NASA Technical Reports Server (NTRS)
Curran, F. M.
1985-01-01
The potential utility of the low power dc arcjet in auxiliary propulsion was investigated. It was indicated that improvements in the areas of stability, energy efficiency, reliability, and electrode erosion are necessary to obtain a useful device. A water-cooled arcjet simulator was tested to investigate both the energy loss mechanisms at the electrodes and the stability of different conventional arcjet configurations in the presence of a vortex flow field. It is shown that in certain configurations only 25 to 30% of the input energy is lost to the electrodes. It is also shown that vortex stabilization is not difficult to obtain in many cases at the flow rates used and that a careful starting procedure is effective in minimizing electrode damage.
NASA Technical Reports Server (NTRS)
Curran, F. M.
1985-01-01
The potential utility of the low power dc arcjet in auxiliary propulsion was investigated. It was indicated that improvements in the areas of stability, energy efficiency, reliability, and electrode erosion are necessary to obtain a useful device. A water-cooled arcjet simulator was tested to investigate both the energy loss mechanisms at the electrodes and the stability of different conventional arcjet configurations in the presence of a vortex flow field. It is shown that in certain configurations only 25 to 30 percent of the input energy is lost to the electrodes. It is also shown that vortex stabilization is not difficult to obtain in many cases at the flow rates used and that a careful starting procedure is effective in minimizing electrode damage.
Arcjet thruster research and technology
NASA Technical Reports Server (NTRS)
Makel, Darby B.; Cann, Gordon L.
1988-01-01
The design, analysis, and performance testing of an advanced lower power arcjet is described. A high impedance, vortex stabilized 1-kw class arcjet has been studied. A baseline research thruster has been built and endurance and performance tested. This advanced arcjet has demonstrated long lifetime characteristics, but lower than expected performance. Analysis of the specific design has identified modifications which should improve performance and maintain the long life time shown by the arcjet.
NASA Technical Reports Server (NTRS)
Robotti, A. C.; Oggero, M.
1984-01-01
Experiments which use a new type of arc-jet, characterized by composite electromagnetic and vortex stabilization and propelled by hydrogen and nitrogen in turn are described. The electrical characteristics of the arc and the loss of heat through the electrodes is emphasized.
Arcjet thruster research and technology, phase 1
NASA Technical Reports Server (NTRS)
Knowles, Steven C.
1987-01-01
The objectives of Phase 1 were to evaluate analytically and experimentally the operation, performance, and lifetime of arcjet thrusters operating between 0.5 and 3.0 kW with catalytically decomposed hydrazine (N2H4) and to begin development of the requisite power control unit (PCU) technology. Fundamental analyses were performed of the arcjet nozzle, the gas kinetic reaction effects, the thermal environment, and the arc stabilizing vortex. The VNAP2 flow code was used to analyze arcjet nozzle performance with non-uniform entrance profiles. Viscous losses become dominant beyond expansion ratios of 50:1 because of the low Reynolds numbers. A survey of vortex phenomena and analysis techniques identified viscous dissipation and vortex breakdown as two flow instabilities that could affect arcjet operation. The gas kinetics code CREK1D was used to study the gas kinetics of high temperature N2H4 decomposition products. The arc/gas energy transfer is a non-equilibrium process because of the reaction rate constants and the short gas residence times. A thermal analysis code was used to guide design work and to provide a means to back out power losses at the anode fall based on test thermocouple data. The low flow rate and large thermal masses made optimization of a regenerative heating scheme unnecessary.
Numerical Modeling of a Vortex Stabilized Arcjet. Ph.D. Thesis, 1991 Final Report
NASA Technical Reports Server (NTRS)
Pawlas, Gary E.
1992-01-01
Arcjet thrusters are being actively considered for use in Earth orbit maneuvering applications. Experimental studies are currently the chief means of determining an optimal thruster configuration. Earlier numerical studies have failed to include all of the effects found in typical arcjets including complex geometries, viscosity, and swirling flow. Arcjet geometries are large area ratio converging nozzles with centerbodies in the subsonic portion of the nozzle. The nozzle walls serve as the anode while the centerbody functions as the cathode. Viscous effects are important because the Reynolds number, based on the throat radius, is typically less than 1,000. Experimental studies have shown that a swirl or circumferential velocity component stabilizes a constricted arc. This dissertation describes the equations governing flow through a constricted arcjet thruster. An assumption that the flowfield is in local thermodynamic equilibrium leads to a single fluid plasma temperature model. An order of magnitude analysis reveals the governing fluid mechanics equations are uncoupled from the electromagnetic field equations. A numerical method is developed to solve the governing fluid mechanics equations, the Thin Layer Navier-Stokes equations. A coordinate transformation is employed in deriving the governing equations to simplify the application of boundary conditions in complex geometries. An axisymmetric formulation is employed to include the swirl velocity component as well as the axial and radial velocity components. The numerical method is an implicit finite-volume technique and allows for large time steps to reach a converged steady-state solution. The inviscid fluxes are flux-split, and Gauss-Seidel line relaxation is used to accelerate convergence. Converging-diverging nozzles with exit-to-throat area ratios up to 100:1 and annular nozzles were examined. Quantities examined included Mach number and static wall pressure distributions, and oblique shock structures. As the level of swirl and viscosity in the flowfield increased the mass flow rate and thrust decreased. The technique was used to predict the flow through a typical arcjet thruster geometry. Results indicate swirl and viscosity play an important role in the complex geometry of an arcjet.
Numerical modeling of a vortex stabilized arcjet
NASA Astrophysics Data System (ADS)
Pawlas, Gary E.
1992-11-01
Arcjet thrusters are being actively considered for use in Earth orbit maneuvering applications. Experimental studies are currently the chief means of determining an optimal thruster configuration. Earlier numerical studies have failed to include all of the effects found in typical arcjets including complex geometries, viscosity, and swirling flow. Arcjet geometries are large area ratio converging nozzles with centerbodies in the subsonic portion of the nozzle. The nozzle walls serve as the anode while the centerbody functions as the cathode. Viscous effects are important because the Reynolds number, based on the throat radius, is typically less than 1,000. Experimental studies have shown that a swirl or circumferential velocity component stabilizes a constricted arc. This dissertation describes the equations governing flow through a constricted arcjet thruster. An assumption that the flowfield is in local thermodynamic equilibrium leads to a single fluid plasma temperature model. An order of magnitude analysis reveals the governing fluid mechanics equations are uncoupled from the electromagnetic field equations. A numerical method is developed to solve the governing fluid mechanics equations, the Thin Layer Navier-Stokes equations. A coordinate transformation is employed in deriving the governing equations to simplify the application of boundary conditions in complex geometries. An axisymmetric formulation is employed to include the swirl velocity component as well as the axial and radial velocity components. The numerical method is an implicit finite-volume technique and allows for large time steps to reach a converged steady-state solution. The inviscid fluxes are flux-split, and Gauss-Seidel line relaxation is used to accelerate convergence. Converging-diverging nozzles with exit-to-throat area ratios up to 100:1 and annular nozzles were examined. Quantities examined included Mach number and static wall pressure distributions, and oblique shock structures. As the level of swirl and viscosity in the flowfield increased the mass flow rate and thrust decreased.
Numerical modeling of a vortex stabilized arcjet
NASA Astrophysics Data System (ADS)
Pawlas, Gary Edward
Arcjet thrusters are being actively considered for use in Earth orbit maneuvering applications. Satellite station-keeping is an example of a maneuvering application requiring the low thrust, high specific impulse of an arcjet. Experimental studies are currently the chief means of determining an optimal thruster configuration. Earlier numerical studies have failed to include all of the effects found in typical arcjets including complex geometries, viscosity and swirling flow. Arcjet geometries are large area ratio converging-diverging nozzles with centerbodies in the subsonic portion of the nozzle. The nozzle walls serve as the anode while the centerbody functions as the cathode. Viscous effects are important because the Reynolds number, based on the throat radius, is typically less than 1,000. Experimental studies have shown a swirl or circumferential velocity component stabilizes a constricted arc. The equations are described which governs the flow through a constricted arcjet thruster. An assumption that the flowfield is in local thermodynamic equilibrium leads to a single fluid plasma temperature model. An order of magnitude analysis reveals the governing fluid mechanics equations are uncoupled from the electromagnetic field equations. A numerical method is developed to solve the governing fluid mechanics equations, the Thin Layer Navier-Stokes equations. A coordinate transformation is used in deriving the governing equations to simplify the application of boundary conditions in complex geometries. An axisymmetric formulation is employed to include the swirl velocity component as well as the axial and redial velocity components. The numerical method is an implicit finite-volume technique and allows for large time steps to reach a converged steady-state solution. The inviscid fluxes are flux-split and Gauss-Seidel line relaxation is used to accelerate convergence. 'Converging diverging' nozzles with exit-to-throat area ratios up to 100:1 and annual nozzles were examined. Comparisons with experimental data and previous numerical results were in excellent agreement. Quantities examined included Mach number and static wall pressure distributions, and oblique shock structures.
Performance characterization of a low power hydrazine arcjet
NASA Technical Reports Server (NTRS)
Knowles, S. C.; Smith, W. W.; Curran, F. M.; Haag, T. W.
1987-01-01
Hydrazine arcjets, which offer substantial performance advantages over alternatives in geosynchronous satellite stationkeeping applications, have undergone startup, materials compatibility, lifetime, and power conditioning unit design issues. Devices in the 1000-3000 W output range have been characterized for several different electrode configurations. Constrictor length and diameter, electrode gap setting, and vortex strength have been parametrically studied in order to ascertain the influence of each on specific impulse and efficiency; specific impulse levels greater than 700 sec have been achieved.
Performance of a low-power subsonic-arc-attachment arcjet thruster
NASA Technical Reports Server (NTRS)
Sankovic, John M.; Berns, Darren H.
1993-01-01
A subsonic-arc-attachment thruster design was scaled from a 30 kW 1960's vintage thruster to operate at nominally 3 kW. Performance measurements were obtained over a 1-4 kW power range using hydrogen as the propellant. Several modes of operation were identified and were characterized by varying degrees of voltage instability. A stability map was developed showing that the voltage oscillations were brought upon by elevated current or propellant levels. At a given specific energy level the specific impulse increased asymptotically with increased flow rates. Comparisons of performance were made between radial and tangential propellant injection. When the vortex flow was eliminated using radial injection, the operating voltages were lower at a given current, and the specific impulse and efficiency decreased. Tests were also conducted to determine the effects of background pressure on operation, and performance data were obtained at pressures of 0.047 Pa and 18 Pa. For a given specific energy level, the performance increased with a decrease in facility background pressure. Lowering the background pressure also caused a dramatic change in the voltage-current characteristic and the voltage stability, a phenomenon not previously reported with conventional supersonic-arc-attachment thrusters.
NASA Technical Reports Server (NTRS)
Rawlin, V. K.; Majcher, G. A.
1991-01-01
A model was developed and exercised to allow wet mass comparisons of three-axis stabilized communications satellites delivered to geosynchronous transfer orbit. The mass benefits of using advanced chemical propulsion for apogee injection and north-south stationkeeping (NSSK) functions or electric propulsion (hydrazine arcjets and xenon ion thrusters) for NSSK functions are documented. A large derated ion thruster is proposed which minimizes thruster lifetime concerns and qualification test times when compared to those of smaller ion thrusters planned for NSSK applications. The mass benefits, which depend on the spacecraft mass and mission duration, increase dramatically with arcjet specific impulse in the 500-600 s range, but are nearly constant for the derated ion thruster operated in the 2300-3000 s range. For a given mission, the mass benefits with an ion system are typically double those of the arcjet system; however, the total thrusting time with arcjets is less than one-third that with ion thrusters for the same thruster power.
Mass comparisons of electric propulsion systems for NSSK of geosynchronous spacecraft
NASA Technical Reports Server (NTRS)
Rawlin, Vincent K.; Majcher, Gregory A.
1991-01-01
A model was developed and exercised to allow wet mass comparisons of three axis stabilized communication satellites delivered to geosynchronous transfer orbit. The mass benefits of using advanced chemical propulsion for apogee injection and north-south stationkeeping (NSSK) functions or electric propulsion (hydrazine arcjets and xenon ion thrusters) for NSSK functions are documented. A large derated ion thrusters is proposed which minimizes thruster lifetime concerns and qualification test times when compared to those of smaller ion thrusters planned for NSSK applications. The mass benefits, which depend on the spacecraft mass and mission duration, increase dramatically with arcjet specific impulse in the 500 to 600 s range, but are nearly constant for the derated ion thruster operated in the 2300 to 3000 s range. For a given mission, the mass benefits with an ion system are typically double those of the arcjet system; however, the total thrusting time with arcjets is less than 1/3 that with ion thrusters for the same thruster power. The mass benefits may permit increases in revenue producing payload or reduce launch costs by allowing a move to a smaller launch vehicle.
Director's discretionary fund report for FY 1991
NASA Technical Reports Server (NTRS)
1992-01-01
The Director's Discretionary Fund (DDF) at the Ames Research Center was established to fund innovative, high-risk projects in basic research which would otherwise be difficult to initiate, but which are essential to our future programs. Here, summaries are given of individual projects within this program. Topics covered include scheduling electric power for the Ames Research Center, the feasibility of light emitting diode arrays as a lighting source for plant growth chambers in space, plasma spraying of nonoxide coatings using a constricted arcjet, and the characterization of vortex impingement footprint using non-intrusive measurement techniques.
Non-isolated 30 kW class arcjet PCU
NASA Astrophysics Data System (ADS)
Wong, See-Pok; Britt, Edward J.
1994-03-01
A 30 kW class arcjet Power Conditioning Unit, PCU, was built and tested during this Phase 2 SBIR contract. The PCU is an improved version of two previously developed PCU's. All of these units are 3-phase, 20 kHz buck regulators with current mode feed back to modulate the duty cycle to control the arcjet current at any selected operating point. The steady state control can assure arcjet stability despite the negative dynamic resistance of the arc discharge. The system also has a circuit to produce a high voltage start pulse to breakdown the gas and initiate the arc. The start pulse is formed by temporarily switching a short current path across the output terminals with a special solid state switching array. The switches then open rapidly, and the energy stored in the output inductors of the buck regulator produces a pulse of approximately 2500 V for approximately 500 nsec. The system was tested and modified until the transition to steady operation occurred after start up with a very small surge current overshoot. The system also can withstand a direct short circuit across the output without damage. The automatic feed back control simply reduces the duty cycle to hold the current at the set point. When the short is removed the full power output is immediately restored. This latest version arcjet PCU is conduction cooled to remove waste heat by conduction to the base plate. This unit is closer to flight a type of design than the previous functional bread boards. Waste heat is small because the PCU has a very high efficiency, 296 percent. The PCU was extensively tested with resistor loads to simulate operation with an arcjet. The unit was tested with ammonia arcjets at the Jet Propulsion Laboratory. Approximately 400 hours of testing were completed, with several starts. Many hours were also demonstrated with resistive loads.
Non-isolated 30 kW class arcjet PCU
NASA Technical Reports Server (NTRS)
Wong, See-Pok; Britt, Edward J.
1994-01-01
A 30 kW class arcjet Power Conditioning Unit, PCU, was built and tested during this Phase 2 SBIR contract. The PCU is an improved version of two previously developed PCU's. All of these units are 3-phase, 20 kHz buck regulators with current mode feed back to modulate the duty cycle to control the arcjet current at any selected operating point. The steady state control can assure arcjet stability despite the negative dynamic resistance of the arc discharge. The system also has a circuit to produce a high voltage start pulse to breakdown the gas and initiate the arc. The start pulse is formed by temporarily switching a short current path across the output terminals with a special solid state switching array. The switches then open rapidly, and the energy stored in the output inductors of the buck regulator produces a pulse of approximately 2500 V for approximately 500 nsec. The system was tested and modified until the transition to steady operation occurred after start up with a very small surge current overshoot. The system also can withstand a direct short circuit across the output without damage. The automatic feed back control simply reduces the duty cycle to hold the current at the set point. When the short is removed the full power output is immediately restored. This latest version arcjet PCU is conduction cooled to remove waste heat by conduction to the base plate. This unit is closer to flight a type of design than the previous functional bread boards. Waste heat is small because the PCU has a very high efficiency, 296 percent. The PCU was extensively tested with resistor loads to simulate operation with an arcjet. The unit was tested with ammonia arcjets at the Jet Propulsion Laboratory. Approximately 400 hours of testing were completed, with several starts. Many hours were also demonstrated with resistive loads. Some testing with hydrogen arcjets was also carried out at NASA LeRC. This system concept is now the design base for the ATTD program.
NASA Technical Reports Server (NTRS)
Curran, Francis M.; Sarmiento, Charles J.
1990-01-01
An experimental investigation was performed to evaluate arcjet operation at low power. A standard, 1 kW, constricted arcjet was run using nozzles with three different constrictor diameters. Each nozzle was run over a range of current and mass flow rates to explore stability and performance in the low power regime. A standard pulse-width modulated power processor was modified to accommodate the high operating voltages required under certain conditions. Stable, reliable operation at power levels below 0.5 kW was obtained at efficiencies between 30 and 40 percent. The operating range was found to be somewhat dependent on constrictor geometry at low mass flow rates. Quasi-periodic voltage fluctuations were observed at the low power end of the operating envelope. The nozzle insert geometry was found to have little effect on the performance of the device. The observed performance levels show that specific impulse levels above 350 seconds can be obtained at the 0.5 kW power level.
Surface Catalysis and Characterization of Proposed Candidate TPS for Access-to-Space Vehicles
NASA Technical Reports Server (NTRS)
Stewart, David A.
1997-01-01
Surface properties have been obtained on several classes of thermal protection systems (TPS) using data from both side-arm-reactor and arc-jet facilities. Thermochemical stability, optical properties, and coefficients for atom recombination were determined for candidate TPS proposed for single-stage-to-orbit vehicles. The systems included rigid fibrous insulations, blankets, reinforced carbon carbon, and metals. Test techniques, theories used to define arc-jet and side-arm-reactor flow, and material surface properties are described. Total hemispherical emittance and atom recombination coefficients for each candidate TPS are summarized in the form of polynomial and Arrhenius expressions.
Medium power hydrogen arcjet performance
NASA Technical Reports Server (NTRS)
Curran, Francis M.; Bullock, S. Ray; Haag, Thomas W.; Sarmiento, Charles J.; Sankovic, John M.
1991-01-01
An experimental investigation was performed to evaluate hydrogen arcjet operating characteristics in the range of 1 to 4 kW. A series of nozzles were operated in modular laboratory thrusters to examine the effects of geometric parameters such as constrictor diameter and nozzle divergence angle. Each nozzle was tested over a range of current and mass flow rates to explore stability and performance. In the range of mass flow rates and power levels tested, specific impulse values between 650 and 1250 sec were obtained at efficiencies between 30 and 40 percent. The performance of the two larger half angle (20, 15 deg) nozzles was similar for each of the two constrictor diameters tested. The nozzles with the smallest half angle (10 deg) were difiicult to operate. A restrike mode of operation was identified and described. Damage in the form of melting was observed in the constrictor region of all the nozzle inserts tested. Arcjet ignition was also difficult in many tests and a glow discharge mode that prevents starting was identified.
Medium power hydrogen arcjet performance
NASA Technical Reports Server (NTRS)
Curran, Francis M.; Bullock, S. R.; Haag, Thomas W.; Sarmiento, Charles J.; Sankovic, John M.
1991-01-01
An experimental investigation was performed to evaluate hydrogen arcjet operating characteristics in the range of 1 to 4 kW. A series of nozzles were operated in modular laboratory thrusters to examine the effects of geometric parameters such as constrictor diameter and nozzle divergence angle. Each nozzle was tested over a range of current and mass flow rates to explore stability and performance. In the range of mass flow rates and power levels tested, specific impulse values between 650 and 1250 sec were obtained at efficiencies between 30 and 40 percent. The performance of the two larger half angle (20, 15 deg) nozzles was similar for each of the two constrictor diameters tested. The nozzles with the smallest half angle (10 deg) were difficult to operate. A restrike mode of operation was identified and described. Damage in the form of melting was observed in the constrictor region of all the nozzle inserts tested. Arcjet ignition was also difficult in many tests and a glow discharge mode that prevents starting was identified.
NASA Astrophysics Data System (ADS)
Kriebel, M. M.; Stevens, N. J.
1992-07-01
TRW, Rocket Research Co and Defense Systems Inc are developing a space qualified 30-kW class arcjet flight unit as a part of the Arcjet ATTD program. During space operation the package will measure plume deposition and contamination, electromagnetic interference, thermal radiation, arcjet thruster performance, and plume heating in order to quantify arcjet operational interactions. The Electric Propulsion Space Experiment (ESEX) diagnostic package is described. The goals of ESEX are the demonstration of a high powered arcjet performance and the measurement of potential arcjet-spacecraft interactions which cannot be determined in ground facilities. Arcjet performance, plume characterization, thermal radiation flux and the electromagnetic interference (EMI) experiment as well as experiment operations with a preliminary operations plan are presented.
Effect of current ripple on cathode erosion in 30 kWe class arcjets
NASA Technical Reports Server (NTRS)
Harris, William J.; O'Hair, Edgar A.; Hatfield, Lynn L.; Kristiansen, M.; Grimes, Montgomery D.
1991-01-01
An investigation was conducted to study the effect of current ripple on cathode erosion in 30 kWe class arcjets to determine the change in the cathode erosion rate for high (11 percent) and low (4 percent) current ripple. The measurements were conducted using a copper-tungsten cathode material to accelerate the cathode erosion process. It is shown that the high ripple erosion rate was initially higher than the low ripple erosion rate, but decreased asymptotically with time to a level less than half that of the low ripple value. Results suggest that high ripple extends the cathode lifetime for long duration operation, and improves arc stability by increasing the cathode attachment area.
Arcjet component conditions through a multistart test
NASA Technical Reports Server (NTRS)
Curran, Frank M.; Haag, Thomas W.
1987-01-01
A low power, dc arcjet thruster was tested for starting reliability using hydrogen-nitrogen mixtures simulating the decomposition products of hydrazine. More than 300 starts were accumulated in phases with extended burn-in periods interlaced. A high degree of flow stabilization was built into the arcjet and the power supply incorporated both rapid current regulation and a high voltage, pulsed starting circuit. A nominal current level of 10 A was maintained throughout the test. Photomicrographs of the cathode tip showed a rapid recession to a steady-state operating geometry. A target of 300 starts was selected, as this represents significantly more than anticipated (150 to 240), in missions of 10 yr or less duration. Weighings showed no apparent mass loss. Some anode erosion was observed, particularly at the entrance to the constrictor. This was attributed to the brief period during startup the arc mode attachment point spends in the high pressure region upstream of the nozzle. Based on the results obtained, startup does not appear to be performance or life limiting for the number of starts typical of operational satellite applications.
Methodology for Flight Relevant Arc-Jet Testing of Flexible Thermal Protection Systems
NASA Technical Reports Server (NTRS)
Mazaheri, Alireza; Bruce, Walter E., III; Mesick, Nathaniel J.; Sutton, Kenneth
2013-01-01
A methodology to correlate flight aeroheating environments to the arc-jet environment is presented. For a desired hot-wall flight heating rate, the methodology provides the arcjet bulk enthalpy for the corresponding cold-wall heating rate. A series of analyses were conducted to examine the effects of the test sample model holder geometry to the overall performance of the test sample. The analyses were compared with arc-jet test samples and challenges and issues are presented. The transient flight environment was calculated for the Hypersonic Inflatable Aerodynamic Decelerator (HIAD) Earth Atmospheric Reentry Test (HEART) vehicle, which is a planned demonstration vehicle using a large inflatable, flexible thermal protection system to reenter the Earth's atmosphere from the International Space Station. A series of correlations were developed to define the relevant arc-jet test environment to properly approximate the HEART flight environment. The computed arcjet environments were compared with the measured arc-jet values to define the uncertainty of the correlated environment. The results show that for a given flight surface heat flux and a fully-catalytic TPS, the flight relevant arc-jet heat flux increases with the arc-jet bulk enthalpy while for a non-catalytic TPS the arc-jet heat flux decreases with the bulk enthalpy.
The 30-kW ammonia arcjet technology
NASA Technical Reports Server (NTRS)
Deininger, W. D.; Chopra, A.; Pivirotto, T. J.; Goodfellow, K. D.; Barnett, J. W.
1990-01-01
The technical results are summarized of a 30 kW class ammonia propellant arcjet technology program. Evaluation of previous arcjet thruster performance, including materials analysis of used thruster components, led to the design of an arcjet with improved performance and thermal characteristics. Tests of the new engine demonstrated that engine performance is relatively insensitive to cathode tip geometry. Other data suggested a maximum sustainable arc length for a given thruster configuration, beyond which the arc may reconfigure in a destructive manner. A flow controller calibration error was identified. This error caused previously reported values of specific impulse and thrust efficiency to be 20 percent higher than the real values. Corrected arcjet performance data are given. Duration tests of 413 and 252 hours, and several tests 100 hours in duration, were performed. The cathode tip erosion rate increased with increasing arc current. Elimination of power source ripple did not affect cathode tip whisker growth. Results of arcjet modeling, diagnostic development and mission analyses are also discussed. The 30 kW ammonia arcjet may now be considered ready for development for a flight demonstration, but widespread application of 30 kW class arcjet will require improved efficiency and lifetime.
Measurement Requirements for Improved Modeling of Arcjet Facility Flows
NASA Technical Reports Server (NTRS)
Fletcher, Douglas G.
2000-01-01
Current efforts to develop new reusable launch vehicles and to pursue low-cost robotic planetary missions have led to a renewed interest in understanding arc-jet flows. Part of this renewed interest is concerned with improving the understanding of arc-jet test results and the potential use of available computational-fluid- dynamic (CFD) codes to aid in this effort. These CFD codes have been extensively developed and tested for application to nonequilibrium, hypersonic flow modeling. It is envisioned, perhaps naively, that the application of these CFD codes to the simulation of arc-jet flows would serve two purposes: first. the codes would help to characterize the nonequilibrium nature of the arc-jet flows; and second. arc-jet experiments could potentially be used to validate the flow models. These two objectives are, to some extent, mutually exclusive. However, the purpose of the present discussion is to address what role CFD codes can play in the current arc-jet flow characterization effort, and whether or not the simulation of arc-jet facility tests can be used to eva1uate some of the modeling that is used to formu1ate these codes. This presentation is organized into several sections. In the introductory section, the development of large-scale, constricted-arc test facilities within NASA is reviewed, and the current state of flow diagnostics using conventional instrumentation is summarized. The motivation for using CFD to simulate arc-jet flows is addressed in the next section, and the basic requirements for CFD models that would be used for these simulations are briefly discussed. This section is followed by a more detailed description of experimental measurements that are needed to initiate credible simulations and to evaluate their fidelity in the different flow regions of an arc-jet facility. Observations from a recent combined computational and experiment.al investigation of shock-layer flows in a large-scale arc-jet facility are then used to illustrate the current state of development of diagnostic instrumentation, CFD simulations, and general knowledge in the field of arc-jet characterization. Finally, the main points are summarized and recommendations for future efforts are given.
Advance Ratio Effects on the Dynamic-stall Vortex of a Rotating Blade in Steady Forward Flight
2014-08-06
dependence on advance ratio is used to relate the stability of the dynamic-stall vortex to Coriolis effects . Advance ratio effects on the dynamic-stall vortex...relate the stability of the dynamic-stall vortex to Coriolis effects . Keywords: Leading-edge vortex, Dynamic stall vortex, Vortex flows, Rotating wing...Reynolds number are not decoupled. 3. Radial flow field In the rotating environment the coupled effect of centripetal and Coriolis accelerations is ex
A study of ignition and simulation circuits for arcjet thrusters, part 1. M.S. Thesis Final Report
NASA Technical Reports Server (NTRS)
Stuart, Thomas A.; King, Roger J.; Altenburger, Gene P.
1991-01-01
A 1 kW electronic load was programmed to simulate the nonlinear i-v (volt-ampere) characteristics of an arcjet, both ignited and unignited. The simulator was tested and found to closely resemble an arcjet both for large transients and small perturbances up to about 40 kHz. No attempt was made to simulate the ignition process itself. The dynamic behavior of the arcjet (and the simulator) was shown to differ significantly from that of a resistor bank. Previous research led to the design and construction of a 1 kW arcjet power supply. A high voltage ignition circuit was added to this hardware, and tests on a 1 kW arcjet were performed at NASA-Lewis. All tests were successful and no ignition failures were observed. Circuit documentation and test results are included.
Arcjet system integration development
NASA Technical Reports Server (NTRS)
Zafran, Sidney
1994-01-01
Compatibility between an arcjet propulsion system and a communications satellite was verified by testing a Government-furnished, 1.4 kW hydrazine arcjet system with the FLTSATCOM qualification model satellite in a 9.1-meter (30-foot) diameter thermal-vacuum test chamber. Background pressure was maintained at 10(exp -5) torr during arcjet operation by cryopumping the thruster exhaust with an array of 5 K liquid helium cooled panels. Power for the arcjet system was obtained from the FLTSATCOM battery simulator. Spacecraft telemetry was monitored during each thruster firing period. No changes in telemetry data attributable to arcjet operation were detected in any of the tests. Electromagnetic compatibility data obtained included radiated emission measurements, conducted emission measurements, and cable coupling measurements. Significant noise was observed at lower frequencies. Above 500 MHz, radiated emissions were generally within limits, indicating that communication links at S-band and higher frequencies will not be affected. Other test data taken with a diagnostic array of calorimeters, radiometers, witness plates, and a residual gas analyzer evidenced compatible operation, and added to the data base for arcjet system integration. Two test series were conducted. The first series only included the arcjet and diagnostic array operating at approximately 0.1 torr background pressure. The second series added the qualification model spacecraft, a solar panel, and the helium cryopanels. Tests were conducted at 0.1 torr and 10(exp-5) torr. The arcjet thruster was canted 20 degrees relative to the solar panel axis, typical of the configuration used for stationkeeping thrusters on geosynchronous communications satellites.
Arcjet system integration development
NASA Astrophysics Data System (ADS)
Zafran, Sidney
1994-03-01
Compatibility between an arcjet propulsion system and a communications satellite was verified by testing a Government-furnished, 1.4 kW hydrazine arcjet system with the FLTSATCOM qualification model satellite in a 9.1-meter (30-foot) diameter thermal-vacuum test chamber. Background pressure was maintained at 10(exp -5) torr during arcjet operation by cryopumping the thruster exhaust with an array of 5 K liquid helium cooled panels. Power for the arcjet system was obtained from the FLTSATCOM battery simulator. Spacecraft telemetry was monitored during each thruster firing period. No changes in telemetry data attributable to arcjet operation were detected in any of the tests. Electromagnetic compatibility data obtained included radiated emission measurements, conducted emission measurements, and cable coupling measurements. Significant noise was observed at lower frequencies. Above 500 MHz, radiated emissions were generally within limits, indicating that communication links at S-band and higher frequencies will not be affected. Other test data taken with a diagnostic array of calorimeters, radiometers, witness plates, and a residual gas analyzer evidenced compatible operation, and added to the data base for arcjet system integration. Two test series were conducted. The first series only included the arcjet and diagnostic array operating at approximately 0.1 torr background pressure. The second series added the qualification model spacecraft, a solar panel, and the helium cryopanels. Tests were conducted at 0.1 torr and 10(exp-5) torr. The arcjet thruster was canted 20 degrees relative to the solar panel axis, typical of the configuration used for stationkeeping thrusters on geosynchronous communications satellites.
Low power DC arcjet operation with hydrogen/nitrogen/ammonia mixtures
NASA Technical Reports Server (NTRS)
Hardy, Terry L.; Curran, Francis M.
1987-01-01
The effect of gas composition and ambient pressure on arcjet operation was determined. Arcjet operation in different facilities was also compared to determine the validity of tests in small facilities. Volt-ampere characteristics were determined for an arcjet using hydrogen/nitrogen mixtures (simulating both ammonia and hydrazine), hydrogen/nitrogen/ammonia mixtures, and pure ammonia as propellants at various flow rates. The arcjet had a typical performance of 450 sec specific impulse at 1 kW with hydrogen/nitrogen mixures. It was determined that the amount of ammonia present in the gas stream had a significant effect on the arcjet volt-ampere characteristics. Also, hydrogen/nitrogen mixtures simulating ammonia gave arc characteristics approximately the same as those of pure ammonia. Finally, no differences in arc volt-ampere characteristics were seen between low and high ambient pressure operation in the same facility. A 3 to 5 V difference was seen when different facilities were compared, but this difference was probably due to differences in the voltage drops across the current connections, and not due to arcjet operational differences in the two facilities.
Low power dc arcjet operation with hydrogen/nitrogen/ammonia mixtures
NASA Technical Reports Server (NTRS)
Hardy, Terry L.; Curran, Francis M.
1986-01-01
The effect of gas composition and ambient pressure on arcjet operation was determined. Arcjet operation in different facilities was also compared to determine the validity of tests in small facilities. Volt-ampere characteristics were determined for an arcjet using hydrogen/nitrogen mixtures (simulating both ammonia and hydrazine), hydrogen/nitrogen/ammonia mixtures, and pure ammonia as propellants at various flow rates. The arcjet had a typical performance of 450 sec specific impulse at 1 kW with hydrogen/nitrogen mixtures. It was determined that the amount of ammonia present in the gas stream had a significant effect on the arcjet volt-ampere characteristics. Also, hydrogen/nitrogen mixtures simulating ammonia gave arc characteristics approximately the same as those of pure ammonia. Finally, no differences in arc volt-ampere characteristics were seen between low and high ambient pressure operation in the same facility. A 3 to 5 V difference was seen when different facilities were compared, but this difference was probably due to differences in the voltage drops across the current connections, and not due to arcjet operational differences in the two facilities.
Vortex sheet modeling with higher order curved panels. Ph.D Thesis Final Technical Report
NASA Technical Reports Server (NTRS)
Nagati, M. G.
1985-01-01
A numerical technique is presented for modeling the vortex sheet with a deformable surface definition, along which a continuous vortex strength distribution in the spanwise direction is applied, so that by repeatedly modifying its shape, its true configuration is approached, in the proximity of its generating wing. Design problems requiring the inclusion of a realistic configuration of the vortex sheet are numerous. Examples discussed include: control effectiveness and stability derivatives, longitudinal stability, lateral stability, canards, propellers and helicopter rotors, and trailing vortex hazards.
Preliminary Study of Arcjet Neutralization of Hall Thruster Clusters (Postprint)
2007-01-18
Clustered Hall thrusters have emerged as a favored choice for extending Hall thruster options to very high powers (50 kW - 150 kW). This paper...examines the possible use of an arcjet to neutralize clustered Hall thrusters, as the hybrid arcjet- Hall thruster concept can fill a performance niche...and helium, and then demonstrate the first successful operation of a low power Hall thruster -arcjet neutralizer package. In the surrogate anode studies
Performance Potential of Plasma Thrusters: Arcjet and Hall Thruster Modeling
1993-09-17
FUNDING NUMBERS Performance Potential of Plasma Thrusters: \\ Arcjet and Hall Thruster Modeling FQ 8671-9300908 S ,,G-AFOSR-91-0256 6. AUTHOR(S) Manuel...models for the internal physics and the performance of hydrogen arcjets and Hall thrusters , respectively. These are thought to represent the state of...work. 93-24268 14. SUBJECT TERMS IS. NUMBER OF PAGES Electric Propulsion, Arcjets, Hall Thrusters 15 16. PRICE COOE 17. SECURITY CLASSIFICATION I18
Dependence of hydrogen arcjet operation on electrode geometry
NASA Technical Reports Server (NTRS)
Pencil, Eric J.; Sankovic, John M.; Sarmiento, Charles J.; Hamley, John A.
1992-01-01
The dependence of 2 kW hydrogen arcjet performance on cathode to anode electrode spacing was evaluated at specific impulses of 900 and 1000 s. Less than 2 absolute percent change in efficiency was measured for the spacings tested which did not repeat the 14 absolute percent variation reported in earlier work with similar electrode designs. A different nozzle configuration was used to quantify the variation in hydrogen arcjet performance over an extended range of electrode spacing. Electrode gap variation resulted in less than 3 absolute percent change in efficiency. These null results suggested that electrode spacing is decoupled from hydrogen arcjet performance considerations over the ranges tested. Initial studies were conducted on hydrogen arcjet ignition. The dependence of breakdown voltage on mass flow rate and hydrogen arcjet ignition on rates of pulse repetition and pulse voltage rise were also included for comparison with previous results obtained using simulated hydrazine.
NASA Technical Reports Server (NTRS)
Bogorad, A.; Lichtin, D. A.; Bowman, C.; Armenti, J.; Pencil, E.; Sarmiento, C.
1992-01-01
Arcjet thrusters are soon to be used for north/south stationkeeping on commercial communications satellites. A series of tests was performed to evaluate the possible effects of these thrusters on spacecraft charging and the degradation of thermal control material. During the tests the interaction between arcjet plumes and both charged and uncharged surfaces did not cause any significant material degradation. In addition, firing an arcjet thruster benignly reduced the potential of charged surfaces to near zero.
System design of ELITE power processing unit
NASA Astrophysics Data System (ADS)
Caldwell, David J.
The Electric Propulsion Insertion Transfer Experiment (ELITE) is a space mission planned for the mid 1990s in which technological readiness will be demonstrated for electric orbit transfer vehicles (EOTVs). A system-level design of the power processing unit (PPU), which conditions solar array power for the arcjet thruster, was performed to optimize performance with respect to reliability, power output, efficiency, specific mass, and radiation hardness. The PPU system consists of multiphased parallel switchmode converters, configured as current sources, connected directly from the array to the thruster. The PPU control system includes a solar array peak power tracker (PPT) to maximize the power delivered to the thruster regardless of variations in array characteristics. A stability analysis has been performed to verify that the system is stable despite the nonlinear negative impedance of the PPU input and the arcjet thruster. Performance specifications are given to provide the required spacecraft capability with existing technology.
The 5-kW arcjet power electronics
NASA Technical Reports Server (NTRS)
Gruber, R. P.; Gott, R. W.; Haag, T. W.
1989-01-01
The initial design and evaluation of a 5 kW arcjet power electronics breadboard which as been integrated with a modified 1 kW design laboratory arcjet is presented. A single stage, 5 kW full bridge, pulse width modulated (PWM), power converter was developed which was phase shift regulated. The converter used metal oxide semiconductor field effect transistor (MOSFET) power switches and incorporated current mode control and an integral arcjet pulse ignition circuit. The unoptimized power efficiency was 93.5 and 93.9 percent at 5 kW and 50A output at input voltages of 130 and 150V, respectively. Line and load current regulation at 50A output was within one percent. The converter provided up to 6.6 kW to the arcjet with simulated ammonia used as a propellant.
Low power arcjet system spacecraft impacts
NASA Technical Reports Server (NTRS)
Pencil, Eric J.; Sarmiento, Charles J.; Lichtin, D. A.; Palchefsky, J. W.; Bogorad, A. L.
1993-01-01
Potential plume contamination of spacecraft surfaces was investigated by positioning spacecraft material samples relative to an arcjet thruster. Samples in the simulated solar array region were exposed to the cold gas arcjet plume for 40 hrs to address concerns about contamination by backstreaming diffusion pump oil. Except for one sample, no significant changes were measured in absorptance and emittance within experimental error. Concerns about surface property degradation due to electrostatic discharges led to the investigation of the discharge phenomenon of charged samples during arcjet ignition. Short duration exposure of charged samples demonstrated that potential differences are consistently and completely eliminated within the first second of exposure to a weakly ionized plume. The spark discharge mechanism was not the discharge phenomenon. The results suggest that the arcjet could act as a charge control device on spacecraft.
Stability of barotropic vortex strip on a rotating sphere
Sohn, Sung-Ik; Kim, Sun-Chul
2018-01-01
We study the stability of a barotropic vortex strip on a rotating sphere, as a simple model of jet streams. The flow is approximated by a piecewise-continuous vorticity distribution by zonal bands of uniform vorticity. The linear stability analysis shows that the vortex strip becomes stable as the strip widens or the rotation speed increases. When the vorticity constants in the upper and the lower regions of the vortex strip have the same positive value, the inner flow region of the vortex strip becomes the most unstable. However, when the upper and the lower vorticity constants in the polar regions have different signs, a complex pattern of instability is found, depending on the wavenumber of perturbations, and interestingly, a boundary far away from the vortex strip can be unstable. We also compute the nonlinear evolution of the vortex strip on the rotating sphere and compare with the linear stability analysis. When the width of the vortex strip is small, we observe a good agreement in the growth rate of perturbation at an early time, and the eigenvector corresponding to the unstable eigenvalue coincides with the most unstable part of the flow. We demonstrate that a large structure of rolling-up vortex cores appears in the vortex strip after a long-time evolution. Furthermore, the geophysical relevance of the model to jet streams of Jupiter, Saturn and Earth is examined. PMID:29507524
Stability of barotropic vortex strip on a rotating sphere.
Sohn, Sung-Ik; Sakajo, Takashi; Kim, Sun-Chul
2018-02-01
We study the stability of a barotropic vortex strip on a rotating sphere, as a simple model of jet streams. The flow is approximated by a piecewise-continuous vorticity distribution by zonal bands of uniform vorticity. The linear stability analysis shows that the vortex strip becomes stable as the strip widens or the rotation speed increases. When the vorticity constants in the upper and the lower regions of the vortex strip have the same positive value, the inner flow region of the vortex strip becomes the most unstable. However, when the upper and the lower vorticity constants in the polar regions have different signs, a complex pattern of instability is found, depending on the wavenumber of perturbations, and interestingly, a boundary far away from the vortex strip can be unstable. We also compute the nonlinear evolution of the vortex strip on the rotating sphere and compare with the linear stability analysis. When the width of the vortex strip is small, we observe a good agreement in the growth rate of perturbation at an early time, and the eigenvector corresponding to the unstable eigenvalue coincides with the most unstable part of the flow. We demonstrate that a large structure of rolling-up vortex cores appears in the vortex strip after a long-time evolution. Furthermore, the geophysical relevance of the model to jet streams of Jupiter, Saturn and Earth is examined.
NASA Astrophysics Data System (ADS)
Speetjens, M. F. M.; Meleshko, V. V.; van Heijst, G. J. F.
2014-06-01
The present study addresses the classical problem of the dynamics and stability of a cluster of N-point vortices of equal strength arranged in a polygonal configuration (‘N-vortex polygons’). In unbounded domains, such N-vortex polygons are unconditionally stable for N\\leqslant 7. Confinement in a circular domain tightens the stability conditions to N\\leqslant 6 and a maximum polygon size relative to the domain radius. This work expands on existing studies on stability and integrability by a first giving an exploratory spectral analysis of the dynamics of N vortex polygons in circular domains. Key to this is that the spectral signature of the time evolution of vortex positions reflects their qualitative behaviour. Expressing vortex motion by a generic evolution operator (the so-called Koopman operator) provides a rigorous framework for such spectral analyses. This paves the way to further differentiation and classification of point-vortex behaviour beyond stability and integrability. The concept of Koopman-based spectral analysis is demonstrated for N-vortex polygons. This reveals that conditional stability can be seen as a local form of integrability and confirms an important generic link between spectrum and dynamics: discrete spectra imply regular (quasi-periodic) motion; continuous (sub-)spectra imply chaotic motion. Moreover, this exposes rich nonlinear dynamics as intermittency between regular and chaotic motion and quasi-coherent structures formed by chaotic vortices. Dedicated to the memory of Slava Meleshko, a dear friend and inspiring colleague.
The NASA/USAF arcjet research and technology program
NASA Technical Reports Server (NTRS)
Stone, James R.; Huston, Edward S.
1987-01-01
Direct current arcjets have the potential to provide specific impulses greater than 500 sec with storable propellants, and greater than 1000 sec with hydrogen. This level of performance can provide significant benefits for such applications as orbit transfer, station keeping, orbit change, and maneuvering. The simplicity of the arcjet system and its elements of commonality with state-of-the-art resistojet systems offer a relatively low risk transition to these enhanced levels of performance for low power (0.5 to 1.5 kW) station keeping applications. Arcjets at power levels of 10 to 30 kW are potentially applicable to orbit transfer missions. Furthermore, with the anticipated development of space nuclear power systems, arcjets at greater than 100 kW may become attractive. This paper describes the ongoing NASA/USAF program and describes major recent accomplishments.
Comparative Measurements of Earth and Martian Entry Environments in the NASA Langley HYMETS Facility
NASA Technical Reports Server (NTRS)
Splinter, Scott C.; Bey, Kim S.; Gragg, Jeffrey G.; Brewer, Amy
2011-01-01
Arc-jet facilities play a major role in the development of heat shield materials for entry vehicles because they are capable of producing representative high-enthalpy flow environments. Arc-jet test data is used to certify material performance for a particular mission and to validate or calibrate models of material response during atmospheric entry. Materials used on missions entering Earth s atmosphere are certified in an arc-jet using a simulated air entry environment. Materials used on missions entering the Martian atmosphere should be certified in an arc-jet using a simulated Martian atmosphere entry environment, which requires the use of carbon dioxide. Carbon dioxide has not been used as a test gas in a United States arc-jet facility since the early 1970 s during the certification of materials for the Viking Missions. Materials certified for the Viking missions have been used on every entry mission to Mars since that time. The use of carbon dioxide as a test gas in an arc-jet is again of interest to the thermal protection system community for certification of new heat shield materials that can increase the landed mass capability for Mars bound missions beyond that of Viking and Pathfinder. This paper describes the modification, operation, and performance of the Hypersonic Materials Environmental Test System (HYMETS) arc-jet facility with carbon dioxide as a test gas. A basic comparison of heat fluxes, various bulk properties, and performance characteristics for various Earth and Martian entry environments in HYMETS is provided. The Earth and Martian entry environments consist of a standard Earth atmosphere, an oxygen-rich Earth atmosphere, and a simulated Martian atmosphere. Finally, a preliminary comparison of the HYMETS arc-jet facility to several European plasma facilities is made to place the HYMETS facility in a more global context of arc-jet testing capability.
Towards the Development of Low Power Arcjet for Use with Green Propellant
NASA Technical Reports Server (NTRS)
Moeller, Trevor M.
2017-01-01
Conventional arcjet propellants are hydrazine and ammonia. Both are toxic and environmentally unfriendly, requiring the use of complicated handling logistics and increased cost. If successfully demonstrated in arcjets, the use of green propellants would alleviate these issues. This paper details improvements made to the design of a low-power arcjet to be used in testing. Diagnostic tools to be used to assess thruster performance were also developed. These include emission spectroscopy for the detection of thruster insulator erosion and a two-cord heterodyne laser interferometer to measure electron number densities and estimate the exit velocity of the propellant.
Langmuir probe surveys of an arcjet exhaust
NASA Technical Reports Server (NTRS)
Zana, Lynnette M.
1987-01-01
Electrostatic (Langmuir) probes of both spherical and cylindrical geometry have been used to obtain electron number density and temperature in the exhaust of a laboratory arcjet. The arcjet thruster operated on nitrogen and hydrogen mixtures to simulate fully decomposed hydrazine in a vacuum environment with background pressures less than 0.05 Pa. The exhaust appears to be only slightly ionized (less than 1 percent) with local plasma potentials near facility ground. The current-voltage characteristics of the probes indicate a Maxwellian temperature distribution. Plume data are presented as a function of arcjet operating conditions and also position in the exhaust.
NASA Technical Reports Server (NTRS)
Stewart, David A.
1996-01-01
The catalytic efficiency (atom recombination coefficients) for advanced ceramic thermal protection systems was calculated using arc-jet data. Coefficients for both oxygen and nitrogen atom recombination on the surfaces of these systems were obtained to temperatures of 1650 K. Optical and chemical stability of the candidate systems to the high energy hypersonic flow was also demonstrated during these tests.
NASA Technical Reports Server (NTRS)
Robotti, A. C.; Oggero, M.
1984-01-01
The possibility of using an electric arc under the influence of a magnetic field in ambient air to transform the heat energy of the working fluid arc into the kinetic energy of the jet was investigated. A convergent-divergent type nozzle was used. Variation of specific thrust and chamber pressure are discussed. Nitrogen was the propellant used.
Dependence of hydrogen arcjet operation on electrode geometry
NASA Technical Reports Server (NTRS)
Pencil, Eric J.; Sankovic, John M.; Sarmiento, Charles J.; Hamley, John A.
1992-01-01
The dependence of 2kW hydrogen arcjet performance on cathode to anode electrode spacing was evaluated at specific impulses of 900 and 1000 s. Less than 2 absolute percent change in efficiency was measured for the spacings tested which did not repeat the 14 absolute percent variation reported in earlier work with similar electrode designs. A different nozzle configuration was used to quantify the variation in hydrogen arcjet performance over an extended range of electrode spacing. Electrode gap variation resulted in less than 3 absolute percent change in efficiency. These null results suggested that electrode spacing is decoupled from hydrogen arcjet ignition. The dependence of breakdown voltage on mass flow rate and electrode agreed with Paschen curves for hydrogen. Preliminary characterization of the dependence of hydrogen arcjet ignition on rates of pulse repetition and pulse voltage rise were also included for comparison with previous results obtained using simulated hydrazine.
Siracusano, G; Tomasello, R; Giordano, A; Puliafito, V; Azzerboni, B; Ozatay, O; Carpentieri, M; Finocchio, G
2016-08-19
Solitons are very promising for the design of the next generation of ultralow power devices for storage and computation. The key ingredient to achieving this goal is the fundamental understanding of their stabilization and manipulation. Here, we show how the interfacial Dzyaloshinskii-Moriya Interaction (IDMI) is able to lift the energy degeneracy of a magnetic vortex state by stabilizing a topological soliton with radial chirality, hereafter called radial vortex. It has a noninteger Skyrmion number S (0.5<|S|<1) due to both the vortex core polarity and the magnetization tilting induced by the IDMI boundary conditions. Micromagnetic simulations predict that a magnetoresistive memory based on the radial vortex state in both free and polarizer layers can be efficiently switched by a threshold current density smaller than 10^{6} A/cm^{2}. The switching processes occur via the nucleation of topologically connected vortices and vortex-antivortex pairs, followed by spin-wave emissions due to vortex-antivortex annihilations.
Optical investigations of plasma properties in the interior of arcjet thrusters
NASA Astrophysics Data System (ADS)
Storm, Paul Victor
1997-08-01
Arcjet thrusters are electrically powered rockets used for satellite or space vehicle propulsion. The benefit of these thrusters over conventional chemical rockets is the higher exhaust velocity, which translates into less propellant mass required for a given impulse. With the desire to reduce launch costs, arcjets are destined to become one of a number of standard electric propulsion thrusters for satellite station-keeping roles, and have been proposed for more demanding propulsion applications such as longitude correction and LEO to GEO transfer. Given such a potential range of applications, there is a desire to increase both thermal efficiency and exhaust velocity of these rockets, as well as broaden their operating thrust range. Improvements in arcjet design and development will depend to a great extent on a better understanding of the plasma and gasdynamic processes occurring within the arcjet nozzle. Much of this understanding will arise through the use of numerical modeling; however as arcjet models are presently in the developmental stage, there is a considerable need to validate models by experimentation, primarily through optical measurements of plasma properties. This dissertation presents emission and laser-induced fluorescence spectroscopic analyses of hydrogen arcjets for the purpose of numerical model validation. Optical diagnostics of the plasma emission from the arcjet nozzle exit plane and from within the nozzle throat have yielded a wealth of properties, including cathode, electron and hydrogen atom temperatures, and number densities of electrons and excited-state hydrogen atoms. Measurements at the nozzle exit are of great significance as the performance and efficiency of the thruster is determined by the state of the exhausting plasma. Plasma properties within the gasdynamic expansion region of the nozzle were measured using laser-induced fluorescence spectroscopy of the Balmer-alpha transition of atomic hydrogen. Measurements of axial velocity, hydrogen atom temperature and electron number density were obtained. With the exception of the electron density measurements, the results are in very good agreement with a recently developed arcjet model, demonstrating the capacity and potential of the numerical model.
1 Kw Arc-Jet Engine: Experiments With Argon
2004-06-23
3 s- 6 ) R + R ( non-linear) FLAME STABILITY CHAMBER PRESSURE 1.0 - 1.625 atm VACUUM PRESSURE 30 – 30 mmHg FLAME LENGTH 28 – 33 mm CHAMBER...PRESSURE 2.25 – 2.875 atm VACUUM PRESSURE 30 – 40 mmHg FLAME LENGTH 36 – 42 mm CHAMBER PRESSURE 3.0 – 3.0 atm VACUUM PRESSURE 60 – 36 mmHg FLAME LENGTH 18
Mean intensity of the vortex Bessel-Gaussian beam in turbulent atmosphere
NASA Astrophysics Data System (ADS)
Lukin, Igor P.
2017-11-01
In this work the question of stability of the vortex Bessel-Gaussian optical beams formed in turbulent atmosphere is theoretically considered. The detailed analysis of features of spatial structure of distribution of mean intensity of vortex Bessel-Gaussian optical beams in turbulent atmosphere are analyzed. The quantitative criterion of possibility of formation of vortex Bessel-Gaussian optical beams in turbulent atmosphere is derived. It is shown that stability of the form of a vortex Bessel-Gaussian optical beam during propagation in turbulent atmosphere increases with increase of value of a topological charge of this optical beam.
Vortex matter stabilized by many-body interactions
NASA Astrophysics Data System (ADS)
Wolf, S.; Vagov, A.; Shanenko, A. A.; Axt, V. M.; Aguiar, J. Albino
2017-10-01
This work investigates interactions of vortices in superconducting materials between standard types I and II, in the domain of the so-called intertype (IT) superconductivity. Contrary to common expectations, the many-body (many-vortex) contribution is not a correction to the pair-vortex interaction here but plays a crucial role in the formation of the IT vortex matter. In particular, the many-body interactions stabilize vortex clusters that otherwise could not exist. Furthermore, clusters with large numbers of vortices become more stable when approaching the boundary between the intertype domain and type I. This indicates that IT superconductors develop a peculiar unconventional type of the vortex matter governed by the many-body interactions of vortices.
NASA Astrophysics Data System (ADS)
Kriebel, Mary M.; Sanks, Terry M.
1992-02-01
Electric propulsion provides high specific impulses, and low thrust when compared to chemical propulsion systems. Therefore, electric propulsion offers improvements over chemical systems such as increased station-keeping time, prolonged on-orbit maneuverability, low acceleration of large structures, and increased launch vehicle flexibility. The anticipated near-term operational electric propulsion system for an electric orbit transfer vehicle is an arcjet propulsion system. Towards this end, the USAF's Phillips Laboratory (PL) has awarded a prime contract to TRW Space & Technology Group to design, build, and space qualify a 30-kWe class arcjet as well as develop and demonstrate, on the ground, a flight-qualified arcjet propulsion flight unit. The name of this effort is the 30 kWe Class Arcjet Advanced Technology Transition Demonstration (Arcjet ATTD) program. Once the flight unit has completed its ground qualification test, it will be given to the Space Test and Transportation Program Office of the Air Force's Space Systems Division (ST/T) for launch vehicle integration and space test. The flight unit's space test is known as the Electric Propulsion Space Experiment (ESEX). ESEX's mission scenario is 10 firings of 15 minutes each. The objectives of the ESEX flight are to measure arcjet plume deposition, electromagnetic interference, thermal radiation, and acceleration in space. Plume deposition, electromagnetic interference, and thermal radiation are operational issues that are primarily being answered for operational use. This paper describes the Arcjet ATTD flight unit design and identifies specifically how the diagnostic data will be collected as part of the ESEX program.
NASA Technical Reports Server (NTRS)
Sankovic, John M.; Hamley, John A.; Haag, Thomas W.; Sarmiento, Charles J.; Curran, Francis M.
1991-01-01
During the 1960's, a substantial research effort was centered on the development of arcjets for space propulsion applications. The majority of the work was at the 30 kW power level with some work at 1-2 kW. At the end of the research effort, the hydrogen arcjet had demonstrated over 700 hours of life in a continuous endurance test at 30 kW, at a specific impulse over 1000 s, and at an efficiency of 0.41. Another high power design demonstrated 500 h life with an efficiency of over 0.50 at the same specific impulse and power levels. At lower power levels, a life of 150 hours was demonstrated at 2 kW with an efficiency of 0.31 and a specific impulse of 935 s. Lack of a space power source hindered arcjet acceptance and research ceased. Over three decades after the first research began, renewed interest exists for hydrogen arcjets. The new approach includes concurrent development of the power processing technology with the arcjet thruster. Performance data were recently obtained over a power range of 0.3-30 kW. The 2 kW performance has been repeated; however, the present high power performance is lower than that obtained in the 1960's at 30 kW, and lifetimes of present thrusters have not yet been demonstrated. Laboratory power processing units have been developed and operated with hydrogen arcjets for the 0.1 kW to 5 kW power range. A 10 kW power processing unit is under development and has been operated at design power into a resistive load.
Arcjet thruster research and technology, phase 2
NASA Technical Reports Server (NTRS)
Yano, Steve E.
1991-01-01
The principle objective of Phase 2 was to produce an engineering model N2H4 arcjet system which met typical performance, lifetime, environmental, and interface specifications required to support a 10-year N-S stationkeeping mission for a communications spacecraft. The system includes an N2H4 arcjet thruster, power conditioning unit (PCU), and the interconnecting power cable assembly. This objective was met with the successful conclusion of an extensive system test series.
The design and operating characteristics of an advanced 30-kW ammonia arcjet engine
NASA Technical Reports Server (NTRS)
Deininger, William D.; Pivirotto, Thomas J.; Brophy, John R.
1987-01-01
Experimental investigations were conducted to evaluate the effects of a contoured nozzle and modified cathode shape on ammonia arcjet engine performance. The contoured nozzle performance data were compared to the performance data of an arcjet which had a 38-deg included-angle, conical nozzle. Thrust improvements of up to 10 percent were demonstrated which corresponded to 3 percent improvements in specific impulse and 10 percent improvements in thrust efficiency. Performance characterizations for the modified cathode tip were conducted with the contoured nozzle arcjet. A uniform 15 percent decrease in arc voltage was demonstrated over a mass flow range of 0.175 to 0.350 g/s. A 4 percent improvement in thrust efficiency was noted at 22.0 kW.
Guiding principles for vortex flow controls
NASA Technical Reports Server (NTRS)
Wu, J. Z.; Wu, J. M.
1991-01-01
In the practice of vortex flow controls, the most important factor is that the persistency and obstinacy of a concentrated vortex depend on its stability and dissipation. In this paper, the modern nonlinear stability theory for circulation-preserving flows is summarized, and the dissipation for general viscous flows is analyzed in terms of the evolution of total enstrophy. These analyses provide a theoretical base for understanding relevant physics of vortex flows, and lead to some guiding principles and methods for their controls. Case studies taken from various theoretical and/or experimental works of vortex controls, due to the present authors as well as others, confirm the feasibility of the recommended principles and methods.
The 10 kW power electronics for hydrogen arcjets
NASA Technical Reports Server (NTRS)
Hamley, John A.; Pinero, Luis R.; Hill, Gerald M.
1992-01-01
A combination of emerging mission considerations such as 'launch on schedule', resource limitations, and the development of higher power spacecraft busses has resulted in renewed interest in high power hydrogen arcjet systems with specific impulses greater than 1000 s for Earth-space orbit transfer and maneuver applications. Solar electric propulsion systems with about 10 kW of power appear to offer payload benefits at acceptable trip times. This work outlines the design and development of 10 kW hydrogen arcjet power electronics and results of arcjet integration testing. The power electronics incorporated a full bridge switching topology similar to that employed in state of the art 5 kW power electronics, and the output filter included an output current averaging inductor with an integral pulse generation winding for arcjet ignition. Phase shifted, pulse width modulation with current mode control was used to regulate the current delivered to arcjet, and a low inductance power stage minimized switching transients. Hybrid power Metal Oxide Semiconductor Field Effect Transistors were used to minimize conduction losses. Switching losses were minimized using a fast response, optically isolated, totem-pole gate drive circuit. The input bus voltage for the unit was 150 V, with a maximum output voltage of 225 V. The switching frequency of 20 kHz was a compromise between mass savings and higher efficiency. Power conversion efficiencies in excess of 0.94 were demonstrated, along with steady state load current regulation of 1 percent. The power electronics were successfully integrated with a 10 kW laboratory hydrogen arcjet, and reliable, nondestructive starts and transitions to steady state operation were demonstrated. The estimated specific mass for a flight packaged unit was 2 kg/kW.
A study of cathode erosion in high power arcjets
NASA Astrophysics Data System (ADS)
Harris, William Jackson, III
Cathode erosion continues to be one of the predominant technology concerns for high power arcjets. This study will show that cathode erosion in these devices is significantly affected by several mitigating factors, including propellant composition, propellant flowrate, current level, cathode material, and power supply current ripple. In a series of 50-hour and 100-hour long duration experiments, using a water-cooled 30 kilowatt laboratory arcjet, variations in the steady-state cathode erosion rate were characterized for each of these factors using nitrogen propellant at a fixed arc current of 250 Amperes. A complementary series of measurements was made using hydrogen propellant at an arc current of 100 Amperes. The cold cathode erosion rate was also differentiated from the steady-state cathode erosion rate in a series of multi-start cathode erosion experiments. Results of these measurements are presented, along with an analysis of the significant effects of current ripple on arcjet cathode erosion. As part of this study, over a dozen refractory cathode materials were evaluated to measure their resistance to arcjet cathode erosion. Among the materials tested were W-ThO2(1%, 2%, 4%), poly and mono-crystalline W, W-LaB6, W-La2O3, W-BaO2, W-BaCaAl2O4, W-Y2O3, and ZrB2. Based on these measurements, several critical material properties were identified, such work function, density, porosity, melting point, and evaporation rate. While the majority of the materials failed to outperform traditional W-ThO2, these experimental results are used to develop a parametric model of the arcjet cathode physics. The results of this model, and the results of a finite-element thermal analysis of the arcjet cathode, are presented to better explain the relative performance of the materials tested.
Arcjet nozzle area ratio effects
NASA Technical Reports Server (NTRS)
Curran, Francis M.; Sarmiento, Charles J.; Birkner, Bjorn W.; Kwasny, James
1990-01-01
An experimental investigation was conducted to determine the effect of nozzle area ratio on the operating characteristics and performance of a low power dc arcjet thruster. Conical thoriated tungsten nozzle inserts were tested in a modular laboratory arcjet thruster run on hydrogen/nitrogen mixtures simulating the decomposition products of hydrazine. The converging and diverging sides of the inserts had half angles of 30 and 20 degrees, respectively, similar to a flight type unit currently under development. The length of the diverging side was varied to change the area ratio. The nozzle inserts were run over a wide range of specific power. Current, voltage, mass flow rate, and thrust were monitored to provide accurate comparisons between tests. While small differences in performance were observed between the two nozzle inserts, it was determined that for each nozzle insert, arcjet performance improved with increasing nozzle area ratio to the highest area ratio tested and that the losses become very pronounced for area ratios below 50. These trends are somewhat different than those obtained in previous experimental and analytical studies of low Re number nozzles. It appears that arcjet performance can be enhanced via area ratio optimization.
Arcjet Nozzle Area Ratio Effects
NASA Technical Reports Server (NTRS)
Curran, Francis M.; Sarmiento, Charles J.; Birkner, Bjorn W.; Kwasny, James
1990-01-01
An experimental investigation was conducted to determine the effect of nozzle area ratio on the operating characteristics and performance of a low power dc arcjet thruster. Conical thoriated tungsten nozzle inserts were tested in a modular laboratory arcjet thruster run on hydrogen/nitrogen mixtures simulating the decomposition products of hydrazine. The converging and diverging sides of the inserts had half angles of 30 and 20 degrees, respectively, similar to a flight type unit currently under development. The length of the diverging side was varied to change the area ratio. The nozzle inserts were run over a wide range of specific power. Current, voltage, mass flow rate, and thrust were monitored to provide accurate comparisons between tests. While small differences in performance were observed between the two nozzle inserts, it was determined that for each nozzle insert, arcjet performance improved with increasing nozzle area ratio to the highest area ratio tested and that the losses become very pronounced for area ratios below 50. These trends are somewhat different than those obtained in previous experimental and analytical studies of low Re number nozzles. It appears that arcjet performance can be enhanced via area ratio optimization.
Arcjet starting reliability - A multistart test on hydrogen/nitrogen mixtures
NASA Technical Reports Server (NTRS)
Haag, Thomas W.; Curran, Frank M.
1987-01-01
An arcjet starting reliability test was performed to investigate one feasibility issue in the use of arcjets on board a satellite for north-south stationkeeping. A 1 kW arcjet was run on hydrogen/nitrogen gas mixtures simulating decomposed hydrazine. A pulse width modulated power supply with an integral high voltage starting pulser was used for arc ignition and steady-state operation. The test was performed in four phases in order to determine if starting characteristics changed as a result of long term thruster operation. More than 300 successful starts were accumulated over an operating time of 18 hr. Overall results indicate that there is a link between starting characteristics and long term thruster operation; however, the large number of starts had no effect on steady-state performance.
Arcjet starting reliability: A multistart test on hydrogen/nitrogen mixtures
NASA Technical Reports Server (NTRS)
Haag, Thomas W.; Curran, Frank M.
1987-01-01
An arcjet starting reliability test was performed to investigate one feasibility issue in the use of arcjets onboard a satellite for north-south stationkeeping. A 1 kW arcjet was run on hydrogen/nitrogen gas mixtures simulating decomposed hydrazine. A pulse width modulated power supply with an integral high voltage starting pulser was used for arc ignition and steady-state operation. The test was performed in four phases in order to determine if starting characteristics changed as a result of long term thruster operation. More than 300 successful starts were accumulated over an operating time of 18 hrs. Overall results indicate that there is a link between starting characteristics and long term thruster operation; however, the large number of starts had no effect on steady-state performance.
NASA Astrophysics Data System (ADS)
Chen, Gui-Qiang; Wang, Ya-Guang
2008-03-01
Compressible vortex sheets are fundamental waves, along with shocks and rarefaction waves, in entropy solutions to multidimensional hyperbolic systems of conservation laws. Understanding the behavior of compressible vortex sheets is an important step towards our full understanding of fluid motions and the behavior of entropy solutions. For the Euler equations in two-dimensional gas dynamics, the classical linearized stability analysis on compressible vortex sheets predicts stability when the Mach number M > sqrt{2} and instability when M < sqrt{2} ; and Artola and Majda’s analysis reveals that the nonlinear instability may occur if planar vortex sheets are perturbed by highly oscillatory waves even when M > sqrt{2} . For the Euler equations in three dimensions, every compressible vortex sheet is violently unstable and this instability is the analogue of the Kelvin Helmholtz instability for incompressible fluids. The purpose of this paper is to understand whether compressible vortex sheets in three dimensions, which are unstable in the regime of pure gas dynamics, become stable under the magnetic effect in three-dimensional magnetohydrodynamics (MHD). One of the main features is that the stability problem is equivalent to a free-boundary problem whose free boundary is a characteristic surface, which is more delicate than noncharacteristic free-boundary problems. Another feature is that the linearized problem for current-vortex sheets in MHD does not meet the uniform Kreiss Lopatinskii condition. These features cause additional analytical difficulties and especially prevent a direct use of the standard Picard iteration to the nonlinear problem. In this paper, we develop a nonlinear approach to deal with these difficulties in three-dimensional MHD. We first carefully formulate the linearized problem for the current-vortex sheets to show rigorously that the magnetic effect makes the problem weakly stable and establish energy estimates, especially high-order energy estimates, in terms of the nonhomogeneous terms and variable coefficients. Then we exploit these results to develop a suitable iteration scheme of the Nash Moser Hörmander type to deal with the loss of the order of derivative in the nonlinear level and establish its convergence, which leads to the existence and stability of compressible current-vortex sheets, locally in time, in three-dimensional MHD.
Performance of Low-Power Pulsed Arcjets
NASA Technical Reports Server (NTRS)
Burton, Rodney L.
1995-01-01
The Electric Propulsion Laboratory at UIUC has in place all the capability and diagnostics required for performance testing of low power pulsed and DC arcjets. The UIUC thrust stand is operating with excellent accuracy and sensitivity at very low thrust levels. An important aspect of the experimental setup is the use of a PID controller to maintain a constant thruster position, which reduces hysterisis effects. Electrical noise from the arcjet induces some noise into the thrust signal, but this does not affect the measurement.
Evaluation of the communications impact of a low power arcjet thruster
NASA Technical Reports Server (NTRS)
Carney, Lynnette M.
1988-01-01
The interaction of a 1 kW arcjet thruster plume with a communications signal is evaluated. A two-parameter, source flow equation has been used to represent the far flow field distribution of the arcjet plume in a realistic spacecraft configuration. Modelling the plume as a plasma slab, the interaction of the plume with a 4 GHz communications signal is then evaluated in terms of signal attenuation and phase shift between transmitting and receiving antennas. Except for propagation paths which pass very near the arcjet source, the impacts to transmission appear to be negligible. The dominant signal loss mechanism is refraction of the beam rather than absorption losses due to collisions. However, significant reflection of the signal at the sharp vacuum-plasma boundary may also occur for propagation paths which pass near the source.
NASA Technical Reports Server (NTRS)
Deininger, William D.; Vondra, Robert J.
1987-01-01
The design and performance of an arcjet nuclear-electric-propulsion spacecraft, suitable for use in the Space Nuclear Power System (SNPS) reference mission, are outlined. The vehicle design was based on a 30-kW ammonia arcjet system operating at an Isp of 1050 s and an efficiency of 45 percent. The arcjet/gimbal system, power-processing unit, and propellant-feed system are described. A 100-kWe SNPS was assumed, and the spacecraft mass was baselined at 5250 kg (excluding the propellant-feed system). A radiation/arcjet efflux diagnostics package was included in the performance analysis. This spacecraft, assuming a Shuttle launch from KSC, can perform a 50-deg inclination change and reach a final orbit of 35,860 km with a 120-d trip time providing a 4-mo active load for the SNPS. Alternatively, a Titan IV launch would provide a mass margin of 120 kg to a 10,000-km, 58-deg final orbit in 74 d. This spacecraft meets the reference-mission constraint of low developmental risk, and is scalable to power levels projected for future space platforms.
D.C. Arcjet Diamond Deposition
NASA Astrophysics Data System (ADS)
Russell, Derrek Andrew
1995-01-01
Polycrystalline diamond films synthesized by a D.C. (direct current) arcjet device was reported for the first time in 1988. This device is capable of higher diamond growth rates than any other form of diamond CVD (chemical vapor deposition) process due to its inherent versatility with regard to the enthalpy and fluid properties of the diamond-depositing vapor. Unfortunately, the versatility of this type of device is contrasted by many difficulties such as arc stability and large heat fluxes which make applying it toward diamond deposition a difficult problem. The purpose of this work was to convert the dc arcjet, which is primarily a metallurgical device, into a commercially viable diamond CVD process. The project was divided into two parts: process development and diagnostics. The process development effort concentrated on the certain engineering challenges. Among these was a novel arcjet design that allowed the carbon-source gas to be injected downstream of the tungsten cathode while still facilitating mixture with the main gas feed. Another engineering accomplishment was the incorporation of a water -cooled substrate cooler/spinner that maintained the substrate at the proper temperature, provided the substrate with a large thermal time constant to reduce thermal shock of the diamond film, and enabled the system to achieve a four -inch diameter growth area. The process diagnostics effort concentrated on measurements aimed at developing a fundamental understanding of the properties of the plasma jet such as temperature, plasma density, Mach number, pressure at the substrate, etc. The plasma temperature was determined to be 5195 K by measuring the rotational temperature of C _2 via optical emission spectroscopy. The Mach number of the plasma jet was determined to be ~6.0 as determined by the ratio of the stagnation pressures before and after the shock wave in the plasma jet. The C_2 concentration in the plasma jet was determined to be {~10 }^{12} cm^ {-3} by counting the number of radiated Swan band photons. This is big enough to account for a significant amount (10%) of the diamond growth.
Assessment of Fencing on the Orion Heatshield
NASA Technical Reports Server (NTRS)
Alunni, Antonella I.; Gokcen, Tahir
2016-01-01
This paper presents recent experimental results from arc-jet tests of the Orion heatshield that were conducted at NASA Ames Research Center. Test conditions that simulated a set of heating profiles in time representative of the Orion flight environments were used to observe their effect on Orion's block architecture in terms of differential recession or fencing. Surface recession of arc-jet models was characterized during and after testing to derive fencing profiles used for the baseline sizing of the heatshield. Arc-jet test data show that the block architecture produces varying degrees of fencing.
Arcjet Testing and Thermal Model Development for Multilayer Felt Reusable Surface Insulation
NASA Technical Reports Server (NTRS)
Milos, Frank S.; Scott, Carl Douglas; Papa, Steven V.
2012-01-01
Felt Reusable Surface Insulation was used extensively on leeward external surfaces of the Shuttle Orbiter, where the material is reusable for temperatures up to 670 K. For application on leeward surfaces of the Orion Multi-Purpose Crew Vehicle, where predicted temperatures reach 1620 K, the material functions as a pyrolyzing conformal ablator. An arcjet test series was conducted to assess the performance of multilayer Felt Reusable Surface Insulation at high temperatures, and a thermal-response, pyrolysis, and ablation model was developed. Model predictions compare favorably with the arcjet test data
Characterization of Arcjet Flows Using Laser-Induced Fluorescence
NASA Technical Reports Server (NTRS)
Bamford, Douglas J.; O'Keefe, Anthony; Babikian, Dikran S.; Stewart, David A.; Strawa, Anthony W.
1995-01-01
A sensor based on laser-induced fluorescence has been installed at the 20-MW NASA Ames Aerodynamic Heating Facility. The sensor has provided new, quantitative, real-time information about properties of the arcjet flow in the highly dissociated, partially ionized, nonequilibrium regime. Number densities of atomic oxygen, flow velocities, heavy particle translational temperatures, and collisional quenching rates have been measured. These results have been used to test and refine computational models of the arcjet flow. The calculated number densities, translational temperatures, and flow velocities are in moderately good agreement with experiment
Magnetic vortex nucleation modes in static magnetic fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vanatka, Marek; Urbanek, Michal; Jira, Roman
The magnetic vortex nucleation process in nanometer- and micrometer-sized magnetic disks undergoes several phases with distinct spin configurations called the nucleation states. Before formation of the final vortex state, small submicron disks typically proceed through the so-called C-state while the larger micron-sized disks proceed through the more complicated vortex-pair state or the buckling state. This work classifies the nucleation states using micromagnetic simulations and provides evidence for the stability of vortex-pair and buckling states in static magnetic fields using magnetic imaging techniques and electrical transport measurements. Lorentz Transmission Electron Microscopy and Magnetic Transmission X-ray Microscopy are employed to reveal themore » details of spin configuration in each of the nucleation states. We further show that it is possible to unambiguously identify these states by electrical measurements via the anisotropic magnetoresistance effect. Combination of the electrical transport and magnetic imaging techniques confirms stability of a vortex-antivortex-vortex spin configuration which emerges from the buckling state in static magnetic fields.« less
Development of a perturbation generator for vortex stability studies
NASA Technical Reports Server (NTRS)
Riester, J. E.; Ash, Robert L.
1991-01-01
Theory predicts vortex instability when subjected to certain types of disturbances. It was desired to build a device which could introduce controlled velocity perturbations into a trailing line vortex in order to study the effects on stability. A perturbation generator was designed and manufactured which can be attached to the centerbody of an airfoil type vortex generator. Details of design tests and manufacturing of the perturbation generator are presented. The device produced controlled perturbation with frequencies in excess of 250 Hz. Preliminary testing and evaluation of the perturbation generator performance was conducted in a 4 inch cylindrical pipe. Observations of vortex shedding frequencies from a centerbody were measured. Further evaluation with the perturbation generator attached to the vortex generator in a 2 x 3 foot wind tunnel were also conducted. Hot-wire anemometry was used to confirm the perturbation generator's ability to introduce controlled frequency fluctuations. Comparison of the energy levels of the disturbances in the vortex core was made between locations 42 chord lengths and 15 chord lengths downstream.
Magnetic vortex nucleation modes in static magnetic fields
Vanatka, Marek; Urbanek, Michal; Jira, Roman; ...
2017-10-03
The magnetic vortex nucleation process in nanometer- and micrometer-sized magnetic disks undergoes several phases with distinct spin configurations called the nucleation states. Before formation of the final vortex state, small submicron disks typically proceed through the so-called C-state while the larger micron-sized disks proceed through the more complicated vortex-pair state or the buckling state. This work classifies the nucleation states using micromagnetic simulations and provides evidence for the stability of vortex-pair and buckling states in static magnetic fields using magnetic imaging techniques and electrical transport measurements. Lorentz Transmission Electron Microscopy and Magnetic Transmission X-ray Microscopy are employed to reveal themore » details of spin configuration in each of the nucleation states. We further show that it is possible to unambiguously identify these states by electrical measurements via the anisotropic magnetoresistance effect. Combination of the electrical transport and magnetic imaging techniques confirms stability of a vortex-antivortex-vortex spin configuration which emerges from the buckling state in static magnetic fields.« less
NASA Technical Reports Server (NTRS)
Curran, F. M.; Hamley, J. A.; Gruber, R. P.; Sankovic, J. M.; Haag, T. W.; Marren, W. E.; Sarmiento, C. J.; Carney, L.
1993-01-01
Two flight-type 1.4-kW hydrazine arcjet systems developed and tested under Lewis program. Each consists of thrustor, gas generator, and power-processing unit. Performance significantly improved. Technology transferred to user community, and first commercial flight anticipated in 1993.
NASA Technical Reports Server (NTRS)
Curran, Francis M.; Sovie, Amy J.; Haag, Thomas W.
1989-01-01
The effect of nozzle configuration on the operating characteristics of a low power dc arcjet thruster was determined. A conical nozzle with a 30 deg converging angle, a 20 deg diverging angle, and an area ratio of 225 served as the baseline case. Variations on the geometry included bell-shaped contours both up and downstream, and a downstream trumpet-shaped contour. The nozzles were operated over a range of specific power near that anticipated for on-orbit operation. Mass flow rate, thrust, current, and voltage were monitored to provide accurate comparisons between nozzles. The upstream contour was found to have minimal effect on arcjet operation. It was determined that the contour of the divergent section of the nozzle, that serves as the anode, was very important in determining the location of arc attachment, and thus had a significant impact on arcjet performance. The conical nozzle was judged to have the optimal current/voltage characteristics and produced the best performance of the nozzles tested.
NASA Technical Reports Server (NTRS)
Curran, Francis M.; Sovie, Amy J.; Haag, Thomas W.
1989-01-01
The effect of nozzle configuration on the operating characteristics of a low power dc arcjet thruster was determined. A conical nozzle with a 30 deg converging angle, a 20 deg diverging angle, and an area ratio of 225 served as the baseline case. Variations on the geometry included bell-shaped contours both up and downstream, and a downstream trumpet-shaped contour. The nozzles were operated over a range of specific power near that anticipated for on-orbit operation. Mass flow rate, thrust, current, and voltage were monitored to provide accurate comparisons between nozzles. The upstream contour was found to have minimal effect on arcjet operation. It was determined that the contour of the divergent section of the nozzle, that serves as the anode, was very important in determining the location of arc attachment, and thus had a significant impact on arcjet performance. The conical nozzle was judged to have the optimal current/voltage characteristics and produced the best performance of the nozzles tested.
Two-Dimensional Finite Element Ablative Thermal Response Analysis of an Arcjet Stagnation Test
NASA Technical Reports Server (NTRS)
Dec, John A.; Laub, Bernard; Braun, Robert D.
2011-01-01
The finite element ablation and thermal response (FEAtR, hence forth called FEAR) design and analysis program simulates the one, two, or three-dimensional ablation, internal heat conduction, thermal decomposition, and pyrolysis gas flow of thermal protection system materials. As part of a code validation study, two-dimensional axisymmetric results from FEAR are compared to thermal response data obtained from an arc-jet stagnation test in this paper. The results from FEAR are also compared to the two-dimensional axisymmetric computations from the two-dimensional implicit thermal response and ablation program under the same arcjet conditions. The ablating material being used in this arcjet test is phenolic impregnated carbon ablator with an LI-2200 insulator as backup material. The test is performed at the NASA, Ames Research Center Interaction Heating Facility. Spatially distributed computational fluid dynamics solutions for the flow field around the test article are used for the surface boundary conditions.
Characteristics of an under-expanded supersonic flow in arcjet plasmas
NASA Astrophysics Data System (ADS)
Namba, Shinichi; Shikama, Taiichi; Sasano, Wataru; Tamura, Naoki; Endo, Takuma
2018-06-01
A compact apparatus to produce arcjet plasma was fabricated to investigate supersonic flow dynamics. Periodic bright–dark emission structures were formed in the arcjets, depending on the plasma source and ambient gas pressures in the vacuum chamber. A directional Langmuir probe (DLP) and emission spectroscopy were employed to characterize plasma parameters such as the Mach number of plasma flows and clarify the mechanism for the generation of the emission pattern. In particular, in order to investigate the influence of the Mach number on probe size, we used two DLPs of different probe size. The results indicated that the arcjets could be classified into shock-free expansion and under-expansion, and the behavior of plasma flow could be described by compressible fluid dynamics. Comparison of the Langmuir probe results with emission and laser absorption spectroscopy showed that the small diameter probe was reliable to determine the Mach number, even for the supersonic jet.
Throttling capability of a 30 kW class ammonia arcjet
NASA Technical Reports Server (NTRS)
Goodfellow, K. D.; Polk, J. E.
1991-01-01
The throttling capabilities of a 30 kW class ammonia arcjet and its compatibility with a breadboard power conditioning unit (PCU) were tested in two series of tests. The first series was performed to determine the performance and operating characteristics of the arcjet and the PCU over a range of power levels and propellant flow rates. The power levels for the tests were nominally between 10 and 30 kW, with some operation below 10 kW at the lower flow rates. The ammonia flow rates varied between 0.16 and 0.35 g/s. The second series of tests was an extensive investigation of operation below 12 kW using three cathode spacings. The ammonia flow rates were between 0.115 and 0.335 g/s. Operation of the arcjet from 1.5 kW up to the 30 kW design point was demonstrated with the PCU.
Stabilization of Inviscid Vortex Sheets
NASA Astrophysics Data System (ADS)
Protas, Bartosz; Sakajo, Takashi
2017-11-01
In this study we investigate the problem of stabilizing inviscid vortex sheets via feedback control. Such models, expressed in terms of the Birkhoff-Rott equation, are often used to describe the Kevin-Helmholtz instability of shear layers and are known to be strongly unstable to small-scale perturbations. First, we consider the linear stability of a straight vortex sheet in the periodic setting with actuation in the form of an array of point vortices or sources located a certain distance away from the sheet. We establish conditions under which this system is controllable and observable. Next, using methods of the linear control theory, we synthesize a feedback control strategy which stabilizes a straight vortex sheet in the linear regime. Given the poor conditioning of the discretized problem, reliable solution of the resulting algebraic Riccati equation requires the use of high-precision arithmetic. Finally, we demonstrate that this control approach also succeeds in the nonlinear regime, provided the magnitude of the initial perturbation is sufficiently small.
Vortex Analysis of Intra-Aneurismal Flow in Cerebral Aneurysms
Sunderland, Kevin; Haferman, Christopher; Chintalapani, Gouthami
2016-01-01
This study aims to develop an alternative vortex analysis method by measuring structure ofIntracranial aneurysm (IA) flow vortexes across the cardiac cycle, to quantify temporal stability of aneurismal flow. Hemodynamics were modeled in “patient-specific” geometries, using computational fluid dynamics (CFD) simulations. Modified versions of known λ 2 and Q-criterion methods identified vortex regions; then regions were segmented out using the classical marching cube algorithm. Temporal stability was measured by the degree of vortex overlap (DVO) at each step of a cardiac cycle against a cycle-averaged vortex and by the change in number of cores over the cycle. No statistical differences exist in DVO or number of vortex cores between 5 terminal IAs and 5 sidewall IAs. No strong correlation exists between vortex core characteristics and geometric or hemodynamic characteristics of IAs. Statistical independence suggests this proposed method may provide novel IA information. However, threshold values used to determine the vortex core regions and resolution of velocity data influenced analysis outcomes and have to be addressed in future studies. In conclusions, preliminary results show that the proposed methodology may help give novel insight toward aneurismal flow characteristic and help in future risk assessment given more developments. PMID:27891172
Vortex Analysis of Intra-Aneurismal Flow in Cerebral Aneurysms.
Sunderland, Kevin; Haferman, Christopher; Chintalapani, Gouthami; Jiang, Jingfeng
2016-01-01
This study aims to develop an alternative vortex analysis method by measuring structure ofIntracranial aneurysm (IA) flow vortexes across the cardiac cycle, to quantify temporal stability of aneurismal flow. Hemodynamics were modeled in "patient-specific" geometries, using computational fluid dynamics (CFD) simulations. Modified versions of known λ 2 and Q -criterion methods identified vortex regions; then regions were segmented out using the classical marching cube algorithm. Temporal stability was measured by the degree of vortex overlap (DVO) at each step of a cardiac cycle against a cycle-averaged vortex and by the change in number of cores over the cycle. No statistical differences exist in DVO or number of vortex cores between 5 terminal IAs and 5 sidewall IAs. No strong correlation exists between vortex core characteristics and geometric or hemodynamic characteristics of IAs. Statistical independence suggests this proposed method may provide novel IA information. However, threshold values used to determine the vortex core regions and resolution of velocity data influenced analysis outcomes and have to be addressed in future studies. In conclusions, preliminary results show that the proposed methodology may help give novel insight toward aneurismal flow characteristic and help in future risk assessment given more developments.
On the effects of viscosity on the stability of a trailing-line vortex
NASA Technical Reports Server (NTRS)
Duck, Peter W.; Khorrami, Mehdi R.
1991-01-01
The linear stability of the Batchelor (1964) vortex is investigated. Particular emphasis is placed on modes found recently in a numerical study by Khorrami (1991). These modes have a number of features very distinct from those found previously for this vortex, including exhibiting small growth rates at large Reynolds numbers and susceptibility to destabilization by viscosity. These modes are described using asymptotic techniques, producing results which compare favorably with fully numerical results at large Reynolds numbers.
Assessment of Fencing on the Orion Heatshield
NASA Technical Reports Server (NTRS)
Alunni, Antonella I.; Gokcen, Tahir
2016-01-01
This paper presents recession measurements of arc-jet test articles that simulate an ablator with gap filler and were exposed to various heating profiles. Results were used to derive empirically-based differential recession models used for the baseline sizing of the Orion block heatshield architecture. The profile test conditions represent different local flight environments associated with different regions of the heatshield. Recession measurements were collected during and after arc-jet tests, and the results were used to observe the heating profiles’ effect on differential recession. Arc-jet tests were conducted at the Aerodynamic Heating Facility at NASA Ames Research Center.
Velocity mapping in a 30-kW arcjet plume using laser-induced fluorescence
NASA Astrophysics Data System (ADS)
Pham-van-Diep, Gerald; Erwin, Daniel D.; Deininger, William D.; Pivirotto, Thomas J.
1989-07-01
A method for measuring the axial and transverse plume velocities and internal energy distributions in rarified thruster plumes by using pulsed laser-induced fluorescence (LIF) of atomic hydrogen Balmer lines is described. The results of an application of this technique for velocity mapping of a 30-kW ammonia arc-jet plume generated in the JPL arc-jet testing facility (which is uniquely suited for these measurements due to the end-on optical access provided by its ninety-degree-bent diffuser) are described. A schematic diagram of the JPL facility with LIF setup is included.
Low power arcjet system spacecraft impacts
NASA Technical Reports Server (NTRS)
Pencil, Eric J.; Sarmiento, Charles J.; Lichtin, D. A.; Palchefsky, J. W.; Bogorad, A. L.
1993-01-01
Application of electrothermal arcjets on communications satellites requires assessment of integration concerns identified by the user community. Perceived risks include plume contamination of spacecraft materials, induced arcing or electrostatic discharges between differentially charged spacecraft surfaces, and conducted and radiated electromagnetic interference (EMI) for both steady state and transient conditions. A Space Act agreement between Martin Marietta Astro Space, the Rocket Research Company, and NASA's Lewis Research Center was established to experimentally examine these issues. Spacecraft materials were exposed to an arcjet plume for 40 hours, representing 40 weeks of actual spacecraft life, and contamination was characterized by changes in surface properties. With the exception of the change in emittance of one sample, all measurable changes in surface properties resulted in acceptable end of life characteristics. Charged spacecraft samples were benignly and consistently reduced to ground potential during exposure to the powered arcjet plume, suggesting that the arcjet could act as a charge control device on spacecraft. Steady state EMI signatures obtained using two different power processing units were similar to emissions measured in a previous test. Emissions measured in UHF, S, C, Ku and Ka bands obtained a null result which verified previous work in the UHF, S, and C bands. Characteristics of conducted and radiated transient emissions appear within standard spacecraft susceptibility criteria.
Multidimensional Tests of Thermal Protection Materials in the Arcjet Test Facility
NASA Technical Reports Server (NTRS)
Agrawal, Parul; Ellerby, Donald T.; Switzer, Mathew R.; Squire, Thomas H.
2010-01-01
Many thermal protection system materials used for spacecraft heatshields have anisotropic thermal properties, causing them to display significantly different thermal characteristics in different directions, when subjected to a heating environment during flight or arcjet tests. This paper investigates the effects of sidewall heating coupled with anisotropic thermal properties of thermal protection materials in the arcjet environment. Phenolic Impregnated Carbon Ablator (PICA) and LI-2200 materials (the insulation material of Shuttle tiles) were used for this study. First, conduction-based thermal response simulations were carried out, using the Marc.Mentat finite element solver, to study the effects of sidewall heating on PICA arcjet coupons. The simulation showed that sidewall heating plays a significant role in thermal response of these models. Arcjet tests at the Aerodynamic Heating Facility (AHF) at NASA Ames Research Center were performed later on instrumented coupons to obtain temperature history at sidewall and various radial locations. The details of instrumentation and experimental technique are the prime focus of this paper. The results obtained from testing confirmed that sidewall heating plays a significant role in thermal response of these models. The test results were later used to verify the two-dimensional ablation, thermal response, and sizing program, TITAN. The test data and model predictions were found to be in excellent agreement
NASA Technical Reports Server (NTRS)
Robotti, A. C.; Oggero, M.
1985-01-01
Results of experimental electric propulsion research are presented. A plasma generator, with an arc stabilized by an air vortex is examined. The heat transfer efficiency between arc and fluid environment at a varying current and flow rate is discussed.
The stability of a trailing-line vortex in compressible flow
NASA Technical Reports Server (NTRS)
Stott, Jillian A. K.; Duck, Peter W.
1992-01-01
We consider the inviscid stability of the Batchelor (1964) vortex in a compressible flow. The problem is tackled numerically and also asymptotically, in the limit of large (aximuthal and streamwise) wavenumbers, together with large Mach numbers. The nature of the solution passes through different regimes as the Mach number increases, relative to the wavenumbers. At very high wavenumbers and Mach numbers, the mode which is present in the incompressible case ceases to be unstable, while new 'center mode' forms, whose stability characteristics, are determined primarily by conditions close to the vortex axis. We find that generally the flow becomes less unstable as the Mach number increases, and that the regime of instability appears generally confined to disturbances in a direction counter to the direction of the rotation of the swirl of the vortex. Throughout the paper, comparison is made between our numerical results and results obtained from the various asymptotic theories.
1988-10-01
Generalized Kirchhoff Vortices 176 B. The 2-Level Rankine Vortex: Critical Points & Stability 181 C. Tripolar Coherent Euler Vortices 186 7...spontaneously in spectral simulations. One such example is provided by the tripolar vortex structureE which will be examined in detail in Chapter 6. It...of the tripolar coherent vortex structures that have recently been observed in very high resolution numerical simulations of two- dimensional
Method and Apparatus for Pressure Pulse Arcjet Starting
NASA Technical Reports Server (NTRS)
Sankovic, John M. (Inventor); Curran, Francis M. (Inventor)
1999-01-01
The invention disclosed is directed to a method and apparatus for an arcjet starter. The invention discloses a method of moving an arc from the subsonic region of the thruster to the supersonic region by introducing a pressurized propellant into the casuty of the anode.
Recent testing of 30 kW hydrogen arcjet thrusters
NASA Technical Reports Server (NTRS)
Haag, Thomas W.
1993-01-01
NASA is conducting efforts to evaluate high-power hydrogen arcjets for orbit transfer propulsion applications. As part of this program, an attempt was made to reexamine both radiatively- and regeneratively-cooled, 30 kW thrusters first demonstrated by the Giannini Scientific Corp. in 1963. The arcjets were configured to force arc attachment upstream of the throat in a subsonic chamber region. While thruster currents were steady, the voltage traces exhibited sawtooth waveforms at frequencies on the order of 20 kHz. Voltage variations per cycle were typically between 100 and 310 volts, indicating major changes in the position of the arc attachment with time. When operated at their respective design points, the performance of both thrusters fell below the values listed in the 1960's development reports. The reason for the discrepancies is not currently understood and further investigations are in progress. However, the recently measured efficiencies were high compared to those obtained with constricted-arc designs at similar conditions, and further arcjet performance optimizations may be possible.
Propellant Feed Subsystem for a 26 kW flight arcjet propulsion system
NASA Astrophysics Data System (ADS)
Vaughan, C. E.; Morris, J. P.
1993-06-01
The USAF arcjet ATTD program demanded the development of a low-cost ammonia Propellant Feed Subsystem (PFS). A flow rate of 240 +/- 5 mg/sec during a total of ten 15-min ammonia outflows was required for the flight mission. The precision of the flow tolerance required a departure from the design of previous ammonia propellant feed systems. Since a propellant management device was not used, thermocapillary forces were explored as a means to limit outflow of liquid phase ammonia. A high energy density feedline heater with an internal wick was developed to guarantee that only gas phase propellant would reach the arcjet. A digital control algorithm was developed to implement bang-bang control of mass flow rate metered by a sonic venturi. Development tests of this system have been completed. The system is capable of continuous gas phase outflows regardless of orientation. Integrated tests with the arcjet and power conditioning unit have also been successfully completed.
Thrust Evaluation of an Arcjet Thruster Using Dimethyl Ether as a Propellant
NASA Astrophysics Data System (ADS)
Kakami, Akira; Beppu, Shinji; Maiguma, Muneyuki; Tachibana, Takeshi
This paper describes the performance of an arcjet thruster using dimethyl ether (DME) as a propellant. DME, an ether compound, has adequate characteristics for space propulsion systems; DME is storable in a liquid state without a high pressure or cryogenic device and requires no sophisticated temperature management. DME is gasified and liquefied simply by adjusting temperature, whereas hydrazine, a conventional propellant, requires an iridium-based particulate catalyst for its gasification. In this study, thrust of the designed kW-class DME arcjet thruster is measured with a torsional thrust stand. Thrust measurements show that thrust is increased with propellant mass flow rate, and that thrust using DME propellant is higher than when using nitrogen. The prototype DME arcjet thruster yields a specific impulse of 330 s, a thruster efficiency of 0.14, and a thrust of 0.19 N at 60-mg/s DME mass flow rate at 25-A discharge current. The corresponding discharge power and specific power are 2.3 kW and 39 MJ/kg.
Method and Apparatus for Pressure Pulse Arcjet Starting
NASA Technical Reports Server (NTRS)
Sandkovic, John M. (Inventor); Curran, Francis M. (Inventor)
1997-01-01
The invention disclosed is directed to a model and apparatus for an arcjet starter. The invention discloses a method of moving an arc from the subsonic region of the thruster to the supersonic region by introducing a pressurized propellant into the annular area of the anode.
Multidimensional Testing of Thermal Protection Materials in the Arcjet Test Facility
NASA Technical Reports Server (NTRS)
Agrawal, Parul; Ellerby, Donald T.; Switzer, Matt R.; Squire, Thomas Howard
2010-01-01
Many thermal protection system materials used for spacecraft heatshields have anisotropic thermal properties, causing them to display significantly different thermal characteristics in different directions, when subjected to a heating environment during flight or arcjet tests. The anisotropic effects are enhanced in the presence of sidewall heating. This paper investigates the effects of anisotropic thermal properties of thermal protection materials coupled with sidewall heating in the arcjet environment. Phenolic Impregnated Carbon Ablator (PICA) and LI-2200 materials (the insulation material of Shuttle tiles) were used for this study. First, conduction-based thermal response simulations were carried out, using the Marc.Mentat finite element solver, to study the effects of sidewall heating on PICA arcjet coupons. The simulation showed that sidewall heating plays a significant role in thermal response of these models. Arcjet tests at the Aerodynamic Heating Facility (AHF) at NASA Ames Research Center were performed later on instrumented coupons to obtain temperature history at sidewall and various radial locations. The details of instrumentation and experimental technique are the prime focus of this paper. The results obtained from testing confirmed that sidewall heating plays a significant role in thermal response of these models. The test results were later used to validate the two-dimensional ablation, thermal response, and sizing program, TITAN. The test data and model predictions were found to be in excellent agreement
High Power Flex-Propellant Arcjet Performance
NASA Technical Reports Server (NTRS)
Litchford, Ron J.
2011-01-01
A MW-class electrothermal arcjet based on a water-cooled, wall-stabilized, constricted arc discharge configuration was subjected to extensive performance testing using hydrogen and simulated ammonia propellants with the deliberate aim of advancing technology readiness level for potential space propulsion applications. The breadboard design incorporates alternating conductor/insulator wafers to form a discharge barrel enclosure with a 2.5-cm internal bore diameter and an overall length of approximately 1 meter. Swirling propellant flow is introduced into the barrel, and a DC arc discharge mode is established between a backplate tungsten cathode button and a downstream ringanode/ spin-coil assembly. The arc-heated propellant then enters a short mixing plenum and is accelerated through a converging-diverging graphite nozzle. This innovative design configuration differs substantially from conventional arcjet thrusters, in which the throat functions as constrictor and the expansion nozzle serves as the anode, and permits the attainment of an equilibrium sonic throat (EST) condition. During the test program, applied electrical input power was varied between 0.5-1 MW with hydrogen and simulated ammonia flow rates in the range of 4-12 g/s and 15-35 g/s, respectively. The ranges of investigated specific input energy therefore fell between 50-250 MJ/kg for hydrogen and 10-60 MJ/kg for ammonia. In both cases, observed arc efficiencies were between 40-60 percent as determined via a simple heat balance method based on electrical input power and coolant water calorimeter measurements. These experimental results were found to be in excellent agreement with theoretical chemical equilibrium predictions, thereby validating the EST assumption and enabling the utilization of standard TDK nozzle expansion analyses to reliably infer baseline thruster performance characteristics. Inferred specific impulse performance accounting for recombination kinetics during the expansion process implied nearly frozen flow in the nozzle and yielded performance ranges of 800-1100 sec for hydrogen and 400-600 sec for ammonia. Inferred thrust-to-power ratios were in the range of 30-10 lbf/MWe for hydrogen and 60-20 lbf/MWe for ammonia. Successful completion of this test series represents a fundamental milestone in the progression of high power arcjet technology, and it is hoped that the results may serve as a reliable touchstone for the future development of MW-class regeneratively-cooled flex-propellant plasma rockets.
Technical Evaluation Report, Part A - Vortex Flow and High Angle of Attack
NASA Technical Reports Server (NTRS)
Luckring, James M.
2003-01-01
A symposium entitled Vortex Flow and High Angle of Attack was held in Loen, Norway, from May 7 through May 11, 2001. The Applied Vehicle Technology (AVT) panel, under the auspices of the Research and Technology Organization (RTO), sponsored this symposium. Forty-eight papers, organized into nine sessions, addressed computational and experimental studies of vortex flows pertinent to both aircraft and maritime applications. The studies also ranged from fundamental fluids investigations to flight test results, and significant results were contributed from a broad range of countries. The principal emphasis of this symposium was on "the understanding and prediction of separation-induced vortex flows and their effects on military vehicle performance, stability, control, and structural design loads." It was further observed by the program committee that "separation- induced vortex flows are an important part of the design and off-design performance of conventional fighter aircraft and new conventional or unconventional manned or unmanned advanced vehicle designs (UAVs, manned aircraft, missiles, space planes, ground-based vehicles, and ships)." The nine sessions addressed the following topics: vortical flows on wings and bodies, experimental techniques for vortical flows, numerical simulations of vortical flows, vortex stability and breakdown, vortex flows in maritime applications, vortex interactions and control, vortex dynamics, flight testing, and vehicle design. The purpose of this paper is to provide brief reviews of these papers along with some synthesizing perspectives toward future vortex flow research opportunities. The paper includes the symposium program. (15 refs.)
The effects of viscosity on the stability of a trailing-line vortex in compressible flow
NASA Technical Reports Server (NTRS)
Stott, Jillian A. K.; Duck, Peter W.
1994-01-01
We consider the effects of viscosity on the inviscid stability of the Batchelor vortex in a compressible flow. The problem is tackled asymptotically, in the limit of large (streamwise and azimuthal) wavenumbers, together with large Mach numbers. Previous studies, with viscous effects neglected, found that the nature of the solution passes through different regimes as the Mach number increases, relative to the wavenumber. This structure persists when viscous effects are included in the analysis. In the present study the mode present in the incompressible case ceases to be unstable at high Mach numbers and a center mode forms, whose stability characteristics are determined primarily by conditions close to the vortex axis. We find generally that viscosity has a stabilizing influence on the flow, while in the case of center modes, viscous effects become important at much larger Reynolds numbers than for the first class of disturbance.
A comparison of arcjet plume properties to model predictions
NASA Technical Reports Server (NTRS)
Cappelli, M. A.; Liebeskind, J. G.; Hanson, R. K.; Butler, G. W.; King, D. Q.
1993-01-01
This paper describes an experimental study of the plasma plume properties of a 1 kW class hydrogen arcjet thruster and the comparison of measured temperature and velocity field to model predictions. The experiments are based on laser-induced fluorescence excitation of the Balmer-alpha transition. The model is based on a single-fluid magnetohydrodynamic description of the flow originally developed to predict arcjet thruster performance. Excellent agreement between model predictions and experimental velocity is found, despite the complex nature of the flow. Measured and predicted exit plane temperatures are in disagreement by as much as 2000K over a range of operating conditions. The possible sources for this discrepancy are discussed.
Design and Development of a 3 to 10 kW Ammonia Arcjet
NASA Technical Reports Server (NTRS)
Goodfellow, K. D.; Polk, J. E.
1993-01-01
An ammonia arcjet capable of throttling between 3 and 10 kW and producing a specific impulse of 600 s is required for the SSTAR flight experiment. Testing was performed to evaluate the performance of two nozzle configurations on ammonia arcjet performance over this power range. One of the objectives of these tests was to quantify the effect small nozzle changes have on performance. The smaller constrictor engine (2.54 mm diameter) produced a specific impulse of about 650 s over the range of 3 to 10 kW at a specific power of 60 kJ/g exceeding the 500-600 s requirement for the SSTAR flight experiment.
Influence of propellant choice on MPD arcjet cathode surface current density distribution
NASA Astrophysics Data System (ADS)
Sheshadri, T. S.
1989-10-01
The radial current density on an MPD arcjet cathode surface is theoretically investigated for five propellants. It is found that excessive current concentration at the upstream end of the cathode occurs in the case of hydrogen. This undesirable effect is traced to the higher electrical conductivity of hydrogen plasma.
On Laminar to Turbulent Transition of Arc-Jet Flow in the NASA Ames Panel Test Facility
NASA Technical Reports Server (NTRS)
Gokcen, Tahir; Alunni, Antonella I.
2012-01-01
This paper provides experimental evidence and supporting computational analysis to characterize the laminar to turbulent flow transition in a high enthalpy arc-jet facility at NASA Ames Research Center. The arc-jet test data obtained in the 20 MW Panel Test Facility include measurements of surface pressure and heat flux on a water-cooled calibration plate, and measurements of surface temperature on a reaction-cured glass coated tile plate. Computational fluid dynamics simulations are performed to characterize the arc-jet test environment and estimate its parameters consistent with the facility and calibration measurements. The present analysis comprises simulations of the nonequilibrium flowfield in the facility nozzle, test box, and flowfield over test articles. Both laminar and turbulent simulations are performed, and the computed results are compared with the experimental measurements, including Stanton number dependence on Reynolds number. Comparisons of computed and measured surface heat fluxes (and temperatures), along with the accompanying analysis, confirm that that the boundary layer in the Panel Test Facility flow is transitional at certain archeater conditions.
Benefits of Low-Power Electrothermal Propulsion
NASA Technical Reports Server (NTRS)
Oleson, Steven R.; Sankovic, John M.
1997-01-01
Mission analyses were completed to show the benefits of low-power electrothermal propulsion systems for three classes'of LEO smallsat missions. Three different electrothermal systems were considered: (1) a 40 W ammonia resistojet system, (2) a 600 W hydrazine arcjet system, and (3) a 300 W ammonia resistojet. The benefits of using two 40 W ammonia resistojet systems were analyzed for three months of drag makeup of a Shuttle-launched 100 kg spacecraft in a 297 km orbit. The two 46 W resistojets decreased the propulsion system wet mass by 50% when compared to state-of-art hydrazine monopropellant thrusters. The 600 W arcjet system was used for a 300 km sun synchronous makeup mission of a 1000 kg satellite and was found to decrease the wet propulsion mass by 30%. Finally, the 300 W arcjet system was used on a 200 kg Earth-orbiting spacecraft for both orbit transfer from 300 to 400 km, two years of drag makeup, and a final orbit rise to 700 km. The arcjet system was determined to halve the propulsion system wet mass required for that scenario as compared to hydrazine monopropellant thrusters.
Boundary Layer Protuberance Simulations in Channel Nozzle Arc-Jet
NASA Technical Reports Server (NTRS)
Marichalar, J. J.; Larin, M. E.; Campbell, C. H.; Pulsonetti, M. V.
2010-01-01
Two protuberance designs were modeled in the channel nozzle of the NASA Johnson Space Center Atmospheric Reentry Materials and Structures Facility with the Data-Parallel Line Relaxation computational fluid dynamics code. The heating on the protuberance was compared to nominal baseline heating at a single fixed arc-jet condition in order to obtain heating augmentation factors for flight traceability in the Boundary Layer Transition Flight Experiment on Space Shuttle Orbiter flights STS-119 and STS-128. The arc-jet simulations were performed in conjunction with the actual ground tests performed on the protuberances. The arc-jet simulations included non-uniform inflow conditions based on the current best practices methodology and used variable enthalpy and constant mass flow rate across the throat. Channel walls were modeled as fully catalytic isothermal surfaces, while the test section (consisting of Reaction Cured Glass tiles) was modeled as a partially catalytic radiative equilibrium wall. The results of the protuberance and baseline simulations were compared to the applicable ground test results, and the effects of the protuberance shock on the opposite channel wall were investigated.
Computational Analysis of Arc-Jet Wedge Tests Including Ablation and Shape Change
NASA Technical Reports Server (NTRS)
Goekcen, Tahir; Chen, Yih-Kanq; Skokova, Kristina A.; Milos, Frank S.
2010-01-01
Coupled fluid-material response analyses of arc-jet wedge ablation tests conducted in a NASA Ames arc-jet facility are considered. These tests were conducted using blunt wedge models placed in a free jet downstream of the 6-inch diameter conical nozzle in the Ames 60-MW Interaction Heating Facility. The fluid analysis includes computational Navier-Stokes simulations of the nonequilibrium flowfield in the facility nozzle and test box as well as the flowfield over the models. The material response analysis includes simulation of two-dimensional surface ablation and internal heat conduction, thermal decomposition, and pyrolysis gas flow. For ablating test articles undergoing shape change, the material response and fluid analyses are coupled in order to calculate the time dependent surface heating and pressure distributions that result from shape change. The ablating material used in these arc-jet tests was Phenolic Impregnated Carbon Ablator. Effects of the test article shape change on fluid and material response simulations are demonstrated, and computational predictions of surface recession, shape change, and in-depth temperatures are compared with the experimental measurements.
Spectral measurement of nonequilibrium arc-jet free-stream flow
NASA Technical Reports Server (NTRS)
Gopaul, Nigel K. J. M.
1993-01-01
Spectra of radiation emitted by the free-stream flow of air in an arcjet wind tunnel at NASA-Ames Research Center were studied experimentally. The arcjet produces a high energy gaseous flow that is expanded to low density and low temperature to produce high velocities in the free-stream for simulating atmospheric entry conditions. The gamma and the delta band systems of nitric oxide emitted by the free stream were measured in the second order. The NO-beta band system, which is in the same spectral region as the NO-gamma and NO-delta band systems, was not present in the data. Only transitions from the lowest vibrational level of the upper state of both the NO-gamma and NO-delta band systems were observed. The rotational temperature determined from these band systems was 660 +/- 50 deg K. The maximum possible vibrational temperature was determined to be less than 850 +/- 50 deg K. The electronic temperature determined from the ratio of the intensities of the NO-gamma and NO-delta band systems was 7560 +/- 340 K. The results indicate that the arcjet free-stream flow is in thermal nonequilibrium.
A Low-Erosion Starting Technique for High-Performance Arcjets
NASA Technical Reports Server (NTRS)
Sankovic, John M.; Curran, Francis M.
1994-01-01
The NASA arcjet program is currently sponsoring development of high specific impulse thrusters for next generation geosynchronous communications satellites (2 kW-class) and low-power arcjets for power limited spacecraft (approx. 0.5 kW-class). Performance goals in both of these efforts will require up to 1000 starts at propellant mass flow rates significantly below those used in state-of-the-art arcjet thruster systems (i.e., high specific power levels). Reductions in mass flow rate can lead to damaging modes of operation, particularly at thruster ignition. During the starting sequence, the gas dynamic force due to low propellant flow is often insufficient to rapidly push the arc anode attachment to its steady-state position in the diverging section of the nozzle. This paper describes the development and demonstration of a technique which provides for non-damaging starts at low steady-state flow rates. The technique employs a brief propellant pressure pulse at ignition to increase gas dynamic forces during the critical ignition/transition phase of operation. Starting characteristics obtained using both pressure-pulsed and conventional starting techniques were compared across a wide range of propellant flow rates. The pressure-pulsed starting technique provided reliable starts at mass flow rates down to 21 mg/s, typically required for 700 s specific impulse level operation of 2 kW thrusters. Following the comparison, a 600 start test was performed across a wide flow rate range. Post-test inspection showed minimal erosion of critical arcjet anode/nozzle surfaces.
Magnetic vortices in nanocaps induced by curvature
NASA Astrophysics Data System (ADS)
Abdelgawad, Ahmed M.; Nambiar, Nikhil; Bapna, Mukund; Chen, Hao; Majetich, Sara A.
2018-05-01
Magnetic nanoparticles with room temperature remanent magnetic vortices stabilized by their curvature are very intriguing due to their potential use in biomedicine. In the present study, we investigate room temperature magnetic chirality in 100 nm diameter permalloy spherical caps with 10 nm and 30 nm thicknesses. Micromagnetic OOMMF simulations predict the equilibrium spin structure for these caps to form a vortex state. We fabricate the permalloy caps by sputtering permalloy on both close-packed and sparse arrays of polystyrene nanoparticles. Magnetic force microscopy scans show a clear signature of a vortex state in close-packed caps of both 10 nm and 30 nm thicknesses. Alternating gradient magnetometry measurements of the caps are consistent with a remnant vortex state in 30 nm thick caps and a transition to an onion state followed by a vortex state in 10 nm thick caps. Out-of-plane measurements supported by micromagnetic simulations shows that an out-of-plane field can stabilize a vortex state down to a diameter of 15 nm.
NASA Technical Reports Server (NTRS)
Arnold, James O.; Peterson, Keith H.; Yount, Bryan C.; Schneider, Nigel; Chavez-Garcia, Jose
2013-01-01
Arcjet testing and analysis of a three-dimensional (3D) woven carbon fabric has shown that it can be used as a thermal protection system and as a load bearing structural component for a low ballistic coefficient hypersonic decelerator called ADEPT (Adaptive Deployable Entry and Placement Technology). Results of arcjet tests proved that the 3D woven carbon fabric can withstand flight-like heating while under flight-like biaxial mechanical loads representative of those encountered during shallow entry flight path angles into the atmosphere of Venus. Importantly, the arcjet test results have been used to extend a preliminary material thermal response model based on previous testing of the same 3D woven carbon fabric under uni-axial mechanical loading.
Development and Application of Novel Diagnostics for Arc-Jet Characterization
NASA Technical Reports Server (NTRS)
Hanson, R. K.
2002-01-01
This NASA-Ames University Consortium Project has focused on the design and demonstration of optical absorption sensors using tunable diode laser to target atomic copper impurities from electrode erosion in thc arc-heater metastable electronic excited states of molecular nitrogen, atomic argon, aid atomic oxygen in the arcjet plume. Accomplishments during this project include: 1. Design, construction, and assembly of optical access to the arc-heater gas flow. 2. Design of diode laser sensor for copper impurities in the arc-heater flow. 3 . Diode laser sensor design and test in laboratory plasmas for metastable Ar(3P), O(5S), N(4P), and N2(A). 4. Diode laser sensor demonstration measurements in the test cell to monitor species in the arc-jet plume.
Nonequilibrium Ablation of Phenolic Impregnated Carbon Ablator
NASA Technical Reports Server (NTRS)
Milos, Frank S.; Chen, Yih K.; Gokcen, Tahir
2012-01-01
In previous work, an equilibrium ablation and thermal response model for Phenolic Impregnated Carbon Ablator was developed. In general, over a wide range of test conditions, model predictions compared well with arcjet data for surface recession, surface temperature, in-depth temperature at multiple thermocouples, and char depth. In this work, additional arcjet tests were conducted at stagnation conditions down to 40 W/sq cm and 1.6 kPa. The new data suggest that nonequilibrium effects become important for ablation predictions at heat flux or pressure below about 80 W/sq cm or 10 kPa, respectively. Modifications to the ablation model to account for nonequilibrium effects are investigated. Predictions of the equilibrium and nonequilibrium models are compared with the arcjet data.
Point-vortex stability under the influence of an external periodic flow
NASA Astrophysics Data System (ADS)
Ortega, Rafael; Ortega, Víctor; Torres, Pedro J.
2018-05-01
We provide sufficient conditions for the stability of the particle advection around a fixed vortex in a two-dimensional ideal fluid under the action of a periodic background flow. The proof relies on the identification of closed invariant curves around the origin by means of Moser’s invariant curve theorem. Partially supported by Spanish MINECO and ERDF project MTM2014-52232-P.
NASA Astrophysics Data System (ADS)
Sutyrin, Georgi G.
2016-06-01
Wide compensated vortices are not able to remain circular in idealized two-layer models unless the ocean depth is assumed to be unrealistically large. Small perturbations on both cyclonic and anticyclonic eddies grow slower if a middle layer with uniform potential vorticity (PV) is added, owing to a weakening of the vertical coupling between the upper and lower layers and a reduction of the PV gradient in the deep layer. Numerical simulations show that the nonlinear development of the most unstable elliptical mode causes self-elongation of the upper vortex core and splitting of the deep PV anomaly into two corotating parts. The emerging tripolar flow pattern in the lower layer results in self-intensification of the fluid rotation in the water column around the vortex center. Further vortex evolution depends on the model parameters and initial conditions, which limits predictability owing to multiple equilibrium attractors existing in the dynamical system. The vortex core strips thin filaments, which roll up into submesoscale vortices to result in substantial mixing at the vortex periphery. Stirring and damping of vorticity by bottom friction are found to be essential for subsequent vortex stabilization. The development of sharp PV gradients leads to nearly solid-body rotation inside the vortex core and formation of transport barriers at the vortex periphery. These processes have important implications for understanding the longevity of real-ocean eddies.
On the stability and control of a trailing vortex
NASA Astrophysics Data System (ADS)
Edstrand, Adam M.
Trailing vortices are both a fundamental and practical problem of fluid mechanics. Fundamentally, they provide a canonical vortex flow that is pervasive in finite aspect ratio lifting bodies, practically producing many adverse effects across aeronautical and maritime applications. These adverse effects coupled with the broad range of applicability make their active control desirable; however, they remain robust to control efforts. Experimental baseline results provided an explanation of vortex wandering, the side-to-side motion often attributed to wind-tunnel unsteadiness or a vortex instability. We extracted the wandering motion and found striking similarities with the eigenmodes, growth rates, and frequencies from a stability analysis of the Batchelor vortex. After concluding that wandering is a result of a vortex instability, we applied control to the trailing vortex flow field through blowing from a slot at the wingtip. We experimentally obtained modest reductions in the metrics, but found the parameter space for optimization unwieldy. With the ultimate goal of designing control, we performed a physics-based stability analysis in the wake of a NACA0012 wing with an aspect ratio of 1.25 positioned at a geometric angle of attack of 5 degrees. Numerically computing the base flow at a chord Reynolds number of 1000, we perform a parallel temporal and spatial stability analysis three chords downstream of the trailing edge finding seven instabilities: three temporal, four spatial. The three temporal contain a wake instability, a vortex instability, and a mixed instability, which is a higher-order wake instability. The primary instability localized to the wake results from the two-dimensional wake, while the secondary instability is the mixed instability, containing higher-order spanwise structures in the wake. These instabilities imply that although it may be intuitive to place control at the wingtip, these results show that control may be more effective at the trailing edge, which would excite these instabilities that result with the eventual break up of the vortex. Further, by performing a wave-packet analysis, we found the wave packets contained directivity, coming inward toward the vortex above and below the wing, and traveling outward in the spanwise directions. We conjecture that this directivity can be translated to receptivity, with free-stream disturbances above and below the wing being more receptive than spanwise disturbances. With this, we provide two methods for instability excitation: utilizing control devices on the wing to excite near-field instabilities directly and utilizing free-stream disturbances to such as a speaker to excite near-field instabilities through receptivity.
Vortex Stabilized Plasma for Rapid Water Disinfection & Pharmaceutical Degradation
NASA Astrophysics Data System (ADS)
Hershcovitch, Ady
2016-10-01
Good quality drinking water is dwindling for large segments of the world population. Aggravating the problem is proliferation of antibiotics in the water supply, which give rise to drug resistant pathogens. One option for water supply increase is recycling waste and polluted water by inexpensive, environmentally friendly methods. Presently disinfection uses chemicals and UV radiation. Chemicals are limited by residual toxicity, while UV consumes much electricity. Current methods can remove only certain classes of drugs due to their large variety of physical and chemical properties. Plasmas in water are very attractive for degrading all pharmaceuticals and deactivating pathogens: intense arc current can physically break up any molecular bonds. UV radiation, ozone, etc. generation inside the water volume disinfects. Present utilized plasmas: glow, pulsed arcs are not power efficient; vortex stabilized plasmas are power efficient that can advance water treatment state-of-the-art by orders of magnitude. Proposed techniquefeatures novel components facilitating large diameter vortex stabilized in-water arcs with optimized plasma parameters for maximal UV-C emission; and harvests hydrogen centered by the vortex.
Rewritable ferroelectric vortex pairs in BiFeO3
NASA Astrophysics Data System (ADS)
Li, Yang; Jin, Yaming; Lu, Xiaomei; Yang, Jan-Chi; Chu, Ying-Hao; Huang, Fengzhen; Zhu, Jinsong; Cheong, Sang-Wook
2017-08-01
Ferroelectric vortex in multiferroic materials has been considered as a promising alternative to current memory cells for the merit of high storage density. However, the formation of regular natural ferroelectric vortex is difficult, restricting the achievement of vortex memory device. Here, we demonstrated the creation of ferroelectric vortex-antivortex pairs in BiFeO3 thin films by using local electric field. The evolution of the polar vortex structure is studied by piezoresponse force microscopy at nanoscale. The results reveal that the patterns and stability of vortex structures are sensitive to the poling position. Consecutive writing and erasing processes cause no influence on the original domain configuration. The Z4 proper coloring vortex-antivortex network is then analyzed by graph theory, which verifies the rationality of artificial vortex-antivortex pairs. This study paves a foundation for artificial regulation of vortex, which provides a possible pathway for the design and realization of non-volatile vortex memory devices and logical devices.
Vorticity filaments in two-dimensional turbulence: creation, stability and effect
NASA Astrophysics Data System (ADS)
Kevlahan, N. K.-R.; Farge, M.
1997-09-01
Vorticity filaments are characteristic structures of two-dimensional turbulence. The formation, persistence and effect of vorticity filaments are examined using a high-resolution direct numerical simulation (DNS) of the merging of two positive Gaussian vortices pushed together by a weaker negative vortex. Many intense spiral vorticity filaments are created during this interaction and it is shown using a wavelet packet decomposition that, as has been suggested, the coherent vortex stabilizes the filaments. This result is confirmed by a linear stability analysis at the edge of the vortex and by a calculation of the straining induced by the spiral structure of the filament in the vortex core. The time-averaged energy spectra for simulations using hyper-viscosity and Newtonian viscosity have slopes of [minus sign]3 and [minus sign]4 respectively. Apart from a much higher effective Reynolds number (which accounts for the difference in energy spectra), the hyper-viscous simulation has the same dynamics as the Newtonian viscosity simulation. A wavelet packet decomposition of the hyper-viscous simulation reveals that after the merger the energy spectra of the filamentary and coherent parts of the vorticity field have slopes of [minus sign]2 and [minus sign]6 respectively. An asymptotic analysis and DNS for weak external strain shows that a circular filament at a distance R from the vortex centre always reduces the deformation of a Lamb's (Gaussian) vortex in the region r[gt-or-equal, slanted]R. In the region r
Chicago Monostatic Acoustic Vortex Sensing System. Volume IV. Wake Vortex Decay.
1982-07-01
analysis here, the peak velocity core radius cannot be directly compared to the present results. If one applies the analysis of Table 10 to the LDV vortex...Tietjens, O.G., Applied Hydro- and Aeromechanics, Dover, New York, 1957, pp. 158-163. 11. Hallock, J.N., "Vortex Advisory System Safety Analysis, Vol. I...Stability and Control Characteristics Model DC-9-30 Jet Transport," LB-32323, Dec. 1966 (revised Oct. 1968), Douglas Aircraft Company , Long Beach, CA. 13
Arcjet power supply and start circuit
NASA Technical Reports Server (NTRS)
Gruber, Robert P. (Inventor)
1988-01-01
A dc power supply for spacecraft arcjet thrusters has an integral automatic starting circuit and an output averaging inductor. The output averaging inductor, in series with the load, provides instantaneous current control, and ignition pulse and an isolated signal proportional to the arc voltage. A pulse width modulated converter, close loop configured, is also incorporated to give fast response output current control.
Spin-orbit torque induced magnetic vortex polarity reversal utilizing spin-Hall effect
NASA Astrophysics Data System (ADS)
Li, Cheng; Cai, Li; Liu, Baojun; Yang, Xiaokuo; Cui, Huanqing; Wang, Sen; Wei, Bo
2018-05-01
We propose an effective magnetic vortex polarity reversal scheme that makes use of spin-orbit torque introduced by spin-Hall effect in heavy-metal/ferromagnet multilayers structure, which can result in subnanosecond polarity reversal without endangering the structural stability. Micromagnetic simulations are performed to investigate the spin-Hall effect driven dynamics evolution of magnetic vortex. The mechanism of magnetic vortex polarity reversal is uncovered by a quantitative analysis of exchange energy density, magnetostatic energy density, and their total energy density. The simulation results indicate that the magnetic vortex polarity is reversed through the nucleation-annihilation process of topological vortex-antivortex pair. This scheme is an attractive option for ultra-fast magnetic vortex polarity reversal, which can be used as the guidelines for the choice of polarity reversal scheme in vortex-based random access memory.
NASA Technical Reports Server (NTRS)
Hamley, John A.
1990-01-01
Experiments were conducted to define the interface characteristics and constraints of 1 kW class arcjets run on simulated decomposition products of hydrazine and power processors. The impacts of power supply output current ripple on arcjet performance were assessed by variation of the ripple frequency from 100 Hz to 100 kHz with 10 percent peak-to-peak ripple amplitude at 1.2 kW. Ripple had no significant effects on thrust, specific impulse or efficiency. The impact of output ripple on thruster lifetime was not assessed. The static and dynamic impedances of the arcjet were quantified with two thrusters of nearly identical configuration. Superposition of an AC component on the DC arc current was used to characterize the dynamic impedance as a function of flow rate and DC current level. A mathematical model was formulated from these data. Both the static and dynamic impedance magnitude were found to be dependent on mass flow rate. The amplitude of the AC component was found to have little effect on the dynamic impedance. Reducing the DC level from 10 to 8 amps led to a large change in the magnitude of the dynamic impedance with no observable phase change. The impedance data compared favorably between the two thrusters.
A Soft-Start Circuit for Arcjet Ignition
NASA Technical Reports Server (NTRS)
Hamley, John A.; Sankovic, John M.
1993-01-01
The reduced propellant flow rates associated with high performance arcjets have placed new emphasis on electrode erosion, especially at startup. A soft-start current profile was defined which limited current overshoot during the initial 30 to 50 ms of operation, and maintained significantly lower than the nominal arc current for the first eight seconds of operation. A 2-5 kW arcjet PPU was modified to provide this current profile, and a 500 cycle test using simulated fully decomposed hydrazine was conducted to determine the electrode erosion during startup. Electrode geometry and mass flow rates were selected based on requirements for a 600 second specific impulse mission average arcjet system. The flow rate was varied throughout the test to simulate the blow down of a flight propellant system. Electrode damage was negligible at flow rates above 33 mg/s, and minor chamfering of the constrictor occurred at flow rates of 33 to 30 mg/s, corresponding to flow rates expected in the last 40 percent of the mission. Constrictor diameter remained unchanged and the thruster remained operable at the completion of the test. The soft-start current profile significantly reduced electrode damage when compared to state of the art starting techniques.
A study of the temporal stability of multiple cell vortices
NASA Technical Reports Server (NTRS)
Khorrami, Mehdi R.
1989-01-01
The effect of initial mean velocity field on the stability characteristics of longitudinal vortices is documented in detail. The temporal stability of isolated multiple cell vortices is considered. The types of vortices studied include single cell as well as two and three cell vortices. It is shown that cell multiplicity in the vortex core has drastic effects on the stability characteristics. On the basis of numerical calculations, it is concluded that the growth rates of instabilities in multiple cell vortices are substantially larger (two to threefold increases are observed) than those of a single cell vortex. It is also determined that there is a substantial increase in the effective range of axial and azimuthal wavenumbers where instabilities are present. But most importantly, there is the appearance of a variety of viscous modes of instability. In the case of vortices, these latter instabilities which highlight the importance of viscous forces have never been reported before. These effects are discussed in detail for the case of a two cell vortex.
Shih, An-Ci; Han, Chi-Jui; Kuo, Tsung-Cheng; Cheng, Yun-Chien
2018-03-14
The deposition stability and homogeneity of microparticles improved with mask, lengthened nozzle and flow rate adjustment. The microparticles can be used to encapsulate monomers, before the monomers in the microparticles can be deposited onto a substrate for nanoscale self-assembly. For the uniformity of the synthesized nanofilm, the homogeneity of the deposited microparticles becomes an important issue. Based on the ANSYS simulation results, the effects of secondary flow were minimized with a lengthened nozzle. The ANSYS simulation was also used to investigate the ring-vortex generation and why the ring vortex can be eliminated by adding a mask with an aperture between the nozzle and deposition substrate. The experimental results also showed that particle deposition with a lengthened nozzle was more stable, while adding the mask stabilized deposition and diminished the ring-vortex contamination. The effects of flow rate and pressure were also investigated. Hence, the deposition stability and homogeneity of microparticles was improved.
An experimental study of pressures on 60 deg Delta wings with leading edge vortex flaps
NASA Technical Reports Server (NTRS)
Marchman, J. F., III; Terry, J. E.; Donatelli, D. A.
1983-01-01
An experimental study was conducted in the Virginia Tech Stability Wind Tunnel to determine surface pressures over a 60 deg sweep delta wing with three vortex flap designs. Extensive pressure data was collected to provide a base data set for comparison with computational design codes and to allow a better understanding of the flow over vortex flaps. The results indicated that vortex flaps can be designed which will contain the leading edge vortex with no spillage onto the wing upper surface. However, the tests also showed that flaps designed without accounting for flap thickness will not be optimum and the result can be oversized flaps, early flap vortex reattachment and a second separation and vortex at the wing/flap hinge line.
Aircraft Vortex Wake Descent and Decay under Real Atmospheric Effects
DOT National Transportation Integrated Search
1973-10-01
Aircraft vortex wake descent and decay in a real atmosphere is studied analytically. Factors relating to encounter hazard, wake generation, wake descent and stability, and atmospheric dynamics are considered. Operational equations for encounter hazar...
Hetonic quartets in a two-layer quasi-geostrophic flow: V-states and stability
NASA Astrophysics Data System (ADS)
Reinaud, J. N.; Sokolovskiy, M. A.; Carton, X.
2018-05-01
We investigate families of finite core vortex quartets in mutual equilibrium in a two-layer quasi-geostrophic flow. The finite core solutions stem from known solutions for discrete (singular) vortex quartets. Two vortices lie in the top layer and two vortices lie in the bottom layer. Two vortices have a positive potential vorticity anomaly, while the two others have negative potential vorticity anomaly. The vortex configurations are therefore related to the baroclinic dipoles known in the literature as hetons. Two main branches of solutions exist depending on the arrangement of the vortices: the translating zigzag-shaped hetonic quartets and the rotating zigzag-shaped hetonic quartets. By addressing their linear stability, we show that while the rotating quartets can be unstable over a large range of the parameter space, most translating quartets are stable. This has implications on the longevity of such vortex equilibria in the oceans.
A priori Estimates for 3D Incompressible Current-Vortex Sheets
NASA Astrophysics Data System (ADS)
Coulombel, J.-F.; Morando, A.; Secchi, P.; Trebeschi, P.
2012-04-01
We consider the free boundary problem for current-vortex sheets in ideal incompressible magneto-hydrodynamics. It is known that current-vortex sheets may be at most weakly (neutrally) stable due to the existence of surface waves solutions to the linearized equations. The existence of such waves may yield a loss of derivatives in the energy estimate of the solution with respect to the source terms. However, under a suitable stability condition satisfied at each point of the initial discontinuity and a flatness condition on the initial front, we prove an a priori estimate in Sobolev spaces for smooth solutions with no loss of derivatives. The result of this paper gives some hope for proving the local existence of smooth current-vortex sheets without resorting to a Nash-Moser iteration. Such result would be a rigorous confirmation of the stabilizing effect of the magnetic field on Kelvin-Helmholtz instabilities, which is well known in astrophysics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bisset, R. N.; Wang, Wenlong; Ticknor, C.
Here, we investigate how single- and multi-vortex-ring states can emerge from a planar dark soliton in three-dimensional (3D) Bose-Einstein condensates (confined in isotropic or anisotropic traps) through bifurcations. We characterize such bifurcations quantitatively using a Galerkin-type approach and find good qualitative and quantitative agreement with our Bogoliubov–de Gennes (BdG) analysis. We also systematically characterize the BdG spectrum of the dark solitons, using perturbation theory, and obtain a quantitative match with our 3D BdG numerical calculations. We then turn our attention to the emergence of single- and multi-vortex-ring states. We systematically capture these as stationary states of the system and quantifymore » their BdG spectra numerically. We found that although the vortex ring may be unstable when bifurcating, its instabilities weaken and may even eventually disappear for sufficiently large chemical potentials and suitable trap settings. For instance, we demonstrate the stability of the vortex ring for an isotropic trap in the large-chemical-potential regime.« less
Bisset, R. N.; Wang, Wenlong; Ticknor, C.; ...
2015-10-01
Here, we investigate how single- and multi-vortex-ring states can emerge from a planar dark soliton in three-dimensional (3D) Bose-Einstein condensates (confined in isotropic or anisotropic traps) through bifurcations. We characterize such bifurcations quantitatively using a Galerkin-type approach and find good qualitative and quantitative agreement with our Bogoliubov–de Gennes (BdG) analysis. We also systematically characterize the BdG spectrum of the dark solitons, using perturbation theory, and obtain a quantitative match with our 3D BdG numerical calculations. We then turn our attention to the emergence of single- and multi-vortex-ring states. We systematically capture these as stationary states of the system and quantifymore » their BdG spectra numerically. We found that although the vortex ring may be unstable when bifurcating, its instabilities weaken and may even eventually disappear for sufficiently large chemical potentials and suitable trap settings. For instance, we demonstrate the stability of the vortex ring for an isotropic trap in the large-chemical-potential regime.« less
Experimental investigation on the effects of swirling flow on augmentor performance
NASA Astrophysics Data System (ADS)
Tan, Haoyuan; Huang, Xianjian
1991-06-01
This paper describes an investigation on the effect of centrifugal force distributions on swirl augmentor performance. The experiments were conducted on the flow drag, temperature-distribution efficiency in the swirl augmentor model with different tangential velocity profiles. Four tangential velocity distributions considered are the Rankine vortex, forced vortex, free vortex, and the constant-angle vortex. The results show that the flow drag of the Rankine vortex swirler is the smallest one, and, in a swirl augmentor where flame is stabilized by using centrifugal force, the combustion efficiency can reach 90 percent or over, though the swirl number is low (S = 0.25).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silva, R. M. da; Milošević, M. V.; Peeters, F. M.
Vortices carrying fractions of a flux quantum are predicted to exist in multiband superconductors, where vortex core can split between multiple band-specific components of the superconducting condensate. Using the two-component Ginzburg-Landau model, we examine such vortex configurations in a two-band superconducting slab in parallel magnetic field. The fractional vortices appear due to the band-selective vortex penetration caused by different thresholds for vortex entry within each band-condensate, and stabilize near the edges of the sample. We show that the resulting fractional vortex configurations leave distinct fingerprints in the static measurements of the magnetization, as well as in ac dynamic measurements ofmore » the magnetic susceptibility, both of which can be readily used for the detection of these fascinating vortex states in several existing multiband superconductors.« less
Power electronics for low power arcjets
NASA Technical Reports Server (NTRS)
Hamley, John A.; Hill, Gerald M.
1991-01-01
In anticipation of the needs of future light-weight, low-power spacecraft, arcjet power electronics in the 100 to 400 W operating range were developed. Limited spacecraft power and thermal control capacity of these small spacecraft emphasized the need for high efficiency. Power topologies similar to those in the higher 2 kW and 5 to 30 kW power range were implemented, including a four transistor bridge switching circuit, current mode pulse-width modulated control, and an output current averaging inductor with an integral pulse generation winding. Reduction of switching transients was accomplished using a low inductance power distribution network, and no passive snubber circuits were necessary for power switch protection. Phase shift control of the power bridge was accomplished using an improved pulse width modulation to phase shift converter circuit. These features, along with conservative magnetics designs allowed power conversion efficiencies of greater than 92.5 percent to be achieved into resistive loads over the entire operating range of the converter. Electromagnetic compatibility requirements were not considered in this work, and control power for the converter was derived from AC mains. Addition of input filters and control power converters would result in an efficiency of on the order of 90 percent for a flight unit. Due to the developmental nature of arcjet systems at this power level, the exact nature of the thruster/power processor interface was not quantified. Output regulation and current ripple requirements of 1 and 20 percent respectively, as well as starting techniques, were derived from the characteristics of the 2 kW system but an open circuit voltage in excess of 175 V was specified. Arcjet integration tests were performed, resulting in successful starts and stable arcjet operation at power levels as low as 240 W with simulated hydrazine propellants.
Arcjet Testing of Woven Carbon Cloth for Use on Adaptive Deployable Entry Placement Technology
NASA Technical Reports Server (NTRS)
Arnold, James O.; laub, Bernard; Chen, Yih-Kang; Prabhu, Dinesh K.; Bittner, M. E.; Venkatapathy, Ethiraj
2013-01-01
This paper describes arcjet testing and analysis that has successfully demonstrated the viability of three dimensional woven carbon cloth for dual use in the Adaptive Deployable Entry Placement Technology (ADEPT). ADEPT is an umbrella-like entry system that is folded for stowage in the launch vehicle s shroud and deployed in space prior to reaching the atmospheric interface. A key feature of the ADEPT concept is its lower ballistic coefficient for delivery of a given payload than those for conventional, rigid body entry systems. The benefits that accrue from the lower ballistic coefficient include factor of ten reductions of deceleration forces and entry heating. The former enables consideration of new classes of scientific instruments for solar system exploration while the latter enables the design of a more efficient thermal protection system. The carbon cloth now base lined for ADEPT has a dual use in that it serves as ADEPT s thermal protection system and as the "skin" that transfers aerodynamic deceleration loads to its umbrella-like substructure. The arcjet testing described in this paper was conducted for some of the higher heating conditions for a future Venus mission using the ADEPT concept, thereby showing that the carbon cloth can perform in a relevant entry environment. The ADEPT project considered the carbon cloth to be mission enabling and was carrying it as a major risk during Fiscal Year 2012. The testing and analysis reported here played a major role in retiring that risk and is highly significant to the success and possible adoption of ADEPT for future NASA missions. Finally, this paper also describes a preliminary engineering level code, based on the arcjet data, that can be used to estimate cloth thickness for future missions using ADEPT and to predict carbon cloth performance in future arcjet tests.
Shock layer vacuum UV spectroscopy in an arc-jet wind tunnel
NASA Technical Reports Server (NTRS)
Palumbo, G.
1990-01-01
An experimental program is being developed to obtain measurements of the incident surface radiation in the 1000 A to 2000 A range from the shock stagnation region of a blunt model in the Ames 20 MW Arc-Jet Wind Tunnel. The setup consists of a water-cooled blunt model, with a magnesium fluoride forward-viewing window. Radiation incident on the window is optically imaged via an evacuated system and reflective optical elements onto the entrance slit of a spectrograph. The model will be exposed to the supersonic plasma stream from the exit nozzle of the arc-jet tunnel. The resulting bow shock radiation will be measured. It is expected that this experiment will help evaluate the importance of atomic N and O lines to the radiative heating of future Aeroassist Space Transfer Vehicles (ASTVs).
Arcjet Tests of Different Gap-Filler Options for the Orion PICA Heatshield
NASA Technical Reports Server (NTRS)
Skokova, Kristina; Ellerby, Donald; Blosser, Max; Venkatapathy, Ethiraj; Bouslog, Stan; Reuther, James
2009-01-01
PICA (Phenolic Infiltrated Carbon Ablator) is one of the candidate thermal protection materials for the Orion vehicle. Because PICA is fabricated in blocks, gaps exist between the blocks, similar to the individual ceramic tiles of the Shuttle thermal protection system. The results of this work focus on arcjet test results of different gap-filler options for PICA, performed as part of the Orion TPS Advanced Development Project. The arcjet tests were performed at NASA Ames Research Center on stagnation models 4 inches in diameter at conditions representative of Orion flight conditions for both Lunar and Low Earth Orbit return. Performance of gap-filler options was evaluated based on the extent of backface temperature change, as compared to PICA without gaps, and on the extent of flow penetration into the gap, evident from the gap opening and widening.
Coupling between fluid dynamics and energy addition in arcjet and microwave thrusters
NASA Technical Reports Server (NTRS)
Micci, M. M.
1986-01-01
A new approach to numerically solving the problem of the constricted electric arcjet is presented. An Euler Implicit finite difference scheme is used to solve the full compressible Navier Stokes equations in two dimensions. The boundary and initial conditions represent the constrictor section of the arcjet, and hydrogen is used as a propellant. The arc is modeled as a Gaussian distribution across the centerline of the constrictor. Temperature, pressure and velocity profiles for steady state converged solutions show both axial and radial changes in distributions resulting from their interaction with the arc energy source for specific input conditions. The temperature rise is largest at the centerline where there is a the greatest concentration arc energy. The solution does not converge for all initial inputs and the limitations in the range of obtainable solutions are discussed.
Three-dimensional boundary layer stability and transition
NASA Technical Reports Server (NTRS)
Malik, M. R.; Li, F.
1992-01-01
Nonparallel and nonlinear stability of a three-dimensional boundary layer, subject to crossflow instability, is investigated using parabolized stability equations (PSEs). Both traveling and stationary disturbances are considered and nonparallel effect on crossflow instability is found to be destabilizing. Our linear PSE results for stationary disturbances agree well with the results from direct solution of Navier-Stokes equations obtained by Spalart (1989). Nonlinear calculations have been carried out for stationary vortices and the computed wall vorticity pattern results in streamwise streaks which resemble remarkably well with the surface oil-flow visualizations in swept-wing experiments. Other features of the stationary vortex development (half-mushroom structure, inflected velocity profiles, vortex doubling, etc.) are also captured in our nonlinear calculations. Nonlinear interaction of the stationary amplitude of the stationary vortex is large as compared to the traveling mode, and the stationary vortex dominates most of the downstream development. When the two modes have the same initial amplitude, the traveling mode dominates the downstream development owing to its higher growth rate, and there is a tendency for the stationary mode to be suppressed. The effect of nonlinear wave development on the skin-friction coefficient is also computed.
Unsteady Separated Flows: Vorticity and Turbulence.
1982-10-01
investigation. The vortex train used in the mathe- matical model is adapted to simulate the flow generated in the wake of an oscillating spoiler moving...weak wake structure. C H - At K = 1.5, the trailing edge vortex clearly leads the vorte : generated from the leading edge in the normal geonetry tests...flows is summarized. Specific projects reviewed include: (a) oscillating airfoil dynamic stall; (b) vortex entrapment and stability analysis -and (c
Vortex Simulation of Turbulent Combustion
1992-11-19
used in this simulation was more representative of that of a wake . The difference between the stability and long-time behavior of wakes and shear...several important issues, summarized next, cast some doubt on the conclusions of these simulations. Using desingularized vortex sheets to model shear...17, 1991. 8. Krishnan, A. and Ghoniem, A.F., "Simulation of the Roll-up and Mixing in Rayleigh- Taylor Flow using the Vortex /Transport Element Method
A note on the effects of viscosity on the stability of a trailing-line vortex
NASA Technical Reports Server (NTRS)
Duck, Peter W.; Khorrami, Mehdi R.
1992-01-01
The linear stability of the Batchelor (1964) vortex is examined with emphasis on new viscous modes recently found numerically by Khorrami (1991). Unlike the previously reported inviscid modes of instability, these modes are destabilized by viscosity and exhibit small growth rates at large Reynolds numbers. The analysis presented here uses a combination of asymptotic and numerical techniques. The results confirm the existence of the additional modes of instability due to viscosity.
Vortex Flap Technology: a Stability and Control Assessment
NASA Technical Reports Server (NTRS)
Carey, K. M.; Erickson, G. E.
1984-01-01
A comprehensive low-speed wind tunnel investigation was performed of leading edge vortex flaps applied to representative aircraft configurations. A determination was made of the effects of analytically- and empirically-designed vortex flaps on the static longitudinal and lateral-directional aerodynamics, stability, and control characteristics of fighter wings having leading-edge sweep angles of 45 to 76.5 degrees. The sensitivity to several configuration modifications was assessed, which included the effects of flap planform, leading- and trailing-edge flap deflection angles, wing location on the fuselage, forebody strakes, canards, and centerline and outboard vertical tails. Six-component forces and moments, wing surface static pressure distributions, and surface flow patterns were obtained using the Northrop 21- by 30-inch low-speed wind tunnel.
A planetary-scale disturbance in a long living three vortex coupled system in Saturn's atmosphere
NASA Astrophysics Data System (ADS)
del Río-Gaztelurrutia, T.; Sánchez-Lavega, A.; Antuñano, A.; Legarreta, J.; García-Melendo, E.; Sayanagi, K. M.; Hueso, R.; Wong, M. H.; Pérez-Hoyos, S.; Rojas, J. F.; Simon, A. A.; de Pater, I.; Blalock, J.; Barry, T.
2018-03-01
The zonal wind profile of Saturn has a unique structure at 60°N with a double-peaked jet that reaches maximum zonal velocities close to 100 ms-1. In this region, a singular group of vortices consisting of a cyclone surrounded by two anticyclones was active since 2012 until the time of this report. Our observation demonstrates that vortices in Saturn can be long-lived. The three-vortex system drifts at u = 69.0 ± 1.6 ms-1, similar to the speed of the local wind. Local motions reveal that the relative vorticity of the vortices comprising the system is ∼2-3 times the ambient zonal vorticity. In May 2015, a disturbance developed at the location of the triple vortex system, and expanded eastwards covering in two months a third of the latitudinal circle, but leaving the vortices essentially unchanged. At the time of the onset of the disturbance, a fourth vortex was present at 55°N, south of the three vortices and the evolution of the disturbance proved to be linked to the motion of this vortex. Measurements of local motions of the disturbed region show that cloud features moved essentially at the local wind speeds, suggesting that the disturbance consisted of passively advecting clouds generated by the interaction of the triple vortex system with the fourth vortex to the south. Nonlinear simulations are able to reproduce the stability and longevity of the triple vortex system under low vertical wind shear and high static stability in the upper troposphere of Saturn.
NASA Technical Reports Server (NTRS)
Lan, C. Edward
1985-01-01
A computer program based on the Quasi-Vortex-Lattice Method of Lan is presented for calculating longitudinal and lateral-directional aerodynamic characteristics of nonplanar wing-body combination. The method is based on the assumption of inviscid subsonic flow. Both attached and vortex-separated flows are treated. For the vortex-separated flow, the calculation is based on the method of suction analogy. The effect of vortex breakdown is accounted for by an empirical method. A summary of the theoretical method, program capabilities, input format, output variables and program job control set-up are described. Three test cases are presented as guides for potential users of the code.
Structure and stability of the finite-area von Kármán street
NASA Astrophysics Data System (ADS)
Luzzatto-Fegiz, Paolo; Williamson, Charles H. K.
2012-06-01
By using a recently developed numerical method, we explore in detail the possible inviscid equilibrium flows for a Kármán street comprising uniform, large-area vortices. In order to determine stability, we make use of an energy-based stability argument (originally proposed by Lord Kelvin), whose previous implementation had been unsuccessful in determining stability for the Kármán street [P. G. Saffman and J. C. Schatzman, "Stability of a vortex street of finite vortices," J. Fluid Mech. 117, 171-186 (1982), 10.1017/S0022112082001578]. We discuss in detail the issues affecting this interpretation of Kelvin's ideas, and show that this energy-based argument cannot detect subharmonic instabilities. To find superharmonic instabilities, we employ a recently introduced approach, which constitutes a reliable implementation of Kelvin's stability ideas [P. Luzzatto-Fegiz and C. H. K. Williamson, "Stability of conservative flows and new steady fluid solutions from bifurcation diagrams exploiting a variational argument," Phys. Rev. Lett. 104, 044504 (2010), 10.1103/PhysRevLett.104.044504]. For periodic flows, this leads us to organize solutions into families with fixed impulse I, and to construct diagrams involving the flow energy E and horizontal spacing (i.e., wavelength) L. Families of large-I vortex streets exhibit a turning point in L, and terminate with "cat's eyes" vortices (as also suggested by previous investigators). However, for low-I streets, the solution families display a multitude of turning points (leading to multiple possible streets, for given L), and terminate with teardrop-shaped vortices. This is radically different from previous suggestions in the literature. These two qualitatively different limiting states are connected by a special street, whereby vortices from opposite rows touch, such that each vortex boundary exhibits three corners. Furthermore, by following the family of I = 0 streets to small L, we gain access to a large, hitherto unexplored flow regime, involving streets with L significantly smaller than previously believed possible. To elucidate in detail the possible solution regimes, we introduce a map of spacing L, versus impulse I, which we construct by numerically computing a large number of steady vortex configurations. For each constant-impulse family of steady vortices, our stability approach also reveals a single superharmonic bifurcation, leading to new families of vortex streets, which exhibit lower symmetry.
NASA Astrophysics Data System (ADS)
van der Beek, C. J.; Indenbom, M. V.; Berseth, V.; Benoit, W.; Erb, A.; Flükiger, R.
1997-08-01
The anisotropy in the transverse AC susceptibility of YBa2Cu3O7-δ single crystals, induced by the periodic appearance of a force-free current configuration upon rotation of a superimposed DC field in the crystal plane, disappears at the vortex phase transition, indicating the loss of the vortex lines' stability against mutual cutting.
Study of three-dimensional effects on vortex breakdown
NASA Technical Reports Server (NTRS)
Salas, M. D.; Kuruvila, G.
1988-01-01
The incompressible axisymmetric steady Navier-Stokes equations in primitive variables are used to simulate vortex breakdown. The equations, discretized using a second-order, central-difference scheme, are linearized and then solved using an exact LU decomposition, Gaussian elimination, and Newton iteration. Solutions are presented for Reynolds numbers, based on vortex-core radius, as high as 1500. An attempt to study the stability of the axisymmetric solutions against three-dimensional perturbations is discussed.
Stability and refrigeration of magnet cryosystems near 1.8 K using the thermomechanical effect
NASA Technical Reports Server (NTRS)
Frederking, T. H. K.; Chen, W. E. W.; Caspi, S.
1987-01-01
Magnet cryosystem options utilizing the thermomechanical effect of He II and the mechano-caloric effect for refrigeration (referred to as vortex refrigeration) are examined. The performance of the existing He II magnet refrigeration system is briefly reviewed, with attention given to superleak properties, vortex shedding, heat input, and thermodynamic cycle. It is concluded that the possibilities of magnet heat leak use for energetics and stability improvements are promising when He II is selected as magnet coolant.
The evolutionary development of high specific impulse electric thruster technology
NASA Technical Reports Server (NTRS)
Sovey, James S.; Hamley, John A.; Patterson, Michael J.; Rawlin, Vincent K.; Myers, Roger M.
1992-01-01
Electric propulsion flight and technology demonstrations conducted in the USA, Europe, Japan, China, and USSR are reviewed with reference to the major flight qualified electric propulsion systems. These include resistojets, ion thrusters, ablative pulsed plasma thrusters, stationary plasma thrusters, pulsed magnetoplasmic thrusters, and arcjets. Evolutionary mission applications are presented for high specific impulse electric thruster systems. The current status of arcjet, ion, and magnetoplasmadynamic thrusters and their associated power processor technologies are summarized.
Effects of anode material on arcjet performance
NASA Technical Reports Server (NTRS)
Sankovic, John M.; Curran, Frank M.; Larson, C. A.
1992-01-01
Anodes fabricated from four different materials were tested in a modular arcjet thruster at 1 kW power level on nitrogen/hydrogen mixtures. A two-percent thoriated tungsten anode served as the control. Graphite was chosen for its ease in fabrication, but experienced severe erosion in the constrictor and diverging side. Hafnium carbide and lanthanum hexaboride were chosen for their low work functions but failed due to thermal stress and reacted with the propellant. When compared to the thoriated tungsten nozzle, thruster performance was significantly lower for the lanthanum hexaboride insert and the graphite nozzle, but was slightly higher for the hafnium carbide nozzle. Both the lanthanum hexaboride and hafnium carbide nozzle operated at higher voltages. An attempt was made to duplicate higher performance hafnium carbide results, but repeated attempts at machining a second anode insert were unsuccessful. Graphite, hafnium carbide, and lanthanum hexaboride do not appear viable anode materials for low power arcjet thrusters.
Thermal Analysis of Small Re-Entry Probe
NASA Technical Reports Server (NTRS)
Agrawal, Parul; Prabhu, Dinesh K.; Chen, Y. K.
2012-01-01
The Small Probe Reentry Investigation for TPS Engineering (SPRITE) concept was developed at NASA Ames Research Center to facilitate arc-jet testing of a fully instrumented prototype probe at flight scale. Besides demonstrating the feasibility of testing a flight-scale model and the capability of an on-board data acquisition system, another objective for this project was to investigate the capability of simulation tools to predict thermal environments of the probe/test article and its interior. This paper focuses on finite-element thermal analyses of the SPRITE probe during the arcjet tests. Several iterations were performed during the early design phase to provide critical design parameters and guidelines for testing. The thermal effects of ablation and pyrolysis were incorporated into the final higher-fidelity modeling approach by coupling the finite-element analyses with a two-dimensional thermal protection materials response code. Model predictions show good agreement with thermocouple data obtained during the arcjet test.
Acceleration processes in the quasi-steady magnetoplasmadynamic discharge. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Boyle, M. J.
1974-01-01
The flow field characteristics within the discharge chamber and exhaust of a quasi-steady magnetoplasmadynamic (MPD) arcjet were examined to clarify the nature of the plasma acceleration process. The observation of discharge characteristics unperturbed by insulator ablation and terminal voltage fluctuations, first requires the satisfaction of three criteria: the use of refractory insulator materials; a mass injection geometry tailored to provide propellant to both electrode regions of the discharge; and a cathode of sufficient surface area to permit nominal MPD arcjet operation for given combinations of arc current and total mass flow. The axial velocity profile and electromagnetic discharge structure were measured for an arcjet configuration which functions nominally at 15.3 kA and 6 g/sec argon mass flow. An empirical two-flow plasma acceleration model is advanced which delineates inner and outer flow regions and accounts for the observed velocity profile and calculated thrust of the accelerator.
Lower power dc arcjet operations with hydrogen hydrogen/nitrogen propellant mixtures
NASA Technical Reports Server (NTRS)
Curran, F. M.; Nakanishi, S.
1986-01-01
The arcjet assembly from a flight model system was modified with a new thoriated tungsten nozzle insert and has been tested with hydrogen-nitrogen mixtures simulating the decomposition products of ammonia and hydrazine. Arcjet power consumption ranged from 0.7 to 1.15 kW depending on low rate, input current, and mixture composition. At a nominal 1 kW power level the ammonia mixtures thrust efficiency was about 0.31 at specific impulse values ranging between 460 and 500 sec. Hydrazine mixtures gave similar thrust efficiencies at the same power level with specific impulse values between 395 and 430 sec. Large, spontaneous voltage mode changes were not observed once the thruster had passed a period of instability immediately following start up. This period of instability, and the startup at low pressure, were seen as major causes of constrictor damage during the tests.
Electric propulsion for geostationary orbit insertion
NASA Technical Reports Server (NTRS)
Oleson, Steven R.; Curran, Francis M.; Myers, Roger M.
1995-01-01
Solar electric propulsion (SEP) technology is already being used for geostationary satellite stationkeeping to increase payload mass. By using this same technology to perform part of the orbit transfer additional increases in payload mass can be achieved. Advanced chemical and N2H4 arcjet systems are used to increase the payload mass by performing stationkeeping and part of the orbit transfer. Four mission options are analyzed which show the impact of either sharing the orbit transfer between chemical and SEP systems or having either complete the transfer alone. Results show that for an Atlas 2AS payload increases in net mass (geostationary satellite mass less wet propulsion system mass) of up to 100 kg can be achieved using advanced chemical for the transfer and advanced N2H4 arcjets for stationkeeping. An additional 100 kg can be added using advanced N2H4 arcjets for part of a 40 day orbit transfer.
Spacecraft and mission design for the SP-100 flight experiment
NASA Technical Reports Server (NTRS)
Deininger, William D.; Vondra, Robert J.
1988-01-01
The design and performance of a spacecraft employing arcjet nuclear electric propulsion, suitable for use in the SP-100 Space Reactor Power System (SRPS) Flight Experiment, are outlined. The vehicle design is based on a 93 kW(e) ammonia arcjet system operating at an experimentally measured specific impulse of 1031 s and an efficiency of 42.3 percent. The arcjet/gimbal assemblies, power conditioning subsystem, propellant feed system, propulsion system thermal control, spacecraft diagnostic instrumentation, and the telemetry requirements are described. A 100 kW(e) SRPS is assumed. The spacecraft mass is baselined at 5675 kg excluding the propellant and propellant feed system. Four mission scenarios are described which are capable of demonstrating the full capability of the SRPS. The missions considered include spacecraft deployment to possible surveillance platform orbits, a spacecraft storage mission, and an orbit raising round trip corresponding to possible orbit transfer vehicle (OTV) missions.
Electric propulsion options for the SP-100 reference mission
NASA Technical Reports Server (NTRS)
Hardy, T. L.; Rawlin, V. K.; Patterson, M. J.
1987-01-01
Analyses were performed to characterize and compare electric propulsion systems for use on a space flight demonstration of the SP-100 nuclear power system. The component masses of resistojet, arcjet, and ion thruster systems were calculated using consistent assumptions and the maximum total impulse, velocity increment, and thrusting time were determined, subject to the constraint of the lift capability of a single Space Shuttle launch. From the study it was found that for most systems the propulsion system dry mass was less than 20 percent of the available mass for the propulsion system. The maximum velocity increment was found to be up to 2890 m/sec for resistojet, 3760 m/sec for arcjet, and 23 000 m/sec for ion thruster systems. The maximum thruster time was found to be 19, 47, and 853 days for resistojet, arcjet, and ion thruster systems, respectively.
Multicomponent Arcjet plasma Parameters
NASA Astrophysics Data System (ADS)
Gorbunkov, V.; Kositsin, V. V.; Ruban, V. I.; Shalay, V. V.
2018-01-01
To determine the plasma arc parameters of an arcjet thruster, the kinetic theory of gases is used. We can find a well-known statement about the adiabatic character of the compression process due to the growth of the gas temperature in a change in its spectral composition and in the Doppler effect. The use of tungsten in the nozzle design details explains the appearance of atoms of this element in the plasma volume. The emission spectra of tungsten allow us to indirectly judge the temperature of the arc discharge and its character. Absorption of the long-wavelength wing of the line contour at λ = 465.987 nm substantiates our conclusion about the consumption of the anode material in the process of operating the arcjet. The Doppler shift of the emission lines of argon allows us to determine the rate of the gas jet escape. The results of the study can be useful in the design of aircraft.
Physical and Thermal Comfort Properties of Viscose Fabrics made from Vortex and Ring Spun Yarns
NASA Astrophysics Data System (ADS)
Thilagavathi, G.; Muthukumar, N.; Kumar, V. Kiran; Sadasivam, Sanjay; Sidharth, P. Mithun; Nikhil Jain, G.
2017-06-01
Viscose fiber is frequently preferred for various types of inner and outer knitwear products for its comfort and visual characteristics. In this study, the physical and thermal comfort properties of viscose fabrics made from ring and vortex yarns have been studied to explore the impact of spinning process on fabric properties. 100% viscose fibers were spun into yarns by ring and vortex spinning and the developed yarns were converted to single jersey fabrics. The results indicated that fabrics made from vortex spun yarns had better pilling resistance over that of those from ring spun yarns. There was no significant difference between bursting strength values of vortex and ring spun yarn fabrics. Fabrics made from ring yarn had better dimensional stability compared to fabrics made from vortex yarn. The air permeability and water vapour permeability of vortex yarn fabrics were higher than ring spun yarn fabrics. The vortex yarn fabrics had better thermal comfort properties compared to ring yarn fabrics.
NASA Astrophysics Data System (ADS)
Zhou, GuoQuan; Cai, YangJian; Dai, ChaoQing
2013-05-01
A kind of hollow vortex Gaussian beam is introduced. Based on the Collins integral, an analytical propagation formula of a hollow vortex Gaussian beam through a paraxial ABCD optical system is derived. Due to the special distribution of the optical field, which is caused by the initial vortex phase, the dark region of a hollow vortex Gaussian beam will not disappear upon propagation. The analytical expressions for the beam propagation factor, the kurtosis parameter, and the orbital angular momentum density of a hollow vortex Gaussian beam passing through a paraxial ABCD optical system are also derived, respectively. The beam propagation factor is determined by the beam order and the topological charge. The kurtosis parameter and the orbital angular momentum density depend on beam order n, topological charge m, parameter γ, and transfer matrix elements A and D. As a numerical example, the propagation properties of a hollow vortex Gaussian beam in free space are demonstrated. The hollow vortex Gaussian beam has eminent propagation stability and has crucial application prospects in optical micromanipulation.
Robust and adjustable C-shaped electron vortex beams
NASA Astrophysics Data System (ADS)
Mousley, M.; Thirunavukkarasu, G.; Babiker, M.; Yuan, J.
2017-06-01
Wavefront engineering is an important quantum technology, often applied to the production of states carrying orbital angular momentum (OAM). Here, we demonstrate the design and production of robust C-shaped beam states carrying OAM, in which the usual doughnut-shaped transverse intensity structure of the vortex beam contains an adjustable gap. We find that the presence of the vortex lines in the core of the beam is crucial for maintaining the stability of the C-shape structure during beam propagation. The topological charge of the vortex core controls mainly the size of the C-shape, while its opening angle is related to the presence of vortex-anti-vortex loops. We demonstrate the generation and characterisation of C-shaped electron vortex beams, although the result is equally applicable to other quantum waves. C-shaped electron vortex beams have potential applications in nanoscale fabrication of planar split-ring structures and three-dimensional chiral structures as well as depth sensing and magnetic field determination through rotation of the gap in the C-shape.
Vortex generation and wave-vortex interaction over a concave plate with roughness and suction
NASA Technical Reports Server (NTRS)
Bertolotti, Fabio
1993-01-01
The generation and amplification of vortices by surface homogeneities, both in the form of surface waviness and of wall-normal velocity, is investigated using the nonlinear parabolic stability equations. Transients and issues of algebraic growth are avoided through the use of a similarity solution as initial condition for the vortex. In the absence of curvature, the vortex decays as the square root of 1/x when flowing over streamwise aligned riblets of constant height, and grows as the square root of x when flowing over a corresponding streamwise aligned variation of blowing/suction transpiration velocity. However, in the presence of wall inhomogeneities having both streamwise and spanwise periodicity, the growth of the vortex can be much larger. In the presence of curvature, the vortex develops into a Gortler vortex. The 'direct' and 'indirect' interaction mechanisms possible in wave-vortex interaction are presented. The 'direct' interaction does not lead to strong resonance with the flow conditions investigated. The 'indirect' interaction leads to K-type transition.
A Baroclinic Eddy Mixer: Supercritical Transformation of Compensated Eddies
NASA Astrophysics Data System (ADS)
Sutyrin, G.
2016-02-01
In contrast to many real-ocean rings and eddies, circular vortices with initial lower layer at rest tend to be highly unstable in idealized two-layer models, unless their radius is made small or the lower layer depth is made artificially large. Numerical simulations of unstable vortices with parameters typical for ocean eddies revealed strong deformations and pulsations of the vortex core in the two-layer setup due to development of corotating tripolar structures in the lower layer during their supercritical transformation. The addition of a middle layer with the uniform potential vorticity weakens vertical coupling between the upper and lower layer that enhances vortex stability and makes the vortex lifespan more realistic. Such a three-layer vortex model possesses smaller lower interface slope than the two-layer model that reduces the potential vorticity gradient in the lower layer and provides with less unstable configurations. While cyclonic eddies become only slightly deformed and look nearly circular when the middle layer with uniform potential vorticity is added, anticyclonic eddies tend to corotating and pulsating elongated states through potential vorticity stripping and stirring. Enhanced vortex stability in such three-layer setup has important implications for adequate representation of the energy transfer across scales.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Wenlong; Bisset, R. N.; Ticknor, Christopher
In the present work, we explore the existence, stability, and dynamics of single- and multiple-vortex-ring states that can arise in Bose-Einstein condensates. Earlier works have illustrated the bifurcation of such states in the vicinity of the linear limit for isotropic or anisotropic three-dimensional harmonic traps. Here, we extend these states to the regime of large chemical potentials, the so-called Thomas-Fermi limit, and explore their properties such as equilibrium radii and inter-ring distance for multi-ring states, as well as their vibrational spectra and possible instabilities. In this limit, both the existence and stability characteristics can be partially traced to a particlemore » picture that considers the rings as individual particles oscillating within the trap and interacting pairwise with one another. In conclusion, we examine some representative instability scenarios of the multi-ring dynamics, including breakup and reconnections, as well as the transient formation of vortex lines.« less
Wang, Wenlong; Bisset, R. N.; Ticknor, Christopher; ...
2017-04-27
In the present work, we explore the existence, stability, and dynamics of single- and multiple-vortex-ring states that can arise in Bose-Einstein condensates. Earlier works have illustrated the bifurcation of such states in the vicinity of the linear limit for isotropic or anisotropic three-dimensional harmonic traps. Here, we extend these states to the regime of large chemical potentials, the so-called Thomas-Fermi limit, and explore their properties such as equilibrium radii and inter-ring distance for multi-ring states, as well as their vibrational spectra and possible instabilities. In this limit, both the existence and stability characteristics can be partially traced to a particlemore » picture that considers the rings as individual particles oscillating within the trap and interacting pairwise with one another. In conclusion, we examine some representative instability scenarios of the multi-ring dynamics, including breakup and reconnections, as well as the transient formation of vortex lines.« less
Crossflow Stability and Transition Experiments in Swept-Wing Flow
NASA Technical Reports Server (NTRS)
Dagenhart, J. Ray; Saric, William S.
1999-01-01
An experimental examination of crossflow instability and transition on a 45deg swept wing was conducted in the Arizona State University Unsteady Wind Tunnel. The stationary-vortex pattern and transition location are visualized by using both sublimating chemical and liquid-crystal coatings. Extensive hot-wire measurements were obtained at several measurement stations across a single vortex track. The mean and travelling wave disturbances were measured simultaneously. Stationary crossflow disturbance profiles were determined by subtracting either a reference or a span-averaged velocity profile from the mean velocity data. Mean, stationary crossflow, and traveling wave velocity data were presented as local boundary layer profiles and contour plots across a single stationary crossflow vortex track. Disturbance mode profiles and growth rates were determined. The experimental data are compared with predictions from linear stability theory.
Stability of a family of uniform vortices related to vortex configurations before merging
NASA Astrophysics Data System (ADS)
Luzzatto-Fegiz, P.; Williamson, C. H. K.
2006-11-01
Motivated by the merger of two corotating vortices, Cerretelli & Williamson (JFM 2003) discovered a family of uniform vorticity patches representing the continuation of two corotating vortices into a single ``dumbbell'' shape. This branch of solutions passes through a bifurcation from the Kirchhoff ellipses (discovered by Kamm 1987 and Saffman 1988) and ends into a cat's eye shape. By using a more accurate method for equilibrium shape calculation, we find some differences in the equilibrium shapes to those discovered by Cerretelli & Williamson, particularly near the topological change (from a two-vortex to a single vortex shape). We implement the approach of Dritschel (1985), and show that all the simply connected shapes are unstable to a three-fold perturbation, while a regime of the two-vortex shapes nearing the topological change is unstable to a two-fold antisymmetric perturbation. The stability of two patches has been source of debate in the literature. Saffman & Szeto (1980) predicted exchange of stability at an extremum in energy and angular momentum; on the other hand, Dritschel (1985) found that conditions for instability from linear analysis did not match those coming from the energy criterion. In the present work, we find precise agreement between results from linear analysis and energy criterion, in accordance with the more recent work of Kamm (1987) and Dritschel (1995).
NASA Shuttle Orbiter Reinforced Carbon Carbon (RCC) Crack Repair Arc-Jet Testing
NASA Technical Reports Server (NTRS)
Clark, ShawnDella; Larin, Max; Rochelle, Bill
2007-01-01
This NASA study demonstrates the capability for testing NOAX-repaired RCC crack models in high temperature environments representative of Shuttle Orbiter during reentry. Analysis methods have provided correlation of test data with flight predictions. NOAX repair material for RCC is flown on every STS flight in the event such a repair is needed. Two final test reports are being generated on arc-jet results (both calibration model runs and repaired models runs).
NASA Technical Reports Server (NTRS)
Buslog, Stanley A.
2004-01-01
This slide presentation reviews the testing of thermal protection system materials. All space vehicles that reenter Earth's atmosphere from either LEO or from Lunar/Mars missions require thermal protection system (TPS) materials. These TPS materials requires ground test facilities that simulate the aerothermodynamic environments experienced by reentry. The existing arc-jet facility requires expansion to combine convective and radiation heating and to test the capability to protect with the CO2 atmosphere that will be encountered for Martian entry.
NASA Astrophysics Data System (ADS)
Rostami, M.; Zeitlin, V.
2017-12-01
We show how the properties of the Mars polar vortex can be understood in the framework of a simple shallow-water type model obtained by vertical averaging of the adiabatic “primitive” equations, and “improved” by inclusion of thermal relaxation and convective fluxes due to the phase transitions of CO 2, the major constituent of the Martian atmosphere. We perform stability analysis of the vortex, show that corresponding mean zonal flow is unstable, and simulate numerically non-linear saturation of the instability. We show in this way that, while non-linear adiabatic saturation of the instability tends to reorganize the vortex, the diabatic effects prevent this, and thus provide an explanation of the vortex form and longevity.
Dynamic control of metastable remanent states in mesoscale magnetic elements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, J.; Jain, S.; Pearson, J. E.
2015-05-07
The formation of the vortex-antivortex-vortex (v-av-v) metastable remanent states in elongated magnetic elements have been systematically investigated using micromagnetic modeling. It is demonstrated that the v-av-v magnetization pattern can be effectively stabilized by exciting the single vortex state with an external RF field. Furthermore, we show that a set of different polarity combinations of the vortex cores can be achieved by adjusting the frequency and amplitude of the excitation field. The corresponding dynamic response in time- and frequency-domain has also been presented. Owing to the diversity of the collective modes with different vortex-antivortex combinations, this system may open promising perspectivesmore » in the area of spin transfer torque oscillators.« less
An Aircraft Vortex Spacing System (AVOSS) for Dynamical Wake Vortex Spacing Criteria
NASA Technical Reports Server (NTRS)
Hinton, D. A.
1996-01-01
A concept is presented for the development and implementation of a prototype Aircraft Vortex Spacing System (AVOSS). The purpose of the AVOSS is to use current and short-term predictions of the atmospheric state in approach and departure corridors to provide, to ATC facilities, dynamical weather dependent separation criteria with adequate stability and lead time for use in establishing arrival scheduling. The AVOSS will accomplish this task through a combination of wake vortex transport and decay predictions, weather state knowledge, defined aircraft operational procedures and corridors, and wake vortex safety sensors. Work is currently underway to address the critical disciplines and knowledge needs so as to implement and demonstrate a prototype AVOSS in the 1999/2000 time frame.
H2 arcjet performance mapping program
NASA Astrophysics Data System (ADS)
1992-01-01
Work performed during the period of Mar. 1991 to Jan. 1992 is reviewed. High power H2 arcjets are being considered for electric powered orbit transfer vehicles (EOTV). Mission analyses indicate that the overall arcjet thrust efficiency is very important since increasing the efficiency increases the thrust, and thereby reduces the total trip time for the same power. For example, increasing the thrust efficiency at the same specific impulse from 30 to 40 percent will reduce the trip time by 25 percent. For a 200 day mission, this equates to 50 days, which results in lower ground costs and less time during which the payload is dormant. Arcjet performance levels of 1200 seconds specific impulse (lsp) at 35 to 40 percent efficiency with lifetimes over 1000 hours are needed to support EOTV missions. Because of the potential very high efficiency levels, the objective of this program was to evaluate the ability of a scaled Giannini-style thruster to achieve the performance levels while operating at a reduced nominal power of 10 kW. To meet this objective, a review of past literature was conducted; scaling relationships were developed and applied to establish critical dimensions; a development thruster was designed with the aid of the plasma analysis model KARNAC and finite element thermal modeling; test hardware was fabricated; and a series of performance tests were conducted in RRC's Cell 11 vacuum chamber with its null-balance thrust stand.
Graphite Ablation and Thermal Response Simulation Under Arc-Jet Flow Conditions
NASA Technical Reports Server (NTRS)
Chen, Y.-K.; Milos, F. S.; Reda, D. C.; Stewart, D. A.; Venkatapathy, Ethiraj (Technical Monitor)
2002-01-01
The Two-dimensional Implicit Thermal Response and Ablation program, TITAN, was developed and integrated with a Navier-Stokes solver, GIANTS, for multidimensional ablation and shape change simulation of thermal protection systems in hypersonic flow environments. The governing equations in both codes are demoralized using the same finite-volume approximation with a general body-fitted coordinate system. Time-dependent solutions are achieved by an implicit time marching technique using Gauess-Siedel line relaxation with alternating sweeps. As the first part of a code validation study, this paper compares TITAN-GIANTS predictions with thermal response and recession data obtained from arc-jet tests recently conducted in the Interaction Heating Facility (IHF) at NASA Ames Research Center. The test models are graphite sphere-cones. Graphite was selected as a test material to minimize the uncertainties from material properties. Recession and thermal response data were obtained from two separate arc-jet test series. The first series was at a heat flux where graphite ablation is mainly due to sublimation, and the second series was at a relatively low heat flux where recession is the result of diffusion-controlled oxidation. Ablation and thermal response solutions for both sets of conditions, as calculated by TITAN-GIANTS, are presented and discussed in detail. Predicted shape change and temperature histories generally agree well with the data obtained from the arc-jet tests.
Nonlinear stability of Taylor's vortex array
NASA Technical Reports Server (NTRS)
Lin, S. P.; Tobak, M.
1987-01-01
It is proved that the two-dimensional Taylor vortex array, which is an exact unsteady solution of the Navier-Stokes equation, is globally and asymptotically stable in the mean with respect to three-dimensional periodic disturbances. A time-dependent bound on the decay rate of the kinetic energy of disturbances is obtained.
NASA Astrophysics Data System (ADS)
Taamallah, Soufien; Chakroun, Nadim; Shanbhogue, Santosh; Kewlani, Gaurav; Ghoniem, Ahmed
2015-11-01
A combined experimental and LES investigation is performed to identify the origin of major flow dynamics and vortical structures in a model gas turbine's swirl-stabilized turbulent combustor. Swirling flows in combustion lead to the formation of complex flow dynamics and vortical structures that can interact with flames and influence its stabilization. Our experimental results for non-reacting flow show the existence of large scale precession motion. The precessing vortex core (PVC) dynamics disappears with combustion but only above a threshold of equivalence ratio. In addition, large scale vortices along the inner shear layer (ISL) are observed. These structures interact with the ISL stabilized flame and contribute to its wrinkling. Next, the LES setup is validated against the flow field's low-order statistics and point temperature measurement in relevant areas of the chamber. Finally, we show that LES is capable of predicting the precession motion as well as the ISL vortices in the reacting case: we find that ISL vortices originate from a vortex core that is formed right downstream of the swirler's centerbody. The vortex core has a conical spiral shape resembling a corkscrew that interacts - as it winds out - with the flame when it reaches the ISL.
Velocity measurements in the plume of an arcjet engine
NASA Technical Reports Server (NTRS)
Pivirotto, T. J.; Deininger, W. D.
1987-01-01
A nonintrusive technique has been used to conduct a radial survey in the flow field of an arcjet engine plume. The technique measures the Doppler shift of an optically thin line resulting from recombination and relaxation processes in the high Mach number stream, in order to determine flow velocities. Atom temperature can also be calculated from the same Doppler-broadened line widths, when these shifts are measured with a scanning Fabry-Perot spectrometer whose design is presented in detail.
The Astronautics Laboratory of the Air Force Systems Command electric propulsion projects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanks, T.M.; Andrews, J.C.
1989-01-01
Ongoing projects at the Astronautics Laboratory (AL) of the USAF Systems Command are described. Particular attention is given to experiments with arcjets, magnetoplasmadynamic thrusters, ion engines, and the Electric Insertion Transfer Experiment (ELITE). ELITE involves the integration of high-power ammonia arcjets, low-power xenon ion thrusters, advanced photovoltaic solar arrays, and an autononomous flight control system. It is believed that electric propulsion will become a dominant element in the military and industrial use of space. 6 refs.
Reinforced carbon-carbon oxidation behavior in convective and radiative environments
NASA Technical Reports Server (NTRS)
Curry, D. M.; Johansen, K. J.; Stephens, E. W.
1978-01-01
Reinforced carbon-carbon, which is used as thermal protection on the space shuttle orbiter wing leading edges and nose cap, was tested in both radiant and plasma arcjet heating test facilities. The test series was conducted at varying temperatures and pressures. Samples tested in the plasma arcjet facility had consistently higher mass loss than those samples tested in the radiant facility. A method using the mass loss data is suggested for predicting mission mass loss for specific locations on the Orbiter.
A Discrete-Vortex Method for Studying the Wing Rock of Delta Wings
NASA Technical Reports Server (NTRS)
Gainer, Thomas G.
2002-01-01
A discrete-vortex method is developed to investigate the wing rock problem associated with highly swept wings. The method uses two logarithmic vortices placed above the wing to represent the vortex flow field and uses boundary conditions based on conical flow, vortex rate of change of momentum, and other considerations to position the vortices and determine their strengths. A relationship based on the time analogy and conical-flow assumptions is used to determine the hysteretic positions of the vortices during roll oscillations. Static and dynamic vortex positions and wing rock amplitudes and frequencies calculated by using the method are generally in good agreement with available experimental data. The results verify that wing rock is caused by hysteretic deflections of the vortices and indicate that the stabilizing moments that limit wing rock amplitudes are the result of the one primary vortex moving outboard of the wing where it has little influence on the wing.
Stable dissipative optical vortex clusters by inhomogeneous effective diffusion.
Li, Huishan; Lai, Shiquan; Qui, Yunli; Zhu, Xing; Xie, Jianing; Mihalache, Dumitru; He, Yingji
2017-10-30
We numerically show the generation of robust vortex clusters embedded in a two-dimensional beam propagating in a dissipative medium described by the generic cubic-quintic complex Ginzburg-Landau equation with an inhomogeneous effective diffusion term, which is asymmetrical in the two transverse directions and periodically modulated in the longitudinal direction. We show the generation of stable optical vortex clusters for different values of the winding number (topological charge) of the input optical beam. We have found that the number of individual vortex solitons that form the robust vortex cluster is equal to the winding number of the input beam. We have obtained the relationships between the amplitudes and oscillation periods of the inhomogeneous effective diffusion and the cubic gain and diffusion (viscosity) parameters, which depict the regions of existence and stability of vortex clusters. The obtained results offer a method to form robust vortex clusters embedded in two-dimensional optical beams, and we envisage potential applications in the area of structured light.
Structure of vortices in superfluid 3He A-like phase in uniaxially stretched aerogel
NASA Astrophysics Data System (ADS)
Aoyama, Kazushi; Ikeda, Ryusuke
2009-02-01
Possible vortex-core transitions in A-like phase of superfluid 3He in uniaxially stretched aerogel are investigated. Since the global anisotropy in this system induces the polar pairing state in a narrow range close to the superfluid transition in addition to the A-like and B-like phases, the polar state may occur in the core of a vortex in the A-like phase identified with the ABM pairing state, like in the case of the bulk B phase where a core including the ABM state is realized at higher pressures. We examine the core structure of a single vortex under the boundary condition compatible with the Mermin-Ho vortex in the presence of the dipole interaction. Following Salomaa and Volovik's approach, we numerically solve the Ginzburg-Landau equation for an axially symmetric vortex and, by examining its stability against nonaxisymmetric perturbations, discuss possible vortex core states. It is found that a first order transition on core states may occur on warming from an axisymmetric vortex with a nonunitary core to a singular vortex with the polar core.
Crossflow Stability and Transition Experiments in a Swept-Wing Flow. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Dagenhart, John Ray
1992-01-01
An experimental examination of crossflow instability and transition on a 45 degree swept wing is conducted in the Arizona State University Unsteady Wind Tunnel. The stationary-vortex pattern and transition location are visualized using both sublimating-chemical and liquid-crystal coatings. Extensive hot-wire measurements are conducted at several measurement stations across a single vortex track. The mean and travelling-wave disturbances are measured simultaneously. Stationary-crossflow disturbance profiles are determined by subtracting either a reference or a span-averaged velocity profile from the mean-velocity data. Mean, stationary-crossflow, and travelling-wave velocity data are presented as local boundary-layer profiles and as contour plots across a single stationary-crossflow vortex track. Disturbance-mode profiles and growth rates are determined. The experimental data are compared to predictions from linear stability theory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, M., E-mail: chengm@ihpc.a-star.edu.sg; Lou, J.; Lim, T. T.
A recent theoretical study [Borisov, Kilin, and Mamaev, “The dynamics of vortex rings: Leapfrogging, choreographies and the stability problem,” Regular Chaotic Dyn. 18, 33 (2013); Borisov et al., “The dynamics of vortex rings: Leapfrogging in an ideal and viscous fluid,” Fluid Dyn. Res. 46, 031415 (2014)] shows that when three coaxial vortex rings travel in the same direction in an incompressible ideal fluid, each of the vortex rings alternately slips through (or leapfrogs) the other two ahead. Here, we use a lattice Boltzmann method to simulate viscous vortex rings with an identical initial circulation, radius, and separation distance with themore » aim of studying how viscous effect influences the outcomes of the leapfrogging process. For the case of two identical vortex rings, our computation shows that leapfrogging can be achieved only under certain favorable conditions, which depend on Reynolds number, vortex core size, and initial separation distance between the two rings. For the case of three coaxial vortex rings, the result differs from the inviscid model and shows that the second vortex ring always slips through the leading ring first, followed by the third ring slipping through the other two ahead. A simple physical model is proposed to explain the observed behavior.« less
NASA Astrophysics Data System (ADS)
Brend, Mark A.; Verzicco, Roberto
2005-11-01
We introduce our unique, new large-scale experimental facility [1] designed for our long-term research program investigating the effects of background system rotation on the stability and the dynamics of vortex rings. The new rig constitutes a large water-filled tank positioned on a rotating turntable and its overall height and diameter are 5.7m and 1.4 m, respectively. First experimental and computational results of our program are summarized. We will show various videos of flow visualizations that illustrate some major, qualitative differences between rings propagating in rotating and non-rotating flows. Some of the investigated characteristics of the vortex rings include their translation velocity, the velocity field inside and surrounding the rings, and, in particular, their stability. We will briefly outline experiments employing the relatively new Ultrasonic-Velocity-Profiler technique (UVP). This technique appears to be particularly suited for some of our measurements and it was, as far as we are aware, not previously used in the context of vortex-ring studies. [1] http://www.eng.warwick.ac.uk/staff/pjt/turntabpics/voriskt.html
An extended life and performance test of a low-power arcjet
NASA Technical Reports Server (NTRS)
Curran, Francis M.; Haag, Thomas W.
1988-01-01
An automated, cyclic life test was performed to demonstrate the reliability and endurance of a low power dc cycle arcjet thruster. Over 1000 hr and 500 on-off cycles were accumulated which would represent the requirements for about 15 years of on-orbit lifetime. A hydrogen/nitrogen propellant mixture was used to simulate decomposed hydrazine propellant and the power level was nominally 1.2 kW after the burn-in period. The arcjet operated in a very repeatable fashion from cycle to cycle. The steady state voltage increased by approximately 6 V over the first 300 hr, and then by only 3 V through the remainder of the test. Thrust measurements taken before, during, and after the test verified that the thruster performed in a consistent fashion throughout the tests at a specific impulse of 450 to 460 sec. Post-test component evaluation revealed limited erosion on both the anode and cathode. Other thruster components, including graphite seals, appeared undamaged.
Baseline spacecraft and mission design for the SP-100 flight experiment
NASA Technical Reports Server (NTRS)
Deininger, William D.; Vondra, Robert J.
1989-01-01
The design and performance of a spacecraft employing arcjet nuclear electric propulsion, suitable for use in the SP-100 Space Reactor Power System (SRPS) Flight Experiment, are outlined. The vehicle design is based on a 93 kWe ammonia arcjet system operating at an experimentally-measured specific impulse of 1030 s and an efficiency of 42 percent. The arcjet/gimbal assemblies, power conditioning subsystem, propellant feed system, propulsion system thermal control, spacecraft diagnostic instrumentation, and the telemetry requirements are described. A 100 kWe SRPS is assumed. The total spacecraft mass is baselined at 5675 kg excluding the propellant and propellant feed system. Four mission scenarios are described which are capable of demonstrating the full capability of the SRPS. The missions considered include spacecraft deployment to possible surveillance platform orbits, a spacecraft storage mission and an orbit raising round trip corresponding to possible orbit transfer vehicle missions. Launches from Kennedy Space Center using the Titan IV expendable launch vehicle are assumed.
CFD Simulations of the IHF Arc-Jet Flow: Compression-Pad/Separation Bolt Wedge Tests
NASA Technical Reports Server (NTRS)
Gokcen, Tahir; Skokova, Kristina A.
2017-01-01
This paper reports computational analyses in support of two wedge tests in a high enthalpy arc-jet facility at NASA Ames Research Center. These tests were conducted using two different wedge models, each placed in a free jet downstream of a corresponding different conical nozzle in the Ames 60-MW Interaction Heating Facility. Panel test articles included a metallic separation bolt imbedded in the compression-pad and heat shield materials, resulting in a circular protuberance over a flat plate. As part of the test calibration runs, surface pressure and heat flux measurements on water-cooled calibration plates integrated with the wedge models were also obtained. Surface heating distributions on the test articles as well as arc-jet test environment parameters for each test configuration are obtained through computational fluid dynamics simulations, consistent with the facility and calibration measurements. The present analysis comprises simulations of the non-equilibrium flow field in the facility nozzle, test box, and flow field over test articles, and comparisons with the measured calibration data.
Copper atom based measurements of velocity and turbulence in arc jet flows
NASA Technical Reports Server (NTRS)
Marinelli, William J.; Kessler, William J.; Allen, Mark G.; Arepalli, Sivaram; Scott, Carl D.
1991-01-01
Laboratory and field measurements were combined with a modeling effort to explore the feasibility of using atomic copper laser-induced fluorescence to measure velocity, turbulence, and temperature in arcjet flows. Both CW and pulsed frequency-doubled dye lasers were used to demonstrate the ability to measure velocity with 10 percent accuracy at rates of 200,000 cm/s in a rarefied flow of Cu atoms seeded in He. The pulsed laser established a threshold energy for power-broadening of the absorption line at 3.5 x 10 to the -8th J/sq cm. Field measurements at the NASA/JSC 10-MW arcjet facility demonstrated the ability to perform these measurements under actual test conditions. The use of this technique to measure freestream temperatures in the flow was examined for the 0.08/cm linewidth laser used in the NASA/JSC effort. Finally, single-shot turbulence measurements at the USAF/AEDC 35-MW H2 arcjet facility were measured with 4 percent accuracy using the laser/absorption line-overlap technique.
Arcjet Testing of Micro-Meteoroid Impacted Thermal Protection Materials
NASA Technical Reports Server (NTRS)
Agrawal, Parul; Munk, Michelle M.; Glaab, Louis J.
2013-01-01
There are several harsh space environments that could affect thermal protection systems and in turn pose risks to the atmospheric entry vehicles. These environments include micrometeoroid impact, extreme cold temperatures, and ionizing radiation during deep space cruise, all followed by atmospheric entry heating. To mitigate these risks, different thermal protection material samples were subjected to multiple tests, including hyper velocity impact, cold soak, irradiation, and arcjet testing, at various NASA facilities that simulated these environments. The materials included a variety of honeycomb packed ablative materials as well as carbon-based non-ablative thermal protection systems. The present paper describes the results of the multiple test campaign with a focus on arcjet testing of thermal protection materials. The tests showed promising results for ablative materials. However, the carbon-based non-ablative system presented some concerns regarding the potential risks to an entry vehicle. This study provides valuable information regarding the capability of various thermal protection materials to withstand harsh space environments, which is critical to sample return and planetary entry missions.
Stability of Mars' annular polar vortex
NASA Astrophysics Data System (ADS)
Seviour, W.; Waugh, D.; Scott, R.
2016-12-01
In common with the Earth and several other planetary bodies, the martian atmosphere exhibits regions of high potential vorticity (PV) near the winter pole, known as polar vortices. On Earth, PV increases monotonically from the equator to pole, however, on Mars there is a local minimum at the pole, with an annulus of high PV encircling it. Recently produced reanalyses of the martian atmospheric circulation have confirmed that this annular vortex is a persistent feature, forming in autumn and lasting until spring. This finding is surprising since an isolated band of PV is barotropically unstable, a result going back to Rayleigh. Here we investigate the stability of an annular vortex using numerical integrations of the rotating shallow water equations. We show that the mode of instability and its growth rate strongly depends upon the latitude and width of the annulus. By introducing thermal relaxation with a time scale similar to that of the instability we are able to simulate a persistent annular vortex with similar characteristics as that observed in the martian atmosphere. This time scale, typically 1-2 sols, is similar to thermal relaxation timescales which have been estimated for the martian atmosphere. We also demonstrate that the persistence of an annular vortex is robust to topographic forcing, as long as it is below a certain amplitude. We hence propose that the persistence of this barotropically unstable annular vortex is permitted due to the combination of short radiative relaxation time scales and relatively weak topographic forcing in the martian polar atmosphere.
Two-photon laser-induced fluorescence of atomic hydrogen in a diamond-depositing dc arcjet.
Juchmann, Wolfgang; Luque, Jorge; Jeffries, Jay B
2005-11-01
Atomic hydrogen in the plume of a dc-arcjet plasma is monitored by use of two-photon excited laser-induced fluorescence (LIF) during the deposition of diamond film. The effluent of a dc-arc discharge in hydrogen and argon forms a luminous plume as it flows through a converging-diverging nozzle into a reactor. When a trace of methane (< 2%) is added to the flow in the diverging part of the nozzle, diamond thin film grows on a water-cooled molybdenum substrate from the reactive mixture. LIF of atomic hydrogen in the arcjet plume is excited to the 3S and 3D levels with two photons near 205 nm, and the subsequent fluorescence is observed at Balmer-alpha near 656 nm. Spatially resolved LIF measurements of atomic hydrogen are made as a function of the ratio of hydrogen to argon feedstock gas, methane addition, and reactor pressure. At lower reactor pressures, time-resolved LIF measurements are used to verify our collisional quenching correction algorithm. The quenching rate coefficients for collisions with the major species in the arcjet (Ar, H, and H2) do not change with gas temperature variations in the plume (T < 2300 K). Corrections of the LIF intensity measurements for the spatial variation of collisional quenching are important to determine relative distributions of the atomic hydrogen concentration. The relative atomic hydrogen concentrations measured here are calibrated with an earlier calorimetric determination of the feedstock hydrogen dissociation to provide quantitative hydrogen-atom concentration distributions.
NASA Astrophysics Data System (ADS)
Xu, Mianguang; Li, Zhongyang; Wang, Zhaohui; Zhu, Miaoyong
2017-02-01
To gain a fundamental understanding of the transient fluid flow in twin-roll continuous casting, the current paper applies both large eddy simulation (LES) and full-scale water modeling experiments to investigate the characteristics of the top free surface, stirring effect of the roll rotation, boundary layer fluctuations, and backflow stability. The results show that, the characteristics of the top free surface and the flow field in the wedge-shaped pool region are quite different with/without the consideration of the roll rotation. The roll rotation decreases the instantaneous fluctuation range of the top free surface, but increases its horizontal velocity. The stirring effect of the roll rotating makes the flow field more homogenous and there exists clear shear flow on the rotating roll surface. The vortex shedding induced by the Kármán Vortex Street from the submerged entry nozzle (SEN) causes the "velocity magnitude wave" and strongly influences the boundary layer stability and the backflow stability. The boundary layer fluctuations or the "velocity magnitude wave" induced by the vortex shedding could give rise to the internal porosity. In strip continuous casting process, the vortex shedding phenomenon indicates that the laminar flow can give rise to instability and that it should be made important in the design of the feeding system and the setting of the operating parameters.
Kaya, K; Işıkgil; Güldür, T
2014-06-01
Lipoprotein aggregation is generated by hydrophobic nature of lipoproteins that is known to be one of the causes of atherosclerosis. Low density lipoproteins (LDL) has been extensively studied in this respect but not chylomicrons. There is strong evidence that post-prandial triacylglycerol-rich lipoproteins are atherogenic. Because biophysical properties of lipoproteins are largely determined by their lipid compositions, hydrophobic nature of thoracic lymph duct chylomicrons obtained from rats given different fats or oils by gavage was investigated by vortexing-induced aggregation and hydrophobic interaction chromatography. Contrary to LDL, vortexing did not cause aggregation in chylomicrons. Vortexing of fish oil and butter chylomicrons resulted in more prominent reduction in absorbances compared with chylomicrons from other sources that might indicate less micelle stability. Hydrophobic interaction chromatography of fish oil, palm oil and olive oil chylomicrons yielded three fractions, whereas that of sunflower, margarine and butter chylomicrons gave rise to two fractions. These results suggest that surface hydrophobicity of chylomicrons might be heterogenous. Our results also demonstrate that fish oil chylomicrons have less hydrophobicity and lower stability against vortexing compared with chylomicrons from other sources. Considering beneficial effects of fish oil in cardiovascular health, less hydrophobicity together with lower stability might provide an additional atherogeneicity index for lipoproteins. Journal of Animal Physiology and Animal Nutrition © 2013 Blackwell Verlag GmbH.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumakura, M.; PRESTO, JST, 4-1-8 Honcho Kawaguchi, Saitama 332-0012; CREST, JST, 4-1-8 Honcho Kawaguchi, Saitama 332-0012
2006-06-15
In a Bose-Einstein condensate of {sup 87}Rb (F=2,m{sub F}=2) atoms we have topologically created a quantized vortex with a charge of 4 by reversing the magnetic field of the trap. Experimental conditions of reversal time and initial magnetic field strength for the successful vortex creation were restricted within narrower ranges, compared to those in the case of the {sup 23}Na condensate. The experimental difficulty was explained in terms of a non-negligible gravitational sag arising from its large atomic mass. We have successfully stabilized the vortex formation by compensating gravity with a blue-detuned laser beam.
Testing of an Arcjet Thruster with Capability of Direct-Drive Operation
NASA Technical Reports Server (NTRS)
Martin, Adam K.; Polzin, Kurt A.; Eskridge, Richard H.; Smith, James W.; Schoenfeld, Michael P.; Riley, Daniel P.
2015-01-01
Electric thrusters typically require a power processing unit (PPU) to convert the spacecraft provided power to the voltage-current that a thruster needs for operation. Testing has been initiated to study whether an arcjet thruster can be operated directly with the power produced by solar arrays without any additional conversion. Elimination of the PPU significantly reduces system-level complexity of the propulsion system, and lowers developmental cost and risk. The work aims to identify and address technical questions related to power conditioning and noise suppression in the system and heating of the thruster in long-duration operation. The apparatus under investigation has a target power level from 400-1,000 W. However, the proposed direct-drive arcjet is potentially a highly scalable concept, applicable to solar-electric spacecraft with up to 100's of kW and beyond. A direct-drive electric propulsion system would be comprised of a thruster that operates with the power supplied directly from the power source (typically solar arrays) with no further power conditioning needed between those two components. Arcjet thrusters are electric propulsion devices, with the power supplied as a high current at low voltage; of all the different types of electric thruster, they are best suited for direct drive from solar arrays. One advantage of an arcjet over Hall or gridded ion thrusters is that for comparable power the arcjet is a much smaller device and can provide more thrust and orders of magnitude higher thrust density (approximately 1-10 N/sq m), albeit at lower I(sub sp) (approximately 800-1000 s). In addition, arcjets are capable of operating on a wide range of propellant options, having been demonstrated on H2, ammonia, N2, Ar, Kr, Xe, while present SOA Hall and ion thrusters are primarily limited to Xe propellant. Direct-drive is often discussed in terms of Hall thrusters, but they require 250-300 V for operation, which is difficult even with high-voltage solar arrays. The arcjet requires under 100 V, which is more in-line with what is easily possible with a solar array. Direct-drive of an electric propulsion system confers the advantage of reducing or eliminating the power processing unit (PPU) that is typically needed to convert the spacecraft-provided power to the voltage and current needed for thruster operation. Since the PPU is typically the most expensive piece of an electric thruster system, from both a fabrication and qualification standpoint, its elimination offers the potential for major reductions in system cost and risk. The design of the arcjet built for this effort was based on previous low power (1 kW class) arcjets. It has a precision machined 99.95% pure tungsten anode which also serves as the nozzle. The anode constrictor region is 1 mm (0.040-in) diameter and 1 mm (0.040-in) long. The cathode is a tungsten welding electrode doped with LaO2; its tip was precision ground to a 30? angle ending in a blunt end. The two electrodes are separated by a boron-nitride insulator which also serves as the propellant injection manifold; it ends in six small holes which introduce the propellant gas in the diverging section of the nozzle, directly adjacent to the cathode. The electrodes and insulator are housed in a stainless-steel outer-body, with a Macor insulator at the mid-plane to provide thermal isolation between the front and back halves of the device. The gas seals were made using Grafoil gaskets. Figure 1A shows the assembled thruster in the vacuum chamber; figure 1B shows the thruster in operation on argon at a flow rate of 676 sccm (20 mg/s). Initial testing was conducted in a 3.5-ft diameter vacuum chamber; the ultimate pressure reached during quasi-steady operation of the thruster was about 330 millitorr. The thruster was powered with a high-current, 0-100A, 15 kW power supply. The discharge was initiated with a high-voltage (approximately 10 kV) spark initiator that was isolated from the supply by a stack of diodes. The testing indicated that an operating point exists within the I-V characteristics that is compatible with direct-drive solar-electric operation; for a flow rate of 20 mg/s (argon) the arc could be sustained at a voltage of about 20 V and a current of 25 A (500W).
Robust vortex lines, vortex rings, and hopfions in three-dimensional Bose-Einstein condensates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bisset, R. N.; Wang, Wenlong; Ticknor, Christopher
Performing a systematic Bogoliubov–de Gennes spectral analysis, we illustrate that stationary vortex lines, vortex rings, and more exotic states, such as hopfions, are robust in three-dimensional atomic Bose-Einstein condensates, for large parameter intervals. Importantly, we find that the hopfion can be stabilized in a simple parabolic trap, without the need for trap rotation or inhomogeneous interactions. We supplement our spectral analysis by studying the dynamics of such stationary states; we find them to be robust against significant perturbations of the initial state. In the unstable regimes, we not only identify the unstable mode, such as a quadrupolar or hexapolar mode,more » but we also observe the corresponding instability dynamics. Moreover, deep in the Thomas-Fermi regime, we investigate the particlelike behavior of vortex rings and hopfions.« less
Robust vortex lines, vortex rings, and hopfions in three-dimensional Bose-Einstein condensates
Bisset, R. N.; Wang, Wenlong; Ticknor, Christopher; ...
2015-12-07
Performing a systematic Bogoliubov–de Gennes spectral analysis, we illustrate that stationary vortex lines, vortex rings, and more exotic states, such as hopfions, are robust in three-dimensional atomic Bose-Einstein condensates, for large parameter intervals. Importantly, we find that the hopfion can be stabilized in a simple parabolic trap, without the need for trap rotation or inhomogeneous interactions. We supplement our spectral analysis by studying the dynamics of such stationary states; we find them to be robust against significant perturbations of the initial state. In the unstable regimes, we not only identify the unstable mode, such as a quadrupolar or hexapolar mode,more » but we also observe the corresponding instability dynamics. Moreover, deep in the Thomas-Fermi regime, we investigate the particlelike behavior of vortex rings and hopfions.« less
NASA Astrophysics Data System (ADS)
Lupoglazoff, N.; Vuillot, F.
Periodic vortex shedding (VS) has been studied by 2-D numerical simulation for the C1 test case in the framework of the ASSM program concerning the stability of the Ariane-5 P230 solid rocket motor. The Flandro method is found to be unsuitable for the type of configuration considered here. The acoustic frequency of VS is a function of the configuration. Calculations of nonstationary thrust indicate that there is no direct relationship between the pressure oscillation amplitudes and the thrust. Secondary injection is found to have a stabilizing effect.
Large Eddy Simulations of the Vortex-Flame Interaction in a Turbulent Swirl Burner
NASA Astrophysics Data System (ADS)
Lu, Zhen; Elbaz, Ayman M.; Hernandez Perez, Francisco E.; Roberts, William L.; Im, Hong G.
2017-11-01
A series of swirl-stabilized partially premixed flames are simulated using large eddy simulation (LES) along with the flamelet/progress variable (FPV) model for combustion. The target burner has separate and concentric methane and air streams, with methane in the center and the air flow swirled through the tangential inlets. The flame is lifted in a straight quarl, leading to a partially premixed state. By fixing the swirl number and air flow rate, the fuel jet velocity is reduced to study flame stability as the flame approaches the lean blow-off limit. Simulation results are compared against measured data, yielding a generally good agreement on the velocity, temperature, and species mass fraction distributions. The proper orthogonal decomposition (POD) method is applied on the velocity and progress variable fields to analyze the dominant unsteady flow structure, indicating a coupling between the precessing vortex core (PVC) and the flame. The effects of vortex-flame interactions on the stabilization of the lifted swirling flame are also investigated. For the stabilization of the lifted swirling flame, the effects of convection, enhanced mixing, and flame stretching introduced by the PVC are assessed based on the numerical results. This research work was sponsored by King Abdullah University of Science and Technology (KAUST) and used computational resources at KAUST Supercomputing Laboratory.
Vortex-antivortex phenomena in superconductors with antidot arrays
NASA Astrophysics Data System (ADS)
Berdiyorov, Golibjon; Milosevic, Milorad; Geurts, Roeland; Peeters, Francois
2007-03-01
We investigated in detail the vortex configurations in superconducting films with regular antidot-arrays within the non-linear Ginzburg-Landau theory, where demagnetization effects and overlapping vortex cores are fully taken into account (contrary to the London approach). In addition to the well-known matching phenomena, we predict: (i) the nucleation of giant-vortex states at interstitial sites; (ii) the combination of giant- and multi-vortices at rational matching fields; and (iii) for particular interstitial vorticity, the symmetry imposed creation of vortex-antivortex configurations. As a consequence of (iii), we predict resistance maxima at particular matching fields, opposite to the expected minima due to commensurability effects. Using the same principle, we stabilized vortex-antivortex molecules in finite submicron superconducting polygons by strategically placed nanoholes. Compared to earlier predictions, we enhanced the stamina of the antivortex with respect to temperature, applied fields and geometrical defects in the sample. Further, increased vortex-antivortex spacing and pronounced amplitudes of the local magnetic field in our system make these fascinating structures observable by e.g. Scanning Tunneling or Hall probe microscopy.
Topological Vortex and Knotted Dissipative Optical 3D Solitons Generated by 2D Vortex Solitons
NASA Astrophysics Data System (ADS)
Veretenov, N. A.; Fedorov, S. V.; Rosanov, N. N.
2017-12-01
We predict a new class of three-dimensional (3D) topological dissipative optical one-component solitons in homogeneous laser media with fast saturable absorption. Their skeletons formed by vortex lines where the field vanishes are tangles, i.e., Nc knotted or unknotted, linked or unlinked closed lines and M unclosed lines that thread all the closed lines and end at the infinitely far soliton periphery. They are generated by embedding two-dimensional laser solitons or their complexes in 3D space after their rotation around an unclosed, infinite vortex line with topological charge M0 (Nc , M , and M0 are integers). With such structure propagation, the "hula-hoop" solitons form; their stability is confirmed numerically. For the solitons found, all vortex lines have unit topological charge: the number of closed lines Nc=1 and 2 (unknots, trefoils, and Solomon knots links); unclosed vortex lines are unknotted and unlinked, their number M =1 , 2, and 3.
Topological Vortex and Knotted Dissipative Optical 3D Solitons Generated by 2D Vortex Solitons.
Veretenov, N A; Fedorov, S V; Rosanov, N N
2017-12-29
We predict a new class of three-dimensional (3D) topological dissipative optical one-component solitons in homogeneous laser media with fast saturable absorption. Their skeletons formed by vortex lines where the field vanishes are tangles, i.e., N_{c} knotted or unknotted, linked or unlinked closed lines and M unclosed lines that thread all the closed lines and end at the infinitely far soliton periphery. They are generated by embedding two-dimensional laser solitons or their complexes in 3D space after their rotation around an unclosed, infinite vortex line with topological charge M_{0} (N_{c}, M, and M_{0} are integers). With such structure propagation, the "hula-hoop" solitons form; their stability is confirmed numerically. For the solitons found, all vortex lines have unit topological charge: the number of closed lines N_{c}=1 and 2 (unknots, trefoils, and Solomon knots links); unclosed vortex lines are unknotted and unlinked, their number M=1, 2, and 3.
Characteristics of a trapped-vortex (TV) combustor
NASA Technical Reports Server (NTRS)
Hsu, K.-Y.; Gross, L. P.; Trump, D. D.; Roquemore, W. M.
1994-01-01
The characteristics of a Trapped-Vortex (TV) combustor are presented. A vortex is trapped in the cavity established between two disks mounted in tandem. Fuel and air are injected directly into the cavity in such a way as to increase the vortex strength. Some air from the annular flow is also entrained into the recirculation zone of the vortex. Lean blow-out limits of the combustor are determined for a wide range of annular air flow rates. These data indicate that the lean blow-out limits are considerably lower for the TV combustor than for flames stabilized using swirl or bluff-bodies. The pressure loss through the annular duct is also low, being less than 2% for the flow conditions in this study. The instantaneous shape of the recirculation zone of the trapped vortex is measured using a two-color PIV technique. Temperature profiles obtained with CARS indicate a well mixed recirculation zone and demonstrate the impact of primary air injection on the local equivalence ratio.
Space and time reconstruction of the precessing vortex core in Francis turbine draft tube by 2D-PIV
NASA Astrophysics Data System (ADS)
Favrel, A.; Müller, A.; Landry, C.; Yamamoto, K.; Avellan, F.
2016-11-01
Francis turbines operating at part load conditions experience the development of a high swirling flow at the runner outlet, giving rise to the development of a cavitation precessing vortex rope in the draft tube. The latter acts as an excitation source for the hydro-mechanical system and may jeopardize the system stability if resonance conditions are met. Although many aspects of the part load issue have been widely studied in the past, the accurate stability analysis of hydro-power plants remains challenging. A better understanding of the vortex rope dynamics in a wide range of operating conditions is an important step towards the prediction and the transposition of the pressure fluctuations from reduced to prototype scale. For this purpose, an investigation of the flow velocity fields at the outlet of a Francis turbine reduced scale physical model operating at part load conditions is performed by means of 2D-PIV in three different horizontal cross-sections of the draft tube cone. The measurements are performed in cavitation-free conditions for three values of discharge factor, comprised between 60% and 81% of the value at the Best Efficiency Point. The present article describes a detailed methodology to properly recover the evolution of the velocity fields during one precession cycle by means of phase averaging. The vortex circulation is computed and the vortex trajectory over one typical precession period is finally recovered for each operating point. It is notably shown that below a given value of the discharge factor, the vortex dynamics abruptly change and loose its periodicity and coherence.
Direct Drive Solar-Powered Arcjet Thruster
NASA Technical Reports Server (NTRS)
Polzin, Kurt; Martin, Adam
2015-01-01
Electric thrusters typically require a power processing unit (PPU) to convert the spacecraft-provided power to the voltage and current that a thruster needs for operation. NASA Marshall Space Flight Center has initiated fundamental studies on whether an arcjet thruster can be operated directly with the power produced by solar arrays without any additional conversion. Elimination of the PPU significantly reduces system-level complexity of the propulsion system, and lowers developmental cost and risk. The proposed work will aim to refine the proof-of-concept presently being assembled and begin to identify and address technical questions related to power conditioning and noise suppression in the system, and heating of the thruster in long-duration operation. The apparatus proposed for investigation has a target power level of 400 to 1,000 W. The proposed direct-drive arcjet is potentially a highly scalable concept, applicable to spacecraft with up to hundreds of kilowatts and beyond. The design of the arcjet built for this effort was based on previous low power (1 kW class) arcjets.1-3 It has a precision machined 99.95% pure tungsten anode that also serves as the nozzle with a 0.040-in- (1-mm-) diameter, 0.040-in-long constrictor region. An additional anode with a 0.020-in- (0.5-mm-) diameter, 0.020-inlong constrictor region was purchased, but has not yet been used. The cathode is a 0.125-in-diameter tungsten welding electrode doped with lanthum-oxygen; its tip was precision ground to a 308deg angle and terminates in a blunt end. The two electrodes are separated by a boron-nitride insulator that also serves as the propellant manifold; it ends in six small holes which introduce the propellant gas in the diverging section of the nozzle, directly adjacent to the cathode. The electrodes and insulator are housed in a stainless-steel outer body, with a Macor insulator at the mid-plane to provide thermal isolation between the front and back halves of the device. The gas seals were made using Grafoil gaskets. Figure 1(a) shows the assembled thruster; figure 1(b) shows the thruster in the vacuum chamber with electrical and propellant connections.
NASA Technical Reports Server (NTRS)
Richwine, David M.; Fisher, David F.
1992-01-01
Flow-field measurements on the leading-edge extension (LEX) of the F-18 High Alpha Research Vehicle (HARV) were obtained using a rotating rake with 16 hemispherical-tipped five-hole probes. Detailed pressure, velocity, and flow direction data were obtained through the LEX vortex core. Data were gathered during 1-g quasi-stabilized flight conditions at angles of attack alpha from 10 degrees to 52 degrees and at Reynolds numbers based on mean aerodynamic cord up to 16 x 10(exp 6). Normalized dynamic pressures and crossflow velocities clearly showed the primary vortex above the LEX and formation of a secondary vortex at higher angles of attack. The vortex was characterized by a ring of high dynamic pressure surrounding a region of low dynamic pressure at the vortex core center. The vortex core, subcore diameter, and vertical location of the core above the LEX increased with angle of attack. Minimum values for static pressure were obtained in the vortex subcore and decreased nearly linearly with increasing angle of attack until vortex breakdown. Rake-measured static pressures were consistent with previously documented surface pressures and showed good agreement with flow visualization flight test results. Comparison of the LEX vortex flight test data to computational solutions at alpha approximately equals 19 degrees and 30 degrees showed fair correlation.
NASA Astrophysics Data System (ADS)
Linehan, Thomas; Mohseni, Kamran
2017-11-01
The relationship between lateral static stability derivative, Clβ,lift coefficient, CL, and angle of attack was investigated for rectangular wings of aspect ratio A R =0.75 ,1 ,1.5 , and 3 using Stereo-Digital Particle Image Velocimetry (S-DPIV) and direct force and moment measurements. When the product Cl βA R is plotted with respect to CL, the lateral stability curves of each wing collapse to a single line for CL<0.7 . For CL>0.7 , the linearity and scaling of Clβwith respect to CL is lost. S-DPIV is used to elucidate the flow physics in this nonlinear regime. At α =10∘ , the leading-edge separation region emerges on the leeward portion of the sideslipped wing by means of vortex shedding. For the A R ≤1.5 wings at α >15∘ , the tip vortex downwash is sufficient to restrict the shedding of leading-edge vorticity thereby sustaining the lift of the leading-edge separation region at high angles of attack. Concurrently, the windward tip vortex grows in size and strength with increasing angle of attack, displacing the leading-edge separation region further toward the leeward wing. This reorganization of lift-generating vorticity results in the initial nonlinearities between Cl β and CL at angles of attack for which CL is still increasing. At angles of attack near that of maximum lift for the A R ≤1 wings, the windward tip vortex lifts off the wing, decreasing the lateral static stability of the wing prior to lift stall. For the A R =3 wing at α >10∘ , nonlinear trends in Cl β versus CL occur due to the spanwise evolution of stalled flow.
NASA Astrophysics Data System (ADS)
Ashton, Ryan; Viola, Francesco; Camarri, Simone; Gallaire, Francois; Iungo, Giacomo Valerio
2016-11-01
The near wake of wind turbines is characterized by the presence of the hub vortex, which is a coherent vorticity structure generated from the interaction between the root vortices and the boundary layer evolving over the turbine nacelle. By moving downstream, the hub vortex undergoes an instability with growth rate, azimuthal and axial wavenumbers determined by the characteristics of the incoming wind and turbine aerodynamics. Thus, a large variability of the hub vortex instability is expected for wind energy applications with consequent effects on wake downstream evolution, wake interactions within a wind farm, power production, and fatigue loads on turbines invested by wakes generated upstream. In order to predict characteristics of the hub vortex instability for different operating conditions, linear stability analysis is carried out by considering different statistics of the incoming wind turbulence, thrust coefficient, tip speed ratio, and blade lift distribution of a wind turbine. Axial and azimuthal wake velocity fields are modeled through Carton-McWilliams velocity profiles by mimicking the presence of the hub vortex, helicoidal tip vortices, and matching the wind turbine thrust coefficient predicted through the actuator disk model. The linear stability analysis shows that hub vortex instability is strongly affected by the wind turbine loading conditions, and specifically it is promoted by a larger thrust coefficient. A higher load of the wind turbines produces an enhanced axial velocity deficit and, in turn, higher shear in the radial direction of the streamwise velocity. The axial velocity shear within the turbine wake is also the main physical mechanism promoting the hub vortex instability when varying the lift distribution over the blade span for a specific loading condition. Cases with a larger velocity deficit in proximity of the wake center and less aerodynamic load towards the blade tip result to be more unstable. Moreover, wake swirl promotes hub vortex instability, and it can also affect the azimuthal wave number of the most unstable mode. Finally, higher Reynolds stresses and turbulent eddy viscosity decrease both growth rate and azimuthal wave number of the most unstable mode.
Influence of homogeneous magnetic fields on the flow of a ferrofluid in the Taylor-Couette system.
Altmeyer, S; Hoffmann, Ch; Leschhorn, A; Lücke, M
2010-07-01
We investigate numerically the influence of a homogeneous magnetic field on a ferrofluid in the gap between two concentric, independently rotating cylinders. The full Navier-Stokes equations are solved with a combination of a finite difference method and a Galerkin method. Structure, dynamics, symmetry properties, bifurcation, and stability behavior of different vortex structures are investigated for axial and transversal magnetic fields, as well as combinations of them. We show that a transversal magnetic field modulates the Taylor vortex flow and the spiral vortex flow. Thus, a transversal magnetic field induces wavy structures: wavy Taylor vortex flow (wTVF) and wavy spiral vortex flow. In contrast to the classic wTVF, which is a secondarily bifurcating structure, these magnetically generated wavy Taylor vortices are pinned by the magnetic field, i.e., they are stationary and they appear via a primary forward bifurcation out of the basic state of circular Couette flow.
Commensurability and stability in nonperiodic systems
Fasano, Y.; De Seta, M.; Menghini, M.; Pastoriza, H.; de la Cruz, F.
2005-01-01
We have investigated the response of 3D Bi2Sr2CaCu2O8 vortex structures to a weak perturbation induced by 2D Fe pinning structures acting on one extremity of vortex lines. The pinning patterns were nano-engineered at the sample surface by means of either a Bitter decoration of the vortex lattice or electron-beam lithography. The commensurability conditions between 2D rigid pinning potentials and 3D elastic structures with short-range positional and long-range orientational correlation have been experimentally determined. When the 2D potential is a replica of the nonperiodic vortex structure an amplification of its interaction with the vortex structure takes place. This effect is detected only for the first matching field, becoming negligible for other matching fields. On the other hand, a periodic 2D perturbation is shown to transform the nonperiodic Bragg glass-like structure into an Abrikosov crystal with an effective Debye–Waller factor. PMID:16576763
NASA Technical Reports Server (NTRS)
Ruyten, Wilhelmus M.; Burtner, D.; Keefer, Dennis
1993-01-01
Spectroscopic and laser-induced fluorescence measurements were performed on the exhaust plume from a 1 kW NASA Lewis arcjet, operated on simulated ammonia. In particular, emissions were analyzed from the Balmer lines of atomic hydrogen and from one of the rotational bands of the NH radical. The laser-induced fluorescence measurements were performed on the Balmer-alpha line of atomic hydrogen. We find that exit plane temperatures are in the range 1500 to 3500 K and that the electron density upstream of the exit plane is on the order of 1.5 x 10(exp 14)/cu cm as determined by the Stark width of the Balmer-alpha line. Both emission spectroscopy and laser-induced fluorescence were used to measure the plume velocities of atomic hydrogen. Using either technique, velocities on the order of 4 km/sec were found at the exit plane and significant acceleration of the flow was observed in the first 2 mm beyond the exit plane. This result indicates that the design of the arcjet nozzle may not be optimum.
Low power arcjet thruster pulse ignition
NASA Technical Reports Server (NTRS)
Sarmiento, Charles J.; Gruber, Robert P.
1987-01-01
An investigation of the pulse ignition characteristics of a 1 kW class arcjet using an inductive energy storage pulse generator with a pulse width modulated power converter identified several thruster and pulse generator parameters that influence breakdown voltage including pulse generator rate of voltage rise. This work was conducted with an arcjet tested on hydrogen-nitrogen gas mixtures to simulate fully decomposed hydrazine. Over all ranges of thruster and pulser parameters investigated, the mean breakdown voltages varied from 1.4 to 2.7 kV. Ignition tests at elevated thruster temperatures under certain conditions revealed occasional breakdowns to thruster voltages higher than the power converter output voltage. These post breakdown discharges sometimes failed to transition to the lower voltage arc discharge mode and the thruster would not ignite. Under the same conditions, a transition to the arc mode would occur for a subsequent pulse and the thruster would ignite. An automated 11 600 cycle starting and transition to steady state test demonstrated ignition on the first pulse and required application of a second pulse only two times to initiate breakdown.
NASA Astrophysics Data System (ADS)
Zhang, Hongtao; Luo, Guangqi; Guan, Lei; Zeng, Jianchen
2017-10-01
Ultra-Compact Combustor (UCC), which is one of mainstream design concepts of Interstage Turbine Burner (ITB), has the advantages of compact structure and high combustion efficiency. A design concept of an UCC with trapped-vortex slot inlet was proposed and numerical simulation of the stability, emissions, internal flow velocity and temperature distribution was carried out. The results indicated that the UCC with trapped-vortex slot inlet could enhance the mixing of combustion mixture and the mainstream airflow, improve the combustion efficiency, outlet temperature and the uniformity of outlet temperature field.
NASA Technical Reports Server (NTRS)
Martin, Marcel Nations; Chang, Leyen S.; Jeffries, Jay B.; Hanson, Ronald K.; Nawaz, Anuscheh; Taunk, Jaswinder S.; Driver, David M.; Raiche, George
2013-01-01
A tunable diode laser sensor was designed for in situ monitoring of temperature in the arc heater of the NASA Ames IHF arcjet facility (60 MW). An external cavity diode laser was used to generate light at 777.2 nm and laser absorption used to monitor the population of electronically excited oxygen atoms in an air plasma flow. Under the assumption of thermochemical equilibrium, time-resolved temperature measurements were obtained on four lines-of-sight, which enabled evaluation of the temperature uniformity in the plasma column for different arcjet operating conditions.
Magnetization reversal in circular vortex dots of small radius.
Goiriena-Goikoetxea, M; Guslienko, K Y; Rouco, M; Orue, I; Berganza, E; Jaafar, M; Asenjo, A; Fernández-Gubieda, M L; Fernández Barquín, L; García-Arribas, A
2017-08-10
We present a detailed study of the magnetic behavior of Permalloy (Ni 80 Fe 20 alloy) circular nanodots with small radii (30 nm and 70 nm) and different thicknesses (30 nm or 50 nm). Despite the small size of the dots, the measured hysteresis loops manifestly display the features of classical vortex behavior with zero remanence and lobes at high magnetic fields. This is remarkable because the size of the magnetic vortex core is comparable to the dot diameter, as revealed by magnetic force microscopy and micromagnetic simulations. The dot ground states are close to the border of the vortex stability and, depending on the dot size, the magnetization distribution combines attributes of the typical vortex, single domain states or even presents features resembling magnetic skyrmions. An analytical model of the dot magnetization reversal, accounting for the large vortex core size, is developed to explain the observed behavior, providing a rather good agreement with the experimental results. The study extends the understanding of magnetic nanodots beyond the classical vortex concept (where the vortex core spins have a negligible influence on the magnetic behavior) and can therefore be useful for improving emerging spintronic applications, such as spin-torque nano-oscillators. It also delimits the feasibility of producing a well-defined vortex configuration in sub-100 nm dots, enabling the intracellular magneto-mechanical actuation for biomedical applications.
Flow visualizations of perpendicular blade vortex interactions
NASA Technical Reports Server (NTRS)
Rife, Michael C.; Davenport, William J.
1992-01-01
Helium bubble flow visualizations have been performed to study perpendicular interaction of a turbulent trailing vortex and a rectangular wing in the Virginia Tech Stability Tunnel. Many combinations of vortex strength, vortex-blade separation (Z(sub s)) and blade angle of attack were studied. Photographs of representative cases are presented. A range of phenomena were observed. For Z(sub s) greater than a few percent chord the vortex is deflected as it passes the blade under the influence of the local streamline curvature and its image in the blade. Initially the interaction appears to have no influence on the core. Downstream, however, the vortex core begins to diffuse and grow, presumably as a consequence of its interaction with the blade wake. The magnitude of these effects increases with reduction in Z(sub s). For Z(sub s) near zero the form of the interaction changes and becomes dependent on the vortex strength. For lower strengths the vortex appears to split into two filaments on the leading edge of the blade, one passing on the pressure and one passing on the suction side. At higher strengths the vortex bursts in the vicinity of the leading edge. In either case the core of its remnants then rapidly diffuse with distance downstream. Increase in Reynolds number did not qualitatively affect the flow apart from decreasing the amplitude of the small low-frequency wandering motions of the vortex. Changes in wing tip geometry and boundary layer trip had very little effect.
Control of vortex state in cobalt nanorings with domain wall pinning centers
NASA Astrophysics Data System (ADS)
Lal, Manohar; Sakshath, S.; Mohanan Parakkat, Vineeth; Anil Kumar, P. S.
2018-05-01
Magnetic rings at the mesoscopic scale exhibit new spin configuration states and switching behavior, which can be controlled via geometrical structure, material composition and applied field. Vortex states in magnetic nanorings ensure flux closure, which is necessary for low stray fields in high packing density in memory devices. We performed magnetoresistance measurements on cobalt nanoring devices and show that by attaching nanowires to the ring, the vortex state can be stabilized. When a square pad is attached to the free end of the wire, the domain wall nucleation field in the nanowire is reduced. In addition, the vortex state persists over a larger range of magnetic fields, and exists at all in-plane orientations of the magnetic field. These experimental findings are well supported by our micromagnetic simulations.
NASA Astrophysics Data System (ADS)
Greschner, S.; Piraud, M.; Heidrich-Meisner, F.; McCulloch, I. P.; Schollwöck, U.; Vekua, T.
2016-12-01
We study the quantum phases of bosons with repulsive contact interactions on a two-leg ladder in the presence of a uniform Abelian gauge field. The model realizes many interesting states, including Meissner phases, vortex fluids, vortex lattices, charge density waves, and the biased-ladder phase. Our work focuses on the subset of these states that breaks a discrete symmetry. We use density matrix renormalization group simulations to demonstrate the existence of three vortex-lattice states at different vortex densities and we characterize the phase transitions from these phases into neighboring states. Furthermore, we provide an intuitive explanation of the chiral-current reversal effect that is tied to some of these vortex lattices. We also study a charge-density-wave state that exists at 1/4 particle filling at large interaction strengths and flux values close to half a flux quantum. By changing the system parameters, this state can transition into a completely gapped vortex-lattice Mott-insulating state. We elucidate the stability of these phases against nearest-neighbor interactions on the rungs of the ladder relevant for experimental realizations with a synthetic lattice dimension. A charge-density-wave state at 1/3 particle filling can be stabilized for flux values close to half a flux quantum and for very strong on-site interactions in the presence of strong repulsion on the rungs. Finally, we analytically describe the emergence of these phases in the low-density regime, and, in particular, we obtain the boundaries of the biased-ladder phase, i.e., the phase that features a density imbalance between the legs. We make contact with recent quantum-gas experiments that realized related models and discuss signatures of these quantum states in experimentally accessible observables.
NASA Technical Reports Server (NTRS)
Bassom, Andrew P.; Hall, Philip
1989-01-01
There are many fluid flows where the onset of transition can be caused by different instability mechanisms which compete among themselves. The interaction is considered of two types of instability mode (at an asymptotically large Reynolds number) which can occur in the flow above a rotating disc. In particular, the interaction is examined between lower branch Tollmien-Schlichting (TS) waves and the upper branch, stationary, inviscid crossflow vortex whose asymptotic structure has been described by Hall (1986). This problem is studied in the context of investigating the effect of the vortex on the stability characteristics of a small TS wave. Essentially, it is found that the primary effect is felt through the modification to the mean flow induced by the presence of the vortex. Initially, the TS wave is taken to be linear in character and it is shown (for the cases of both a linear and a nonlinear stationary vortex) that the vortex can exhibit both stabilizing and destabilizing effects on the TS wave and the nature of this influence is wholly dependent upon the orientation of this latter instability. Further, the problem is examined with a larger TS wave, whose size is chosen so as to ensure that this mode is nonlinear in its own right. An amplitude equation for the evolution of the TS wave is derived which admits solutions corresponding to finite amplitude, stable, traveling waves.
Flame Stability in a Trapped-Vortex Spray-Combustor
NASA Astrophysics Data System (ADS)
Chakka, P.; Mancilla, P. C.; Acharya, S.
1999-11-01
Flame stabilization mechanisms in a Trapped-Vortex (TV) cavity is investigated experimentally and computationally in the current research. The TV-cavity is placed coaxially in the combustor and the flame is maintained through injection of liquid fuel spray and air from the inside face of the afterbody. This concept was introduced by Roquemore and company of Wright-Patterson AFB for gaseous fuel injection into the cavity and is extended for liquid fuel sprays in the current research. The flame holding capability of the TV-cavity is studied for different equivalence ratios of the secondary injection and overall Lean Blow-Out (LBO) limits are presented for different primary and secondary flow rates. The interaction and mixing of the main flow with the secondary vortex flow is investigated through the Laser Doppler Velocimetry measurements taken through a quartz window near the cavity. Also, temperature distribution through IR measurements and pressure fluctuations inside the chamber are presented for complete performance analysis of the TV cavity combustor.
Clog Retard of a Vortex Throttle Joule-Thomson Cryocooler: Further Experimental Verification
NASA Astrophysics Data System (ADS)
Maytal, B.-Z.
2010-04-01
The demand of high purity gas supply for Joule-Thomson cryocoolers and liquefiers is crucial in order to avoid plug formation at the delicate throttling device. A throttle which would tolerate higher level of contamination is greatly desirable for more reliable operation. The vortex throttle has such a potential. A series of vortex throttles were applied to a miniature Joule-Thomson cryocooler and tested with precisely contaminated coolant. The instantaneous flow rate and the mode of its decay indicate the rate and nature of plug formation. Each experiment was a simultaneous run of two cryocoolers in parallel at similar conditions: one with a traditional throttle of short hole, and the other one with the vortex throttle. The clog retard behavior of the vortex throttle was verified. It runs about 2.5 times longer than the traditional one, while being fed by water vapor contaminated nitrogen at the levels of 5 and 17 PPM. The contamination level by carbon dioxide was 80 PPM and exhibited a different behavior of clog formation. Its effect on the cryocooler temperature stability with the vortex throttle was quite minor.
An experimental study of low Re cavity vortex formation embedded in a laminar boundary layer
NASA Astrophysics Data System (ADS)
Gautam, Sashank; Lang, Amy; Wilroy, Jacob
2016-11-01
Laminar boundary layer flow across a grooved surface leads to the formation of vortices inside rectangular cavities. The nature and stability of the vortex inside any single cavity is determined by the Re and cavity geometry. According to the hypothesis, under low Re and stable vortex conditions a single cavity vortex leads to a roller-bearing effect which results in a decrease in drag as quantified by velocity profiles measured within the boundary layer. At higher Re once the vortex becomes unstable, drag should increase due to the mixing of low-momentum fluid within the cavity and the outer boundary layer flow. The primary objective of this experiment is to document the phenomenon using DPIV in a tow tank facility. This study focuses on the transition of the cavity flow from a steady to an unsteady state as the Re is increased above a critical value. The change in boundary layer momentum and cavity vortex characteristics are documented as a function of Re and boundary layer thickness. Funding from NSF CBET fluid dynamics Grant 1335848 is gratefully acknowledged.
Carapella, G.; Sabatino, P.; Barone, C.; Pagano, S.; Gombos, M.
2016-01-01
Vortices are topological defects accounting for many important effects in superconductivity, superfluidity, and magnetism. Here we address the stability of a small number of such excitations driven by strong external forces. We focus on Abrikosov-Josephson vortex that appears in lateral superconducting S/S’/S weak links with suppressed superconductivity in S’. In such a system the vortex is nucleated and confined in the narrow S’ region by means of a small magnetic field and moves under the effect of a force proportional to an applied electrical current with a velocity proportional to the measured voltage. Our numerical simulations show that when a slow moving Abrikosov-Josephson vortex is driven by a strong constant current it becomes unstable with respect to a faster moving excitation: the Josephon-like vortex. Such a current-driven transition explains the structured dissipative branches that we observe in the voltage-current curve of the weak link. When vortex matter is strongly confined phenomena as magnetoresistance oscillations and reentrance of superconductivity can possibly occur. We experimentally observe these phenomena in our weak links. PMID:27752137
Flow Characterization Studies of the 10-MW TP3 Arc-Jet Facility: Probe Sweeps
NASA Technical Reports Server (NTRS)
Goekcen, Tahir; Alunni, Antonella I.
2016-01-01
This paper reports computational simulations and analysis in support of calibration and flow characterization tests in a high enthalpy arc-jet facility at NASA Ames Research Center. These tests were conducted in the NASA Ames 10-MW TP3 facility using flat-faced stagnation calorimeters at six conditions corresponding to the steps of a simulated flight heating profile. Data were obtained using a conical nozzle test configuration in which the models were placed in a free jet downstream of the nozzle. Experimental surveys of arc-jet test flow with pitot pressure and heat flux probes were also performed at these arc-heater conditions, providing assessment of the flow uniformity and valuable data for the flow characterization. Two different sets of pitot pressure and heat probes were used: 9.1-mm sphere-cone probes (nose radius of 4.57 mm or 0.18 in) with null-point heat flux gages, and 15.9-mm (0.625 in) diameter hemisphere probes with Gardon gages. The probe survey data clearly show that the test flow in the TP3 facility is not uniform at most conditions (not even axisymmetric at some conditions), and the extent of non-uniformity is highly dependent on various arc-jet parameters such as arc current, mass flow rate, and the amount of cold-gas injection at the arc-heater plenum. The present analysis comprises computational fluid dynamics simulations of the nonequilibrium flowfield in the facility nozzle and test box, including the models tested. Comparisons of computations with the experimental measurements show reasonably good agreement except at the extreme low pressure conditions of the facility envelope.
NASA Technical Reports Server (NTRS)
Daryabeigi, Kamran; Walker, Sandra P.
2009-01-01
The objective of the present study was to determine whether infrared imaging (IR) surface temperature data obtained during arc-jet tests of Space Shuttle Orbiter s reinforced carbon-carbon (RCC) wing leading edge panel slip-side joggle region could be used to detect presence of subsurface material separation, and if so, to determine when separation occurs during the simulated entry profile. Recent thermostructural studies have indicated thermally induced interlaminar normal stress concentrations at the substrate/coating interface in the curved joggle region can result in local subsurface material separation, with the separation predicted to occur during approach to peak heating during reentry. The present study was an attempt to determine experimentally when subsurface material separations occur. A simplified thermal model of a flat RCC panel with subsurface material separation was developed and used to infer general surface temperature trends due to the presence of subsurface material separation. IR data from previously conducted arc-jet tests on three test specimens were analyzed: one without subsurface material separation either pre or post test, one with pre test separation, and one with separation developing during test. The simplified thermal model trend predictions along with comparison of experimental IR data of the three test specimens were used to successfully infer material separation from the arc-jet test data. Furthermore, for the test specimen that had developed subsurface material separation during the arc-jet tests, the initiation of separation appeared to occur during the ramp up to the peak heating condition, where test specimen temperature went from 2500 to 2800 F.
NASA Astrophysics Data System (ADS)
Isaev, S. A.; Baranov, P. A.; Sudakov, A. G.; Popov, I. A.; Usachov, A. E.
2017-12-01
Calculations using multiblock computational technologies and a model of shear-stress transport modified with allowance for the curvature of streamlines in turbulent airflow were performed at a zero angle of attack for a semicircular airfoil containing one or two surface vortex cells with slot suction. The results showed evidence of stabilization of a nearly undetached flow and attainment of an extremal lift of C y = 5.2 and a lift-to-drag ratio of K = 24 with allowance for energy losses for suction in the vortex cells.
On the Lateral Static Stability of Low-Aspect-Ratio Rectangular Wings
NASA Astrophysics Data System (ADS)
Linehan, Thomas; Mohseni, Kamran
2017-11-01
Low-aspect-ratio rectangular wings experience a reduction in lateral static stability at angles of attack distinct from that of lift stall. Stereoscopic digital particle image velocimetry is used to elucidate the flow physics behind this trend. Rectangular wings of AR = 0.75, 1, 1.5, 3 were tested at side-slip angles β = -10° and 0° with angle of attack varied in the range α =10° -40° . In side-slip, the leading-edge separation region emerges on the leeward wing where leading-edge flow reattachment is highly intermittent due to vortex shedding. The tip vortex downwash of the AR < 1.5 wings is sufficient to restrict the shedding of leading-edge vorticity, enabling sustained lift from the leading-edge separation region to high angles of attack. The windward tip vortex grows in size with increasing angle of attack, occupying an increasingly larger percentage of the windward wing. At high angles of attack pre-lift stall, the windward tip vortex lifts off the wing, resulting in separated flow underneath it. The downwash of the AR = 3 wing is insufficient to reattach the leading-edge flow at high incidence. The flow stalls on the leeward wing with stalled flow expanding upstream toward the windward wing with increasing angle of attack.
Vortex Escape from Columnar Defect in a Current-Loaded Superconductor
NASA Astrophysics Data System (ADS)
Fedirko, V. A.; Kasatkin, A. L.; Polyakov, S. V.
2018-06-01
The problem of Abrikosov vortices depinning from extended linear (columnar) defect in 3D-anisotropic superconductor film under non-uniformly distributed Lorentz force is studied for the case of low temperatures, disregarding thermal activation processes. We treat it as a problem of mechanical behavior of an elastic vortex string settled in a potential well of a linear defect and exerted to Lorentz force action within the screening layer about the London penetration depth near the specimen surface. The stability problem for the vortex pinning state is investigated by means of numerical modeling, and conditions for the instability threshold are obtained as well as the critical current density j_c and its dependence on the film thickness and magnetic field orientation. The instability leading to vortex depinning from extended linear defect first emerges near the surface and then propagates inside the superconductor. This scenario of vortex depinning mechanism at low temperatures is strongly supported by some recent experiments on high-Tc superconductors and other novel superconducting materials, containing columnar defects of various nature.
NASA Technical Reports Server (NTRS)
Lamar, J. E.; Luckring, J. M.
1978-01-01
A review is presented of recent progress in a research program directed towards the development of an improved vortex-flow technology base. It is pointed out that separation induced vortex-flows from the leading and side edges play an important role in the high angle-of-attack aerodynamic characteristics of a wide range of modern aircraft. In the analysis and design of high-speed aircraft, a detailed knowledge of this type of separation is required, particularly with regard to critical wind loads and the stability and performance at various off-design conditions. A description of analytical methods is presented. The theoretical methods employed are divided into two classes which are dependent upon the underlying aerodynamic assumptions. One conical flow method is considered along with three different nonconical flow methods. Comparisons are conducted between the described methods and available aerodynamic data. Attention is also given to a vortex flow drag study and a vortex flow wing design using suction analogy.
Strain-induced intervortex interaction and vortex lattices in tetragonal superconductors
Lin, Shi -Zeng; Kogan, Vladimir G.
2017-02-22
In superconductors with strong coupling between superconductivity and elasticity manifested in a strong dependence of transition temperature on pressure, there is an additional contribution to intervortex interactions due to the strain field generated by vortices. When vortex lines are along the c axis of a tetragonal crystal, a square vortex lattice (VL) is favored at low vortex densities, because the vortex-induced strains contribution to the intervortex interactions is long range. At intermediate magnetic fields, the triangular lattice is stabilized. Furthermore, the triangular lattice evolves to the square lattice upon increasing magnetic field, and eventually the system locks to the squaremore » structure. We argue, however, that as magnetic field approaches the upper critical field H c2 the elastic intervortex interactions disappear faster than the standard London interactions, so that VL should return to the triangular structure. Our results are compared to VLs observed in the heavy fermion superconductor CeCoIn 5.« less
Persistent tangled vortex rings in generic excitable media.
Winfree, A T
1994-09-15
Excitable media are exemplified by a range of living systems, such as mammalian heart muscle and its cells and Xenopus eggs. They also occur in non-living systems such as the autocatalytic Belousov-Zhabotinsky reaction. In most of these systems, activity patterns, such as concentration waves, typically radiate as spiral waves from a vortex of excitation created by some nonuniform stimulus. In three-dimensional systems, the vortex is commonly a line, and these vortex lines can form linked and knotted rings which contract into compact, particle-like bundles. In most previous work these stable 'organizing centres' have been found to be symmetrical and can be classified topologically. Here I show through numerical studies of a generic excitable medium that the more general configuration of vortex lines is a turbulent tangle, which is robust against changes in the parameters of the system or perturbations to it. In view of their stability, I suggest that these turbulent tangles should be observable in any of the many known excitable media.
Characterization of the thermal conductivity for Advanced Toughened Uni-piece Fibrous Insulations
NASA Technical Reports Server (NTRS)
Stewart, David A.; Leiser, Daniel B.
1993-01-01
Advanced Toughened Uni-piece Fibrous Insulations (TUFI) is discussed in terms of their thermal response to an arc-jet air stream. A modification of the existing Ames thermal conductivity program to predict the thermal response of these functionally gradient materials is described in the paper. The modified program was used to evaluate the effect of density, surface porosity, and density gradient through the TUFI materials on the thermal response of these insulations. Predictions using a finite-difference code and calculated thermal conductivity values from the modified program were compared with in-depth temperature measurements taken from TUFI insulations during short exposures to arc-jet hypersonic air streams.
Role of Microstructure on the Performance of UHTC's
NASA Technical Reports Server (NTRS)
Johnson, Sylvia M.; Gasch, Matthew J.; Stackpoole, Mairead; Gusman, Mike; Thornton, Jeremy
2009-01-01
UHTCs, because of their refractory nature and high thermal conductivity, are candidates for use on sharp leading edges of hypersonic vehicles. NASA Ames has been investigating the use of UHTCs in the HfB2/SiC family under NASA's Fundamental Aeronautics Program. The goal of this work has been to tailor the microstructure to improve mechanical properties and the performance in reentry conditions, as determined by arcjet testing. This talk discusses results of mechanical evaluation and arcjet testing of various materials with different microstructures, including the incorporation of high-temperature fibers in these materials to improve fracture toughness. Some preliminary information on UHTC composites will also be discussed.
Electrostatic Plasma Accelerator (EPA)
NASA Technical Reports Server (NTRS)
Brophy, John R.; Aston, Graeme
1995-01-01
The application of electric propulsion to communications satellites, however, has been limited to the use of hydrazine thrusters with electric heaters for thrust and specific impulse augmentation. These electrothermal thrusters operate at specific impulse levels of approximately 300 s with heater powers of about 500 W. Low power arcjets (1-3 kW) are currently being investigated as a way to increase specific impulse levels to approximately 500 s. Ion propulsion systems can easily produce specific impulses of 3000 s or greater, but have yet to be applied to communications satellites. The reasons most often given for not using ion propulsion systems are their high level of overall complexity, low thrust with long burn times, and the difficulty of integrating the propulsion system into existing commercial spacecraft busses. The Electrostatic Plasma Accelerator (EPA) is a thruster concept which promises specific impulse levels between low power arcjets and those of the ion engine while retaining the relative simplicity of the arcjet. The EPA thruster produces thrust through the electrostatic acceleration of a moderately dense plasma. No accelerating electrodes are used and the specific impulse is a direct function of the applied discharge voltage and the propellant atomic mass.
CFD Simulations of the IHF Arc-Jet Flow: Compression-Pad Separation Bolt Wedge Tests
NASA Technical Reports Server (NTRS)
Gokcen, Tahir; Skokova, Kristina A.
2017-01-01
This paper reports computational analyses in support of two wedge tests in a high enthalpy arc-jet facility at NASA Ames Research Center. These tests were conducted using two different wedge models, each placed in a free jet downstream of a corresponding different conical nozzle in the Ames 60-MW Interaction Heating Facility. Each panel test article included a metallic separation bolt imbedded in Orion compression-pad and heatshield materials, resulting in a circular protuberance over a flat plate. The protuberances produce complex model flowfields, containing shock-shock and shock-boundary layer interactions, and multiple augmented heating regions on the test plate. As part of the test calibration runs, surface pressure and heat flux measurements on water-cooled calibration plates integrated with the wedge models were also obtained. Surface heating distributions on the test articles as well as arc-jet test environment parameters for each test configuration are obtained through computational fluid dynamics simulations, consistent with the facility and calibration measurements. The present analysis comprises simulations of the non-equilibrium flow field in the facility nozzle, test box, and flow field over test articles, and comparisons with the measured calibration data.
CFD Simulations of the IHF Arc-Jet Flow: Compression-Pad/Separation Bolt Wedge Tests
NASA Technical Reports Server (NTRS)
Goekcen, Tahir; Skokova, Kristina A.
2017-01-01
This paper reports computational analyses in support of two wedge tests in a high enthalpy arc-jet facility at NASA Ames Research Center. These tests were conducted using two different wedge models, each placed in a free jet downstream of a corresponding different conical nozzle in the Ames 60-MW Interaction Heating Facility. Each panel test article included a metallic separation bolt imbedded in Orion compression-pad and heatshield materials, resulting in a circular protuberance over a flat plate. The protuberances produce complex model flowfields, containing shock-shock and shock-boundary layer interactions, and multiple augmented heating regions on the test plate. As part of the test calibration runs, surface pressure and heat flux measurements on water-cooled calibration plates integrated with the wedge models were also obtained. Surface heating distributions on the test articles as well as arc-jet test environment parameters for each test configuration are obtained through computational fluid dynamics simulations, consistent with the facility and calibration measurements. The present analysis comprises simulations of the nonequilibrium flowfield in the facility nozzle, test box, and flowfield over test articles, and comparisons with the measured calibration data.
Development of optical diagnostics for performance evaluation of arcjet thrusters
NASA Technical Reports Server (NTRS)
Cappelli, Mark A.
1995-01-01
Laser and optical emission-based measurements have been developed and implemented for use on low-power hydrogen arcjet thrusters and xenon-propelled electric thrusters. In the case of low power hydrogen arcjets, these laser induce fluorescence measurements constitute the first complete set of data that characterize the velocity and temperature field of such a device. The research performed under the auspices of this NASA grant includes laser-based measurements of atomic hydrogen velocity and translational temperature, ultraviolet absorption measurements of ground state atomic hydrogen, Raman scattering measurements of the electronic ground state of molecular hydrogen, and optical emission based measurements of electronically excited atomic hydrogen, electron number density, and electron temperature. In addition, we have developed a collisional-radiative model of atomic hydrogen for use in conjunction with magnetohydrodynamic models to predict the plasma radiative spectrum, and near-electrode plasma models to better understand current transfer from the electrodes to the plasma. In the final year of the grant, a new program aimed at developing diagnostics for xenon plasma thrusters was initiated, and results on the use of diode lasers for interrogating Hall accelerator plasmas has been presented at recent conferences.
Performance Characteristics of a DME Propellant Arcjet Thruster
NASA Astrophysics Data System (ADS)
Kakami, Akira; Beeppu, Shinji; Maiguma, Muneyuki; Tachibana, Takeshi
This paper describes the influence of cathode configuration on performance of an arcjet thruster using dimethyl ether (DME) propellant. DME, an ether compound, has suitable characteristics for a space propulsion system; DME is storable in a liquid state without being kept under a high pressure, and requires no sophisticated temperature management such as a cryogenic device. DME can be gasified and liquefied simply by adjusting temperature whereas hydrazine, a conventional propellant, requires an iridium-based particulate catalyst for its gasification. In this study, thrust of a 1-kW class DME arcjet thruster is measured at a discharge current of 13 A, DME mass flow rates ranging 15 to 60 mg/s under three cathode configurations: flat-tip rods of 2 and 4 mm in diam. and 4-mm-diam. rod having a cavity of 2 mm in diameter. Thrust measurements show that thrust is increased with propellant mass flow rate. Among the tested cathodes, the flat-tip rod of 4 mm in diam. with 55 mg/s DME flow rate yielded the highest performance: specific impulse of 330 s, thrust of 0.18 N, discharge power of 1400 W and specific power of 25 MJ/kg.
CFD Simulations for Arc-Jet Panel Testing Capability Development Using Semi-Elliptical Nozzles
NASA Technical Reports Server (NTRS)
Gokcen, Tahir; Balboni, John A.; Hartman, G. Joseph
2016-01-01
This paper reports computational simulations in support of arc-jet panel testing capability development using semi-elliptical nozzles in a high enthalpy arc-jet facility at NASA Ames Research Center. Two different semi-elliptical nozzle configurations are proposed for testing panel test articles. Computational fluid dynamics simulations are performed to provide estimates of achievable panel surface conditions and useful test area for each configuration. The present analysis comprises three-dimensional simulations of the nonequilibrium flowfields in the semi-elliptical nozzles, test box and flowfield over the panel test articles. Computations show that useful test areas for the proposed two nozzle options are 20.32 centimeters by 20.32 centimeters (8 inches by 8 inches) and 43.18 centimeters by 43.18 centimeters (17 inches by 17 inches). Estimated values of the maximum cold-wall heat flux and surface pressure are 155 watts per centimeters squared and 39 kilopascals for the smaller panel test option, and 44 watts per centimeters squared and 7 kilopascals for the larger panel test option. Other important properties of the predicted flowfields are presented, and factors that limit the useful test area in the semi-free jet test configuration are discussed.
Simulation of RCC Crack Growth Due to Carbon Oxidation in High-Temperature Gas Environments
NASA Technical Reports Server (NTRS)
Titov, E. V.; Levin, D. A.; Picetti, Donald J.; Anderson, Brian P.
2009-01-01
The carbon wall oxidation technique coupled with a CFD technique was employed to study the flow in the expanding crack channel caused by the oxidation of the channel carbon walls. The recessing 3D surface morphing procedure was developed and tested in comparison with the arcjet experimental results. The multi-block structured adaptive meshing was used to model the computational domain changes due to the wall recession. Wall regression rates for a reinforced carbon-carbon (RCC) samples, that were tested in a high enthalpy arcjet environment, were computationally obtained and used to assess the channel expansion. The test geometry and flow conditions render the flow regime as the transitional to continuum, therefore Navier-Stokes gas dynamic approach with the temperature jump and velocity slip correction to the boundary conditions was used. The modeled mechanism for wall material loss was atomic oxygen reaction with bare carbon. The predicted channel growth was found to agree with arcjet observations. Local gas flow field results were found to affect the oxidation rate in a manner that cannot be predicted by previous mass loss correlations. The method holds promise for future modeling of materials gas-dynamic interactions for hypersonic flight.
NASA Astrophysics Data System (ADS)
Werner, Nathaniel; Chung, Hojae; Wang, Junshi; Liu, Geng; Cimbala, John; Dong, Haibo; Cheng, Bo
2017-11-01
This work investigates the radial vorticity dynamics and the stability of leading-edge vortices (LEVs) in revolving wings. Previous studies have shown that Coriolis acceleration plays a key role in stabilizing the LEV; however, the exact mechanism remains unclear. This study tests a new hypothesis based on the curl of the Coriolis acceleration in the vorticity equation, which corresponds to the radial tilting of the planetary vortex (PVTr). The PVTr could reorient planetary vorticity into radial vorticity that reduces the strength of the LEV, preventing the LEV from growing and becoming unstable. To test this, an in-house immersed-boundary-method-based flow solver was used to generate velocity and vorticity fields of revolving wings of different aspect ratio (AR = 3, 5, 7) and Reynolds number (Re = 110, 1400). It is found that the PVTr consistently negates the LEV vorticity for all the AR and Re investigated, although its effect is outweighed by other 3D effects at Re =1400. It is also found that the strength of the PVTr increases along the wing span until approximately a chord length from the wing tip. The averaged magnitude of PVTr within the LEV and the dependency of its relative strength on the aspect ratio and Reynolds number are also investigated.
NASA Astrophysics Data System (ADS)
Rodriguez, Steven; Jaworski, Justin
2017-11-01
The impact of above-rated wave-induced motions on the stability of floating offshore wind turbine near-wakes is studied numerically. The rotor near-wake is generated using a lifting-line free vortex wake method, which is strongly coupled to a finite element solver for kinematically nonlinear blade deformations. A synthetic time series of relatively high-amplitude/high-frequency representative of above-rated conditions of the NREL 5MW referece wind turbine is imposed on the rotor structure. To evaluate the impact of these above-rated conditions, a linear stability analysis is first performed on the near wake generated by a fixed-tower wind turbine configuration at above-rated inflow conditions. The platform motion is then introduced via synthetic time series, and a stability analysis is performed on the wake generated by the floating offshore wind turbine at the same above-rated inflow conditions. The stability trends (disturbance modes versus the divergence rate of vortex structures) of the two analyses are compared to identify the impact that above-rated wave-induced structural motions have on the stability of the floating offshore wind turbine wake.
On the Nature of Oblique Instability Waves in Boundary Layer Transition.
1986-05-23
analogy with the starting vortex of a finite span airfoil , these vortices ." must also connect to some form of starting vortex system at the heater. The...quite suprising. %’ . .5 % *. % % .~%\\~, *-:. % % % % - 61 - For instance, a series of experiments involving forced oblique waves has shown that several...Morkovin, M. V. (1980). Dialog on Bridging Some Gaps in Stability and Transition Research. Laminar-Turbulent Transition (eds. R. Eppler and H. Fuel
Stability and nonlinear adjustment of vortices in Keplerian flows
NASA Astrophysics Data System (ADS)
Bodo, G.; Tevzadze, A.; Chagelishvili, G.; Mignone, A.; Rossi, P.; Ferrari, A.
2007-11-01
Aims:We investigate the stability, nonlinear development and equilibrium structure of vortices in a background shearing Keplerian flow Methods: We make use of high-resolution global two-dimensional compressible hydrodynamic simulations. We introduce the concept of nonlinear adjustment to describe the transition of unbalanced vortical fields to a long-lived configuration. Results: We discuss the conditions under which vortical perturbations evolve into long-lived persistent structures and we describe the properties of these equilibrium vortices. The properties of equilibrium vortices appear to be independent from the initial conditions and depend only on the local disk parameters. In particular we find that the ratio of the vortex size to the local disk scale height increases with the decrease of the sound speed, reaching values well above the unity. The process of spiral density wave generation by the vortex, discussed in our previous work, appear to maintain its efficiency also at nonlinear amplitudes and we observe the formation of spiral shocks attached to the vortex. The shocks may have important consequences on the long term vortex evolution and possibly on the global disk dynamics. Conclusions: Our study strengthens the arguments in favor of anticyclonic vortices as the candidates for the promotion of planetary formation. Hydrodynamic shocks that are an intrinsic property of persistent vortices in compressible Keplerian flows are an important contributor to the overall balance. These shocks support vortices against viscous dissipation by generating local potential vorticity and should be responsible for the eventual fate of the persistent anticyclonic vortices. Numerical codes have be able to resolve shock waves to describe the vortex dynamics correctly.
Modeling of vortex generated sound in solid propellant rocket motors
NASA Technical Reports Server (NTRS)
Flandro, G. A.
1980-01-01
There is considerable evidence based on both full scale firings and cold flow simulations that hydrodynamically unstable shear flows in solid propellant rocket motors can lead to acoustic pressure fluctuations of significant amplitude. Although a comprehensive theoretical understanding of this problem does not yet exist, procedures were explored for generating useful analytical models describing the vortex shedding phenomenon and the mechanisms of coupling to the acoustic field in a rocket combustion chamber. Since combustion stability prediction procedures cannot be successful without incorporation of all acoustic gains and losses, it is clear that a vortex driving model comparable in quality to the analytical models currently employed to represent linear combustion instability must be formulated.
Zhou, Xiang-Fa; Wu, Congjun; Guo, Guang-Can; Wang, Ruquan; Pu, Han; Zhou, Zheng-Wei
2018-03-30
We present a flexible scheme to realize exact flat Landau levels on curved spherical geometry in a system of spinful cold atoms. This is achieved by applying the Floquet engineering of a magnetic quadrupole field to create a synthetic monopole field in real space. The system can be exactly mapped to the electron-monopole system on a sphere, thus realizing Haldane's spherical geometry for fractional quantum Hall physics. This method works for either bosons or fermions. We investigate the ground-state vortex pattern for an s-wave interacting atomic condensate by mapping this system to the classical Thompson's problem. The distortion and stability of the vortex pattern are further studied in the presence of dipolar interaction. Our scheme is compatible with the current experimental setup, and may serve as a promising route of investigating quantum Hall physics and exotic spinor vortex matter on curved space.
Investigation of aerodynamic characteristics of subsonic wings
NASA Technical Reports Server (NTRS)
Dejarnette, F. R.; Frink, N. T.
1979-01-01
An analytical strake design procedure is investigated. A numerical solution to the governing strake design equation is used to generate a series of strakes which are tested in a water tunnel to study their vortex breakdown characteristics. The strakes are scaled for use on a half-scale model of the NASA-LaRC general research fuselage with a 44 degrees trapezoidal wing. An analytical solution to the governing design equation is obtained. The strake design procedure relates the potential-flow leading-edge suction and pressure distributions to vortex stability. Several suction distributions are studied and those which are more triangular and peak near the tip generate strakes that reach higher angles of attack before vortex breakdown occurs at the wing trailing edge. For the same suction distribution, a conical rather than three dimensional pressure specification results in a better strake shape as judged from its vortex breakdown characteristics.
The Effect of Dust on the Martian Polar Vortices
NASA Technical Reports Server (NTRS)
Guzewich, Scott D.; Toigo, A. D.; Waugh, D. W.
2016-01-01
The influence of atmospheric dust on the dynamics and stability of the martian polar vortices is examined, through analysis of Mars Climate Sounder observations and MarsWRF general circulation model simulations. We show that regional and global dust storms produce transient vortex warming events that partially or fully disrupt the northern winter polar vortex for brief periods. Increased atmospheric dust heating alters the Hadley circulation and shifts the downwelling branch of the circulation poleward, leading to a disruption of the polar vortex for a period of days to weeks. Through our simulations, we find this effect is dependent on the atmospheric heating rate, which can be changed by increasing the amount of dust in the atmosphere or by altering the dust optical properties (e.g., single scattering albedo). Despite this, our simulations show that some level of atmospheric dust is necessary to produce a distinct northern hemisphere winter polar vortex.
The effect of dust on the martian polar vortices
NASA Astrophysics Data System (ADS)
Guzewich, Scott D.; Toigo, A. D.; Waugh, D. W.
2016-11-01
The influence of atmospheric dust on the dynamics and stability of the martian polar vortices is examined, through analysis of Mars Climate Sounder observations and MarsWRF general circulation model simulations. We show that regional and global dust storms produce ;transient vortex warming; events that partially or fully disrupt the northern winter polar vortex for brief periods. Increased atmospheric dust heating alters the Hadley circulation and shifts the downwelling branch of the circulation poleward, leading to a disruption of the polar vortex for a period of days to weeks. Through our simulations, we find this effect is dependent on the atmospheric heating rate, which can be changed by increasing the amount of dust in the atmosphere or by altering the dust optical properties (e.g., single scattering albedo). Despite this, our simulations show that some level of atmospheric dust is necessary to produce a distinct northern hemisphere winter polar vortex.
NASA Astrophysics Data System (ADS)
Zhou, Xiang-Fa; Wu, Congjun; Guo, Guang-Can; Wang, Ruquan; Pu, Han; Zhou, Zheng-Wei
2018-03-01
We present a flexible scheme to realize exact flat Landau levels on curved spherical geometry in a system of spinful cold atoms. This is achieved by applying the Floquet engineering of a magnetic quadrupole field to create a synthetic monopole field in real space. The system can be exactly mapped to the electron-monopole system on a sphere, thus realizing Haldane's spherical geometry for fractional quantum Hall physics. This method works for either bosons or fermions. We investigate the ground-state vortex pattern for an s -wave interacting atomic condensate by mapping this system to the classical Thompson's problem. The distortion and stability of the vortex pattern are further studied in the presence of dipolar interaction. Our scheme is compatible with the current experimental setup, and may serve as a promising route of investigating quantum Hall physics and exotic spinor vortex matter on curved space.
Effects of wingtip modifications on handling qualities of agricultural aircraft
NASA Technical Reports Server (NTRS)
Van Dam, C. P.
1981-01-01
The effect of wingtip modifications on the stability and control characteristics of an agricultural airplane has been studied by means of a nonplanar quasi-vortex-lattice method. The method is used to compute the changes in steady state and perturbed state lateral-directional stability and control derivatives produced by wingtip mounted winglets, vortex diffuser vanes, and tip extensions. The study shows that the combination of the excessive positive dihedral effect produced by the winglets and adverse yaw due to aileron deflection can have a detrimental effect on the roll control characteristics of the airplane. Introduction of an aileron-rudder-interconnect, and reduction of the effective dihedral by canting-in of the winglets, or addition of a lower winglet can eliminate the roll control problems.
Three-dimensional thermal structure of the South Polar Vortex of Venus
NASA Astrophysics Data System (ADS)
Hueso, Ricardo; Garate-Lopez, Itziar; Garcia-Muñoz, Antonio; Sánchez-Lavega, Agustín
2014-11-01
We have analyzed thermal infrared images provided by the VIRTIS-M instrument aboard Venus Express (VEX) to obtain high resolution thermal maps of the Venus south polar region between 55 and 85 km altitudes. The maps investigate three different dynamical configurations of the polar vortex including its classical dipolar shape, a regularly oval shape and a transition shape between the different configurations of the vortex. We apply the atmospheric model described by García Muñoz et al. (2013) and a variant of the retrieval algorithm detailed in Grassi et al. (2008) to obtain maps of temperature over the Venus south polar region in the quoted altitude range. These maps are discussed in terms of cloud motions and relative vorticity distribution obtained previously (Garate-Lopez et al. 2013). Temperature maps retrieved at 55 - 63 km show the same structures that are observed in the ~5 µm radiance images. This altitude range coincides with the optimal expected values of the cloud top altitude at polar latitudes and magnitudes derived from the analysis of ~5 µm images are measured at this altitude range. We also study the imprint of the vortex on the thermal field above the cloud level which extends up to 80 km. From the temperature maps, we also study the vertical stability of different atmospheric layers. The cold collar is clearly the most statically stable structure at polar latitudes, while the vortex and subpolar latitudes show lower stability values. Furthermore, the hot filaments present within the vortex at 55-63 km exhibit lower values of static stability than their immediate surroundings.ReferencesGarate-Lopez et al. Nat. Geosci. 6, 254-257 (2013).García Muñoz et al. Planet. Space Sci. 81, 65-73 (2013).Grassi, D. et al. J. Geophys. Res. 113, 1-12 (2008).AcknowledgementsWe thank ESA for supporting Venus Express, ASI, CNES and the other national space agencies supporting VIRTIS on VEX and their principal investigators G. Piccioni and P. Drossart. This work was supported by projects AYA2012-36666 with FEDER support, PRICI-S2009/ESP-1496, Grupos Gobierno Vasco IT-765-13 and by UPV/EHU through program UFI11/55. IGL and AGM acknowledge ESA/RSSD for hospitality and access to ‘The Grid’ computing resources.
Charalampidis, E G; Kevrekidis, P G; Frantzeskakis, D J; Malomed, B A
2016-08-01
We consider a two-component, two-dimensional nonlinear Schrödinger system with unequal dispersion coefficients and self-defocusing nonlinearities, chiefly with equal strengths of the self- and cross-interactions. In this setting, a natural waveform with a nonvanishing background in one component is a vortex, which induces an effective potential well in the second component, via the nonlinear coupling of the two components. We show that the potential well may support not only the fundamental bound state, but also multiring excited radial state complexes for suitable ranges of values of the dispersion coefficient of the second component. We systematically explore the existence, stability, and nonlinear dynamics of these states. The complexes involving the excited radial states are weakly unstable, with a growth rate depending on the dispersion of the second component. Their evolution leads to transformation of the multiring complexes into stable vortex-bright solitons ones with the fundamental state in the second component. The excited states may be stabilized by a harmonic-oscillator trapping potential, as well as by unequal strengths of the self- and cross-repulsive nonlinearities.
Coherent structures in interacting vortex rings
NASA Astrophysics Data System (ADS)
Deng, Jian; Xue, Jingyu; Mao, Xuerui; Caulfield, C. P.
2017-02-01
We investigate experimentally the nonlinear structures that develop from interacting vortex rings induced by a sinusoidally oscillating ellipsoidal disk in fluid at rest. We vary the scaled amplitude or Keulegan-Carpenter number 0.3
Experimental and analytical studies of a true airspeed sensor
NASA Technical Reports Server (NTRS)
Goglia, G. L.; Shen, J. Y.
1983-01-01
A true airspeed sensor based on the precession of a vortex whistle for sensing airspeeds up to 321.9 km/hr (200 mph). In an attempt to model the complicated fluid mechanics of the vortex precession, three dimensional, inviscid, unsteady, incompressible fluid flow was studied by using the hydrodynamical linearized stability theory. The temporal stability approach was used to derive the relationship between the true airspeed and frequency response. The results show that the frequency response is linearly proportional to the airspeed. A computer program was developed to obtain the numerical solution. Computational results for various parameters were obtained. The designed sensor basically consisted of a vortex tube, a swirler, and a transducer system. A microphone converted the audible tone to an electronic frequency signal. Measurements for both the closed conduit tests and wind tunnel tests were recorded. For a specific flow rate or airspeed, larger exit swirler angles produced higher frequencies. For a smaller cross sectional area in the precessional flow region, the frequency was higher. It was observed that as the airspeed was increased the Strouhal number remained constant.
Validation of Multitemperature Nozzle Flow Code
NASA Technical Reports Server (NTRS)
Park, Chul; Lee, Seung -Ho.
1994-01-01
A computer code nozzle in n-temperatures (NOZNT), which calculates one-dimensional flows of partially dissociated and ionized air in an expanding nozzle, is tested against three existing sets of experimental data taken in arcjet wind tunnels. The code accounts for the differences among various temperatures, i.e., translational-rotational temperature, vibrational temperatures of individual molecular species, and electron-electronic temperature, and the effects of impurities. The experimental data considered are (1) the spectroscopic emission data; (2) electron beam data on vibrational temperature; and (3) mass-spectrometric species concentration data. It is shown that the impurities are inconsequential for the arcjet flows, and the NOZNT code is validated by numerically reproducing the experimental data.
2012-04-01
Both flame lengths shrink and large scale disruptions occur downstream with vortex shedding carrying reaction zones. Flames in both flameholders...9) the flame structure changes dramatically for both regular and open-slit V-gutter. Both flame lengths shrink and large scale disruptions occur...reduces the flame length . However, qualitatively the open-slit V-gutter appears to be more sensitive than the regular V-gutter. Both flames remain
Experimental investigation of the mass flow gain factor in a draft tube with cavitation vortex rope
NASA Astrophysics Data System (ADS)
Landry, C.; Favrel, A.; Müller, A.; Yamamoto, K.; Alligné, S.; Avellan, F.
2017-04-01
At off-design operating operations, cavitating flow is often observed in hydraulic machines. The presence of a cavitation vortex rope may induce draft tube surge and electrical power swings at part load and full load operations. The stability analysis of these operating conditions requires a numerical pipe model taking into account the complexity of the two-phase flow. Among the hydroacoustic parameters describing the cavitating draft tube flow in the numerical model, the mass flow gain factor, representing the mass excitation source expressed as the rate of change of the cavitation volume as a function of the discharge, remains difficult to model. This paper presents a quasi-static method to estimate the mass flow gain factor in the draft tube for a given cavitation vortex rope volume in the case of a reduced scale physical model of a ν = 0.27 Francis turbine. The methodology is based on an experimental identification of the natural frequency of the test rig hydraulic system for different Thoma numbers. With the identification of the natural frequency, it is possible to model the wave speed, the cavitation compliance and the volume of the cavitation vortex rope. By applying this new methodology for different discharge values, it becomes possible to identify the mass flow gain factor and improve the accuracy of the system stability analysis.
Model for Vortex Ring State Influence on Rotorcraft Flight Dynamics
NASA Technical Reports Server (NTRS)
Johnson, Wayne
2005-01-01
The influence of vortex ring state (VRS) on rotorcraft flight dynamics is investigated, specifically the vertical velocity drop of helicopters and the roll-off of tiltrotors encountering VRS. The available wind tunnel and flight test data for rotors in vortex ring state are reviewed. Test data for axial flow, non-axial flow, two rotors, unsteadiness, and vortex ring state boundaries are described and discussed. Based on the available measured data, a VRS model is developed. The VRS model is a parametric extension of momentum theory for calculation of the mean inflow of a rotor, hence suitable for simple calculations and real-time simulations. This inflow model is primarily defined in terms of the stability boundary of the aircraft motion. Calculations of helicopter response during VRS encounter were performed, and good correlation is shown with the vertical velocity drop measured in flight tests. Calculations of tiltrotor response during VRS encounter were performed, showing the roll-off behavior characteristic of tiltrotors. Hence it is possible, using a model of the mean inflow of an isolated rotor, to explain the basic behavior of both helicopters and tiltrotors in vortex ring state.
Preliminary performance and life evaluations of a 2-kW arcjet
NASA Technical Reports Server (NTRS)
Morren, W. Earl; Curran, Francis M.
1991-01-01
The first results of a program to expand the operational envelope of low-power arcjets to higher specific impulse and power levels are presented. The performance of a kW-class laboratory model arcjet thruster was characterized at three mass flow rates of a 2:1 mixture of hydrogen and nitrogen at power levels ranging from 1.0 to 2.0 kW. This same thruster was then operated for a total of 300 h at a specific impulse and power level of 550 s and 2.0 kW, respectively, in three continuous 100-h sessions. Thruster operation during the three test segments was stable, and no measurable performance degradation was observed during the test series. Substantial cathode erosion was observed during an inspection following the second 100-h test segment. Most notable was the migration of material from the center of the cathode tip to a ring around a large crater. The anode sustained no significant damage during the endurance test segments. Some difficulty was encountered during start-up after disassembly and inspection following the second 100-h test segment, which caused constrictor erosion. This resulted in a reduced flow restriction and arc chamber pressure, which in turn caused a reduction in the arc impedance.
Evaluation of Finite-Rate Gas/Surface Interaction Models for a Carbon Based Ablator
NASA Technical Reports Server (NTRS)
Chen, Yih-Kanq; Goekcen, Tahir
2015-01-01
Two sets of finite-rate gas-surface interaction model between air and the carbon surface are studied. The first set is an engineering model with one-way chemical reactions, and the second set is a more detailed model with two-way chemical reactions. These two proposed models intend to cover the carbon surface ablation conditions including the low temperature rate-controlled oxidation, the mid-temperature diffusion-controlled oxidation, and the high temperature sublimation. The prediction of carbon surface recession is achieved by coupling a material thermal response code and a Navier-Stokes flow code. The material thermal response code used in this study is the Two-dimensional Implicit Thermal-response and Ablation Program, which predicts charring material thermal response and shape change on hypersonic space vehicles. The flow code solves the reacting full Navier-Stokes equations using Data Parallel Line Relaxation method. Recession analyses of stagnation tests conducted in NASA Ames Research Center arc-jet facilities with heat fluxes ranging from 45 to 1100 wcm2 are performed and compared with data for model validation. The ablating material used in these arc-jet tests is Phenolic Impregnated Carbon Ablator. Additionally, computational predictions of surface recession and shape change are in good agreement with measurement for arc-jet conditions of Small Probe Reentry Investigation for Thermal Protection System Engineering.
NASA Technical Reports Server (NTRS)
Curran, Francis M.; Haag, Thomas W.; Raquet, John F.
1989-01-01
Cathode tips made from a number of different materials were tested in a modular arcjet thruster in order to examine cathode phenomena. Periodic disassembly and examination, along with the data collected during testing, indicated that all of the tungsten-based materials behaved similarly despite the fact that in one of these samples the percentage of thorium oxide was doubled and another was 25 percent rhenium. The mass loss rate from a 2 percent thoriated rhenium cathode was found to be an order of magnitude greater than that observed using 2 percent thoriated tungsten. Detailed analysis of one of these cathode tips showed that the molten crater contained pure tungsten to a depth of about 150 microns. Problems with thermal stress cracking were encountered in the testing of a hafnium carbide tip. Post test analysis showed that the active area of the tip had chemically reacted with the propellant. A 100 hour continuous test was run at about 1 kW. Post test analysis revealed no dendrite formation, such as observed in a 30 kW arcjet lifetest, near the cathode crater. The cathodes from both this test and a previously run 1000 hour cycled test displayed nearly identical arc craters. Data and calculations indicate that the mass losses observed in testing can be explained by evaporation.
NASA Technical Reports Server (NTRS)
Curran, Francis M.; Haag, Thomas W.; Raquet, John F.
1989-01-01
Cathode tips made from a number of different materials were tested in a modular arcjet thruster in order to examine cathode phenomena. Periodic disassembly and examination, along with the data collected during testing, indicated that all of the tungsten-based materials behaved similarly despite the fact that in one of these samples the percentage of thorium oxide was doubled and another was 25 percent rhenium. The mass loss rate from a 2 percent thoriated rhenium cathode was found to be an order of magnitude greater than that observed using 2 percent thoriated tungsten. Detailed analysis of one of these cathode tips showed that the molten crater contained pure tungsten to a depth of about 150 microns. Problems with thermal stress cracking were encountered in the testing of a hafnium carbide tip. Post test analysis showed that the active area of the tip had chemically reacted with the propellant. A 100 hour continuous test was run at about 1 kW. Post test analysis revealed no dendrite formation, such as observed in a 30 kW arcjet lifetest, near the cathode crater. The cathodes from both this test and a previously run 1000 hour cycled test displayed nearly identical arc craters. Data and calculations indicate that the mass losses observed in testing can be explained by evaporation.
NASA Astrophysics Data System (ADS)
Olsen, Rebecca Elizabeth
Vortex rings constitute the main structure in the wakes of a wide class of swimming and flying animals, as well as in cardiac flows and in the jets generated by some moss and fungi. However, there is a physical limit, determined by an energy maximization principle called the Kelvin-Benjamin principle, to the size that axisymmetric vortex rings can achieve. The existence of this limit is known to lead to the separation of a growing vortex ring from the shear layer feeding it, a process known as `vortex pinch-off', and characterized by the dimensionless vortex formation number. The goal of this thesis is to improve our understanding of vortex pinch-off as it relates to biological propulsion, and to provide future researchers with tools to assist in identifying and predicting pinch-off in biological flows. To this end, we introduce a method for identifying pinch-off in starting jets using the Lagrangian coherent structures in the flow, and apply this criterion to an experimentally-generated starting jet. Since most naturally-occurring vortex rings are not circular, we extend the definition of the vortex formation number to include non-axisymmetric vortex rings, and find that the formation number for moderately non-axisymmetric vortices is similar to that of circular vortex rings. This suggests that naturally-occurring vortex rings may be modeled as axisymmetric vortex rings. Therefore, we consider the perturbation response of the Norbury family of axisymmetric vortex rings. This family is chosen to model vortex rings of increasing thickness and circulation, and their response to prolate shape perturbations is simulated using contour dynamics. Finally, the response of more realistic models for vortex rings, constructed from experimental data using nested contours, to perturbations which resemble those encountered by forming vortices more closely, is simulated using contour dynamics. In both families of models, a change in response analogous to pinch-off is found as members of the family with progressively thicker cores are considered. We posit that this analogy may be exploited to understand and predict pinch-off in complex biological flows, where current methods are not applicable in practice, and criteria based on the properties of vortex rings alone are necessary.
An Aeroelastic Perspective of Floating Offshore Wind Turbine Wake Formation and Instability
NASA Astrophysics Data System (ADS)
Rodriguez, Steven N.; Jaworski, Justin W.
2015-11-01
The wake formation and wake stability of floating offshore wind turbines are investigated from an aeroelastic perspective. The aeroelastic model is composed of the Sebastian-Lackner free-vortex wake aerodynamic model coupled to the nonlinear Hodges-Dowell beam equations, which are extended to include the effects of blade profile asymmetry, higher-order torsional effects, and kinetic energy components associated with periodic rigid-body motions of floating platforms. Rigid-body platform motions are also assigned to the aerodynamic model as varying inflow conditions to emulate operational rotor-wake interactions. Careful attention is given to the wake formation within operational states where the ratio of inflow velocity to induced velocity is over 50%. These states are most susceptible to aerodynamic instabilities, and provide a range of states about which a wake stability analysis can be performed. In addition, the stability analysis used for the numerical framework is implemented into a standalone free-vortex wake aerodynamic model. Both aeroelastic and standalone aerodynamic results are compared to evaluate the level of impact that flexible blades have on the wake formation and wake stability.
Dickson, Dionne; Liu, Guangliang; Li, Chenzhong; Tachiev, Georgio; Cai, Yong
2012-01-01
The aggregation and sedimentation of iron oxide nanoparticles (IONPs) can significantly affect the mobility and reactivity of IONPs and subsequently influence the interaction between IONPs and environmental contaminants. Dispersing bare IONPs into a stable suspension within nanoscale range is an important step for studying the interaction of IONPs with contaminants (e.g., toxic metals). In this study, different techniques to disperse bare IONPs (vortex, bath sonication and probe ultrasonication) and the effects of important environmental factors such as dissolved organic matter and ionic strength on the stability of IONPs dispersions were investigated. Vortex minimally dispersed IONPs with hydrodynamic diameter outside the “nanosize range” (698–2400nm). Similar to vortex, bath sonication could not disperse IONPs efficiently. Probe ultrasonication was more effective at dispersing IONPs (50% or more) with hydrodynamic diameters ranging from 120–140 nm with minimal changes in size and sedimentation of IONPs for a prolonged period of time. Over the course of 168 hours, considerable amounts of IONPs remained dispersed in the presence and absence of low ionic strength (0.1 mM of NaCl) and 100 mg/L of humic acid (HA). These results indicate that IONPs can be broken down efficiently into “nanosize range” by probe ultrasonication and a degree of stability can be achieved without the use of synthetic modifiers to enhance colloidal stability. This dispersion tool could be used to develop a laboratory method to study the adsorption mechanism between dispersed bare IONPs and toxic contaminants. PMID:22289174
Modeling of Wake-vortex Aircraft Encounters. Appendix B
NASA Technical Reports Server (NTRS)
Smith, Sonya T.
1999-01-01
There are more people passing through the world's airports today than at any other time in history. With this increase in civil transport, airports are becoming capacity limited. In order to increase capacity and thus meet the demands of the flying public, the number of runways and number of flights per runway must be increased. In response to the demand, the National Aeronautics and Space Administration (NASA), in conjunction with the Federal Aviation Administration (FAA), airport operators, and the airline industry are taking steps to increase airport capacity without jeopardizing safety. Increasing the production per runway increases the likelihood that an aircraft will encounter the trailing wake-vortex of another aircraft. The hazard of a wake-vortex encounter is that heavy load aircraft can produce high intensity wake turbulence, through the development of its wing-tip vortices. A smaller aircraft following in the wake of the heavy load aircraft will experience redistribution of its aerodynamic load. This creates a safety hazard for the smaller aircraft. Understanding this load redistribution is of great importance, particularly during landing and take-off. In this research wake-vortex effects on an encountering 10% scale model of the B737-100 aircraft are modeled using both strip theory and vortex-lattice modeling methods. The models are then compared to wind tunnel data that was taken in the 30ft x 60ft wind tunnel at NASA Langley Research Center (LaRC). Comparisons are made to determine if the models will have acceptable accuracy when parts of the geometry are removed, such as the horizontal stabilizer and the vertical tail. A sensitivity analysis was also performed to observe how accurately the models could match the experimental data if there was a 10% error in the circulation strength. It was determined that both models show accurate results when the wing, horizontal stabilizer, and vertical tail were a part of the geometry. When the horizontal stabilizer and vertical tail were removed there were difficulties modeling the sideforce coefficient and pitching moment. With the removal of only the vertical tail unacceptable errors occurred when modeling the sideforce coefficient and yawing moment. Lift could not be modeled with either the full geometry or the reduced geometry attempts.
NASA Astrophysics Data System (ADS)
Enciso, Alberto; Poyato, David; Soler, Juan
2018-05-01
Strong Beltrami fields, that is, vector fields in three dimensions whose curl is the product of the field itself by a constant factor, have long played a key role in fluid mechanics and magnetohydrodynamics. In particular, they are the kind of stationary solutions of the Euler equations where one has been able to show the existence of vortex structures (vortex tubes and vortex lines) of arbitrarily complicated topology. On the contrary, there are very few results about the existence of generalized Beltrami fields, that is, divergence-free fields whose curl is the field times a non-constant function. In fact, generalized Beltrami fields (which are also stationary solutions to the Euler equations) have been recently shown to be rare, in the sense that for "most" proportionality factors there are no nontrivial Beltrami fields of high enough regularity (e.g., of class {C^{6,α}}), not even locally. Our objective in this work is to show that, nevertheless, there are "many" Beltrami fields with non-constant factor, even realizing arbitrarily complicated vortex structures. This fact is relevant in the study of turbulent configurations. The core results are an "almost global" stability theorem for strong Beltrami fields, which ensures that a global strong Beltrami field with suitable decay at infinity can be perturbed to get "many" Beltrami fields with non-constant factor of arbitrarily high regularity and defined in the exterior of an arbitrarily small ball, and a "local" stability theorem for generalized Beltrami fields, which is an analogous perturbative result which is valid for any kind of Beltrami field (not just with a constant factor) but only applies to small enough domains. The proof relies on an iterative scheme of Grad-Rubin type. For this purpose, we study the Neumann problem for the inhomogeneous Beltrami equation in exterior domains via a boundary integral equation method and we obtain Hölder estimates, a sharp decay at infinity and some compactness properties for these sequences of approximate solutions. Some of the parts of the proof are of independent interest.
Electronic speckle pattern interferometry using vortex beams.
Restrepo, René; Uribe-Patarroyo, Néstor; Belenguer, Tomás
2011-12-01
We show that it is possible to perform electronic speckle pattern interferometry (ESPI) using, for the first time to our knowledge, vortex beams as the reference beam. The technique we propose is easy to implement, and the advantages obtained are, among others, environmental stability, lower processing time, and the possibility to switch between traditional ESPI and spiral ESPI. The experimental results clearly show the advantages of using the proposed technique for deformation studies of complex structures. © 2011 Optical Society of America
Cross-flow vortex structure and transition measurements using multi-element hot films
NASA Technical Reports Server (NTRS)
Agarwal, Naval K.; Mangalam, Siva M.; Maddalon, Dal V.; Collier, Fayette S., Jr.
1991-01-01
An experiment on a 45-degree swept wing was conducted to study three-dimensional boundary-layer characteristics using surface-mounted, micro-thin, multi-element hot-film sensors. Cross-flow vortex structure and boundary-layer transition were measured from the simultaneously acquired signals of the hot films. Spanwise variation of the root-mean-square (RMS) hot-film signal show a local minima and maxima. The distance between two minima corresponds to the stationary cross-flow vortex wavelength and agrees with naphthalene flow-visualization results. The chordwise and spanwise variation of amplified traveling (nonstationary) cross-flow disturbance characteristics were measured as Reynolds number was varied. The frequency of the most amplified cross-flow disturbances agrees with linear stability theory.
NASA Astrophysics Data System (ADS)
Luzzatto-Fegiz, Paolo
2011-11-01
Steady fluid solutions play a special role in the dynamics of a flow: stable states may be realized in practice, while unstable ones may act as attractors. Unfortunately, determining stability is often a process far more laborious than finding steady states; indeed, even for simple vortex or wave flows, stability properties have often been the subject of debate. We consider here a stability idea originating with Lord Kelvin (1876), which involves using the second variation of the energy, δ2 E , to establish bounds on a perturbation. However, for numerically obtained flows, computing δ2 E explicitly is often not feasible. To circumvent this issue, Saffman & Szeto (1980) proposed an argument linking changes in δ2 E to turning points in a bifurcation diagram, for families of steady flows. Later work has shown that this argument is unreliable; the two key issues are associated with the absence of a formal turning-point theory, and with the inability to detect bifurcations (Dritschel 1995, and references therein). In this work, we build on ideas from bifurcation theory, and link turning points in a velocity-impulse diagram to changes in δ2 E ; in addition, this diagram delivers the direction of the change of δ2 E , thereby providing information as to whether stability is gained or lost. To detect hidden solution branches, we introduce to these fluid problems concepts from imperfection theory. The resulting approach, involving ``imperfect velocity-impulse'' diagrams, leads us to new and surprising results for a wide range of fundamental vortex and wave flows; we mention here the calculation of the first steady vortices without any symmetry, and the uncovering of the complete solution structure for vortex pairs. In addition, we find precise agreement with available results from linear stability analysis. Doctoral work advised by C.H.K. Williamson at Cornell University.
NASA Astrophysics Data System (ADS)
Li, Bin; Zhang, Qin-Jian; Shi, Yan-Chao; Li, Jia-Jun; Li, Hong; Lu, Fan-Xiu; Chen, Guang-Chao
2014-08-01
A nano-crystlline diamond film is grown by the dc arcjet chemical vapor deposition method. The film is characterized by scanning electron microscopy, high-resolution transmission electron microscopy (HRTEM), x-ray diffraction (XRD) and Raman spectra, respectively. The nanocrystalline grains are averagely with 80 nm in the size measured by XRD, and further proven by Raman and HRTEM. The observed novel morphology of the growth surface, pineapple-like morphology, is constructed by cubo-octahedral growth zones with a smooth faceted top surface and coarse side surfaces. The as-grown film possesses (100) dominant surface containing a little amorphous sp2 component, which is far different from the nano-crystalline film with the usual cauliflower-like morphology.
A study of DC-DC converters with MCT's for arcjet power supplies
NASA Technical Reports Server (NTRS)
Stuart, Thomas A.
1994-01-01
Many arcjet DC power supplies use PWM full bridge converters with large arrays of parallel FET's. This report investigates an alternative supply using a variable frequency series resonant converter with small arrays of parallel MCT's (metal oxide semiconductor controlled thyristors). The reasons for this approach are to: increase reliability by reducing the number of switching devices; and decrease the surface mounting area of the switching arrays. The variable frequency series resonant approach is used because the relatively slow switching speed of the MCT precludes the use of PWM. The 10 kW converter operated satisfactorily with an efficiency of over 91 percent. Test results indicate this efficiency could be increased further by additional optimization of the series resonant inductor.
Development of a high specific 1.5 to 5 kW thermal arcjet
NASA Technical Reports Server (NTRS)
Riehle, M.; Glocker, B.; Auweter-Kurtz, M.; Kurtz, H.
1993-01-01
A research and development project on the experimental study of a 1.5-5 kW thermal arcjet thruster was started in 1992 at the IRS. Two radiation cooled thrusters were designed, constructed, and adapted to the test facilities, one at each end of the intended power range. These thrusters are currently subjected to an intensive test program with main emphasis on the exploration of thruster performance and thruster behavior at high specific enthalpy and thus high specific impulse. Propelled by simulated hydrazine and ammonia, the thruster's electrode configuration such as constrictor diameter and cathode gap was varied in order to investigate their influence and to optimize these parameters. In addition, test runs with pure hydrogen were performed for both thrusters.
Development of a Catalytic Coating for a Shuttle Flight Experiment
NASA Technical Reports Server (NTRS)
Stewart, David A.; Goekcen, Tahir; Sepka, Steven E.; Leiser, Daniel B.; Rezin, Marc D.
2010-01-01
A spray-on coating was developed for use on the shuttle wing tiles to obtain data that could be correlated with computational fluid dynamics (CFD) solutions to better understand the effect of chemical heating on a fore-body heat shield having a turbulent boundary layer during planetary entry at hypersonic speed. The selection of a spray-on coating was conducted in two Phases 1) screening tests to select the catalytic coating formulation and 2) surface property determination using both arc-jet and side-arm facilities at NASA Ames Research Center. Comparison of the predicted surface temperature profile over a flat-plate with measured values obtained during arc-jet exposure (Phase I study) was used to validate the surface properties obtained during Phase II.
Development of lightweight ceramic ablators and arc-jet test results
NASA Technical Reports Server (NTRS)
Tran, Huy K.
1994-01-01
Lightweight ceramic ablators (LCA's) were recently developed at Ames to investigate the use of low density fibrous substrates and organic resins as high temperature, high strength ablative heat shields. Unlike the traditional ablators, LCA's use porous ceramic/carbon fiber matrices as substrates for structural support, and polymeric resins as fillers. Several substrates and resins were selected for the initial studies, and the best performing candidates were further characterized. Three arcjet tests were conducted to determine the LCA's thermal performance and ablation characteristics in a high enthalpy, hypersonic flow environment. Mass loss and recession measurements were obtained for each sample at post test, and the recession rates were determined from high speed motion films. Surface temperatures were also obtained from optical pyrometers.
Viscous instabilities in the q-vortex at large swirl numbers
NASA Astrophysics Data System (ADS)
Fabre, David; Jacquin, Laurent
2002-11-01
This comunication deals with the temporal stability of the q-vortex trailing line vortex model. We describe a family of viscous instabilities existing in a range of parameters which is usually assumed to be stable, namely large swirl parameters (q>1.5) and large Reynolds numbers. These instabilities affect negative azimuthal wavenumbers (m < 0) and take the form of centre-modes (i.e. with a structure concentrated along the vortex centerline). They are related to a family of viscous modes described by Stewartson, Ng & Brown (1988) in swirling Poiseuille flow, and are the temporal counterparts of weakly amplified spatial modes recently computed by Olendraru & Sellier (2002). These instabilities are studied numerically using an original and highly accurate Chebyshev collocation method, which allows a mapping of the unstable regions up to Rey 10^6 and q 7. Our results indicate that in the limit of very large Reynolds numbers, trailing vortices are affected by this kind of instabilities whatever the value of the swirl number.
Simulation of Vortex Structure in Supersonic Free Shear Layer Using Pse Method
NASA Astrophysics Data System (ADS)
Guo, Xin; Wang, Qiang
The method of parabolized stability equations (PSE) are applied in the analysis of nonlinear stability and the simulation of flow structure in supersonic free shear layer. High accuracy numerical techniques including self-similar basic flow, high order differential method, appropriate transformation and decomposition of nonlinear terms are adopted and developed to solve the PSE effectively for free shear layer. The spatial evolving unstable waves which dominate the flow structure are investigated through nonlinear coupling spatial marching methods. The nonlinear interactions between harmonic waves are further analyzed and instantaneous flow field are obtained by adding the harmonic waves into basic flow. Relevant data agree well with that of DNS. The results demonstrate that T-S wave does not keeping growing exponential as the linear evolution, the energy transfer to high order harmonic modes and finally all harmonic modes get saturation due to the nonlinear interaction; Mean flow distortion is produced by the nonlinear interaction between the harmonic and its conjugate harmonic, makes great change to the average flow and increases the thickness of shear layer; PSE methods can well capture the large scale nonlinear flow structure in the supersonic free shear layer such as vortex roll-up, vortex pairing and nonlinear saturation.
NASA Astrophysics Data System (ADS)
Eret, Petr; Kennedy, John; Bennett, Gareth J.
2015-10-01
In the pursuit of quieter aircraft, significant effort has been dedicated to airframe noise identification and reduction. The landing gear is one of the main sources of airframe noise on approach. The addition of noise abatement technologies such as fairings or wheel hub caps is usually considered to be the simplest solution to reduce this noise. After touchdown, noise abatement components can potentially affect the inherently nonlinear and dynamically complex behaviour (shimmy) of landing gear. Moreover, fairings can influence the aerodynamic load on the system and interact with the mechanical freeplay in the torque link. This paper presents a numerical study of nose landing gear stability for a mid-size aircraft with low noise solutions, which are modelled by an increase of the relevant model structural parameters to address a hypothetical effect of additional fairings and wheel hub caps. The study shows that the wheel hub caps are not a threat to stability. A fairing has a destabilising effect due to the increased moment of inertia of the strut and a stabilising effect due to the increased torsional stiffness of the strut. As the torsional stiffness is dependent on the method of attachment, in situations where the fairing increases the torsional inertia with little increase to the torsional stiffness, a net destabilising effect can result. Alternatively, it is possible that for the case that if the fairing were to increase equally both the torsional stiffness and the moment of inertia of the strut, then their effects could be mutually negated. However, it has been found here that for small and simple fairings, typical of current landing gear noise abatement design, their implementation will not affect the dynamics and stability of the system in an operational range (Fz ≤ 50 000 N, V ≤ 100 m/s). This generalisation is strictly dependent on size and installation methods. The aerodynamic load, which would be influenced by the presence of fairings, was modelled using a simple vortex shedding oscillator acting on the strut. The stability boundary was found to remain unaltered by vortex shedding. Significantly however, the addition of freeplay in the torque link was found to cause shimmy over the more typical operating conditions studied here. Unlike the no-freeplay case, there was a suppressed stabilising effect of increased torsional stiffness of the strut caused by the presence of fairing. No interaction between the vortex shedding and the freeplay on the stability threshold was observed.
Water tunnel flow visualization study of a 4.4 percent scale X-31 forebody
NASA Technical Reports Server (NTRS)
Cobleigh, Brent R.; Delfrate, John
1994-01-01
A water-tunnel test of a 4.4 percent-scale, forebody-only model of the X-31 aircraft with different forebody strakes and nosebooms has been performed in the Flow Visualization Facility at the NASA Dryden Flight Research Center. The focus of the study was to determine the relative effects of the different configurations on the stability and symmetry of the high-angle-of-attack forebody vortex flow field. The clean, noseboom-off configuration resisted the development of asymmetries in the primary vortices through 70 deg angle of attack. The wake of the X-31 flight test noseboom configuration significantly degraded the steadiness of the primary vortex cores and promoted asymmetries. An alternate L-shaped noseboom mounted underneath the forebody had results similar to those seen with the configuration, enabling stable, symmetrical vortices up to 70 deg angle of attack. The addition of strakes near the radome tip along the waterline increased the primary vortex strength while it simultaneously caused the vortex breakdown location co move forward. Forebody strakes did not appear to significantly reduce the asymmetries in the forebody vortex field in the presence of the flight test noseboom.
Non-normal perturbation growth in idealised island and headland wakes
NASA Astrophysics Data System (ADS)
Aiken, C. M.; Moore, A. M.; Middleton, J. H.
2003-12-01
Generalised linear stability theory is used to calculate the linear perturbations that furnish most rapid growth in energy in a model of a steady recirculating island wake. This optimal peturbation is found to be antisymmetric and to evolve into a von Kármán vortex street. Eigenanalysis of the linearised system reveals that the eigenmodes corresponding to vortex sheet formation are damped, so the growth of the perturbation is understood through the non-normality of the linearised system. Qualitatively similar perturbation growth is shown to occur in a non-linear model of stochastically-forced subcritical flow, resulting in transition to an unsteady wake. Free-stream variability with amplitude 8% of the mean inflow speed sustains vortex street structures in the non-linear model with perturbation velocities the order of the inflow speed, suggesting that environmental stochastic forcing may similarly be capable of exciting growing disturbances in real island wakes. To support this, qualitatively similar perturbation growth is demonstrated in the straining wake of a realistic island obstacle. It is shown that for the case of an idealised headland, where the vortex street eigenmodes are lacking, vortex sheets are produced through a similar non-normal process.
Hub vortex helical instability as the origin of wake meandering in the lee of a model wind-turbine
NASA Astrophysics Data System (ADS)
Viola, Francesco; Iungo, Giacomo Valerio; Camarri, Simone; Porte-Agel, Fernando; Gallaire, Francois
2012-11-01
Wind tunnel measurements were performed for the wake produced by a three-bladed wind turbine immersed in uniform flow. These tests show the presence of a vorticity structure in the near wake region mainly oriented along the streamwise direction, which is denoted as hub vortex. The hub vortex is characterized by oscillations with frequencies lower than the one connected to the rotational velocity of the rotor, which are ascribed to wake meandering by previous works. This phenomenon consists in transversal oscillations of the wind turbine wake, which are excited by the shedding of vorticity structures from the rotor disc acting as a bluff body. In this work temporal and spatial linear stability analyses of a wind turbine wake are performed on a base flow obtained through time-averaged wind tunnel velocity measurements. This study shows that the low frequency spectral component detected experimentally is the result of a convective instability of the hub vortex, which is characterized by a counter-winding single-helix structure. Simultaneous hot-wire measurements confirm the presence of a helicoidal unstable mode of the hub vortex with a streamwise wavenumber roughly equal to the one predicted from the linear instability analysis.
NASA Technical Reports Server (NTRS)
Hinton, David A.; Tatnall, Chris R.
1997-01-01
A significant effort is underway at NASA Langley to develop a system to provide dynamical aircraft wake vortex spacing criteria to Air Traffic Control (ATC). The system under development, the Aircraft Vortex Spacing System (AVOSS), combines the inputs of multiple subsystems to provide separation matrices with sufficient stability for use by ATC and sufficient monitoring to ensure safety. The subsystems include a meteorological subsystem, a wake behavior prediction subsystem, a wake sensor subsystem, and system integration and ATC interfaces. The proposed AVOSS is capable of using two factors, singly or in combination, for reducing in-trail spacing. These factors are wake vortex motion out of a predefined approach corridor and wake decay below a strength that is acceptable for encounter. Although basic research into the wake phenomena has historically used wake total circulation as a strength parameter, there is a requirement for a more specific strength definition that may be applied across multiple disciplines and teams to produce a real-time, automated system. This paper presents some of the limitations of previous applications of circulation to aircraft wake observations and describes the results of a preliminary effort to bound a spacing system strength definition.
Three-dimensional instability analysis of boundary layers perturbed by streamwise vortices
NASA Astrophysics Data System (ADS)
Martín, Juan A.; Paredes, Pedro
2017-12-01
A parametric study is presented for the incompressible, zero-pressure-gradient flat-plate boundary layer perturbed by streamwise vortices. The vortices are placed near the leading edge and model the vortices induced by miniature vortex generators (MVGs), which consist in a spanwise-periodic array of small winglet pairs. The introduction of MVGs has been experimentally proved to be a successful passive flow control strategy for delaying laminar-turbulent transition caused by Tollmien-Schlichting (TS) waves. The counter-rotating vortex pairs induce non-modal, transient growth that leads to a streaky boundary layer flow. The initial intensity of the vortices and their wall-normal distances to the plate wall are varied with the aim of finding the most effective location for streak generation and the effect on the instability characteristics of the perturbed flow. The study includes the solution of the three-dimensional, stationary, streaky boundary layer flows by using the boundary region equations, and the three-dimensional instability analysis of the resulting basic flows by using the plane-marching parabolized stability equations. Depending on the initial circulation and positioning of the vortices, planar TS waves are stabilized by the presence of the streaks, resulting in a reduction in the region of instability and shrink of the neutral stability curve. For a fixed maximum streak amplitude below the threshold for secondary instability (SI), the most effective wall-normal distance for the formation of the streaks is found to also offer the most stabilization of TS waves. By setting a maximum streak amplitude above the threshold for SI, sinuous shear layer modes become unstable, as well as another instability mode that is amplified in a narrow region near the vortex inlet position.
Dynamics and stability of a 2D ideal vortex under external strain
NASA Astrophysics Data System (ADS)
Hurst, N. C.; Danielson, J. R.; Dubin, D. H. E.; Surko, C. M.
2017-11-01
The behavior of an initially axisymmetric 2D ideal vortex under an externally imposed strain flow is studied experimentally. The experiments are carried out using electron plasmas confined in a Penning-Malmberg trap; here, the dynamics of the plasma density transverse to the field are directly analogous to the dynamics of vorticity in a 2D ideal fluid. An external strain flow is applied using boundary conditions in a way that is consistent with 2D fluid dynamics. Data are compared to predictions from a theory assuming a piecewise constant elliptical vorticity distribution. Excellent agreement is found for quasi-flat profiles, whereas the dynamics of smooth profiles feature modified stability limits and inviscid damping of periodic elliptical distortions. This work supported by U.S. DOE Grants DE-SC0002451 and DE-SC0016532, and NSF Grant PHY-1414570.
NASA Technical Reports Server (NTRS)
Riley, Donald R.
2016-01-01
Calculated numerical values for some aerodynamic terms and stability Derivatives for several different wings in unseparated inviscid incompressible flow were made using a discrete vortex method involving a limited number of horseshoe vortices. Both longitudinal and lateral-directional derivatives were calculated for steady conditions as well as for sinusoidal oscillatory motions. Variables included the number of vortices used and the rotation axis/moment center chordwise location. Frequencies considered were limited to the range of interest to vehicle dynamic stability (kb <.24 ). Comparisons of some calculated numerical results with experimental wind-tunnel measurements were in reasonable agreement in the low angle-of-attack range considering the differences existing between the mathematical representation and experimental wind-tunnel models tested. Of particular interest was the presence of induced drag for the oscillatory condition.
NASA Astrophysics Data System (ADS)
Surov, A. V.; Subbotin, D. I.; Obraztsov, N. V.; Popov, S. D.; Popov, V. E.; Litvyakova, A. I.; Pavlov, A. V.; Serba, E. O.; Spodobin, V. A.; Nakonechny, Gh V.
2018-01-01
This paper presents the three-phase ac plasma torch with a vortex stabilization of the arc, and two inputs of plasma environments: the electrode zone and the arc zone. Shielding gas (carbon dioxide) is supplied in the electrode zone and steam, methane and vapor of chlorobenzene are fed in the arc zone. By means of it the life time of electrodes is increased significantly. Chlorobenzene is selected, as it is the simplest aromatic chlorine-containing substance. The chemical process flows in two pathways: the formation of synthesis gas and the formation of soot. The gaseous chlorine-containing compound was only hydrogen chloride, yield of soot was 0.98% by weight of the raw materials, and the chlorine content was 2.08 wt% by the soot.
On the three-dimensional instability of laminar boundary layers on concave walls
NASA Technical Reports Server (NTRS)
Gortler, Henry
1954-01-01
A study is made of the stability of laminar boundary-layer profiles on slightly curved walls relative to small disturbances that result from vortices whose axes are parallel to the principal direction of flow. The result is an eigenvalue problem by which, for a given undisturbed flow at a prescribed wall, the amplification or decay is computed for each Reynolds number and each vortex thickness. For neutral disturbances (zero amplification) a critical Reynolds number is determined for each vortex distribution. The numerical calculation produces amplified disturbances on concave walls only.
NASA Astrophysics Data System (ADS)
Morita, Toshiyuki; Maekawa, Hiroshi
This paper describes an experimental investigation of the transitional mechanism of a wake generated behind a thin airfoil with a small angle of attack in a towing wind tunnel. A linear stability analysis shows that the wake is characterized by a region of absolute instability in the near wake (x=30mm) and one of convective instability further downstream. When the airfoil starts to run in the tunnel, boundary layers develop on the upper/lower airfoil surfaces with different thickness. Since the asymmetric wake is generated, starting vortices of a single row are observed first in the wake, which is different from the Karman vortex street. The experimental results show that time-harmonic fluctuations of the starting vortex sustain in the natural transition process due to a self sustained resonance in the absolutely unstable region behind the trailing edge. The wake profile in the saturation steady state yields the vortex street structure, where the fluctuation frequency defined as the fundamental unstable mode is found in the final saturation steady state. The growth of the fundamental unstable mode in the convectively unstable region suppresses the high frequency fluctuations associated with the starting vortex generation. On the other hand, low-frequency fluctuations in the quasi-steady state sustaining in the saturation state grow gradually during the vortex street formation, which lead to the vortex deformation downstream.
Resonant-spin-ordering of vortex cores in interacting mesomagnets
NASA Astrophysics Data System (ADS)
Jain, Shikha
2013-03-01
The magnetic system of interacting vortex-state elements have a dynamically reconfigurable ground state characterized by different relative polarities and chiralities of the individual disks; and have a corresponding dynamically controlled spectrum of collective excitation modes that determine the microwave absorption of the crystal. The development of effective methods for dynamic control of the ground state in this vortex-type magnonic crystal is of interest both from fundamental and technological viewpoints. Control of vortex chirality has been demonstrated previously using various techniques; however, control and manipulation of vortex polarities remain challenging. In this work, we present a robust and efficient way of selecting the ground state configuration of interacting magnetic elements using resonant-spin-ordering approach. This is achieved by driving the system from the linear regime of constant vortex gyrations to the non-linear regime of vortex-core reversals at a fixed excitation frequency of one of the coupled modes. Subsequently reducing the excitation field to the linear regime stabilizes the system to a polarity combination whose resonant frequency is decoupled from the initialization frequency. We have utilized the resonant approach to transition between the two polarity combinations (parallel or antiparallel) in a model system of connected dot-pairs which may form the building blocks of vortex-based magnonic crystals. Taking a step further, we have extended the technique by studying many-particle system for its potential as spin-torque oscillators or logic devices. Work at Argonne was supported by the U. S. DOE, Office of BES, under Contract No. DE-AC02-06CH11357. This work was in part supported by grant DMR-1015175 from the U. S. National Science Foundation, by a Contract from the U.S. Army TARDEC and RDECOM.
Feasibility study of inlet shock stability system of YF-12
NASA Technical Reports Server (NTRS)
Blausey, G. C.; Coleman, D. M.; Harp, D. S.
1972-01-01
The feasibility of self actuating bleed valves as a shock stabilization system in the inlet of the YF-12 is considered for vortex valves, slide valves, and poppet valves. Analytical estimation of valve performance indicates that only the slide and poppet valves located in the inlet cowl can meet the desired steady state stabilizing flows, and of the two the poppet valve is substantially faster in response to dynamic disturbances. The poppet valve is, therefore, selected as the best shock stability system for the YF-12 inlet.
NASA Technical Reports Server (NTRS)
Curran, Francis M.; Sarmiento, Charles J.
1990-01-01
An experimental investigation was performed to evaluate arc jet operation at low power. A standard, 1 kW, constricted arc jet was run using nozzles with three different constrictor diameters. Each nozzle was run over a range of current and mass flow rates to explore stability and performance in the low power engine. A standard pulse-width modulated power processor was modified to accommodate the high operating voltages required under certain conditions. Stable, reliable operation at power levels below 0.5 kW was obtained at efficiencies between 30 and 40 percent. The operating range was found to be somewhat dependent on constrictor geometry at low mass flow rates. Quasi-periodic voltage fluctuations were observed at the low power end of the operating envelope, The nozzle insert geometry was found to have little effect on the performance of the device. The observed performance levels show that specific impulse levels above 350 seconds can be obtained at the 0.5 kW power level.
Experimental study of vortex breakdown in a cylindrical, swirling flow
NASA Technical Reports Server (NTRS)
Stevens, J. L.; Celik, Z. Z.; Cantwell, B. J.; Lopez, J. M.
1996-01-01
The stability of a steady, vortical flow in a cylindrical container with one rotating endwall has been experimentally examined to gain insight into the process of vortex breakdowwn. The dynamics of the flow are governed by the Reynolds number (Re) and the aspect ratio of the cylinder. Re is given by Omega R(sup 2)/nu, where Omega is the speed of rotation of the endwall, R is the cylinder radius, and nu is the kinematic viscosity of the fluid filling the cylinder. The aspect ratio is H/R, where H is the height of the cylinder. Numerical simulation studies disagree whether or not the steady breakdown is stable beyond a critical Reynolds number, Re(sub c). Previous experimental researches have considered the steady and unsteady flows near Re(sub c), but have not explored the stability of the steady breakdown structures beyond this value. In this investigation, laser induced fluorescence was utilized to observe both steady and unsteady vortex breakdown at a fixed H/R of 2.5 with Re varying around Re(sub c). When the Re of a steady flow was slowly increased beyond Re(sub c), the breakdown structure remained steady even though unsteadiness was possible. In addition, a number of hysteresis events involving the oscillation periods of the unsteady flow were noted. The results show that both steady and unsteady vortex breakdown occur for a limited range of Re above Re(sub c). Also, with increasing Re, complex flow transformations take place that alter the period at which the unsteady flow oscillates.
Stabilization of active matter by flow-vortex lattices and defect ordering
Doostmohammadi, Amin; Adamer, Michael F.; Thampi, Sumesh P.; Yeomans, Julia M.
2016-01-01
Active systems, from bacterial suspensions to cellular monolayers, are continuously driven out of equilibrium by local injection of energy from their constituent elements and exhibit turbulent-like and chaotic patterns. Here we demonstrate both theoretically and through numerical simulations, that the crossover between wet active systems, whose behaviour is dominated by hydrodynamics, and dry active matter where any flow is screened, can be achieved by using friction as a control parameter. Moreover, we discover unexpected vortex ordering at this wet–dry crossover. We show that the self organization of vortices into lattices is accompanied by the spatial ordering of topological defects leading to active crystal-like structures. The emergence of vortex lattices, which leads to the positional ordering of topological defects, suggests potential applications in the design and control of active materials. PMID:26837846
NASA Technical Reports Server (NTRS)
Smith, J. H. B.; Campbell, J. F.; Young, A. D. (Editor)
1992-01-01
The principal emphasis of the meeting was to be on the understanding and prediction of separation-induced vortex flows and their effects on vehicle performance, stability, control, and structural design loads. This report shows that a substantial amount of the papers covering this area were received from a wide range of countries, together with an attendance that was even more diverse. In itself, this testifies to the current interest in the subject and to the appropriateness of the Panel's choice of topic and approach. An attempt is made to summarize each paper delivered, and to relate the contributions made in the papers and in the discussions to some of the important aspects of vortex flow aerodynamics. This reveals significant progress and important clarifications, but also brings out remaining weaknesses in predictive capability and gaps in understanding. Where possible, conclusions are drawn and areas of continuing concern are identified.
The effect of crossflow on Taylor vortices: A model problem
NASA Technical Reports Server (NTRS)
Otto, S. R.; Bassom, Andrew P.
1993-01-01
A number of practically relevant problems involving the impulsive motion or the rapid rotation of bodies immersed in fluid are susceptible to vortex-like instability modes. Depending upon the configuration of any particular problem the stability properties of any high-wavenumber vortices can take on one of two distinct forms. One of these is akin to the structure of Gortler vortices in boundary layer flows while the other is similar to the situation for classical Taylor vortices. Both the Gortler and Taylor problems have been extensively studied when crossflow effects are excluded from the underlying base flows. Recently, studies were made concerning the influence of crossflow on Gortler modes and a linearized stability analysis is used to examine crossflow properties for the Taylor mode. This work allows us to identify the most unstable vortex as the crossflow component increases and it is shown how, like the Gortler case, only a very small crossflow component is required in order to completely stabilize the flow. Our investigation forms the basis for an extension to the nonlinear problem and is of potential applicability to a range of pertinent flows.
NASA Technical Reports Server (NTRS)
Fritsch, J. Michael; Kain, John S.
1997-01-01
Research efforts during the second year have centered on improving the manner in which convective stabilization is achieved in the Penn State/NCAR mesoscale model MM5. Ways of improving this stabilization have been investigated by (1) refining the partitioning between the Kain-Fritsch convective parameterization scheme and the grid scale by introducing a form of moist convective adjustment; (2) using radar data to define locations of subgrid-scale convection during a dynamic initialization period; and (3) parameterizing deep-convective feedbacks as subgrid-scale sources and sinks of mass. These investigations were conducted by simulating a long-lived convectively-generated mesoscale vortex that occurred during 14-18 Jul. 1982 and the 10-11 Jun. 1985 squall line that occurred over the Kansas-Oklahoma region during the PRE-STORM experiment. The long-lived vortex tracked across the central Plains states and was responsible for multiple convective outbreaks during its lifetime.
Dual-wavelength vortex beam with high stability in a diode-pumped Yb:CaGdAlO4 laser
NASA Astrophysics Data System (ADS)
Shen, Yijie; Meng, Yuan; Fu, Xing; Gong, Mali
2018-05-01
We present a stable dual-wavelength vortex beam carrying orbital angular momentum (OAM) with two spectral peaks separated by a few terahertz in a diode-pumped Yb:CaGdAlO4 (CALGO) laser. The dual-wavelength spectrum is controlled by the pump power and off-axis loss in a laser resonator, arising from the broad emission bandwidth of Yb:CALGO. The OAM beam is obtained by a pair of cylindrical lenses serving as a π/2 convertor for high-order Hermite–Gaussian modes. The stability is verified by the fact that a 1\\hbar OAM beam with two spectral peaks at 1046.1 nm and 1057.2 nm (3.01 THz interval) can steadily operate for more than 3 h. It has great potential for scaling the application of OAM beams in terahertz spectroscopy, high-resolution interferometry, and so on.
PREFACE: Special section on vortex rings Special section on vortex rings
NASA Astrophysics Data System (ADS)
Fukumoto, Yasuhide
2009-10-01
This special section of Fluid Dynamics Research includes five articles on vortex rings in both classical and quantum fluids. The leading scientists of the field describe the trends in and the state-of-the-art development of experiments, theories and numerical simulations of vortex rings. The year 2008 was the 150th anniversary of 'vortex motion' since Hermann von Helmholtz opened up this field. In 1858, Helmholtz published a paper in Crelle's Journal which put forward the concept of 'vorticity' and made the first analysis of vortex motion. Fluid mechanics before that was limited to irrotational motion. In the absence of vorticity, the motion of an incompressible homogeneous fluid is virtually equivalent to a rigid-body motion in the sense that the fluid motion is determined once the boundary configuration is specified. Helmholtz proved, among other things, that, without viscosity, a vortex line is frozen into the fluid. This Helmholtz's law immediately implies the preservation of knots and links of vortex lines and its implication is enormous. One of the major trends of fluid mechanics since the latter half of the 20th century is to clarify the topological meaning of Helmholtz's law and to exploit it to develop theoretical and numerical methods to find the solutions of the Euler equations and to develop experimental techniques to gain an insight into fluid motion. Vortex rings are prominent coherent structures in a variety of fluid motions from the microscopic scale, through human and mesoscale to astrophysical scales, and have attracted people's interest. The late professor Philip G Saffman (1981) emphasized the significance of studies on vortex rings. One particular motion exemplifies the whole range of problems of vortex motion and is also a commonly known phenomenon, namely the vortex ring or smoke ring. Vortex rings are easily produced by dropping drops of one liquid into another, or by puffing fluid out of a hole, or by exhaling smoke if one has the skill. Their formation is a problem of vortex sheet dynamics, the steady state is a problem of existence, their duration is a problem of stability, and if there are several we have the problem of vortex interactions. Helmholtz himself, in the same paper (1858), devoted a few pages to an analysis of the motion of a vortex ring, and made substantial contributions. Since then, theoretical, experimental and numerical treatments of vortex rings have been developing continuously, yet we encounter mysteries and novel phenomena, with which vortex rings find new applications in, say, bio-fluid mechanics. Recently vortex rings have enlarged their scope beyond classical fluids to encompass super-fluids and Bose-Einstein condensates. On the occasion of the 150th anniversary of Helmholtz's theory on a vortex ring, it is worthwhile to bring together, in one issue, the latest understandings of and open problems in vortex rings from various aspects. The topics in this issue include development of theories and experiments for motion of vortex rings and their interaction with other vortex rings, flows and boundaries, with application to vortex-ring manipulation for flow control, original experiments on collision of vortex rings with a porous boundary, a novel numerical technique to simulate three-dimensional motion of vortex rings and new theories of dynamics of quantum vortex rings governed by nonlinear Schrödinger equations. I hope that this special section gives a sketch, in some proportion, of the current frontier of the field and provides a means to tackle future problems. References Saffman P G 1981 Dynamics of vorticity J. Fluid Mech. 106 49-58 von Helmholtz H 1858 Über Integrale der hydrodynamischen Gleichungen welche den Wirbelbewegungen entsprechen J. Reine Angew. Math. 55 25-55 (Engl. transl.: Tait P G 1867 On the integrals of the hydrodynamical equations which express vortex-motion Phil. Mag. 33 (4) 485-512)
Power Electronics for a Miniaturized Arcjet
NASA Technical Reports Server (NTRS)
Pinero, Luis R.; Bowers, Glen E.
1997-01-01
A 0.3 kW Power Processing Unit (PPU) was designed, tested on resistive loads, and then integrated with a miniaturized arcjet. The main goal of the design was to minimize size and mass while maintaining reasonable efficiency. In order to obtain the desired reductions in mass, simple topologies and control methods were considered. The PPU design incorporates a 50 kHz, current-mode-control, pulse-width-modulated (PWM), push-pull topology. An input voltage of 28 +/- 4V was chosen for compatibility with typical unregulated low voltage busses anticipated for smallsats. An efficiency of 0.90 under nominal operating conditions was obtained. The component mass of the PPU was 0.475 kg and could be improved by optimization of the output filter design. The estimated mass for a flight PPU based on this design is less than a kilogram.
Response Modeling of Lightweight Charring Ablators and Thermal Radiation Testing Results
NASA Technical Reports Server (NTRS)
Congdon, William M.; Curry, Donald M.; Rarick, Douglas A.; Collins, Timothy J.
2003-01-01
Under NASA's In-Space Propulsion/Aerocapture Program, ARA conducted arc-jet and thermal-radiation ablation test series in 2003 for advanced development, characterization, and response modeling of SRAM-20, SRAM-17, SRAM-14, and PhenCarb-20 ablators. Testing was focused on the future Titan Explorer mission. Convective heating rates (CW) were as high as 153 W/sq cm in the IHF and radiation rates were 100 W/sq cm in the Solar Tower Facility. The ablators showed good performance in the radiation environment without spallation, which was initially a concern, but they also showed higher in-depth temperatures when compared to analytical predictions based on arc-jet thermal-ablation response models. More testing in 2003 is planned in both of these facility to generate a sufficient data base for Titan TPS engineering.
Performance of a Miniaturized Arcjet
NASA Technical Reports Server (NTRS)
Sankovic, John M.; Jacobson, David T.
1995-01-01
Performance measurements were obtained and life-limiting mechanisms were identified on a laboratory-model arcjet thruster designed to operate at a nominal power level of 300 W. The design employed a supersonic-arc-attachment concept and was operated from 200 to 400 W on hydrogen/nitrogen mixtures in ratios simulating fully decomposed hydrazine and ammonia. Power was provided by breadboard power processor. Performance was found to be a strong function of propellant flow rate. Anode losses were essentially constant for the range of mass flow rates tested. It is believed that the performance is dominated by viscous effects. Significantly improved performance was noted with simulated ammonia operation. At 300 W the specific impulse on simulated ammonia was 410 s with an efficiency of 0.34, while simulated hydrazine provided 370 s specific impulse at an efficiency of 0.27.
Electrode erosion in steady-state electric propulsion engines
NASA Technical Reports Server (NTRS)
Pivirotto, Thomas J.; Deininger, William D.
1988-01-01
The anode and cathode of a 30 kW class arcjet engine were sectioned and analyzed. This arcjet was operated for a total time of 573 hr at power levels between 25 and 30 kW with ammonia at flow rates of 0.25 and 0.27 gm/s. The accumulated run time was sufficient to clearly establish erosion patterns and their causes. The type of electron emission from various parts of the cathode surface was made clear by scanning electron microscope analysis. A scanning electron microscope was used to study recrystallization on the hot anode surface. These electrodes were made of 2 percent thoriated tungsten and the surface thorium content and gradient perpendicular to the surfaces was determined by quantitative microprobe analysis. The results of this material analysis on the electrodes and recommendations for improving electrode operational life time are presented.
Three-dimensional short-wavelength instabilities in the near-wake of a circular cylinder
NASA Astrophysics Data System (ADS)
Jethani, Yogesh; Kumar, Kamal; Sameen, A.; Mathur, Manikandan
2017-11-01
We perform local stability analysis of the near-wake region of two-dimensional flow past a circular cylinder for Reynolds number in the range Re ∈ [ 10 , 300 ] . The local stability equations that govern the leading-order amplitude of short-wavelength perturbations are solved along closed fluid particle trajectories in the numerically simulated flow-fields for both the steady (Re <= 45) and unsteady vortex-shedding (Re > 45) regimes; the study is further complemented with analysis on time-averaged flows for 50 <= Re <= 300 . For steady and time-averaged flow, the inviscidly most unstable regions occur either at the core or at the edge of the separation bubble, with elliptic instability as the dominant mode for all Re . The effectiveness of viscous damping in eliminating the inviscid instabilities and the validity of the WKBJ approximation in the present context are studied. In the unsteady vortex-shedding regime, two types (I and II) of closed trajectories are identified for all Re and the inviscid growth rates as a function of Re are plotted for both. For type I trajectory, a bifurcation occurs at Re 250 . Potential relevance of our results in understanding the transition from steady flow to vortex-shedding and the subsequent secondary instabilities are discussed.
Observation of Magnetic Radial Vortex Nucleation in a Multilayer Stack with Tunable Anisotropy.
Karakas, Vedat; Gokce, Aisha; Habiboglu, Ali Taha; Arpaci, Sevdenur; Ozbozduman, Kaan; Cinar, Ibrahim; Yanik, Cenk; Tomasello, Riccardo; Tacchi, Silvia; Siracusano, Giulio; Carpentieri, Mario; Finocchio, Giovanni; Hauet, Thomas; Ozatay, Ozhan
2018-05-08
Recently discovered exotic magnetic configurations, namely magnetic solitons appearing in the presence of bulk or interfacial Dzyaloshinskii-Moriya Interaction (i-DMI), have excited scientists to explore their potential applications in emerging spintronic technologies such as race-track magnetic memory, spin logic, radio frequency nano-oscillators and sensors. Such studies are motivated by their foreseeable advantages over conventional micro-magnetic structures due to their small size, topological stability and easy spin-torque driven manipulation with much lower threshold current densities giving way to improved storage capacity, and faster operation with efficient use of energy. In this work, we show that in the presence of i-DMI in Pt/CoFeB/Ti multilayers by tuning the magnetic anisotropy (both in-plane and perpendicular-to-plane) via interface engineering and postproduction treatments, we can stabilize a variety of magnetic configurations such as Néel skyrmions, horseshoes and most importantly, the recently predicted isolated radial vortices at room temperature and under zero bias field. Especially, the radial vortex state with its absolute convergence to or divergence from a single point can potentially offer exciting new applications such as particle trapping/detrapping in addition to magnetoresistive memories with efficient switching, where the radial vortex state can act as a source of spin-polarized current with radial polarization.
Vortex topology of rolling and pitching wings
NASA Astrophysics Data System (ADS)
Johnson, Kyle; Thurow, Brian; Wabick, Kevin; Buchholz, James; Berdon, Randall
2017-11-01
A flat, rectangular plate with an aspect ratio of 2 was articulated in roll and pitch, individually and simultaneously, to isolate the effects of each motion. The plate was immersed into a Re = 10,000 flow (based on chord length) to simulate forward, flapping flight. Measurements were made using a 3D-3C plenoptic PIV system to allow for the study of vortex topology in the instantaneous flow, in addition to phase-averaged results. The prominent focus is leading-edge vortex (LEV) stability and the lifespan of shed LEVs. The parameter space involves multiple values of advance coefficient J and reduced frequency k for roll and pitch, respectively. This space aims to determine the influence of each parameter on LEVs, which has been identified as an important factor for the lift enhancement seen in flapping wing flight. A variety of results are to be presented characterizing the variations in vortex topology across this parameter space. This work is supported by the Air Force Office of Scientific Research (Grant Number FA9550-16-1-0107, Dr. Douglas Smith, program manager).
Hawkmoth flight performance in tornado-like whirlwind vortices.
Ortega-Jimenez, Victor Manuel; Mittal, Rajat; Hedrick, Tyson L
2014-06-01
Vertical vortex systems such as tornadoes dramatically affect the flight control and stability of aircraft. However, the control implications of smaller scale vertically oriented vortex systems for small fliers such as animals or micro-air vehicles are unknown. Here we examined the flapping kinematics and body dynamics of hawkmoths performing hovering flights (controls) and maintaining position in three different whirlwind intensities with transverse horizontal velocities of 0.7, 0.9 and 1.2 m s(-1), respectively, generated in a vortex chamber. The average and standard deviation of yaw and pitch were respectively increased and reduced in comparison with hovering flights. Average roll orientation was unchanged in whirlwind flights but was more variable from wingbeat to wingbeat than in hovering. Flapping frequency remained unchanged. Wingbeat amplitude was lower and the average stroke plane angle was higher. Asymmetry was found in the angle of attack between right and left wings during both downstroke and upstroke at medium and high vortex intensities. Thus, hawkmoth flight control in tornado-like vortices is achieved by a suite of asymmetric and symmetric changes to wingbeat amplitude, stroke plane angle and principally angle of attack.
Sagnac interferometry with coherent vortex superposition states in exciton-polariton condensates
NASA Astrophysics Data System (ADS)
Moxley, Frederick Ira; Dowling, Jonathan P.; Dai, Weizhong; Byrnes, Tim
2016-05-01
We investigate prospects of using counter-rotating vortex superposition states in nonequilibrium exciton-polariton Bose-Einstein condensates for the purposes of Sagnac interferometry. We first investigate the stability of vortex-antivortex superposition states, and show that they survive at steady state in a variety of configurations. Counter-rotating vortex superpositions are of potential interest to gyroscope and seismometer applications for detecting rotations. Methods of improving the sensitivity are investigated by targeting high momentum states via metastable condensation, and the application of periodic lattices. The sensitivity of the polariton gyroscope is compared to its optical and atomic counterparts. Due to the large interferometer areas in optical systems and small de Broglie wavelengths for atomic BECs, the sensitivity per detected photon is found to be considerably less for the polariton gyroscope than with competing methods. However, polariton gyroscopes have an advantage over atomic BECs in a high signal-to-noise ratio, and have other practical advantages such as room-temperature operation, area independence, and robust design. We estimate that the final sensitivities including signal-to-noise aspects are competitive with existing methods.
On the dynamical nature of Saturn's North Polar hexagon
NASA Astrophysics Data System (ADS)
Rostami, Masoud; Zeitlin, Vladimir; Spiga, Aymeric
2017-11-01
An explanation of long-lived Saturn's North Polar hexagonal circumpolar jet in terms of instability of the coupled system polar vortex - circumpolar jet is proposed in the framework of the rotating shallow water model, where scarcely known vertical structure of the Saturn's atmosphere is averaged out. The absence of a hexagonal structure at Saturn's South Pole is explained similarly. By using the latest state-of-the-art observed winds in Saturn's polar regions a detailed linear stability analysis of the circumpolar jet is performed (i) excluding (;jet-only; configuration), and (2) including (;jet + vortex; configuration) the north polar vortex in the system. A domain of parameters: latitude of the circumpolar jet and curvature of its azimuthal velocity profile, where the most unstable mode of the system has azimuthal wavenumber 6, is identified. Fully nonlinear simulations are then performed, initialized either with the most unstable mode of small amplitude, or with the random combination of unstable modes. It is shown that developing barotropic instability of the ;jet+vortex; system produces a long-living structure akin to the observed hexagon, which is not the case of the ;jet-only; system, which was studied in this context in a number of papers in literature. The north polar vortex, thus, plays a decisive dynamical role. The influence of moist convection, which was recently suggested to be at the origin of Saturn's North Polar vortex system in the literature, is investigated in the framework of the model and does not alter the conclusions.
On the dynamical nature of Saturn's North Polar hexagon
NASA Astrophysics Data System (ADS)
Rostami, Masoud; Zeitlin, Vladimir; Spiga, Aymeric
2017-04-01
An explanation of long-lived Saturn's North Pole hexagonal circumpolar jet in terms of instability of the coupled system polar vortex - circumpolar jet is proposed in the framework of the rotating shallow water model, where scarcely known vertical structure of the Saturn's atmosphere is averaged out. The absence of a hexagonal structure at the Saturn's South Pole is explained along the same lines. By using the latest state-of-the-art observed winds in Saturn's polar regions a detailed linear stability analysis of the circumpolar jet is performed (i) excluding (``jet-only" configuration), and (2) including (``jet+vortex" configuration) the north polar vortex in the system. A domain of parameters: latitude of the circumpolar jet and curvature of its azimuthal velocity profile, where the most unstable mode of the system has azimuthal wavenumber 6, is identified. Fully nonlinear simulations are then performed, initialized either with the most unstable mode of small amplitude, or with the random combination of unstable modes. It is shown that developing barotropic instability of the ``jet+vortex" system produces a long-living structure akin to the observed hexagon, which is not the case of the ``jet-only" system, which was studied in this context in a number of papers in literature. The north polar vortex, thus, plays a decisive dynamical role. The influence of moist convection, which was recently suggested to be at the origin of Saturn's north polar vortex system in the literature, is investigated in the framework of the model and does not alter the conclusions.
Vortex breakdown simulation - A circumspect study of the steady, laminar, axisymmetric model
NASA Technical Reports Server (NTRS)
Salas, M. D.; Kuruvila, G.
1989-01-01
The incompressible axisymmetric steady Navier-Stokes equations are written using the streamfunction-vorticity formulation. The resulting equations are discretized using a second-order central-difference scheme. The discretized equations are linearized and then solved using an exact LU decomposition, Gaussian elimination, and Newton iteration. Solutions are presented for Reynolds numbers (based on vortex core radius) 100-1800 and swirl parameter 0.9-1.1. The effects of inflow boundary conditions, the location of farfield and outflow boundaries, and mesh refinement are examined. Finally, the stability of the steady solutions is investigated by solving the time-dependent equations.
NASA Technical Reports Server (NTRS)
Shariff, Karim; Marten, Ken; Psarakos, Suchi; White, Don J.; Merriam, Marshal (Technical Monitor)
1996-01-01
The article discusses how dolphins create and play with three types of air-filled vortices. The underlying physics is discussed. Photographs and sketches illustrating the dolphin's actions and physics are presented. The dolphins engage in this behavior on their own initiative without food reward. These behaviors are done repeatedly and with singleminded effort. The first type is the ejection of bubbles which, after some practice on the part of the dolphin, turn into toroidal vortex ring bubbles by the mechanism of baroclinic torque. These bubbles grow in radius and become thinner as they rise vertically to the surface. One dolphin would blow two in succession and guide them to fuse into one. Physicists call this a vortex reconnection. In the second type, the dolphins first create an invisible vortex ring in the water by swimming on their side and waving their tail fin (also called flukes) vigorously. This vortex ring travels horizontally in the water. The dolphin then turns around, finds the vortex and injects a stream of air into it from its blowhole. The air "fills-out" the core of the vortex ring. Often, the dolphin would knock-off a smaller ring bubble from the larger ring (this also involves vortex reconnection) and steer the smaller ring around the tank. One other dolphin employed a few other techniques for planting air into the fluke vortex. One technique included standing vertically in the water with tail-up, head-down and tail piercing the free surface. As the fluke is waved to create the vortex ring, air is entrained from above the surface. Another technique was gulping air in the mouth, diving down, releasing air bubbles from the mouth and curling them into a ring when they rose to the level of the fluke. In the third type, demonstrated by only one dolphin, the longitudinal vortex created by the dorsal fin on the back is used to produce 10-15 foot long helical bubbles. In one technique she swims in a curved path. This creates a dorsal fin vortex since centrifugal force has to be balanced by a lift-like force. She then re-traces her path and injects air into the vortex from her blowhole. She can even make a ring reconnect from the helix. In the second technique, demonstrated a few times, she again swims in a curved path, releases a cloud or group of bubbles from her blowhole and turns sharply away (Which presumably strengthens the vortex). As the bubbles encounter the vortex, they travel to the center of the vortex, merge and, in a flash, elongate along the core of the vortex. In all the three types, the air-water interface is shiny smooth and stable because the pressure gradient in the vortex flow around the bubble stabilizes it. A lot of the interesting physics still remains to be explored.
Helical vortices: linear stability analysis and nonlinear dynamics
NASA Astrophysics Data System (ADS)
Selçuk, C.; Delbende, I.; Rossi, M.
2018-02-01
We numerically investigate, within the context of helical symmetry, the dynamics of a regular array of two or three helical vortices with or without a straight central hub vortex. The Navier-Stokes equations are linearised to study the instabilities of such basic states. For vortices with low pitches, an unstable mode is extracted which corresponds to a displacement mode and growth rates are found to compare well with results valid for an infinite row of point vortices or an infinite alley of vortex rings. For larger pitches, the system is stable with respect to helically symmetric perturbations. In the nonlinear regime, we follow the time-evolution of the above basic states when initially perturbed by the dominant instability mode. For two vortices, sequences of overtaking events, leapfrogging and eventually merging are observed. The transition between such behaviours occurs at a critical ratio involving the core size and the vortex-separation distance. Cases with three helical vortices are also presented.
NASA Astrophysics Data System (ADS)
Zechner, G.; Jausner, F.; Haag, L. T.; Lang, W.; Dosmailov, M.; Bodea, M. A.; Pedarnig, J. D.
2017-07-01
Square arrays of submicrometer columnar defects in thin YBa2 Cu3 O7 -δ (YBCO) films with spacings down to 300 nm are fabricated by a He ion-beam projection technique. Pronounced peaks in the critical current and corresponding minima in the resistance demonstrate the commensurate arrangement of flux quanta with the artificial pinning landscape, despite the strong intrinsic pinning in epitaxial YBCO films. While these vortex-matching signatures are exactly at the predicted values in field-cooled experiments, they are displaced in zero-field-cooled, magnetic-field-ramped experiments, conserving the equidistance of the matching peaks and minima. These observations reveal an unconventional critical state in a cuprate superconductor with an artificial, periodic pinning array. The long-term stability of such out-of-equilibrium vortex arrangements paves the way for electronic applications employing fluxons.
Free-energy landscapes in magnetic systems from metadynamics
NASA Astrophysics Data System (ADS)
Tóbik, Jaroslav; MartoÅák, Roman; Cambel, Vladimír
2017-10-01
The knowledge of the free-energy barriers separating different states is critically important for the assessment of the long-term stability of information stored in magnetic devices. This information, however, is not directly accessible by standard simulations of microscopic models because of the ubiquitous time-scale problem, related to the fact that the transitions among different free-energy minima are characteristic of rare events. Here, we show that by employing the metadynamics algorithm based on suitably chosen collective variables, namely, helicity and circulation, it is possible to reliably recover the free-energy landscape. We demonstrate the effectiveness of this approach on an example of a vortex nucleation process in a magnetic nanodot with lowered spatial symmetry. With the help of reconstructed free-energy surfaces, we show the origin of symmetry broken vortex nucleation, where one polarity of the nucleated vortex core is preferred, even though only an in-plane magnetic field is present.
HART-II: Prediction of Blade-Vortex Interaction Loading
2003-09-01
14:30 (2) Improvement of DLR Rotor Aero- acoustic Code ( APSIM ) and its Valida- tion with Analytic Solution J. Yin, J. Delfs (5...of DLR Rotor Aero- acoustic Code ( APSIM ) and its Valida- tion with Analytic Solution J. Yin, J. Delfs (5) Aeroelastic Stability Analysis of...of DLR Rotor Aero- acoustic Code ( APSIM ) and its Valida- tion with Analytic Solution J. Yin, J. Delfs (5) Aeroelastic Stability Analysis of
A bibliography of electrothermal thruster technology, 1984
NASA Technical Reports Server (NTRS)
Sovey, J. S.; Hardy, T. L.; Englehart, M.
1986-01-01
Electrothermal propulsion concepts are briefly discussed as an introduction to a bibliography and author index. Nearly 700 citations are given for resistojets, thermal arcjets, pulsed electrothermal thrusters, microwave heated devices, solar thermal thrusters, and laser thermal thrusters.
Electric Propulsion Options for a Magnetospheric Mapping Mission
NASA Technical Reports Server (NTRS)
Oleson, Steven; Russell, Chris; Hack, Kurt; Riehl, John
1998-01-01
The Twin Electric Magnetospheric Probes Exploring on Spiral Trajectories mission concept was proposed as a Middle Explorer class mission. A pre-phase-A design was developed which utilizes the advantages of electric propulsion for Earth scientific spacecraft use. This paper presents propulsion system analyses performed for the proposal. The proposed mission required two spacecraft to explore near circular orbits 0.1 to 15 Earth radii in both high and low inclination orbits. Since the use of chemical propulsion would require launch vehicles outside the Middle Explorer class a reduction in launch mass was sought using ion, Hall, and arcjet electric propulsion system. Xenon ion technology proved to be the best propulsion option for the mission requirements requiring only two Pegasus XL launchers. The Hall thruster provided an alternative solution but required two larger, Taurus launch vehicles. Arcjet thrusters did not allow for significant launch vehicle reduction in the Middle Explorer class.
NASA Astrophysics Data System (ADS)
Lago, Viviana; Ndiaye, Abdoul-Aziz
2012-11-01
A stationary arc-jet plasma flow at low pressure is used to simulate some properties of the gas flow surrounding a vehicle during its entry into celestial body's atmospheres. This paper presents an experimental study concerning plasmas simulating a re-entry into our planet. Optical measurements have been carried out for several operating plasma conditions in the free stream, and in the shock layer formed in front of a flat cylindrical plate, placed in the plasma jet. The analysis of the spectral radiation enabled the identification of the emitting species, the determination of the rotational and vibrational temperatures in the free-stream and in the shock layer and the determination of the distance of the shock to the flat plate face. Some plasma fluid parameters like, stagnation pressure, specific enthalpy and heat flux have been determined experimentally along the plasma-jet axis.
Validation of multi-temperature nozzle flow code NOZNT
NASA Technical Reports Server (NTRS)
Park, Chul; Lee, Seung-Ho
1993-01-01
A computer code NOZNT (Nozzle in n-Temperatures), which calculates one-dimensional flows of partially dissociated and ionized air in an expanding nozzle, is tested against five existing sets of experimental data. The code accounts for: a) the differences among various temperatures, i.e., translational-rotational temperature, vibrational temperatures of individual molecular species, and electron-electronic temperature, b) radiative cooling, and c) the effects of impurities. The experimental data considered are: 1) the sodium line reversal and 2) the electron temperature and density data, both obtained in a shock tunnel, and 3) the spectroscopic emission data, 4) electron beam data on vibrational temperature, and 5) mass-spectrometric species concentration data, all obtained in arc-jet wind tunnels. It is shown that the impurities are most likely responsible for the observed phenomena in shock tunnels. For the arc-jet flows, impurities are inconsequential and the NOZNT code is validated by numerically reproducing the experimental data.
Spectral measurements of shock layer radiation in an arc-jet wind tunnel
NASA Technical Reports Server (NTRS)
Palumbo, Giuseppe; Craig, Roger; Carrasco, Armando
1993-01-01
Measurements were made of the radiating gas cap of a blunt body in an NASA Ames 20 MW arcjet wind tunnel. The test gas was air. Spectra of the flux incident on a small aperture centered at the stagnation region were obtained. A helium-cooled MgF window transmitted flux into an evacuated collimating system that focused the aperture onto the entrance slit of a spectrometer. Data were obtained with films and by photomultipliers. The range covered was 120 nm to 1000 nm and the resolution was 0.05 nm to 0.5 nm. This paper presents preliminary results from the experiment. Representative spectral records from 200 nm to 1000 nm are shown. The spectra show the atomic lines from oxygen and nitrogen in the IR, as well as the molecular systems of NO, N2, N2(+), and CN. Copper, as a contaminant, and carbon are tentatively identified.
NASA Technical Reports Server (NTRS)
Stephenson, R. Rhoads
1995-01-01
This paper will discuss the development of Electric Propulsion technology in the U.S. from the 1960's to the present. It will summarize the various activities related to arcjets, resistojets, pulsed plasma thrustors, magneto-plasma-dynamic thrustors, ion engines, and more recently the evaluation of Hall effect thrustors of the SPT or Anode Layer type developed in Russia. Also, demonstration test flight and actual mission applications will be summarized. Finally, the future application of electric propulsion to near-term commercial communications satellites and planetary missions will be projected. This history is rich in diversity, and has involved a succession of types of thrustors, propellants, and electric power sources. With the recent use of arcjets on commercial communication satellites and the flight tests of ion engines for this application, it appears that electric propulsion is finally on the verge of wide spread application.
NASA Technical Reports Server (NTRS)
Boyden, R. P.
1974-01-01
The aerodynamic damping in pitch, yaw, and roll and the oscillatory stability in pitch and yaw of a supercritical-wing research airplane model were determined for Mach numbers of 0.25 to 1.20 by using the small-amplitude forced-oscillation technique. The angle-of-attack range was from -2 deg to 20 deg. The effects of the underwing leading-edge vortex generators and the contributions of the wing, vertical tail, and horizontal tail to the appropriate damping and stability were measured.
On the evolution of vortices in massive protoplanetary discs
NASA Astrophysics Data System (ADS)
Pierens, Arnaud; Lin, Min-Kai
2018-05-01
It is expected that a pressure bump can be formed at the inner edge of a dead-zone, and where vortices can develop through the Rossby Wave Instability (RWI). It has been suggested that self-gravity can significantly affect the evolution of such vortices. We present the results of 2D hydrodynamical simulations of the evolution of vortices forming at a pressure bump in self-gravitating discs with Toomre parameter in the range 4 - 30. We consider isothermal plus non-isothermal disc models that employ either the classical β prescription or a more realistic treatment for cooling. The main aim is to investigate whether the condensating effect of self-gravity can stabilize vortices in sufficiently massive discs. We confirm that in isothermal disc models with Q ≳ 15, vortex decay occurs due to the vortex self-gravitational torque. For discs with 3≲ Q ≲ 7, the vortex develops gravitational instabilities within its core and undergoes gravitational collapse, whereas more massive discs give rise to the formation of global eccentric modes. In non-isothermal discs with β cooling, the vortex maintains a turbulent core prior to undergoing gravitational collapse for β ≲ 0.1, whereas it decays if β ≥ 1. In models that incorpore both self-gravity and a better treatment for cooling, however, a stable vortex is formed with aspect ratio χ ˜ 3 - 4. Our results indicate that self-gravity significantly impacts the evolution of vortices forming in protoplanetary discs, although the thermodynamical structure of the vortex is equally important for determining its long-term dynamics.
Confinement Stabilizes a Bacterial Suspension into a Spiral Vortex
NASA Astrophysics Data System (ADS)
Wioland, Hugo; Woodhouse, Francis G.; Dunkel, Jörn; Kessler, John O.; Goldstein, Raymond E.
2013-06-01
Confining surfaces play crucial roles in dynamics, transport, and order in many physical systems, but their effects on active matter, a broad class of dynamically self-organizing systems, are poorly understood. We investigate here the influence of global confinement and surface curvature on collective motion by studying the flow and orientational order within small droplets of a dense bacterial suspension. The competition between radial confinement, self-propulsion, steric interactions, and hydrodynamics robustly induces an intriguing steady single-vortex state, in which cells align in inward spiraling patterns accompanied by a thin counterrotating boundary layer. A minimal continuum model is shown to be in good agreement with these observations.
Optical Rogue Waves in Vortex Turbulence.
Gibson, Christopher J; Yao, Alison M; Oppo, Gian-Luca
2016-01-29
We present a spatiotemporal mechanism for producing 2D optical rogue waves in the presence of a turbulent state with creation, interaction, and annihilation of optical vortices. Spatially periodic structures with bound phase lose stability to phase unbound turbulent states in complex Ginzburg-Landau and Swift-Hohenberg models with external driving. When the pumping is high and the external driving is low, synchronized oscillations are unstable and lead to spatiotemporal vortex-mediated turbulence with high excursions in amplitude. Nonlinear amplification leads to rogue waves close to turbulent optical vortices, where the amplitude tends to zero, and to probability density functions (PDFs) with long tails typical of extreme optical events.
Experimental Results of the Impact of an Ion Thruster Plasma on Microwave Propagation
NASA Technical Reports Server (NTRS)
Zaman, Afroz J.; Lambert, Kevin M.
2000-01-01
Electric thrusters are being considered for a variety of space missions because of the significant propellant savings that result from the use of high performance, electric propulsion technologies. Propellant mass savings reduces spacecraft launch requirements and increases mission lifetime and payload. The impact of electric thruster plasma plumes on microwave signal propagation however is an important spacecraft integration concern. Arcjets were the first electric thrusters to be considered for operational missions. Ling, et al. studied the effect of arcjet plumes on propagation. Arcjets produce a lightly ionized plume and Ling's analysis predicted that the plume would have a negligible effect on communication. Plumes from the higher performance ion thrusters being developed exhibit higher ionization levels, plasma temperatures and particle velocities than arcjets. Therefore, there was a need to assess the impact due to these plumes. To address this need, the authors designed and performed a series of experiments to examine propagation effects of plumes. The challenge with these experiments was that they had to be performed in the operational environment of the thruster. Therefore, the experiments were conducted inside a metal chamber which could be depressurized to simulate a near vacuum condition of space. The metal chamber presents a potential large source of error to the propagation measurements due to the corruption of the desired data by multiple wall reflections within the chamber. This chamber effect was minimized by employing a pulsed-continuous wave transmitter and receiver system. This system based on an HP8510 Network Analyzer, uses external hardware time gating to eliminate the clutter of the spurious reflections. Additionally, high gain antennas were used in the measurements to ensure that minimal amounts of energy were transmitted/received in undesirable directions. The measurements took place in Vacuum Facility 5 of the Electric Propulsion Laboratory at the NASA Glenn Research Center. This facility utilizes a cylindrical, stainless steel, vacuum chamber, which is 18.3 m long and 4.6 m in diameter. For the tests being described here a 30 cm diameter, xenon ion thruster was used. The thruster provided between 500 W and 2.3 kW of operating power. The thruster was mounted on a stand along the axis of the chamber near one of its ends and could be moved axially.
Experimental Results of the Impact of an Ion Thruster Plasma on Microwave Propagation
NASA Technical Reports Server (NTRS)
Zaman, Afroz J.; Lambert, Kevin M.
2000-01-01
Electric thrusters are being considered for a variety of space missions because of the significant propellant savings that result from the use of high performance, electric propulsion technologies, Propellant mass savings reduces spacecraft launch requirements and increases mission lifetime and payload. The impact of electric thruster plasma plumes on microwave signal propagation however is an important spacecraft integration concern. Arcjets were the first electric thrusters to be considered for operational missions. Ling, et al., studied the effect of arcjet plumes on propagation. Arcjets produce a lightly ionized plume and Ling's analysis predicted that the plume would have a negligible effect on communication. Plumes from the higher performance ion thrusters being developed exhibit higher ionization levels, plasma temperatures and particle velo@ities than arcjets. Therefore, there was a need to assess the impact due to these plumes. To address this need, the authors designed and performed a series of experiments to examine propagation effects of plumes. The challenge with these experiments was that they had to be performed in the operational environment of the thruster. Therefore, the experiments were conducted inside a metal chamber which could be depressurized to simulate a near vacuum condition of space. The metal chamber presents a potential large source of error to the propagation measurements due to the corruption of the desired data by multiple wall reflections within the chamber. This chamber effect was minimized by employing a pulsed-continuous wave transmitter and receiver system. This system, based on an HP8510 Network Analyzer, uses external hardware time gating to eliminate the clutter of the spurious reflections. Additionally, high gain antennas were used in the measurements to ensure that minimal amounts of energy ",ere transmitted/received in undesirable directions. The measurements took place in Vacuum Facility 5 of the Electric Propulsion Laboratory at the NASA Glenn Research Center. This facility utilizes a cylindrical, stainless steel, vacuum chamber, which is 18.3 m long and 4.6 m in diameter. For the tests being described here a 30 cm diameter, xenon ion thruster was used. The thruster provided between 500 W and 2.3 kW of operating power. The thruster was mounted on a stand along the axis of the chamber near one of its ends.
Hysteresis and precession of a swirling jet normal to a wall.
Shtern, V; Mi, J
2004-01-01
Interaction of a swirling jet with a no-slip surface has striking features of fundamental and practical interest. Different flow states and transitions among them occur at the same conditions in combustors, vortex tubes, and tornadoes. The jet axis can undergo precession and bending in combustors; this precession enhances large-scale mixing and reduces emissions of NOx. To explore the mechanisms of these phenomena, we address conically similar swirling jets normal to a wall. In addition to the Serrin model of tornadolike flows, a new model is developed where the flow is singularity free on the axis. New analytical and numerical solutions of the Navier-Stokes equations explain occurrence of multiple states and show that hysteresis is a common feature of wall-normal vortices or swirling jets no matter where sources of motion are located. Then we study the jet stability with the aid of a new approach accounting for deceleration and nonparallelism of the base flow. An appropriate transformation of variables reduces the stability problem for this strongly nonparallel flow to a set of ordinary differential equations. A particular flow whose stability is studied in detail is a half-line vortex normal to a rigid plane-a model of a tornado and of a swirling jet issuing from a nozzle in a combustor. Helical counter-rotating disturbances appear to be first growing as Reynolds number increases. Disturbance frequency changes its sign along the neutral curve while the wave number remains positive. Short disturbance waves propagate downstream and long waves propagate upstream. This helical instability causes bending of the vortex axis and its precession-the effects observed in technological flows and in tornadoes.
Plasma Shield for In-Air and Under-Water Beam Processes
NASA Astrophysics Data System (ADS)
Hershcovitch, Ady
2007-11-01
As the name suggests, the Plasma Shield is designed to chemically and thermally shield a target object by engulfing an area subjected to beam treatment with inert plasma. The shield consists of a vortex-stabilized arc that is employed to shield beams and workpiece area of interaction from atmospheric or liquid environment. A vortex-stabilized arc is established between a beam generating device (laser, ion or electron gun) and the target object. The arc, which is composed of a pure noble gas (chemically inert), engulfs the interaction region and shields it from any surrounding liquids like water or reactive gases. The vortex is composed of a sacrificial gas or liquid that swirls around and stabilizes the arc. In current art, many industrial processes like ion material modification by ion implantation, dry etching, and micro-fabrication, as well as, electron beam processing, like electron beam machining and electron beam melting is performed exclusively in vacuum, since electron guns, ion guns, their extractors and accelerators must be kept at a reasonably high vacuum, and since chemical interactions with atmospheric gases adversely affect numerous processes. Various processes involving electron ion and laser beams can, with the Plasma Shield be performed in practically any environment. For example, electron beam and laser welding can be performed under water, as well as, in situ repair of ship and nuclear reactor components. The plasma shield results in both thermal (since the plasma is hotter than the environment) and chemical shielding. The latter feature brings about in-vacuum process purity out of vacuum, and the thermal shielding aspect results in higher production rates. Recently plasma shielded electron beam welding experiments were performed resulting in the expected high quality in-air electron beam welding. Principle of operation and experimental results are to be discussed.
Nonparallel linear stability analysis of unconfined vortices
NASA Astrophysics Data System (ADS)
Herrada, M. A.; Barrero, A.
2004-10-01
Parabolized stability equations [F. P. Bertolotti, Th. Herbert, and P. R. Spalart, J. Fluid. Mech. 242, 441 (1992)] have been used to study the stability of a family of swirling jets at high Reynolds numbers whose velocity and pressure fields decay far from the axis as rm-2 and r2(m-2), respectively [M. Pérez-Saborid, M. A. Herrada, A. Gómez-Barea, and A. Barrero, J. Fluid. Mech. 471, 51 (2002)]; r is the radial distance and m is a real number in the interval 0
NASA Astrophysics Data System (ADS)
Ruane, Garreth; Mawet, Dimitri; Mennesson, Bertrand; Jewell, Jeffrey; Shaklan, Stuart
2018-01-01
The Habitable Exoplanet Imaging Mission concept requires an optical coronagraph that provides deep starlight suppression over a broad spectral bandwidth, high throughput for point sources at small angular separation, and insensitivity to temporally varying, low-order aberrations. Vortex coronagraphs are a promising solution that performs optimally on off-axis, monolithic telescopes and may also be designed for segmented telescopes with minor losses in performance. We describe the key advantages of vortex coronagraphs on off-axis telescopes such as (1) unwanted diffraction due to aberrations is passively rejected in several low-order Zernike modes relaxing the wavefront stability requirements for imaging Earth-like planets from <10 to >100 pm rms, (2) stars with angular diameters >0.1 λ / D may be sufficiently suppressed, (3) the absolute planet throughput is >10 % , even for unfavorable telescope architectures, and (4) broadband solutions (Δλ / λ > 0.1) are readily available for both monolithic and segmented apertures. The latter make use of grayscale apodizers in an upstream pupil plane to provide suppression of diffracted light from amplitude discontinuities in the telescope pupil without inducing additional stroke on the deformable mirrors. We set wavefront stability requirements on the telescope, based on a stellar irradiance threshold set at an angular separation of 3 ± 0.5λ / D from the star, and discuss how some requirements may be relaxed by trading robustness to aberrations for planet throughput.
Supersymmetrizing the Gorsky-Shifman-Yung soliton
NASA Astrophysics Data System (ADS)
Ireson, E.; Shifman, M.; Yung, A.
2018-05-01
We supersymmetrize the Hopfion studied by Gorsky et al. [Phys. Rev. D 88, 045026 (2013)., 10.1103/PhysRevD.88.045026]. This soliton represents a closed semilocal vortex string in U(1) gauge theory. It carries nonzero Hopf number due to the additional winding of a phase modulus as one moves along the closed string. We study this solution in N =2 supersymmetric QED with two flavors. As a preliminary exercise, we compactify one space dimension and consider a straight vortex with periodic boundary conditions. It turns out to be 1 /2 -BPS saturated. An additional winding along the string can be introduced and it does not spoil the BPS nature of the object. Next, we consider a ringlike vortex in a non-compact space and show that the circumference of the ring L can be stabilized once the previously mentioned winding along the string is introduced. Of course, the ringlike vortex is not BPS but its energy becomes close to the BPS bound if L is large, which can be guaranteed in the case that we have a large value of the angular momentum J . Thus we arrive at the concept of asymptotically BPS-saturated solitons. BPS saturation is achieved in the limit J →∞ .
In-flight flow visualization results from the X-29A aircraft at high angles of attack
NASA Technical Reports Server (NTRS)
Delfrate, John H.; Saltzman, John A.
1992-01-01
Flow visualization techniques were used on the X-29A aircraft at high angles of attack to study the vortical flow off the forebody and the surface flow on the wing and tail. The forebody vortex system was studied because asymmetries in the vortex system were suspected of inducing uncommanded yawing moments at zero sideslip. Smoke enabled visualization of the vortex system and correlation of its orientation with flight yawing moment data. Good agreement was found between vortex system asymmetries and the occurrence of yawing moments. Surface flow on the forward-swept wing of the X-29A was studied using tufts and flow cones. As angle of attack increased, separated flow initiated at the root and spread outboard encompassing the full wing by 30 deg angle of attack. In general, the progression of the separated flow correlated well with subscale model lift data. Surface flow on the vertical tail was also studied using tufts and flow cones. As angle of attack increased, separated flow initiated at the root and spread upward. The area of separated flow on the vertical tail at angles of attack greater than 20 deg correlated well with the marked decrease in aircraft directional stability.
Long-wavelength Instability of Trailing Vortices Behind a Delta Wing
NASA Astrophysics Data System (ADS)
Miller, G. D.; Williamson, C. H. K.
1996-11-01
The long-wavelength instability of a vortex pair is studied in the wake of a delta wing. While many previous studies of the instability exist, almost none are accompanied by accurate measurements of the vortex core parameters upon which the theoretical predictions depend. The present measurements of wavelength and maximum growth rate from visualization images are accompanied by extensive DPIV measurements of the distributions of vorticity and axial velocity. Axial velocity was found to be wake-like, with a velocity deficit. The vorticity distribution in the cores is well modeled by an Oseen vortex, as is the downstream growth of the core. The naturally occuring wavelength was measured to be 4.5 times the inter-vortex spacing, which compares very well with the wavelength of maximum growth rate predicted by theory using measured core parameters. Also, the measured value of the growth rate and the lower stability limit correspond well with theory. The response of the wake to forcing is also examined, and reveals that the wake is receptive to forcing at wavelengths near the natural wavelength. We demonstrate control over the rate at which the wake decays by hastening the action of the instabilty with initial forcing. Supported by NDSEG Fellowship for first author.
Topology and stability of a water-soybean-oil swirling flow
NASA Astrophysics Data System (ADS)
Carrión, Luis; Herrada, Miguel A.; Shtern, Vladimir N.
2017-02-01
This paper reveals and explains the flow topology and instability hidden in an experimental study by Tsai et al. [Tsai et al., Phys. Rev. E 92, 031002(R) (2015)], 10.1103/PhysRevE.92.031002. Water and soybean oil fill a sealed vertical cylindrical container. The rotating top disk induces the meridional circulation and swirl of both fluids. The experiment shows a flattop interface shape and vortex breakdown in the oil flow developing as the rotation strength R eo increases. Our numerical study shows that vortex breakdown occurs in the water flow at R eo=300 and in the oil flow at R eo=941 . As R eo increases, the vortex breakdown cell occupies most of the water domain and approaches the interface at R eo around 600. The rest of the (countercirculating) water separates from the axis as the vortex breakdown cells in the oil and water meet at the interface-axis intersection. This topological transformation of water flow significantly contributes to the development of the flattop shape. It is also shown that the steady axisymmetric flow suffers from shear-layer instability, which emerges in the water domain at R eo=810 .
Augmentation of maneuver performance by spanwise blowing
NASA Technical Reports Server (NTRS)
Erickson, G. E.; Campbell, J. F.
1977-01-01
A generalized wind tunnel model was tested to investigate new component concepts utilizing spanwise blowing to provide improved maneuver characteristics for advanced fighter aircraft. Primary emphasis was placed on high angle of attack performance, stability, and control at subsonic speeds. Spanwise blowing on a 44 deg swept trapezoidal wing resulted in leading edge vortex enhancement with subsequent large vortex-induced lift increments and drag polar improvements at the higher angles of attack. Small deflections of a leading edge flap delayed these lift and drag benefits to higher angles of attack. In addition, blowing was more effective at higher Mach numbers. Spanwise blowing in conjunction with a deflected trailing edge flap resulted in lift and drag benefits that exceeded the summation of the effects of each high lift device acting alone. Asymmetric blowing was an effective lateral control device at the higher angles of attack. Spanwise blowing on the wing reduced horizontal tail loading and improved the lateral-directional stability characteristics of a wing-horizontal tail-vertical tail configuration.
NASA Technical Reports Server (NTRS)
Erickson, Gary E.; Brandon, Jay M.
1987-01-01
An exploratory investigation was conducted of the nonlinear aerodynamic and stability characteristics of a tailless generic fighter configuration featuring a chine-shaped forebody coupled to a slender cropped delta wing in the NASA Langley Research Center's 12-Foot Low-Speed Wind Tunnel. Forebody and wing vortex flow mechanisms were identified through off-body flow visualizations to explain the trends in the longitudinal and lateral-directional characteristics at extreme attitudes (angles of attack and sideslip). The interactions of the vortical motions with centerline and wing-mounted vertical tail surfaces were studied and the flow phenomena were correlated with the configuration forces and moments. Single degree of freedom, free-to-roll tests were used to study the wing rock susceptibility of the generic fighter model. Modifications to the nose region of the chine forebody were examined and fluid mechanisms were established to account for their ineffectiveness in modulating the highly interactive forebody and wing vortex systems.
The flows structure in unsteady gas flow in pipes with different cross-sections
NASA Astrophysics Data System (ADS)
Plotnikov, Leonid; Nevolin, Alexandr; Nikolaev, Dmitrij
2017-10-01
The results of numerical simulation and experimental study of the structure of unsteady flows in pipes with different cross sections are presented in the article. It is shown that the unsteady gas flow in a circular pipe is axisymmetric without secondary currents. Steady vortex structures (secondary flows) are observed in pipes with cross sections in the form of a square and an equilateral triangle. It was found that these secondary flows have a significant impact on gas flows in pipes of complex configuration. On the basis of experimental researches it is established that the strong oscillatory phenomena exist in the inlet pipe of the piston engine arising after the closing of the intake valve. The placement of the profiled plots (with a cross section of a square or an equilateral triangle) in the intake pipe leads to the damping of the oscillatory phenomena and a more rapid stabilization of pulsating flow. This is due to the stabilizing effect of the vortex structures formed in the corners of this configuration.
Small Gas Turbine Combustor Primary Zone Study
NASA Technical Reports Server (NTRS)
Sullivan, R. E.; Young, E. R.; Miles, G. A.; Williams, J. R.
1983-01-01
A development process is described which consists of design, fabrication, and preliminary test evaluations of three approaches to internal aerodynamic primary zone flow patterns: (1) conventional double vortex swirl stabilization; (2) reverse flow swirl stabilization; and (3) large single vortex flow system. Each concept incorporates special design features aimed at extending the performance capability of the small engine combustor. Since inherent geometry of these combustors result in small combustion zone height and high surface area to volume ratio, design features focus on internal aerodynamics, fuel placement, and advanced cooling. The combustors are evaluated on a full scale annular combustor rig. A correlation of the primary zone performance with the overall performance is accomplished using three intrusion type gas sampling probes located at the exit of the primary zone section. Empirical and numerical methods are used for designing and predicting the performance of the three combustor concepts and their subsequent modifications. The calibration of analytical procedures with actual test results permits an updating of the analytical design techniques applicable to small reverse flow annular combustors.
Vortex spin-torque oscillator stabilized by phase locked loop using integrated circuits
NASA Astrophysics Data System (ADS)
Kreissig, Martin; Lebrun, R.; Protze, F.; Merazzo-Jaimes, K.; Hem, J.; Vila, L.; Ferreira, R.; Cyrille, M.-C.; Ellinger, F.; Cros, V.; Ebels, U.; Bortolotti, P.
2017-05-01
Spin-torque nano-oscillators (STO) are candidates for the next technological implementation of spintronic devices in commercial electronic systems. For use in microwave applications, improving the noise figures by efficient control of their phase dynamics is a mandatory requirement. In order to achieve this, we developed a compact phase locked loop (PLL) based on custom integrated circuits (ICs) and demonstrate that it represents an efficient way to reduce the phase noise level of a vortex based STO. The advantage of our approach to phase stabilize STOs is that our compact system is highly reconfigurable e.g. in terms of the frequency divider ratio N, RF gain and loop gain. This makes it robust against device to device variations and at the same time compatible with a large range of STOs. Moreover, by taking advantage of the natural highly non-isochronous nature of the STO, the STO frequency can be easily controlled by e.g. changing the divider ratio N.
Cavity-induced artificial gauge field in a Bose-Hubbard ladder
NASA Astrophysics Data System (ADS)
Halati, Catalin-Mihai; Sheikhan, Ameneh; Kollath, Corinna
2017-12-01
We consider theoretically ultracold interacting bosonic atoms confined to quasi-one-dimensional ladder structures formed by optical lattices and coupled to the field of an optical cavity. The atoms can collect a spatial phase imprint during a cavity-assisted tunneling along a rung via Raman transitions employing a cavity mode and a transverse running wave pump beam. By adiabatic elimination of the cavity field we obtain an effective Hamiltonian for the bosonic atoms, with a self-consistency condition. Using the numerical density-matrix renormalization-group method, we obtain a rich steady-state diagram of self-organized steady states. Transitions between superfluid to Mott-insulating states occur, on top of which we can have Meissner, vortex liquid, and vortex lattice phases. Also a state that explicitly breaks the symmetry between the two legs of the ladder, namely, the biased-ladder phase, is dynamically stabilized. We investigate the influence that a trapping potential has on the stability of the self-organized phases.
The MHD Kelvin-Helmholtz Instability. II. The Roles of Weak and Oblique Fields in Planar Flows
NASA Astrophysics Data System (ADS)
Jones, T. W.; Gaalaas, Joseph B.; Ryu, Dongsu; Frank, Adam
1997-06-01
We have carried out high-resolution MHD simulations of the nonlinear evolution of Kelvin-Helmholtz unstable flows in 21/2 dimensions. The modeled flows and fields were initially uniform except for a thin shear layer with a hyperbolic tangent velocity profile and a small, normal mode perturbation. These simulations extend work by Frank et al. and Malagoli, Bodo, & Rosner. They consider periodic sections of flows containing magnetic fields parallel to the shear layer, but projecting over a full range of angles with respect to the flow vectors. They are intended as preparation for fully three-dimensional calculations and to address two specific questions raised in earlier work: (1) What role, if any, does the orientation of the field play in nonlinear evolution of the MHD Kelvin-Helmholtz instability in 21/2 dimensions? (2) Given that the field is too weak to stabilize against a linear perturbation of the flow, how does the nonlinear evolution of the instability depend on strength of the field? The magnetic field component in the third direction contributes only through minor pressure contributions, so the flows are essentially two-dimensional. In Frank et al. we found that fields too weak to stabilize a linear perturbation may still be able to alter fundamentally the flow so that it evolves from the classical ``Cat's Eye'' vortex expected in gasdynamics into a marginally stable, broad laminar shear layer. In that process the magnetic field plays the role of a catalyst, briefly storing energy and then returning it to the plasma during reconnection events that lead to dynamical alignment between magnetic field and flow vectors. In our new work we identify another transformation in the flow evolution for fields below a critical strength. That we found to be ~10% of the critical field needed for linear stabilization in the cases we studied. In this ``very weak field'' regime, the role of the magnetic field is to enhance the rate of energy dissipation within and around the Cat's Eye vortex, not to disrupt it. The presence of even a very weak field can add substantially to the rate at which flow kinetic energy is dissipated. In all of the cases we studied magnetic field amplification by stretching in the vortex is limited by tearing mode, ``fast'' reconnection events that isolate and then destroy magnetic flux islands within the vortex and relax the fields outside the vortex. If the magnetic tension developed prior to reconnection is comparable to Reynolds stresses in the flow, that flow is reorganized during reconnection. Otherwise, the primary influence on the plasma is generation of entropy. The effective expulsion of flux from the vortex is very similar to that shown by Weiss for passive fields in idealized vortices with large magnetic Reynolds numbers. We demonstrated that this expulsion cannot be interpreted as a direct consequence of steady, resistive diffusion, but must be seen as a consequence of unsteady fast reconnection.
Falling, flapping, flying, swimming,...: High-Re fluid-solid interactions with vortex shedding
NASA Astrophysics Data System (ADS)
Michelin, Sebastien Honore Roland
The coupling between the motion of a solid body and the dynamics of the surrounding flow is essential to the understanding of a large number of engineering and physical problems, from the stability of a slender structure exposed to the wind to the locomotion of insects, birds and fishes. Because of the strong coupling on a moving boundary of the equations for the solid and fluid, the simulation of such problems is computationally challenging and expensive. This justifies the development of simplified models for the fluid-solid interactions to study their physical properties and behavior. This dissertation proposes a reduced-order model for the interaction of a sharp-edged solid body with a strongly unsteady high Reynolds number flow. In such a case, viscous forces in the fluid are often negligible compared to the fluid inertia or the pressure forces, and the thin boundary layers separate from the solid at the edges, leading to the shedding of large and persistent vortices in the solid's wake. A general two-dimensional framework is presented based on complex potential flow theory. The formation of the solid's vortical wake is accounted for by the shedding of point vortices with unsteady intensity from the solid's sharp edges, and the fluid-solid problem is reformulated exclusively as a solid-vortex interaction problem. In the case of a rigid solid body, the coupled problem is shown to reduce to a set of non-linear ordinary differential equations. This model is used to study the effect of vortex shedding on the stability of falling objects. The solid-vortex model is then generalized to study the fluttering instability and non-linear flapping dynamics of flexible plates or flags. The uttering instability and resulting flapping motion result from the competing effects of the fluid forcing and of the solid's flexural rigidity and inertia. Finally, the solid-vortex model is applied to the study of the fundamental effect of bending rigidity on the flapping performance of flapping appendages such as insect wings or fish fins.
NASA Astrophysics Data System (ADS)
Mittal, Sanjay; Kumar, Bhaskar
2003-02-01
Flow past a spinning circular cylinder placed in a uniform stream is investigated via two-dimensional computations. A stabilized finite element method is utilized to solve the incompressible Navier Stokes equations in the primitive variables formulation. The Reynolds number based on the cylinder diameter and free-stream speed of the flow is 200. The non-dimensional rotation rate, [alpha] (ratio of the surface speed and freestream speed), is varied between 0 and 5. The time integration of the flow equations is carried out for very large dimensionless time. Vortex shedding is observed for [alpha] < 1.91. For higher rotation rates the flow achieves a steady state except for 4.34 < [alpha] < 4:70 where the flow is unstable again. In the second region of instability, only one-sided vortex shedding takes place. To ascertain the instability of flow as a function of [alpha] a stabilized finite element formulation is proposed to carry out a global, non-parallel stability analysis of the two-dimensional steady-state flow for small disturbances. The formulation and its implementation are validated by predicting the Hopf bifurcation for flow past a non-rotating cylinder. The results from the stability analysis for the rotating cylinder are in very good agreement with those from direct numerical simulations. For large rotation rates, very large lift coefficients can be obtained via the Magnus effect. However, the power requirement for rotating the cylinder increases rapidly with rotation rate.
Vortex-scalar element calculations of a diffusion flame stabilized on a plane mixing layer
NASA Technical Reports Server (NTRS)
Ghoniem, Ahmed F.; Givi, Peyman
1987-01-01
The vortex-scalar element method, a scheme which utilizes vortex elements to discretize the region of high vorticity and scalar elements to represent species or temperature fields, is utilized in the numerical simulations of a two-dimensional reacting mixing layer. Computations are performed for a diffusion flame at high Reynolds and Peclet numbers without resorting to turbulence models. In the nonreacting flow, the mean and fluctuation profiles of a conserved scalar show good agreement with experimental measurements. Results for the reacting flow indicate that for temperature independent kinetics, the chemical reaction begins immediately downstream of the splitter plate where mixing starts. Results for the reacting flow with Arrhenius kinetics show an ignition delay, which depends on reactant temperature, before significant chemical reaction occurs. Harmonic forcing changes the structure of the layer, and concomitantly the rates of mixing and reaction, in accordance with experimental results. Strong stretch within the braids in the nonequilibrium kinetics case causes local flame quenching due to the temperature drop associated with the large convective fluxes.
Microphysical Modelling of the 1999-2000 Arctic Winter. 2; Chlorine Activation and Ozone Depletion
NASA Technical Reports Server (NTRS)
Drdla, K.; Schoeberl, M. R.; Gore, Warren J. (Technical Monitor)
2001-01-01
The effect of a range of assumptions about polar stratospheric clouds (PSCs) on ozone depletion has been assessed using at couple microphysical/photochemical model. The composition of the PSCs was varied (ternary solutions, nitric acid trihydrate, nitric acid dehydrate, or ice), as were parameters that affected the levels of denitrification and dehydration. Ozone depletion was affected by assumptions about PSC freezing because of the variability in resultant nitrification chlorine activation in all scenarios was similar despite the range of assumed PSC compositions. Vortex-average ozone loss exceeded 40% in the lower stratosphere for simulations without nitrification an additional ozone loss of 15-20% was possible in scenarios where vortex-average nitrification reached 60%. Ozone loss intensifies non-linearly with enhanced nitrification in air parcels with 90% nitrification 40% ozone loss in mid-April can be attributed to nitrification alone. However, these effects are sensitive to the stability of the vortex in springtime: nitrification only began to influence ozone depletion in mid-March.
Superfluidity and Chaos in low dimensional circuits
Arwas, Geva; Vardi, Amichay; Cohen, Doron
2015-01-01
The hallmark of superfluidity is the appearance of “vortex states” carrying a quantized metastable circulating current. Considering a unidirectional flow of particles in a ring, at first it appears that any amount of scattering will randomize the velocity, as in the Drude model, and eventually the ergodic steady state will be characterized by a vanishingly small fluctuating current. However, Landau and followers have shown that this is not always the case. If elementary excitations (e.g. phonons) have higher velocity than that of the flow, simple kinematic considerations imply metastability of the vortex state: the energy of the motion cannot dissipate into phonons. On the other hand if this Landau criterion is violated the circulating current can decay. Below we show that the standard Landau and Bogoliubov superfluidity criteria fail in low-dimensional circuits. Proper determination of the superfluidity regime-diagram must account for the crucial role of chaos, an ingredient missing from the conventional stability analysis. Accordingly, we find novel types of superfluidity, associated with irregular or chaotic or breathing vortex states. PMID:26315272
NASA Technical Reports Server (NTRS)
Campbell, J. F.
1975-01-01
Wind-tunnel data were obtained at a free-stream Mach number of 0.26 for a range of model angle of attack, jet thrust coefficient, and jet location. Results of this study show that the sectional effects to spanwise blowing are strongly dependent on angle of attack, jet thrust coefficient, and span location; the largest effects occur at the highest angles of attack and thrust coefficients and on the inboard portion of the wing. Full vortex lift was achieved at the inboard span station with a small blowing rate, but successively higher blowing rates were necessary to achieve full vortex lift at increased span distances. It is shown that spanwise blowing increases lift throughout the angle-of-attack range, delays wing stall to higher angles of attack, and improves the induced-drag polars. The leading-edge suction analogy can be used to estimate the section and total lifts resulting from spanwise blowing.
Imaging Magnetic Vortices Dynamics Using Lorentz Electron Microscopy with GHz Excitations
NASA Astrophysics Data System (ADS)
Zhu, Yimei
2015-03-01
Magnetic vortices in thin films are naturally formed spiral spin configurations with a core polarization pointing out of the film plane. They typically represent ground states with high structural and thermal stability as well as four different chirality-polarity combinations, offering great promise in the development of spin-based devices. For applications to spin oscillators, non-volatile memory and logic devices, the fundamental understanding and precise control of vortex excitations and dynamic switching behavior are essential. The compact dimensionality and fast spin dynamics set grand challenges for direct imaging technologies. Recently, we have developed a unique method to directly visualize the dynamic magnetic vortex motion using advanced Lorentz electron microscopy combined with GHz electronic excitations. It enables us to map the orbit of a magnetic vortex core in a permalloy square with <5nm resolution and to reveal subtle changes of the gyrotropic motion as the vortex is driven through resonance. Further, in multilayer spin-valve disks, we probed the strongly coupled coaxial vortex motion in the dipolar- and indirect exchange-coupled regimes and unraveled the underlying coherence and modality. Our approach is complementary to X-ray magnetic circular dichroism and is of general interest to the magnetism community as it paves a way to study fundamental spin phenomena with unprecedented resolution and accuracy. Collaborations with S.D. Pollard, J.F. Pulecio, D.A. Arena and K.S. Buchanan are acknowledged. Work supported by DOE-BES, Material Sciences and Engineering Division, under Contract No. DE-AC02-98CH10886.
A Preliminary Flight Investigation of Formation Flight for Drag Reduction on the C-17 Aircraft
NASA Technical Reports Server (NTRS)
Pahle, Joe; Berger, Dave; Venti, Michael W.; Faber, James J.; Duggan, Chris; Cardinal, Kyle
2012-01-01
Many theoretical and experimental studies have shown that aircraft flying in formation could experience significant reductions in fuel use compared to solo flight. To date, formation flight for aerodynamic benefit has not been thoroughly explored in flight for large transport-class vehicles. This paper summarizes flight data gathered during several two ship, C-17 formation flights at a single flight condition of 275 knots, at 25,000 ft MSL. Stabilized test points were flown with the trail aircraft at 1,000 and 3,000 ft aft of the lead aircraft at selected crosstrack and vertical offset locations within the estimated area of influence of the vortex generated by the lead aircraft. Flight data recorded at test points within the vortex from the lead aircraft are compared to data recorded at tare flight test points outside of the influence of the vortex. Since drag was not measured directly, reductions in fuel flow and thrust for level flight are used as a proxy for drag reduction. Estimated thrust and measured fuel flow reductions were documented at several trail test point locations within the area of influence of the leads vortex. The maximum average fuel flow reduction was approximately 7-8%, compared to the tare points flown before and after the test points. Although incomplete, the data suggests that regions with fuel flow and thrust reduction greater than 10% compared to the tare test points exist within the vortex area of influence.
Computational Simulations of the NASA Langley HyMETS Arc-Jet Facility
NASA Technical Reports Server (NTRS)
Brune, A. J.; Bruce, W. E., III; Glass, D. E.; Splinter, S. C.
2017-01-01
The Hypersonic Materials Environmental Test System (HyMETS) arc-jet facility located at the NASA Langley Research Center in Hampton, Virginia, is primarily used for the research, development, and evaluation of high-temperature thermal protection systems for hypersonic vehicles and reentry systems. In order to improve testing capabilities and knowledge of the test article environment, an effort is underway to computationally simulate the flow-field using computational fluid dynamics (CFD). A detailed three-dimensional model of the arc-jet nozzle and free-jet portion of the flow-field has been developed and compared to calibration probe Pitot pressure and stagnation-point heat flux for three test conditions at low, medium, and high enthalpy. The CFD model takes into account uniform pressure and non-uniform enthalpy profiles at the nozzle inlet as well as catalytic recombination efficiency effects at the probe surface. Comparing the CFD results and test data indicates an effectively fully-catalytic copper surface on the heat flux probe of about 10% efficiency and a 2-3 kpa pressure drop from the arc heater bore, where the pressure is measured, to the plenum section, prior to the nozzle. With these assumptions, the CFD results are well within the uncertainty of the stagnation pressure and heat flux measurements. The conditions at the nozzle exit were also compared with radial and axial velocimetry. This simulation capability will be used to evaluate various three-dimensional models that are tested in the HyMETS facility. An end-to-end aerothermal and thermal simulation of HyMETS test articles will follow this work to provide a better understanding of the test environment, test results, and to aid in test planning. Additional flow-field diagnostic measurements will also be considered to improve the modeling capability.
Flexible Ablators: Applications and Arcjet Testing
NASA Technical Reports Server (NTRS)
Arnold, James O.; Venkatapathy, Ethiraj; Beck, Robin A S.; Mcguire, Kathy; Prabhu, Dinesh K.; Gorbunov, Sergey
2011-01-01
Flexible ablators were conceived in 2009 to meet the technology pull for large, human Mars Exploration Class, 23 m diameter hypersonic inflatable aerodynamic decelerators. As described elsewhere, they have been recently undergoing initial technical readiness (TRL) advancement by NASA. The performance limits of flexible ablators in terms of maximum heat rates, pressure and shear remain to be defined. Further, it is hoped that this emerging technology will vastly expand the capability of future NASA missions involving atmospheric entry systems. This paper considers four topics of relevance to flexible ablators: (1) Their potential applications to near/far term human and robotic missions (2) Brief consideration of the balance between heat shield diameter, flexible ablator performance limits, entry vehicle controllability and aft-body shear layer impingement of interest to designers of very large entry vehicles, (3) The approach for developing bonding processes of flexible ablators for use on rigid entry bodies and (4) Design of large arcjet test articles that will enable the testing of flexible ablators in flight-like, combined environments (heat flux, pressure, shear and structural tensile loading). Based on a review of thermal protection system performance requirements for future entry vehicles, it is concluded that flexible ablators have broad applications to conventional, rigid entry body systems and are enabling to large deployable (both inflatable and mechanical) heat shields. Because of the game-changing nature of flexible ablators, it appears that NASA's Office of the Chief Technologist (OCT) will fund a focused, 3-year TRL advancement of the new materials capable of performance in heat fluxes in the range of 200-600 W/sq. cm. This support will enable the manufacture and use of the large-scale arcjet test designs that will be a key element of this OCT funded activity.
High Performance Arcjet Engines
NASA Technical Reports Server (NTRS)
Kennel, Elliot B.; Ivanov, Alexey Nikolayevich; Nikolayev, Yuri Vyacheslavovich
1994-01-01
This effort sought to exploit advanced single crystal tungsten-tantalum alloy material for fabrication of a high strength, high temperature arcjet anode. The use of this material is expected to result in improved strength, temperature resistance, and lifetime compared to state of the art polycrystalline alloys. In addition, the use of high electrical and thermal conductivity carbon-carbon composites was considered, and is believed to be a feasible approach. Highly conductive carbon-carbon composite anode capability represents enabling technology for rotating-arc designs derived from the Russian Scientific Research Institute of Thermal Processes (NIITP) because of high heat fluxes at the anode surface. However, for US designs the anode heat flux is much smaller, and thus the benefits are not as great as in the case of NIITP-derived designs. Still, it does appear that the tensile properties of carbon-carbon can be even better than those of single crystal tungsten alloys, especially when nearly-single-crystal fibers such as vapor grown carbon fiber (VGCF) are used. Composites fabricated from such materials must be coated with a refractory carbide coating in order to ensure compatibility with high temperature hydrogen. Fabrication of tungsten alloy single crystals in the sizes required for fabrication of an arcjet anode has been shown to be feasible. Test data indicate that the material can be expected to be at least the equal of W-Re-HfC polycrystalline alloy in terms of its tensile properties, and possibly superior. We are also informed by our colleagues at Scientific Production Association Luch (NP0 Luch) that it is possible to use Russian technology to fabricate polycrystalline W-Re-HfC or other high strength alloys if desired. This is important because existing engines must rely on previously accumulated stocks of these materials, and a fabrication capability for future requirements is not assured.
High performance arcjet engines
NASA Astrophysics Data System (ADS)
Kennel, Elliot B.; Ivanov, Alexey Nikolayevich; Nikolayev, Yuri Vyacheslavovich
1994-10-01
This effort sought to exploit advanced single crystal tungsten-tantalum alloy material for fabrication of a high strength, high temperature arcjet anode. The use of this material is expected to result in improved strength, temperature resistance, and lifetime compared to state of the art polycrystalline alloys. In addition, the use of high electrical and thermal conductivity carbon-carbon composites was considered, and is believed to be a feasible approach. Highly conductive carbon-carbon composite anode capability represents enabling technology for rotating-arc designs derived from the Russian Scientific Research Institute of Thermal Processes (NIITP) because of high heat fluxes at the anode surface. However, for US designs the anode heat flux is much smaller, and thus the benefits are not as great as in the case of NIITP-derived designs. Still, it does appear that the tensile properties of carbon-carbon can be even better than those of single crystal tungsten alloys, especially when nearly-single-crystal fibers such as vapor grown carbon fiber (VGCF) are used. Composites fabricated from such materials must be coated with a refractory carbide coating in order to ensure compatibility with high temperature hydrogen. Fabrication of tungsten alloy single crystals in the sizes required for fabrication of an arcjet anode has been shown to be feasible. Test data indicate that the material can be expected to be at least the equal of W-Re-HfC polycrystalline alloy in terms of its tensile properties, and possibly superior. We are also informed by our colleagues at Scientific Production Association Luch (NP0 Luch) that it is possible to use Russian technology to fabricate polycrystalline W-Re-HfC or other high strength alloys if desired. This is important because existing engines must rely on previously accumulated stocks of these materials, and a fabrication capability for future requirements is not assured.
NASA Technical Reports Server (NTRS)
Venkatapathy, Ethiraj; Arnold, James O.; Peterson, K. H.; Blosser, M. L.
2013-01-01
This paper describes aerothermodynamic and thermal structural testing that demonstrate the viability of three dimensional woven carbon cloth and advanced carbon-carbon (ACC) ribs for use in the Adaptive Deployable Entry Placement Technology (ADEPT). ADEPT is an umbrella-like entry system that is folded for stowage in the launch vehicle's shroud and deployed prior to reaching the atmeopheric interface. A key feature of the ADEPT concept is a lower ballistic coefficient for delivery of a given payload than seen with conventional, rigid body entry systems. The benefits that accrue from the lower ballistic coefficient incllude factor-of-ten reductions of deceleration forces and entry heating. The former enables consideration of new classes of scientific instruments for solar system exploration while the latter enables the design of a more efficient thermal protection system. The carbon cloth base lined for ADEPT has a dual use in that it serves as the thermal protection system and as the "skin" that transfers aerdynamic deceleration loads to its umbrella-like substructure. Arcjet testing described in this paper was conducted for some of the higher heating conditions for a future Venus mission using the ADEPT concept, thereby showing that the carbon cloth can perform in a relevant entry environment. Recently completed the thermal structural testing of the cloth attached to a representative ACC rib design is also described. Finally, this paper describes a preliminary engineering level code, based on the arcjet data, that can be used to estimate cloth thickness for future ADEPT missions and to predict carbon cloth performance in future arcjet tests.
Xu, Si-Liu; Zhao, Guo-Peng; Belić, Milivoj R; He, Jun-Rong; Xue, Li
2017-04-17
We analyze three-dimensional (3D) vector solitary waves in a system of coupled nonlinear Schrödinger equations with spatially modulated diffraction and nonlinearity, under action of a composite self-consistent trapping potential. Exact vector solitary waves, or light bullets (LBs), are found using the self-similarity method. The stability of vortex 3D LB pairs is examined by direct numerical simulations; the results show that only low-order vortex soliton pairs with the mode parameter values n ≤ 1, l ≤ 1 and m = 0 can be supported by the spatially modulated interaction in the composite trap. Higher-order LBs are found unstable over prolonged distances.
Flame-Generated Vorticity Production in Premixed Flame-Vortex Interactions
NASA Technical Reports Server (NTRS)
Patnaik, G.; Kailasanath, K.
2003-01-01
In this study, we use detailed time-dependent, multi-dimensional numerical simulations to investigate the relative importance of the processes leading to FGV in flame-vortex interactions in normal gravity and microgravity and to determine if the production of vorticity in flames in gravity is the same as that in zero gravity except for the contribution of the gravity term. The numerical simulations will be performed using the computational model developed at NRL, FLAME3D. FLAME3D is a parallel, multi-dimensional (either two- or three-dimensional) flame model based on FLIC2D, which has been used extensively to study the structure and stability of premixed hydrogen and methane flames.
Miniature whirlwinds produced in the laboratory by high-voltage electrical discharges.
Ryan, R T; Vonnegut, B
1970-06-12
Laboratory experiments showed that under certain conditions of vorticity the electrical heatinig produced by a high-voltage discharge at atmospheric pressure can cause the formation of a miniature tornado-like vortex. Once it forms, this vortex stabilizes the electrical discharge along its axis and changes its character from that of a spark to high-pressure variety of a glow discharge. Electrical and dynamic parameters were measured. By relating observations and measurements made in these experiments to previous work and to analogous situations in nature, it is concluded that the heating produced by electrical discharges in a large storm may play a significant role in forming and maintaining natural tornadoes.
Incipient singularities in the Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Siggia, E. D.; Pumir, A.
1985-01-01
Infinite pointwise stretching in a finite time for general initial conditions is found in a simulation of the Biot-Savart equation for a slender vortex tube in three dimensions. Viscosity is ineffective in limiting the divergence in the vorticity as long as it remains concentrated in tubes. Stability has not been shown.
The importance of being top-heavy: Intrinsic stability of flapping flight
NASA Astrophysics Data System (ADS)
Ristroph, Leif; Liu, Bin; Zhang, Jun
2011-11-01
We explore the stability of flapping flight in a model system that consists of a pyramid-shaped object that freely hovers in a vertically oscillating airflow. Such a ``bug'' not only generates sufficient aerodynamic force to keep aloft but also robustly maintains balance during free-flight. Flow visualization reveals that both weight support and intrinsic stability result from the periodic shedding of dipolar vortices. Counter-intuitively, the observed pattern of vortex shedding suggests that stability requires a high center-of-mass, which we verify by comparing the performance of top- and bottom-heavy bugs. Finally, we visit a zoo of other flapping flyers, including Mary Poppins' umbrella, a flying saucer or UFO, and Da Vinci's helicopter.
Thermal Testing of Planetary Probe Thermal Protection System Materials in Extreme Entry Environments
NASA Astrophysics Data System (ADS)
Gasch, M. J.
2014-06-01
The present talk provides an overview of recent updates to NASA’s IHF and AEDC’s H3 high temperature arcjet test facilities that to enable higher heatflux (>2000 W/cm2) and high pressure (>5 atm) testing of TPS.
Fundamental Studies of the Electrode Regions in Arcjet Thrusters
1998-03-01
Hall thruster . This contributed to a comprehensive study of the near exit region of our Hall discharge device. To compliment the LIF diagnostics on our Hall thrusters, we have made extensive measurements of the transient and time average plasma properties using conventional electrostatic
NASA Technical Reports Server (NTRS)
Kaufman, H. R.; Robinson, R. S.; Day, M. L.; Haag, T. W.
1990-01-01
The end-Hall thruster can provide electric propulsion with fixed masses, specific impulses, and power-to-thrust ratios intermediate of an arcjet and a gridded (electrostatic) ion thruster. With these characteristics, this thruster is a candidate for missions of intermediate difficulty, such as the north-south stationkeeping of geostationary satellites.
Electrostatic Plasma Accelerator (EPA)
NASA Technical Reports Server (NTRS)
Brophy, John R.; Aston, Graeme
1989-01-01
The Electrostatic Plasma Accelerator (EPA) is a thruster concept which promises specific impulse levels between low power arcjets and those of the ion engine while retaining the relative simplicity of the arcjet. The EPA thruster produces thrust through the electrostatic acceleration of a moderately dense plasma. No accelerating electrodes are used and the specific impulse is a direct function of the applied discharge voltage and the propellant atomic mass. The goal of the present program is to demonstrate feasibility of the EPA thruster concept through experimental and theoretical investigations of the EPA acceleration mechanism and discharge chamber performance. Experimental investigations will include operating the test bed ion (TBI) engine as an EPA thruster and parametrically varying the thruster geometry and operating conditions to quantify the electrostatic plasma acceleration effect. The theoretical investigations will include the development of a discharge chamber model which describes the relationships between the engine size, plasma properties, and overall performance. For the EPA thruster to be a viable propulsion concept, overall thruster efficiencies approaching 30% with specific impulses approaching 1000 s must be achieved.
NASA Technical Reports Server (NTRS)
Balboni, John A.; Gokcen, Tahir; Hui, Frank C. L.; Graube, Peter; Morrissey, Patricia; Lewis, Ronald
2015-01-01
The paper describes the consolidation of NASA's high powered arc-jet testing at a single location. The existing plasma arc-jet wind tunnels located at the Johnson Space Center were relocated to Ames Research Center while maintaining NASA's technical capability to ground-test thermal protection system materials under simulated atmospheric entry convective heating. The testing conditions at JSC were reproduced and successfully demonstrated at ARC through close collaboration between the two centers. New equipment was installed at Ames to provide test gases of pure nitrogen mixed with pure oxygen, and for future nitrogen-carbon dioxide mixtures. A new control system was custom designed, installed and tested. Tests demonstrated the capability of the 10 MW constricted-segmented arc heater at Ames meets the requirements of the major customer, NASA's Orion program. Solutions from an advanced computational fluid dynamics code were used to aid in characterizing the properties of the plasma stream and the surface environment on the calorimeters in the supersonic flow stream produced by the arc heater.
Effects of insulator ablation on the operation of a quasi-steady MPD arc
NASA Technical Reports Server (NTRS)
Boyle, M. J.; Jahn, R. G.
1973-01-01
Multimegawatt operation of quasi-steady MPD arcjets can involve serious ablation of the insulator surfaces within the arc discharge chamber. Various degrees of insulator ablation manifest themselves by significantly perturbing the voltage-current characteristics and the exhaust velocity profiles. Voltage-current characteristics for two different insulator materials, Plexiglas and boron nitride, are interpreted in terms of an empirical Ohm's law. Use of the refractory insulator material eliminates the ablation-dominated nature of the terminal voltage, but the exhaust stream is still disturbed by insulator material. An Alfven critical velocity model can be applied to this influence of insulator ablation on exhaust velocity. Appropriate changes in the propellant injection geometry eliminate this influence and result in arcjet operation which is independent of insulator material. A particular combination of propellant injection geometries reduces the terminal voltage for a given current and mass flow while maintaining insulator-independent operation, thus implying an improvement in the overall efficiency of the device.
Measured and calculated spectral radiation from a blunt body shock layer in an arc-jet wind tunnel
NASA Technical Reports Server (NTRS)
Babikian, Dikran S.; Palumbo, Giuseppe; Craig, Roger A.; Park, Chul; Palmer, Grant; Sharma, Surendra P.
1994-01-01
Spectra of the shock layer radiation incident on the stagnation point of a blunt body placed in an arc-jet wind tunnel were measured over the wavelength range from 600 nm to 880 nm. The test gas was a mixture of 80 percent air and 20 percent argon by mass, and the run was made in a highly nonequilibrium environment. The observed spectra contained contributions from atomic lines of nitrogen, oxygen, and argon, of bound-free and free-free continua, and band systems of N2 and N2(+). The measured spectra were compared with the synthetic spectra, which were obtained through four steps: the calculation of the arc-heater characteristics, of the nozzle flow, of the blunt-body flow, and the nonequilibrium radiation processes. The results show that the atomic lines are predicted approximately correctly, but all other sources are underpredicted by orders of magnitude. A possible explanation for the discrepancy is presented.
NASA Astrophysics Data System (ADS)
Blanchard, Antoine; Bergman, Lawrence A.; Vakakis, Alexander F.
2017-07-01
We computationally investigate the dynamics of a linearly-sprung circular cylinder immersed in an incompressible flow and undergoing transverse vortex-induced vibration (VIV), to which is attached a rotational nonlinear energy sink (NES) consisting of a mass that freely rotates at constant radius about the cylinder axis, and whose motion is restrained by a rotational linear viscous damper. The inertial coupling between the rotational motion of the attached mass and the rectilinear motion of the cylinder is ;essentially nonlinear;, which, in conjunction with dissipation, allows for one-way, nearly irreversible targeted energy transfer (TET) from the oscillating cylinder to the nonlinear dissipative attachment. At the intermediate Reynolds number Re = 100, the NES-equipped sprung cylinder undergoes repetitive cycles of slowly decaying oscillations punctuated by intervals of chaotic instabilities. During the slowly decaying portion of each cycle, the dynamics of the cylinder is regular and, for large enough values of the ratio ε of the NES mass to the total mass (i.e., NES mass plus cylinder mass), can lead to significant vortex street elongation with partial stabilization of the wake. As ε approaches zero, no such vortex elongation is observed and the wake patterns appear similar to that for a sprung cylinder with no NES. We apply proper orthogonal decomposition (POD) to the velocity flow field during a slowly decaying portion of the solution and show that, in situations where vortex elongation occurs, the NES, though not in direct contact with the surrounding fluid, has a drastic effect on the underlying flow structures, imparting significant and continuous passive redistribution of energy among POD modes. We construct a POD-based reduced-order model for the lift coefficient to characterize energy transactions between the fluid and the cylinder throughout the slowly decaying cycle. We introduce a quantitative signed measure of the work done by the fluid on the cylinder over one quasi-period of the slowly decaying response and find that vortex elongation is associated with a sign change of that measure, indicating that a reversal of the direction of energy transfer, with the cylinder ;leaking energy back; to the flow, is responsible for partial stabilization and elongation of the wake. We interpret these findings in terms of the spatial structure and energy distribution of the POD modes, and relate them to the mechanism of transient resonance capture into a slow invariant manifold of the fluid-structure interaction dynamics.
Dynamics of circular arrangements of vorticity in two dimensions
NASA Astrophysics Data System (ADS)
Swaminathan, Rohith V.; Ravichandran, S.; Perlekar, Prasad; Govindarajan, Rama
2016-07-01
The merger of two like-signed vortices is a well-studied problem, but in a turbulent flow, we may often have more than two like-signed vortices interacting. We study the merger of three or more identical corotating vortices initially arranged on the vertices of a regular polygon. At low to moderate Reynolds numbers, we find an additional stage in the merger process, absent in the merger of two vortices, where an annular vortical structure is formed and is long lived. Vortex merger is slowed down significantly due to this. Such annular vortices are known at far higher Reynolds numbers in studies of tropical cyclones, which have been noticed to a break down into individual vortices. In the preannular stage, vortical structures in a viscous flow are found here to tilt and realign in a manner similar to the inviscid case, but the pronounced filaments visible in the latter are practically absent in the former. Five or fewer vortices initially elongate radially, and then reorient their long axis closer to the azimuthal direction so as to form an annulus. With six or more vortices, the initial alignment is already azimuthal. Interestingly at higher Reynolds numbers, the merger of an odd number of vortices is found to proceed very differently from that of an even number. The former process is rapid and chaotic whereas the latter proceeds more slowly via pairing events. The annular vortex takes the form of a generalized Lamb-Oseen vortex (GLO), and diffuses inward until it forms a standard Lamb-Oseen vortex. For lower Reynolds number, the numerical (fully nonlinear) evolution of the GLO vortex follows exactly the analytical evolution until merger. At higher Reynolds numbers, the annulus goes through instabilities whose nonlinear stages show a pronounced difference between even and odd mode disturbances. Here again, the odd mode causes an early collapse of the annulus via decaying turbulence into a single central vortex, whereas the even mode disturbance causes a more orderly progression into a single vortex. Results from linear stability analysis agree with the nonlinear simulations, and predict the frequencies of the most unstable modes better than they predict the growth rates. It is hoped that the present findings, that multiple vortex merger is qualitatively different from the merger of two vortices, will motivate studies on how multiple vortex interactions affect the inverse cascade in two-dimensional turbulence.
NASA Technical Reports Server (NTRS)
Otto, S. R.; Bassom, Andrew P.
1992-01-01
The nonlinear development is studied of the most unstable Gortler mode within a general 3-D boundary layer upon a suitably concave surface. The structure of this mode was first identified by Denier, Hall and Seddougui (1991) who demonstrated that the growth rate of this instability is O(G sup 3/5) where G is the Gortler number (taken to be large here), which is effectively a measure of the curvature of the surface. Previous researchers have described the fate of the most unstable mode within a 2-D boundary layer. Denier and Hall (1992) discussed the fully nonlinear development of the vortex in this case and showed that the nonlinearity causes a breakdown of the flow structure. The effect of crossflow and unsteadiness upon an infinitesimal unstable mode was elucidated by Bassom and Hall (1991). They demonstrated that crossflow tends to stabilize the most unstable Gortler mode, and for certain crossflow/frequency combinations the Gortler mode may be made neutrally stable. These vortex configurations naturally lend themselves to a weakly nonlinear stability analysis; work which is described in a previous article by the present author. Here we extend the ideas of Denier and Hall (1992) to the three-dimensional boundary layer problem. It is found that the numerical solution of the fully nonlinear equations is best conducted using a method which is essentially an adaption of that utilized by Denier and Hall (1992). The influence of crossflow and unsteadiness upon the breakdown of the flow is described.
Nonlinear dynamics of an elliptic vortex embedded in an oscillatory shear flow.
Ryzhov, Eugene A
2017-11-01
The nonlinear dynamics of an elliptic vortex subjected to a time-periodic linear external shear flow is studied numerically. Making use of the ideas from the theory of nonlinear resonance overlaps, the study focuses on the appearance of chaotic regimes in the ellipse dynamics. When the superimposed flow is stationary, two general types of the steady-state phase portrait are considered: one that features a homoclinic separatrix delineating bounded and unbounded phase trajectories and one without a separatrix (all the phase trajectories are bounded in a periodic domain). When the external flow is time-periodic, the ensuing nonlinear dynamics differs significantly in both cases. For the case with a separatrix and two distinct types of phase trajectories: bounded and unbounded, the effect of the most influential nonlinear resonance with the winding number of 1:1 is analyzed in detail. Namely, the process of occupying the central stability region associated with the steady-state elliptic critical point by the stability region associated with the nonlinear resonance of 1:1 as the perturbation frequency gradually varies is investigated. A stark increase in the persistence of the central regular dynamics region against perturbation when the resonance of 1:1 associated stability region occupies the region associated with the steady-state elliptic critical point is observed. An analogous persistence of the regular motion occurs for higher perturbation frequencies when the corresponding stability islands reach the central stability region associated with the steady-state elliptic point. An analysis for the case with the resonance of 1:2 is presented. For the second case with only bounded phase trajectories and, therefore, no separatrix, the appearance of much bigger stability islands associated with nonlinear resonances compared with the case with a separatrix is reported.
NASA Astrophysics Data System (ADS)
Tomikawa, Y.; Yamanouchi, T.
2010-08-01
An analysis of the static stability and ozone vertical gradient in the ozone tropopause based (OTB) coordinate is applied to the ozonesonde data at 10 stations in the Southern Hemisphere (SH) extratropics. The tropopause inversion layer (TIL) with a static stability maximum just above the tropopause shows similar seasonal variations at two Antarctic stations, which are latitudinally far from each other. Since the sunshine hour varies with time in a quite different way between these two stations, it implies that the radiative heating due to solar ultraviolet absorption of ozone does not contribute to the seasonal variation of the TIL. A meridional section of the static stability in the OTB coordinate shows that the static stability just above the tropopause has a large latitudinal gradient between 60° S and 70° S in austral winter because of the absence of the TIL over the Antarctic. It is accompanied by an increase of westerly shear with height above the tropopause, so that the polar-night jet is formed above this latitude region. This result suggests a close relationship between the absence of the TIL and the stratospheric polar vortex in the Antarctic winter. A vertical gradient of ozone mixing ratio, referred to as ozone vertical gradient, around the tropopause shows similar latitudinal and seasonal variations with the static stability in the SH extratropics. In a height region above the TIL, a small ozone vertical gradient in the midlatitudes associated with the Antarctic ozone hole is observed in a height region of the subvortex but not around the polar vortex. This is a clear evidence of active latitudinal mixing between the midlatitudes and subvortex.
Thermal stabilization of superconducting sigma strings and their drum vortons
NASA Astrophysics Data System (ADS)
Carter, Brandon; Brandenberger, Robert H.; Davis, Anne-Christine
2002-05-01
We discuss various issues related to stabilized embedded strings in a thermal background. In particular, we demonstrate that such strings will generically become superconducting at moderately low temperatures, thus enhancing their stability. We then present a new class of defects-drum vortons-which arise when a small symmetry breaking term is added to the potential. We display these points within the context of the O(4) sigma model, relevant for hadrodynamics below the QCD scale. This model admits ``embedded defects'' (topological defect configurations of a simpler-in this case O(2) symmetric-model obtained by imposing an embedding constraint) that are unstable in the full model at zero temperature, but that can be stabilized (by electromagnetic coupling to photons) in a thermal gas at moderately high termperatures. It is shown here that below the embedded defect stabilization threshold, there will still be stabilized cosmic string defects. However, they will not be of the symmetric embedded vortex type, but of an ``asymmetric'' vortex type, and are automatically superconducting. In the presence of weak symmetry breaking terms, such as arise naturally when using the O(4) model for hadrodynamics, the strings become the boundary of a new kind of cosmic sigma membrane, with tension given by the pion mass. The string current would then make it possible for a loop to attain a (classically) stable equilibrium state that differs from an ``ordinary'' vorton state by the presence of a sigma membrane stretched across it in a drum-like configuration. Such defects will however be entirely destabilized if the symmetry breaking is too strong, as is found to be the case-due to the rather large value of the pion mass-in the hadronic application of the O(4) sigma model.
Stability analysis of the onset of vortex shedding for wakes behind flat plates
NASA Astrophysics Data System (ADS)
Wang, Shuai; Liu, Li; Zhang, Shi-Bo; Wen, Feng-Bo; Zhou, Xun
2018-04-01
Above a critical Reynolds number, wake flows behind flat plates become globally unstable, the leading modal instability in this case is known as Kelvin-Helmholtz mechanism. In this article, both local and BiGlobal linear instability analyses are performed numerically to study the onset of the shedding process. Flat plates with different base shapes are considered to assess geometry effects, and the relation between the critical shedding Reynolds number, Re_cr , and the boundary layer thickness is studied. Three types of base shapes are used: square, triangular and elliptic. It is found that the base shape has a great impact on the growth rate of least stable disturbance mode, thus would influence Re_cr greatly, but it has little effect on the vortex shedding frequency. The shedding frequency is determined mainly by boundary layer thickness and has little dependence on the Reynolds number and base shape. We find that for a fixed Reynolds number, increasing boundary layer thickness acted in two ways to modify the global stability characteristics: It increases the length of the absolute unstable region and it makes the flow less locally absolutely unstable in the near-wake region, and these two effects work against each other to destabilize or stabilize the flow.
Effect of controlled spanwise bending on the stability of the leading-edge vortex
NASA Astrophysics Data System (ADS)
Bhattacharya, Samik; Scofield, Tyler
2017-11-01
When an airfoil is accelerated from rest at a high angle of attack, a leading-edge vortex (LEV) forms, which soon gets destabilized and convects downstream. In this work, we control the spanwise bending of a flat plate wing to actively influence the vorticity transfer from the LEV. Our aim is to investigate the effect of spanwise curvature variation on the geometry, growth, and stability of the LEV during the acceleration phase. A 3D printed flat-plate with a chord of 5 cm and span of 15 cm is towed in a small fish tank at different angles of attack greater than 15°. The plate starts from rest and reaches a Reynolds number of 5000 after travelling different multiples and submultiples of chord-length. We carry out dye-flow visualization and measure the circulation build up and the convection velocity of the LEV with the help of particle image velocimetry (PIV). The unsteady loads coming on to the wing is measured with a force sensor. An analytical scheme for computing the load from the measured displacement of the plate is presented and compared with the force sensor data. Preliminary results indicate that controlled curvature variation can influence the formation and stability of an LEV.
Stability of streamwise vortices
NASA Technical Reports Server (NTRS)
Khorrami, M. K.; Grosch, C. E.; Ash, R. L.
1987-01-01
A brief overview of some theoretical and computational studies of the stability of streamwise vortices is given. The local induction model and classical hydrodynamic vortex stability theories are discussed in some detail. The importance of the three-dimensionality of the mean velocity profile to the results of stability calculations is discussed briefly. The mean velocity profile is provided by employing the similarity solution of Donaldson and Sullivan. The global method of Bridges and Morris was chosen for the spatial stability calculations for the nonlinear eigenvalue problem. In order to test the numerical method, a second order accurate central difference scheme was used to obtain the coefficient matrices. It was shown that a second order finite difference method lacks the required accuracy for global eigenvalue calculations. Finally the problem was formulated using spectral methods and a truncated Chebyshev series.
T-mixer operating with water at different temperatures: Simulation and stability analysis
NASA Astrophysics Data System (ADS)
Siconolfi, L.; Camarri, S.; Salvetti, M. V.
2018-03-01
In this paper we investigate the transition from the vortex to the engulfment regime in a T-mixer when the two entering flows have different viscosity. In particular we consider as working fluid water entering the two inlet channels of the mixer at two different temperatures. Contrary to the isothermal case, at low Reynolds numbers the vortex regime shows only a single reflectional symmetry, due to the nonhomogeneous distribution of the viscosity. Increasing the Reynolds number, a symmetry-breaking bifurcation drives the system to a new steady flow configuration, usually called the engulfment regime, similar to what it is possible to observe in an isothermal case. This flow regime is associated with an increase of the mixing between the two inlet streams. It is shown by direct numerical simulation (DNS) and by stability analysis that the engulfment regime is promoted by the temperature difference. Starting from the DNSs, the resulting flow fields are analyzed in detail considering different temperature jumps between the two inlet boundaries. Furthermore, dedicated linear stability analyses are carried out to investigate the instability mechanism associated with the occurrence of the engulfment regime. In particular, similarly to the case without temperature differences, the onset of engulfment is driven by the momentum equation, and the temperature field does not lead to any additional instability mechanism. However, the existence of a temperature field leads to quantitative changes of the stability characteristics and of the resulting flow fields via a variation of the viscosity coefficient.
Hedgehog spin-vortex crystal stabilized in a hole-doped iron-based superconductor
Meier, William R.; Ding, Qing-Ping; Kreyssig, Andreas; ...
2018-02-09
Magnetism is widely considered to be a key ingredient of unconventional superconductivity. In contrast to cuprate high-temperature superconductors, antiferromagnetism in most Fe-based superconductors (FeSCs) is characterized by a pair of magnetic propagation vectors, (π,0) and (0,π). Consequently, three different types of magnetic order are possible. Of these, only stripe-type spin-density wave (SSDW) and spin-charge-density wave (SCDW) orders have been observed. A realization of the proposed spin-vortex crystal (SVC) order is noticeably absent. We report a magnetic phase consistent with the hedgehog variation of SVC order in Ni-doped and Co-doped CaKFe 4As 4 based on thermodynamic, transport, structural and local magneticmore » probes combined with symmetry analysis. The exotic SVC phase is stabilized by the reduced symmetry of the CaKFe 4As 4 structure. Thus, our results suggest that the possible magnetic ground states in FeSCs have very similar energies, providing an enlarged configuration space for magnetic fluctuations to promote high-temperature superconductivity.« less
Hedgehog spin-vortex crystal stabilized in a hole-doped iron-based superconductor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meier, William R.; Ding, Qing-Ping; Kreyssig, Andreas
Magnetism is widely considered to be a key ingredient of unconventional superconductivity. In contrast to cuprate high-temperature superconductors, antiferromagnetism in most Fe-based superconductors (FeSCs) is characterized by a pair of magnetic propagation vectors, (π,0) and (0,π). Consequently, three different types of magnetic order are possible. Of these, only stripe-type spin-density wave (SSDW) and spin-charge-density wave (SCDW) orders have been observed. A realization of the proposed spin-vortex crystal (SVC) order is noticeably absent. We report a magnetic phase consistent with the hedgehog variation of SVC order in Ni-doped and Co-doped CaKFe 4As 4 based on thermodynamic, transport, structural and local magneticmore » probes combined with symmetry analysis. The exotic SVC phase is stabilized by the reduced symmetry of the CaKFe 4As 4 structure. Thus, our results suggest that the possible magnetic ground states in FeSCs have very similar energies, providing an enlarged configuration space for magnetic fluctuations to promote high-temperature superconductivity.« less
Local heterogeneities in cardiac systems suppress turbulence by generating multi-armed rotors
NASA Astrophysics Data System (ADS)
Zhang, Zhihui; Steinbock, Oliver
2016-05-01
Ventricular fibrillation is an extremely dangerous cardiac arrhythmia that is linked to rotating waves of electric activity and chaotically moving vortex lines. These filaments can pin to insulating, cylindrical heterogeneities which swiftly become the new rotation backbone of the local wave field. For thin cylinders, the stabilized rotation is sufficiently fast to repel the free segments of the turbulent filament tangle and annihilate them at the system boundaries. The resulting global wave pattern is periodic and highly ordered. Our cardiac simulations show that also thicker cylinders can establish analogous forms of tachycardia. This process occurs through the spontaneous formation of pinned multi-armed vortices. The observed number of wave arms N depends on the cylinder radius and is associated to stability windows that for N = 2, 3 partially overlap. For N = 1, 2, we find a small gap in which the turbulence is removed but the pinned rotor shows complex temporal dynamics. The relevance of our findings to human cardiology are discussed in the context of vortex pinning to more complex-shaped anatomical features and remodeled myocardium.
Magnetic-field-induced vortex-lattice transition in HgBa 2 CuO 4 + δ
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Jeongseop A.; Xin, Yizhou; Stolt, I.
Measurements of the 17O nuclear magnetic resonance (NMR) quadrupolar spectrum of apical oxygen in HgBa 2CuO 4+δ were performed over a range of magnetic fields from 6.4–30 T in the superconducting state. Oxygen-isotope-exchanged single crystals were investigated with doping corresponding to superconducting transition temperatures from 74 K underdoped, to 78 K overdoped. The apical oxygen site was chosen since its NMR spectrum has narrow quadrupolar satellites that are well separated from any other resonance. Nonvortex contributions to the spectra can be deconvolved in the time domain to determine the local magnetic field distribution from the vortices. Numerical analysis using Brandt'smore » Ginzburg-Landau theory was used to find structural parameters of the vortex lattice, penetration depth, and coherence length as a function of magnetic field in the vortex solid phase. From this analysis we report a vortex structural transition near 15 T from an oblique lattice with an opening angle of 73° at low magnetic fields to a triangular lattice with 60° stabilized at high field. The temperature for onset of vortex dynamics has been identified from spin-spin relaxation. This is independent of the magnetic field at sufficiently high magnetic field similar to that reported for YBa 2Cu 3O 7 and Bi 2Sr 2CaCu 2O 8+δ and is correlated with mass anisotropy of the material. Here, this behavior is accounted for theoretically only in the limit of very high anisotropy.« less
The evolutionary development of high specific impulse electric thruster technology
NASA Technical Reports Server (NTRS)
Sovey, James S.; Hamley, John A.; Patterson, Michael J.; Rawlin, Vincent K.; Myers, Roger M.
1992-01-01
Electric propulsion flight and technology demonstrations conducted primarily by Europe, Japan, China, the U.S., and the USSR are reviewed. Evolutionary mission applications for high specific impulse electric thruster systems are discussed, and the status of arcjet, ion, and magnetoplasmadynamic thrusters and associated power processor technologies are summarized.
Modification and Validation of Conceptual Design Aerodynamic Prediction Method HASC95 With VTXCHN
NASA Technical Reports Server (NTRS)
Albright, Alan E.; Dixon, Charles J.; Hegedus, Martin C.
1996-01-01
A conceptual/preliminary design level subsonic aerodynamic prediction code HASC (High Angle of Attack Stability and Control) has been improved in several areas, validated, and documented. The improved code includes improved methodologies for increased accuracy and robustness, and simplified input/output files. An engineering method called VTXCHN (Vortex Chine) for prediciting nose vortex shedding from circular and non-circular forebodies with sharp chine edges has been improved and integrated into the HASC code. This report contains a summary of modifications, description of the code, user's guide, and validation of HASC. Appendices include discussion of a new HASC utility code, listings of sample input and output files, and a discussion of the application of HASC to buffet analysis.
Experiments on two- and three-dimensional vortex flows in lid-driven cavities
NASA Astrophysics Data System (ADS)
Siegmann-Hegerfeld, Tanja; Albensoeder, Stefan; Kuhlmann, Hendrik C.
2009-11-01
Vortex flows in one-sided lid-driven cavities with different cross-sectional aspect ratios (γ = 0.26 up to γ = 6.3) are investigated experimentally. In all cases the spanwise aspect ratio λ>>γ is very large and much larger than most previous experiments. Flow-structure visualizations will be presented together with quantitative LDA and PIV measurements. The experimental results are in good agreement with the critical data from numerical stability analyses and with nonlinear simulations. Experimentally, we find four different three-dimensional instabilities. Particular attention is paid to the so-called C4 mode which arises at large cross-sectional aspect ratios. When the spanwise aspect ratio is small the first bifurcation of the C4 mode is strongly imperfect.
Hung, Hsiang-Hsuan; Wu, Jiansheng; Sun, Kuei; Chiu, Ching-Kai
2017-06-14
We study a vortex chain in a thin film of a topological insulator with proximity-induced superconductivity-a promising platform to realize Majorana zero modes (MZMs)-by modeling it as a two-leg Majorana ladder. While each pair of MZMs hybridizes through vortex tunneling, we hereby show that MZMs can be stabilized on the ends of the ladder with the presence of tilted external magnetic field and four-Majorana interaction. Furthermore, a fruitful phase diagram is obtained by controlling the direction of magnetic field and the thickness of the sample. We reveal many-body Majorana states and interaction-induced topological phase transitions and also identify trivial-superconducting and commensurate/incommensurate charge-density-wave states in the phase diagram.
On the Use pf Active Flow Control to Trim and Control a Tailles Aircraft Model
NASA Astrophysics Data System (ADS)
Jentzsch, Marvin
The Stability And Control CONfiguration (SACCON) model represents an emerging trend in airplane design where the classical tube, wing and empennage are replaced by a single tailless configuration. The challenge is to assure that these designs are stable and controllable. Nonlinear aerodynamic behavior is observed on the SACCON at higher incidence angles due to leading edge vortex structures. Active Flow Control (AFC) used in preliminary design represents a promising solution to the longitudinal stability problems and this was demonstrated experimentally on a semi span model. AFC can be used to trim the SACCON in pitch and it alters forces and moments comparable to common control surface deflections. A combination of AFC and control surface deflection may increase the overall efficiency and opens up a variety of maneuvering possibilities. This implies that AFC should be treated concomitantly with other design parameters and should be considered in the preliminary design process already and not as an add-on tool. Integral force and moment data was supplemented by observations using Pressure Sensitive Paint (PSP) and flow visualization. Two arrays of individually controlled sweeping jets, one located along the leading edge and the other along the flap hinge provided the AFC input needed to alter the flow. The array positioned over the flap-hinge of the model was most effective in stabilizing the wing by decreasing the pitching moment at lower and intermediate angles of incidence. This effect was achieved by reducing the spanwise flow on the swept back portion of the wing through jet-entrainment that also affected the leading edge vortex. Leading edge actuation showed some beneficial effects by inhibiting the formation of the leading edge vortex near the wing tip. A preliminary study using suction was carried out. The tests were carried out at Mach numbers smaller than 0.2 and Reynolds numbers based on the root chord of the model that approached 106.
The leading-edge vortex of yacht sails
NASA Astrophysics Data System (ADS)
Arredondo-Galeana, Abel; Viola, Ignazio Maria
2017-11-01
We experimentally show, for the first time, that a stable Leading-Edge Vortex (LEV) can be formed on an asymmetric spinnaker, which is a high-lift sail used by yachts to sail downwind. We tested a 3D printed rigid sail in a water flume at a chord-based Reynolds number of ca. 104. We found that on the leeward side of the sail (the suction side), the flow separates at the leading edge reattaching further downstream and forming a stable LEV. The LEV grows in diameter from the root to the tip of the sail, where it merges with the tip vortex. We detected the LEV using the γ criterion, and we verified its stability over time. The lift contribution provided by the LEV was computed solving a complex potential model of each sail section. This analysis indicated that the LEV provides a substantial contribution to the total sail's lift. These findings suggest that the maximum lift of low-aspect-ratio wings with a sharp leading edge, such as spinnakers, can be enhanced by promoting a stable LEV. This work was funded by the Consejo Nacional de Ciencia y Tecnologia (CONACYT).
One-stage free-vortex aerodynamic window with pressure ratio 100 and atmospheric exhaust
NASA Astrophysics Data System (ADS)
Malkov, Victor M.; Trilis, A. V.; Savin, Andrew V.; Druzhinin, S. L.
2005-03-01
The aerodynamic windows (AW) are intended for a high power extraction from the gas laser optical cavity, where the pressure is much lower than environment pressure. The main requirements for the aerodynamic windows are to satisfy a low level of optical disturbances in a laser beam extraction channel and an air leakage absence into the optical cavity. Free vortex AW are most economic from a point of working gas consumption and the greatest pressure differential is realized on them at an exhaust to atmosphere. For ideal gas it is possible to receive as much as large pressure differential, however for real gas a pressure differential more than P>=50 is difficult to achieve. To achieve the pressure ratio 100 in free vortex single-stage AW the method of stabilizing of boundary layer was used. The gas of curtain was decelerated in the diffuser and was exhausted into the atmosphere straightly. The pressure recovery improvement was achieved by using the boundary layer blowing inside the diffuser. Only 10% of total mass flow was used for boundary layer blowing.
Origin and Manipulation of Stable Vortex Ground States in Permalloy Nanotubes.
Zimmermann, Michael; Meier, Thomas Norbert Gerhard; Dirnberger, Florian; Kákay, Attila; Decker, Martin; Wintz, Sebastian; Finizio, Simone; Josten, Elisabeth; Raabe, Jörg; Kronseder, Matthias; Bougeard, Dominique; Lindner, Jürgen; Back, Christian Horst
2018-05-09
We present a detailed study on the static magnetic properties of individual permalloy nanotubes (NTs) with hexagonal cross-sections. Anisotropic magnetoresistance (AMR) measurements and scanning transmission X-ray microscopy (STXM) are used to investigate their magnetic ground states and its stability. We find that the magnetization in zero applied magnetic field is in a very stable vortex state. Its origin is attributed to a strong growth-induced anisotropy with easy axis perpendicular to the long axis of the tubes. AMR measurements of individual NTs in combination with micromagnetic simulations allow the determination of the magnitude of the growth-induced anisotropy for different types of NT coatings. We show that the strength of the anisotropy can be controlled by introducing a buffer layer underneath the magnetic layer. The magnetic ground states depend on the external magnetic field history and are directly imaged using STXM. Stable vortex domains can be introduced by external magnetic fields and can be erased by radio-frequency magnetic fields applied at the center of the tubes via a strip line antenna.
Determination of Wind Turbine Near-Wake Length Based on Stability Analysis
NASA Astrophysics Data System (ADS)
Sørensen, Jens N.; Mikkelsen, Robert; Sarmast, Sasan; Ivanell, Stefan; Henningson, Dan
2014-06-01
A numerical study on the wake behind a wind turbine is carried out focusing on determining the length of the near-wake based on the instability onset of the trailing tip vortices shed from the turbine blades. The numerical model is based on large-eddy simulations (LES) of the Navier-Stokes equations using the actuator line (ACL) method. The wake is perturbed by applying stochastic or harmonic excitations in the neighborhood of the tips of the blades. The flow field is then analyzed to obtain the stability properties of the tip vortices in the wake of the wind turbine. As a main outcome of the study it is found that the amplification of specific waves (traveling structures) along the tip vortex spirals is responsible for triggering the instability leading to wake breakdown. The presence of unstable modes in the wake is related to the mutual inductance (vortex pairing) instability where there is an out-of-phase displacement of successive helix turns. Furthermore, using the non-dimensional growth rate, it is found that the pairing instability has a universal growth rate equal to π/2. Using this relationship, and the assumption that breakdown to turbulence occurs once a vortex has experienced sufficient growth, we provide an analytical relationship between the turbulence intensity and the stable wake length. The analysis leads to a simple expression for determining the length of the near wake. This expression shows that the near wake length is inversely proportional to thrust, tip speed ratio and the logarithmic of the turbulence intensity.
NASA Astrophysics Data System (ADS)
Reinaud, J. N.; Sokolovskiy, M. A.; Carton, X.
2017-03-01
We investigate equilibrium solutions for tripolar vortices in a two-layer quasi-geostrophic flow. Two of the vortices are like-signed and lie in one layer. An opposite-signed vortex lies in the other layer. The families of equilibria can be spanned by the distance (called separation) between the two like-signed vortices. Two equilibrium configurations are possible when the opposite-signed vortex lies between the two other vortices. In the first configuration (called ordinary roundabout), the opposite signed vortex is equidistant to the two other vortices. In the second configuration (eccentric roundabouts), the distances are unequal. We determine the equilibria numerically and describe their characteristics for various internal deformation radii. The two branches of equilibria can co-exist and intersect for small deformation radii. Then, the eccentric roundabouts are stable while unstable ordinary roundabouts can be found. Indeed, ordinary roundabouts exist at smaller separations than eccentric roundabouts do, thus inducing stronger vortex interactions. However, for larger deformation radii, eccentric roundabouts can also be unstable. Then, the two branches of equilibria do not cross. The branch of eccentric roundabouts only exists for large separations. Near the end of the branch of eccentric roundabouts (at the smallest separation), one of the like-signed vortices exhibits a sharp inner corner where instabilities can be triggered. Finally, we investigate the nonlinear evolution of a few selected cases of tripoles.
The three-dimensional evolution of a plane mixing layer. Part 1: The Kelvin-Helmholtz roll-up
NASA Technical Reports Server (NTRS)
Rogers, Michael M.; Moser, Robert D.
1991-01-01
The Kelvin Helmholtz roll up of three dimensional, temporally evolving, plane mixing layers were simulated numerically. All simulations were begun from a few low wavenumber disturbances, usually derived from linear stability theory, in addition to the mean velocity profile. The spanwise disturbance wavelength was taken to be less than or equal to the streamwise wavelength associated with the Kelvin Helmholtz roll up. A standard set of clean structures develop in most of the simulations. The spanwise vorticity rolls up into a corrugated spanwise roller, with vortex stretching creating strong spanwise vorticity in a cup shaped region at the vends of the roller. Predominantly streamwise rib vortices develop in the braid region between the rollers. For sufficiently strong initial three dimensional disturbances, these ribs collapse into compact axisymmetric vortices. The rib vortex lines connect to neighboring ribs and are kinked in the opposite direction of the roller vortex lines. Because of this, these two sets of vortex lines remain distinct. For certain initial conditions, persistent ribs do not develop. In such cases the development of significant three dimensionality is delayed. When the initial three dimensional disturbance energy is about equal to, or less than, the two dimensional fundamental disturbance energy, the evolution of the three dimensional disturbance is nearly linear (with respect to the mean and the two dimensional disturbances), at least until the first Kelvin Helmholtz roll up is completed.
Onset of chaos in helical vortex breakdown at low Reynolds number
NASA Astrophysics Data System (ADS)
Pasche, S.; Avellan, F.; Gallaire, F.
2018-06-01
The nonlinear dynamics of a swirling wake flow stemming from a Graboswksi-Berger vortex [Grabowski and Berger, J. Fluid Mech. 75, 525 (1976), 10.1017/S0022112076000360] in a semi-infinite domain is addressed at low Reynolds numbers for a fixed swirl number S =1.095 , defined as the ratio between the characteristic tangential velocity and the centerline axial velocity. In this system, only pure hydrodynamic instabilities develop and interact through the quadratic nonlinearities of the Navier-Stokes equations. Such interactions lead to the onset of chaos at a Reynolds value of Re=220 . This chaotic state is reached by following a Ruelle-Takens-Newhouse scenario, which is initiated by a Hopf bifurcation (the spiral vortex breakdown) as the Reynolds number increases. At larger Reynolds value, a frequency synchronization regime appears followed by a chaotic state again. This scenario is corroborated by nonlinear time series analyses. Stability analysis around the time-average flow and temporal-azimuthal Fourier decomposition of the nonlinear flow distributions both identify successfully the developing vortices and provide deeper insight into the development of the flow patterns leading to this route to chaos. Three single-helical vortices are involved: the primary spiral associated with the spiral vortex breakdown, a downstream spiral, and a near-wake spiral. As the Reynolds number increases, the frequencies of these vortices become closer, increasing their interactions by nonlinearity to eventually generate a strong chaotic axisymmetric oscillation.
NASA Astrophysics Data System (ADS)
Dou, Huashu; Zhang, Shuo; Yang, Hui; Setoguchi, Toshiaki; Kinoue, Yoichi
2018-04-01
Flow around two rotating side-by-side circular cylinders of equal diameter D is numerically studied at the Reynolds number 40≤ Re ≤200 and various rotation rate θ i . The incoming flow is assumed to be two-dimensional laminar flow. The governing equations are the incompressible Navier-Stokes equations and solved by the finite volume method (FVM). The ratio of the center-to-center spacing to the cylinder diameter is T/D=2. The objective of the present work is to investigate the effect of rotational speed and Reynolds number on the stability of the flow. The simulation results are compared with the experimental data and a good agreement is achieved. The stability of the flow is analyzed by using the energy gradient theory, which produces the energy gradient function K to identify the region where the flow is the most prone to be destabilized and the degree of the destabilization. Numerical results reveal that K is the most significant at the separated shear layers of the cylinder pair. With Re increases, the length of the wake is shorter and the vortex shedding generally exhibits a symmetrical distribution for θ i < θ crit . It is also shown that the unsteady vortex shedding can be suppressed by rotating the cylinders in the counter-rotating mode.
Adaptable Holders for Arc-Jet Screening Candidate Thermal Protection System Repair Materials
NASA Technical Reports Server (NTRS)
Riccio, Joe; Milhoan, Jim D.
2010-01-01
Reusable holders have been devised for evaluating high-temperature, plasma-resistant re-entry materials, especially fabrics. Typical material samples tested support thermal-protection-system damage repair requiring evaluation prior to re-entry into terrestrial atmosphere. These tests allow evaluation of each material to withstand the most severe predicted re-entry conditions.
Role of Microstructure on the Performance of UHTCs
NASA Technical Reports Server (NTRS)
Johnson, Sylvia M.; Gasch, Matthew J.; Lawson, John W.; Gusman, Michael I.; Stackpoole, Mairead
2010-01-01
We have investigated a number of methods to control microstructure. We have routes to form: a) in situ "composites" b) Very fine microstructures. Arcjet testing and other characterization of monolithic materials. Control oxidation through microstructure and composition. Beginning to incorporate these materials as matrices for composites. Modeling effort to facilitate material design and characterization.
Nonequilibrium in a low power arcjet nozzle
NASA Technical Reports Server (NTRS)
Zube, Dieter M.; Myers, Roger M.
1991-01-01
Emission spectroscopy measurements were made of the plasma flow inside the nozzle of a 1 kW class arcjet thruster. The thruster propellant was a hydrogen-nitrogen mixture used to simulate fully decomposed hydrazine. The 0.25 mm diameter holes were drilled into the diverging section of the tungsten thruster nozzle to provide optical access to the internal flow. Atomic electron excitation, vibrational, and rotational temperatures were determined for the expanding plasma using relative line intensity techniques. The atomic excitation temperatures decreased from 18,000K at a location 3 mm downstream of the constrictor to 9,000K at a location 9 mm from the constrictor, while the molecular vibrational and rotational temperatures decreased from 6,500K to 2,500K and from 8,000K to 3,000K, respectively, between the same locations. The electron density measured using hydrogen H line Stark broadening decreased from about 10(exp 15) cm(-3) to about 2 times 10(exp 14) cm(-3) during the expansion. The results show that the plasma is highly nonequilibrium throughout the nozzle, with most relaxation times equal or exceeding the particle residence time.
Hollow cathodes for arcjet thrusters
NASA Technical Reports Server (NTRS)
Luebben, Craig R.; Wilbur, Paul J.
1987-01-01
In an attempt to prevent exterior spot emission, hollow cathode bodies and orifice plates were constructed from boron nitride which is an electrical insulator, but the orifice plates melted and/or eroded at high interelectrode pressures. The most suitable hollow cathodes tested included a refractory metal orifice plate in a boron nitride body, with the insert insulated electrically from the orifice plate. In addition, the hollow cathode interior was evacuated to assure a low pressure at the insert surface, thus promoting diffuse electron emission. At high interelectrode pressures, the electrons tended to flow through the orifice plate rather than through the orifice, which could result in overheating of the orifice plate. Using a carefully aligned centerline anode, electron flow through the orifice could be sustained at interelectrode pressures up to 500 torr - but the current flow path still occasionally jumped from the orifice to the orifice plate. Based on these tests, it appears that a hollow cathode would operate most effectively at pressures in the arcjet regime with a refractory, chemically stable, and electrically insulating cathode body and orifice plate.
Advanced materials for thermal protection system
NASA Astrophysics Data System (ADS)
Heng, Sangvavann; Sherman, Andrew J.
1996-03-01
Reticulated open-cell ceramic foams (both vitreous carbon and silicon carbide) and ceramic composites (SiC-based, both monolithic and fiber-reinforced) were evaluated as candidate materials for use in a heat shield sandwich panel design as an advanced thermal protection system (TPS) for unmanned single-use hypersonic reentry vehicles. These materials were fabricated by chemical vapor deposition/infiltration (CVD/CVI) and evaluated extensively for their mechanical, thermal, and erosion/ablation performance. In the TPS, the ceramic foams were used as a structural core providing thermal insulation and mechanical load distribution, while the ceramic composites were used as facesheets providing resistance to aerodynamic, shear, and erosive forces. Tensile, compressive, and shear strength, elastic and shear modulus, fracture toughness, Poisson's ratio, and thermal conductivity were measured for the ceramic foams, while arcjet testing was conducted on the ceramic composites at heat flux levels up to 5.90 MW/m2 (520 Btu/ft2ṡsec). Two prototype test articles were fabricated and subjected to arcjet testing at heat flux levels of 1.70-3.40 MW/m2 (150-300 Btu/ft2ṡsec) under simulated reentry trajectories.
Investigation of the Arcjet near Field Plume Using Electrostatic Probes
NASA Technical Reports Server (NTRS)
Sankovic, John M.
1990-01-01
The near field plume of a 1 kW class arcjet thruster was investigated using electrostatic probes of various geometries. The electron number densities and temperatures were determined in a simulated hydrazine plume at axial distances between 3 cm (1.2 in.) and 15 cm (5.9 in.) and radial distances extending to 10 cm (3.9 in.) off centerline. Values of electron number densities obtained using cylindrical and spherical probes of different geometries agreed very well. The electron density on centerline followed a source flow approximation for axial distances as near as 3 cm (1.2 in.) from the nozzle exit plane. The model agreed well with previously obtained data in the far field. The effects of propellant mass flow rate and input power level were also studied. Cylindrical probes were used to obtain ion streamlines by changing the probe orientation with respect to the flow. The effects of electrical configuration on the plasma characteristics of the plume were also investigated by using a segmented anode/nozzle thruster. The results showed that the electrical configuration in the nozzle affected the distribution of electrons in the plume.
Investigation of the arcjet plume near field using electrostatic probes
NASA Technical Reports Server (NTRS)
Sankovic, John M.
1990-01-01
The near field plum of a 1 kW class arcjet thruster was investigated using electrostatic probes of various geometries. The electron number densities and temperatures were determined in a simulated hydrazine plume at axial distances between 3 cm (1.2 in) and 15 cm (5.9 in) and radial distances extending to 10 cm (3.9 in) off centerline. Values of electron number densities obtained using cylindrical and spherical probes of different geometries agreed very well. The electron density on centerline followed a source flow approximation for axial distances as near as 3 cm (1.2 in) from the nozzle exit plane. The model agreed well with previously obtained data in the far field. The effects of propellant mass flow rate and input power level were also studied. Cylindrical probes were used to obtain ion streamlines by changing the probe orientation with respect to the flow. The effects of electrical configuration on the plasma characteristics of the plume were also investigated by using a segmented anode/nozzle thruster. The results showed that the electrical configuration in the nozzle affected the distribution of electrons in the plume.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorshkov, Aleksei V
2012-09-30
The problem of stabilizing a solution of the 2D Navier-Stokes system defined in the exterior of a bounded domain with smooth boundary is investigated. For a given initial velocity field a control on the boundary of the domain must be constructed such that the solution stabilizes to a prescribed vortex solution or trivial solution at the rate of 1/t{sup k}. On the way, related questions are investigated, concerning the behaviour of the spectrum of an operator under a relatively compact perturbation and the existence of attracting invariant manifolds. Bibliography: 21 titles.
Effects of wing modification on an aircraft's aerodynamic parameters as determined from flight data
NASA Technical Reports Server (NTRS)
Hess, R. A.
1986-01-01
A study of the effects of four wing-leading-edge modifications on a general aviation aircraft's stability and control parameters is presented. Flight data from the basic aircraft configuration and configurations with wing modifications are analyzed to determine each wing geometry's stability and control parameters. The parameter estimates and aerodynamic model forms are obtained using the stepwise regression and maximum likelihood techniques. The resulting parameter estimates and aerodynamic models are verified using vortex-lattice theory and by analysis of each model's ability to predict aircraft behavior. Comparisons of the stability and control derivative estimates from the basic wing and the four leading-edge modifications are accomplished so that the effects of each modification on aircraft stability and control derivatives can be determined.
Hawkmoth flight stability in turbulent vortex streets.
Ortega-Jimenez, Victor Manuel; Greeter, Jeremy S M; Mittal, Rajat; Hedrick, Tyson L
2013-12-15
Shedding of vortices is a common phenomenon in the atmosphere over a wide range of spatial and temporal scales. However, it is unclear how these vortices of varying scales affect the flight performance of flying animals. In order to examine these interactions, we trained seven hawkmoths (Manduca sexta) (wingspan ~9 cm) to fly and feed in a wind tunnel under steady flow (controls) and in the von Kármán vortex street of vertically oriented cylinders (two different cylinders with diameters of 10 and 5 cm) at speeds of 0.5, 1 and 2 m s(-1). Cylinders were placed at distances of 5, 25 and 100 cm upstream of the moths. Moths exhibited large amplitude yaw oscillations coupled with modest oscillations in roll and pitch, and slight increases in wingbeat frequency when flying in both the near (recirculating) and middle (vortex dominated) wake regions. Wingbeat amplitude did not vary among treatments, except at 1 m s(-1) for the large cylinder. Yaw and roll oscillations were synchronized with the vortex shedding frequencies in moths flying in the wake of the large cylinder at all speeds. In contrast, yaw and pitch were synchronized with the shedding frequency of small vortices at speeds ≤1 m s(-1). Oscillations in body orientation were also substantially smaller in the small cylinder treatment when compared with the large cylinder, regardless of temporal or non-dimensional spatial scale. Moths flying in steady conditions reached a higher air speed than those flying into cylinder wakes. In general, flight effects produced by the cylinder wakes were qualitatively similar among the recirculating and vortex-dominated wake regions; the magnitude of those effects, however, declined gradually with downstream distance.
NASA Astrophysics Data System (ADS)
Alligné, S.; Decaix, J.; Müller, A.; Nicolet, C.; Avellan, F.; Münch, C.
2017-04-01
Due to the massive penetration of alternative renewable energies, hydropower is a key energy conversion technology for stabilizing the electrical power network by using hydraulic machines at off design operating conditions. At full load, the axisymmetric cavitation vortex rope developing in Francis turbines acts as an internal source of energy, leading to an instability commonly referred to as self-excited surge. 1-D models are developed to predict this phenomenon and to define the range of safe operating points for a hydropower plant. These models require a calibration of several parameters. The present work aims at identifying these parameters by using CFD results as objective functions for an optimization process. A 2-D Venturi and 3-D Francis turbine are considered.
Long-wave instabilities of two interlaced helical vortices
NASA Astrophysics Data System (ADS)
Quaranta, H. U.; Brynjell-Rahkola, M.; Leweke, T.; Henningson, D. S.
2016-09-01
We present a comparison between experimental observations and theoretical predictions concerning long-wave displacement instabilities of the helical vortices in the wake of a two-bladed rotor. Experiments are performed with a small-scale rotor in a water channel, using a set-up that allows the individual triggering of various instability modes at different azimuthal wave numbers, leading to local or global pairing of successive vortex loops. The initial development of the instability and the measured growth rates are in good agreement with the predictions from linear stability theory, based on an approach where the helical vortex system is represented by filaments. At later times, local pairing develops into large-scale distortions of the vortices, whereas for global pairing the non-linear evolution returns the system almost to its initial geometry.
NASA Technical Reports Server (NTRS)
Winter, Michael
2012-01-01
The characterization of ablation and recession of heat shield materials during arc jet testing is an important step towards understanding the governing processes during these tests and therefore for a successful extrapolation of ground test data to flight. The behavior of ablative heat shield materials in a ground-based arc jet facility is usually monitored through measurement of temperature distributions (across the surface and in-depth), and through measurement of the final surface recession. These measurements are then used to calibrate/validate materials thermal response codes, which have mathematical models with reasonably good fidelity to the physics and chemistry of ablation, and codes thus calibrated are used for predicting material behavior in flight environments. However, these thermal measurements only indirectly characterize the pyrolysis processes within an ablative material pyrolysis is the main effect during ablation. Quantification of pyrolysis chemistry would therefore provide more definitive and useful data for validation of the material response codes. Information of the chemical products of ablation, to various levels of detail, can be obtained using optical methods. Suitable optical methods to measure the shape and composition of these layers (with emphasis on the blowing layer) during arc jet testing are: 1) optical emission spectroscopy (OES) 2) filtered imaging 3) laser induced fluorescence (LIF) and 4) absorption spectroscopy. Several attempts have been made to optically measure the material response of ablative materials during arc-jet testing. Most recently, NH and OH have been identified in the boundary layer of a PICA ablator. These species are suitable candidates for a detection through PLIF which would enable a spatially-resolved characterization of the blowing layer in terms of both its shape and composition. The recent emission spectroscopy data will be presented and future experiments for a qualitative and quantitative characterization of the material response of ablative materials during arc-jet testing will be discussed.
Vortex Lattice UXO Mobility Model for Reef-Type Range Environments
2012-07-01
unexploded ordnance WAA Wide Area Assessment 10...of a given underwater UXO field. By using the upgraded UXO MM to develop an initial Wide Area Assessment (WAA), that subdivides a UXO field into... areas outside of human contact and b) areas where UXO are fully stabilized and pose little risk to humans. Further consideration of the risks presented
1964-10-01
DURING APPROACH. OGEE Wing Planform on modified F5D-1 SkylancerAirplane Flight Tests. 'Flow Visualization Photographs'. In landing approach trials at Moffett Field, vapor trails are generated by low pressure in votex flow near wing leading edge on upper wing surface. Studies were undertaken in efforts to determine if there were adverse effects of vortex flow on the dynamic stability of the aircraft.
NASA Astrophysics Data System (ADS)
Zhao, Yuanyang; Xiao, Jun; Li, Liansheng; Yang, Qichao; Liu, Guangbin; Wang, Le
2015-08-01
The centrifugal compressors are widely used in many fields. When the centrifugal compressors operate at the edge of the surge line, the compressor will be unstable. In addition, if the centrifugal compressor runs at this situation long time, the damage will be occurred on compressor. There are some kinds of method to improve and enlarge the range of the centrifugal compressors, such as inlet guide vane, and casing treatment. For casing treatment method, some structures have been researched, such as holed recirculation, basic slot casing treatment and groove casing treatment. All these researches are the passive methods. This paper present a new stability enhancement method based Active Control Casing Treatment (ACCT). All parts of this new method are introduced in detail. The control strategy of the system is mentioned in the paper. As a research sample, a centrifugal compressor having this system is researched using CFD method. The study focuses on the effect of the active control system on the impeller flow. The vortex in impeller is changed by the active control system. And this leads to the suppression of the extension of vortex blockage in impeller and to contribute to the enhancement of the compressor operating range.
NASA Astrophysics Data System (ADS)
Iwao, Toru; Naito, Yuto; Shimizu, Yuta; Yamamoto, Shinji
2016-10-01
The problem of an emergency large-scale lighting with the high-intensity discharge (HID) lamp is the lack of radiation intensity because of inappropriate energy balance. Some researchers have researched that the radiation power depended on the arc temperature increases with increasing the current. However, the heat loss and the erosion of the electrode as well as the radiation power increases with increasing the current excessively. AC current replaces alternately the cathode and the anode. Thus, it is possible to avoid the concentration of the heat transfer to the anode. Moreover, the lamp efficiency decreases with increasing the current excessively because of ultra violet rays increment. It is necessary to control the temperature distribution with controlling the current and radius. In this paper, the radiation power as a function of the current in the wall-stabilized AC arc of water-cooled vortex type with small caliber was measured. As a result, the radiation power increased with increasing the current and appropriate wall radius. The radiation of AC arc is smaller than it of DC arc. And, the erosion of electrode decreases.
NASA Technical Reports Server (NTRS)
Johnston, J. P.; Halleen, R. M.; Lezius, D. K.
1972-01-01
Experiments on fully developed turbulent flow in a channel which is rotating at a steady rate about a spanwise axis are described. The Coriolis force components in the region of two-dimensional mean flow affect both local and global stability. Three stability-related phenomena were observed or inferred: (1) the reduction (increase) of the rate of wall-layer streak bursting in locally stabilized (destabilized) wall layers; (2) the total suppression of transition to turbulence in a stabilized layer; (3) the development of large-scale roll cells on the destabilized side of the channel by growth of a Taylor-Gortler vortex instability. Local effects of rotational stabilization, such as reduction of the turbulent stress in wall layers, can be related to the local Richardson number in a simple way. This paper not only investigates this effect, but also, by methods of flow visualization, exposes some of the underlying structure changes caused by rotation.-
Features of sound propagation through and stability of a finite shear layer
NASA Technical Reports Server (NTRS)
Koutsoyannis, S. P.
1976-01-01
The plane wave propagation, the stability and the rectangular duct mode problems of a compressible inviscid linearly sheared parallel, but otherwise homogeneous flow, are shown to be governed by Whittaker's equation. The exact solutions for the perturbation quantities are essentially Whittaker M-functions. A number of known results are obtained as limiting cases of exact solutions. For the compressible finite thickness shear layer it is shown that no resonances and no critical angles exist for all Mach numbers, frequencies and shear layer velocity profile slopes except in the singular case of the vortex sheet.
Sensitivity analysis of hydrodynamic stability operators
NASA Technical Reports Server (NTRS)
Schmid, Peter J.; Henningson, Dan S.; Khorrami, Mehdi R.; Malik, Mujeeb R.
1992-01-01
The eigenvalue sensitivity for hydrodynamic stability operators is investigated. Classical matrix perturbation techniques as well as the concept of epsilon-pseudoeigenvalues are applied to show that parts of the spectrum are highly sensitive to small perturbations. Applications are drawn from incompressible plane Couette, trailing line vortex flow and compressible Blasius boundary layer flow. Parametric studies indicate a monotonically increasing effect of the Reynolds number on the sensitivity. The phenomenon of eigenvalue sensitivity is due to the non-normality of the operators and their discrete matrix analogs and may be associated with large transient growth of the corresponding initial value problem.
Experimental Study of the Richtmyer-Meshkov Instability of Incompressible Fluids
NASA Technical Reports Server (NTRS)
Niederhaus, Charles; Jacobs, Jeffrey W.
2002-01-01
The Richtmyer-Meshkov instability of a low Atwood number, miscible, two-liquid system is investigated experimentally. The initially stratified fluids are contained within a rectangular tank mounted to a sled that rides on a vertical set of rails. The instability is generated by dropping the sled onto a coil spring, producing a nearly impulsive upward acceleration. The subsequent freefall that occurs as the container travels upward and then downward on the rails allows the instability to evolve in the absence of gravity. The interface separating the two liquids initially has a well-defined, sinusoidal perturbation that quickly inverts and then grows in amplitude after undergoing the impulsive acceleration. Disturbance amplitudes are measured and compared to theoretical predictions. Linear stability theory gives excellent agreement with the measured initial growth rate, a(sub 0), for single-mode perturbations with the predicted amplitudes differing by less than 10% from experimental measurements up to a nondimensional time ka(sub 0)t = 0.7, where k is the wavenumber. Linear stability theory also provides excellent agreement for the individual mode amplitudes of multi-mode initial perturbations up until the interface becomes multi-valued. Comparison with previously published weakly nonlinear single-mode models shows good agreement up to ka(sub 0)t = 3, while published nonlinear single-mode models provide good agreement up to ka(sub 0)t = 30. The effects of Reynolds number on the vortex core evolution and overall growth rate of the interface are also investigated. Measurements of the overall amplitude are found to be unaffected by the Reynolds number for the range of values studied here. However, experiments carried out at lower values of Reynolds numbers were found to have decreased vortex core rotation rates. In addition, an instability in the vortex cores is observed.
NASA Astrophysics Data System (ADS)
Tewes, Philipp; Genschow, Konstantin; Little, Jesse; Wygnanski, Israel
2017-11-01
A detailed flow survey using PIV was conducted over a highly-deflected flap (55°) of a low-aspect ratio trapezoidal wing. The wing section is a NACA 0012 with 45° sweep at both the leading and trailing edges, an aspect ratio of 1.5 and a taper ratio of 0.27. The main element is equipped with 7 equally spaced fluidic oscillators, covering the inner 60 % of the span, located near the flap hinge. Experiments were carried out at 0° and 8° incidence at a Reynolds number of 1.7 .106 for both baseline and active flow control (AFC) cases. Velocity ISO-surfaces, x-vorticity and streamlines are analyzed / discussed. A flap leading edge vortex governs the baseline flow field for 0°. This vortical structure interacts with the jets emitted by the actuators (Cμ = 1 %). Its development is hampered and the vortex is redirected toward the trailing edge resulting in a CL increase. At 8°, the dominant flap leading edge vortex could not be detected and is believed to have already merged with the tip vortex. AFC attached the flow over the flap and enhanced the lift by up to 20 % while maintaining longitudinal stability. The dominant flow features in the AFC cases are actuator-generated streamwise vortices which appear stronger at 8°. This work was supported by the Office of Naval Research under ONR Grant No. N00014-14-1-0387.
The Importance of Three Physical Processes in a Minimal Three-Dimensional Tropical Cyclone Model.
NASA Astrophysics Data System (ADS)
Zhu, Hongyan; Smith, Roger K.
2002-06-01
The minimal three-dimensional tropical cyclone model developed by Zhu et al. is used to explore the role of shallow convection, precipitation-cooled downdrafts, and the vertical transport of momentum by deep convection on the dynamics of tropical cyclone intensification. The model is formulated in coordinates and has three vertical levels, one characterizing a shallow boundary layer, and the other two representing the upper and lower troposphere, respectively. It has three options for treating cumulus convection on the subgrid scale and a simple scheme for the explicit release of latent heat on the grid scale.In the model, as in reality, shallow convection transports air with low moist static energy from the lower troposphere to the boundary layer, stabilizing the atmosphere not only to itself, but also to deep convection. Also it moistens and cools the lower troposphere. For realistic parameter values, the stabilization in the vortex core region is the primary effect: it reduces the deep convective mass flux and therefore the rate of heating and drying in the troposphere. This reduced heating, together with the direct cooling of the lower troposphere by shallow convection, diminishes the buoyancy in the vortex core and thereby the vortex intensification rate.The effects of precipitation-cooled downdrafts depend on the closure scheme chosen for deep convection. In the two closures in which the deep cloud mass flux depends on the degree of convective instability, the downdrafts do not change the total mass flux of air that subsides into the boundary layer, but they carry air with a lower moist static energy into this layer than does subsidence outside downdrafts. As a result they decrease the rate of intensification during the early development stage. Nevertheless, by reducing the deep convective mass flux and the drying effect of compensating subsidence, they enable grid scale saturation, and therefore rapid intensification, to occur earlier than in calculations where they are excluded. In the closure in which the deep cloud mass flux depends on the mass convergence in the boundary layer, downdrafts reduce the gestation period and increase the intensification rate.Convective momentum transport as represented in the model weakens both the primary and secondary circulations of the vortex. However, it does not significantly reduce the maximum intensity attained after the period of rapid development. The weakening of the secondary circulation impedes vortex development and significantly prolongs the gestation period.Where possible the results are compared with those found in other studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gertjerenken, B.; Kevrekidis, P. G.; Carretero-González, R.
Here, we numerically investigate an experimentally viable method for generating and manipulating on-demand several vortices in a highly oblate atomic Bose-Einstein condensate (BEC) in order to initialize complex vortex distributions for studies of vortex dynamics. The method utilizes moving laser beams to generate, capture, and transport vortices inside and outside the BEC. This methodology is examined in detail and shows a wide parameter range of applicability for the prototypical two-vortex case, as well as case examples of producing and manipulating several vortices for which there is no net circulation, corresponding to equal numbers of positive and negative circulation vortices, andmore » cases for which there is one net quantum of circulation. We also find that the presence of dissipation can help stabilize the pinning of the vortices on their respective laser beam pinning sites. Finally, we illustrate how to utilize laser beams as repositories that hold large numbers of vortices and how to deposit individual vortices in a sequential fashion in the repositories in order to construct superfluid flows about the repository beams with several quanta of circulation.« less
Gertjerenken, B.; Kevrekidis, P. G.; Carretero-González, R.; ...
2016-02-01
Here, we numerically investigate an experimentally viable method for generating and manipulating on-demand several vortices in a highly oblate atomic Bose-Einstein condensate (BEC) in order to initialize complex vortex distributions for studies of vortex dynamics. The method utilizes moving laser beams to generate, capture, and transport vortices inside and outside the BEC. This methodology is examined in detail and shows a wide parameter range of applicability for the prototypical two-vortex case, as well as case examples of producing and manipulating several vortices for which there is no net circulation, corresponding to equal numbers of positive and negative circulation vortices, andmore » cases for which there is one net quantum of circulation. We also find that the presence of dissipation can help stabilize the pinning of the vortices on their respective laser beam pinning sites. Finally, we illustrate how to utilize laser beams as repositories that hold large numbers of vortices and how to deposit individual vortices in a sequential fashion in the repositories in order to construct superfluid flows about the repository beams with several quanta of circulation.« less
Undergraduate Research in Numerical Relativity: How to put a black hole on a graphics card
NASA Astrophysics Data System (ADS)
Grigsby, Jason D.
2011-03-01
Starting at the structural transition temperature Td 2 = 54 K, the striped cuprate La 2-x Ba x Cu O4 (x =1/8 ) displays a remarkable cascade of transitions 1 at the characteristic temperatures Td 2 >T1* * >TBKT >Tc , before settling down to 3D superconductivity with long-range coherence at Tc = 5 K . The Nernst signal eN and thermopower S have been investigated in detail in these multiple states. As in pure LaSrCuO, the Nernst coefficient N =limB --> 0eN / B (initially negative) acquires a positive vortex contribution at 120 K that grows rapidly. However, here, N saturates in the interval Td 2 (54 K) to T1* * (34 K). As the vortex liquid becomes increasingly stabilized below T1* * , N resumes increasing at an even steeper rate. Surprisingly, below 34 K, eN acquires a B-symmetric component that is very large and oscillatory in B. We have excluded S and quasiparticles as the source of the anomalous term. We will discuss various origins including the possibility of vortex formation mechanisms that break time-reversal invariance. 1) J. M. Tranquada et al., Phys. Rev. B 78, 174529 (2008).
Feedback Control of Unsteady Flow and Vortex-Induced Vibration
NASA Astrophysics Data System (ADS)
Jaiman, Rajeev; Yao, Weigang
2017-11-01
We present an active feedback blowing and suction (AFBS) procedure via model reduction for unsteady wake flow and the vortex-induced vibration (VIV) of circular cylinders. The reduced-order model (ROM) for the AFBS procedure is developed by the eigensystem realization (ERA) algorithm, which provides a low-order representation of the unsteady flow dynamics in the neighbourhood of the equilibrium steady state. The actuation is considered via vertical suction and blowing jet at the porous surface of a circular cylinder with a body mounted force sensor. The resulting controller designed by linear low-order approximation is able to suppress the nonlinear saturated state. A systematic linear ROM-based stability analysis is performed to understand the eigenvalue distributions of elastically mounted circular cylinders. The results from the ROM analysis are consistent with those obtained from full nonlinear fluid-structure interaction simulations. A sensitivity study on the number of suction/blowing actuators, the angular arrangement of actuators, and the combined versus independent control architectures has been performed. Overall, the proposed control is found to be effective in suppressing the vortex street and the VIV for a range of reduced velocities and mass ratios.
Dipolar bright solitons and solitary vortices in a radial lattice
NASA Astrophysics Data System (ADS)
Huang, Chunqing; Lyu, Lin; Huang, Hao; Chen, Zhaopin; Fu, Shenhe; Tan, Haishu; Malomed, Boris A.; Li, Yongyao
2017-11-01
Stabilizing vortex solitons with high values of the topological charge S is a challenging issue in optics, studies of Bose-Einstein condensates (BECs), and other fields. To develop an approach to the solution of this problem, we consider a two-dimensional dipolar BEC under the action of an axisymmetric radially periodic lattice potential, V (r )˜cos(2 r +δ ) , with dipole moments polarized perpendicular to the system's plane, which gives rise to isotropic repulsive dipole-dipole interactions. Two radial lattices are considered, with δ =0 and π , i.e., a potential maximum or minimum at r =0 , respectively. Families of vortex gap soliton (GSs) with S =1 and S ≥2 , the latter ones often being unstable in other settings, are completely stable in the present system (at least up to S =11 ), being trapped in different annular troughs of the radial potential. The vortex solitons with different S may stably coexist in sufficiently far separated troughs. Fundamental GSs, with S =0 , are found too. In the case of δ =0 , the fundamental solitons are ring-shaped modes, with a local minimum at r =0 . At δ =π , they place a density peak at the center.
PAN AIR application to the F-106B
NASA Technical Reports Server (NTRS)
Ghaffari, F.
1986-01-01
The PAN AIR computer code was employed in the present study to investigate the aerodynamic effects of the various geometrical changes and flow conditions on a configuration similar to the F-106B half-airplane tested in the Langley 30x60-foot wind tunnel. The various geometries studied included two forebodies (original and shortened), two inlet flow conditions (open and closed) two vortex flap situations (off and on). The attached flow theoretical solutions were obtained for Mach number of 0.08 and angle of attack of 8 deg., 10 deg., 12 deg., and 14 deg. In general this investigation revealed that the shortening of the forebody or closing of the inlet produced only a small change in the overall aerodynamic coefficients of the basic F-106B configuration throughout the examined angles of attack. However, closing the inlet of the configuration resulted in a slightly higher drag level at low angles of attack. Furthermore, at and above 10 deg. angle of attack, it was shown that the presence of the vortex flap causes an increase in the total lift and drag. Also, these theoretical results showed the expected reduction in longitudinal stability level with addition of the vortex flap to the basic F-106B configuration.
Sheikhzada, Ahmad; Gurevich, Alex
2015-12-07
Topological defects such as vortices, dislocations or domain walls define many important effects in superconductivity, superfluidity, magnetism, liquid crystals, and plasticity of solids. Here we address the breakdown of the topologically-protected stability of such defects driven by strong external forces. We focus on Josephson vortices that appear at planar weak links of suppressed superconductivity which have attracted much attention for electronic applications, new sources of THz radiation, and low-dissipative computing. Our numerical simulations show that a rapidly moving vortex driven by a constant current becomes unstable with respect to generation of vortex-antivortex pairs caused by Cherenkov radiation. As a result,more » vortices and antivortices become spatially separated and accumulate continuously on the opposite sides of an expanding dissipative domain. This effect is most pronounced in thin film edge Josephson junctions at low temperatures where a single vortex can switch the whole junction into a resistive state at currents well below the Josephson critical current. In conclusion, our work gives a new insight into instability of a moving topological defect which destroys global long-range order in a way that is remarkably similar to the crack propagation in solids.« less
NASA Astrophysics Data System (ADS)
Matthews, Megan; Sponberg, Simon
2017-11-01
Birds, insects, and many animals use unsteady aerodynamic mechanisms to achieve stable hovering flight. Natural environments are often characterized by unsteady flows causing animals to dynamically respond to perturbations while performing complex tasks, such as foraging. Little is known about how unsteady flow around an animal interacts with already unsteady flow in the environment or how this impacts performance. We study how the environment impacts maneuverability to reveal any coupling between body dynamics and aerodynamics for hawkmoths, Manduca sexta,tracking a 3D-printed robotic flower in a wind tunnel. We also observe the leading-edge vortex (LEV), a known lift-generating mechanism for insect flight with smoke visualization. Moths in still and unsteady air exhibit near perfect tracking at low frequencies, but tracking in the flower wake results in larger overshoot at mid-range. Smoke visualization of the flower wake shows that the dominant vortex shedding corresponds to the same frequency band as the increased overshoot. Despite the large effect on flight dynamics, the LEV remains bound to the wing and thorax throughout the wingstroke. In general, unsteady wind seems to decrease maneuverability, but LEV stability seems decoupled from changes in flight dynamics.
Neutron Scattering Studies of Vortex Matter in Type-II Superconductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xinsheng Ling
2012-02-02
The proposed program is an experimental study of the fundamental properties of Abrikosov vortex matter in type-II superconductors. Most superconducting materials used in applications such as MRI are type II and their transport properties are determined by the interplay between random pinning, interaction and thermal fluctuation effects in the vortex state. Given the technological importance of these materials, a fundamental understanding of the vortex matter is necessary. The vortex lines in type-II superconductors also form a useful model system for fundamental studies of a number of important issues in condensed matter physics, such as the presence of a symmetry-breaking phasemore » transition in the presence of random pinning. Recent advances in neutron scattering facilities such as the major upgrade of the NIST cold source and the Spallation Neutron Source are providing unprecedented opportunities in addressing some of the longstanding issues in vortex physics. The core component of the proposed program is to use small angle neutron scattering and Bitter decoration experiments to provide the most stringent test of the Bragg glass theory by measuring the structure factor in both the real and reciprocal spaces. The proposed experiments include a neutron reflectometry experiment to measure the precise Q-dependence of the structure factor of the vortex lattice in the Bragg glass state. A second set of SANS experiments will be on a shear-strained Nb single crystal for testing a recently proposed theory of the stability of Bragg glass. The objective is to artificially create a set of parallel grain boundaries into a Nb single crystal and use SANS to measure the vortex matter diffraction pattern as a function of the changing angle between the applied magnetic field to the grain boundaries. The intrinsic merits of the proposed work are a new fundamental understanding of type-II superconductors on which superconducting technology is based, and a firm understanding of phases and phase transitions in condensed matter systems with random pinning. The broader impact of the program includes the training of future generation of neutron scientists, and further development of neutron scattering and complementary techniques for studies of superconducting materials. The graduate and undergraduate students participating in this project will learn the state-of-the-art neutron scattering techniques, acquire a wide range of materials research experiences, and participate in the frontier research of superconductivity. This should best prepare the students for future careers in academia, industry, or government.« less
NASA Technical Reports Server (NTRS)
Johnson, W.
1980-01-01
A comprehensive presentation is made of the engineering analysis methods used in the design, development and evaluation of helicopters. After an introduction covering the fundamentals of helicopter rotors, configuration and operation, rotary wing history, and the analytical notation used in the text, the following topics are discussed: (1) vertical flight, including momentum, blade element and vortex theories, induced power, vertical drag and ground effect; (2) forward flight, including in addition to momentum and vortex theory for this mode such phenomena as rotor flapping and its higher harmonics, tip loss and root cutout, compressibility and pitch-flap coupling; (3) hover and forward flight performance assessment; (4) helicopter rotor design; (5) rotary wing aerodynamics; (6) rotary wing structural dynamics, including flutter, flap-lag dynamics ground resonance and vibration and loads; (7) helicopter aeroelasticity; (8) stability and control (flying qualities); (9) stall; and (10) noise.
NASA Technical Reports Server (NTRS)
Riley, Donald R.
2015-01-01
This paper contains a collection of some results of four individual studies presenting calculated numerical values for airfoil aerodynamic stability derivatives in unseparated inviscid incompressible flow due separately to angle-of-attack, pitch rate, flap deflection, and airfoil camber using a discrete vortex method. Both steady conditions and oscillatory motion were considered. Variables include the number of vortices representing the airfoil, the pitch axis / moment center chordwise location, flap chord to airfoil chord ratio, and circular or parabolic arc camber. Comparisons with some experimental and other theoretical information are included. The calculated aerodynamic numerical results obtained using a limited number of vortices provided in each study compared favorably with thin airfoil theory predictions. Of particular interest are those aerodynamic results calculated herein (such as induced drag) that are not readily available elsewhere.
Modeling the Stability of Topological Matter in Optical Lattices
2013-05-18
that vortex attachment to each particle helps screen the otherwise strong inter- particle repulsion by tuning the size of correlation holes. Figure 3...electric and ferromagnetic order in complex multiferroic materi - als presents a set of compelling fundamental condensed matter physics problems with... particle interactions and heating. I will examine interacting atoms in square optical lattices with spin orbit coupling, and more generally, gauge fields
Theory, Computation and Experiment on Criticality and Stability of Vortices Separating from Edges
2016-08-15
aerospace engineering research. These include dynamic stall in wind turbines and helicopter rotors, and flapping-wing vehicle (micro-air vehicle) design...and Robinson, M., “Blade Three-Dimensional Dynamic Stall Response to Wind Turbine Operating Condition,” Journal of Solar Energy Engineering , Vol...Snapshots of TEV shedding in vortex ring representation. . . . . . . . . . . . . . . . 57 7.3 Schematic description of separated tip flow model
Arcjet Testing of Advanced Conformal Ablative TPS
NASA Technical Reports Server (NTRS)
Gasch, Matthew; Beck, Robin; Agrawal, Parul
2014-01-01
A conformable TPS over a rigid aeroshell has the potential to solve a number of challenges faced by traditional rigid TPS materials (such as tiled Phenolic Impregnated Carbon Ablator (PICA) system on MSL. The compliant (high strain to failure) nature of the conformable ablative materials will allow integration of the TPS with the underlying aeroshell structure much easier and enable monolithic-like configuration and larger segments (or parts) to be used. In May of 2013 the CA250 project executed an arcjet test series in the Ames IHF facility to evaluate a phenolic-based conformal system (named Conformal-PICA) over a range of test conditions from 40-400Wcm2. The test series consisted of four runs in the 13-inch diameter nozzle. Test models were based on SPRITE configuration (a 55-deg sphere cone), as it was able to provide a combination of required heat flux, pressure and shear within a single entry. The preliminary in-depth TC data acquired during that test series allowed a mid-fidelity thermal response model for conformal-PICA to be created while testing of seam models began to address TPS attachment and joining of multiple segments for future fabrication of large-scale aeroshells. Discussed in this paper are the results.
Mechanical Testing of Carbon Based Woven Thermal Protection Materials
NASA Technical Reports Server (NTRS)
Pham, John; Agrawal, Parul; Arnold, James O.; Peterson, Keith; Venkatapathy, Ethiraj
2013-01-01
Three Dimensional Woven thermal protection system (TPS) materials are one of the enabling technologies for mechanically deployable hypersonic decelerator systems. These materials have been shown capable of serving a dual purpose as TPS and as structural load bearing members during entry and descent operations. In order to ensure successful structural performance, it is important to characterize the mechanical properties of these materials prior to and post exposure to entry-like heating conditions. This research focuses on the changes in load bearing capacity of woven TPS materials after being subjected to arcjet simulations of entry heating. Preliminary testing of arcjet tested materials [1] has shown a mechanical degradation. However, their residual strength is significantly more than the requirements for a mission to Venus [2]. A systematic investigation at the macro and microstructural scales is reported here to explore the potential causes of this degradation. The effects of heating on the sizing (an epoxy resin coating used to reduce friction and wear during fiber handling) are discussed as one of the possible causes for the decrease in mechanical properties. This investigation also provides valuable guidelines for margin policies for future mechanically deployable entry systems.
Development of Metallic Thermal Protection Systems for the Reusable Launch Vehicle
NASA Technical Reports Server (NTRS)
Blosser, Max L.
1996-01-01
A reusable Thermal Protection System (TPS) that is not only lightweight, but durable, operable and cost effective is one of the technologies required by the Reusable Launch Vehicle (RLV) to achieve the goal of drastically reducing the cost of delivering payload to orbit. Metallic TPS is one of the systems being developed to meet this challenge. Current efforts involve improving the superalloy honeycomb TPS concept, which consists of a foil-gage metallic box encapsulating a low density fibrous insulation, and evaluating it for RLV requirements. The superalloy honeycomb TPS concept is mechanically attached to the vehicle structure. Improvements include more efficient internal insulation, a simpler, lighter weight configuration, and a quick-release fastener system for easier installation and removal. Evaluation includes thermal and structural analysis, fabrication and testing of both coupons and TPS panels under conditions simulating RLV environments. Coupons of metallic honeycomb sandwich, representative of the outer TPS surface, were subjected to low speed impact, hypervelocity impact, and rain erosion testing as well as subsequent arcjet exposure. Arrays of TPS panels have been subjected to radiant heating in a thermal/vacuum facility, aerodynamic heating in an arcjet facility and acoustic loading.
Oxidation Microstructure Studies of Reinforced Carbon/Carbon
NASA Technical Reports Server (NTRS)
Jacobson, Nathan S.; Curry, Donald M.
2006-01-01
Laboratory oxidation studies of reinforced carbon/carbon (RCC) are discussed with particular emphasis on the resulting microstructures. This study involves laboratory furnace (500-1500 C deg) and arc-jet exposures (1538 C deg) on various forms of RCC. RCC without oxidation protection oxidized at 800 and 1100 C deg exhibits pointed and reduced diameter fibers, due to preferential attack along the fiber edges. RCC with a SiC conversion coating exhibits limited attack of the carbon substrate at 500, 700 and 1500 C deg. However samples oxidized at 900, 1100, and 1300 C deg show small oxidation cavities at the SiC/carbon interface below through-thickness cracks in the SiC coating. These cavities have rough edges with denuded fibers and can be easily distinguished from cavities created in processing. Arc-jet tests at 1538 C deg show limited oxidation attack when the SiC coating and glass sealants are intact. When the SiC/sealant protection system is damaged, attack is extensive and proceeds through matrix cracks, creating denuded fibers on the edges of the cracks. Even at 1538 C deg, where diffusion control dominates, attack is non-uniform with fiber edges oxidizing in preference to the bulk fiber and matrix.
Validation of PICA Ablation and Thermal-Response Model at Low Heat Flux
NASA Technical Reports Server (NTRS)
Milos, Frank S.; Chen, Yih-Kanq
2009-01-01
Phenolic Impregnated Carbon Ablator (PICA) was the forebody heatshield material on the Stardust sample-return capsule and is also a primary candidate material for the Mars Science Lander (MSL), the Orion Crew Module, and the SpaceX Dragon vehicle. As part of the heatshield qualification for Orion, physical and thermal properties of virgin and charred PICA were measured, and an ablation and thermal response model was developed. We validated the model by comparing it with recession and temperature data from stagnation arcjet tests conducted over a wide range of stagnation heat flux of 107 to 1102 W/sq cm. The effect of orthotropic thermal conductivity was evident in the thermal response of the arcjet models. In general, model predictions compared well with the data; however, the uncertainty of the recession prediction was greatest for heat fluxes below 200 W/sq cm. More recent MSL testing focused on the low heat flux regime of 45 to 250 W/sq cm. The new results confirm the recession uncertainty, especially for pressures below 6 kPa. In this work we focus on improving the model predictions for MSL and Orion tests below 250 W/sq cm.
NASA Astrophysics Data System (ADS)
Zijian Hong
Ferroelectrics are materials that exhibit spontaneous electric polarization which can be switched between energy-degenerated states by external stimuli (e.g., mechanical force and electric field) that exceeds a critical value. They have wide potential applications in memories, capacitors, piezoelectric and pyroelectric sensors, and nanomechanical systems. Topological structures and topological phase transitions have been introduced to the condensed matter physics in the past few decades and have attracted broad attentions in various disciplines due to the rich physical insights and broad potential applications. Ferromagnetic topological structures such as vortex and skyrmion are known to be stabilized by the antisymmetric chiral interaction (e.g., Dzyaloshinskii-Moriya interaction). Without such interaction, ferroelectric topological structures (i.e., vortex, flux-closure, skyrmions, and merons) have been studied only recently with other designing strategies, such as reducing the dimension of the ferroelectrics. The overarching goal of this dissertation is to investigate the topological structures in ferroelectric oxide perovskites as well as the topological phase transitions under external applied forces. Pb(Zr,Ti)O3 (PZT) with morphotropic phase boundary is widely explored for high piezoelectric and dielectric properties. The domain structure of PZT tetragonal/rhombohedral (T/R) bilayer is investigated. Strong interfacial coupling is shown, with large polarization rotation to a lower symmetry phase near the T/R interface. Interlayer domain growth can also be captured, with T-domains in the R layer and R-domains in the T layer. For thin PZT bilayer with 5nm of T-layer and 20 nm of R-layer, the a1/a 2 twin domain structure is formed in the top T layer, which could be fully switched to R domains under applied bias. While a unique flux-closure pattern is observed both theoretically and experimentally in the thick bilayer film with 50 nm of thickness for both T and R layers. It is revealed that the bilayer system could facilitate the motion of the ferroelastic adomain in the top T-layer since the a-domain is not directly embedded in the substrate with high density of defects which can pin the domain wall. Excellent dielectric and piezoelectric responses are demonstrated due to the large polarization rotation and the highly mobile domain walls in both the thick and thin bilayer systems. density of defects which can pin the domain wall. Excellent dielectric and piezoelectric responses are demonstrated due to the large polarization rotation and the highly mobile domain walls in both the thick and thin bilayer systems. The long-range ordered polar vortex array is observed in the (PbTiO 3)n/(SrTiO3)n (PTOn/STOn with n=10˜20) superlattices with combined experimental and theoretical studies. Phase-field simulations reveal the three-dimensional textures of the polar vortex arrays. The neighboring vortices rotate in the opposite directions, which extended into tube-like vortex lines perpendicular to the vortex plane. The thickness-dependent phase diagram is predicted and verified by experimental observations. The energetics (the contributions from elastic, electrostatic, gradient and Landau chemical energies) accompanying the phase transitions are analyzed in details. The dominating depolarization energy at short periodicity (n<10) favors a1/ a2 twin domain, while the large elastic relaxation and Landau energy reduction at large periodicity (n>20) leads to the formation of flux-closure domain with both 90° a/c domain walls and 180° c+/c - domain walls, counterbalancing of the individual energies at intermediate periodicities (n=10˜20) gives rise to the formation of exotic vortex structure with continuous polarization rotation surrounding a singularity-like vortex core. Analytical calculations are performed, showing that the stability of the polar vortex structure is directly related to the length of Pi times bulk domain wall width, where vortex structure can be expected when the geometric length scale of the ferroelectrics is close to this value. The role of insulating STO is further revealed, which shows that a rich phase diagram can be formed by simply tuning the thickness of this layer. Wave-like polar spiral phase is simulated by substituting part of the PTO with BiFeO3 (BFO) in the PTO/STO superlattice (i.e., in a (PTO) 4/(BFO)4/(PTO)4/(STO)12 tricolor system) which has demonstrate ordered polar vortex lattice. This spiral phase is made up of semi-vortex cores that are floating up-down in the ferroelectric PTO layers, giving rise to a net in-plane polarization. An increase of Curie temperature and topological to regular domain transition temperature (over 200 K) is observed, due to the higher Curie temperature and larger spontaneous polarization in BFO layers. This unidirectional spiral state can be reversibly switched by experimentally feasible in-plane field, which evolves into a metastable vortex structure in-between two spiral phases with opposite in-plane directions. (Abstract shortened by ProQuest.).
Features of sound propagation through and stability of a finite shear layer
NASA Technical Reports Server (NTRS)
Koutsoyannis, S. P.
1977-01-01
The plane wave propagation, the stability, and the rectangular duct mode problems of a compressible, inviscid, linearly sheared, parallel, homogeneous flow are shown to be governed by Whittaker's equation. The exact solutions for the perturbation quantities are essentially the Whittaker M-functions where the nondimensional quantities have precise physical meanings. A number of known results are obtained as limiting cases of the exact solutions. For the compressible finite thickness shear layer it is shown that no resonances and no critical angles exist for all Mach numbers, frequencies, and shear layer velocity profile slopes except in the singular case of the vortex sheet.
Free-flight investigation of forebody blowing for stability and control
NASA Technical Reports Server (NTRS)
Brandon, Jay M.; Simon, James M.; Owens, D. Bruce; Kiddy, Jason S.
1996-01-01
A free-flight wind-tunnel investigation was conducted on a generic fighter model with forebody pneumatic vortex control for high angle-of-attack directional control. This is believed to be the first flight demonstration of a forebody blowing concept integrated into a closed-loop flight control system for stability augmentation and control. The investigation showed that the static wind tunnel estimates of the yaw control available generally agreed with flight results. The control scheme for the blowing nozzles consisted of an on/off control with a deadband. Controlled flight was obtained for the model using forebody blowing for directional control to beyond 45 deg. angle of attack.
NASA Technical Reports Server (NTRS)
Charlton, Eric F.
1998-01-01
Aerodynamic analysis are performed using the Lockheed-Martin Tactical Aircraft Systems (LMTAS) Splitflow computational fluid dynamics code to investigate the computational prediction capabilities for vortex-dominated flow fields of two different tailless aircraft models at large angles of attack and sideslip. These computations are performed with the goal of providing useful stability and control data to designers of high performance aircraft. Appropriate metrics for accuracy, time, and ease of use are determined in consultations with both the LMTAS Advanced Design and Stability and Control groups. Results are obtained and compared to wind-tunnel data for all six components of forces and moments. Moment data is combined to form a "falling leaf" stability analysis. Finally, a handful of viscous simulations were also performed to further investigate nonlinearities and possible viscous effects in the differences between the accumulated inviscid computational and experimental data.
NASA Technical Reports Server (NTRS)
Matheny, N. W.; Gatlin, D. H.
1978-01-01
A TF-8A airplane was equipped with a transport type supercritical wing and fuselage fairings to evaluate predicted performance improvements for cruise at transonic speeds. A comparison of aerodynamic derivatives extracted from flight and wind tunnel data showed that static longitudinal stability, effective dihedral, and aileron effectiveness, were higher than predicted. The static directional stability derivative was slower than predicted. The airplane's handling qualities were acceptable with the stability augmentation system on. The unaugmented airplane exhibited some adverse lateral directional characteristics that involved low Dutch roll damping and low roll control power at high angles of attack and roll control power that was greater than satisfactory for transport aircraft at cruise conditions. Longitudinally, the aircraft exhibited a mild pitchup tendency. Leading edge vortex generators delayed the onset of flow separation, moving the pitchup point to a higher lift coefficient and reducing its severity.
NASA Technical Reports Server (NTRS)
Kandula, M.; Pearce, D. G.
1991-01-01
A steady incompressible three-dimensional viscous flow analysis has been conducted for the Space Shuttle external tank/orbiter propellant feed line disconnect flapper valves with upstream elbows. The Navier-Stokes code, INS3D, is modified to handle interior obstacles and a simple turbulence model. The flow solver is tested for stability and convergence in the presence of interior flappers. An under-relaxation scheme has been incorporated to improve the solution stability. Important flow characteristics such as secondary flows, recirculation, vortex and wake regions, and separated flows are observed. Computed values for forces, moments, and pressure drop are in satisfactory agreement with water flow test data covering a maximum tube Reynolds number of 3.5 million. The predicted hydrodynamical stability of the flappers correlates well with the measurements.
Linear instability in the wake of an elliptic wing
NASA Astrophysics Data System (ADS)
He, Wei; Tendero, Juan Ángel; Paredes, Pedro; Theofilis, Vassilis
2017-12-01
Linear global instability analysis has been performed in the wake of a low aspect ratio three-dimensional wing of elliptic cross section, constructed with appropriately scaled Eppler E387 airfoils. The flow field over the airfoil and in its wake has been computed by full three-dimensional direct numerical simulation at a chord Reynolds number of Rec=1750 and two angles of attack, {AoA}=0° and 5°. Point-vortex methods have been employed to predict the inviscid counterpart of this flow. The spatial BiGlobal eigenvalue problem governing linear small-amplitude perturbations superposed upon the viscous three-dimensional wake has been solved at several axial locations, and results were used to initialize linear PSE-3D analyses without any simplifying assumptions regarding the form of the trailing vortex system, other than weak dependence of all flow quantities on the axial spatial direction. Two classes of linearly unstable perturbations were identified, namely stronger-amplified symmetric modes and weaker-amplified antisymmetric disturbances, both peaking at the vortex sheet which connects the trailing vortices. The amplitude functions of both classes of modes were documented, and their characteristics were compared with those delivered by local linear stability analysis in the wake near the symmetry plane and in the vicinity of the vortex core. While all linear instability analysis approaches employed have delivered qualitatively consistent predictions, only PSE-3D is free from assumptions regarding the underlying base flow and should thus be employed to obtain quantitative information on amplification rates and amplitude functions in this class of configurations.
NASA Technical Reports Server (NTRS)
Maughmer, Mark D.; Ozoroski, L.; Ozoroski, T.; Straussfogel, D.
1990-01-01
Many types of hypersonic aircraft configurations are currently being studied for feasibility of future development. Since the control of the hypersonic configurations throughout the speed range has a major impact on acceptable designs, it must be considered in the conceptual design stage. Here, an investigation of the aerodynamic control effectiveness of highly swept delta planforms operating in ground effect is presented. A vortex-lattice computer program incorporating a free wake is developed as a tool to calculate aerodynamic stability and control derivatives. Data generated using this program are compared to experimental data and to data from other vortex-lattice programs. Results show that an elevon deflection produces greater increments in C sub L and C sub M in ground effect than the same deflection produces out of ground effect and that the free wake is indeed necessary for good predictions near the ground.
The Goertler vortex instability mechanism in three-dimensional boundary layers
NASA Technical Reports Server (NTRS)
Hall, P.
1984-01-01
The two dimensional boundary layer on a concave wall is centrifugally unstable with respect to vortices aligned with the basic flow for sufficiently high values of the Goertler number. However, in most situations of practical interest the basic flow is three dimensional and previous theoretical investigations do not apply. The linear stability of the flow over an infinitely long swept wall of variable curvature is considered. If there is no pressure gradient in the boundary layer the instability problem can always be related to an equivalent two dimensional calculation. However, in general, this is not the case and even for small values of the crossflow velocity field dramatic differences between the two and three dimensional problems emerge. When the size of the crossflow is further increased, the vortices in the neutral location have their axes locally perpendicular to the vortex lines of the basic flow.
Nonlinear Excitation of Inviscid Stationary Vortex in a Boundary-Layer Flow
NASA Technical Reports Server (NTRS)
Choudhari, Meelan; Duck, Peter W.
1996-01-01
We examine the excitation of inviscid stationary crossflow instabilities near an isolated surface hump (or indentation) underneath a three-dimensional boundary layer. As the hump height (or indentation depth) is increased from zero, the receptivity process becomes nonlinear even before the stability characteristics of the boundary layer are modified to a significant extent. This behavior contrasts sharply with earlier findings on the excitation of the lower branch Tollmien-Schlichting modes and is attributed to the inviscid nature of the crossflow modes, which leads to a decoupling between the regions of receptivity and stability. As a result of this decoupling, similarity transformations exist that allow the nonlinear receptivity of a general three-dimensional boundary layer to be studied with a set of canonical solutions to the viscous sublayer equations. The parametric study suggests that the receptivity is likely to become nonlinear even before the hump height becomes large enough for flow reversal to occur in the canonical solution. We also find that the receptivity to surface humps increases more rapidly as the hump height increases than is predicted by linear theory. On the other hand, receptivity near surface indentations is generally smaller in comparison with the linear approximation. Extension of the work to crossflow receptivity in compressible boundary layers and to Gortler vortex excitation is also discussed.
NASA Astrophysics Data System (ADS)
Müller, Jens; Lückoff, Finn; Oberleithner, Kilian
2017-11-01
The precessing vortex core (PVC) is a dominant coherent structure which occurs in swirling jets such as in swirl-stabilised gas turbine combustors. It stems from a global hydrodynamic instability caused by an internal feedback mechanism within the jet core. In this work, open-loop forcing is applied to a generic non-reacting swirling jet to investigate its receptivity to external actuation regarding lock-in behaviour of the PVC for different streamwise positions and Reynolds numbers. The forcing is periodically exerted by zero net mass flux synthetic jets which are introduced radially through slits inside the duct walls upstream of the swirling jet's exit plane. Time-resolved pressure measurements are conducted to identify the PVC frequency and stereo PIV combined with proper orthogonal decomposition in the duct and free field is used to extract the mean flow and the PVC mode. The data is used in a global linear stability framework to gain the adjoint of the PVC which reveals the regions of highest receptivity to periodic forcing based on mean flow input only. This theoretical receptivity model is compared with the experimentally obtained receptivity results and the validity and applicability of the adjoint model for the prediction of optimal forcing positions is discussed.
Dynamic stability of vortex solutions of Ginzburg-Landau and nonlinear Schrödinger equations
NASA Astrophysics Data System (ADS)
Weinstein, M. I.; Xin, J.
1996-10-01
The dynamic stability of vortex solutions to the Ginzburg-Landau and nonlinear Schrödinger equations is the basic assumption of the asymptotic particle plus field description of interacting vortices. For the Ginzburg-Landau dynamics we prove that all vortices are asymptotically nonlinearly stable relative to small radial perturbations. Initially finite energy perturbations of vortices decay to zero in L p (ℝ2) spaces with an algebraic rate as time tends to infinity. We also prove that under general (nonradial) perturbations, the plus and minus one-vortices are linearly dynamically stable in L 2; the linearized operator has spectrum equal to (-∞, 0] and generates a C 0 semigroup of contractions on L 2(ℝ2). The nature of the zero energy point is clarified; it is resonance, a property related to the infinite energy of planar vortices. Our results on the linearized operator are also used to show that the plus and minus one-vortices for the Schrödinger (Hamiltonian) dynamics are spectrally stable, i.e. the linearized operator about these vortices has ( L 2) spectrum equal to the imaginary axis. The key ingredients of our analysis are the Nash-Aronson estimates for obtaining Gaussian upper bounds for fundamental solutions of parabolic operator, and a combination of variational and maximum principles.
Vector dark-antidark solitary waves in multicomponent Bose-Einstein condensates
NASA Astrophysics Data System (ADS)
Danaila, I.; Khamehchi, M. A.; Gokhroo, V.; Engels, P.; Kevrekidis, P. G.
2016-11-01
Multicomponent Bose-Einstein condensates exhibit an intriguing variety of nonlinear structures. In recent theoretical work [C. Qu, L. P. Pitaevskii, and S. Stringari, Phys. Rev. Lett. 116, 160402 (2016), 10.1103/PhysRevLett.116.160402], the notion of magnetic solitons has been introduced. Here we examine a variant of this concept in the form of vector dark-antidark solitary waves in multicomponent Bose-Einstein condensates (BECs). We first provide concrete experimental evidence for such states in an atomic BEC and subsequently illustrate the broader concept of these states, which are based on the interplay between miscibility and intercomponent repulsion. Armed with this more general conceptual framework, we expand the notion of such states to higher dimensions presenting the possibility of both vortex-antidark states and ring-antidark-ring (dark soliton) states. We perform numerical continuation studies, investigate the existence of these states, and examine their stability using the method of Bogoliubov-de Gennes analysis. Dark-antidark and vortex-antidark states are found to be stable for broad parametric regimes. In the case of ring dark solitons, where the single-component ring state is known to be unstable, the vector entity appears to bear a progressively more and more stabilizing role as the intercomponent coupling is increased.
NASA Astrophysics Data System (ADS)
Durant, Bradford; Hackl, Jason; Balachandar, Sivaramakrishnan
2017-11-01
Nodal discontinuous Galerkin schemes present an attractive approach to robust high-order solution of the equations of fluid mechanics, but remain accompanied by subtle challenges in their consistent stabilization. The effect of quadrature choices (full mass matrix vs spectral elements), over-integration to manage aliasing errors, and explicit artificial viscosity on the numerical solution of a steady homentropic vortex are assessed over a wide range of resolutions and polynomial orders using quadrilateral elements. In both stagnant and advected vortices in periodic and non-periodic domains the need arises for explicit stabilization beyond the numerical surface fluxes of discontinuous Galerkin spectral elements. Artificial viscosity via the entropy viscosity method is assessed as a stabilizing mechanism. It is shown that the regularity of the artificial viscosity field is essential to its use for long-time stabilization of small-scale features in nodal discontinuous Galerkin solutions of the Euler equations of gas dynamics. Supported by the Department of Energy Predictive Science Academic Alliance Program Contract DE-NA0002378.
NASA Technical Reports Server (NTRS)
Auweter-Kurtz, M.; Glocker, B.; Goelz, T. M.; Habiger, H.; Kurtz, H. L.; Schrade, H. O.; Wegmann, T.
1990-01-01
The activities on the development of the high power arc jet HIPARC, the thrust balance, and plasma diagnostic probes are discussed. Modifications of the HIPARC design and a synopsis of the materials used are given. Further experimental results with the TT30 thruster in the 50 kW range are presented. Some first calibration measurements of the thrust balance are also included. Progress concerning the development of plasma diagnostic devices is documented.
Plasma properties and heating at the anode of a 1 kW arcjet using electrostatic probes
NASA Astrophysics Data System (ADS)
Tiliakos, Nicholas
A 1 kW hydrazine arcjet thruster has been modified for internal probing of the near-anode boundary layer with an array of fourteen electrostatic micro-probes. The main objectives of this experimental investigation were to: (1) obtain axial and azimuthal distributions of floating potential phisbf, anode sheath potential phisbs, probe current density at zero volts jsba, electron number density nsbes, electron temperature Tsbes, and anode heating due to electrons qsbe for arc currents Isbarc, between 7.8 and 10.6 A, propellant flow rates m = 40-60 mg/s, and specific energies, 18.8 MJ/kg ≤ P/m ≤ 27.4 MJ/kg; (2) probe the anode boundary layer using flush-mounted and cylindrical micro-probes; (3) verify azimuthal current symmetry; (4) understand what affects anode heating, a critical thruster lifetime issue; and (5) provide experimental data for validation of the Megli-Krier-Burton (MKB) model. All of the above objectives were met through the design, fabrication and implementation of fourteen electrostatic micro-probes, of sizes ranging from 0.170 mm to 0.43 mm in diameter. A technique for cleaning and implementing these probes was developed. Two configurations were used: flush-mounted planar probes and cylindrical probes extended 0.10-0.30 mm into the plasma flow. The main results of this investigation are: (1) electrostatic micro-probes can successfully be used in the harsh environment of an arcjet; (2) under all conditions tested the plasma is highly non-equilibrium in the near-anode region; (3) azimuthal current symmetry exists for most operating conditions; (4) the propellant flow rate affects the location of maximum anode sheath potential, current density, and anode heating more than the arc current; (5) the weighted anode sheath potential is always positive and varies from 8-17 V depending on thruster operating conditions; (6) the fraction of anode heating varies from 18-24% of the total input power over the range of specific energies tested; and (7) based on an energy loss factor of delta = 1200, reasonable correlation between the experimental data and the MKB model was found.
The leading-edge vortex of swift-wing shaped delta wings
NASA Astrophysics Data System (ADS)
Muir, Rowan; Arredondo-Galeana, Abel; Viola, Ignazio Maria
2017-11-01
Recent investigations on the aerodynamics of natural fliers have illuminated the significance of the Leading-Edge Vortex (LEV) for lift generation in a variety of flight conditions. In this investigation, a model non-slender delta shaped wing with a sharp leading-edge is tested at low Reynolds Number, along with a delta wing of the same design, but with a modified trailing edge inspired by the wing of a common swift Apus apus. The effect of the tapering swift wing on LEV development and stability is compared with the flow structure over the un-modified delta wing model through particle image velocimetry. For the first time, a leading-edge vortex system consisting of a dual or triple LEV is recorded on a swift-wing shaped delta wing, where such a system is found across all tested conditions. It is shown that the spanwise location of LEV breakdown is governed by the local chord rather than Reynolds Number or angle of attack. These findings suggest that the trailing-edge geometry of the swift wing alone does not prevent the common swift from generating an LEV system comparable with that of a delta shaped wing. This work received funding from the Engineering and Physical Sciences Research Council [EP/M506515/1] and the Consejo Nacional de Ciencia y Tecnología (CONACYT).
NASA Astrophysics Data System (ADS)
Goyal, Rahul; Trivedi, Chirag; Kumar Gandhi, Bhupendra; Cervantes, Michel J.
2017-07-01
Hydraulic turbines are operated over an extended operating range to meet the real time electricity demand. Turbines operated at part load have flow parameters not matching the designed ones. This results in unstable flow conditions in the runner and draft tube developing low frequency and high amplitude pressure pulsations. The unsteady pressure pulsations affect the dynamic stability of the turbine and cause additional fatigue. The work presented in this paper discusses the flow field investigation of a high head model Francis turbine at part load: 50% of the rated load. Numerical simulation of the complete turbine has been performed. Unsteady pressure pulsations in the vaneless space, runner, and draft tube are investigated and validated with available experimental data. Detailed analysis of the rotor stator interaction and draft tube flow field are performed and discussed. The analysis shows the presence of a rotating vortex rope in the draft tube at the frequency of 0.3 times of the runner rotational frequency. The frequency of the vortex rope precession, which causes severe fluctuations and vibrations in the draft tube, is predicted within 3.9% of the experimental measured value. The vortex rope results pressure pulsations propagating in the system whose frequency is also perceive in the runner and upstream the runner.
Subsonic balance and pressure investigation of a 60 deg delta wing with leading edge devices
NASA Technical Reports Server (NTRS)
Tingas, S. A.; Rao, D. M.
1982-01-01
Low supersonic wave drag makes the thin highly swept delta wing the logical choice for use on aircraft designed for supersonic cruise. However, the high-lift maneuver capability of the aircraft is limited by severe induced-drag penalties attributed to loss of potential flow leading-edge suction. This drag increase may be alleviated through leading-edge flow control to recover lost aerodynamic thrust through either retention of attached leading-edge flow to higher angles of attack or exploitation of the increased suction potential of separation-induced vortex flow. A low-speed wind-tunnel investigation was undertaken to examine the high-lift devices such as fences, chordwise slots, pylon vortex generators, leading-edge vortex flaps, and sharp leading-edge extensions. The devices were tested individually and in combinations in an attempt to improve high-alpha drag performance with a minimum of low-alpha drag penalty. This report presents an analysis of the force, moment, and static pressure data obtained in angles of attack up to 23 deg, at Mach and Reynolds numbers of 0.16 and 3.85 x 10 to the 6th power per meter, respectively. The results indicate that all the devices produced drag and longitudinal/lateral stability improvements at high lift with, in most cases, minor drag penalties at low angles of attack.
A computational study of coherent structures in the wakes of two-dimensional bluff bodies
NASA Astrophysics Data System (ADS)
Pearce, Jeffrey Alan
1988-08-01
The periodic shedding of vortices from bluff bodies was first recognized in the late 1800's. Currently, there is great interest concerning the effect of vortex shedding on structures and on vehicle stability. In the design of bluff structures which will be exposed to a flow, knowledge of the shedding frequency and the amplitude of the aerodynamic forces is critical. The ability to computationally predict parameters associated with periodic vortex shedding is thus a valuable tool. In this study, the periodic shedding of vortices from several bluff body geometries is predicted. The study is conducted with a two-dimensional finite-difference code employed on various grid sizes. The effects of the grid size and time step on the accuracy of the solution are addressed. Strouhal numbers and aerodynamic force coefficients are computed for all of the bodies considered and compared with previous experimental results. Results indicate that the finite-difference code is capable of predicting periodic vortex shedding for all of the geometries tested. Refinement of the finite-difference grid was found to give little improvement in the prediction; however, the choice of time step size was shown to be critical. Predictions of Strouhal numbers were generally accurate, and the calculated aerodynamic forces generally exhibited behavior consistent with previous studies.
Structure of a swirling jet with vortex breakdown and combustion
NASA Astrophysics Data System (ADS)
Sharaborin, D. K.; Dulin, V. M.; Markovich, D. M.
2018-03-01
An experimental investigation is performed in order to compare the time-averaged spatial structure of low- and high-swirl turbulent premixed lean flames by using the particle image velocimetry and spontaneous Raman scattering techniques. Distributions of the time-average velocity, density and concentration of the main components of the gas mixture are measured for turbulent premixed swirling propane/air flames at atmospheric pressure for the equivalence ratio Φ = 0.7 and Reynolds number Re = 5000 for low- and high-swirl reacting jets. For the low-swirl jet (S = 0.41), the local minimum of the axial mean velocity is observed within the jet center. The positive value of the mean axial velocity indicates the absence of a permanent recirculation zone, and no clear vortex breakdown could be determined from the average velocity field. For the high-swirl jet (S = 1.0), a pronounced vortex breakdown took place with a bubble-type central recirculation zone. In both cases, the flames are stabilized in the inner mixing layer of the jet around the central wake, containing hot combustion products. O2 and CO2 concentrations in the wake of the low-swirl jet are found to be approximately two times smaller and greater than those in the recirculation zone of the high-swirl jet, respectively.
Hydrodynamic structures generated by a rotating magnetic field in a cylindrical vessel
NASA Astrophysics Data System (ADS)
Zibold, A. F.
2015-02-01
The hydrodynamic structures arising in a cylinder under the influence of a rotating magnetic field were considered, and the stability of a primary stationary flow in an infinitely long cylinder was investigated by linear approximation. The curves of neutral stability were obtained for a wide range of flow parameters and the calculations generated a single-vortex (in the radial direction) structure of Taylor’s vortices. The flow stability in the infinitely long cylinder was evaluated based on energy balance. The problem of three-dimensional stationary flow of a viscous incompressible conducting liquid induced by a rotating magnetic field in a cylindrical vessel of limited length was solved using an iteration method. The values of the parameters were found for which the iterative process still converges. Numerical experiment made it possible to investigate the arising spatial flow patterns and to track their evolution with changes in the flow parameters. Results of modelling showed the appearance of a three-dimensional structure of Taylor-type vortices in the middle portion of a sufficiently long vessel. The appearance of a double laminar boundary layer was demonstrated under certain conditions of azimuthal velocity distribution along the vessel height at the location of the end-wave vortex. This article was accepted for publication in Fluid Dynamics Research 2014 Vol 46, No 4; which was a special issue consisting of papers from the 5th International Symposium on Bifurcations in Fluid Dynamics. Due to an unfortunate error on the part of the journal, this article was not published with the other articles from this issue.
On the vertical structure and stability of the Lofoten vortex in the Norwegian Sea
NASA Astrophysics Data System (ADS)
Bashmachnikov, I. L.; Sokolovskiy, M. A.; Belonenko, T. V.; Volkov, D. L.; Isachsen, P. E.; Carton, X.
2017-10-01
The Lofoten Vortex (LV), a quasi-permanent anticyclonic eddy in the Lofoten Basin of the Norwegian Sea, is investigated with an eddy-permitting primitive equation model nested into the ECCO2 ocean state estimate. The LV, as simulated by the model, extends from the sea surface to the ocean bottom at about 3000 m and has the subsurface core between 50 m and 1100 m depths. Above and below the vortex core the relative vorticity signal decreases in amplitude while the radius increases by as much as 25-30% relative to the values in the core. Analyzing the model run, we show that the vertical structure of the LV can be casted into four standard configurations, each of which forms a distinct cluster in the parameter space of potential vorticity anomalies in and above the LV core. The stability of the LV for each of the configurations is then studied with three-layer and a two-layer (in winter) quasi-geostrophic (QG) models over a flat bottom as well as over a realistic topography. The QG results show a number of common features with those of the primitive equation model. Thus, among the azimuthal modes dominating the LV instability, both the QG model and the primitive equation model show a major role the 2nd and 3rd modes. In the QG model simulations the LV is the subject of a rather strong dynamic instability, penetrating deep into the core. The results predict 50-95% volume loss from the vortex within 4-5 months. Such a drastic effect is not observed in the primitive equation model, where, for the same intensity of perturbations, only 10-30% volume loss during the same period is detected. Taking into account the gently sloping topography of the central part of the Lofoten basin and the mean flow in the QG model, brings the rate of development of instability close to that in the primitive equation model. Some remaining differences in the two models are discussed. Overall, the LV decay rate obtained in the models is slow enough for eddy mergers and convection to restore the thermodynamic properties of the LV, primarily re-building its potential energy anomaly. This justifies the quasi-permanent presence of the LV in the Lofoten Basin.
Vortex dynamics during blade-vortex interactions
NASA Astrophysics Data System (ADS)
Peng, Di; Gregory, James W.
2015-05-01
Vortex dynamics during parallel blade-vortex interactions (BVIs) were investigated in a subsonic wind tunnel using particle image velocimetry (PIV). Vortices were generated by applying a rapid pitch-up motion to an airfoil through a pneumatic system, and the subsequent interactions with a downstream, unloaded target airfoil were studied. The blade-vortex interactions may be classified into three categories in terms of vortex behavior: close interaction, very close interaction, and collision. For each type of interaction, the vortex trajectory and strength variation were obtained from phase-averaged PIV data. The PIV results revealed the mechanisms of vortex decay and the effects of several key parameters on vortex dynamics, including separation distance (h/c), Reynolds number, and vortex sense. Generally, BVI has two main stages: interaction between vortex and leading edge (vortex-LE interaction) and interaction between vortex and boundary layer (vortex-BL interaction). Vortex-LE interaction, with its small separation distance, is dominated by inviscid decay of vortex strength due to pressure gradients near the leading edge. Therefore, the decay rate is determined by separation distance and vortex strength, but it is relatively insensitive to Reynolds number. Vortex-LE interaction will become a viscous-type interaction if there is enough separation distance. Vortex-BL interaction is inherently dominated by viscous effects, so the decay rate is dependent on Reynolds number. Vortex sense also has great impact on vortex-BL interaction because it changes the velocity field and shear stress near the surface.
Why Do Model Tropical Cyclones Intensify More Rapidly at Low Latitudes?
2015-05-01
angularmomentum, greatly surpass the effects of rotational stiffness (inertial stability) and evaporative-wind feedback that have been proposed in...sification in a quiescent environment and have examined, inter alia, the effect of latitude on vortex evolution (e.g., DeMaria and Pickle 1988; Smith et al... Coriolis parameter. This time scale is about 16 h for latitudes of interest considered by Carrier, and it emerges by determining the time re- quired
Study of Anti-Vortex Baffle Effect in Suppressing Swirling Flow in LOX Tank
NASA Technical Reports Server (NTRS)
Yang, H. Q.; Peugeot, John
2011-01-01
Experimental results describing the hydraulic dynamic pump transfer matrix (Yp) for a cavitating J-2X oxidizer turbopump inducer+impeller tested in subscale waterflow are presented. The transfer function is required for integrated vehicle pogo stability analysis as well as optimization of local inducer pumping stability. Dynamic transfer functions across widely varying pump hydrodynamic inlet conditions are extracted from measured data in conjunction with 1D-model based corrections. Derived Dynamic transfer functions are initially interpreted relative to traditional Pogo pump equations. Water-to-liquid oxygen scaling of measured cavitation characteristics are discussed. Comparison of key dynamic transfer matrix terms derived from waterflow testing are made with those implemented in preliminary Ares Upper Stage Pogo stability modeling. Alternate cavitating pump hydraulic dynamic equations are suggested which better reflect frequency dependencies of measured transfer matrices.
Electric propulsion options for 10 kW class earth space missions
NASA Technical Reports Server (NTRS)
Patterson, M. J.; Curran, Francis M.
1989-01-01
Five and 10 kW ion and arcjet propulsion system options for a near-term space demonstration experiment have been evaluated. Analyses were conducted to determine first-order propulsion system performance and system component mass estimates. Overall mission performance of the electric propulsion systems was quantified in terms of the maximum thrusting time, total impulse, and velocity increment capability available when integrated onto a generic spacecraft under fixed mission model assumptions. Maximum available thrusting times for the ion-propelled spacecraft options, launched on a DELTA II 6920 vehicle, range from approximately 8,600 hours for a 4-engine 10 kW system to more than 29,600 hours for a single-engine 5 kW system. Maximum total impulse values and maximum delta-v's range from 1.2x10(7) to 2.1x10(7) N-s, and 3550 to 6200 m/s, respectively. Maximum available thrusting times for the arcjet propelled spacecraft launched on the DELTA II 6920 vehicle range from approximately 528 hours for the 6-engine 10 kW hydrazine system to 2328 hours for the single-engine 5 kW system. Maximum total impulse values and maximum delta-v's range from 2.2x10(6) to 3.6x10(6) N-s, and approximately 662 to 1072 m/s, respectively.
Validation of a Three-Dimensional Ablation and Thermal Response Simulation Code
NASA Technical Reports Server (NTRS)
Chen, Yih-Kanq; Milos, Frank S.; Gokcen, Tahir
2010-01-01
The 3dFIAT code simulates pyrolysis, ablation, and shape change of thermal protection materials and systems in three dimensions. The governing equations, which include energy conservation, a three-component decomposition model, and a surface energy balance, are solved with a moving grid system to simulate the shape change due to surface recession. This work is the first part of a code validation study for new capabilities that were added to 3dFIAT. These expanded capabilities include a multi-block moving grid system and an orthotropic thermal conductivity model. This paper focuses on conditions with minimal shape change in which the fluid/solid coupling is not necessary. Two groups of test cases of 3dFIAT analyses of Phenolic Impregnated Carbon Ablator in an arc-jet are presented. In the first group, axisymmetric iso-q shaped models are studied to check the accuracy of three-dimensional multi-block grid system. In the second group, similar models with various through-the-thickness conductivity directions are examined. In this group, the material thermal response is three-dimensional, because of the carbon fiber orientation. Predictions from 3dFIAT are presented and compared with arcjet test data. The 3dFIAT predictions agree very well with thermocouple data for both groups of test cases.
Recent Developments in Ultra High Temperature Ceramics at NASA Ames
NASA Technical Reports Server (NTRS)
Johnson, Sylvia M.; Gasch, Matt; Lawson, John W.; Gusman, Michael I.; Stackpole, Margaret M.
2009-01-01
NASA Ames is pursuing a variety of approaches to modify and control the microstructure of UHTCs with the goal of improving fracture toughness, oxidation resistance and controlling thermal conductivity. The overall goal is to produce materials that can perform reliably as sharp leading edges or nose tips in hypersonic reentry vehicles. Processing approaches include the use of preceramic polymers as the SiC source (as opposed to powder techniques), the addition of third phases to control grain growth and oxidation, and the use of processing techniques to produce high purity materials. Both hot pressing and field assisted sintering have been used to make UHTCs. Characterization of the mechanical and thermal properties of these materials is ongoing, as is arcjet testing to evaluate performance under simulated reentry conditions. The preceramic polymer approach has generated a microstructure in which elongated SiC grains grow in the form of an in-situ composite. This microstructure has the advantage of improving fracture toughness while potentially improving oxidation resistance by reducing the amount and interconnectivity of SiC in the material. Addition of third phases, such as Ir, results in a very fine-grained microstructure, even in hot-pressed samples. The results of processing and compositional changes on microstructure and properties are reported, along with selected arcjet results.
Growth of ultrananocrystalline diamond film by DC Arcjet plasma enhanced chemical vapor deposition
NASA Astrophysics Data System (ADS)
Chen, G. C.; Li, B.; Yan, Z. Q.; Liu, J.; Lu, F. X.; Ye, H.
2012-06-01
Self-standing diamond films were grown by DC Arcjet plasma enhanced chemical vapor deposition (CVD). The feed gasses were Ar/H2/CH4, in which the flow ratio of CH4 to H2 (F/F) was varied from 5% to 20%. Two distinct morphologies were observed by scanning electron microscope (SEM), i.e. the "pineapple-like" morphology and the "cauliflower-like" morphology. It was found that the morphologies of the as-grown films are strongly dependent on the flow ratio of CH4 to H2 in the feed gasses. High resolution transmission electron microscope (HRTEM) survey results revealed that there were nanocrystalline grains within the "pineapple-like" films whilst there were ultrananocrystalline grains within "cauliflower-like" films. X-ray diffraction (XRD) results suggested that (110) crystalline plane was the dominant surface in the "cauliflower-like" films whilst (100) crystalline plane was the dominant surface in the "pineapple-like" films. Raman spectroscopy revealed that nanostructured carbon features could be observed in both types of films. Plasma diagnosis was carried out in order to understand the morphology dependent growth mechanism. It could be concluded that the film morphology was strongly influenced by the density of gas phases. The gradient of C2 radical was found to be different along the growth direction under the different growth conditions.
Some aeroacoustic and aerodynamic applications of the theory of nonequilibrium thermodynamics
NASA Technical Reports Server (NTRS)
Horne, W. Clifton; Smith, Charles A.; Karamcheti, Krishnamurty
1990-01-01
An exact equation is derived for the dissipation function of a homogeneous, isotropic, Newtonian fluid, with terms associated with irreversible compression or expansion, wave radiation, and the square of the vorticity. This and other forms of the dissipation function are used to identify simple flows, such as incompressible channel flow, the potential vortex with rotational core, and incompressible, irrotational flow as minimally dissipative distributions. A comparison of the hydrodynamic and thermodynamic stability characteristics of a parallel shear flow suggests that an association exists between flow stability and the variation of net dissipation with disturbance amplitude, and that nonlinear effects, such as bounded disturbance amplitude, may be examined from a thermodynamic basis.
Effects of Cavities and Protuberances on Transition over Hypersonic Vehicles
NASA Technical Reports Server (NTRS)
Chang, Chau-Lyan; Choudhari, Meelan M.; Li, Fei; Venkatachari, Balaji
2011-01-01
Surface protuberances and cavities on a hypersonic vehicle are known to cause several aerodynamic or aerothermodynamic issues. Most important of all, premature transition due to these surface irregularities can lead to a significant rise in surface heating. To help understand laminar-turbulent transition induced by protuberances or cavities on a Crew Exploration Vehicle (CEV) surface, high-fidelity numerical simulations are carried out for both types of trips on a CEV wind tunnel model. Due to the large bluntness, these surface irregularities reside in an accelerating subsonic boundary layer. For the Mach 6 wind tunnel conditions with a roughness Reynolds number Re(sub kk) of 800, it was found that a protuberance with a height to boundary layer thickness ratio of 0.73 leads to strong wake instability and spontaneous vortex shedding, while a cavity with identical geometry only causes a rather weak flow unsteadiness. The same cavity with a larger Reynolds number also leads to similar spontaneous vortex shedding and wake instability. The wake development and the formation of hairpin vortices for both protuberance and cavity were found to be qualitatively similar to that observed for an isolated hemisphere submerged in a subsonic, low speed flat-plate boundary layer. However, the shed vortices and their accompanying instability waves were found to be slightly stabilized downstream by the accelerating boundary layer along the CEV surface. Despite this stabilizing influence, it was found that the wake instability spreads substantially in both wall-normal and azimuthal directions as the flow is evolving towards a transitional state. Similarities and differences between the wake instability behind a protuberance and a cavity are investigated. Computations for the Mach 6 boundary layer over a slender cylindrical roughness element with a height to the boundary layer thickness of about 1.1 also shows spontaneous vortex shedding and strong wake instability. Comparisons of detailed flow structures associated with protuberances at subsonic and supersonic edge Mach numbers indicate distinctively different instability mechanisms.
The QACITS pointing sensor: from theory to on-sky operation on Keck/NIRC2
NASA Astrophysics Data System (ADS)
Huby, Elsa; Absil, Olivier; Mawet, Dimitri; Baudoz, Pierre; Femenıa Castellã, Bruno; Bottom, Michael; Ngo, Henry; Serabyn, Eugene
2016-07-01
Small inner working angle coronagraphs are essential to benefit from the full potential of large and future extremely large ground-based telescopes, especially in the context of the detection and characterization of exoplanets. Among existing solutions, the vortex coronagraph stands as one of the most effective and promising solutions. However, for focal-plane coronagraph, a small inner working angle comes necessarily at the cost of a high sensitivity to pointing errors. This is the reason why a pointing control system is imperative to stabilize the star on the vortex center against pointing drifts due to mechanical flexures, that generally occur during observation due for instance to temperature and/or gravity variations. We have therefore developed a technique called QACITS1 (Quadrant Analysis of Coronagraphic Images for Tip-tilt Sensing), which is based on the analysis of the coronagraphic image shape to infer the amount of pointing error. It has been shown that the flux gradient in the image is directly related to the amount of tip-tilt affecting the beam. The main advantage of this technique is that it does not require any additional setup and can thus be easily implemented on all current facilities equipped with a vortex phase mask. In this paper, we focus on the implementation of the QACITS sensor at Keck/NIRC2, where an L-band AGPM has been recently commissioned (June and October 2015), successfully validating the QACITS estimator in the case of a centrally obstructed pupil. The algorithm has been designed to be easily handled by any user observing in vortex mode, which is available for science in shared risk mode since 2016B.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sugimura, K.; Miyajima, Y.; Sonehara, M.
2016-05-15
This study focuses on the carbonyl-iron powder (CIP) used in the metal composite bulk magnetic core for high-efficient/light-weight SiC/GaN power device MHz switching dc-dc converter, where the fine CIP with a mean diameter of 1.1 μm is used to suppress the MHz band eddy current inside the CIP body. When applying the CIP to composite core together with the resin matrix, high electrical resistivity layer must be formed on the CIP-surface in order to suppress the overlapped eddy current between adjacent CIPs. In this study, tens nm thick silica (SiO{sub 2}) was successfully deposited on the CIP-surface by using hydrolysismore » of TEOS (Si(OC{sub 2}H{sub 5}){sub 4}). Also tens nm thick oxidized layer of the CIP-surface was successfully formed by using CIP annealing in dry air. The SiC/GaN power device can operate at ambient temperature over 200 degree-C, and the composite magnetic core is required to operate at such ambient temperature. The as-made CIP had small coercivity below 800 A/m (10 Oe) due to its nanocrystalline-structure and had a single vortex magnetic structure. From the experimental results, both nanocrystalline and single vortex magnetic structure were maintained after heat-exposure of 250 degree-C, and the powder coercivity after same heat-exposure was nearly same as that of the as-made CIP. Therefore, the CIP with thermally stable nanocrystalline-structure and vortex magnetic state was considered to be heat-resistant magnetic powder used in the iron-based composite core for SiC/GaN power electronics.« less
Bartol, Ian K; Krueger, Paul S; Jastrebsky, Rachel A; Williams, Sheila; Thompson, Joseph T
2016-02-01
Squids use a pulsed jet and fin movements to swim both arms-first (forward) and tail-first (backward). Given the complexity of the squid multi-propulsor system, 3D velocimetry techniques are required for the comprehensive study of wake dynamics. Defocusing digital particle tracking velocimetry, a volumetric velocimetry technique, and high-speed videography were used to study arms-first and tail-first swimming of brief squid Lolliguncula brevis over a broad range of speeds [0-10 dorsal mantle lengths (DML) s(-1)] in a swim tunnel. Although there was considerable complexity in the wakes of these multi-propulsor swimmers, 3D vortex rings and their derivatives were prominent reoccurring features during both tail-first and arms-first swimming, with the greatest jet and fin flow complexity occurring at intermediate speeds (1.5-3.0 DML s(-1)). The jet generally produced the majority of thrust during rectilinear swimming, increasing in relative importance with speed, and the fins provided no thrust at speeds >4.5 DML s(-1). For both swimming orientations, the fins sometimes acted as stabilizers, producing negative thrust (drag), and consistently provided lift at low/intermediate speeds (<2.0 DML s(-1)) to counteract negative buoyancy. Propulsive efficiency (η) increased with speed irrespective of swimming orientation, and η for swimming sequences with clear isolated jet vortex rings was significantly greater (η=78.6±7.6%, mean±s.d.) than that for swimming sequences with clear elongated regions of concentrated jet vorticity (η=67.9±19.2%). This study reveals the complexity of 3D vortex wake flows produced by nekton with hydrodynamically distinct propulsors. © 2016. Published by The Company of Biologists Ltd.
NASA Astrophysics Data System (ADS)
Sugimura, K.; Miyajima, Y.; Sonehara, M.; Sato, T.; Hayashi, F.; Zettsu, N.; Teshima, K.; Mizusaki, H.
2016-05-01
This study focuses on the carbonyl-iron powder (CIP) used in the metal composite bulk magnetic core for high-efficient/light-weight SiC/GaN power device MHz switching dc-dc converter, where the fine CIP with a mean diameter of 1.1 μm is used to suppress the MHz band eddy current inside the CIP body. When applying the CIP to composite core together with the resin matrix, high electrical resistivity layer must be formed on the CIP-surface in order to suppress the overlapped eddy current between adjacent CIPs. In this study, tens nm thick silica (SiO2) was successfully deposited on the CIP-surface by using hydrolysis of TEOS (Si(OC2H5)4). Also tens nm thick oxidized layer of the CIP-surface was successfully formed by using CIP annealing in dry air. The SiC/GaN power device can operate at ambient temperature over 200 degree-C, and the composite magnetic core is required to operate at such ambient temperature. The as-made CIP had small coercivity below 800 A/m (10 Oe) due to its nanocrystalline-structure and had a single vortex magnetic structure. From the experimental results, both nanocrystalline and single vortex magnetic structure were maintained after heat-exposure of 250 degree-C, and the powder coercivity after same heat-exposure was nearly same as that of the as-made CIP. Therefore, the CIP with thermally stable nanocrystalline-structure and vortex magnetic state was considered to be heat-resistant magnetic powder used in the iron-based composite core for SiC/GaN power electronics.
Experimental investigation of large-scale vortices in a freely spreading gravity current
NASA Astrophysics Data System (ADS)
Yuan, Yeping; Horner-Devine, Alexander R.
2017-10-01
A series of laboratory experiments are presented to compare the dynamics of constant-source buoyant gravity currents propagating into laterally confined (channelized) and unconfined (spreading) environments. The plan-form structure of the spreading current and the vertical density and velocity structures on the interface are quantified using the optical thickness method and a combined particle image velocimetry and planar laser-induced fluorescence method, respectively. With lateral boundaries, the buoyant current thickness is approximately constant and Kelvin-Helmholtz instabilities are generated within the shear layer. The buoyant current structure is significantly different in the spreading case. As the current spreads laterally, nonlinear large-scale vortex structures are observed at the interface, which maintain a coherent shape as they propagate away from the source. These structures are continuously generated near the river mouth, have amplitudes close to the buoyant layer thickness, and propagate offshore at speeds approximately equal to the internal wave speed. The observed depth and propagation speed of the instabilities match well with the fastest growing mode predicted by linear stability analysis, but with a shorter wavelength. The spreading flows have much higher vorticity, which is aggregated within the large-scale structures. Secondary instabilities are generated on the leading edge of the braids between the large-scale vortex structures and ultimately break and mix on the lee side of the structures. Analysis of the vortex dynamics shows that lateral stretching intensifies the vorticity in the spreading currents, contributing to higher vorticity within the large-scale structures in the buoyant plume. The large-scale instabilities and vortex structures observed in the present study provide new insights into the origin of internal frontal structures frequently observed in coastal river plumes.
Vortex-Surface Interactions: Vortex Dynamics and Instabilities
2015-10-16
31 May 2015 4. TITLE AND SUBTITLE VORTEX -SURFACE INTERACTIONS: VORTEX DYNAMICS AND INSTABILITIES Sa. CONTRACT NUMBER Sb. GRANT NUMBER N00014-12...new natural instabilities coming from vortex - vortex or vortex -surface interactions, but also ultimately the possibility to control these flows...design of vortex generators to modify surface pressures. We find a short wave instability of the secondary vortices that are created by the
Behavior of streamwise rib vortices in a three-dimensional mixing layer
NASA Technical Reports Server (NTRS)
Lopez, J. M.; Bulbeck, C. J.
1992-01-01
The structure and behavior of a streamwise rib vortex in a direct numerical simulation of a time-developing three-dimensional incompressible plane mixing layer is examined. Where the rib vortex is being stretched, the vorticity vector is primarily directed in the vortex axial direction and the radial and azimuthal velocity distribution is similar to that of a Burger's vortex. In the region where the vortex stretching is negative, there is a change in the local topology of the vortex. The axial flow is decelerated and a negative azimuthal component of vorticity is induced. These features are characteristic of vortex breakdown. The temporal evolution of the rib vortex is similar to the evolution of an axisymmetric vortex in the early stages of vortex breakdown. The effect of vortex breakdown on other parts of the flow is, however, not as significant as the interaction between the rib vortex and other vortices.
Subharmonic mechanism of the mode C instability
NASA Astrophysics Data System (ADS)
Sheard, G. J.; Thompson, M. C.; Hourigan, K.
2005-11-01
The perturbation field of the recently discovered subharmonic mode C instability in the wake behind a ring is compared via a side-by-side comparison to the perturbation fields of the modes A and B instabilities familiar from past studies of the vortex street behind a circular cylinder. Snapshots of the wake are presented over a full shedding cycle, along with evidence from a linear stability analysis, to verify and better understand how the subharmonic instability is sustained.
Stability of topological defects in chiral superconductors: London theory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vakaryuk, V.
2011-12-22
This paper examines the thermodynamic stability of chiral domain walls and vortices-topological defects which can exist in chiral superconductors. Using London theory it is demonstrated that at sufficiently small applied and chiral fields the existence of domain walls and vortices in the sample is not favored and the sample's configuration is a single domain. The particular chirality of the single-domain configuration is neither favored nor disfavored by the applied field. Increasing the field leads to an entry of a domain-wall loop or a vortex into the sample. The formation of a straight domain wall is never preferred in equilibrium. Valuesmore » of the entry (critical) fields for both types of defects, as well as the equilibrium size of the domain-wall loop, are calculated. We also consider a mesoscopic chiral sample and calculate its zero-field magnetization, susceptibility, and a change in the magnetic moment due to a vortex or a domain-wall entry. We show that in the case of a soft domain wall whose energetics is dominated by the chiral current (and not by the surface tension) its behavior in mesoscopic samples is substantially different from that in the bulk case and can be used for a controllable transfer of edge excitations. The applicability of these results to Sr{sub 2}RuO{sub 4} - a tentative chiral superconductor - is discussed.« less
Stability of topological defects in chiral superconductors: London theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vakaryuk, Victor
2011-12-01
This paper examines the thermodynamic stability of chiral domain walls and vortices—topological defects which can exist in chiral superconductors. Using London theory it is demonstrated that at sufficiently small applied and chiral fields the existence of domain walls and vortices in the sample is not favored and the sample's configuration is a single domain. The particular chirality of the single-domain configuration is neither favored nor disfavored by the applied field. Increasing the field leads to an entry of a domain-wall loop or a vortex into the sample. The formation of a straight domain wall is never preferred in equilibrium. Valuesmore » of the entry (critical) fields for both types of defects, as well as the equilibrium size of the domain-wall loop, are calculated. We also consider a mesoscopic chiral sample and calculate its zero-field magnetization, susceptibility, and a change in the magnetic moment due to a vortex or a domain-wall entry. We show that in the case of a soft domain wall whose energetics is dominated by the chiral current (and not by the surface tension) its behavior in mesoscopic samples is substantially different from that in the bulk case and can be used for a controllable transfer of edge excitations. The applicability of these results to Sr 2 RuO 4 —a tentative chiral superconductor—is discussed.« less
An efficient and general numerical method to compute steady uniform vortices
NASA Astrophysics Data System (ADS)
Luzzatto-Fegiz, Paolo; Williamson, Charles H. K.
2011-07-01
Steady uniform vortices are widely used to represent high Reynolds number flows, yet their efficient computation still presents some challenges. Existing Newton iteration methods become inefficient as the vortices develop fine-scale features; in addition, these methods cannot, in general, find solutions with specified Casimir invariants. On the other hand, available relaxation approaches are computationally inexpensive, but can fail to converge to a solution. In this paper, we overcome these limitations by introducing a new discretization, based on an inverse-velocity map, which radically increases the efficiency of Newton iteration methods. In addition, we introduce a procedure to prescribe Casimirs and remove the degeneracies in the steady vorticity equation, thus ensuring convergence for general vortex configurations. We illustrate our methodology by considering several unbounded flows involving one or two vortices. Our method enables the computation, for the first time, of steady vortices that do not exhibit any geometric symmetry. In addition, we discover that, as the limiting vortex state for each flow is approached, each family of solutions traces a clockwise spiral in a bifurcation plot consisting of a velocity-impulse diagram. By the recently introduced "IVI diagram" stability approach [Phys. Rev. Lett. 104 (2010) 044504], each turn of this spiral is associated with a loss of stability for the steady flows. Such spiral structure is suggested to be a universal feature of steady, uniform-vorticity flows.
NASA Technical Reports Server (NTRS)
Erickson, G. E.
1982-01-01
Six degree of freedom studies were utilized to extract a band of yawing and rolling moment coefficients from the F/A-18 aircraft flight records. These were compared with 0.06 scale model data obtained in a 16T wind tunnel facility. The results, indicate the flight test yawing moment data exhibit an improvement over the wind tunnel data to near neutral stability and a significant reduction in lateral stability (again to anear neutral level). These data are consistent with the flight test results since the motion was characterized by a relatively slo departure. Flight tests repeated the slow yaw departure at M 0.3. Only 0.16 scale model wind tunnel data showed levels of lateral stability similar to the flight test results. Accordingly, geometric modifications were investigated on the 0.16 scale model in the 30x60 foot wind tunnel to improve high angle of attack lateral stability.
On the axisymmetric stability of heated supersonic round jets
2016-01-01
We perform an inviscid, spatial stability analysis of supersonic, heated round jets with the mean properties assumed uniform on either side of the jet shear layer, modelled here via a cylindrical vortex sheet. Apart from the hydrodynamic Kelvin–Helmholtz (K–H) wave, the spatial growth rates of the acoustically coupled supersonic and subsonic instability waves are computed for axisymmetric conditions (m=0) to analyse their role on the jet stability, under increased heating and compressibility. With the ambient stationary, supersonic instability waves may exist for any jet Mach number Mj≥2, whereas the subsonic instability waves, in addition, require the core-to-ambient flow temperature ratio Tj/To>1. We show, for moderately heated jets at Tj/To>2, the acoustically coupled instability modes, once cut on, to govern the overall jet stability with the K–H wave having disappeared into the cluster of acoustic modes. Sufficiently high heating makes the subsonic modes dominate the jet near-field dynamics, whereas the supersonic instability modes form the primary Mach radiation at far field. PMID:27274691
Vortex formation and instability in the left ventricle
NASA Astrophysics Data System (ADS)
Le, Trung Bao; Sotiropoulos, Fotis; Coffey, Dane; Keefe, Daniel
2012-09-01
We study the formation of the mitral vortex ring during early diastolic filling in a patient-specific left ventricle (LV) using direct numerical simulation. The geometry of the left ventricle is reconstructed from Magnetic Resonance Imaging (MRI) data of a healthy human subject. The left ventricular kinematics is modeled via a cell-based activation methodology, which is inspired by cardiac electro-physiology and yields physiologic LV wall motion. In the fluid dynamics videos, we describe in detail the three-dimensional structure of the mitral vortex ring, which is formed during early diastolic filling. The ring starts to deform as it propagates toward the apex of the heart and becomes inclined. The trailing secondary vortex tubes are formed as the result of interaction between the vortex ring and the LV wall. These vortex tubes wrap around the circumference and begin to interact with and destabilize the mitral vortex ring. At the end of diastole, the vortex ring impinges on the LV wall and the large-scale intraventricular flow rotates in clockwise direction. We show for the first time that the mitral vortex ring evolution is dominated by a number of vortex-vortex and vortex-wall interactions, including lateral straining and deformation of vortex ring, the interaction of two vortex tubes with unequal strengths, helicity polarization of vortex tubes and twisting instabilities of the vortex cores.
Interaction of a Vortex with Axial Flow and a Cylindrical Surface
NASA Astrophysics Data System (ADS)
Radcliff, T. D.; Burgraff, O. R.; Conlisk, A. T.
1998-11-01
The direct collision of a vortex with a surface is an important problem because significant impulsive loads may be generated leading to premature fatigue. Experimental results for the impingement of a tip-vortex on a cylindrical airframe indicate that a suction peak forms on the top of the airframe which is subsequently reduced within milliseconds of vortex-surface contact. A simple line-vortex model can predict the experimental results until the vortex is within a vortex-core radius of the airframe. After this the model predicts continually deepening rather than lessening suction. Study of the experimental results suggests that axial flow within the core of a tip-vortex has an impact on the airframe pressure distribution upon close approach. The mechanism for this is hypothesized to be the inviscid redistribution of the vorticity field within the vortex coupled with deformation of the vortex core. Two models of a tip-vortex with axial flow are considered. First a classical line vortex with a cut-off parameter is superimposed with suitably placed vortex rings. This model simulates the helically wound vortex shed by the rotor tip. Inclusion of axial flow is found to prevent thinning of the vortex core as the vortex stretches around the cylindrical surface during the collision process. With less thinning, vorticity is observed to overlap the solid cylinder, highlighting the fact that the vortex core must deform from its original cylindrical shape. A second model is developed in which axial and azimuthal vorticity are uniformly distributed throughout a rectangular-section vortex. Area and aspect ratio of this vortex can be varied independently to simulate deformation of the vortex core. Both vorticity redistribution and core deformation are shown to be important to properly calculate the local induced pressure loads. The computational results are compared with the results of experiments conducted at the Georgia Institute of Technology.
Elbaz, Mohammed S M; Calkoen, Emmeline E; Westenberg, Jos J M; Lelieveldt, Boudewijn P F; Roest, Arno A W; van der Geest, Rob J
2014-09-27
LV diastolic vortex formation has been suggested to critically contribute to efficient blood pumping function, while altered vortex formation has been associated with LV pathologies. Therefore, quantitative characterization of vortex flow might provide a novel objective tool for evaluating LV function. The objectives of this study were 1) assess feasibility of vortex flow analysis during both early and late diastolic filling in vivo in normal subjects using 4D Flow cardiovascular magnetic resonance (CMR) with retrospective cardiac gating and 3D vortex core analysis 2) establish normal quantitative parameters characterizing 3D LV vortex flow during both early and late ventricular filling in normal subjects. With full ethical approval, twenty-four healthy volunteers (mean age: 20±10 years) underwent whole-heart 4D Flow CMR. The Lambda2-method was used to extract 3D LV vortex ring cores from the blood flow velocity field during early (E) and late (A) diastolic filling. The 3D location of the center of vortex ring core was characterized using cylindrical cardiac coordinates (Circumferential, Longitudinal (L), Radial (R)). Comparison between E and A filling was done with a paired T-test. The orientation of the vortex ring core was measured and the ring shape was quantified by the circularity index (CI). Finally, the Spearman's correlation between the shapes of mitral inflow pattern and formed vortex ring cores was tested. Distinct E- and A-vortex ring cores were observed with centers of A-vortex rings significantly closer to the mitral valve annulus (E-vortex L=0.19±0.04 versus A-vortex L=0.15±0.05; p=0.0001), closer to the ventricle's long-axis (E-vortex: R=0.27±0.07, A-vortex: R=0.20±0.09, p=0.048) and more elliptical in shape (E-vortex: CI=0.79±0.09, A-vortex: CI=0.57±0.06; <0.001) compared to E-vortex. The circumferential location and orientation relative to LV long-axis for both E- and A-vortex ring cores were similar. Good to strong correlation was found between vortex shape and mitral inflow shape through both the annulus (r=0.66) and leaflet tips (r=0.83). Quantitative characterization and comparison of 3D vortex rings in LV inflow during both early and late diastolic phases is feasible in normal subjects using retrospectively-gated 4D Flow CMR, with distinct differences between early and late diastolic vortex rings.
Vortex instabilities in 3D boundary layers: The relationship between Goertler and crossflow vortices
NASA Technical Reports Server (NTRS)
Bassom, Andrew; Hall, Philip
1990-01-01
The inviscid and viscous stability problems are addressed for a boundary layer which can support both Goertler and crossflow vortices. The change in structure of Goertler vortices is found when the parameter representing the degree of three-dimensionality of the basic boundary layer flow under consideration is increased. It is shown that crossflow vortices emerge naturally as this parameter is increased and ultimately become the only possible vortex instability of the flow. It is shown conclusively that at sufficiently large values of the crossflow there are no unstable Goertler vortices present in a boundary layer which, in the zero crossflow case, is centrifugally unstable. The results suggest that in many practical applications Goertler vortices cannot be a cause of transition because they are destroyed by the 3-D nature of the basic state. In swept wing flows the Goertler mechanism is probably not present for typical angles of sweep of about 20 degrees. Some discussion of the receptivity problem for vortex instabilities in weakly 3-D boundary layers is given; it is shown that inviscid modes have a coupling coefficient marginally smaller than those of the fastest growing viscous modes discussed recently by Denier, Hall, and Seddougui (1990). However the fact that the growth rates of the inviscid modes are the largest in most situations means that they are probably the most likely source of transition.
Grandiosa, Roffi; Bouwman, Mai-Louise; Young, Tim; Mérien, Fabrice; Alfaro, Andrea C
2018-07-01
The ability to successfully prepare and preserve haemocyte cells for microscopy and flow cytometry is critical for the investigation of animal immune systems. In this study, we observed the total cell count, in vitro viability and stability of New Zealand black-footed abalone (Haliotis iris) haemocytes with different antiaggregants and handling protocols. Haemocyte stability was evaluated by direct observation of haemocytes under the microscope and calculating the aggregation index. Haemocyte counts and viability were measured via flow cytometry and tested for the effect of different antiaggregants (Alsever's solution at three concentrations, and specialised blood collection tubes containing lithium heparin and K 2 EDTA) at different temperatures and storage times. Results showed that Alsever's solution is an effective antiaggregant at haemolymph:antiaggregant dilution ratios of 1:1, 1:2 and 1:3. Lithium heparin was ineffective as an antiaggregant, whereas K 2 EDTA was similarly as effective as Alsever's solution. The influence of different mixing techniques (vortex, pipetting and flipping) were subsequently tested using the K 2 EDTA Microtainer ® tubes, revealing that proper mixing should be performed immediately. High cell viability can be achieved by mixing samples by either 10 s of vortexing (1000 rpm), 10 times pipetting or 20 times flipping. The in vitro storage of abalone haemocytes in AS and K 2 EDTA as antiaggregants at ambient room temperature was highly effective for up to 24 h (75-85% viability; 0.05-0.15 aggregation index) and is recommended for haemocyte studies in H. iris. Utilization of K 2 EDTA Microtainer ® tubes were advantageous since they are more cost effective compared to Alsever's solution, and samples can be prepared more efficiently. Copyright © 2018. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Moeck, Jonas P.; Bourgouin, Jean-François; Durox, Daniel; Schuller, Thierry; Candel, Sébastien
2013-04-01
Swirl flows with vortex breakdown are widely used in industrial combustion systems for flame stabilization. This type of flow is known to sustain a hydrodynamic instability with a rotating helical structure, one common manifestation of it being the precessing vortex core. The role of this unsteady flow mode in combustion is not well understood, and its interaction with combustion instabilities and flame stabilization remains unclear. It is therefore important to assess the structure of the perturbation in the flame that is induced by this helical mode. Based on principles of tomographic reconstruction, a method is presented to determine the 3-D distribution of the heat release rate perturbation associated with the helical mode. Since this flow instability is rotating, a phase-resolved sequence of projection images of light emitted from the flame is identical to the Radon transform of the light intensity distribution in the combustor volume and thus can be used for tomographic reconstruction. This is achieved with one stationary camera only, a vast reduction in experimental and hardware requirements compared to a multi-camera setup or camera repositioning, which is typically required for tomographic reconstruction. Different approaches to extract the coherent part of the oscillation from the images are discussed. Two novel tomographic reconstruction algorithms specifically tailored to the structure of the heat release rate perturbations related to the helical mode are derived. The reconstruction techniques are first applied to an artificial field to illustrate the accuracy. High-speed imaging data acquired in a turbulent swirl-stabilized combustor setup with strong helical mode oscillations are then used to reconstruct the 3-D structure of the associated perturbation in the flame.
NASA Astrophysics Data System (ADS)
Wei, Xianggeng; Li, Jiang; He, Guoqiang
2017-04-01
The vortex valve solid variable thrust motor is a new solid motor which can achieve Vehicle system trajectory optimization and motor energy management. Numerical calculation was performed to investigate the influence of vortex chamber diameter, vortex chamber shape, and vortex chamber height of the vortex valve solid variable thrust motor on modulation performance. The test results verified that the calculation results are consistent with laboratory results with a maximum error of 9.5%. The research drew the following major conclusions: the optimal modulation performance was achieved in a cylindrical vortex chamber, increasing the vortex chamber diameter improved the modulation performance of the vortex valve solid variable thrust motor, optimal modulation performance could be achieved when the height of the vortex chamber is half of the vortex chamber outlet diameter, and the hot gas control flow could result in an enhancement of modulation performance. The results can provide the basis for establishing the design method of the vortex valve solid variable thrust motor.
Parametric analysis of swept-wing geometry with sheared wing tips
NASA Technical Reports Server (NTRS)
Fremaux, C. M.; Vijgen, P. M. H. W.; Van Dam, C. P.
1990-01-01
A computational parameter study is presented of potential reductions in induced drag and increases in lateral-directional stability due to sheared wing tips attached to an untwisted wing of moderate sweep and aspect ratio. Sheared tips are swept and tapered wing-tip devices mounted in the plane of the wing. The induced-drag results are obtained using an inviscid, incompressible surface-panel method that models the nonlinear effects due to the deflected and rolled-up wake behind the lifting surface. The induced-drag results with planar sheared tips are compared to straight-tapered tip extensions and nonplanar winglet geometries. The lateral-directional static-stability characteristics of the wing with sheared tips are estimated using a quasi-vortex-lattice method. For certain combinations of sheared-tip sweep and taper, both the induced efficiency of the wing and the relevant static-stability derivatives are predicted to increase compared to the wing with a straight-tapered tip modification.
On the properties of energy stable flux reconstruction schemes for implicit large eddy simulation
NASA Astrophysics Data System (ADS)
Vermeire, B. C.; Vincent, P. E.
2016-12-01
We begin by investigating the stability, order of accuracy, and dispersion and dissipation characteristics of the extended range of energy stable flux reconstruction (E-ESFR) schemes in the context of implicit large eddy simulation (ILES). We proceed to demonstrate that subsets of the E-ESFR schemes are more stable than collocation nodal discontinuous Galerkin methods recovered with the flux reconstruction approach (FRDG) for marginally-resolved ILES simulations of the Taylor-Green vortex. These schemes are shown to have reduced dissipation and dispersion errors relative to FRDG schemes of the same polynomial degree and, simultaneously, have increased Courant-Friedrichs-Lewy (CFL) limits. Finally, we simulate turbulent flow over an SD7003 aerofoil using two of the most stable E-ESFR schemes identified by the aforementioned Taylor-Green vortex experiments. Results demonstrate that subsets of E-ESFR schemes appear more stable than the commonly used FRDG method, have increased CFL limits, and are suitable for ILES of complex turbulent flows on unstructured grids.
Dynamically stable multiply quantized vortices in dilute Bose-Einstein condensates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huhtamaeki, J. A. M.; Virtanen, S. M. M.; Moettoenen, M.
2006-12-15
Multiquantum vortices in dilute atomic Bose-Einstein condensates confined in long cigar-shaped traps are known to be both energetically and dynamically unstable. They tend to split into single-quantum vortices even in the ultralow temperature limit with vanishingly weak dissipation, which has also been confirmed in the recent experiments [Y. Shin et al., Phys. Rev. Lett. 93, 160406 (2004)] utilizing the so-called topological phase engineering method to create multiquantum vortices. We study the stability properties of multiquantum vortices in different trap geometries by solving the Bogoliubov excitation spectra for such states. We find that there are regions in the trap asymmetry andmore » condensate interaction strength plane in which the splitting instability of multiquantum vortices is suppressed, and hence they are dynamically stable. For example, the doubly quantized vortex can be made dynamically stable even in spherical traps within a wide range of interaction strength values. We expect that this suppression of vortex-splitting instability can be experimentally verified.« less
Observing thermomagnetic stability of nonideal magnetite particles: Good paleomagnetic recorders?
NASA Astrophysics Data System (ADS)
Almeida, Trevor P.; Kasama, Takeshi; Muxworthy, Adrian R.; Williams, Wyn; Nagy, Lesleis; Dunin-Borkowski, Rafal E.
2014-10-01
The thermomagnetic behavior of remanence-induced magnetite (Fe3O4) particles in the pseudo-single-domain (PSD) size range (~0.1-10 µm), which dominate the magnetic signature of many rock lithologies, is investigated using off-axis electron holography. Construction of magnetic induction maps allowed for the visualization of the vortex domain state in an individual Fe3O4 grain (~200 nm in diameter) as a function of temperature. Acquisition of a series of electron holograms at 100°C intervals during in situ heating up to 700°C demonstrates the vortex state of the Fe3O4 grain, in this instance, remains thermally stable close to its unblocking temperature and exhibits a similar in-plane remanent state upon cooling; i.e., the particle is effectively behaving like a uniaxial single-domain particle to temperatures near TC. Such particles are thought to be robust magnetic recorders. It is suggested that evidence for PSD behavior should therefore not preclude paleomagnetic investigation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moestl, U. V.; Temmer, M.; Veronig, A. M., E-mail: ute.moestl@uni-graz.at
2013-03-20
The Atmospheric Imaging Assembly on board the Solar Dynamics Observatory observed a coronal mass ejection with an embedded filament on 2011 February 24, revealing quasi-periodic vortex-like structures at the northern side of the filament boundary with a wavelength of approximately 14.4 Mm and a propagation speed of about 310 {+-} 20 km s{sup -1}. These structures could result from the Kelvin-Helmholtz instability occurring on the boundary. We perform 2.5D numerical simulations of the Kelvin-Helmholtz instability and compare the simulated characteristic properties of the instability with the observations, where we obtain qualitative as well as quantitative accordance. We study the absencemore » of Kelvin-Helmholtz vortex-like structures on the southern side of the filament boundary and find that a magnetic field component parallel to the boundary with a strength of about 20% of the total magnetic field has stabilizing effects resulting in an asymmetric development of the instability.« less
Investigation of the Vortex Tab. M.S. Thesis
NASA Technical Reports Server (NTRS)
Hoffler, K. D.
1985-01-01
An investigation was made into the drag reduction capability of vortex tabs on delta wing vortex flaps. The vortex tab is an up-deflected leading edge portion of the vortex flap. Tab deflection augments vortex suction on the flap, thus improving its thrust, but the tab itself is drag producing. Whether a net improvement in the drag reduction can be obtained with vortex tabs, in comparison with plane vortex flaps of the same total area, was the objective of this investigation. Wind tunnel tests were conducted on two models, and analytical studies were performed on one of them using a free vortex sheet theory.
Experimental examination of vorticity stripping from a wing-tip vortex in free-stream turbulence
NASA Astrophysics Data System (ADS)
Ghimire, Hari C.; Bailey, Sean C. C.
2018-03-01
Time-resolved stereoscopic particle image velocimetry measurements were conducted of a wing-tip vortex decaying in free-stream turbulence. The objective of the research was to experimentally investigate the mechanism causing the increased rate of decay of the vortex in the presence of turbulence. It was observed that the circulation of the vortex core experienced periods of rapid loss and recovery when immersed in free-stream turbulence. These events were not observed when the vortex was in a laminar free stream. A connection was made between these events and distortion of the vortex, coinciding with stripping of core fluid from the vortex core. Specifically, vortex stripping events were connected to asymmetry in the vortex core, and this asymmetry was associated with instances of rapid circulation loss. The increased rate of decay of the vortex in turbulence coincided with the formation of secondary vortical structures which wrapped azimuthally around the primary vortex.
DOT National Transportation Integrated Search
1974-04-01
A unifying wake vortex transport model is developed and applied to a wake vortex predictive system concept. The fundamentals of vortex motion underlying the predictive model are discussed including vortex decay, bursting and instability phenomena. A ...