacterial and Hemolytic Activity of Synthetic Pandinin 2 Variants and Their Inhibition against Mycobacterium tuberculosis

    PubMed Central

    Rodríguez, Alexis; Villegas, Elba; Montoya-Rosales, Alejandra; Rivas-Santiago, Bruno; Corzo, Gerardo

    2014-01-01

    The contention and treatment of Mycobacterium tuberculosis and other bacteria that cause infectious diseases require the use of new type of antibiotics. Pandinin 2 (Pin2) is a scorpion venom antimicrobial peptide highly hemolytic that has a central proline residue. This residue forms a structural “kink” linked to its pore-forming activity towards human erythrocytes. In this work, the residue Pro14 of Pin2 was both substituted and flanked using glycine residues (P14G and P14GPG) based on the low hemolytic activities of antimicrobial peptides with structural motifs Gly and GlyProGly such as magainin 2 and ponericin G1, respectively. The two Pin2 variants showed antimicrobial activity against E. coli, S. aureus, and M. tuberculosis. However, Pin2 [GPG] was less hemolytic (30%) than that of Pin2 [G] variant. In addition, based on the primary structure of Pin2 [G] and Pin2 [GPG], two short peptide variants were designed and chemically synthesized keeping attention to their physicochemical properties such as hydrophobicity and propensity to adopt alpha-helical conformations. The aim to design these two short antimicrobial peptides was to avoid the drawback cost associated to the synthesis of peptides with large sequences. The short Pin2 variants named Pin2 [14] and Pin2 [17] showed antibiotic activity against E. coli and M. tuberculosis. Besides, Pin2 [14] presented only 25% of hemolysis toward human erythrocytes at concentrations as high as 100 µM, while the peptide Pin2 [17] did not show any hemolytic effect at the same concentration. Furthermore, these short antimicrobial peptides had better activity at molar concentrations against multidrug resistance M. tuberculosis than that of the conventional antibiotics ethambutol, isoniazid and rifampicin. Therefore, Pin2 [14] and Pin2 [17] have the potential to be used as an alternative antibiotics and anti-tuberculosis agents with reduced hemolytic effects. PMID:25019413

  9. Isolated, extra-articular neck and shaft fractures of the 4th and 5th metacarpals: a comparison of transverse and bouquet (intra-medullary) pinning in 67 patients.

    PubMed

    Sletten, I N; Nordsletten, L; Husby, T; Ødegaard, R A; Hellund, J C; Kvernmo, H D

    2012-06-01

    Although extra-articular metacarpal fractures are common, there is no consensus on the mode of treatment. We evaluated the outcome in 67 patients operated for isolated, extra-articular fractures in the neck or shaft of the ulnar two metacarpals 28 months post-operatively. There were 22 bouquet (intra-medullary) pinnings and 45 transverse pinnings; 11 were lost to follow-up. Overall, hand function was good, and no difference was detected between the two methods (QuickDASH, grip strength, range of motion, VAS pain and VAS satisfaction). Many patients suffered complications: 12% had a superficial infection (all treated with transverse pinning with wires left exposed); 39% had some impairment in skin sensation; 29% reported cold intolerance; and 10% had other complications. Due to the potential risk of a secondary fracture of the neighbouring metacarpal after transverse pinning, we recommend bouquet (intra-medullary) pinning. We also recommend burying wires beneath the skin surface to avoid infection.

  10. Improving Joint Formation and Tensile Properties of Dissimilar Friction Stir Welding of Aluminum and Magnesium Alloys by Solving the Pin Adhesion Problem

    NASA Astrophysics Data System (ADS)

    Liu, Zhenlei; Ji, Shude; Meng, Xiangchen

    2018-03-01

    Friction stir welding (FSW), as a solid-state welding technology invented by TWI in 1991, has potential to join dissimilar Al/Mg alloys. In this study, the pin adhesion phenomenon affecting joint quality during FSW of 6061-T6 aluminum and AZ31B magnesium alloys was investigated. The adhesion phenomenon induced by higher heat input easily transformed the tapered-and-screwed pin into a tapered pin, which greatly reduced the tool's ability to drive the plasticized materials and further deteriorated joint formation. Under the condition without the pin adhesion, the complex intercalated interlayer at the bottom of stir zone was beneficial to mechanical interlocking of Al/Mg alloys, improving tensile properties. However, the formation of intermetallic compounds was still the main reason of the joint fracture, significantly deteriorating tensile properties. Under the welding speed of 60 mm/min without the pin adhesion phenomenon, the maximum tensile strength of 107 MPa and elongation of 1.2% were achieved.

  11. A high-throughput screen for inhibitors of the prolyl isomerase, Pin1, identifies a seaweed polyphenol that reduces adipose cell differentiation.

    PubMed

    Mori, Tadashi; Hidaka, Masafumi; Ikuji, Hiroko; Yoshizawa, Ibuki; Toyohara, Haruhiko; Okuda, Toru; Uchida, Chiyoko; Asano, Tomoichiro; Yotsu-Yamashita, Mari; Uchida, Takafumi

    2014-01-01

    The peptidyl prolyl cis/trans isomerase Pin1 enhances the uptake of triglycerides and the differentiation of fibroblasts into adipose cells in response to insulin stimulation. Pin1 downregulation could be a potential approach to prevent and treat obesity-related disorders. In order to identify an inhibitor of Pin1 that exhibited minimal cytotoxicity, we established a high-throughput screen for Pin1 inhibitors and used this method to identify an inhibitor from 1,056 crude fractions of two natural product libraries. The candidate, a phlorotannin called 974-B, was isolated from the seaweed, Ecklonia kurome. 974-B inhibited the differentiation of mouse embryonic fibroblasts and 3T3-L1 cells into adipose cells without inducing cytotoxicity. We discovered the Pin1 inhibitor, 974-B, from the seaweed, E. kurome, and showed that it blocks the differentiation of fibroblasts into adipose cells, suggesting that 974-B could be a lead drug candidate for obesity-related disorders.

  12. Generating broadband vortex modes in ring-core fiber by using a plasmonic q-plate.

    PubMed

    Ye, Jingfu; Li, Yan; Han, Yanhua; Deng, Duo; Su, Xiaoya; Song, He; Gao, Jianmin; Qu, Shiliang

    2017-08-15

    A mode convertor was proposed and investigated for generating vortex modes in a ring-core fiber based on a plasmonic q-plate (PQP), which is composed of specially organized L-shaped resonator (LSR) arrays. A multicore fiber was used to transmit fundamental modes, and the LSR arrays were used to modulate phases of these fundamental modes. Behind the PQP, the transmitted fundamental modes with gradient phase distribution can be considered as the incident lights for generating broadband vortex modes in the ring-core fiber filter. The topological charges of generated vortex modes can be various by using an optical PQP with different q, and the chirality of the generated vortex mode can be controlled by the sign of q and handedness of the incident circularly polarized light. The operation bandwidth is 800 nm in the range of 1200-2000 nm, which covers six communication bands from the O band to the U band. The separation of vortex modes also was addressed by using a dual ring-core fiber. The mode convertor is of potential interest for connecting a traditional network and vortex communication network.

  13. Multipole Vortex Blobs (MVB): Symplectic Geometry and Dynamics.

    PubMed

    Holm, Darryl D; Jacobs, Henry O

    2017-01-01

    Vortex blob methods are typically characterized by a regularization length scale, below which the dynamics are trivial for isolated blobs. In this article, we observe that the dynamics need not be trivial if one is willing to consider distributional derivatives of Dirac delta functionals as valid vorticity distributions. More specifically, a new singular vortex theory is presented for regularized Euler fluid equations of ideal incompressible flow in the plane. We determine the conditions under which such regularized Euler fluid equations may admit vorticity singularities which are stronger than delta functions, e.g., derivatives of delta functions. We also describe the symplectic geometry associated with these augmented vortex structures, and we characterize the dynamics as Hamiltonian. Applications to the design of numerical methods similar to vortex blob methods are also discussed. Such findings illuminate the rich dynamics which occur below the regularization length scale and enlighten our perspective on the potential for regularized fluid models to capture multiscale phenomena.

  14. Wake Vortex Advisory System (WakeVAS) Concept of Operations

    NASA Technical Reports Server (NTRS)

    Rutishauser, David; Lohr, Gary; Hamilton, David; Powers, Robert; McKissick, Burnell; Adams, Catherine; Norris, Edward

    2003-01-01

    NASA Langley Research Center has a long history of aircraft wake vortex research, with the most recent accomplishment of demonstrating the Aircraft VOrtex Spacing System (AVOSS) at Dallas/Forth Worth International Airport in July 2000. The AVOSS was a concept for an integration of technologies applied to providing dynamic wake-safe reduced spacing for single runway arrivals, as compared to current separation standards applied during instrument approaches. AVOSS included state-of-the-art weather sensors, wake sensors, and a wake behavior prediction algorithm. Using real-time data AVOSS averaged a 6% potential throughput increase over current standards. This report describes a Concept of Operations for applying the technologies demonstrated in the AVOSS to a variety of terminal operations to mitigate wake vortex capacity constraints. A discussion of the technological issues and open research questions that must be addressed to design a Wake Vortex Advisory System (WakeVAS) is included.

  15. Sharp acoustic vortex focusing by Fresnel-spiral zone plates

    NASA Astrophysics Data System (ADS)

    Jiménez, Noé; Romero-García, Vicent; García-Raffi, Luis M.; Camarena, Francisco; Staliunas, Kestutis

    2018-05-01

    We report the optimal focusing of acoustic vortex beams by using flat lenses based on a Fresnel-spiral diffraction grating. The flat lenses are designed by spiral-shaped Fresnel zone plates composed of one or several arms. The constructive and destructive interferences of the diffracted waves by the spiral grating result in sharp acoustic vortex beams, following the focal laws obtained in analogy with the Fresnel zone plate lenses. In addition, we show that the number of arms determines the topological charge of the vortex, allowing the precise manipulation of the acoustic wave field by flat lenses. The experimental results in the ultrasonic regime show excellent agreement with the theory and full-wave numerical simulations. A comparison with beam focusing by Archimedean spirals also showing vortex focusing is given. The results of this work may have potential applications for particle trapping, ultrasound therapy, imaging, or underwater acoustic transmitters.

  16. The effect of vortex formation on left ventricular filling and mitral valve efficiency.

    PubMed

    Pierrakos, Olga; Vlachos, Pavlos P

    2006-08-01

    A new mechanism for quantifying the filling energetics in the left ventricle (LV) and past mechanical heart valves (MHV) is identified and presented. This mechanism is attributed to vortex formation dynamics past MHV leaflets. Recent studies support the conjecture that the natural healthy left ventricle (LV) performs in an optimum, energy-preserving manner by redirecting the flow with high efficiency. Yet to date, no quantitative proof has been presented. The present work provides quantitative results and validation of a theory based on the dynamics of vortex ring formation, which is governed by a critical formation number (FN) that corresponds to the dimensionless time at which the vortex ring has reached its maximum circulation content, in support of this hypothesis. Herein, several parameters (vortex ring circulation, vortex ring energy, critical FN, hydrodynamic efficiencies, vortex ring propagation speed) have been quantified and presented as a means of bridging the physics of vortex formation in the LV. In fact, the diastolic hydrodynamic efficiencies were found to be 60, 41, and 29%, respectively, for the porcine, anti-anatomical, and anatomical valve configurations. This assessment provides quantitative proof of vortex formation, which is dependent of valve design and orientation, being an important flow characteristic and associated to LV energetics. Time resolved digital particle image velocimetry with kilohertz sampling rate was used to study the ejection of fluid into the LV and resolve the spatiotemporal evolution of the flow. The clinical significance of this study is quantifying vortex formation and the critical FN that can potentially serve as a parameter to quantify the LV filling process and the performance of heart valves.

  17. A novel vortex tube-based N2-expander liquefaction process for enhancing the energy efficiency of natural gas liquefaction

    NASA Astrophysics Data System (ADS)

    Qyyum, Muhammad Abdul; Wei, Feng; Hussain, Arif; Ali, Wahid; Sehee, Oh; Lee, Moonyong

    2017-11-01

    This research work unfolds a simple, safe, and environment-friendly energy efficient novel vortex tube-based natural gas liquefaction process (LNG). A vortex tube was introduced to the popular N2-expander liquefaction process to enhance the liquefaction efficiency. The process structure and condition were modified and optimized to take a potential advantage of the vortex tube on the natural gas liquefaction cycle. Two commercial simulators ANSYS® and Aspen HYSYS® were used to investigate the application of vortex tube in the refrigeration cycle of LNG process. The Computational fluid dynamics (CFD) model was used to simulate the vortex tube with nitrogen (N2) as a working fluid. Subsequently, the results of the CFD model were embedded in the Aspen HYSYS® to validate the proposed LNG liquefaction process. The proposed natural gas liquefaction process was optimized using the knowledge-based optimization (KBO) approach. The overall energy consumption was chosen as an objective function for optimization. The performance of the proposed liquefaction process was compared with the conventional N2-expander liquefaction process. The vortex tube-based LNG process showed a significant improvement of energy efficiency by 20% in comparison with the conventional N2-expander liquefaction process. This high energy efficiency was mainly due to the isentropic expansion of the vortex tube. It turned out that the high energy efficiency of vortex tube-based process is totally dependent on the refrigerant cold fraction, operating conditions as well as refrigerant cycle configurations.

  18. Quantum oscillations in vortex-liquids

    NASA Astrophysics Data System (ADS)

    Banerjee, Sumilan; Zhang, Shizhong; Randeria, Mohit

    2012-02-01

    Motivated by observations of quantum oscillations in underdoped cuprates [1], we examine the electronic density of states (DOS) in a vortex-liquid state, where long-range phase coherence is destroyed by an external magnetic field H but the local pairing amplitude survives. We note that this regime is distinct from that studied in most of the recent theories, which have focused on either a Fermi liquid with a competing order parameter or on a d-wave vortex lattice. The cuprate experiments are very likely in a resistive vortex-liquid state. We generalize the s-wave analysis of Maki and Stephen [2] to d-wave pairing and examine various regimes of the chemical potential, gap and field. We find that the (1/H) oscillations of the DOS at the chemical potential in a d-wave vortex-liquid are much more robust, i.e., have a reduced damping, compared to the s-wave case. We critically investigate the conventional wisdom relating the observed frequency to the area of an underlying Fermi surface. We also show that the oscillations in the DOS cross over to a √H behavior in the low field limit, in agreement with the recent specific heat measurements. [1] L. Taillefer, J. Phys. Cond. Mat. 21, 164212 (2009). [2] M. J. Stephen, Phys. Rev. B 45, 5481 (1992).

  19. The behavior of commensurate-incommensurate transitions using the phase field crystal model

    NASA Astrophysics Data System (ADS)

    Zhang, Tinghui; Lu, Yanli; Chen, Zheng

    2018-02-01

    We study the behavior of the commensurate-incommensurate (CI) transitions by using a phase field crystal model. The model is capable of modeling both elastic and plastic deformation and can simulate the evolution of the microstructure of the material at the atomic scale and the diffusive time scale, such as for adsorbed monolayer. Specifically, we study the behavior of the CI transitions as a function of lattice mismatch and the amplitude of substrate pinning potential. The behavior of CI phase transitions is revealed with the increase of the amplitude of pinning potential in some certain lattice mismatches. We find that for the negative lattice mismatch absorbed monolayer undergoes division, reorganization and displacement as increasing the amplitude of substrate pinning potential. In addition, for the positive mismatch absorbed monolayer undergoes a progress of phase transformation after a complete grain is split. Our results accord with simulations for atomic models of absorbed monolayer on a substrate surface.

  20. Analytical and numerical performance models of a Heisenberg Vortex Tube

    NASA Astrophysics Data System (ADS)

    Bunge, C. D.; Cavender, K. A.; Matveev, K. I.; Leachman, J. W.

    2017-12-01

    Analytical and numerical investigations of a Heisenberg Vortex Tube (HVT) are performed to estimate the cooling potential with cryogenic hydrogen. The Ranque-Hilsch Vortex Tube (RHVT) is a device that tangentially injects a compressed fluid stream into a cylindrical geometry to promote enthalpy streaming and temperature separation between inner and outer flows. The HVT is the result of lining the inside of a RHVT with a hydrogen catalyst. This is the first concept to utilize the endothermic heat of para-orthohydrogen conversion to aid primary cooling. A review of 1st order vortex tube models available in the literature is presented and adapted to accommodate cryogenic hydrogen properties. These first order model predictions are compared with 2-D axisymmetric Computational Fluid Dynamics (CFD) simulations.

  1. Clog Retard of a Vortex Throttle Joule-Thomson Cryocooler: Further Experimental Verification

    NASA Astrophysics Data System (ADS)

    Maytal, B.-Z.

    2010-04-01

    The demand of high purity gas supply for Joule-Thomson cryocoolers and liquefiers is crucial in order to avoid plug formation at the delicate throttling device. A throttle which would tolerate higher level of contamination is greatly desirable for more reliable operation. The vortex throttle has such a potential. A series of vortex throttles were applied to a miniature Joule-Thomson cryocooler and tested with precisely contaminated coolant. The instantaneous flow rate and the mode of its decay indicate the rate and nature of plug formation. Each experiment was a simultaneous run of two cryocoolers in parallel at similar conditions: one with a traditional throttle of short hole, and the other one with the vortex throttle. The clog retard behavior of the vortex throttle was verified. It runs about 2.5 times longer than the traditional one, while being fed by water vapor contaminated nitrogen at the levels of 5 and 17 PPM. The contamination level by carbon dioxide was 80 PPM and exhibited a different behavior of clog formation. Its effect on the cryocooler temperature stability with the vortex throttle was quite minor.

  2. Efficient creation of electron vortex beams for high resolution STEM imaging.

    PubMed

    Béché, A; Juchtmans, R; Verbeeck, J

    2017-07-01

    The recent discovery of electron vortex beams carrying quantised angular momentum in the TEM has led to an active field of research, exploring a variety of potential applications including the possibility of mapping magnetic states at the atomic scale. A prerequisite for this is the availability of atomic sized electron vortex beams at high beam current and mode purity. In this paper we present recent progress showing that by making use of the Aharonov-Bohm effect near the tip of a long single domain ferromagnetic Nickel needle, a very efficient aperture for the production of electron vortex beams can be realised. The aperture transmits more than 99% of all electrons and provides a vortex mode purity of up to 92%. Placing this aperture in the condenser plane of a state of the art Cs corrected microscope allows us to demonstrate atomic resolution HAADF STEM images with spatial resolution better than 1 Angström, in agreement with theoretical expectations and only slightly inferior to the performance of a non-vortex probe on the same instrument. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. NASA Aircraft Vortex Spacing System Development Status

    NASA Technical Reports Server (NTRS)

    Hinton, David A.; Charnock, James K.; Bagwell, Donald R.; Grigsby, Donner

    1999-01-01

    The National Aeronautics and Space Administration (NASA) is addressing airport capacity enhancements during instrument meteorological conditions through the Terminal Area Productivity (TAP) program. Within TAP, the Reduced Spacing Operations (RSO) subelement at the NASA Langley Research Center is developing an Aircraft VOrtex Spacing System (AVOSS). AVOSS will integrate the output of several systems to produce weather dependent, dynamic wake vortex spacing criteria. These systems provide current and predicted weather conditions, models of wake vortex transport and decay in these weather conditions, and real-time feedback of wake vortex behavior from sensors. The goal of the NASA program is to provide the research and development to demonstrate an engineering model AVOSS in real-time operation at a major airport. The demonstration is only of concept feasibility, and additional effort is required to deploy an operational system for actual aircraft spacing reduction. This paper describes the AVOSS system architecture, a wake vortex facility established at the Dallas-Fort Worth International Airport (DFW), initial operational experience with the AVOSS system, and emerging considerations for subsystem requirements. Results of the initial system operation suggest a significant potential for reduced spacing.

  4. Modeling the Wake as a Continuous Vortex Sheet in a Potential-Flow Solution Using Vortex Panels

    DTIC Science & Technology

    1989-12-01

    Continuous Vortex Sheet ........ 30 0 Redistributing the Vorticity Over anlIncreasing Area ............... 31 System of Linear Equations inG-Primes...i)* 9 ~=- r(x) L~~3 (29) 4v ji -i13 where dl is a differential length along the filament dl = dx 1 ( 30 ) when expressed in the local coordinate frame...which 30 models the wing serves as a pattern for this effort, but modifications must be made since the wake is continually growing and distorting. In

  5. On sharp vorticity gradients in elongating baroclinic eddies and their stabilization with a solid-body rotation

    NASA Astrophysics Data System (ADS)

    Sutyrin, Georgi G.

    2016-06-01

    Wide compensated vortices are not able to remain circular in idealized two-layer models unless the ocean depth is assumed to be unrealistically large. Small perturbations on both cyclonic and anticyclonic eddies grow slower if a middle layer with uniform potential vorticity (PV) is added, owing to a weakening of the vertical coupling between the upper and lower layers and a reduction of the PV gradient in the deep layer. Numerical simulations show that the nonlinear development of the most unstable elliptical mode causes self-elongation of the upper vortex core and splitting of the deep PV anomaly into two corotating parts. The emerging tripolar flow pattern in the lower layer results in self-intensification of the fluid rotation in the water column around the vortex center. Further vortex evolution depends on the model parameters and initial conditions, which limits predictability owing to multiple equilibrium attractors existing in the dynamical system. The vortex core strips thin filaments, which roll up into submesoscale vortices to result in substantial mixing at the vortex periphery. Stirring and damping of vorticity by bottom friction are found to be essential for subsequent vortex stabilization. The development of sharp PV gradients leads to nearly solid-body rotation inside the vortex core and formation of transport barriers at the vortex periphery. These processes have important implications for understanding the longevity of real-ocean eddies.

  6. Regional heterogeneity of endothelial cells in the porcine vortex vein system.

    PubMed

    Tan, Priscilla Ern Zhi; Yu, Paula K; Cringle, Stephen J; Morgan, William H; Yu, Dao-Yi

    2013-09-01

    The aim of this study was to investigate whether region-dependent endothelial heterogeneity is present within the porcine vortex vein system. The superior temporal vortex vein in young adult pig eyes were dissected out and cannulated. The intact vortex vein system down to the choroidal veins was then perfused with labels for f-actin and nucleic acid. The endothelial cells within the choroidal veins, pre-ampulla, anterior portion of the ampulla, mid-ampulla, posterior portion of the ampulla, post-ampulla, intra-scleral canal and the extra-ocular vortex vein regions were studied in detail using a confocal microscopy technique. The endothelial cell and nuclei length, width, area and perimeter were measured and compared between the different regions. Significant regional differences in the endothelial cell and nuclei length, width, area and perimeter were observed throughout the porcine vortex vein system. Most notably, very narrow and elongated endothelia were found in the post-ampulla region. A lack of smooth muscle cells was noted in the ampulla region compared to other regions. Heterogeneity in endothelial cell morphology is present throughout the porcine vortex vein system and there is a lack of smooth muscle cells in the ampulla region. This likely reflects the highly varied haemodynamic conditions and potential blood flow control mechanisms in different regions of the vortex vein system. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Vortex Wakes of Subsonic Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Rossow, Vernon J.; Nixon, David (Technical Monitor)

    1999-01-01

    A historical overview will be presented of the research conducted on the structure and modification of the vortices generated by the lifting surfaces of subsonic transport aircraft. The seminar will describe the three areas of vortex research; namely, the magnitude of the hazard posed, efforts to reduce the hazard to an acceptable level, and efforts to develop a systematic means for avoiding vortex wakes. It is first pointed out that the characteristics of lift-generated vortices are related to the aerodynamic shapes that produce them and that various arrangements of surfaces can be used to produce different vortex structures. The largest portion of the research conducted to date has been directed at finding ways to reduce the hazard potential of lift-generated vortices shed by subsonic transport aircraft in the vicinity of airports during landing and takeoff operations. It is stressed that lift-generated vortex wakes are so complex that progress towards a solution requires application of a combined theoretical and experimental research program because either alone often leads to incorrect conclusions. It is concluded that a satisfactory aerodynamic solution to the wake-vortex problem at airports has not yet been found but a reduction in the impact of the wake-vortex hazard on airport capacity may become available in the foreseeable future through wake-vortex avoidance concepts currently under study. The material to be presented in this overview is drawn from articles published in aerospace journals that are available publicly.

  8. Effects of milling on functional properties of rice flour.

    PubMed

    Kadan, R S; Bryant, R J; Miller, J A

    2008-05-01

    A commercial long-grain rice flour (CRF) and the flours made by using a pin mill and the Udy mill from the same batch of broken second-head white long-grain rice were evaluated for their particle size and functional properties. The purpose of this study was to compare the commercial rice flour milling method to the pin and Udy milling methods used in our laboratory and pilot plant. The results showed that pin milled flour had more uniform particle size than the other 2 milled flours. The chalky kernels found in broken white milled rice were pulverized more into fines in both Udy milled flour and CRF than in the pin milled flour. The excessive amount of fines in flours affected their functional properties, for example, WSI and their potential usage in the novel foods such as rice breads (RB). The RB made from CRF collapsed more than loaves made from pin milled Cypress long-grain flours.

  9. Vortex motion in doubly connected domains

    NASA Astrophysics Data System (ADS)

    Zannetti, L.; Gallizio, F.; Ottino, G. M.

    The unsteady two-dimensional rotational flow past doubly connected domains is analytically addressed. By concentrating the vorticity in point vortices, the flow is modelled as a potential flow with point singularities. The dependence of the complex potential on time is defined according to the Kelvin theorem. The general case of non-null circulations around the solid bodies is discussed. Vortex shedding and time evolution of the circulation past a two-element airfoil and past a two-bladed Darrieus turbine are presented as physically coherent examples.

  10. Multi-vortex crystal lattices in Bose-Einstein condensates with a rotating trap.

    PubMed

    Xie, Shuangquan; Kevrekidis, Panayotis G; Kolokolnikov, Theodore

    2018-05-01

    We consider vortex dynamics in the context of Bose-Einstein condensates (BECs) with a rotating trap, with or without anisotropy. Starting with the Gross-Pitaevskii (GP) partial differential equation (PDE), we derive a novel reduced system of ordinary differential equations (ODEs) that describes stable configurations of multiple co-rotating vortices (vortex crystals). This description is found to be quite accurate quantitatively especially in the case of multiple vortices. In the limit of many vortices, BECs are known to form vortex crystal structures, whereby vortices tend to arrange themselves in a hexagonal-like spatial configuration. Using our asymptotic reduction, we derive the effective vortex crystal density and its radius. We also obtain an asymptotic estimate for the maximum number of vortices as a function of rotation rate. We extend considerations to the anisotropic trap case, confirming that a pair of vortices lying on the long (short) axis is linearly stable (unstable), corroborating the ODE reduction results with full PDE simulations. We then further investigate the many-vortex limit in the case of strong anisotropic potential. In this limit, the vortices tend to align themselves along the long axis, and we compute the effective one-dimensional vortex density, as well as the maximum admissible number of vortices. Detailed numerical simulations of the GP equation are used to confirm our analytical predictions.

  11. Length scales and pinning of interfaces

    PubMed Central

    Tan, Likun

    2016-01-01

    The pinning of interfaces and free discontinuities by defects and heterogeneities plays an important role in a variety of phenomena, including grain growth, martensitic phase transitions, ferroelectricity, dislocations and fracture. We explore the role of length scale on the pinning of interfaces and show that the width of the interface relative to the length scale of the heterogeneity can have a profound effect on the pinning behaviour, and ultimately on hysteresis. When the heterogeneity is large, the pinning is strong and can lead to stick–slip behaviour as predicted by various models in the literature. However, when the heterogeneity is small, we find that the interface may not be pinned in a significant manner. This shows that a potential route to making materials with low hysteresis is to introduce heterogeneities at a length scale that is small compared with the width of the phase boundary. Finally, the intermediate setting where the length scale of the heterogeneity is comparable to that of the interface width is characterized by complex interactions, thereby giving rise to a non-monotone relationship between the relative heterogeneity size and the critical depinning stress. PMID:27002068

  12. Self-sustaining intense vortices

    NASA Astrophysics Data System (ADS)

    Carrier, G.; Fendell, F.; Mitchell, J.; Bronstein, M.

    1994-10-01

    We seek to identify an accessible observable for anticipating tornadogenesis in mesocyclones, because such tornadoes are characterized by exceptionally extended lifespan, exceptionally long and wide path, and exceptionally high wind speed. We associate tornadogenesis with the transition from a one-cell vortex to a two-cell vortex. After such a transition, the core (“eye”) of the vortex consists of virtually nonrotating, slowly recirculating, relatively dry air. Rapidly swirling air swiftly ascends in an annulus (“eyewall”), situated at a small but finite distance from the axis of rotation. The swiftly ascending air is described by a locus of thermodynamic states well approximated by a moist adiabat. Such a transition from a one-cell vortex to a two-cell vortex, on vastly large lateral scale, is known to characterize the intensification of a tropical storm to a typhoon. We adopt a simplified, tractable model for our initial analytic efforts. We examine a quasisteady axisymmetric vortex with a four-part structure, consisting of a bulk potential vortex, a near-ground inflow layer, an “eyewall”, and an “eye”. We inquire under what conditions such a four-part intense vortex, formed in convectively unstable stratified air, is self-sustaining. In particular, we inquire whether the vertical profile of the angular momentum outside of the eyewall is a discriminant for identifying the conditions for which an intense (two-cell) vortex could be self-sustaining. Guidance from laboratory experiments would be helpful concerning the turnaround (the portion of the flow field in which the near-ground swirling inflow separates to form the swirling updraft of the eyewall annulus).

  13. Downregulation of microRNA-370 in esophageal squamous-cell carcinoma is associated with cancer progression and promotes cancer cell proliferation via upregulating PIN1.

    PubMed

    Chen, Mingzhi; Xia, Yang; Tan, Yongfei; Jiang, Guojun; Jin, Hai; Chen, Yijiang

    2018-06-30

    PIN1 is a peptidyl-prolyl cis/trans isomerase (PPIase) that controls cell fate by regulating multiple signal transduction pathways and is found to be overexpressed in a variety of malignant tumors. Herein, we found the expression of PIN1 is up-regulated while miRNA-370 (miR-370) down-regulated in both esophageal squamous-cell carcinoma (ESCC) tissues and cells. Transfection of miR-370 can significantly decrease PIN1 expression in targeting ESCC cells. Overexpression of miR-370 can induce decreased cell proliferation and cell cycle arrest, as well as increased apoptosis in ESCC cells, while this function can be significantly prevented by co-transfection of PIN1. Further experimental results demonstrated that β-catenin, cyclin D1, and caspase activation might be involved in miR-370/PIN1 induced growth inhibition and apoptosis. Besides, low miR-370 and high PIN1 expression significantly correlated with tumor diameter, poor differentiation, tumor invasion and lymph node metastasis in patients diagnosed with ESCC. In conclusion, downregulation of miR-370 in ESCC is associated with cancer progression and promotes cancer cell proliferation via upregulating PIN1, which might be a potential therapeutic target and adverse prognostic factor in the clinic. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Frequency, field, and temperature dependence of the AC penetration depth of a GdBa 2Cu 3O 7-δ film in the mixed state

    NASA Astrophysics Data System (ADS)

    Zeisberger, M.; Klupsch, Th.; Michalke, W.

    1995-02-01

    We report on a systematic mutual induction measurement of the complex AC penetration depth λ of a sputtered high-quality GdBa 2Cu 3O 7-δ film in the mixed state by a very small coil system arranged near the sample surface. The complex penetration depth λ( B, T, ω) for DC inductions B ⩽ 0.65 T (perpendicular to the film), for temperatures 36 K ⩽ T ⩽ 81 K, and for frequencies 1 kHz ⩽ ω/2 π ⩽ 500 kHz was determined from the measured signal by a novel inversion scheme. The results are consistent with theoretical predictions based upon single vortex pinning. The Labusch parameter α, the flux creep relaxation time τ, as well as the effective activation energy U are simulateneously determined.

  15. Effective field model of roughness in magnetic nano-structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lepadatu, Serban, E-mail: SLepadatu@uclan.ac.uk

    2015-12-28

    An effective field model is introduced here within the micromagnetics formulation, to study roughness in magnetic structures, by considering sub-exchange length roughness levels as a perturbation on a smooth structure. This allows the roughness contribution to be separated, which is found to give rise to an effective configurational anisotropy for both edge and surface roughness, and accurately model its effects with fine control over the roughness depth without the explicit need to refine the computational cell size to accommodate the roughness profile. The model is validated by comparisons with directly roughened structures for a series of magnetization switching and domainmore » wall velocity simulations and found to be in excellent agreement for roughness levels up to the exchange length. The model is further applied to vortex domain wall velocity simulations with surface roughness, which is shown to significantly modify domain wall movement and result in dynamic pinning and stochastic creep effects.« less

  16. Schlieren photography on freely flying hawkmoth.

    PubMed

    Liu, Yun; Roll, Jesse; Van Kooten, Stephen; Deng, Xinyan

    2018-05-01

    The aerodynamic force on flying insects results from the vortical flow structures that vary both spatially and temporally throughout flight. Due to these complexities and the inherent difficulties in studying flying insects in a natural setting, a complete picture of the vortical flow has been difficult to obtain experimentally. In this paper, Schlieren , a widely used technique for highspeed flow visualization, was adapted to capture the vortex structures around freely flying hawkmoth ( Manduca ). Flow features such as leading-edge vortex, trailing-edge vortex, as well as the full vortex system in the wake were visualized directly. Quantification of the flow from the Schlieren images was then obtained by applying a physics-based optical flow method, extending the potential applications of the method to further studies of flying insects. © 2018 The Author(s).

  17. Route to non-Abelian quantum turbulence in spinor Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Mawson, Thomas; Ruben, Gary; Simula, Tapio

    2015-06-01

    We have studied computationally the collision dynamics of spin-2 Bose-Einstein condensates initially confined in a triple-well trap. Depending on the phase structure of the initial-state spinor wave function, the collision of the three condensate fragments produces one of many possible vortex-antivortex lattices, after which the system transitions to quantum turbulence. We find that the emerging vortex lattice structures can be described in terms of multiwave interference. We show that the three-fragment collisions can be used to systematically produce staggered vortex-antivortex honeycomb lattices of fractional-charge vortices, whose collision dynamics are known to be non-Abelian. Such condensate collider experiments could potentially be used as a controllable pathway to generating non-Abelian superfluid turbulence with networks of vortex rungs.

  18. Subsonic aerodynamic characteristics of interacting lifting surfaces with separated flow around sharp edges predicted by a vortex-lattice method

    NASA Technical Reports Server (NTRS)

    Lamar, J. E.; Gloss, B. B.

    1975-01-01

    Because the potential flow suction along the leading and side edges of a planform can be used to determine both leading- and side-edge vortex lift, the present investigation was undertaken to apply the vortex-lattice method to computing side-edge suction force for isolated or interacting planforms. Although there is a small effect of bound vortex sweep on the computation of the side-edge suction force, the results obtained for a number of different isolated planforms produced acceptable agreement with results obtained from a method employing continuous induced-velocity distributions. By using the method outlined, better agreement between theory and experiment was noted for a wing in the presence of a canard than was previously obtained.

  19. Quasi-Talbot effect of orbital angular momentum beams for generation of optical vortex arrays by multiplexing metasurface design.

    PubMed

    Gao, Hui; Li, Yang; Chen, Lianwei; Jin, Jinjin; Pu, Mingbo; Li, Xiong; Gao, Ping; Wang, Changtao; Luo, Xiangang; Hong, Minghui

    2018-01-03

    The quasi-Talbot effect of orbital angular momentum (OAM) beams, in which the centers are placed in a rotationally symmetric position, is demonstrated both numerically and experimentally for the first time. Since its multiplication factor is much higher than the conventional fractional Talbot effect, the quasi-Talbot effect can be used in the generation of vortex beam arrays. A metasurface based on this theory was designed and fabricated to test the validity of this assumption. The agreement between the numerical and measured results suggests the practicability of this method to realize vortex beam arrays with high integrated levels, which can open a new door to achieve various potential uses related to optical vortex arrays in integrated optical systems for wide-ranging applications.

  20. Effect of Sub-Boundary Layer Vortex Generations on Incident Turbulence

    NASA Technical Reports Server (NTRS)

    Casper, J.; Lin, J. C.; Yao, C. S.

    2003-01-01

    Sub-boundary layer vortex generators were tested in a wind tunnel to assess their effect on the velocity field within the wake region of a turbulent boundary layer. Both mean flow quantities and turbulence statistics were measured. Although very small relative to the boundary layer thickness, these so-called micro vortex generators were found to have a measurable effect on the power spectra and integral length scales of the turbulence at a distance many times the height of the devices themselves. In addition, the potential acoustic impact of these devices is also discussed. Measured turbulence spectra are used as input to an acoustic formulation in a manner that compares predicted sound pressure levels that result from the incident boundary-layer turbulence, with and without the vortex generators in the flow.

  1. Vapor bridges between solid substrates in the presence of the contact line pinning effect: Stability and capillary force

    NASA Astrophysics Data System (ADS)

    Liu, Yawei; Zhang, Xianren

    2016-12-01

    In this work, we focus on investigating how nanobubbles mediate long-range interaction between neighboring solid substrates in the presence of the contact line pinning effect caused by surface heterogeneities. Using the constrained lattice density functional theory (LDFT), we prove that the nanobubbles, which take the form of vapor bridges here, are stabilized by the pinning effect if the separation between two substrates is less than a critical distance. The critical distance strongly depends on the chemical potential (i.e., the degree of saturation) and could become extremely long at a special chemical potential. Moreover, under the pinning effect, the substrate chemistry only determines the stability of the vapor bridges and the range of the capillary force, but has less influences on the magnitude of the capillary force, indicating that the substrate chemistry or the apparent contact angle for droplets or bubbles on the substrates is no longer a direct parameter to determine the magnitude of capillary force. A qualitative analysis for the two dimensional vapor bridges by considering the feedback mechanism can explain the results from the LDFT calculations.

  2. Observables for anticipating tornadogenesis in mesocyclones

    NASA Technical Reports Server (NTRS)

    Carrier, G.; Fendell, F.; Mitchell, J.; Bronstein, M.

    1992-01-01

    We seek to identify an observable for anticipating tornadogenesis in mesocyclones, because such tornadoes are characterized by particularly long life, long and wide path, and high wind speed. We associate tornadogenesis with the transition from a one-cell vortex to a two-cell vortex. In such a transition, 'insertion' of a virtually nonrotating, slowly recirculating core displaces that high-swirl-speed air which is rapidly ascending along a moist-adiabatic locus of thermodynamic states, to an annulus at small but finite distance from the axis of rotation. Such a transition, on a vastly larger lateral scale, is known to characterize intensification of a tropical storm to a typhoon. We examine analytically a quasisteady axisymmetric model of a four-part vortex structure consisting of a bulk potential vortex, near-ground inflow layer, 'eyewall', and 'eye'. We inquire whether such a four-part intense vortex, formed in convectively unstably stratified air, is self-sustaining. In particular, we inquire whether the vertical profile of the angular momentum at the periphery is a discriminant for identifying self-sustaining vortices.

  3. Magnetic vortices in nanocaps induced by curvature

    NASA Astrophysics Data System (ADS)

    Abdelgawad, Ahmed M.; Nambiar, Nikhil; Bapna, Mukund; Chen, Hao; Majetich, Sara A.

    2018-05-01

    Magnetic nanoparticles with room temperature remanent magnetic vortices stabilized by their curvature are very intriguing due to their potential use in biomedicine. In the present study, we investigate room temperature magnetic chirality in 100 nm diameter permalloy spherical caps with 10 nm and 30 nm thicknesses. Micromagnetic OOMMF simulations predict the equilibrium spin structure for these caps to form a vortex state. We fabricate the permalloy caps by sputtering permalloy on both close-packed and sparse arrays of polystyrene nanoparticles. Magnetic force microscopy scans show a clear signature of a vortex state in close-packed caps of both 10 nm and 30 nm thicknesses. Alternating gradient magnetometry measurements of the caps are consistent with a remnant vortex state in 30 nm thick caps and a transition to an onion state followed by a vortex state in 10 nm thick caps. Out-of-plane measurements supported by micromagnetic simulations shows that an out-of-plane field can stabilize a vortex state down to a diameter of 15 nm.

  4. Application of the vortex-lattice technique to the analysis of thin wings with vortex separation and thick multi-element wings

    NASA Technical Reports Server (NTRS)

    Smith, C. W.; Bhateley, I. C.

    1976-01-01

    Two techniques for extending the range of applicability of the basic vortex-lattice method are discussed. The first improves the computation of aerodynamic forces on thin, low-aspect-ratio wings of arbitrary planforms at subsonic Mach numbers by including the effects of leading-edge and tip vortex separation, characteristic of this type wing, through use of the well-known suction-analogy method of E. C. Polhamus. Comparisons with experimental data for a variety of planforms are presented. The second consists of the use of the vortex-lattice method to predict pressure distributions over thick multi-element wings (wings with leading- and trailing-edge devices). A method of laying out the lattice is described which gives accurate pressures on the top and part of the bottom surface of the wing. Limited comparisons between the result predicted by this method, the conventional lattice arrangement method, experimental data, and 2-D potential flow analysis techniques are presented.

  5. Stratospheric warmings during February and March 1993

    NASA Technical Reports Server (NTRS)

    Manney, G. L.; Zurek, R. W.; O'Neill, A.; Swinbank, R.; Kumer, J. B.; Mergenthaler, J. L.; Roche, A. E.

    1994-01-01

    Two stratospheric warmings during February and March 1993 are described using United Kingdom Meteorological Office (UKMO) analyses, calculated potential vorticity (PV) and diabetic heating, and N2O observed by the Cryogenic Limb Array Etalon Spectrometer (CLAES) instrument on the Upper Atmosphere Research Satellite (UARS). The first warming affected temperatures over a larger region, while the second produced a larger region of reversed zonal winds. Tilted baroclinic zones formed in the temperature field, and the polar vortex tilted westward with height. Narrow tongues of high PV and low N2O were drawn off the polar vortex, and irreversibly mixed. Tongues of material were drawn from low latitudes into the region between the polar vortex and the anticyclone; diabatic descent was also strongest in this region. Increased N2O over a broad region near the edge of the polar vortex indicates the importance of horizontal transport. N2O decreased in the vortex, consistent with enhanced diabatic descent during the warmings.

  6. Stochastic formation of magnetic vortex structures in asymmetric disks triggered by chaotic dynamics

    DOE PAGES

    Im, Mi-Young; Lee, Ki-Suk; Vogel, Andreas; ...

    2014-12-17

    The non-trivial spin configuration in a magnetic vortex is a prototype for fundamental studies of nanoscale spin behaviour with potential applications in magnetic information technologies. Arrays of magnetic vortices interfacing with perpendicular thin films have recently been proposed as enabler for skyrmionic structures at room temperature, which has opened exciting perspectives on practical applications of skyrmions. An important milestone for achieving not only such skyrmion materials but also general applications of magnetic vortices is a reliable control of vortex structures. However, controlling magnetic processes is hampered by stochastic behaviour, which is associated with thermal fluctuations in general. Here we showmore » that the dynamics in the initial stages of vortex formation on an ultrafast timescale plays a dominating role for the stochastic behaviour observed at steady state. Our results show that the intrinsic stochastic nature of vortex creation can be controlled by adjusting the interdisk distance in asymmetric disk arrays.« less

  7. Aircraft Wake Vortex Measurements at Denver International Airport

    NASA Technical Reports Server (NTRS)

    Dougherty, Robert P.; Wang, Frank Y.; Booth, Earl R.; Watts, Michael E.; Fenichel, Neil; D'Errico, Robert E.

    2004-01-01

    Airport capacity is constrained, in part, by spacing requirements associated with the wake vortex hazard. NASA's Wake Vortex Avoidance Project has a goal to establish the feasibility of reducing this spacing while maintaining safety. Passive acoustic phased array sensors, if shown to have operational potential, may aid in this effort by detecting and tracking the vortices. During August/September 2003, NASA and the USDOT sponsored a wake acoustics test at the Denver International Airport. The central instrument of the test was a large microphone phased array. This paper describes the test in general terms and gives an overview of the array hardware. It outlines one of the analysis techniques that is being applied to the data and gives sample results. The technique is able to clearly resolve the wake vortices of landing aircraft and measure their separation, height, and sinking rate. These observations permit an indirect estimate of the vortex circulation. The array also provides visualization of the vortex evolution, including the Crow instability.

  8. Mixing processes following the final stratospheric warming

    NASA Technical Reports Server (NTRS)

    Hess, Peter G.

    1991-01-01

    An investigation is made of the dynamics responsible for the mixing and dissolution of the polar vortex during the final stratospheric warmings. The dynamics and transport during a Northern Hemisphere final stratospheric warming are simulated via a GCM and an associated offline N2O transport model. The results are compared with those obtained from LIMS data for the final warming of 1979, with emphasis on the potential vorticity evolution in the two datasets, the modeled N2O evolution, and the observed O3 evolution. Following each warming, the remnants of the originally intact vortex are found to gradually homogenize with the atmosphere at large. Two processes leading to this homogenization are identified following the final warmings, namely, the potential vorticity field becomes decorrelated from that of the chemical tracer, and the vortex remnants begin to tilt dramatically in a vertical direction.

  9. Stable vortex-bright-soliton structures in two-component Bose-Einstein condensates.

    PubMed

    Law, K J H; Kevrekidis, P G; Tuckerman, Laurette S

    2010-10-15

    We report the numerical realization of robust two-component structures in 2D and 3D Bose-Einstein condensates with nontrivial topological charge in one component. We identify a stable symbiotic state in which a higher-dimensional bright soliton exists even in a homogeneous setting with defocusing interactions, due to the effective potential created by a stable vortex in the other component. The resulting vortex-bright-solitons, generalizations of the recently experimentally observed dark-bright solitons, are found to be very robust both in the homogeneous medium and in the presence of external confinement.

  10. Simulation of self-induced unsteady motion in the near wake of a Joukowski airfoil

    NASA Technical Reports Server (NTRS)

    Ghia, K. N.; Osswald, G. A.; Ghia, U.

    1986-01-01

    The unsteady Navier-Stokes analysis is shown to be capable of analyzing the massively separated, persistently unsteady flow in the post-stall regime of a Joukowski airfoil for an angle of attack as high as 53 degrees. The analysis has provided the detailed flow structure, showing the complex vortex interaction for this configuration. The aerodynamic coefficients for lift, drag, and moment were calculated. So far only the spatial structure of the vortex interaction was computed. It is now important to potentially use the large-scale vortex interactions, an additional energy source, to improve the aerodynamic performance.

  11. An intermetallic powder-in-tube approach to increased flux-pinning in Nb 3Sn by internal oxidation of Zr

    DOE PAGES

    Motowidlo, Leszek R.; Lee, P. J.; Tarantini, C.; ...

    2017-11-28

    We report on the development of multifilamentary Nb 3Sn superconductors by a versatile powder-in-tube technique (PIT) that demonstrates a simple pathway to a strand with a higher density of flux-pinning sites that has the potential to increase critical current density beyond present levels. The approach uses internal oxidation of Zr-alloyed Nb tubes to produce Zr oxide particles within the Nb 3Sn layer that act as a dispersion of artificial pinning centres (APCs). In this design, SnO 2 powder is mixed with Cu 5Sn 4 powder within the PIT core that supplies the Sn for the A15 reaction with Nb1Zr filamentmore » tubes. Initial results show an average grain size of ~38 nm in the A15 layer, compared to the 90–130 nm of typical APC-free high-J c strands made by conventional PIT or Internal Sn processing. Furthermore, there is a shift in the peak of the pinning force curve from H/H irr of ~0.2 to ~0.3 and the pinning force curves can be deconvoluted into grain boundary and point-pinning components, the point-pinning contribution dominating for the APC Nb-1wt%Zr strands.« less

  12. An intermetallic powder-in-tube approach to increased flux-pinning in Nb3Sn by internal oxidation of Zr

    NASA Astrophysics Data System (ADS)

    Motowidlo, L. R.; Lee, P. J.; Tarantini, C.; Balachandran, S.; Ghosh, A. K.; Larbalestier, D. C.

    2018-01-01

    We report on the development of multifilamentary Nb3Sn superconductors by a versatile powder-in-tube technique (PIT) that demonstrates a simple pathway to a strand with a higher density of flux-pinning sites that has the potential to increase critical current density beyond present levels. The approach uses internal oxidation of Zr-alloyed Nb tubes to produce Zr oxide particles within the Nb3Sn layer that act as a dispersion of artificial pinning centres (APCs). In this design, SnO2 powder is mixed with Cu5Sn4 powder within the PIT core that supplies the Sn for the A15 reaction with Nb1Zr filament tubes. Initial results show an average grain size of ˜38 nm in the A15 layer, compared to the 90-130 nm of typical APC-free high-J c strands made by conventional PIT or Internal Sn processing. There is a shift in the peak of the pinning force curve from H/H irr of ˜0.2 to ˜0.3 and the pinning force curves can be deconvoluted into grain boundary and point-pinning components, the point-pinning contribution dominating for the APC Nb-1wt%Zr strands.

  13. An intermetallic powder-in-tube approach to increased flux-pinning in Nb 3Sn by internal oxidation of Zr

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Motowidlo, Leszek R.; Lee, P. J.; Tarantini, C.

    We report on the development of multifilamentary Nb 3Sn superconductors by a versatile powder-in-tube technique (PIT) that demonstrates a simple pathway to a strand with a higher density of flux-pinning sites that has the potential to increase critical current density beyond present levels. The approach uses internal oxidation of Zr-alloyed Nb tubes to produce Zr oxide particles within the Nb 3Sn layer that act as a dispersion of artificial pinning centres (APCs). In this design, SnO 2 powder is mixed with Cu 5Sn 4 powder within the PIT core that supplies the Sn for the A15 reaction with Nb1Zr filamentmore » tubes. Initial results show an average grain size of ~38 nm in the A15 layer, compared to the 90–130 nm of typical APC-free high-J c strands made by conventional PIT or Internal Sn processing. Furthermore, there is a shift in the peak of the pinning force curve from H/H irr of ~0.2 to ~0.3 and the pinning force curves can be deconvoluted into grain boundary and point-pinning components, the point-pinning contribution dominating for the APC Nb-1wt%Zr strands.« less

  14. The Interaction Between Dynamics and Chemistry of Ozone in the Set-up Phase of the Northern Hemisphere Polar Vortex

    NASA Technical Reports Server (NTRS)

    Kawa, S. R.; Bevilacqua, R.; Margitan, J. J.; Douglass, A. R.; Schoeberl, M. R.; Hoppel, K.; Sen, B.; Bhartia, P. K. (Technical Monitor)

    2001-01-01

    The morphology and evolution of the stratospheric ozone (O3) distribution at high latitudes in the Northern Hemisphere (NH) are examined for the late summer and fall seasons of 1999. This time period sets the O3 initial condition for the SOLVE/THESEO field mission performed during winter 1999-2000. In situ and satellite data are used along with a three-dimensional model of chemistry and transport (CTM) to determine the key processes that control the distribution of O3 in the lower-to-middle stratosphere. O3 in the vortex at the beginning of the winter season is found to be nearly constant from 500 to above 800 K with a value at 3 ppmv +/- approx. 10%. Values outside the vortex are up to a factor of 2 higher and increase significantly with potential temperature. The seasonal time series of data from POAM shows that relatively low O3 mixing ratios, which characterize the vortex in late fall, are already present at high latitudes at the end of summer before the vortex circulation sets up. Analysis of the CTM output shows that the minimum O3 and increase in variance in late summer are the result of: 1) stirring of polar concentric O3 gradients by nascent wave-driven transport, and 2) an acceleration of net photochemical loss with decreasing solar illumination. The segregation of low O3 mixing ratios into the vortex as the circulation strengthens through the fall suggests a possible feedback role between O3 chemistry and the vortex formation dynamics. Trajectory calculations from O3 sample points early in the fall, however, show only a weak correlation between initial O3 mixing ratio and potential vorticity later in the season consistent with order-of-magnitude calculations for the relative importance of O3 in the fall radiative balance at high latitudes. The possible connection between O3 chemistry and the dynamics of vortex formation does suggest that these feedbacks and sensitivities need to be better understood in order to make confident predictions of the recovery of NH O3.

  15. Aerodynamic control of NASP-type vehicles through vortex manipulation, volume 4

    NASA Technical Reports Server (NTRS)

    Smith, Brooke C.; Suarez, Carlos J.; Porada, William M.; Malcolm, Gerald N.

    1993-01-01

    Forebody Vortex Control (FVC) is an emerging technology that has received widespread and concentrated attention by many researchers for application on fighter aircraft to enhance aerodynamic controllability at high angles of attack. This research explores potential application of FVC to a NASP-type configuration. The configuration investigated is characterized by a slender, circular cross-section forebody and a 78 deg swept delta wing. A man-in-the-loop, six-degress-of-freedom, high-fidelity simulation was developed that demonstrates the implementation and advantages of pneumatic forebody vortex control. Static wind tunnel tests were used as the basis for the aerodynamic characteristics modeled in the simulation. Dynamic free-to-roll wind tunnel tests were analyzed and the wing rock motion investigated. A non-linear model of the dynamic effects of the bare airframe and the forebody vortex control system were developed that closely represented the observed behavior. Multiple state-of-the-art digital flight control systems were developed that included different utilizations of pneumatic vortex control. These were evaluated through manned simulation. Design parameters for a pneumatic forebody vortex control system were based on data collected regarding the use of blowing and the mass flow required during realistic flight maneuvers.

  16. Comparison of the soil losses from (7)Be measurements and the monitoring data by erosion pins and runoff plots in the Three Gorges Reservoir region, China.

    PubMed

    Shi, Zhonglin; Wen, Anbang; Zhang, Xinbao; Yan, Dongchun

    2011-10-01

    The potential for using (7)Be measurements to document soil redistribution associated with a heavy rainfall was estimated using (7)Be method on a bare purple soil plot in the Three Gorges Reservoir region of China. The results were compared with direct measurement from traditional approaches of erosion pins and runoff plots. The study shows that estimation of soil losses from (7)Be are comparable with the monitoring results provided by erosion pins and runoff plots, and are also in agreement with the existing knowledge provided by 137Cs measurements. The results obtained from this study demonstrated the potential for using (7)Be technique to quantify short-term erosion rates in these areas. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Visualization of the collective vortex-like motions in liquid argon and water: Molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Anikeenko, A. V.; Malenkov, G. G.; Naberukhin, Yu. I.

    2018-03-01

    We propose a new measure of collectivity of molecular motion in the liquid: the average vector of displacement of the particles, ⟨ΔR⟩, which initially have been localized within a sphere of radius Rsph and then have executed the diffusive motion during a time interval Δt. The more correlated the motion of the particles is, the longer will be the vector ⟨ΔR⟩. We visualize the picture of collective motions in molecular dynamics (MD) models of liquids by constructing the ⟨ΔR⟩ vectors and pinning them to the sites of the uniform grid which divides each of the edges of the model box into equal parts. MD models of liquid argon and water have been studied by this method. Qualitatively, the patterns of ⟨ΔR⟩ vectors are similar for these two liquids but differ in minor details. The most important result of our research is the revealing of the aggregates of ⟨ΔR⟩ vectors which have the form of extended flows which sometimes look like the parts of vortices. These vortex-like clusters of ⟨ΔR⟩ vectors have the mesoscopic size (of the order of 10 nm) and persist for tens of picoseconds. Dependence of the ⟨ΔR⟩ vector field on parameters Rsph, Δt, and on the model size has been investigated. This field in the models of liquids differs essentially from that in a random-walk model.

  18. Bifurcation of potential vorticity gradients across the Southern Hemisphere stratospheric polar vortex

    NASA Astrophysics Data System (ADS)

    Conway, Jonathan; Bodeker, Greg; Cameron, Chris

    2018-06-01

    The wintertime stratospheric westerly winds circling the Antarctic continent, also known as the Southern Hemisphere polar vortex, create a barrier to mixing of air between middle and high latitudes. This dynamical isolation has important consequences for export of ozone-depleted air from the Antarctic stratosphere to lower latitudes. The prevailing view of this dynamical barrier has been an annulus compromising steep gradients of potential vorticity (PV) that create a single semi-permeable barrier to mixing. Analyses presented here show that this barrier often displays a bifurcated structure where a double-walled barrier exists. The bifurcated structure manifests as enhanced gradients of PV at two distinct latitudes - usually on the inside and outside flanks of the region of highest wind speed. Metrics that quantify the bifurcated nature of the vortex have been developed and their variation in space and time has been analysed. At most isentropic levels between 395 and 850 K, bifurcation is strongest in mid-winter and decreases dramatically during spring. From August onwards a distinct structure emerges, where elevated bifurcation remains between 475 and 600 K, and a mostly single-walled barrier occurs at other levels. While bifurcation at a given level evolves from month to month, and does not always persist through a season, interannual variations in the strength of bifurcation display coherence across multiple levels in any given month. Accounting for bifurcation allows the region of reduced mixing to be better characterised. These results suggest that improved understanding of cross-vortex mixing requires consideration of the polar vortex not as a single mixing barrier but as a barrier with internal structure that is likely to manifest as more complex gradients in trace gas concentrations across the vortex barrier region.

  19. Wake-Vortex Hazards During Cruise

    NASA Technical Reports Server (NTRS)

    Rossow, Vernon J.; James, Kevin D.; Nixon, David (Technical Monitor)

    1998-01-01

    Even though the hazard posed by lift-generated wakes of subsonic transport aircraft has been studied extensively for approach and departure at airports, only a small amount of effort has gone into the potential hazard at cruise altitude. This paper reports on a studio of the wake-vortex hazard during cruise because encounters may become more prevalent when free-flight becomes available and each aircraft, is free to choose its own route between destinations. In order to address the problem, the various fluid-dynamic stages that vortex wakes usually go through as they age will be described along with estimates of the potential hazard that each stage poses. It appears that a rolling-moment hazard can be just as severe at cruise as for approach at airports, but it only persists for several minutes. However, the hazard posed by the downwash in the wake due to the lift on the generator aircraft persists for tens of minutes in a long narrow region behind the generating aircraft. The hazard consists of severe vertical loads when an encountering aircraft crosses the wake. A technique for avoiding vortex wakes at cruise altitude will be described. To date the hazard posed by lift-generated vortex wakes and their persistence at cruise altitudes has been identified and subdivided into several tasks. Analyses of the loads to be encounter and are underway and should be completed shortly. A review of published literature on the subject has been nearly completed (see text) and photographs of vortex wakes at cruise altitudes have been taken and the various stages of decay have been identified. It remains to study and sort the photographs for those that best illustrate the various stages of decay after they are shed by subsonic transport aircraft at cruise altitudes. The present status of the analysis and the paper are described.

  20. Interannual Variability of Ozone in the Polar Vortex during the Fall Season

    NASA Technical Reports Server (NTRS)

    Bhartia, P. K. (Technical Monitor); Kawa, S. R.; Newman, P. A.; Schoeberl, M. R.; Stolarski, R. S.; Bevilacqua, R.

    2002-01-01

    Previous analysis has shown that the distribution of O3 at high northern latitudes in the lower-to-middle stratosphere at the beginning of the winter season has a characteristic distribution, which is consistent between in situ and satellite measurements. Initial O3 profiles in the vortex are similar to each other and are quite different from outside the vortex at the same latitude and also from a zonal mean climatology. In the vortex, O3 is nearly constant from 500 to above 800 K with a value near 3 ppmv. Values outside the vortex are up to a factor of 2 higher and increase significantly with potential temperature. Model analysis indicates that the characteristic vortex O3 profiles arise from a combination of seasonally accelerated photochemical loss at high latitudes and minimal transport of air from lower latitudes. Analysis of the relatively high-resolution POAM data shows that these characteristic O3 distributions are consistent from year to year and between the hemispheres. Here we emphasize analysis of the 24-year time series of O3 data from SBUV in the lower-to-middle stratosphere at high latitudes in the fall vortex. We find that the variability of O3 from SBUV is relatively small in this regime and no significant trend is detectable. The implications of the findings for stratospheric O3 chemistry and transport will be explored.

  1. Silicon PIN diode based electron-gamma coincidence detector system for Noble Gases monitoring.

    PubMed

    Khrustalev, K; Popov, V Yu; Popov, Yu S

    2017-08-01

    We present a new second generation SiPIN based electron-photon coincidence detector system developed by Lares Ltd. for use in the Noble Gas measurement systems of the International Monitoring System and the On-site Inspection verification regimes of the Comprehensive Nuclear-Test Ban Treaty (CTBT). The SiPIN provide superior energy resolution for electrons. Our work describes the improvements made in the second generation detector cells and the potential use of such detector systems for other applications such as In-Situ Kr-85 measurements for non-proliferation purposes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Status on Technology Development of Optic Fiber-Coupled Laser Ignition System for Rocket Engine Applications

    NASA Technical Reports Server (NTRS)

    Trinh, Huu P.; Early, Jim; Osborne, Robin; Thomas, Matthew; Bossard, John

    2003-01-01

    To pursue technology developments for future launch vehicles, NASA/Marshall Space Flight Center (MSFC) is examining vortex chamber concepts for liquid rocket engine applications. Past studies indicated that the vortex chamber schemes potentially have a number of advantages over conventional chamber methods. Due to the nature of the vortex flow, relatively cooler propellant streams tend to flow along the chamber wall. Hence, the thruster chamber can be operated without the need of any cooling techniques. This vortex flow also creates strong turbulence, which promotes the propellant mixing process. Consequently, the subject chamber concept: not only offer system simplicity, but also enhance the combustion performance. Test results have shown that chamber performance is markedly high even at a low chamber length-to-diameter ratio. This incentive can be translated to a convenience in the thrust chamber packaging.

  3. Formation of a vortex at the edge of a plate

    NASA Technical Reports Server (NTRS)

    Anton, Leo

    1956-01-01

    The flow about the plate of infinite width may be represented as a potential flow with discontinuity surfaces which extend from the plate edges. For prescribed form and vortex distribution of the discontinuity surfaces, the velocity field may be calculated by means of a conformal representation. One condition is that the velocity at the plate edges must be finite. However, it is not sufficient for determination of the form and vortex distribution of the surface. However, on the basis of a similitude requirement one succeeds in finding a solution of this problem for the plate of infinite width which is correct for the very beginning of the motion of the fluid. Starting from this solution, the further development of the vortex distribution and shape of the surface are observed in the case of a plate of finite width.

  4. A Flux-Pinning Mechanism for Segment Assembly and Alignment

    NASA Technical Reports Server (NTRS)

    Gersh-Range, Jessica A.; Arnold, William R.; Peck, Mason A.; Stahl, H. Philip

    2011-01-01

    Currently, the most compelling astrophysics questions include how planets and the first stars formed and whether there are protostellar disks that contain large organic molecules. Although answering these questions requires space telescopes with apertures of at least 10 meters, such large primaries are challenging to construct by scaling up previous designs; the limited capacity of a launch vehicle bounds the maximum diameter of a monolithic primary, and beyond a certain size, deployable telescopes cannot fit in current launch vehicle fairings. One potential solution is connecting the primary mirror segments edgewise using flux-pinning mechanisms, which are analogous to non-contacting damped springs. In the baseline design, a flux-pinning mechanism consists of a magnet and a superconductor separated by a predetermined gap, with the damping adjusted by placing aluminum near the interface. Since flux pinning is possible only when the superconductor is cooled below a critical temperature, flux-pinning mechanisms are uniquely suited for cryogenic space telescopes. By placing these mechanisms along the edges of the mirror segments, a primary can be built up over time. Since flux pinning requires no mechanical deployments, the assembly process could be robotic or use some other non-contacting scheme. Advantages of this approach include scalability and passive stability.

  5. Characterizing the wake vortex signature for an active line of sight remote sensor. M.S. Thesis Technical Report No. 19

    NASA Technical Reports Server (NTRS)

    Heil, Robert Milton

    1994-01-01

    A recurring phenomenon, described as a wake vortex, develops as an aircraft approaches the runway to land. As the aircraft moves along the runway, each of the wing tips generates a spiraling and expanding cone of air. During the lifetime of this turbulent event, conditions exist over the runway which can be hazardous to following aircraft, particularly when a small aircraft is following a large aircraft. Left to themselves, these twin vortex patterns will converge toward each other near the center of the runway, harmlessly dissipating through interaction with each other or by contact with the ground. Unfortunately, the time necessary to disperse the vortex is often not predictable, and at busy airports can severely impact terminal area productivity. Rudimentary methods of avoidance are in place. Generally, time delays between landing aircraft are based on what is required to protect a small aircraft. Existing ambient wind conditions can complicate the situation. Reliable detection and tracking of a wake vortex hazard is a major technical problem which can significantly impact runway productivity. Landing minimums could be determined on the basis of the actual hazard rather than imposed on the basis of a worst case scenario. This work focuses on using a windfield description of a wake vortex to generate line-of-sight Doppler velocity truth data appropriate to an arbitrarily located active sensor such as a high resolution radar or lidar. The goal is to isolate a range Doppler signature of the vortex phenomenon that can be used to improve detection. Results are presented based on use of a simplified model of a wake vortex pattern. However, it is important to note that the method of analysis can easily be applied to any vortex model used to generate a windfield snapshot. Results involving several scan strategies are shown for a point sensor with a range resolution of 1 to 4 meters. Vortex signatures presented appear to offer potential for detection and tracking.

  6. A Biomechanical Comparison Of Pin Configurations Used For Percutaneous Pinning Of Distal Tibia Fractures In Children.

    PubMed

    Brantley, Justin; Majumdar, Aditi; Jobe, J Taylor; Kallur, Antony; Salas, Christina

    2016-01-01

    Percutaneous pin fixation is often used in conjunction with closed-reduction and cast immobilization to treat pediatric distal tibia fractures. The goal of this procedure is to maintain reduction and provide improved stabilization, in effort to facilitate a more anatomic union. We conducted a biomechanical study of the torsional and bending stability of three commonly used pin configurations in distal tibia fracture fixation. A transverse fracture was simulated at the metaphyseal/diaphyseal junction in 15 synthetic tibias. Each fracture was reduced and fixed with two Kirschner wires, arranged in one of three pin configurations: parallel, retrograde, medial to lateral pins entering at the medial malleolus distal to the fracture (group A); parallel, antegrade, medial to lateral pins entering at the medial diaphysis proximal to the fracture (group B); or a cross-pin configuration with one retrograde, medial to lateral pin entering the medial malleolus distal to the fracture and the second an antegrade, medial to lateral pin entering at the medial diaphysis proximal to the fracture (group C). Stability of each construct was assessed by resistance to torsion and bending. Resistance to external rotation stress was significantly higher in group A than group B (P = 0.044). Resistance to internal rotation stress was significantly higher in group C than group B (P = 0.003). There was no significant difference in torsional stiffness when comparing group A with group C. Under a medial-directed load, group B and C specimens were significantly stiffer than those in group A (28 N/mm and 24 N/mm vs. 14 N/mm for A; P = 0.001 and P = 0.009, respectively). None of the three pin configurations produced superior results with respect to all variables studied. Group A configuration provided the highest resistance to external rotation forces, which is the most clinically relevant variable under short-cast immobilization. Parallel, retrograde, medial to lateral pins entering at the medial malleolus provide the greatest resistance to external rotation of the foot while minimizing the potential for iatrogenic injury to soft tissue structures.

  7. Ozone Loss From Quasi-Conservative Coordinate Mapping During the 1999-2000 SOLVE Campaign

    NASA Technical Reports Server (NTRS)

    Lait, L. R.; Schoeberl, M. R.; Newman, P. A.; McGee, T.; Burris, J.; Browell, E. V.; Richard, E.; Braathen, G. O.; Bojkov, B. R.; Goutail, F.; hide

    2001-01-01

    During the winter of 1999-2000, the Sage III Ozone Loss and Validation Experiment (SOLVE) field experiment took place in Kiruna, Sweden. The purpose of SOLVE was to examine ozone depletion mechanisms in the Arctic stratosphere (from about 10 to 50 km altitude) during the winter and early spring, when a band of strong winds (the 'polar vortex') circle the pole. Measurements of stratospheric ozone were made by several different kinds of instruments in different meteorological situations. We analyzed these data using the 'quasi-conservative coordinate mapping' technique, in which the measurements are analyzed in terms of meteorological properties ('potential temperature' and 'potential vorticity') which tend not to change very much over a few days. This technique reduces or removes the changes that are associated with the polar vortex moving around. Over longer time periods, potential temperature and potential vorticity change as air cools and descends within the polar vortex. We account for these changes by calculating the trajectories of air parcels, and this enables us to extend the analysis over a ten-week period from January 10 to March 17, 2000. Using data from the NASA ER-2 aircraft, from the DIAL and AROTEL laser sounders on the NASA DC-8 aircraft, and balloon-borne ozonesondes, our analysis reveals changes in ozone which, because we have removed the effects of polar vortex motion and the descending air, indicate chemical destruction of ozone in early 2000. We find a peak decline rate of approximately 0.03 ppmv/day near 470 K of potential temperature (near 20 km) in mid-January which sinks in altitude to around 440 K (near 18 km) in mid-March.

  8. Antifibrotic Mechanism of Pinocembrin: Impact on Oxidative Stress, Inflammation and TGF-β /Smad Inhibition in Rats.

    PubMed

    Said, Marwa M; Azab, Samar S; Saeed, Noha M; El-Demerdash, Ebtehal

    2018-03-01

    The present study aimed to elucidate the potential antifibrotic effects of pinocembrin (PIN), a flavanone found abundantly in honey and propolis, by studying its effect on different oxidative stress, inflammatory and fibrosis markers in an experimental model of CCl4-induced liver fibrosis. PIN (20 mg/kg) was given orally 3 times/week for 6 consecutive weeks alternating with CCl4 (0.5 mL/kg, 1:1 mixture with corn oil, i. p.) twice weekly. Different hepatotoxicity indices, oxidative stress, inflammatory and liver fibrosis markers were assessed. PIN significantly restored liver transaminases and total cholesterol to normal levels. Also, PIN ameliorated oxidative stress injury evoked by CCl4 as evidenced by inhibition of reduced glutathione depletion and lipid peroxidation as well as elevation of antioxidant enzyme superoxide dismutase (SOD). Further, PIN upregulated the nuclear factor erythroid 2 (NF-E2)-related factor 2 (Nrf2), thereby inducing the expression and activity of the cytoprotective enzyme hemeoxygenase-1 (HO-1). Moreover, PIN alleviated pro-inflammatory cytokines such as TNF-α via inhibiting nuclear factor-κB (NF-κB) activation. As markers of fibrosis, collagen and α-SMA expression increased markedly in the CCl4 group and PIN prevented these alterations. In addition, PIN down-regulated TGFβ1 and p-Smad2/3, thereby inhibiting TGFβ1/Smad signaling pathway. These results suggest that PIN possess potent antifibrotic effects that can be explained on its antioxidant properties. It ameliorates oxidative stress and inflammation during induction of fibrogenesis via its ability to augment celular antioxidant defenses, activating Nrf2-mediated HO-1 expression and modulating NF-κB and TGF-β1/Smad signaling pathway.

  9. Tricritical spiral vortex instability in cross-slot flow.

    PubMed

    Haward, Simon J; Poole, Robert J; Alves, Manuel A; Oliveira, Paulo J; Goldenfeld, Nigel; Shen, Amy Q

    2016-03-01

    We examine fluid flow through cross-slot devices with various depth to width ratios α. At low Reynolds number, Re, flow is symmetric and a sharp boundary exists between the two incoming fluid streams. Above an α-dependent critical value, Re(c)(α), a steady symmetry-breaking bifurcation occurs and a spiral vortex structure develops. Order parameters characterizing the instability grow according to a sixth-order Landau potential, and show a progression from second- to first-order transitions as α increases beyond a tricritical value of α ≈ 0.55. Flow simulations indicate the instability is driven by vortex stretching at the stagnation point.

  10. Directed motion of vortices and annihilation of vortex-antivortex pairs in finite-gap superconductors via hot-lattice routes

    NASA Astrophysics Data System (ADS)

    Gulian, Ellen D.; Melkonyan, Gurgen G.; Gulian, Armen M.

    2017-07-01

    Using finite gap, time-dependent Ginzburg-Landau equations, generalized to include non-thermal phonons, we report numerical simulations of vortex nucleation, propagation, and annihilation in thin, finite strips of magnetic-impurity free, perfectly homogeneous superconductors. When a steady electric current passes through the strip with either surface defects or nonequilibrium phonon sources (e.g., local ;hotspots;), periodic vortex generation and annihilation is observed even in the absence of external magnetic fields. Local pulses of electric field are produced upon annihilation. The injected phonon lines steer the vortices during their motion within the strip, potentially allowing control of the annihilation site.

  11. Oscillatory dependence of current driven domain wall motion on current pulse length

    NASA Astrophysics Data System (ADS)

    Thomas, Luc

    2007-03-01

    The motion of domain walls (DW) in magnetic nanowires driven by spin torque from spin-polarized current is of considerable interest. Most previous work has considered the effect of dc or ˜microsecond long current pulses. Here, we show that the dynamics of DWs driven by nanosecond-long current pulses is unexpectedly complex. In particular, we show that the current driven motion of a DW, confined to a pinning site in a permalloy nanowire, exhibits an oscillatory dependence on the current pulse length with a period of just a few nanoseconds [1]. This behavior can be understood within a surprisingly straightforward one dimensional analytical model of the DW's motion. When a current pulse is applied, the DW's position oscillates within the pinning potential out of phase with the DW's out-of-plane magnetization, where the latter acts like the DW's momentum. Thus, the current driven motion of the DW is akin to a harmonic oscillator, whose frequency is determined by the ``mass'' of the DW and where the restoring force is related to the slope of the pinning potential. Remarkably, when the current pulse is turned off during phases of the DW motion when it has enough momentum, the amplitude of the oscillations can be amplified such that the DW exits the pinning potential well after the pulse is turned off. This oscillatory depinning occurs for currents smaller than the dc threshold current, and, moreover, the DW moves against the electron flow, opposite to the propagation direction above the dc threshold. These effects can be further amplified by using trains of current pulses whose lengths and separations are matched to the DW's oscillation period. In this way, we have demonstrated a five fold reduction in the threshold current required to move a DW out of a pinning site, making this effect potentially important for technological applications. [1] L. Thomas, M. Hayashi, X. Jiang, R. Moriya, C. Rettner and S.S.P. Parkin, Nature 443, 197 (2006).

  12. Pin1 Modulates the Synaptic Content of NMDA Receptors via Prolyl-Isomerization of PSD-95.

    PubMed

    Antonelli, Roberta; De Filippo, Roberto; Middei, Silvia; Stancheva, Stefka; Pastore, Beatrice; Ammassari-Teule, Martine; Barberis, Andrea; Cherubini, Enrico; Zacchi, Paola

    2016-05-18

    Phosphorylation of serine/threonine residues preceding a proline regulates the fate of its targets through postphosphorylation conformational changes catalyzed by the peptidyl-prolyl cis-/trans isomerase Pin1. By flipping the substrate between two different functional conformations, this enzyme exerts a fine-tuning of phosphorylation signals. Pin1 has been detected in dendritic spines and shafts where it regulates protein synthesis required to sustain the late phase of long-term potentiation (LTP). Here, we demonstrate that Pin1 residing in postsynaptic structures can interact with postsynaptic density protein-95 (PSD-95), a key scaffold protein that anchors NMDA receptors (NMDARs) in PSD via GluN2-type receptor subunits. Pin1 recruitment by PSD-95 occurs at specific serine-threonine/proline consensus motifs localized in the linker region connecting PDZ2 to PDZ3 domains. Upon binding, Pin1 triggers structural changes in PSD-95, thus negatively affecting its ability to interact with NMDARs. In electrophysiological experiments, larger NMDA-mediated synaptic currents, evoked in CA1 principal cells by Schaffer collateral stimulation, were detected in hippocampal slices obtained from Pin1(-/-) mice compared with controls. Similar results were obtained in cultured hippocampal cells expressing a PSD-95 mutant unable to undergo prolyl-isomerization, thus indicating that the action of Pin1 on PSD-95 is critical for this effect. In addition, an enhancement in spine density and size was detected in CA1 principal cells of Pin1(-/-) or in Thy-1GFP mice treated with the pharmacological inhibitor of Pin1 catalytic activity PiB.Our data indicate that Pin1 controls synaptic content of NMDARs via PSD-95 prolyl-isomerization and the expression of dendritic spines, both required for LTP maintenance. PSD-95, a membrane-associated guanylate kinase, is the major scaffolding protein at excitatory postsynaptic densities and a potent regulator of synaptic strength and plasticity. The activity of PSD-95 is tightly controlled by several post-translational mechanisms including proline-directed phosphorylation. This signaling cascade regulates the fate of its targets through postphosphorylation conformational modifications catalyzed by the peptidyl-prolyl cis-/trans isomerase Pin1. Here, we uncover a new role of Pin1 in glutamatergic signaling. By interacting with PSD-95, Pin1 dampens PSD-95 ability to complex with NMDARs, thus negatively affecting NMDAR signaling and spine morphology. Our findings further emphasize the emerging role of Pin1 as a key modulator of synaptic transmission. Copyright © 2016 the authors 0270-6474/16/365437-11$15.00/0.

  13. Characteristics of a wingtip vortex from an oscillating winglet

    NASA Astrophysics Data System (ADS)

    Guha, T. K.; Kumar, R.

    2017-01-01

    Initial perturbations in the wingtip vortices can potentially lead to instabilities that significantly reduce their lifetime in the wake of an aircraft. An active winglet capable of oscillating about its point of attachment to the main wing-section is developed using piezoelectric macro fiber composite, to actively perturb the vortex at its onset. Resonance characteristics of the actuated winglet oscillations are evaluated at different excitation levels and aerodynamic loading. Mean near-field characteristics of the vortex, developing from a stationary and an oscillating winglet, are investigated with the help of stereoscopic particle image velocimetry. Results show that the amplitude of winglet oscillations increases linearly with input excitation, to a highest attainable value of nearly four times the airfoil thickness at the winglet tip. The vortex developing from a winglet is stretched along its axis, having an elliptical core with non-uniform vorticity distribution. Actuation leads to spatial oscillations of the vortex core together with a reduction in the mean peak vorticity levels. The amplitude of the actuated core oscillations remains constant in the investigated region of the wake.

  14. Atomic Josephson Vortex

    NASA Astrophysics Data System (ADS)

    Kaurov, Vitaliy; Kuklov, Anatoly

    2006-03-01

    We show that atomic Josephson vortices [1] in a quasi-1D atomic junction can be controllably manipulated by imposing a tunneling bias current created by a difference of chemical potentials on the atomic BEC waveguides forming the junction. This effect, which has its origin in the Berry phase structure of a vortex, turns out to be very robust in the whole range of the parameters where such vortices can exist [2]. Acceleration of the vortex up to a certain threshold speed, determined by the strength of the Josephson coupling, results in the phase slip causing switching of the vorticity. This effect is directly related to the interconversion [1], when slow variation of the coupling can cause transformation of the vortex into the dark soliton and vice verse. We also propose that a Josephson vortex can be created by the phase imprinting technique and can be identified by a specific tangential feature in the interference picture produced by expanding clouds released from the waveguides [2]. [1] V. M. Kaurov , A. B. Kuklov, Phys. Rev. A 71, 11601(R) (2005). [2] V. M. Kaurov , A. B. Kuklov cond-mat/0508342

  15. Random pinning elucidates the nature of melting transition in two-dimensional core-softened potential system

    NASA Astrophysics Data System (ADS)

    Tsiok, E. N.; Fomin, Y. D.; Ryzhov, V. N.

    2018-01-01

    Despite about forty years of investigations, the nature of the melting transition in two dimensions is not completely clear. In the framework of the most popular Berezinskii-Kosterlitz-Thouless-Halperin-Nelson-Young (BKTHNY) theory, 2D systems melt through two continuous Berezinskii-Kosterlitz-Thouless (BKT) transitions with intermediate hexatic phase. The conventional first-order transition is also possible. On the other hand, recently on the basis of computer simulations the new melting scenario was proposed with continuous BKT type solid-hexatic transition and first order hexatic-liquid transition. However, in the simulations the hexatic phase is extremely narrow that makes its study difficult. In the present paper, we propose to apply the random pinning to investigate the hexatic phase in more detail. The results of molecular dynamics simulations of two dimensional system having core-softened potentials with narrow repulsive step which is similar to the soft disk system are outlined. The system has a small fraction of pinned particles giving quenched disorder. Random pinning widens the hexatic phase without changing the melting scenario and gives the possibility to study the behavior of the diffusivity and order parameters in the vicinity of the melting transition and inside the hexatic phase.

  16. Transient fault behavior in a microprocessor: A case study

    NASA Technical Reports Server (NTRS)

    Duba, Patrick

    1989-01-01

    An experimental analysis is described which studies the susceptibility of a microprocessor based jet engine controller to upsets caused by current and voltage transients. A design automation environment which allows the run time injection of transients and the tracing from their impact device to the pin level is described. The resulting error data are categorized by the charge levels of the injected transients by location and by their potential to cause logic upsets, latched errors, and pin errors. The results show a 3 picoCouloumb threshold, below which the transients have little impact. An Arithmetic and Logic Unit transient is most likely to result in logic upsets and pin errors (i.e., impact the external environment). The transients in the countdown unit are potentially serious since they can result in latched errors, thus causing latent faults. Suggestions to protect the processor against these errors, by incorporating internal error detection and transient suppression techniques, are also made.

  17. ATMOS Measurements of H2O + 2CH4 and Total Reactive Nitrogen in the November 1994 Antarctic Stratosphere: Dehydration and Denitrification in the Vortex

    NASA Technical Reports Server (NTRS)

    Rinsland, C. P.; Gunson, M. R.; Salawitch, R. J.; Newchurch, M. J.; Zander, R.; Abbas, M. M.; Abrams, M. C.; Manney, G. L.; Michelsen, H. A.; Chang, A. Y.; hide

    1996-01-01

    Simultaneous stratospheric volume mixing ratios (VMR's) measured inside and outside the Antarctic vortex by the Atmospheric Trace Molecule Spectroscopy (ATMOS) instrument in November 1994 reveal previously unobserved features in the distributions of total reactive nitrogen (NO(y)) and total hydrogen (H2O + 2CH4). Maximum removal of NO(y) due to sedimentation of polar stratospheric clouds (PSC's) inside the vortex occurred at a potential temperature (Theta) of 500-525 K (approximately 20 km), where values were 5 times smaller than measurements outside. Maximum loss of H2O + 2CH4 due to PSC's occurred in the vortex at 425-450 K, approximately 3 km lower than the peak NO(y) loss. At that level, H2O + 2CH4 VMR's inside the vortex were approximately 70% of corresponding values outside. The Antarctic and April 1993 Arctic measurements by ATMOS show no significant differences in H2O + 2CH4 VMR's outside the vortices in the two hemispheres. Elevated NO(y) VMRs were measured inside the vortex near 700 K. Recent model calculations indicate that this feature results from downward transport of elevated NO(y) produced in the thermosphere and mesosphere.

  18. Management of Vortices Trailing Flapped Wings via Separation Control

    NASA Technical Reports Server (NTRS)

    Greenblatt, David

    2005-01-01

    A pilot study was conducted on a flapped semi-span model to investigate the concept and viability of near-wake vortex management via separation control. Passive control was achieved by means of a simple fairing and active control was achieved via zero mass-flux blowing slots. Vortex sheet strength, estimated by integrating surface pressure ports, was used to predict vortex characteristics by means of inviscid rollup relations. Furthermore, vortices trailing the flaps were mapped using a seven-hole probe. Separation control was found to have a marked effect on vortex location, strength, tangential velocity, axial velocity and size over a wide range of angles of attack and control conditions. In general, the vortex trends were well predicted by the inviscid rollup relations. Manipulation of the separated flow near the flap edges exerted significant control over both outboard and inboard edge vortices while producing negligible lift excursions. Dynamic separation and attachment control was found to be an effective means for dynamically perturbing the vortex from arbitrarily long wavelengths down to wavelengths less than a typical wingspan. In summary, separation control has the potential for application to time-independent or time-dependent wake alleviation schemes, where the latter can be deployed to minimize adverse effects on ride-quality and dynamic structural loading.

  19. Description of Selected Algorithms and Implementation Details of a Concept-Demonstration Aircraft VOrtex Spacing System (AVOSS)

    NASA Technical Reports Server (NTRS)

    Hinton, David A.

    2001-01-01

    A ground-based system has been developed to demonstrate the feasibility of automating the process of collecting relevant weather data, predicting wake vortex behavior from a data base of aircraft, prescribing safe wake vortex spacing criteria, estimating system benefit, and comparing predicted and observed wake vortex behavior. This report describes many of the system algorithms, features, limitations, and lessons learned, as well as suggested system improvements. The system has demonstrated concept feasibility and the potential for airport benefit. Significant opportunities exist however for improved system robustness and optimization. A condensed version of the development lab book is provided along with samples of key input and output file types. This report is intended to document the technical development process and system architecture, and to augment archived internal documents that provide detailed descriptions of software and file formats.

  20. Investigation of aerodynamic characteristics of subsonic wings

    NASA Technical Reports Server (NTRS)

    Dejarnette, F. R.; Frink, N. T.

    1979-01-01

    An analytical strake design procedure is investigated. A numerical solution to the governing strake design equation is used to generate a series of strakes which are tested in a water tunnel to study their vortex breakdown characteristics. The strakes are scaled for use on a half-scale model of the NASA-LaRC general research fuselage with a 44 degrees trapezoidal wing. An analytical solution to the governing design equation is obtained. The strake design procedure relates the potential-flow leading-edge suction and pressure distributions to vortex stability. Several suction distributions are studied and those which are more triangular and peak near the tip generate strakes that reach higher angles of attack before vortex breakdown occurs at the wing trailing edge. For the same suction distribution, a conical rather than three dimensional pressure specification results in a better strake shape as judged from its vortex breakdown characteristics.

  1. Role of electric discharges in the generation of atmospheric vortices

    NASA Astrophysics Data System (ADS)

    Sinkevich, O. A.; Maslov, S. A.; Gusein-zade, N. G.

    2017-02-01

    The existing thermohydrodynamic and hydroelectromagnetic models of tornado are considered. The potentialities of the humid atmosphere as a heat engine generating air vortices are analyzed in detail. The ability of long-term atmospheric electric discharges to form a tornado funnel and create an initial twist of up to 10-3-10-2 s-1 in it are estimated. The possible effect of a lightning discharge on the initiation and evolution of the tornado is discussed. It is shown that the electric current flowing along the lightning channel can lead to helical instability and generation of a weak primary vortex. The channel formed in the atmosphere by a lightning discharge and the vortex motion of the parent thundercloud can enhance the primary vortex and promote its transformation into a tornado. Possible mechanisms of enhancement of the primary vortex created by a lightning discharge and the possibility of its transformation into a tornado in the postdischarge stage are discussed.

  2. Interactions and scattering of quantum vortices in a polariton fluid.

    PubMed

    Dominici, Lorenzo; Carretero-González, Ricardo; Gianfrate, Antonio; Cuevas-Maraver, Jesús; Rodrigues, Augusto S; Frantzeskakis, Dimitri J; Lerario, Giovanni; Ballarini, Dario; De Giorgi, Milena; Gigli, Giuseppe; Kevrekidis, Panayotis G; Sanvitto, Daniele

    2018-04-13

    Quantum vortices, the quantized version of classical vortices, play a prominent role in superfluid and superconductor phase transitions. However, their exploration at a particle level in open quantum systems has gained considerable attention only recently. Here we study vortex pair interactions in a resonant polariton fluid created in a solid-state microcavity. By tracking the vortices on picosecond time scales, we reveal the role of nonlinearity, as well as of density and phase gradients, in driving their rotational dynamics. Such effects are also responsible for the split of composite spin-vortex molecules into elementary half-vortices, when seeding opposite vorticity between the two spinorial components. Remarkably, we also observe that vortices placed in close proximity experience a pull-push scenario leading to unusual scattering-like events that can be described by a tunable effective potential. Understanding vortex interactions can be useful in quantum hydrodynamics and in the development of vortex-based lattices, gyroscopes, and logic devices.

  3. Is the Diagonal Part of the Self-Energy Negligible within an Isolated Vortex in Weak-Coupling Superconductors?

    NASA Astrophysics Data System (ADS)

    Kurosawa, Noriyuki

    2018-02-01

    In the weak-coupling theory of superconductivity, the diagonal self-energy term is usually disregarded so that this term is already included in the renormalized chemical potential. Using the bulk solution, we can easily see that the term vanishes in the quasiclassical level. However, the validity of this treatment is obscured in nonuniform systems, such as quantized vortices. In this paper, we study an isolated vortex both analytically and numerically using the quasiclassical theory and demonstrate that the finite magnitude of the self-energy can emerge within a vortex in some odd-parity superconductors. We also find that the existence of diagonal self-energy can induce the breaking of the axisymmetry of vortices in chiral p-wave superconductors. This implies that the diagonal self-energy is not negligible within a vortex in odd-parity superconductors in general, even in the weak-coupling limit.

  4. Ultra-thin optical vortex phase plate based on the metasurface and the angular momentum transformation

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Li, Yan; Guo, Zhongyi; Li, Rongzhen; Zhang, Jingran; Zhang, Anjun; Qu, Shiliang

    2015-04-01

    The ultra-thin optical vortex phase plate (VPP) has been designed and investigated based on the metasurface of the metal rectangular split-ring resonators (MRSRRs) array. The circularly polarized incident light can convert into corresponding cross-polarization transmission light, and the phase and the amplitude of cross-polarization transmission light can be simultaneously governed by modulating two arms of the MRSRR. The MRSRR has been arranged in a special order for forming an ultra-thin optical VPP that can covert a plane wave into a vortex beam with a variety of the topological charges, and the transformation between spin angular momentum (SAM) and orbital angular momentum (OAM) has been discussed in detail. The multi-spectral characteristics of the VPP have also been investigated, and the operating bandwidth of the designed VPP is 190 nm (in the range of 710-900 nm), which enable a potential implication for integrated optics and vortex optics.

  5. Vortex-soliton complexes in coupled nonlinear Schrödinger equations with unequal dispersion coefficients.

    PubMed

    Charalampidis, E G; Kevrekidis, P G; Frantzeskakis, D J; Malomed, B A

    2016-08-01

    We consider a two-component, two-dimensional nonlinear Schrödinger system with unequal dispersion coefficients and self-defocusing nonlinearities, chiefly with equal strengths of the self- and cross-interactions. In this setting, a natural waveform with a nonvanishing background in one component is a vortex, which induces an effective potential well in the second component, via the nonlinear coupling of the two components. We show that the potential well may support not only the fundamental bound state, but also multiring excited radial state complexes for suitable ranges of values of the dispersion coefficient of the second component. We systematically explore the existence, stability, and nonlinear dynamics of these states. The complexes involving the excited radial states are weakly unstable, with a growth rate depending on the dispersion of the second component. Their evolution leads to transformation of the multiring complexes into stable vortex-bright solitons ones with the fundamental state in the second component. The excited states may be stabilized by a harmonic-oscillator trapping potential, as well as by unequal strengths of the self- and cross-repulsive nonlinearities.

  6. Vortices in Long Josephson Junctions.

    DTIC Science & Technology

    1987-11-01

    of the very low impedance vortex flow transistor and toward determination of its potential for high frequency applications. Capability for higher...version. New progress was made toward solution of the problems of high frequency testing of the very low impedance vortex flow transistor and towards... measurable transresistance ’". out to frequencies of about 10% of the theoretical transit time cutoff fre- quency. Capability for higher frequency testing

  7. Engineering double-well potentials with variable-width annular Josephson tunnel junctions

    NASA Astrophysics Data System (ADS)

    Monaco, Roberto

    2016-11-01

    Long Josephson tunnel junctions are non-linear transmission lines that allow propagation of current vortices (fluxons) and electromagnetic waves and are used in various applications within superconductive electronics. Recently, the Josephson vortex has been proposed as a new superconducting qubit. We describe a simple method to create a double-well potential for an individual fluxon trapped in a long elliptic annular Josephson tunnel junction characterized by an intrinsic non-uniform width. The distance between the potential wells and the height of the inter-well potential barrier are controlled by the strength of an in-plane magnetic field. The manipulation of the vortex states can be achieved by applying a proper current ramp across the junction. The read-out of the state is accomplished by measuring the vortex depinning current in a small magnetic field. An accurate one-dimensional sine-Gordon model for this strongly non-linear system is presented, from which we calculate the position-dependent fluxon rest-mass, its Hamiltonian density and the corresponding trajectories in the phase space. We examine the dependence of the potential properties on the annulus eccentricity and its electrical parameters and address the requirements for observing quantum-mechanical effects, as discrete energy levels and tunneling, in this two-state system.

  8. Microseismic Analysis of Fracture of an Intact Rock Asperity Traversing a Sawcut Fault

    NASA Astrophysics Data System (ADS)

    Mclaskey, G.; Lockner, D. A.

    2017-12-01

    Microseismic events carry information related to stress state, fault geometry, and other subsurface properties, but their relationship to large and potentially damaging earthquakes is not well defined. We conducted laboratory rock mechanics experiments that highlight the interaction between a sawcut fault and an asperity composed of an intact rock "pin". The sample is a 76 mm diameter cylinder of Westerly granite with a 21 mm diameter cylinder (the pin) of intact Westerly granite that crosses the sawcut fault. Upon loading to 80 MPa in a triaxial machine, we first observed a slip event that ruptured the sawcut fault, slipped about 35 mm, but was halted by the rock pin. With continued loading, the rock pin failed in a swarm of thousands of M -7 seismic events similar to the localized microcracking that occurs during the final fracture nucleation phase in an intact rock sample. Once the pin was fractured to a critical point, it permitted complete rupture events on the sawcut fault (stick-slip instabilities). No seismicity was detected on the sawcut fault plane until the pin was sheared. Subsequent slip events were preceded by 10s of foreshocks, all located on the fault plane. We also identified an aseismic zone on the fault plane surrounding the fractured rock pin. A post-mortem analysis of the sample showed a thick gouge layer where the pin intersected the fault, suggesting that this gouge propped open the fault and prevented microseismic events in its vicinity. This experiment is an excellent case study in microseismicity since the events separate neatly into three categories: slip on the sawcut fault, fracture of the intact rock pin, and off-fault seismicity associated with pin-related rock joints. The distinct locations, timing, and focal mechanisms of the different categories of microseismic events allow us to study how their occurrence is related to the mechanics of the deforming rock.

  9. A ``NEW'' Solid-Core Reactor Fuel Form that Maximizes the Performance of Nuclear Thermal and Electric Rockets

    NASA Astrophysics Data System (ADS)

    Rom, Frank E.; Finnegan, Patrick M.

    1994-07-01

    The ``NEW'' solid-core fuel form is the old Vapor Transport (VT) fuel pin investigated at NASA about 30 years ago. It is simply a tube sealed at both ends partially filled with UO2. During operation the UO2 forms an annular layer on the inside of the tube by vaporization and condensation. This form is an ideal structure for overall strength and retention of fission products. All of the structural material lies between the fuel (including fission products) and the reactor coolant. The isothermal inside fuel surface temperature that results from the vaporization and condensation of fuel during operation eliminates hotspots, significantly increasing the design fuel pin surface temperature. For NTP, W-UO2 fuel pins yield higher operating temperatures than for other fuel forms, because W has about a ten-fold lower vaporization rate compared to any other known material. The use of perigee propulsion using W-UO2 fuel pins can result in a more than ten-fold reduction in reactor power. Lower reactor power, together with zero fission product release potential, and the simplicity of fabrication of VT fuel pins should greatly simplify and reduce the cost of development of NTP. For NEP, VT fuel pins can increase fast neutron spectrum reactor life with no fission product release. Thermal spectrum NEP reactors using W184 or Mo VT fuel pins, with only small amounts of high neutron absorbing additives, offer benefits because of much lower fissionable fuel requirements. The VT fuel pin has application to commercial power reactors with similar benefits.

  10. Topological vortex formation in a Bose-Einstein condensate under gravitational field

    NASA Astrophysics Data System (ADS)

    Kawaguchi, Yuki; Nakahara, Mikio; Ohmi, Tetsuo

    2004-10-01

    Topological phase imprinting is a unique technique for vortex formation in a Bose-Einstein condensate (BEC) of an alkali-metal gas, in that it does not involve rotation: the BEC is trapped in a quadrupole field with a uniform bias field which is reversed adiabatically leading to vortex formation at the center of the magnetic trap. The scenario has been experimentally verified by Leanhardt employing Na23 atoms. Recently similar experiments have been conducted by Hirotani in which a BEC of Rb87 atoms was used. In the latter experiments the authors found that fine-tuning of the field reverse time Trev is required to achieve stable vortex formation. Otherwise, they often observed vortex fragmentation or a condensate without a vortex. It is shown in this paper that this behavior can be attributed to the heavy mass of the Rb atom. The confining potential, which depends on the eigenvalue mB of the hyperfine spin F along the magnetic field, is now shifted by the gravitational field perpendicular to the vortex line. Then the positions of two weak-field-seeking states with mB=1 and 2 deviate from each other. This effect is more prominent for BECs with a heavy atomic mass, for which the deviation is greater and, moreover, the Thomas-Fermi radius is smaller. We found, by solving the Gross-Pitaevskii equation numerically, that two condensates interact in a very complicated way leading to fragmentation of vortices, unless Trev is properly tuned.

  11. Materials technology for an advanced space power nuclear reactor concept: Program summary

    NASA Technical Reports Server (NTRS)

    Gluyas, R. E.; Watson, G. K.

    1975-01-01

    The results of a materials technology program for a long-life (50,000 hr), high-temperature (950 C coolant outlet), lithium-cooled, nuclear space power reactor concept are reviewed and discussed. Fabrication methods and compatibility and property data were developed for candidate materials for fuel pins and, to a lesser extent, for potential control systems, reflectors, reactor vessel and piping, and other reactor structural materials. The effects of selected materials variables on fuel pin irradiation performance were determined. The most promising materials for fuel pins were found to be 85 percent dense uranium mononitride (UN) fuel clad with tungsten-lined T-111 (Ta-8W-2Hf).

  12. A potential method for lift evaluation from velocity field data

    NASA Astrophysics Data System (ADS)

    de Guyon-Crozier, Guillaume; Mulleners, Karen

    2017-11-01

    Computing forces from velocity field measurements is one of the challenges in experimental aerodynamics. This work focuses on low Reynolds flows, where the dynamics of the leading and trailing edge vortices play a major role in lift production. Recent developments in 2D potential flow theory, using discrete vortex models, have shown good results for unsteady wing motions. A method is presented to calculate lift from experimental velocity field data using a discrete vortex potential flow model. The model continuously adds new point vortices at leading and trailing edges whose circulations are set directly from vorticity measurements. Forces are computed using the unsteady Blasius equation and compared with measured loads.

  13. Onsager Vortex Formation in Two-component Bose-Einstein Condensates

    NASA Astrophysics Data System (ADS)

    Han, Junsik; Tsubota, Makoto

    2018-06-01

    We numerically study the dynamics of quantized vortices in two-dimensional two-component Bose-Einstein condensates (BECs) trapped by a box potential. For one-component BECs in a box potential, it is known that quantized vortices form Onsager vortices, which are clusters of same-sign vortices. We confirm that the vortices of the two components spatially separate from each other — even for miscible two-component BECs — suppressing the formation of Onsager vortices. This phenomenon is caused by the repulsive interaction between vortices belonging to different components, hence, suggesting a new possibility for vortex phase separation.

  14. Vortex formation in magnetic narrow rings

    NASA Astrophysics Data System (ADS)

    Bland, J. A. C.

    2002-03-01

    Underlying the current interest in magnetic elements is the possibility such systems provide both for the study of fundamental phenomena in magnetism (such as domain wall trapping and spin switching) and for technological applications, such as high density magnetic storage or magnetic random access memories (MRAM). One key issue is to control the magnetic switching precisely. To achieve this one needs first to have a well defined and reproducible remanent state, and second the switching process itself must be simple and reproducible. Among the many studied geometries, rings are shown to exhibit several advantages over other geometries, in that they show relatively simple stable magnetic states at remanence, with fast and simple magnetisation switching mechanisms. This is borne out of our systematic investigation of the magnetic properties of epitaxial and polycrystalline Co rings, where both the static, dynamic and transport properties have been studied. Magnetic measurements and micromagnetic simulations show that for appropriate ring structures a two step switching process occurs at high fields, indicating the existence of two different stable states. In addition to the vortex state, which occurs at intermediate fields, we have identified a new bi-domain state, which we term the `onion state', corresponding to opposite circulation of the magnetisation in each half of the ring. The magnetic elements were fabricated using a new technique based on the pre-patterning of Si ring structures and subsequent epitaxial growth of Cu/Co/Cu sandwich films on top of the Si elements. This technique has allowed the growth of epitaxial fcc Co(001) structures and in contrast to conventional lithographic methods, no damage to the magnetic layer structure is introduced by the patterning process [1,2]. We have studied the magnetic switching properties of arrays of narrow Co(100) epitaxial ring magnets, with outer diameters between 1 μm and 2 μm, varying inner diameters and varying film thickness, using magneto-optic Kerr effect (MOKE) magnetometry. The data indicates that the outer diameter of the ring only plays a minor role in determining the value of the switching field. As a general trend, the switching field decreases with increasing ring width and with decreasing film thickness. In particular, the dependence of the switching field on ring width becomes more pronounced for smaller ring widths. This stems from the fact that the vortex state becomes more stable for the narrower rings due to the exchange energy contribution to the barrier for reversal to the onion state. Thicker films also favour the vortex state over the onion state, since the magnetostatic energy associated with the latter state increases with film thickness [3]. Using micromagnetic simulations we show also that the magnetisation reversal in narrow rings can take place via a nucleation-free domain wall motion process when a field pulse is applied in the plane of the film and perpendicular to the net magnetisation. Switching times of the order of 400 ps can be achieved with this approach. A lower bound for the depinning time of the domain walls and a weak dependence of the domain wall velocity with the applied field are described [4]. The magnetic nanostructure of epitaxial fcc Co/Cu(001) circular elements has been imaged with scanning electron microscopy with polarisation analysis (SEMPA) [5]. The elements vary from disks to rings according to the dimensions of the inner diameter of the ring structure and have a nominal composition 4 nm Au/2 nm Cu/34 nm Co/100 nm Cu. In this study the outer diameter was fixed at 1.7 μm while the smallest ring width varies in the range 0.3-0.5 μm. A closed flux quadrant configuration is observed for some of the disks, characteristic of systems with cubic anisotropy (i.e., near vortex structure), besides other more complex configurations at remanence. The width of the 90^o domain wall in the disks is around 0.20 ± 0.05 μm. This value is larger than what expected for continuous films and is a result of the constraints imposed by the geometry of the element. The value is in good agreement with micromagnetic calculations. For the rings we observe directly the `onion-state', the closest configuration to saturation that these structures allow [1]. The results prove that this state is stable in zero applied field. The internal structure of the two head-to-head domain walls in the onion state is analysed. Wider rings (ring width w=0.5 μm) present vortex walls, whereas thinner ones (ring width w=0.3 μm) exhibit transverse walls [6]. This is in good agreement with micromagnetic simulations. We have also investigated the magnetic states and the switching properties of magnetic rings using magneto-resistance (MR) measurements. We chose narrow rings, where particularly simple magnetic states are expected. Some of the rings have notches of different sizes that help to pin, and thereby define, the positions of domain walls. The rings were fabricated using a multi-stage lift-off process, where six non-magnetic contacts in different positions of the ring were made. The rings consist of polycrystalline Co or Ni_80Fe_20 3-30 nm thick capped with 6 nm Au, with outer ring diameter 1.4 μm, ring width 80 nm, and notches of different sizes. Conventional MR-H loop measurements with a fixed magnetic field direction, and measurements with rotating constant field magnitude were performed. In one example of the first type of MR measurements, the direction of the field and the contacts were chosen so that at saturation the magnetization is perpendicular to the current. As expected, at saturation the resistance is low whereas at remanence it is high. There is a clear two-step switching process between the `onion' state and the vortex state as expected from previous studies on rings [1]. During the first switching the resistance increases, corresponding to the transition into the vortex state. Since no domain wall is present between the contacts, the magnetization is everywhere parallel to the current, and the resistance is high. After the second switching into the reverse `onion' state a domain wall is now present between the contacts. This means some of the magnetization in the transverse domain wall is perpendicular to the current and hence the resistance decreases. This shows that one can clearly distinguish between the onion and vortex state using MR measurements. In addition, using the field dependent voltage drop between different contacts, the switching field at which each part of the ring reverses can be determined. >From the second type of measurements clear hysteretic behaviour is seen, indicating that there is some domain wall pinning. This demonstrates that the position of the domain walls can be identified by looking at the voltage drop between different contacts. By measuring at different magnitudes of the applied field the pinning strength of the domain walls is determined, and in particular the dependence of the domain wall pinning on the notch size. Furthermore the structure of the domain wall changes for different notch sizes, and hence the contribution of the wall to the resistance changes as well. Real-time measurements between different contacts might allow for domain wall speed measurements and other domain wall propagation studies. References: [1] J. Rothman, M. Kläui, L. Lopez-Diaz, C.A.F. Vaz, A. Bleloch, J.A.C. Bland, Z. Cui, R. Speaks, Phys. Rev. Lett. 86 (2001) 1098. [2] Z. Cui, J. Rothman, M. Kläui, L. Lopez-Diaz, C.A.F. Vaz, J.A.C. Bland, to be published. [3] M. Kläui, L. Lopez-Diaz, J. Rothman, C.A.F. Vaz, J.A.C. Bland, Z. Cui, J. Magn. Magn. Mat., to be published. [4] L. Lopez-Diaz, J. Rothman, M. Kläui, J.A.C. Bland, IEEE Trans. Mag. 36 (2000) 3155. [5] C.A.F. Vaz, L. Lopez-Diaz, M. Kläui, J.A.C. Bland, T.L. Monchesky, J. Unguris, Z. Cui, 46th MMM Conference, Seattle, 2001. [6] R. D. McMichael and M. J. Donahue, IEEE Trans. Mag. 33, 4167-4169 (1997).

  15. Optical vortex beams: Generation, propagation and applications

    NASA Astrophysics Data System (ADS)

    Cheng, Wen

    An optical vortex (also known as a screw dislocation or phase singularity) is one type of optical singularity that has a spiral phase wave front around a singularity point where the phase is undefined. Optical vortex beams have a lot of applications in areas such as optical communications, LADAR (laser detection and ranging) system, optical tweezers, optical trapping and laser beam shaping. The concepts of optical vortex beams and methods of generation are briefly discussed. The properties of optical vortex beams propagating through atmospheric turbulence have been studied. A numerical modeling is developed and validated which has been applied to study the high order properties of optical vortex beams propagating though a turbulent atmosphere. The simulation results demonstrate the advantage that vectorial vortex beams may be more stable and maintain beam integrity better when they propagate through turbulent atmosphere. As one important application of optical vortex beams, the laser beam shaping is introduced and studied. We propose and demonstrate a method to generate a 2D flat-top beam profile using the second order full Poincare beams. Its applications in two-dimensional flat-top beam shaping with spatially variant polarization under low numerical aperture focusing have been studied both theoretically and experimentally. A novel compact flat-top beam shaper based on the proposed method has been designed, fabricated and tested. Experimental results show that high quality flat-top profile can be obtained with steep edge roll-off. The tolerance to different input beam sizes of the beam shaper is also verified in the experimental demonstration. The proposed and experimentally verified LC beam shaper has the potential to become a promising candidate for compact and low-cost flat-top beam shaping in areas such as laser processing/machining, lithography and medical treatment.

  16. Resonant-spin-ordering of vortex cores in interacting mesomagnets

    NASA Astrophysics Data System (ADS)

    Jain, Shikha

    2013-03-01

    The magnetic system of interacting vortex-state elements have a dynamically reconfigurable ground state characterized by different relative polarities and chiralities of the individual disks; and have a corresponding dynamically controlled spectrum of collective excitation modes that determine the microwave absorption of the crystal. The development of effective methods for dynamic control of the ground state in this vortex-type magnonic crystal is of interest both from fundamental and technological viewpoints. Control of vortex chirality has been demonstrated previously using various techniques; however, control and manipulation of vortex polarities remain challenging. In this work, we present a robust and efficient way of selecting the ground state configuration of interacting magnetic elements using resonant-spin-ordering approach. This is achieved by driving the system from the linear regime of constant vortex gyrations to the non-linear regime of vortex-core reversals at a fixed excitation frequency of one of the coupled modes. Subsequently reducing the excitation field to the linear regime stabilizes the system to a polarity combination whose resonant frequency is decoupled from the initialization frequency. We have utilized the resonant approach to transition between the two polarity combinations (parallel or antiparallel) in a model system of connected dot-pairs which may form the building blocks of vortex-based magnonic crystals. Taking a step further, we have extended the technique by studying many-particle system for its potential as spin-torque oscillators or logic devices. Work at Argonne was supported by the U. S. DOE, Office of BES, under Contract No. DE-AC02-06CH11357. This work was in part supported by grant DMR-1015175 from the U. S. National Science Foundation, by a Contract from the U.S. Army TARDEC and RDECOM.

  17. The Impact of Dry Midlevel Air on Hurricane Intensity in Idealized Simulations with No Mean Flow

    NASA Technical Reports Server (NTRS)

    Braun, Scott A.; Sippel, Jason A.; Nolan, David S.

    2012-01-01

    This study examines the potential negative influences of dry midlevel air on the development of tropical cyclones (specifically, its role in enhancing cold downdraft activity and suppressing storm development). The Weather Research and Forecasting model is used to construct two sets of idealized simulations of hurricane development in environments with different configurations of dry air. The first set of simulations begins with dry air located north of the vortex center by distances ranging from 0 to 270 km, whereas the second set of simulations begins with dry air completely surrounding the vortex, but with moist envelopes in the vortex core ranging in size from 0 to 150 km in radius. No impact of the dry air is seen for dry layers located more than 270 km north of the initial vortex center (approximately 3 times the initial radius of maximum wind). When the dry air is initially closer to the vortex center, it suppresses convective development where it entrains into the storm circulation, leading to increasingly asymmetric convection and slower storm development. The presence of dry air throughout the domain, including the vortex center, substantially slows storm development. However, the presence of a moist envelope around the vortex center eliminates the deleterious impact on storm intensity. Instead, storm size is significantly reduced. The simulations suggest that dry air slows intensification only when it is located very close to the vortex core at early times. When it does slow storm development, it does so primarily by inducing outward- moving convective asymmetries that temporarily shift latent heating radially outward away from the high-vorticity inner core.

  18. Stochastic Resonance in an Underdamped System with Pinning Potential for Weak Signal Detection

    PubMed Central

    Zhang, Haibin; He, Qingbo; Kong, Fanrang

    2015-01-01

    Stochastic resonance (SR) has been proved to be an effective approach for weak sensor signal detection. This study presents a new weak signal detection method based on a SR in an underdamped system, which consists of a pinning potential model. The model was firstly discovered from magnetic domain wall (DW) in ferromagnetic strips. We analyze the principle of the proposed underdamped pinning SR (UPSR) system, the detailed numerical simulation and system performance. We also propose the strategy of selecting the proper damping factor and other system parameters to match a weak signal, input noise and to generate the highest output signal-to-noise ratio (SNR). Finally, we have verified its effectiveness with both simulated and experimental input signals. Results indicate that the UPSR performs better in weak signal detection than the conventional SR (CSR) with merits of higher output SNR, better anti-noise and frequency response capability. Besides, the system can be designed accurately and efficiently owing to the sensibility of parameters and potential diversity. The features also weaken the limitation of small parameters on SR system. PMID:26343662

  19. Stochastic Resonance in an Underdamped System with Pinning Potential for Weak Signal Detection.

    PubMed

    Zhang, Haibin; He, Qingbo; Kong, Fanrang

    2015-08-28

    Stochastic resonance (SR) has been proved to be an effective approach for weak sensor signal detection. This study presents a new weak signal detection method based on a SR in an underdamped system, which consists of a pinning potential model. The model was firstly discovered from magnetic domain wall (DW) in ferromagnetic strips. We analyze the principle of the proposed underdamped pinning SR (UPSR) system, the detailed numerical simulation and system performance. We also propose the strategy of selecting the proper damping factor and other system parameters to match a weak signal, input noise and to generate the highest output signal-to-noise ratio (SNR). Finally, we have verified its effectiveness with both simulated and experimental input signals. Results indicate that the UPSR performs better in weak signal detection than the conventional SR (CSR) with merits of higher output SNR, better anti-noise and frequency response capability. Besides, the system can be designed accurately and efficiently owing to the sensibility of parameters and potential diversity. The features also weaken the limitation of small parameters on SR system.

  20. Effect of charge on the current-voltage characteristics of silicon pin structures with and without getter annealing under beta irradiation of Ni-63.

    PubMed

    Nagornov, Yuri S

    2018-05-01

    The charge model for efficiency of betavoltaics effect is proposed. It allows calculating the charge value for pin structures under irradiation of Ni-63. We approximated the current-voltage characteristics of the structures using an equivalent diode circuit with a charge on the barrier capacitance. We calculated the charge function from current-voltage characteristics for two types of silicon pin structures - with and without getter annealing. The charging on the surface of pin structure decreases the efficiency of betavoltaics effect. Value of charge for our structures is changed in the range from -50 to +15mC/cm 2 and depends on the applied potential. The getter annealing allows getting the structures with a higher efficiency of betavoltaic effect, but it does not exclude the surface charging under beta irradiation from Ni-63. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Thermal-Independent Properties of PIN-PMN-PT Single-Crystal Linear-Array Ultrasonic Transducers

    PubMed Central

    Chen, Ruimin; Wu, Jinchuan; Lam, Kwok Ho; Yao, Liheng; Zhou, Qifa; Tian, Jian; Han, Pengdi; Shung, K. Kirk

    2013-01-01

    In this paper, low-frequency 32-element linear-array ultrasonic transducers were designed and fabricated using both ternary Pb(In1/2Nb1/2)–Pb(Mg1/3Nb2/3)–PbTiO3 (PIN-PMN-PT) and binary Pb(Mg1/3Nb2/3)–PbTiO3 (PMN-PT) single crystals. Performance of the array transducers was characterized as a function of temperature ranging from room temperature to 160°C. It was found that the array transducers fabricated using the PIN-PMN-PT single crystal were capable of satisfactory performance at 160°C, having a −6-dB bandwidth of 66% and an insertion loss of 37 dB. The results suggest that the potential of PIN-PMN-PT linear-array ultrasonic transducers for high-temperature ultrasonic transducer applications is promising. PMID:23221227

  2. Can a pin-tract infection cause an acute generalized soft tissue infection and a compartment syndrome?

    PubMed

    Orhun, Haldun; Saka, Gürsel; Enercan, Meriç

    2005-10-01

    A patient who developed soft tissue infection and osteomyelitis secondary to pin tract infection after skeletal traction was evaluated. Tibial traction was performed on a patient who had exposed to a femoral pertrochanteric fracture after falling from a tree in a rural public hospital. On the first postoperative day shortly after development of soft tissue swelling, redness, and tenderness in the affected leg, compartment syndrome was noted with subsequent removal of the pin at the same health center. After arrival of the case in our center surgical decompression with an open faciatomy and proper antibiotherapy were instituted. Simultaneously hyperbaric oxygen was administered. After eradication of soft tissue infection we treated the fracture with a Richards compression screw-plate device. The patient was discharged with complete cure. This case presented how seriously a simple pin-tract infection can cause a grave clinical entity resulting in potential loss of an extremity.

  3. A coherent transcriptional feed-forward motif model for mediating auxin-sensitive PIN3 expression during lateral root development

    PubMed Central

    Chen, Qian; Liu, Yang; Maere, Steven; Lee, Eunkyoung; Van Isterdael, Gert; Xie, Zidian; Xuan, Wei; Lucas, Jessica; Vassileva, Valya; Kitakura, Saeko; Marhavý, Peter; Wabnik, Krzysztof; Geldner, Niko; Benková, Eva; Le, Jie; Fukaki, Hidehiro; Grotewold, Erich; Li, Chuanyou; Friml, Jiří; Sack, Fred; Beeckman, Tom; Vanneste, Steffen

    2015-01-01

    Multiple plant developmental processes, such as lateral root development, depend on auxin distribution patterns that are in part generated by the PIN-formed family of auxin-efflux transporters. Here we propose that AUXIN RESPONSE FACTOR7 (ARF7) and the ARF7-regulated FOUR LIPS/MYB124 (FLP) transcription factors jointly form a coherent feed-forward motif that mediates the auxin-responsive PIN3 transcription in planta to steer the early steps of lateral root formation. This regulatory mechanism might endow the PIN3 circuitry with a temporal ‘memory' of auxin stimuli, potentially maintaining and enhancing the robustness of the auxin flux directionality during lateral root development. The cooperative action between canonical auxin signalling and other transcription factors might constitute a general mechanism by which transcriptional auxin-sensitivity can be regulated at a tissue-specific level. PMID:26578065

  4. Calculation of vortex lift effect for cambered wings by the suction analogy

    NASA Technical Reports Server (NTRS)

    Lan, C. E.; Chang, J. F.

    1981-01-01

    An improved version of Woodward's chord plane aerodynamic panel method for subsonic and supersonic flow is developed for cambered wings exhibiting edge separated vortex flow, including those with leading edge vortex flaps. The exact relation between leading edge thrust and suction force in potential flow is derived. Instead of assuming the rotated suction force to be normal to wing surface at the leading edge, new orientation for the rotated suction force is determined through consideration of the momentum principle. The supersonic suction analogy method is improved by using an effective angle of attack defined through a semi-empirical method. Comparisons of predicted results with available data in subsonic and supersonic flow are presented.

  5. Generating and Separating Twisted Light by gradient-rotation Split-Ring Antenna Metasurfaces.

    PubMed

    Zeng, Jinwei; Li, Ling; Yang, Xiaodong; Gao, Jie

    2016-05-11

    Nanoscale compact optical vortex generators promise substantially significant prospects in modern optics and photonics, leading to many advances in sensing, imaging, quantum communication, and optical manipulation. However, conventional vortex generators often suffer from bulky size, low vortex mode purity in the converted beam, or limited operation bandwidth. Here, we design and demonstrate gradient-rotation split-ring antenna metasurfaces as unique spin-to-orbital angular momentum beam converters to simultaneously generate and separate pure optical vortices in a broad wavelength range. Our proposed design has the potential for realizing miniaturized on-chip OAM-multiplexers, as well as enabling new types of metasurface devices for the manipulation of complex structured light beams.

  6. Perpendicular blade vortex interaction and its implications for helicopter noise prediction: Wave-number frequency spectra in a trailing vortex for BWI noise prediction

    NASA Technical Reports Server (NTRS)

    Devenport, William J.; Glegg, Stewart A. L.

    1993-01-01

    Perpendicular blade vortex interactions are a common occurrence in helicopter rotor flows. Under certain conditions they produce a substantial proportion of the acoustic noise. However, the mechanism of noise generation is not well understood. Specifically, turbulence associated with the trailing vortices shed from the blade tips appears insufficient to account for the noise generated. The hypothesis that the first perpendicular interaction experienced by a trailing vortex alters its turbulence structure in such a way as to increase the acoustic noise generated by subsequent interactions is examined. To investigate this hypothesis a two-part investigation was carried out. In the first part, experiments were performed to examine the behavior of a streamwise vortex as it passed over and downstream of a spanwise blade in incompressible flow. Blade vortex separations between +/- one eighth chord were studied for at a chord Reynolds number of 200,000. Three-component velocity and turbulence measurements were made in the flow from 4 chord lengths upstream to 15 chordlengths downstream of the blade using miniature 4-sensor hot wire probes. These measurements show that the interaction of the vortex with the blade and its wake causes the vortex core to loose circulation and diffuse much more rapidly than it otherwise would. Core radius increases and peak tangential velocity decreases with distance downstream of the blade. True turbulence levels within the core are much larger downstream than upstream of the blade. The net result is a much larger and more intense region of turbulent flow than that presented by the original vortex and thus, by implication, a greater potential for generating acoustic noise. In the second part, the turbulence measurements described above were used to derive the necessary inputs to a Blade Wake Interaction (BWI) noise prediction scheme. This resulted in significantly improved agreement between measurements and calculations of the BWI noise spectrum especially for the spectral peak at low frequencies, which previously was poorly predicted.

  7. Evaluation of Impinging Stream Vortex Chamber Concepts for Liquid Rocket Engine Applications

    NASA Technical Reports Server (NTRS)

    Trinh, Huu P.; Bullard, Brad; Kopicz, Charles; Michaels, Scott; Turner, James (Technical Monitor)

    2001-01-01

    To pursue technology developments for future launch vehicles, NASA/Marshall Space Flight Center (MSFC) is examining vortex chamber concepts for liquid rocket engine applications. Past studies indicated that the vortex chamber schemes potentially have a number of advantages over conventional chamber methods. Due to the nature of the vortex flow, relatively cooler propellant streams tend to flow along the chamber wall. Hence, the thruster chamber can be operated without the need of any cooling techniques. This vortex flow also creates strong turbulence, which promotes the propellant mixing process. Consequently, the subject chamber concepts not only offer the system simplicity, but they also would enhance the combustion performance. The test results showed that the chamber performance was markedly high even at a low chamber length-to-diameter ratio (L/D). This incentive can be translated to a convenience in the thrust chamber packaging. Variations of the vortex chamber concepts have been introduced in the past few decades. These investigations include an ongoing work at Orbital Technologies Corporation (ORBITEC). By injecting the oxidizer tangentially at the chamber convergence and fuel axially at the chamber head end, Knuth et al. were able to keep the wall relatively cold. A recent investigation of the low L/D vortex chamber concept for gel propellants was conducted by Michaels. He used both triplet (two oxidizer and one fuel orifices) and unlike impinging schemes to inject propellants tangentially along the chamber wall. Michaels called the subject injection scheme as Impinging Stream Vortex Chamber (ISVC). His preliminary tests showed that high performance, with an Isp efficiency of 92%, can be obtained. MSFC and the U.S. Army are jointly investigating an application of the ISVC concept for the cryogenic oxygen/hydrocarbon propellant system. This vortex chamber concept is currently tested with gel propellants at AMCOM at Redstone Arsenal, Alabama. A version of this concept for the liquid oxygen (LOX)/hydrocarbon fuel (RPM) system has been derived from the one for the gel propellant.

  8. Prolyl-isomerase Pin1 controls Notch3 protein expression and regulates T-ALL progression.

    PubMed

    Franciosa, G; Diluvio, G; Gaudio, F Del; Giuli, M V; Palermo, R; Grazioli, P; Campese, A F; Talora, C; Bellavia, D; D'Amati, G; Besharat, Z M; Nicoletti, C; Siebel, C W; Choy, L; Rustighi, A; Sal, G Del; Screpanti, I; Checquolo, S

    2016-09-08

    Deregulated Notch signaling is associated with T-cell Acute Lymphoblastic Leukemia (T-ALL) development and progression. Increasing evidence reveals that Notch pathway has an important role in the invasion ability of tumor cells, including leukemia, although the underlying molecular mechanisms remain mostly unclear. Here, we show that Notch3 is a novel target protein of the prolyl-isomerase Pin1, which is able to regulate Notch3 protein processing and to stabilize the cleaved product, leading to the increased expression of the intracellular domain (N3IC), finally enhancing Notch3-dependent invasiveness properties. We demonstrate that the combined inhibition of Notch3 and Pin1 in the Notch3-overexpressing human leukemic TALL-1 cells reduces their high invasive potential, by decreasing the expression of the matrix metalloprotease MMP9. Consistently, Pin1 depletion in a mouse model of Notch3-induced T-ALL, by reducing N3IC expression and signaling, impairs the expansion/invasiveness of CD4(+)CD8(+) DP cells in peripheral lymphoid and non-lymphoid organs. Notably, in in silico gene expression analysis of human T-ALL samples we observed a significant correlation between Pin1 and Notch3 expression levels, which may further suggest a key role of the newly identified Notch3-Pin1 axis in T-ALL aggressiveness and progression. Thus, combined suppression of Pin1 and Notch3 proteins may be exploited as an additional target therapy for T-ALL.

  9. Prolyl-isomerase Pin1 controls Notch3 protein expression and regulates T-ALL progression

    PubMed Central

    Franciosa, G; Diluvio, G; Gaudio, F Del; Giuli, M V; Palermo, R; Grazioli, P; Campese, A F; Talora, C; Bellavia, D; D'Amati, G; Besharat, Z M; Nicoletti, C; Siebel, C W; Choy, L; Rustighi, A; Sal, G Del; Screpanti, I; Checquolo, S

    2016-01-01

    Deregulated Notch signaling is associated with T-cell Acute Lymphoblastic Leukemia (T-ALL) development and progression. Increasing evidence reveals that Notch pathway has an important role in the invasion ability of tumor cells, including leukemia, although the underlying molecular mechanisms remain mostly unclear. Here, we show that Notch3 is a novel target protein of the prolyl-isomerase Pin1, which is able to regulate Notch3 protein processing and to stabilize the cleaved product, leading to the increased expression of the intracellular domain (N3IC), finally enhancing Notch3-dependent invasiveness properties. We demonstrate that the combined inhibition of Notch3 and Pin1 in the Notch3-overexpressing human leukemic TALL-1 cells reduces their high invasive potential, by decreasing the expression of the matrix metalloprotease MMP9. Consistently, Pin1 depletion in a mouse model of Notch3-induced T-ALL, by reducing N3IC expression and signaling, impairs the expansion/invasiveness of CD4+CD8+ DP cells in peripheral lymphoid and non-lymphoid organs. Notably, in in silico gene expression analysis of human T-ALL samples we observed a significant correlation between Pin1 and Notch3 expression levels, which may further suggest a key role of the newly identified Notch3-Pin1 axis in T-ALL aggressiveness and progression. Thus, combined suppression of Pin1 and Notch3 proteins may be exploited as an additional target therapy for T-ALL. PMID:26876201

  10. The evolution of AAOE observed constituents with the polar vortex

    NASA Technical Reports Server (NTRS)

    Schoeberl, Mark R.; Lait, Leslie R.; Newman, P. A.; Martin, R.; Loewenstein, M.; Podolske, J. R.; Anderson, J.; Proffitt, M. H.

    1988-01-01

    One of the difficulties in determining constituent trends from the ER-2 flight data is the large amount of day to day variability generated by the motion of the polar vortex. To reduce this variability, the observations have been transformed into the conservative (Lagrangian) reference frames consisting of the coordinate pairs, potential temperature (PT) and potential vorticity (PV), or PT and N2O. The requirement of only two independent coordinates rests on the assumption that constituent distributions and their chemical processes are nearly zonal in that coordinate system. Flight data is used everywhere for these transformation except for potential vorticity. Potential vorticity is determined from level flight segments, and NMC PV values during flight dives and takeoffs are combined with flight data in a smooth fashion.

  11. Treatment of calvarial defects by resorbable and non-resorbable sonic activated polymer pins and mouldable titanium mesh in two dogs: a case report.

    PubMed

    Langer, Pierre; Black, Cameron; Egan, Padraig; Fitzpatrick, Noel

    2018-06-22

    To date, calvarial defects in dogs have traditionally been addressed with different types of implants including bone allograft, polymethylmethacrylate and titanium mesh secured with conventional metallic fixation methods. This report describes the use of an absorbable and non absorbable novel polymer fixation method, Bonewelding® technology, in combination with titanium mesh for the repair of calvarial defects in two dogs. The clinical outcomes and comparative complication using resorbable and non-resorbable thermoplastic pins were compared. This report of two cases documents the repair of a traumatic calvarial fracture in an adult male Greyhound and a cranioplasty following frontal bone tumor resection in an adult female Cavalier King Charles Spaniel with the use of a commercially available titanium mesh secured with an innovative thermoplastic polymer screw system (Bonewelding®). The treatment combination aimed to restore cranial structure, sinus integrity and cosmetic appearance. A mouldable titanium mesh was cut to fit the bone defect of the frontal bone and secured with either resorbable or non-resorbable polymer pins using Bonewelding® technology. Gentamycin-impregnated collagen sponge was used intraoperatively to assist with sealing of the frontal sinuses. Calvarial fracture and post-operative implant positioning were advised using computed tomography. A satisfactory restoration of skull integrity and cosmetic result was achieved, and long term clinical outcome was deemed clinically adequate with good patient quality of life. Postoperative complications including rostral mesh uplift with minor associated clinical signs were encountered when resorbable pins were used. No postoperative complications were experienced in non-resorbable pins at 7 months follow-up, by contrast mesh uplift was noted 3 weeks post-procedure in the case treated using absorbable pins. The report demonstrates the innovative use of sonic-activated polymer pins (Bonewelding® technology) alongside titanium mesh is a suitable alternative technique for skull defect repair in dogs. The use of Bonewelding® may offer advantages in reduction of surgical time. Further, ultrasonic pin application may be less invasive than alternative metallic fixation and potentially reduces bone trauma. Polymer systems may offer enhanced mesh-bone integration when compared to traditional metallic implants. The use of polymer pins demonstrates initial potential as a fixation method in cranioplasty. Initial findings in a single case comparison indicate a possible advantage in the use of non-absorbable over the absorbable systems to circumvent complications associated with variable polymer degradation, further long term studies with higher patient numbers are required before reliable conclusions can be made.

  12. Changes in behaviour and faecal glucocorticoid levels in response to increased human activities during weekends in the pin-tailed sandgrouse

    NASA Astrophysics Data System (ADS)

    Casas, Fabián; Benítez-López, Ana; Tarjuelo, Rocío; Barja, Isabel; Viñuela, Javier; García, Jesús T.; Morales, Manuel B.; Mougeot, Francois

    2016-12-01

    Human recreational activities are becoming increasingly widespread and frequent, a fact that may potentially exacerbate their effects on wildlife. These human-related disturbances on animals may induce behavioural and physiological changes that can ultimately affect their fitness, showing a similar anti-predator response that against natural predator or other threats. Here, we combine the use of behavioural and physiological approaches to assess the potential effect of winter human activities on a threatened farmland bird in Europe, the pin-tailed sandgrouse ( Pterocles alchata). We compared before, during and after weekend variations in human activity rates, pin-tailed sandgrouse behaviour (flocking and flying behaviour, interspecific association in mixed flocks and habitat use) and faecal glucocorticoid metabolite concentrations. Human disturbances, in particular those associated with hunting activities, peaked during weekends. Sandgrouse showed significant behavioural changes (increased sandgrouse-only flock sizes, increased proportion of birds flying and changes in habitat use) during weekends and higher faecal glucocorticoid metabolite concentrations after the weekends compared with during or before weekends. Therefore, physiological stress levels could be modulated by behavioural adjustments such as increased flock sizes and changes in habitat use that may allow sandgrouse to cope with increased human disturbance rates during weekends. Nevertheless, temporal and spatial organization of hunting days among groups of estates might be good strategies to buffer these potential adverse effects on wintering pin-tailed sandgrouse and other steppe species of conservation concern, while preserving a socio-economically important activity such as hunting.

  13. Changes in behaviour and faecal glucocorticoid levels in response to increased human activities during weekends in the pin-tailed sandgrouse.

    PubMed

    Casas, Fabián; Benítez-López, Ana; Tarjuelo, Rocío; Barja, Isabel; Viñuela, Javier; García, Jesús T; Morales, Manuel B; Mougeot, Francois

    2016-12-01

    Human recreational activities are becoming increasingly widespread and frequent, a fact that may potentially exacerbate their effects on wildlife. These human-related disturbances on animals may induce behavioural and physiological changes that can ultimately affect their fitness, showing a similar anti-predator response that against natural predator or other threats. Here, we combine the use of behavioural and physiological approaches to assess the potential effect of winter human activities on a threatened farmland bird in Europe, the pin-tailed sandgrouse (Pterocles alchata). We compared before, during and after weekend variations in human activity rates, pin-tailed sandgrouse behaviour (flocking and flying behaviour, interspecific association in mixed flocks and habitat use) and faecal glucocorticoid metabolite concentrations. Human disturbances, in particular those associated with hunting activities, peaked during weekends. Sandgrouse showed significant behavioural changes (increased sandgrouse-only flock sizes, increased proportion of birds flying and changes in habitat use) during weekends and higher faecal glucocorticoid metabolite concentrations after the weekends compared with during or before weekends. Therefore, physiological stress levels could be modulated by behavioural adjustments such as increased flock sizes and changes in habitat use that may allow sandgrouse to cope with increased human disturbance rates during weekends. Nevertheless, temporal and spatial organization of hunting days among groups of estates might be good strategies to buffer these potential adverse effects on wintering pin-tailed sandgrouse and other steppe species of conservation concern, while preserving a socio-economically important activity such as hunting.

  14. Thermodynamics of Meissner effect and flux pinning behavior in the bulk of single-crystal La 2 - x Sr x CuO 4 ( x = 0.09 )

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dhiman, I.; Ziesche, R.; Anand, V. K.

    We have studied the magnetic flux pinning behavior and Meissner effect for the high-more » $$T_{\\rm c}$$ single crystal La$$_{2-x}$$Sr$$_{x}$$CuO$$_{4}$$ ($x$ = 0.09) superconductor using the polarized neutron imaging method with varying magnetic field and temperature. In the Meissner state expulsion of magnetic field (switched on during the measurements) is visualized, and the signatures of mixed state with increasing temperature are observed. While, for flux pinning behavior between 5 K $$\\leq$$ $T$ $$\\leq$$ 15 K and $$H_{\\rm ext}$$ = 63.5 mT (switched off during the measurements), the evolution of fringe pattern for both 0$$^{o}$$ and 90$$^{o}$$ sample orientation indicates magnetic flux pinning inside the bulk of the sample. At 25 K $$\\leq$$ $T$ $$\\leq$$ 32 K, a continuous decrease of inhomogeneously distribution pinned magnetic flux is observed, with the sample reaching a normal conducting state at $$T_{\\rm c}$$ ($$\\approx$$ 32 K). The flux pinning behavior is also explored as a function of $$H_{\\rm ext}$$, at $T$ = 5 K. As expected, with increasing $$H_{\\rm ext}$$ an increase in fringe density is observed, indicating an increase in magnetic flux pinning in the bulk of the sample. Therefore, in the present work for the first time we report bulk visualization of Meissner effect and flux pinning behavior in high-$$T_{\\rm c}$$ La$$_{2-x}$$Sr$$_{x}$$CuO$$_{4}$$ ($x$ = 0.09) superconductor. This study clearly demonstrates the potential of real space polarized neutron imaging technique for the visualization of the superconducting mixed state, particularly in the field of high-$$T_{\\rm c}$$ superconductors.« less

  15. Guiding thermomagnetic avalanches with soft magnetic stripes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vlasko-Vlasov, V. K.; Colauto, F.; Benseman, T.

    We demonstrate the potential for manipulating the ultrafast dynamics of thermomagnetic flux avalanches (TMA) in superconducting films with soft magnetic stripes deposited on the film. By tuning the in-plane magnetization of the stripes, we induce lines of strong magnetic potentials for Abrikosov vortices, resulting in guided slow motion of vortices along the stripe edges and preferential bursts of TMA along the stripes. Furthermore, we show that transversely polarized stripes can reduce the TMA size by diverting magnetic flux away from the major trunk of the TMA into interstripe gaps. Our data indicate that TMAs are launched from locations with enhancedmore » vortex entry barrier, where flux accumulation followed by accelerated vortex discharge significantly reduces the threshold of the applied field ramping speed required for the creation of TMAs. Finally, vortex-antivortex annihilation at the moving front of an expanding TMA can account for the enhanced TMA activity in the receding branches of the sample's magnetization cycle and the preferred propagation of TMAs into maximum trapped flux regions.« less

  16. Guiding thermomagnetic avalanches with soft magnetic stripes

    NASA Astrophysics Data System (ADS)

    Vlasko-Vlasov, V. K.; Colauto, F.; Benseman, T.; Rosenmann, D.; Kwok, W.-K.

    2017-12-01

    We demonstrate the potential for manipulating the ultrafast dynamics of thermomagnetic flux avalanches (TMA) in superconducting films with soft magnetic stripes deposited on the film. By tuning the in-plane magnetization of the stripes, we induce lines of strong magnetic potentials for Abrikosov vortices, resulting in guided slow motion of vortices along the stripe edges and preferential bursts of TMA along the stripes. Furthermore, we show that transversely polarized stripes can reduce the TMA size by diverting magnetic flux away from the major trunk of the TMA into interstripe gaps. Our data indicate that TMAs are launched from locations with enhanced vortex entry barrier, where flux accumulation followed by accelerated vortex discharge significantly reduces the threshold of the applied field ramping speed required for the creation of TMAs. Finally, vortex-antivortex annihilation at the moving front of an expanding TMA can account for the enhanced TMA activity in the receding branches of the sample's magnetization cycle and the preferred propagation of TMAs into maximum trapped flux regions.

  17. Experimental Study of Lift-Generated Vortices

    NASA Technical Reports Server (NTRS)

    Rossow, Vernon J.; Nixon, David (Technical Monitor)

    1998-01-01

    The flow fields of vortices, whether bouyancy-driven or lift-generated, are fascinating fluid-dynamic phenomena which often possess intense swirl velocities and complex time-dependent behavior. As part of the on-going study of vortex behavior, this paper presents a historical overview of the research conducted on the structure and modification of the vortices generated by the lifting surfaces of subsonic transport aircraft. It is pointed out that the characteristics of lift-generated vortices are related to the aerodynamic shapes that produce them and that various arrangements of surfaces can be used to produce different vortex structures. The primary purpose of the research to be described is to find a way to reduce the hazard potential of lift-generated vortices shed by subsonic transport aircraft in the vicinity of airports during landing and takeoff operations. It is stressed that lift-generated vortex wakes are so complex that progress towards a solution requires application of a combined theoretical and experimental research program because either alone often leads to incorrect conclusions. It is concluded that a satisfactory aerodynamic solution to the wake-vortex problem at airports has not yet been found but a reduction in the impact of the wake-vortex hazard on airport capacity may become available in the foreseeable future through wake-vortex avoidance concepts currently under study. The material to be presented in this overview is drawn from aerospace journals that are available publicly.

  18. General rotating quantum vortex filaments in the low-temperature Svistunov model of the local induction approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Gorder, Robert A., E-mail: rav@knights.ucf.edu

    2014-06-15

    In his study of superfluid turbulence in the low-temperature limit, Svistunov [“Superfluid turbulence in the low-temperature limit,” Phys. Rev. B 52, 3647 (1995)] derived a Hamiltonian equation for the self-induced motion of a vortex filament. Under the local induction approximation (LIA), the Svistunov formulation is equivalent to a nonlinear dispersive partial differential equation. In this paper, we consider a family of rotating vortex filament solutions for the LIA reduction of the Svistunov formulation, which we refer to as the 2D LIA (since it permits a potential formulation in terms of two of the three Cartesian coordinates). This class of solutionsmore » holds the well-known Hasimoto-type planar vortex filament [H. Hasimoto, “Motion of a vortex filament and its relation to elastica,” J. Phys. Soc. Jpn. 31, 293 (1971)] as one reduction and helical solutions as another. More generally, we obtain solutions which are periodic in the space variable. A systematic analytical study of the behavior of such solutions is carried out. In the case where vortex filaments have small deviations from the axis of rotation, closed analytical forms of the filament solutions are given. A variety of numerical simulations are provided to demonstrate the wide range of rotating filament behaviors possible. Doing so, we are able to determine a number of vortex filament structures not previously studied. We find that the solution structure progresses from planar to helical, and then to more intricate and complex filament structures, possibly indicating the onset of superfluid turbulence.« less

  19. Rossby wave breaking and Lagrangian structures inside the Antarctic stratospheric polar vortex during Vorcore and Concordiasi campaigns

    NASA Astrophysics Data System (ADS)

    de la Camara, Alvaro; Mechoso, Carlos R.; Mancho, Ana M.; Serrano, Encarna; Ide, Kayo

    2013-04-01

    The trajectories in the lower stratosphere of isopycnic balloons released from Antarctica by international field campaigns during the southern springs of 2005 and 2010 showed events of latitudinal transport inside the stratospheric polar vortex, both away and towards the poleward flank of the polar night jet. The present work applies trajectory-based diagnostic techniques to examine mechanisms at work during such events. Reverse domain filling calculations of potential vorticity (PV) fields from ECMWF ERA-Interim data set during the events show irreversible filamentation of the PV fields in the inner side of the polar night jet, which is a signature of planetary (Rossby) wave breaking. Balloons motions during the events are fairly consistent with the PV filaments. Events of both large (~15° of arch length) and small (~5° of arch length) balloon displacements from the vortex edge are associated to deep and shallow penetration into the core of the elongated PV contours. The function M is applied to study the configuration of Lagrangian coherent structures during the events. A close association is found between hyperbolic points and breaking waves inside the vortex. The geometric configuration of the invariant manifolds associated with the hyperbolic points helps to understand the apparent chaotic behavior of balloons motions, and to identify and analyze balloon transport events not captured by the Reverse Domain Filling calculations. The Antarctic polar vortex edge is an effective barrier to air parcel crossings. Rossby wave breaking inside the vortex, however, can contribute to tracer mixing inside the vortex and to occasional air crossings of the edge.

  20. Topological vortex formation in a Bose-Einstein condensate under gravitational field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawaguchi, Yuki; Ohmi, Tetsuo; Nakahara, Mikio

    2004-10-01

    Topological phase imprinting is a unique technique for vortex formation in a Bose-Einstein condensate (BEC) of an alkali-metal gas, in that it does not involve rotation: the BEC is trapped in a quadrupole field with a uniform bias field which is reversed adiabatically leading to vortex formation at the center of the magnetic trap. The scenario has been experimentally verified by Leanhardt et al. employing {sup 23}Na atoms. Recently similar experiments have been conducted by Hirotani et al. in which a BEC of {sup 87}Rb atoms was used. In the latter experiments the authors found that fine-tuning of the fieldmore » reverse time T{sub rev} is required to achieve stable vortex formation. Otherwise, they often observed vortex fragmentation or a condensate without a vortex. It is shown in this paper that this behavior can be attributed to the heavy mass of the Rb atom. The confining potential, which depends on the eigenvalue m{sub B} of the hyperfine spin F along the magnetic field, is now shifted by the gravitational field perpendicular to the vortex line. Then the positions of two weak-field-seeking states with m{sub B}=1 and 2 deviate from each other. This effect is more prominent for BECs with a heavy atomic mass, for which the deviation is greater and, moreover, the Thomas-Fermi radius is smaller. We found, by solving the Gross-Pitaevskii equation numerically, that two condensates interact in a very complicated way leading to fragmentation of vortices, unless T{sub rev} is properly tuned.« less

  1. Nonlinear Dynamics of Non-uniform Current-Vortex Sheets in Magnetohydrodynamic Flows

    NASA Astrophysics Data System (ADS)

    Matsuoka, C.; Nishihara, K.; Sano, T.

    2017-04-01

    A theoretical model is proposed to describe fully nonlinear dynamics of interfaces in two-dimensional MHD flows based on an idea of non-uniform current-vortex sheet. Application of vortex sheet model to MHD flows has a crucial difficulty because of non-conservative nature of magnetic tension. However, it is shown that when a magnetic field is initially parallel to an interface, the concept of vortex sheet can be extended to MHD flows (current-vortex sheet). Two-dimensional MHD flows are then described only by a one-dimensional Lagrange parameter on the sheet. It is also shown that bulk magnetic field and velocity can be calculated from their values on the sheet. The model is tested by MHD Richtmyer-Meshkov instability with sinusoidal vortex sheet strength. Two-dimensional ideal MHD simulations show that the nonlinear dynamics of a shocked interface with density stratification agrees fairly well with that for its corresponding potential flow. Numerical solutions of the model reproduce properly the results of the ideal MHD simulations, such as the roll-up of spike, exponential growth of magnetic field, and its saturation and oscillation. Nonlinear evolution of the interface is found to be determined by the Alfvén and Atwood numbers. Some of their dependence on the sheet dynamics and magnetic field amplification are discussed. It is shown by the model that the magnetic field amplification occurs locally associated with the nonlinear dynamics of the current-vortex sheet. We expect that our model can be applicable to a wide variety of MHD shear flows.

  2. Two modes of grain boundary pinning by coherent precipitates

    DOE PAGES

    Wang, Nan; Ji, Yanzhou; Wang, Yongbiao; ...

    2017-06-18

    Here, we propose a two-mechanism theory to estimate the pinning effect of coherent precipitates on grain-boundary (GB) migration in grain growth, taking into account the important effect of elastic misfit strain at the coherent interface. Depending on the relative importance of the elastic and the GB contributions to the total free energy, Zener type stabilization or a novel elastic energy induced stabilization may occur. It is found that the pinning is most effective in the crossover region between these two mechanisms. Finally, a phase-field-crystal model is used to numerically validate the theory. Relevant experiments and potential impacts on alloy designmore » are also discussed.« less

  3. Vortex survival in 3D self-gravitating accretion discs

    NASA Astrophysics Data System (ADS)

    Lin, Min-Kai; Pierens, Arnaud

    2018-07-01

    Large-scale, dust-trapping vortices may account for observations of asymmetric protoplanetary discs. Disc vortices are also potential sites for accelerated planetesimal formation by concentrating dust grains. However, in 3D discs vortices are subject to destructive `elliptic instabilities', which reduces their viability as dust traps. The survival of vortices in 3D accretion discs is thus an important issue to address. In this work, we perform shearing box simulations to show that disc self-gravity enhances the survival of 3D vortices, even when self-gravity is weak in the classic sense (e.g. with a Toomre Q ≃ 5). We find a 3D self-gravitating vortex can grow on secular time-scales in spite of the elliptic instability. The vortex aspect ratio decreases as it strengthens, which feeds the elliptic instability. The result is a 3D vortex with a turbulent core that persists for ˜103 orbits. We find when gravitational and hydrodynamic stresses become comparable, the vortex may undergo episodic bursts, which we interpret as an interaction between elliptic and gravitational instabilities. We estimate the distribution of dust particles in self-gravitating, turbulent vortices. Our results suggest large-scale vortices in protoplanetary discs are more easily observed at large radii.

  4. Vortex survival in 3D self-gravitating accretion discs

    NASA Astrophysics Data System (ADS)

    Lin, Min-Kai; Pierens, Arnaud

    2018-04-01

    Large-scale, dust-trapping vortices may account for observations of asymmetric protoplanetary discs. Disc vortices are also potential sites for accelerated planetesimal formation by concentrating dust grains. However, in 3D discs vortices are subject to destructive `elliptic instabilities', which reduces their viability as dust traps. The survival of vortices in 3D accretion discs is thus an important issue to address. In this work, we perform shearing box simulations to show that disc self-gravity enhances the survival of 3D vortices, even when self-gravity is weak in the classic sense (e.g. with a Toomre Q ≃ 5). We find a 3D, self-gravitating vortex can grow on secular timescales in spite of the elliptic instability. The vortex aspect-ratio decreases as it strengthens, which feeds the elliptic instability. The result is a 3D vortex with a turbulent core that persists for ˜103 orbits. We find when gravitational and hydrodynamic stresses become comparable, the vortex may undergo episodic bursts, which we interpret as interaction between elliptic and gravitational instabilities. We estimate the distribution of dust particles in self-gravitating, turbulent vortices. Our results suggest large-scale vortices in protoplanetary discs are more easily observed at large radii.

  5. Evaluation of Vortex Chamber Concepts for Liquid Rocket Engine Applications

    NASA Technical Reports Server (NTRS)

    Trinh, Huu Phuoc; Knuth, Williams; Michaels, Scott; Turner, James E. (Technical Monitor)

    2000-01-01

    Rocket-based combined-cycle engines (RBBC) being considered at NASA for future generation launch vehicles feature clusters of small rocket thrusters as part of the engine components. Depending on specific RBBC concepts, these thrusters may be operated at various operating conditions including power level and/or propellant mixture ratio variations. To pursue technology developments for future launch vehicles, NASA/Marshall Space Flight Center (MSFC) is examining vortex chamber concepts for the subject cycle engine application. Past studies indicated that the vortex chamber schemes potentially have a number of advantages over conventional chamber methods. Due to the nature of the vortex flow, relatively cooler propellant streams tend to flow along the chamber wall. Hence, the thruster chamber can be operated without the need of any cooling techniques. This vortex flow also creates strong turbulence, which promotes the propellant mixing process. Consequently, the subject chamber concepts not only offer the system simplicity but they also would enhance the combustion performance. The test results showed that the chamber performance was markedly high even at a low chamber length-to- diameter ratio (L/D). This incentive can be translated to a convenience in the thrust chamber packaging.

  6. Scientific Presentations on High Temperature Superconductivity and Cryogenic Power Research from 2005-2013

    DTIC Science & Technology

    2013-11-01

    Varanasi Metallic buffers for coated conductor applications 29-Aug-05 Korea Superconducto r Society KSS2005 C. V. Varanasi, P.N. Barnes, T...of YBCO coated conductors from flux pinning enhancement ...................................................... 19 Figure 10. Reduced loss...Conference (ASC) 2012], and iii) FeSe coated conductors with Tc ~ 22 K and with flux pinning achieve high Jc(HណT, 4.2K), and have potential low

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fente, Antón; Correa-Orellana, Alexandre; Böhmer, Anna E.

    We show that biaxial strain induces alternating tetragonal superconducting and orthorhombic nematic domains in Co substituted CaFe 2As 2. We use Atomic Force, Magnetic Force and Scanning Tunneling Microscopy (AFM, MFM and STM) to identify the domains and characterize their properties, nding in particular that tetragonal superconducting domains are very elongated, more than several tens of μm long and about 30 nm wide, have the same Tc than unstrained samples and hold vortices in a magnetic eld. Thus, biaxial strain produces a phase separated state, where each phase is equivalent to what is found at either side of the rstmore » order phase transition between antiferromagnetic orthorhombic and superconducting tetragonal phases found in unstrained samples when changing Co concentration. Having such alternating superconducting domains separated by normal conducting domains with sizes of order of the coherence length opens opportunities to build Josephson junction networks or vortex pinning arrays and suggests that first order quantum phase transitions lead to nanometric size phase separation under the influence of strain.« less

  8. Thermally activated flux flow in FeSe0.5Te0.5 superconducting single crystal

    NASA Astrophysics Data System (ADS)

    Hamad, R. M.; Kayed, T. S.; Kunwar, S.; Ziq, Kh A.

    2017-07-01

    The current-voltage (J-E) isotherms of single crystal FeSe0.5Te0.5 sample have been measured at several temperatures near the transition temperature (Tc) and under applied magnetic fields (H). A power law (E ˜ Jβ ) has been used to fit the data and evaluate the activation energy Uo (T) using β = Uo/kBT. At low current density (J << Jc), the initial behaviour is associated with thermally activated flux Flow (TAFF) while at J >> Jc vortex flux flow (FF) behavior is expected. The effects of applied magnetic field on FF and TAFF also been investigated. We found that Uo(FF) was reduced with by about an order of magnitude in magnetic fields as low as ˜1.5 Tesla-the reduction in Uo(TAFF) is even faster than in Uo(FF)-hence reflecting the low pinning nature (defects, vacancies etc.) of FeSe0.5Te0.5 superconductor.

  9. Magnetic-Field Dependences of Thermodynamic Quantities in the Vortex State of Type-Ii Superconductors

    NASA Astrophysics Data System (ADS)

    Watanabe, Koichi; Kita, Takafumi; Arai, Masao

    2006-08-01

    We develop an alternative method to solve the Eilenberger equations numerically for the vortex-lattice states of type-II superconductors. Using it, we clarify the magnetic-field and impurity-concentration dependences of the magnetization, the entropy, the Pauli paramagnetism, and the mixing of higher Landau levels in the pair potential for two-dimensional s- and dx2-y2-wave superconductors with a cylindrical Fermi surface.

  10. Vortex transmutation.

    PubMed

    Ferrando, Albert; Zacarés, Mario; García-March, Miguel-Angel; Monsoriu, Juan A; de Córdoba, Pedro Fernández

    2005-09-16

    Using group theory arguments and numerical simulations, we demonstrate the possibility of changing the vorticity or topological charge of an individual vortex by means of the action of a system possessing a discrete rotational symmetry of finite order. We establish on theoretical grounds a "transmutation pass" determining the conditions for this phenomenon to occur and numerically analyze it in the context of two-dimensional optical lattices. An analogous approach is applicable to the problems of Bose-Einstein condensates in periodic potentials.

  11. Vortex gas lens

    NASA Technical Reports Server (NTRS)

    Bogdanoff, David W.; Berschauer, Andrew; Parker, Timothy W.; Vickers, Jesse E.

    1989-01-01

    A vortex gas lens concept is presented. Such a lens has a potential power density capability of 10 to the 9th - 10 to the 10th w/sq cm. An experimental prototype was constructed, and the divergence half angle of the exiting beam was measured as a function of the lens operating parameters. Reasonably good agreement is found between the experimental results and theoretical calculations. The expanded beam was observed to be steady, and no strong, potentially beam-degrading jets were found to issue from the ends of the lens. Estimates of random beam deflection angles to be expected due to boundary layer noise are presented; these angles are very small.

  12. Dipolar bright solitons and solitary vortices in a radial lattice

    NASA Astrophysics Data System (ADS)

    Huang, Chunqing; Lyu, Lin; Huang, Hao; Chen, Zhaopin; Fu, Shenhe; Tan, Haishu; Malomed, Boris A.; Li, Yongyao

    2017-11-01

    Stabilizing vortex solitons with high values of the topological charge S is a challenging issue in optics, studies of Bose-Einstein condensates (BECs), and other fields. To develop an approach to the solution of this problem, we consider a two-dimensional dipolar BEC under the action of an axisymmetric radially periodic lattice potential, V (r )˜cos(2 r +δ ) , with dipole moments polarized perpendicular to the system's plane, which gives rise to isotropic repulsive dipole-dipole interactions. Two radial lattices are considered, with δ =0 and π , i.e., a potential maximum or minimum at r =0 , respectively. Families of vortex gap soliton (GSs) with S =1 and S ≥2 , the latter ones often being unstable in other settings, are completely stable in the present system (at least up to S =11 ), being trapped in different annular troughs of the radial potential. The vortex solitons with different S may stably coexist in sufficiently far separated troughs. Fundamental GSs, with S =0 , are found too. In the case of δ =0 , the fundamental solitons are ring-shaped modes, with a local minimum at r =0 . At δ =π , they place a density peak at the center.

  13. Subsonic Aerodynamic Assessment of Vortex Flow Management Devices on a High-Speed Civil Transport Configuration

    NASA Technical Reports Server (NTRS)

    Campbell, Bryan A.; Applin, Zachary T.; Kemmerly, Guy T.

    1999-01-01

    An experimental investigation of the effects of leading-edge vortex management devices on the subsonic performance of a high-speed civil transport (HSCT) configuration was conducted in the Langley 14- by 22-Foot Subsonic Tunnel. Data were obtained over a Mach number range of 0.14 to 0.27, with corresponding chord Reynolds numbers of 3.08 x 10 (sup 6) to 5.47 x 10 (sup 6). The test model was designed for a cruise Mach number of 2.7. During the subsonic high-lift phase of flight, vortical flow dominates the upper surface flow structure, and during vortex breakdown, this flow causes adverse pitch-up and a reduction of usable lift. The experimental results showed that the beneficial effects of small leading-edge vortex management devices located near the model reference center were insufficient to substantially affect the resulting aerodynamic forces and moments. However, devices located at or near the wiring apex region demonstrated potential for pitch control with little effect on overall lift.

  14. Role of electric discharges in the generation of atmospheric vortices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinkevich, O. A., E-mail: oleg.sinkevich@itf.mpei.ac.ru; Maslov, S. A., E-mail: sergm90@mail.ru; Gusein-zade, N. G., E-mail: ngus@mail.ru

    The existing thermohydrodynamic and hydroelectromagnetic models of tornado are considered. The potentialities of the humid atmosphere as a heat engine generating air vortices are analyzed in detail. The ability of long-term atmospheric electric discharges to form a tornado funnel and create an initial twist of up to 10{sup –3}–10{sup –2} s{sup –1} in it are estimated. The possible effect of a lightning discharge on the initiation and evolution of the tornado is discussed. It is shown that the electric current flowing along the lightning channel can lead to helical instability and generation of a weak primary vortex. The channel formedmore » in the atmosphere by a lightning discharge and the vortex motion of the parent thundercloud can enhance the primary vortex and promote its transformation into a tornado. Possible mechanisms of enhancement of the primary vortex created by a lightning discharge and the possibility of its transformation into a tornado in the postdischarge stage are discussed.« less

  15. Tailoring optical complex field with spiral blade plasmonic vortex lens

    PubMed Central

    Rui, Guanghao; Zhan, Qiwen; Cui, Yiping

    2015-01-01

    Optical complex fields have attracted increasing interests because of the novel effects and phenomena arising from the spatially inhomogeneous state of polarizations and optical singularities of the light beam. In this work, we propose a spiral blade plasmonic vortex lens (SBPVL) that offers unique opportunities to manipulate these novel fields. The strong interaction between the SBPVL and the optical complex fields enable the synthesis of highly tunable plasmonic vortex. Through theoretical derivations and numerical simulations we demonstrated that the characteristics of the plasmonic vortex are determined by the angular momentum (AM) of the light, and the geometrical topological charge of the SBPVL, which is govern by the nonlinear superposition of the pitch and the number of blade element. In addition, it is also shown that by adjusting the geometric parameters, SBPVL can be utilized to focus and manipulate optical complex field with fractional AM. This miniature plasmonic device may find potential applications in optical trapping, optical data storage and many other related fields. PMID:26335894

  16. Negative optical spin torque wrench of a non-diffracting non-paraxial fractional Bessel vortex beam

    NASA Astrophysics Data System (ADS)

    Mitri, F. G.

    2016-10-01

    An absorptive Rayleigh dielectric sphere in a non-diffracting non-paraxial fractional Bessel vortex beam experiences a spin torque. The axial and transverse radiation spin torque components are evaluated in the dipole approximation using the radiative correction of the electric field. Particular emphasis is given on the polarization as well as changing the topological charge α and the half-cone angle of the beam. When α is zero, the axial spin torque component vanishes. However, when α becomes a real positive number, the vortex beam induces left-handed (negative) axial spin torque as the sphere shifts off-axially from the center of the beam. The results show that a non-diffracting non-paraxial fractional Bessel vortex beam is capable of inducing a spin reversal of an absorptive Rayleigh sphere placed arbitrarily in its path. Potential applications are yet to be explored in particle manipulation, rotation in optical tweezers, optical tractor beams, and the design of optically-engineered metamaterials to name a few areas.

  17. Vortex Dynamics of Asymmetric Heave Plates

    NASA Astrophysics Data System (ADS)

    Rusch, Curtis; Maurer, Benjamin; Polagye, Brian

    2017-11-01

    Heave plates can be used to provide reaction forces for wave energy converters, which harness the power in ocean surface waves to produce electricity. Heave plate inertia includes both the static mass of the heave plate, as well as the ``added mass'' of surrounding water accelerated with the object. Heave plate geometries may be symmetric or asymmetric, with interest in asymmetric designs driven by the resulting hydrodynamic asymmetry. Limited flow visualization has been previously conducted on symmetric heave plates, but flow visualization of asymmetric designs is needed to understand the origin of observed hydrodynamic asymmetries and their dependence on the Keulegan-Carpenter number. For example, it is hypothesized that the time-varying added mass of asymmetric heave plates is caused by vortex shedding, which is related to oscillation amplitude. Here, using direct flow visualization, we explore the relationship between vortex dynamics and time-varying added mass and drag. These results suggest potential pathways for more advanced heave plate designs that can exploit vortex formation and shedding to achieve more favorable hydrodynamic properties for wave energy converters.

  18. Nano-structuring of multi-layer material by single x-ray vortex pulse with femtosecond duration

    NASA Astrophysics Data System (ADS)

    Kohmura, Yoshiki; Zhakhovsky, Vasily; Takei, Dai; Suzuki, Yoshio; Takeuchi, Akihisa; Inoue, Ichiro; Inubushi, Yuichi; Inogamov, Nail; Ishikawa, Tetsuya; Yabashi, Makina

    2018-03-01

    A narrow zero-intensity spot arising from an x-ray vortex has huge potential for future applications such as nanoscopy and nanofabrication. We here present an X-ray Free Electron Laser (XFEL) experiment with a focused vortex wavefront which generated high aspect ratio nanoneedles on a Cr/Au multi-layer (ML) specimen. A sharp needle with a typical width and height of 310 and 600 nm was formed with a high occurrence rate at the center of a 7.71 keV x-ray vortex on this ML specimen, respectively. The observed width exceeds the diffraction limit, and the smallest structures ever reported using an intense-XFEL ablation were fabricated. We found that the elemental composition of the nanoneedles shows a significant difference from that of the unaffected area of Cr/Au ML. All these results are well explained by the molecular dynamics simulations, leading to the elucidation of the needle formation mechanism on an ultra-fast timescale.

  19. Computational Fluid Dynamics (CFD) simulations of a Heisenberg Vortex Tube

    NASA Astrophysics Data System (ADS)

    Bunge, Carl; Sitaraman, Hariswaran; Leachman, Jake

    2017-11-01

    A 3D Computational Fluid Dynamics (CFD) simulation of a Heisenberg Vortex Tube (HVT) is performed to estimate cooling potential with cryogenic hydrogen. The main mechanism driving operation of the vortex tube is the use of fluid power for enthalpy streaming in a highly turbulent swirl in a dual-outlet tube. This enthalpy streaming creates a temperature separation between the outer and inner regions of the flow. Use of a catalyst on the peripheral wall of the centrifuge enables endothermic conversion of para-ortho hydrogen to aid primary cooling. A κ- ɛ turbulence model is used with a cryogenic, non-ideal equation of state, and para-orthohydrogen species evolution. The simulations are validated with experiments and strategies for parametric optimization of this device are presented.

  20. Generation of 2 µm Laguerre-Gaussian mode in a Tm:LuYAG solid-state laser

    NASA Astrophysics Data System (ADS)

    Liu, Qiyao; Ding, Manman; Zhao, Yongguang; Zhou, Wei; Shen, Deyuan

    2018-04-01

    In this article, we discuss the first vortex laser in the 2 µm spectral range directly generated from a Tm:LuYAG oscillator, in which a pump beam with annular intensity distribution is employed in line with Laguerre-Gaussian modes. Laser thresholds of different-order Laguerre-Gaussian modes are theoretically analyzed and discussed. Vortex lasers with orbital angular momentum of ħ and  -ħ were experimentally produced with corresponding output powers of 1.75 W and 1.64 W, respectively. This directly emitted vortex laser generated in the ~2 µm region from a compact and robust Tm:LuYAG oscillator has potential applications in the areas of molecular spectroscopy and organic material processing amongst others.

Top