Sample records for vorticity stream function

  1. Finite element techniques for the Navier-Stokes equations in the primitive variable formulation and the vorticity stream-function formulation

    NASA Technical Reports Server (NTRS)

    Glaisner, F.; Tezduyar, T. E.

    1987-01-01

    Finite element procedures for the Navier-Stokes equations in the primitive variable formulation and the vorticity stream-function formulation have been implemented. For both formulations, streamline-upwind/Petrov-Galerkin techniques are used for the discretization of the transport equations. The main problem associated with the vorticity stream-function formulation is the lack of boundary conditions for vorticity at solid surfaces. Here an implicit treatment of the vorticity at no-slip boundaries is incorporated in a predictor-multicorrector time integration scheme. For the primitive variable formulation, mixed finite-element approximations are used. A nine-node element and a four-node + bubble element have been implemented. The latter is shown to exhibit a checkerboard pressure mode and a numerical treatment for this spurious pressure mode is proposed. The two methods are compared from the points of view of simulating internal and external flows and the possibilities of extensions to three dimensions.

  2. Laser-velocimeter surveys of merging vortices in a wind tunnel: Complete data and analysis

    NASA Technical Reports Server (NTRS)

    Corsiglia, V. R.; Iversen, J. D.; Orloff, K. L.

    1978-01-01

    The merger of two corotating vortices was studied with a laser velocimeter designed to measure the two cross-stream components of velocity. Measurements were made at several downstream distances in the vortex wake shed by two semispan wings mounted on the wind-tunnel walls. The velocity data provided wall-defined contours of crossflow velocity, stream function, and vorticity for a variety of test conditions. Downstream of the merger point, the vorticity was found to be independent of the downstream distance for radii smaller than r/b = 0.05. For larger radii, the vorticity depended on the distance from the wing. Upstream of the merger, a multicell vorticity pattern was found.

  3. Numerical simulation of vortical ideal fluid flow through curved channel

    NASA Astrophysics Data System (ADS)

    Moshkin, N. P.; Mounnamprang, P.

    2003-04-01

    A numerical algorithm to study the boundary-value problem in which the governing equations are the steady Euler equations and the vorticity is given on the inflow parts of the domain boundary is developed. The Euler equations are implemented in terms of the stream function and vorticity. An irregular physical domain is transformed into a rectangle in the computational domain and the Euler equations are rewritten with respect to a curvilinear co-ordinate system. The convergence of the finite-difference equations to the exact solution is shown experimentally for the test problems by comparing the computational results with the exact solutions on the sequence of grids. To find the pressure from the known vorticity and stream function, the Euler equations are utilized in the Gromeka-Lamb form. The numerical algorithm is illustrated with several examples of steady flow through a two-dimensional channel with curved walls. The analysis of calculations shows strong dependence of the pressure field on the vorticity given at the inflow parts of the boundary. Plots of the flow structure and isobars, for different geometries of channel and for different values of vorticity on entrance, are also presented.

  4. Helical vortices: Quasiequilibrium states and their time evolution

    NASA Astrophysics Data System (ADS)

    Selçuk, Can; Delbende, Ivan; Rossi, Maurice

    2017-08-01

    The time evolution of a viscous helical vortex is investigated by direct numerical simulations of the Navier-Stokes equations where helical symmetry is enforced. Using conservation laws in the framework of helical symmetry, we elaborate an initial condition consisting in a finite core vortex, the time evolution of which leads to a generic quasiequilibrium state independent of the initial core size. Numerical results at different helical pitch values provide an accurate characterization in time for such helical states, for which specific techniques have been introduced: helix radius, angular velocity, stream function-velocity-vorticity relationships, and core properties (size, self-similarity, and ellipticity). Viscosity is shown to be at the origin of a small helical velocity component, which we relate to the helical vorticity component. Finally, changes in time of the flow topology are studied using the helical stream function and three-dimensional Lagrangian orbits.

  5. The turbomachine blading design using S2-S1 approach

    NASA Technical Reports Server (NTRS)

    Luu, T. S.; Bencherif, L.; Viney, B.; Duc, J. M. Nguyen

    1991-01-01

    The boundary conditions corresponding to the design problem when the blades being simulated by the bound vorticity distribution are presented. The 3D flow is analyzed by the two steps S2 - S1 approach. In the first step, the number of blades is supposed to be infinite, the vortex distribution is transformed into an axisymmetric one, so that the flow field can be analyzed in a meridional plane. The thickness distribution of the blade producing the flow channel striction is taken into account by the modification of metric tensor in the continuity equation. Using the meridional stream function to define the flow field, the mass conservation is satisfied automatically. The governing equation is deduced from the relation between the azimuthal component of the vorticity and the meridional velocity. The value of the azimuthal component of the vorticity is provided by the hub to shroud equilibrium condition. This step leads to the determination of the axisymmetric stream sheets as well as the approximate camber surface of the blade. In the second step, the finite number of blades is taken into account, the inverse problem corresponding to the blade to blade flow confined in each stream sheet is analyzed. The momentum equation implies that the free vortex of the absolute velocity must be tangential to the stream sheet. The governing equation for the blade to blade flow stream function is deduced from this condition. At the beginning, the upper and the lower surfaces of the blades are created from the camber surface obtained from the first step with the assigned thickness distribution. The bound vorticity distribution and the penetrating flux conservation applied on the presumed blade surface constitute the boundary conditions of the inverse problem. The detection of this flux leads to the rectification of the geometry of the blades.

  6. Numerical studies of interacting vortices

    NASA Technical Reports Server (NTRS)

    Liu, G. C.; Hsu, C. H.

    1985-01-01

    To get a basic understanding of the physics of flowfields modeled by vortex filaments with finite vortical cores, systematic numerical studies of the interactions of two dimensional vortices and pairs of coaxial axisymmetric circular vortex rings were made. Finite difference solutions of the unsteady incompressible Navier-Stokes equations were carried out using vorticity and stream function as primary variables. Special emphasis was placed on the formulation of appropriate boundary conditions necessary for the calculations in a finite computational domain. Numerical results illustrate the interaction of vortex filaments, demonstrate when and how they merge with each other, and establish the region of validity for an asymptotic analysis.

  7. A vorticity budget for the Gulf Stream

    NASA Astrophysics Data System (ADS)

    Le Bras, Isabela; Toole, John

    2017-04-01

    We develop a depth-averaged vorticity budget framework to diagnose the dynamical balance of the Gulf Stream, and apply this framework to observations and the ECCO state estimate (Wunsch and Heimbach 2013) above the thermocline in the subtropical North Atlantic. Using the hydrographic and ADCP data along the WOCE/CLIVAR section A22 and a variety of wind stress data products, we find that the advective vorticity flux out of the western region is on the same order as the wind stress forcing over the eastern portion of the gyre. This is consistent with a large-scale balance between a negative source of vorticity from wind stress forcing and a positive source of vorticity in the western region. Additionally, the form of the vorticity flux indicates that the Gulf Stream has a significant inertial component. In the ECCO state estimate, we diagnose a seasonal cycle in advective vorticity flux across a meridional section associated with seasonal fluctuations in Gulf Stream transport. This vorticity flux is forced by wind stress over the eastern subtropical North Atlantic and balanced by lateral friction with the western boundary. The lateral friction in ECCO is a necessary parameterization of smaller scale processes that occur in the real ocean, and quantifying these remains an open and interesting question. This simplified framework provides a means to interpret large scale ocean dynamics. In our application, it points to wind stress forcing over the subtropical North Altantic as an important regulator of the Gulf Stream and hence the climate system.

  8. A comparison of the Method of Lines to finite difference techniques in solving time-dependent partial differential equations. [with applications to Burger equation and stream function-vorticity problem

    NASA Technical Reports Server (NTRS)

    Kurtz, L. A.; Smith, R. E.; Parks, C. L.; Boney, L. R.

    1978-01-01

    Steady state solutions to two time dependent partial differential systems have been obtained by the Method of Lines (MOL) and compared to those obtained by efficient standard finite difference methods: (1) Burger's equation over a finite space domain by a forward time central space explicit method, and (2) the stream function - vorticity form of viscous incompressible fluid flow in a square cavity by an alternating direction implicit (ADI) method. The standard techniques were far more computationally efficient when applicable. In the second example, converged solutions at very high Reynolds numbers were obtained by MOL, whereas solution by ADI was either unattainable or impractical. With regard to 'set up' time, solution by MOL is an attractive alternative to techniques with complicated algorithms, as much of the programming difficulty is eliminated.

  9. Accurate ω-ψ Spectral Solution of the Singular Driven Cavity Problem

    NASA Astrophysics Data System (ADS)

    Auteri, F.; Quartapelle, L.; Vigevano, L.

    2002-08-01

    This article provides accurate spectral solutions of the driven cavity problem, calculated in the vorticity-stream function representation without smoothing the corner singularities—a prima facie impossible task. As in a recent benchmark spectral calculation by primitive variables of Botella and Peyret, closed-form contributions of the singular solution for both zero and finite Reynolds numbers are subtracted from the unknown of the problem tackled here numerically in biharmonic form. The method employed is based on a split approach to the vorticity and stream function equations, a Galerkin-Legendre approximation of the problem for the perturbation, and an evaluation of the nonlinear terms by Gauss-Legendre numerical integration. Results computed for Re=0, 100, and 1000 compare well with the benchmark steady solutions provided by the aforementioned collocation-Chebyshev projection method. The validity of the proposed singularity subtraction scheme for computing time-dependent solutions is also established.

  10. Boundary layer streaming in viscoelastic fluids

    NASA Astrophysics Data System (ADS)

    Bahrani, Seyed Amir; Costalanga, Maxime; Royon, Laurent; Brunet, Philippe; DSHE Team; Energy Team

    2017-11-01

    Oscillations of bodies immersed in fluids are known to generate secondary steady flows (streaming). These flows have strong similarities with acoustic streaming induced by sound and ultrasound waves. A typical situation, investigated here, is that of a cylinder oscillating perpendicular to its axis, generating two pairs of counter-rotating steady vortices due to the transfer of vorticity from an inner boundary layer. While most studies so far investigated the situation of newtonian fluids, here, we consider the situation of a viscoelastic fluid. By using Particle Image Velocimetry, we carry out an experimental study of the flow structure and magnitude over a range of amplitude (A up to 2.5 mm, nearly half the cylinder diameter) and frequency (f between 5 and 100 Hz). We observe unprecedented behaviors at higher frequency (f >50 Hz) : at high enough amplitude, the usual flow with 2 pairs of vortices is replaced by a more complex flow where 4 pairs of vortices are observed. At smaller frequency, we observe reversal large scale vortices that replace the usual inner and outer ones in Newtonian fluids. The main intention of this work is to understand the influence of the complex and nonlinear rheology on the mechanism of streaming flow. In this way, another source of purely rheological nonlinearity is expected, competing with hydrodynamic nonlinearity. We evidence the effect of elasticity in streaming.

  11. Viscous Driven-Cavity Solver: User's Manual

    NASA Technical Reports Server (NTRS)

    Wood, William A.

    1997-01-01

    The viscous driven-cavity problem is solved using a stream-function and vorticity formulation for the incompressible Navier-Stokes equations. This report provides the user's manual and FORTRAN code for the set of governing equations presented in NASA TM-110262.

  12. Computational unsteady aerodynamics for lifting surfaces

    NASA Technical Reports Server (NTRS)

    Edwards, John W.

    1988-01-01

    Two dimensional problems are solved using numerical techniques. Navier-Stokes equations are studied both in the vorticity-stream function formulation which appears to be the optimal choice for two dimensional problems, using a storage approach, and in the velocity pressure formulation which minimizes the number of unknowns in three dimensional problems. Analysis shows that compact centered conservative second order schemes for the vorticity equation are the most robust for high Reynolds number flows. Serious difficulties remain in the choice of turbulent models, to keep reasonable CPU efficiency.

  13. Lidar investigation of wake vortices generated by a landing aircraft

    NASA Astrophysics Data System (ADS)

    Smalikho, Igor N.; Banakh, Viktor A.; Falits, Andrey V.

    2017-11-01

    The results of measurements of parameters of aircraft wake vortices by a Stream Line coherent Doppler lidar during the three-day experiment on the airfield of Tolmachevo Airport are presented. We have analyzed spatial dynamics and evolution of the wake vortices generated by aircrafts of various types: from the Airbus A319 passenger aircraft to the heavy Boeing B747-8 cargo aircraft entering the landing at Tolmachevo Airport. It is shown that the Stream Line lidar may well be used to obtain reliable information about the presence and intensity of aircraft wake vortices in the vicinity of the runway.

  14. Statistical properties of Charney-Hasegawa-Mima zonal flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Johan, E-mail: anderson.johan@gmail.com; Botha, G. J. J.

    2015-05-15

    A theoretical interpretation of numerically generated probability density functions (PDFs) of intermittent plasma transport events in unforced zonal flows is provided within the Charney-Hasegawa-Mima (CHM) model. The governing equation is solved numerically with various prescribed density gradients that are designed to produce different configurations of parallel and anti-parallel streams. Long-lasting vortices form whose flow is governed by the zonal streams. It is found that the numerically generated PDFs can be matched with analytical predictions of PDFs based on the instanton method by removing the autocorrelations from the time series. In many instances, the statistics generated by the CHM dynamics relaxesmore » to Gaussian distributions for both the electrostatic and vorticity perturbations, whereas in areas with strong nonlinear interactions it is found that the PDFs are exponentially distributed.« less

  15. A new stream function formulation for the Euler equations

    NASA Technical Reports Server (NTRS)

    Atkins, H. L.; Hassan, H. A.

    1983-01-01

    A new stream function formulation is developed for the solution of Euler's equations in the transonic flow region. The stream function and the density are the dependent variables in this method, while the governing equations for adiabatic flow are the momentum equations which are solved in the strong conservation law form. The application of this method does not require a knowledge of the vorticity. The algorithm is combined with the automatic grid solver (GRAPE) of Steger and Sorenson (1979) in order to study arbitrary geometries. Results of the application of this method are presented for the NACA 0012 airfoil at various Mach numbers and angles of attack, and cylinders. In addition, detailed comparisons are made with other solutions of the Euler equations.

  16. Quantification of topological changes of vorticity contours in two-dimensional Navier-Stokes flow.

    PubMed

    Ohkitani, Koji; Al Sulti, Fayeza

    2010-06-01

    A characterization of reconnection of vorticity contours is made by direct numerical simulations of the two-dimensional Navier-Stokes flow at a relatively low Reynolds number. We identify all the critical points of the vorticity field and classify them by solving an eigenvalue problem of its Hessian matrix on the basis of critical-point theory. The numbers of hyperbolic (saddles) and elliptic (minima and maxima) points are confirmed to satisfy Euler's index theorem numerically. Time evolution of these indices is studied for a simple initial condition. Generally speaking, we have found that the indices are found to decrease in number with time. This result is discussed in connection with related works on streamline topology, in particular, the relationship between stagnation points and the dissipation. Associated elementary procedures in physical space, the merging of vortices, are studied in detail for a number of snapshots. A similar analysis is also done using the stream function.

  17. Characterizing the Severe Turbulence Environments Associated with Commercial Aviation Accidents. Part 2; Hydrostatic Mesobeta Scale Numerical Simulations of Supergradient Wind Flow and Streamwise Ageostrophic Frontogenesis

    NASA Technical Reports Server (NTRS)

    Kaplan, Michael L.; Huffman, Allan W.; Lux, Kevin M.; Cetola, Jeffrey D.; Charney, Joseph J.; Riordan, Allen J.; Lin, Yuh-Lang; Waight, Kenneth T., III; Proctor, Fred (Technical Monitor)

    2003-01-01

    Simulation experiments reveal key processes that organize a hydrostatic environment conducive to severe turbulence. The paradigm requires juxtaposition of the entrance region of a curved jet stream, which is highly subgeostrophic, with the entrance region of a straight jet stream, which is highly supergeostrophic. The wind and mass fields become misphased as the entrance regions converge resulting in the significant spatial variation of inertial forcing, centripetal forcing, and along- and cross-stream pressure gradient forcing over a mesobeta scale region. This results in frontogenesis and the along-stream divergence of cyclonic and convergence of cyclonic ageostrophic vertical vorticity. The centripetally forced mesoscale front becomes the locus of large gradients of ageostrophic vertical vorticity along an overturning isentrope. This region becomes favorable for streamwise vorticity gradient formation enhancing the environment for organization of horizontal vortex tubes in the presence of buoyant forcing.

  18. On the size and distribution of rings and coherent vortices in the Sargasso Sea

    NASA Astrophysics Data System (ADS)

    Luce, David L.; Rossby, Tom

    2008-05-01

    The container motor vessel CMV Oleander, which operates between New Jersey and Bermuda, crosses the Gulf Stream and Sargasso Sea all year round on a semiweekly schedule. Using an acoustic Doppler current profiler, measurements of upper ocean currents have been made on a regular basis since the fall of 1992. In this paper we examine the database for evidence of axisymmetric coherent vortices including the distribution and intensity of cold core rings. To detect the existence of coherent vortices, the patterns of current vectors averaged between 40 and 80 m depth were fit to an axisymmetric Gaussian vortex model. The parameters of the model were axis location, maximum tangential, or swirl, speed, and radius at which the maximum swirl was measured. We were able to distinguish between the well-known cold core "rings" (CCRs) pinched from the Gulf Stream, and a population of cyclonic and anticyclonic "vortices" in the Sargasso Sea. Both the rings and the Sargasso Sea vortices showed radii of 64 ± 18 km, albeit with different swirl speeds. The rings, close to the Gulf Stream, exhibited a typical maximum swirl speed of 0.98 ± 0.40 m s-1 and a center relative vorticity of 0.64 ± 0.35 × 10-4 s-1, almost 80% of the planetary vorticity for the region. The more uniform population of Sargasso Sea vortices contained approximately equal numbers of cyclones and anticyclones, with mean speeds of +0.43 and -0.55 m s-1, and center relative vorticities of +0.24 × 10-4 s-1 and -0.29 × 10-4 s-1, respectively.

  19. Mechanism of tonal noise generation from circular cylinder with spiral fin

    NASA Astrophysics Data System (ADS)

    Yamashita, Ryo; Hayashi, Hidechito; Okumura, Tetsuya; Hamakawa, Hiromitsu

    2014-12-01

    The pitch of the spiral finned tube influences seriously to the acoustic resonance in the heat exchanger. In this research, the flow characteristics in relating to the aeolian tone from the finned cylinder are studied by the numerical simulation. It is observed that the tonal noise generated from the finned tube at two pitch spaces. The ratio of the fin pitch to the cylinder diameter is changed at 0.11 and 0.27. The tone level increases and the frequency decreases with the pitch shorter. The separation flow from the cylinder generates the span-wise vortices, Karman vortices, and the separation flow from the fin generates the stream-wise vortices. When the fin pitch ratio is small, the stream-wise vortices line up to span-wise and become weak rapidly. Only the Karman vortices are remained and integrate in span. So the Karman vortex became large. This causes the low frequency and the large aeolian tone.

  20. Eulerian velocity reconstruction in ideal atmospheric dynamics using potential vorticity and potential temperature

    NASA Astrophysics Data System (ADS)

    Blender, R.

    2009-04-01

    An approach for the reconstruction of atmospheric flow is presented which uses space- and time-dependent fields of density ?, potential vorticity Q and potential temperature Î& cedil;[J. Phys. A, 38, 6419 (2005)]. The method is based on the fundamental equations without approximation. The basic idea is to consider the time-dependent continuity equation as a condition for zero divergence of momentum in four dimensions (time and space, with unit velocity in time). This continuity equation is solved by an ansatz for the four-dimensional momentum using three conserved stream functions, the potential vorticity, potential temperature and a third field, denoted as ?-potential. In zonal flows, the ?-potential identifies the initial longitude of particles, whereas potential vorticity and potential temperature identify mainly meridional and vertical positions. Since the Lagrangian tracers Q, Î&,cedil; and ? determine the Eulerian velocity field, the reconstruction combines the Eulerian and the Lagrangian view of hydrodynamics. In stationary flows, the ?-potential is related to the Bernoulli function. The approach requires that the gradients of the potential vorticity and potential temperature do not vanish when the velocity remains finite. This behavior indicates a possible interrelation with stability conditions. Examples with analytical solutions are presented for a Rossby wave and zonal and rotational shear flows.

  1. Growth and wall-transpiration control of nonlinear unsteady Görtler vortices forced by free-stream vortical disturbances

    NASA Astrophysics Data System (ADS)

    Marensi, Elena; Ricco, Pierre

    2017-11-01

    The generation, nonlinear evolution, and wall-transpiration control of unsteady Görtler vortices in an incompressible boundary layer over a concave plate is studied theoretically and numerically. Görtler rolls are initiated and driven by free-stream vortical perturbations of which only the low-frequency components are considered because they penetrate the most into the boundary layer. The formation and development of the disturbances are governed by the nonlinear unsteady boundary-region equations with the centrifugal force included. These equations are subject to appropriate initial and outer boundary conditions, which account for the influence of the upstream and free-stream forcing in a rigorous and mutually consistent manner. Numerical solutions show that the stabilizing effect on nonlinearity, which also occurs in flat-plate boundary layers, is significantly enhanced in the presence of centrifugal forces. Sufficiently downstream, the nonlinear vortices excited at different free-stream turbulence intensities Tu saturate at the same level, proving that the initial amplitude of the forcing becomes unimportant. At low Tu, the disturbance exhibits a quasi-exponential growth with the growth rate being intensified for more curved plates and for lower frequencies. At higher Tu, in the typical range of turbomachinery applications, the Görtler vortices do not undergo a modal stage as nonlinearity saturates rapidly, and the wall curvature does not affect the boundary-layer response. Good quantitative agreement with data from direct numerical simulations and experiments is obtained. Steady spanwise-uniform and spanwise-modulated zero-mass-flow-rate wall transpiration is shown to attenuate the growth of the Görtler vortices significantly. A novel modified version of the Fukagata-Iwamoto-Kasagi identity, used for the first time to study a transitional flow, reveals which terms in the streamwise momentum balance are mostly affected by the wall transpiration, thus offering insight into the increased nonlinear growth of the wall-shear stress.

  2. Application of the method of lines for solutions of the Navier-Stokes equations using a nonuniform grid distribution

    NASA Technical Reports Server (NTRS)

    Abolhassani, J. S.; Tiwari, S. N.

    1983-01-01

    The feasibility of the method of lines for solutions of physical problems requiring nonuniform grid distributions is investigated. To attain this, it is also necessary to investigate the stiffness characteristics of the pertinent equations. For specific applications, the governing equations considered are those for viscous, incompressible, two dimensional and axisymmetric flows. These equations are transformed from the physical domain having a variable mesh to a computational domain with a uniform mesh. The two governing partial differential equations are the vorticity and stream function equations. The method of lines is used to solve the vorticity equation and the successive over relaxation technique is used to solve the stream function equation. The method is applied to three laminar flow problems: the flow in ducts, curved-wall diffusers, and a driven cavity. Results obtained for different flow conditions are in good agreement with available analytical and numerical solutions. The viability and validity of the method of lines are demonstrated by its application to Navier-Stokes equations in the physical domain having a variable mesh.

  3. Numerical investigations of two-degree-of-freedom vortex-induced vibration in shear flow

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Liu, Mengke; Han, Yang; Li, Jian; Gui, Mingyue; Chen, Zhihua

    2017-06-01

    Exponential-polar coordinates attached to a moving cylinder are used to deduce the stream function-vorticity equations for two-degree-of-freedom vortex-induced vibration, the initial and boundary conditions, and the distribution of the hydrodynamic force, which consists of the vortex-induced force, inertial force, and viscous damping force. The fluid-structure interactions occurring from the motionless cylinder to the steady vibration are investigated numerically, and the variations of the flow field, pressure, lift/drag, and cylinder displacement are discussed. Both the dominant vortex and the cylinder shift, whose effects are opposite, affect the shear layer along the transverse direction and the secondary vortex along the streamwise direction. However, the effect of the cylinder shift is larger than that of the dominant vortices. Therefore, the former dominates the total effects of the flow field. Moreover, the symmetry of the flow field is broken with the increasing shear rate. With the effect of the background vortex, the upper vortices are strengthened, and the lower vortices are weakened; thus, the shear layer and the secondary vortices induced by the upper shedding vortices are strengthened, while the shear layer and the secondary vortices induced by the lower shedding vortices are weakened. Therefore, the amplitudes of the displacement and drag/lift dominated by the upper vortex are larger than those of the displacement and drag/lift dominated by the lower vortex.

  4. Initial Circulation and Peak Vorticity Behavior of Vortices Shed from Airfoil Vortex Generators

    NASA Technical Reports Server (NTRS)

    Wendt, Bruce J.; Biesiadny, Tom (Technical Monitor)

    2001-01-01

    An extensive parametric study of vortices shed from airfoil vortex generators has been conducted to determine the dependence of initial vortex circulation and peak vorticity on elements of the airfoil geometry and impinging flow conditions. These elements include the airfoil angle of attack, chord length, span, aspect ratio, local boundary layer thickness, and free stream Mach number. In addition, the influence of airfoil-to-airfoil spacing on the circulation and peak vorticity has been examined for pairs of co-rotating and counter-rotating vortices. The vortex generators were symmetric airfoils having a NACA-0012 cross-sectional profile. These airfoils were mounted either in isolation, or in pairs, on the surface of a straight pipe. The turbulent boundary layer thickness to pipe radius ratio was about 17 percent. The circulation and peak vorticity data were derived from cross-plane velocity measurements acquired with a seven-hole probe at one chord-length downstream of the airfoil trailing edge location. The circulation is observed to be proportional to the free-stream Mach number, the angle-of-attack, and the span-to-boundary layer thickness ratio. With these parameters held constant, the circulation is observed to fall off in monotonic fashion with increasing airfoil aspect ratio. The peak vorticity is also observed to be proportional to the free-stream Mach number, the airfoil angle-of-attack, and the span-to-boundary layer thickness ratio. Unlike circulation, however, the peak vorticity is observed to increase with increasing aspect ratio, reaching a peak value at an aspect ratio of about 2.0 before falling off again at higher values of aspect ratio. Co-rotating vortices shed from closely spaced pairs of airfoils have values of circulation and peak vorticity under those values found for vortices shed from isolated airfoils of the same geometry. Conversely, counter-rotating vortices show enhanced values of circulation and peak vorticity when compared to values obtained in isolation. The circulation may be accurately modeled with an expression based on Prandtl's relationship between finite airfoil circulation and airfoil geometry. A correlation for the peak vorticity has been derived from a conservation relationship equating the moment at the airfoil tip to the rate of angular momentum production of the shed vortex, modeled as a Lamb (ideal viscous) vortex. This technique provides excellent qualitative agreement to the observed behavior of peak vorticity for low aspect ratio airfoils typically used as vortex generators.

  5. Streamwise vortices destabilize swimming bluegill sunfish (Lepomis macrochirus).

    PubMed

    Maia, Anabela; Sheltzer, Alex P; Tytell, Eric D

    2015-03-01

    In their natural environment, fish must swim stably through unsteady flows and vortices, including vertical vortices, typically shed by posts in a flow, horizontal cross-flow vortices, often produced by a step or a waterfall in a stream, and streamwise vortices, where the axis of rotation is aligned with the direction of the flow. Streamwise vortices are commonly shed by bluff bodies in streams and by ships' propellers and axial turbines, but we know little about their effects on fish. Here, we describe how bluegill sunfish use more energy and are destabilized more often in flow with strong streamwise vorticity. The vortices were created inside a sealed flow tank by an array of four turbines with similar diameter to the experimental fish. We measured oxygen consumption for seven sunfish swimming at 1.5 body lengths (BL) s(-1) with the turbines rotating at 2 Hz and with the turbines off (control). Simultaneously, we filmed the fish ventrally and recorded the fraction of time spent maneuvering side-to-side and accelerating forward. Separately, we also recorded lateral and ventral video for a combination of swimming speeds (0.5, 1.5 and 2.5 BL s(-1)) and turbine speeds (0, 1, 2 and 3 Hz), immediately after turning the turbines on and 10 min later to test for accommodation. Bluegill sunfish are negatively affected by streamwise vorticity. Spills (loss of heading), maneuvers and accelerations were more frequent when the turbines were on than in the control treatment. These unsteady behaviors, particularly acceleration, correlated with an increase in oxygen consumption in the vortex flow. Bluegill sunfish are generally fast to recover from roll perturbations and do so by moving their pectoral fins. The frequency of spills decreased after the turbines had run for 10 min, but was still markedly higher than in the control, showing that fish partially adapt to streamwise vorticity, but not completely. Coping with streamwise vorticity may be an important energetic cost for stream fishes or migratory fishes. © 2015. Published by The Company of Biologists Ltd.

  6. Experimental investigation of acoustic streaming in a cylindrical wave guide up to high streaming Reynolds numbers.

    PubMed

    Reyt, Ida; Bailliet, Hélène; Valière, Jean-Christophe

    2014-01-01

    Measurements of streaming velocity are performed by means of Laser Doppler Velocimetry and Particle Image Velociimetry in an experimental apparatus consisting of a cylindrical waveguide having one loudspeaker at each end for high intensity sound levels. The case of high nonlinear Reynolds number ReNL is particularly investigated. The variation of axial streaming velocity with respect to the axial and to the transverse coordinates are compared to available Rayleigh streaming theory. As expected, the measured streaming velocity agrees well with the Rayleigh streaming theory for small ReNL but deviates significantly from such predictions for high ReNL. When the nonlinear Reynolds number is increased, the outer centerline axial streaming velocity gets distorted towards the acoustic velocity nodes until counter-rotating additional vortices are generated near the acoustic velocity antinodes. This kind of behavior is followed by outer streaming cells only and measurements in the near wall region show that inner streaming vortices are less affected by this substantial evolution of fast streaming pattern. Measurements of the transient evolution of streaming velocity provide an additional insight into the evolution of fast streaming.

  7. Some observed seasonal changes in extratropical general circulation: A study in terms of vorticity. [seasonal migrations of extra tropical frontal jet streams

    NASA Technical Reports Server (NTRS)

    Srivatsangam, S.; Reiter, E. R.

    1973-01-01

    Extratropical eddy distributions in four months typical of the four seasons are treated in terms of temporal mean and temporal r.m.s. values of the geostrophic relative vorticity. The geographical distributions of these parameters at the 300 mb level show that the arithmetic mean fields are highly biased representatives of the extratropical eddy distributions. The zonal arithmetic means of these parameters are also presented. These show that the zonal-and-time mean relative vorticity is but a small fraction of the zonal mean of the temporal r.m.s. relative vorticity, K. The reasons for considering the r.m.s. values as the temporal normal values of vorticity in the extratropics are given in considerable detail. The parameter K is shown to be of considerable importance in locating the extratropical frontal jet streams (EFJ) in time-and-zonal average distributions. The study leads to an understanding of the seasonal migrations of the EFJ which have not been explored until now.

  8. Measurements and modeling of flow structure in the wake of a low profile wishbone vortex generator

    NASA Technical Reports Server (NTRS)

    Wendt, B. J.; Hingst, W. R.

    1994-01-01

    The results of an experimental examination of the vortex structures shed from a low profile 'wishbone' generator are presented. The vortex generator height relative to the turbulent boundary layer was varied by testing two differently sized models. Measurements of the mean three-dimensional velocity field were conducted in cross-stream planes downstream of the vortex generators. In all cases, a counter-rotating vortex pair was observed. Individual vortices were characterized by three descriptors derived from the velocity data; circulation, peak vorticity, and cross-stream location of peak vorticity. Measurements in the cross plane at two axial locations behind the smaller wishbone characterize the downstream development of the vortex pairs. A single region of stream wise velocity deficit is shared by both vortex cores. This is in contrast to conventional generators, where each core coincides with a region of velocity deficit. The measured cross-stream velocities for each case are compared to an Oseen model with matching descriptors. The best comparison occurs with the data from the larger wishbone.

  9. Nonlinear magnetic electron tripolar vortices in streaming plasmas.

    PubMed

    Vranjes, J; Marić, G; Shukla, P K

    2000-06-01

    Magnetic electron modes in nonuniform magnetized and unmagnetized streaming plasmas, with characteristic frequencies between the ion and electron plasma frequencies and at spatial scales of the order of the collisionless skin depth, are studied. Two coupled equations, for the perturbed (in the case of magnetized plasma) or self-generated (for the unmagnetized plasma case) magnetic field, and the temperature, are solved in the strongly nonlinear regime and stationary traveling solutions in the form of tripolar vortices are found.

  10. An experimental study of large-scale vortices over a blunt-faced flat plate in pulsating flow

    NASA Astrophysics Data System (ADS)

    Hwang, K. S.; Sung, H. J.; Hyun, J. M.

    Laboratory measurements are made of flow over a blunt flat plate of finite thickness, which is placed in a pulsating free stream, U=Uo(1+Aocos 2πfpt). Low turbulence-intensity wind tunnel experiments are conducted in the ranges of Stp<=1.23 and Ao<=0.118 at ReH=560. Pulsation is generated by means of a woofer speaker. Variations of the time-mean reattachment length xR as functions of Stp and Ao are scrutinized by using the forward-time fraction and surface pressure distributions (Cp). The shedding frequency of large-scale vortices due to pulsation is measured. Flow visualizations depict the behavior of large-scale vortices. The results for non-pulsating flows (Ao=0) are consistent with the published data. In the lower range of Ao, as Stp increases, xR attains a minimum value at a particular pulsation frequency. For large Ao, the results show complicated behaviors of xR. For Stp>=0.80, changes in xR are insignificant as Ao increases. The shedding frequency of large-scale vortices is locked-in to the pulsation frequency. A vortex-pairing process takes place between two neighboring large-scale vortices in the separated shear layer.

  11. Laser Doppler velocimeter system simulation for sensing aircraft wake vortices

    NASA Technical Reports Server (NTRS)

    Thomson, J. A. L.; Meng, J. C. S.

    1974-01-01

    A hydrodynamic model of aircraft vortex wakes in an irregular wind shear field near the ground is developed and used as a basis for modeling the characteristics of a laser Doppler detection and vortex location system. The trailing vortex sheet and the wind shear are represented by discrete free vortices distributed over a two-dimensional grid. The time dependent hydrodynamic equations are solved by direct numerical integration in the Boussinesq approximation. The ground boundary is simulated by images, and fast Fourier Transform techniques are used to evaluate the vorticity stream function. The atmospheric turbulence was simulated by constructing specific realizations at time equal to zero, assuming that Kolmogoroff's law applies, and that the dissipation rate is constant throughout the flow field. The response of a simulated laser Doppler velocimeter is analyzed by simulating the signal return from the flow field as sensed by a simulation of the optical/electronic system.

  12. Receptivity of Flat-Plate Boundary Layer in a Non-Uniform Free Stream (Vorticity Normal to the Plate)

    NASA Technical Reports Server (NTRS)

    Kogan, M. N.; Shumilkin, V. G.; Ustinov, M. V.; Zhigulev, S. V.

    1999-01-01

    Experimental and theoretical studies of low speed leading edge boundary layer receptivity to free-stream vorticity produced by upstream wires normal to the leading edge are discussed. Data include parametric variations in leading edge configuration and details of the incident disturbance field including single and multiple wakes. The induced disturbance amplitude increases with increases in the leading edge diameter and wake interactions. Measurements agree with the theory of M. E. Goldstein.

  13. A viscous flow analysis for the tip vortex generation process

    NASA Technical Reports Server (NTRS)

    Shamroth, S. J.; Briley, W. R.

    1979-01-01

    A three dimensional, forward-marching, viscous flow analysis is applied to the tip vortex generation problem. The equations include a streamwise momentum equation, a streamwise vorticity equation, a continuity equation, and a secondary flow stream function equation. The numerical method used combines a consistently split linearized scheme for parabolic equations with a scalar iterative ADI scheme for elliptic equations. The analysis is used to identify the source of the tip vortex generation process, as well as to obtain detailed flow results for a rectangular planform wing immersed in a high Reynolds number free stream at 6 degree incidence.

  14. "Submesoscale Soup" Vorticity and Tracer Statistics During the Lateral Mixing Experiment

    NASA Astrophysics Data System (ADS)

    Shcherbina, A.; D'Asaro, E. A.; Lee, C. M.; Molemaker, J.; McWilliams, J. C.

    2012-12-01

    A detailed view of upper-ocean velocity, vorticity, and tracer statistics was obtained by a unique synchronized two-vessel survey in the North Atlantic in winter 2012. In winter, North Atlantic Mode water region south of the Gulf Stream is filled with an energetic, homogeneous, and well-developed submesoscale turbulence field - the "submesoscale soup". Turbulence in the soup is produced by frontogenesis and the surface layer instability of mesoscale eddy flows in the vicinity of the Gulf Stream. This region is a convenient representation of the inertial range of the geophysical turbulence forward cascade spanning scales of o(1-100km). During the Lateral Mixing Experiment in February-March 2012, R/Vs Atlantis and Knorr were run on parallel tracks 1 km apart for 500 km in the submesoscale soup region. Synchronous ADCP sampling provided the first in-situ estimates of full 3-D vorticity and divergence without the usual mix of spatial and temporal aliasing. Tracer distributions were also simultaneously sampled by both vessels using the underway and towed instrumentation. Observed vorticity distribution in the mixed layer was markedly asymmetric, with sparse strands of strong anticyclonic vorticity embedded in a weak, predominantly cyclonic background. While the mean vorticity was close to zero, distribution skewness exceeded 2. These observations confirm theoretical and numerical model predictions for an active submesoscale turbulence field. Submesoscale vorticity spectra also agreed well with the model prediction.

  15. Force Generation by Flapping Foils

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, P. R.; Donnelly, M.

    1996-11-01

    Aquatic animals like fish use flapping caudal fins to produce axial and cross-stream forces. During WW2, German scientists had built and tested an underwater vehicle powered by similar flapping foils. We have examined the forces produced by a pair of flapping foils. We have examined the forced produced by a pair of flapping foils attached to the tail end of a small axisymmetric cylinder. The foils operate in-phase (called waving), or in anti-phase (called clapping). In a low-speed water tunnel, we have undertaken time-dependent measurements of axial and cross-stream forces and moments that are exerted by the vortex shedding process over the entire body. Phase-matched LDV measurements of vorticity-velocity vectors, as well as limited flow visualization of the periodic vortex shedding process have also been carried out. The direction of the induced velocity within a pair of shed vortices determines the nature of the forces produced, viz., thrust or drag or cross-stream forces. The clapping mode produces a widely dispersed symmetric array of vortices which results in axial forces only (thrust and rag). On the other hand, the vortex array is staggered in the waving mode and cross-stream (maneuvering) forces are then generated.

  16. Nonlinear development and secondary instability of Gortler vortices in hypersonic flows

    NASA Technical Reports Server (NTRS)

    Fu, Yibin B.; Hall, Philip

    1991-01-01

    In a hypersonic boundary layer over a wall of variable curvature, the region most susceptible to Goertler vortices is the temperature adjustment layer over which the basic state temperature decreases monotonically to its free stream value. Except for a special wall curvature distribution, the evolution of Goertler vortices trapped in the temperature adjustment layer will in general be strongly affected by the boundary layer growth through the O(M sup 3/2) curvature of the basic state, where M is the free stream Mach number. Only when the local wavenumber becomes as large as of order M sup 3/8, do nonparallel effects become negligible in the determination of stability properties. In the latter case, Goertler vortices will be trapped in a thin layer of O(epsilon sup 1/2) thickness which is embedded in the temperature adjustment layer; here epsilon is the inverse of the local wavenumber. A weakly nonlinear theory is presented in which the initial nonlinear development of Goertler vortices in the neighborhood of the neutral position is studied and two coupled evolution equations are derived. From these, it can be determined whether the vortices are decaying or growing depending on the sign of a constant which is related to wall curvature and the basic state temperature.

  17. The inducement of planetary boundary layer mass convergence associated with varying vorticity beneath tropospheric wind maximum

    NASA Technical Reports Server (NTRS)

    Johnson, D. R.

    1984-01-01

    The effects of the vorticity distribution are applied to study planetary boundary layer mass convergence beneath free tropospheric wind maximum. For given forcing by viscous and pressure gradient forces beneath a wind maximum, boundary layer cross stream mass transport is increased by anticyclonic vorticity on the right flank and decreased by cyclonic vorticity on the left flank. Such frictionally forced mass transport induces boundary layer mass convergence beneath the relative wind maximum. This result is related to the empirical rule that the most intense convection and severe weather frequently develop beneath the 500 mb zero relative vorticity isopleth.

  18. Numerical study of fluid motion in bioreactor with two mixers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheleva, I., E-mail: izheleva@uni-ruse.bg; Lecheva, A., E-mail: alecheva@uni-ruse.bg

    2015-10-28

    Numerical study of hydrodynamic laminar behavior of a viscous fluid in bioreactor with multiple mixers is provided in the present paper. The reactor is equipped with two disk impellers. The fluid motion is studied in stream function-vorticity formulation. The calculations are made by a computer program, written in MATLAB. The fluid structure is described and numerical results are graphically presented and commented.

  19. Receptivity of Flat-Plate Boundary Layer in a Non-Uniform Free Stream (Vorticity Normal to the Plate)

    NASA Technical Reports Server (NTRS)

    Kogan, M. N.; Ustinov, M. V.

    1997-01-01

    Work is devoted to study of free-stream vorticity normal to leading edge interaction with boundary layer over plate and resulting flow distortion influence on laminar-turbulent transition. In experiments made the wake behind the vertically stretched wire was used as a source of vortical disturbances and its effect on the boundary layer over the horizontally mounted plate with various leading edge shapes was investigated. The purpose of experiments was to check the predictions of theoretical works of M.E. Goldstein, et. al. This theory shows that small free-stream inhomogeneity interacting with leading edge produces considerable distortion of boundary layer flow. In general, results obtained confirms predictions of Goldstein's theory, i.e., the amplification of steady vortical disturbances in boundary layer caused by vortex lines stretching was observed. Experimental results fully coincide with predictions of theory for large Reynolds number, relatively sharp leading edge and small disturbances. For large enough disturbances the flow distortion caused by symmetric wake unexpectedly becomes antisymmetric in spanwise direction. If the leading edge is too blunt the maximal distortion takes place immediately at the nose and no further amplification was observed. All these conditions and results are beyond the scope of Goldstein's theory.

  20. Bacterial aggregation and biofilm formation in a vortical flow

    PubMed Central

    Yazdi, Shahrzad; Ardekani, Arezoo M.

    2012-01-01

    Bacterial aggregation and patchiness play an important role in a variety of ecological processes such as competition, adaptation, epidemics, and succession. Here, we demonstrate that hydrodynamics of their environment can lead to their aggregation. This is specially important since microbial habitats are rarely at rest (e.g., ocean, blood stream, flow in porous media, and flow through membrane filtration processes). In order to study the dynamics of bacterial collection in a vortical flow, we utilize a microfluidic system to mimic some of the important microbial conditions at ecologically relevant spatiotemporal scales. We experimentally demonstrate the formation of “ring”-shaped bacterial collection patterns and subsequently the formation of biofilm streamers in a microfluidic system. Acoustic streaming of a microbubble is used to generate a vortical flow in a microchannel. Due to bacteria's finite-size, the microorganisms are directed to closed streamlines and trapped in the vortical flow. The collection of bacteria in the vortices occurs in a matter of seconds, and unexpectedly, triggers the formation of biofilm streamers within minutes. Swimming bacteria have a competitive advantage to respond to their environmental conditions. In order to investigate the role of bacterial motility on the rate of collection, two strains of Escherichia coli bacteria with different motilities are used. We show that the bacterial collection in a vortical flow is strongly pronounced for high motile bacteria. PMID:24339847

  1. Experimental examination of vorticity stripping from a wing-tip vortex in free-stream turbulence

    NASA Astrophysics Data System (ADS)

    Ghimire, Hari C.; Bailey, Sean C. C.

    2018-03-01

    Time-resolved stereoscopic particle image velocimetry measurements were conducted of a wing-tip vortex decaying in free-stream turbulence. The objective of the research was to experimentally investigate the mechanism causing the increased rate of decay of the vortex in the presence of turbulence. It was observed that the circulation of the vortex core experienced periods of rapid loss and recovery when immersed in free-stream turbulence. These events were not observed when the vortex was in a laminar free stream. A connection was made between these events and distortion of the vortex, coinciding with stripping of core fluid from the vortex core. Specifically, vortex stripping events were connected to asymmetry in the vortex core, and this asymmetry was associated with instances of rapid circulation loss. The increased rate of decay of the vortex in turbulence coincided with the formation of secondary vortical structures which wrapped azimuthally around the primary vortex.

  2. Optimized open-flow mixing: insights from microbubble streaming

    NASA Astrophysics Data System (ADS)

    Rallabandi, Bhargav; Wang, Cheng; Guo, Lin; Hilgenfeldt, Sascha

    2015-11-01

    Microbubble streaming has been developed into a robust and powerful flow actuation technique in microfluidics. Here, we study it as a paradigmatic system for microfluidic mixing under a continuous throughput of fluid (open-flow mixing), providing a systematic optimization of the device parameters in this practically important situation. Focusing on two-dimensional advective stirring (neglecting diffusion), we show through numerical simulation and analytical theory that mixing in steady streaming vortices becomes ineffective beyond a characteristic time scale, necessitating the introduction of unsteadiness. By duty cycling the streaming, such unsteadiness is introduced in a controlled fashion, leading to exponential refinement of the advection structures. The rate of refinement is then optimized for particular parameters of the time modulation, i.e. a particular combination of times for which the streaming is turned ``on'' and ``off''. The optimized protocol can be understood theoretically using the properties of the streaming vortices and the throughput Poiseuille flow. We can thus infer simple design principles for practical open flow micromixing applications, consistent with experiments. Current Address: Mechanical and Aerospace Engineering, Princeton University.

  3. Transient Boundary Layer Disturbance Growth and Bypass Transition Due to Realistic Roughness and Continued Study of Transition Over Riblets

    DTIC Science & Technology

    2011-03-19

    producing negative streamwise vorticity). It is not clear, however, why these ωx pancakes take on this alternating layer form. Figuring out how new...streamwise vorticity. The stream ribbons are colored by the vorticity component along the direction of the ribbon. The upshot of such an image is...different colors . The right image of figure 21 is created from analyzing several photographs of each single collar vortex. Due to limitations in the dye

  4. Steady flow instability in an annulus with deflectors at rotational vibration

    NASA Astrophysics Data System (ADS)

    Kozlov, Nikolai V.; Pareau, Dominique; Ivantsov, Andrey; Stambouli, Moncef

    2016-12-01

    Experimental study and direct numerical simulation of the dynamics of an isothermal low-viscosity fluid are done in a coaxial gap of a cylindrical container making rotational vibrations relative to its axis. On the inner surface of the outer wall of the container, semicircular deflectors are regularly situated, playing the role of flow activators. As a result of vibrations, the activators oscillate tangentially. In the simulation, a 2D configuration is considered, excluding the end-wall effects. In the experiment, a container with a large aspect ratio is used. Steady streaming is generated in the viscous boundary layers on the activators. On each of the latter, beyond the viscous domain, a symmetric vortices pair is formed. The steady streaming in the annulus has an azimuthal periodicity. With an increase in the vibration intensity, a competition between the vortices occurs, as a result of which one of the vortices (let us call it even) approaches the activator and the other one (odd) rolls away and couples with the vortices from the neighbouring pairs. Streamlines of the odd vortices close on each other, forming a cog-wheel shaped flow that encircles the inner wall. Comparison of the experiment and the simulation reveals an agreement at moderate vibration intensity.

  5. PIV and Hotwire Measurement and Analysis of Tip Vortices and Turbulent Wake Generated by a Model Horizontal Axis Wind Turbine

    NASA Astrophysics Data System (ADS)

    Green, D.; Tan, Y. M.; Chamorro, L. P.; Arndt, R.; Sotiropoulos, F.; Sheng, J.

    2011-12-01

    Understanding vortical flow structures and turbulence in the wake flow behind a Horizontal Axis Wind Turbine (HAWT) has widespread applications in efficient blade design. Moreover, the knowledge of wake-turbine interactions allows us to devise optimal operational parameters, such as the spatial allocation and control algorithms of wind turbines, for a densely populated wind farm. To understand the influence of tip vortices on energy containing mean flow and turbulence, characteristics of vortical structures and turbulence must be quantified thoroughly. In this study, we conduct phase-locked Particle Image Velocimetry (PIV) measurements of the flow before and after a model HAWT, which is located in a zero-pressure gradient wind tunnel with a cross section of 1.7 × 1.7 m and a test section of 16 m in length. A three-blade model HAWT with a diameter of 605 mm and tip-speed ratio of 5 is used. PIV images are recorded by a 2048 × 2048 CCD camera and streamed at 6 Hz continuously; and phased locked with the passage of the blade at its vertical position. Each PIV measurement covers a 0.13 × 0.13 m2 sample area with the spatial resolution of 63 μm and a vector spacing of 0.5 mm. All experiments are conducted at the free-stream wind speed of 10 m/s. Flow fields at thirty consecutive downstream locations up to six rotor diameters and 144 mid chord lengths are measured. At each location, we obtain at least 10,000 instantaneous PIV realizations or 20,000 images. Three different configurations: single, dual, and trio turbines located at 5 rotor diameter upstream to each other, are examined experimentally. The flow statistics include mean wake velocity distributions, characteristics of tip vortices evolving downstream, fluctuation velocity, turbulent kinetic energy, stresses, and energy spectra. We find that tip vortices decay much faster in the wake of the upstream turbines (multiple-turbine configurations), whereas they maintain the coherence and strength behind a single turbine. The tip vortices entrain the high speed free-stream fluids and subsequently replenish the loss of momentum into the wake. Such a mechanism is greatly mitigated in the multiple-turbine scenarios. On-going analysis is to elucidate the generation, evolution and dissipation of the tip vortices in the various configurations.

  6. Factors which influence the behavior of turbofan forced mixer nozzles

    NASA Technical Reports Server (NTRS)

    Anderson, B. H.; Povinelli, L. A.

    1981-01-01

    A finite difference procedure was used to compute the mixing for three experimentally tested mixer geometries. Good agreement was obtained between analysis and experiment when the mechanisms responsible for secondary flow generation were properly modeled. Vorticity generation due to flow turning and vorticity generated within the centerbody lobe passage were found to be important. Results are presented for two different temperature ratios between fan and core streams and for two different free stream turbulence levels. It was concluded that the dominant mechanisms in turbofan mixers is associated with the secondary flows arising within the lobe region and their development within the mixing section.

  7. Trapping and exclusion zones in complex streaming patterns around a large assembly of microfluidic bubbles under ultrasound

    NASA Astrophysics Data System (ADS)

    Combriat, Thomas; Mekki-Berrada, Flore; Thibault, Pierre; Marmottant, Philippe

    2018-01-01

    Pulsating bubbles have proved to be a versatile tool for trapping and sorting particles. In this article, we investigate the different streaming patterns that can be obtained with a group of bubbles in a confined geometry under ultrasound. In the presence of an external flow strong enough to oppose the streaming velocities but not drag the trapped bubbles, we observe either the appearance of exclusion zones near the bubbles or asymmetric streaming patterns that we interpret as the superposition of a two-dimensional (2D) streaming function and of a potential flow. When studying a lattice of several bubbles, we show that the streaming pattern can be accurately predicted by superimposing the contributions of every pair of bubbles present in the lattice, thus allowing one to predict the sizes and the shapes of exclusion zones created by a group of bubbles under acoustic excitation. We suggest that such systems could be used to enhance mixing at a small scale or to catch and release chemical species initially trapped in vortices created around bubble pairs.

  8. Low frequency vibration induced streaming in a Hele-Shaw cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Costalonga, M., E-mail: maxime.costalonga@univ-paris-diderot.fr; Laboratoire Matière et Systèmes Complexes, UMR CNRS 7057, Université Paris Diderot, 10 rue Alice Domon et Léonie Duquet, 75205 Paris cedex 13; Brunet, P.

    When an acoustic wave propagates in a fluid, it can generate a second order flow whose characteristic time is much longer than the period of the wave. Within a range of frequency between ten and several hundred Hz, a relatively simple and versatile way to generate streaming flow is to put a vibrating object in the fluid. The flow develops vortices in the viscous boundary layer located in the vicinity of the source of vibrations, leading in turn to an outer irrotational streaming called Rayleigh streaming. Because the flow originates from non-linear time-irreversible terms of the Navier-Stokes equation, this phenomenonmore » can be used to generate efficient mixing at low Reynolds number, for instance in confined geometries. Here, we report on an experimental study of such streaming flow induced by a vibrating beam in a Hele-Shaw cell of 2 mm span using long exposure flow visualization and particle-image velocimetry measurements. Our study focuses especially on the effects of forcing frequency and amplitude on flow dynamics. It is shown that some features of this flow can be predicted by simple scaling arguments and that this vibration-induced streaming facilitates the generation of vortices.« less

  9. Acoustic streaming induced by two orthogonal ultrasound standing waves in a microfluidic channel.

    PubMed

    Doinikov, Alexander A; Thibault, Pierre; Marmottant, Philippe

    2018-07-01

    A mathematical model is derived for acoustic streaming in a microfluidic channel confined between a solid wall and a rigid reflector. Acoustic streaming is produced by two orthogonal ultrasound standing waves of the same frequency that are created by two pairs of counter-propagating leaky surface waves induced in the solid wall. The magnitudes and phases of the standing waves are assumed to be different. Full analytical solutions are found for the equations of acoustic streaming. The obtained solutions are used in numerical simulations to reveal the structure of the acoustic streaming. It is shown that the interaction of two standing waves leads to the appearance of a cross term in the equations of acoustic streaming. If the phase lag between the standing waves is nonzero, the cross term brings about circular vortices with rotation axes perpendicular to the solid wall of the channel. The vortices make fluid particles rotate and move alternately up and down between the solid wall and the reflector. The obtained results are of immediate interest for acoustomicrofluidic applications such as the ultrasonic micromixing of fluids and the manipulation of microparticles. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. DUST CAPTURE AND LONG-LIVED DENSITY ENHANCEMENTS TRIGGERED BY VORTICES IN 2D PROTOPLANETARY DISKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Surville, Clément; Mayer, Lucio; Lin, Douglas N. C., E-mail: clement.surville@physik.uzh.ch

    We study dust capture by vortices and its long-term consequences in global two-fluid inviscid disk simulations using a new polar grid code RoSSBi. We perform the longest integrations so far, several hundred disk orbits, at the highest resolution attainable in global disk simulations with dust, namely, 2048 × 4096 grid points. We vary a wide range of dust parameters, most notably the initial dust-to-gas ratio ϵ varies in the range of 10{sup −4}–10{sup −2}. Irrespective of the value of ϵ , we find rapid concentration of the dust inside vortices, reaching dust-to-gas ratios of the order of unity inside themore » vortex. We present an analytical model that describes this dust capture process very well, finding consistent results for all dust parameters. A vortex streaming instability develops, which invariably causes vortex destruction. After vortex dissipation large-scale dust rings encompassing a disk annulus form in most cases, which sustain very high dust concentration, approaching ratios of the order of unity; they persist as long as the duration of the simulations. They are sustained by a streaming instability, which manifests itself in high-density dust clumps at various scales. When vortices are particularly long-lived, rings do not form but dust clumps inside vortices can survive a long time and would likely undergo collapse by gravitational instability. Rings encompass almost an Earth mass of solid material, while even larger masses of dust do accumulate inside vortices in the earlier stage. We argue that rapid planetesimal formation would occur in the dust clumps inside the vortices as well as in the post-vortex rings.« less

  11. Dust Capture and Long-lived Density Enhancements Triggered by Vortices in 2D Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Surville, Clément; Mayer, Lucio; Lin, Douglas N. C.

    2016-11-01

    We study dust capture by vortices and its long-term consequences in global two-fluid inviscid disk simulations using a new polar grid code RoSSBi. We perform the longest integrations so far, several hundred disk orbits, at the highest resolution attainable in global disk simulations with dust, namely, 2048 × 4096 grid points. We vary a wide range of dust parameters, most notably the initial dust-to-gas ratio ɛ varies in the range of 10-4-10-2. Irrespective of the value of ɛ, we find rapid concentration of the dust inside vortices, reaching dust-to-gas ratios of the order of unity inside the vortex. We present an analytical model that describes this dust capture process very well, finding consistent results for all dust parameters. A vortex streaming instability develops, which invariably causes vortex destruction. After vortex dissipation large-scale dust rings encompassing a disk annulus form in most cases, which sustain very high dust concentration, approaching ratios of the order of unity they persist as long as the duration of the simulations. They are sustained by a streaming instability, which manifests itself in high-density dust clumps at various scales. When vortices are particularly long-lived, rings do not form but dust clumps inside vortices can survive a long time and would likely undergo collapse by gravitational instability. Rings encompass almost an Earth mass of solid material, while even larger masses of dust do accumulate inside vortices in the earlier stage. We argue that rapid planetesimal formation would occur in the dust clumps inside the vortices as well as in the post-vortex rings.

  12. Preventing Jupiter's Great Red Spot from Turning Itself Inside-Out

    NASA Astrophysics Data System (ADS)

    Shetty, Sushil; Asay-Davis, Xylar; Marcus, Philip

    2002-11-01

    Previous simulations of Jupiter's Great Red Spot (GRS) have failed to reproduce its most prominent feature: its hollowness. Unlike most laboratory 2D vortices, where vorticity is peaked at the center, the GRS has nearly no fluid motion in its interior. The coherent fluid motion is confined to a narrow ring at the outer edge of the GRS that moves counter-clockwise around the vortex. Simulations show that isolated 2D vortices that are as hollow as the GRS are violently unstable, turning themselves inside-out within a few rotations of the vortex. How than can one explain the long-lived, stable GRS? The answer is that the GRS is not isolated but instead embedded in a system of east-west jet streams. The eastward jet streams correspond to strong (potential) vorticity gradients which act as guides for Rossby waves. We show that the interaction between the GRS and the Rossby waves stabilize the GRS. Furthermore, we show that the hollowness of the GRS is near its critical limit, so that if it were any more hollow it would become unstable. We suggest a plausible mechanism through which this critical hollowness is maintained.

  13. Interaction of disturbances with an oblique detonation wave attached to a wedge

    NASA Technical Reports Server (NTRS)

    Lasseigne, D. G.; Hussaini, M. Y.

    1993-01-01

    The linear response of an oblique overdriven detonation to impose free stream disturbances or to periodic movements of the wedge is examined. The free stream disturbances are assumed to be steady vorticity waves and the wedge motions are considered to be time periodic oscillations either about a fixed pivot point or along the plane of symmetry of the wedge aligned with the incoming stream. The detonation is considered to be a region of infinitesimal thickness in which a finite amount of heat is released. The response to the imposed disturbances is a function of the Mach number of the incoming flow, the wedge angle, and the exothermocity of the reaction within the detonation. It is shown that as the degree of overdrive increases, the amplitude of the response increases significantly; furthermore, a fundamental difference in the dependence of the response on the parameters of the problem is found between the response to a free stream disturbance and to a disturbance emanating from the wedge surface.

  14. Structure measurements in a synthetic turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Arakeri, Jaywant H.

    1987-09-01

    Extensive hot-wire measurements have been made to determine the structure of the large eddy in a synthejc turbulent boundary layer on a flat-plate model. The experiments were carried out in a wind tunnel at a nominal free-stream velocity of 12 m/s. The synthetic turbulent boundary layer had a hexagonal pattern of eddies and a ratio of streamwise scale to spanwise scale of 3.2:1. The measured celerity of the large eddy was 84.2 percent of the free-stream velocity. There was some loss of coherence, but very little distortion, as the eddies moved downstream. Several mean properties of the synthetic boundary layer were found to agree quite well with the mean properties of a natural turbulent boundary layer at the same Reynolds number. The large eddy is composed of a pair of primary counter-rotating vortices about five [...] long in the streamwise direction and about one [...] apart in the spanwise direction, where [...] is the mean boundary-layer thickness. The sense of the primary pair is such as to pump fluid away from the wall in the region between the vortices. A secondary pair of counter-rotating streamwise vortices, having a sense opposite to that of the primary pair, is observed outside of and slightly downstream from the primary vortices. Both pairs of vortices extend across the full thickness of the boundary layer and are inclined at a shallow angle to the surface of the flat plate. The data show that the mean vorticity vectors are not tangential to the large-eddy vortices. In fact, the streamwise and normal vorticity components that signal the presence of the eddy are of the same order of magnitude. Definite signatures are obtained in terms of the mean skin-friction coefficient and the mean wake parameter averaged at constant phase. Velocities induced by the vortices are partly responsible for entrainment of irrotational fluid, for transport of momentum, for generation of Reynolds stresses, and for maintenance of streamwise and normal vorticity in the outer flow. A stretching mechanism is important in matching spanwise vorticity close to the wall to variations in turbulent shearing stress. Regions where the stretching term is large coincide with regions of large wall shearing stress and large turbulence production.

  15. Unsteady Heat Transfer in Channel Flow using Small-Scale Vorticity Concentrations Effected by a Vibrating Reed

    NASA Astrophysics Data System (ADS)

    Hidalgo, Pablo; Glezer, Ari

    2011-11-01

    Heat transfer enhancement by small-scale vorticity concentrations that are induced within the core flow of a mm-scale heated channel are investigated experimentally. These small-scale motions are engendered by the cross stream vibrations of a streamwise cantilevered reed that spans most of the channel's width. The interactions between the reed the core flow over a range of flow rates lead to the formation, shedding, and advection of time-periodic vorticity concentrations that interact with the wall boundary layers, and increase cross stream mixing of the core flow. Heating of the channel walls is controlled using microfabricated serpentine resistive heaters embedded with streamwise arrays of temperature sensors. It is shown that the actuation disrupts the thermal boundary layers and result in significant enhancement of the local and global heat transfer along the channel compared to the baseline flow in the absence of the reed. The effect of the reed on the cross flow is measured using high resolution particle image velocimetry (PIV), and the reed motion is characterized using a laser-based position sensor. The blockage induced by the presence of the reed and its cross stream motion is characterized using detailed streamwise pressure distributions. Supported by DARPA and UTRC.

  16. Interhemispheric comparison of atmospheric circulation features as evaluated from Nimbus satellite data

    NASA Technical Reports Server (NTRS)

    Reiter, E. R.; Vonderhaar, T. H.; Adler, R. F.; Srivatsangam, S.; Fields, A.

    1973-01-01

    A relationship is established between relative geostrophic vorticity on an isobaric surface and the Laplacian of the underlying layer-mean temperature. This relationship is used to investigate the distribution of vorticity and baroclinicity in a jet-stream model which is constantly recurrent in the winter troposphere. The investigation shows that the baroclinic and vorticity fields of the extratropical troposphere must be bifurcated with two extrema in the middle and subpolar latitudes. This pattern is present in daily tropospheric meridional cross-sections. The reasons for the disappearance of bifurcation in the time-and-longitude averaged distributions are discussed.

  17. Finiteness of corner vortices

    NASA Astrophysics Data System (ADS)

    Kalita, Jiten C.; Biswas, Sougata; Panda, Swapnendu

    2018-04-01

    Till date, the sequence of vortices present in the solid corners of steady internal viscous incompressible flows was thought to be infinite. However, the already existing and most recent geometric theories on incompressible viscous flows that express vortical structures in terms of critical points in bounded domains indicate a strong opposition to this notion of infiniteness. In this study, we endeavor to bridge the gap between the two opposing stream of thoughts by diagnosing the assumptions of the existing theorems on such vortices. We provide our own set of proofs for establishing the finiteness of the sequence of corner vortices by making use of the continuum hypothesis and Kolmogorov scale, which guarantee a nonzero scale for the smallest vortex structure possible in incompressible viscous flows. We point out that the notion of infiniteness resulting from discrete self-similarity of the vortex structures is not physically feasible. Making use of some elementary concepts of mathematical analysis and our own construction of diametric disks, we conclude that the sequence of corner vortices is finite.

  18. Does the vorticity flux from Agulhas rings control the zonal pathway of NADW across the South Atlantic?

    NASA Astrophysics Data System (ADS)

    van Sebille, Erik; Johns, William E.; Beal, Lisa M.

    2012-05-01

    As part of the global thermohaline circulation, some North Atlantic Deep Water (NADW) exits the Atlantic basin to the south of Africa. Observations have shown that there is a quasi-zonal pathway centered at 25°S carrying NADW eastward, connecting the Deep Western Boundary Current to the Cape Basin. However, it has been unclear what sets this pathway. In particular, waters must move southward through the Cape Basin, thereby crossing isolines of planetary vorticity, in order to exit the basin. Here, we find that an eddy thickness flux induced by Agulhas rings moving northwestward forces a circulation of NADW through the Cape Basin. The pathway at 25°S feeds the southeastward flow of this circulation while conserving potential vorticity. Using Lagrangian floats advected for 300 years in a 1/10° resolution ocean model, we show that the most common pathway for NADW in our model lies directly below the Agulhas ring corridor. By analyzing the velocity and density fields in the model, we find that the decay of these rings, and their forward tilt with depth, results in a southward velocity, across isolines of planetary vorticity, of 1 to 2 cm/s in the deep waters. The associated stream function pattern yields a deep circulation transporting 4 Sv of NADW from the Deep Western Boundary Current at 25°S to the southern tip of Africa.

  19. Aerodynamic Applications of Boundary Layer Control Using Embedded Streamwise Vortices

    DTIC Science & Technology

    2003-07-01

    section, 0.02% free-stream turbulence level, free-stream velocity up to 18 m/s; the strain gauge can be used for aerodynamic force measurements. (2...section, free-stream velocity up to 28 m/s; equipped with the 3-component strain gauge (values of streamwise and normal forces measured up to 3N and 6...dimensional model: test section of 4m x 2.5m x 5.5m, free-stream velocities up to 42 m/s, multi-base 6-component strain gauge. Project Manager: Nina F

  20. Goertler vortices in growing boundary layers: The leading edge receptivity problem, linear growth and the nonlinear breakdown stage

    NASA Technical Reports Server (NTRS)

    Hall, Philip

    1989-01-01

    Goertler vortices are thought to be the cause of transition in many fluid flows of practical importance. A review of the different stages of vortex growth is given. In the linear regime, nonparallel effects completely govern this growth, and parallel flow theories do not capture the essential features of the development of the vortices. A detailed comparison between the parallel and nonparallel theories is given and it is shown that at small vortex wavelengths, the parallel flow theories have some validity; otherwise nonparallel effects are dominant. New results for the receptivity problem for Goertler vortices are given; in particular vortices induced by free stream perturbations impinging on the leading edge of the walls are considered. It is found that the most dangerous mode of this type can be isolated and it's neutral curve is determined. This curve agrees very closely with the available experimental data. A discussion of the different regimes of growth of nonlinear vortices is also given. Again it is shown that, unless the vortex wavelength is small, nonparallel effects are dominant. Some new results for nonlinear vortices of 0(1) wavelengths are given and compared to experimental observations.

  1. Numerical modeling of heat transfer in the fuel oil storage tank at thermal power plant

    NASA Astrophysics Data System (ADS)

    Kuznetsova, Svetlana A.

    2015-01-01

    Presents results of mathematical modeling of convection of a viscous incompressible fluid in a rectangular cavity with conducting walls of finite thickness in the presence of a local source of heat in the bottom of the field in terms of convective heat exchange with the environment. A mathematical model is formulated in terms of dimensionless variables "stream function - vorticity vector speed - temperature" in the Cartesian coordinate system. As the results show the distributions of hydrodynamic parameters and temperatures using different boundary conditions on the local heat source.

  2. Simulation of separated flow past a bluff body using Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Ghia, K. N.; Ghia, U.; Osswald, G. A.; Liu, C. A.

    1987-01-01

    Two-dimensional flow past a bluff body is presently simulated on the basis of an analysis that employs the incompressible, unsteady Navier-Stokes equations in terms of vorticity and stream function. The fully implicit, time-marching, alternating-direction, implicit-block Gaussian elimination used is a direct method with second-order spatial accuracy; this allows it to avoid the introduction of any artificial viscosity. Attention is given to the simulation of flow past a circular cylinder with and without symmetry, requiring the use of either the half or the full cylinder, respectively.

  3. Reducing the Drag and Damage of a High-Speed Train by Analyzing and Optimizing its Boundary Layer Separation and Roll-up into Wake Vortices

    NASA Astrophysics Data System (ADS)

    Jiang, Chung-Hsiang; Marcus, Philip

    2012-11-01

    We present numerical calculations of the boundary layers and shed wake vortices behind several aerodynamic bodies and generic models of high-speed trains. Our calculations illustrate new visual diagnostics that we developed that clearly show where the separation of a boundary layer occurs and where, how, and with what angles (with respect to the stream-wise direction) the wake vortices form. The calculations also illustrate novel 3D morphing and mesh ``pushing and pulling'' techniques that allow us to change the shapes of aerodynamic bodies and models in a controlled and automated manner without spurious features appearing. Using these tools we have examined the patterns of the shed vortices behind generic bodies and trains and correlated them with the changes in the drag as well as with the effects of the shed vortices on the environment. In particular, we have applied these techniques to the end car of a next-generation, high-speed train in order to minimize the drag and to minimize the adverse effects of the shed vortices on the track ballast.

  4. On th meridional surface profile of the Gulf Stream at 55 deg W

    NASA Technical Reports Server (NTRS)

    Hallock, Zachariah R.; Teague, William J.

    1995-01-01

    Nine-month records from nine inverted echo sounders (IESs) are analyzed to describe the mean baroclinic Gulf Stream at 55 deg W. IES acoustic travel times are converted to thermocline depth which is optimally interpolated. Kinematic and dynamic parameters (Gulf Stream meridional position, velocity, and vorticity) are calculated. Primary Gulf Stream variabiltiy is attributed to meandering and and changes in direction. A mean, stream-coordinate (relative to Gulf Stream instantaneous position and direction) meridional profile is derived and compared with results presented by other investigators. The mean velocity is estimated at 0.84 m/s directed 14 deg to the right eastward, and the thermocline (12 c) drops 657 m (north to south), corresponding to a baroclinic rise of the surface of 0.87 m. The effect of Gulf Stream curvature on temporal mean profiles is found to be unimportant and of minimal importance overall. The derived, downstream current profile is well represented by a Gaussian function and is about 190 km wide where it crosses zero. Surface baroclinic transport is estimated to be 8.5 x 10(exp 4) sq m/s, and maximum shear (flanking the maximum) is 1.2 x 10(exp -5). Results compare well with other in situ observational results from the same time period. On the other hand, analyses (by others) of concurrent satellite altimetry (Geosat) suggest a considerable narrower, more intense mean Gulf Stream.

  5. Stability of barotropic vortex strip on a rotating sphere

    PubMed Central

    Sohn, Sung-Ik; Kim, Sun-Chul

    2018-01-01

    We study the stability of a barotropic vortex strip on a rotating sphere, as a simple model of jet streams. The flow is approximated by a piecewise-continuous vorticity distribution by zonal bands of uniform vorticity. The linear stability analysis shows that the vortex strip becomes stable as the strip widens or the rotation speed increases. When the vorticity constants in the upper and the lower regions of the vortex strip have the same positive value, the inner flow region of the vortex strip becomes the most unstable. However, when the upper and the lower vorticity constants in the polar regions have different signs, a complex pattern of instability is found, depending on the wavenumber of perturbations, and interestingly, a boundary far away from the vortex strip can be unstable. We also compute the nonlinear evolution of the vortex strip on the rotating sphere and compare with the linear stability analysis. When the width of the vortex strip is small, we observe a good agreement in the growth rate of perturbation at an early time, and the eigenvector corresponding to the unstable eigenvalue coincides with the most unstable part of the flow. We demonstrate that a large structure of rolling-up vortex cores appears in the vortex strip after a long-time evolution. Furthermore, the geophysical relevance of the model to jet streams of Jupiter, Saturn and Earth is examined. PMID:29507524

  6. Stability of barotropic vortex strip on a rotating sphere.

    PubMed

    Sohn, Sung-Ik; Sakajo, Takashi; Kim, Sun-Chul

    2018-02-01

    We study the stability of a barotropic vortex strip on a rotating sphere, as a simple model of jet streams. The flow is approximated by a piecewise-continuous vorticity distribution by zonal bands of uniform vorticity. The linear stability analysis shows that the vortex strip becomes stable as the strip widens or the rotation speed increases. When the vorticity constants in the upper and the lower regions of the vortex strip have the same positive value, the inner flow region of the vortex strip becomes the most unstable. However, when the upper and the lower vorticity constants in the polar regions have different signs, a complex pattern of instability is found, depending on the wavenumber of perturbations, and interestingly, a boundary far away from the vortex strip can be unstable. We also compute the nonlinear evolution of the vortex strip on the rotating sphere and compare with the linear stability analysis. When the width of the vortex strip is small, we observe a good agreement in the growth rate of perturbation at an early time, and the eigenvector corresponding to the unstable eigenvalue coincides with the most unstable part of the flow. We demonstrate that a large structure of rolling-up vortex cores appears in the vortex strip after a long-time evolution. Furthermore, the geophysical relevance of the model to jet streams of Jupiter, Saturn and Earth is examined.

  7. A numerical study of the string function using a primitive equation ocean model

    NASA Astrophysics Data System (ADS)

    Tyler, R. H.; Käse, R.

    We use results from a primitive-equation ocean numerical model (SCRUM) to test a theoretical 'string function' formulation put forward by Tyler and Käse in another article in this issue. The string function acts as a stream function for the large-scale potential energy flow under the combined beta and topographic effects. The model results verify that large-scale anomalies propagate along the string function contours with a speed correctly given by the cross-string gradient. For anomalies having a scale similar to the Rossby radius, material rates of change in the layer mass following the string velocity are balanced by material rates of change in relative vorticity following the flow velocity. It is shown that large-amplitude anomalies can be generated when wind stress is resonant with the string function configuration.

  8. Measurements of Supersonic Wing Tip Vortices

    NASA Technical Reports Server (NTRS)

    Smart, Michael K.; Kalkhoran, Iraj M.; Benston, James

    1994-01-01

    An experimental survey of supersonic wing tip vortices has been conducted at Mach 2.5 using small performed 2.25 chords down-stream of a semi-span rectangular wing at angle of attack of 5 and 10 degrees. The main objective of the experiments was to determine the Mach number, flow angularity and total pressure distribution in the core region of supersonic wing tip vortices. A secondary aim was to demonstrate the feasibility of using cone probes calibrated with a numerical flow solver to measure flow characteristics at supersonic speeds. Results showed that the numerically generated calibration curves can be used for 4-hole cone probes, but were not sufficiently accurate for conventional 5-hole probes due to nose bluntness effects. Combination of 4-hole cone probe measurements with independent pitot pressure measurements indicated a significant Mach number and total pressure deficit in the core regions of supersonic wing tip vortices, combined with an asymmetric 'Burger like' swirl distribution.

  9. On the inlet vortex system. [preventing jet engine damage caused by debris pick-up

    NASA Technical Reports Server (NTRS)

    Bissinger, N. C.; Braun, G. W.

    1974-01-01

    The flow field of a jet engine with an inlet vortex, which can pick up heavy debris from the ground and damage the engine, was simulated in a small water tunnel by means of the hydrogen bubble technique. It was found that the known engine inlet vortex is accompained by a vortex system, consisting of two inlet vortices (the ground based and the trailing one), secondary vortices, and ground vortices. Simulation of the ground effect by an inlet image proved that the inlet vortex feeds on free stream vorticity and can exist without the presence of a ground boundary layer. The structural form of the inlet vortex system was explained by a simple potential flow model, which showed the number, location, and the importance of the stagnation points. A retractable horizontal screen or an up-tilt of the engine is suggested as countermeasure against debris ingestion.

  10. Numerical simulations of incompressible laminar flows using viscous-inviscid interaction procedures

    NASA Astrophysics Data System (ADS)

    Shatalov, Alexander V.

    The present method is based on Helmholtz velocity decomposition where velocity is written as a sum of irrotational (gradient of a potential) and rotational (correction due to vorticity) components. Substitution of the velocity decomposition into the continuity equation yields an equation for the potential, while substitution into the momentum equations yields equations for the velocity corrections. A continuation approach is used to relate the pressure to the gradient of the potential through a modified Bernoulli's law, which allows the elimination of the pressure variable from the momentum equations. The present work considers steady and unsteady two-dimensional incompressible flows over an infinite cylinder and NACA 0012 airfoil shape. The numerical results are compared against standard methods (stream function-vorticity and SMAC methods) and data available in literature. The results demonstrate that the proposed formulation leads to a good approximation with some possible benefits compared to the available formulations. The method is not restricted to two-dimensional flows and can be used for viscous-inviscid domain decomposition calculations.

  11. An implicit time-marching method for studying unsteady flow with massive separation

    NASA Technical Reports Server (NTRS)

    Osswald, G. A.; Ghia, K. N.; Chia, U.

    1985-01-01

    A fully implicit time-marching method is developed such that all spatial derivatives are approximated using central differences, but no use is made of any artificial dissipation. The numerical method solves the discretized equations using Alternating Direction Implicit-Block Gaussian Elimination technique. The method is implemented in the unsteady analysis, which solves the incompressible Navier-Stokes equations in terms of vorticity and stream function in generalized orthogonal coordinates. A clustered conformal C-grid is employed, and every effort is made to resolve the various length scales in the flow problem. The metric discontinuity at the branch-cut is treated appropriately using analytic continuation. Introduction of the BGE reordering permits implicit treatment of the branch cut in the numerical method. The vorticity singularity at the cusped trailing edge is also appropriately treated. This accurate and efficient implicit method is used to study flow at Re = 1000, past a 12-percent thick symmetric Joukowski airfoil at high angle of attack 30 and 53 deg.

  12. Biomagnetic fluid flow in an aneurysm using ferrohydrodynamics principles

    NASA Astrophysics Data System (ADS)

    Tzirtzilakis, E. E.

    2015-06-01

    In this study, the fundamental problem of biomagnetic fluid flow in an aneurysmal geometry under the influence of a steady localized magnetic field is numerically investigated. The mathematical model used to formulate the problem is consistent with the principles of ferrohydrodynamics. Blood is considered to be an electrically non-conducting, homogeneous, non-isothermal Newtonian magnetic fluid. For the numerical solution of the problem, which is described by a coupled, non-linear system of Partial Differential Equations (PDEs), with appropriate boundary conditions, the stream function-vorticity formulation is adopted. The solution is obtained by applying an efficient pseudotransient numerical methodology using finite differences. This methodology is based on the application of a semi-implicit numerical technique, transformations, stretching of the grid, and construction of the boundary conditions for the vorticity. The results regarding the velocity and temperature field, skin friction, and rate of heat transfer indicate that the presence of a magnetic field considerably influences the flow field, particularly in the region of the aneurysm.

  13. Water Tunnel Flow Visualization Study Through Poststall of 12 Novel Planform Shapes

    NASA Technical Reports Server (NTRS)

    Gatlin, Gregory M.; Neuhart, Dan H.

    1996-01-01

    To determine the flow field characteristics of 12 planform geometries, a flow visualization investigation was conducted in the Langley 16- by 24-Inch Water Tunnel. Concepts studied included flat plate representations of diamond wings, twin bodies, double wings, cutout wing configurations, and serrated forebodies. The off-surface flow patterns were identified by injecting colored dyes from the model surface into the free-stream flow. These dyes generally were injected so that the localized vortical flow patterns were visualized. Photographs were obtained for angles of attack ranging from 10' to 50', and all investigations were conducted at a test section speed of 0.25 ft per sec. Results from the investigation indicate that the formation of strong vortices on highly swept forebodies can improve poststall lift characteristics; however, the asymmetric bursting of these vortices could produce substantial control problems. A wing cutout was found to significantly alter the position of the forebody vortex on the wing by shifting the vortex inboard. Serrated forebodies were found to effectively generate multiple vortices over the configuration. Vortices from 65' swept forebody serrations tended to roll together, while vortices from 40' swept serrations were more effective in generating additional lift caused by their more independent nature.

  14. Near-body vorticity dynamics of a square cylinder subjected to an inline pulsatile free stream flow

    NASA Astrophysics Data System (ADS)

    Krishnan, Hrisheekesh; Agrawal, Amit; Sharma, Atul; Sheridan, John

    2016-09-01

    In the present work, the effect of an inflow sinusoidal excitation that is superimposed over the mean flow on the vortex-shedding characteristics of a square cylinder is studied. The frequency of pulsation is varied around the natural vortex-shedding frequency, and the amplitude of pulsation is varied moderately in comparison to the cylinder diameter, at a fixed Reynolds number (=100). A flow regime map is prepared and compared with the experimental results, which are available for a circular cylinder that is subjected to inline excitation. We correlate the spectra to the corresponding flow regime. Visualization of the vorticity contours reveals that the significant interaction of the base-region vorticities with the main shear layer vorticities is important in the mechanism of formation of the several vortex-shedding modes. The strength and sign of base region vorticity with respect to the shear layers has a fundamental role to play in the mechanism of formation. It is hypothesized that the similarity in vortex-shedding modes across different excitation types, bluff body geometry, and for different parameters is due to the similarity in the underlying vorticity dynamics.

  15. The Flow Field Downstream of a Dynamic Low Aspect Ratio Circular Cylinder: A Parametric Study

    NASA Astrophysics Data System (ADS)

    Gildersleeve, Samantha; Dan, Clingman; Amitay, Michael

    2015-11-01

    Flow past a static, low aspect ratio cylinder (pin) has shown the formation of vortical structures, namely the horseshoe and arch-type vortex. These vortical structures may have substantial effects in controlling flow separation over airfoils. In the present experiments, the flow field associated with a low aspect ratio cylinder as it interacts with a laminar boundary layer under static and dynamic conditions was investigated through a parametric study over a flat plate. As a result of the pin being actuated in the wall-normal direction, the structures formed in the wake of the pin were seen to be a strong function of actuation amplitude, driving frequency, and aspect ratio of the cylinder. The study was conducted at a Reynolds number of 1875, based on the local boundary layer thickness, with a free stream velocity of 10 m/s. SPIV data were collected for two aspect ratios of 0.75 and 1.125, actuation amplitudes of 6.7% and 16.7%, and driving frequencies of 175 Hz and 350 Hz. Results indicate that the presence and interactions between vortical structures are altered in comparison to the static case and suggest increased large-scale mixing when the pin is driven at the shedding frequency (350 Hz). Supported by the Boeing Company.

  16. Vortex shedding from a blunt trailing edge with equal and unequal external mean velocities

    NASA Technical Reports Server (NTRS)

    Brinich, P. F.; Boldman, D. R.; Goldstein, M. E.

    1975-01-01

    A flow visualization study showed that strong Karman vortices are developed behind the blunt trailing edge of a plate when the free stream velocities over both surfaces are equal. These vortices tend to disappear when the surface velocities are unequal. This observation provided an explanation for the occurrence and disappearance of the lip noise often present in coaxial jets. Vortex formation and lip noise occurred at a Strouhal number of about 0.2 based on the lip thickness and the average of the external steady-state velocities. Results from theoretical calculations of the vortex formation, based on an inviscid, incompressible analysis of the motion of point vortices, were in good agreement with the experimental observations.

  17. Numerical and experimental study of a hydrodynamic cavitation tube

    NASA Astrophysics Data System (ADS)

    Hu, H.; Finch, J. A.; Zhou, Z.; Xu, Z.

    1998-08-01

    A numerical analysis of hydrodynamics in a cavitation tube used for activating fine particle flotation is described. Using numerical procedures developed for solving the turbulent k-ɛ model with boundary fitted coordinates, the stream function, vorticity, velocity, and pressure distributions in a cavitation tube were calculated. The calculated pressure distribution was found to be in excellent agreement with experimental results. The requirement of a pressure drop below approximately 10 m water for cavitation to occur was observed experimentally and confirmed by the model. The use of the numerical procedures for cavitation tube design is discussed briefly.

  18. From catʼs eyes to multiple disjoint natural convection flow in tall tilted cavities: A direct primitive variables approach

    NASA Astrophysics Data System (ADS)

    Báez, Elsa; Nicolás, Alfredo

    2013-11-01

    Natural convection fluid flow in air-filled tall tilted cavities is studied numerically with a new direct projection method on the Boussinesq approximation in primitive variables. The study deals with “cat's eyes” instabilities and multiple disjoint cells as the aspect ratio A and the angle of inclination ϕ of the cavity vary. The flows are validated with those reported before using the stream function-vorticity variables. New cases, A=12 and 20 varying ϕ, lead to get more insight on the physical phenomenon.

  19. Acoustic streaming related to minor loss phenomenon in differentially heated elements of thermoacoustic devices

    NASA Astrophysics Data System (ADS)

    Mironov, Mikhail; Gusev, Vitalyi; Auregan, Yves; Lotton, Pierrick; Bruneau, Michel; Piatakov, Pavel

    2002-08-01

    It is demonstrated that the differentially heated stack, the heart of all thermoacoustic devices, provides a source of streaming additional to those associated with Reynolds stresses in quasi-unidirectional gas flow. This source of streaming is related to temperature-induced asymmetry in the generation of vortices and turbulence near the stack ends. The asymmetry of the hydrodynamic effects in an otherwise geometrically symmetric stack is due to the temperature difference between stack ends. The proposed mechanism of streaming excitation in annular thermoacoustic devices operates even in the absence of thermo-viscous interaction of sound waves with resonator walls. copyright 2002 Acoustical Society of America.

  20. Three-Dimensional Structure of the Circulation Induced by a Shoaling Topographic Wave

    NASA Astrophysics Data System (ADS)

    Mizuta, G.; Hogg, N. G.

    2003-12-01

    Rectification of Rossby wave energy has been proposed as a mechanism for the maintenance of the recirculation cell of the Gulf Stream (Hogg 1988; Rizzoli et al. 1995). We investigated the three-dimensional structure of potential-vorticity flux and a mean flow induced by a topographic wave incident over a bottom slope analytically and numerically, focusing on the limit that bottom friction is the dominant dissipation process. In this limit it is shown that the topographic wave cannot be a steady source of the potential vorticity outside the bottom Ekman layer. Instead, the distribution of potential vorticity is determined from the initial transient of the topographic wave. This potential vorticity and the heat flux by the topographic wave at the bottom determine the mean flow, and give a relation between the horizontal and vertical scales of the mean flow. When the horizontal scale of the mean flow is larger than the internal deformation radius, the mean flow is almost constant with depth independent of whether or not the topographic wave is trapped near the bottom. Then the mean flow at the bottom is proportional to the divergence of vertically integrated Reynolds stress ∫ -D0 /line{u'v'} dz. This divergence, which is caused by bottom friction, is large when the group velocity, cg and the vertical scale, μ -1 of the wave motion are small. Thus the mean flow tends to be large where cg and μ -1 become small, and decreases as the topographic wave is dissipated by bottom friction. Since bottom friction also dissipates the mean flow, the mean flow asymptotes to a constant value as the friction becomes zero. These features of the potential-vorticity flux and the mean flow are reproduced in numerical experiments. It is also shown from the numerical experiment that the distribution of the mean flow depends on the amplitude of the wave because of the Doppler shift of the wave by the mean flow. These feature of the mean flow are preserved when we used stratification and bottom topography resembling to those over the continental slope near the Gulf Stream. The transport of the mean flow is about 20 Sv when the wave amplitude is about 2 cm/s. These numbers are similiar to those observed in the Gulf Stream region.

  1. An experimental study of the effect of streamwise vorticity on supersonic mixing enhancement

    NASA Technical Reports Server (NTRS)

    Naughton, J. W.; Cattafesta, L. N.; Settles, G. S.

    1989-01-01

    An initial experimental study of the effect of streamwise vorticity on supersonic turbulent mixing has been carried out. A Mach 3 streamwise vortex is generated using a strutmounted swirl injector and is injected into a Mach 3.5 freestream. The resulting flowfield is investigated using both five-hole angularity probe and total temperature probe surveys. The results are compared to identical experiments with a baseline, swirl-free Mach 3 jet. Laser Light Sheet (LLS) images are used to observe the mixing phenomena. The entrainment of energy and mass is used to evaluate the degree of mixing between the two streams for both the vortex and jet cases. The results reveal that streamwise vorticity does lead to a modest mixing enhancement of about 34 percent for the conditions tested.

  2. Navy Tactical Applications Guide. Volume 2. Environmental Phenomena and Effects

    DTIC Science & Technology

    1979-01-01

    usually distinguished: the polar-front jet stream, associated with extratropical frontal systems; and the subtropical jet stream, overlying the poleward...patterns have formed in the cold air behind a frontal cloud band which extends from North Africa into Southern Europe . Note that the cellular cloud field...but because of the future potential of such areas for rapid storm " , development. (See Case 3 for the further development of these vorticity centers

  3. Time resolved flow-field measurements of a turbulent mixing layer over a rectangular cavity

    NASA Astrophysics Data System (ADS)

    Bian, Shiyao; Driscoll, James F.; Elbing, Brian R.; Ceccio, Steven L.

    2011-07-01

    High Reynolds number, low Mach number, turbulent shear flow past a rectangular, shallow cavity has been experimentally investigated with the use of dual-camera cinematographic particle image velocimetry (CPIV). The CPIV had a 3 kHz sampling rate, which was sufficient to monitor the time evolution of large-scale vortices as they formed, evolved downstream and impinged on the downstream cavity wall. The time-averaged flow properties (velocity and vorticity fields, streamwise velocity profiles and momentum and vorticity thickness) were in agreement with previous cavity flow studies under similar operating conditions. The time-resolved results show that the separated shear layer quickly rolled-up and formed eddies immediately downstream of the separation point. The vortices convect downstream at approximately half the free-stream speed. Vorticity strength intermittency as the structures approach the downstream edge suggests an increase in the three-dimensionality of the flow. Time-resolved correlations reveal that the in-plane coherence of the vortices decays within 2-3 structure diameters, and quasi-periodic flow features are present with a vortex passage frequency of ~1 kHz. The power spectra of the vertical velocity fluctuations within the shear layer revealed a peak at a non-dimensional frequency corresponding to that predicted using linear, inviscid instability theory.

  4. Coherent structures in bypass transition induced by a cylinder wake

    NASA Astrophysics Data System (ADS)

    Pan, Chong; Wang, Jin Jun; Zhang, Pan Feng; Feng, Li Hao

    Flat-plate boundary layer transition induced by the wake vortex of a two-dimensional circular cylinder is experimentally investigated. Combined visualization and velocity measurements show a different transition route from the Klebanoff mode in free-stream turbulence-induced transition. This transition scenario is mainly characterized as: (i) generation of secondary transverse vortical structures near the flat plate surface in response to the von Kn vortex street of the cylinder; (ii) formation of hairpin vortices due to the secondary instability of secondary vortical structures; (iii) growth of hairpins which is accelerated by wake-vortex induction; (iv) formation of hairpin packets and the associated streaky structures. Detailed investigation shows that during transition the evolution dynamics and self-sustaining mechanisms of hairpins, hairpin packets and streaks are consistent with those in a turbulent boundary layer. The wake vortex mainly plays the role of generating and destabilizing secondary transverse vortices. After that, the internal mechanisms become dominant and lead to the setting up of a self-sustained turbulent boundary layer.

  5. Secondary Instability of Stationary Crossflow Vortices in Mach 6 Boundary Layer Over a Circular Cone

    NASA Technical Reports Server (NTRS)

    Li, Fei; Choudhari, Meelan M.; Paredes-Gonzalez, Pedro; Duan, Lian

    2015-01-01

    Hypersonic boundary layer flows over a circular cone at moderate incidence can support strong crossflow instability. Due to more efficient excitation of stationary crossflow vortices by surface roughness, such boundary layer flows may transition to turbulence via rapid amplification of the high-frequency secondary instabilities of finite amplitude stationary crossflow vortices. The amplification characteristics of these secondary instabilities are investigated for crossflow vortices generated by an azimuthally periodic array of roughness elements over a 7-degree half-angle circular cone in a Mach 6 free stream. Depending on the local amplitude of the stationary crossflow mode, the most unstable secondary disturbances either originate from the second (i.e., Mack) mode instabilities of the unperturbed boundary layer or correspond to genuine secondary instabilities that reduce to stable disturbances at sufficiently small amplitudes of the stationary crossflow vortex. The predicted frequencies of dominant secondary disturbances are similar to those measured during wind tunnel experiments at Purdue University and the Technical University of Braunschweig, Germany.

  6. Development and application of a method for predicting rotor free wake positions and resulting rotor blade air loads. Volume 1: Model and results

    NASA Technical Reports Server (NTRS)

    Sadler, S. G.

    1971-01-01

    Rotor wake geometries are predicted by a process similar to the startup of a rotor in a free stream. An array of discrete trailing and shed vortices is generated with vortex strengths corresponding to stepwise radial and azimuthal blade circulations. The array of shed and trailing vortices is limited to an arbitrary number of azimuthal steps behind each blade. The remainder of the wake model of each blade is an arbitrary number of trailing vortices. Vortex element end points were allowed to be transported by the resultant velocity of the free stream and vortex-induced velocities. Wake geometry, wake flow, and wake-induced velocity influence coefficients are generated by this program for use in the blade loads portion of the calculations. Blade loads computations include the effects of nonuniform inflow due to a free wake, nonlinear airfoil characteristics, and response of flexible blades to the applied loads. Computed wake flows and blade loads are compared with experimentally measured data. Predicted blade loads, response and shears and moments are obtained for a model rotor system having two independent rotors. The effects of advance ratio, vertical separation of rotors, different blade radius ratios, and different azimuthal spacing of the blades of one rotor with respect to the other are investigated.

  7. Investigation of Hypersonic Laminar Heating Augmentation in the Stagnation Region

    NASA Technical Reports Server (NTRS)

    Marineau, Eric C.; Lewis, Daniel R.; Smith, Michael S.; Lafferty, John F.; White, Molly E.; Amar, Adam J.

    2012-01-01

    Laminar stagnation region heating augmentation is investigated in the AEDC Tunnel 9 at Mach 10 by performing high frequency surface pressure and heat transfer measurements on the Orion CEV capsule at zero degree angle-of-attack for unit Reynolds numbers between 0.5 and 15 million per foot. Heating augmentation increases with Reynolds number, but is also model size dependent as it is absent on a 1.25-inch diameter model at Reynolds numbers where it reaches up to 15% on a 7-inch model. Heat transfer space-time correlations on the 7-inch model show that disturbances convect at the boundary layer edge velocity and that the streamwise integral scale increases with distance. Therefore, vorticity amplification due to stretching and piling-up in the stagnation region appears to be responsible for the stagnation point heating augmentation on the larger model. This assumption is reinforced by the f(exp -11/3) dependence of the surface pressure spectrum compared to the f(exp -1) dependence in the free stream. Vorticity amplification does not occur on the 1.25- inch model because the disturbances are too large. Improved free stream fluctuation measurements will be required to determine if significant vorticity is present upstream or mostly generated behind the bow shock.

  8. Heat transfer with very high free-stream turbulence and streamwise vortices

    NASA Technical Reports Server (NTRS)

    Moffat, Robert J.; Maciejewski, Paul; Eaton, John K.; Pauley, Wayne

    1986-01-01

    Results are presented for two experimental programs related to augmentation of heat transfer by complex flow characteristics. In one program, high free stream turbulence (up to 63 percent) was shown to increase the Stanton number by more than a factor of 5, compared with the normally expected value based on x-Reynolds number. These experiments are being conducted in a free-jet facility, near the margins of the jet. To a limited extent, the mean velocity, turbulence intensity, and integral length scale can be separately varied. The results show that scale is a very important factor in determining the augmentation. Detailed studies of the turbulence structure are being carried out using an orthogonal triple hot-wire anemometer equipped with a fourth wire for measuring temperature. The v' component of turbulence appears to be distributed differently from u' or w'. In the second program, the velocity distributions and boundary layer thicknesses associated with a pair of counter-rotating, streamwise vortices were measured. There is a region of considerably thinned boundary layer between the two vortices when they are of approximately the same strength. If one vortex is much stronger than the other, the weaker vortex may be lifted off the surface and absorbed into the stronger.

  9. Tomo-PIV measurements of the flow field in the wake of a sphere

    NASA Astrophysics Data System (ADS)

    Eshbal, Lior; David, Tom; Rinsky, Vladislav; van Hout, Rene; Greenblatt, David

    2017-11-01

    A sphere can be considered as a prototypical 3D bluff body. In order to improve our understanding of its 3D wake flow, a combination of time-resolved planar particle image velocimetry (PIV) and tomographic PIV (tomo-PIV) was implemented. Experiments were performed in a closed-loop water channel facility and sphere Reynolds numbers ReD = UD/ ν = 400, 800, 1200 and 2000, where U is the free-stream velocity, ν the kinematic viscosity and D the sphere diameter. The measurement volume (Height x Length x Width, 5 x 5 x 1.5 D3) comprised the sphere and the downstream wake. Tomo-PIV snap-shots were correlated with the time-resolved PIV such that the 3D temporal evolution of the shed vortices became clear. At ReD = 400, this procedure revealed shed hairpin vortices having a vertical plane of symmetry in agreement with many dye visualization studies. However, the measurements also revealed weaker induced hairpins resulting from the interaction of the near-wake flow and the surrounding free stream. These induced vortices were not visible in previous dye and smoke visualizations and have only been observed in simulations. Data processing of the data at higher ReD is currently ongoing. Israel Science Foundation Grant No. 1596/14.

  10. Tip Vortex Cavitation

    NASA Astrophysics Data System (ADS)

    Maines, Brant H.; Arndt, Roger E. A.

    2000-11-01

    Cavitation in vortical flows is a problem of practical importance, that is relatively unexplored. Vortical structures of importance range from the eddies occurring randomly in space and time in turbulent flows to the developed vortices that occur at the tips of lifting surfaces and at the hubs of propellers and hydraulic turbines. A variety of secondary flow phenomena such as the horse shoe vortices that form around bridge piers, chute blocks and struts, and the secondary vortices found in the clearance passages of turbomachinery are also important cavitation sites. Tip vortex cavitation can be viewed as a canonical problem that captures many of the essential physics associated with vortex cavitation in general. This paper describes the inception process and focuses on the high levels of tension that can be sustained in the flow, which appears to scale with the blade loading. High speed video visualization indicates that the details of how free stream nuclei are ingested plays a major role in the nucleation and inception process. A new photographic technique was used to obtain high quality images of the bubble growth process at framing rates as high as 40,000 fps. Sponsored by the Office of Naval Research

  11. Numerical modeling method on the movement of water flow and suspended solids in two-dimensional sedimentation tanks in the wastewater treatment plant.

    PubMed

    Zeng, Guang-Ming; Jiang, Yi-Min; Qin, Xiao-Sheng; Huang, Guo-He; Li, Jian-Bing

    2003-01-01

    Taking the distributing calculation of velocity and concentration as an example, the paper established a series of governing equations by the vorticity-stream function method, and dispersed the equations by the finite differencing method. After figuring out the distribution field of velocity, the paper also calculated the concentration distribution in sedimentation tank by using the two-dimensional concentration transport equation. The validity and feasibility of the numerical method was verified through comparing with experimental data. Furthermore, the paper carried out a tentative exploration into the application of numerical simulation of sedimentation tanks.

  12. Free-stream disturbance, continuous Eigenfunctions, boundary-layer instability and transition

    NASA Technical Reports Server (NTRS)

    Grosch, C. E.

    1980-01-01

    A rational foundation is presented for the application of the linear shear flows to transition prediction, and an explicit method is given for carrying out the necessary calculations. The expansions used are shown to be complete. Sample calculations show that a typical boundary layer is very sensitive to vorticity disturbances in the inner boundary layer, near the critical layer. Vorticity disturbances three or four boundary layer thicknesses above the boundary are nearly uncoupled from the boundary layer in that the amplitudes of the discrete Tollmien-Schlicting waves are an extremely small fraction of the amplitude of the disturbance.

  13. An analytical solution for Dean flow in curved ducts with rectangular cross section

    NASA Astrophysics Data System (ADS)

    Norouzi, M.; Biglari, N.

    2013-05-01

    In this paper, a full analytical solution for incompressible flow inside the curved ducts with rectangular cross-section is presented for the first time. The perturbation method is applied to solve the governing equations and curvature ratio is considered as the perturbation parameter. The previous perturbation solutions are usually restricted to the flow in curved circular or annular pipes related to the overly complex form of solutions or singularity situation for flow in curved ducts with non-circular shapes of cross section. This issue specifies the importance of analytical studies in the field of Dean flow inside the non-circular ducts. In this study, the main flow velocity, stream function of lateral velocities (secondary flows), and flow resistance ratio in rectangular curved ducts are obtained analytically. The effect of duct curvature and aspect ratio on flow field is investigated as well. Moreover, it is important to mention that the current analytical solution is able to simulate the Taylor-Görtler and Dean vortices (vortices in stable and unstable situations) in curved channels.

  14. Acoustic microstreaming due to an ultrasound contrast microbubble near a wall

    NASA Astrophysics Data System (ADS)

    Mobadersany, Nima; Sarkar, Kausik

    2017-11-01

    In an ultrasound field, in addition to the sinusoidal motion of fluid particles, particles experience a steady streaming velocity due to nonlinear second order effects. Here, we have simulated the microstreaming flow near a plane rigid wall caused by the pulsations of contrast microbubbles. Although these microbubbles were initially developed as a contrast enhancing agents for ultrasound imaging, they generate additional therapeutic effects that can be harnessed for targeted drug delivery or blood brain barrier (BBB) opening. The microbubbles have a gas core coated with a stabilizing layer of lipids or proteins. We use analytical models as well as boundary element (BEM) simulation to simulate the flow around these bubbles implementing interfacial rheology models for the coating. The microstreaming flow is characterized by two wall bounded vortices. The size of the vortices decreases with the decrease of the separation from the wall. The vortex-induced shear stress is simulated and analyzed as a function of excitation parameters and geometry. These microstreaming shear stress plays a critical role in increasing the membrane permeability facilitating drug delivery or rupturing biological tissues.

  15. Non-linear instability analysis of the two-dimensional Navier-Stokes equation: The Taylor-Green vortex problem

    NASA Astrophysics Data System (ADS)

    Sengupta, Tapan K.; Sharma, Nidhi; Sengupta, Aditi

    2018-05-01

    An enstrophy-based non-linear instability analysis of the Navier-Stokes equation for two-dimensional (2D) flows is presented here, using the Taylor-Green vortex (TGV) problem as an example. This problem admits a time-dependent analytical solution as the base flow, whose instability is traced here. The numerical study of the evolution of the Taylor-Green vortices shows that the flow becomes turbulent, but an explanation for this transition has not been advanced so far. The deviation of the numerical solution from the analytical solution is studied here using a high accuracy compact scheme on a non-uniform grid (NUC6), with the fourth-order Runge-Kutta method. The stream function-vorticity (ψ, ω) formulation of the governing equations is solved here in a periodic square domain with four vortices at t = 0. Simulations performed at different Reynolds numbers reveal that numerical errors in computations induce a breakdown of symmetry and simultaneous fragmentation of vortices. It is shown that the actual physical instability is triggered by the growth of disturbances and is explained by the evolution of disturbance mechanical energy and enstrophy. The disturbance evolution equations have been traced by looking at (a) disturbance mechanical energy of the Navier-Stokes equation, as described in the work of Sengupta et al., "Vortex-induced instability of an incompressible wall-bounded shear layer," J. Fluid Mech. 493, 277-286 (2003), and (b) the creation of rotationality via the enstrophy transport equation in the work of Sengupta et al., "Diffusion in inhomogeneous flows: Unique equilibrium state in an internal flow," Comput. Fluids 88, 440-451 (2013).

  16. Receptivity of flat-plate boundary layer in a non-uniform free stream (vorticity normal to the plate)

    NASA Technical Reports Server (NTRS)

    Kogan, M. N.

    1994-01-01

    Recent progress in both the linear and nonlinear aspects of stability theory has highlighted the importance of the receptivity problem. One of the most unclear aspects of receptivity study is the receptivity of boundary-layer flow normal to vortical disturbances. Some experimental and theoretical results permit the proposition that quasi-steady outer-flow vortical disturbances may trigger by-pass transition. In present work such interaction is investigated for vorticity normal to a leading edge. The interest in these types of vortical disturbances arise from theoretical work, where it was shown that small sinusoidal variations of upstream velocity along the spanwise direction can produce significant variations in the boundary-layer profile. In the experimental part of this work, such non-uniform flow was created and the laminar-turbulent transition in this flow was investigated. The experiment was carried out in a low-turbulence direct-flow wind tunnel T-361 at the Central Aerohydrodynamic Institute (TsAGI). The non-uniform flow was produced by laminar or turbulent wakes behind a wire placed normal to the plate upstream of the leading edge. The theoretical part of the work is devoted to studying the unstable disturbance evolution in a boundary layer with strongly non-uniform velocity profiles similar to that produced by outer-flow vorticity. Specifically, the Tollmien-Schlichting wave development in the boundary layer flow with spanwise variations of velocity is investigated.

  17. On the effect of using the Shapiro filter to smooth winds on a sphere

    NASA Technical Reports Server (NTRS)

    Takacs, L. L.; Balgovind, R. C.

    1984-01-01

    Spatial differencing schemes which are not enstrophy conserving nor implicitly damping require global filtering of short waves to eliminate the build-up of energy in the shortest wavelengths due to aliasing. Takacs and Balgovind (1983) have shown that filtering on a sphere with a latitude dependent damping function will cause spurious vorticity and divergence source terms to occur if care is not taken to ensure the irrotationality of the gradients of the stream function and velocity potential. Using a shallow water model with fourth-order energy-conserving spatial differencing, it is found that using a 16th-order Shapiro (1979) filter on the winds and heights to control nonlinear instability also creates spurious source terms when the winds are filtered in the meridional direction.

  18. Proceedings of the Gulf Stream Workshop Held at West Greenwich, Rhode Island on 23-26 April 1985,

    DTIC Science & Technology

    1985-04-01

    complex. We now realize that a correct dytiamical description must intrinsically couple the mass-, momentum -, energy-, and vorticity-fluxes of a strong mean...path and structure, and the mass- and momentum transport. 2. Meander dynamics "intrinsic" to the Gulf Stream, such as growth and propagation of...contribute to the dissipation of momentum through wave and form drag. A general study of the influence of the seamounts seems more appropriate for the

  19. Baroclinic Vortices in Rotating Stratified Shearing Flows: Cyclones, Anticyclones, and Zombie Vortices

    NASA Astrophysics Data System (ADS)

    Hassanzadeh, Pedram

    Large coherent vortices are abundant in geophysical and astrophysical flows. They play significant roles in the Earth's oceans and atmosphere, the atmosphere of gas giants, such as Jupiter, and the protoplanetary disks around forming stars. These vortices are essentially three-dimensional (3D) and baroclinic, and their dynamics are strongly influenced by the rotation and density stratification of their environments. This work focuses on improving our understanding of the physics of 3D baroclinic vortices in rotating and continuously stratified flows using 3D spectral simulations of the Boussinesq equations, as well as simplified mathematical models. The first chapter discusses the big picture and summarizes the results of this work. In Chapter 2, we derive a relationship for the aspect ratio (i.e., vertical half-thickness over horizontal length scale) of steady and slowly-evolving baroclinic vortices in rotating stratified fluids. We show that the aspect ratio is a function of the Brunt-Vaisala frequencies within the vortex and outside the vortex, the Coriolis parameter, and the Rossby number of the vortex. This equation is basically the gradient-wind equation integrated over the vortex, and is significantly different from the previously proposed scaling laws that find the aspect ratio to be only a function of the properties of the background flow, and independent of the dynamics of the vortex. Our relation is valid for cyclones and anticyclones in either the cyclostrophic or geostrophic regimes; it works with vortices in Boussinesq fluids or ideal gases, and non-uniform background density gradient. The relation for the aspect ratio has many consequences for quasi-equilibrium vortices in rotating stratified flows. For example, cyclones must have interiors more stratified than the background flow (i.e., super-stratified), and weak anticyclones must have interiors less stratified than the background (i.e., sub-stratified). In addition, this equation is useful to infer the height and internal stratification of some astrophysical and geophysical vortices because direct measurements of their vertical structures are difficult. In Chapter 3, we show numerically and experimentally that localized suction in rotating continuously stratified flows produces three-dimensional baroclinic cyclones. As expected from Chapter 2, the interiors of these cyclones are super-stratified. Suction, modeled as a small spherical sink in the simulations, creates an anisotropic flow toward the sink with directional dependence changing with the ratio of the Coriolis parameter to the Brunt-Vaisala frequency. Around the sink, this flow generates cyclonic vorticity and deflects isopycnals so that the interior of the cyclone becomes super-stratified. The super-stratified region is visualized in the companion experiments that we helped to design and analyze using the synthetic schlieren technique. Once the suction stops, the cyclones decay due to viscous dissipation in the simulations and experiments. The numerical results show that the vertical velocity of viscously decaying cyclones flows away from the cyclone's midplane, while the radial velocity flows toward the cyclone's center. This observation is explained based on the cyclo-geostrophic balance. This vertical velocity mixes the flow inside and outside of cyclone and reduces the super-stratification. We speculate that the predominance of anticyclones in geophysical and astrophysical flows is due to the fact that anticyclones require sub-stratification, which occurs naturally by mixing, while cyclones require super-stratification. In Chapter 4, we show that a previously unknown instability creates space-filling lattices of 3D turbulent baroclinic vortices in linearly-stable, rotating, stratified shear flows. The instability starts from a newly discovered family of easily-excited critical layers. This new family, named the baroclinic critical layer, has singular vertical velocities; the traditional family of (barotropic) critical layer has singular stream-wise velocities and is hard to excite. In our simulations, the baroclinic critical layers in rotating stably-stratified linear shear are excited by small-volume, small-amplitude vortices or waves. The excited baroclinic critical layers then intensify by drawing energy from the background shear and roll-up into large coherent 3D vortices that excite new critical layers and vortices. The vortices self-similarly replicate to create lattices of turbulent vortices. These vortices persist for all time and are called zombie vortices because they can occur in the dead zones of protoplanetary disks. The self-replication of zombie vortices can de-stabilize the otherwise linearly and finite-amplitude stable Keplerian shear and lead to the formation of stars and planets. (Abstract shortened by UMI.)

  20. Generation and Maintenance of Recirculations by Gulf Stream Instabilities

    DTIC Science & Technology

    1999-02-01

    Francois Primeau for endless discus- sions of various scientific problems, Kirill Pankratov for useful advice on the numerical methods in fluid...recirculation. J. Phys. Oceanogr., 18, 662-682. [7] Davis C. A. and K. A. Emanuel, 1991 : Potential vorticity diagnostics of cyclo- genesis. Mon. Weather. Rev

  1. Midwestern streamflow, precipitation, and atmospheric vorticity influenced by Pacific sea-surface temperatures and total solar-irradiance variations

    USGS Publications Warehouse

    Perry, C.A.

    2006-01-01

    A solar effect on streamflow in the Midwestern United States is described and supported in a six-step physical connection between total solar irradiance (TSI), tropical sea-surface temperatures (SSTs), extratropical SSTs, jet-stream vorticity, surface-layer vorticity, precipitation, and streamflow. Variations in the correlations among the individual steps indicate that the solar/hydroclimatic mechanism is complex and has a time element (lag) that may not be constant. Correct phasing, supported by consistent spectral peaks between 0.092 and 0.096 cycles per year in all data sets within the mechanism is strong evidence for its existence. A significant correlation exists between total solar irradiance and the 3-year moving average of annual streamflow for Iowa (R = 0.67) and for the Mississippi River at St Louis, Missouri (R = 0.60), during the period 1950-2000. Published in 2005 by John Wiley & Sons, Ltd.

  2. Optimum performance and potential flow field of hovering rotors

    NASA Technical Reports Server (NTRS)

    Wu, J. C.; Sigman, R. K.

    1975-01-01

    Rotor and propeller performance and induced potential flowfields were studied on the basis of a rotating actuator disk concept, with special emphasis on rotors hovering out of ground effect. A new theory for the optimum performance of rotors hovering OGE is developed and presented. An extended theory for the optimum performance of rotors and propellers in axial motion is also presented. Numerical results are presented for the optimum distributions of blade-bound circulation together with axial inflow and ultimate wake velocities for the hovering rotor over the range of thrust coefficient of interest in rotorcraft applications. Shapes of the stream tubes and of the velocities in the slipstream are obtained, using available methods, for optimum and off-optimum circulation distributions for rotors hovering in and out of ground effect. A number of explicit formulae useful in computing rotor and propeller induced flows are presented for stream functions and velocities due to distributions of circular vortices over axi-symmetric surfaces.

  3. Enabling CSPA Operations Through Pilot Involvement in Longitudinal Approach Spacing

    NASA Technical Reports Server (NTRS)

    Battiste, Vernol (Technical Monitor); Pritchett, Amy

    2003-01-01

    Several major airports around the United States have, or plan to have, closely-spaced parallel runways. This project complemented current and previous research by examining the pilots ability to control their position longitudinally within their approach stream.This project s results considered spacing for separation from potential positions of wake vortices from the parallel approach. This preventive function could enable CSPA operations to very closely spaced runways. This work also considered how pilot involvement in longitudinal spacing could allow for more efficient traffic flow, by allowing pilots to keep their aircraft within tighter arrival slots then air traffic control (ATC) might be able to establish, and by maintaining space within the arrival stream for corresponding departure slots. To this end, this project conducted several research studies providing an analytic and computational basis for calculating appropriate aircraft spacings, experimental results from a piloted flight simulator test, and an experimental testbed for future simulator tests. The following sections summarize the results of these three efforts.

  4. A direct method for the solution of unsteady two-dimensional incompressible Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Ghia, K. N.; Osswald, G. A.; Ghia, U.

    1983-01-01

    The unsteady incompressible Navier-Stokes equations are formulated in terms of vorticity and stream function in generalized curvilinear orthogonal coordinates to facilitiate analysis of flow configurations with general geometries. The numerical method developed solves the conservative form of the transport equation using the alternating-direction implicit method, whereas the stream-function equation is solved by direct block Gaussian elimination. The method is applied to a model problem of flow over a back-step in a doubly infinite channel, using clustered conformal coordinates. One-dimensional stretching functions, dependent on the Reynolds number and the asymptotic behavior of the flow, are used to provide suitable grid distribution in the separation and reattachment regions, as well as in the inflow and outflow regions. The optimum grid distribution selected attempts to honor the multiple length scales of the separated-flow model problem. The asymptotic behavior of the finite-differenced transport equation near infinity is examined and the numerical method is carefully developed so as to lead to spatially second-order accurate wiggle-free solutions, i.e., with minimum dispersive error. Results have been obtained in the entire laminar range for the backstep channel and are in good agreement with the available experimental data for this flow problem.

  5. Enhancing critical current density of cuprate superconductors

    DOEpatents

    Chaudhari, Praveen

    2015-06-16

    The present invention concerns the enhancement of critical current densities in cuprate superconductors. Such enhancement of critical current densities include using wave function symmetry and restricting movement of Abrikosov (A) vortices, Josephson (J) vortices, or Abrikosov-Josephson (A-J) vortices by using the half integer vortices associated with d-wave symmetry present in the grain boundary.

  6. A coarse-grid projection method for accelerating incompressible flow computations

    NASA Astrophysics Data System (ADS)

    San, Omer; Staples, Anne

    2011-11-01

    We present a coarse-grid projection (CGP) algorithm for accelerating incompressible flow computations, which is applicable to methods involving Poisson equations as incompressibility constraints. CGP methodology is a modular approach that facilitates data transfer with simple interpolations and uses black-box solvers for the Poisson and advection-diffusion equations in the flow solver. Here, we investigate a particular CGP method for the vorticity-stream function formulation that uses the full weighting operation for mapping from fine to coarse grids, the third-order Runge-Kutta method for time stepping, and finite differences for the spatial discretization. After solving the Poisson equation on a coarsened grid, bilinear interpolation is used to obtain the fine data for consequent time stepping on the full grid. We compute several benchmark flows: the Taylor-Green vortex, a vortex pair merging, a double shear layer, decaying turbulence and the Taylor-Green vortex on a distorted grid. In all cases we use either FFT-based or V-cycle multigrid linear-cost Poisson solvers. Reducing the number of degrees of freedom of the Poisson solver by powers of two accelerates these computations while, for the first level of coarsening, retaining the same level of accuracy in the fine resolution vorticity field.

  7. Nonlinear acoustic streaming in straight and tapered tubes

    NASA Astrophysics Data System (ADS)

    Tuttle, Brian C.

    In thermoacoustic and Stirling devices such as the pulse-tube refrigerator, efficiency is diminished by the formation of a second-order mean velocity known as Rayleigh streaming. This flow emerges from the interaction of the working gas with the wall of the tube in a thin boundary layer. Recent studies have suggested that streaming velocity can be decreased in a tube by tapering it slightly. This research investigates that claim through the development of a numerical model of Rayleigh streaming in variously tapered tubes. It is found that the numerical simulation of streaming in a straight tube compares well with theory, and the application of different thermal boundary conditions at the tube wall shows that for pressurized helium, inner streaming vortices which appear near an adiabatic tube wall do not develop near an isothermal wall. An order analysis indicates that the temperature dependence of viscosity and thermal conductivity contributes appreciably to an accurate numerical model of streaming. Comparison of Rayleigh streaming in tapered tubes shows the effects of taper angle on the circulation and velocity of the mean flow.

  8. Strong wave/mean-flow coupling in baroclinic acoustic streaming

    NASA Astrophysics Data System (ADS)

    Chini, Greg; Michel, Guillaume

    2017-11-01

    Recently, Chini et al. demonstrated the potential for large-amplitude acoustic streaming in compressible channel flows subjected to strong background cross-channel density variations. In contrast with classic Rayleigh streaming, standing acoustic waves of O (ɛ) amplitude acquire vorticity owing to baroclinic torques acting throughout the domain rather than via viscous torques acting in Stokes boundary layers. More significantly, these baroclinically-driven streaming flows have a magnitude that also is O (ɛ) , i.e. comparable to that of the sound waves. In the present study, the consequent potential for fully two-way coupling between the waves and streaming flows is investigated using a novel WKBJ analysis. The analysis confirms that the wave-driven streaming flows are sufficiently strong to modify the background density gradient, thereby modifying the leading-order acoustic wave structure. Simulations of the wave/mean-flow system enabled by the WKBJ analysis are performed to illustrate the nature of the two-way coupling, which contrasts sharply with classic Rayleigh streaming, for which the waves can first be determined and the streaming flows subsequently computed.

  9. Electroosmotic flow in a microcavity with nonuniform surface charges.

    PubMed

    Halpern, David; Wei, Hsien-Hung

    2007-08-28

    In this work, we theoretically explore the characteristics of electroosmostic flow (EOF) in a microcavity with nonuniform surface charges. It is well known that a uniformly charged EOF does not give rise to flow separation because of its irrotational nature, as opposed to the classical problem of viscous flow past a cavity. However, if the cavity walls bear nonuniform surface charges, then the similitude between electric and flow fields breaks down, leading to the generation of vorticity in the cavity. Because this vorticity must necessarily diffuse into the exterior region that possesses a zero vorticity set by a uniform EOF, a new flow structure emerges. Assuming Stokes flow, we employ a boundary element method to explore how a nonuniform charge distribution along the cavity surface affects the flow structure. The results show that the stream can be susceptible to flow separation and exhibits a variety of flow structures, depending on the distributions of zeta potentials and the aspect ratio of the cavity. The interactions between patterned EOF vortices and Moffatt eddies are further demonstrated for deep cavities. This work not only has implications for electrokinetic flow induced by surface imperfections but also provides optimal strategies for achieving effective mixing in microgrooves.

  10. Advection within side-by-side liquid micro-cylinders in a cross-flow

    NASA Astrophysics Data System (ADS)

    Dong, Qingming; Sau, Amalendu

    2017-11-01

    The gaseous SO2 entrainment from outer air stream and dispersion in binary and ternary liquid micro-cylinders appearing side-by-side are examined hereby. The separation/attachment regulated non-uniform interfacial momentum exchange creates main stream driven "primary" and shear reversed "secondary" vortices in the liquid cylinders. At separation points, the sense of rotation of the generated "primary-secondary" vortex pair remains inward directed. We define such a vortex pair as the "inflow" type. However, at stagnation or attachment points, the sense of rotation of a "primary-primary" or "secondary-secondary" vortex pair remains outward directed, and such a vortex pair is defined as the "outflow" type. For the coupled water cylinders facing an oncoming stream contaminated by gaseous SO2, its absorption and internal transport are effectively controlled by dominant "inflow" and "outflow" natured dynamics of the said vortex pairs, besides by diffusion. The evolving "inflow" natured "primary-secondary" vortex pairs at separation points actively entrain the outer SO2, whereas the "outflow" natured vortex-pairs oppose SO2 entry through the stagnation regions. Moreover, the blockage induced steady-symmetric, steady-deflected, and flip-flopping air-jets through gaps, for varied gap-ratio (1 ≤ G/R ≤ 4) and Reynolds number (30 ≤ Re ≤ 160), create distinctive impact both on quantitative SO2 absorption (mso2 ') and convective nature of the SO2 transport in upper, lower, and middle cylinders, by virtue of modified strength and size of the inflow and outflow paired vortices. The present study shows that the tiny "secondary vortices" play important roles in SO2 entrainment and in effectively controlling the local absorption rate Rs o2. The sudden acceleration and upward/downward deflection of gap-flows enhanced near-neck advective SO2 entrainment by suitably strengthening the "inflow" natured local vortex dynamics. Conversely, for the reduced size of secondary vortices, the saturation becomes delayed. In addition, for decreased vertical spacing of micro-cylinders (R = 40 μm) falling below the diameter-length "2R," the SO2 absorption (mso2 ') only gets slower. We provide extensive analysis of two-phase transport phenomena in terms of interactive shear-stress, pressure, and characteristic time-ratio "Tr" of advection-diffusion processes, for varied G/R, Re, and liquid phase Peclet number "Pel" (96 ≤ Pel ≤ 1333), to present a better insight into the governing physics.

  11. Scattering on two Aharonov-Bohm vortices

    NASA Astrophysics Data System (ADS)

    Bogomolny, E.

    2016-12-01

    The problem of two Aharonov-Bohm (AB) vortices for the Helmholtz equation is examined in detail. It is demonstrated that the method proposed by Myers (1963 J. Math. Phys. 6 1839) for slit diffraction can be generalised to obtain an explicit solution for AB vortices. Due to the singular nature of AB interaction the Green function and scattering amplitude for two AB vortices obey a series of partial differential equations. Coefficients entering these equations, fulfil ordinary non-linear differential equations whose solutions can be obtained by solving the Painlevé III equation. The asymptotics of necessary functions for very large and very small vortex separations are calculated explicitly. Taken together, this means that the problem of two AB vortices is exactly solvable.

  12. Free-stream turbulence and concave curvature effects on heated, transitional boundary layers

    NASA Technical Reports Server (NTRS)

    Kim, J.; Simon, T. W.

    1991-01-01

    An experimental investigation of the transition process on flat-plate and concave curved-wall boundary layers for various free-stream turbulence levels was performed. Results show that for transition of a flat-plate, the two forms of boundary layer behavior, identified as laminar-like and turbulent-like, cannot be thought of as separate Blasius and fully-turbulent profiles, respectively. Thus, simple transition models in which the desired quantity is assumed to be an average, weighted on intermittency, of the theoretical laminar and fully turbulent values is not expected to be successful. Deviation of the flow identified as laminar-like from theoretical laminar behavior is shown to be due to recovery after the passage of a turbulent spot, while deviation of the flow identified as turbulent-like from the full-turbulent values is thought to be due to incomplete establishment of the fully-turbulent power spectral distribution. Turbulent Prandtl numbers for the transitional flow, computed from measured shear stress, turbulent heat flux and mean velocity and temperature profiles, were less than unity. For the curved-wall case with low free-stream turbulence intensity, the existence of Gortler vortices on the concave wall within both laminar and turbulent flows was established using liquid crystal visualization and spanwise velocity and temperature traverses. Transition was found to occur via a vortex breakdown mode. The vortex wavelength was quite irregular in both the laminar and turbulent flows, but the vortices were stable in time and space. The upwash was found to be more unstable, with higher levels of u' and u'v', and lower skin friction coefficients and shape factors. Turbulent Prandtl numbers, measured using a triple-wire probe, were found to be near unity for all post-transitional profiles, indicating no gross violation of Reynolds analogy. No evidence of streamwise vortices was seen in the high turbulence intensity case.

  13. A numerical study of axisymmetric compressible non-isothermal and reactive swirling flow

    NASA Astrophysics Data System (ADS)

    Tavernetti, William E.; Hafez, Mohamed M.

    2017-09-01

    Non-linear dynamical phenomena in combustion processes is an active area of experimental and theoretical research. This is in large part due to increasingly strict environmental pressures to make gas turbine engines and industrial burners more efficient. Using numerical methods, for steady and unsteady confined and unconfined compressible flow, this study examines the modeling influence of compressibility for axisymmetric swirling flow. The compressible reactive Navier-Stokes equations in terms of stream function, vorticity, circulation are used. Results, details of the numerical algorithms, as well as numerical verification techniques and validation with sources from the literature will be presented. Understanding how vortex breakdown phenomena are affected by modeling reactant consumption with compressibility effect is the main goal of this study.

  14. Numerical solutions of atmospheric flow over semielliptical simulated hills

    NASA Technical Reports Server (NTRS)

    Shieh, C. F.; Frost, W.

    1981-01-01

    Atmospheric motion over obstacles on plane surfaces to compute simulated wind fields over terrain features was studied. Semielliptical, two dimensional geometry and numerical simulation of flow over rectangular geometries is also discussed. The partial differential equations for the vorticity, stream function, turbulence kinetic energy, and turbulence length scale were solved by a finite difference technique. The mechanism of flow separation induced by a semiellipse is the same as flow over a gradually sloping surface for which the flow separation is caused by the interaction between the viscous force, the pressure force, and the turbulence level. For flow over bluff bodies, a downstream recirculation bubble is created which increases the aspect ratio and/or the turbulence level results in flow reattachment close behind the obstacle.

  15. A cubic spline approximation for problems in fluid mechanics

    NASA Technical Reports Server (NTRS)

    Rubin, S. G.; Graves, R. A., Jr.

    1975-01-01

    A cubic spline approximation is presented which is suited for many fluid-mechanics problems. This procedure provides a high degree of accuracy, even with a nonuniform mesh, and leads to an accurate treatment of derivative boundary conditions. The truncation errors and stability limitations of several implicit and explicit integration schemes are presented. For two-dimensional flows, a spline-alternating-direction-implicit method is evaluated. The spline procedure is assessed, and results are presented for the one-dimensional nonlinear Burgers' equation, as well as the two-dimensional diffusion equation and the vorticity-stream function system describing the viscous flow in a driven cavity. Comparisons are made with analytic solutions for the first two problems and with finite-difference calculations for the cavity flow.

  16. A vortex wake capturing method for potential flow calculations

    NASA Technical Reports Server (NTRS)

    Murman, E. M.; Stremel, P. M.

    1982-01-01

    A method is presented for modifying finite difference solutions of the potential equation to include the calculation of non-planar vortex wake features. The approach is an adaptation of Baker's 'cloud in cell' algorithm developed for the stream function-vorticity equations. The vortex wake is tracked in a Lagrangian frame of reference as a group of discrete vortex filaments. These are distributed to the Eulerian mesh system on which the velocity is calculated by a finite difference solution of the potential equation. An artificial viscosity introduced by the finite difference equations removes the singular nature of the vortex filaments. Computed examples are given for the two-dimensional time dependent roll-up of vortex wakes generated by wings with different spanwise loading distributions.

  17. On cat's eyes and multiple disjoint cells natural convection flow in tall tilted cavities

    NASA Astrophysics Data System (ADS)

    Báez, Elsa; Nicolás, Alfredo

    2014-10-01

    Natural convection fluid flow in air-filled tall tilted cavities is studied numerically with a direct projection method applied on the unsteady Boussinesq approximation in primitive variables. The study is focused on the so called cat's eyes and multiple disjoint cells as the aspect ratio A and the angle of inclination ϕ of the cavity vary. Results have already been reported with primitive and stream function-vorticity variables. The former are validated with the latter ones, which in turn were validated through mesh size and time-step independence studies. The new results complemented with the previous ones lead to find out the fluid motion and heat transfer invariant properties of this thermal phenomenon, which is the novelty here.

  18. Experimental parametric study of jet vortex generators for flow separation control

    NASA Technical Reports Server (NTRS)

    Selby, Gregory

    1991-01-01

    A parametric wind-tunnel study was performed with jet vortex generators to determine their effectiveness in controlling flow separation associated with low-speed turbulence flow over a two-dimensional rearward-facing ramp. Results indicate that flow-separation control can be accomplished, with the level of control achieved being a function of jet speed, jet orientation (with respect to the free-stream direction), and orifice pattern (double row of jets vs. single row). Compared to slot blowing, jet vortex generators can provide an equivalent level of flow control over a larger spanwise region (for constant jet flow area and speed). Dye flow visualization tests in a water tunnel indicated that the most effective jet vortex generator configurations produced streamwise co-rotating vortices.

  19. Vortex generation and mixing in three-dimensional supersonic combustors

    NASA Technical Reports Server (NTRS)

    Riggins, D. W.; Vitt, P. H.

    1993-01-01

    The generation and evolution of the flow vorticity established by instream injector ramps in a high Mach number/high enthalpy scramjet combustor flow-field are described in detail for a number of computational cases. Classical fluid dynamic circulation is presented for these cases in order to clarify the spatial distribution and convection of the vorticity. The ability of the simulations to accurately represent Stokes Law of circulation is discussed and shown. In addition, the conservation of swirl (effectively the moment-of-momentum theorem) is presented for these flows. The impact of both turbulent diffusion and the vortex/ramp non-uniformity on the downstream mixing rate is clearly illustrated. A correlation over the length of the combustor between fuel-air mixing and a parameter called the vortex stirring length is demonstrated. Finally, computational results for a representative ramp injector are compared with experimental data. Influence of the stream vorticity on the effective turbulent Prandtl number used in the simulation is discussed.

  20. Experimental characterization of wingtip vortices in the near field using smoke flow visualizations

    NASA Astrophysics Data System (ADS)

    Serrano-Aguilera, J. J.; García-Ortiz, J. Hermenegildo; Gallardo-Claros, A.; Parras, L.; del Pino, C.

    2016-08-01

    In order to predict the axial development of the wingtip vortices strength, an accurate theoretical model is required. Several experimental techniques have been used to that end, e.g. PIV or hot-wire anemometry, but they imply a significant cost and effort. For this reason, we have performed experiments using the smoke-wire technique to visualize smoke streaks in six planes perpendicular to the main stream flow direction. Using this visualization technique, we obtained quantitative information regarding the vortex velocity field by means of Batchelor's model for two chord-based Reynolds numbers, Re_c=3.33× 10^4 and 10^5. Therefore, this theoretical vortex model has been introduced in the integration of ordinary differential equations which describe the temporal evolution of streak lines as function of two parameters: the swirl number, S, and the virtual axial origin, overline{z_0}. We have applied two different procedures to minimize the distance between experimental and theoretical flow patterns: individual curve fitting at six different control planes in the streamwise direction and the global curve fitting which corresponds to all the control planes simultaneously. Both sets of results have been compared with those provided by del Pino et al. (Phys Fluids 23(013):602, 2011b. doi: 10.1063/1.3537791), finding good agreement. Finally, we have observed a weak influence of the Reynolds number on the values S and overline{z_0} at low-to-moderate Re_c. This experimental technique is proposed as a low cost alternative to characterize wingtip vortices based on flow visualizations.

  1. Experimental and Theoretical Study of a Rectangular Wing in a Vortical Wake at Low Speed

    NASA Technical Reports Server (NTRS)

    Smith, Willard G.; Lazzeroni, Frank A.

    1960-01-01

    A systematic study has been made, experimentally and theoretically, of the effects of a vortical wake on the aerodynamic characteristics of a rectangular wing at subsonic speed. The vortex generator and wing were mounted on a reflection plane to avoid body-wing interference. Vortex position, relative to the wing, was varied both in the spanwise direction and normal to the wing. Angle of attack of the wing was varied from -40 to +60. Both chordwise and spanwise pressure distributions were obtained with the wing in uniform and vortical flow fields. Stream surveys were made to determine the flow characteristics in the vortical wake. The vortex-induced lift was calculated by several theoretical methods including strip theory, reverse-flow theory, and reverse-flow theory including a finite vortex core. In addition, the Prandtl lifting-line theory and the Weissinger theory were used to calculate the spanwise distribution of vortex-induced loads. With reverse-flow theory, predictions of the interference lift were generally good, and with Weissinger's theory the agreement between the theoretical spanwise variation of induced load and the experimental variation was good. Results of the stream survey show that the vortex generated by a lifting surface of rectangular plan form tends to trail back streamwise from the tip and does not approach the theoretical location, or centroid of circulation, given by theory. This discrepancy introduced errors in the prediction of vortex interference, especially when the vortex core passed immediately outboard of the wing tip. The wake produced by the vortex generator in these tests was not fully rolled up into a circular vortex, and so lacked symmetry in the vertical direction of the transverse plane. It was found that the direction of circulation affected the induced loads on the wing either when the wing was at angle of attack or when the vortex was some distance away from the plane of the wing.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macek, Joseph H; Sternberg, James; Ovchinnikov, Serguei Yurevich

    Deep minima in He(e,2e)He{sup +} triply differential cross sections are traced to vortices in atomic wave functions. Such vortices have been predicted earlier, but the present calculations show that they have also been observed experimentally, although not recognized as vortices. Their observation in (e,2e) measurements shows that vortices play an important role in electron correlations related to the transfer of angular momentum between incident and ejected electrons. The vortices significantly extend the list of known features that summarize the general picture of electron correlations in impact ionization.

  3. The importance of dynamic stall in aerodynamic modeling of the Darrieus rotor

    NASA Astrophysics Data System (ADS)

    Fraunie, P.; Beguier, C.; Paraschivoiu, I.

    The CAARDEX program is defined for analyzing the behavior of Darrieus wind turbines in terms of the Reynolds number, the geometrical characteristics of the wind turbine and the spreading of the stream tubes traversing the rotor volume. It is demonstrated that the maximum power conversion efficiency of the Darrieus rotor is 0.4, with the energy capture being divided at a 4:1 ratio upstream to downstream rotor. The model shows that the velocity induced on the rotor is a function of the specific velocity and solidity, and that previous stream tube theories are valid only at low values of these parameters. CARDAAX treats the rotor disk in terms of horizontal slices of stream tubes modeled separately for the upstream and downstream segments. Account is taken of the velocity profile in the atmospheric boundary layer, which can vary significantly in the case of large wind turbines, i.e., several hundred feet high. When applied to predicting the performance of a 1 kW, 2.6 m diam prototype Darrieus wind turbine in a 10 mps flow, fair agreement is obtained for power capture/wind velocity and cyclic aerodynamic forces. Additional flow visualization data is provided to illustrate the production of turbulence in the form of vortices shed between the blades.

  4. Crystallized and amorphous vortices in rotating atomic-molecular Bose-Einstein condensates

    PubMed Central

    Liu, Chao-Fei; Fan, Heng; Gou, Shih-Chuan; Liu, Wu-Ming

    2014-01-01

    Vortex is a topological defect with a quantized winding number of the phase in superfluids and superconductors. Here, we investigate the crystallized (triangular, square, honeycomb) and amorphous vortices in rotating atomic-molecular Bose-Einstein condensates (BECs) by using the damped projected Gross-Pitaevskii equation. The amorphous vortices are the result of the considerable deviation induced by the interaction of atomic-molecular vortices. By changing the atom-molecule interaction from attractive to repulsive, the configuration of vortices can change from an overlapped atomic-molecular vortices to carbon-dioxide-type ones, then to atomic vortices with interstitial molecular vortices, and finally into independent separated ones. The Raman detuning can tune the ratio of the atomic vortex to the molecular vortex. We provide a phase diagram of vortices in rotating atomic-molecular BECs as a function of Raman detuning and the strength of atom-molecule interaction. PMID:24573303

  5. Shedding of dual structures in the wake of a surface-mounted low aspect ratio cone

    NASA Astrophysics Data System (ADS)

    Chen, Zixiang; Martinuzzi, Robert J.

    2018-04-01

    The periodic shedding of vortex pairs in the turbulent wake of a surface-mounted right cone of aspect ratio 0.867 protruding a thin turbulent boundary layer is investigated experimentally. A phase-averaged volumetric velocity field is reconstructed from planar stereoscopic particle image velocimetry. During a typical (phase-averaged) shedding cycle, counter-rotating base vortices alternately form. These are tilted and stretched to merge with stream-wise tip vortices. The merged structure sheds and is convected downstream. A synthesis of earlier observations suggests that a similar shedding process exists for other low aspect ratio tapered geometries and is more complex than the shedding patterns observed for cantilevered cylinders, despite similarities of the mean flow field structure.

  6. Forcing function modeling for flow induced vibration

    NASA Technical Reports Server (NTRS)

    Fleeter, Sanford

    1993-01-01

    The fundamental forcing function unsteady aerodynamics for application to turbomachine blade row forced response are considered, accomplished through a series of experiments performed in a rotating annular cascade and a research axial flow turbine. In particular, the unsteady periodic flowfields downstream of rotating rows of perforated plates, airfoils and turbine blade rows are measured with a cross hot-wire and an unsteady total pressure probe. The unsteady velocity and static pressure fields were then analyzed harmonically and split into vortical and potential gusts, accomplished by developing a gust splitting analysis which includes both gust unsteady static pressure and velocity data. The perforated plate gusts closely were found to be linear theory vortical gusts, satisfying the vortical gust constraints. The airfoil and turbine blade row generated velocity perturbations did not satisfy the vortical gust constraints. However, the decomposition of the unsteady flow field separated the data into a propagating vortical component which satisfied these vortical gust constraints and a decaying potential component.

  7. Filtered Rayleigh scattering mixing measurements of merging and non-merging streamwise vortex interactions in supersonic flow

    NASA Astrophysics Data System (ADS)

    Ground, Cody R.; Gopal, Vijay; Maddalena, Luca

    2018-04-01

    By introducing large-scale streamwise vortices into a supersonic flow it is possible to enhance the rate of mixing between two fluid streams. However, increased vorticity content alone does not explicitly serve as a predictor of mixing enhancement. Additional factors, particularly the mutual interactions occurring between neighboring vortical structures, affect the underlying fundamental physics that influence the rate at which the fluids mix. As part of a larger systematic study on supersonic streamwise vortex interactions, this work experimentally quantifies the average rate of mixing of helium and air in the presence of two separate modes of vortex interaction, the merging and non-merging of a pair of co-rotating vortices. In these experiments vortex-generating expansion ramps are placed on a strut injector. The freestream Mach number is set at 2.5 and helium is injected as a passive scalar. Average injectant mole fractions at selected flow planes downstream of the injector are measured utilizing the filtered Rayleigh scattering technique. The filtered Rayleigh scattering measurements reveal that, in the domain surveyed, the merging vortex interaction strongly displaces the plume from its initial horizontal orientation while the non-merging vortex interaction more rapidly mixes the helium and air. The results of the current experiments are consistent with associated knowledge derived from previous analyses of the two studied configurations which have included the detailed experimental characterization of entrainment, turbulent kinetic energy, and vorticity of both modes of vortex interaction.

  8. Coherent Structures and Evolution of Vorticity in Short-Crested Breaking Surface Waves

    NASA Astrophysics Data System (ADS)

    Kirby, James; Derakhti, Morteza

    2017-11-01

    We employ a multi-phase LES/VOF code to study turbulence and coherent structures generated during breaking of short-crested surface water waves. We examine the evolution of coherent vortex structures evolving at the scale of the width of the breaking event, and their long-time interaction with smaller vortex loops formed by the local instability of the breaking crest. Long-time results are often characterized by the detachment of the larger scale vortex loop from the surface and formation of a closed vortex ring. The evolution of circulation for the vortical flow field is examined. The initial concentration of forcing close to the free surface leads to spatial distributions of both span-wise and vertical vorticity distributions which are concentrated close to the surface. This result, which persists into shallow water, is at odds with the basic simplicity of the Peregrine mechanism, suggesting that even shallow flows such as the surf zone should be regarded as being forced (in dissipative situations) by a wave-induced surface stress rather than a uniform-over-depth body force. The localized forcing leads to the development of a complex pattern of stream-wise vorticity, comparable in strength to the vertical and span-wise components, and also persist into shallow water. NSF OCE-1435147.

  9. Influence of a density increase on the evolution of the Kelvin-Helmholtz instability and vortices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amerstorfer, U. V.; Erkaev, N. V.; Institute of Computational Modelling, 660036 Krasnoyarsk

    2010-07-15

    Results of two-dimensional nonlinear numerical simulations of the magnetohydrodynamic Kelvin-Helmholtz instability are presented. A boundary layer of a certain width is assumed, which separates the plasma in the upper layer from the plasma in the lower layer. A special focus is given on the influence of a density increase toward the lower layer. The evolution of the Kelvin-Helmholtz instability can be divided into three different phases, namely, a linear growth phase at the beginning, followed by a nonlinear phase with regular structures of the vortices, and finally, a turbulent phase with nonregular structures. The spatial scales of the vortices aremore » about five times the initial width of the boundary layer. The considered configuration is similar to the situation around unmagnetized planets, where the solar wind (upper plasma layer) streams past the ionosphere (lower plasma layer), and thus the plasma density increases toward the planet. The evolving vortices might detach around the terminator of the planet and eventually so-called plasma clouds might be formed, through which ionospheric material can be lost. For the special case of a Venus-like planet, loss rates are estimated, which are of the order of estimated loss rates from observations at Venus.« less

  10. A Parametric Study of Jet Interactions with Rarefied Flow

    NASA Technical Reports Server (NTRS)

    Glass, C. E.

    2004-01-01

    Three-dimensional computational techniques, in particular the uncoupled CFD-DSMC of the present study, are available to be applied to problems such as jet interactions with variable density regions ranging from a continuum jet to a rarefied free stream. When the value of the jet to free stream momentum flux ratio approximately greater than 2000 for a sharp leading edge flat plate forward separation vortices induced by the jet interaction are present near the surface. Also as the free stream number density n (infinity) decreases, the extent and magnitude of normalized pressure increases and moves upstream of the nozzle exit. Thus for the flat plate model the effect of decreasing n (infinity) is to change the sign of the moment caused by the jet interaction on the flat plate surface.

  11. The Theory of a Free Jet of a Compressible Gas

    NASA Technical Reports Server (NTRS)

    Abramovich, G. N.

    1944-01-01

    In the present report the theory of free turbulence propagation and the boundary layer theory are developed for a plane-parallel free stream of a compressible fluid. In constructing the theory use was made of the turbulence hypothesis by Taylor (transport of vorticity) which gives best agreement with test results for problems involving heat transfer in free jets.

  12. Effect of centrifugal forces on formation of secondary flow structures in a 180-degree curved artery model under pulsatile inflow conditions

    NASA Astrophysics Data System (ADS)

    Callahan, Shannon; Sajjad, Roshan; Bulusu, Kartik V.; Plesniak, Michael W.

    2013-11-01

    An experimental investigation of secondary flow structures within a 180-degree bent tube model of a curved artery was performed using phase-averaged, two-component, two-dimensional, particle image velocimetry (2C-2D PIV) under pulsatile inflow conditions. Pulsatile waveforms ranging from simple sinusoidal to physiological inflows were supplied. We developed a novel continuous wavelet transform algorithm (PIVlet 1.2) and applied it to vorticity fields for coherent secondary flow structure detection. Regime maps of secondary flow structures revealed new, deceleration-phase-dependent flow morphologies. The temporal instances where streamwise centrifugal forces dominated were associated with large-scale coherent structures, such as deformed Dean-, Lyne- and Wall-type (D-L-W) vortical structures. Magnitudes of streamwise and cross-stream centrifugal forces tend to balance during deceleration phases. Deceleration events were also associated with spatial reorganization and asymmetry in large-scale D-L-W secondary flow structures. Hence, the interaction between streamwise and cross-stream centrifugal forces that affects secondary flow morphologies is explained using a ``residual force'' parameter i.e., the difference in magnitudes of these forces. Supported by the NSF Grant No. CBET- 0828903 and GW Center for Biomimetics and Bioinspired Engineering.

  13. The Boundary Layers in Fluids with Little Friction

    NASA Technical Reports Server (NTRS)

    Blasius, H.

    1950-01-01

    The vortices forming in flowing water behind solid bodies are not represented correctly by the solution of the potential theory nor by Helmholtz's jets. Potential theory is unable to satisfy the condition that the water adheres at the wetted bodies, and its solutions of the fundamental hydrodynamic equations are at variance with the observation that the flow separates from the body at a certain point and sends forth a highly turbulent boundary layer into the free flow. Helmholtz's theory attempts to imitate the latter effect in such a way that it joins two potential flows, jet and still water, nonanalytical along a stream curve. The admissibility of this method is based on the fact that, at zero pressure, which is to prevail at the cited stream curve, the connection of the fluid, and with it the effect of adjacent parts on each other, is canceled. In reality, however, the pressure at these boundaries is definitely not zero, but can even be varied arbitrarily. Besides, Helmholtz's theory with its potential flows does not satisfy the condition of adherence nor explain the origin of the vortices, for in all of these problems, the friction must be taken into account on principle, according to the vortex theorem.

  14. Global structure transitions in an experimental induction furnace

    NASA Astrophysics Data System (ADS)

    Tasaka, Yuji; Galindo, Vladimir; Vogt, Tobias; Eckert, Sven

    2017-11-01

    Flows induced by alternating magnetic field (AMF) in a cylindrical vessel filled with liquid metal, alloy of GaInSn, were examined experimentally using ultrasonic Doppler velocimetry (UDV). Measurement lines of UDV arranged vertically set at different radial and azimuthal positions extracted flow structures and their time variations as spatio-temporal velocity maps in the opaque liquid metal layer. At low frequency of AMF, corresponding to shielding parameter S =μm σωR2 = O(1) (μm and σ are magnetic permeability and electric conductivity of the test fluid, ω angular frequency of AMF, and R the radius of cylindrical vessel), two toroidal vortices exist in the fluid layer as the large scale flow structure and have interactions each other. With increasing of S the structure has transition from toroidal vortex pair to four large scale circulations (S >= 100) via transient state, where strong interactions of two vortices are observed (30 < S < 100). Faster vertical stream is observed near the cylinder wall because of ski effect caused by AMF, and the time-averaged velocity of the stream takes maximum around S = 20 , which is little smaller value of S for the onset of the transient state. JSPS KAKENHI No. 15KK0219.

  15. Effect of free-stream turbulence on boundary layer transition.

    PubMed

    Goldstein, M E

    2014-07-28

    This paper is concerned with the transition to turbulence in flat plate boundary layers due to moderately high levels of free-stream turbulence. The turbulence is assumed to be generated by an (idealized) grid and matched asymptotic expansions are used to analyse the resulting flow over a finite thickness flat plate located in the downstream region. The characteristic Reynolds number Rλ based on the mesh size λ and free-stream velocity is assumed to be large, and the turbulence intensity ε is assumed to be small. The asymptotic flow structure is discussed for the generic case where the turbulence Reynolds number εRλ and the plate thickness and are held fixed (at O(1) and O(λ), respectively) in the limit as [Formula: see text] and ε→0. But various limiting cases are considered in order to explain the relevant transition mechanisms. It is argued that there are two types of streak-like structures that can play a role in the transition process: (i) those that appear in the downstream region and are generated by streamwise vorticity in upstream flow and (ii) those that are concentrated near the leading edge and are generated by plate normal vorticity in upstream flow. The former are relatively unaffected by leading edge geometry and are usually referred to as Klebanoff modes while the latter are strongly affected by leading edge geometry and are more streamwise vortex-like in appearance. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  16. Development of a linearized unsteady aerodynamic analysis for cascade gust response predictions

    NASA Technical Reports Server (NTRS)

    Verdon, Joseph M.; Hall, Kenneth C.

    1990-01-01

    A method for predicting the unsteady aerodynamic response of a cascade of airfoils to entropic, vortical, and acoustic gust excitations is being developed. Here, the unsteady flow is regarded as a small perturbation of a nonuniform isentropic and irrotational steady background flow. A splitting technique is used to decompose the linearized unsteady velocity into rotational and irrotational parts leading to equations for the complex amplitudes of the linearized unsteady entropy, rotational velocity, and velocity potential that are coupled only sequentially. The entropic and rotational velocity fluctuations are described by transport equations for which closed-form solutions in terms of the mean-flow drift and stream functions can be determined. The potential fluctuation is described by an inhomogeneous convected wave equation in which the source term depends on the rotational velocity field, and is determined using finite-difference procedures. The analytical and numerical techniques used to determine the linearized unsteady flow are outlined. Results are presented to indicate the status of the solution procedure and to demonstrate the impact of blade geometry and mean blade loading on the aerodynamic response of cascades to vortical gust excitations. The analysis described herein leads to very efficient predictions of cascade unsteady aerodynamic response phenomena making it useful for turbomachinery aeroelastic and aeroacoustic design applications.

  17. Front propagation in a regular vortex lattice: Dependence on the vortex structure.

    PubMed

    Beauvier, E; Bodea, S; Pocheau, A

    2017-11-01

    We investigate the dependence on the vortex structure of the propagation of fronts in stirred flows. For this, we consider a regular set of vortices whose structure is changed by varying both their boundary conditions and their aspect ratios. These configurations are investigated experimentally in autocatalytic solutions stirred by electroconvective flows and numerically from kinematic simulations based on the determination of the dominant Fourier mode of the vortex stream function in each of them. For free lateral boundary conditions, i.e., in an extended vortex lattice, it is found that both the flow structure and the front propagation negligibly depend on vortex aspect ratios. For rigid lateral boundary conditions, i.e., in a vortex chain, vortices involve a slight dependence on their aspect ratios which surprisingly yields a noticeable decrease of the enhancement of front velocity by flow advection. These different behaviors reveal a sensitivity of the mean front velocity on the flow subscales. It emphasizes the intrinsic multiscale nature of front propagation in stirred flows and the need to take into account not only the intensity of vortex flows but also their inner structure to determine front propagation at a large scale. Differences between experiments and simulations suggest the occurrence of secondary flows in vortex chains at large velocity and large aspect ratios.

  18. Vorticity and Λ polarization in baryon rich matter

    NASA Astrophysics Data System (ADS)

    Baznat, Mircea; Gudima, Konstantin; Prokhorov, George; Sorin, Alexander; Teryaev, Oleg; Zakharov, Valentin

    2018-02-01

    The polarization of Λ hyperons due to axial chiral vortical effect is discussed. The effect is proportional to (strange) chemical potential and is pronounced at lower energies in baryon-rich matter. The polarization of ¯ has the same sihn and larger magnitude. The emergence of vortical structures is observed in kinetic QGSM models. The hydrodynamical helicity separation receives the contribution of longitudinal velocity and vorticity implying the quadrupole structure of the latter. The transition from the quark vortical effects to baryons in confined phase may be achieved by exploring the axial charge. At the hadronic level the polarization corresponds to the cores of quantized vortices in pionic superfluid. The chiral vortical effects may be also studied in the frmework of Wigner function establishing the relation to the thermodynamical approach to polarization.

  19. Polarization in heavy-ion collisions: magnetic field and vorticity

    NASA Astrophysics Data System (ADS)

    Baznat, M.; Gudima, K.; Prokhorov, G.; Sorin, A.; Teryaev, O.; Zakharov, V.

    2017-12-01

    The polarization of hyperons due to axial chiral vortical effect is discussed. The effect is proportional to (strange) chemical potential and is pronounced at lower energies, contrary to that of magnetic field. The polarization of antihyperons has the same sign and larger magnitude. The emergence of vortical structures is observed in kinetic QGSM models. The hydrodynamical helicity separation receives the contribution of longitudinal velocity and vorticity implying the quadrupole structure of the latter. The transition from the quark vortical effects to baryons in confined phase may be achieved by exploring the axial charge. At the hadronic level the polarization corresponds to the cores of quantized vortices in pionic superfluid. The chiral vortical effects may be also studied in the frmework of Wigner function establishing the relation to the thermodynamical approach to polarization.

  20. Analysis of Influence of Heat Insulation on the Thermal Regime of Storage Tanks with Liquefied Natural Gas

    NASA Astrophysics Data System (ADS)

    Maksimov, Vyacheslav I.; Nagornova, Tatiana A.; Glazyrin, Viktor P.; Shestakov, Igor A.

    2016-02-01

    Is numerically investigated the process of convective heat transfer in the reservoirs of liquefied natural gas (LNG). The regimes of natural convection in a closed rectangular region with different intensity of heat exchange at the external borders are investigated. Is solved the time-dependent system of energy and Navier-Stokes equations in the dimensionless variables "vorticity - the stream function". Are obtained distributions of the hydrodynamic parameters and temperatures, that characterize basic regularities of the processes. The special features of the formation of circulation flows are isolated and the analysis of the temperature distribution in the solution region is carried out. Is shown the influence of geometric characteristics and intensity of heat exchange on the outer boundaries of reservoir on the temperature field in the LNG storage.

  1. A rigorous solution of the Navier-Stokes equations for unsteady viscous flow at high Reynolds numbers around oscillating airfoils

    NASA Technical Reports Server (NTRS)

    Bratanow, T.; Aksu, H.; Spehert, T.

    1975-01-01

    A method based on the Navier-Stokes equations was developed for analyzing the unsteady incompressible viscous flow around oscillating airfoils at high Reynolds numbers. The Navier-Stokes equations have been integrated in their classical Helmholtz vorticity transport equation form, and the instantaneous velocity field at each time step was determined by the solution of Poisson's equation. A refined finite element was utilized to allow for a conformable solution of the stream function and its first space derivatives at the element interfaces. A corresponding set of accurate boundary conditions was applied; thus obtaining a rigorous solution for the velocity field. The details of the computational procedure and examples of computed results describing the unsteady flow characteristics around the airfoil are presented.

  2. Optical diagnostics and computational modeling of reacting and non-reacting single and multiphase flows

    NASA Astrophysics Data System (ADS)

    Basu, Saptarshi

    Three critical problem domains namely water transport in PEM fuel cell, interaction of vortices with diffusion flames and laminar diffusion layers and thermo-physical processes in droplets heated by a plasma or monochromatic radiation have been analyzed in this dissertation. The first part of the dissertation exhibits a unique, in situ, line-of-sight measurements of water vapor partial pressure and temperature in single and multiple gas channels on the cathode side of an operating PEM fuel cell. Tunable diode laser absorption spectroscopy was employed for these measurements for which water transitions sensitive to temperature and partial pressure were utilized. The technique was demonstrated in a PEM fuel cell operating under both steady state and time-varying load conditions. The second part of the dissertation is dedicated to the study of vortex interaction with laminar diffusion flame and non-reacting diffusion layers. For the non-reacting case, a detailed computational study of scalar mixing in a laminar vortex is presented for vortices generated between two gas streams. A detailed parametric study was conducted to determine the effects of vortex strength, convection time, and non-uniform temperature on scalar mixing characteristics. For the reacting case, an experimental study of the interaction of a planar diffusion flame with a line vortex is presented. The flame-vortex interactions are diagnosed by laser induced incandescence for soot yield and by particle image velocimetry for vortex flow characterization. The soot topography was studied as a function of the vortex strength, residence time, flame curvature and the reactant streams from which vortices are initiated. The third part of the dissertation is modeling of thermo-physical processes in liquid ceramic precursor droplets injected into plasma as used in the thermal spray industry to generate thermal barrier coatings on high value materials. Models include aerodynamic droplet break-up process, mixing of droplets in the high temperature plasma, heat and mass transfer within individual droplets as well as droplet precipitation and internal pressurization. The last part of the work is also concerned with the modeling of thermo-physical processes in liquid ceramic precursor droplets heated by monochromatic radiation. Purpose of this work was to evaluate the feasibility of studying precipitation kinetics and morphological changes in a droplet by mimicking similar heating rates as the plasma.

  3. Roughness-induced generation of crossflow vortices in three-dimensional boundary layers

    NASA Technical Reports Server (NTRS)

    Choudhari, Meelan

    1993-01-01

    The receptivity theory of Goldstein and Ruban is extended within the nonasymptotic (quasi-parallel) framework of Zavol'skii et al to predict the roughness-induced generation of stationary and nonstationary instability waves in three-dimensional, incompressible boundary layers. The influence of acoustic-wave orientation, as well as that of different types of roughness geometries, including isolated roughness elements, periodic arrays, and two-dimensional lattices of compact roughness shapes, as well as random, but spatially homogeneous roughness distributions, is examined. The parametric study for the Falkner-Skan-Cooke family of boundary layers supports our earlier conjecture that the initial amplitudes of roughness-induced stationary vortices are likely to be significantly larger than the amplitudes of similarly induced nonstationary vortices in the presence of acoustic disturbances in the free stream. Maximum unsteady receptivity occurs when the acoustic velocity fluctuation is aligned with the wavenumber vector of the unsteady vortex mode. On the other hand, roughness arrays that are oriented somewhere close to the group velocity direction are likely to produce higher instability amplitudes. Limitations of the nonasymptotic theory are discussed, and future work is suggested.

  4. Nonlinear effects in the bounded dust-vortex flow in plasma

    NASA Astrophysics Data System (ADS)

    Laishram, Modhuchandra; Sharma, Devendra; Chattopdhyay, Prabal K.; Kaw, Predhiman K.

    2017-03-01

    The vortex structures in a cloud of electrically suspended dust in a streaming plasma constitutes a driven system with a rich nonlinear flow regime. Experimentally recovered toroidal formations of this system have motivated study of its volumetrically driven-dissipative vortex flow dynamics using two-dimensional hydrodynamics in the incompressible Navier-Stokes regime. Nonlinear equilibrium solutions are obtained for this system where a nonuniformly driven two-dimensional dust flow exhibits distinct regions of localized accelerations and strong friction caused by stationary fluids at the confining boundaries resisting the dust flow. In agreement with observations in experiments, it is demonstrated that the nonlinear effects appear in the limit of small viscosity, where the primary vortices form scaling with the most dominant spatial scales of the domain topology and develop separated virtual boundaries along their periphery. This separation is triggered beyond a critical dust viscosity that signifies a structural bifurcation. Emergence of uniform vorticity core and secondary vortices with a newer level of identical dynamics highlights the applicability of the studied dynamics to gigantic vortex flows, such as the Jovian great red spot, to microscopic biophysical intracellular activity.

  5. Laser Doppler technology applied to atmospheric environmental operating problems

    NASA Technical Reports Server (NTRS)

    Weaver, E. A.; Bilbro, J. W.; Dunkin, J. A.; Jeffreys, H. B.

    1976-01-01

    Carbon dioxide laser Doppler ground wind data were very favorably compared with data from standard anemometers. As a result of these measurements, two breadboard systems were developed for taking research data: a continuous wave velocimeter and a pulsed Doppler system. The scanning continuous wave laser Doppler velocimeter developed for detecting, tracking and measuring aircraft wake vortices was successfully tested at an airport where it located vortices to an accuracy of 3 meters at a range of 150 meters. The airborne pulsed laser Doppler system was developed to detect and measure clear air turbulence (CAT). This system was tested aboard an aircraft, but jet stream CAT was not encountered. However, low altitude turbulence in cumulus clouds near a mountain range was detected by the system and encountered by the aircraft at the predicted time.

  6. Influence of the least-squares phase on optical vortices in strongly scintillated beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Mingzhou; Roux, Filippus S.; National Laser Centre, CSIR, P.O. Box 395, Pretoria 0001

    2009-07-15

    The optical vortices that exist in strongly scintillated beams make it difficult for conventional adaptive optics systems to remove the phase distortions. When the least-squares reconstructed phase is removed, the vortices still remain. However, we found that the removal of the least-squares phase induces a portion of the vortices to be annihilated during subsequent propagation, causing a reduction in the total number of vortices. This can be understood in terms of the restoration of equilibrium between explicit vortices, which are visible in the phase function, and vortex bound states, which are somehow encoded in the continuous phase fluctuations. Numerical simulationsmore » are provided to show that the total number of optical vortices in a strongly scintillated beam can be reduced significantly after a few steps of least-squares phase corrections.« less

  7. Agradient velocity, vortical motion and gravity waves in a rotating shallow-water model

    NASA Astrophysics Data System (ADS)

    Sutyrin Georgi, G.

    2004-07-01

    A new approach to modelling slow vortical motion and fast inertia-gravity waves is suggested within the rotating shallow-water primitive equations with arbitrary topography. The velocity is exactly expressed as a sum of the gradient wind, described by the Bernoulli function,B, and the remaining agradient part, proportional to the velocity tendency. Then the equation for inverse potential vorticity,Q, as well as momentum equations for agradient velocity include the same source of intrinsic flow evolution expressed as a single term J (B, Q), where J is the Jacobian operator (for any steady state J (B, Q) = 0). Two components of agradient velocity are responsible for the fast inertia-gravity wave propagation similar to the traditionally used divergence and ageostrophic vorticity. This approach allows for the construction of balance relations for vortical dynamics and potential vorticity inversion schemes even for moderate Rossby and Froude numbers assuming the characteristic value of |J(B, Q)| = to be small. The components of agradient velocity are used as the fast variables slaved to potential vorticity that allows for diagnostic estimates of the velocity tendency, the direct potential vorticity inversion with the accuracy of 2 and the corresponding potential vorticity-conserving agradient velocity balance model (AVBM). The ultimate limitations of constructing the balance are revealed in the form of the ellipticity condition for balanced tendency of the Bernoulli function which incorporates both known criteria of the formal stability: the gradient wind modified by the characteristic vortical Rossby wave phase speed should be subcritical. The accuracy of the AVBM is illustrated by considering the linear normal modes and coastal Kelvin waves in the f-plane channel with topography.

  8. Methodology for Scour Evaluation of US Army Installation Bridges: A Proposed Evaluation for Scour Risk and Channel Instability

    DTIC Science & Technology

    2013-01-01

    rainfall runoff relations ....................................................... 9  Step 2: evaluate hydraulic conditions...earthquakes, landslides , or forest fires might result in a large sediment load. Major changes in the stream might be reflected in aggradation, degradation...removal of material from around piers, abutments, and embankments, caused by an acceleration of flow and by vortices induced by the flow around

  9. Fast acoustic streaming in standing waves: generation of an additional outer streaming cell.

    PubMed

    Reyt, Ida; Daru, Virginie; Bailliet, Hélène; Moreau, Solène; Valière, Jean-Christophe; Baltean-Carlès, Diana; Weisman, Catherine

    2013-09-01

    Rayleigh streaming in a cylindrical acoustic standing waveguide is studied both experimentally and numerically for nonlinear Reynolds numbers from 1 to 30 [Re(NL)=(U0/c0)(2)(R/δν)(2), with U0 the acoustic velocity amplitude at the velocity antinode, c0 the speed of sound, R the tube radius, and δν the acoustic boundary layer thickness]. Streaming velocity is measured by means of laser Doppler velocimetry in a cylindrical resonator filled with air at atmospheric pressure at high intensity sound levels. The compressible Navier-Stokes equations are solved numerically with high resolution finite difference schemes. The resonator is excited by shaking it along the axis at imposed frequency. Results of measurements and of numerical calculation are compared with results given in the literature and with each other. As expected, the axial streaming velocity measured and calculated agrees reasonably well with the slow streaming theory for small ReNL but deviates significantly from such predictions for fast streaming (ReNL>1). Both experimental and numerical results show that when ReNL is increased, the center of the outer streaming cells are pushed toward the acoustic velocity nodes until counter-rotating additional vortices are generated near the acoustic velocity antinodes.

  10. Interaction of N-vortex structures in a continuum, including atmosphere, hydrosphere and plasma

    NASA Astrophysics Data System (ADS)

    Belashov, Vasily Yu.

    2017-10-01

    The results of analysis and numerical simulation of evolution and interaction of the N-vortex structures of various configuration and different vorticities in the continuum including atmosphere, hydrosphere and plasma are presented. It is found that in dependence on initial conditions the regimes of weak interaction with quasi-stationary evolution and active interaction with the "phase intermixing", when the evolution can lead to formation of complex forms of vorticity regions, are realized in the N-vortex systems. For the 2-vortex interaction the generalized critical parameter determining qualitative character of interaction of vortices is introduced. It is shown that for given initial conditions its value divides modes of active interaction and quasi-stationary evolution. The results of simulation of evolution and interaction of the two-dimensional and three-dimensional vortex structures, including such phenomena as dynamics of the atmospheric synoptic vortices of cyclonic types and tornado, hydrodynamic 4-vortex interaction and also interaction in the systems of a type of "hydrodynamic vortex - dust particles" are presented. The applications of undertaken approach to the problems of such plasma systems as streams of charged particles in a uniform magnetic field B and plasma clouds in the ionosphere are considered. It is shown that the results obtained have obvious applications in studies of the dynamics of the vortex structures dynamics in atmosphere, hydrosphere and plasma.

  11. Three-Dimensional Navier-Stokes Simulations with Two-Equation Turbulence Models of Intersecting Shock-Waves/Turbulent Boundary Layer at Mach 8.3

    NASA Technical Reports Server (NTRS)

    Bardina, J. E.; Coakley, T. J.

    1994-01-01

    An investigation of the numerical simulation with two-equation turbulence models of a three-dimensional hypersonic intersecting (SWTBL) shock-wave/turbulent boundary layer interaction flow is presented. The flows are solved with an efficient implicit upwind flux-difference split Reynolds-averaged Navier-Stokes code. Numerical results are compared with experimental data for a flow at Mach 8.28 and Reynolds number 5.3x10(exp 6) with crossing shock-waves and expansion fans generated by two lateral 15 fins located on top of a cold-wall plate. This experiment belongs to the hypersonic database for modeling validation. Simulations show the development of two primary counter-rotating cross-flow vortices and secondary turbulent structures under the main vortices and in each corner singularity inside the turbulent boundary layer. A significant loss of total pressure is produced by the complex interaction between the main vortices and the uplifted jet stream of the boundary layer. The overall agreement between computational and experimental data is generally good. The turbulence modeling corrections show improvements in the predictions of surface heat transfer distribution and an increase in the strength of the cross-flow vortices. Accurate predictions of the outflow flowfield is found to require accurate modeling of the laminar/turbulent boundary layers on the fin walls.

  12. Origin of chaos near three-dimensional quantum vortices: A general Bohmian theory

    NASA Astrophysics Data System (ADS)

    Tzemos, Athanasios C.; Efthymiopoulos, Christos; Contopoulos, George

    2018-04-01

    We provide a general theory for the structure of the quantum flow near three-dimensional (3D) nodal lines, i.e., one-dimensional loci where the 3D wave function becomes equal to zero. In suitably defined coordinates (comoving with the nodal line) the generic structure of the flow implies the formation of 3D quantum vortices. We show that such vortices are accompanied by nearby invariant lines of the comoving quantum flow, called X lines, which are normally hyperbolic. Furthermore, the stable and unstable manifolds of the X lines produce chaotic scatterings of nearby quantum (Bohmian) trajectories, thus inducing an intricate form of the quantum current in the neighborhood of each 3D quantum vortex. Generic formulas describing the structure around 3D quantum vortices are provided, applicable to an arbitrary choice of 3D wave function. We also give specific numerical examples as well as a discussion of the physical consequences of chaos near 3D quantum vortices.

  13. Origin of chaos near three-dimensional quantum vortices: A general Bohmian theory.

    PubMed

    Tzemos, Athanasios C; Efthymiopoulos, Christos; Contopoulos, George

    2018-04-01

    We provide a general theory for the structure of the quantum flow near three-dimensional (3D) nodal lines, i.e., one-dimensional loci where the 3D wave function becomes equal to zero. In suitably defined coordinates (comoving with the nodal line) the generic structure of the flow implies the formation of 3D quantum vortices. We show that such vortices are accompanied by nearby invariant lines of the comoving quantum flow, called X lines, which are normally hyperbolic. Furthermore, the stable and unstable manifolds of the X lines produce chaotic scatterings of nearby quantum (Bohmian) trajectories, thus inducing an intricate form of the quantum current in the neighborhood of each 3D quantum vortex. Generic formulas describing the structure around 3D quantum vortices are provided, applicable to an arbitrary choice of 3D wave function. We also give specific numerical examples as well as a discussion of the physical consequences of chaos near 3D quantum vortices.

  14. Measurements in Transitional Boundary Layers Under High Free-Stream Turbulence and Strong Acceleration Conditions

    NASA Technical Reports Server (NTRS)

    Volino, Ralph J.; Simon, Terrence W.

    1995-01-01

    Measurements from transitional, heated boundary layers along a concave-curved test wall are presented and discussed. A boundary layer subject to low free-stream turbulence intensity (FSTI), which contains stationary streamwise (Gortler) vortices, is documented. The low FSTI measurements are followed by measurements in boundary layers subject to high (initially 8%) free-stream turbulence intensity and moderate to strong streamwise acceleration. Conditions were chosen to simulate those present on the downstream half of the pressure side of a gas turbine airfoil. Mean flow characteristics as well as turbulence statistics, including the turbulent shear stress, turbulent heat flux, and turbulent Prandtl number, are documented. A technique called "octant analysis" is introduced and applied to several cases from the literature as well as to data from the present study. Spectral analysis was applied to describe the effects of turbulence scales of different sizes during transition. To the authors'knowledge, this is the first detailed documentation of boundary layer transition under such high free-stream turbulence conditions.

  15. Size-sensitive particle trajectories in three-dimensional micro-bubble acoustic streaming flows

    NASA Astrophysics Data System (ADS)

    Volk, Andreas; Rossi, Massimiliano; Hilgenfeldt, Sascha; Rallabandi, Bhargav; Kähler, Christian; Marin, Alvaro

    2015-11-01

    Oscillating microbubbles generate steady streaming flows with interesting features and promising applications for microparticle manipulation. The flow around oscillating semi-cylindrical bubbles has been typically assumed to be independent of the axial coordinate. However, it has been recently revealed that particle motion is strongly three-dimensional: Small tracer particles follow vortical trajectories with pronounced axial displacements near the bubble, weaving a toroidal stream-surface. A well-known consequence of bubble streaming flows is size-dependent particle migration, which can be exploited for sorting and trapping of microparticles in microfluidic devices. In this talk, we will show how the three-dimensional toroidal topology found for small tracer particles is modified as the particle size increases up to 1/3 of the bubble radius. Our results show size-sensitive particle positioning along the axis of the semi-cylindrical bubble. In order to analyze the three-dimensional sorting and trapping capabilities of the system, experiments with an imposed flow and polydisperse particle solutions are also shown.

  16. Interaction of a trailing vortex with an oscillating wing

    NASA Astrophysics Data System (ADS)

    McKenna, C.; Fishman, G.; Rockwell, D.

    2018-01-01

    A technique of particle image velocimetry is employed to characterize the flow structure of a trailing vortex incident upon the tip region of an oscillating wing (plate). The amplitude and velocity of the wing are nearly two orders of magnitude smaller than the wing chord and free stream velocity, respectively. Depending upon the outboard displacement of the incident vortex relative to the wing tip, distinctive patterns of upwash, downwash, and shed vorticity are observed. These patterns are a strong function of the phase of the wing motion during its oscillation cycle. At a given phase, the wing oscillation induces upwash that is reinforced by the upwash of the incident vortex, giving a maximum net upwash. Conversely, when these two origins of upwash counteract, rather than reinforce, one another during the oscillation cycle, the net upwash attains minimum value. Analogous interpretations hold for regions of maximum and minimum net downwash located outboard of the regions of upwash. The magnitude and scale of the vorticity shed from the tip of the wing are directly correlated with the net upwash, which takes different forms related to the outboard displacement of the incident vortex. As the location of the incident vortex is displaced towards the wing tip, both the maximum upwash and the maximum vorticity of the tip vortex initially increase and then decrease. For the limiting case where the incident vortex impinges directly upon the tip of the wing, there is no tip vortex or induced region of upwash. Furthermore, at small values of vortex displacement from the wing tip, the position of the incident vortex varies significantly from its nominal position during the oscillation cycle. All of the foregoing features are interpreted in conjunction with the flow topology in the form of streamlines and critical points, superposed on patterns of vorticity. It is shown that despite the small amplitude of the wing motion, the flow topology is fundamentally different at maximum positive and negative values of the velocity of the wing tip, that is, they are not symmetric.

  17. Vortex breakdown simulation

    NASA Technical Reports Server (NTRS)

    Hafez, M.; Ahmad, J.; Kuruvila, G.; Salas, M. D.

    1987-01-01

    In this paper, steady, axisymmetric inviscid, and viscous (laminar) swirling flows representing vortex breakdown phenomena are simulated using a stream function-vorticity-circulation formulation and two numerical methods. The first is based on an inverse iteration, where a norm of the solution is prescribed and the swirling parameter is calculated as a part of the output. The second is based on direct Newton iterations, where the linearized equations, for all the unknowns, are solved simultaneously by an efficient banded Gaussian elimination procedure. Several numerical solutions for inviscid and viscous flows are demonstrated, followed by a discussion of the results. Some improvements on previous work have been achieved: first order upwind differences are replaced by second order schemes, line relaxation procedure (with linear convergence rate) is replaced by Newton's iterations (which converge quadratically), and Reynolds numbers are extended from 200 up to 1000.

  18. Conditional sampling technique to test the applicability of the Taylor hypothesis for the large-scale coherent structures

    NASA Technical Reports Server (NTRS)

    Hussain, A. K. M. F.

    1980-01-01

    Comparisons of the distributions of large scale structures in turbulent flow with distributions based on time dependent signals from stationary probes and the Taylor hypothesis are presented. The study investigated an area in the near field of a 7.62 cm circular air jet at a Re of 32,000, specifically having coherent structures through small-amplitude controlled excitation and stable vortex pairing in the jet column mode. Hot-wire and X-wire anemometry were employed to establish phase averaged spatial distributions of longitudinal and lateral velocities, coherent Reynolds stress and vorticity, background turbulent intensities, streamlines and pseudo-stream functions. The Taylor hypothesis was used to calculate spatial distributions of the phase-averaged properties, with results indicating that the usage of the local time-average velocity or streamwise velocity produces large distortions.

  19. Finite-analytic numerical solution of heat transfer in two-dimensional cavity flow

    NASA Technical Reports Server (NTRS)

    Chen, C.-J.; Naseri-Neshat, H.; Ho, K.-S.

    1981-01-01

    Heat transfer in cavity flow is numerically analyzed by a new numerical method called the finite-analytic method. The basic idea of the finite-analytic method is the incorporation of local analytic solutions in the numerical solutions of linear or nonlinear partial differential equations. In the present investigation, the local analytic solutions for temperature, stream function, and vorticity distributions are derived. When the local analytic solution is evaluated at a given nodal point, it gives an algebraic relationship between a nodal value in a subregion and its neighboring nodal points. A system of algebraic equations is solved to provide the numerical solution of the problem. The finite-analytic method is used to solve heat transfer in the cavity flow at high Reynolds number (1000) for Prandtl numbers of 0.1, 1, and 10.

  20. Acoustic Streaming and Microparticle Enrichment within a Microliter Droplet Using a Lamb-Wave Resonator Array

    NASA Astrophysics Data System (ADS)

    Zhang, Hongxiang; Tang, Zifan; Wang, Zhan; Pan, Shuting; Han, Ziyu; Sun, Chongling; Zhang, Menglun; Duan, Xuexin; Pang, Wei

    2018-06-01

    We report the nonlinear acoustic streaming effect and the fast manipulation of microparticles by microelectromechanical Lamb-wave resonators in a microliter droplet. The device, consisting of four Lamb-wave resonators on a silicon die, generates cylindrical traveling waves in a liquid and efficiently drives nine horizontal vortices within a 1 -μ l droplet; the performance of the device coincides with the numerical model prediction. Experimentally, the particles are enriched at the stagnation center of the main vortex on the free surface of the droplet in open space without microfluidic channels. In addition, the trajectories of the particles in the droplet can be controlled by the excitation power.

  1. Structure measurements in a synthetic turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Arakeri, Jaywant H.

    Extensive hot-wire measurements were made to determine the structure of the large eddy in a synthetic turbulent boundary layer on a flat-plate model. The experiments were carried out in a wind tunnel at a nominal free-stream velocity of 12 m/s. The synthetic turbulent boundary layer had a hexagonal pattern of eddies and a ratio of streamwise scale to spanwise scale of 3.2:1. The measured celerity of the large eddy was 84.2 percent of the free-stream velocity. There was some loss of coherence, but very little distortion, as the eddies moved downstream. Several mean properties of the synthetic boundary layer were found to agree quite well with the mean properties of a natural turbulent boundary layer at the same Reynolds number. The large eddy is composed of a pair of primary counter-rotating vortices about five delta long in the steamwise direction and about one delta apart in the spanwise direction, where delta is the mean boundary-layer thickness. Definite signatures are obtained in terms of the mean skin-friction coefficient and the mean wake parameter averaged at constant phase. Velocities induced by the vortices are partly responsible for entrainment of irrotational fluid, for transport of momentum, for generation of Reynolds stresses, and for maintenance of streamwise and normal velocity in the outer flow.

  2. Microalga propels along vorticity direction in a shear flow

    NASA Astrophysics Data System (ADS)

    Chengala, Anwar; Hondzo, Miki; Sheng, Jian

    2013-05-01

    Using high-speed digital holographic microscopy and microfluidics, we discover that, when encountering fluid flow shear above a threshold, unicellular green alga Dunaliella primolecta migrates unambiguously in the cross-stream direction that is normal to the plane of shear and coincides with the local fluid flow vorticity. The flow shear drives motile microalgae to collectively migrate in a thin two-dimensional horizontal plane and consequently alters the spatial distribution of microalgal cells within a given suspension. This shear-induced algal migration differs substantially from periodic rotational motion of passive ellipsoids, known as Jeffery orbits, as well as gyrotaxis by bottom-heavy swimming microalgae in a shear flow due to the subtle interplay between torques generated by gravity and viscous shear. Our findings could facilitate mechanistic solutions for modeling planktonic thin layers and sustainable cultivation of microalgae for human nutrition and bioenergy feedstock.

  3. A complex analysis approach to the motion of uniform vortices

    NASA Astrophysics Data System (ADS)

    Riccardi, Giorgio

    2018-02-01

    A new mathematical approach to kinematics and dynamics of planar uniform vortices in an incompressible inviscid fluid is presented. It is based on an integral relation between Schwarz function of the vortex boundary and induced velocity. This relation is firstly used for investigating the kinematics of a vortex having its Schwarz function with two simple poles in a transformed plane. The vortex boundary is the image of the unit circle through the conformal map obtained by conjugating its Schwarz function. The resulting analysis is based on geometric and algebraic properties of that map. Moreover, it is shown that the steady configurations of a uniform vortex, possibly in presence of point vortices, can be also investigated by means of the integral relation. The vortex equilibria are divided in two classes, depending on the behavior of the velocity on the boundary, measured in a reference system rotating with this curve. If it vanishes, the analysis is rather simple. However, vortices having nonvanishing relative velocity are also investigated, in presence of a polygonal symmetry. In order to study the vortex dynamics, the definition of Schwarz function is then extended to a Lagrangian framework. This Lagrangian Schwarz function solves a nonlinear integrodifferential Cauchy problem, that is transformed in a singular integral equation. Its analytical solution is here approached in terms of successive approximations. The self-induced dynamics, as well as the interactions with a point vortex, or between two uniform vortices are analyzed.

  4. Relaxation and self-organization in two-dimensional plasma and neutral fluid flow systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Amita

    Extensive numerical studies in the framework of a simplified two-dimensional model for neutral and plasma fluid for a variety of initial configurations and for both decaying and driven cases are carried out to illustrate relaxation toward a self-organized state. The dynamical model equation constitutes a simple choice for this purpose, e.g., the vorticity equation of the Navier-Stokes dynamics for the incompressible neutral fluids and the Hasegawa-Mima equation for plasma fluid flow system. Scatter plots are employed to observe a development of functional relationship, if any, amidst the generalized vorticity and its Laplacian. It is seen that they do not satisfymore » a linear relationship as the well known variational approach of enstrophy minimization subject to constancy of the energy integral for the two-dimensional (2D) system suggests. The observed nonlinear functional relationship is understood by separating the contribution to the scatter plot from spatial regions with intense vorticity patches and those of the background flow region where the background vorticity is weak or absent altogether. It is shown that such a separation has close connection with the known exact analytical solutions of the system. The analytical solutions are typically obtained by assuming a finite source of vorticity for the inner core of the localized structure, which is then matched with the solution in the outer region where vorticity is chosen to be zero. The work also demonstrates that the seemingly ad hoc choice of the linear vorticity source function for the inner region is in fact consistent with the self-organization paradigm of the 2D systems.« less

  5. Quasi-steady vortical structures in vertically vibrating soap films

    NASA Astrophysics Data System (ADS)

    Vega, José M.; Higuera, F. J.; Weidman, P. D.

    1998-10-01

    An analysis of the quasi-steady streaming of the liquid in a vertically vibrated horizontal soap film is reported. The air around the soap film is seen to play a variety of roles: it transmits normal and tangential oscillatory stresses to the film, damps out Marangoni waves, and forces non-oscillatory deflection of the film and tangential motion of the liquid. Non-oscillatory volume forcing originating inside the liquid is also analysed. This forcing dominates the quasi-steady streaming when the excitation frequency is close to the eigenfrequency of a Marangoni mode of the soap film, while both volume forcing in the liquid and surface forcing of the gas on the liquid are important when no Marangoni mode resonates. Different manners by which the combined forcings can induce quasi-steady streaming motion are discussed and some numerical simulations of the quasi-steady liquid flow are presented.

  6. Transitional and turbulent flat-plate boundary layers with heat transfer

    NASA Astrophysics Data System (ADS)

    Wu, Xiaohua; Moin, Parviz

    2010-11-01

    We report on our direct numerical simulation of two incompressible, nominally zero-pressure-gradient flat-plate boundary layers from momentum thickness Reynolds number 80 to 1950. Heat transfer between the constant-temperature solid surface and the free-stream is also simulated with molecular Prandtl number=1. Throughout the entire flat-plate, the ratio of Stanton number and skin-friction St/Cfdeviates from the exact Reynolds analogy value of 0.5 by less than 1.5%. Turbulent Prandtl number t peaks at the wall. Preponderance of hairpin vortices is observed in both the transitional and turbulent regions of the boundary layers. In particular, the internal structure of merged turbulent spots is hairpin forest; the internal structure of infant turbulent spots is hairpin packet. Numerous hairpin vortices are readily detected in both the near-wall and outer regions of the boundary layers up to momentum thickness Reynolds number 1950. This suggests that the hairpin vortices in the turbulent region are not simply the aged hairpin forests convected from the upstream transitional region. Temperature iso-surfaces in the companion thermal boundary layers are found to be a useful tracer in identifying hairpin vortex structures.

  7. Mixing enhancement strategies and their mechanisms in supersonic flows: A brief review

    NASA Astrophysics Data System (ADS)

    Huang, Wei

    2018-04-01

    Achieving efficient fuel-air mixing is a crucial issue in the design of the scramjet engine due to the compressibility effect on the mixing shear layer growth and the stringent flow residence time limitation induced by the high-speed crossflow, and the potential solution is to enhance mixing between air and fuel by introducing of streamwise vortices in the flow field. In this survey, some mixing enhancement strategies based on the traditional transverse injection technique proposed in recent years, as well as their mixing augmentation mechanisms, were reviewed in detail, namely the pulsed transverse injection scheme, the traditional transverse injection coupled with the vortex generator, and the dual transverse injection system with a front porthole and a rear air porthole arranged in tandem. The streamwise vortices, through the large-scale stirring motion that they introduce, are responsible for the extraction of large amounts of energy from the mean flow that can be converted into turbulence, ultimately leading to increased mixing effectiveness. The streamwise vortices may be obtained by taking advantage of the shear layer between a jet and the cross stream or by employing intrusive physical devices. Finally, a promising mixing enhancement strategy in supersonic flows was proposed, and some remarks were provided.

  8. Characterizing cycle-to-cycle variations of the shedding cycle in the turbulent wake of a normal flat plate using generalized phase averages

    NASA Astrophysics Data System (ADS)

    Martinuzzi, Robert

    2016-11-01

    Quasi-periodic vortex shedding in the turbulent wake of a thin-flat plate placed normal to a uniform stream at Reynolds number of 6700 is investigated based on Particle Image Velocimetry experiments. The wake structure and vortex formation are characterized using a generalized phase average (GPA), a refinement of the triple decomposition of Reynolds and Hussain (1970) incorporating elements of mean-field theory (Stuart, 1958). The resulting analysis highlights the importance of cycle-to-cycle variations in characterizing vortex formation, wake topology and the residual turbulent Reynolds Stresses. For example, it is shown that during high-amplitude cycles vorticity is strongly concentrated within the well-organized shed vortices, whereas during low-amplitude cycles the shed vortices are highly distorted resulting in significant modulation of the shedding frequency. It is found that high-amplitude cycles contribute more to the coherent Reynolds stress field while the low-amplitude cycles contribute to the residual stress field. It is further shown that traditional phase-averaging techniques lead to an over-estimation of the residual stress field. Natural Sciences and Engineering Research Council of Canada.

  9. Right Ventricular Hemodynamics in Patients with Pulmonary Hypertension

    NASA Astrophysics Data System (ADS)

    Browning, James; Fenster, Brett; Hertzberg, Jean; Schroeder, Joyce

    2012-11-01

    Recent advances in cardiac magnetic resonance imaging (CMR) have allowed for characterization of blood flow in the right ventricle (RV), including calculation of vorticity and circulation, and qualitative visual assessment of coherent flow patterns. In this study, we investigate qualitative and quantitative differences in right ventricular hemodynamics between subjects with pulmonary hypertension (PH) and normal controls. Fifteen (15) PH subjects and 10 age-matched controls underwent same day 3D time resolved CMR and echocardiography. Echocardiography was used to determine right ventricular diastolic function as well as pulmonary artery systolic pressure (PASP). Velocity vectors, vorticity vectors, and streamlines in the RV were visualized in Paraview and total RV Early (E) and Atrial (A) wave diastolic vorticity was quantified. Visualizations of blood flow in the RV are presented for PH and normal subjects. The hypothesis that PH subjects exhibit different RV vorticity levels than normals during diastole is tested and the relationship between RV vorticity and PASP is explored. The mechanics of RV vortex formation are discussed within the context of pulmonary arterial pressure and right ventricular diastolic function coincident with PH.

  10. Nanoscale assembly of superconducting vortices with scanning tunnelling microscope tip

    PubMed Central

    Ge, Jun-Yi; Gladilin, Vladimir N.; Tempere, Jacques; Xue, Cun; Devreese, Jozef T.; Van de Vondel, Joris; Zhou, Youhe; Moshchalkov, Victor V.

    2016-01-01

    Vortices play a crucial role in determining the properties of superconductors as well as their applications. Therefore, characterization and manipulation of vortices, especially at the single-vortex level, is of great importance. Among many techniques to study single vortices, scanning tunnelling microscopy (STM) stands out as a powerful tool, due to its ability to detect the local electronic states and high spatial resolution. However, local control of superconductivity as well as the manipulation of individual vortices with the STM tip is still lacking. Here we report a new function of the STM, namely to control the local pinning in a superconductor through the heating effect. Such effect allows us to quench the superconducting state at nanoscale, and leads to the growth of vortex clusters whose size can be controlled by the bias voltage. We also demonstrate the use of an STM tip to assemble single-quantum vortices into desired nanoscale configurations. PMID:27934960

  11. Understanding the Fundamental Roles of Momentum and Vorticity Injections in Flow Control

    DTIC Science & Technology

    2016-09-02

    production by pitched and skewed jets in a turbulent boundary layer . AIAA Journal 30, 640–647. DISTRIBUTION A: Distribution approved for public release...adverse pressure gradient along the suction surface, which ultimately results in a separated boundary layer . Such behavior of the boundary layer can... boundary layer either directly or by utilizing free stream momentum to energize the boundary layer (Gad-el-Hak, 2000a). Directly adding momentum to the

  12. Disturbance functions of the Goertler instability on an airfoil

    NASA Technical Reports Server (NTRS)

    Dagenhart, J. R.; Mangalam, S. M.

    1986-01-01

    Goertler vortices arise in boundary layers along concave surfaces due to centrifugal effects. This paper presents some results of an experiment conducted to study the development of these vortices on an airfoil with a pressure gradient in the concave region where an attached laminar boundary layer was insured with suction through a perforated panel. A sublimating chemical technique was used to visualize Goertler vortices and the velocity field was measured by laser velocimetry. Experimental disturbance functions are compared with those predicted by the linear stability theory. The trend of vortex amplification in the concave zone and damping in the following convex region is shown to essentially follow the theoretical predictions.

  13. Numerical Capture of Wing-tip Vortex Using Vorticity Confinement

    NASA Astrophysics Data System (ADS)

    Zhang, Baili; Lou, Jing; Kang, Chang Wei; Wilson, Alexander; Lundberg, Johan; Bensow, Rickard

    2012-11-01

    Tracking vortices accurately over large distances is very important in many areas of engineering, for instance flow over rotating helicopter blades, ship propeller blades and aircraft wings. However, due to the inherent numerical dissipation in the advection step of flow simulation, current Euler and RANS field solvers tend to damp these vortices too fast. One possible solution to reduce the unphysical decay of these vortices is the application of vorticity confinement methods. In this study, a vorticity confinement term is added to the momentum conservation equations which is a function of the local element size, the vorticity and the gradient of the absolute value of vorticity. The approach has been evaluated by a systematic numerical study on the tip vortex trailing from a rectangular NACA0012 half-wing. The simulated structure and development of the wing-tip vortex agree well with experiments both qualitatively and quantitatively without any adverse effects on the global flow field. It is shown that vorticity confinement can negate the effect of numerical dissipation, leading to a more or less constant vortex strength. This is an approximate method in that genuine viscous diffusion of the vortex is not modeled, but it can be appropriate for vortex dominant flows over short to medium length scales where viscous diffusion can be neglected.

  14. Design and evaluation of a Dean vortex-based micromixer.

    PubMed

    Howell, Peter B; Mott, David R; Golden, Joel P; Ligler, Frances S

    2004-12-01

    A mixer, based on the Dean vortex, is fabricated and tested in an on-chip format. When fluid is directed around a curve under pressure driven flow, the high velocity streams in the center of the channel experience a greater centripetal force and so are deflected outward. This creates a pair of counter-rotating vortices moving fluid toward the inner wall at the top and bottom of the channel and toward the outer wall in the center. For the geometries studied, the vortices were first seen at Reynolds numbers between 1 and 10 and became stronger as the flow velocity is increased. Vortex formation was monitored in channels with depth/width ratios of 0.5, 1.0, and 2.0. The lowest aspect ratio strongly suppressed vortex formation. Increasing the aspect ratio above 1 appeared to provide improved mixing. This design has the advantages of easy fabrication and low surface area.

  15. Roughness Induced Transition in a Supersonic Boundary Layer

    NASA Technical Reports Server (NTRS)

    Balakumar, Ponnampalam; Kergerise, Michael A.

    2013-01-01

    Direct numerical simulation is used to investigate the transition induced by threedimensional isolated roughness elements in a supersonic boundary layer at a free stream Mach number of 3.5. Simulations are performed for two different configurations: one is a square planform roughness and the other is a diamond planform roughness. The mean-flow calculations show that the roughness induces counter rotating streamwise vortices downstream of the roughness. These vortices persist for a long distance downstream and lift the low momentum fluid from the near wall region and place it near the outer part of the boundary layer. This forms highly inflectional boundary layer profiles. These observations agree with recent experimental observations. The receptivity calculations showed that the amplitudes of the mass-flux fluctuations near the neutral point for the diamond shape roughness are the same as the amplitude of the acoustic disturbances. They are three times smaller for the square shape roughness.

  16. Motion of a curved vortex filament with decaying vortical core and axial velocity

    NASA Technical Reports Server (NTRS)

    Callegari, A. J.; Ting, L.

    1978-01-01

    The motion and decay of a curved vortex filament having large axial and circumferential velocity components in a three-dimensional stream are analyzed by using the method of matched asymptotic expansions of the incompressible Navier-Stokes equations. The small parameter is the square root of the ratio of the kinematic viscosity to the circulation. The outer region is analyzed by the classical Biot-Savart law, and its solution is matched to that of the inner region, where viscous effects are important. Equations describing the coupling between the inner vortex structure and the motion of the vortex filament as well as the time evolution of the inner vortex structure are obtained. Equations are derived for the motion of the vortex filament and for the change and decay in time and space of the leading-order circumferential and axial velocity and vorticity components. Solutions are constructed for these components in terms of initial data.

  17. Nonlinear spatial evolution of inviscid instabilities on hypersonic boundary layers

    NASA Technical Reports Server (NTRS)

    Wundrow, David W.

    1996-01-01

    The spatial development of an initially linear vorticity-mode instability on a compressible flat-plate boundary layer is considered. The analysis is done in the framework of the hypersonic limit where the free-stream Mach number M approaches infinity. Nonlinearity is shown to become important locally, in a thin critical layer, when sigma, the deviation of the phase speed from unity, becomes o(M(exp -8/7)) and the magnitude of the pressure fluctuations becomes 0(sigma(exp 5/2)M(exp 2)). The unsteady flow outside the critical layer takes the form of a linear instability wave but with its amplitude completely determined by the nonlinear flow within the critical layer. The coupled set of equations which govern the critical-layer dynamics reflect a balance between spatial-evolution, (linear and nonlinear) convection and nonlinear vorticity-generation terms. The numerical solution to these equations shows that nonlinear effects produce a dramatic reduction in the instability-wave amplitude.

  18. Mixing enhancement of reacting parallel fuel jets in a supersonic combustor

    NASA Technical Reports Server (NTRS)

    Drummond, J. P.

    1991-01-01

    Pursuant to a NASA-Langley development program for a scramjet HST propulsion system entailing the optimization of the scramjet combustor's fuel-air mixing and reaction characteristics, a numerical study has been conducted of the candidate parallel fuel injectors. Attention is given to a method for flow mixing-process and combustion-efficiency enhancement in which a supersonic circular hydrogen jet coflows with a supersonic air stream. When enhanced by a planar oblique shock, the injector configuration exhibited a substantial degree of induced vorticity in the fuel stream which increased mixing and chemical reaction rates, relative to the unshocked configuration. The resulting heat release was effective in breaking down the stable hydrogen vortex pair that had inhibited more extensive fuel-air mixing.

  19. Forces on particles in microstreaming flows

    NASA Astrophysics Data System (ADS)

    Hilgenfeldt, Sascha; Rallabandi, Bhargav; Thameem, Raqeeb

    2015-11-01

    In various microfluidic applications, vortical steady streaming from ultrasonically driven microbubbles is used in concert with a pressure-driven channel flow to manipulate objects. While a quantitative theory of this boundary-induced streaming is available, little work has been devoted to a fundamental understanding of the forces exerted on microparticles in boundary streaming flows, even though the differential action of such forces is central to applications like size-sensitive sorting. Contrary to other microfluidic sorting devices, the forces in bubble microstreaming act over millisecond times and micron length scales, without the need for accumulated deflections over long distances. Accordingly, we develop a theory of hydrodynamic forces on the fast time scale of bubble oscillation using the lubrication approximation, showing for the first time how particle displacements are rectified near moving boundaries over multiple oscillations in parallel with the generation of the steady streaming flow. The dependence of particle migration on particle size and the flow parameters is compared with experimental data. The theory is applicable to boundary streaming phenomena in general and demonstrates how particles can be sorted very quickly and without compromising device throughput. We acknowledge support by the National Science Foundation under grant number CBET-1236141.

  20. Environmental solid particle effects on compressor cascade performance

    NASA Technical Reports Server (NTRS)

    Tabakoff, W.; Balan, C.

    1982-01-01

    The effect of suspended solid particles on the performance of the compressor cascade was investigated experimentally in a specially built cascade tunnel, using quartz sand particles. The cascades were made of NACA 65(10)10 airfoils. Three cascades were tested, one accelerating cascade and two diffusing cascades. The theoretical analysis assumes inviscid and incompressible two dimensional flow. The momentum exchange between the fluid and the particle is accounted for by the interphase force terms in the fluid momentum equation. The modified fluid phase momentum equations and the continuity equation are reduced to the conventional stream function vorticity formulation. The method treats the fluid phase in the Eulerian system and the particle phase in Lagrangian system. The experimental results indicate a small increase in the blade surface static pressures, while the theoretical results indicate a small decrease. The theoretical analysis, also predicts the loss in total pressure associated with the particulate flow through the cascade.

  1. Effects of Space Environment on Flow and Concentration During Directional Solidification

    NASA Technical Reports Server (NTRS)

    Benjapiyaporn, C.; Timchenko, V.; Leonardi, E.; deVahlDavis, G.; deGroh, H. C., III

    2000-01-01

    A study of directional solidification of a weak binary alloy (specifically, Bi - 1 at% Sn) based on the fixed grid single domain approach is being undertaken. The enthalpy method is used to solve for the temperature field over the computational domain including both the solid and liquid phases; latent heat evolution is treated with the aid of an effective specific heat coefficient. A source term accounting for the release of solute into the liquid during solidification has been incorporated into the solute transport equation. The vorticity-stream function formulation is used to describe thermosolutal convection in the liquid region. In this paper we numerically investigate the effects of g-jitter on directional solidification. A background gravity of 1 micro-g has been assumed, and new results for the effects of periodic disturbances over a range of amplitudes and frequencies on solute field and segregation have been presented.

  2. Natural convection with evaporation in a vertical cylindrical cavity under the effect of temperature-dependent surface tension

    NASA Astrophysics Data System (ADS)

    Kozhevnikov, Danil A.; Sheremet, Mikhail A.

    2018-01-01

    The effect of surface tension on laminar natural convection in a vertical cylindrical cavity filled with a weak evaporating liquid has been analyzed numerically. The cylindrical enclosure is insulated at the bottom, heated by a constant heat flux from the side, and cooled by a non-uniform evaporative heat flux from the top free surface having temperature-dependent surface tension. Governing equations with corresponding boundary conditions formulated in dimensionless stream function, vorticity, and temperature have been solved by finite difference method of the second-order accuracy. The influence of Rayleigh number, Marangoni number, and aspect ratio on the liquid flow and heat transfer has been studied. Obtained results have revealed that the heat transfer rate at free surface decreases with Marangoni number and increases with Rayleigh number, while the average temperature inside the cavity has an opposite behavior; namely, it growths with Marangoni number and reduces with Rayleigh number.

  3. From cat's eyes to disjoint multicellular natural convection flow in tall tilted cavities

    NASA Astrophysics Data System (ADS)

    Nicolás, Alfredo; Báez, Elsa; Bermúdez, Blanca

    2011-07-01

    Numerical results of two-dimensional natural convection problems, in air-filled tall cavities, are reported to study the change of the cat's eyes flow as some parameters vary, the aspect ratio A and the angle of inclination ϕ of the cavity, with the Rayleigh number Ra mostly fixed; explicitly, the range of the variation is given by 12⩽A⩽20 and 0°⩽ϕ⩽270°; about Ra=1.1×10. A novelty contribution of this work is the transition from the cat's eyes changes, as A varies, to a disjoint multicellular flow, as ϕ varies. These flows may be modeled by the unsteady Boussinesq approximation in stream function and vorticity variables which is solved with a fixed point iterative process applied to the nonlinear elliptic system that results after time discretization. The validation of the results relies on mesh size and time-step independence studies.

  4. Argand-plane vorticity singularities in complex scalar optical fields: an experimental study using optical speckle.

    PubMed

    Rothschild, Freda; Bishop, Alexis I; Kitchen, Marcus J; Paganin, David M

    2014-03-24

    The Cornu spiral is, in essence, the image resulting from an Argand-plane map associated with monochromatic complex scalar plane waves diffracting from an infinite edge. Argand-plane maps can be useful in the analysis of more general optical fields. We experimentally study particular features of Argand-plane mappings known as "vorticity singularities" that are associated with mapping continuous single-valued complex scalar speckle fields to the Argand plane. Vorticity singularities possess a hierarchy of Argand-plane catastrophes including the fold, cusp and elliptic umbilic. We also confirm their connection to vortices in two-dimensional complex scalar waves. The study of vorticity singularities may also have implications for higher-dimensional fields such as coherence functions and multi-component fields such as vector and spinor fields.

  5. A novel passive micromixer based on unbalanced splits and collisions of fluid streams

    NASA Astrophysics Data System (ADS)

    Ansari, Mubashshir Ahmad; Kim, Kwang-Yong; Anwar, Khalid; Kim, Sun Min

    2010-05-01

    A new passive micromixer based on the concept of unbalanced splits and cross-collisions of fluid streams is designed and fabricated. Experimental and numerical studies have been carried out on the micromixer at Reynolds numbers ranging from 10 to 80. The three-dimensional Navier-Stokes equations have been used to analyze the mixing and flow behavior of the micromixer, which is composed of two sub-channels of unequal widths which repeatedly undergo splitting and recombination. The difference between the mass flow rates in the two sub-channels creates an unbalanced collision of the two fluid streams. Mixing is mainly due to the combined effect of unbalanced collisions of the fluid streams and Dean vortices. The micromixer shows interesting mixing behavior for different ratios of the widths of the two split sub-channels. The sub-channels wherein the major sub-channel is twice as wide as the minor sub-channel exhibit the highest mixing performance at Reynolds numbers larger than 40. The results show the lowest mixing performance for the case of uniform width, where balanced collisions occur.

  6. Influence of a non-uniform free stream velocity distribution on performance/acoustics of counterrotating propeller configurations

    NASA Astrophysics Data System (ADS)

    Allen, C. S.; Korkan, K. D.

    1991-01-01

    A methodology for predicting the performance and acoustics of counterrotating propeller configurations was modified to take into account the effects of a non-uniform free stream velocity distribution entering the disk plane. The method utilizes the analytical techniques of Lock and Theodorson as described by Davidson to determine the influence of the non-uniform free stream velocity distribution in the prediction of the steady aerodynamic loads. The unsteady load contribution is determined according to the procedure of Leseture with rigid helical tip vortices simulating the previous rotations of each propeller. The steady and unsteady loads are combined to obtain the total blade loading required for acoustic prediction employing the Ffowcs Williams-Hawking equation as simplified by Succi with the assumption of compact sources. The numerical method is used to redesign the previous commuter class counterrotating propeller configuration of Denner. The specifications, performance, and acoustics of the new design are compared with the results of Denner thereby determining the influence of the non-uniform free stream velocity distribution on these metrics.

  7. Structures and Evolutions of Explosive Cyclones over the Northwestern and Northeastern Pacific

    NASA Astrophysics Data System (ADS)

    Zhang, Shuqin; Fu, Gang

    2018-06-01

    In this study, the structures and evolutions of moderate (MO) explosive cyclones (ECs) over the Northwestern Pacific (NWP) and Northeastern Pacific (NEP) are investigated and compared using composite analysis with cyclone-relative coordinates. Final Operational Global Analysis data gathered during the cold seasons (October-April) of the 15 years from 2000 to 2015 are used. The results indicate that MO NWP ECs have strong baroclinicity and abundant latent heat release at low levels and strong upper-level forcing, which favors explosive cyclogenesis. The rapid development of MO NEP ECs results from their interaction with a northern cyclone and a large middle-level advection of cyclonic vorticity. The structural differences between MO NWP ECs and MO NEP ECs are significant. This results from their specific large-scale atmospheric and oceanic environments. MO NWP ECs usually develop rapidly in the east and southeast of the Japan Islands; the intrusion of cold dry air from the East Asian continent leads to strong baroclinicity, and the Kuroshio/Kuroshio Extension provides abundant latent heat release at low levels. The East Asian subtropical westerly jet stream supplies strong upper-level forcing. While MO NEP ECs mainly occur over the NEP, the low-level baroclinicity, upper-level jet stream, and warm ocean currents are relatively weaker. The merged cyclone associated with a strong middle-level trough transports large cyclonic vorticity to MO NEP ECs, which favors their rapid development.

  8. Modification of inertial oscillations by the mesoscale eddy field

    NASA Astrophysics Data System (ADS)

    Elipot, Shane; Lumpkin, Rick; Prieto, GermáN.

    2010-09-01

    The modification of near-surface near-inertial oscillations (NIOs) by the geostrophic vorticity is studied globally from an observational standpoint. Surface drifter are used to estimate NIO characteristics. Despite its spatial resolution limits, altimetry is used to estimate the geostrophic vorticity. Three characteristics of NIOs are considered: the relative frequency shift with respect to the local inertial frequency; the near-inertial variance; and the inverse excess bandwidth, which is interpreted as a decay time scale. The geostrophic mesoscale flow shifts the frequency of NIOs by approximately half its vorticity. Equatorward of 30°N and S, this effect is added to a global pattern of blue shift of NIOs. While the global pattern of near-inertial variance is interpretable in terms of wind forcing, it is also observed that the geostrophic vorticity organizes the near-inertial variance; it is maximum for near zero values of the Laplacian of the vorticity and decreases for nonzero values, albeit not as much for positive as for negative values. Because the Laplacian of vorticity and vorticity are anticorrelated in the altimeter data set, overall, more near-inertial variance is found in anticyclonic vorticity regions than in cyclonic regions. While this is compatible with anticyclones trapping NIOs, the organization of near-inertial variance by the Laplacian of vorticity is also in very good agreement with previous theoretical and numerical predictions. The inverse bandwidth is a decreasing function of the gradient of vorticity, which acts like the gradient of planetary vorticity to increase the decay of NIOs from the ocean surface. Because the altimetry data set captures the largest vorticity gradients in energetic mesoscale regions, it is also observed that NIOs decay faster in large geostrophic eddy kinetic energy regions.

  9. Non-equilibrium statistical mechanics theory for the large scales of geophysical flows

    NASA Astrophysics Data System (ADS)

    Eric, S.; Bouchet, F.

    2010-12-01

    The aim of any theory of turbulence is to understand the statistical properties of the velocity field. As a huge number of degrees of freedom is involved, statistical mechanics is a natural approach. The self-organization of two-dimensional and geophysical turbulent flows is addressed based on statistical mechanics methods. We discuss classical and recent works on this subject; from the statistical mechanics basis of the theory up to applications to Jupiter’s troposphere and ocean vortices and jets. The equilibrium microcanonical measure is built from the Liouville theorem. Important statistical mechanics concepts (large deviations, mean field approach) and thermodynamic concepts (ensemble inequivalence, negative heat capacity) are briefly explained and used to predict statistical equilibria for turbulent flows. This is applied to make quantitative models of two-dimensional turbulence, the Great Red Spot and other Jovian vortices, ocean jets like the Gulf-Stream, and ocean vortices. A detailed comparison between these statistical equilibria and real flow observations will be discussed. We also present recent results for non-equilibrium situations, for which forces and dissipation are in a statistical balance. As an example, the concept of phase transition allows us to describe drastic changes of the whole system when a few external parameters are changed. F. Bouchet and E. Simonnet, Random Changes of Flow Topology in Two-Dimensional and Geophysical Turbulence, Physical Review Letters 102 (2009), no. 9, 094504-+. F. Bouchet and J. Sommeria, Emergence of intense jets and Jupiter's Great Red Spot as maximum-entropy structures, Journal of Fluid Mechanics 464 (2002), 165-207. A. Venaille and F. Bouchet, Ocean rings and jets as statistical equilibrium states, submitted to JPO F. Bouchet and A. Venaille, Statistical mechanics of two-dimensional and geophysical flows, submitted to Physics Reports Non-equilibrium phase transitions for the 2D Navier-Stokes equations with stochastic forces (time series and probability density functions (PDFs) of the modulus of the largest scale Fourrier component, showing bistability between dipole and unidirectional flows). This bistability is predicted by statistical mechanics.

  10. Observation of the Kelvin–Helmholtz Instability in a Solar Prominence

    NASA Astrophysics Data System (ADS)

    Yang, Heesu; Xu, Zhi; Lim, Eun-Kyung; Kim, Sujin; Cho, Kyung-Suk; Kim, Yeon-Han; Chae, Jongchul; Cho, Kyuhyoun; Ji, Kaifan

    2018-04-01

    Many solar prominences end their lives in eruptions or abrupt disappearances that are associated with dynamical or thermal instabilities. Such instabilities are important because they may be responsible for energy transport and conversion. We present a clear observation of a streaming kink-mode Kelvin–Helmholtz Instability (KHI) taking place in a solar prominence using the Hα Lyot filter installed at the New Vacuum Solar Telescope, Fuxian-lake Solar Observatory in Yunnan, China. On one side of the prominence, a series of plasma blobs floated up from the chromosphere and streamed parallel to the limb. The plasma stream was accelerated to about 20–60 km s‑1 and then undulated. We found that 2″- and 5″-size vortices formed, floated along the stream, and then broke up. After the 5″-size vortex, a plasma ejection out of the stream was detected in the Solar Dynamics Observatory/Atmospheric Imaging Assembly images. Just before the formation of the 5″-size vortex, the stream displayed an oscillatory transverse motion with a period of 255 s with the amplitude growing at the rate of 0.001 s‑1. We attribute this oscillation of the stream and the subsequent formation of the vortex to the KHI triggered by velocity shear between the stream, guided by the magnetic field and the surrounding media. The plasma ejection suggests the transport of prominence material into the upper layer by the KHI in its nonlinear stage.

  11. Multi-vortex crystal lattices in Bose-Einstein condensates with a rotating trap.

    PubMed

    Xie, Shuangquan; Kevrekidis, Panayotis G; Kolokolnikov, Theodore

    2018-05-01

    We consider vortex dynamics in the context of Bose-Einstein condensates (BECs) with a rotating trap, with or without anisotropy. Starting with the Gross-Pitaevskii (GP) partial differential equation (PDE), we derive a novel reduced system of ordinary differential equations (ODEs) that describes stable configurations of multiple co-rotating vortices (vortex crystals). This description is found to be quite accurate quantitatively especially in the case of multiple vortices. In the limit of many vortices, BECs are known to form vortex crystal structures, whereby vortices tend to arrange themselves in a hexagonal-like spatial configuration. Using our asymptotic reduction, we derive the effective vortex crystal density and its radius. We also obtain an asymptotic estimate for the maximum number of vortices as a function of rotation rate. We extend considerations to the anisotropic trap case, confirming that a pair of vortices lying on the long (short) axis is linearly stable (unstable), corroborating the ODE reduction results with full PDE simulations. We then further investigate the many-vortex limit in the case of strong anisotropic potential. In this limit, the vortices tend to align themselves along the long axis, and we compute the effective one-dimensional vortex density, as well as the maximum admissible number of vortices. Detailed numerical simulations of the GP equation are used to confirm our analytical predictions.

  12. Visualization of leading edge vortices on a series of flat plate delta wings

    NASA Technical Reports Server (NTRS)

    Payne, Francis M.; Ng, T. Terry; Nelson, Robert C.

    1991-01-01

    A summary of flow visualization data obtained as part of NASA Grant NAG2-258 is presented. During the course of this study, many still and high speed motion pictures were taken of the leading edge vortices on a series of flat plate delta wings at varying angles of attack. The purpose is to present a systematic collection of photographs showing the state of vortices as a function of the angle of attack for the four models tested.

  13. Reynolds number effect on airfoil wake structures under pitching and heaving motion

    NASA Astrophysics Data System (ADS)

    Kim, Kyung Chun; Karbasian, Hamidreza; ExpTENsys Team

    2017-11-01

    Detached Eddy Simulation (DES) and particle image velocimetry (PIV) measurements were performed to investigate the wake flow characteristics of an airfoil under pitching and heaving motion. A NACA0012 airfoil was selected for the numerical simulation and experiments were carried out in a wind tunnel and a water tunnel at Reynolds number of 15,000 and 90,000, respectively. The airfoil oscillated around an axis located 1/4 distance from the leading edge chord. Two different angles of attack, 20° and 30°, were selected with +/-10° maximum amplitude of oscillation. In order to extract the coherent flow structures from time-resolved PIV data, proper orthogonal decomposition (POD) analysis was performed on 1,000 instantaneous realisations for each condition using the method of snapshots. Vorticity contour and velocity profiles for both PIV and DES results are in good agreement for pitching and heaving motion. At high Reynolds number, 3D stream-wise vortices appeared after generating span-wise vortices. The higher maximum angle of attack allows the leading edge vortex to grow stronger and that the angle of attack appears to be more important in influencing the growth of the leading edge vortex structure than the reduced frequency. National Research Foundation of Korea (No. 2011-0030013).

  14. Vortex Interactions from a Finite Span Cylinder with a Laminar Boundary Layer for Varied Parameters

    NASA Astrophysics Data System (ADS)

    Gildersleeve, Samantha; Amitay, Michael

    2017-11-01

    Flow structures around a stationary, wall-mounted, finite-span cylindrical pin were investigated experimentally over a flat plate to explore the effects of varied aspect ratio and pin mean height with respect to the local boundary layer. Nine static pin configurations were tested where the pin's mean height to the local boundary layer thickness were 0.5, 1, and 1.5 for a range of aspect ratios between 0.125 and 1.125. The freestream velocity was fixed at 11 m/s, corresponding to ReD 2800, 5600, and 8400, respectively. Three-dimensional flowfields were reconstructed and analyzed from SPIV measurements where data were collected along cross-stream planes in the wake of the pin. This study focuses on three dominant vortical patterns associated with a finite span cylinder: the arch-type vortex horseshoe vortex, and the tip vortices Results indicate that both the aspect ratio and mean height play an important role in the behavior and interactions of these vortex structures which alter the wake characteristics significantly. Understanding the mechanisms by which the vortical structures may be strengthened while reducing adverse local pressure drag are key for developing more efficient means of passive and/or active flow control through finite span cylindrical pins and will be discussed in further detail. NDSEG Fellowship for Samantha Gildersleeve.

  15. Characteristics of Plasma Synthetic Jet Actuators in Crossflow

    NASA Astrophysics Data System (ADS)

    Santhanakrishnan, Arvind; Jacob, Jamey

    2006-11-01

    The plasma synthetic jet actuator (PSJA) consists of two annular electrodes separated by dielectric material that results in a circular region of dielectric barrier discharge plasma. In quiescent conditions, this plasma ring produces a synthetic jet which can be used for active flow control applications. Unsteady pulsing of the actuator results in the formation of multiple primary and secondary vortex rings, the latter remaining fixed or trapped in space. The jet is observed to be formed by the advection and interaction of the primary vortices, resembling a conventional synthetic jet. This presentation examines the operation of the PSJA in a crossflow at three different jet to freestream velocity ratios. PIV measurements in the streamwise and cross-stream planes are used to illustrate the three dimensionality of the jet and associated vortical structures. The strength of the vortex ring is found to vary along its circumference due to interaction with the freestream. The boundary layer characteristics obtained from these experiments suggest that the mechanism of the PSJA in crossflow is similar to an active boundary layer trip. Both the penetration of the jet and effectiveness of the trip action are found to decrease with increase in freestream velocity. The effects of unsteady pulsing and increasing input power on actuator created crossflow vortices will also be presented.

  16. Continuous Photo-Oxidation in a Vortex Reactor: Efficient Operations Using Air Drawn from the Laboratory

    PubMed Central

    2017-01-01

    We report the construction and use of a vortex reactor which uses a rapidly rotating cylinder to generate Taylor vortices for continuous flow thermal and photochemical reactions. The reactor is designed to operate under conditions required for vortex generation. The flow pattern of the vortices has been represented using computational fluid dynamics, and the presence of the vortices can be easily visualized by observing streams of bubbles within the reactor. This approach presents certain advantages for reactions with added gases. For reactions with oxygen, the reactor offers an alternative to traditional setups as it efficiently draws in air from the lab without the need specifically to pressurize with oxygen. The rapid mixing generated by the vortices enables rapid mass transfer between the gas and the liquid phases allowing for a high efficiency dissolution of gases. The reactor has been applied to several photochemical reactions involving singlet oxygen (1O2) including the photo-oxidations of α-terpinene and furfuryl alcohol and the photodeborylation of phenyl boronic acid. The rotation speed of the cylinder proved to be key for reaction efficiency, and in the operation we found that the uptake of air was highest at 4000 rpm. The reactor has also been successfully applied to the synthesis of artemisinin, a potent antimalarial compound; and this three-step synthesis involving a Schenk-ene reaction with 1O2, Hock cleavage with H+, and an oxidative cyclization cascade with triplet oxygen (3O2), from dihydroartemisinic acid was carried out as a single process in the vortex reactor. PMID:28781513

  17. An experimental and numerical investigation on the formation of stall-cells on airfoils

    NASA Astrophysics Data System (ADS)

    Manolesos, M.; Papadakis, G.; Voutsinas, S.

    2014-12-01

    Stall Cells (SCs) are large scale three-dimensional structures of separated flow that have been observed on the suction side of airfoils designed for or used on wind turbine blades. SCs are unstable in nature but can be stabilised by means of a localized disturbance; here in the form of a zigzag tape covering 10% of the wing span. Based on extensive tuft flow visualisations, the resulting flow was found macroscopically similar to the undisturbed flow. Next a combined investigation was carried out including pressure recordings, Stereo-PIV measurements and CFD simulations. The investigation parameters were the aspect ratio, the angle of attack and the Re number. Tuft and pressure data were found in good agreement. The 3D CFD simulations reproduced the structure of the SCs in qualitative agreement with the experimental data but had a delay of ~3deg in capturing the first appearance of a SC. The error in Cl max prediction was 7% compared to 19% for the 2D cases. Tests show that SCs grow with Re number and angle of attack. Also analysis of the time averaged computational results indicated the presence of three types of vortices: (a) the trailing edge line vortex (TELV) in the wake, (b) the separation line vortex (SLV) over the wing and (c) the SC vortices. The TELV and SLV run parallel to the trailing edge and are of opposite sign, while the SC vortices start normal to the wing suction surface, then bend towards the SC centre and later extend downstream, with their vorticity parallel to the free stream.

  18. Quantized vortices in arbitrary dimensions and the normal-to-superfluid phase transition

    NASA Astrophysics Data System (ADS)

    Bora, Florin

    The structure and energetics of superflow around quantized vortices, and the motion inherited by these vortices from this superflow, are explored in the general setting of a superfluid in arbitrary dimensions. The vortices may be idealized as objects of co-dimension two, such as one-dimensional loops and two-dimensional closed surfaces, respectively, in the cases of three- and four-dimensional superfluidity. By using the analogy between vortical superflow and Ampere-Maxwell magnetostatics, the equilibrium superflow containing any specified collection of vortices is constructed. The energy of the superflow is found to take on a simple form for vortices that are smooth and asymptotically large, compared with the vortex core size. The motion of vortices is analyzed in general, as well as for the special cases of hyper-spherical and weakly distorted hyper-planar vortices. In all dimensions, vortex motion reflects vortex geometry. In dimension four and higher, this includes not only extrinsic but also intrinsic aspects of the vortex shape, which enter via the first and second fundamental forms of classical geometry. For hyper-spherical vortices, which generalize the vortex rings of three dimensional superfluidity, the energy-momentum relation is determined. Simple scaling arguments recover the essential features of these results, up to numerical and logarithmic factors. Extending these results to systems containing multiple vortices is elementary due to the linearity of the theory. The energy for multiple vortices is thus a sum of self-energies and power-law interaction terms. The statistical mechanics of a system containing vortices is addressed via the grand canonical partition function. A renormalization-group analysis in which the low energy excitations are integrated approximately, is used to compute certain critical coefficients. The exponents obtained via this approximate procedure are compared with values obtained previously by other means. For dimensions higher than three the superfluid density is found to vanish as the critical temperature is approached from below.

  19. A coarse-grid projection method for accelerating incompressible flow computations

    NASA Astrophysics Data System (ADS)

    San, Omer; Staples, Anne E.

    2013-01-01

    We present a coarse-grid projection (CGP) method for accelerating incompressible flow computations, which is applicable to methods involving Poisson equations as incompressibility constraints. The CGP methodology is a modular approach that facilitates data transfer with simple interpolations and uses black-box solvers for the Poisson and advection-diffusion equations in the flow solver. After solving the Poisson equation on a coarsened grid, an interpolation scheme is used to obtain the fine data for subsequent time stepping on the full grid. A particular version of the method is applied here to the vorticity-stream function, primitive variable, and vorticity-velocity formulations of incompressible Navier-Stokes equations. We compute several benchmark flow problems on two-dimensional Cartesian and non-Cartesian grids, as well as a three-dimensional flow problem. The method is found to accelerate these computations while retaining a level of accuracy close to that of the fine resolution field, which is significantly better than the accuracy obtained for a similar computation performed solely using a coarse grid. A linear acceleration rate is obtained for all the cases we consider due to the linear-cost elliptic Poisson solver used, with reduction factors in computational time between 2 and 42. The computational savings are larger when a suboptimal Poisson solver is used. We also find that the computational savings increase with increasing distortion ratio on non-Cartesian grids, making the CGP method a useful tool for accelerating generalized curvilinear incompressible flow solvers.

  20. Periodic solutions with prescribed minimal period of vortex type problems in domains

    NASA Astrophysics Data System (ADS)

    Bartsch, Thomas; Sacchet, Matteo

    2018-05-01

    We consider Hamiltonian systems with two degrees of freedom of point vortex type for in a domain . In the classical point vortex context the Hamiltonian is of the form where is the regular part of a hydrodynamic Green function in Ω, is the Robin function: , and , are the vortex strengths. We prove the existence of infinitely many periodic solutions with prescribed minimal period that are superpositions of a slow motion of the center of vorticity close to a star-shaped level line of h and of a fast rotation of the two vortices around their center of vorticity. The proofs are based on a recent higher dimensional version of the Poincaré–Birkhoff theorem due to Fonda and Ureña.

  1. Static and Dynamic Flow Visualization Studies of Two Double-Delta Wing Models at High Angles of Attack

    DTIC Science & Technology

    1992-03-01

    body, ft U.= free-stream velocity, ft/sec In the case of a wing pitching about its mid-chord location, it can be interpreted as the ratio of the...Over Moderately Swept Delta Wings," HTP -5 Workshop On Vortical Flow Breakdown and Structural Interactions, NASA Langley Research Center, August 15-16...January 6- 9,1992/Reno,Nevada. 18. User’s Manual , Flow Visualization Water Tunnel Operation for Model 1520, Eidelic International, Inc., Torrance

  2. Nonlinear Dynamics of Vortices in Different Types of Grain Boundaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheikhzada, Ahmad

    As a major component of linear particle accelerators, superconducting radio-frequency (SRF) resonator cavities are required to operate with lowest energy dissipation and highest accelerating gradient. SRF cavities are made of polycrystalline materials in which grain boundaries can limit maximum RF currents and produce additional power dissipation sources due to local penetration of Josephson vortices. The essential physics of vortex penetration and mechanisms of dissipation of vortices driven by strong RF currents along networks of grain boundaries and their contribution to the residual surface resistance have not been well understood. To evaluate how GBs can limit the performance of SRF materials,more » particularly Nb and Nb3Sn, we performed extensive numerical simulations of nonlinear dynamics of Josephson vortices in grain boundaries under strong dc and RF fields. The RF power due to penetration of vortices both in weakly-coupled and strongly-coupled grain boundaries was calculated as functions of the RF field and frequency. The result of this calculation manifested a quadratic dependence of power to field amplitude at strong RF currents, an illustration of resistive behavior of grain boundaries. Our calculations also showed that the surface resistance is a complicated function of field controlled by penetration and annihilation of vortices and antivortices in strong RF fields which ultimately saturates to normal resistivity of grain boundary. We found that Cherenkov radiation of rapidly moving vortices in grain boundaries can produce a new instability causing generation of expanding vortex-antivortex pair which ultimately drives the entire GB in a resistive state. This effect is more pronounced in polycrystalline thin film and multilayer coating structures in which it can cause significant increase in power dissipation and results in hysteresis effects in I-V characteristics, particularly at low temperatures.« less

  3. The Hilsch Tube, Rossby Vortices, and a Carnot Engine: Angular Momentum Transport in Astrophysics

    NASA Astrophysics Data System (ADS)

    Beckley, Howard F.; Klein, B.; Milburn, M.; Schindel, P.; Westpfahl, D. J.; Teare, S.; Li, H.; Colgate, S. A.

    2008-05-01

    We are attempting to demonstrate that the common laboratory vortex or Hilsch tube is a paradigm for the angular momentum transport by Rossby vortices in Keplerian accretion disks, either in super massive black hole formation or in star formation. Near supersonic rotating flow is induced in a cylinder by gas pressure injected through a tangential nozzle in a typical Ranque vortex or Hilsch tube. The gas exits through both an on-axis hole and a peripheral radially-aligned hole. The surprising result, demonstrated in hundreds of class rooms, is that one of the exit gas streams is hot and the other is cold. Depressing is that the typical explanation is given in terms of a "Maxwell daemon” that separates hot molecules from cold molecules, just as is the basis of any perpetual motion machine that violates the second law of thermodynamics. Instead we believe that the rotational flow is unstable to the formation of Rossby vortices that co-rotate with the azimuthal flow and act like semi-ridged turbine vanes. These quasi-vanes act like a Carnot turbine engine to the flow that escapes on axis and is therefore cooled by doing work. With the resulting free-energy, the vortices accelerate the peripheral flow which in turn becomes hot by friction with the cylinder wall. As a first step we expect to demonstrate that a free-running turbine, where metal vanes form the Carnot engine, will demonstrate the temperature effect. Such a suggestive result may lead to funding of time-dependent Schlerian photography of a vortex tube that can demonstrate the formation and pressure distribution of the Rossby vortices and coherent transport of angular momentum. This work is supported by a cooperative agreement between the New Mexico Institute of Mining and Technology, the University of California, Los Alamos National Laboratory, and the U.S. Dept. of Energy.

  4. Combined action of transverse oscillations and uniform cross-flow on vortex formation and pattern of a circular cylinder

    NASA Astrophysics Data System (ADS)

    Lam, K. M.; Liu, P.; Hu, J. C.

    2010-07-01

    This paper attempts to study the roles of lateral cylinder oscillations and a uniform cross-flow in the vortex formation and wake modes of an oscillating circular cylinder. A circular cylinder is given lateral oscillations of varying amplitudes (between 0.28 and 1.42 cylinder-diameters) in a slow uniform flow stream (Reynolds number=284) to produce the 2S, 2P and P+S wake modes. Detailed flow information is obtained with time-resolved particle-image velocimetry and the phase-locked averaging techniques. In the 2S and 2P mode, the flow speeds relative to the cylinder movement are less than the uniform flow velocity and it is found that initial formation of a vortex is caused by shear-layer separation of the uniform flow on the cylinder. Subsequent development of the shear-layer vortices is affected by the lateral cylinder movement. At small cylinder oscillation amplitudes, vortices are shed in synchronization with the cylinder movement, resulting in the 2S mode. The 2P mode occurs at larger cylinder oscillation amplitudes at which each shear-layer vortex is found to undergo intense stretching and eventual bifurcation into two separate vortices. The P+S mode occurs when the cylinder moving speeds are, for most of the time, higher than the speed of the uniform flow. These situations are found at fast and large-amplitude cylinder oscillations in which the flow relative to the cylinder movement takes over the uniform flow in governing the initial vortex formation. The formation stages of vortices from the cylinder are found to bear close resemblance to those of a vortex street pattern of a cylinder oscillating in an otherwise quiescent fluid at Keulegan-Carpenter numbers around 16. Vortices in the inclined vortex street pattern so formed are then convected downstream by the uniform flow as the vortex pairs in the 2P mode.

  5. Identifying Turbulent Structures through Topological Segmentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bremer, Peer-Timo; Gruber, Andrea; Bennett, Janine C.

    2016-01-01

    A new method of extracting vortical structures from a turbulent flow is proposed whereby topological segmentation of an indicator function scalar field is used to identify the regions of influence of the individual vortices. This addresses a long-standing challenge in vector field topological analysis: indicator functions commonly used produce a scalar field based on the local velocity vector field; reconstructing regions of influence for a particular structure requires selecting a threshold to define vortex extent. In practice, the same threshold is rarely meaningful throughout a given flow. By also considering the topology of the indicator field function, the characteristics ofmore » vortex strength and extent can be separated and the ambiguity in the choice of the threshold reduced. The proposed approach is able to identify several types of vortices observed in a jet in cross-flow configuration simultaneously where no single threshold value for a selection of common indicator functions appears able to identify all of these vortex types.« less

  6. Continuous micro-vortex-based nanoparticle manipulation via focused surface acoustic waves.

    PubMed

    Collins, David J; Ma, Zhichao; Han, Jongyoon; Ai, Ye

    2016-12-20

    Despite increasing demand in the manipulation of nanoscale objects for next generation biological and industrial processes, there is a lack of methods for reliable separation, concentration and purification of nanoscale objects. Acoustic methods have proven their utility in contactless manipulation of microscale objects mainly relying on the acoustic radiation effect, though the influence of acoustic streaming has typically prevented manipulation at smaller length scales. In this work, however, we explicitly take advantage of the strong acoustic streaming in the vicinity of a highly focused, high frequency surface acoustic wave (SAW) beam emanating from a series of focused 6 μm substrate wavelength interdigital transducers patterned on a piezoelectric lithium niobate substrate and actuated with a 633 MHz sinusoidal signal. This streaming field serves to focus fluid streamlines such that incoming particles interact with the acoustic field similarly regardless of their initial starting positions, and results in particle displacements that would not be possible with a travelling acoustic wave force alone. This streaming-induced manipulation of nanoscale particles is maximized with the formation of micro-vortices that extend the width of the microfluidic channel even with the imposition of a lateral flow, occurring when the streaming-induced flow velocities are an order of magnitude larger than the lateral one. We make use of this acoustic streaming to demonstrate the continuous and differential focusing of 100 nm, 300 nm and 500 nm particles.

  7. Insights into the Streaming Instability in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Youdin, Andrew N.; Lin, Min-Kai; Li, Rixin

    2017-10-01

    The streaming instability is a leading mechanism to concentrate particles in protoplanetary disks, thereby triggering planetesimal formation. I will present recent analytical and numerical work on the origin of the streaming instability and its robustness. Our recent analytic work examines the origin of, and relationship between, a variety of drag-induced instabilities, including the streaming instability as well as secular gravitational instabilities, a drag instability driven by self-gravity. We show that drag instabilities are powered by a specific phase relationship between gas pressure and particle concentrations, which power the instability via pressure work. This mechanism is analogous to pulsating instabilities in stars. This mechanism differs qualitatively from other leading particle concentration mechanisms in pressure bumps and vortices. Our recent numerical work investigates the numerical robustness of non-linear particle clumping by the streaming instability, especially with regard to the location and boundary condition of vertical boundaries. We find that particle clumping is robust to these choices in boxes that are not too short. However, hydrodynamic activity away from the particle-dominated midplane is significantly affected by vertical boundary conditions. This activity affects the observationally significant lofting of small dust grains. We thus emphasize the need for larger scale simulations which connect disk surface layers, including outflowing winds, to the planet-forming midplane.

  8. Compressible liquid flow in nano- or micro-sized circular tubes considering wall-liquid Lifshitz-van der Waals interaction

    NASA Astrophysics Data System (ADS)

    Zhang, Xueling; Zhu, Weiyao; Cai, Qiang; Shi, Yutao; Wu, Xuehong; Jin, Tingxiang; Yang, Lianzhi; Song, Hongqing

    2018-06-01

    Although nano- and micro-scale phenomena for fluid flows are ubiquitous in tight oil reservoirs or in nano- or micro-sized channels, the mechanisms behind them remain unclear. In this study, we consider the wall-liquid interaction to investigate the flow mechanisms behind a compressible liquid flow in nano- or micro-sized circular tubes. We assume that the liquid is attracted by the wall surface primarily by the Lifshitz-van der Waals (LW) force, whereas electrostatic forces are negligible. The long-range LW force is thus introduced into the Navier-Stokes equations. The nonlinear equations of motion are decoupled by using the hydrodynamic vorticity-stream functions, from which an approximate analytical perturbation solution is obtained. The proposed model considers the LW force and liquid compressibility to obtain the velocity and pressure fields, which are consistent with experimentally observed micro-size effects. A smaller tube radius implies smaller dimensionless velocity, and when the tube radius decreases to a certain radius Rm, a fluid no longer flows, where Rm is the lower limit of the movable-fluid radius. The radius Rm is calculated, and the results are consistent with previous experimental results. These results reveal that micro-size effects are caused by liquid compressibility and wall-liquid interactions, such as the LW force, for a liquid flowing in nano- or micro-sized channels or pores. The attractive LW force enhances the flow's radial resistance, and the liquid compressibility transmits the radial resistance to the streaming direction via volume deformation, thereby decreasing the streaming velocity.

  9. Pressure Fluctuations Induced by a Hypersonic Turbulent Boundary Layer

    NASA Technical Reports Server (NTRS)

    Duan, Lian; Choudhari, Meelan M.; Zhang, Chao

    2016-01-01

    Direct numerical simulations (DNS) are used to examine the pressure fluctuations generated by a spatially-developed Mach 5.86 turbulent boundary layer. The unsteady pressure field is analyzed at multiple wall-normal locations, including those at the wall, within the boundary layer (including inner layer, the log layer, and the outer layer), and in the free stream. The statistical and structural variations of pressure fluctuations as a function of wall-normal distance are highlighted. Computational predictions for mean velocity pro les and surface pressure spectrum are in good agreement with experimental measurements, providing a first ever comparison of this type at hypersonic Mach numbers. The simulation shows that the dominant frequency of boundary-layer-induced pressure fluctuations shifts to lower frequencies as the location of interest moves away from the wall. The pressure wave propagates with a speed nearly equal to the local mean velocity within the boundary layer (except in the immediate vicinity of the wall) while the propagation speed deviates from the Taylor's hypothesis in the free stream. Compared with the surface pressure fluctuations, which are primarily vortical, the acoustic pressure fluctuations in the free stream exhibit a significantly lower dominant frequency, a greater spatial extent, and a smaller bulk propagation speed. The freestream pressure structures are found to have similar Lagrangian time and spatial scales as the acoustic sources near the wall. As the Mach number increases, the freestream acoustic fluctuations exhibit increased radiation intensity, enhanced energy content at high frequencies, shallower orientation of wave fronts with respect to the flow direction, and larger propagation velocity.

  10. Vorticity and Vertical Motions Diagnosed from Satellite Deep-Layer Temperatures. Revised

    NASA Technical Reports Server (NTRS)

    Spencer, Roy W.; Lapenta, William M.; Robertson, Franklin R.

    1994-01-01

    Spatial fields of satellite-measured deep-layer temperatures are examined in the context of quasigeostrophic theory. It is found that midtropospheric geostrophic vorticity and quasigeostrophic vertical motions can be diagnosed from microwave temperature measurements of only two deep layers. The lower- ( 1000-400 hPa) and upper- (400-50 hPa) layer temperatures are estimated from limb-corrected TIROS-N Microwave Sounding Units (MSU) channel 2 and 3 data, spatial fields of which can be used to estimate the midtropospheric thermal wind and geostrophic vorticity fields. Together with Trenberth's simplification of the quasigeostrophic omega equation, these two quantities can be then used to estimate the geostrophic vorticity advection by the thermal wind, which is related to the quasigeostrophic vertical velocity in the midtroposphere. Critical to the technique is the observation that geostrophic vorticity fields calculated from the channel 3 temperature features are very similar to those calculated from traditional, 'bottom-up' integrated height fields from radiosonde data. This suggests a lack of cyclone-scale height features near the top of the channel 3 weighting function, making the channel 3 cyclone-scale 'thickness' features approximately the same as height features near the bottom of the weighting function. Thus, the MSU data provide observational validation of the LID (level of insignificant dynamics) assumption of Hirshberg and Fritsch.

  11. Decaying two-dimensional turbulence in a circular container.

    PubMed

    Schneider, Kai; Farge, Marie

    2005-12-09

    We present direct numerical simulations of two-dimensional decaying turbulence at initial Reynolds number 5 x 10(4) in a circular container with no-slip boundary conditions. Starting with random initial conditions the flow rapidly exhibits self-organization into coherent vortices. We study their formation and the role of the viscous boundary layer on the production and decay of integral quantities. The no-slip wall produces vortices which are injected into the bulk flow and tend to compensate the enstrophy dissipation. The self-organization of the flow is reflected by the transition of the initially Gaussian vorticity probability density function (PDF) towards a distribution with exponential tails. Because of the presence of coherent vortices the pressure PDF become strongly skewed with exponential tails for negative values.

  12. Numerical study of droplet evaporation in an acoustic levitator

    NASA Astrophysics Data System (ADS)

    Bänsch, Eberhard; Götz, Michael

    2018-03-01

    We present a finite element method for the simulation of all relevant processes of the evaporation of a liquid droplet suspended in an acoustic levitation device. The mathematical model and the numerical implementation take into account heat and mass transfer across the interface between the liquid and gaseous phase and the influence of acoustic streaming on this process, as well as the displacement and deformation of the droplet due to acoustic radiation pressure. We apply this numerical method to several theoretical and experimental examples and compare our results with the well-known d2-law for the evaporation of spherical droplets and with theoretical predictions for the acoustic streaming velocity. We study the influence of acoustic streaming on the distribution of water vapor and temperature in the levitation device, with special attention to the vapor distribution in the emerging toroidal vortices. We also compare the evaporation rate of a droplet with and without acoustic streaming, as well as the evaporation rates in dependence of different temperatures and sound pressure levels. Finally, a simple model of protein inactivation due to heat damage is considered and studied for different evaporation settings and their respective influence on protein damage.

  13. Numerical study of large-eddy breakup and its effect on the drag characteristics of boundary layers

    NASA Technical Reports Server (NTRS)

    Kinney, R. B.; Taslim, M. E.; Hung, S. C.

    1985-01-01

    The break-up of a field of eddies by a flat-plate obstacle embedded in a boundary layer is studied using numerical solutions to the two-dimensional Navier-Stokes equations. The flow is taken to be incompressible and unsteady. The flow field is initiated from rest. A train of eddies of predetermined size and strength are swept into the computational domain upstream of the plate. The undisturbed velocity profile is given by the Blasius solution. The disturbance vorticity generated at the plate and wall, plus that introduced with the eddies, mix with the background vorticity and is transported throughout the entire flow. All quantities are scaled by the plate length, the unidsturbed free-stream velocity, and the fluid kinematic viscosity. The Reynolds number is 1000, the Blasius boundary layer thickness is 2.0, and the plate is positioned a distance of 1.0 above the wall. The computational domain is four units high and sixteen units long.

  14. Characteristics and controllability of vortices in ferromagnetics, ferroelectrics, and multiferroics.

    PubMed

    Zheng, Yue; Chen, W J

    2017-08-01

    Topological defects in condensed matter are attracting e significant attention due to their important role in phase transition and their fascinating characteristics. Among the various types of matter, ferroics which possess a switchable physical characteristic and form domain structure are ideal systems to form topological defects. In particular, a special class of topological defects-vortices-have been found to commonly exist in ferroics. They often manifest themselves as singular regions where domains merge in large systems, or stabilize as novel order states instead of forming domain structures in small enough systems. Understanding the characteristics and controllability of vortices in ferroics can provide us with deeper insight into the phase transition of condensed matter and also exciting opportunities in designing novel functional devices such as nano-memories, sensors, and transducers based on topological defects. In this review, we summarize the recent experimental and theoretical progress in ferroic vortices, with emphasis on those spin/dipole vortices formed in nanoscale ferromagnetics and ferroelectrics, and those structural domain vortices formed in multiferroic hexagonal manganites. We begin with an overview of this field. The fundamental concepts of ferroic vortices, followed by the theoretical simulation and experimental methods to explore ferroic vortices, are then introduced. The various characteristics of vortices (e.g. formation mechanisms, static/dynamic features, and electronic properties) and their controllability (e.g. by size, geometry, external thermal, electrical, magnetic, or mechanical fields) in ferromagnetics, ferroelectrics, and multiferroics are discussed in detail in individual sections. Finally, we conclude this review with an outlook on this rapidly developing field.

  15. Structure, transport, and vertical coherence of the Gulf Stream from the Straits of Florida to the Southeast Newfoundland Ridge

    NASA Astrophysics Data System (ADS)

    Meinen, Christopher S.; Luther, Douglas S.

    2016-06-01

    Data from three independent and extensive field programs in the Straits of Florida, the Mid-Atlantic Bight, and near the Southeast Newfoundland Ridge are reanalyzed and compared with results from other historical studies to highlight the downstream evolution of several characteristics of the Gulf Stream's mean flow and variability. The three locations represent distinct dynamical regimes: a tightly confined jet in a channel; a freely meandering jet; and a topographically controlled jet on a boundary. Despite these differing dynamical regimes, the Gulf Stream in these areas exhibits many similarities. There are also anticipated and important differences, such as the loss of the warm core of the current by 42°N and the decrease in the cross-frontal gradient of potential vorticity as the current flows northward. As the Gulf Stream evolves it undergoes major changes in transport, both in magnitude and structure. The rate of inflow up to 60°W and outflow thereafter are generally uniform, but do exhibit some remarkable short-scale variations. As the Gulf Stream flows northward the vertical coherence of the flow changes, with the Florida Current and North Atlantic Current segments of the Gulf Stream exhibiting distinct upper and deep flows that are incoherent, while in the Mid-Atlantic Bight the Gulf Stream exhibits flows in three layers each of which tends to be incoherent with the other layers at most periods. These coherence characteristics are exhibited in both Eulerian and stream coordinates. The observed lack of vertical coherence indicates that great caution must be exercised in interpreting proxies for Gulf Stream structure and flow from vertically-limited or remote observations.

  16. Structure, transport, and vertical coherence of the Gulf Stream from the Straits of Florida to the Southeast Newfoundland Ridge

    NASA Astrophysics Data System (ADS)

    Meinen, Christopher S.; Luther, Douglas S.

    2016-05-01

    Data from three independent and extensive field programs in the Straits of Florida, the Mid-Atlantic Bight, and near the Southeast Newfoundland Ridge are reanalyzed and compared with results from other historical studies to highlight the downstream evolution of several characteristics of the Gulf Stream's mean flow and variability. The three locations represent distinct dynamical regimes: a tightly confined jet in a channel; a freely meandering jet; and a topographically controlled jet on a boundary. Despite these differing dynamical regimes, the Gulf Stream in these areas exhibits many similarities. There are also anticipated and important differences, such as the loss of the warm core of the current by 42°N and the decrease in the cross-frontal gradient of potential vorticity as the current flows northward. As the Gulf Stream evolves it undergoes major changes in transport, both in magnitude and structure. The rate of inflow up to 60°W and outflow thereafter are generally uniform, but do exhibit some remarkable short-scale variations. As the Gulf Stream flows northward the vertical coherence of the flow changes, with the Florida Current and North Atlantic Current segments of the Gulf Stream exhibiting distinct upper and deep flows that are incoherent, while in the Mid-Atlantic Bight the Gulf Stream exhibits flows in three layers each of which tends to be incoherent with the other layers at most periods. These coherence characteristics are exhibited in both Eulerian and stream coordinates. The observed lack of vertical coherence indicates that great caution must be exercised in interpreting proxies for Gulf Stream structure and flow from vertically-limited or remote observations.

  17. Deflection and trapping of a counter-rotating vortex pair by a flat plate

    NASA Astrophysics Data System (ADS)

    Nitsche, Monika

    2017-12-01

    The interaction of a counter-rotating vortex pair (dipole) with a flat plate in its path is studied numerically. The vortices are initially separated by a distance D (dipole size) and placed far upstream of a plate of length L . The plate is centered on the dipole path and inclined relative to it at an incident angle βi. At first, the plate is held fixed in place. The vortices approach the plate, travel around it, and then leave as a dipole with unchanged velocity but generally a different travel direction, measured by a transmitted angle βt. For certain plate angles the transmitted angle is highly sensitive to changes in the incident angle. The sensitivity increases as the dipole size decreases relative to the plate length. In fact, for sufficiently small values of D /L , singularities appear: near critical values of βi, the dipole trajectory undergoes a topological discontinuity under changes of βi or D /L . The discontinuity is characterized by a jump in the winding number of one vortex around the plate, and in the time that the vortices take to leave the plate. The jumps occur repeatedly in a self-similar, fractal fashion, within a region near the critical values of βi, showing the existence of incident angles that trap the vortices, which never leave the plate. The number of these trapping regions increases as the parameter D /L decreases, and the dependence of the motion on βi becomes increasingly complex. The simulations thus show that even in this apparently simple scenario, the inviscid dynamics of a two-point-vortex system interacting with a stationary wall is surprisingly rich. The results are then applied to separate an incoming stream of dipoles by an oscillating plate.

  18. The effect of atmospheric diabatic heating on low-frequency oscillations

    NASA Astrophysics Data System (ADS)

    Yen, Ming-Cheng

    A diagnostic scheme is devised to illustrate a chain relationship between diabatic heating and planetary-scale divergent and rotational circulations. The scheme consists of the velocity-potential maintenance equation, which relates diabatic heating and velocity potential, and the streamfunction budget equation, which depicts the streamfunction tendency caused by the imbalance between streamfunction tendencies induced by vorticity advection and source. The proposed scheme is employed to examine the effect of tropical diabatic heating on the annual variation of subtropical jet streams. It was found that annual variations of both tropical diabatic heating and planetary-scale divergent circulation exhibit an annual in-phase seesaw oscillation between the winter and summer hemispheres. The annual variation of subtropical jet streams is caused by the adjustment of atmospheric rotational flow through planetary-scale divergent circulation in response to the annual cycle of tropical diabatic heating.

  19. An experimental trace gas investigation of fluid transport and mixing in a circular-to-rectangular transition duct

    NASA Technical Reports Server (NTRS)

    Reichert, B. A.; Hingst, W. R.; Okiishi, T. H.

    1991-01-01

    An ethylene trace gas technique was used to map out fluid transport and mixing within a circular to rectangular transition duct. Ethylene gas was injected at several points in a cross stream plane upstream of the transition duct. Ethylene concentration contours were determined at several cross stream measurement planes spaced axially within the duct. The flow involved a uniform inlet flow at a Mach number level of 0.5. Statistical analyses were used to quantitatively interpret the trace gas results. Also, trace gas data were considered along with aerodynamic and surface flow visualization results to ascertain transition duct flow phenomena. Convection of wall boundary layer fluid by vortices produced regions of high total pressure loss in the duct. The physical extent of these high loss regions is governed by turbulent diffusion.

  20. Investigation of compressible vortex flow characteristics

    NASA Technical Reports Server (NTRS)

    Muirhead, V. U.

    1977-01-01

    The nature of intense air vortices was studied and the factors which determine the intensity and rate of decay of both single and pairs of vortices were investigated. Vortex parameters of axial pressure differential, circulation, outflow rates, separation distance and directions of rotation were varied. Unconfined vortices, generated by a single rotating cage, were intensified by an increasing axial pressure gradient. Breakdown occurred when the axial gradient became negligible. The core radius was a function of the axial gradient. Dual vortices, generated by two counterrotating cages, rotated opposite to the attached cages. With minimum spacing only one vortex was formed which rotated in a direction opposite to the attached cage. When one cage rotated at half the speed of the other cage, one vortex formed at the higher speed cage rotating in the cage direction.

  1. Effects of energetic coherent motions on the power and wake of an axial-flow turbine

    NASA Astrophysics Data System (ADS)

    Chamorro, L. P.; Hill, C.; Neary, V. S.; Gunawan, B.; Arndt, R. E. A.; Sotiropoulos, F.

    2015-05-01

    A laboratory experiment examined the effects of energetic coherent motions on the structure of the wake and power fluctuations generated by a model axial-flow hydrokinetic turbine. The model turbine was placed in an open-channel flow and operated under subcritical conditions. The incoming flow was locally perturbed with vertically oriented cylinders of various diameters. An array of three acoustic Doppler velocimeters aligned in the cross-stream direction and a torque transducer were used to collect high-resolution and synchronous measurements of the three-velocity components of the incoming and wake flow as well as the turbine power. A strong scale-to-scale interaction between the large-scale and broadband turbulence shed by the cylinders and the turbine power revealed how the turbulence structure modulates the turbine behavior. In particular, the response of the turbine to the distinctive von Kármán-type vortices shed from the cylinders highlighted this phenomenon. The mean and fluctuating characteristics of the turbine wake are shown to be very sensitive to the energetic motions present in the flow. Tip vortices were substantially dampened and the near-field mean wake recovery accelerated in the presence of energetic motions in the flow. Strong coherent motions are shown to be more effective than turbulence levels for triggering the break-up of the spiral structure of the tip-vortices.

  2. Tracking vortices in superconductors: Extracting singularities from a discretized complex scalar field evolving in time

    DOE PAGES

    Phillips, Carolyn L.; Guo, Hanqi; Peterka, Tom; ...

    2016-02-19

    In type-II superconductors, the dynamics of magnetic flux vortices determine their transport properties. In the Ginzburg-Landau theory, vortices correspond to topological defects in the complex order parameter field. Earlier, we introduced a method for extracting vortices from the discretized complex order parameter field generated by a large-scale simulation of vortex matter. With this method, at a fixed time step, each vortex [simplistically, a one-dimensional (1D) curve in 3D space] can be represented as a connected graph extracted from the discretized field. Here we extend this method as a function of time as well. A vortex now corresponds to a 2Dmore » space-time sheet embedded in 4D space time that can be represented as a connected graph extracted from the discretized field over both space and time. Vortices that interact by merging or splitting correspond to disappearance and appearance of holes in the connected graph in the time direction. This method of tracking vortices, which makes no assumptions about the scale or behavior of the vortices, can track the vortices with a resolution as good as the discretization of the temporally evolving complex scalar field. In addition, even details of the trajectory between time steps can be reconstructed from the connected graph. With this form of vortex tracking, the details of vortex dynamics in a model of a superconducting materials can be understood in greater detail than previously possible.« less

  3. Buoyancy and blockage effects on transient laminar opposing mixed convection heat transfer from two horizontal confined isothermal cylinder in tandem

    NASA Astrophysics Data System (ADS)

    Martínez-Suástegui, Lorenzo; Salcedo, Erick; Cajas, Juan; Treviño, César

    2015-11-01

    Transient mixed convection in a laminar cross-flow from two isothermal cylinders in tandem arrangement confined inside a vertical channel is studied numerically using the vorticity-stream function formulation of the unsteady two-dimensional Navier-Stokes and energy equations. Numerical experiments are performed for a Reynolds number based on cylinder diameter of Re = 200, Prandtl number of Pr = 7, blockage ratio of D/H = 0.2, a pitch-to-diameter ratio of L/D = 2, and several values of buoyancy strength or Richardson number Ri = Gr/Re2. The results reported herein demonstrate how the wall confinement, interference effects and opposing buoyancy affect the flow structure and heat transfer characteristics of the cylinder array. This research was supported by the Consejo Nacional de Ciencia y Tecnología (CONACYT), Grant number 167474 and by the Secretaría de Investigación y Posgrado del IPN, Grant number SIP 20141309.

  4. MHD natural convection and entropy generation in an open cavity having different horizontal porous blocks saturated with a ferrofluid

    NASA Astrophysics Data System (ADS)

    Gibanov, Nikita S.; Sheremet, Mikhail A.; Oztop, Hakan F.; Al-Salem, Khaled

    2018-04-01

    In this study, natural convection combined with entropy generation of Fe3O4-water nanofluid within a square open cavity filled with two different porous blocks under the influence of uniform horizontal magnetic field is numerically studied. Porous blocks of different thermal properties, permeability and porosity are located on the bottom wall. The bottom wall of the cavity is kept at hot temperature Th, while upper open boundary is at constant cold temperature Tc and other walls of the cavity are supposed to be adiabatic. Governing equations with corresponding boundary conditions formulated in dimensionless stream function and vorticity using Brinkman-extended Darcy model for porous blocks have been solved numerically using finite difference method. Numerical analysis has been carried out for wide ranges of Hartmann number, nanoparticles volume fraction and length of the porous blocks. It has been found that an addition of spherical ferric oxide nanoparticles can order the flow structures inside the cavity.

  5. Convective Sedimentation of Colloidal Particles in a Bowl.

    PubMed

    Stiles; Kagan

    1999-08-01

    A physical model, which regards a colloidal dispersion as a single fluid continuum, is used to investigate cellular convection accompanying gravitational sedimentation in a hemispherical bowl with a thin cylindrical shaft along its vertical axis of symmetry. We have adapted the stream-function-vorticity form of the Navier-Stokes equations to describe momentum conservation in axially symmetric containers. These hydrodynamic equations have been coupled to the mass balance equation for binary hydrodynamic diffusion in the presence of a vertical gravitational field. Using finite-element software we have solved the equations governing coupled diffusive and hydrodynamic flow. A rapidly intensifying horizontal toroidal vortex develops around the axis of the bowl. This vortex is characterized by downward barycentric flow along the curved surface of the bowl and upward flow in the vicinity of its axis. We find that after a short period of time this large-scale cellular convection associated with the curved boundary of the bowl greatly enhances the rate of sedimentation. Copyright 1999 Academic Press.

  6. Mathematical simulation of convective-radiative heat transfer in a ventilated rectangular cavity with consideration of internal mass transfer

    NASA Astrophysics Data System (ADS)

    Sheremet, M. A.; Shishkin, N. I.

    2012-07-01

    Mathematical simulation of the nonstationary regimes of heat-and-mass transfer in a ventilated rectangular cavity with heat-conducting walls of finite thickness in the presence of a heat-generating element of constant temperature has been carried out with account for the radiative heat transfer in the Rosseland approximation. As mechanisms of energy transfer in this cavity, the combined convection and the thermal radiation in the gas space of the cavity and the heat conduction in the elements of its fencing solid shell were considered. The mathematical model formulated in the dimensionless stream function-vorticity vector-temperature-concentration variables was realized numerically with the use of the finite-difference method. The streamline, temperature-field, and concentration distributions reflecting the influence of the Rayleigh number (Ra = 104, 105, 106), the nonstationarity (0 < τ ≤ 1000), and the optical thickness of the medium (τλ = 50, 100, 200) on the regimes of the gas flow and the heat-and-mass transfer in the cavity have been obtained.

  7. Characterizing the Severe Turbulence Environments Associated With Commercial Aviation Accidents. Part 1; 44 Case Study Synoptic Observational Analyses

    NASA Technical Reports Server (NTRS)

    Kaplan, Michael L.; Huffman, Allan W.; Lux, Kevin M.; Charney, Joseph J.; Riordan, Allan J.; Lin, Yuh-Lang; Proctor, Fred H. (Technical Monitor)

    2002-01-01

    A 44 case study analysis of the large-scale atmospheric structure associated with development of accident-producing aircraft turbulence is described. Categorization is a function of the accident location, altitude, time of year, time of day, and the turbulence category, which classifies disturbances. National Centers for Environmental Prediction Reanalyses data sets and satellite imagery are employed to diagnose synoptic scale predictor fields associated with the large-scale environment preceding severe turbulence. These analyses indicate a predominance of severe accident-producing turbulence within the entrance region of a jet stream at the synoptic scale. Typically, a flow curvature region is just upstream within the jet entrance region, convection is within 100 km of the accident, vertical motion is upward, absolute vorticity is low, vertical wind shear is increasing, and horizontal cold advection is substantial. The most consistent predictor is upstream flow curvature and nearby convection is the second most frequent predictor.

  8. Vortex developments over steady and accelerated airfoils incorporating a trailing edge jet

    NASA Technical Reports Server (NTRS)

    Finaish, F.; Okong'o, N.; Frigerio, J.

    1993-01-01

    Computational and experimental studies are conducted to investigate the influence of a trailing edge jet on flow separation and subsequent vortex formation over steady and accelerated airfoils at high angles of attack. A computer code, employing the stream function-vorticity approach, is developed and utilized to conduct numerical experiments on the flow problem. To verify and economize such efforts, an experimental system is developed and incorporated into a subsonic wind tunnel where streamline and vortex flow visualization experiments are conducted. The study demonstrates the role of the trailing edge jet in controlling flow separation and subsequent vortex development for steady and accelerating flow at angles past the static stall angle of attack. The results suggest that the concept of the trailing edge jet may be utilized to control the characteristics of unsteady separated flows over lifting surfaces. This control possibility seems to be quite effective and could have a significant role in controlling unsteady separated flows.

  9. Correnti atmosferiche su Giove

    NASA Astrophysics Data System (ADS)

    Adamoli, Gianluigi

    2006-06-01

    UAI observations are presented concerning the surveillance of Jupiter's atmospheric currents by means of digital images. General statistics are derived about the latitude and speed of individual spots and currents in the period 2000-04, compared with the Voyager wind profile. Attention is drawn to the wind shear present at distinct latitudes, namely on the South edge of the SEB, across the NTB and across the NEB. Especially interesting were the 2003 remnants of the disappearing NTB, which showed a motion intermediate between the NTC and the NTBs jet streams. Vorticity was derived in all cases.

  10. Horizontal and Vertical Structure of Velocity, Potential Vorticity and Energy in the Gulf Stream.

    DTIC Science & Technology

    1985-02-01

    before. Finally, the equation for heat conservation, using standard . - notation, is: T u + w 3 RHS (2-15) at ax ay + where the RHS may include source and...may be rewritten: a o f 0 2 ah 30i .. .iaT + -R2 -+ w2! = RHS . at goz az Under an assumption of negligible mixing (i.e., RHS is small), vertical...Hk( + v.) Kk - 2i + 2 2 --k (k + N - P available potential energy EKE eddy kinetic energy MKE - mean kinetic energy RHS - right hand side LHS -left

  11. Streaming flow from ultrasound contrast agents by acoustic waves in a blood vessel model.

    PubMed

    Cho, Eunjin; Chung, Sang Kug; Rhee, Kyehan

    2015-09-01

    To elucidate the effects of streaming flow on ultrasound contrast agent (UCA)-assisted drug delivery, streaming velocity fields from sonicated UCA microbubbles were measured using particle image velocimetry (PIV) in a blood vessel model. At the beginning of ultrasound sonication, the UCA bubbles formed clusters and translated in the direction of the ultrasound field. Bubble cluster formation and translation were faster with 2.25MHz sonication, a frequency close to the resonance frequency of the UCA. Translation of bubble clusters induced streaming jet flow that impinged on the vessel wall, forming symmetric vortices. The maximum streaming velocity was about 60mm/s at 2.25MHz and decreased to 15mm/s at 1.0MHz for the same acoustic pressure amplitude. The effect of the ultrasound frequency on wall shear stress was more noticeable. Maximum wall shear stress decreased from 0.84 to 0.1Pa as the ultrasound frequency decreased from 2.25 to 1.0MHz. The maximum spatial gradient of the wall shear stress also decreased from 1.0 to 0.1Pa/mm. This study showed that streaming flow was induced by bubble cluster formation and translation and was stronger upon sonication by an acoustic wave with a frequency near the UCA resonance frequency. Therefore, the secondary radiant force, which is much stronger at the resonance frequency, should play an important role in UCA-assisted drug delivery. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Low-to-moderate Reynolds number swirling flow in an annular channel with a rotating end wall.

    PubMed

    Davoust, Laurent; Achard, Jean-Luc; Drazek, Laurent

    2015-02-01

    This paper presents a new method for solving analytically the axisymmetric swirling flow generated in a finite annular channel from a rotating end wall, with no-slip boundary conditions along stationary side walls and a slip condition along the free surface opposite the rotating floor. In this case, the end-driven swirling flow can be described from the coupling between an azimuthal shear flow and a two-dimensional meridional flow driven by the centrifugal force along the rotating floor. A regular asymptotic expansion based on a small but finite Reynolds number is used to calculate centrifugation-induced first-order correction to the azimuthal Stokes flow obtained as the solution at leading order. For solving the first-order problem, the use of an integral boundary condition for the vorticity is found to be a convenient way to attribute boundary conditions in excess for the stream function to the vorticity. The annular geometry is characterized by both vertical and horizontal aspect ratios, whose respective influences on flow patterns are investigated. The vertical aspect ratio is found to involve nontrivial changes in flow patterns essentially due to the role of corner eddies located on the left and right sides of the rotating floor. The present analytical method can be ultimately extended to cylindrical geometries, irrespective of the surface opposite the rotating floor: a wall or a free surface. It can also serve as an analytical tool for monitoring confined rotating flows in applications related to surface viscosimetry or crystal growth from the melt.

  13. Trapping of Embolic Particles in a Vessel Phantom by Cavitation-Enhanced Acoustic Streaming

    PubMed Central

    Maxwell, Adam D.; Park, Simone; Vaughan, Benjamin L.; Cain, Charles A.; Grotberg, James B.; Xu, Zhen

    2014-01-01

    Cavitation clouds generated by short, high-amplitude, focused ultrasound pulses were previously observed to attract, trap, and erode thrombus fragments in a vessel phantom. This phenomenon may offer a noninvasive method to capture and eliminate embolic fragments flowing through the bloodstream during a cardiovascular intervention. In this article, the mechanism of embolus trapping was explored by particle image velocimetry (PIV). PIV was used to examine the fluid streaming patterns generated by ultrasound in a vessel phantom with and without crossflow of blood-mimicking fluid. Cavitation enhanced streaming, which generated fluid vortices adjacent to the focus. The focal streaming velocity, uf, was as high as 120 cm/s, while mean crossflow velocities, uc, were imposed up to 14 cm/s. When a solid particle 3-4 mm diameter was introduced into crossflow, it was trapped near the focus. Increasing uf promoted particle trapping while increasing uc promoted particle escape. The maximum crossflow Reynolds number at which particles could be trapped, Rec, was approximately linear with focal streaming number, Ref, i.e. Rec = 0.25Ref + 67.44 (R2=0.76) corresponding to dimensional velocities uc=0.084uf + 3.122 for 20 < uf < 120 cm/s. The fluidic pressure map was estimated from PIV and indicated a negative pressure gradient towards the focus, trapping the embolus near this location. PMID:25109407

  14. From flying wheel to square flow: Dynamics of a flow driven by acoustic forcing

    NASA Astrophysics Data System (ADS)

    Cambonie, Tristan; Moudjed, Brahim; Botton, Valéry; Henry, Daniel; Ben Hadid, Hamda

    2017-12-01

    Acoustic streaming designates the ability to drive quasisteady flows by acoustic propagation in dissipative fluids and results from an acoustohydrodynamics coupling. It is a noninvasive way of putting a fluid into motion using the volumetric acoustic force and can be used for different applications such as mixing purposes. We present an experimental investigation of a kind of square flow driven by acoustic streaming, with the use of beam reflections, in a water tank. Time-resolved experiments using particle image velocimetry have been performed to investigate the velocity field in the reference plane of the experiments for six powers: 0.5, 1, 2, 4, 6, and 8 W. The evolution of the flow regime from almost steady to strongly unsteady states is characterized using different tools: the plot of time-averaged and instantaneous velocity fields, the calculation of presence density maps for vortex positions and for the maximal velocity and vorticity crest lines, and the use of spatiotemporal maps of the waving observed on the jets created by acoustic streaming. A transition is observed between two regimes at moderate and high acoustic forcing.

  15. Piecewise Potential Vorticity Inversion for Intense Extratropical Cyclones

    NASA Astrophysics Data System (ADS)

    Seiler, C.; Zwiers, F. W.

    2017-12-01

    Global climate models (GCMs) tend to simulate too few intense extratropical cyclones (ETCs) in the Northern Hemisphere (NH) under historic climate conditions. This bias may arise from the interactions of multiple drivers, including surface temperature gradients, latent heating in the lower troposphere, and the upper-level jet stream. Previous attempts to quantify the importance of these drivers include idealized model experiments or statistical approaches. The first method however cannot easily be implemented for a multi-GCM ensemble, and the second approach does not disentangle the interactions among drivers, nor does it prove causality. An alternative method that overcomes these limitations is piecewise potential vorticity inversion (PPVI). PPVI derives the wind and geopotential height fields by inverting potential vorticity (PV) for discrete atmospheric levels. Despite being a powerful diagnostic tool, PPVI has primarily been used to study the dynamics of individual events only. This study presents the first PPVI climatology for the 5% most intense NH ETCs that occurred from 1980 to 2016. Conducting PPVI to 3273 ETC tracks identified in ERA-Interim reanalysis, we quantified the contributions from 3 atmospheric layers to ETC intensity. The respective layers are the surface (1000 hPa), a lower atmospheric level (700-850 hPa) and an upper atmospheric level (100-500 hPa) that are associated with the contributions from surface temperature gradients, latent heating, and the jet stream, respectively. Results show that contributions are dominated by the lower level (40%), followed by the upper level (20%) and the surface (17%), while the remaining 23% are associated with the background flow. Contributions from the surface and the lower level are stronger in the western ocean basins owed to the presence of the warm ocean currents, while contributions from the upper level are stronger in the eastern basins. Vertical cross sections of ETC-centered composites show an undulation of the dynamic tropopause and the formation of a PV tower with values exceeding 1 PV unit during maximum ETC intensity. The dominant contribution from the lower level underlines the importance of latent heating for intense ETCs. The ability of GCMs to reproduce this mechanism remains to be assessed.

  16. On the Goertler instability in hypersonic flows: Sutherland law fluids and real gas effects

    NASA Technical Reports Server (NTRS)

    Fu, Yibin B.; Hall, Philip; Blackaby, Nicholas D.

    1990-01-01

    The Goertler vortex instability mechanism in a hypersonic boundary layer on a curved wall is investigated. The precise roles of the effects of boundary layer growth, wall cooling, and gas dissociation is clarified in the determination of stability properties. It is first assumed that the fluid is an ideal gas with viscosity given by Sutherland's law. It is shown that when the free stream Mach number M is large, the boundary layer divides into two sublayers: a wall layer of O(M sup 3/2) thickness over which the basic state temperature is O(M squared) and a temperature adjustment layer of O(1) thickness over which the basic state temperature decreases monotonically to its free stream value. Goertler vortices which have wavelengths comparable with the boundary layer thickness are referred to as wall modes. It is shown that their downstream evolution is governed by a set of parabolic partial differential equations and that they have the usual features of Goertler vortices in incompressible boundary layers. As the local wavenumber increases, the neutral Goertler number decreases and the center of vortex activity moves towards the temperature adjustment layer. Goertler vortices with wavenumbers of order one or larger must necessarily be trapped in the temperature adjustment layer and it is this mode which is most dangerous. For this mode, it was found that the leading order term in the Goertler number expansion is independent of the wavenumber and is due to the curvature of the basic state. This term is also the asymptotic limit of the neutral Goertler numbers of the wall mode. To determine the higher order corrections terms in the Goertler number expansion, two wall curvature cases are distinguished. Real gas effects were investigated by assuming that the fluid is an ideal dissociating gas. It was found that both gas dissociation and wall cooling are destabilizing for the mode trapped in the temperature adjustment layer, but for the wall mode trapped near the wall the effect of gas dissociation can be either destabilizing or stabilizing.

  17. Quantifying vorticity in magnetic particle suspensions driven by symmetric and asymmetric multiaxial fields.

    DOE PAGES

    Martin, James E.; Solis, Kyle Jameson

    2015-08-07

    We recently reported two methods of inducing vigorous fluid vorticity in magnetic particle suspensions. The first method employs symmetry-breaking rational fields. These fields are comprised of two orthogonal ac components whose frequencies form a rational number and an orthogonal dc field that breaks the symmetry of the biaxial ac field to create the parity required to induce deterministic vorticity. The second method is based on rational triads, which are fields comprised of three orthogonal ac components whose frequency ratios are rational (e.g., 1 : 2 : 3). For each method a symmetry theory has been developed that enables the predictionmore » of the direction and sign of vorticity as functions of the field frequencies and phases. However, this theory has its limitations. It only applies to those particular phase angles that give rise to fields whose Lissajous plots, or principal 2-d projections thereof, have a high degree of symmetry. Nor can symmetry theory provide a measure of the magnitude of the torque density induced by the field. In this paper a functional of the multiaxial magnetic field is proposed that not only is consistent with all of the predictions of the symmetry theories, but also quantifies the torque density. This functional can be applied to fields whose Lissajous plots lack symmetry and can thus be used to predict a variety of effects and trends that cannot be predicted from the symmetry theories. These trends include the dependence of the magnitude of the torque density on the various frequency ratios, the unexpected reversal of flow with increasing dc field amplitude for certain symmetry-breaking fields, and the existence of off-axis vorticity for rational triads, such as 1 : 3 : 5, that do not have the symmetry required to analyze by symmetry theory. As a result, experimental data are given that show the degree to which this functional is successful in predicting observed trends.« less

  18. Characteristics and controllability of vortices in ferromagnetics, ferroelectrics, and multiferroics

    NASA Astrophysics Data System (ADS)

    Zheng, Yue; Chen, W. J.

    2017-08-01

    Topological defects in condensed matter are attracting e significant attention due to their important role in phase transition and their fascinating characteristics. Among the various types of matter, ferroics which possess a switchable physical characteristic and form domain structure are ideal systems to form topological defects. In particular, a special class of topological defects—vortices—have been found to commonly exist in ferroics. They often manifest themselves as singular regions where domains merge in large systems, or stabilize as novel order states instead of forming domain structures in small enough systems. Understanding the characteristics and controllability of vortices in ferroics can provide us with deeper insight into the phase transition of condensed matter and also exciting opportunities in designing novel functional devices such as nano-memories, sensors, and transducers based on topological defects. In this review, we summarize the recent experimental and theoretical progress in ferroic vortices, with emphasis on those spin/dipole vortices formed in nanoscale ferromagnetics and ferroelectrics, and those structural domain vortices formed in multiferroic hexagonal manganites. We begin with an overview of this field. The fundamental concepts of ferroic vortices, followed by the theoretical simulation and experimental methods to explore ferroic vortices, are then introduced. The various characteristics of vortices (e.g. formation mechanisms, static/dynamic features, and electronic properties) and their controllability (e.g. by size, geometry, external thermal, electrical, magnetic, or mechanical fields) in ferromagnetics, ferroelectrics, and multiferroics are discussed in detail in individual sections. Finally, we conclude this review with an outlook on this rapidly developing field.

  19. Flow structure of vortex-wing interaction

    NASA Astrophysics Data System (ADS)

    McKenna, Christopher K.

    Impingement of a streamwise-oriented vortex upon a fin, tail, blade or wing represents a fundamental class of flow-structure interaction that extends across a range of applications. This interaction can give rise to time-averaged loading, as well as unsteady loading known as buffeting. The loading is sensitive to parameters of the incident vortex as well as the location of vortex impingement on the downstream aerodynamic surface, generically designated as a wing. Particle image velocimetry is employed to determine patterns of velocity, vorticity, swirl ratio, and streamlines on successive cross-flow planes upstream of and along the wing, which lead to volume representations and thereby characterization of the interaction. At locations upstream of the leading edge of the wing, the evolution of the incident vortex is affected by the presence of the wing, and is highly dependent on the spanwise location of vortex impingement. Even at spanwise locations of impingement well outboard of the wing tip, a substantial influence on the structure of the incident vortex at locations significantly upstream of the leading edge of the wing was observed. For spanwise locations close to or intersecting the vortex core, the effects of upstream influence of the wing on the vortex are to: decrease the swirl ratio; increase the streamwise velocity deficit; decrease the streamwise vorticity; increase the azimuthal vorticity; increase the upwash; decrease the downwash; and increase the root-mean-square fluctuations of both streamwise velocity and vorticity. The interrelationship between these effects is addressed, including the rapid attenuation of axial vorticity in presence of an enhanced defect of axial velocity in the central region of the vortex. Moreover, when the incident vortex is aligned with, or inboard of, the tip of the wing, the swirl ratio decreases to values associated with instability of the vortex, giving rise to enhanced values of azimuthal vorticity relative to the streamwise (axial) vorticity, as well as relatively large root-mean-square values of streamwise velocity and vorticity. Along the chord of the wing, the vortex interaction gives rise to distinct modes, which may involve either enhancement or suppression of the vortex generated at the tip of the wing. These modes are classified and interpreted in conjunction with computed modes at the Air Force Research Laboratory. Occurrence of a given mode of interaction is predominantly determined by the dimensionless location of the incident vortex relative to the tip of the wing and is generally insensitive to the Reynolds number and dimensionless circulation of the incident vortex. The genesis of the basic modes of interaction is clarified using streamline topology with associated critical points. Whereas formation of an enhanced tip vortex involves a region of large upwash in conjunction with localized flow separation, complete suppression of the tip vortex is associated with a small-scale separation-attachment bubble bounded by downwash at the wing tip. Oscillation of the wing at an amplitude and velocity nearly two orders of magnitude smaller than the wing chord and free stream velocity respectively can give rise to distinctive patterns of upwash, downwash, and shed vorticity, which are dependent on the outboard displacement of the incident vortex relative to the wing tip. Moreover, these patterns are a strong function of the phase of the wing motion during its oscillation cycle. At a given value of phase, the wing oscillation induces upwash that is reinforced by the upwash of the incident vortex, giving a maximum value of net upwash. Conversely, when these two origins of upwash counteract, rather than reinforce, one another during the oscillation cycle, the net upwash has its minimum value. Analogous interpretations hold for regions of maximum and minimum net downwash located outboard of the regions of upwash. During the oscillation cycle of the wing, the magnitude and scale of the vorticity shed from the tip of the wing are directly correlated with the net upwash, which takes different forms related to the outboard displacement of the incident vortex. As the location of the incident vortex is displaced towards the wing tip, both the maximum upwash and the maximum vorticity of the tip vortex initially increase, then decrease. For the limiting case where the incident vortex impinges directly upon the tip of the wing, there is no tip vortex or induced region of upwash. Furthermore, at small values of vortex displacement from the wing tip, the position of the incident vortex varies significantly from its nominal position during the oscillation cycle. For all locations of the incident vortex, it is shown that, despite the small amplitude of the wing motion, the flow topology is fundamentally different at maximum positive and negative values of the wing velocity, that is, they are not symmetric.

  20. The Flow Field on Hydrofoils with Leading Edge Protuberances

    NASA Astrophysics Data System (ADS)

    Custodio, Derrick; Henoch, Charles; Johari, Hamid

    2009-11-01

    The exceptional mobility of the humpback whale has been linked to the use of its unique pectoral flippers. Biologists speculate that the flippers leading edge protuberances are a form of passive flow control. Force measurements on 2D hydrofoils with spanwise uniform leading edge protuberances, resembling those seen on the humpback whale flipper, were taken in a water tunnel and have revealed performance modifications when compared to a baseline NACA 63(4)-021 hydrofoil model. Qualitative flow visualization techniques and Particle Image Velocimetry (PIV) flow field measurements on the modified hydrofoils have shown that streamwise vortices originating from the shoulders of the protuberances are the likely cause of performance changes. Varying levels of interaction among adjacent streamwise vortices have been observed as a function of angle of attack and chord location. The circulation of these vortices as a function of angle of attack and spatial location was measured and an analysis of the vortex interactions will be presented.

  1. Drag reduction and thrust generation by tangential surface motion in flow past a cylinder

    NASA Astrophysics Data System (ADS)

    Mao, Xuerui; Pearson, Emily

    2018-03-01

    Sensitivity of drag to tangential surface motion is calculated in flow past a circular cylinder in both two- and three-dimensional conditions at Reynolds number Re ≤ 1000 . The magnitude of the sensitivity maximises in the region slightly upstream of the separation points where the contour lines of spanwise vorticity are normal to the cylinder surface. A control to reduce drag can be obtained by (negatively) scaling the sensitivity. The high correlation of sensitivities of controlled and uncontrolled flow indicates that the scaled sensitivity is a good approximation of the nonlinear optimal control. It is validated through direct numerical simulations that the linear range of the steady control is much higher than the unsteady control, which synchronises the vortex shedding and induces lock-in effects. The steady control injects angular momentum into the separating boundary layer, stabilises the flow and increases the base pressure significantly. At Re=100 , when the maximum tangential motion reaches 50% of the free-stream velocity, the vortex shedding, boundary-layer separation and recirculation bubbles are eliminated and 32% of the drag is reduced. When the maximum tangential motion reaches 2.5 times of the free-stream velocity, thrust is generated and the power savings ratio, defined as the ratio of the reduced drag power to the control input power, reaches 19.6. The mechanism of drag reduction is attributed to the change of the radial gradient of spanwise vorticity (partial r \\hat{ζ } ) and the subsequent accelerated pressure recovery from the uncontrolled separation points to the rear stagnation point.

  2. Application of kinematic vorticity techniques for mylonitized Rocks in Al Amar suture, eastern Arabian Shield, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Hamimi, Z.; Kassem, O. M. K.; El-Sabrouty, M. N.

    2015-09-01

    The rotation of rigid objects within a flowing viscous medium is a function of several factors including the degree of non-coaxiality. The relationship between the orientation of such objects and their aspect ratio can be used in vorticity analyses in a variety of geological settings. Method for estimation of vorticity analysis to quantitative of kinematic vorticity number (Wm) has been applied using rotated rigid objects, such as quartz and feldspar objects. The kinematic vorticity number determined for high temperature mylonitic Abt schist in Al Amar area, extreme eastern Arabian Shield, ranges from ˜0.8 to 0.9. Obtained results from vorticity and strain analyses indicate that deformation in the area deviated from simple shear. It is concluded that nappe stacking occurred early during an earlier thrusting event, probably by brittle imbrications. Ductile strain was superimposed on the nappe structure at high-pressure as revealed by a penetrative subhorizontal foliation that is developed subparallel to tectonic contacts versus the underlying and overlying nappes. Accumulation of ductile strain during underplating was not by simple shear but involved a component of vertical shortening, which caused the subhorizontal foliation in the Al Amar area. In most cases, this foliation was formed concurrently with thrust sheets imbrications, indicating that nappe stacking was associated with vertical shortening.

  3. Long-time asymptotics of the Navier-Stokes and vorticity equations on R(3).

    PubMed

    Gallay, Thierry; Wayne, C Eugene

    2002-10-15

    We use the vorticity formulation to study the long-time behaviour of solutions to the Navier-Stokes equation on R(3). We assume that the initial vorticity is small and decays algebraically at infinity. After introducing self-similar variables, we compute the long-time asymptotics of the rescaled vorticity equation up to second order. Each term in the asymptotics is a self-similar divergence-free vector field with Gaussian decay at infinity, and the coefficients in the expansion can be determined by solving a finite system of ordinary differential equations. As a consequence of our results, we are able to characterize the set of solutions for which the velocity field satisfies ||u(.,t)||(L(2)) = o(t(-5/4)) as t-->+ infinity. In particular, we show that these solutions lie on a smooth invariant submanifold of codimension 11 in our function space.

  4. Vorticity scaling and intermittency in drift-interchange plasma turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dura, P. D.; Hnat, B.; Robinson, J.

    2012-09-15

    The effects of spatially varying magnetic field strength on the scaling properties of plasma turbulence, modelled by an extended form of Hasegawa-Wakatani model, are investigated. We study changes in the intermittency of the velocity, density, and vorticity fields, as functions of the magnetic field inhomogeneity C=-{partial_derivative} ln B/{partial_derivative}x. While the velocity fluctuations are always self-similar and their scaling is unaffected by the value of C, the intermittency levels in density and vorticity change with parameter C, reflecting morphological changes in the coherent structures due to the interchange mechanism. Given the centrality of vorticity in conditioning plasma transport, this result ismore » of interest in scaling the results of transport measurements and simulations in tokamak edge plasmas, where drift-interchange turbulence in the presence of a magnetic field gradient is likely to occur.« less

  5. A new reversal mode in exchange coupled antiferromagnetic/ferromagnetic disks: distorted viscous vortex

    DOE PAGES

    Gilbert, Dustin A.; Ye, Li; Varea, Aïda; ...

    2015-04-28

    Magnetic vortices have generated intense interest in recent years due to their unique reversal mechanisms, fascinating topological properties, and exciting potential applications. In addition, the exchange coupling of magnetic vortices to antiferromagnets has also been shown to lead to a range of novel phenomena and functionalities. Here we report a new magnetization reversal mode of magnetic vortices in exchange coupled Ir 20Mn 80/Fe 20Ni 80 microdots: distorted viscous vortex reversal. In contrast to the previously known or proposed reversal modes, the vortex is distorted close to the interface and viscously dragged due to the uncompensated spins of a thin antiferromagnet,more » which leads to unexpected asymmetries in the annihilation and nucleation fields. Lastly, these results provide a deeper understanding of the physics of exchange coupled vortices and may also have important implications for applications involving exchange coupled nanostructures.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, Carolyn L.; Guo, Hanqi; Peterka, Tom

    In type-II superconductors, the dynamics of magnetic flux vortices determine their transport properties. In the Ginzburg-Landau theory, vortices correspond to topological defects in the complex order parameter field. Earlier, in Phillips et al. [Phys. Rev. E 91, 023311 (2015)], we introduced a method for extracting vortices from the discretized complex order parameter field generated by a large-scale simulation of vortex matter. With this method, at a fixed time step, each vortex [simplistically, a one-dimensional (1D) curve in 3D space] can be represented as a connected graph extracted from the discretized field. Here we extend this method as a function ofmore » time as well. A vortex now corresponds to a 2D space-time sheet embedded in 4D space time that can be represented as a connected graph extracted from the discretized field over both space and time. Vortices that interact by merging or splitting correspond to disappearance and appearance of holes in the connected graph in the time direction. This method of tracking vortices, which makes no assumptions about the scale or behavior of the vortices, can track the vortices with a resolution as good as the discretization of the temporally evolving complex scalar field. Additionally, even details of the trajectory between time steps can be reconstructed from the connected graph. With this form of vortex tracking, the details of vortex dynamics in a model of a superconducting materials can be understood in greater detail than previously possible.« less

  7. VORTICAL MOTIONS OF BARYONIC GAS IN THE COSMIC WEB: GROWTH HISTORY AND SCALING RELATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Weishan; Feng, Long-long

    The vortical motions of the baryonic gas residing in large-scale structures are investigated by cosmological hydrodynamic simulations. Proceeding in the formation of the cosmic web, the vortical motions of baryonic matter are pumped up by baroclinity in two stages, i.e., the formation of sheets and filaments. The mean curl velocities are about <1, 1–10, 10–150, and 5–50 km s{sup −1} in voids, sheets, filaments, and knots at z = 0, respectively. The scaling of the vortical velocity of gas can be well described by the She–Leveque hierarchical turbulence model in the range of l < 0.65(1.50) h{sup −1} Mpc inmore » a simulation with a box of size 25(100) h{sup −1} Mpc. The fractal Hausdorff dimension of vortical motions, d, revealed by velocity structure functions, is ∼2.1–2.3(∼1.8–2.1). It is slightly larger than the fractal dimension of mass distribution in filaments, D{sup f} ∼ 1.9–2.2, and smaller than the fractal dimension of sheets, D{sup s} ∼ 2.4–2.7. The vortical kinetic energy of baryonic gas is mainly transported by filaments. Both scalings of mass distribution and vortical velocity increments show distinctive transitions at the turning scale of ∼0.65(1.50) h{sup −1} Mpc, which may be closely related to the characteristic radius of density filaments.« less

  8. Prediction of asymmetric vortical flows around slender bodies using Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Liu, C. H.; Wong, Tin-Chee; Kandil, Osama A.

    1992-01-01

    Steady and unsteady asymmetric vortical flows around slender bodies at high angles of attack are solved using the unsteady, compressible, thin-layer Navier-Stokes equations. An implicit, upwind-biased, flux-difference splitting, finite-volume scheme is used for the numerical computations. For supersonic flows past point cones, the locally conical flow assumption have been used for efficient computational studies of this phenomenon. Asymmetric flows past a 5-deg semiapex-angle circular cone at different angles of attack, free-stream Mach numbers, and Reynolds numbers have been studied in responses to different sources of disturbances. The effects of grid fineness and computational domain size have also been investigated. Next, the responses of three-dimensional supersonic asymmetric flow around a 5-deg circular cone at different angles of attack and Reynolds numbers to short-duration sideslip disturbances are presented. The results show that flow asymmetry becomes stronger as the Reynolds number and angles of attack are increased. One of the cases of flow over a cone-cylinder configuration is validated fairly well by experimental data.

  9. Mixing Enhancement in a Lobed Injector

    NASA Technical Reports Server (NTRS)

    Smith, L. L.; Majamaki, A. J.; Lam, I. T.; Delabroy, O.; Karagozian, A. R.; Marble, F. E.; Smith, O. I.

    1997-01-01

    An experimental investigation of the non-reactive mixing processes associated with a lobed fuel injector in a coflowing air stream is presented. The lobed fuel injector is a device which generates streamwise vorticity, producing high strain rates which can enhance the mixing of reactants while delaying ignition in a controlled manner. The lobed injectors examined in the present study consist of two corrugated plates between which a fuel surrogate, CO2, is injected into coflowing air. Acetone is seeded in the CO2 supply as a fuel marker. Comparison of two alternative lobed injector geometries is made with a straight fuel injector to determine net differences in mixing and strain fields due to streamwise vorticity generation. Planar laser-induced fluorescence (PLIF) of the seeded acetone yields two-dimensional images of the scalar concentration field at various downstream locations, from which local mixing and scalar dissipation rates are computed. It is found that the lobed injector geometry can enhance molecular mixing and create a highly strained flowfield, and that the strain rates generated by scalar energy dissipation can potentially delay ignition in a reacting flowfield.

  10. The velocity and vorticity fields of the turbulent near wake of a circular cylinder

    NASA Technical Reports Server (NTRS)

    Wallace, James; Ong, Lawrence; Moin, Parviz

    1995-01-01

    The purpose of this research is to provide a detailed experimental database of velocity and vorticity statistics in the very near wake (x/d less than 10) of a circular cylinder at Reynolds number of 3900. This study has determined that estimations of the streamwise velocity component in flow fields with large nonzero cross-stream components are not accurate. Similarly, X-wire measurements of the u and v velocity components in flows containing large w are also subject to the errors due to binormal cooling. Using the look-up table (LUT) technique, and by calibrating the X-wire probe used here to include the range of expected angles of attack (+/- 40 deg), accurate X-wire measurements of instantaneous u and v velocity components in the very near wake region of a circular cylinder has been accomplished. The approximate two-dimensionality of the present flow field was verified with four-wire probe measurements, and to some extent the spanwise correlation measurements with the multisensor rake. Hence, binormal cooling errors in the present X-wire measurements are small.

  11. PIV Study on Flow around Leading-Edge Slat of 30P30N Airfoil

    NASA Astrophysics Data System (ADS)

    Ando, Ryosuke; Onishi, Yusaku; Sakakibara, Jun

    2017-11-01

    We measured flow velocity distribution around leading-edge slat using PIV. Simultaneously, noise measurement using microphone was also performed. A leading-edge slat and main wing model having a chord length of 160 mm was placed in the tunnel with free stream velocity of about 26m/s and chord Reynolds number of 2.8 x 105. Angle of attack was changed from 4 degrees to 10 degrees at two degree intervals. In this experiment, we investigated the relationship between the unsteady flow condition and the noise. At 4 degrees in the angle of attack, vortices shedding from the slat cusp were moved to the downstream. At 6 degrees or more, flow velocity distributions show that vortices were reattached on the slat lower surface and the flow in the slat cove recirculated. In FFT analysis of noise measurement, at 6 degrees in the angle of attack, there were some peaks on low frequency area and dominant peak on high frequency area was found. At 8 degrees or more, there were also some peaks on low frequency area. But dominant peak on high frequency area disappeared.

  12. Aircraft High-Lift Aerodynamic Analysis Using a Surface-Vorticity Solver

    NASA Technical Reports Server (NTRS)

    Olson, Erik D.; Albertson, Cindy W.

    2016-01-01

    This study extends an existing semi-empirical approach to high-lift analysis by examining its effectiveness for use with a three-dimensional aerodynamic analysis method. The aircraft high-lift geometry is modeled in Vehicle Sketch Pad (OpenVSP) using a newly-developed set of techniques for building a three-dimensional model of the high-lift geometry, and for controlling flap deflections using scripted parameter linking. Analysis of the low-speed aerodynamics is performed in FlightStream, a novel surface-vorticity solver that is expected to be substantially more robust and stable compared to pressure-based potential-flow solvers and less sensitive to surface perturbations. The calculated lift curve and drag polar are modified by an empirical lift-effectiveness factor that takes into account the effects of viscosity that are not captured in the potential-flow solution. Analysis results are validated against wind-tunnel data for The Energy-Efficient Transport AR12 low-speed wind-tunnel model, a 12-foot, full-span aircraft configuration with a supercritical wing, full-span slats, and part-span double-slotted flaps.

  13. Visualization Measurement of Streaming Flows Associated with a Single-Acoustic Levitator

    NASA Astrophysics Data System (ADS)

    Hasegawa, Koji; Abe, Yutaka; Kaneko, Akiko; Yamamoto, Yuji; Aoki, Kazuyoshi

    2009-08-01

    The purpose of the study is to experimentally investigate flow fields generated by an acoustic levitator. This flow field has been observed using flow visualization, PIV method. In the absent of a drop, the flow field was strongly influenced by sound pressure level (SPL). In light of the interfacial stability of a levitated drop, SPL was set at 161-163 [dB] in our experiments. In the case of any levitated drop at a pressure node of a standing wave, the toroidal vortices were appeared around a drop and clearly observed the flow fields around the drop by PIV measurement. It is found that the toroidal vortices around a levitated drop were strongly affected by the viscosity of a drop. For more detailed research, experiments in the reduced gravity were conducted with aircraft parabolic flights. By comparison with experimental results in the earth and reduced gravity, it is also indicated that the configuration of the external flow field around a drop is most likely to be affected by a position of a drop as well.

  14. Vortical structures and development of laminar flow over convergent-divergent riblets

    NASA Astrophysics Data System (ADS)

    Xu, Fang; Zhong, Shan; Zhang, Shanying

    2018-05-01

    In this work, the development of a laminar boundary layer over a rectangular convergent-divergent riblet section with a finite streamwise length is studied experimentally using dye visualization and particle image velocimetry in a water flume. The flow topology over this highly directional spanwise roughness is established from this study. It is shown that convergent-divergent riblets generate a spanwise flow above the riblets from the diverging line toward the adjacent converging line. This consequently leads to the formation of a weak recirculating secondary flow in cross-stream planes across the boundary layer that creates a downwash motion over the diverging line and an upwash motion over the converging line. It is found that the fluid inside the riblet valley follows a helicoidal path and it also interacts with the crossflow boundary layer hence playing a key role in determining the structure of the secondary flow across the boundary layer. The impact of riblet wavelength on vortical structures is also revealed for the first time. A larger riblet wavelength is seen to produce a stronger upwash/downwash and hence a more intense secondary flow as well as a stronger deceleration effect on the crossflow. Furthermore, the streamwise development of the flow over the riblet section can be divided into a developing stage followed by a developed stage. In the developing stage, the magnitude of induced streamwise velocity and vorticity over the converging line continues to increase, whereas in the developed stage the values of these parameters remain essentially unchanged.

  15. Nonlinear interaction of near-planar TS waves and longitudinal vortices in boundary-layer transition

    NASA Technical Reports Server (NTRS)

    Smith, F. T.

    1988-01-01

    The nonlinear interactions that evolve between a planar or nearly planar Tollmien-Schlichting (TS) wave and the associated longitudinal vortices are considered theoretically for a boundary layer at high Reynolds number. The vortex flow is either induced by the TS nonlinear forcing or is input upstream, and similarly for the nonlinear wave development. Three major kinds of nonlinear spatial evolution, Types 1-3, are found. Each can start from secondary instability and then become nonlinear, Type 1 proving to be relatively benign but able to act as a pre-cursor to the Types 2, 3 which turn out to be very powerful nonlinear interactions. Type 2 involves faster stream-wise dependence and leads to a finite-distance blow-up in the amplitudes, which then triggers the full nonlinear 3-D triple-deck response, thus entirely altering the mean-flow profile locally. In contrast, Type 3 involves slower streamwise dependence but a faster spanwise response, with a small TS amplitude thereby causing an enhanced vortex effect which, again, is substantial enough to entirely alter the meanflow profile, on a more global scale. Streak-like formations in which there is localized concentration of streamwise vorticity and/or wave amplitude can appear, and certain of the nonlinear features also suggest by-pass processes for transition and significant changes in the flow structure downstream. The powerful nonlinear 3-D interactions 2, 3 are potentially very relevant to experimental findings in transition.

  16. The Dynamics of Controlled Flow Separation within a Diverter Duct Diffuser

    NASA Astrophysics Data System (ADS)

    Peterson, C. J.; Vukasinovic, B.; Glezer, A.

    2016-11-01

    The evolution and receptivity to fluidic actuation of the flow separation within a rectangular, constant-width, diffuser that is branched off of a primary channel is investigated experimentally at speeds up to M = 0.4. The coupling between the diffuser's adverse pressure gradient and the internal separation that constricts nearly half of the flow passage through the duct is controlled using a spanwise array of fluidic actuators on the surface upstream of the diffuser's inlet plane. The dynamics of the separating surface vorticity layer in the absence and presence of actuation are investigated using high-speed particle image velocimetry combined with surface pressure measurements and total pressure distributions at the primary channel's exit plane. It is shown that the actuation significantly alters the incipient dynamics of the separating vorticity layer as the characteristic cross stream scales of the boundary layer upstream of separation and of the ensuing vorticity concentrations within the separated flow increase progressively with actuation level. It is argued that the dissipative (high frequency) actuation alters the balance between large- and small-scale motions near separation by intensifying the large-scale motions and limiting the small-scale dynamics. Controlling separation within the diffuser duct also has a profound effect on the global flow. In the presence of actuation, the mass flow rate in the primary duct increases 10% while the fraction of the diverted mass flow rate in the diffuser increases by more than 45% at 0.7% actuation mass fraction. Supported by the Boeing Company.

  17. Anomalous current from the covariant Wigner function

    NASA Astrophysics Data System (ADS)

    Prokhorov, George; Teryaev, Oleg

    2018-04-01

    We consider accelerated and rotating media of weakly interacting fermions in local thermodynamic equilibrium on the basis of kinetic approach. Kinetic properties of such media can be described by covariant Wigner function incorporating the relativistic distribution functions of particles with spin. We obtain the formulae for axial current by summation of the terms of all orders of thermal vorticity tensor, chemical potential, both for massive and massless particles. In the massless limit all the terms of fourth and higher orders of vorticity and third order of chemical potential and temperature equal zero. It is shown, that axial current gets a topological component along the 4-acceleration vector. The similarity between different approaches to baryon polarization is established.

  18. Notes on initial disturbance fields for the transition problem

    NASA Technical Reports Server (NTRS)

    Bushnell, Dennis

    1990-01-01

    Initial disturbance fields are categorized and discussed with respect to modes of disturbance and the variants which occur for each test technique. Attention is focused on four fluctuation modes included under the category of stream turbulence: vorticity fluctuations, entropy disturbances or temperature spottiness, noise, and concentration fluctuations. The mechanisms by which particulate matter can affect transition are discussed, along with electrostatic discharges with frequencies in the range from 200 KHz to 30 MHz which is within the critical disturbance-frequency range for many high-speed flows. Acoustic radiation from own vehicle, roughness, and Brownian motion are also covered.

  19. Guide Vanes for Deflecting Fluid Currents with Small Loss of Energy

    NASA Technical Reports Server (NTRS)

    Krober, G

    1933-01-01

    The transverse momentum of the deflected air stream to be absorbed is divided between the intermediate and outside walls, so that the pressure increase on each wall is much smaller and the danger of separation is diminished. The formation of secondary vortices is also diminished. By taking as the basis profiles with high c(sub a), such as have proved practically favorable, it is not possible to find a satisfactory form of grid simply on the assumption that the flow is potential. The requirements called for the most uniform possible velocity distribution behind the bend and the smallest possible losses.

  20. A design method for entrance sections of transonic wind tunnels with rectangular cross sections

    NASA Technical Reports Server (NTRS)

    Lionel, L.; Mcdevitt, J. B.

    1975-01-01

    A mathematical technique developed to design entrance sections for transonic or high-speed subsonic wind tunnels with rectangular cross sections is discribed. The transition from a circular cross-section setting chamber to a rectangular test section is accomplished smoothly so as not to introduce secondary flows (vortices or boundary-layer separation) into a uniform test stream. The results of static-pressure measurements in the transition region and of static and total-pressure surveys in the test section of a pilot model for a new facility at the Ames Research Center are presented.

  1. Soap film flows: Statistics of two-dimensional turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vorobieff, P.; Rivera, M.; Ecke, R.E.

    1999-08-01

    Soap film flows provide a very convenient laboratory model for studies of two-dimensional (2-D) hydrodynamics including turbulence. For a gravity-driven soap film channel with a grid of equally spaced cylinders inserted in the flow, we have measured the simultaneous velocity and thickness fields in the irregular flow downstream from the cylinders. The velocity field is determined by a modified digital particle image velocimetry method and the thickness from the light scattered by the particles in the film. From these measurements, we compute the decay of mean energy, enstrophy, and thickness fluctuations with downstream distance, and the structure functions of velocity,more » vorticity, thickness fluctuation, and vorticity flux. From these quantities we determine the microscale Reynolds number of the flow R{sub {lambda}}{approx}100 and the integral and dissipation scales of 2D turbulence. We also obtain quantitative measures of the degree to which our flow can be considered incompressible and isotropic as a function of downstream distance. We find coarsening of characteristic spatial scales, qualitative correspondence of the decay of energy and enstrophy with the Batchelor model, scaling of energy in {ital k} space consistent with the k{sup {minus}3} spectrum of the Kraichnan{endash}Batchelor enstrophy-scaling picture, and power-law scalings of the structure functions of velocity, vorticity, vorticity flux, and thickness. These results are compared with models of 2-D turbulence and with numerical simulations. {copyright} {ital 1999 American Institute of Physics.}« less

  2. Understanding Hurricane Movement from a Potential Vorticity Perspective: a Numerical Model and AN Observational Study.

    NASA Astrophysics Data System (ADS)

    Wu, Chun-Chieh

    In the first part of this thesis, we attempt to isolate the effect of background vertical shear. The hurricane is represented in a two-layer quasigeostrophic model as a point source of mass and zero potential vorticity air in the upper layer, collocated with a point cyclone in the lower layer. The model results show that Northern Hemisphere tropical cyclones should have a component of drift relative to the mean flow in a direction to the left of the background vertical shear. The effect of weak shear is found to be at least as strong as the beta effect, and the effect is maximized by a certain optimal ambient shear. The behavior of the model is sensitive to the thickness ratio of the two layers and is less sensitive to the ratio of the vortices' horizontal scale to the radius of deformation. Storms with stronger negative potential vorticity anomalies tend to exhibit more vortex drift. The validity of balance dynamics in the tropics also allows us to explore the dynamics of hurricanes using the potential vorticity (PV) framework. In the second part of this thesis, three observational case studies (Hurricane Bob and Tropical Storm Ana of 1991, and Hurricane Andrew of 1992) have been performed to demonstrate the use of PV diagnostics of hurricane movement from the twice-daily National Meteorological Center Northen Hemisphere final analyses gridded datasets. Using the seasonal climatology as the mean reference state, piecewise potential vorticity inversions are performed under the nonlinear balance condition. By examining the balanced flows at the central position of the hurricane, one can identify which PV perturbation has the most influence on hurricane movement. We also define the hurricane advection flow as the balanced flow (in the center of the storm) associated with the whole PV in the troposphere, except for the PV anomaly of the hurricane itself. The results from the observational study show that such a steering wind is a very good approximation to the real storm motion. This steering flow derived from the PV perspective is much more consistent and dynamically meaningful than the traditional steering stream, which is generally taken as the tropospheric annular mean flow. The results also show that hurricane movement is dominated by the balanced flows associated with the mean PV and perturbation PV in both the lower and upper troposphere. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.) (Abstract shortened by UMI.).

  3. Influence of backflow on skin friction in turbulent pipe flow

    NASA Astrophysics Data System (ADS)

    Jalalabadi, Razieh; Sung, Hyung Jin

    2018-06-01

    A direct numerical simulation of a turbulent pipe flow (Reτ = 544) is used to investigate the influence of the backflow on the vortical structures that contribute to the local skin friction. The backflow is a rare event with a probability density function (PDF) of less than 10-3. The backflow is found to extend up to y+ ≈ 4 and is induced by the presence of a vortex in the buffer layer. The flow statistics are conditionally sampled under the condition of a negative streamwise velocity (u < 0) at y+ = 3. The conditionally averaged u <0 reaches its maximum at y+ ≈ 27. The intensified conditionally averaged velocity fluctuations contribute to vertical and spanwise momentum transport around the backflow. The ensemble averaged + and + reveal layered structures in the Q2 and Q4 events. A strong Q4 event appears above the backflow, flanked by two regions of Q2. The strong downwash of the flow along with the spanwise vortex induces the backflow. The upwash at upstream and downstream of the backflow enhances the movement of the low-speed flow in the streamwise and spanwise directions. The velocity-vorticity correlation reveals that the main contributions to Cf are the vorticity advection and vorticity stretching. The main contribution to the conditionally averaged Cf is the wall-normal gradient of the mean spanwise vorticity at the wall. The spanwise vorticity is positive above the backflow flanked by two regions of negative spanwise vorticity. The conditional PDF of the backflow under negative ul+ at y+ = 100 is more frequent than that under positive ul+.

  4. Motion of a cylinder adjacent to a free-surface: flow patterns and loading

    NASA Astrophysics Data System (ADS)

    Zhu, Q.; Lin, J.-C.; Unal, M. F.; Rockwell, D.

    The flow structure and loading due to combined translatory and sinusoidal motion of a cylinder adjacent to a free-surface are characterized using a cinema technique of high-image-density particle image velocimetry and simultaneous force measurements. The instantaneous patterns of vorticity and streamline topology are interpreted as a function of degree of submergence beneath the free-surface. The relative magnitudes of the peak vorticity and the circulation of vortices formed from the upper and lower surfaces of the cylinder, as well as vortex formation from the free-surface, are remarkably affected by the nominal submergence. The corresponding streamline topology, interpreted in terms of foci, saddle points, and multiple separation and reattachment points also exhibit substantial changes with submergence. All of these features affect the instantaneous loading of the cylinder. Calculation of instantaneous moments of vorticity and the incremental changes in these moments during the cylinder motion allow identification of those vortices that contribute most substantially to the instantaneous lift and drag. Furthermore, the calculated moments are in general accord with the time integrals of the measured lift and drag acting on the cylinder for sufficiently large submergence.

  5. A new diagnostic of stratospheric polar vortices

    NASA Astrophysics Data System (ADS)

    Gimeno, Luis; de La Torre, Laura; Nieto, Raquel; Gallego, David; Ribera, Pedro; García-Herrera, Ricardo

    2007-11-01

    We studied the main climatological features of the Arctic and Antarctic stratospheric vortices, using a new approach based on defining the vortex edge as the 50 hPa geostrophic streamline of maximum average velocity at each hemisphere. Given the use of NCAR-NCEP reanalysis data, it was thought advisable to limit the study to the periods 1958 2004 for the Northern Hemisphere (NH) and 1979 2004 for the Southern Hemisphere (SH). After describing the method and testing sample results with those from other approaches, we analysed the climatological means and trends of the four most distinctive characteristics of the vortices: average latitude, strength, area, and temperature. In general terms, our results confirm most of what is already known about the stratospheric vortices from previous studies that used different data and approaches. In addition, the new methodology provides some interesting new quantifications of the dominant wavenumber and its interannual variability, as well as the principal variability modes through an empirical orthogonal function analysis that was performed directly over the vortex trajectories. The main drawbacks of the methodology, such as noticeable problems characterising highly disturbed stratospheric structures as multiple or off-pole vortices, are also identified.

  6. First-Order System Least Squares for Velocity-Vorticity-Pressure Form of the Stokes Equations, with Application to Linear Elasticity

    NASA Technical Reports Server (NTRS)

    Cai, Zhiqiang; Manteuffel, Thomas A.; McCormick, Stephen F.

    1996-01-01

    In this paper, we study the least-squares method for the generalized Stokes equations (including linear elasticity) based on the velocity-vorticity-pressure formulation in d = 2 or 3 dimensions. The least squares functional is defined in terms of the sum of the L(exp 2)- and H(exp -1)-norms of the residual equations, which is weighted appropriately by by the Reynolds number. Our approach for establishing ellipticity of the functional does not use ADN theory, but is founded more on basic principles. We also analyze the case where the H(exp -1)-norm in the functional is replaced by a discrete functional to make the computation feasible. We show that the resulting algebraic equations can be uniformly preconditioned by well-known techniques.

  7. Compressible flows with periodic vortical disturbances around lifting airfoils. Ph.D. Thesis - Notre Dame Univ.

    NASA Technical Reports Server (NTRS)

    Scott, James R.

    1991-01-01

    A numerical method is developed for solving periodic, three-dimensional, vortical flows around lifting airfoils in subsonic flow. The first-order method that is presented fully accounts for the distortion effects of the nonuniform mean flow on the convected upstream vortical disturbances. The unsteady velocity is split into a vortical component which is a known function of the upstream flow conditions and the Lagrangian coordinates of the mean flow, and an irrotational field whose potential satisfies a nonconstant-coefficient, inhomogeneous, convective wave equation. Using an elliptic coordinate transformation, the unsteady boundary value problem is solved in the frequency domain on grids which are determined as a function of the Mach number and reduced frequency. The numerical scheme is validated through extensive comparisons with known solutions to unsteady vortical flow problems. In general, it is seen that the agreement between the numerical and analytical results is very good for reduced frequencies ranging from 0 to 4, and for Mach numbers ranging from .1 to .8. Numerical results are also presented for a wide variety of flow configurations for the purpose of determining the effects of airfoil thickness, angle of attack, camber, and Mach number on the unsteady lift and moment of airfoils subjected to periodic vortical gusts. It is seen that each of these parameters can have a significant effect on the unsteady airfoil response to the incident disturbances, and that the effect depends strongly upon the reduced frequency and the dimensionality of the gust. For a one-dimensional (transverse) or two-dimensional (transverse and longitudinal) gust, the results indicate that airfoil thickness increases the unsteady lift and moment at the low reduced frequencies but decreases it at the high reduced frequencies. The results show that an increase in airfoil Mach number leads to a significant increase in the unsteady lift and moment for the low reduced frequencies, but a significant decrease for the high reduced frequencies.

  8. Inlet Guide Vane Wakes Including Rotor Effects

    NASA Astrophysics Data System (ADS)

    Johnston, R. T.; Fleeter, S.

    2001-02-01

    Fundamental experiments are described directed at the investigation of forcing functions generated by an inlet guide vane (IGV) row, including interactions with the downstream rotor, for application to turbomachine forced response design systems. The experiments are performed in a high-speed research fan facility comprised of an IGV row upstream of a rotor. IGV-rotor axial spacing is variable, with the IGV row able to be indexed circumferentially, thereby allowing measurements to be made across several IGV wakes. With an IGV relative Mach number of 0.29, measurements include the IGV wake pressure and velocity fields for three IGV-rotor axial spacings. The decay characteristics of the IGV wakes are compared to the Majjigi and Gliebe empirical correlations. After Fourier decomposition, a vortical-potential gust splitting analysis is implemented to determine the vortical and potential harmonic wake gust forcing functions both upstream and downstream of the rotor. Higher harmonics of the vortical gust component of the IGV wakes are found to decay at a uniform rate due to viscous diffusion.

  9. Vortical features for myocardial rotation assessment in hypertrophic cardiomyopathy using cardiac tagged magnetic resonance.

    PubMed

    Sanz-Estébanez, Santiago; Cordero-Grande, Lucilio; Sevilla, Teresa; Revilla-Orodea, Ana; de Luis-García, Rodrigo; Martín-Fernández, Marcos; Alberola-López, Carlos

    2018-07-01

    Left ventricular rotational motion is a feature of normal and diseased cardiac function. However, classical torsion and twist measures rely on the definition of a rotational axis which may not exist. This paper reviews global and local rotation descriptors of myocardial motion and introduces new curl-based (vortical) features built from tensorial magnitudes, intended to provide better comprehension about fibrotic tissue characteristics mechanical properties. Fifty-six cardiomyopathy patients and twenty-two healthy volunteers have been studied using tagged magnetic resonance by means of harmonic phase analysis. Rotation descriptors are built, with no assumption about a regular geometrical model, from different approaches. The extracted vortical features have been tested by means of a sequential cardiomyopathy classification procedure; they have proven useful for the regional characterization of the left ventricular function by showing great separability not only between pathologic and healthy patients but also, and specifically, between heterogeneous phenotypes within cardiomyopathies. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. The Turbulent Structure of the Atmosphere: Vorticity, Winds and Temperature Emerge From Molecular Motion

    NASA Astrophysics Data System (ADS)

    Tuck, A. F.; Hovde, S. J.; Lovejoy, S.; Schertzer, D.

    2007-12-01

    Application of generalized scale invariance to horizontal airborne observations of winds, temperature, ozone and humidity reveals the atmosphere as a random, non-Gaussian Levy process, having mean scaling exponents H (conservation), C1 (intermittency) and alpha (Levy) of 0.56, 0.05 and 1.6 respectively in the cases of winds and temperature. A correlation between the intermittency of temperature and the ozone photodissociation rate in the Arctic lower stratosphere is interpreted in terms of the ring currents of non-equilibrium statistical mechanics in which vortices, fluid dynamical behavior, emerge from thermalized populations of Maxwellian molecules subjected to an anisotropy in the form of a flux. The emergence of jet streams and the definition of atmospheric temperature are examined in the light of these results. The vertical scaling of wind, temperature and humidity is examined through the depth of the troposphere using data observed by GPS dropsondes from the NOAA Gulfstream 4 aircraft over the eastern Pacific Ocean in boreal winter. The results exclude isotropic turbulence in the atmosphere, and reveal the structure of static, moist static and dynamic (Richardson number) stabilities to be sparse fractal sets. Each stable layer contains a set of smaller scale unstable sublayers, each of which in turn contains a set of stable sub-sublayers and so on. The moist static stability scales differently to the dry static stability in the lower troposphere. As with the 'horizontal' data, the 'vertical' data reveal a correlation between H for horizontal wind and measures of jet stream strength. It is pointed out that these results provide potentially a new way of testing numerical models of the atmosphere.

  11. Vortex Chain in a Resonantly Pumped Polariton Superfluid

    PubMed Central

    Boulier, T.; Terças, H.; Solnyshkov, D. D.; Glorieux, Q.; Giacobino, E.; Malpuech, G.; Bramati, A.

    2015-01-01

    Exciton-polaritons are light-matter mixed states interacting via their exciton fraction. They can be excited, manipulated, and detected using all the versatile techniques of modern optics. An exciton-polariton gas is therefore a unique platform to study out-of-equilibrium interacting quantum fluids. In this work, we report the formation of a ring-shaped array of same sign vortices after injection of angular momentum in a polariton superfluid. The angular momentum is injected by a ℓ = 8 Laguerre-Gauss beam. In the linear regime, a spiral interference pattern containing phase defects is visible. In the nonlinear (superfluid) regime, the interference disappears and eight vortices appear, minimizing the energy while conserving the quantized angular momentum. The radial position of the vortices evolves in the region between the two pumps as a function of the density. Hydrodynamic instabilities resulting in the spontaneous nucleation of vortex-antivortex pairs when the system size is sufficiently large confirm that the vortices are not constrained by interference when nonlinearities dominate the system. PMID:25784592

  12. The shallow water equation and the vorticity equation for a change in height of the topography.

    PubMed

    Da, ChaoJiu; Shen, BingLu; Yan, PengCheng; Ma, DeShan; Song, Jian

    2017-01-01

    We consider the shallow water equation and the vorticity equations for a variable height of topography. On the assumptions that the atmosphere is incompressible and a constant density, we simplify the coupled dynamic equations. The change in topographic height is handled as the sum of the inherent and changing topography using the perturbation method, together with appropriate boundary conditions of the atmosphere, to obtain the relationship between the relative height of the flow, the inherent topography and the changing topography. We generalize the conservation of the function of relative position, and quantify the relationship between the height of the topography and the relative position of a fluid element. If the height of the topography increases (decreases), the relative position of a fluid element descends (ascends). On this basis, we also study the relationship between the vorticity and the topography to find the vorticity decreasing (increasing) for an increasing (decreasing) height of the topography.

  13. The shallow water equation and the vorticity equation for a change in height of the topography

    PubMed Central

    Shen, BingLu; Yan, PengCheng; Ma, DeShan; Song, Jian

    2017-01-01

    We consider the shallow water equation and the vorticity equations for a variable height of topography. On the assumptions that the atmosphere is incompressible and a constant density, we simplify the coupled dynamic equations. The change in topographic height is handled as the sum of the inherent and changing topography using the perturbation method, together with appropriate boundary conditions of the atmosphere, to obtain the relationship between the relative height of the flow, the inherent topography and the changing topography. We generalize the conservation of the function of relative position, and quantify the relationship between the height of the topography and the relative position of a fluid element. If the height of the topography increases (decreases), the relative position of a fluid element descends (ascends). On this basis, we also study the relationship between the vorticity and the topography to find the vorticity decreasing (increasing) for an increasing (decreasing) height of the topography. PMID:28591129

  14. Point vortex interactions on a toroidal surface.

    PubMed

    Sakajo, Takashi; Shimizu, Yuuki

    2016-07-01

    Owing to non-constant curvature and a handle structure, it is not easy to imagine intuitively how flows with vortex structures evolve on a toroidal surface compared with those in a plane, on a sphere and a flat torus. In order to cultivate an insight into vortex interactions on this manifold, we derive the evolution equation for N -point vortices from Green's function associated with the Laplace-Beltrami operator there, and we then formulate it as a Hamiltonian dynamical system with the help of the symplectic geometry and the uniformization theorem. Based on this Hamiltonian formulation, we show that the 2-vortex problem is integrable. We also investigate the point vortex equilibria and the motion of two-point vortices with the strengths of the same magnitude as one of the fundamental vortex interactions. As a result, we find some characteristic interactions between point vortices on the torus. In particular, two identical point vortices can be locally repulsive under a certain circumstance.

  15. Point vortex interactions on a toroidal surface

    PubMed Central

    Shimizu, Yuuki

    2016-01-01

    Owing to non-constant curvature and a handle structure, it is not easy to imagine intuitively how flows with vortex structures evolve on a toroidal surface compared with those in a plane, on a sphere and a flat torus. In order to cultivate an insight into vortex interactions on this manifold, we derive the evolution equation for N-point vortices from Green's function associated with the Laplace–Beltrami operator there, and we then formulate it as a Hamiltonian dynamical system with the help of the symplectic geometry and the uniformization theorem. Based on this Hamiltonian formulation, we show that the 2-vortex problem is integrable. We also investigate the point vortex equilibria and the motion of two-point vortices with the strengths of the same magnitude as one of the fundamental vortex interactions. As a result, we find some characteristic interactions between point vortices on the torus. In particular, two identical point vortices can be locally repulsive under a certain circumstance. PMID:27493577

  16. Regional statistics in confined two-dimensional decaying turbulence.

    PubMed

    Házi, Gábor; Tóth, Gábor

    2011-06-28

    Two-dimensional decaying turbulence in a square container has been simulated using the lattice Boltzmann method. The probability density function (PDF) of the vorticity and the particle distribution functions have been determined at various regions of the domain. It is shown that, after the initial stage of decay, the regional area averaged enstrophy fluctuates strongly around a mean value in time. The ratio of the regional mean and the overall enstrophies increases monotonously with increasing distance from the wall. This function shows a similar shape to the axial mean velocity profile of turbulent channel flows. The PDF of the vorticity peaks at zero and is nearly symmetric considering the statistics in the overall domain. Approaching the wall, the PDFs become skewed owing to the boundary layer.

  17. The relationship between free-stream coherent structures and near-wall streaks at high Reynolds numbers

    PubMed Central

    Deguchi, K.; Hall, P.

    2017-01-01

    The present work is based on our recent discovery of a new class of exact coherent structures generated near the edge of quite general boundary layer flows. The structures are referred to as free-stream coherent structures and were found using a large Reynolds number asymptotic approach to describe equilibrium solutions of the Navier–Stokes equations. In this paper, first we present results for a new family of free-stream coherent structures existing at relatively large wavenumbers. The new results are consistent with our earlier theoretical result that such structures can generate larger amplitude wall streaks if and only if the local spanwise wavenumber is sufficiently small. In a Blasius boundary layer, the local wavenumber increases in the streamwise direction so the wall streaks can typically exist only over a finite interval. However, here it is shown that they can interact with wall curvature to produce exponentially growing Görtler vortices through the receptivity process by a novel nonparallel mechanism. The theoretical predictions found are confirmed by a hybrid numerical approach. In contrast with previous receptivity investigations, it is shown that the amplitude of the induced vortex is larger than the structures in the free-stream which generate it. This article is part of the themed issue ‘Toward the development of high-fidelity models of wall turbulence at large Reynolds number’. PMID:28167574

  18. The relationship between free-stream coherent structures and near-wall streaks at high Reynolds numbers.

    PubMed

    Deguchi, K; Hall, P

    2017-03-13

    The present work is based on our recent discovery of a new class of exact coherent structures generated near the edge of quite general boundary layer flows. The structures are referred to as free-stream coherent structures and were found using a large Reynolds number asymptotic approach to describe equilibrium solutions of the Navier-Stokes equations. In this paper, first we present results for a new family of free-stream coherent structures existing at relatively large wavenumbers. The new results are consistent with our earlier theoretical result that such structures can generate larger amplitude wall streaks if and only if the local spanwise wavenumber is sufficiently small. In a Blasius boundary layer, the local wavenumber increases in the streamwise direction so the wall streaks can typically exist only over a finite interval. However, here it is shown that they can interact with wall curvature to produce exponentially growing Görtler vortices through the receptivity process by a novel nonparallel mechanism. The theoretical predictions found are confirmed by a hybrid numerical approach. In contrast with previous receptivity investigations, it is shown that the amplitude of the induced vortex is larger than the structures in the free-stream which generate it.This article is part of the themed issue 'Toward the development of high-fidelity models of wall turbulence at large Reynolds number'. © 2017 The Author(s).

  19. The Aerodynamic and Dynamic Loading of a Slender Structure by an Impacting Tornado-Like Vortex: The Influence of Relative Vortex-to-Structure Size on Structural Loading

    NASA Astrophysics Data System (ADS)

    Strasser, Matthew N.

    Structural loading produced by an impacting vortex is a hazardous phenomenon that is encountered in numerous applications ranging from the destruction of residences by tornados to the chopping of tip vortices by rotors. Adequate design of structures to resist vortex-induced structural loading necessitates study of the phenomenon that control the structural loading produced by an impacting vortex. This body of work extends the current knowledge base of vortex-structure interaction by evaluating the influence of the relative vortex-to-structure size on the structural loading that the vortex produces. A computer model is utilized to directly simulate the two-dimensional impact of an impinging vortex with a slender, cylindrical structure. The vortex's tangential velocity profile (TVP) is defined by a normalization of the Vatistas analytical (TVP) which realistically replicates the documented spectrum of measured vortex TVPs. The impinging vortex's maximum tangential velocity is fixed, and the vortex's critical radius is incremented from one to one-hundred times the structure's diameter. When the impinging vortex is small, it interacts with vortices produced on the structure by the free stream, and maximum force coefficient amplitudes vary by more than 400% when the impinging vortex impacts the structure at different times. Maximum drag and lift force coefficient amplitudes reach asymptotic values as the impinging vortex's size increases that are respectively 94.77% and 10.66% less than maximum force coefficients produced by an equivalent maximum velocity free stream. The vortex produces maximum structural loading when its path is shifted above the structure's centerline, and maximum drag and lift force coefficients are respectively up to 4.80% and 34.07% greater than maximum force coefficients produced by an equivalent-velocity free stream. Finally, the dynamic load factor (DLF) concept is used to develop a generalized methodology to assess the dynamic amplification of a structure's response to vortex loading and to assess the dynamic loading threat that tornados pose. Typical civil and residential structures will not experience significant response amplification, but responses of very flexible structures may be amplified by up to 2.88 times.

  20. A flying hot wire study of the turbulent near wake of a circular cylinder at Reynolds number of 140,000. Ph.D. Thesis. Progress Report

    NASA Technical Reports Server (NTRS)

    Cantwell, B. J.

    1975-01-01

    The phenomenology was studied of the processes of vortex formation and transport in the near wake, at a Reynolds number sufficiently high to insure a fully turbulent wake, but low enough to insure a laminar separation. The apparatus developed for measuring this flow consisted of X-array hot wire probes mounted on the ends of a pair of whirling arms. A computer controlled data acquisition system was slaved to the position of the rotating arm and managed, monitored, edited, and recorded the vast profusion of data which is continuously poured out by the device. Results are presented which show the instantaneous velocity, intermittency, vorticity, and stress fields as a function of phase for the first six diameters of the near wake. The stresses in the near wake emerge as a concatenation of peaks and valleys, some the result of strong induced motions in the outer flow which cause free stream fluid to move rapidly inward toward the center of the wake, others the result of the random motions of the background turbulence.

  1. Numerical Studies of Boundary-Layer Receptivity

    NASA Technical Reports Server (NTRS)

    Reed, Helen L.

    1995-01-01

    Direct numerical simulations (DNS) of the acoustic receptivity process on a semi-infinite flat plate with a modified-super-elliptic (MSE) leading edge are performed. The incompressible Navier-Stokes equations are solved in stream-function/vorticity form in a general curvilinear coordinate system. The steady basic-state solution is found by solving the governing equations using an alternating direction implicit (ADI) procedure which takes advantage of the parallelism present in line-splitting techniques. Time-harmonic oscillations of the farfield velocity are applied as unsteady boundary conditions to the unsteady disturbance equations. An efficient time-harmonic scheme is used to produce the disturbance solutions. Buffer-zone techniques have been applied to eliminate wave reflection from the outflow boundary. The spatial evolution of Tollmien-Schlichting (T-S) waves is analyzed and compared with experiment and theory. The effects of nose-radius, frequency, Reynolds number, angle of attack, and amplitude of the acoustic wave are investigated. This work is being performed in conjunction with the experiments at the Arizona State University Unsteady Wind Tunnel under the direction of Professor William Saric. The simulations are of the same configuration and parameters used in the wind-tunnel experiments.

  2. Vortex Design Problem

    NASA Astrophysics Data System (ADS)

    Protas, Bartosz

    2007-11-01

    In this investigation we are concerned with a family of solutions of the 2D steady--state Euler equations, known as the Prandtl--Batchelor flows, which are characterized by the presence of finite--area vortex patches embedded in an irrotational flow. We are interested in flows in the exterior of a circular cylinder and with a uniform stream at infinity, since such flows are often employed as models of bluff body wakes in the high--Reynolds number limit. The ``vortex design'' problem we consider consists in determining a distribution of the wall--normal velocity on parts of the cylinder boundary such that the vortex patches modelling the wake vortices will have a prescribed shape and location. Such inverse problem have applications in various areas of flow control, such as mitigation of the wake hazard. We show how this problem can be solved computationally by formulating it as a free--boundary optimization problem. In particular, we demonstrate that derivation of the adjoint system, required to compute the cost functional gradient, is facilitated by application of the shape differential calculus. Finally, solutions of the vortex design problem are illustrated with computational examples.

  3. Nonlinear Stability and Structure of Compressible Reacting Mixing Layers

    NASA Technical Reports Server (NTRS)

    Day, M. J.; Mansour, N. N.; Reynolds, W. C.

    2000-01-01

    The parabolized stability equations (PSE) are used to investigate issues of nonlinear flow development and mixing in compressible reacting shear layers. Particular interest is placed on investigating the change in flow structure that occurs when compressibility and heat release are added to the flow. These conditions allow the 'outer' instability modes- one associated with each of the fast and slow streams-to dominate over the 'central', Kelvin-Helmholtz mode that unaccompanied in incompressible nonreacting mixing layers. Analysis of scalar probability density functions in flows with dominant outer modes demonstrates the ineffective, one-sided nature of mixing that accompany these flow structures. Colayer conditions, where two modes have equal growth rate and the mixing layer is formed by two sets of vortices, offer some opportunity for mixing enhancement. Their extent, however, is found to be limited in the mixing layer's parameter space. Extensive validation of the PSE technique also provides a unique perspective on central- mode vortex pairing, further supporting the view that pairing is primarily governed perspective sheds insight on how linear stability theory is able to provide such an accurate prediction of experimentally-observed, fully nonlinear flow phenomenon.

  4. Digital image analysis of a turbulent flame

    NASA Astrophysics Data System (ADS)

    Zucherman, L.; Kawall, J. G.; Keffer, J. F.

    1988-01-01

    Digital image analysis of cine pictures of an unconfined rich premixed turbulent flame has been used to determine structural characteristics of the turbulent/non-turbulent interface of the flame. The results, comprising various moments of the interface position, probability density functions and correlation functions, establish that the instantaneous flame-interface position is essentially a Gaussian random variable with a superimposed quasi-periodical component. The latter is ascribable to a pulsation caused by the convection and the stretching of ring vortices present within the flame. To a first approximation, the flame can be considered similar to a three-dimensional axisymmetric turbulent jet, with superimposed ring vortices, in which combustion occurs.

  5. Instability waves and transition in adverse-pressure-gradient boundary layers

    NASA Astrophysics Data System (ADS)

    Bose, Rikhi; Zaki, Tamer A.; Durbin, Paul A.

    2018-05-01

    Transition to turbulence in incompressible adverse-pressure-gradient (APG) boundary layers is investigated by direct numerical simulations. Purely two-dimensional instability waves develop on the inflectional base velocity profile. When the boundary layer is perturbed by isotropic turbulence from the free stream, streamwise elongated streaks form and may interact with the instability waves. Subsequent mechanisms that trigger transition depend on the intensity of the free-stream disturbances. All evidence from the present simulations suggest that the growth rate of instability waves is sufficiently high to couple with the streaks. Under very low levels of free-stream turbulence (˜0.1 % ), transition onset is highly sensitive to the inlet disturbance spectrum and is accelerated if the spectrum contains frequency-wave-number combinations that are commensurate with the instability waves. Transition onset and completion in this regime is characterized by formation and breakdown of Λ vortices, but they are more sporadic than in natural transition. Beneath free-stream turbulence with higher intensity (1-2 % ), bypass transition mechanisms are dominant, but instability waves are still the most dominant disturbances in wall-normal and spanwise perturbation spectra. Most of the breakdowns were by disturbances with critical layers close to the wall, corresponding to inner modes. On the other hand, the propensity of an outer mode to occur increases with the free-stream turbulence level. Higher intensity free-stream disturbances induce strong streaks that favorably distort the boundary layer and suppress the growth of instability waves. But the upward displacement of high amplitude streaks brings them to the outer edge of the boundary layer and exposes them to ambient turbulence. Consequently, high-amplitude streaks exhibit an outer-mode secondary instability.

  6. Counter-rotating vortex pairs in the wake of a vertical axis wind turbine

    NASA Astrophysics Data System (ADS)

    Rolin, Vincent; Porté-Agel, Fernando

    2017-04-01

    Despite the rising popularity of vertical axis wind turbines, or VAWTs, the wakes behind these machines is much less well understood than those behind horizontal axis wind turbines, or HAWTs. A thorough understanding of wakes is important as they can cause turbines in wind farms to produce less power than anticipated and increase the fatigue loading on turbines due to vibrations. In order to gain a deeper understanding of the wake behind a vertical axis wind turbine in atmospheric flow stereo-PIV is implemented in a boundary-layer wind tunnel to produce snapshots of the 3-component velocity field in the wake at various downstream positions. The boundaries of the wake are readily observed due to the high velocity gradients and turbulence present here. Two pairs of counter-rotating vortices similar to those in the wake of yawed HAWTs are also observed. An examination of the momentum fluxes behind the turbine demonstrates that the mean flow induced by these vortices entrains a large quantity of momentum from the unperturbed boundary layer flow above the wake. This effect proves to play an even more significant role than turbulence in reintroducing momentum into the wake. In order to comprehend why the VAWT produces these vortices we modify the double-multiple stream-tube model typically used to predict VAWT performance to incorporate crosswind forces. The similarity between VAWT and yawed HAWT wakes is found not to be coincidental as both cases feature rotors which exert a lateral thrust on the incoming wind which leads to the creation of counter-rotating vortex pairs.

  7. Linear stability analysis and nonlinear simulation of the channeling effect on viscous fingering instability in miscible displacement

    NASA Astrophysics Data System (ADS)

    Shahnazari, M. R.; Maleka Ashtiani, I.; Saberi, A.

    2018-03-01

    In this paper, the effect of channeling on viscous fingering instability of miscible displacement in porous media is studied. In fact, channeling is introduced as a solution to stabilize the viscous fingering instability. In this solution, narrow channels were placed next to the walls, and by considering an exponential function to model the channeling effect, a heterogeneous media is assumed. In linear stability analysis, the governing equations are transferred to Fourier space, and by introducing a novel numerical method, the transferred equations are analyzed. The growth rate based on the wave number diagram has been drawn up in three sections of the medium. It is found that the flow becomes more stable at the center and unstable along the walls when the permeability ratio is increased. Also when the permeability ratio is approximately equal to one, the channeling has no significant effect. In nonlinear simulations, by using stream function and vortices, new equations have been rewritten and it is shown that channeling has a profound effect on the growth of the fingers and mechanisms. In addition to the superposition of velocity vectors and concentration contours, the development of instability is investigated using the mixing length and sweep efficiency diagram. The results show that although channeling reduces instability, it increases the displacement process time.

  8. Spatiotemporal dynamics and optical vortices in a photorefractive phase-conjugate resonator

    NASA Technical Reports Server (NTRS)

    Liu, Siuying Raymond; Indebetouw, Guy

    1992-01-01

    A truncated modal expansion approach is used to study the spatiotemporal dynamics of a phase-conjugate resonator as a function of Bragg detuning. The numerical results reveal a rich variety of behaviors. Emphasis is given to the spatial distribution of optical vortices, their trajectories and their relationship to the beam's spatial coherence. The limitations of the model are discussed and experimental results are presented for comparison with the model's predictions and assessment of its soundness.

  9. Unsteady potential flow past a propeller blade section

    NASA Technical Reports Server (NTRS)

    Takallu, M. A.

    1990-01-01

    An analytical study was conducted to predict the effect of an oscillating stream on the time dependent sectional pressure and lift coefficients of a model propeller blade. The assumption is that as the blade sections encounter a wake, the actual angles of attack vary in a sinusoidal manner through the wake, thus each blade is exposed to an unsteady stream oscillating about a mean value at a certain reduced frequency. On the other hand, an isolated propeller at some angle of attack can experience periodic changes in the value of the flow angle causing unsteady loads on the blades. Such a flow condition requires the inclusion of new expressions in the formulation of the unsteady potential flow around the blade sections. These expressions account for time variation of angle of attack and total shed vortices in the wake of each airfoil section. It was found that the final expressions for the unsteady pressure distribution on each blade section are periodic and that the unsteady circulation and lift coefficients exhibit a hysteresis loop.

  10. A Dual-Plane PIV Study of Turbulent Heat Transfer Flows

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.; Wroblewski, Adam C.; Locke, Randy J.

    2016-01-01

    Thin film cooling is a widely used technique in turbomachinery and rocket propulsion applications, where cool injection air protects a surface from hot combustion gases. The injected air typically has a different velocity and temperature from the free stream combustion flow, yielding a flow field with high turbulence and large temperature differences. These thin film cooling flows provide a good test case for evaluating computational model prediction capabilities. The goal of this work is to provide a database of flow field measurements for validating computational flow prediction models applied to turbulent heat transfer flows. In this work we describe the application of a Dual-Plane Particle Image Velocimetry (PIV) technique in a thin film cooling wind tunnel facility where the injection air stream velocity and temperatures are varied in order to provide benchmark turbulent heat transfer flow field measurements. The Dual-Plane PIV data collected include all three components of velocity and all three components of vorticity, spanning the width of the tunnel at multiple axial measurement planes.

  11. Computation of the inviscid supersonic flow about cones at large angles of attack by a floating discontinuity approach

    NASA Technical Reports Server (NTRS)

    Daywitt, J.; Kutler, P.; Anderson, D.

    1977-01-01

    The technique of floating shock fitting is adapted to the computation of the inviscid flowfield about circular cones in a supersonic free stream at angles of attack that exceed the cone half-angle. The resulting equations are applicable over the complete range of free-stream Mach numbers, angles of attack and cone half-angles for which the bow shock is attached. A finite difference algorithm is used to obtain the solution by an unsteady relaxation approach. The bow shock, embedded cross-flow shock, and vortical singularity in the leeward symmetry plane are treated as floating discontinuities in a fixed computational mesh. Where possible, the flowfield is partitioned into windward, shoulder, and leeward regions with each region computed separately to achieve maximum computational efficiency. An alternative shock fitting technique which treats the bow shock as a computational boundary is developed and compared with the floating-fitting approach. Several surface boundary condition schemes are also analyzed.

  12. Stability analysis of confined V-shaped flames in high-velocity streams.

    PubMed

    El-Rabii, Hazem; Joulin, Guy; Kazakov, Kirill A

    2010-06-01

    The problem of linear stability of confined V-shaped flames with arbitrary gas expansion is addressed. Using the on-shell description of flame dynamics, a general equation governing propagation of disturbances of an anchored flame is obtained. This equation is solved analytically for V-flames anchored in high-velocity channel streams. It is demonstrated that dynamics of the flame disturbances in this case is controlled by the memory effects associated with vorticity generated by the perturbed flame. The perturbation growth rate spectrum is determined, and explicit analytical expressions for the eigenfunctions are given. It is found that the piecewise linear V structure is unstable for all values of the gas expansion coefficient. Despite the linearity of the basic pattern, however, evolutions of the V-flame disturbances are completely different from those found for freely propagating planar flames or open anchored flames. The obtained results reveal strong influence of the basic flow and the channel walls on the stability properties of confined V-flames.

  13. Review of the physics of enhancing vortex lift by unsteady excitation

    NASA Technical Reports Server (NTRS)

    Wu, J. Z.; Vakili, A. D.; Wu, J. M.

    1991-01-01

    A review aimed at providing a physical understanding of the crucial mechanisms for obtaining super lift by means of unsteady excitations is presented. Particular attention is given to physical problems, including rolled-up vortex layer instability and receptivity, wave-vortex interaction and resonance, nonlinear streaming, instability of vortices behind bluff bodies and their shedding, and vortex breakdown. A general theoretical framework suitable for handling the unsteady vortex flows is introduced. It is suggested that wings with swept and sharp leading edges, equipped with devices for unsteady excitations, could yield the first breakthrough of the unsteady separation barrier and provide super lift at post-stall angle of attack.

  14. Theoretical aerodynamic characteristics of a family of slender wing-tail-body combinations

    NASA Technical Reports Server (NTRS)

    Lomax, Harvard; Byrd, Paul F

    1951-01-01

    The aerodynamic characteristics of an airplane configuration composed of a swept-back, nearly constant chord wing and a triangular tail mounted on a cylindrical body are presented. The analysis is based on the assumption that the free-stream Mach number is near unity or that the configuration is slender. The calculations for the tail are made on the assumption that the vortex system trailing back from the wing is either a sheet lying entirely in the plane of the flat tail surface or has completely "rolled up" into two point vortices that lie either in, above, or below the plane of the tail surface.

  15. Effect of geometry variations on lee-surface vortex-induced heating for flat-bottom three-dimensional bodies at Mach 6

    NASA Technical Reports Server (NTRS)

    Hefner, J. N.

    1973-01-01

    Studies have shown that vortices can produce relatively severe heating on the leeward surfaces of conceptual hypersonic vehicles and that surface geometry can strongly influence this vortex-induced heating. Results which show the effects of systematic geometry variations on the vortex-induced lee-surface heating on simple flat-bottom three-dimensional bodies at angles of attack of 20 deg and 40 deg are presented. The tests were conducted at a free-stream Mach number of 6 and at a Reynolds number of 1.71 x 10 to the 7th power per meter.

  16. Characteristics of mesoscale vortices over China in 2015

    NASA Astrophysics Data System (ADS)

    Shu, Yu; Sun, Jisong; Pan, Yinong

    2017-12-01

    Mesoscale vortices, which appear at middle and lower levels of rainstorms, are cyclonic circulations with a size ranging from tens of kilometers to several hundred kilometers. Mesoscale vortices often have close relationships with convective activities. The ERA-Interim dataset and an automatic vortex-searching method were used to identify the mesoscale vortices occurring over China in 2015 and their basic characteristics were analyzed. The mesoscale vortices are divided into three categories: mesoscale convective vortices, mesoscale stratiform vortices, and mesoscale dry vortices. The mesoscale convective vortices have the largest intensity, size, and duration, whereas the mesoscale dry vortices have the smallest. Mesoscale convective vortices are able to form in any direction of the parent mesoscale convective system, although the secondary convection tends to appear to the southeast of the parent vortices. The mesoscale vortices tend to generate in the transition area between high and low altitudes. The leeward side of the Tibetan Plateau is the main source region of mesoscale vortices in China. Most of vortices are generated at midday and midnight. The activities of mesoscale convective vortices and mesoscale stratiform vortices peak in summer, whereas those of the mesoscale dry vortices peak in winter.

  17. Conformal invariance of the Lungren-Monin-Novikov equations for vorticity fields in 2D turbulence

    NASA Astrophysics Data System (ADS)

    Grebenev, V. N.; Wacławczyk, M.; Oberlack, M.

    2017-10-01

    We study the statistical properties of the vorticity field in two-dimensional turbulence. The field is described in terms of the infinite Lundgren-Monin-Novikov (LMN) chain of equations for multi-point probability density functions (pdf’s) of vorticity. We perform a Lie group analysis of the first equation in this chain using the direct method based on the canonical Lie-Bäcklund transformations devised for integro-differential equations. We analytically show that the conformal group is broken for the first LMN equation i.e. for the 1-point pdf at least for the inviscid case but the equation is still conformally invariant on the associated characteristic with zero-vorticity. Then, we demonstrate that this characteristic is conformally transformed. We find this outcome coincides with the numerical results about the conformal invariance of the statistics of zero-vorticity isolines, see e.g. Falkovich (2007 Russian Math. Surv. 63 497-510). The conformal symmetry can be understood as a ‘local scaling’ and its traces in two-dimensional turbulence were already discussed in the literature, i.e. it was conjectured more than twenty years ago in Polyakov (1993 Nucl. Phys. B 396 367-85) and clearly validated experimentally in Bernard et al (2006 Nat. Phys. 2 124-8).

  18. Axisymmetric bluff-body flow: A vortex solver for thin shells

    NASA Astrophysics Data System (ADS)

    Strickland, J. H.

    1992-05-01

    A method which is capable of solving the axisymmetric flow field over bluff bodies consisting of thin shells such as disks, partial spheres, rings, and other such shapes is presented in this report. The body may be made up of several shells whose edges are separated by gaps. The body may be moved axially according to arbitrary velocity time histories. In addition, the surfaces may possess axial and radial degrees of flexibility such that points on the surfaces may be allowed to move relative to each other according to some specified function of time. The surfaces may be either porous or impervious. The present solution technique is based on the axisymmetric vorticity transport equation. Physically, this technique simulates the generation of vorticity at body surfaces in the form of discrete ring vortices which are subsequently diffused and convected into the boundary layers and wake of the body. Relatively large numbers of vortices (1000 or more) are required to obtain good simulations. Since the direct calculation of perturbations from large numbers of ring vortices is computationally intensive, a fast multipole method was used to greatly reduce computer processing time. Several example calculations are presented for disks, disks with holes, hemispheres, and vented hemispheres. These results are compared with steady and unsteady experimental data.

  19. An Experiment on the Near Flow Field of the GE/ARL Mixer Ejector Nozzle

    NASA Technical Reports Server (NTRS)

    Zaman, K. B. M. Q.

    2004-01-01

    This report is a documentation of the results on flowfield surveys for the GE/ARL mixer-ejector nozzle carried out in an open jet facility at NASA Glenn Research Center. The results reported are for cold (unheated) flow without any surrounding co-flowing stream. Distributions of streamwise vorticity as well as turbulent stresses, obtained by hot-wire anemometry, are presented for a low subsonic condition. Pitot probe survey results are presented for nozzle pressure ratios up to 3.5. Flowfields both inside and outside of the ejector are considered. Inside the ejector, the mean velocity distribution exhibits a cellular pattern on the cross sectional plane, originating from the flow through the primary and secondary chutes. With increasing downstream distance an interchange of low velocity regions with adjacent high velocity regions takes place due to the action of the streamwise vortices. At the ejector exit, the velocity distribution is nonuniform at low and high pressure ratios but reasonably uniform at intermediate pressure ratios. The effects of two chevron configurations and a tab configuration on the evolution of the downstream jet are also studied. Compared to the baseline case, minor but noticeable effects are observed on the flowfield.

  20. Particle-in-cell simulations of the lower-hybrid instability driven by an ion-ring distribution

    NASA Astrophysics Data System (ADS)

    Swanekamp, Stephen; Richardson, Steve; Mithaiwala, Manish; Crabtree, Chris

    2013-10-01

    Fully electromagnetic particle-in-cell simulations of the excitation of the lower-hybrid mode in a plasma driven by an ion-ring distribution using the Lsp code are presented. At early times the simulations agree with linear theory. The resulting wave evolution and non-linear plasma and ring-ion heating are compared with theoretical models [Mithaiwala et al. 2010; Crabtree et al., this meeting] and previous simulation results [Winske and Daughton, 2012]. 2D simulations show that when the magnetic field is perpendicular to the wave vector, k, the electrostatic potential fluctuations work in conjunction with the applied magnetic field causing a circular electron E ×B drift around a positively charged center. Similar phenomena are observed in 2D simulations of magnetic-field penetration into a spatially inhomogeneous unmagnetized plasma [Richardson et al., this meeting] where circular paramagnetic vortices are formed. These vortices are altered by the addition of a small, in-plane, component of magnetic field which allows electrons to stream along field lines effectively shorting out one component of the electric field. In this case, the vortex structures are no longer circular but elongated along the direction of the in-plane magnetic field component.

  1. Initiation of Long-Wave Instability of Vortex Pairs at Cruise Altitudes

    NASA Technical Reports Server (NTRS)

    Rossow, Vernon J.

    2011-01-01

    Previous studies have usually attributed the initiation of the long-wave instability of a vortex pair to turbulence in the atmosphere or in the wake of the aircraft. The purpose here is to show by use of observations and photographs of condensation trails shed by aircraft at cruise altitudes that another initiating mechanism is not only possible but is usually the mechanism that initiates the long-wave instability at cruise altitudes. The alternate initiating mechanism comes about when engine thrust is robust enough to form an array of circumferential vortices around each jet-engine-exhaust stream. In those cases, initiation begins when the vortex sheet shed by the wing has rolled up into a vortex pair and descended to the vicinity of the inside bottom of the combined shear-layer vortex arrays. It is the in-and-out (up and down) velocity field between sequential circumferential vortices near the bottom of the array that then impresses disturbance waves on the lift-generated vortex pair that initiate the long-wave instability. A time adjustment to the Crow and Bate estimate for vortex linking is then derived for cases when thrust-based linking occurs.

  2. Lift hysteresis at stall as an unsteady boundary-layer phenomenon

    NASA Technical Reports Server (NTRS)

    Moore, Franklin K

    1956-01-01

    Analysis of rotating stall of compressor blade rows requires specification of a dynamic lift curve for the airfoil section at or near stall, presumably including the effect of lift hysteresis. Consideration of the magnus lift of a rotating cylinder suggests performing an unsteady boundary-layer calculation to find the movement of the separation points of an airfoil fixed in a stream of variable incidence. The consideration of the shedding of vorticity into the wake should yield an estimate of lift increment proportional to time rate of change of angle of attack. This increment is the amplitude of the hysteresis loop. An approximate analysis is carried out according to the foregoing ideas for a 6:1 elliptic airfoil at the angle of attack for maximum lift. The assumptions of small perturbations from maximum lift are made, permitting neglect of distributed vorticity in the wake. The calculated hysteresis loop is counterclockwise. Finally, a discussion of the forms of hysteresis loops is presented; and, for small reduced frequency of oscillation, it is concluded that the concept of a viscous "time lag" is appropriate only for harmonic variations of angle of attack with time at mean conditions other than maximum lift.

  3. Scaling laws and vortex profiles in two-dimensional decaying turbulence.

    PubMed

    Laval, J P; Chavanis, P H; Dubrulle, B; Sire, C

    2001-06-01

    We use high resolution numerical simulations over several hundred of turnover times to study the influence of small scale dissipation onto vortex statistics in 2D decaying turbulence. A scaling regime is detected when the scaling laws are expressed in units of mean vorticity and integral scale, like predicted in Carnevale et al., Phys. Rev. Lett. 66, 2735 (1991), and it is observed that viscous effects spoil this scaling regime. The exponent controlling the decay of the number of vortices shows some trends toward xi=1, in agreement with a recent theory based on the Kirchhoff model [C. Sire and P. H. Chavanis, Phys. Rev. E 61, 6644 (2000)]. In terms of scaled variables, the vortices have a similar profile with a functional form related to the Fermi-Dirac distribution.

  4. Quantum fluctuations of the superconducting cosmic string

    NASA Technical Reports Server (NTRS)

    Zhang, Shoucheng

    1987-01-01

    Quantum fluctuations of the proposed superconducting string with Bose charge carriers are studied in terms of the vortices on the string world sheet. In the thermodynamical limit, it is found that they appear in the form of free vortices rather than as bound pairs. This fluctuation mode violates the topological conservation law on which superconductivity is based. However, this limit may not be reached. The critical size of the superconducting string is estimated as a function of the coupling constants involved.

  5. Vortex locking in direct numerical simulations of quantum turbulence.

    PubMed

    Morris, Karla; Koplik, Joel; Rouson, Damian W I

    2008-07-04

    Direct numerical simulations are used to examine the locking of quantized superfluid vortices and normal fluid vorticity in evolving turbulent flows. The superfluid is driven by the normal fluid, which undergoes either a decaying Taylor-Green flow or a linearly forced homogeneous isotropic turbulent flow, although the back reaction of the superfluid on the normal fluid flow is omitted. Using correlation functions and wavelet transforms, we present numerical and visual evidence for vortex locking on length scales above the intervortex spacing.

  6. Discrete conservation properties for shallow water flows using mixed mimetic spectral elements

    NASA Astrophysics Data System (ADS)

    Lee, D.; Palha, A.; Gerritsma, M.

    2018-03-01

    A mixed mimetic spectral element method is applied to solve the rotating shallow water equations. The mixed method uses the recently developed spectral element histopolation functions, which exactly satisfy the fundamental theorem of calculus with respect to the standard Lagrange basis functions in one dimension. These are used to construct tensor product solution spaces which satisfy the generalized Stokes theorem, as well as the annihilation of the gradient operator by the curl and the curl by the divergence. This allows for the exact conservation of first order moments (mass, vorticity), as well as higher moments (energy, potential enstrophy), subject to the truncation error of the time stepping scheme. The continuity equation is solved in the strong form, such that mass conservation holds point wise, while the momentum equation is solved in the weak form such that vorticity is globally conserved. While mass, vorticity and energy conservation hold for any quadrature rule, potential enstrophy conservation is dependent on exact spatial integration. The method possesses a weak form statement of geostrophic balance due to the compatible nature of the solution spaces and arbitrarily high order spatial error convergence.

  7. Model of random center vortex lines in continuous 2 +1 -dimensional spacetime

    NASA Astrophysics Data System (ADS)

    Altarawneh, Derar; Engelhardt, Michael; Höllwieser, Roman

    2016-12-01

    A picture of confinement in QCD based on a condensate of thick vortices with fluxes in the center of the gauge group (center vortices) is studied. Previous concrete model realizations of this picture utilized a hypercubic space-time scaffolding, which, together with many advantages, also has some disadvantages, e.g., in the treatment of vortex topological charge. In the present work, we explore a center vortex model which does not rely on such a scaffolding. Vortices are represented by closed random lines in continuous 2 +1 -dimensional space-time. These random lines are modeled as being piecewise linear, and an ensemble is generated by Monte Carlo methods. The physical space in which the vortex lines are defined is a torus with periodic boundary conditions. Besides moving, growing, and shrinking of the vortex configurations, also reconnections are allowed. Our ensemble therefore contains not a fixed but a variable number of closed vortex lines. This is expected to be important for realizing the deconfining phase transition. We study both vortex percolation and the potential V (R ) between the quark and antiquark as a function of distance R at different vortex densities, vortex segment lengths, reconnection conditions, and at different temperatures. We find three deconfinement phase transitions, as a function of density, as a function of vortex segment length, and as a function of temperature.

  8. Method of measuring cross-flow vortices by use of an array of hot-film sensors

    NASA Technical Reports Server (NTRS)

    Agarwal, Aval K. (Inventor); Maddalon, Dal V. (Inventor); Mangalam, Siva M. (Inventor)

    1993-01-01

    The invention is a method for measuring the wavelength of cross-flow vortices of air flow having streamlines of flow traveling across a swept airfoil. The method comprises providing a plurality of hot-film sensors. Each hot-film sensor provides a signal which can be processed, and each hot-film sensor is spaced in a straight-line array such that the distance between successive hot-film sensors is less than the wavelength of the cross-flow vortices being measured. The method further comprises determining the direction of travel of the streamlines across the airfoil and positioning the straight-line array of hot film sensors perpendicular to the direction of travel of the streamlines, such that each sensor has a spanwise location. The method further comprises processing the signals provided by the sensors to provide root-mean-square values for each signal, plotting each root-mean-square value as a function of its spanwise location, and determining the wavelength of the cross-flow vortices by noting the distance between two maxima or two minima of root-mean-square values.

  9. On the secondary instability of Taylor-Goertler vortices to Tollmien-Schlichting waves in fully developed flows

    NASA Technical Reports Server (NTRS)

    Bennett, James; Hall, Philip

    1988-01-01

    There are many flows of practical importance where both Tollmien-Schlichting waves and Taylor-Goertler vortices are possible causes of transition to turbulence. The effect of fully nonlinear Taylor-Goertler vortices on the growth of small amplitude Tollmien-Schlichting waves is investigated. The basic state considered is the fully developed flow between concentric cylinders driven by an azimuthal pressure gradient. It is hoped that an investigation of this problem will shed light on the more complicated external boundary layer problem where again both modes of instability exist in the presence of concave curvature. The type of Tollmien-Schlichting waves considered have the asymptotic structure of lower branch modes of plane Poiseuille flow. Whilst instabilities at lower Reynolds number are possible, the latter modes are simpler to analyze and more relevant to the boundary layer problem. The effect of fully nonlinear Taylor-Goertler vortices on both two-dimensional and three-dimensional waves is determined. It is shown that, whilst the maximum growth as a function of frequency is not greatly affected, there is a large destabilizing effect over a large range of frequencies.

  10. On the secondary instability of Taylor-Goertler vortices to Tollmien-Schlichting waves in fully-developed flows

    NASA Technical Reports Server (NTRS)

    Bennett, James; Hall, Philip

    1986-01-01

    There are many flows of practical importance where both Tollmien-Schlichting waves and Taylor-Goertler vortices are possible causes of transition to turbulence. The effect of fully nonlinear Taylor-Goertler vortices on the growth of small amplitude Tollmien-Schlichting waves is investigated. The basic state considered is the fully developed flow between concentric cylinders driven by an azimuthal pressure gradient. It is hoped that an investigation of this problem will shed light on the more complicated external boundary layer problem where again both modes of instability exist in the presence of concave curvature. The type of Tollmein-Schlichting waves considered have the asymptotic structure of lower branch modes of plane Poisseulle flow. Whilst instabilities at lower Reynolds number are possible, the latter modes are simpler to analyze and more relevant to the boundary layer problem. The effect of fully nonlinear Taylor-Goertler vortices on both two-dimensional and three-dimensional waves is determined. It is shown that, whilst the maximum growth as a function of frequency is not greatly affected, there is a large destabilizing effect over a large range of frequencies.

  11. The Flow Field on Hydrofoils with Leading Edge Protuberances

    NASA Astrophysics Data System (ADS)

    Custodio, Derrick; Henoch, Charles; Johari, Hamid

    2008-11-01

    The agility of the humpback whale has been attributed to the use of its pectoral flippers, on which protuberances are present along the leading edge. The forces and moments on hydrofoils with leading edge protuberances were measured in a water tunnel and were compared to a baseline NACA 63(4)-021 hydrofoil revealing significant performance differences. Three protuberance amplitudes and two spanwise wavelengths, closely resembling the morphology found in nature, were examined. Qualitative flow visualization techniques were used to examine flow patterns surrounding the hydrofoils, and Particle Image Velocimetry (PIV) was used to quantify these patterns. Flow visualizations have revealed counter-rotating vortices stemming from the shoulders of the protuberances. These streamwise vortices are a result of the spanwise pressure gradient brought about by the varying leading edge curvature. PIV was used to quantify the strength of these vortices as a function of angle of attack and leading edge geometry. At low angles of attack, these vortices are symmetric with respect to the protuberances; however, the symmetry is lost at high angles of attack. The loss of symmetry can be correlated with the separation point location on the hydrofoil.

  12. Coherent vorticity extraction in resistive drift-wave turbulence: Comparison of orthogonal wavelets versus proper orthogonal decomposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Futatani, S.; Bos, W.J.T.; Del-Castillo-Negrete, Diego B

    2011-01-01

    We assess two techniques for extracting coherent vortices out of turbulent flows: the wavelet based Coherent Vorticity Extraction (CVE) and the Proper Orthogonal Decomposition (POD). The former decomposes the flow field into an orthogonal wavelet representation and subsequent thresholding of the coefficients allows one to split the flow into organized coherent vortices with non-Gaussian statistics and an incoherent random part which is structureless. POD is based on the singular value decomposition and decomposes the flow into basis functions which are optimal with respect to the retained energy for the ensemble average. Both techniques are applied to direct numerical simulation datamore » of two-dimensional drift-wave turbulence governed by Hasegawa Wakatani equation, considering two limit cases: the quasi-hydrodynamic and the quasi-adiabatic regimes. The results are compared in terms of compression rate, retained energy, retained enstrophy and retained radial flux, together with the enstrophy spectrum and higher order statistics. (c) 2010 Published by Elsevier Masson SAS on behalf of Academie des sciences.« less

  13. Monopolar vortices as relative equilibria and their dissipative decay

    NASA Astrophysics Data System (ADS)

    Vandefliert, B. W.; Vangroesen, E. W. C.

    1991-11-01

    Families of confined rotating monopolar vortices are characterized using a variational formulation with the angular momentum as the driving force for confinement. The characterization for positive monopolar vortices given, can be extended to negative vortices or to vortices within a rotating frame of reference. Besides the uniform Kirchhoff paths, new branches of vorticity solutions are found restricting the dynamics to levelsets of both the angular momentum and the quadratic anisotropy. The rotation rate of the smooth vorticity structures depends on the vorticity profile. This is made perceptible by considering both minimum energy vortices and minimizing vortices, rotating counterclockwise and clockwise respectively. An approximation for the decay of the vortices due to dissipation is given in terms of the dissipation of the integrals in the inviscid system. This description enables us to consider dissipation of vortices without loss of confinement. The elliptical Kirchhoff patches are found to symmetrize into circular patches. The minimum energy vortices gradually diminish while expending their support, while the maximum energy vortices are unstable for the dissipative evolution.

  14. Intracardiac Vortex Dynamics by High-Frame-Rate Doppler Vortography-In Vivo Comparison With Vector Flow Mapping and 4-D Flow MRI.

    PubMed

    Faurie, Julia; Baudet, Mathilde; Assi, Kondo Claude; Auger, Dominique; Gilbert, Guillaume; Tournoux, Francois; Garcia, Damien

    2017-02-01

    Recent studies have suggested that intracardiac vortex flow imaging could be of clinical interest to early diagnose the diastolic heart function. Doppler vortography has been introduced as a simple color Doppler method to detect and quantify intraventricular vortices. This method is able to locate a vortex core based on the recognition of an antisymmetric pattern in the Doppler velocity field. Because the heart is a fast-moving organ, high frame rates are needed to decipher the whole blood vortex dynamics during diastole. In this paper, we adapted the vortography method to high-frame-rate echocardiography using circular waves. Time-resolved Doppler vortography was first validated in vitro in an ideal forced vortex. We observed a strong correlation between the core vorticity determined by high-frame-rate vortography and the ground-truth vorticity. Vortography was also tested in vivo in ten healthy volunteers using high-frame-rate duplex ultrasonography. The main vortex that forms during left ventricular filling was tracked during two-three successive cardiac cycles, and its core vorticity was determined at a sampling rate up to 80 duplex images per heartbeat. Three echocardiographic apical views were evaluated. Vortography-derived vorticities were compared with those returned by the 2-D vector flow mapping approach. Comparison with 4-D flow magnetic resonance imaging was also performed in four of the ten volunteers. Strong intermethod agreements were observed when determining the peak vorticity during early filling. It is concluded that high-frame-rate Doppler vortography can accurately investigate the diastolic vortex dynamics.

  15. An analytical approach to fluid ratcheting in oscillatory boundary layer

    NASA Astrophysics Data System (ADS)

    Yu, Jie

    2013-11-01

    It is well known that oscillatory flows close to a rigid or flexible boundary induces a steady streaming due to viscosity. Under progressive motions, this becomes a unidirectional streaming near the boundary (e.g. mass transport or peristaltic pumping in water waves). This mechanism is shared by the phenomenon of ratcheting fluid in a narrow channel by vibrating the channel walls that are lined with asymmetric corrugations (shown by a recent experiment BAPS.2010.DFD.HC.3). A theory is presented here to describe the ratcheting effects in such a channel. A conformal transformation method, developed for waves over arbitrary periodic topographies (Yu & Howard, J. Fluid Mech. 2012), is adapted to deal with large corrugations of the channel walls. Under the assumption that the wall oscillations are of small amplitude, the vorticity dynamics can be analyzed in the mapped plane, obtaining the solution that describes the steady streaming field due to nonlinear convective inertia. The results are discussed, regarding the dependency of the pumping direction on the oscillation frequency of the walls and the effects of the end position relative to the phase of corrugations in the case of a finite length channel. Preliminary experimental data will be presented if time permits. Support by NFS (Grant CBET-0845957) during the period of this work is gratefully acknowledged.

  16. A Free Wake Numerical Simulation for Darrieus Vertical Axis Wind Turbine Performance Prediction

    NASA Astrophysics Data System (ADS)

    Belu, Radian

    2010-11-01

    In the last four decades, several aerodynamic prediction models have been formulated for the Darrieus wind turbine performances and characteristics. We can identified two families: stream-tube and vortex. The paper presents a simplified numerical techniques for simulating vertical axis wind turbine flow, based on the lifting line theory and a free vortex wake model, including dynamic stall effects for predicting the performances of a 3-D vertical axis wind turbine. A vortex model is used in which the wake is composed of trailing stream-wise and shedding span-wise vortices, whose strengths are equal to the change in the bound vortex strength as required by the Helmholz and Kelvin theorems. Performance parameters are computed by application of the Biot-Savart law along with the Kutta-Jukowski theorem and a semi-empirical stall model. We tested the developed model with an adaptation of the earlier multiple stream-tube performance prediction model for the Darrieus turbines. Predictions by using our method are shown to compare favorably with existing experimental data and the outputs of other numerical models. The method can predict accurately the local and global performances of a vertical axis wind turbine, and can be used in the design and optimization of wind turbines for built environment applications.

  17. High-resolution scanning Hall probe microscopy

    NASA Astrophysics Data System (ADS)

    Hallen, Hans D.; Hess, H. F.; Chang, A. M.; Pfeiffer, Loren N.; West, Kenneth W.; Mitzi, David B.

    1993-06-01

    A high resolution scanning Hall probe microscope is used to spatially resolve vortices in high temperature superconducting Bi2Sr2CaCu2O8+(delta) crystals. We observe a partially ordered vortex lattice at several different applied magnetic fields and temperatures. At higher temperatures, a limited amount of vortex re-arrangement is observed, but most vortices remain fixed for periods long compared to the imaging time of several hours even at temperatures as high as 75 degree(s)K (the superconducting transition temperature for these crystals is approximately 84 degree(s)K). A measure of these local magnetic penetration depth can be obtained from a fit to the surface field of several neighboring vortices, and has been measured as a function of temperature. In particular, we have measured the zero temperature penetration depth and found it to be 275 +/- 40 nm.

  18. New scheme for braiding Majorana fermions.

    PubMed

    Wu, Long-Hua; Liang, Qi-Feng; Hu, Xiao

    2014-12-01

    Non-Abelian statistics can be achieved by exchanging two vortices in topological superconductors with each grabbing a Majorana fermion (MF) as zero-energy quasi-particle at the cores. However, in experiments it is difficult to manipulate vortices. In the present work, we propose a way to braid MFs without moving vortices. The only operation required in the present scheme is to turn on and off local gate voltages, which liberates a MF from its original host vortex and transports it along the prepared track. We solve the time-dependent Bogoliubov-de Gennes equation numerically, and confirm that the MFs are protected provided the switching of gate voltages for exchanging MFs are adiabatic, which takes only several nano seconds given reasonable material parameters. By monitoring the time evolution of MF wave-functions, we show that non-Abelian statistics is achieved.

  19. Effect of the atmospheric quasi-biweekly oscillation on the vortices moving off the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Li, Lun; Zhang, Renhe; Wen, Min; Lü, Junmei

    2018-02-01

    In the present study, the relationship between the atmospheric quasi-biweekly oscillation (QBWO) and Tibetan Plateau vortices (TPVs) moving off the Tibetan Plateau was investigated based on the radiosonde and reanalysis data. It is found that the number of TPVs moving off the Tibetan Plateau (moving-off TPVs) has the distinct feature of the 10-20-day QBWO. 77% of the moving-off TPVs occur in the positive phases of the 10-20-day filtered 500 hPa vorticity over eastern Tibetan Plateau. Besides, distributions of the zonal and meridional components of E-vectors coincide well with the trajectories of TPVs, indicating the moving-off TPVs are well related with the propagation of the QBWO energy. The atmospheric circulations and related thermodynamic fields are discussed to reveal the mechanism of the effect of 10-20-day QBWO on the moving-off TPVs. It is found that the atmospheric circulations and heating fields of 10-20-day QBWO have major impact on the moving-off TPVs. In positive QBWO phases, at 500 hPa over eastern Tibetan Plateau, there appear negative geopotential height anomalies and anomalous cyclonic wind shear; the anomalous jet stream and positive geopotential heights at 200 hPa lying over the northeast of the Tibetan Plateau stretch eastward gradually, benefiting for the upper level divergence and ascending motion. The condensation latent heat is released and shifts eastward with the heating centers located at 400 hPa, which depresses the isobaric surface at 500 hPa. All these conditions are in favor of the maintenance and eastward movement of TPVs in the positive QBWO phases.

  20. Spanwise effects on instabilities of compressible flow over a long rectangular cavity

    NASA Astrophysics Data System (ADS)

    Sun, Y.; Taira, K.; Cattafesta, L. N.; Ukeiley, L. S.

    2017-12-01

    The stability properties of two-dimensional (2D) and three-dimensional (3D) compressible flows over a rectangular cavity with length-to-depth ratio of L/D=6 are analyzed at a free-stream Mach number of M_∞ =0.6 and depth-based Reynolds number of Re_D=502. In this study, we closely examine the influence of three-dimensionality on the wake mode that has been reported to exhibit high-amplitude fluctuations from the formation and ejection of large-scale spanwise vortices. Direct numerical simulation (DNS) and bi-global stability analysis are utilized to study the stability characteristics of the wake mode. Using the bi-global stability analysis with the time-averaged flow as the base state, we capture the global stability properties of the wake mode at a spanwise wavenumber of β =0. To uncover spanwise effects on the 2D wake mode, 3D DNS are performed with cavity width-to-depth ratio of W/D=1 and 2. We find that the 2D wake mode is not present in the 3D cavity flow with W/D=2, in which spanwise structures are observed near the rear region of the cavity. These 3D instabilities are further investigated via bi-global stability analysis for spanwise wavelengths of λ /D=0.5{-}2.0 to reveal the eigenspectra of the 3D eigenmodes. Based on the findings of 2D and 3D global stability analysis, we conclude that the absence of the wake mode in 3D rectangular cavity flows is due to the release of kinetic energy from the spanwise vortices to the streamwise vortical structures that develops from the spanwise instabilities.

  1. Dust-trapping Vortices and a Potentially Planet-triggered Spiral Wake in the Pre-transitional Disk of V1247 Orionis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kraus, Stefan; Kreplin, Alexander; Young, Alison K.

    The radial drift problem constitutes one of the most fundamental problems in planet formation theory, as it predicts particles to drift into the star before they are able to grow to planetesimal size. Dust-trapping vortices have been proposed as a possible solution to this problem, as they might be able to trap particles over millions of years, allowing them to grow beyond the radial drift barrier. Here, we present ALMA 0.″04 resolution imaging of the pre-transitional disk of V1247 Orionis that reveals an asymmetric ring as well as a sharply confined crescent structure, resembling morphologies seen in theoretical models ofmore » vortex formation. The asymmetric ring (at 0.″17 = 54 au separation from the star) and the crescent (at 0.″38 = 120 au) seem smoothly connected through a one-armed spiral-arm structure that has been found previously in scattered light. We propose a physical scenario with a planet orbiting at ∼0.″3 ≈ 100 au, where the one-armed spiral arm detected in polarized light traces the accretion stream feeding the protoplanet. The dynamical influence of the planet clears the gap between the ring and the crescent and triggers two vortices that trap millimeter-sized particles, namely, the crescent and the bright asymmetry seen in the ring. We conducted dedicated hydrodynamics simulations of a disk with an embedded planet, which results in similar spiral-arm morphologies as seen in our scattered-light images. At the position of the spiral wake and the crescent we also observe {sup 12}CO(3-2) and H{sup 12}CO{sup +} (4-3) excess line emission, likely tracing the increased scale-height in these disk regions.« less

  2. Dust-trapping Vortices and a Potentially Planet-triggered Spiral Wake in the Pre-transitional Disk of V1247 Orionis

    NASA Astrophysics Data System (ADS)

    Kraus, Stefan; Kreplin, Alexander; Fukugawa, Misato; Muto, Takayuki; Sitko, Michael L.; Young, Alison K.; Bate, Matthew R.; Grady, Carol; Harries, Tim T.; Monnier, John D.; Willson, Matthew; Wisniewski, John

    2017-10-01

    The radial drift problem constitutes one of the most fundamental problems in planet formation theory, as it predicts particles to drift into the star before they are able to grow to planetesimal size. Dust-trapping vortices have been proposed as a possible solution to this problem, as they might be able to trap particles over millions of years, allowing them to grow beyond the radial drift barrier. Here, we present ALMA 0.″04 resolution imaging of the pre-transitional disk of V1247 Orionis that reveals an asymmetric ring as well as a sharply confined crescent structure, resembling morphologies seen in theoretical models of vortex formation. The asymmetric ring (at 0.″17 = 54 au separation from the star) and the crescent (at 0.″38 = 120 au) seem smoothly connected through a one-armed spiral-arm structure that has been found previously in scattered light. We propose a physical scenario with a planet orbiting at ˜0.″3 ≈ 100 au, where the one-armed spiral arm detected in polarized light traces the accretion stream feeding the protoplanet. The dynamical influence of the planet clears the gap between the ring and the crescent and triggers two vortices that trap millimeter-sized particles, namely, the crescent and the bright asymmetry seen in the ring. We conducted dedicated hydrodynamics simulations of a disk with an embedded planet, which results in similar spiral-arm morphologies as seen in our scattered-light images. At the position of the spiral wake and the crescent we also observe 12CO(3-2) and H12CO+ (4-3) excess line emission, likely tracing the increased scale-height in these disk regions.

  3. Role of edge superconducting states in trapping of multi-quanta vortices by microholes. Application of the bitter decoration technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bezryadin, A.; Pannetier, B.

    1996-01-01

    The Bitter decoration technique is used to study the trapping of single and multiple quanta vortices by a lattice of circular microholes. By keeping a thin superconducting layer (the bottom) inside each hole the authors are able to visualise the trapped vortices. From this they determine, for the first time, the filling factor FF, i.e. the number of vortices captured inside a hole. In all cases the sample is cooled at a constant field before making the decoration. Two qualitatively different states of the vortex crystal are observed: (1) In case when the interhole distance is much larger than themore » coherence length, the filling factor averaged over many identical holes () is a stepwise function of the magnetic flux (of the external field) through the hole, because each hole captures the same number of vortices. The density of fluxoids inside the openings is higher than in the uniform film, but much lower than it should be in the state of equilibrium. The authors claim that the number of trapped vortices is determined by the edge superconducting states which appear around each hole at the modified third critical field H{sub c3}* > H{sub c2}. Below H{sub c2} such states produce a surface barrier of a new type. This barrier for the vortex entrance and exit is due to the strong increase of the order parameter near the hole edge. It keeps constant the number of captured vortices during the cooling at a fixed field. (2) An increase of the hole density or of the hole radius initiates a sharp redistribution of fluxoids: all of them drop inside holes. This first order transition leads to a localization of all vortices and consequently to a qualitative change of the transport properties (TAFF in this case). In the resulting new state the filling factor is not any more the same for neighboring holes and its averaged value is equal to the frustration of the hole network.« less

  4. Absolute/convective secondary instabilities and the role of confinement in free shear layers

    NASA Astrophysics Data System (ADS)

    Arratia, Cristóbal; Mowlavi, Saviz; Gallaire, François

    2018-05-01

    We study the linear spatiotemporal stability of an infinite row of equal point vortices under symmetric confinement between parallel walls. These rows of vortices serve to model the secondary instability leading to the merging of consecutive (Kelvin-Helmholtz) vortices in free shear layers, allowing us to study how confinement limits the growth of shear layers through vortex pairings. Using a geometric construction akin to a Legendre transform on the dispersion relation, we compute the growth rate of the instability in different reference frames as a function of the frame velocity with respect to the vortices. This approach is verified and complemented with numerical computations of the linear impulse response, fully characterizing the absolute/convective nature of the instability. Similar to results by Healey on the primary instability of parallel tanh profiles [J. Fluid Mech. 623, 241 (2009), 10.1017/S0022112008005284], we observe a range of confinement in which absolute instability is promoted. For a parallel shear layer with prescribed confinement and mixing length, the threshold for absolute/convective instability of the secondary pairing instability depends on the separation distance between consecutive vortices, which is physically determined by the wavelength selected by the previous (primary or pairing) instability. In the presence of counterflow and moderate to weak confinement, small (large) wavelength of the vortex row leads to absolute (convective) instability. While absolute secondary instabilities in spatially developing flows have been previously related to an abrupt transition to a complex behavior, this secondary pairing instability regenerates the flow with an increased wavelength, eventually leading to a convectively unstable row of vortices. We argue that since the primary instability remains active for large wavelengths, a spatially developing shear layer can directly saturate on the wavelength of such a convectively unstable row, by-passing the smaller wavelengths of absolute secondary instability. This provides a wavelength selection mechanism, according to which the distance between consecutive vortices should be sufficiently large in comparison with the channel width in order for the row of vortices to persist. We argue that the proposed wavelength selection criteria can serve as a guideline for experimentally obtaining plane shear layers with counterflow, which has remained an experimental challenge.

  5. EDITORIAL: The FDR Prize The FDR Prize

    NASA Astrophysics Data System (ADS)

    Funakoshi, Mitsuaki

    2011-08-01

    From the 56 papers published in 2010 in Fluid Dynamics Research the following paper has been selected for the fourth FDR prize: 'Baroclinic multipole formation from heton interaction' by M A Sokolovskiy and X J Carton, published in volume 42 (August 2010) 045501. Coherent vortices are a universal feature of fluids at moderate and large Reynolds number, and have particular relevance to the quasi-two-dimensional flows used to model phenomena in the atmosphere and ocean. The structure and interaction of such vortices have proved a fascinating area for the researchers of fluid dynamics, including thoreticians, observers and experimentalists, together with related problems of how they mix fluids and how they transport scalars such as temperature and salinity. In this paper 'hetons' are considered; they are vortices of dipolar structures in a multilayer rotating fluid, carry thermal anomalies, and are relevant to transport in flows such as the Gulf Stream. The paper is a comprehensive study of the structure, invariants and interactions of two opposite-signed hetons in a two-layer fluid for several initial configurations and for several values of the Rossby radius of deformation, using models based on point vortex dynamics and contour dynamics of finite-area vortex regions. Different types of coupling and interactions are isolated and discussed. Depending on the initial configuration and the value of the radius of deformation, the time evolutions toward horizonal dipoles, vertically tilted dipoles, L-shaped dipoles, and Z-shaped tripoles are observed in the case of finite-area vortices. Using point vortex dynamics a rigorous analysis based on trilinear coordinates is performed, and the appearance of similar structures is shown analytically, except for the L-shaped dipoles. The contribution of this paper to the important problem of heton interaction is both profound and substantial. The study will be of great interest to a wide variety of readers and is likely to inspire further numerical and experimental work, as well being helpful in the interpretation and analysis of observations. Overall, the paper will undoubtedly have a large impact on the fluid dynamics community.

  6. Partial-depth lock-release flows

    NASA Astrophysics Data System (ADS)

    Khodkar, M. A.; Nasr-Azadani, M. M.; Meiburg, E.

    2017-06-01

    We extend the vorticity-based modeling concept for stratified flows introduced by Borden and Meiburg [Z. Borden and E. Meiburg, J. Fluid Mech. 726, R1 (2013), 10.1017/jfm.2013.239] to unsteady flow fields that cannot be rendered quasisteady by a change of reference frames. Towards this end, we formulate a differential control volume balance for the conservation of mass and vorticity in the fully unsteady parts of the flow, which we refer to as the differential vorticity model. We furthermore show that with the additional assumptions of locally uniform parallel flow within each layer, the unsteady vorticity modeling approach reproduces the familiar two-layer shallow-water equations. To evaluate its accuracy, we then apply the vorticity model approach to partial-depth lock-release flows. Consistent with the shallow water analysis of Rottman and Simpson [J. W. Rottman and J. E. Simpson, J. Fluid Mech. 135, 95 (1983), 10.1017/S0022112083002979], the vorticity model demonstrates the formation of a quasisteady gravity current front, a fully unsteady expansion wave, and a propagating bore that is present only if the lock depth exceeds half the channel height. When this bore forms, it travels with a velocity that does not depend on the lock height and the interface behind it is always at half the channel depth. We demonstrate that such a bore is energy conserving. The differential vorticity model gives predictions for the height and velocity of the gravity current and the bore, as well as for the propagation velocities of the edges of the expansion fan, as a function of the lock height. All of these predictions are seen to be in good agreement with the direct numerical simulation data and, where available, with experimental results. An energy analysis shows lock-release flows to be energy conserving only for the case of a full lock, whereas they are always dissipative for partial-depth locks.

  7. Hybrid finite-difference/lattice Boltzmann simulations of microchannel and nanochannel acoustic streaming driven by surface acoustic waves

    NASA Astrophysics Data System (ADS)

    Tan, Ming K.; Yeo, Leslie Y.

    2018-04-01

    A two-dimensional hybrid numerical method that allows full coupling of the elastic motion in a piezoelectric solid (modeled using a finite-difference time-domain technique) with the resultant compressional flow in a fluid (simulated using a lattice Boltzmann scheme) is developed to study the acoustic streaming that arises in both microchannels and nanochannels under surface acoustic wave (SAW) excitation. In addition to verifying the model through a comparison of the simulations with results from experimental and numerical studies of microchannel and nanochannel flows driven by both standing and traveling SAWs in the literature, we highlight salient features of the flow field that arise and discuss the underlying mechanisms responsible for the flow. In microchannels, boundary layer streaming is the dominant mechanism when the channel height is below the sound wavelength in the liquid, whereas Eckart streaming—arising as a consequence of the attenuation of the sound wave in the liquid—dominates in the form of periodic vortices for larger channel heights. The absence of Eckart streaming and the overlapping of boundary layers in nanochannels with heights below the boundary layer thickness, on the other hand, give rise to a time-averaged dynamic acoustic pressure that results in an inertial-dominant flow, which paradoxically possesses a parabolic-like velocity profile resembling pressure-driven laminar flow. In contrast, if the nanochannel were to be filled instead with air, the significantly lower fluid density leads to a considerable reduction in the dynamic acoustic pressure and hence inertial forcing such that boundary layer streaming once again dominates, asymptotically imposing a slip condition along the channel surface that results in a negative pluglike velocity profile.

  8. Optimal perturbations of a finite-width mixing layer near the trailing edge

    NASA Astrophysics Data System (ADS)

    Gumbart, James C.; Rabchuk, James

    2002-03-01

    The trailing edge of a surface separating two fluid flows can act as an efficient receptor for acoustic or other disturbances. The incident wave energy is converted by a linear mechanism into incipient flow instabilities which lead further downstream to the transition to turbulence. Understanding this process is essential for analyzing feedback loops and other resonances which can cause unwanted structural vibrations in the surface material or directed acoustic emissions from the mixing region. Previously, the modes of instability in a finite-width mixing layer near the trailing edge were studied as a function of frequency by assuming that vorticity was continually being introduced into the flow at the trailing edge by the forcing field. It was found that the initial amplitude of the growing instability mode was a sharply decreasing function of forcing frequency, and that the initial amplitude was a minimum for the frequency at which the rate of instability growth was a maximum^1. This result has led to a study of the adjoint equation for the perturbation stream function, whose eigensolutions are known to be associated with the optimal perturbation field for the frequency of forcing leading to the greatest instability growth downstream. We have obtained these solutions for a piecewise linear velocity profile near the trailing edge using group-theoretic techniques and have shown that they are indeed optimal. We have also analyzed the nature of the physical forcing field that might produce these optimal perturbations. ^1 Rabchuk, J.A., July 2000, Physics of Fluids.

  9. Numerical study of comparison of vorticity and passive vectors in turbulence and inviscid flows

    NASA Astrophysics Data System (ADS)

    Ohkitani, Koji

    2002-04-01

    The nonlinear vortex stretching in incompressible Navier-Stokes turbulence is compared with a linear stretching process of passive vectors (PVs). In particular, we pay special attention to the difference of these processes under long and short time evolutions. For finite time evolution, we confirm our previous finding that the stretching effect of vorticity is weaker than that of general passive vectors for a majority of the initial conditions with the same energy spectra. The above difference can be explained qualitatively by examining the Biot-Savart formula. In order to see to what extent infinitesimal time development explains the above difference, we examine the probability density functions (PDFs) of the stretching rates of the passive vectors in the vicinity of a solution of Navier-Stokes equations. It is found that the PDFs are found to have a Gaussian distribution, suggesting that there are equally many PVs that stretched less and more than the vorticity. This suggests the importance of the vorticity-strain correlation built up over finite time in turbulence. We also discuss the case of Euler equations, where the dynamics of the Jacobian matrix relating the physical and material coordinates is examined numerically. A kind of alignment problem associated with the Cauchy-Green tensor is proposed and studied using the results of numerical simulations. It is found that vorticity tends to align itself with the most compressing eigenvector of the Cauchy-Green tensor. A two-dimensional counterpart of active-passive comparison is briefly studied. There is no essential difference between stretching of vorticity gradients and that of passive scalar gradients and a physical interpretation is given to it.

  10. A Family of Vortices to Study Axisymmetric Vortex Breakdown and Reconnection

    NASA Technical Reports Server (NTRS)

    Young, Larry A.

    2007-01-01

    A new analytic model describing a family of vortices has been developed to study some of the axisymmetric vortex breakdown and reconnection fluid dynamic processes underlying body-vortex interactions that are frequently manifested in rotorcraft and propeller-driven fixed-wing aircraft wakes. The family of vortices incorporates a wide range of prescribed initial vorticity distributions -- including single or dual-core vorticity distributions. The result is analytical solutions for the vorticity and velocities for each member of the family of vortices. This model is of sufficient generality to further illustrate the dependence of vortex reconnection and breakdown on initial vorticity distribution as was suggested by earlier analytical work. This family of vortices, though laminar in nature, is anticipated to provide valuable insight into the vortical evolution of large-scale rotor and propeller wakes.

  11. Simulation of spatially evolving turbulence and the applicability of Taylor's hypothesis in compressible flow

    NASA Technical Reports Server (NTRS)

    Lee, Sangsan; Lele, Sanjiva K.; Moin, Parviz

    1992-01-01

    For the numerical simulation of inhomogeneous turbulent flows, a method is developed for generating stochastic inflow boundary conditions with a prescribed power spectrum. Turbulence statistics from spatial simulations using this method with a low fluctuation Mach number are in excellent agreement with the experimental data, which validates the procedure. Turbulence statistics from spatial simulations are also compared to those from temporal simulations using Taylor's hypothesis. Statistics such as turbulence intensity, vorticity, and velocity derivative skewness compare favorably with the temporal simulation. However, the statistics of dilatation show a significant departure from those obtained in the temporal simulation. To directly check the applicability of Taylor's hypothesis, space-time correlations of fluctuations in velocity, vorticity, and dilatation are investigated. Convection velocities based on vorticity and velocity fluctuations are computed as functions of the spatial and temporal separations. The profile of the space-time correlation of dilatation fluctuations is explained via a wave propagation model.

  12. Helical vortices: viscous dynamics and instability

    NASA Astrophysics Data System (ADS)

    Rossi, Maurice; Selcuk, Can; Delbende, Ivan; Ijlra-Upmc Team; Limsi-Cnrs Team

    2014-11-01

    Understanding the dynamical properties of helical vortices is of great importance for numerous applications such as wind turbines, helicopter rotors, ship propellers. Locally these flows often display a helical symmetry: fields are invariant through combined axial translation of distance Δz and rotation of angle θ = Δz / L around the same z-axis, where 2 πL denotes the helix pitch. A DNS code with built-in helical symmetry has been developed in order to compute viscous quasi-steady basic states with one or multiple vortices. These states will be characterized (core structure, ellipticity, ...) as a function of the pitch, without or with an axial flow component. The instability modes growing in the above base flows and their growth rates are investigated by a linearized version of the DNS code coupled to an Arnoldi procedure. This analysis is complemented by a helical thin-cored vortex filaments model. ANR HELIX.

  13. Vortex variable range hopping in a conventional superconducting film

    NASA Astrophysics Data System (ADS)

    Percher, Ilana M.; Volotsenko, Irina; Frydman, Aviad; Shklovskii, Boris I.; Goldman, Allen M.

    2017-12-01

    The behavior of a disordered amorphous thin film of superconducting indium oxide has been studied as a function of temperature and magnetic field applied perpendicular to its plane. A superconductor-insulator transition has been observed, though the isotherms do not cross at a single point. The curves of resistance versus temperature on the putative superconducting side of this transition, where the resistance decreases with decreasing temperature, obey two-dimensional Mott variable-range hopping of vortices over wide ranges of temperature and resistance. To estimate the parameters of hopping, the film is modeled as a granular system and the hopping of vortices is treated in a manner analogous to hopping of charges. The reason the long-range interaction between vortices over the range of magnetic fields investigated does not lead to a stronger variation of resistance with temperature than that of two-dimensional Mott variable-range hopping remains unresolved.

  14. Zero modes of the non-relativistic self-dual Chern-Simons vortices on the Toda backgrounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, Yongsung

    The two-dimensional self-dual equations are the governing equations of the static zero-energy vortex solutions for the non-relativistic, non-Abelian Chern-Simons models. The zero modes of the non-relativistic vortices are examined by index calculation for the self-dual equations. The index for the self-dual equations is zero for non-Abelian groups, but a non-zero index is obtained by the Toda Ansatz which reduces the self-dual equations to the Toda equations. The number of zero modes for the non-relativistic Toda vortices is 2 {Sigma}{sub {alpha},{beta}}{sup r}K{sub {alpha}{beta}}Q{sup {beta}} which is twice the total number of isolated zeros of the vortex functions. For the affine Todamore » system, there are additional adjoint zero modes which give a zero index for the SU(N) group.« less

  15. Origins and demonstrations of electrons with orbital angular momentum

    PubMed Central

    Agrawal, Amit; Ercius, Peter A.; Grillo, Vincenzo; Herzing, Andrew A.; Harvey, Tyler R.; Linck, Martin; Pierce, Jordan S.

    2017-01-01

    The surprising message of Allen et al. (Allen et al. 1992 Phys. Rev. A 45, 8185 (doi:10.1103/PhysRevA.45.8185)) was that photons could possess orbital angular momentum in free space, which subsequently launched advancements in optical manipulation, microscopy, quantum optics, communications, many more fields. It has recently been shown that this result also applies to quantum mechanical wave functions describing massive particles (matter waves). This article discusses how electron wave functions can be imprinted with quantized phase vortices in analogous ways to twisted light, demonstrating that charged particles with non-zero rest mass can possess orbital angular momentum in free space. With Allen et al. as a bridge, connections are made between this recent work in electron vortex wave functions and much earlier works, extending a 175 year old tradition in matter wave vortices. This article is part of the themed issue ‘Optical orbital angular momentum’. PMID:28069765

  16. Multipole Vortex Blobs (MVB): Symplectic Geometry and Dynamics.

    PubMed

    Holm, Darryl D; Jacobs, Henry O

    2017-01-01

    Vortex blob methods are typically characterized by a regularization length scale, below which the dynamics are trivial for isolated blobs. In this article, we observe that the dynamics need not be trivial if one is willing to consider distributional derivatives of Dirac delta functionals as valid vorticity distributions. More specifically, a new singular vortex theory is presented for regularized Euler fluid equations of ideal incompressible flow in the plane. We determine the conditions under which such regularized Euler fluid equations may admit vorticity singularities which are stronger than delta functions, e.g., derivatives of delta functions. We also describe the symplectic geometry associated with these augmented vortex structures, and we characterize the dynamics as Hamiltonian. Applications to the design of numerical methods similar to vortex blob methods are also discussed. Such findings illuminate the rich dynamics which occur below the regularization length scale and enlighten our perspective on the potential for regularized fluid models to capture multiscale phenomena.

  17. Quantum corrections to the stress-energy tensor in thermodynamic equilibrium with acceleration

    NASA Astrophysics Data System (ADS)

    Becattini, F.; Grossi, E.

    2015-08-01

    We show that the stress-energy tensor has additional terms with respect to the ideal form in states of global thermodynamic equilibrium in flat spacetime with nonvanishing acceleration and vorticity. These corrections are of quantum origin and their leading terms are second order in the gradients of the thermodynamic fields. Their relevant coefficients can be expressed in terms of correlators of the stress-energy tensor operator and the generators of the Lorentz group. With respect to previous assessments, we find that there are more second-order coefficients and that all thermodynamic functions including energy density receive acceleration and vorticity dependent corrections. Notably, also the relation between ρ and p , that is, the equation of state, is affected by acceleration and vorticity. We have calculated the corrections for a free real scalar field—both massive and massless—and we have found that they increase, particularly for a massive field, at very high acceleration and vorticity and very low temperature. Finally, these nonideal terms depend on the explicit form of the stress-energy operator, implying that different stress-energy tensors of the scalar field—canonical or improved—are thermodynamically inequivalent.

  18. Vortex nucleation in a dissipative variant of the nonlinear Schrödinger equation under rotation

    DOE PAGES

    Carretero-González, R.; Kevrekidis, P. G.; Kolokolnikov, T.

    2016-03-01

    In this work, we motivate and explore the dynamics of a dissipative variant of the nonlinear Schrödinger equation under the impact of external rotation. As in the well established Hamiltonian case, the rotation gives rise to the formation of vortices. We show, however, that the most unstable mode leading to this instability scales with an appropriate power of the chemical potential μ of the system, increasing proportionally to μ 2/3. The precise form of the relevant formula, obtained through our asymptotic analysis, provides the most unstable mode as a function of the atomic density and the trap strength. We showmore » how these unstable modes typically nucleate a large number of vortices in the periphery of the atomic cloud. However, through a pattern selection mechanism, prompted by symmetry-breaking, only few isolated vortices are pulled in sequentially from the periphery towards the bulk of the cloud resulting in highly symmetric stable vortex configurations with far fewer vortices than the original unstable mode. We conclude that these results may be of relevance to the experimentally tractable realm of finite temperature atomic condensates.« less

  19. Direct numerical simulation of two-dimensional wall-bounded turbulent flows from receptivity stage.

    PubMed

    Sengupta, T K; Bhaumik, S; Bhumkar, Y G

    2012-02-01

    Deterministic route to turbulence creation in 2D wall boundary layer is shown here by solving full Navier-Stokes equation by dispersion relation preserving (DRP) numerical methods for flow over a flat plate excited by wall and free stream excitations. Present results show the transition caused by wall excitation is predominantly due to nonlinear growth of the spatiotemporal wave front, even in the presence of Tollmien-Schlichting (TS) waves. The existence and linear mechanism of creating the spatiotemporal wave front was established in Sengupta, Rao and Venkatasubbaiah [Phys. Rev. Lett. 96, 224504 (2006)] via the solution of Orr-Sommerfeld equation. Effects of spatiotemporal front(s) in the nonlinear phase of disturbance evolution have been documented by Sengupta and Bhaumik [Phys. Rev. Lett. 107, 154501 (2011)], where a flow is taken from the receptivity stage to the fully developed 2D turbulent state exhibiting a k(-3) energy spectrum by solving the Navier-Stokes equation without any artifice. The details of this mechanism are presented here for the first time, along with another problem of forced excitation of the boundary layer by convecting free stream vortices. Thus, the excitations considered here are for a zero pressure gradient (ZPG) boundary layer by (i) monochromatic time-harmonic wall excitation and (ii) free stream excitation by convecting train of vortices at a constant height. The latter case demonstrates neither monochromatic TS wave, nor the spatiotemporal wave front, yet both the cases eventually show the presence of k(-3) energy spectrum, which has been shown experimentally for atmospheric dynamics in Nastrom, Gage and Jasperson [Nature 310, 36 (1984)]. Transition by a nonlinear mechanism of the Navier-Stokes equation leading to k(-3) energy spectrum in the inertial subrange is the typical characteristic feature of all 2D turbulent flows. Reproduction of the spectrum noted in atmospheric data (showing dominance of the k(-3) spectrum over the k(-5/3) spectrum in Nastrom et al.) in laboratory scale indicates universality of this spectrum for all 2D turbulent flows. Creation of universal features of 2D turbulence by a deterministic route has been established here for the first time by solving the Navier-Stokes equation without any modeling, as has been reported earlier in the literature by other researchers.

  20. On the Numerical Solution of the Elliptic Monge—Ampère Equation in Dimension Two: A Least-Squares Approach

    NASA Astrophysics Data System (ADS)

    Dean, Edward J.; Glowinski, Roland

    During his outstanding career, Olivier Pironneau has addressed the solution of a large variety of problems from the Natural Sciences, Engineering and Finance to name a few, an evidence of his activity being the many articles and books he has written. It is the opinion of these authors, and former collaborators of O. Pironneau (cf. [DGP91]), that this chapter is well-suited to a volume honoring him. Indeed, the two pillars of the solution methodology that we are going to describe are: (1) a nonlinear least squares formulation in an appropriate Hilbert space, and (2) a mixed finite element approximation, reminiscent of the one used in [DGP91] and [GP79] for solving the Stokes and Navier-Stokes equations in their stream function-vorticity formulation; the contributions of O. Pironneau on the two above topics are well-known world wide. Last but not least, we will show that the solution method discussed here can be viewed as a solution method for a non-standard variant of the incompressible Navier-Stokes equations, an area where O. Pironneau has many outstanding and celebrated contributions (cf. [Pir89], for example).

  1. Resonant Formation and Control of m-Fold Symmetric V-States

    NASA Astrophysics Data System (ADS)

    Friedland, Lazar; Shagalov, Arkadi

    2000-10-01

    Magnetized, pure electron plasmas trapped in a Malmberg-Penning trap can be modeled (in the drift approximation) by two-dimensional Euler equations of ideal fluids. The plasma density in this approximation is analogous to vorticity, while the radial electric field potential to the stream function of the fluid velocity field. For instance, electron plasma cylinder aligned with the magnetic field is analogous to a circular vortex patch solution of an ideal fluid. We shall show that by starting in such a circular equilibrium one can drive an m-fold symmetric interface (vortex) waves in two dimensions (V-states, discovered by Deem and Zabusky [1] nearly 20 years ago)into a highly nonlinear excitation by applying a weak external oscillating potential of appropriate symmetry and slowly varying the frequency of these oscillations. The phenomenon is due to autoresonance [2,3] in the system as the excited plasma (vortex) boundary preserves its functional form despite the drive, but self-adjusts the aspect ratio to synchronize with the driving potential oscillations. A similar approach can be used in controlling interface dynamics subject to global constraints in many other fields of physics. Work supported by Israel Science Foundation grant 607-97 and INTAS grant 99-1068. [1] G. Deem and N. Zabusky, Phys. Rev. Lett. 40, 859 (1978). [2] L. Friedland, Phys. Rev. E, 4106 (1999). [3] J. Fajans, E. Gilson, and L. Friedland, Phys. Rev. Lett. 82, 4444 (1999).

  2. Flow Structures and Noise Produced by a Heated Rectangular Nozzle with a Third Stream and Aft Deck

    NASA Astrophysics Data System (ADS)

    Ruscher, Christopher; Gogineni, Sivaram; Kiel, Barry

    2015-11-01

    Jet noise is a huge issue that affects both civilian and military aviation and is a two-fold problem. Near-field noise causes hearing damage and is of great concern to the Navy. Far-field noise is also a concern for military and civilian aircraft. For military jets, the trend has shown that newer and more advanced planes are louder than their predecessors. Most of these planes are designed keeping the performance as the main driver in mind while the jet noise becomes an afterthought. To remedy this and to aid the design process, we propose to create a joint noise and performance prediction tool. To create this tool, one must understand how the near-field flow structures generate noise and how they are related to far-field noise. In the current work, we considered rectangular, three-stream nozzle with an aft deck and investigated the flow structures such as corner vortices, shocks and their impact on the noise generation mechanism. We have also used state-of-the-art data analytical tools such as wavelets, POD, and stochastic estimations.

  3. An analytical design procedure for the determination of effective leading edge extensions on thick delta wings

    NASA Technical Reports Server (NTRS)

    Ghaffari, F.; Chaturvedi, S. K.

    1984-01-01

    An analytical design procedure for leading edge extensions (LEE) was developed for thick delta wings. This LEE device is designed to be mounted to a wing along the pseudo-stagnation stream surface associated with the attached flow design lift coefficient of greater than zero. The intended purpose of this device is to improve the aerodynamic performance of high subsonic and low supersonic aircraft at incidences above that of attached flow design lift coefficient, by using a vortex system emanating along the leading edges of the device. The low pressure associated with these vortices would act on the LEE upper surface and the forward facing area at the wing leading edges, providing an additional lift and effective leading edge thrust recovery. The first application of this technique was to a thick, round edged, twisted and cambered wing of approximately triangular planform having a sweep of 58 deg and aspect ratio of 2.30. The panel aerodynamics and vortex lattice method with suction analogy computer codes were employed to determine the pseudo-stagnation stream surface and an optimized LEE planform shape.

  4. Influence of pressure driven secondary flows on the behavior of turbofan forced mixers

    NASA Technical Reports Server (NTRS)

    Anderson, B.; Povinelli, L.; Gerstenmaier, W.

    1980-01-01

    A finite difference procedure was developed to analyze the three dimensional subsonic turbulent flows in turbofan forced mixer nozzles. The method is based on a decomposition of the velocity field into primary and secondary flow components which are determined by solution of the equations governing primary momentum, secondary vorticity, thermal energy, and continuity. Experimentally, a strong secondary flow pattern was identified which is associated with the radial inflow and outflow characteristics of the core and fan streams and forms a very strong vortex system aligned with the radial interface between the core and fan regions. A procedure was developed to generate a similar generic secondary flow pattern in terms of two constants representing the average radial outflow or inflow in the core and fan streams as a percentage of the local streamwise velocity. This description of the initial secondary flow gave excellent agreement with experimental data. By identifying the nature of large scale secondary flow structure and associating it with characteristic mixer nozzle behavior, it is felt that the cause and effect relationship between lobe design and nozzle performance can be understood.

  5. Mean-flow measurements of the flow field diffusing bend

    NASA Technical Reports Server (NTRS)

    Mcmillan, O. J.

    1982-01-01

    Time-average measurements of the low-speed turbulent flow in a diffusing bend are presented. The experimental geometry consists of parallel top and bottom walls and curved diverging side walls. The turning of the center line of this channel is 40 deg, the area ratio is 1.5 and the ratios of height and center-line length to throat width are 1.5 and 3, respectively. The diffusing bend is preceded and followed by straight constant area sections. The inlet boundary layers on the parallel walls are artificially thickened and occupy about 30% of the channel height; those on the side walls develop naturally and are about half as thick. The free-stream speed at the inlet was approximately 30 m/sec for all the measurements. Inlet boundary layer mean velocity and turbulence intensity profiles are presented, as are data for wall static pressures, and at six cross sections, surveys of the velocity-vector and static-pressure fields. The dominant feature of the flow field is a pair of counter-rotating streamwise vortices formed by the cross-stream pressure gradient in the bend on which an overall deceleration is superimposed.

  6. Surfzone vorticity in the presence of extreme bathymetric variability

    NASA Astrophysics Data System (ADS)

    Clark, D.; Elgar, S.; Raubenheimer, B.

    2014-12-01

    Surfzone vorticity was measured at Duck, NC using a novel 5-m diameter vorticity sensor deployed in 1.75 m water depth. During the 4-week deployment the initially alongshore uniform bathymetry developed 200-m long mega-cusps with alongshore vertical changes of 1.5 m or more. When waves were small and the vorticity sensor was seaward of the surfzone, vorticity variance and mean vorticity varied with the tidally modulated water depth, consistent with a net seaward flux of surfzone-generated vorticity. Vorticity variance increased with incident wave heights up to 2-m. However, vorticity variance remained relatively constant for incident wave heights above 2-m, and suggests that eddy energy may become saturated in the inner surfzone during large wave events. In the presence of mega-cusps the mean vorticity (shear) is often large and generated by bathymetrically controlled rip currents, while vorticity variance remains strongly correlated with the incident wave height. Funded by NSF, ASD(R&E), and WHOI Coastal Ocean Institute.

  7. Impact of chevron spacing and asymmetric distribution on supersonic jet acoustics and flow

    NASA Astrophysics Data System (ADS)

    Heeb, N.; Gutmark, E.; Kailasanath, K.

    2016-05-01

    An experimental investigation into the effect of chevron spacing and distribution on supersonic jets was performed. Cross-stream and streamwise particle imaging velocimetry measurements were used to relate flow field modification to sound field changes measured by far-field microphones in the overexpanded, ideally expanded, and underexpanded regimes. Drastic modification of the jet cross-section was achieved by the investigated configurations, with both elliptic and triangular shapes attained downstream. Consequently, screech was nearly eliminated with reductions in the range of 10-25 dB depending on the operating condition. Analysis of the streamwise velocity indicated that both the mean shock spacing and strength were reduced resulting in an increase in the broadband shock associated noise spectral peak frequency and a reduction in the amplitude, respectively. Maximum broadband shock associated noise amplitude reductions were in the 5-7 dB range. Chevron proximity was found to be the primary driver of peak vorticity production, though persistence followed the opposite trend. The integrated streamwise vorticity modulus was found to be correlated with peak large scale turbulent mixing noise reduction, though optimal overall sound pressure level reductions did not necessarily follow due to the shock/fine scale mixing noise sources. Optimal large scale mixing noise reductions were in the 5-6 dB range.

  8. Numerical simulation of hydrodynamic processes beneath a wind-driven water surface

    NASA Astrophysics Data System (ADS)

    Tsai, Wu-ting

    Turbulent flow driven by a constant wind stress acting at the water surface was simulated numerically to gain a better understanding of the hydrodynamic processes governing the transfer of slightly soluble gases across the atmosphere-water interfaces. Simulation results show that two distinct flow features, attributed to subsurface surface renewal eddies, appear at the water surface. The first characteristic feature is surface streaming, which consists of high-speed streaks aligned with the wind stress. Floating Lagrangian particles, which are distributed uniformly at the water surface, merge to the predominantly high-speed streaks and form elongated streets immediately after they are released. The second characteristic surface signatures are localized low-speed spots which emerge randomly at the water surface. A high-speed streak bifurcates and forms a dividing flow when it encounters a low-speed surface spot. These coherent surface flow structures are qualitatively identical to those observed in the experiment of Melville et al. [1998]. The persistence of these surface features also suggests that there must exist organized subsurface vortical structures that undergo autonomous generation cycles maintained by self-sustaining mechanisms. These coherent vortical flows serve as the renewal eddies that pump the submerged fluids toward the water surface and bring down the upper fluids, and therefore enhance the scalar exchange between the atmosphere and the water body.

  9. Investigation of the Flow Structure on a Flat Plate Induced by Unsteady Plasma Actuation with DNS Methods

    NASA Astrophysics Data System (ADS)

    Yu, Jianyang; Chen, Fu; Liu, Huaping; Song, Yanping

    2015-12-01

    An investigation into the flow characteristic on a flat plate induced by an unsteady plasma was conducted with the methods of direct numerical simulations (DNS). A simplified model of dielectric barrier discharge (DBD) plasma was applied and its parameters were calibrated with the experimental results. In the simulations, effects of the actuation frequency on the flow were examined. The instantaneous flow parameters were also drawn to serve as a detailed study on the behavior when the plasma actuator was applied to the flow. The result shows that induced by the unsteady actuation, a series of vortex pairs which showed dipole formation and periodicity distribution were formed in the boundary layer. The production of these vortex pairs indicated a strong energy exchange between the main flow and the boundary layer. They moved downstream under the action of the free stream and decayed under the influence of the fluid viscosity. The distance of the neighboring vortices was found to be determined by the actuation frequency. Interaction of the neighboring vortices would be ignored when the actuation frequency was too small to make a difference. supported by the Foundation for Innovative Research Groups of National Natural Science Foundation of China (No. 51121004) and National Natural Science Foundation of China (No. 50976026)

  10. Calculation of the rotor induced download on airfoils

    NASA Technical Reports Server (NTRS)

    Lee, C. S.

    1989-01-01

    Interactions between the rotors and wing of a rotary wing aircraft in hover have a significant detrimental effect on its payload performance. The reduction of payload results from the wake of lifting rotors impinging on the wing, which is at 90 deg angle of attack in hover. This vertical drag, often referred as download, can be as large as 15 percent of the total rotor thrust in hover. The rotor wake is a three-dimensional, unsteady flow with concentrated tip vortices. With the rotor tip vortices impinging on the upper surface of the wing, the flow over the wing is not only three-dimensional and unsteady, but also separated from the leading and trailing edges. A simplified two-dimensional model was developed to demonstrate the stability of the methodology. The flow model combines a panel method to represent the rotor and the wing, and a vortex method to track the wing wake. A parametric study of the download on a 20 percent thick elliptical airfoil below a rotor disk of uniform inflow was performed. Comparisons with experimental data are made where the data are available. This approach is now being extended to three-dimensional flows. Preliminary results on a wing at 90 deg angle of attack in free stream is presented.

  11. Effects of gravity on sheared and nonsheared turbulent nonpremixed flames

    NASA Technical Reports Server (NTRS)

    Elghobashi, Said; Lee, Yong-Yao; Zhong, Rongbin

    1995-01-01

    The present numerical study is concerned with the fundamental physics of the multiway interaction between turbulence, chemical reaction, and buoyancy in a nonpremixed flame. The method of direct numerical simulation (DNS) is used to solve the instantaneous, three-dimensional governing equations. Because of the present supercomputer limitations, we consider two simple flow geometries, namely an initially uniform flow without shear (equivalent to grid-generated turbulence) and an initially uniform shear flow. In each flow, the fuel and oxidant initially exist as two separate streams. As the reactants mix, chemical reaction takes place and exothermic energy is released causing variations in density. In the presence of a gravity field, the spatial and temporal distributions of the induced buoyancy forces depend on the local density gradients and the direction of the gravitational acceleration. The effects of buoyancy include the generation of local shear, baroclinic production or destruction of vorticity, and countergradient heat and mass transport. Increased vorticity and small-scale turbulence promote further mixing and reaction. However, if the strain-rates become too high, local flame extinction can occur. Our objective is to gain an understanding of the complex interactions between the physical phenomena involved, with particular attention to the effects of buoyancy on the turbulence structure, flame behavior, and factors influencing flame extinction.

  12. Predicting and generalizing the refuge function of intermittent and ephemeral streams

    EPA Science Inventory

    Intermittent and ephemeral streams can provide important functions within stream networks. For fish, intermittent and ephemeral streams can contribute energy and materials to downstream perennial waters, serve as seasonal habitats, and/or provide refuge functions. Understanding t...

  13. Two different streams form the dorsal visual system: anatomy and functions.

    PubMed

    Rizzolatti, Giacomo; Matelli, Massimo

    2003-11-01

    There are two radically different views on the functional role of the dorsal visual stream. One considers it as a system involved in space perception. The other is of a system that codes visual information for action organization. On the basis of new anatomical data and a reconsideration of previous functional and clinical data, we propose that the dorsal stream and its recipient parietal areas form two distinct functional systems: the dorso-dorsal stream (d-d stream) and the ventro-dorsal stream (v-d stream). The d-d stream is formed by area V6 (main d-d extrastriate visual node) and areas V6A and MIP of the superior parietal lobule. Its major functional role is the control of actions "on line". Its damage leads to optic ataxia. The v-d stream is formed by area MT (main v-d extrastriate visual node) and by the visual areas of the inferior parietal lobule. As the d-d stream, v-d stream is responsible for action organization. It, however, also plays a crucial role in space perception and action understanding. The putative mechanisms linking action and perception in the v-d stream is discussed.

  14. Jupiter's Great Red Spot and other vortices

    NASA Technical Reports Server (NTRS)

    Marcus, Philip S.

    1993-01-01

    A theoretical explanation of Jupiter's Great Red Spot (GRS) as the self-organization of vorticity in turbulence is presented. A number of properties of the GRS and other Jovian vortices that are unambiguous from the data are listed. The simplest possible model that explains these properties one at a time rather than in a difficult all-encompassing planetary global circulation model is presented. It is shown that Jovian vortices reflect the behavior of quasi-geostrophic (QG) vortices embedded in an east-west wind with bands of uniform potential vorticity. It is argued that most of the properties of the Jovian vortices can be easily explained and understood with QG theory. Many of the signatures of QG vortices are apparent on Voyager images. In numerical and laboratory experiments, QG vortices relax to approximately steady states like the Jovian vortices, rather than oscillating or rotating Kida ellipses.

  15. Alteration of intraaneurysmal hemodynamics by placement of a self-expandable stent. Laboratory investigation.

    PubMed

    Tateshima, Satoshi; Tanishita, Kazuo; Hakata, Yasuhiro; Tanoue, Shin-ya; Viñuela, Fernando

    2009-07-01

    Development of a flexible self-expanding stent system and stent-assisted coiling technique facilitates endovascular treatment of wide-necked brain aneurysms. The hemodynamic effect of self-expandable stent placement across the neck of a brain aneurysm has not been well documented in patient-specific aneurysm models. Three patient-specific silicone aneurysm models based on clinical images were used in this study. Model 1 was constructed from a wide-necked internal carotid artery-ophthalmic artery aneurysm, and Models 2 and 3 were constructed from small wide-necked middle cerebral artery aneurysms. Neuroform stents were placed in the in vitro aneurysm models, and flow structures were compared before and after the stent placements. Flow velocity fields were acquired with particle imaging velocimetry. In Model 1, a clockwise, single-vortex flow pattern was observed in the aneurysm dome before stenting was performed. There were multiple vortices, and a very small fast flow stream was newly formed in the aneurysm dome after stenting. The mean intraaneurysmal flow velocity was reduced by approximately 23-40%. In Model 2, there was a clockwise vortex flow in the aneurysm dome and another small counterclockwise vortex in the tip of the aneurysm dome before stenting. The small vortex area disappeared after stenting, and the mean flow velocity in the aneurysm dome was reduced by 43-64%. In Model 3, a large, counterclockwise, single vortex was seen in the aneurysm dome before stenting. Multiple small vortices appeared in the aneurysm dome after stenting, and the mean flow velocity became slower by 22-51%. The flexible self-expandable stents significantly altered flow velocity and also flow structure in these aneurysms. Overall flow alterations by the stent appeared favorable for the long-term durability of aneurysm embolization. The possibility that the placement of a low-profile self-expandable stent might induce unfavorable flow patterns such as a fast flow stream in the aneurysm dome cannot be excluded.

  16. Taxonomic and Functional Differences between Microbial Communities in Qinghai Lake and Its Input Streams

    PubMed Central

    Ren, Ze; Wang, Fang; Qu, Xiaodong; Elser, James J.; Liu, Yang; Chu, Limin

    2017-01-01

    Understanding microbial communities in terms of taxon and function is essential to decipher the biogeochemical cycling in aquatic ecosystems. Lakes and their input streams are highly linked. However, the differences between microbial assemblages in streams and lakes are still unclear. In this study, we conducted an intensive field sampling of microbial communities from lake water and stream biofilms in the Qinghai Lake watershed, the largest lake in China. We determined bacterial communities using high-throughput 16S rRNA gene sequencing and predicted functional profiles using PICRUSt to determine the taxonomic and functional differences between microbial communities in stream biofilms and lake water. The results showed that stream biofilms and lake water harbored distinct microbial communities. The microbial communities were different taxonomically and functionally between stream and lake. Moreover, streams biofilms had a microbial network with higher connectivity and modularity than lake water. Functional beta diversity was strongly correlated with taxonomic beta diversity in both the stream and lake microbial communities. Lake microbial assemblages displayed greater predicted metabolic potentials of many metabolism pathways while the microbial assemblages in stream biofilms were more abundant in xenobiotic biodegradation and metabolism and lipid metabolism. Furthermore, lake microbial assemblages had stronger predicted metabolic potentials in amino acid metabolism, carbon fixation, and photosynthesis while stream microbial assemblages were higher in carbohydrate metabolism, oxidative phosphorylation, and nitrogen metabolism. This study adds to our knowledge of stream-lake linkages from the functional and taxonomic composition of microbial assemblages. PMID:29213266

  17. Hydrologic landscape regions for predicting and generalizing the refuge function of intermittent and ephemeral streams

    EPA Science Inventory

    Intermittent and ephemeral (IE) streams can provide important functions within stream networks. Understanding the relative benefit provided to downstream waters is needed to better inform watershed management. Although the potential functions of IE streams are relatively well kn...

  18. Identification of the Viscous Superlayer on the Low-Speed Side of a Single-Stream Shear Layer

    NASA Astrophysics Data System (ADS)

    Foss, John; Peabody, Jason

    2010-11-01

    Image pairs (elevation/plan views) have been acquired of a smoke streakline originating in the irrotational region on the low-speed side of a high Re single-stream shear layer of Morris and Foss (2003). The viscous superlayer (VSL) is identified as the terminus of the streak; 1800 such images provide VSL position statistics. Hot-wire data acquired concurrently at the shear layer edge and interior are used to investigate the relationship between these velocity magnitudes and the large-scale motions. Distinctive features (plumes) along the streakline are tracked between images to provide discrete irrotational region velocity magnitudes and material trajectories. A non-diffusive marker, introduced in the separating (high speed) boundary layer and imaged at x/θo=352, has revealed an unexpected bias in the streak-defined VSL locations. The interpretation of this bias clarifies the induced flow patterns in the entrainment region. The observations are consistent with a conception of the large-scale shear layer motions as "billows" of vortical fluid separated by re-entrant "wedges" of irrotational fluid, per Phillips (1972). Morris, S.C. and Foss, J.F. (2003). "Turbulent Boundary Layer to Single Stream Shear Layer: The Transition Region." Journal of Fluid Mechanics. Vol. 494, pp. 187-221. Phillips, O. M. (1972). "The Entrainment Interface." Journal of Fluid Mechanics. Vol. 51, pp. 97-118.

  19. Vortex dynamics in two-dimensional Josephson junction arrays

    NASA Astrophysics Data System (ADS)

    Ashrafuzzaman, Md.; Capezzali, Massimiliano; Beck, Hans

    2003-08-01

    The dynamic response of two-dimensional Josephson junction arrays close to, but above the Berezinskii-Kosterlitz-Thouless (BKT) transition temperature is described in terms of the vortex dielectric function ɛ(ω) and the flux noise spectrum Sφ(ω). They are calculated by considering both the contributions of free vortices interacting through a screened Coulomb potential and the pair motion of vortices that are closer to each other than the BKT correlation length. This procedure allows us to understand various anomalous features in ɛ(ω) and in Sφ(ω) that have been observed both experimentally and in dynamic simulations.

  20. A factor involved in efficient breakdown of supersonic streamwise vortices

    NASA Astrophysics Data System (ADS)

    Hiejima, Toshihiko

    2015-03-01

    Spatially developing processes in supersonic streamwise vortices were numerically simulated at Mach number 5.0. The vortex evolution largely depended on the azimuthal vorticity thickness of the vortices, which governs the negative helicity profile. Large vorticity thickness greatly enhanced the centrifugal instability, with consequent development of perturbations with competing wavenumbers outside the vortex core. During the transition process, supersonic streamwise vortices could generate large-scale spiral structures and a number of hairpin like vortices. Remarkably, the transition caused a dramatic increase in the total fluctuation energy of hypersonic flows, because the negative helicity profile destabilizes the flows due to helicity instability. Unstable growth might also relate to the correlation length between the axial and azimuthal vorticities of the streamwise vortices. The knowledge gained in this study is important for realizing effective fuel-oxidizer mixing in supersonic combustion engines.

  1. Numerical analysis of propeller induced ground vortices by actuator disk model.

    PubMed

    Yang, Y; Veldhuis, L L M; Eitelberg, G

    2018-01-01

    During the ground operation of aircraft, the interaction between the propulsor-induced flow field and the ground may lead to the generation of ground vortices. Utilizing numerical approaches, the source of vorticity entering ground vortices is investigated. The results show that the production of wall-parallel components of vorticity has a strong contribution from the wall-parallel components of the pressure gradient on the wall, which is generated by the action of the propulsor. This mechanism is a supplementation for the vorticity transported from the far-field boundary layer, which has been assumed the main vorticity source in a number of previous publications. Furthermore, the quantitative prediction of the occurrence of ground vortices is performed from the numerical results. As the distance of the propeller form the ground decreases, and as the thrust of the propeller increases, ground vortices are generated from the ground and enter the propeller. In addition, the vortices which exist near the ground but does not enter the propeller plane are observed and visualized by three-dimensional data.

  2. Topological Nodal Cooper Pairing in Doped Weyl Metals

    NASA Astrophysics Data System (ADS)

    Li, Yi; Haldane, F. D. M.

    2018-02-01

    We generalize the concept of Berry connection of the single-electron band structure to that of a two-particle Cooper pairing state between two Fermi surfaces with opposite Chern numbers. Because of underlying Fermi surface topology, the pairing Berry phase acquires nontrivial monopole structure. Consequently, pairing gap functions have topologically protected nodal structure as vortices in the momentum space with the total vorticity solely determined by the pair monopole charge qp. The nodes of gap function behave as the Weyl-Majorana points of the Bogoliubov-de Gennes pairing Hamiltonian. Their relation with the connection patterns of the surface modes from the Weyl band structure and the Majorana surface modes inside the pairing gap is also discussed. Under the approximation of spherical Fermi surfaces, the pairing symmetry are represented by monopole harmonic functions. The lowest possible pairing channel carries angular momentum number j =|qp|, and the corresponding gap functions are holomorphic or antiholomorphic functions on Fermi surfaces. After projected on the Fermi surfaces with nontrivial topology, all the partial-wave channels of pairing interactions acquire the monopole charge qp independent of concrete pairing mechanism.

  3. Numerical investigation of separated nozzle flows

    NASA Technical Reports Server (NTRS)

    Chen, C. L.; Chakravarthy, S. R.; Hung, C. M.

    1994-01-01

    A numerical study of axisymmetric overexpanded nozzle is presented. The flow structure of the startup and throttle-down processes are examined. During the impulsive startup process, observed flow features include the Mach disk, separation shock, Mach stem, vortex core, contact surface, slip stream, initial shock front, and shocklet. Also the movement of the Mach disk is not monotonical in the downstream direction. For a range of pressure ratios, hysteresis phenomenon occurs; different solutions were obtained depending on different processes. Three types of flow structures were observed. The location of separation point and the lower end turning point of hysteresis are closely predicted. A high peak of pressure is associated with the nozzle flow reattachment. The reversed vortical structure and affects engine performance.

  4. Test description and preliminary pitot-pressure surveys for Langley Test Technique Demonstrator at Mach 6

    NASA Technical Reports Server (NTRS)

    Everhart, Joel L.; Ashby, George C., Jr.; Monta, William J.

    1992-01-01

    A propulsion/airframe integration experiment conducted in the NASA Langley 20-Inch Mach 6 Tunnel using a 16.8-in.-long version of the Langley Test Technique Demonstrator configuration with simulated scramjet propulsion is described. Schlieren and vapor screen visualization of the nozzle flow field is presented and correlated with pitot-pressure flow-field surveys. The data were obtained at nominal free-stream conditions of Re = 2.8 x 10 exp 6 and a nominal engine total pressure of 100 psia. It is concluded that pitot-pressure surveys coupled to schlieren and vapor-screen photographs, and oil flows have revealed flow features including vortices, free shear layers, and shock waves occurring in the model flow field.

  5. Leading-edge effects on boundary-layer receptivity

    NASA Technical Reports Server (NTRS)

    Gatski, Thomas B.; Kerschen, Edward J.

    1990-01-01

    Numerical calculations are presented for the incompressible flow over a parabolic cylinder. The computational domain extends from a region upstream of the body downstream to the region where the Blasius boundary-layer solution holds. A steady mean flow solution is computed and the results for the scaled surface vorticity, surface pressure and displacement thickness are compared to previous studies. The unsteady problem is then formulated as a perturbation solution starting with and evolving from the mean flow. The response to irrotational time harmonic pulsation of the free-stream is examined. Results for the initial development of the velocity profile and displacement thickness are presented. These calculations will be extended to later times to investigate the initiation of instability waves within the boundary-layer.

  6. Onsager Vortex Formation in Two-component Bose-Einstein Condensates

    NASA Astrophysics Data System (ADS)

    Han, Junsik; Tsubota, Makoto

    2018-06-01

    We numerically study the dynamics of quantized vortices in two-dimensional two-component Bose-Einstein condensates (BECs) trapped by a box potential. For one-component BECs in a box potential, it is known that quantized vortices form Onsager vortices, which are clusters of same-sign vortices. We confirm that the vortices of the two components spatially separate from each other — even for miscible two-component BECs — suppressing the formation of Onsager vortices. This phenomenon is caused by the repulsive interaction between vortices belonging to different components, hence, suggesting a new possibility for vortex phase separation.

  7. Three-dimensional flow visualization and vorticity dynamics in revolving wings

    NASA Astrophysics Data System (ADS)

    Cheng, Bo; Sane, Sanjay P.; Barbera, Giovanni; Troolin, Daniel R.; Strand, Tyson; Deng, Xinyan

    2013-01-01

    We investigated the three-dimensional vorticity dynamics of the flows generated by revolving wings using a volumetric 3-component velocimetry system. The three-dimensional velocity and vorticity fields were represented with respect to the base axes of rotating Cartesian reference frames, and the second invariant of the velocity gradient was evaluated and used as a criterion to identify two core vortex structures. The first structure was a composite of leading, trailing, and tip-edge vortices attached to the wing edges, whereas the second structure was a strong tip vortex tilted from leading-edge vortices and shed into the wake together with the vorticity generated at the tip edge. Using the fundamental vorticity equation, we evaluated the convection, stretching, and tilting of vorticity in the rotating wing frame to understand the generation and evolution of vorticity. Based on these data, we propose that the vorticity generated at the leading edge is carried away by strong tangential flow into the wake and travels downwards with the induced downwash. The convection by spanwise flow is comparatively negligible. The three-dimensional flow in the wake also exhibits considerable vortex tilting and stretching. Together these data underscore the complex and interconnected vortical structures and dynamics generated by revolving wings.

  8. Large-scale computation of incompressible viscous flow by least-squares finite element method

    NASA Technical Reports Server (NTRS)

    Jiang, Bo-Nan; Lin, T. L.; Povinelli, Louis A.

    1993-01-01

    The least-squares finite element method (LSFEM) based on the velocity-pressure-vorticity formulation is applied to large-scale/three-dimensional steady incompressible Navier-Stokes problems. This method can accommodate equal-order interpolations and results in symmetric, positive definite algebraic system which can be solved effectively by simple iterative methods. The first-order velocity-Bernoulli function-vorticity formulation for incompressible viscous flows is also tested. For three-dimensional cases, an additional compatibility equation, i.e., the divergence of the vorticity vector should be zero, is included to make the first-order system elliptic. The simple substitution of the Newton's method is employed to linearize the partial differential equations, the LSFEM is used to obtain discretized equations, and the system of algebraic equations is solved using the Jacobi preconditioned conjugate gradient method which avoids formation of either element or global matrices (matrix-free) to achieve high efficiency. To show the validity of this scheme for large-scale computation, we give numerical results for 2D driven cavity problem at Re = 10000 with 408 x 400 bilinear elements. The flow in a 3D cavity is calculated at Re = 100, 400, and 1,000 with 50 x 50 x 50 trilinear elements. The Taylor-Goertler-like vortices are observed for Re = 1,000.

  9. Axisymmetric Vortices with Swirl

    NASA Astrophysics Data System (ADS)

    Elcrat, A.

    2007-11-01

    This talk is concerned with finding solutions of the Euler equations by solving elliptic boundary value problems for the Bragg-Hawthorne equation L u= -urr -(1/r)ur - = r^2f (u) + h(u). Theoretical results have been given for previously (Elcrat and Miller, Differential and Integral Equations 16(4) 2003, 949-968) for problems with swirl and general classes of profile functions f, h by iterating Lu(n+1)= rf(u)n)) + h(u(n)), and showing u(n) converges montonically to a solution. The solutions obtained depend on the initial guess, which can be thought of as prescribing level sets of the vortex. When a computational program was attempted these monotone iterations turned out to be numerically unstable, and a stable computation was acheived by fixing the moment of the cross section of a vortex in the merideanal plane. (This generalizes previous computational results in Elcrat, Fornberg and Miller, JFM 433 2001, (315-328) We obtain famillies of vortices related to vortex rings with swirl, Moffatt's generalization of Hill's vortex and tubes of vorticity with swirl wrapped around the symmetry axis. The vortices are embedded in either an irrotational flow or a flow with shear, and we deal with the transition form no swirl in the vortex to flow with only swirl, a Beltrami flow.

  10. Interaction of in-phase and out-of-phase flexible filament in fish schooling

    NASA Astrophysics Data System (ADS)

    Ud Din, Emad; Sung, Hyung

    2011-11-01

    Fish schooling is not merely a social behavior; schooling improves the efficiency of movement within the fluid environment. Inspired by the schooling from a hydrodynamic perspective, a group of aquatic animals is modeled as a collection of individuals arranged in a combination of tandem and side-by-side (diamond) formation. The downstream bodies are strongly influenced by the vortices shed by the upstream body shown by vortex-vortex and vortex-body interactions. Trailing fish takes advantage of this flow pattern for energy economy. To investigate the interactions between flexible bodies and vortices, in the present study three flexible flags in viscous flow are solved by numerical simulation using an improved version of the immersed boundary method for in-phase and out-of-phase filaments. The drag coefficient of the downstream filaments drops even below the value of a single flag. Such drag variations are influenced by the interactions between vortices shed by the upstream flexible body and vortices surrounding the downstream filaments. Interaction of the flexible flags is investigated as a function of the gap distance between flags and different bending coefficients, for in-phase and out-of-phase cases at intermediate Reynolds numbers. This study was supported by the Creative Research Initiatives of NRF/MEST (No. 2011-0000423) of Korea.

  11. Prescribed Velocity Gradients for Highly Viscous SPH Fluids with Vorticity Diffusion.

    PubMed

    Peer, Andreas; Teschner, Matthias

    2017-12-01

    Working with prescribed velocity gradients is a promising approach to efficiently and robustly simulate highly viscous SPH fluids. Such approaches allow to explicitly and independently process shear rate, spin, and expansion rate. This can be used to, e.g., avoid interferences between pressure and viscosity solvers. Another interesting aspect is the possibility to explicitly process the vorticity, e.g., to preserve the vorticity. In this context, this paper proposes a novel variant of the prescribed-gradient idea that handles vorticity in a physically motivated way. In contrast to a less appropriate vorticity preservation that has been used in a previous approach, vorticity is diffused. The paper illustrates the utility of the vorticity diffusion. Therefore, comparisons of the proposed vorticity diffusion with vorticity preservation and additionally with vorticity damping are presented. The paper further discusses the relation between prescribed velocity gradients and prescribed velocity Laplacians which improves the intuition behind the prescribed-gradient method for highly viscous SPH fluids. Finally, the paper discusses the relation of the proposed method to a physically correct implicit viscosity formulation.

  12. The relationship between African easterly waves and equatorial waves and the influence from the Southern Hemisphere

    NASA Astrophysics Data System (ADS)

    Methven, John; Guiying, Yang; Hodges, Kevin; Woolnough, Steve

    2017-04-01

    There is strong intraseasonal and interannual variability in African easterly waves (AEWs). AEWs are crucial to precipitation across West Africa, but also generate positive vorticity centres that sometimes develop into tropical storms which can in turn spin-up into hurricanes in the easterlies across the North Atlantic. In this paper we show that there are connections between African easterly waves (AEWs), equatorial Rossby (R1 and R2) waves and westward-moving mixed Rossby gravity (WMRG) waves and that the conditions for propagation of equatorial waves may have a major influence on AEW and hence tropical cyclone variability. Two analysis approaches are taken using ERA-Interim data from 1979-2010: i) positive vorticity centres within AEWs are tracked at 600 hPa over West Africa to the Atlantic region and ii) the re-analysis data is filtered using a broad frequency and zonal wavenumber band and the filtered meridional wind is projected onto the horizontal structure functions derived from equatorial wave theory. The tracked vorticity centres are part of AEWs and are found to move along with features in the meridional wind projecting onto R1 and R2 waves. In contrast, the structures projecting onto WMRG waves move westwards at a faster rate. The projection is calculated independently on each pressure level to create composite cross-sections of each wave mode in the zonal-height plane, shown relative to the 600 hPa vorticity centres. The R2 waves tilt in the sense necessary for baroclinic growth and amplify from east to west, indicating that R2 horizontal structure captures the baroclinic wave component of AEWs. The composites show that the R2 structures have a wavelength matching the spacing between vorticity centres, while R1 and WMRG waves are longer. Intriguingly, the WMRG component has very strong cross-equatorial flow immediately to the east of positive vorticity centres developing on the AEJ. Although the WMRG propagates faster to the west and gets ahead of the original vorticity centre, the next AEW vorticity centre to the east develops with cross-equatorial flow in the same phase. This flow brings moist air from the southern hemisphere at low levels on the eastern flank of the vorticity centre, while there is an upper tropospheric "return flow" into the southern hemisphere above. Thus, there is a strong cross-equatorial component to the developing tropical storm outflow. WMRG waves may aid the initiation and development of AEW vorticity centres. Over West Africa, regressions show that the eastward group propagation of a WMRG packet precedes the genesis of vorticity centres on the AEJ. In years with stronger AEW activity, the upper tropospheric easterlies are stronger at the equator and extend further into the southern hemisphere. It is shown that stronger easterlies provide a waveguide for SH westward-moving Rossby waves in the upper troposphere to penetrate into the tropics, exciting equatorial WMRG waves and hence stronger AEW activity via the lower tropospheric cross-equatorial flow associated with WMRG waves.

  13. Abrikosov fluxonics in washboard nanolandscapes

    NASA Astrophysics Data System (ADS)

    Dobrovolskiy, Oleksandr V.

    2017-02-01

    Abrikosov fluxonics, a domain of science and engineering at the interface of superconductivity research and nanotechnology, is concerned with the study of the properties and dynamics of Abrikosov vortices in nanopatterned superconductors, with particular focus on their confinement, manipulation, and exploitation for emerging functionalities. Vortex pinning, guided vortex motion, and the ratchet effect are three main fluxonic ;tools; which allow for the dynamical (pinned or moving), the directional (angle-dependent), and the orientational (current polarity-sensitive) control of the fluxons, respectively. Thanks to the periodicity of the vortex lattice, several groups of effects emerge when the vortices move in a periodic pinning landscape: Spatial commensurability of the location of vortices with the underlying pinning nanolandscape leads to a reduction of the dc resistance and the microwave loss at the so-called matching fields. Temporal synchronization of the displacement of vortices with the number of pinning sites visited during one half ac cycle manifests itself as Shapiro steps in the current-voltage curves. Delocalization of vortices oscillating under the action of a high-frequency ac drive can be tuned by a superimposed dc bias. In this short review a set of experimental results on the vortex dynamics in the presence of periodic pinning potentials in Nb thin films is presented. The consideration is limited to one particular type of artificial pinning structures - directly written nanolandscapes of the washboard type, which are fabricated by focused ion beam milling and focused electron beam induced deposition. The reported results are relevant for the development of fluxonic devices and the reduction of microwave losses in superconducting planar transmission lines.

  14. Multi-cored vortices support function of slotted wing tips of birds in gliding and flapping flight

    PubMed Central

    2017-01-01

    Slotted wing tips of birds are commonly considered an adaptation to improve soaring performance, despite their presence in species that neither soar nor glide. We used particle image velocimetry to measure the airflow around the slotted wing tip of a jackdaw (Corvus monedula) as well as in its wake during unrestrained flight in a wind tunnel. The separated primary feathers produce individual wakes, confirming a multi-slotted function, in both gliding and flapping flight. The resulting multi-cored wingtip vortex represents a spreading of vorticity, which has previously been suggested as indicative of increased aerodynamic efficiency. Considering benefits of the slotted wing tips that are specific to flapping flight combined with the wide phylogenetic occurrence of this configuration, we propose the hypothesis that slotted wings evolved initially to improve performance in powered flight. PMID:28539482

  15. Intensity of vortices: from soap bubbles to hurricanes

    PubMed Central

    Meuel, T.; Xiong, Y. L.; Fischer, P.; Bruneau, C. H.; Bessafi, M.; Kellay, H.

    2013-01-01

    By using a half soap bubble heated from below, we obtain large isolated single vortices whose properties as well as their intensity are measured under different conditions. By studying the effects of rotation of the bubble on the vortex properties, we found that rotation favors vortices near the pole. Rotation also inhibits long life time vortices. The velocity and vorticity profiles of the vortices obtained are well described by a Gaussian vortex. Besides, the intensity of these vortices can be followed over long time spans revealing periods of intensification accompanied by trochoidal motion of the vortex center, features which are reminiscent of the behavior of tropical cyclones. An analysis of this intensification period suggests a simple relation valid for both the vortices observed here and for tropical cyclones. PMID:24336410

  16. Characterization of aircraft dynamic wake vortices and atmospheric turbulence by coherent doppler lidar

    NASA Astrophysics Data System (ADS)

    Wu, Songhua; Zhai, Xiaochun; Liu, Bingyi; Liu, Jintao

    2018-04-01

    Field observations for the wake vortices by Coherent Doppler Lidar (CDL) have been carried out at the Beijing Capital International Airport (BCIA) and Tianjin Binhai International Airport (TBIA) to investigate the wake vortices evolution characteristics and the near-ground effect. This paper introduces the dynamic wake vortices and atmospheric turbulence monitoring technique, successfully demonstrating that the CDL can capture the key characteristics of wake vortices in real-time, including wake vortices intensity, spatial-temporal evolution and so forth.

  17. Weak solutions of the three-dimensional vorticity equation with vortex singularities

    NASA Technical Reports Server (NTRS)

    Winckelmans, G.; Leonard, A.

    1988-01-01

    The extension of the concept of vortex singularities, developed by Saffman and Meiron (1986) for the case of two-dimensional point vortices in an incompressible vortical flow, to the three-dimensional case of vortex sticks (vortons) is investigated analytically. The derivation of the governing equations is explained, and it is demonstrated that the formulation obtained conserves total vorticity and is a weak solution of the vorticity equation, making it an appropriate means for representing three-dimensional vortical flows with limited numbers of vortex singularities.

  18. Vortex Shedding Characteristics of the Wake of a Thin Flat Plate with a Circular Trailing Edge

    NASA Technical Reports Server (NTRS)

    Rai, Man Mohan

    2018-01-01

    The near and very near wake of a thin flat plate with a circular trailing edge are investigated with direct numerical simulations (DNS). Data obtained for two different Reynolds numbers (based on plate thickness, D) are the main focus of this study. The separating boundary layers are turbulent in both cases. An earlier investigation of one of the cases (Case F) showed shed vortices in the wake that were about 1.0 D to 4.0 D in spanwise length. Considerable variation in both the strength and frequency of these shed vortices was observed. One objective of the present investigation is to determine the important contributors to this variability in strength and frequency of shed vortices and their finite spanwise extent. Analysis of the data shows that streamwise vortices in the separating boundary layer play an important role in strengthening/weakening of the shed vortices and that high/low-speed streaks in the boundary layer are important contributors to variability in shedding frequency. Both these features of the boundary layer contribute to the finite extent of the vortices in the spanwise direction. The second plate DNS (Case G, with 40 percent of the plate thickness of Case F) shows that while shedding intensity is weaker than obtained in Case F, many of the wake features are similar to that of Case F. This is important in understanding the path to the wake of the thin plate with a sharp trailing edge where shedding is absent. Here we also test the efficacy of a functional relationship between the shedding frequency and the Reynolds numbers based on the boundary layer momentum thickness (Re (sub theta) and D (Re (sub D)); data for developing this behavioral model is from Cases F & G and five earlier DNSs of the flat plate wake.

  19. Numerical solution of periodic vortical flows about a thin airfoil

    NASA Technical Reports Server (NTRS)

    Scott, James R.; Atassi, Hafiz M.

    1989-01-01

    A numerical method is developed for computing periodic, three-dimensional, vortical flows around isolated airfoils. The unsteady velocity is split into a vortical component which is a known function of the upstream flow conditions and the Lagrangian coordinates of the mean flow, and an irrotational field whose potential satisfies a nonconstant-coefficient, inhomogeneous, convective wave equation. Solutions for thin airfoils at zero degrees incidence to the mean flow are presented in this paper. Using an elliptic coordinate transformation, the computational domain is transformed into a rectangle. The Sommerfeld radiation condition is applied to the unsteady pressure on the grid line corresponding to the far field boundary. The results are compared with a Possio solver, and it is shown that for maximum accuracy the grid should depend on both the Mach number and reduced frequency. Finally, in order to assess the range of validity of the classical thin airfoil approximation, results for airfoils with zero thickness are compared with results for airfoils with small thickness.

  20. Identification and tracking of hairpin vortex auto-generation in turbulent wall-bounded flow

    NASA Astrophysics Data System (ADS)

    Huang, Yangzi; Green, Melissa

    2016-11-01

    Hairpin vortices have been widely accepted as component structures of turbulent boundary layers. Their properties (size, vorticity, energy) and dynamic phenomena (origin, growth, breakdown) have been shown to correlate to the complex, multi-scaled turbulent motions observed in both experiments and simulations. As established in the literature, the passage of a hairpin vortex creates a wall-normal ejection of fluid, which encounters the high-speed freestream resulting in near-wall shear and increased drag. A previously generated simulation of an isolated hairpin vortex is used to study the auto-generation of a secondary vortex structure. Eulerian methods such as the Q criterion and Γ2 function, as well as Lagrangian methods are used to visualize the three-dimensional hairpin vortices and the auto-generation process. The circulation development and wall-normal location of both primary and secondary hairpin heads are studied to determine if there is a correlation between the strength and height of the primary hairpin vortex with the secondary hairpin vortex auto-generation.

  1. Evolution of finite-amplitude localized vortices in planar homogeneous shear flows

    NASA Astrophysics Data System (ADS)

    Karp, Michael; Shukhman, Ilia G.; Cohen, Jacob

    2017-02-01

    An analytical-based method is utilized to follow the evolution of localized initially Gaussian disturbances in flows with homogeneous shear, in which the base velocity components are at most linear functions of the coordinates, including hyperbolic, elliptic, and simple shear. Coherent structures, including counterrotating vortex pairs (CVPs) and hairpin vortices, are formed for the cases where the streamlines of the base flow are open (hyperbolic and simple shear). For hyperbolic base flows, the dominance of shear over rotation leads to elongation of the localized disturbance along the outlet asymptote and formation of CVPs. For simple shear CVPs are formed from linear and nonlinear disturbances, whereas hairpins are observed only for highly nonlinear disturbances. For elliptic base flows CVPs, hairpins and vortex loops form initially, however they do not last and break into various vortical structures that spread in the spanwise direction. The effect of the disturbance's initial amplitude and orientation is examined and the optimal orientation achieving maximal growth is identified.

  2. Aharonov-Bohm effect with many vortices

    NASA Astrophysics Data System (ADS)

    Franchini, Fabio; Scharff Goldhaber, Alfred

    2008-12-01

    The Aharonov-Bohm (A-B) effect is the prime example of a zero-field-strength configuration where a nontrivial vector potential acquires physical significance, a typical quantum mechanical effect. We consider an extension of the traditional A-B problem, by studying a two-dimensional medium filled with many point-like vortices. Systems like this might be present within a type II superconducting layer in the presence of a strong magnetic field perpendicular to the layer, and have been studied in different limits. We construct an explicit solution for the wave function of a scalar particle moving within one such layer when the vortices occupy the sites of a square lattice and have all the same strength, equal to half of the flux quantum. From this construction, we infer some general characteristics of the spectrum, including the conclusion that such a flux array produces a repulsive barrier to an incident low-energy charged particle, so that the penetration probability decays exponentially with distance from the edge.

  3. Increased functional connectivity in the ventral and dorsal streams during retrieval of novel words in professional musicians.

    PubMed

    Dittinger, Eva; Valizadeh, Seyed Abolfazl; Jäncke, Lutz; Besson, Mireille; Elmer, Stefan

    2018-02-01

    Current models of speech and language processing postulate the involvement of two parallel processing streams (the dual stream model): a ventral stream involved in mapping sensory and phonological representations onto lexical and conceptual representations and a dorsal stream contributing to sound-to-motor mapping, articulation, and to how verbal information is encoded and manipulated in memory. Based on previous evidence showing that music training has an influence on language processing, cognitive functions, and word learning, we examined EEG-based intracranial functional connectivity in the ventral and dorsal streams while musicians and nonmusicians learned the meaning of novel words through picture-word associations. In accordance with the dual stream model, word learning was generally associated with increased beta functional connectivity in the ventral stream compared to the dorsal stream. In addition, in the linguistically most demanding "semantic task," musicians outperformed nonmusicians, and this behavioral advantage was accompanied by increased left-hemispheric theta connectivity in both streams. Moreover, theta coherence in the left dorsal pathway was positively correlated with the number of years of music training. These results provide evidence for a complex interplay within a network of brain regions involved in semantic processing and verbal memory functions, and suggest that intensive music training can modify its functional architecture leading to advantages in novel word learning. © 2017 Wiley Periodicals, Inc.

  4. Dissociation transition of a composite lattice of magnetic vortices in the flux-flow regime of two-band superconductors.

    PubMed

    Lin, Shi-Zeng; Bulaevskii, Lev N

    2013-02-22

    In multiband superconductors, each superconducting condensate supports vortices with fractional quantum flux. In the ground state, vortices in different bands are spatially bounded together to form a composite vortex, carrying one quantum flux Φ(0). Here we predict dissociation of the composite vortices lattice in the flux flow state due to the disparity of the vortex viscosity and flux of the vortex in different bands. For a small driving current, composite vortices start to deform, but the constituting vortices in different bands move with the same velocity. For a large current, composite vortices dissociate and vortices in different bands move with different velocities. The dissociation transition shows up as an increase of flux flow resistivity. In the dissociated phase, Shapiro steps are developed when an ac current is superimposed with a dc current.

  5. Navier-Stokes analysis and experimental data comparison of compressible flow within ducts

    NASA Technical Reports Server (NTRS)

    Harloff, G. J.; Reichert, B. A.; Sirbaugh, J. R.; Wellborn, S. R.

    1992-01-01

    Many aircraft employ ducts with centerline curvature or changing cross-sectional shape to join the engine with inlet and exhaust components. S-ducts convey air to the engine compressor from the intake and often decelerate the flow to achieve an acceptable Mach number at the engine compressor by increasing the cross-sectional area downstream. Circular-to-rectangular transition ducts are used on aircraft with rectangular exhaust nozzles to connect the engine and nozzle. To achieve maximum engine performance, the ducts should minimize flow total pressure loss and total pressure distortion at the duct exit. Changes in the curvature of the duct centerline or the duct cross-sectional shape give rise to streamline curvature which causes cross stream pressure gradients. Secondary flows can be caused by deflection of the transverse vorticity component of the boundary layer. This vortex tilting results in counter-rotating vortices. Additionally, the adverse streamwise pressure gradient caused by increasing cross-sectional area can lead to flow separation. Vortex pairs have been observed in the exit planes of both duct types. These vortices are due to secondary flows induced by pressure gradients resulting from streamline curvature. Regions of low total pressure are produced when the vortices convect boundary layer fluid into the main flow. The purpose of the present study is to predict the measured flow field in a diffusing S-duct and a circular-to-rectangular transition duct with a full Navier-Stokes computer program, PARC3D, and to compare the numerical predictions with new detailed experimental measurements. The work was undertaken to extend previous studies and to provide additional CFD validation data needed to help model flows with strong secondary flow and boundary layer separation. The S-duct computation extends the study of Smith et al, and Harloff et al, which concluded that the computation might be improved by using a finer grid and more advanced turbulence models. The present study compares results for both the Baldwin-Lomas and k-epsilon turbulence models and is conducted with a refined grid. For the transition duct, two inlet conditions were considered, the first with straight flow and the second with swirling flow. The first case permits examination of the effects of the geometric transition on the flow field, while the second case includes the rotational flow effect characteristic of a gas turbine engine.

  6. Velocity-Vorticity Correlation Structure in Turbulent Channel Flow

    NASA Astrophysics Data System (ADS)

    Chen, J.; Pei, J.; She, Z. S.; Hussain, F.

    2011-09-01

    We present a new definition of statistical structure — velocity-vorticity correlation structure (VVCS) — based on amplitude distributions of the tensor field of normalized velocity-vorticity correlation (uiωj), and show that it displays the geometry of the statistical structure relevant to a given reference point, and it effectively captures coherent motions in inhomogeneous shear flows. The variation of the extracted objects moving with the reference point yr+ then presents a full picture of statistical structures for the flow, which goes beyond the traditional view of searching for reference-independent structures. Application to turbulent channel flow simulation data at Reτ = 180 demonstrates that the VVCS successfully captures, qualitatively and quantitatively, the near-wall streaks, the streamwise vortices [1,2], and their extensions up to yr+ = 110 with variations of their length and inclination angle. More interestingly, the VVCS associated with the streamwise velocity component (particularly (uωx ( and (uωz) displays topological change at four distances from the wall (with transitions at yr+≈20,40,60,110), giving rise to a geometrical interpretation of the multi-layer structure of wall-bounded turbulence. Specifically, we find that the VVCS of (uωz( bifurcates at yr+ = 40 with one attached to the wall and the other near the reference location. The VVCS of (uωx) is blob-like in the center region, quite different from a pair of elongated and inclined objects near the wall. The propagation speeds of the velocity components in the near-wall region, y+ ≤ 10, is found to be characterized by the same stream-wise correlation structures of (uωx) and (uωz), whose core is located at y+≈20. As a result, the convection of the velocity fluctuations always reveal the constant propagation speeds in the near-wall region. The coherent motions parallel to the wall plays an important role in determining the propagation of the velocity fluctuations. This study suggests that a variable set of geometrical structures should be invoked for the study of turbulence structures and for modeling mean flow properties in terms of structures. The method and the concept presented here are general for the study of other flow systems (like boundary or mixing layer), as long as ensemble averaging is well-defined.

  7. On the instability of hypersonic flow past a flat plate

    NASA Technical Reports Server (NTRS)

    Blackaby, Nicholas; Cowley, Stephen; Hall, Philip

    1990-01-01

    The instability of hypersonic boundary-layer flows over flat plates is considered. The viscosity of the fluid is taken to be governed by Sutherland's law, which gives a much more accurate representation of the temperature dependence of fluid viscosity at hypersonic speeds than Chapman's approximate linear law; although at lower speeds the temperature variation of the mean state is less pronounced so that the Chapman law can be used with some confidence. Attention is focussed on the so-called (vorticity) mode of instability of the viscous hypersonic boundary layer. This is thought to be the fastest growing inviscid disturbance at hypersonic speeds; it is also believed to have an asymptotically larger growth rate than any viscous or centrifugal instability. As a starting point the instability of the hypersonic boundary layer which exists far downstream from the leading edge of the plate is investigated. In this regime the shock that is attached to the leading edge of the plate plays no role, so that the basic boundary layer is non-interactive. It is shown that the vorticity mode of instability of this flow operates on a significantly different lengthscale than that obtained if a Chapman viscosity law is assumed. In particular, it is found that the growth rate predicted by a linear viscosity law overestimates the size of the growth rate by O(M(exp 2). Next, the development of the vorticity mode as the wavenumber decreases is described, and it is shown that acoustic modes emerge when the wavenumber has decreased from it's O(1) initial value to O(M (exp -3/2). Finally, the inviscid instability of the boundary layer near the leading edge in the interaction zone is discussed and particular attention is focussed on the strong interaction region which occurs sufficiently close to the leading edge. It is found that the vorticity mode in this regime is again unstable, and that it is concentrated in the transition layer at the edge of the boundary layer where the temperature adjusts from its large, O(M(exp 2), value in the viscous boundary layer, to its O(1) free stream value. The existence of the shock indirectly, but significantly, influences the instability problem by modifying the basic flow structure in this layer.

  8. Optical Rogue Waves in Vortex Turbulence.

    PubMed

    Gibson, Christopher J; Yao, Alison M; Oppo, Gian-Luca

    2016-01-29

    We present a spatiotemporal mechanism for producing 2D optical rogue waves in the presence of a turbulent state with creation, interaction, and annihilation of optical vortices. Spatially periodic structures with bound phase lose stability to phase unbound turbulent states in complex Ginzburg-Landau and Swift-Hohenberg models with external driving. When the pumping is high and the external driving is low, synchronized oscillations are unstable and lead to spatiotemporal vortex-mediated turbulence with high excursions in amplitude. Nonlinear amplification leads to rogue waves close to turbulent optical vortices, where the amplitude tends to zero, and to probability density functions (PDFs) with long tails typical of extreme optical events.

  9. On relation between scalar interfaces and vorticity in inviscid flows

    NASA Astrophysics Data System (ADS)

    Ramesh, O. N.; Patwardhan, Saurabh

    2013-11-01

    A great variety of applications like pollutant mixing in the atmosphere, mixing of reactants in combustion highlight the importance of passive scalar dynamics in fluid flows. The other dynamically important variable in the study of fluid flow is the vorticity. Vorticity though, unlike a passive scalar, does affect the fluid motion. The dynamics of scalar (linear) and vorticity (non-linear) are governed by the equations which inherently have different characteristics. This paper addresses the question of the faithfulness of representation of vorticity by scalar marker and the motivation for this comes from the experiment of Head and Bandyopadhyay (1981) which showed the existence of coherent vortices by using smoke flow visualization in a turbulent boundary layer. We will show analytically in regions where the molecular diffusion effects are negligible, the vorticity and scalar gradients are orthogonal to each other. The iso- surface of scalar follows the vorticity in an inviscid situation. Also, we will demonstrate that in the case of unsteady burgers vortex and vortex shedding behind a finite circular cylinder, the scalar gradient is orthogonal to vorticity and inner product of vorticity and scalar gradients is zero in regions away from the wall.

  10. A rapid method to score stream reaches based on the overall performance of their main ecological functions.

    PubMed

    Rowe, David K; Parkyn, Stephanie; Quinn, John; Collier, Kevin; Hatton, Chris; Joy, Michael K; Maxted, John; Moore, Stephen

    2009-06-01

    A method was developed to score the ecological condition of first- to third-order stream reaches in the Auckland region of New Zealand based on the performance of their key ecological functions. Such a method is required by consultants and resource managers to quantify the reduction in ecological condition of a modified stream reach relative to its unmodified state. This is a fundamental precursor for the determination of fair environmental compensation for achieving no-net-loss in overall stream ecological value. Field testing and subsequent use of the method indicated that it provides a useful measure of ecological condition related to the performance of stream ecological functions. It is relatively simple to apply compared to a full ecological study, is quick to use, and allows identification of the degree of impairment of each of the key ecological functions. The scoring system was designed so that future improvements in the measurement of stream functions can be incorporated into it. Although the methodology was specifically designed for Auckland streams, the principles can be readily adapted to other regions and stream types.

  11. The characterisation of blood rotation in a human heart chamber based on statistical analysis of vorticity maps

    NASA Astrophysics Data System (ADS)

    Wong, Kelvin K. L.; Kelso, Richard M.; Worthley, Stephen G.; Sanders, Prashanthan; Mazumdar, Jagannath; Abbott, Derek

    2008-12-01

    Modelling of non-stationary cardiac structures is complicated by the complexity of their intrinsic and extrinsic motion. The first known study of haemodynamics due to the beating of heart was made by Leonardo Da Vinci, giving the idea of fluid-solid interaction by describing how vortices develop during cardiac structural interaction with the blood. Heart morphology affects in changes of cardio dynamics during the systolic and diastolic phrases. In a chamber of the heart, vortices are discovered to exist as the result of the unique morphological changes of the cardiac chamber wall by using flow-imaging techniques such as phase contrast magnetic resonance imaging. The first part of this paper attempts to quantify vortex characteristics by means of calculating vorticity numerically and devising two dimensional vortical flow maps. The technique relies on determining the properties of vorticity using a statistical quantification of the flow maps and comparison of these quantities based on different scenarios. As the characteristics of our vorticity maps vary depending on the phase of a cardiac cycle, there is a need for robust quantification method to analyse vorticity. In the second part of the paper, the approach is then utilised for examining vortices within the human right atrium. Our study has shown that a proper quantification of vorticity for the flow field can indicate the strength and number of vortices within a heart chamber.

  12. Spanwise Spacing Effects on the Initial Structure and Decay of Axial Vortices

    NASA Technical Reports Server (NTRS)

    Wendt, B. J.; Reichert, B. A.

    1996-01-01

    The initial structure and axial decay of an array of streamwise vortices embedded in a turbulent pipe boundary layer is experimentally investigated. The vortices are shed in counter-rotating fashion from an array of equally-spaced symmetric airfoil vortex generators. Vortex structure is quantified in terms of crossplane circulation and peak streamwise vorticity. Flow conditions are subsonic and incompressible. The focus of this study is on the effect of the initial spacing between the parent vortex generators. Arrays with vortex generators spaced at 15 and 30 degrees apart are considered. When the spacing between vortex generators is decreased the circulation and peak vorticity of the shed vortices increases. Analysis indicates this strengthening results from regions of fluid acceleration in the vicinity of the vortex generator array. Decreased spacing between the constituent vortices also produces increased rates of circulation and peak vorticity decay.

  13. Control of Interacting Vortex Flows at Subsonic and Transonic Speeds Using Passive Porosity

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.

    2003-01-01

    A wind tunnel experiment was conducted in the NASA Langley Research Center (LaRC) 8-foot Transonic Pressure Tunnel (TPT) to determine the effects of passive surface porosity on vortex flow interactions about a general research fighter configuration at subsonic and transonic speeds. Flow- through porosity was applied to a wind leading-edge extension (LEX) mounted to a 65 deg cropped delta wind model to promote large nose-down pitching moment increments at high angles of attack. Porosity decreased the vorticity shed from the LEX, which weakened the LEX vortex and altered the global interactions of the LEX and wing vortices at high angles of attack. Six-component forces and moments and wing upper surface static pressure distributions were obtained at free- stream Mach numbers of 0.50, 0.85, and 1.20, Reynolds number of 2.5(10(exp-6) per foot, angles of attack up to 30 deg and angles of sideslip to plus or minus 8 deg. The off-surface flow field was visualized in selected cross-planes using a laser vapor screen flow visualization technique. Test data were obtained with a centerline vertical tail and with alternate twin, wing-mounted vertical fins having 0 deg and 30 deg cant angles. In addition, the porosity of the LEX was compartmentalized to determine the sensitivity of the vortex- dominated aerodynamics to the location and level of porosity applied to the LEX.

  14. Control of Interacting Vortex Flows at Subsonic and Transonic Speeds Using Passive Porosity

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.

    2003-01-01

    A wind tunnel experiment was conducted in the NASA Langley Research Center (LaRC) 8-Foot Transonic Pressure Tunnel (TPT) to determine the effects of passive surface porosity on vortex flow interactions about a general research fighter configuration at subsonic and transonic speeds. Flow-through porosity was applied to a wing leading-edge extension (LEX) mounted to a 65 deg cropped delta wing model to promote large nose-down pitching moment increments at high angles of attack. Porosity decreased the vorticity shed from the LEX, which weakened the LEX vortex and altered the global interactions of the LEX and wing vortices at high angles of attack. Six-component forces and moments and wing upper surface static pressure distributions were obtained at free-stream Mach numbers of 0.50, 0.85, and 1.20, Reynolds number of 2.5(10(exp 6)) per foot, angles of attack up to 30 deg, and angles of sideslip to +/- 8 deg. The off-surface flow field was visualized in selected cross-planes using a laser vapor screen flow visualization technique. Test data were obtained with a centerline vertical tail and with alternate twin, wing-mounted vertical fins having 0 deg and 30 deg cant angles. In addition, the porosity of the LEX was compartmentalized to determine the sensitivity of the vortex-dominated aerodynamics to the location and level of porosity applied to the LEX.

  15. Unexpected trapping of particles at a T junction.

    PubMed

    Vigolo, Daniele; Radl, Stefan; Stone, Howard A

    2014-04-01

    A common element in physiological flow networks, as well as most domestic and industrial piping systems, is a T junction that splits the flow into two nearly symmetric streams. It is reasonable to assume that any particles suspended in a fluid that enters the bifurcation will leave it with the fluid. Here we report experimental evidence and a theoretical description of a trapping mechanism for low-density particles in steady and pulsatile flows through T-shaped junctions. This mechanism induces accumulation of particles, which can form stable chains, or give rise to significant growth of bubbles due to coalescence. In particular, low-density material dispersed in the continuous phase fluid interacts with a vortical flow that develops at the T junction. As a result suspended particles can enter the vortices and, for a wide range of common flow conditions, the particles do not leave the bifurcation. Via 3D numerical simulations and a model of the two-phase flow we predict the location of particle accumulation, which is in excellent agreement with experimental data. We identify experimentally, as well as confirm by numerical simulations and a simple force balance, that there is a wide parameter space in which this phenomenon occurs. The trapping effect is expected to be important for the design of particle separation and fractionation devices, as well as used for better understanding of system failures in piping networks relevant to industry and physiology.

  16. Unexpected trapping of particles at a T junction

    PubMed Central

    Vigolo, Daniele; Radl, Stefan; Stone, Howard A.

    2014-01-01

    A common element in physiological flow networks, as well as most domestic and industrial piping systems, is a T junction that splits the flow into two nearly symmetric streams. It is reasonable to assume that any particles suspended in a fluid that enters the bifurcation will leave it with the fluid. Here we report experimental evidence and a theoretical description of a trapping mechanism for low-density particles in steady and pulsatile flows through T-shaped junctions. This mechanism induces accumulation of particles, which can form stable chains, or give rise to significant growth of bubbles due to coalescence. In particular, low-density material dispersed in the continuous phase fluid interacts with a vortical flow that develops at the T junction. As a result suspended particles can enter the vortices and, for a wide range of common flow conditions, the particles do not leave the bifurcation. Via 3D numerical simulations and a model of the two-phase flow we predict the location of particle accumulation, which is in excellent agreement with experimental data. We identify experimentally, as well as confirm by numerical simulations and a simple force balance, that there is a wide parameter space in which this phenomenon occurs. The trapping effect is expected to be important for the design of particle separation and fractionation devices, as well as used for better understanding of system failures in piping networks relevant to industry and physiology. PMID:24639547

  17. Flow through triple helical microchannel

    NASA Astrophysics Data System (ADS)

    Rajbanshi, Pravat; Ghatak, Animangsu

    2018-02-01

    Flow through helical tubes and channels have been examined in different contexts, for facilitating heat and mass transfer at low Reynolds number flow, for generating plug flow to minimize reactor volume for many reactions. The curvature and torsion of the helices have been shown to engender secondary flow in addition to the primary axial flow, which enhances passive in-plane mixing between different fluid streams. Most of these studies, however, involve a single spiral with circular cross-section, which in essence is symmetric. It is not known, however, how the coupled effect of asymmetry of cross-section and the curvature and torsion of channel would affect the flow profile inside such tubes or channels. In this context, we have presented here the analysis of fluid flow at low Reynolds number inside a novel triple helical channel that consists of three helical flow paths joined along their contour length forming a single channel. We have carried out both microparticle image velocimetry (micro-PIV) and 3D simulation in FLUENT of flow of a Newtonian fluid through such channels. Our analysis shows that whereas in conventional single helices, the secondary flow is characterized by two counter-rotating vortices, in the case of triple helical channels, number of such vortices increases with the helix angle. Such flow profile is expected to enhance possibility of mixing between the liquids, yet diminish the pressure drop.

  18. Cleaning devices

    NASA Technical Reports Server (NTRS)

    Schneider, Horst W. (Inventor)

    1981-01-01

    Cleaning devices are described which include a vacuum cleaner nozzle with a sharp rim for directing incoming air down against the floor; a vacuum cleaner wherein electrostatically charged brushes that brush dirt off a floor, are electrically grounded to remove charges that could tend to hold dirt to the brushes; a vacuum cleaner head having slots that form a pair of counter-rotating vortices, and that includes an outlet that blows a stream of air at the floor region which lies between the vortices; a cleaning device that sweeps a group of brushes against the ground along a first direction, and then sweeps them along the same ground area but in a second direction angled from the first by an amount such as 90.degree., to sweep up particles lying in crevices extending along any direction; a device that gently cleans a surface to remove bacteria for analysis, including an inclined wall along which cleaning fluid flows onto the surface, a vacuum chamber for drawing in the cleaning fluid, and a dividing wall spaced slightly from the surface to separate the fluid source from the vacuum cleaner chamber; and a device for providing pulses of pressured air including a chamber to which pressured air is supplied, a ball that circulates around the chamber to repeatedly close an outlet, and an air source that directs air circumferentially to move the ball around the chamber.

  19. Attraction between pancake vortices and vortex molecule formation in the crossing lattices in thin films of layered superconductors

    NASA Astrophysics Data System (ADS)

    Samokhvalov, A. V.; Mel'nikov, A. S.; Buzdin, A. I.

    2012-05-01

    We study the intervortex interaction in thin films of layered superconductors for the magnetic field tilted with respect to the c axis. In such a case, the crossing lattice of Abrikosov vortices (AVs) and Josephson vortices appears. The interaction between pancake vortices, forming the AVs, with Josephson ones, produces the zigzag deformation of the AV line. This deformation induces a long-range attraction between Abrikosov vortices and, in thin films, it competes with another long-range interaction, i.e., with Pearl's repulsion. This interplay results in the formation of clusters of Abrikosov vortices, which can be considered as vortex molecules. The number of vortices in such clusters depends on field tilting angle and film thickness.

  20. Functional Process Zones Characterizing Aquatic Insect Communities in Streams of the Brazilian Cerrado.

    PubMed

    Godoy, B S; Simião-Ferreira, J; Lodi, S; Oliveira, L G

    2016-04-01

    Stream ecology studies see to understand ecological dynamics in lotic systems. The characterization of streams into Functional Process Zones (FPZ) has been currently debated in stream ecology because aquatic communities respond to functional processes of river segments. Therefore, we tested if different functional process zones have different number of genera and trophic structure using the aquatic insect community of Neotropical streams. We also assessed whether using physical and chemical variables may complement the approach of using FPZ to model communities of aquatic insects in Cerrado streams. This study was conducted in 101 streams or rivers from the central region of the state of Goiás, Brazil. We grouped the streams into six FPZ associated to size of the river system, presence of riparian forest, and riverbed heterogeneity. We used Bayesian models to compare number of genera and relative frequency of the feeding groups between FPZs. Streams classified in different FPZs had a different number of genera, and the largest and best preserved rivers had an average of four additional genera. Trophic structure exhibited low variability among FPZs, with little difference both in the number of genera and in abundance. Using functional process zones in Cerrado streams yielded good results for Ephemeroptera, Plecoptera, and Trichoptera communities. Thus, species distribution and community structure in the river basin account for functional processes and not necessarily for the position of the community along a longitudinal dimension of the lotic system.

  1. Analysis of vortical structures in turbulent natural convection

    NASA Astrophysics Data System (ADS)

    Park, Sangro; Lee, Changhoon

    2014-11-01

    Natural convection of fluid within two parallel walls, Rayleigh-Bénard convection, is studied by direct numerical simulation using a spectral method. The flow is in soft turbulence regime with Rayleigh number 106, 107, 108, Prandtl number 0 . 7 and aspect ratio 4. We investigate the relations between thermal plumes and vortical structures through manipulating the evolution equations of vorticity and velocity gradient tensor. According to simulation results, horizontal vorticity occurs near the wall and changes into vertical vorticity by vertical stretching of fluid element which is caused by vertical movement of the thermal plume. Additionally, eigenvalues, eigenvectors and invariants of velocity gradient tensor show the topologies of vortical structures, including how vortical structures are tilted or stretched. Difference of velocity gradient tensor between inside thermal plumes and background region is also investigated, and the result indicates that thermal plumes play an important role in changing the distribution of vortical structures. The results of this study are consistent with other researches which suggest that vertical vorticity is stronger in high Rayleigh number flows. Details will be presented in the meeting.

  2. Inertial instabilities in a mixing-separating microfluidic device

    NASA Astrophysics Data System (ADS)

    Domingues, Allysson; Poole, Robert; Dennis, David

    2017-11-01

    Combining and separating fluids has many industrial and biomedical applications. This numerical and experimental study explores inertial instabilities in a so-called mixing-separating cell micro-geometry which could potentiality be used to enhance mixing. Our microfluidic mixing-separating cell consists of two straight square parallel channels with flow from opposite directions with a central gap that allows the streams to interact, mix or remain separate (often referred to as the `H' geometry). A stagnation point is generated at the centre of symmetry due to the two opposed inlets and outlets. Under creeping flow conditions (Reynolds number [ Re 0 ]) the flow is steady, two-dimensional and produces a sharp symmetric boundary between fluids stream entering the geometry from opposite directions. For Re > 30 , an inertial instability appears which leads to the generation of a central vortex and the breaking of symmetry, although the flow remains steady. As Re increases the central vortex divides into two vortices. Our experimental and numerical investigations both show the same phenomena. The results suggest that the effect observed can be exploited to enhance mixing in biomedical or other applications. Work supported by CNPq Grant 203195/2014-0.

  3. Boundary charges and integral identities for solitons in (d + 1)-dimensional field theories

    NASA Astrophysics Data System (ADS)

    Gudnason, Sven Bjarke; Gao, Zhifeng; Yang, Yisong

    2017-12-01

    We establish a 3-parameter family of integral identities to be used on a class of theories possessing solitons with spherical symmetry in d spatial dimensions. The construction provides five boundary charges that are related to certain integrals of the profile functions of the solitons in question. The framework is quite generic and we give examples of both topological defects (like vortices and monopoles) and topological textures (like Skyrmions) in 2 and 3 dimensions. The class of theories considered here is based on a kinetic term and three functionals often encountered in reduced Lagrangians for solitons. One particularly interesting case provides a generalization of the well-known Pohozaev identity. Our construction, however, is fundamentally different from scaling arguments behind Derrick's theorem and virial relations. For BPS vortices, we find interestingly an infinity of integrals simply related to the topological winding number.

  4. Multi-cored vortices support function of slotted wing tips of birds in gliding and flapping flight.

    PubMed

    KleinHeerenbrink, Marco; Johansson, L Christoffer; Hedenström, Anders

    2017-05-01

    Slotted wing tips of birds are commonly considered an adaptation to improve soaring performance, despite their presence in species that neither soar nor glide. We used particle image velocimetry to measure the airflow around the slotted wing tip of a jackdaw ( Corvus monedula ) as well as in its wake during unrestrained flight in a wind tunnel. The separated primary feathers produce individual wakes, confirming a multi-slotted function, in both gliding and flapping flight. The resulting multi-cored wingtip vortex represents a spreading of vorticity, which has previously been suggested as indicative of increased aerodynamic efficiency. Considering benefits of the slotted wing tips that are specific to flapping flight combined with the wide phylogenetic occurrence of this configuration, we propose the hypothesis that slotted wings evolved initially to improve performance in powered flight. © 2017 The Author(s).

  5. Level set formulation of two-dimensional Lagrangian vortex detection methods

    NASA Astrophysics Data System (ADS)

    Hadjighasem, Alireza; Haller, George

    2016-10-01

    We propose here the use of the variational level set methodology to capture Lagrangian vortex boundaries in 2D unsteady velocity fields. This method reformulates earlier approaches that seek material vortex boundaries as extremum solutions of variational problems. We demonstrate the performance of this technique for two different variational formulations built upon different notions of coherence. The first formulation uses an energy functional that penalizes the deviation of a closed material line from piecewise uniform stretching [Haller and Beron-Vera, J. Fluid Mech. 731, R4 (2013)]. The second energy function is derived for a graph-based approach to vortex boundary detection [Hadjighasem et al., Phys. Rev. E 93, 063107 (2016)]. Our level-set formulation captures an a priori unknown number of vortices simultaneously at relatively low computational cost. We illustrate the approach by identifying vortices from different coherence principles in several examples.

  6. Quantized vortices and superflow in arbitrary dimensions: structure, energetics and dynamics

    NASA Astrophysics Data System (ADS)

    Goldbart, Paul M.; Bora, Florin

    2009-05-01

    The structure and energetics of superflow around quantized vortices, and the motion inherited by these vortices from this superflow, are explored in the general setting of a superfluid in arbitrary dimensions. The vortices may be idealized as objects of codimension 2, such as one-dimensional loops and two-dimensional closed surfaces, respectively, in the cases of three- and four-dimensional superfluidity. By using the analogy between the vortical superflow and Ampère-Maxwell magnetostatics, the equilibrium superflow containing any specified collection of vortices is constructed. The energy of the superflow is found to take on a simple form for vortices that are smooth and asymptotically large, compared with the vortex core size. The motion of vortices is analyzed in general, as well as for the special cases of hyper-spherical and weakly distorted hyper-planar vortices. In all dimensions, vortex motion reflects vortex geometry. In dimension 4 and higher, this includes not only extrinsic but also intrinsic aspects of the vortex shape, which enter via the first and second fundamental forms of classical geometry. For hyper-spherical vortices, which generalize the vortex rings of three-dimensional superfluidity, the energy-momentum relation is determined. Simple scaling arguments recover the essential features of these results, up to numerical and logarithmic factors.

  7. Simulating rotating fluid bodies: When is vorticity generation via density-stratification important?

    NASA Astrophysics Data System (ADS)

    Evonuk, M.; Samuel, H.

    2012-04-01

    Differential rotation is one of the key components needed to maintain a magnetic dynamo, therefore it is important to understand the processes that generate differential rotation in rotating bodies. In a rotating density-stratified fluid, local vorticity generation occurs as fluid parcels move radially, expanding or contracting with respect to the background density stratification. The convergence of this vorticity forms zonal flow structures as a function of the radius and the slope of the background density profile. While this effect is thought to be of importance in bodies that are quickly rotating and highly turbulent with large density stratifications such as Jupiter, it is generally neglected in bodies such as the Earth's outer core, where the density change is small. Simulations of thermal convection in the 2D rotating equatorial plane are conducted to determine the parameter regime where local vorticity generation plays a significant role in organizing the fluid flow. Three regimes are found: a dipolar flow regime, where the flow is not organized by the rotation, a transitional flow regime, and a differential flow regime, where the flow is strongly organized into differential rotation with multiple jets. A scaling law is determined based on the convective Rossby number and the density contrast across the equatorial plane, providing a simple way to determine in which regime a given body lies. While a giant planet such as Jupiter lies firmly in the differential flow regime as expected, the Earth's outer core is also found to lie in the differential flow regime indicating that, even in the Earth's outer core, where the density contrast is small, vorticity contributions via fluid movement through the density stratification may be non-negligible.

  8. Simulating rotating fluid bodies: When is vorticity generation via density-stratification important?

    NASA Astrophysics Data System (ADS)

    Evonuk, M.; Samuel, H.

    2012-12-01

    Differential rotation is one of the key components needed to maintain a magnetic dynamo, therefore it is important to understand the processes that generate differential rotation in rotating bodies. In a rotating density-stratified fluid, local vorticity generation occurs as fluid parcels move radially, expanding or contracting with respect to the background density stratification. The convergence of this vorticity forms zonal flow structures as a function of the radius and the slope of the background density profile. While this effect is thought to be of importance in bodies that are quickly rotating and highly turbulent with large density stratifications such as Jupiter, it is generally neglected in bodies such as the Earth's outer core, where the density change is small. Simulations of thermal convection in the 2D rotating equatorial plane are conducted to determine the parameter regime where local vorticity generation plays a significant role in organizing the fluid flow. Three regimes are found: a dipolar flow regime, where the flow is not organized by the rotation, a transitional flow regime, and a differential flow regime, where the flow is strongly organized into differential rotation with multiple jets. A scaling law is determined based on the convective Rossby number and the density contrast across the equatorial plane, providing a simple way to determine in which regime a given body lies. While a giant planet such as Jupiter lies firmly in the differential flow regime as expected, the Earth's outer core is also found to lie in the differential flow regime indicating that, even in the Earth's outer core, where the density contrast is small, vorticity contributions via fluid movement through the density stratification may be non-negligible.

  9. Simulating rotating fluid bodies: When is vorticity generation via density-stratification important?

    NASA Astrophysics Data System (ADS)

    Evonuk, M.; Samuel, H.

    2012-02-01

    Differential rotation is one of the key components needed to maintain a magnetic dynamo, therefore it is important to understand the processes that generate differential rotation in rotating bodies. In a rotating density-stratified fluid, local vorticity generation occurs as fluid parcels move radially, expanding or contracting with respect to the background density stratification. The convergence of this vorticity forms zonal flow structures as a function of the radius and the slope of the background density profile. While this effect is thought to be of importance in bodies that are quickly rotating and highly turbulent with large density stratifications such as Jupiter, it is generally neglected in bodies such as the Earth's outer core, where the density change is small. Simulations of thermal convection in the 2D rotating equatorial plane are conducted to determine the parameter regime where local vorticity generation plays a significant role in organizing the fluid flow. Three regimes are found: a dipolar flow regime, where the flow is not organized by the rotation, a transitional flow regime, and a differential flow regime, where the flow is strongly organized into differential rotation with multiple jets. A scaling law is determined based on the convective Rossby number and the density contrast across the equatorial plane, providing a simple way to determine in which regime a given body lies. While a giant planet such as Jupiter lies firmly in the differential flow regime as expected, the Earth's outer core is also found to lie in the differential flow regime indicating that, even in the Earth's outer core, where the density contrast is small, vorticity contributions via fluid movement through the density stratificationmay be non-negligible.

  10. Dynamics of the Antarctic Circumpolar Current. Evidence for Topographic Effects from Altimeter Data and Numerical Model Output

    NASA Technical Reports Server (NTRS)

    Gille, Sarah T.

    1995-01-01

    Geosat altimeter data and numerical model output are used to examine the circulation and dynamics of the Antarctic Circumpolar Current (ACC). The mean sea surface height across the ACC has been reconstructed from height variability measured by the altimeter, without assuming prior knowledge of the geoid. The results indicate locations for the Subantarctic and Polar Fronts which are consistent with in situ observations and indicate that the fronts are substantially steered by bathymetry. Detailed examination of spatial and temporal variability indicates a spatial decorrelation scale of 85 km and a temporal e-folding scale of 34 days. Empirical Orthogonal Function analysis suggests that the scales of motion are relatively short, occuring on 1000 km length-scales rather than basin or global scales. The momentum balance of the ACC has been investigated using output from the high resolution primitive equation model in combination with altimeter data. In the Semtner-Chervin quarter-degree general circulation model topographic form stress is the dominant process balancing the surface wind forcing. In stream coordinates, the dominant effect transporting momentum across the ACC is bibarmonic friction. Potential vorticity is considered on Montgomery streamlines in the model output and along surface streamlines in model and altimeter data. (AN)

  11. Charney's Influence on Modern Oceanography

    NASA Astrophysics Data System (ADS)

    Cane, M. A.

    2017-12-01

    In this talk I will review some of Jule Charney's impacts on current oceanographic research. He was of course a major seminal figure in geophysical fluid dynamics, an approach to understanding the atmosphere and oceans that has been thoroughly absorbed in contemporary thinking. In oceanography, his publications make vorticity dynamics the centerpiece of his analysis. Here I pursue two other aspects of his work. The first is to note that his 1955 paper "The Gulf Stream as an inertial boundary layer" appears to be the earliest numerical model in oceanography. The second is that his work on the equatorial undercurrent leads to a simplification of equatorial ocean structure that was exploited by Zebiak and Cane in their model for ENSO, and thus structures later views of how equatorial ocean dynamics influence sea surface temperature.

  12. Experimental investigation of a supersonic swept ramp injector using laser-induced iodine fluorescence

    NASA Technical Reports Server (NTRS)

    Hartfield, Roy J.; Hollo, Steven D.; Mcdaniel, James C.

    1990-01-01

    Planar measurements of injectant mole fraction and temperature have been conducted in a nonreacting supersonic combustor configured with underexpanded injection in the base of a swept ramp. The temperature measurements were conducted with a Mach 2 test section inlet in streamwise planes perpendicular to the test section wall on which the ramp was mounted. Injection concentration measurements, conducted in cross flow planes with both Mach 2 and Mach 2.9 free stream conditions, dramatically illustrate the domination of the mixing process by streamwise vorticity generated by the ramp. These measurements, conducted using a nonintrusive optical technique (laser-induced iodine fluorescence), provide an accurate and extensive experimental data base for the validation of computation fluid dynamic codes for the calculation of highly three-dimensional supersonic combustor flow fields.

  13. Inertio-elastic mixing in a straight microchannel with side wells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Sun Ok; Cooper-White, Justin J.; School of Chemical Engineering, University of Queensland, St Lucia, 4072 QLD

    Mixing remains a challenging task in microfluidic channels because of their inherently small length scale. In this work, we propose an efficient microfluidic mixer based on the chaotic vortex dynamics of a viscoelastic flow in a straight channel with side wells. When the inertia and elasticity of a dilute polymer solution are balanced (i.e., the Reynolds number Re and Weissenberg number Wi are both on the order of 10{sup 1}), chaotic vortices appear in the side wells (inertio-elastic flow instability), enhancing the mixing of adjacent fluid streams. However, there is no chaotic vortex motion in Newtonian flows for any flowmore » rate. Efficient mixing by such an inertio-elastic instability is found to be relevant for a wide range of Re values.« less

  14. A method for modeling finite-core vortices in wake-flow calculations

    NASA Technical Reports Server (NTRS)

    Stremel, P. M.

    1984-01-01

    A numerical method for computing nonplanar vortex wakes represented by finite-core vortices is presented. The approach solves for the velocity on an Eulerian grid, using standard finite-difference techniques; the vortex wake is tracked by Lagrangian methods. In this method, the distribution of continuous vorticity in the wake is replaced by a group of discrete vortices. An axially symmetric distribution of vorticity about the center of each discrete vortex is used to represent the finite-core model. Two distributions of vorticity, or core models, are investigated: a finite distribution of vorticity represented by a third-order polynomial, and a continuous distribution of vorticity throughout the wake. The method provides for a vortex-core model that is insensitive to the mesh spacing. Results for a simplified case are presented. Computed results for the roll-up of a vortex wake generated by wings with different spanwise load distributions are presented; contour plots of the flow-field velocities are included; and comparisons are made of the computed flow-field velocities with experimentally measured velocities.

  15. Network community-based model reduction for vortical flows

    NASA Astrophysics Data System (ADS)

    Gopalakrishnan Meena, Muralikrishnan; Nair, Aditya G.; Taira, Kunihiko

    2018-06-01

    A network community-based reduced-order model is developed to capture key interactions among coherent structures in high-dimensional unsteady vortical flows. The present approach is data-inspired and founded on network-theoretic techniques to identify important vortical communities that are comprised of vortical elements that share similar dynamical behavior. The overall interaction-based physics of the high-dimensional flow field is distilled into the vortical community centroids, considerably reducing the system dimension. Taking advantage of these vortical interactions, the proposed methodology is applied to formulate reduced-order models for the inter-community dynamics of vortical flows, and predict lift and drag forces on bodies in wake flows. We demonstrate the capabilities of these models by accurately capturing the macroscopic dynamics of a collection of discrete point vortices, and the complex unsteady aerodynamic forces on a circular cylinder and an airfoil with a Gurney flap. The present formulation is found to be robust against simulated experimental noise and turbulence due to its integrating nature of the system reduction.

  16. A statistical investigation of the single-point pdf of velocity and vorticity based on direct numerical simulations

    NASA Technical Reports Server (NTRS)

    Mortazavi, M.; Kollmann, W.; Squires, K.

    1987-01-01

    Vorticity plays a fundamental role in turbulent flows. The dynamics of vorticity in turbulent flows and the effect on single-point closure models were investigated. The approach was to use direct numerical simulations of turbulent flows to investigate the pdf of velocity and vorticity. The preliminary study of homogeneous shear flow has shown that the expectation of the fluctuating pressure gradient, conditioned with a velocity component, is linear in the velocity component, and that the coefficient is independent of velocity and vorticity. In addition, the work shows that the expectation of the pressure gradient, conditioned with a vorticity component, is essentially zero.

  17. A thermodynamically general theory for convective vortices

    NASA Astrophysics Data System (ADS)

    Renno, Nilton O.

    2008-08-01

    Convective vortices are common features of atmospheres that absorb lower-entropy-energy at higher temperatures than they reject higher-entropy-energy to space. These vortices range from small to large-scale and play an important role in the vertical transport of heat, momentum, and tracer species. Thus, the development of theoretical models for convective vortices is important to our understanding of some of the basic features of planetary atmospheres. The heat engine framework is a useful tool for studying convective vortices. However, current theories assume that convective vortices are reversible heat engines. Since there are questions about how reversible real atmospheric heat engines are, their usefulness for studying real atmospheric vortices is somewhat controversial. In order to reduce this problem, a theory for convective vortices that includes irreversible processes is proposed. The paper's main result is that the proposed theory provides an expression for the pressure drop along streamlines that includes the effects of irreversible processes. It is shown that a simplified version of this expression is a generalization of Bernoulli's equation to convective circulations. It is speculated that the proposed theory not only explains the intensity, but also sheds light on other basic features of convective vortices such as their physical appearance.

  18. Coupled Control of Flow Separation and Streamwise Vortical Structures

    NASA Astrophysics Data System (ADS)

    Burrows, Travis; Vukasinovic, Bojan; Glezer, Ari

    2017-11-01

    The flow in offset diffusers of modern propulsion systems are dominated by streamwise vorticity concentrations that advect of low-momentum fluid from the flow boundaries into the core flow and give rise to flow distortion and losses at the engine inlet. Because the formation of these vortices is strongly coupled to trapped vorticity concentrations within locally-separated flow domains over concave surfaces of the diffuser bends, this coupling is exploited for controlling the streamwise evolution of the vortices and thereby significantly reduce the flow distortion and losses. The scale and topology of the trapped vorticity are manipulated at an operating throat Mach number of 0.64 by using a spanwise array of fluidic oscillating jets that are placed upstream of the separation domain. The present investigations demonstrate that the actuation alters the structure of both the trapped and streamwise vortices. In particular, the distribution of the streamwise vortices is altered and their strength is diminished by actuation-induced streamwise vorticity concentrations of opposite sense. As a result, the actuation leads to significant suppression of pressure distortion at the engine inlet (by as much as 60%) at an actuation level that utilizes less than 0.4% of the diffuser's mass flow rate. Supported by ONR.

  19. Tunneling decay of false vortices with gravitation

    NASA Astrophysics Data System (ADS)

    Dupuis, Éric; Gobeil, Yan; Lee, Bum-Hoon; Lee, Wonwoo; MacKenzie, Richard; Paranjape, Manu B.; Yajnik, Urjit A.; Yeom, Dong-han

    2017-11-01

    We study the effect of vortices on the tunneling decay of a symmetry-breaking false vacuum in three spacetime dimensions with gravity. The scenario considered is one in which the initial state, rather than being the homogeneous false vacuum, contains false vortices. The question addressed is whether, and, if so, under which circumstances, the presence of vortices has a significant catalyzing effect on vacuum decay. After studying the existence and properties of vortices, we study their decay rate through quantum tunneling using a variety of techniques. In particular, for so-called thin-wall vortices we devise a one-parameter family of configurations allowing a quantum-mechanical calculation of tunneling. Also for thin-wall vortices, we employ the Israel junction conditions between the interior and exterior spacetimes. Matching these two spacetimes reveals a decay channel which results in an unstable, expanding vortex. We find that the tunneling exponent for vortices, which is the dominant factor in the decay rate, is half that for Coleman-de Luccia bubbles. This implies that vortices are short-lived, making them cosmologically significant even for low vortex densities. In the limit of the vanishing gravitational constant we smoothly recover our earlier results for the decay of the false vortex in a model without gravity.

  20. Non-Abelian statistics of vortices with non-Abelian Dirac fermions.

    PubMed

    Yasui, Shigehiro; Hirono, Yuji; Itakura, Kazunori; Nitta, Muneto

    2013-05-01

    We extend our previous analysis on the exchange statistics of vortices having a single Dirac fermion trapped in each core to the case where vortices trap two Dirac fermions with U(2) symmetry. Such a system of vortices with non-Abelian Dirac fermions appears in color superconductors at extremely high densities and in supersymmetric QCD. We show that the exchange of two vortices having doublet Dirac fermions in each core is expressed by non-Abelian representations of a braid group, which is explicitly verified in the matrix representation of the exchange operators when the number of vortices is up to four. We find that the result contains the matrices previously obtained for the vortices with a single Dirac fermion in each core as a special case. The whole braid group does not immediately imply non-Abelian statistics of identical particles because it also contains exchanges between vortices with different numbers of Dirac fermions. However, we find that it does contain, as its subgroup, genuine non-Abelian statistics for the exchange of the identical particles, that is, vortices with the same number of Dirac fermions. This result is surprising compared with conventional understanding because all Dirac fermions are defined locally at each vortex, unlike the case of Majorana fermions for which Dirac fermions are defined nonlocally by Majorana fermions located at two spatially separated vortices.

  1. Numerical studies of the margin of vortices with decaying cores

    NASA Technical Reports Server (NTRS)

    Liu, G. C.; Ting, L.

    1986-01-01

    The merging of vortices to a single one is a canonical incompressible viscous flow problem. The merging process begins when the core sizes or the vortices are comparable to their distances and ends when the contour lines of constant vorticity lines are circularized around one center. Approximate solutions to this problem are constructed by adapting the asymptotic solutions for distinct vortices. For the early stage of merging, the next-order terms in the asymptotic solutions are added to the leading term. For the later stage of merging, the vorticity distribution is reinitialized by vortices with overlapping core structures guided by the 'rule of merging' and the velocity of the 'vortex centers' are then defined by a minimum principle. To show the accuracy of the approximate solution, it is compared with the finite-difference solution.

  2. Stability and nonlinear adjustment of vortices in Keplerian flows

    NASA Astrophysics Data System (ADS)

    Bodo, G.; Tevzadze, A.; Chagelishvili, G.; Mignone, A.; Rossi, P.; Ferrari, A.

    2007-11-01

    Aims:We investigate the stability, nonlinear development and equilibrium structure of vortices in a background shearing Keplerian flow Methods: We make use of high-resolution global two-dimensional compressible hydrodynamic simulations. We introduce the concept of nonlinear adjustment to describe the transition of unbalanced vortical fields to a long-lived configuration. Results: We discuss the conditions under which vortical perturbations evolve into long-lived persistent structures and we describe the properties of these equilibrium vortices. The properties of equilibrium vortices appear to be independent from the initial conditions and depend only on the local disk parameters. In particular we find that the ratio of the vortex size to the local disk scale height increases with the decrease of the sound speed, reaching values well above the unity. The process of spiral density wave generation by the vortex, discussed in our previous work, appear to maintain its efficiency also at nonlinear amplitudes and we observe the formation of spiral shocks attached to the vortex. The shocks may have important consequences on the long term vortex evolution and possibly on the global disk dynamics. Conclusions: Our study strengthens the arguments in favor of anticyclonic vortices as the candidates for the promotion of planetary formation. Hydrodynamic shocks that are an intrinsic property of persistent vortices in compressible Keplerian flows are an important contributor to the overall balance. These shocks support vortices against viscous dissipation by generating local potential vorticity and should be responsible for the eventual fate of the persistent anticyclonic vortices. Numerical codes have be able to resolve shock waves to describe the vortex dynamics correctly.

  3. Review of Idealized Aircraft Wake Vortex Models

    NASA Technical Reports Server (NTRS)

    Ahmad, Nashat N.; Proctor, Fred H.; Duparcmeur, Fanny M. Limon; Jacob, Don

    2014-01-01

    Properties of three aircraft wake vortex models, Lamb-Oseen, Burnham-Hallock, and Proctor are reviewed. These idealized models are often used to initialize the aircraft wake vortex pair in large eddy simulations and in wake encounter hazard models, as well as to define matched filters for processing lidar observations of aircraft wake vortices. Basic parameters for each vortex model, such as peak tangential velocity and circulation strength as a function of vortex core radius size, are examined. The models are also compared using different vortex characterizations, such as the vorticity magnitude. Results of Euler and large eddy simulations are presented. The application of vortex models in the postprocessing of lidar observations is discussed.

  4. Application of the Haar Wavelet to the Analysis of Plasma and Atmospheric Fluctuations

    NASA Astrophysics Data System (ADS)

    Maslov, S. A.; Kharchevsky, A. A.; Smirnov, V. A.

    2017-12-01

    The parameters of turbulence measured by means of a Doppler reflectometer at the plasma periphery in an L-2M stellarator and in atmospheric vortices (typhoons and tornadoes) are investigated using the wavelet methods with involvement of the Haar function. The periods of time taken for the transition (a bound of parameters) to occur in the L-2M stellarator plasma and in atmospheric processes are estimated. It is shown that high-and low-frequency oscillations of certain parameters, in particular, pressure, that occur in atmospheric vortices decay or increase at different moments of time, whereas the density fluctuation amplitudes that occur in plasma at different frequencies vary in a synchronous manner.

  5. Anomaly inflow on QCD axial domain-walls and vortices

    NASA Astrophysics Data System (ADS)

    Fukushima, Kenji; Imaki, Shota

    2018-06-01

    We study the chiral effective theory in the presence of quantum chromodynamics (QCD) vortices. Gauge invariance requires novel terms from vortex singularities in the gauged Wess-Zumino-Witten action, which incorporate anomaly-induced currents along the vortices. We examine these terms for systems with QCD axial domain-walls bounded by vortices (vortons) under magnetic fields. We discuss how the baryon and electric charge conservations are satisfied in these systems through interplay between domain-walls and vortices, manifesting Callan-Harvey's mechanism of anomaly inflow.

  6. Catchment land use-dependent effects of barrage fishponds on the functioning of headwater streams.

    PubMed

    Four, Brian; Arce, Evelyne; Danger, Michaël; Gaillard, Juliette; Thomas, Marielle; Banas, Damien

    2017-02-01

    Extensive fish production systems in continental areas are often created by damming headwater streams. However, these lentic systems favour autochthonous organic matter production. As headwater stream functioning is essentially based on allochthonous organic matter (OM) supply, the presence of barrage fishponds on headwater streams might change the main food source for benthic communities. The goal of this study was thus to identify the effects of barrage fishponds on the functioning of headwater streams. To this end, we compared leaf litter breakdown (a key ecosystem function in headwater streams), their associated invertebrate communities and fungal biomass at sites upstream and downstream of five barrage fishponds in two dominant land use systems (three in forested catchments and two in agricultural catchments). We observed significant structural and functional differences between headwater stream ecosystems in agricultural catchments and those in forested catchments. Leaf litter decay was more rapid in forest streams, with a moderate, but not significant, increase in breakdown rate downstream from the barrage fishponds. In agricultural catchments, the trend was opposite with a 2-fold lower leaf litter breakdown rate at downstream sites compared to upstream sites. Breakdown rates observed at all sites were closely correlated with fungal biomass and shredder biomass. No effect of barrage fishponds were observed in this study concerning invertebrate community structure or functional feeding groups especially in agricultural landscapes. In forest streams, we observed a decrease in organic pollution (OP)-intolerant taxa at downstream sites that was correlated with an increase in OP-tolerant taxa. These results highlighted that the influence of barrage fishponds on headwater stream functioning is complex and land use dependent. It is therefore necessary to clearly understand the various mechanisms (competition for food resources, complementarities between autochthonous and allochthonous OM) that control ecosystem functioning in different contexts in order to optimize barrage fishpond management.

  7. Numerical study of vorticity-enhanced heat transfer

    NASA Astrophysics Data System (ADS)

    Wang, Xiaolin; Alben, Silas

    2013-11-01

    Vortices produced by vibrated reeds and flapping foils can improve heat transfer efficiency in electronic hardware. Vortices enhance forced convection by boundary layer separation and thermal mixing in the bulk flow. In this work, we modeled and simulated the fluid flow and temperature in a 2-D channel flow with vortices injected at the upstream boundary. We classified four types of vortex streets depending on the Reynolds number and vortices' strengths and spacings, and studied the different vortex dynamics in each situation. We then used Lagrangian coherent structures (LCS) to study the effect of the vortices on mixing and determined how the Nusselt number and Coefficients of performance vary with flow parameters and Peclet numbers.

  8. Large-eddy substitution via vortex cancellation for wall turbulence control

    NASA Technical Reports Server (NTRS)

    Mcginley, C. B.; Beeler, G. B.

    1985-01-01

    A system of co-rotating longitudinal vortices was used to introduce streamline (as opposed to wall) curvature into a turbulent wall flow. Two methods of vortex cancellation, unwinding and self-annihilation, were tested as a means of removing the vortices once they had processed most of the incoming turbulent boundary layer. Vortex unwinding, which uses vorticity of the opposite sign, was shown to be a viable method for cancelling the co-rotating vortices. Vortex self-annihilation, caused by interference effects resulting from a close initial spanwise vortex spacing, eliminated the vortices within 60 delta downstream. In each case, reductions in boundary layer entrainment were found once the vortices were cancelled.

  9. Voltage noise of current-driven vortices in disordered Josephson junction arrays.

    PubMed

    He, G L; Zhao, Z G; Liu, S; Yang, Y H; Liu, M; Xing, D Y

    2006-08-16

    Dynamical phenomena of moving vortices and voltage noise spectra are studied in disordered Josephson junction arrays (JJAs). The plastic motion of vortices, smectic flow, and moving Bragg glass phases are separated by two dynamic melting transitions driven by current. From the voltage noise spectra of moving vortices, it is found that the driving current plays an important role in the melting of pinning vortices glass and ordering of moving vortices. The features of noise spectra obtained in the disordered JJA model have been observed recently in the high-temperature superconductor Bi(2)Sr(2)CaCu(2)O(y) near the first-order melting transition, indicating that both of them are related to each other.

  10. Essential Development of Streamwise Vortical/Secondary Flows in All Ducts with Corners or Slope Discontinuities in Perimeter

    NASA Astrophysics Data System (ADS)

    Nagib, Hassan; Vidal, Alvaro; Vinuesa, Ricardo; Schlatter, Philipp

    2017-11-01

    Direct numerical simulations of fully-developed turbulent flow through various straight ducts with sharp or rounded corners of various radii were performed to study influence of corner geometry on secondary flows. Unexpectedly, increased rounding of corners in rectangular ducts does not lead to monotonic trend towards pipe case. Instead, secondary vortices relocate close to regions of wall-curvature change. This behavior is connected to inhomogeneous interaction between near-wall bursting events, which are further characterized in this work with definition of their local preferential direction, and vorticity fluxes. Although these motions are relatively weak compared to streamwise velocity their effect on turbulence statistics and shear-stress distribution is very important and has not been sufficiently documented or fully understood. Flow through spanwise-periodic channels, with sinusoidal function to define the geometry of wall, yw = +/- h + A cos(ωz) , was also studied as model flow that is parametrically changed using A and ω, while taking advantage of many resulting symmetries. Consequences on experimental facilities and comparisons between experiments and various numerical and theoretical models are discussed revealing the uniqueness of pipe flow.

  11. Unsteady surface pressure measurements on a slender delta wing undergoing limit cycle wing rock

    NASA Technical Reports Server (NTRS)

    Arena, Andrew S., Jr.; Nelson, Robert C.

    1991-01-01

    An experimental investigation of slender wing limit cycle motion known as wing rock was investigated using two unique experimental systems. Dynamic roll moment measurements and visualization data on the leading edge vortices were obtained using a free to roll apparatus that incorporates an airbearing spindle. In addition, both static and unsteady surface pressure data was measured on the top and bottom surfaces of the model. To obtain the unsteady surface pressure data a new computer controller drive system was developed to accurately reproduce the free to roll time history motions. The data from these experiments include, roll angle time histories, vortex trajectory data on the position of the vortices relative to the model's surface, and surface pressure measurements as a function of roll angle when the model is stationary or undergoing a wing rock motion. The roll time history data was numerically differentiated to determine the dynamic roll moment coefficient. An analysis of these data revealed that the primary mechanism for the limit cycle behavior was a time lag in the position of the vortices normal to the wing surface.

  12. Interactions and scattering of quantum vortices in a polariton fluid.

    PubMed

    Dominici, Lorenzo; Carretero-González, Ricardo; Gianfrate, Antonio; Cuevas-Maraver, Jesús; Rodrigues, Augusto S; Frantzeskakis, Dimitri J; Lerario, Giovanni; Ballarini, Dario; De Giorgi, Milena; Gigli, Giuseppe; Kevrekidis, Panayotis G; Sanvitto, Daniele

    2018-04-13

    Quantum vortices, the quantized version of classical vortices, play a prominent role in superfluid and superconductor phase transitions. However, their exploration at a particle level in open quantum systems has gained considerable attention only recently. Here we study vortex pair interactions in a resonant polariton fluid created in a solid-state microcavity. By tracking the vortices on picosecond time scales, we reveal the role of nonlinearity, as well as of density and phase gradients, in driving their rotational dynamics. Such effects are also responsible for the split of composite spin-vortex molecules into elementary half-vortices, when seeding opposite vorticity between the two spinorial components. Remarkably, we also observe that vortices placed in close proximity experience a pull-push scenario leading to unusual scattering-like events that can be described by a tunable effective potential. Understanding vortex interactions can be useful in quantum hydrodynamics and in the development of vortex-based lattices, gyroscopes, and logic devices.

  13. Plane mixing layer vortical structure kinematics

    NASA Technical Reports Server (NTRS)

    Leboeuf, Richard L.

    1993-01-01

    The objective of the current project was to experimentally investigate the structure and dynamics of the streamwise vorticity in a plane mixing layer. The first part of this research program was intended to clarify whether the observed decrease in mean streamwise vorticity in the far-field of mixing layers is due primarily to the 'smearing' caused by vortex meander or to diffusion. Two-point velocity correlation measurements have been used to show that there is little spanwise meander of the large-scale streamwise vortical structure. The correlation measurements also indicate a large degree of transverse meander of the streamwise vorticity which is not surprising since the streamwise vorticity exists in the inclined braid region between the spanwise vortex core regions. The streamwise convection of the braid region thereby introduces an apparent transverse meander into measurements using stationary probes. These results corroborated with estimated secondary velocity profiles in which the streamwise vorticity produces a signature which was tracked in time.

  14. Towards laboratory detection of topological vortices in superfluid phases of QCD

    NASA Astrophysics Data System (ADS)

    Das, Arpan; Dave, Shreyansh S.; de, Somnath; Srivastava, Ajit M.

    2017-10-01

    Topological defects arise in a variety of systems, e.g. vortices in superfluid helium to cosmic strings in the early universe. There is an indirect evidence of neutron superfluid vortices from the glitches in pulsars. One also expects that the topological defects may arise in various high baryon density phases of quantum chromodynamics (QCD), e.g. superfluid topological vortices in the color flavor locked (CFL) phase. Though vastly different in energy/length scales, there are universal features in the formation of all these defects. Utilizing this universality, we investigate the possibility of detecting these topological superfluid vortices in laboratory experiments, namely heavy-ion collisions (HICs). Using hydrodynamic simulations, we show that vortices can qualitatively affect the power spectrum of flow fluctuations. This can give an unambiguous signal for superfluid transition resulting in vortices, allowing for the check of defect formation theories in a relativistic quantum field theory system, and the detection of superfluid phases of QCD. Detection of nucleonic superfluid vortices in low energy HICs will give opportunity for laboratory controlled study of their properties, providing crucial inputs for the physics of pulsars.

  15. Organization of the Macaque Extrastriate Visual Cortex Re-Examined Using the Principle of Spatial Continuity of Function

    PubMed Central

    Aflalo, T. N.

    2011-01-01

    How is the macaque monkey extrastriate cortex organized? Is vision divisible into separate tasks, such as object recognition and spatial processing, each emphasized in a different anatomical stream? If so, how many streams exist? What are the hierarchical relationships among areas? The present study approached the organization of the extrastriate cortex in a novel manner. A principled relationship exists between cortical function and cortical topography. Similar functions tend to be located near each other, within the constraints of mapping a highly dimensional space of functions onto the two-dimensional space of the cortex. We used this principle to re-examine the functional organization of the extrastriate cortex given current knowledge about its topographic organization. The goal of the study was to obtain a model of the functional relationships among the visual areas, including the number of functional streams into which they are grouped, the pattern of informational overlap among the streams, and the hierarchical relationships among areas. To test each functional description, we mapped it to a model cortex according to the principle of optimal continuity and assessed whether it accurately reconstructed a version of the extrastriate topography. Of the models tested, the one that best reconstructed the topography included four functional streams rather than two, six levels of hierarchy per stream, and a specific pattern of informational overlap among streams and areas. A specific mixture of functions was predicted for each visual area. This description matched findings in the physiological literature, and provided predictions of functional relationships that have yet to be tested physiologically. PMID:21068269

  16. Differences in ecological structure, function, and native species abundance between native and invaded Hawaiian streams.

    PubMed

    Holitzki, Tara M; MacKenzie, Richard A; Wiegner, Tracy N; McDermid, Karla J

    2013-09-01

    Poeciliids, one of the most invasive species worldwide, are found on almost every continent and have been identified as an "invasive species of concern" in the United States, New Zealand, and Australia. Despite their global prevalence, few studies have quantified their impacts on tropical stream ecosystem structure, function, and biodiversity. Utilizing Hawaiian streams as model ecosystems, we documented how ecological structure, function, and native species abundance differed between poeciliid-free and poeciliid-invaded tropical streams. Stream nutrient yields, benthic biofilm biomass, densities of macroinvertebrates and fish, and community structures of benthic algae, macroinvertebrates, and fish were compared between streams with and without established poeciliid populations on the island of Hawai'i, Hawaii, USA. Sum nitrate (sigmaNO3(-) = NO3(-) + NO2(-)), total nitrogen, and total organic carbon yields were eight times, six times, and five times higher, respectively, in poeciliid streams than in poeciliid-free streams. Benthic biofilm ash-free dry mass was 1.5x higher in poeciliid streams than in poeciliid-free streams. Percentage contributions of chironomids and hydroptilid caddisflies to macroinvertebrate densities were lower in poeciliid streams compared to poeciliid-free streams, while percentage contributions of Cheumatopsyche analis caddisflies, Dugesia sp. flatworms, and oligochaetes were higher. Additionally, mean densities of native gobies were two times lower in poeciliid streams than in poeciliid-free ones, with poeciliid densities being approximately eight times higher than native fish densities. Our results, coupled with the wide distribution of invasive poeciliids across Hawaii and elsewhere in the tropics, suggest that poeciliids may negatively impact the ecosystem structure, function, and native species abundance of tropical streams they invade. This underscores the need for increased public awareness to prevent future introductions and for developing and implementing effective eradication and restoration strategies.

  17. Concentration of vorticity due to selective decay in doubly periodic vortices and a vortex pair

    NASA Astrophysics Data System (ADS)

    Hattori, Yuji

    2018-01-01

    Strong vortices like tornadoes, typhoons, and tropical cyclones are often created in geophysical flows. It is important to understand the mechanism for the creation of these strong vortices. Recently, we found a purely hydrodynamic mechanism for the concentration of vorticity: it is due to selective decay in which circulation decays faster than angular momentum and energy. In this paper, two problems are investigated by direct numerical simulation to seek universality of this mechanism: doubly periodic vortices disturbed by an unstable eigenmode and a vortex pair disturbed by localized disturbances. In the former case, concentration of vorticity occurs when the wavenumber of the eigenmode is large, while it does not occur for small wavenumbers. For small wavenumbers the disturbances grow to a large amplitude eventually destroying the base flow. For large wavenumber, on the other hand, the growth of the disturbances saturates before destroying the base flow. Selective decay of inviscid invariants is shown to be responsible for the concentration of vorticity as in the previous study. In the case of a vortex pair disturbed by localized disturbances concentration of vorticity occurs twice: the first concentration is not related to selective decay; however, the second weak concentration is most likely due to selective decay.

  18. Detecting vortices in superconductors: Extracting one-dimensional topological singularities from a discretized complex scalar field

    DOE PAGES

    Phillips, Carolyn L.; Peterka, Tom; Karpeyev, Dmitry; ...

    2015-02-20

    In type II superconductors, the dynamics of superconducting vortices determine their transport properties. In the Ginzburg-Landau theory, vortices correspond to topological defects in the complex order parameter. Extracting their precise positions and motion from discretized numerical simulation data is an important, but challenging, task. In the past, vortices have mostly been detected by analyzing the magnitude of the complex scalar field representing the order parameter and visualized by corresponding contour plots and isosurfaces. However, these methods, primarily used for small-scale simulations, blur the fine details of the vortices, scale poorly to large-scale simulations, and do not easily enable isolating andmore » tracking individual vortices. In this paper, we present a method for exactly finding the vortex core lines from a complex order parameter field. With this method, vortices can be easily described at a resolution even finer than the mesh itself. The precise determination of the vortex cores allows the interplay of the vortices inside a model superconductor to be visualized in higher resolution than has previously been possible. Finally, by representing the field as the set of vortices, this method also massively reduces the data footprint of the simulations and provides the data structures for further analysis and feature tracking.« less

  19. Altitudinal patterns of diversity and functional traits of metabolically active microorganisms in stream biofilms

    PubMed Central

    Wilhelm, Linda; Besemer, Katharina; Fragner, Lena; Peter, Hannes; Weckwerth, Wolfram; Battin, Tom J

    2015-01-01

    Resources structure ecological communities and potentially link biodiversity to energy flow. It is commonly believed that functional traits (generalists versus specialists) involved in the exploitation of resources depend on resource availability and environmental fluctuations. The longitudinal nature of stream ecosystems provides changing resources to stream biota with yet unknown effects on microbial functional traits and community structure. We investigated the impact of autochthonous (algal extract) and allochthonous (spruce extract) resources, as they change along alpine streams from above to below the treeline, on microbial diversity, community composition and functions of benthic biofilms. Combining bromodeoxyuridine labelling and 454 pyrosequencing, we showed that diversity was lower upstream than downstream of the treeline and that community composition changed along the altitudinal gradient. We also found that, especially for allochthonous resources, specialisation by biofilm bacteria increased along that same gradient. Our results suggest that in streams below the treeline biofilm diversity, specialisation and functioning are associated with increasing niche differentiation as potentially modulated by divers allochthonous and autochthonous constituents contributing to resources. These findings expand our current understanding on biofilm structure and function in alpine streams. PMID:25978543

  20. Mars' Annular Polar Vortices and their Response to Atmospheric Dust Opacity

    NASA Astrophysics Data System (ADS)

    Guzewich, S.; Waugh, D.; Toigo, A. D.

    2016-12-01

    The potential vorticity structure of the martian polar vortices is distinct from Earth's stratospheric or tropospheric vortices. Rather than exhibiting monotonically increasing potential vorticity toward the geographic pole, as on Earth, the martian fall and winter polar vortices are annular with the potential vorticity maximum situated off the pole and a local minimum in potential vorticity at the pole. Using the MarsWRF general circulation model (GCM), we perform a series of simulations to examine the source of this annular structure. We find that latent heat exchange from the formation of CO2 ice aerosols within the vortex, in a region very near the geographic pole, destroys potential vorticity and creates the annular structure. Furthermore, we describe Mars Climate Sounder and Thermal Emission Spectrometer observations of "transient vortex warming" events, where the air inside the northern hemisphere winter polar vortex is briefly warmed. During the Mars Year 28 (2007) global dust storm, the temperature inside the vortex increased by 70 K and dust directly entered the vortex. Using additional GCM simulations, we diagnose the dynamical changes associated with these transient vortex warming events and find that poleward expansion of the descending branch of the meridional overturning circulation during periods of increased dust opacity disrupts the northern hemisphere winter polar vortex. These increased temperatures also suppress CO2 condensation at the pole, creating a more Earth-like polar vortex where potential vorticity is maximized near the geographic pole.

  1. Structure of turbulent flow over regular arrays of cubical roughness

    NASA Astrophysics Data System (ADS)

    Coceal, O.; Dobre, A.; Thomas, T. G.; Belcher, S. E.

    The structure of turbulent flow over large roughness consisting of regular arrays of cubical obstacles is investigated numerically under constant pressure gradient conditions. Results are analysed in terms of first- and second-order statistics, by visualization of instantaneous flow fields and by conditional averaging. The accuracy of the simulations is established by detailed comparisons of first- and second-order statistics with wind-tunnel measurements. Coherent structures in the log region are investigated. Structure angles are computed from two-point correlations, and quadrant analysis is performed to determine the relative importance of Q2 and Q4 events (ejections and sweeps) as a function of height above the roughness. Flow visualization shows the existence of low-momentum regions (LMRs) as well as vortical structures throughout the log layer. Filtering techniques are used to reveal instantaneous examples of the association of the vortices with the LMRs, and linear stochastic estimation and conditional averaging are employed to deduce their statistical properties. The conditional averaging results reveal the presence of LMRs and regions of Q2 and Q4 events that appear to be associated with hairpin-like vortices, but a quantitative correspondence between the sizes of the vortices and those of the LMRs is difficult to establish; a simple estimate of the ratio of the vortex width to the LMR width gives a value that is several times larger than the corresponding ratio over smooth walls. The shape and inclination of the vortices and their spatial organization are compared to recent findings over smooth walls. Characteristic length scales are shown to scale linearly with height in the log region. Whilst there are striking qualitative similarities with smooth walls, there are also important differences in detail regarding: (i) structure angles and sizes and their dependence on distance from the rough surface; (ii) the flow structure close to the roughness; (iii) the roles of inflows into and outflows from cavities within the roughness; (iv) larger vortices on the rough wall compared to the smooth wall; (v) the effect of the different generation mechanism at the wall in setting the scales of structures.

  2. A Function-Based Framework for Stream Assessment & Restoration Projects

    EPA Pesticide Factsheets

    This report lays out a framework for approaching stream assessment and restoration projects that focuses on understanding the suite of stream functions at a site in the context of what is happening in the watershed.

  3. Development of Hairpin Vortices in Turbulent Spots and End-Wall Transition

    NASA Technical Reports Server (NTRS)

    Smith, Charles R.

    2007-01-01

    The end-stage phase of boundary layer transition is characterized by the development of hairpin-like vortices which evolve rapidly into patches of turbulent behavior. In general, the characteristics of the evolution form this hairpin stage to the turbulent stage is poorly understood, which has prompted the present experimental examination of hairpin vortex development and growth processes. Two topics of particular relevance to the workshop focus will be covered: 1) the growth of turbulent spots through the generatio and amalgamation of hairpin-like vortices, and 2) the development of hairpin vortices during transition in an end-wall junction flow. Brief summaries of these studies are described below. Using controlled generation of hairpin vortices by surface injection in a critical laminar boundary layer, detailed flow visualization studies have been done of the phases of growth of single hairpin vortices, from the initial hairgin generation, through the systematic generation of secondary hairpin-like flow structures, culminating in the evolution to a turbulent spot. The key to the growth process is strong vortex-surface interactions, which give rise to strong eruptive events adjacent to the surface, which results in the generation of subsequent hairpin vortex structures due to inviscid-viscuous interactions between the eruptive events and the free steam fluid. The general process of vortex-surface fluid interaction, coupled with subsequent interactions and amalgamation of the generated multiple hairpin-type vortices, is demonstrated as a physical mechanism for the growth and development of turbulent spots. When a boundary layer flow along a surface encounters a bluff body obstruction extending from the surface (such as cylinder or wing), the strong adverse pressure gradients generated by these types of flows result in the concentration of the impinging vorticity into a system of discrete vortices near the end-wall juncture of the obstruction, with the extensions of the vortices engirdling the obstruction to form "necklace" or "horseshoe" vortices. Recent hydrogen bubble and particle image visualization have shown that as Reynolds number is increased for a laminar approach flow, the flow will become critical, and a destabilization of the necklace vortices results in the development of an azimuthal waviness, or "kinks", in the vortices. These vortex kinks are accentuated by Biot-Savart effects, causing portions of a distorted necklace vortex to make a rapid approach to the surface, precipitating processes of localized, three-dimensional surface interactions. These interactions result in the rapid generation, focussing, and ejection of thin tongues of surface fluid, which rapidly roll-over and appear as hairpin vortices in the junction region. Subsequent amalgamation of these hairpin vortices with the necklace vortices produces a complex transitional-type flow. A presentation of key results from both these studies will be done, emphasizing both the ubiquity of such hairpin-type flow structures in manifold transitional-type flows, and the importance of vortex-surface interactions n the development of hairpin vortices.

  4. Reynolds number dependence of large-scale friction control in turbulent channel flow

    NASA Astrophysics Data System (ADS)

    Canton, Jacopo; Örlü, Ramis; Chin, Cheng; Schlatter, Philipp

    2016-12-01

    The present work investigates the effectiveness of the control strategy introduced by Schoppa and Hussain [Phys. Fluids 10, 1049 (1998), 10.1063/1.869789] as a function of Reynolds number (Re). The skin-friction drag reduction method proposed by these authors, consisting of streamwise-invariant, counter-rotating vortices, was analyzed by Canton et al. [Flow, Turbul. Combust. 97, 811 (2016), 10.1007/s10494-016-9723-8] in turbulent channel flows for friction Reynolds numbers (Reτ) corresponding to the value of the original study (i.e., 104) and 180. For these Re, a slightly modified version of the method proved to be successful and was capable of providing a drag reduction of up to 18%. The present study analyzes the Reynolds number dependence of this drag-reducing strategy by performing two sets of direct numerical simulations (DNS) for Reτ=360 and 550. A detailed analysis of the method as a function of the control parameters (amplitude and wavelength) and Re confirms, on the one hand, the effectiveness of the large-scale vortices at low Re and, on the other hand, the decreasing and finally vanishing effectiveness of this method for higher Re. In particular, no drag reduction can be achieved for Reτ=550 for any combination of the parameters controlling the vortices. For low Reynolds numbers, the large-scale vortices are able to affect the near-wall cycle and alter the wall-shear-stress distribution to cause an overall drag reduction effect, in accordance with most control strategies. For higher Re, instead, the present method fails to penetrate the near-wall region and cannot induce the spanwise velocity variation observed in other more established control strategies, which focus on the near-wall cycle. Despite the negative outcome, the present results demonstrate the shortcomings of the control strategy and show that future focus should be on methods that directly target the near-wall region or other suitable alternatives.

  5. Review of vortices in wildland fire

    Treesearch

    Jason M. Forthofer; Scott L. Goodrick

    2011-01-01

    Vortices are almost always present in the wildland fire environment and can sometimes interact with the fire in unpredictable ways, causing extreme fire behavior and safety concerns. In this paper, the current state of knowledge of the interaction of wildland fire and vortices is examined and reviewed. A basic introduction to vorticity is given, and the two common...

  6. Computation of design parameters and visualization of Goertler vortices

    NASA Technical Reports Server (NTRS)

    Verma, Alok K.

    1984-01-01

    A method for analyzing an airfoil regarding Goertler type instability was presented. A model for the visualizatin of Goertler vortices was designed and fabricated. A smoke generating apparatus was made to be used in the experiment. Experiments were conducted to photograph the vortices, however, the smoke generated was not enough to bring out the vortices.

  7. Study of pinning effects for vortices in Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} single crystals using a Bitter decoration technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamimura, A.; Hirata, K.; Mochiku, T.

    1999-12-01

    Distribution of vortices has been analyzed to study on the pinning effects of the vortices in Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} single crystals, observed with a Bitter decoration technique. On the cleaved surfaces of the samples, vortices are pinned in the disordered configurations at lower magnetic fields, which change to a hexagonal lattice structure with increasing a magnetic field. Furthermore, a dense concentration of vortices has been observed in the voids and on the lower terrace of the steps. These distributions of the vortices are found to be very stable from the estimation of the pinning energy.

  8. Two Visual Pathways in Primates Based on Sampling of Space: Exploitation and Exploration of Visual Information.

    PubMed

    Sheth, Bhavin R; Young, Ryan

    2016-01-01

    Evidence is strong that the visual pathway is segregated into two distinct streams-ventral and dorsal. Two proposals theorize that the pathways are segregated in function: The ventral stream processes information about object identity, whereas the dorsal stream, according to one model, processes information about either object location, and according to another, is responsible in executing movements under visual control. The models are influential; however recent experimental evidence challenges them, e.g., the ventral stream is not solely responsible for object recognition; conversely, its function is not strictly limited to object vision; the dorsal stream is not responsible by itself for spatial vision or visuomotor control; conversely, its function extends beyond vision or visuomotor control. In their place, we suggest a robust dichotomy consisting of a ventral stream selectively sampling high-resolution/ focal spaces, and a dorsal stream sampling nearly all of space with reduced foveal bias. The proposal hews closely to the theme of embodied cognition: Function arises as a consequence of an extant sensory underpinning. A continuous, not sharp, segregation based on function emerges, and carries with it an undercurrent of an exploitation-exploration dichotomy. Under this interpretation, cells of the ventral stream, which individually have more punctate receptive fields that generally include the fovea or parafovea, provide detailed information about object shapes and features and lead to the systematic exploitation of said information; cells of the dorsal stream, which individually have large receptive fields, contribute to visuospatial perception, provide information about the presence/absence of salient objects and their locations for novel exploration and subsequent exploitation by the ventral stream or, under certain conditions, the dorsal stream. We leverage the dichotomy to unify neuropsychological cases under a common umbrella, account for the increased prevalence of multisensory integration in the dorsal stream under a Bayesian framework, predict conditions under which object recognition utilizes the ventral or dorsal stream, and explain why cells of the dorsal stream drive sensorimotor control and motion processing and have poorer feature selectivity. Finally, the model speculates on a dynamic interaction between the two streams that underscores a unified, seamless perception. Existing theories are subsumed under our proposal.

  9. On the Validity of the Streaming Model for the Redshift-Space Correlation Function in the Linear Regime

    NASA Astrophysics Data System (ADS)

    Fisher, Karl B.

    1995-08-01

    The relation between the galaxy correlation functions in real-space and redshift-space is derived in the linear regime by an appropriate averaging of the joint probability distribution of density and velocity. The derivation recovers the familiar linear theory result on large scales but has the advantage of clearly revealing the dependence of the redshift distortions on the underlying peculiar velocity field; streaming motions give rise to distortions of θ(Ω0.6/b) while variations in the anisotropic velocity dispersion yield terms of order θ(Ω1.2/b2). This probabilistic derivation of the redshift-space correlation function is similar in spirit to the derivation of the commonly used "streaming" model, in which the distortions are given by a convolution of the real-space correlation function with a velocity distribution function. The streaming model is often used to model the redshift-space correlation function on small, highly nonlinear, scales. There have been claims in the literature, however, that the streaming model is not valid in the linear regime. Our analysis confirms this claim, but we show that the streaming model can be made consistent with linear theory provided that the model for the streaming has the functional form predicted by linear theory and that the velocity distribution is chosen to be a Gaussian with the correct linear theory dispersion.

  10. Auralization of CFD Vorticity Using an Auditory Illusion

    NASA Astrophysics Data System (ADS)

    Volpe, C. R.

    2005-12-01

    One way in which scientists and engineers interpret large quantities of data is through a process called visualization, i.e. generating graphical images that capture essential characteristics and highlight interesting relationships. Another approach, which has received far less attention, is to present complex information with sound. This approach, called ``auralization" or ``sonification", is the auditory analog of visualization. Early work in data auralization frequently involved directly mapping some variable in the data to a sound parameter, such as pitch or volume. Multi-variate data could be auralized by mapping several variables to several sound parameters simultaneously. A clear drawback of this approach is the limited practical range of sound parameters that can be presented to human listeners without exceeding their range of perception or comfort. A software auralization system built upon an existing visualization system is briefly described. This system incorporates an aural presentation synchronously and interactively with an animated scientific visualization, so that alternate auralization techniques can be investigated. One such alternate technique involves auditory illusions: sounds which trick the listener into perceiving something other than what is actually being presented. This software system will be used to present an auditory illusion, known for decades among cognitive psychologists, which produces a sound that seems to ascend or descend endlessly in pitch. The applicability of this illusion for presenting Computational Fluid Dynamics data will be demonstrated. CFD data is frequently visualized with thin stream-lines, but thicker stream-ribbons and stream-tubes can also be used, which rotate to convey fluid vorticity. But a purely graphical presentation can yield drawbacks of its own. Thicker stream-tubes can be self-obscuring, and can obscure other scene elements as well, thus motivating a different approach, such as using sound. Naturally, the simple approach of mapping clockwise and counterclockwise rotations to actual pitch increases and decreases, eventually results in sounds that the listener cannot hear. In this alternate presentation using an auditory illusion, repeated rotations of a stream-tube are replaced with continual increases or decreases in apparent pitch. These apparent pitch changes can continue without bound, yet never exceed the range of frequencies that the listener can hear. The effectiveness of this presentation technique has been studied, and empirical results, obtained through formal user testing and statistical analysis, are presented. These results demonstrate that an aural data presentation using an auditory illusion can improve performance in locating key data characteristics, a task that demonstrates a certain level of understanding of the data. The experiments show that this holds true even when the user expresses a subjective preference and greater confidence in a visual presentation. The CFD data used in the research comes from a number of different industrial domains, but the advantages of this technique could be equally applicable to the study of earth sciences involving fluid mechanics, such as atmospheric or ocean sciences. Furthermore, the approach is applicable not only to CFD data, but to any type of data in which a quantity that is cyclic in nature, such as orientation, needs to be presented. Although the techniques and tools were originally developed with scientists and engineers in mind, they can also be used to aid students, particularly those who are visually impaired or who have difficulty interpreting certain spatial relationships visually.

  11. Sensitivity analysis for aeroacoustic and aeroelastic design of turbomachinery blades

    NASA Technical Reports Server (NTRS)

    Lorence, Christopher B.; Hall, Kenneth C.

    1995-01-01

    A new method for computing the effect that small changes in the airfoil shape and cascade geometry have on the aeroacoustic and aeroelastic behavior of turbomachinery cascades is presented. The nonlinear unsteady flow is assumed to be composed of a nonlinear steady flow plus a small perturbation unsteady flow that is harmonic in time. First, the full potential equation is used to describe the behavior of the nonlinear mean (steady) flow through a two-dimensional cascade. The small disturbance unsteady flow through the cascade is described by the linearized Euler equations. Using rapid distortion theory, the unsteady velocity is split into a rotational part that contains the vorticity and an irrotational part described by a scalar potential. The unsteady vorticity transport is described analytically in terms of the drift and stream functions computed from the steady flow. Hence, the solution of the linearized Euler equations may be reduced to a single inhomogeneous equation for the unsteady potential. The steady flow and small disturbance unsteady flow equations are discretized using bilinear quadrilateral isoparametric finite elements. The nonlinear mean flow solution and streamline computational grid are computed simultaneously using Newton iteration. At each step of the Newton iteration, LU decomposition is used to solve the resulting set of linear equations. The unsteady flow problem is linear, and is also solved using LU decomposition. Next, a sensitivity analysis is performed to determine the effect small changes in cascade and airfoil geometry have on the mean and unsteady flow fields. The sensitivity analysis makes use of the nominal steady and unsteady flow LU decompositions so that no additional matrices need to be factored. Hence, the present method is computationally very efficient. To demonstrate how the sensitivity analysis may be used to redesign cascades, a compressor is redesigned for improved aeroelastic stability and two different fan exit guide vanes are redesigned for reduced downstream radiated noise. In addition, a framework detailing how the two-dimensional version of the method may be used to redesign three-dimensional geometries is presented.

  12. Reversible ratchet effects for vortices in conformal pinning arrays

    DOE PAGES

    Reichhardt, Charles; Ray, Dipanjan; Reichhardt, Cynthia Jane Olson

    2015-05-04

    A conformal transformation of a uniform triangular pinning array produces a structure called a conformal crystal which preserves the sixfold ordering of the original lattice but contains a gradient in the pinning density. Here we use numerical simulations to show that vortices in type-II superconductors driven with an ac drive over gradient pinning arrays produce the most pronounced ratchet effect over a wide range of parameters for a conformal array, while square gradient or random gradient arrays with equivalent pinning densities give reduced ratchet effects. In the conformal array, the larger spacing of the pinning sites in the direction transversemore » to the ac drive permits easy funneling of interstitial vortices for one driving direction, producing the enhanced ratchet effect. In the square array, the transverse spacing between pinning sites is uniform, giving no asymmetry in the funneling of the vortices as the driving direction switches, while in the random array, there are numerous easy-flow channels present for either direction of drive. We find multiple ratchet reversals in the conformal arrays as a function of vortex density and ac amplitude, and correlate the features with a reversal in the vortex ordering, which is greater for motion in the ratchet direction. In conclusion, the enhanced conformal pinning ratchet effect can also be realized for colloidal particles moving over a conformal array, indicating the general usefulness of conformal structures for controlling the motion of particles.« less

  13. Effect of potential vorticity flux on the circulation in the South China Sea

    NASA Astrophysics Data System (ADS)

    Zhu, Yaohua; Sun, Junchuan; Wang, Yonggang; Wei, Zexun; Yang, Dezhou; Qu, Tangdong

    2017-08-01

    This study analyzes temperature and salinity products from the U.S. Navy Generalized Digital Environment Model. To avoid the fictitious assumption of no-motion reference level, a P-vector inverse method is employed to derive geostrophic velocity. Line integral of geostrophic velocity shows evidence for the existence of a sandwiched circulation in the South China Sea (SCS), i.e., cyclonic circulation in the subsurface and deep layers and anticyclonic in the intermediate layer. To reveal the factors responsible for the sandwiched circulation, we derive the potential vorticity equation based on a four-and-a-half-layer quasi-geostrophic model and apply theoretical potential vorticity constraint to density layers. The result shows that the sandwiched circulation is largely induced by planetary potential vorticity flux through lateral boundaries, mainly the Luzon Strait. This dynamical mechanism lies in the fact that the net potential vorticity inflow in the subsurface and deep layers leads to a positive layer-average vorticity in the SCS basin, yielding vortex stretching and a cyclonic basin-wide circulation. On the contrary, the net potential vorticity outflow in the intermediate layer induces a negative layer-average vorticity, generating an anticyclonic basin-wide circulation in the SCS. Furthermore, by illustrating different consequence from depth/density layers, we clarify that density layers are essential for applying theoretical potential vorticity constraint to the isolated deep SCS basin.

  14. The Kinematics of Turbulent Boundary Layer Structure

    NASA Technical Reports Server (NTRS)

    Robinson, Stephen Kern

    1991-01-01

    The long history of research into the internal structure of turbulent boundary layers has not provided a unified picture of the physics responsible for turbulence production and dissipation. The goals of the present research are to: (1) define the current state of boundary layer structure knowledge; and (2) utilize direct numerical simulation results to help close the unresolved issues identified in part A and to unify the fragmented knowledge of various coherent motions into a consistent kinematic model of boundary layer structure. The results of the current study show that all classes of coherent motion in the low Reynolds number turbulent boundary layer may be related to vortical structures, but that no single form of vortex is representative of the wide variety of vortical structures observed. In particular, ejection and sweep motions, as well as entrainment from the free-streem are shown to have strong spatial and temporal relationships with vortical structures. Disturbances of vortex size, location, and intensity show that quasi-streamwise vortices dominate the buffer region, while transverse vortices and vortical arches dominate the wake region. Both types of vortical structure are common in the log region. The interrelationships between the various structures and the population distributions of vortices are combined into a conceptual kinematic model for the boundary layer. Aspects of vortical structure dynamics are also postulated, based on time-sequence animations of the numerically simulated flow.

  15. Effects of Taylor-Görtler vortices on turbulent flows in a spanwise-rotating channel

    NASA Astrophysics Data System (ADS)

    Dai, Yijun; Huang, Weixi; Xu, Chunxiao

    2016-11-01

    Fully developed turbulent channel flow with spanwise rotation has been studied by direct numerical simulation at Rem = 2800, 7000 and 20000 with rotation number 0 <= Rom <= 0.5. The width of the computational box is adjusted for each case to contain two pairs of Taylor-Görtler (TG) vortices. Under a low rotation rate, the turbulent vortical structures are strongly affected by the TG vortices. A conditional average method is employed to investigate the effects. In the upwash region where the fluid is pumped away from the pressure wall by the TG vortices, turbulence is enhanced, while the reverse is the case in the downwash region. Through budget analysis of the transport equation of vorticity fluctuation, it is revealed that the stretching along the wall-normal direction caused by the TG vortices plays an important role in initiating the difference of turbulence intensity between the two regions, which is further augmented by the Coriolis force in the streamwise direction. The effects of TG vortices is weakened at higher Reynolds number. Meanwhile, the shear stress on the suction wall is observed to fluctuate in a quasi-periodic manner at Rem = 7000 and Rom = 0.3, which is induced by the TG vortices. The work is supported by National Natural Science Foundation of China (Project No. 11490551, 11472154, 11322221, 11132005).

  16. Generating and manipulating quantized vortices on-demand in a Bose-Einstein condensate: A numerical study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gertjerenken, B.; Kevrekidis, P. G.; Carretero-González, R.

    Here, we numerically investigate an experimentally viable method for generating and manipulating on-demand several vortices in a highly oblate atomic Bose-Einstein condensate (BEC) in order to initialize complex vortex distributions for studies of vortex dynamics. The method utilizes moving laser beams to generate, capture, and transport vortices inside and outside the BEC. This methodology is examined in detail and shows a wide parameter range of applicability for the prototypical two-vortex case, as well as case examples of producing and manipulating several vortices for which there is no net circulation, corresponding to equal numbers of positive and negative circulation vortices, andmore » cases for which there is one net quantum of circulation. We also find that the presence of dissipation can help stabilize the pinning of the vortices on their respective laser beam pinning sites. Finally, we illustrate how to utilize laser beams as repositories that hold large numbers of vortices and how to deposit individual vortices in a sequential fashion in the repositories in order to construct superfluid flows about the repository beams with several quanta of circulation.« less

  17. Generating and manipulating quantized vortices on-demand in a Bose-Einstein condensate: A numerical study

    DOE PAGES

    Gertjerenken, B.; Kevrekidis, P. G.; Carretero-González, R.; ...

    2016-02-01

    Here, we numerically investigate an experimentally viable method for generating and manipulating on-demand several vortices in a highly oblate atomic Bose-Einstein condensate (BEC) in order to initialize complex vortex distributions for studies of vortex dynamics. The method utilizes moving laser beams to generate, capture, and transport vortices inside and outside the BEC. This methodology is examined in detail and shows a wide parameter range of applicability for the prototypical two-vortex case, as well as case examples of producing and manipulating several vortices for which there is no net circulation, corresponding to equal numbers of positive and negative circulation vortices, andmore » cases for which there is one net quantum of circulation. We also find that the presence of dissipation can help stabilize the pinning of the vortices on their respective laser beam pinning sites. Finally, we illustrate how to utilize laser beams as repositories that hold large numbers of vortices and how to deposit individual vortices in a sequential fashion in the repositories in order to construct superfluid flows about the repository beams with several quanta of circulation.« less

  18. Ensemble experiments using a nested LETKF system to reproduce intense vortices associated with tornadoes of 6 May 2012 in Japan

    NASA Astrophysics Data System (ADS)

    Seko, Hiromu; Kunii, Masaru; Yokota, Sho; Tsuyuki, Tadashi; Miyoshi, Takemasa

    2015-12-01

    Experiments simulating intense vortices associated with tornadoes that occurred on 6 May 2012 on the Kanto Plain, Japan, were performed with a nested local ensemble transform Kalman filter (LETKF) system. Intense vortices were reproduced by downscale experiments with a 12-member ensemble in which the initial conditions were obtained from the nested LETKF system analyses. The downscale experiments successfully generated intense vortices in three regions similar to the observed vortices, whereas only one tornado was reproduced by a deterministic forecast. The intense vorticity of the strongest tornado, which was observed in the southernmost region, was successfully reproduced by 10 of the 12 ensemble members. An examination of the results of the ensemble downscale experiments showed that the duration of intense vorticities tended to be longer when the vertical shear of the horizontal wind was larger and the lower airflow was more humid. Overall, the study results show that ensemble forecasts have the following merits: (1) probabilistic forecasts of the outbreak of intense vortices associated with tornadoes are possible; (2) the miss rate of outbreaks should decrease; and (3) environmental factors favoring outbreaks can be obtained by comparing the multiple possible scenarios of the ensemble forecasts.

  19. Vortex scaling ranges in two-dimensional turbulence

    NASA Astrophysics Data System (ADS)

    Burgess, Helen; Scott, Richard; Dritschel, David

    2017-11-01

    We introduce a scaling theory for vortices in the forced inverse energy cascade of 2D turbulence. Far-from-equilibrium systems generically exhibit multiple scaling regimes associated with transport of conserved quantities. Motivated by this observation, we model a three-part time-evolving vortex number density distribution, n (A) tαiA-ri , i ∈ 1 , 2 , 3 , conserving the first three moments of ωv2n (A) in three distinct scaling ranges. Here ωv2 is the `vortex intensity', or mean square vorticity evaluated over vortices, and areas A are intense regions of vorticity bounded by vorticity isolines. We predict αi and ri by enforcing conservation in `comoving intervals', whose endpoints evolve at the vortex growth rate; this amounts to assuming invariance under the dilatation of flow features associated with the inverse cascade, and that vortex area growth is the appropriate measure of dilatation in all scaling ranges. High resolution numerical simulations verify the predictions, which are insensitive to the vorticity threshold used to isolate the areas. Similar concepts can be applied to model vortices in decaying 2D turbulence, pointing toward a unified description of vortices in both systems.

  20. A study of the temporal stability of multiple cell vortices

    NASA Technical Reports Server (NTRS)

    Khorrami, Mehdi R.

    1989-01-01

    The effect of initial mean velocity field on the stability characteristics of longitudinal vortices is documented in detail. The temporal stability of isolated multiple cell vortices is considered. The types of vortices studied include single cell as well as two and three cell vortices. It is shown that cell multiplicity in the vortex core has drastic effects on the stability characteristics. On the basis of numerical calculations, it is concluded that the growth rates of instabilities in multiple cell vortices are substantially larger (two to threefold increases are observed) than those of a single cell vortex. It is also determined that there is a substantial increase in the effective range of axial and azimuthal wavenumbers where instabilities are present. But most importantly, there is the appearance of a variety of viscous modes of instability. In the case of vortices, these latter instabilities which highlight the importance of viscous forces have never been reported before. These effects are discussed in detail for the case of a two cell vortex.

  1. Hybrid Manipulation of Streamwise Vorticity in a Diffuser Boundary Layer

    NASA Astrophysics Data System (ADS)

    Gissen, Abraham; Vukasinovic, Bojan; Culp, John; Glezer, Ari

    2010-11-01

    The formation of streamwise vorticity concentrations by exploiting the interaction of surface-mounted passive (micro-vanes) and active (synthetic jets) flow control elements with the cross flow is investigated experimentally in a small-scale serpentine duct at high subsonic speeds (up to M = 0.6). Streamwise vortices can be a key element in the mitigation of the adverse effects on pressure recovery and distortion caused by the naturally occurring secondary flows in embedded propulsion systems with complex inlet geometries. Counter rotating and single-sense vortices are formed using conventional passive micro-vanes and active high-power synthetic jet actuators. Interaction of the flow control elements is examined through a hybrid actuation scheme whereby synthetic jet actuation augments the primary vanes' vortices resulting in dynamic enhancement of their strength. It is shown that such sub-boundary layer individual vortices can merge and evolve into duct-scale vortical structures that counteract the inherent secondary flow and mitigates global flow distortion.

  2. Instantaneous and Time Averaged Flow Fields of Multiple Vortices in the Tip Region of a Ducted Propulsor

    NASA Astrophysics Data System (ADS)

    Oweis, Ghanem; Steven, Ceccio

    2003-11-01

    PIV data of the flow field in the immediate vicinity of the trailing edge of a ducted propeller at the tip revealed the existence of multiple vorticity concentrations. The multiple vortices in each instantaneous PIV field were identified and individually characterized. The measurements of the multiple vortices were combined with a Gaussian vortex model to reconstruct the vorticity and velocity fields. The major features of the original experimental field were recovered, and the correlation between the two fields was good. The time averaged field and velocity fluctuations were also measured. We will discuss why the "typical" instantaneous tip vortex and the tip vortex from the time averaged field are substantially different. We attempt to explain the cause of these differences. Knowledge of the instantaneous flow field variability is used to understand the causes of the measured velocity fluctuations. The results from this study have an impact on the understanding of the roll-up of tip vortices, and the dynamics of multiple vortices.

  3. Imaging of super-fast dynamics and flow instabilities of superconducting vortices

    DOE PAGES

    Embon, L.; Anahory, Y.; Jelić, Ž. L.; ...

    2017-07-20

    Quantized magnetic vortices driven by electric current determine key electromagnetic properties of superconductors. And while the dynamic behavior of slow vortices has been thoroughly investigated, the physics of ultrafast vortices under strong currents remains largely unexplored. Here, we use a nanoscale scanning superconducting quantum interference device to image vortices penetrating into a superconducting Pb film at rates of tens of GHz and moving with velocities of up to tens of km/s, which are not only much larger than the speed of sound but also exceed the pair-breaking speed limit of superconducting condensate. These experiments reveal formation of mesoscopic vortex channelsmore » which undergo cascades of bifurcations as the current and magnetic field increase. Our numerical simulations predict metamorphosis of fast Abrikosov vortices into mixed Abrikosov-Josephson vortices at even higher velocities. Our work offers an insight into the fundamental physics of dynamic vortex states of superconductors at high current densities, crucial for many applications.« less

  4. Transitional and turbulent boundary layer with heat transfer

    NASA Astrophysics Data System (ADS)

    Wu, Xiaohua; Moin, Parviz

    2010-08-01

    We report on our direct numerical simulation of an incompressible, nominally zero-pressure-gradient flat-plate boundary layer from momentum thickness Reynolds number 80-1950. Heat transfer between the constant-temperature solid surface and the free-stream is also simulated with molecular Prandtl number Pr=1. Skin-friction coefficient and other boundary layer parameters follow the Blasius solutions prior to the onset of turbulent spots. Throughout the entire flat-plate, the ratio of Stanton number and skin-friction St/Cf deviates from the exact Reynolds analogy value of 0.5 by less than 1.5%. Mean velocity and Reynolds stresses agree with experimental data over an extended turbulent region downstream of transition. Normalized rms wall-pressure fluctuation increases gradually with the streamwise growth of the turbulent boundary layer. Wall shear stress fluctuation, τw,rms'+, on the other hand, remains constant at approximately 0.44 over the range, 800

  5. Determination of secondary flow morphologies by wavelet analysis in a curved artery model with physiological inflow

    NASA Astrophysics Data System (ADS)

    Bulusu, Kartik V.; Hussain, Shadman; Plesniak, Michael W.

    2014-11-01

    Secondary flow vortical patterns in arterial curvatures have the potential to affect several cardiovascular phenomena, e.g., progression of atherosclerosis by altering wall shear stresses, carotid atheromatous disease, thoracic aortic aneurysms and Marfan's syndrome. Temporal characteristics of secondary flow structures vis-à-vis physiological (pulsatile) inflow waveform were explored by continuous wavelet transform (CWT) analysis of phase-locked, two-component, two-dimensional particle image velocimeter data. Measurements were made in a 180° curved artery test section upstream of the curvature and at the 90° cross-sectional plane. Streamwise, upstream flow rate measurements were analyzed using a one-dimensional antisymmetric wavelet. Cross-stream measurements at the 90° location of the curved artery revealed interesting multi-scale, multi-strength coherent secondary flow structures. An automated process for coherent structure detection and vortical feature quantification was applied to large ensembles of PIV data. Metrics such as the number of secondary flow structures, their sizes and strengths were generated at every discrete time instance of the physiological inflow waveform. An autonomous data post-processing method incorporating two-dimensional CWT for coherent structure detection was implemented. Loss of coherence in secondary flow structures during the systolic deceleration phase is observed in accordance with previous research. The algorithmic approach presented herein further elucidated the sensitivity and dependence of morphological changes in secondary flow structures on quasiperiodicity and magnitude of temporal gradients in physiological inflow conditions.

  6. Near- and far-field aerodynamics in insect hovering flight: an integrated computational study.

    PubMed

    Aono, Hikaru; Liang, Fuyou; Liu, Hao

    2008-01-01

    We present the first integrative computational fluid dynamics (CFD) study of near- and far-field aerodynamics in insect hovering flight using a biology-inspired, dynamic flight simulator. This simulator, which has been built to encompass multiple mechanisms and principles related to insect flight, is capable of 'flying' an insect on the basis of realistic wing-body morphologies and kinematics. Our CFD study integrates near- and far-field wake dynamics and shows the detailed three-dimensional (3D) near- and far-field vortex flows: a horseshoe-shaped vortex is generated and wraps around the wing in the early down- and upstroke; subsequently, the horseshoe-shaped vortex grows into a doughnut-shaped vortex ring, with an intense jet-stream present in its core, forming the downwash; and eventually, the doughnut-shaped vortex rings of the wing pair break up into two circular vortex rings in the wake. The computed aerodynamic forces show reasonable agreement with experimental results in terms of both the mean force (vertical, horizontal and sideslip forces) and the time course over one stroke cycle (lift and drag forces). A large amount of lift force (approximately 62% of total lift force generated over a full wingbeat cycle) is generated during the upstroke, most likely due to the presence of intensive and stable, leading-edge vortices (LEVs) and wing tip vortices (TVs); and correspondingly, a much stronger downwash is observed compared to the downstroke. We also estimated hovering energetics based on the computed aerodynamic and inertial torques, and powers.

  7. Experimental Investigation of the Influence of a Reverse Delta Type Add-on Device on the Flap-tip Vortex of a Wing

    NASA Astrophysics Data System (ADS)

    Altaf, A.; Thong, T. B.; Omar, A. A.; Asrar, W.

    2017-03-01

    Particle Image Velocimetry was used in a low speed wind tunnel to investigate the effect of interactions of vortices produced by an outboard flap-tip of a half wing (NACA 23012 in landing configuration) and a slender reverse delta type add-on device, placed in the proximity of the outboard flap-tip, on the upper surface of the half wing. This work investigates the characteristics of the vortex interactions generated downstream in planes perpendicular to the free stream direction at a chord-based Reynolds number of Rec=2.74×105 . It was found that the add-on device significantly reduces the tangential velocity magnitude and enlarges the vortex core of the resultant vortex by up to 36.1% and 36.8%, respectively.

  8. Stability of the Boundary Layer and the Spot

    NASA Technical Reports Server (NTRS)

    Wygnanski, I.

    2007-01-01

    The similarity among turbulent spots observed in various transition experiments, and the rate in which they contaminate the surrounding laminar boundary layer is only cursory. The shape of the spot depends on the Reynolds number of the surrounding boundary layer and on the pressure gradient to which it and the surrounding laminar flow are exposed. The propagation speeds of the spot boundaries depend, in addition, on the location from which the spot originated and do not simply scale with the local free stream velocity. The understanding of the manner in which the turbulent manner in which the turbulent spot destabilizes the surrounding, vortical fluid is a key to the understanding of the transition process. We therefore turned to detailed observations near the spot boundaries in general and near the spanwise tip of the spot in particular.

  9. Aerodynamic characteristics of NACA RM-10 missile in 8- by 6-foot supersonic wind tunnel at Mach numbers from 1.49 to 1.98 I : presentation and analysis of pressure measurements (stabilizing fins removed)

    NASA Technical Reports Server (NTRS)

    Luidens, Roger W; Simon, Paul C

    1950-01-01

    Experimental investigation of flow about a slender body of revolution (NACA RM-10 missile) aligned and inclined to a supersonic stream was conducted at Mach numbers from 1.49 to 1.98 at a Reynolds number of approximately 30,000,000. Boundary-layer measurements at zero angle of attack are correlated with subsonic formulations for predicting boundary-layer thickness and profile. Comparison of pressure coefficients predicted by theory with experimental values showed close agreement at zero angle of attack and angle of attack except over the aft leeward side of body. At angle of attack, pitot pressure measurements in plane of model base indicated a pair of symmetrically disposed vortices on leeward side of body.

  10. The formation of new quasi-stationary vortex patterns from the interaction of two identical vortices in a rotating fluid

    NASA Astrophysics Data System (ADS)

    Sokolovskiy, Mikhail A.; Verron, Jacques; Carton, Xavier J.

    2018-06-01

    Within the framework of the quasi-geostrophic approximation, the interactions of two identical initially circular vortex patches are studied using the contour dynamics/surgery method. The cases of barotropic vortices and of vortices in the upper layer of a two-layer fluid are considered. Diagrams showing the end states of vortex interactions and, in particular, the new regime of vortex triplet formation are constructed for a wide range of external parameters. This paper shows that, in the nonlinear evolution of two such (like-signed) vortices, the filaments and vorticity fragments surrounding the merged vortex often collapse into satellite vortices. Therefore, the conditions for the formation and the quasi-steady motions of a new type of triplet-shaped vortex structure are obtained.

  11. Identifying Critical Ephemeral Streams and Reducing Impacts Associated with Utility-Scale Solar Energy Development in the Southwest United States

    NASA Astrophysics Data System (ADS)

    O'Connor, B. L.; Carr, A.; Patton, T.; Hamada, Y.

    2011-12-01

    The Bureau of Land Management (BLM) and the Department of Energy are preparing a joint programmatic environmental impact statement (PEIS) assessing the potential impacts of utility-scale solar energy development on BLM-administered lands in six southwestern states. One of the alternatives considered in the PEIS involves development within identified solar energy zones (SEZs) that individually cover approximately 10 to 1,000 km2, located primarily in desert valleys of the Basin and Range physiographic region. Land-disturbing activities in these alluvium-filled valleys have the potential to adversely affect ephemeral streams with respect to their hydrologic, geomorphic, and ecologic functions. Regulation and management of ephemeral streams typically falls under the spectrum of federal, state, and local programs, but scientifically based guidelines for protecting ephemeral streams with respect to land-development activities are largely nonexistent. The PEIS analysis attempts to identify critical ephemeral streams by evaluating the integral functions of flood conveyance, sediment transport, groundwater recharge, and supporting ecological habitats. The initial approach to classifying critical ephemeral streams involved identifying large, erosional features using available flood hazards mapping, historical peak discharges, and aerial photographs. This approach identified ephemeral features not suitable for development (based primarily on the likelihood of damaging floods and debris flows) to address flood conveyance and sediment transport functions of ephemeral streams. Groundwater recharge and the maintenance of riparian vegetation and wildlife habitats are other functions of ephemeral streams. These functions are typically associated with headwater reaches rather than large-scale erosional features. Recognizing that integral functions of ephemeral streams occur over a range of spatial scales and are driven by varying climatic-hydrologic events, the PEIS analysis assesses ephemeral streams according to their position in the basin, stream order, and the recurrence intervals of runoff events in the basin. A key constraint on this approach is the lack of high-resolution hydrologic, geomorphic, and ecological data for ephemeral streams in remote desert basins of the southwest United States. Consultation with stakeholders and management agencies is an additional component to assist with our analysis where data limitations exist. Results from these analyses identify critical ephemeral stream reaches to be avoided during development activities based on a mix of quantitative and qualitative measures. Long-term monitoring of these systems is needed to assess the avoidance criteria and to help advance development of the tools needed to help manage and protect the integral functions of ephemeral stream networks in arid environments.

  12. Quantifying the Functionality of Ephemeral Streams at the Watershed Scale for Land Management Applications

    NASA Astrophysics Data System (ADS)

    O'Connor, B. L.; Hamada, Y.; Bowen, E. E.; Wuthrich, K. K.; Grippo, M. A.

    2013-12-01

    Land development and associated disturbances in arid environments can adversely affect the ecological functionality of ephemeral stream channels. Land use managers have limited methodologies available for assessing low-impact development plans, or for monitoring changes in stream functionality as land use changes are implemented. The development of utility-scale solar energy facilities is underway in the southwestern United States. Federal and state agencies have developed plans to concentrate facilities in specific regions to minimize transmission limitations (e.g., the Bureau of Land Management's Solar Energy Zones cover 1,100 km2). However, multiple facility footprints in a single desert valley have the potential to drastically alter the natural pattern of ephemeral stream networks. This study focuses on quantifying the sensitivity of ephemeral streams with respect to land disturbance impacts on flow and sediment conveyance, groundwater recharge, and the loss of soil and vegetative habitats. An initial assessment used publicly-available geospatial data (typically 10- to 30-m resolution) on topography, surficial geology, and soil characteristics, as well as data on historical peak discharges and aerial photographs. These datasets were used to inform a professional judgment, score-based ranking of potential land disturbance impacts on the functionality of ephemeral streams. The results were limited to mapped stream channels in the National Hydrography Dataset, but suggested that hydrological and geomorphic impacts were a greater concern in valley piedmont regions, and that habitat concerns were greater in the valley regions where vegetation is sparsely distributed. Current efforts are focused on using a remote sensing approach to obtain high-resolution information on topography, soil, and vegetation in order to map detailed ephemeral stream networks, measure channel bathymetry characteristics, and use spectral indices of soil and vegetation to develop surrogate measures of stream ecological functionality. The initial results for a small watershed (110 km2) using stereoscopic, sub-meter resolution aerial images, detected an increase of more than 100% in identified ephemeral stream channels and habitat patterns were more spatially correlated with ephemeral stream networks than was observed for the initial assessment approach. The eventual goal of these efforts is to refine the methodology for quantifying the disturbance sensitivity of ephemeral streams, from professional judgment rankings to spectral indices of stream functionality, and to close the spatial gap between the need for large-scale assessments for land management planning and the small-scale analyses and data requirements for quantifying ephemeral stream functionality.

  13. Motility versus fluctuations in mixtures of self-motile and passive agents.

    PubMed

    Hinz, Denis F; Panchenko, Alexander; Kim, Tae-Yeon; Fried, Eliot

    2014-12-07

    Many biological systems consist of self-motile and passive agents both of which contribute to overall functionality. However, little is known about the properties of such mixtures. Here we formulate a model for mixtures of self-motile and passive agents and show that the model gives rise to three different dynamical phases: a disordered mesoturbulent phase, a polar flocking phase, and a vortical phase characterized by large-scale counter rotating vortices. We use numerical simulations to construct a phase diagram and compare the statistical properties of the different phases with observed features of self-motile bacterial suspensions. Our findings afford specific insights regarding the interaction of microorganisms and passive particles and provide novel strategic guidance for efficient technological realizations of artificial active matter.

  14. Two Visual Pathways in Primates Based on Sampling of Space: Exploitation and Exploration of Visual Information

    PubMed Central

    Sheth, Bhavin R.; Young, Ryan

    2016-01-01

    Evidence is strong that the visual pathway is segregated into two distinct streams—ventral and dorsal. Two proposals theorize that the pathways are segregated in function: The ventral stream processes information about object identity, whereas the dorsal stream, according to one model, processes information about either object location, and according to another, is responsible in executing movements under visual control. The models are influential; however recent experimental evidence challenges them, e.g., the ventral stream is not solely responsible for object recognition; conversely, its function is not strictly limited to object vision; the dorsal stream is not responsible by itself for spatial vision or visuomotor control; conversely, its function extends beyond vision or visuomotor control. In their place, we suggest a robust dichotomy consisting of a ventral stream selectively sampling high-resolution/focal spaces, and a dorsal stream sampling nearly all of space with reduced foveal bias. The proposal hews closely to the theme of embodied cognition: Function arises as a consequence of an extant sensory underpinning. A continuous, not sharp, segregation based on function emerges, and carries with it an undercurrent of an exploitation-exploration dichotomy. Under this interpretation, cells of the ventral stream, which individually have more punctate receptive fields that generally include the fovea or parafovea, provide detailed information about object shapes and features and lead to the systematic exploitation of said information; cells of the dorsal stream, which individually have large receptive fields, contribute to visuospatial perception, provide information about the presence/absence of salient objects and their locations for novel exploration and subsequent exploitation by the ventral stream or, under certain conditions, the dorsal stream. We leverage the dichotomy to unify neuropsychological cases under a common umbrella, account for the increased prevalence of multisensory integration in the dorsal stream under a Bayesian framework, predict conditions under which object recognition utilizes the ventral or dorsal stream, and explain why cells of the dorsal stream drive sensorimotor control and motion processing and have poorer feature selectivity. Finally, the model speculates on a dynamic interaction between the two streams that underscores a unified, seamless perception. Existing theories are subsumed under our proposal. PMID:27920670

  15. Apparatus for suppressing formation of vortices in the coolant fluid of a nuclear reactor and associated method

    DOEpatents

    Ekeroth, D.E.; Garner, D.C.; Hopkins, R.J.; Land, J.T.

    1993-11-30

    An apparatus and method are provided for suppressing the formation of vortices in circulating coolant fluid of a nuclear reactor. A vortex-suppressing plate having a plurality of openings therein is suspended within the lower plenum of a reactor vessel below and generally parallel to the main core support of the reactor. The plate is positioned so as to intersect vortices which may form in the circulating reactor coolant fluid. The intersection of the plate with such vortices disrupts the rotational flow pattern of the vortices, thereby disrupting the formation thereof. 3 figures.

  16. Apparatus for suppressing formation of vortices in the coolant fluid of a nuclear reactor and associated method

    DOEpatents

    Ekeroth, Douglas E.; Garner, Daniel C.; Hopkins, Ronald J.; Land, John T.

    1993-01-01

    An apparatus and method are provided for suppressing the formation of vortices in circulating coolant fluid of a nuclear reactor. A vortex-suppressing plate having a plurality of openings therein is suspended within the lower plenum of a reactor vessel below and generally parallel to the main core support of the reactor. The plate is positioned so as to intersect vortices which may form in the circulating reactor coolant fluid. The intersection of the plate with such vortices disrupts the rotational flow pattern of the vortices, thereby disrupting the formation thereof.

  17. Dynamics of circular arrangements of vorticity in two dimensions

    NASA Astrophysics Data System (ADS)

    Swaminathan, Rohith V.; Ravichandran, S.; Perlekar, Prasad; Govindarajan, Rama

    2016-07-01

    The merger of two like-signed vortices is a well-studied problem, but in a turbulent flow, we may often have more than two like-signed vortices interacting. We study the merger of three or more identical corotating vortices initially arranged on the vertices of a regular polygon. At low to moderate Reynolds numbers, we find an additional stage in the merger process, absent in the merger of two vortices, where an annular vortical structure is formed and is long lived. Vortex merger is slowed down significantly due to this. Such annular vortices are known at far higher Reynolds numbers in studies of tropical cyclones, which have been noticed to a break down into individual vortices. In the preannular stage, vortical structures in a viscous flow are found here to tilt and realign in a manner similar to the inviscid case, but the pronounced filaments visible in the latter are practically absent in the former. Five or fewer vortices initially elongate radially, and then reorient their long axis closer to the azimuthal direction so as to form an annulus. With six or more vortices, the initial alignment is already azimuthal. Interestingly at higher Reynolds numbers, the merger of an odd number of vortices is found to proceed very differently from that of an even number. The former process is rapid and chaotic whereas the latter proceeds more slowly via pairing events. The annular vortex takes the form of a generalized Lamb-Oseen vortex (GLO), and diffuses inward until it forms a standard Lamb-Oseen vortex. For lower Reynolds number, the numerical (fully nonlinear) evolution of the GLO vortex follows exactly the analytical evolution until merger. At higher Reynolds numbers, the annulus goes through instabilities whose nonlinear stages show a pronounced difference between even and odd mode disturbances. Here again, the odd mode causes an early collapse of the annulus via decaying turbulence into a single central vortex, whereas the even mode disturbance causes a more orderly progression into a single vortex. Results from linear stability analysis agree with the nonlinear simulations, and predict the frequencies of the most unstable modes better than they predict the growth rates. It is hoped that the present findings, that multiple vortex merger is qualitatively different from the merger of two vortices, will motivate studies on how multiple vortex interactions affect the inverse cascade in two-dimensional turbulence.

  18. LDV measurements of B-747 wake vortex characteristics

    DOT National Transportation Integrated Search

    1977-01-01

    In order to determine the behavior of the wake vortices of a B-747 at low : altitudes and to measure the vortex decay process behind the B-747 as a function : of altitude above ground, flap and spoiler settings and different flight configurations; a ...

  19. Intraventricular Flow Velocity Vector Visualization Based on the Continuity Equation and Measurements of Vorticity and Wall Shear Stress

    NASA Astrophysics Data System (ADS)

    Itatani, Keiichi; Okada, Takashi; Uejima, Tokuhisa; Tanaka, Tomohiko; Ono, Minoru; Miyaji, Kagami; Takenaka, Katsu

    2013-07-01

    We have developed a system to estimate velocity vector fields inside the cardiac ventricle by echocardiography and to evaluate several flow dynamical parameters to assess the pathophysiology of cardiovascular diseases. A two-dimensional continuity equation was applied to color Doppler data using speckle tracking data as boundary conditions, and the velocity component perpendicular to the echo beam line was obtained. We determined the optimal smoothing method of the color Doppler data, and the 8-pixel standard deviation of the Gaussian filter provided vorticity without nonphysiological stripe shape noise. We also determined the weight function at the bilateral boundaries given by the speckle tracking data of the ventricle or vascular wall motion, and the weight function linear to the distance from the boundary provided accurate flow velocities not only inside the vortex flow but also around near-wall regions on the basis of the results of the validation of a digital phantom of a pipe flow model.

  20. Three dimensional steady subsonic Euler flows in bounded nozzles

    NASA Astrophysics Data System (ADS)

    Chen, Chao; Xie, Chunjing

    The existence and uniqueness of three dimensional steady subsonic Euler flows in rectangular nozzles were obtained when prescribing normal component of momentum at both the entrance and exit. If, in addition, the normal component of the voriticity and the variation of Bernoulli's function at the entrance are both zero, then there exists a unique subsonic potential flow when the magnitude of the normal component of the momentum is less than a critical number. As the magnitude of the normal component of the momentum approaches the critical number, the associated flows converge to a subsonic-sonic flow. Furthermore, when the normal component of vorticity and the variation of Bernoulli function are both small, the existence and uniqueness of subsonic Euler flows with non-zero vorticity are established. The proof of these results is based on a new formulation for the Euler system, a priori estimate for nonlinear elliptic equations with nonlinear boundary conditions, detailed study for a linear div-curl system, and delicate estimate for the transport equations.

  1. Multiple eigenmodes of the Rayleigh-Taylor instability observed for a fluid interface with smoothly varying density

    NASA Astrophysics Data System (ADS)

    Yu, C. X.; Xue, C.; Liu, J.; Hu, X. Y.; Liu, Y. Y.; Ye, W. H.; Wang, L. F.; Wu, J. F.; Fan, Z. F.

    2018-01-01

    In this article, multiple eigen-systems including linear growth rates and eigen-functions have been discovered for the Rayleigh-Taylor instability (RTI) by numerically solving the Sturm-Liouville eigen-value problem in the case of two-dimensional plane geometry. The system called the first mode has the maximal linear growth rate and is just extensively studied in literature. Higher modes have smaller eigen-values, but possess multi-peak eigen-functions which bring on multiple pairs of vortices in the vorticity field. A general fitting expression for the first four eigen-modes is presented. Direct numerical simulations show that high modes lead to appearances of multi-layered spike-bubble pairs, and lots of secondary spikes and bubbles are also generated due to the interactions between internal spikes and bubbles. The present work has potential applications in many research and engineering areas, e.g., in reducing the RTI growth during capsule implosions in inertial confinement fusion.

  2. On Steady-State Tropical Cyclones

    DTIC Science & Technology

    2014-01-01

    components of the velocity vector, specific humidity, suspended liquid water, perturbation Exner function and perturbation density potential...vorticity and spin-up function, respectively. If the flow is symmetrically stable, the partial differential equation (10) is elliptic with a forcing term...Upper-level inflow jets A prominent feature of the radial velocity component shown in Figure 2(c) is the layered structure of inflow and outflow in the

  3. Polar vortices on Earth and Mars: A comparative study of the climatology and variability from reanalyses.

    PubMed

    Mitchell, D M; Montabone, L; Thomson, S; Read, P L

    2015-01-01

    Polar vortices on Mars provide case-studies to aid understanding of geophysical vortex dynamics and may help to resolve long-standing issues regarding polar vortices on Earth. Due to the recent development of the first publicly available Martian reanalysis dataset (MACDA), for the first time we are able to characterise thoroughly the structure and evolution of the Martian polar vortices, and hence perform a systematic comparison with the polar vortices on Earth. The winter atmospheric circulations of the two planets are compared, with a specific focus on the structure and evolution of the polar vortices. The Martian residual meridional overturning circulation is found to be very similar to the stratospheric residual circulation on Earth during winter. While on Earth this residual circulation is very different from the Eulerian circulation, on Mars it is found to be very similar. Unlike on Earth, it is found that the Martian polar vortices are annular, and that the Northern Hemisphere vortex is far stronger than its southern counterpart. While winter hemisphere differences in vortex strength are also reported on Earth, the contrast is not as large. Distinctions between the two planets are also apparent in terms of the climatological vertical structure of the vortices, in that the Martian polar vortices are observed to decrease in size at higher altitudes, whereas on Earth the opposite is observed. Finally, it is found that the Martian vortices are less variable through the winter than on Earth, especially in terms of the vortex geometry. During one particular major regional dust storm on Mars (Martian year 26), an equatorward displacement of the vortex is observed, sharing some qualitative characteristics of sudden stratospheric warmings on Earth.

  4. Polar vortices on Earth and Mars: A comparative study of the climatology and variability from reanalyses

    PubMed Central

    Mitchell, D M; Montabone, L; Thomson, S; Read, P L

    2015-01-01

    Polar vortices on Mars provide case-studies to aid understanding of geophysical vortex dynamics and may help to resolve long-standing issues regarding polar vortices on Earth. Due to the recent development of the first publicly available Martian reanalysis dataset (MACDA), for the first time we are able to characterise thoroughly the structure and evolution of the Martian polar vortices, and hence perform a systematic comparison with the polar vortices on Earth. The winter atmospheric circulations of the two planets are compared, with a specific focus on the structure and evolution of the polar vortices. The Martian residual meridional overturning circulation is found to be very similar to the stratospheric residual circulation on Earth during winter. While on Earth this residual circulation is very different from the Eulerian circulation, on Mars it is found to be very similar. Unlike on Earth, it is found that the Martian polar vortices are annular, and that the Northern Hemisphere vortex is far stronger than its southern counterpart. While winter hemisphere differences in vortex strength are also reported on Earth, the contrast is not as large. Distinctions between the two planets are also apparent in terms of the climatological vertical structure of the vortices, in that the Martian polar vortices are observed to decrease in size at higher altitudes, whereas on Earth the opposite is observed. Finally, it is found that the Martian vortices are less variable through the winter than on Earth, especially in terms of the vortex geometry. During one particular major regional dust storm on Mars (Martian year 26), an equatorward displacement of the vortex is observed, sharing some qualitative characteristics of sudden stratospheric warmings on Earth. PMID:26300564

  5. On the link between martian total ozone and potential vorticity

    NASA Astrophysics Data System (ADS)

    Lewis, S.; Holmes, J.; Patel, M.

    2016-12-01

    We demonstrate for the first time that total ozone in the martian atmosphere is highly correlated with the dynamical tracer, potential vorticity, under certain conditions. The degree of correlation is investigated using a Mars global circulation model including a photochemical model. Potential vorticity is the quantity of choice to explore the dynamical nature of polar vortices because it contains information on winds and temperature in a single scalar variable.The correlation is found to display a distinct seasonal variation, with a strong positive correlation in both northern and southern winter at poleward latitudes in the northern and southern hemisphere respectively. The identified strong correlation implies variations in polar total ozone during winter are predominantly controlled by dynamical processes in these spatio-temporal regions. The weak correlation in northern and southern summer is due to the dominance of photochemical reactions resulting from extended exposure to sunlight. The total ozone/potential vorticity correlation is slightly weaker in southern winter due to topographical variations and the preference for ozone to accumulate in Hellas basin. In northern winter, total ozone can be used to track the polar vortex edge. The ozone/potential vorticity ratio is calculated for both northern and southern winter on Mars for the first time. Using the strong correlation in total ozone and potential vorticity in northern winter inside the polar vortex, it is shown that potential vorticity can be used as a proxy to deduce the distribution of total ozone where satellites cannot observe for the majority of northern winter. Where total ozone observations are available on the fringes of northern winter at poleward latitudes, the strong relationship of total ozone and potential vorticity implies that total ozone anomalies in the surf zone can be of use to investigate the origin of potential vorticity filaments.

  6. On the link between martian total ozone and potential vorticity

    NASA Astrophysics Data System (ADS)

    Holmes, James A.; Lewis, Stephen R.; Patel, Manish R.

    2017-01-01

    We demonstrate for the first time that total ozone in the martian atmosphere is highly correlated with the dynamical tracer, potential vorticity, under certain conditions. The degree of correlation is investigated using a Mars global circulation model including a photochemical model. Potential vorticity is the quantity of choice to explore the dynamical nature of polar vortices because it contains information on winds and temperature in a single scalar variable. The correlation is found to display a distinct seasonal variation, with a strong positive correlation in both northern and southern winter at poleward latitudes in the northern and southern hemisphere respectively. The identified strong correlation implies variations in polar total ozone during winter are predominantly controlled by dynamical processes in these spatio-temporal regions. The weak correlation in northern and southern summer is due to the dominance of photochemical reactions resulting from extended exposure to sunlight. The total ozone/potential vorticity correlation is slightly weaker in southern winter due to topographical variations and the preference for ozone to accumulate in Hellas basin. In northern winter, total ozone can be used to track the polar vortex edge. The ozone/potential vorticity ratio is calculated for both northern and southern winter on Mars for the first time. Using the strong correlation in total ozone and potential vorticity in northern winter inside the polar vortex, it is shown that potential vorticity can be used as a proxy to deduce the distribution of total ozone where satellites cannot observe for the majority of northern winter. Where total ozone observations are available on the fringes of northern winter at poleward latitudes, the strong relationship of total ozone and potential vorticity implies that total ozone anomalies in the surf zone of the northern polar vortex can potentially be used to determine the origin of potential vorticity filaments.

  7. Controlled vortical flow on delta wings through unsteady leading edge blowing

    NASA Technical Reports Server (NTRS)

    Lee, K. T.; Roberts, Leonard

    1990-01-01

    The vortical flow over a delta wing contributes an important part of the lift - the so called nonlinear lift. Controlling this vortical flow with its favorable influence would enhance aircraft maneuverability at high angle of attack. Several previous studies have shown that control of the vortical flow field is possible through the use of blowing jets. The present experimental research studies vortical flow control by applying a new blowing scheme to the rounded leading edge of a delta wing; this blowing scheme is called Tangential Leading Edge Blowing (TLEB). Vortical flow response both to steady blowing and to unsteady blowing is investigated. It is found that TLEB can redevelop stable, strong vortices even in the post-stall angle of attack regime. Analysis of the steady data shows that the effect of leading edge blowing can be interpreted as an effective change in angle of attack. The examination of the fundamental time scales for vortical flow re-organization after the application of blowing for different initial states of the flow field is studied. Different time scales for flow re-organization are shown to depend upon the effective angle of attack. A faster response time can be achieved at angles of attack beyond stall by a suitable choice of the initial blowing momentum strength. Consequently, TLEB shows the potential of controlling the vortical flow over a wide range of angles of attack; i.e., in both for pre-stall and post-stall conditions.

  8. Dusty disc-planet interaction with dust-free simulations

    NASA Astrophysics Data System (ADS)

    Chen, Jhih-Wei; Lin, Min-Kai

    2018-05-01

    Protoplanets may be born into dust-rich environments if planetesimals formed through streaming or gravitational instabilities, or if the protoplanetary disc is undergoing mass loss due to disc winds or photoevaporation. Motivated by this possibility, we explore the interaction between low mass planets and dusty protoplanetary discs with focus on disc-planet torques. We implement Lin & Youdin's newly developed, purely hydrodynamic model of dusty gas into the PLUTO code to simulate dusty protoplanetary discs with an embedded planet. We find that for imperfectly coupled dust and high metallicity, e.g. Stokes number 10-3 and dust-to-gas ratio Σd/Σg = 0.5, a `bubble' develops inside the planet's co-orbital region, which introduces unsteadiness in the flow. The resulting disc-planet torques sustain large amplitude oscillations that persists well beyond that in simulations with perfectly coupled dust or low dust-loading, where co-rotation torques are always damped. We show that the desaturation of the co-rotation torques by finite-sized particles is related to potential vorticity generation from the misalignment of dust and gas densities. We briefly discuss possible implications for the orbital evolution of protoplanets in dust-rich discs. We also demonstrate Lin & Youdin's dust-free framework reproduces previous results pertaining to dusty protoplanetary discs, including dust-trapping by pressure bumps, dust settling, and the streaming instability.

  9. On the development of lift and drag in a rotating and translating cylinder

    NASA Astrophysics Data System (ADS)

    Martin-Alcantara, Antonio; Sanmiguel-Rojas, Enrique; Fernandez-Feria, Ramon

    2014-11-01

    The two-dimensional flow around a rotating cylinder is investigated numerically using a vorticity forces formulation with the aim of analyzing the flow structures, and their evolutions, that contribute to the lift and drag forces on the cylinder. The Reynolds number, based on the cylinder diameter and steady free-stream speed, considered is Re = 200 , while the non-dimensional rotation rate (ratio of the surface speed and free-stream speed) selected were α = 1 and 3. For α = 1 the wake behind the cylinder for the fully developed flow is oscillatory due to vortex shedding, and so are the lift and drag forces. For α = 3 the fully developed flow is steady with constant (high) lift and (low) drag. Each of these cases is considered in two different transient problems, one with angular acceleration of the cylinder and constant speed, and the other one with translating acceleration of the cylinder and constant rotation. Special attention is paid to explaining the mechanisms of vortex shedding suppression for high rotation (when α = 3) and its relation to the mechanisms by which the lift is enhanced and the drag is almost suppressed when the fully developed flow is reached. Supported by the Ministerio de Economia y Competitividad of Spain Grant No. DPI2013-40479-P.

  10. Tropical cyclogenesis in a tropical wave critical layer: easterly waves

    NASA Astrophysics Data System (ADS)

    Dunkerton, T. J.; Montgomery, M. T.; Wang, Z.

    2009-08-01

    The development of tropical depressions within tropical waves over the Atlantic and eastern Pacific is usually preceded by a "surface low along the wave" as if to suggest a hybrid wave-vortex structure in which flow streamlines not only undulate with the waves, but form a closed circulation in the lower troposphere surrounding the low. This structure, equatorward of the easterly jet axis, is identified herein as the familiar critical layer of waves in shear flow, a flow configuration which arguably provides the simplest conceptual framework for tropical cyclogenesis resulting from tropical waves, their interaction with the mean flow, and with diabatic processes associated with deep moist convection. The recirculating Kelvin cat's eye within the critical layer represents a sweet spot for tropical cyclogenesis in which a proto-vortex may form and grow within its parent wave. A common location for storm development is given by the intersection of the wave's critical latitude and trough axis at the center of the cat's eye, with analyzed vorticity centroid nearby. The wave and vortex live together for a time, and initially propagate at approximately the same speed. In most cases this coupled propagation continues for a few days after a tropical depression is identified. For easterly waves, as the name suggests, the propagation is westward. It is shown that in order to visualize optimally the associated Lagrangian motions, one should view the flow streamlines, or stream function, in a frame of reference translating horizontally with the phase propagation of the parent wave. In this co-moving frame, streamlines are approximately equivalent to particle trajectories. The closed circulation is quasi-stationary, and a dividing streamline separates air within the cat's eye from air outside. The critical layer equatorward of the easterly jet axis is important to tropical cyclogenesis because its cat's eye provides (i) a region of cyclonic vorticity and weak deformation by the resolved flow, (ii) containment of moisture entrained by the developing gyre and/or lofted by deep convection therein, (iii) confinement of mesoscale vortex aggregation, (iv) a predominantly convective type of heating profile, and (v) maintenance or enhancement of the parent wave until the vortex becomes a self-sustaining entity and emerges from the wave as a tropical depression. The entire sequence is likened to the development of a marsupial infant in its mother's pouch. These ideas are formulated in three new hypotheses describing the flow kinematics and dynamics, moist thermodynamics and wave/vortex interactions comprising the "marsupial paradigm". A survey of 55 named tropical storms in 1998-2001 reveals that actual critical layers sometimes resemble the ideal east-west train of cat's eyes, but are usually less regular, with one or more recirculation regions in the co-moving frame. It is shown that the kinematics of isolated proto-vortices carried by the wave also can be visualized in a frame of reference translating at or near the phase speed of the parent wave. The proper translation speeds for wave and vortex may vary with height owing to vertical shear and wave-vortex interaction. Some implications for entrainment/containment of vorticity and moisture in the cat's eye are discussed from this perspective, based on the observational survey.

  11. Bivariate functional data clustering: grouping streams based on a varying coefficient model of the stream water and air temperature relationship

    Treesearch

    H. Li; X. Deng; Andy Dolloff; E. P. Smith

    2015-01-01

    A novel clustering method for bivariate functional data is proposed to group streams based on their water–air temperature relationship. A distance measure is developed for bivariate curves by using a time-varying coefficient model and a weighting scheme. This distance is also adjusted by spatial correlation of streams via the variogram. Therefore, the proposed...

  12. Biodiversity and ecosystem function in species-poor communities: community structure and leaf litter breakdown in a Pacific island stream

    Treesearch

    Jonathan P. Benstead; James G. March; Catherine M. Pringle; Katherine C. Ewel; John W. Short

    2009-01-01

    Pacific island stream communities are species-poor because of the effects of extreme geographic isolation on colonization rates of taxa common to continental regions. The effects of such low species richness on stream ecosystem function are not well understood. Here, we provide data on community structure and leaf litter breakdown rate in a virtually pristine stream on...

  13. Collision dynamics of two-dimensional non-Abelian vortices

    NASA Astrophysics Data System (ADS)

    Mawson, Thomas; Petersen, Timothy C.; Simula, Tapio

    2017-09-01

    We study computationally the collision dynamics of vortices in a two-dimensional spin-2 Bose-Einstein condensate. In contrast to Abelian vortex pairs, which annihilate or pass through each other, we observe non-Abelian vortex pairs to undergo rungihilation—an event that converts the colliding vortices into a rung vortex. The resulting rung defect subsequently decays to another pair of non-Abelian vortices of different type, accompanied by a magnetization reversal.

  14. Fluid transport by dipolar vortices

    NASA Astrophysics Data System (ADS)

    I, Eames; J.-B, Flór

    1998-08-01

    The transport properties of dipolar vortices propagating on an f-plane are studied experimentally by examining the distortion of a series of material surfaces. The observations are compared with a model based on characterising the flow around the dipole as irrotational flow past a rigid cylinder of volume V. Measurements made of the volume of fluid permanently displaced forward by the vortices, agree to within 20% of that predicted by the proposition of Darwin [Darwin, C., 1953. A note on hydrodynamics. Proc. Cambridge Philos. Soc., 49, 342-354], namely that the vortex will displace a volume CMV forward, where CM=1 for a Lamb's dipole. The results are applied to examine fluid transport by dipolar vortices propagating on the β-plane, where the ambient potential vorticity field causes easterly propagating dipolar vortices to meander sinusoidally between the North and South. We demonstrate that as the vortex moves between the North and South, it exchanges a volume CMV sin α by the drift effect (where α is the angle between the velocity of the dipole and the material surface), which is generally larger than that attributed to other mechanisms such as lobe shedding. The results are applied to give new insight to the effect of vortices in enhancing diffusion, and the secondary flow generated by the transport of ambient potential vorticity.

  15. Vorticity dynamics of revolving wings: The role of planetary vortex tilting on the stability of leading-edge vortex

    NASA Astrophysics Data System (ADS)

    Werner, Nathaniel; Chung, Hojae; Wang, Junshi; Liu, Geng; Cimbala, John; Dong, Haibo; Cheng, Bo

    2017-11-01

    This work investigates the radial vorticity dynamics and the stability of leading-edge vortices (LEVs) in revolving wings. Previous studies have shown that Coriolis acceleration plays a key role in stabilizing the LEV; however, the exact mechanism remains unclear. This study tests a new hypothesis based on the curl of the Coriolis acceleration in the vorticity equation, which corresponds to the radial tilting of the planetary vortex (PVTr). The PVTr could reorient planetary vorticity into radial vorticity that reduces the strength of the LEV, preventing the LEV from growing and becoming unstable. To test this, an in-house immersed-boundary-method-based flow solver was used to generate velocity and vorticity fields of revolving wings of different aspect ratio (AR = 3, 5, 7) and Reynolds number (Re = 110, 1400). It is found that the PVTr consistently negates the LEV vorticity for all the AR and Re investigated, although its effect is outweighed by other 3D effects at Re =1400. It is also found that the strength of the PVTr increases along the wing span until approximately a chord length from the wing tip. The averaged magnitude of PVTr within the LEV and the dependency of its relative strength on the aspect ratio and Reynolds number are also investigated.

  16. The generation of two-dimensional vortices by transverse oscillation of a soap film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Afenchenko, V.O.; Ezersky, A.B.; Kiyashko, S.V.

    1998-02-01

    An experimental investigation of the dynamics of horizontal soap films stretched over circular or square boundaries undergoing periodic transverse oscillations at frequencies in the range 20{endash}200 Hz is reported. Concomitant with modes of transverse flexural oscillations, it was observed that two-dimensional vortices in the plane of the film are excited. The vortices may be either (i) large, scaling with the size of the cavity or (ii) small, localized at a wavelength or half-wavelength of the membrane modes. In the experiments a stable generation of one, two, {hor_ellipsis}, ten pairs of counter-rotating vortices were observed in finite regions of amplitude-frequency parametermore » space. The circulation strength of vortices in a given vortex pattern increases with increasing external forcing and with decreasing soap film thickness. A theoretical model based on the wave-boundary interaction of excited Marangoni waves reveals a vorticity generation mechanism active in vibrating soap films. This model shows that vorticity is generated throughout the entire liquid volume by viscous diffusion, and qualitatively reproduces many steady vortex patterns observed in the experiment. However, the model cannot explain the existence of the sometimes intense vortices observed far from the film boundary that do not appear to be generated by diffusive processes. {copyright} {ital 1998 American Institute of Physics.}« less

  17. Vorticity Transfer in Shock Wave Interactions with Turbulence and Vortices

    NASA Astrophysics Data System (ADS)

    Agui, J. H.; Andreopoulos, J.

    1998-11-01

    Time-dependent, three-dimensional vorticity measurements of shock waves interacting with grid generated turbulence and concentrated tip vortices were conducted in a large diameter shock tube facility. Two different mesh size grids and a NACA-0012 semi-span wing acting as a tip vortex generator were used to carry out different relative Mach number interactions. The turbulence interactions produced a clear amplification of the lateral and spanwise vorticity rms, while the longitudinal component remained mostly unaffected. By comparison, the tip vortex/shock wave interactions produced a two fold increase in the rms of longitudinal vorticity. Considerable attention was given to the vorticity source terms. The mean and rms of the vorticity stretching terms dominated by 5 to 7 orders of magnitude over the dilitational compression terms in all the interactions. All three signals of the stretching terms manifested very intermittent, large amplitude peak events which indicated the bursting character of the stretching process. Distributions of these signals were characterized by extremely large levels of flatness with varying degrees of skewness. These distribution patterns were found to change only slightly through the turbulence interactions. However, the tip vortex/shock wave interactions brought about significant changes in these distributions which were associated with the abrupt structural changes of the vortex after the interaction.

  18. Receptivity to Unsteady Disturbances at the Trailing Edge in a Finite-Width Mixing Layer Flow.

    NASA Astrophysics Data System (ADS)

    Rabchuk, James Allen

    1995-01-01

    A theoretical study of the receptivity to harmonic disturbances at the trailing edge of a finite-width mixing layer has been carried out. The unsteady Kutta condition at the trailing edge has been reexamined at the vorticity scale of the steady mixing layer profile, and the underlying physical mechanism of this condition explained. The receptivity problem of harmonic forcing at the trailing edge is shown to reduce to an initial-value problem for the downstream mixing layer or wake. A linear coupling term for the response field amplitude is derived which is proportional to the square root of the Strouhal number and the difference in the gradient of the forcing pressure field tangential to the plate near the trailing edge. An initial-value problem is then solved for an inviscid, incompressible mixing layer with a piecewise linear velocity profile leaving the trailing edge of a flat plate, subject to harmonic forcing. The Wiener-Hopf technique is used to solve for the stream function of the response field over a range of forcing frequencies and mean flow velocities. The solutions are shown to agree with previous solutions for infinitesimally thin shear layers from Bechert, 1988 and Orszag and Crow, 1970, in the limit that the Strouhal number relative to the mixing layer thickness, S, is small. In addition, solutions are obtained for moderate values of S, for which the mixing layer is most unstable. It is shown that for increasing S, the initial amplitudes of the discrete modes of instability decrease like 1 over S and then level off, while the neutrally stable mode of response is increasingly amplified. It is also shown that the overall phase of the response is nearly independent of S, except at a cross-stream position where the phase shifts by 180 degrees and the amplitude of the response goes to zero, which moves from the low to the high speed flow as S increases.

  19. Quantifying the sensitivity of ephemeral streams to land disturbance activities in arid ecosystems at the watershed scale.

    PubMed

    O'Connor, Ben L; Hamada, Yuki; Bowen, Esther E; Grippo, Mark A; Hartmann, Heidi M; Patton, Terri L; Van Lonkhuyzen, Robert A; Carr, Adrianne E

    2014-11-01

    Large areas of public lands administered by the Bureau of Land Management and located in arid regions of the southwestern United States are being considered for the development of utility-scale solar energy facilities. Land-disturbing activities in these desert, alluvium-filled valleys have the potential to adversely affect the hydrologic and ecologic functions of ephemeral streams. Regulation and management of ephemeral streams typically falls under a spectrum of federal, state, and local programs, but scientifically based guidelines for protecting ephemeral streams with respect to land-development activities are largely nonexistent. This study developed an assessment approach for quantifying the sensitivity to land disturbance of ephemeral stream reaches located in proposed solar energy zones (SEZs). The ephemeral stream assessment approach used publicly-available geospatial data on hydrology, topography, surficial geology, and soil characteristics, as well as high-resolution aerial imagery. These datasets were used to inform a professional judgment-based score index of potential land disturbance impacts on selected critical functions of ephemeral streams, including flow and sediment conveyance, ecological habitat value, and groundwater recharge. The total sensitivity scores (sum of scores for the critical stream functions of flow and sediment conveyance, ecological habitats, and groundwater recharge) were used to identify highly sensitive stream reaches to inform decisions on developable areas in SEZs. Total sensitivity scores typically reflected the scores of the individual stream functions; some exceptions pertain to groundwater recharge and ecological habitats. The primary limitations of this assessment approach were the lack of high-resolution identification of ephemeral stream channels in the existing National Hydrography Dataset, and the lack of mechanistic processes describing potential impacts on ephemeral stream functions at the watershed scale. The primary strength of this assessment approach is that it allows watershed-scale planning for low-impact development in arid ecosystems; the qualitative scoring of potential impacts can also be adjusted to accommodate new geospatial data, and to allow for expert and stakeholder input into decisions regarding the identification and potential avoidance of highly sensitive stream reaches.

  20. Quantifying the sensitivity of ephemeral streams to land disturbance activities in arid ecosystems at the watershed scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O’Connor, Ben L.; Hamada, Yuki; Bowen, Esther E.

    2014-08-17

    Large areas of public lands administered by the Bureau of Land Management and located in arid regions of the southwestern United States are being considered for the development of utility-scale solar energy facilities. Land-disturbing activities in these desert, alluvium-filled valleys have the potential to adversely affect the hydrologic and ecologic functions of ephemeral streams. Regulation and management of ephemeral streams typically falls under a spectrum of federal, state, and local programs, but scientifically based guidelines for protecting ephemeral streams with respect to land-development activities are largely nonexistent. This study developed an assessment approach for quantifying the sensitivity to land disturbancemore » of ephemeral stream reaches located in proposed solar energy zones (SEZs). The ephemeral stream assessment approach used publicly-available geospatial data on hydrology, topography, surficial geology, and soil characteristics, as well as highresolution aerial imagery. These datasets were used to inform a professional judgment-based score index of potential land disturbance impacts on selected critical functions of ephemeral streams, including flow and sediment conveyance, ecological habitat value, and groundwater recharge. The total sensitivity scores (sum of scores for the critical stream functions of flow and sediment conveyance, ecological habitats, and groundwater recharge) were used to identify highly sensitive stream reaches to inform decisions on developable areas in SEZs. Total sensitivity scores typically reflected the scores of the individual stream functions; some exceptions pertain to groundwater recharge and ecological habitats. The primary limitations of this assessment approach were the lack of high-resolution identification of ephemeral stream channels in the existing National Hydrography Dataset, and the lack of mechanistic processes describing potential impacts on ephemeral stream functions at the watershed scale.The primary strength of this assessment approach is that it allows watershed-scale planning for low-impact development in arid ecosystems; the qualitative scoring of potential impacts can also be adjusted to accommodate new geospatial data, and to allow for expert and stakeholder input into decisions regarding the identification and potential avoidance of highly sensitive stream reaches.« less

Top